
ContentsContents

 ASP.NET Core documentation
 What's new in ASP.NET Core docs
 Overview

 About ASP.NET Core
 Compare ASP.NET Core and ASP.NET
 Compare .NET Core and .NET Framework

 Get started
 Release notes

 What's new in 3.1
 What's new in 3.0
 What's new in 2.2
 What's new in 2.1
 What's new in 2.0
 What's new in 1.1

 Tutorials
 Web apps

 Razor Pages
 Overview
 Get started
 Add a model
 Scaffolding
 Work with a database
 Update the pages
 Add search
 Add a new field
 Add validation

 MVC
 Overview
 Get started

file:///T:/ylbl/bt3g/aspnet/core/0fa49936/index.json
file:///T:/ylbl/bt3g/aspnet/core/0fa49936/whats-new/index.json
https://docs.microsoft.com/dotnet/standard/choosing-core-framework-server

 Add a controller
 Add a view
 Add a model
 Work with a database
 Controller actions and views
 Add search
 Add a new field
 Add validation
 Examine Details and Delete

 Blazor
 Web API apps

 Create a web API
 Web API with MongoDB
 Web API with JavaScript
 Backend for mobile
 Publish to Azure API Management

 Real-time web apps
 SignalR with JavaScript
 SignalR with TypeScript
 SignalR with Blazor WebAssembly

 Remote Procedure Call apps
 Get started with a gRPC service

 Data access
 EF Core with Razor Pages

 Get started
 Create, Read, Update, and Delete
 Sort, filter, page, and group
 Migrations
 Create a complex data model
 Read related data
 Update related data
 Handle concurrency conflicts

 EF Core with MVC
 Overview
 Get started
 Create, Read, Update, and Delete
 Sort, filter, page, and group
 Migrations
 Create a complex data model
 Read related data
 Update related data
 Handle concurrency conflicts
 Inheritance
 Advanced topics

 Microsoft Learn modules
 Web apps >>
 Web API apps >>
 Cloud-native microservices

 Create and deploy >>
 Implement resiliency >>
 Deploy with GitHub Actions >>

 Data access >>
 Web app security >>

 Fundamentals
 Overview
 The Startup class
 Dependency injection (services)
 Middleware
 Host

 Generic Host
 Web Host

 Servers
 Configuration
 Options

https://docs.microsoft.com/learn/modules/create-razor-pages-aspnet-core/
https://docs.microsoft.com/learn/modules/build-web-api-net-core/
https://docs.microsoft.com/learn/modules/microservices-aspnet-core/
https://docs.microsoft.com/learn/modules/microservices-resiliency-aspnet-core/
https://docs.microsoft.com/learn/modules/microservices-devops-aspnet-core/
https://docs.microsoft.com/learn/modules/persist-data-ef-core/
https://docs.microsoft.com/learn/modules/secure-aspnet-core-identity/

 Environments (dev, stage, prod)
 Logging
 Routing
 Handle errors
 Make HTTP requests
 Static files

 Web apps
 Razor Pages

 Introduction
 Tutorial

 Overview
 Get started
 Add a model
 Scaffolding
 Work with a database
 Update the pages
 Add search
 Add a new field
 Add validation

 Filters
 Route and app conventions

 MVC
 Overview
 Tutorial

 Overview
 Get started
 Add a controller
 Add a view
 Add a model
 Work with a database
 Controller actions and views
 Add search

 Add a new field
 Add validation
 Examine the Details and Delete methods

 Views
 Partial views
 Controllers
 Routing
 Dependency injection - controllers
 Dependency injection - views
 Unit test

 Blazor
 Overview
 Supported platforms
 Tooling
 Hosting models
 Tutorials

 Build a Blazor todo list app
 SignalR with Blazor WebAssembly

 Templates
 Fundamentals

 Routing
 Configuration
 Dependency injection
 Environments
 Logging
 Handle errors
 Additional scenarios

 Components
 Overview
 Built-in components

 App
 Authentication

 AuthorizeView
 InputCheckbox
 InputDate
 InputFile
 InputNumber
 InputRadio
 InputRadioGroup
 InputSelect
 InputText
 InputTextArea
 Link
 MainLayout
 Meta
 NavLink
 NavMenu
 Router
 Title
 Virtualize

 Cascading values and parameters
 Data binding
 Event handling
 Lifecycle
 Component virtualization
 Templated components
 Integrate components
 Component libraries

 Globalization and localization
 Layouts
 Forms and validation
 File uploads
 Call JavaScript from .NET
 Call .NET from JavaScript

 Call a web API from WebAssembly
 Security and Identity

 Overview
 Blazor WebAssembly

 Overview
 Standalone with Authentication library
 Standalone with Microsoft Accounts
 Standalone with AAD
 Standalone with AAD B2C
 Hosted with AAD
 Hosted with AAD B2C
 Hosted with Identity Server
 Additional scenarios
 AAD groups and roles

 Blazor Server
 Overview
 Threat mitigation
 Additional scenarios

 Content Security Policy
 State management
 Debug WebAssembly
 Lazy load assemblies with WebAssembly
 WebAssembly performance
 Test
 Progressive Web Applications
 Host and deploy

 Overview
 Blazor WebAssembly
 Blazor Server
 Configure the Linker
 Configure the Trimmer

 Blazor Server and EF Core

 Advanced scenarios
 Client-side development

 Single Page Apps
 Angular
 React
 React with Redux
 JavaScript Services

 LibMan
 Overview
 CLI
 Visual Studio

 Grunt
 Bundle and minify
 Browser Link

 Session and state management
 Layout
 Razor syntax
 Razor class libraries
 Tag Helpers

 Overview
 Create Tag Helpers
 Use Tag Helpers in forms
 Tag Helper Components
 Built-in Tag Helpers

 Anchor
 Cache
 Component
 Distributed Cache
 Environment
 Form
 Form Action
 Image

 Input
 Label
 Link
 Partial
 Script
 Select
 Textarea
 Validation Message
 Validation Summary

 Advanced
 Application parts
 Application model
 Areas
 Filters
 Razor SDK
 View components
 View compilation
 Upload files
 Web SDK
 aspnet-codegenerator (Scaffolding)

 Web API apps
 Overview
 Tutorials

 Create a web API
 Web API with MongoDB

 Swagger / OpenAPI
 Overview
 Get started with Swashbuckle
 Get started with NSwag
 OpenAPI tools

 Action return types
 Handle JSON Patch requests

 Format response data
 Custom formatters
 Analyzers
 Conventions
 Handle errors
 Test APIs with HTTP REPL

 Real-time apps
 SignalR overview
 Supported platforms
 Tutorials

 SignalR with JavaScript
 SignalR with TypeScript
 SignalR with Blazor WebAssembly

 Samples
 Server concepts

 Hubs
 Send from outside a hub
 Users and groups
 API design considerations
 Hub filters

 Clients
 Overview
 .NET client
 .NET API reference
 Java client
 Java API reference
 JavaScript client
 JavaScript API reference

 Host and scale
 Overview
 Azure App Service
 Redis backplane

https://github.com/aspnet/SignalR-samples
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.signalr.client
https://docs.microsoft.com/java/api/com.microsoft.signalr
https://docs.microsoft.com/javascript/api/

 SignalR with background services
 Configuration
 Authentication and authorization
 Security considerations
 MessagePack Hub Protocol
 Streaming
 Compare SignalR and SignalR Core
 WebSockets without SignalR
 Logging and diagnostics
 Specifications

 Hub protocol
 Transport protocols

 Remote Procedure Call apps
 Introduction to gRPC services
 Tutorials

 Get started with a gRPC service
 gRPC services with C#

 Overview
 Create gRPC services
 Create Protobuf messages
 Versioning gRPC services

 Call gRPC services with C#
 Overview
 gRPC client factory integration
 Deadlines and cancellation

 gRPC services with ASP.NET Core
 Use gRPC in browser apps
 Configuration
 Authentication and authorization
 Logging and diagnostics
 Security considerations
 Performance best practices

https://github.com/aspnet/AspNetCore/blob/master/src/SignalR/docs/specs/HubProtocol.md
https://github.com/aspnet/AspNetCore/blob/master/src/SignalR/docs/specs/TransportProtocols.md

 Inter-process communication
 Create JSON Web APIs from gRPC
 Manage Protobuf references with dotnet-grpc
 Test gRPC services with gRPCurl
 Migrate gRPC services from C-core
 Why migrate WCF to ASP.NET Core gRPC
 Compare gRPC services with HTTP APIs
 Samples
 Troubleshoot

 Test, debug, and troubleshoot
 Razor Pages unit tests
 Test controllers
 Test middleware
 Remote debugging
 Snapshot debugging
 Snapshot debugging in Visual Studio
 Integration tests
 Load and stress testing
 Troubleshoot and debug
 Logging
 Troubleshoot Azure and IIS
 Azure and IIS errors reference

 Data access
 Tutorials

 EF Core with Razor Pages
 Get started
 Create, Read, Update, and Delete
 Sort, filter, page, and group
 Migrations
 Create a complex data model
 Read related data
 Update related data

https://github.com/grpc/grpc-dotnet/tree/master/examples
https://docs.microsoft.com/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/azure/azure-monitor/app/snapshot-debugger
https://docs.microsoft.com/visualstudio/debugger/debug-live-azure-applications

 Handle concurrency conflicts
 EF Core with MVC

 Overview
 Get started
 Create, Read, Update, and Delete
 Sort, filter, page, and group
 Migrations
 Create a complex data model
 Read related data
 Update related data
 Handle concurrency conflicts
 Inheritance
 Advanced topics

 EF 6 with ASP.NET Core
 Azure Storage with Visual Studio

 Connected Services
 Blob storage
 Queue storage
 Table storage

 Host and deploy
 Overview
 Azure App Service

 Overview
 Publish with Visual Studio
 Publish with Visual Studio for Mac
 Publish with the CLI
 Publish with Visual Studio and Git
 Continuous deployment with Azure Pipelines
 ASP.NET Core Module
 Troubleshoot
 Errors reference

 DevOps

https://docs.microsoft.com/visualstudio/azure/vs-azure-tools-connected-services-storage
https://docs.microsoft.com/azure/visual-studio/vs-storage-aspnet5-getting-started-blobs
https://docs.microsoft.com/azure/visual-studio/vs-storage-aspnet5-getting-started-queues
https://docs.microsoft.com/azure/visual-studio/vs-storage-aspnet5-getting-started-tables
https://docs.microsoft.com/visualstudio/mac/publish-app-svc
https://docs.microsoft.com/azure/app-service/app-service-web-tutorial-dotnetcore-sqldb
https://docs.microsoft.com/azure/devops/pipelines/get-started-yaml

 Overview
 Tools and downloads
 Deploy to App Service
 Continuous integration and deployment
 Monitor and troubleshoot
 Next steps

 IIS
 Overview
 Publish to IIS tutorial
 ASP.NET Core Module
 IIS support in Visual Studio
 IIS Modules
 Troubleshoot
 Errors reference
 Transform web.config

 Kestrel
 HTTP.sys
 Windows service
 Linux with Nginx
 Linux with Apache
 Docker

 Overview
 Build Docker images
 Visual Studio Tools
 Publish to a Docker image
 Sample Docker images

 Proxy and load balancer configuration
 Web farm
 Visual Studio publish profiles
 Visual Studio for Mac publish to folder
 Directory structure
 Health checks

https://docs.microsoft.com/visualstudio/containers/vs-azure-tools-docker-hosting-web-apps-in-docker
https://github.com/dotnet/dotnet-docker/blob/master/samples/aspnetapp/README.md
https://docs.microsoft.com/visualstudio/mac/publish-folder

 Security and Identity
 Overview
 Authentication

 Overview
 Introduction to Identity
 Identity with SPA
 Scaffold Identity
 Add custom user data to Identity
 Authentication samples
 Customize Identity
 Community OSS authentication options
 Configure Identity
 Configure Windows Authentication
 Custom storage providers for Identity
 Google, Facebook ...

 Overview
 Google authentication
 Facebook authentication
 Microsoft authentication
 Twitter authentication
 Other providers
 Additional claims

 Policy schemes
 WS-Federation authentication
 Account confirmation and password recovery
 Enable QR code generation in Identity
 Two-factor authentication with SMS
 Use cookie authentication without Identity
 Use social authentication without Identity
 Azure Active Directory

 Overview
 Integrate Azure AD into a web app

https://docs.microsoft.com/azure/active-directory/develop/quickstart-v2-aspnet-core-webapp

 Scenarios
 Web app that signs in users
 Web app that calls web APIs
 Protected web API
 Web API that calls other web APIs
 Integrate Azure AD B2C into a web app

 Samples
 Sign-in users and call web APIs using Azure AD V2
 Calling an ASP.NET Core 2.0 Web API from a WPF application using Azure AD

V2
 Web API with Azure AD B2C

 Secure ASP.NET Core apps with IdentityServer4
 Secure ASP.NET Core apps with Azure App Service authentication (Easy Auth)
 Individual user accounts
 Configure certificate authentication
 Multi-factor authentication

 Authorization
 Overview
 Create a web app with authorization
 Razor Pages authorization conventions
 Simple authorization
 Role-based authorization
 Claims-based authorization
 Policy-based authorization
 Authorization policy providers
 Dependency injection in requirement handlers
 Resource-based authorization
 View-based authorization
 Limit identity by scheme

 Data protection
 Overview
 Data protection APIs
 Consumer APIs

https://docs.microsoft.com/azure/active-directory/develop/scenario-web-app-sign-user-overview
https://docs.microsoft.com/azure/active-directory/develop/scenario-web-app-call-api-overview
https://docs.microsoft.com/azure/active-directory/develop/scenario-protected-web-api-overview
https://docs.microsoft.com/azure/active-directory/develop/scenario-web-api-call-api-overview
https://docs.microsoft.com/samples/azure-samples/active-directory-aspnetcore-webapp-openidconnect-v2/enable-webapp-signin/
https://docs.microsoft.com/samples/azure-samples/active-directory-dotnet-native-aspnetcore-v2/calling-an-aspnet-core-web-api-from-a-wpf-application-using-azure-ad-v2/
https://azure.microsoft.com/resources/samples/active-directory-b2c-dotnetcore-webapi/
https://identityserver4.readthedocs.io/
https://docs.microsoft.com/azure/app-service/overview-authentication-authorization

 Overview
 Purpose strings
 Purpose hierarchy and multi-tenancy
 Hash passwords
 Limit the lifetime of protected payloads
 Unprotect payloads whose keys have been revoked

 Configuration
 Overview
 Configure data protection
 Default settings
 Machine-wide policy
 Non-DI aware scenarios

 Extensibility APIs
 Overview
 Core cryptography extensibility
 Key management extensibility
 Miscellaneous APIs

 Implementation
 Overview
 Authenticated encryption details
 Subkey derivation and authenticated encryption
 Context headers
 Key management
 Key storage providers
 Key encryption at rest
 Key immutability and settings
 Key storage format
 Ephemeral data protection providers

 Compatibility
 Overview
 Replace machineKey in ASP.NET

 Secrets management

 Protect secrets in development
 Azure Key Vault Configuration Provider

 Enforce HTTPS
 Host Docker with HTTPS
 Docker Compose with HTTPS
 EU General Data Protection Regulation (GDPR) support
 Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks
 Prevent open redirect attacks
 Prevent Cross-Site Scripting (XSS)
 Enable Cross-Origin Requests (CORS)
 Share cookies among apps
 SameSite cookies
 SameSite samples

 Razor Pages 2.1 SameSite cookie sample
 Razor Pages 3.1 SameSite cookie sample
 MVC SameSite cookie sample

 IP safelist
 Application security - OWASP

 Performance
 Overview
 Memory and GC
 Caching

 Overview
 In-memory cache
 Distributed caching
 Response caching middleware
 Object reuse with ObjectPool

 Response compression
 Diagnostic tools
 Load and stress testing
 Event counters

 Globalization and localization
 Overview

https://cheatsheetseries.owasp.org/cheatsheets/DotNet_Security_Cheat_Sheet.html
https://docs.microsoft.com/dotnet/core/diagnostics/event-counter-perf

 Overview
 Portable Object localization
 Extensibility
 Troubleshoot

 Advanced
 Model binding
 Custom model binding
 Model validation
 Compatibility version
 Write middleware
 Request and response operations
 URL rewriting
 File providers
 Request-feature interfaces
 Access HttpContext
 Change tokens
 Open Web Interface for .NET (OWIN)
 Background tasks with hosted services
 Hosting startup assemblies
 ASP.NET Core in class libraries
 Microsoft.AspNetCore.App metapackage
 Microsoft.AspNetCore.All metapackage
 Logging with LoggerMessage
 Use a file watcher
 Factory-based middleware
 Factory-based middleware with third-party container

 Migration
 3.1 to 5.0
 3.0 to 3.1
 2.2 to 3.0
 2.1 to 2.2
 2.0 to 2.1
 1.x to 2.0

 Overview

 Overview
 Authentication and Identity

 ASP.NET to ASP.NET Core
 Overview
 MVC
 Web API
 Configuration
 Authentication and Identity
 ClaimsPrincipal.Current
 Membership to Identity
 HTTP modules to middleware

 Logging (not ASP.NET Core)
 API reference
 Contribute

https://docs.microsoft.com/dotnet/api/
https://github.com/dotnet/AspNetCore.Docs/blob/master/CONTRIBUTING.md

Introduction to ASP.NET Core
9/22/2020 • 8 minutes to read • Edit Online

Why choose ASP.NET Core?

Build web APIs and web UI using ASP.NET Core MVC

By Daniel Roth, Rick Anderson, and Shaun Luttin

ASP.NET Core is a cross-platform, high-performance, open-source framework for building modern, cloud-

enabled, Internet-connected apps. With ASP.NET Core, you can:

Build web apps and services, Internet of Things (IoT) apps, and mobile backends.

Use your favorite development tools on Windows, macOS, and Linux.

Deploy to the cloud or on-premises.

Run on .NET Core.

Millions of developers use or have used ASP.NET 4.x to create web apps. ASP.NET Core is a redesign of ASP.NET

4.x, including architectural changes that result in a leaner, more modular framework.

ASP.NET Core provides the following benefits:

A unified story for building web UI and web APIs.

Architected for testability.

Razor Pages makes coding page-focused scenarios easier and more productive.

Blazor lets you use C# in the browser alongside JavaScript. Share server-side and client-side app logic all

written with .NET.

Ability to develop and run on Windows, macOS, and Linux.

Open-source and community-focused.

Integration of modern, client-side frameworks and development workflows.

Support for hosting Remote Procedure Call (RPC) services using gRPC.

A cloud-ready, environment-based configuration system.

Built-in dependency injection.

A lightweight, high-performance, and modular HTTP request pipeline.

Ability to host on the following:

Side-by-side versioning.

Tooling that simplifies modern web development.

Kestrel

IIS

HTTP.sys

Nginx

Apache

Docker

ASP.NET Core MVC provides features to build web APIs and web apps:

The Model-View-Controller (MVC) pattern helps make your web APIs and web apps testable.

Razor Pages is a page-based programming model that makes building web UI easier and more productive.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/introduction-to-aspnet-core.md
https://github.com/danroth27
https://twitter.com/RickAndMSFT
https://twitter.com/dicshaunary
https://github.com/dotnet/aspnetcore
https://www.microsoft.com/internet-of-things/
https://docs.microsoft.com/en-us/dotnet/core/introduction
https://docs.microsoft.com/en-us/aspnet/overview
https://live.asp.net/
https://github.com/aspnet/benchmarks
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server#side-by-side-net-versions-per-application-level

Client-side development

ASP.NET Core target frameworks

Recommended learning path

Razor markup provides a productive syntax for Razor Pages and MVC views.

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files.

Built-in support for multiple data formats and content negotiation lets your web APIs reach a broad range of

clients, including browsers and mobile devices.

Model binding automatically maps data from HTTP requests to action method parameters.

Model validation automatically performs client-side and server-side validation.

ASP.NET Core integrates seamlessly with popular client-side frameworks and libraries, including Blazor, Angular,

React, and Bootstrap. For more information, see Introduction to ASP.NET Core Blazor and related topics under

Client-side development.

ASP.NET Core 3.x and later can only target .NET Core. Generally, ASP.NET Core is composed of .NET Standard

libraries. Libraries written with .NET Standard 2.0 run on any .NET platform that implements .NET Standard 2.0.

There are several advantages to targeting .NET Core, and these advantages increase with each release. Some

advantages of .NET Core over .NET Framework include:

Cross-platform. Runs on Windows, macOS, and Linux.

Improved performance

Side-by-side versioning

New APIs

Open source

We recommend the following sequence of tutorials for an introduction to developing ASP.NET Core apps:

A P P T Y P EA P P T Y P E SC EN A RIOSC EN A RIO T UTO RIA LT UTO RIA L

Web app New server-side web UI
development

Get started with Razor Pages

Web app Maintaining an MVC app Get started with MVC

Web app Client-side web UI development Get started with Blazor

Web API RESTful HTTP services Create a web API†

Remote Procedure Call app Contract-first services using Protocol
Buffers

Get started with a gRPC service

Real-time app Bidirectional communication
between servers and connected
clients

Get started with SignalR

1. Follow a tutorial for the app type you want to develop or maintain.

2. Follow a tutorial that shows how to do basic data access.

https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard#net-implementation-support
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server#side-by-side-net-versions-per-application-level
https://dotnet.microsoft.com/learn/aspnet/blazor-tutorial/intro

Migrate from .NET Framework

Why choose ASP.NET Core?

SC EN A RIOSC EN A RIO T UTO RIA LT UTO RIA L

New development Razor Pages with Entity Framework Core

Maintaining an MVC app MVC with Entity Framework Core

3. Read an overview of ASP.NET Core fundamentals that apply to all app types.

4. Browse the table of contents for other topics of interest.

†There's also an interactive web API tutorial. No local installation of development tools is required. The code runs

in an Azure Cloud Shell in your browser, and curl is used for testing.

For a reference guide to migrating ASP.NET 4.x apps to ASP.NET Core, see Migrate from ASP.NET to ASP.NET Core.

ASP.NET Core is a cross-platform, high-performance, open-source framework for building modern, cloud-

enabled, Internet-connected apps. With ASP.NET Core, you can:

Build web apps and services, Internet of Things (IoT) apps, and mobile backends.

Use your favorite development tools on Windows, macOS, and Linux.

Deploy to the cloud or on-premises.

Run on .NET Core or .NET Framework.

Millions of developers use or have used ASP.NET 4.x to create web apps. ASP.NET Core is a redesign of ASP.NET

4.x, with architectural changes that result in a leaner, more modular framework.

ASP.NET Core provides the following benefits:

A unified story for building web UI and web APIs.

Architected for testability.

Razor Pages makes coding page-focused scenarios easier and more productive.

Blazor lets you use C# in the browser alongside JavaScript. Share server-side and client-side app logic all

written with .NET.

Ability to develop and run on Windows, macOS, and Linux.

Open-source and community-focused.

Integration of modern, client-side frameworks and development workflows.

Support for hosting Remote Procedure Call (RPC) services using gRPC.

A cloud-ready, environment-based configuration system.

Built-in dependency injection.

A lightweight, high-performance, and modular HTTP request pipeline.

Ability to host on the following:

Side-by-side versioning.

Kestrel

IIS

HTTP.sys

Nginx

Apache

Docker

https://docs.microsoft.com/en-us/learn/modules/build-web-api-net-core
https://azure.microsoft.com/features/cloud-shell/
https://curl.haxx.se/
https://github.com/dotnet/aspnetcore
https://www.microsoft.com/internet-of-things/
https://docs.microsoft.com/en-us/dotnet/articles/standard/choosing-core-framework-server
https://docs.microsoft.com/en-us/aspnet/overview
https://live.asp.net/
https://github.com/aspnet/benchmarks
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server#side-by-side-net-versions-per-application-level

Build web APIs and web UI using ASP.NET Core MVC

Client-side development

ASP.NET Core targeting .NET Framework

Recommended learning path

Tooling that simplifies modern web development.

ASP.NET Core MVC provides features to build web APIs and web apps:

The Model-View-Controller (MVC) pattern helps make your web APIs and web apps testable.

Razor Pages is a page-based programming model that makes building web UI easier and more productive.

Razor markup provides a productive syntax for Razor Pages and MVC views.

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files.

Built-in support for multiple data formats and content negotiation lets your web APIs reach a broad range of

clients, including browsers and mobile devices.

Model binding automatically maps data from HTTP requests to action method parameters.

Model validation automatically performs client-side and server-side validation.

ASP.NET Core integrates seamlessly with popular client-side frameworks and libraries, including Blazor, Angular,

React, and Bootstrap. For more information, see Introduction to ASP.NET Core Blazor and related topics under

Client-side development.

ASP.NET Core 2.x can target .NET Core or .NET Framework. ASP.NET Core apps targeting .NET Framework aren't

cross-platform—they run on Windows only. Generally, ASP.NET Core 2.x is made up of .NET Standard libraries.

Libraries written with .NET Standard 2.0 run on any .NET platform that implements .NET Standard 2.0.

ASP.NET Core 2.x is supported on .NET Framework versions that implement .NET Standard 2.0:

.NET Framework latest version is recommended.

.NET Framework 4.6.1 and later.

ASP.NET Core 3.0 and later will only run on .NET Core. For more details regarding this change, see A first look at

changes coming in ASP.NET Core 3.0.

There are several advantages to targeting .NET Core, and these advantages increase with each release. Some

advantages of .NET Core over .NET Framework include:

Cross-platform. Runs on macOS, Linux, and Windows.

Improved performance

Side-by-side versioning

New APIs

Open source

To help close the API gap from .NET Framework to .NET Core, the Windows Compatibility Pack made thousands of

Windows-only APIs available in .NET Core. These APIs weren't available in .NET Core 1.x.

We recommend the following sequence of tutorials and articles for an introduction to developing ASP.NET Core

apps:

1. Follow a tutorial for the type of app you want to develop or maintain.

https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard#net-implementation-support
https://blogs.msdn.microsoft.com/webdev/2018/10/29/a-first-look-at-changes-coming-in-asp-net-core-3-0/
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server#side-by-side-net-versions-per-application-level
https://docs.microsoft.com/en-us/dotnet/core/porting/windows-compat-pack

Migrate from .NET Framework

How to download a sample

Preprocessor directives in sample codePreprocessor directives in sample code

#define TemplateCode // or LogFromMain or ExpandDefault or FilterInCode

#define ExpandDefault // TemplateCode or LogFromMain or FilterInCode

A P P T Y P EA P P T Y P E SC EN A RIOSC EN A RIO T UTO RIA LT UTO RIA L

Web app For new development Get started with Razor Pages

Web app For maintaining an MVC app Get started with MVC

Web API Create a web API†

Real-time app Get started with SignalR

SC EN A RIOSC EN A RIO T UTO RIA LT UTO RIA L

For new development Razor Pages with Entity Framework Core

For maintaining an MVC app MVC with Entity Framework Core

2. Follow a tutorial that shows how to do basic data access.

3. Read an overview of ASP.NET Core fundamentals that apply to all app types.

4. Browse the Table of Contents for other topics of interest.

†There's also a web API tutorial that you follow entirely in the browser, no local IDE installation required. The code

runs in an Azure Cloud Shell, and curl is used for testing.

For a reference guide to migrating ASP.NET apps to ASP.NET Core, see Migrate from ASP.NET to ASP.NET Core.

Many of the articles and tutorials include links to sample code.

1. Download the ASP.NET repository zip file.

2. Unzip the Docs-master.zip file.

3. Use the URL in the sample link to help you navigate to the sample directory.

To demonstrate multiple scenarios, sample apps use the #define and #if-#else/#elif-#endif preprocessor

directives to selectively compile and run different sections of sample code. For those samples that make use of

this approach, set the #define directive at the top of the C# files to define the symbol associated with the

scenario that you want to run. Some samples require defining the symbol at the top of multiple files in order to

run a scenario.

For example, the following #define symbol list indicates that four scenarios are available (one scenario per

symbol). The current sample configuration runs the TemplateCode scenario:

To change the sample to run the ExpandDefault scenario, define the ExpandDefault symbol and leave the

remaining symbols commented-out:

https://docs.microsoft.com/en-us/learn/modules/build-web-api-net-core
https://azure.microsoft.com/features/cloud-shell/
https://curl.haxx.se/
https://codeload.github.com/dotnet/AspNetCore.Docs/zip/master

Regions in sample codeRegions in sample code

#region snippet_WebHostDefaults
Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
#endregion

[!code-csharp[](sample/SampleApp/Program.cs?name=snippet_WebHostDefaults)]

Next steps

For more information on using C# preprocessor directives to selectively compile sections of code, see #define (C#

Reference) and #if (C# Reference).

Some sample apps contain sections of code surrounded by #region and #endregion C# directives. The

documentation build system injects these regions into the rendered documentation topics.

Region names usually contain the word "snippet." The following example shows a region named

snippet_WebHostDefaults :

The preceding C# code snippet is referenced in the topic's markdown file with the following line:

You may safely ignore (or remove) the #region and #endregion directives that surround the code. Don't alter the

code within these directives if you plan to run the sample scenarios described in the topic. Feel free to alter the

code when experimenting with other scenarios.

For more information, see Contribute to the ASP.NET documentation: Code snippets.

For more information, see the following resources:

Get started with ASP.NET Core

Publish an ASP.NET Core app to Azure with Visual Studio

ASP.NET Core fundamentals

The weekly ASP.NET community standup covers the team's progress and plans. It features new blogs and

third-party software.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-define
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-endregion
https://github.com/dotnet/AspNetCore.Docs/blob/master/CONTRIBUTING.md#code-snippets
https://live.asp.net/

Choose between ASP.NET 4.x and ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

ASP.NET Core

ASP.NET 4.x

Framework selection

A SP. N ET C O REA SP. N ET C O RE A SP. N ET 4. XA SP. N ET 4. X

Build for Windows, macOS, or Linux Build for Windows

ASP.NET Core is a redesign of ASP.NET 4.x. This article lists the differences between them.

ASP.NET Core is an open-source, cross-platform framework for building modern, cloud-based web apps on

Windows, macOS, or Linux.

ASP.NET Core provides the following benefits:

A unified story for building web UI and web APIs.

Architected for testability.

Razor Pages makes coding page-focused scenarios easier and more productive.

Blazor lets you use C# in the browser alongside JavaScript. Share server-side and client-side app logic all written

with .NET.

Ability to develop and run on Windows, macOS, and Linux.

Open-source and community-focused.

Integration of modern, client-side frameworks and development workflows.

Support for hosting Remote Procedure Call (RPC) services using gRPC.

A cloud-ready, environment-based configuration system.

Built-in dependency injection.

A lightweight, high-performance, and modular HTTP request pipeline.

Ability to host on the following:

Side-by-side versioning.

Tooling that simplifies modern web development.

Kestrel

IIS

HTTP.sys

Nginx

Apache

Docker

ASP.NET 4.x is a mature framework that provides the services needed to build enterprise-grade, server-based web

apps on Windows.

The following table compares ASP.NET Core to ASP.NET 4.x.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/choose-aspnet-framework.md
https://live.asp.net/
https://github.com/aspnet/benchmarks
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server#side-by-side-net-versions-per-application-level

Razor Pages is the recommended approach to create a Web UI
as of ASP.NET Core 2.x. See also MVC, Web API, and SignalR.

Use Web Forms, SignalR, MVC, Web API, WebHooks, or Web
Pages

Multiple versions per machine One version per machine

Develop with Visual Studio, Visual Studio for Mac, or Visual
Studio Code using C# or F#

Develop with Visual Studio using C#, VB, or F#

Higher performance than ASP.NET 4.x Good performance

Use .NET Core runtime Use .NET Framework runtime

A SP. N ET C O REA SP. N ET C O RE A SP. N ET 4. XA SP. N ET 4. X

ASP.NET Core scenarios

ASP.NET 4.x scenarios

Additional resources

See ASP.NET Core targeting .NET Framework for information on ASP.NET Core 2.x support on .NET Framework.

Websites

APIs

Real-time

Deploy an ASP.NET Core app to Azure

Websites

APIs

Real-time

Create an ASP.NET 4.x web app in Azure

Introduction to ASP.NET

Introduction to ASP.NET Core

Deploy ASP.NET Core apps to Azure App Service

https://docs.microsoft.com/en-us/aspnet/web-forms
https://docs.microsoft.com/en-us/aspnet/signalr
https://docs.microsoft.com/en-us/aspnet/mvc
https://docs.microsoft.com/en-us/aspnet/web-api/
https://docs.microsoft.com/en-us/aspnet/webhooks/
https://docs.microsoft.com/en-us/aspnet/web-pages
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/mac/
https://code.visualstudio.com/
https://visualstudio.microsoft.com/vs/
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-dotnet
https://docs.microsoft.com/en-us/aspnet/mvc
https://docs.microsoft.com/en-us/aspnet/web-api
https://docs.microsoft.com/en-us/aspnet/signalr
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-dotnet-framework
https://docs.microsoft.com/en-us/aspnet/overview

Tutorial: Get started with ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Prerequisites

Create a web app project

dotnet new webapp -o aspnetcoreapp

Trust the development certificateTrust the development certificate

This tutorial shows how to create and run an ASP.NET Core web app using the .NET Core CLI.

You'll learn how to:

Create a web app project.

Trust the development certificate.

Run the app.

Edit a Razor page.

At the end, you'll have a working web app running on your local machine.

.NET Core 3.1 SDK or later

Open a command shell, and enter the following command:

The preceding command:

Creates a new web app.

The -o aspnetcoreapp parameter creates a directory named aspnetcoreapp with the source files for the app.

Trust the HTTPS development certificate:

Windows

macOS

Linux

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/getting-started/index.md
https://dotnet.microsoft.com/download/dotnet-core/3.1

dotnet dev-certs https --trust

Run the app

cd aspnetcoreapp
dotnet watch run

Edit a Razor page

@page
@model IndexModel
@{
 ViewData["Title"] = "Home page";
}

<div class="text-center">
 <h1 class="display-4">Welcome</h1>
 <p>Hello, world! The time on the server is @DateTime.Now</p>
</div>

Next steps

The preceding command displays the following dialog:

Select YesYes if you agree to trust the development certificate.

For more information, see Trust the ASP.NET Core HTTPS development certificate

Run the following commands:

After the command shell indicates that the app has started, browse to https://localhost:5001 .

Open Pages/Index.cshtml and modify and save the page with the following highlighted markup:

Browse to https://localhost:5001 , refresh the page, and verify the changes are displayed.

In this tutorial, you learned how to:

Create a web app project.

Trust the development certificate.

Run the project.

Make a change.

To learn more about ASP.NET Core, see the recommended learning path in the introduction:

Introduction to ASP.NET Core

What's new in ASP.NET Core 3.1
9/22/2020 • 2 minutes to read • Edit Online

Partial class support for Razor components

Blazor Component Tag Helper and pass parameters to top-level
components

<component type="typeof(Counter)" render-mode="ServerPrerendered" />

<component type="typeof(Counter)" render-mode="ServerPrerendered"
 param-IncrementAmount="10" />

Support for shared queues in HTTP.sys

This article highlights the most significant changes in ASP.NET Core 3.1 with links to relevant documentation.

Razor components are now generated as partial classes. Code for a Razor component can be written using a code-

behind file defined as a partial class rather than defining all the code for the component in a single file. For more

information, see Partial class support.

In Blazor with ASP.NET Core 3.0, components were rendered into pages and views using an HTML Helper (

Html.RenderComponentAsync). In ASP.NET Core 3.1, render a component from a page or view with the new

Component Tag Helper :

The HTML Helper remains supported in ASP.NET Core 3.1, but the Component Tag Helper is recommended.

Blazor Server apps can now pass parameters to top-level components during the initial render. Previously you

could only pass parameters to a top-level component with RenderMode.Static. With this release, both

RenderMode.Server and RenderMode.ServerPrerendered are supported. Any specified parameter values are

serialized as JSON and included in the initial response.

For example, prerender a Counter component with an increment amount (IncrementAmount):

For more information, see Integrate components into Razor Pages and MVC apps.

HTTP.sys supports creating anonymous request queues. In ASP.NET Core 3.1, we've added to ability to create or

attach to an existing named HTTP.sys request queue. Creating or attaching to an existing named HTTP.sys request

queue enables scenarios where the HTTP.sys controller process that owns the queue is independent of the listener

process. This independence makes it possible to preserve existing connections and enqueued requests between

listener process restarts:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/release-notes/aspnetcore-3.1.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_static
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_server
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_serverprerendered

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 // ...
 webBuilder.UseHttpSys(options =>
 {
 options.RequestQueueName = "MyExistingQueue";
 options.RequestQueueMode = RequestQueueMode.CreateOrAttach;
 });
 });

Breaking changes for SameSite cookies

Prevent default actions for events in Blazor apps

<input value="@_count" @onkeypress="KeyHandler" @onkeypress:preventDefault />

Stop event propagation in Blazor apps

<input @bind="_stopPropagation" type="checkbox" />

<div @onclick="OnSelectParentDiv">
 <div @onclick="OnSelectChildDiv" @onclick:stopPropagation="_stopPropagation">
 ...
 </div>
</div>

@code {
 private bool _stopPropagation = false;
}

Detailed errors during Blazor app development

The behavior of SameSite cookies has changed to reflect upcoming browser changes. This may affect

authentication scenarios like AzureAd, OpenIdConnect, or WsFederation. For more information, see Work with

SameSite cookies in ASP.NET Core.

Use the @on{EVENT}:preventDefault directive attribute to prevent the default action for an event. In the following

example, the default action of displaying the key's character in the text box is prevented:

For more information, see Prevent default actions.

Use the @on{EVENT}:stopPropagation directive attribute to stop event propagation. In the following example,

selecting the check box prevents click events from the child <div> from propagating to the parent <div> :

For more information, see Stop event propagation.

When a Blazor app isn't functioning properly during development, receiving detailed error information from the

app assists in troubleshooting and fixing the issue. When an error occurs, Blazor apps display a gold bar at the

bottom of the screen:

During development, the gold bar directs you to the browser console, where you can see the exception.

In production, the gold bar notifies the user that an error has occurred and recommends refreshing the browser.

For more information, see Detailed errors during development.

What's new in ASP.NET Core 3.0
9/22/2020 • 14 minutes to read • Edit Online

Blazor

Blazor ServerBlazor Server

Blazor WebAssembly (Preview)Blazor WebAssembly (Preview)

Razor componentsRazor components

gRPC

This article highlights the most significant changes in ASP.NET Core 3.0 with links to relevant documentation.

Blazor is a new framework in ASP.NET Core for building interactive client-side web UI with .NET:

Create rich interactive UIs using C# instead of JavaScript.

Share server-side and client-side app logic written in .NET.

Render the UI as HTML and CSS for wide browser support, including mobile browsers.

Blazor framework supported scenarios:

Reusable UI components (Razor components)

Client-side routing

Component layouts

Support for dependency injection

Forms and validation

Build component libraries with Razor class libraries

JavaScript interop

For more information, see Introduction to ASP.NET Core Blazor.

Blazor decouples component rendering logic from how UI updates are applied. Blazor Server provides support for

hosting Razor components on the server in an ASP.NET Core app. UI updates are handled over a SignalR

connection. Blazor Server is supported in ASP.NET Core 3.0.

Blazor apps can also be run directly in the browser using a WebAssembly-based .NET runtime. Blazor

WebAssembly is in preview and not supported in ASP.NET Core 3.0. Blazor WebAssembly will be supported in a

future release of ASP.NET Core.

Blazor apps are built from components. Components are self-contained chunks of user interface (UI), such as a

page, dialog, or form. Components are normal .NET classes that define UI rendering logic and client-side event

handlers. You can create rich interactive web apps without JavaScript.

Components in Blazor are typically authored using Razor syntax, a natural blend of HTML and C#. Razor

components are similar to Razor Pages and MVC views in that they both use Razor. Unlike pages and views, which

are based on a request-response model, components are used specifically for handling UI composition.

gRPC:

Is a popular, high-performance RPC (remote procedure call) framework.

Offers an opinionated contract-first approach to API development.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/release-notes/aspnetcore-3.0.md
https://grpc.io/

SignalR

const connection = new signalR.HubConnectionBuilder()
 .withUrl("/chathub")
 .withAutomaticReconnect()
 .build();

.withAutomaticReconnect([0, 3000, 5000, 10000, 15000, 30000])
//.withAutomaticReconnect([0, 2000, 10000, 30000]) The default intervals.

Uses modern technologies such as:

HTTP/2 for transport.

Protocol Buffers as the interface description language.

Binary serialization format.

Provides features such as:

Authentication

Bidirectional streaming and flow control.

Cancellation and timeouts.

gRPC functionality in ASP.NET Core 3.0 includes:

Grpc.AspNetCore: An ASP.NET Core framework for hosting gRPC services. gRPC on ASP.NET Core integrates

with standard ASP.NET Core features like logging, dependency injection (DI), authentication, and authorization.

Grpc.Net.Client: A gRPC client for .NET Core that builds upon the familiar HttpClient .

Grpc.Net.ClientFactory: gRPC client integration with HttpClientFactory .

For more information, see Introduction to gRPC on .NET Core.

See Update SignalR code for migration instructions. SignalR now uses System.Text.Json to serialize/deserialize

JSON messages. See Switch to Newtonsoft.Json for instructions to restore the Newtonsoft.Json -based serializer.

In the JavaScript and .NET Clients for SignalR, support was added for automatic reconnection. By default, the client

tries to reconnect immediately and retry after 2, 10, and 30 seconds if necessary. If the client successfully

reconnects, it receives a new connection ID. Automatic reconnect is opt-in:

The reconnection intervals can be specified by passing an array of millisecond-based durations:

A custom implementation can be passed in for full control of the reconnection intervals.

If the reconnection fails after the last reconnect interval:

The client considers the connection is offline.

The client stops trying to reconnect.

During reconnection attempts, update the app UI to notify the user that the reconnection is being attempted.

To provide UI feedback when the connection is interrupted, the SignalR client API has been expanded to include the

following event handlers:

onreconnecting : Gives developers an opportunity to disable UI or to let users know the app is offline.

onreconnected : Gives developers an opportunity to update the UI once the connection is reestablished.

The following code uses onreconnecting to update the UI while trying to connect:

https://www.nuget.org/packages/Grpc.AspNetCore
https://www.nuget.org/packages/Grpc.Net.Client
https://www.nuget.org/packages/Grpc.Net.ClientFactory

connection.onreconnecting((error) => {
 const status = `Connection lost due to error "${error}". Reconnecting.`;
 document.getElementById("messageInput").disabled = true;
 document.getElementById("sendButton").disabled = true;
 document.getElementById("connectionStatus").innerText = status;
});

connection.onreconnected((connectionId) => {
 const status = `Connection reestablished. Connected.`;
 document.getElementById("messageInput").disabled = false;
 document.getElementById("sendButton").disabled = false;
 document.getElementById("connectionStatus").innerText = status;
});

public class DomainRestrictedRequirement :
 AuthorizationHandler<DomainRestrictedRequirement, HubInvocationContext>,
 IAuthorizationRequirement
{
 protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
 DomainRestrictedRequirement requirement,
 HubInvocationContext resource)
 {
 if (context.User?.Identity?.Name == null)
 {
 return Task.CompletedTask;
 }

 if (IsUserAllowedToDoThis(resource.HubMethodName, context.User.Identity.Name))
 {
 context.Succeed(requirement);
 }

 return Task.CompletedTask;
 }

 private bool IsUserAllowedToDoThis(string hubMethodName, string currentUsername)
 {
 if (hubMethodName.Equals("banUser", StringComparison.OrdinalIgnoreCase))
 {
 return currentUsername.Equals("bob42@jabbr.net", StringComparison.OrdinalIgnoreCase);
 }

 return currentUsername.EndsWith("@jabbr.net", StringComparison.OrdinalIgnoreCase));
 }
}

The following code uses onreconnected to update the UI on connection:

SignalR 3.0 and later provides a custom resource to authorization handlers when a hub method requires

authorization. The resource is an instance of HubInvocationContext . The HubInvocationContext includes the:

HubCallerContext

Name of the hub method being invoked.

Arguments to the hub method.

Consider the following example of a chat room app allowing multiple organization sign-in via Azure Active

Directory. Anyone with a Microsoft account can sign in to chat, but only members of the owning organization can

ban users or view users' chat histories. The app could restrict certain functionality from specific users.

In the preceding code, DomainRestrictedRequirement serves as a custom IAuthorizationRequirement . Because the

[Authorize]
public class ChatHub : Hub
{
 public void SendMessage(string message)
 {
 }

 [Authorize("DomainRestricted")]
 public void BanUser(string username)
 {
 }

 [Authorize("DomainRestricted")]
 public void ViewUserHistory(string username)
 {
 }
}

services
 .AddAuthorization(options =>
 {
 options.AddPolicy("DomainRestricted", policy =>
 {
 policy.Requirements.Add(new DomainRestrictedRequirement());
 });
 });

app.UseSignalR(routes =>
{
 routes.MapHub<ChatHub>("hubs/chat");
});

HubInvocationContext resource parameter is being passed in, the internal logic can:

Inspect the context in which the Hub is being called.

Make decisions on allowing the user to execute individual Hub methods.

Individual Hub methods can be marked with the name of the policy the code checks at run-time. As clients attempt

to call individual Hub methods, the DomainRestrictedRequirement handler runs and controls access to the methods.

Based on the way the DomainRestrictedRequirement controls access:

All logged-in users can call the SendMessage method.

Only users who have logged in with a @jabbr.net email address can view users' histories.

Only bob42@jabbr.net can ban users from the chat room.

Creating the DomainRestricted policy might involve:

In Startup.cs, adding the new policy.

Provide the custom DomainRestrictedRequirement requirement as a parameter.

Registering DomainRestricted with the authorization middleware.

SignalR hubs use Endpoint Routing. SignalR hub connection was previously done explicitly:

In the previous version, developers needed to wire up controllers, Razor pages, and hubs in a variety of places.

Explicit connection results in a series of nearly-identical routing segments:

app.UseSignalR(routes =>
{
 routes.MapHub<ChatHub>("hubs/chat");
});

app.UseRouting(routes =>
{
 routes.MapRazorPages();
});

app.UseRouting(routes =>
{
 routes.MapRazorPages();
 routes.MapHub<ChatHub>("hubs/chat");
});

public async Task UploadStream(IAsyncEnumerable<string> stream)
{
 await foreach (var item in stream)
 {
 // process content
 }
}

async IAsyncEnumerable<string> clientStreamData()
{
 for (var i = 0; i < 5; i++)
 {
 var data = await FetchSomeData();
 yield return data;
 }
}

await connection.SendAsync("UploadStream", clientStreamData());

let subject = new signalR.Subject();
await connection.send("StartStream", "MyAsciiArtStream", subject);

SignalR 3.0 hubs can be routed via endpoint routing. With endpoint routing, typically all routing can be configured

in UseRouting :

ASP.NET Core 3.0 SignalR added:

Client-to-server streaming. With client-to-server streaming, server-side methods can take instances of either an

IAsyncEnumerable<T> or ChannelReader<T> . In the following C# sample, the UploadStream method on the Hub will

receive a stream of strings from the client:

.NET client apps can pass either an IAsyncEnumerable<T> or ChannelReader<T> instance as the stream argument of

the UploadStream Hub method above.

After the for loop has completed and the local function exits, the stream completion is sent:

JavaScript client apps use the SignalR Subject (or an RxJS Subject) for the stream argument of the UploadStream

Hub method above.

The JavaScript code could use the subject.next method to handle strings as they are captured and ready to be

sent to the server.

https://rxjs.dev/api/index/class/Subject

subject.next("example");
subject.complete();

New JSON serialization

New Razor directives

IdentityServer4 supports authentication and authorization for web APIs
and SPAs

Certificate and Kerberos authentication

Using code like the two preceding snippets, real-time streaming experiences can be created.

ASP.NET Core 3.0 now uses System.Text.Json by default for JSON serialization:

Reads and writes JSON asynchronously.

Is optimized for UTF-8 text.

Typically higher performance than Newtonsoft.Json .

To add Json.NET to ASP.NET Core 3.0, see Add Newtonsoft.Json-based JSON format support.

The following list contains new Razor directives:

@attribute : The @attribute directive applies the given attribute to the class of the generated page or view. For

example, @attribute [Authorize] .

@implements : The @implements directive implements an interface for the generated class. For example,

@implements IDisposable .

ASP.NET Core 3.0 offers authentication in Single Page Apps (SPAs) using the support for web API authorization.

ASP.NET Core Identity for authenticating and storing users is combined with IdentityServer4 for implementing

OpenID Connect.

IdentityServer4 is an OpenID Connect and OAuth 2.0 framework for ASP.NET Core 3.0. It enables the following

security features:

Authentication as a Service (AaaS)

Single sign-on/off (SSO) over multiple application types

Access control for APIs

Federation Gateway

For more information, see the IdentityServer4 documentation or Authentication and authorization for SPAs.

Certificate authentication requires:

Configuring the server to accept certificates.

Adding the authentication middleware in Startup.Configure .

Adding the certificate authentication service in Startup.ConfigureServices .

https://docs.microsoft.com/en-us/dotnet/api/system.text.json
https://identityserver.io/
http://docs.identityserver.io/en/latest/index.html

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthentication(
 CertificateAuthenticationDefaults.AuthenticationScheme)
 .AddCertificate();
 // Other service configuration removed.
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 app.UseAuthentication();
 // Other app configuration removed.
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthentication(NegotiateDefaults.AuthenticationScheme)
 .AddNegotiate();
 // Other service configuration removed.
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 app.UseAuthentication();
 // Other app configuration removed.
}

Template changes

Options for certificate authentication include the ability to:

Accept self-signed certificates.

Check for certificate revocation.

Check that the proffered certificate has the right usage flags in it.

A default user principal is constructed from the certificate properties. The user principal contains an event that

enables supplementing or replacing the principal. For more information, see Configure certificate authentication in

ASP.NET Core.

Windows Authentication has been extended onto Linux and macOS. In previous versions, Windows Authentication

was limited to IIS and HttpSys. In ASP.NET Core 3.0, Kestrel has the ability to use Negotiate, Kerberos, and NTLM on

Windows, Linux, and macOS for Windows domain-joined hosts. Kestrel support of these authentication schemes is

provided by the Microsoft.AspNetCore.Authentication.Negotiate NuGet package. As with the other authentication

services, configure authentication app wide, then configure the service:

Host requirements:

Windows hosts must have Service Principal Names (SPNs) added to the user account hosting the app.

Linux and macOS machines must be joined to the domain.

SPNs must be created for the web process.

Keytab files must be generated and configured on the host machine.

For more information, see Configure Windows Authentication in ASP.NET Core.

The web UI templates (Razor Pages, MVC with controller and views) have the following removed:

The cookie consent UI is no longer included. To enable the cookie consent feature in an ASP.NET Core 3.0

template-generated app, see General Data Protection Regulation (GDPR) support in ASP.NET Core.

https://docs.microsoft.com/en-us/windows-server/security/windows-authentication/windows-authentication-overview
https://docs.microsoft.com/en-us/windows-server/security/kerberos/kerberos-authentication-overview
https://docs.microsoft.com/en-us/windows-server/security/kerberos/ntlm-overview
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Negotiate
https://docs.microsoft.com/en-us/windows/win32/ad/service-principal-names
https://docs.microsoft.com/en-us/archive/blogs/pie/all-you-need-to-know-about-keytab-files

Generic Host

Host configurationHost configuration

Changes to Startup constructor injectionChanges to Startup constructor injection

Kestrel

HTTP/2 enabled by default

EventCounters on request

Scripts and related static assets are now referenced as local files instead of using CDNs. For more information,

see Scripts and related static assets are now referenced as local files instead of using CDNs based on the current

environment (aspnet/AspNetCore.Docs #14350).

The Angular template updated to use Angular 8.

The Razor class library (RCL) template defaults to Razor component development by default. A new template

option in Visual Studio provides template support for pages and views. When creating an RCL from the template in

a command shell, pass the --support-pages-and-views option (dotnet new razorclasslib --support-pages-and-views

).

The ASP.NET Core 3.0 templates use .NET Generic Host. Previous versions used WebHostBuilder. Using the .NET

Core Generic Host (HostBuilder) provides better integration of ASP.NET Core apps with other server scenarios that

aren't web-specific. For more information, see HostBuilder replaces WebHostBuilder.

Prior to the release of ASP.NET Core 3.0, environment variables prefixed with ASPNETCORE_ were loaded for host

configuration of the Web Host. In 3.0, AddEnvironmentVariables is used to load environment variables prefixed with

DOTNET_ for host configuration with CreateDefaultBuilder .

The Generic Host only supports the following types for Startup constructor injection:

IHostEnvironment

IWebHostEnvironment

IConfiguration

All services can still be injected directly as arguments to the Startup.Configure method. For more information, see

Generic Host restricts Startup constructor injection (aspnet/Announcements #353).

Kestrel configuration has been updated for the migration to the Generic Host. In 3.0, Kestrel is configured on the

web host builder provided by ConfigureWebHostDefaults .

Connection Adapters have been removed from Kestrel and replaced with Connection Middleware, which is

similar to HTTP Middleware in the ASP.NET Core pipeline but for lower-level connections.

The Kestrel transport layer has been exposed as a public interface in Connections.Abstractions .

Ambiguity between headers and trailers has been resolved by moving trailing headers to a new collection.

Synchronous I/O APIs, such as HttpRequest.Body.Read , are a common source of thread starvation leading to app

crashes. In 3.0, AllowSynchronousIO is disabled by default.

For more information, see Migrate from ASP.NET Core 2.2 to 3.0.

HTTP/2 is enabled by default in Kestrel for HTTPS endpoints. HTTP/2 support for IIS or HTTP.sys is enabled when

supported by the operating system.

The Hosting EventSource, Microsoft.AspNetCore.Hosting , emits the following new EventCounter types related to

incoming requests:

https://github.com/dotnet/AspNetCore.Docs/issues/14350
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://github.com/aspnet/Announcements/issues/353
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracing.eventcounter

Endpoint routing

Health Checks

app.UseEndpoints(endpoints =>
{
 endpoints.MapHealthChecks("/health");
});

Pipes on HttpContext

Improved error reporting in IIS

Worker Service and Worker SDK

requests-per-second

total-requests

current-requests

failed-requests

Endpoint Routing, which allows frameworks (for example, MVC) to work well with middleware, is enhanced:

The order of middleware and endpoints is configurable in the request processing pipeline of Startup.Configure .

Endpoints and middleware compose well with other ASP.NET Core-based technologies, such as Health Checks.

Endpoints can implement a policy, such as CORS or authorization, in both middleware and MVC.

Filters and attributes can be placed on methods in controllers.

For more information, see Routing in ASP.NET Core.

Health Checks use endpoint routing with the Generic Host. In Startup.Configure , call MapHealthChecks on the

endpoint builder with the endpoint URL or relative path:

Health Checks endpoints can:

Specify one or more permitted hosts/ports.

Require authorization.

Require CORS.

For more information, see the following articles:

Migrate from ASP.NET Core 2.2 to 3.0

Health checks in ASP.NET Core

It's now possible to read the request body and write the response body using the System.IO.Pipelines API. The

HttpRequest.BodyReader property provides a PipeReader that can be used to read the request body. The

HttpResponse.BodyWriter property provides a PipeWriter that can be used to write the response body.

HttpRequest.BodyReader is an analogue of the HttpRequest.Body stream. HttpResponse.BodyWriter is an analogue of

the HttpResponse.Body stream.

Startup errors when hosting ASP.NET Core apps in IIS now produce richer diagnostic data. These errors are

reported to the Windows Event Log with stack traces wherever applicable. In addition, all warnings, errors, and

unhandled exceptions are logged to the Windows Event Log.

.NET Core 3.0 introduces the new Worker Service app template. This template provides a starting point for writing

https://docs.microsoft.com/en-us/dotnet/api/system.io.pipelines
https://docs.microsoft.com/en-us/dotnet/api/system.io.pipelines.pipereader
https://docs.microsoft.com/en-us/dotnet/api/system.io.pipelines.pipewriter

Forwarded Headers Middleware improvements

Performance improvements

ASP.NET Core 3.0 only runs on .NET Core 3.0

Use the ASP.NET Core shared framework

<Project Sdk="Microsoft.NET.Sdk.Web">

Assemblies removed from the ASP.NET Core shared framework

long running services in .NET Core.

For more information, see:

.NET Core Workers as Windows Services

Background tasks with hosted services in ASP.NET Core

Host ASP.NET Core in a Windows Service

In previous versions of ASP.NET Core, calling UseHsts and UseHttpsRedirection were problematic when deployed to

an Azure Linux or behind any reverse proxy other than IIS. The fix for previous versions is documented in Forward

the scheme for Linux and non-IIS reverse proxies.

This scenario is fixed in ASP.NET Core 3.0. The host enables the Forwarded Headers Middleware when the

ASPNETCORE_FORWARDEDHEADERS_ENABLED environment variable is set to true . ASPNETCORE_FORWARDEDHEADERS_ENABLED is

set to true in our container images.

ASP.NET Core 3.0 includes many improvements that reduce memory usage and improve throughput:

Reduction in memory usage when using the built-in dependency injection container for scoped services.

Reduction in allocations across the framework, including middleware scenarios and routing.

Reduction in memory usage for WebSocket connections.

Memory reduction and throughput improvements for HTTPS connections.

New optimized and fully asynchronous JSON serializer.

Reduction in memory usage and throughput improvements in form parsing.

As of ASP.NET Core 3.0, .NET Framework is no longer a supported target framework. Projects targeting .NET

Framework can continue in a fully supported fashion using the .NET Core 2.1 LTS release. Most ASP.NET Core 2.1.x

related packages will be supported indefinitely, beyond the three-year LTS period for .NET Core 2.1.

For migration information, see Port your code from .NET Framework to .NET Core.

The ASP.NET Core 3.0 shared framework, contained in the Microsoft.AspNetCore.App metapackage, no longer

requires an explicit <PackageReference /> element in the project file. The shared framework is automatically

referenced when using the Microsoft.NET.Sdk.Web SDK in the project file:

The most notable assemblies removed from the ASP.NET Core 3.0 shared framework are:

Newtonsoft.Json (Json.NET). To add Json.NET to ASP.NET Core 3.0, see Add Newtonsoft.Json-based JSON format

support. ASP.NET Core 3.0 introduces System.Text.Json for reading and writing JSON. For more information,

see New JSON serialization in this document.

Entity Framework Core

https://devblogs.microsoft.com/aspnet/net-core-workers-as-windows-services/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hstsbuilderextensions.usehsts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpspolicybuilderextensions.usehttpsredirection
https://dotnet.microsoft.com/download/dotnet-core/2.1
https://docs.microsoft.com/en-us/dotnet/core/porting/
https://www.nuget.org/packages/Newtonsoft.Json/
https://docs.microsoft.com/en-us/ef/core/

For a complete list of assemblies removed from the shared framework, see Assemblies being removed from

Microsoft.AspNetCore.App 3.0. For more information on the motivation for this change, see Breaking changes to

Microsoft.AspNetCore.App in 3.0 and A first look at changes coming in ASP.NET Core 3.0.

https://github.com/dotnet/AspNetCore/issues/3755
https://github.com/aspnet/Announcements/issues/325
https://devblogs.microsoft.com/aspnet/a-first-look-at-changes-coming-in-asp-net-core-3-0/

What's new in ASP.NET Core 2.2
9/22/2020 • 5 minutes to read • Edit Online

OpenAPI Analyzers & Conventions

Problem details support

Endpoint Routing

Health checks

This article highlights the most significant changes in ASP.NET Core 2.2, with links to relevant documentation.

OpenAPI (formerly known as Swagger) is a language-agnostic specification for describing REST APIs. The OpenAPI

ecosystem has tools that allow for discovering, testing, and producing client code using the specification. Support

for generating and visualizing OpenAPI documents in ASP.NET Core MVC is provided via community driven

projects such as NSwag and Swashbuckle.AspNetCore. ASP.NET Core 2.2 provides improved tooling and runtime

experiences for creating OpenAPI documents.

For more information, see the following resources:

Use web API analyzers

Use web API conventions

ASP.NET Core 2.2.0-preview1: OpenAPI Analyzers & Conventions

ASP.NET Core 2.1 introduced ProblemDetails , based on the RFC 7807 specification for carrying details of an error

with an HTTP Response. In 2.2, ProblemDetails is the standard response for client error codes in controllers

attributed with ApiControllerAttribute . An IActionResult returning a client error status code (4xx) now returns a

ProblemDetails body. The result also includes a correlation ID that can be used to correlate the error using request

logs. For client errors, ProducesResponseType defaults to using ProblemDetails as the response type. This is

documented in OpenAPI / Swagger output generated using NSwag or Swashbuckle.AspNetCore.

ASP.NET Core 2.2 uses a new endpoint routing system for improved dispatching of requests. The changes include

new link generation API members and route parameter transformers.

For more information, see the following resources:

Endpoint routing in 2.2

Route parameter transformers (see RoutingRouting section)

Differences between IRouter- and endpoint-based routing

A new health checks service makes it easier to use ASP.NET Core in environments that require health checks, such

as Kubernetes. Health checks includes middleware and a set of libraries that define an IHealthCheck abstraction

and service.

Health checks are used by a container orchestrator or load balancer to quickly determine if a system is responding

to requests normally. A container orchestrator might respond to a failing health check by halting a rolling

deployment or restarting a container. A load balancer might respond to a health check by routing traffic away from

the failing instance of the service.

Health checks are exposed by an application as an HTTP endpoint used by monitoring systems. Health checks can

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/release-notes/aspnetcore-2.2.md
https://github.com/RicoSuter/NSwag
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://blogs.msdn.microsoft.com/webdev/2018/08/23/asp-net-core-2-20-preview1-open-api-analyzers-conventions/
https://tools.ietf.org/html/rfc7807
https://blogs.msdn.microsoft.com/webdev/2018/08/27/asp-net-core-2-2-0-preview1-endpoint-routing/
https://www.hanselman.com/blog/ASPNETCore22ParameterTransformersForCleanURLGenerationAndSlugsInRazorPagesOrMVC.aspx

HTTP/2 in Kestrel

Kestrel configuration

IIS in-process hosting

SignalR Java client

CORS improvements

be configured for a variety of real-time monitoring scenarios and monitoring systems. The health checks service

integrates with the BeatPulse project. which makes it easier to add checks for dozens of popular systems and

dependencies.

For more information, see Health checks in ASP.NET Core.

ASP.NET Core 2.2 adds support for HTTP/2.

HTTP/2 is a major revision of the HTTP protocol. Notable features of HTTP/2 include:

Support for header compression.

Fully multiplexed streams over a single connection.

While HTTP/2 preserves HTTP's semantics (for example, HTTP headers and methods), it's a breaking change from

HTTP/1.x on how data is framed and sent between the client and server.

As a consequence of this change in framing, servers and clients need to negotiate the protocol version used.

Application-Layer Protocol Negotiation (ALPN) is a TLS extension that allows the server and client to negotiate the

protocol version used as part of their TLS handshake. While it is possible to have prior knowledge between the

server and the client on the protocol, all major browsers support ALPN as the only way to establish an HTTP/2

connection.

For more information, see HTTP/2 support.

In earlier versions of ASP.NET Core, Kestrel options are configured by calling UseKestrel . In 2.2, Kestrel options are

configured by calling ConfigureKestrel on the host builder. This change resolves an issue with the order of

IServer registrations for in-process hosting. For more information, see the following resources:

Mitigate UseIIS conflict

Configure Kestrel server options with ConfigureKestrel

In earlier versions of ASP.NET Core, IIS serves as a reverse proxy. In 2.2, the ASP.NET Core Module can boot the

CoreCLR and host an app inside the IIS worker process (w3wp.exe). In-process hosting provides performance and

diagnostic gains when running with IIS.

For more information, see in-process hosting for IIS.

ASP.NET Core 2.2 introduces a Java Client for SignalR. This client supports connecting to an ASP.NET Core SignalR

Server from Java code, including Android apps.

For more information, see ASP.NET Core SignalR Java client.

In earlier versions of ASP.NET Core, CORS Middleware allows Accept , Accept-Language , Content-Language , and

Origin headers to be sent regardless of the values configured in CorsPolicy.Headers . In 2.2, a CORS Middleware

policy match is only possible when the headers sent in Access-Control-Request-Headers exactly match the headers

stated in WithHeaders .

https://github.com/Xabaril/BeatPulse
https://github.com/aspnet/KestrelHttpServer/issues/2760

Response compression

Project templates

Validation performance

HTTP Client performance

Additional information

For more information, see CORS Middleware.

ASP.NET Core 2.2 can compress responses with the Brotli compression format.

For more information, see Response Compression Middleware supports Brotli compression.

ASP.NET Core web project templates were updated to Bootstrap 4 and Angular 6. The new look is visually simpler

and makes it easier to see the important structures of the app.

MVC's validation system is designed to be extensible and flexible, allowing you to determine on a per request basis

which validators apply to a given model. This is great for authoring complex validation providers. However, in the

most common case an application only uses the built-in validators and don't require this extra flexibility. Built-in

validators include DataAnnotations such as [Required] and [StringLength], and IValidatableObject .

In ASP.NET Core 2.2, MVC can short-circuit validation if it determines that a given model graph doesn't require

validation. Skipping validation results in significant improvements when validating models that can't or don't have

any validators. This includes objects such as collections of primitives (such as byte[] , string[] ,

Dictionary<string, string>), or complex object graphs without many validators.

In ASP.NET Core 2.2, the performance of SocketsHttpHandler was improved by reducing connection pool locking

contention. For apps that make many outgoing HTTP requests, such as some microservices architectures,

throughput is improved. Under load, HttpClient throughput can be improved by up to 60% on Linux and 20% on

Windows.

For more information, see the pull request that made this improvement.

For the complete list of changes, see the ASP.NET Core 2.2 Release Notes.

https://tools.ietf.org/html/rfc7932
https://getbootstrap.com/docs/4.1/migration/
https://blog.angular.io/version-6-of-angular-now-available-cc56b0efa7a4
https://github.com/dotnet/corefx/pull/32568
https://github.com/dotnet/aspnetcore/releases/tag/2.2.0

What's new in ASP.NET Core 2.1
9/22/2020 • 6 minutes to read • Edit Online

SignalR

Razor class libraries

Identity UI library & scaffolding

HTTPS

This article highlights the most significant changes in ASP.NET Core 2.1, with links to relevant documentation.

SignalR has been rewritten for ASP.NET Core 2.1. ASP.NET Core SignalR includes a number of improvements:

A simplified scale-out model.

A new JavaScript client with no jQuery dependency.

A new compact binary protocol based on MessagePack.

Support for custom protocols.

A new streaming response model.

Support for clients based on bare WebSockets.

For more information, see ASP.NET Core SignalR.

ASP.NET Core 2.1 makes it easier to build and include Razor-based UI in a library and share it across multiple

projects. The new Razor SDK enables building Razor files into a class library project that can be packaged into a

NuGet package. Views and pages in libraries are automatically discovered and can be overridden by the app. By

integrating Razor compilation into the build:

The app startup time is significantly faster.

Fast updates to Razor views and pages at runtime are still available as part of an iterative development

workflow.

For more information, see Create reusable UI using the Razor Class Library project.

ASP.NET Core 2.1 provides ASP.NET Core Identity as a Razor Class Library. Apps that include Identity can apply the

new Identity scaffolder to selectively add the source code contained in the Identity Razor Class Library (RCL). You

might want to generate source code so you can modify the code and change the behavior. For example, you could

instruct the scaffolder to generate the code used in registration. Generated code takes precedence over the same

code in the Identity RCL.

Apps that do notnot include authentication can apply the Identity scaffolder to add the RCL Identity package. You have

the option of selecting Identity code to be generated.

For more information, see Scaffold Identity in ASP.NET Core projects.

With the increased focus on security and privacy, enabling HTTPS for web apps is important. HTTPS enforcement is

becoming increasingly strict on the web. Sites that don't use HTTPS are considered insecure. Browsers (Chromium,

Mozilla) are starting to enforce that web features must be used from a secure context. GDPR requires the use of

HTTPS to protect user privacy. While using HTTPS in production is critical, using HTTPS in development can help

prevent issues in deployment (for example, insecure links). ASP.NET Core 2.1 includes a number of improvements

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/release-notes/aspnetcore-2.1.md

On by defaultOn by default

HTTPS redirection and enforcementHTTPS redirection and enforcement

Configuration for productionConfiguration for production

GDPR

Integration tests

that make it easier to use HTTPS in development and to configure HTTPS in production. For more information, see

Enforce HTTPS.

To facilitate secure website development, HTTPS is now enabled by default. Starting in 2.1, Kestrel listens on

https://localhost:5001 when a local development certificate is present. A development certificate is created:

As part of the .NET Core SDK first-run experience, when you use the SDK for the first time.

Manually using the new dev-certs tool.

Run dotnet dev-certs https --trust to trust the certificate.

Web apps typically need to listen on both HTTP and HTTPS, but then redirect all HTTP traffic to HTTPS. In 2.1,

specialized HTTPS redirection middleware that intelligently redirects based on the presence of configuration or

bound server ports has been introduced.

Use of HTTPS can be further enforced using HTTP Strict Transport Security Protocol (HSTS). HSTS instructs

browsers to always access the site via HTTPS. ASP.NET Core 2.1 adds HSTS middleware that supports options for

max age, subdomains, and the HSTS preload list.

In production, HTTPS must be explicitly configured. In 2.1, default configuration schema for configuring HTTPS for

Kestrel has been added. Apps can be configured to use:

Multiple endpoints including the URLs. For more information, see Kestrel web server implementation: Endpoint

configuration.

The certificate to use for HTTPS either from a file on disk or from a certificate store.

ASP.NET Core provides APIs and templates to help meet some of the EU General Data Protection Regulation (GDPR)

requirements. For more information, see GDPR support in ASP.NET Core. A sample app shows how to use and lets

you test most of the GDPR extension points and APIs added to the ASP.NET Core 2.1 templates.

A new package is introduced that streamlines test creation and execution. The Microsoft.AspNetCore.Mvc.Testing

package handles the following tasks:

Copies the dependency file (*.deps) from the tested app into the test project's bin folder.

Sets the content root to the tested app's project root so that static files and pages/views are found when the

tests are executed.

Provides the WebApplicationFactory class to streamline bootstrapping the tested app with TestServer.

The following test uses xUnit to check that the Index page loads with a success status code and with the correct

Content-Type header :

https://www.eugdpr.org/
https://github.com/dotnet/AspNetCore.Docs/tree/live/aspnetcore/security/gdpr/sample
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://xunit.github.io/

public class BasicTests
 : IClassFixture<WebApplicationFactory<RazorPagesProject.Startup>>
{
 private readonly HttpClient _client;

 public BasicTests(WebApplicationFactory<RazorPagesProject.Startup> factory)
 {
 _client = factory.CreateClient();
 }

 [Fact]
 public async Task GetHomePage()
 {
 // Act
 var response = await _client.GetAsync("/");

 // Assert
 response.EnsureSuccessStatusCode(); // Status Code 200-299
 Assert.Equal("text/html; charset=utf-8",
 response.Content.Headers.ContentType.ToString());
 }
}

[ApiController], ActionResult<T>

IHttpClientFactory

Kestrel transport configuration

Generic host builder

Updated SPA templates

For more information, see the Integration tests topic.

ASP.NET Core 2.1 adds new programming conventions that make it easier to build clean and descriptive web APIs.

ActionResult<T> is a new type added to allow an app to return either a response type or any other action result

(similar to IActionResult), while still indicating the response type. The [ApiController] attribute has also been

added as the way to opt in to Web API-specific conventions and behaviors.

For more information, see Build Web APIs with ASP.NET Core.

ASP.NET Core 2.1 includes a new IHttpClientFactory service that makes it easier to configure and consume

instances of HttpClient in apps. HttpClient already has the concept of delegating handlers that could be linked

together for outgoing HTTP requests. The factory:

Makes registering of instances of HttpClient per named client more intuitive.

Implements a Polly handler that allows Polly policies to be used for Retry, CircuitBreakers, etc.

For more information, see Initiate HTTP Requests.

With the release of ASP.NET Core 2.1, Kestrel's default transport is no longer based on Libuv but instead based on

managed sockets. For more information, see Kestrel web server implementation: Transport configuration.

The Generic Host Builder (HostBuilder) has been introduced. This builder can be used for apps that don't process

HTTP requests (Messaging, background tasks, etc.).

For more information, see .NET Generic Host.

Razor Pages search for Razor assets

Razor Pages in an area

MVC compatibility version

Migrate from 2.0 to 2.1

Additional information

The Single Page Application templates for Angular, React, and React with Redux are updated to use the standard

project structures and build systems for each framework.

The Angular template is based on the Angular CLI, and the React templates are based on create-react-app.

For more information, see:

Use the Angular project template with ASP.NET Core

Use the React project template with ASP.NET Core

Use the React-with-Redux project template with ASP.NET Core

In 2.1, Razor Pages search for Razor assets (such as layouts and partials) in the following directories in the listed

order :

1. Current Pages folder.

2. /Pages/Shared/

3. /Views/Shared/

Razor Pages now support areas. To see an example of areas, create a new Razor Pages web app with individual user

accounts. A Razor Pages web app with individual user accounts includes /Areas/Identity/Pages.

The SetCompatibilityVersion method allows an app to opt-in or opt-out of potentially breaking behavior changes

introduced in ASP.NET Core MVC 2.1 or later.

For more information, see Compatibility version for ASP.NET Core MVC.

See Migrate from ASP.NET Core 2.0 to 2.1.

For the complete list of changes, see the ASP.NET Core 2.1 Release Notes.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccoremvcbuilderextensions.setcompatibilityversion
https://github.com/dotnet/aspnetcore/releases/tag/2.1.0

What's new in ASP.NET Core 2.0
9/22/2020 • 5 minutes to read • Edit Online

Razor Pages

ASP.NET Core metapackage

Runtime Store

.NET Standard 2.0

Configuration update

Logging update

This article highlights the most significant changes in ASP.NET Core 2.0, with links to relevant documentation.

Razor Pages is a new feature of ASP.NET Core MVC that makes coding page-focused scenarios easier and more

productive.

For more information, see the introduction and tutorial:

Introduction to Razor Pages

Get started with Razor Pages

A new ASP.NET Core metapackage includes all of the packages made and supported by the ASP.NET Core and Entity

Framework Core teams, along with their internal and 3rd-party dependencies. You no longer need to choose

individual ASP.NET Core features by package. All features are included in the Microsoft.AspNetCore.All package. The

default templates use this package.

For more information, see Microsoft.AspNetCore.All metapackage for ASP.NET Core 2.0.

Applications that use the Microsoft.AspNetCore.All metapackage automatically take advantage of the new .NET

Core Runtime Store. The Store contains all the runtime assets needed to run ASP.NET Core 2.0 applications. When

you use the Microsoft.AspNetCore.All metapackage, no assets from the referenced ASP.NET Core NuGet packages

are deployed with the application because they already reside on the target system. The assets in the Runtime Store

are also precompiled to improve application startup time.

For more information, see Runtime store

The ASP.NET Core 2.0 packages target .NET Standard 2.0. The packages can be referenced by other .NET Standard

2.0 libraries, and they can run on .NET Standard 2.0-compliant implementations of .NET, including .NET Core 2.0

and .NET Framework 4.6.1.

The Microsoft.AspNetCore.All metapackage targets .NET Core 2.0 only, because it's intended to be used with the

.NET Core 2.0 Runtime Store.

An IConfiguration instance is added to the services container by default in ASP.NET Core 2.0. IConfiguration in

the services container makes it easier for applications to retrieve configuration values from the container.

For information about the status of planned documentation, see the GitHub issue.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/release-notes/aspnetcore-2.0.md
https://www.nuget.org/packages/Microsoft.AspNetCore.All
https://docs.microsoft.com/en-us/dotnet/core/deploying/runtime-store
https://github.com/dotnet/AspNetCore.Docs/issues/3387

Authentication update

Identity update

SPA templates

Kestrel improvements

WebListener renamed to HTTP.sys

Enhanced HTTP header support

In ASP.NET Core 2.0, logging is incorporated into the dependency injection (DI) system by default. You add

providers and configure filtering in the Program.cs file instead of in the Startup.cs file. And the default

ILoggerFactory supports filtering in a way that lets you use one flexible approach for both cross-provider filtering

and specific-provider filtering.

For more information, see Introduction to Logging.

A new authentication model makes it easier to configure authentication for an application using DI.

New templates are available for configuring authentication for web apps and web APIs using Azure AD B2C.

For information about the status of planned documentation, see the GitHub issue.

We've made it easier to build secure web APIs using Identity in ASP.NET Core 2.0. You can acquire access tokens for

accessing your web APIs using the Microsoft Authentication Library (MSAL).

For more information on authentication changes in 2.0, see the following resources:

Account confirmation and password recovery in ASP.NET Core

Enable QR Code generation for authenticator apps in ASP.NET Core

Migrate Authentication and Identity to ASP.NET Core 2.0

Single Page Application (SPA) project templates for Angular, Aurelia, Knockout.js, React.js, and React.js with Redux

are available. The Angular template has been updated to Angular 4. The Angular and React templates are available

by default; for information about how to get the other templates, see Create a new SPA project. For information

about how to build a SPA in ASP.NET Core, see Use JavaScript Services to Create Single Page Applications in

ASP.NET Core.

The Kestrel web server has new features that make it more suitable as an Internet-facing server. A number of server

constraint configuration options are added in the KestrelServerOptions class's new Limits property. Add limits

for the following:

Maximum client connections

Maximum request body size

Minimum request body data rate

For more information, see Kestrel web server implementation in ASP.NET Core.

The packages Microsoft.AspNetCore.Server.WebListener and Microsoft.Net.Http.Server have been merged into a

new package Microsoft.AspNetCore.Server.HttpSys . The namespaces have been updated to match.

For more information, see HTTP.sys web server implementation in ASP.NET Core.

When using MVC to transmit a FileStreamResult or a FileContentResult , you now have the option to set an ETag

https://azure.microsoft.com/services/active-directory-b2c/
https://github.com/dotnet/AspNetCore.Docs/issues/3054
https://www.nuget.org/packages/Microsoft.Identity.Client

var data = Encoding.UTF8.GetBytes("This is a sample text from a binary array");
var entityTag = new EntityTagHeaderValue("\"MyCalculatedEtagValue\"");
return File(data, "text/plain", "downloadName.txt", lastModified: DateTime.UtcNow.AddSeconds(-5), entityTag:
entityTag);

Hosting startup and Application Insights

Automatic use of anti-forgery tokens

Automatic precompilation

Razor support for C# 7.1

<LangVersion>latest</LangVersion>

Other documentation updates for 2.0

or a LastModified date on the content you transmit. You can set these values on the returned content with code

similar to the following:

The file returned to your visitors has the appropriate HTTP headers for the ETag and LastModified values.

If an application visitor requests content with a Range Request header, ASP.NET Core recognizes the request and

handles the header. If the requested content can be partially delivered, ASP.NET Core appropriately skips and

returns just the requested set of bytes. You don't need to write any special handlers into your methods to adapt or

handle this feature; it's automatically handled for you.

Hosting environments can now inject extra package dependencies and execute code during application startup,

without the application needing to explicitly take a dependency or call any methods. This feature can be used to

enable certain environments to "light-up" features unique to that environment without the application needing to

know ahead of time.

In ASP.NET Core 2.0, this feature is used to automatically enable Application Insights diagnostics when debugging

in Visual Studio and (after opting in) when running in Azure App Services. As a result, the project templates no

longer add Application Insights packages and code by default.

For information about the status of planned documentation, see the GitHub issue.

ASP.NET Core has always helped HTML-encode content by default, but with the new version an extra step is taken

to help prevent cross-site request forgery (XSRF) attacks. ASP.NET Core will now emit anti-forgery tokens by

default and validate them on form POST actions and pages without extra configuration.

For more information, see Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core.

Razor view pre-compilation is enabled during publish by default, reducing the publish output size and application

startup time.

For more information, see Razor view compilation and precompilation in ASP.NET Core.

The Razor view engine has been updated to work with the new Roslyn compiler. That includes support for C# 7.1

features like Default Expressions, Inferred Tuple Names, and Pattern-Matching with Generics. To use C# 7.1 in your

project, add the following property in your project file and then reload the solution:

For information about the status of C# 7.1 features, see the Roslyn GitHub repository.

https://github.com/dotnet/AspNetCore.Docs/issues/3389
https://github.com/dotnet/roslyn/blob/master/docs/Language Feature Status.md

Migration guidance

Additional Information

Visual Studio publish profiles for ASP.NET Core app deployment

Key Management

Configure Facebook authentication

Configure Twitter authentication

Configure Google authentication

Configure Microsoft Account authentication

For guidance on how to migrate ASP.NET Core 1.x applications to ASP.NET Core 2.0, see the following resources:

Migrate from ASP.NET Core 1.x to ASP.NET Core 2.0

Migrate Authentication and Identity to ASP.NET Core 2.0

For the complete list of changes, see the ASP.NET Core 2.0 Release Notes.

To connect with the ASP.NET Core development team's progress and plans, tune in to the ASP.NET Community

Standup.

https://github.com/dotnet/aspnetcore/releases/tag/2.0.0
https://live.asp.net/

What's new in ASP.NET Core 1.1
9/22/2020 • 2 minutes to read • Edit Online

Choosing between versions 1.0 and 1.1 of ASP.NET Core

Additional Information

ASP.NET Core 1.1 includes the following new features:

URL Rewriting Middleware

Response Caching Middleware

View Components as Tag Helpers

Middleware as MVC filters

Cookie-based TempData provider

Azure App Service logging provider

Azure Key Vault configuration provider

Azure and Redis Storage Data Protection Key Repositories

WebListener Server for Windows

WebSockets support

ASP.NET Core 1.1 has more features than ASP.NET Core 1.0. In general, we recommend you use the latest version.

ASP.NET Core 1.1.0 Release Notes

To connect with the ASP.NET Core development team's progress and plans, tune in to the ASP.NET Community

Standup.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/release-notes/aspnetcore-1.1.md
https://github.com/dotnet/aspnetcore/releases/tag/1.1.0
https://live.asp.net/

Tutorial: Create a Razor Pages web app with ASP.NET
Core
9/22/2020 • 2 minutes to read • Edit Online

This series of tutorials explains the basics of building a Razor Pages web app.

For a more advanced introduction aimed at developers who are familiar with controllers and views, see

Introduction to Razor Pages.

This series includes the following tutorials:

1. Create a Razor Pages web app

2. Add a model to a Razor Pages app

3. Scaffold (generate) Razor pages

4. Work with a database

5. Update Razor pages

6. Add search

7. Add a new field

8. Add validation

At the end, you'll have an app that can display and manage a database of movies.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/index.md

Tutorial: Get started with Razor Pages in ASP.NET
Core
9/22/2020 • 10 minutes to read • Edit Online

Prerequisites

By Rick Anderson

This is the first tutorial of a series that teaches the basics of building an ASP.NET Core Razor Pages web app.

For a more advanced introduction aimed at developers who are familiar with controllers and views, see

Introduction to Razor Pages.

At the end of the series, you'll have an app that manages a database of movies.

View or download sample code (how to download).

View or download sample code (how to download).

In this tutorial, you:

Create a Razor Pages web app.

Run the app.

Examine the project files.

At the end of this tutorial, you'll have a working Razor Pages web app that you'll build on in later tutorials.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1

Create a Razor Pages web app
Visual Studio

Visual Studio Code

Visual Studio for Mac

From the Visual Studio FileFile menu, select NewNew > ProjectProject.

Create a new ASP.NET Core Web Application and select NextNext.

Name the project RazorPagesMovieRazorPagesMovie. It's important to name the project RazorPagesMovie so the

namespaces will match when you copy and paste code.

Select ASP.NET Core 3.1ASP.NET Core 3.1 in the dropdown, Web ApplicationWeb Application, and then select CreateCreate.

The following starter project is created:

Run the app
Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run without the debugger.

Visual Studio displays the following dialog:

Select YesYes if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Examine the project files

Pages folderPages folder

wwwroot folderwwwroot folder

appSettings.jsonappSettings.json

Program.csProgram.cs

Startup.csStartup.cs

Next steps

Select YesYes if you agree to trust the development certificate.

Visual Studio starts IIS Express and runs the app. The address bar shows localhost:port# and not something

like example.com . That's because localhost is the standard hostname for the local computer. Localhost only

serves web requests from the local computer. When Visual Studio creates a web project, a random port is

used for the web server.

Here's an overview of the main project folders and files that you'll work with in later tutorials.

Contains Razor pages and supporting files. Each Razor page is a pair of files:

A .cshtml file that contains HTML markup with C# code using Razor syntax.

A .cshtml.cs file that contains C# code that handles page events.

Supporting files have names that begin with an underscore. For example, the _Layout.cshtml file configures UI

elements common to all pages. This file sets up the navigation menu at the top of the page and the copyright notice

at the bottom of the page. For more information, see Layout in ASP.NET Core.

Contains static files, such as HTML files, JavaScript files, and CSS files. For more information, see Static files in

ASP.NET Core.

Contains configuration data, such as connection strings. For more information, see Configuration in ASP.NET Core.

Contains the entry point for the program. For more information, see .NET Generic Host.

Contains code that configures app behavior. For more information, see App startup in ASP.NET Core.

Advance to the next tutorial in the series:

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

Prerequisites

WARNINGWARNING

A D D AA D D A

M O D E LM O D E L

This is the first tutorial of a series. The series teaches the basics of building an ASP.NET Core Razor Pages web app.

For a more advanced introduction aimed at developers who are familiar with controllers and views, see

Introduction to Razor Pages.

At the end of the series, you'll have an app that manages a database of movies.

View or download sample code (how to download).

View or download sample code (how to download).

In this tutorial, you:

Create a Razor Pages web app.

Run the app.

Examine the project files.

At the end of this tutorial, you'll have a working Razor Pages web app that you'll build on in later tutorials.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't work with

Visual Studio.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124

Create a Razor Pages web app
Visual Studio

Visual Studio Code

Visual Studio for Mac

From the Visual Studio FileFile menu, select NewNew > ProjectProject.

Create a new ASP.NET Core Web Application and select NextNext.

Name the project RazorPagesMovieRazorPagesMovie. It's important to name the project RazorPagesMovie so the

namespaces will match when you copy and paste code.

Select ASP.NET Core 2.2ASP.NET Core 2.2 in the dropdown, Web ApplicationWeb Application, and then select CreateCreate.

The following starter project is created:

Run the app
Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run without the debugger.

Visual Studio displays the following dialog:

Select YesYes if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes if you agree to trust the development certificate.

Visual Studio starts IIS Express and runs the app. The address bar shows localhost:port# and not something

like example.com . That's because localhost is the standard hostname for the local computer. Localhost only

serves web requests from the local computer. When Visual Studio creates a web project, a random port is

used for the web server.

On the app's home page, select AcceptAccept to consent to tracking.

This app doesn't track personal information, but the project template includes the consent feature in case you

need it to comply with the European Union's General Data Protection Regulation (GDPR).

The following image shows the app after you give consent to tracking:

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

Examine the project files

Pages folderPages folder

wwwroot folderwwwroot folder

appSettings.jsonappSettings.json

Program.csProgram.cs

Startup.csStartup.cs

Additional resources

Next steps

Here's an overview of the main project folders and files that you'll work with in later tutorials.

Contains Razor pages and supporting files. Each Razor page is a pair of files:

A .cshtml file that contains HTML markup with C# code using Razor syntax.

A .cshtml.cs file that contains C# code that handles page events.

Supporting files have names that begin with an underscore. For example, the _Layout.cshtml file configures UI

elements common to all pages. This file sets up the navigation menu at the top of the page and the copyright notice

at the bottom of the page. For more information, see Layout in ASP.NET Core.

Contains static files, such as HTML files, JavaScript files, and CSS files. For more information, see Static files in

ASP.NET Core.

Contains configuration data, such as connection strings. For more information, see Configuration in ASP.NET Core.

Contains the entry point for the program. For more information, see .NET Generic Host.

Contains code that configures app behavior, such as whether it requires consent for cookies. For more information,

see App startup in ASP.NET Core.

Youtube version of this tutorial

Advance to the next tutorial in the series:

https://www.youtube.com/watch?v=F0SP7Ry4flQ&feature=youtu.be

A D D AA D D A

M O D E LM O D E L

Part 2, add a model to a Razor Pages app in ASP.NET
Core
9/22/2020 • 22 minutes to read • Edit Online

Add a data model

using System;
using System.ComponentModel.DataAnnotations;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

By Rick Anderson

In this section, classes are added for managing movies. The app's model classes use Entity Framework Core (EF

Core) to work with the database. EF Core is an object-relational mapper (O/RM) that simplifies data access.

The model classes are known as POCO classes (from "plain-old CLR objects") because they don't have any

dependency on EF Core. They define the properties of the data that are stored in the database.

View or download sample code (how to download).

View or download sample code (how to download).

Visual Studio

Visual Studio Code

Visual Studio for Mac

Right-click the RazorPagesMovieRazorPagesMovie project > AddAdd > New FolderNew Folder . Name the folder Models.

Right click the Models folder. Select AddAdd > ClassClass . Name the class MovieMovie.

Add the following properties to the Movie class:

The Movie class contains:

The ID field is required by the database for the primary key.

[DataType(DataType.Date)] : The DataType attribute specifies the type of the data (Date). With this attribute:

The user is not required to enter time information in the date field.

Only the date is displayed, not time information.

DataAnnotations are covered in a later tutorial.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/model.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/ef/core
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatypeattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations

Scaffold the movie model

Build the project to verify there are no compilation errors.

In this section, the movie model is scaffolded. That is, the scaffolding tool produces pages for Create, Read, Update,

and Delete (CRUD) operations for the movie model.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Create a Pages/Movies folder :

Right click on the Pages folder > AddAdd > New FolderNew Folder .

Name the folder Movies

Right click on the Pages/Movies folder > AddAdd > New Scaffolded ItemNew Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select Razor Pages using Entity Framework (CRUD)Razor Pages using Entity Framework (CRUD) > AddAdd.

Files createdFiles created

Complete the Add Razor Pages using Entity Framework (CRUD)Add Razor Pages using Entity Framework (CRUD) dialog:

In the Model classModel class drop down, select Movie (RazorPagesMovie.Models)Movie (RazorPagesMovie.Models) .

In the Data context classData context class row, select the ++ (plus) sign and change the generated name from

RazorPagesMovie.ModelsModels .RazorPagesMovieContext to RazorPagesMovie.DataData.RazorPagesMovieContext. This

change is not required. It creates the database context class with the correct namespace.

Select AddAdd.

The appsettings.json file is updated with the connection string used to connect to a local database.

Visual Studio

Visual Studio for Mac

Visual Studio Code

The scaffold process creates and updates the following files:

https://developercommunity.visualstudio.com/content/problem/652166/aspnet-core-ef-scaffolder-uses-incorrect-namespace.html

UpdatedUpdated

Initial migration

Add-Migration InitialCreate
Update-Database

Pages/Movies: Create, Delete, Details, Edit, and Index.

Data/RazorPagesMovieContext.cs

Startup.cs

The created and updated files are explained in the next section.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In this section, the Package Manager Console (PMC) is used to:

Add an initial migration.

Update the database with the initial migration.

From the ToolsTools menu, select NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console.

In the PMC, enter the following commands:

The preceding commands generate the following warning: "No type was specified for the decimal column 'Price' on

entity type 'Movie'. This will cause values to be silently truncated if they do not fit in the default precision and scale.

Explicitly specify the SQL server column type that can accommodate all the values using 'HasColumnType()'."

You can ignore that warning, it will be fixed in a later tutorial.

The migrations command generates code to create the initial database schema. The schema is based on the model

specified in DbContext . The InitialCreate argument is used to name the migrations. Any name can be used, but

by convention a name is selected that describes the migration.

The update command runs the Up method in migrations that have not been applied. In this case, update runs the

Up method in Migrations/<time-stamp>_InitialCreate.cs file, which creates the database.

Examine the context registered with dependency injectionExamine the context registered with dependency injection

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();

 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("RazorPagesMovieContext")));
}

using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie.Models
{
 public class RazorPagesMovieContext : DbContext
 {
 public RazorPagesMovieContext (DbContextOptions<RazorPagesMovieContext> options)
 : base(options)
 {
 }

 public DbSet<RazorPagesMovie.Models.Movie> Movie { get; set; }
 }
}

Test the appTest the app

SqlException: Cannot open database "RazorPagesMovieContext-GUID" requested by the login. The login failed.
Login failed for user 'User-name'.

Visual Studio

Visual Studio Code

Visual Studio for Mac

ASP.NET Core is built with dependency injection. Services (such as the EF Core DB context) are registered with

dependency injection during application startup. Components that require these services (such as Razor Pages) are

provided these services via constructor parameters. The constructor code that gets a DB context instance is shown

later in the tutorial.

The scaffolding tool automatically created a DB context and registered it with the dependency injection container.

Examine the Startup.ConfigureServices method. The highlighted line was added by the scaffolder :

The RazorPagesMovieContext coordinates EF Core functionality (Create, Read, Update, Delete, etc.) for the Movie

model. The data context (RazorPagesMovieContext) is derived from Microsoft.EntityFrameworkCore.DbContext. The

data context specifies which entities are included in the data model.

The preceding code creates a DbSet<Movie> property for the entity set. In Entity Framework terminology, an entity

set typically corresponds to a database table. An entity corresponds to a row in the table.

The name of the connection string is passed in to the context by calling a method on a DbContextOptions object.

For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Run the app and append /Movies to the URL in the browser (http://localhost:port/movies).

If you get the error :

You missed the migrations step.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions

Additional resources

NOTENOTE

Test the CreateCreate link.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English

locales that use a comma (",") for a decimal point and for non US-English date formats, the app must be globalized.

For globalization instructions, see this GitHub issue.

Test the EditEdit, DetailsDetails , and DeleteDelete links.

The next tutorial explains the files created by scaffolding.

 P R E V I O U S : G E TP R E V I O U S : G E T

S TA R T E DS TA R T E D

N E X T : S C A F F O L D E D R A Z O RN E X T : S C A F F O L D E D R A Z O R

P A G E SP A G E S

In this section, classes are added for managing movies in a cross-platform SQLite database. Apps created from an

ASP.NET Core template use a SQLite database. The app's model classes are used with Entity Framework Core (EF

Core) (SQLite EF Core Database Provider) to work with the database. EF Core is an object-relational mapping (ORM)

framework that simplifies data access.

The model classes are known as POCO classes (from "plain-old CLR objects") because they don't have any

dependency on EF Core. They define the properties of the data that are stored in the database.

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://www.sqlite.org/index.html
https://docs.microsoft.com/en-us/ef/core
https://docs.microsoft.com/en-us/ef/core/providers/sqlite

Add a data model

using System;
using System.ComponentModel.DataAnnotations;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Scaffold the movie model

View or download sample code (how to download).

View or download sample code (how to download).

Visual Studio

Visual Studio Code

Visual Studio for Mac

Right-click the RazorPagesMovieRazorPagesMovie project > AddAdd > New FolderNew Folder . Name the folder Models.

Right click the Models folder. Select AddAdd > ClassClass . Name the class MovieMovie.

Add the following properties to the Movie class:

The Movie class contains:

The ID field is required by the database for the primary key.

[DataType(DataType.Date)] : The DataType attribute specifies the type of the data (Date). With this attribute:

The user is not required to enter time information in the date field.

Only the date is displayed, not time information.

DataAnnotations are covered in a later tutorial.

Build the project to verify there are no compilation errors.

In this section, the movie model is scaffolded. That is, the scaffolding tool produces pages for Create, Read, Update,

and Delete (CRUD) operations for the movie model.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Create a Pages/Movies folder :

Right click on the Pages folder > AddAdd > New FolderNew Folder .

Name the folder Movies

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatypeattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations

Right click on the Pages/Movies folder > AddAdd > New Scaffolded ItemNew Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select Razor Pages using Entity Framework (CRUD)Razor Pages using Entity Framework (CRUD) > AddAdd.

Complete the Add Razor Pages using Entity Framework (CRUD)Add Razor Pages using Entity Framework (CRUD) dialog:

Files createdFiles created

File updatedFile updated

Initial migration

In the Model classModel class drop down, select Movie (RazorPagesMovie.Models)Movie (RazorPagesMovie.Models) .

In the Data context classData context class row, select the ++ (plus) sign and accept the generated name

RazorPagesMovie.Models.RazorPagesMovieContextRazorPagesMovie.Models.RazorPagesMovieContext.

Select AddAdd.

The appsettings.json file is updated with the connection string used to connect to a local database.

The scaffold process creates and updates the following files:

Pages/Movies: Create, Delete, Details, Edit, and Index.

Data/RazorPagesMovieContext.cs

Startup.cs

The created and updated files are explained in the next section.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In this section, the Package Manager Console (PMC) is used to:

Add an initial migration.

Update the database with the initial migration.

From the ToolsTools menu, select NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console.

Add-Migration Initial
Update-Database

NOTENOTE

Examine the context registered with dependency injectionExamine the context registered with dependency injection

In the PMC, enter the following commands:

The Add-Migration command generates code to create the initial database schema. The schema is based on the

model specified in the DbContext (In the RazorPagesMovieContext.cs file). The InitialCreate argument is used to

name the migration. Any name can be used, but by convention a name that describes the migration is used. For

more information, see Tutorial: Using the migrations feature - ASP.NET MVC with EF Core.

The Update-Database command runs the Up method in the Migrations/<time-stamp>_InitialCreate.cs file. The Up

method creates the database.

The preceding commands generate the following warning: "No type was specified for the decimal column 'Price' on entity type

'Movie'. This will cause values to be silently truncated if they do not fit in the default precision and scale. Explicitly specify the

SQL server column type that can accommodate all the values using 'HasColumnType()'." You can ignore that warning, it will be

fixed in a later tutorial.

Visual Studio

Visual Studio Code

Visual Studio for Mac

ASP.NET Core is built with dependency injection. Services (such as the EF Core DB context) are registered with

dependency injection during application startup. Components that require these services (such as Razor Pages) are

provided these services via constructor parameters. The constructor code that gets a DB context instance is shown

later in the tutorial.

The scaffolding tool automatically created a DB context and registered it with the dependency injection container.

Examine the Startup.ConfigureServices method. The highlighted line was added by the scaffolder :

// This method gets called by the runtime.
// Use this method to add services to the container.
public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies is
 // needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("RazorPagesMovieContext")));
}

using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie.Models
{
 public class RazorPagesMovieContext : DbContext
 {
 public RazorPagesMovieContext (DbContextOptions<RazorPagesMovieContext> options)
 : base(options)
 {
 }

 public DbSet<RazorPagesMovie.Models.Movie> Movie { get; set; }
 }
}

Test the appTest the app

SqlException: Cannot open database "RazorPagesMovieContext-GUID" requested by the login. The login failed.
Login failed for user 'User-name'.

The RazorPagesMovieContext coordinates EF Core functionality (Create, Read, Update, Delete, etc.) for the Movie

model. The data context (RazorPagesMovieContext) is derived from Microsoft.EntityFrameworkCore.DbContext. The

data context specifies which entities are included in the data model.

The preceding code creates a DbSet<Movie> property for the entity set. In Entity Framework terminology, an entity

set typically corresponds to a database table. An entity corresponds to a row in the table.

The name of the connection string is passed in to the context by calling a method on a DbContextOptions object.

For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Run the app and append /Movies to the URL in the browser (http://localhost:port/movies).

If you get the error :

You missed the migrations step.

Test the CreateCreate link.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions

Additional resources

NOTENOTE
You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English

locales that use a comma (",") for a decimal point and for non US-English date formats, the app must be globalized.

For globalization instructions, see this GitHub issue.

Test the EditEdit, DetailsDetails , and DeleteDelete links.

The next tutorial explains the files created by scaffolding.

 P R E V I O U S : G E TP R E V I O U S : G E T

S TA R T E DS TA R T E D

N E X T : S C A F F O L D E D R A Z O RN E X T : S C A F F O L D E D R A Z O R

P A G E SP A G E S

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420

Part 3, scaffolded Razor Pages in ASP.NET Core
9/22/2020 • 16 minutes to read • Edit Online

The Create, Delete, Details, and Edit pages

// Unused usings removed.
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesMovie.Models;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Data.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Data.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get;set; }

 public async Task OnGetAsync()
 {
 Movie = await _context.Movie.ToListAsync();
 }
 }
}

By Rick Anderson

This tutorial examines the Razor Pages created by scaffolding in the previous tutorial.

View or download sample code (how to download).

View or download sample code (how to download).

Examine the Pages/Movies/Index.cshtml.cs Page Model:

Razor Pages are derived from PageModel . By convention, the PageModel -derived class is called <PageName>Model .

The constructor uses dependency injection to add the RazorPagesMovieContext to the page. All the scaffolded pages

follow this pattern. See Asynchronous code for more information on asynchronous programming with Entity

Framework.

When a request is made for the page, the OnGetAsync method returns a list of movies to the Razor Page.

OnGetAsync or OnGet is called to initialize the state of the page. In this case, OnGetAsync gets a list of movies and

displays them.

When OnGet returns void or OnGetAsync returns Task , no return statement is used. When the return type is

IActionResult or Task<IActionResult> , a return statement must be provided. For example, the

Pages/Movies/Create.cshtml.cs OnPostAsync method:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/page.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
}

 Examine the Pages/Movies/Index.cshtml Razor Page:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

The @page directiveThe @page directive

Razor can transition from HTML into C# or into Razor-specific markup. When an @ symbol is followed by a Razor

reserved keyword, it transitions into Razor-specific markup, otherwise it transitions into C#.

The @page Razor directive makes the file an MVC action, which means that it can handle requests. @page must be

the first Razor directive on a page. @page is an example of transitioning into Razor-specific markup. See Razor

syntax for more information.

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.Movie[0].Title)

The @model directiveThe @model directive

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

The layout pageThe layout page

ViewData and layoutViewData and layout

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

The DisplayNameFor HTML Helper inspects the Title property referenced in the lambda expression to determine

the display name. The lambda expression is inspected rather than evaluated. That means there is no access violation

when model , model.Movie , or model.Movie[0] is null or empty. When the lambda expression is evaluated (for

example, with @Html.DisplayFor(modelItem => item.Title)), the model's property values are evaluated.

The @model directive specifies the type of the model passed to the Razor Page. In the preceding example, the

@model line makes the PageModel -derived class available to the Razor Page. The model is used in the

@Html.DisplayNameFor and @Html.DisplayFor HTML Helpers on the page.

Select the menu links (RazorPagesMovieRazorPagesMovie, HomeHome, and Pr ivacyPrivacy). Each page shows the same menu layout. The

menu layout is implemented in the Pages/Shared/_Layout.cshtml file. Open the Pages/Shared/_Layout.cshtml file.

Layout templates allow the HTML container layout to be:

Specified in one place.

Applied in multiple pages in the site.

Find the @RenderBody() line. RenderBody is a placeholder where all the page-specific views show up, wrapped in the

layout page. For example, select the Pr ivacyPrivacy link and the Pages/Privacy.cshtml view is rendered inside the

RenderBody method.

Consider the following markup from the Pages/Movies/Index.cshtml file:

The preceding highlighted markup is an example of Razor transitioning into C#. The { and } characters enclose a

block of C# code.

The PageModel base class contains a ViewData dictionary property that can be used to pass data to a View. Objects

are added to the ViewData dictionary using a key/value pattern. In the preceding sample, the "Title" property is

added to the ViewData dictionary.

The "Title" property is used in the Pages/Shared/_Layout.cshtml file. The following markup shows the first few

lines of the _Layout.cshtml file.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/views/creating-custom-html-helpers-cs#understanding-html-helpers

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - RazorPagesMovie</title>

 @*Markup removed for brevity.*@

Update the layoutUpdate the layout

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie</title>

RazorPagesMovie

RpMovie

NOTENOTE

@{
 Layout = "_Layout";
}

The line @*Markup removed for brevity.*@ is a Razor comment. Unlike HTML comments (<!-- -->), Razor

comments are not sent to the client.

Change the <title> element in the Pages/Shared/_Layout.cshtml file to display MovieMovie rather than

RazorPagesMovieRazorPagesMovie.

Find the following anchor element in the Pages/Shared/_Layout.cshtml file.

Replace the preceding element with the following markup:

The preceding anchor element is a Tag Helper. In this case, it's the Anchor Tag Helper. The asp-page="/Movies/Index"

Tag Helper attribute and value creates a link to the /Movies/Index Razor Page. The asp-area attribute value is

empty, so the area isn't used in the link. See Areas for more information.

Save your changes, and test the app by clicking on the RpMovieRpMovie link. See the _Layout.cshtml file in GitHub if you

have any problems.

Test the other links (HomeHome, RpMovieRpMovie, CreateCreate, EditEdit, and DeleteDelete). Each page sets the title, which you can see in the

browser tab. When you bookmark a page, the title is used for the bookmark.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English locales that

use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. See this

GitHub issue 4076 for instructions on adding decimal comma.

The Layout property is set in the Pages/_ViewStart.cshtml file:

The preceding markup sets the layout file to Pages/Shared/_Layout.cshtml for all Razor files under the Pages folder.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30/Pages/Shared/_Layout.cshtml
https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420

The Create page modelThe Create page model

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesMovie.Models;
using System;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 private readonly RazorPagesMovie.Data.RazorPagesMovieContext _context;

 public CreateModel(RazorPagesMovie.Data.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

See Layout for more information.

Examine the Pages/Movies/Create.cshtml.cs page model:

The OnGet method initializes any state needed for the page. The Create page doesn't have any state to initialize, so

Page is returned. Later in the tutorial, an example of OnGet initializing state is shown. The Page method creates a

PageResult object that renders the Create.cshtml page.

The Movie property uses the [BindProperty] attribute to opt-in to model binding. When the Create form posts the

form values, the ASP.NET Core runtime binds the posted values to the Movie model.

The OnPostAsync method is run when the page posts form data:

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

The Create Razor PageThe Create Razor Page

If there are any model errors, the form is redisplayed, along with any form data posted. Most model errors can be

caught on the client-side before the form is posted. An example of a model error is posting a value for the date field

that cannot be converted to a date. Client-side validation and model validation are discussed later in the tutorial.

If there are no model errors, the data is saved, and the browser is redirected to the Index page.

Examine the Pages/Movies/Create.cshtml Razor Page file:

@page
@model RazorPagesMovie.Pages.Movies.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h1>Create</h1>

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.ReleaseDate" class="control-label"></label>
 <input asp-for="Movie.ReleaseDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Genre" class="control-label"></label>
 <input asp-for="Movie.Genre" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Price" class="control-label"></label>
 <input asp-for="Movie.Price" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio displays the following tags in a distinctive bold font used for Tag Helpers:

<form method="post">

<div asp-validation-summary="ModelOnly" class="text-danger"></div>

<label asp-for="Movie.Title" class="control-label"></label>

<input asp-for="Movie.Title" class="form-control" />

<div asp-validation-summary="ModelOnly" class="text-danger"></div>
<div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

</div>

Additional resources

The <form method="post"> element is a Form Tag Helper. The Form Tag Helper automatically includes an antiforgery

token.

The scaffolding engine creates Razor markup for each field in the model (except the ID) similar to the following:

The Validation Tag Helpers (<div asp-validation-summary and <span asp-validation-for) display validation errors.

Validation is covered in more detail later in this series.

The Label Tag Helper (<label asp-for="Movie.Title" class="control-label"></label>) generates the label caption

and for attribute for the Title property.

The Input Tag Helper (<input asp-for="Movie.Title" class="form-control">) uses the DataAnnotations attributes and

produces HTML attributes needed for jQuery Validation on the client-side.

For more information on Tag Helpers such as <form method="post"> , see Tag Helpers in ASP.NET Core.

 P R E V I O U S : A D D I N G AP R E V I O U S : A D D I N G A

M O D E LM O D E L

N E X T :N E X T :

D A TA B A S ED A TA B A S E

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

The Create, Delete, Details, and Edit pages

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesMovie.Models;

namespace RazorPagesMovie.Pages.Movies
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get;set; }

 public async Task OnGetAsync()
 {
 Movie = await _context.Movie.ToListAsync();
 }
 }
}

By Rick Anderson

This tutorial examines the Razor Pages created by scaffolding in the previous tutorial.

View or download sample.

Examine the Pages/Movies/Index.cshtml.cs Page Model:

Razor Pages are derived from PageModel . By convention, the PageModel -derived class is called <PageName>Model .

The constructor uses dependency injection to add the RazorPagesMovieContext to the page. All the scaffolded pages

follow this pattern. See Asynchronous code for more information on asynchronous programming with Entity

Framework.

When a request is made for the page, the OnGetAsync method returns a list of movies to the Razor Page.

OnGetAsync or OnGet is called on a Razor Page to initialize the state for the page. In this case, OnGetAsync gets a list

of movies and displays them.

When OnGet returns void or OnGetAsync returns Task , no return method is used. When the return type is

IActionResult or Task<IActionResult> , a return statement must be provided. For example, the

Pages/Movies/Create.cshtml.cs OnPostAsync method:

https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie22

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

 Examine the Pages/Movies/Index.cshtml Razor Page:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Razor can transition from HTML into C# or into Razor-specific markup. When an @ symbol is followed by a Razor

reserved keyword, it transitions into Razor-specific markup, otherwise it transitions into C#.

The @page Razor directive makes the file into an MVC action, which means that it can handle requests. @page must

be the first Razor directive on a page. @page is an example of transitioning into Razor-specific markup. See Razor

syntax for more information.

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.Movie[0].Title)

The @model directiveThe @model directive

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

The layout pageThe layout page

ViewData and layoutViewData and layout

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - RazorPagesMovie</title>

 @*Markup removed for brevity.*@

The DisplayNameFor HTML Helper inspects the Title property referenced in the lambda expression to determine

the display name. The lambda expression is inspected rather than evaluated. That means there is no access violation

when model , model.Movie , or model.Movie[0] are null or empty. When the lambda expression is evaluated (for

example, with @Html.DisplayFor(modelItem => item.Title)), the model's property values are evaluated.

The @model directive specifies the type of the model passed to the Razor Page. In the preceding example, the

@model line makes the PageModel -derived class available to the Razor Page. The model is used in the

@Html.DisplayNameFor and @Html.DisplayFor HTML Helpers on the page.

Select the menu links (RazorPagesMovieRazorPagesMovie, HomeHome, and Pr ivacyPrivacy). Each page shows the same menu layout. The

menu layout is implemented in the Pages/Shared/_Layout.cshtml file. Open the Pages/Shared/_Layout.cshtml file.

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it across

multiple pages in your site. Find the @RenderBody() line. RenderBody is a placeholder where all the page-specific

views you create show up, wrapped in the layout page. For example, if you select the Pr ivacyPrivacy link, the

Pages/Privacy.cshtmlPages/Privacy.cshtml view is rendered inside the RenderBody method.

Consider the following code from the Pages/Movies/Index.cshtml file:

The preceding highlighted code is an example of Razor transitioning into C#. The { and } characters enclose a

block of C# code.

The PageModel base class has a ViewData dictionary property that can be used to add data that you want to pass to

a View. You add objects into the ViewData dictionary using a key/value pattern. In the preceding sample, the "Title"

property is added to the ViewData dictionary.

The "Title" property is used in the Pages/Shared/_Layout.cshtml file. The following markup shows the first few lines

of the _Layout.cshtml file.

The line @*Markup removed for brevity.*@ is a Razor comment which doesn't appear in your layout file. Unlike

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/views/creating-custom-html-helpers-cs#understanding-html-helpers

Update the layoutUpdate the layout

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie</title>

RazorPagesMovie

RpMovie

NOTENOTE

@{
 Layout = "_Layout";
}

The Create page modelThe Create page model

HTML comments (<!-- -->), Razor comments are not sent to the client.

Change the <title> element in the Pages/Shared/_Layout.cshtml file to display MovieMovie rather than

RazorPagesMovieRazorPagesMovie.

Find the following anchor element in the Pages/Shared/_Layout.cshtml file.

Replace the preceding element with the following markup.

The preceding anchor element is a Tag Helper. In this case, it's the Anchor Tag Helper. The asp-page="/Movies/Index"

Tag Helper attribute and value creates a link to the /Movies/Index Razor Page. The asp-area attribute value is

empty, so the area isn't used in the link. See Areas for more information.

Save your changes, and test the app by clicking on the RpMovieRpMovie link. See the _Layout.cshtml file in GitHub if you

have any problems.

Test the other links (HomeHome, RpMovieRpMovie, CreateCreate, EditEdit, and DeleteDelete). Each page sets the title, which you can see in the

browser tab. When you bookmark a page, the title is used for the bookmark.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English locales that

use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. This

GitHub issue 4076 for instructions on adding decimal comma.

The Layout property is set in the Pages/_ViewStart.cshtml file:

The preceding markup sets the layout file to Pages/Shared/_Layout.cshtml for all Razor files under the Pages folder.

See Layout for more information.

Examine the Pages/Movies/Create.cshtml.cs page model:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie22/Pages/Shared/_Layout.cshtml
https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420

// Unused usings removed.
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesMovie.Models;
using System;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public CreateModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

The OnGet method initializes any state needed for the page. The Create page doesn't have any state to initialize, so

Page is returned. Later in the tutorial you see OnGet method initialize state. The Page method creates a

PageResult object that renders the Create.cshtml page.

The Movie property uses the [BindProperty] attribute to opt-in to model binding. When the Create form posts the

form values, the ASP.NET Core runtime binds the posted values to the Movie model.

The OnPostAsync method is run when the page posts form data:

The Create Razor PageThe Create Razor Page

@page
@model RazorPagesMovie.Pages.Movies.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h1>Create</h1>

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.ReleaseDate" class="control-label"></label>
 <input asp-for="Movie.ReleaseDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Genre" class="control-label"></label>
 <input asp-for="Movie.Genre" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Price" class="control-label"></label>
 <input asp-for="Movie.Price" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

If there are any model errors, the form is redisplayed, along with any form data posted. Most model errors can be

caught on the client-side before the form is posted. An example of a model error is posting a value for the date field

that cannot be converted to a date. Client-side validation and model validation are discussed later in the tutorial.

If there are no model errors, the data is saved, and the browser is redirected to the Index page.

Examine the Pages/Movies/Create.cshtml Razor Page file:

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio displays the <form method="post"> tag in a distinctive bold font used for Tag Helpers:

<div asp-validation-summary="ModelOnly" class="text-danger"></div>
<div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

</div>

Additional resources

The <form method="post"> element is a Form Tag Helper. The Form Tag Helper automatically includes an antiforgery

token.

The scaffolding engine creates Razor markup for each field in the model (except the ID) similar to the following:

The Validation Tag Helpers (<div asp-validation-summary and <span asp-validation-for) display validation errors.

Validation is covered in more detail later in this series.

The Label Tag Helper (<label asp-for="Movie.Title" class="control-label"></label>) generates the label caption

and for attribute for the Title property.

The Input Tag Helper (<input asp-for="Movie.Title" class="form-control">) uses the DataAnnotations attributes and

produces HTML attributes needed for jQuery Validation on the client-side.

YouTube version of this tutorial

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://youtu.be/zxgKjPYnOMM

 P R E V I O U S : A D D I N G AP R E V I O U S : A D D I N G A

M O D E LM O D E L

N E X T :N E X T :

D A TA B A S ED A TA B A S E

Part 4, with a database and ASP.NET Core
9/22/2020 • 12 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();

 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("RazorPagesMovieContext")));
}

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "RazorPagesMovieContext": "Server=(localdb)\\mssqllocaldb;Database=RazorPagesMovieContext-
bc;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

By Rick Anderson and Joe Audette

View or download sample code (how to download).

View or download sample code (how to download).

The RazorPagesMovieContext object handles the task of connecting to the database and mapping Movie objects to

database records. The database context is registered with the Dependency Injection container in the

ConfigureServices method in Startup.cs:

Visual Studio

Visual Studio Code / Visual Studio for Mac

The ASP.NET Core Configuration system reads the ConnectionString . For local development, it gets the connection

string from the appsettings.json file.

Visual Studio

Visual Studio Code / Visual Studio for Mac

The name value for the database (Database={Database name}) will be different for your generated code. The name

value is arbitrary.

When the app is deployed to a test or production server, an environment variable can be used to set the connection

string to a real database server. See Configuration for more information.

Visual Studio

Visual Studio Code / Visual Studio for Mac

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/sql.md
https://twitter.com/RickAndMSFT
https://twitter.com/joeaudette
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start

SQL Server Express LocalDB
LocalDB is a lightweight version of the SQL Server Express database engine that's targeted for program

development. LocalDB starts on demand and runs in user mode, so there's no complex configuration. By default,

LocalDB database creates *.mdf files in the C:\Users\<user>\ directory.

 From the ViewView menu, open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX).

Right click on the Movie table and select View DesignerView Designer :

Seed the database

Note the key icon next to ID . By default, EF creates a property named ID for the primary key.

Right click on the Movie table and select View DataView Data:

Create a new class named SeedData in the Models folder with the following code:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using RazorPagesMovie.Data;
using System;
using System.Linq;

namespace RazorPagesMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new RazorPagesMovieContext(
 serviceProvider.GetRequiredService<
 DbContextOptions<RazorPagesMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns and no movies are added.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using RazorPagesMovie.Models;
using System;

namespace RazorPagesMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();

 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

In Program.cs, modify the Main method to do the following:

Get a DB context instance from the dependency injection container.

Call the seed method, passing to it the context.

Dispose the context when the seed method completes.

The following code shows the updated Program.cs file.

The following exception occurs when Update-Database has not been run:

SqlException: Cannot open database "RazorPagesMovieContext-" requested by the login. The login failed.

Login failed for user 'user name'.

Test the appTest the app

Additional resources

Visual Studio

Visual Studio Code / Visual Studio for Mac

Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX

Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force

initialization, IIS Express must be stopped and restarted. You can do this with any of the following

approaches:

Right click the IIS Express system tray icon in the notification area and tap ExitExit or Stop S iteStop S ite:

If you were running VS in non-debug mode, press F5 to run in debug mode.

If you were running VS in debug mode, stop the debugger and press F5.

The next tutorial will improve the presentation of the data.

 P R E V I O U S : S C A F F O L D E D R A Z O RP R E V I O U S : S C A F F O L D E D R A Z O R

P A G E SP A G E S

N E X T : U P D A T I N G T H EN E X T : U P D A T I N G T H E

P A G E SP A G E S

View or download sample code (how to download).

View or download sample code (how to download).

The RazorPagesMovieContext object handles the task of connecting to the database and mapping Movie objects to

database records. The database context is registered with the Dependency Injection container in the

ConfigureServices method in Startup.cs:

Visual Studio

Visual Studio Code / Visual Studio for Mac

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start

// This method gets called by the runtime.
// Use this method to add services to the container.
public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies is
 // needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("RazorPagesMovieContext")));
}

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "RazorPagesMovieContext": "Server=(localdb)\\mssqllocaldb;Database=RazorPagesMovieContext-
1234;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

SQL Server Express LocalDB

For more information on the methods used in ConfigureServices , see:

EU General Data Protection Regulation (GDPR) support in ASP.NET Core for CookiePolicyOptions .

SetCompatibilityVersion

The ASP.NET Core Configuration system reads the ConnectionString . For local development, it gets the connection

string from the appsettings.json file.

Visual Studio

Visual Studio Code

Visual Studio for Mac

The name value for the database (Database={Database name}) will be different for your generated code. The name

value is arbitrary.

When the app is deployed to a test or production server, an environment variable can be used to set the connection

string to a real database server. See Configuration for more information.

Visual Studio

Visual Studio Code

Visual Studio for Mac

LocalDB is a lightweight version of the SQL Server Express database engine that's targeted for program

development. LocalDB starts on demand and runs in user mode, so there's no complex configuration. By default,

LocalDB database creates *.mdf files in the C:/Users/<user/> directory.

 From the ViewView menu, open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX).

Right click on the Movie table and select View DesignerView Designer :

Seed the database

Note the key icon next to ID . By default, EF creates a property named ID for the primary key.

Right click on the Movie table and select View DataView Data:

Create a new class named SeedData in the Models folder with the following code:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace RazorPagesMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new RazorPagesMovieContext(
 serviceProvider.GetRequiredService<
 DbContextOptions<RazorPagesMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns and no movies are added.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using RazorPagesMovie.Models;
using System;
using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context=services.
 GetRequiredService<RazorPagesMovieContext>();
 context.Database.Migrate();
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

In Program.cs, modify the Main method to do the following:

Get a DB context instance from the dependency injection container.

Call the seed method, passing to it the context.

Dispose the context when the seed method completes.

The following code shows the updated Program.cs file.

A production app would not call Database.Migrate . It's added to the preceding code to prevent the following

exception when Update-Database has not been run:

SqlException: Cannot open database "RazorPagesMovieContext-21" requested by the login. The login failed. Login

failed for user 'user name'.

Test the appTest the app
Visual Studio

Visual Studio Code

Visual Studio for Mac

Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX

Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force

initialization, IIS Express must be stopped and restarted. You can do this with any of the following

approaches:

Right-click the IIS Express system tray icon in the notification area and tap ExitExit or Stop S iteStop S ite:

If you were running VS in non-debug mode, press F5 to run in debug mode.

If you were running VS in debug mode, stop the debugger and press F5.

The app shows the seeded data:

The next tutorial will clean up the presentation of the data.

Additional resources
YouTube version of this tutorial

 P R E V I O U S : S C A F F O L D E D R A Z O RP R E V I O U S : S C A F F O L D E D R A Z O R

P A G E SP A G E S

N E X T : U P D A T I N G T H EN E X T : U P D A T I N G T H E

P A G E SP A G E S

https://youtu.be/A_5ff11sDHY

Part 5, update the generated pages in an ASP.NET
Core app
9/22/2020 • 9 minutes to read • Edit Online

Update the generated code

By Rick Anderson

The scaffolded movie app has a good start, but the presentation isn't ideal. ReleaseDateReleaseDate should be Release DateRelease Date

(two words).

Open the Models/Movie.cs file and add the highlighted lines shown in the following code:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/da1.md
https://twitter.com/RickAndMSFT

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

The [Column(TypeName = "decimal(18, 2)")] data annotation enables Entity Framework Core to correctly map

Price to currency in the database. For more information, see Data Types.

DataAnnotations is covered in the next tutorial. The Display attribute specifies what to display for the name of a field

(in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data (Date), so

the time information stored in the field isn't displayed.

Browse to Pages/Movies and hover over an EditEdit link to see the target URL.

The EditEdit, DetailsDetails , and DeleteDelete links are generated by the Anchor Tag Helper in the Pages/Movies/Index.cshtml file.

https://docs.microsoft.com/en-us/ef/core/modeling/relational/data-types
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter

@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

<td>
 Edit |
 Details |
 Delete
</td>

Add route templateAdd route template

<td>
 Edit |
 Details |
 Delete
</td>

@page "{id:int?}"

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the

preceding code, the AnchorTagHelper dynamically generates the HTML href attribute value from the Razor Page

(the route is relative), the asp-page , and the route id (asp-route-id). See URL generation for Pages for more

information.

Use View SourceView Source from your favorite browser to examine the generated markup. A portion of the generated HTML

is shown below:

The dynamically-generated links pass the movie ID with a query string (for example, the ?id=1 in

https://localhost:5001/Movies/Details?id=1).

Update the Edit, Details, and Delete Razor Pages to use the "{id:int}" route template. Change the page directive for

each of these pages from @page to @page "{id:int}" . Run the app and then view source. The generated HTML

adds the ID to the path portion of the URL:

A request to the page with the "{id:int}" route template that does notnot include the integer will return an HTTP 404

(not found) error. For example, http://localhost:5000/Movies/Details will return a 404 error. To make the ID

optional, append ? to the route constraint:

Review concurrency exception handlingReview concurrency exception handling

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
}

private bool MovieExists(int id)
{
 return _context.Movie.Any(e => e.ID == id);
}

Posting and binding reviewPosting and binding review

To test the behavior of @page "{id:int?}" :

Set the page directive in Pages/Movies/Details.cshtml to @page "{id:int?}" .

Set a break point in public async Task<IActionResult> OnGetAsync(int? id) (in Pages/Movies/Details.cshtml.cs).

Navigate to https://localhost:5001/Movies/Details/ .

With the @page "{id:int}" directive, the break point is never hit. The routing engine returns HTTP 404. Using

@page "{id:int?}" , the OnGetAsync method returns NotFound (HTTP 404).

Review the OnPostAsync method in the Pages/Movies/Edit.cshtml.cs file:

The previous code detects concurrency exceptions when the one client deletes the movie and the other client posts

changes to the movie.

To test the catch block:

Set a breakpoint on catch (DbUpdateConcurrencyException)

Select EditEdit for a movie, make changes, but don't enter SaveSave.

In another browser window, select the DeleteDelete link for the same movie, and then delete the movie.

In the previous browser window, post changes to the movie.

Production code may want to detect concurrency conflicts. See Handle concurrency conflicts for more information.

Examine the Pages/Movies/Edit.cshtml.cs file:

public class EditModel : PageModel
{
 private readonly RazorPagesMovie.Data.RazorPagesMovieContext _context;

 public EditModel(RazorPagesMovie.Data.RazorPagesMovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Movie = await _context.Movie.FirstOrDefaultAsync(m => m.ID == id);

 if (Movie == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
 }

 private bool MovieExists(int id)
 {
 return _context.Movie.Any(e => e.ID == id);
 }

When an HTTP GET request is made to the Movies/Edit page (for example, http://localhost:5000/Movies/Edit/2):

The OnGetAsync method fetches the movie from the database and returns the Page method.

The Page method renders the Pages/Movies/Edit.cshtml Razor Page. The Pages/Movies/Edit.cshtml file contains

Additional resources

Update the generated code

the model directive (@model RazorPagesMovie.Pages.Movies.EditModel), which makes the movie model available

on the page.

The Edit form is displayed with the values from the movie.

When the Movies/Edit page is posted:

[BindProperty]
public Movie Movie { get; set; }

The form values on the page are bound to the Movie property. The [BindProperty] attribute enables Model

binding.

If there are errors in the model state (for example, ReleaseDate cannot be converted to a date), the form is

redisplayed with the submitted values.

If there are no model errors, the movie is saved.

The HTTP GET methods in the Index, Create, and Delete Razor pages follow a similar pattern. The HTTP POST

OnPostAsync method in the Create Razor Page follows a similar pattern to the OnPostAsync method in the Edit

Razor Page.

 P R E V I O U S : W O R K I N G W I T H AP R E V I O U S : W O R K I N G W I T H A

D A TA B A S ED A TA B A S E

N E X T : A D DN E X T : A D D

S E A R C HS E A R C H

The scaffolded movie app has a good start, but the presentation isn't ideal. ReleaseDateReleaseDate should be Release DateRelease Date

(two words).

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

Open the Models/Movie.cs file and add the highlighted lines shown in the following code:

The [Column(TypeName = "decimal(18, 2)")] data annotation enables Entity Framework Core to correctly map

Price to currency in the database. For more information, see Data Types.

DataAnnotations is covered in the next tutorial. The Display attribute specifies what to display for the name of a field

(in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data (Date), so

the time information stored in the field isn't displayed.

Browse to Pages/Movies and hover over an EditEdit link to see the target URL.

The EditEdit, DetailsDetails , and DeleteDelete links are generated by the Anchor Tag Helper in the Pages/Movies/Index.cshtml file.

https://docs.microsoft.com/en-us/ef/core/modeling/relational/data-types
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter

@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

<td>
 Edit |
 Details |
 Delete
</td>

<td>
 Edit |
 Details |
 Delete
</td>

@page "{id:int?}"

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the

preceding code, the AnchorTagHelper dynamically generates the HTML href attribute value from the Razor Page

(the route is relative), the asp-page , and the route id (asp-route-id). See URL generation for Pages for more

information.

Use View SourceView Source from your favorite browser to examine the generated markup. A portion of the generated HTML

is shown below:

The dynamically-generated links pass the movie ID with a query string (for example, the ?id=1 in

https://localhost:5001/Movies/Details?id=1).

Update the Edit, Details, and Delete Razor Pages to use the "{id:int}" route template. Change the page directive for

each of these pages from @page to @page "{id:int}" . Run the app and then view source. The generated HTML

adds the ID to the path portion of the URL:

A request to the page with the "{id:int}" route template that does notnot include the integer will return an HTTP 404

(not found) error. For example, http://localhost:5000/Movies/Details will return a 404 error. To make the ID

optional, append ? to the route constraint:

To test the behavior of @page "{id:int?}" :

Review concurrency exception handlingReview concurrency exception handling

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
}

private bool MovieExists(int id)
{
 return _context.Movie.Any(e => e.ID == id);
}

Posting and binding reviewPosting and binding review

Set the page directive in Pages/Movies/Details.cshtml to @page "{id:int?}" .

Set a break point in public async Task<IActionResult> OnGetAsync(int? id) (in Pages/Movies/Details.cshtml.cs).

Navigate to https://localhost:5001/Movies/Details/ .

With the @page "{id:int}" directive, the break point is never hit. The routing engine returns HTTP 404. Using

@page "{id:int?}" , the OnGetAsync method returns NotFound (HTTP 404).

Review the OnPostAsync method in the Pages/Movies/Edit.cshtml.cs file:

The previous code detects concurrency exceptions when the one client deletes the movie and the other client posts

changes to the movie.

To test the catch block:

Set a breakpoint on catch (DbUpdateConcurrencyException)

Select EditEdit for a movie, make changes, but don't enter SaveSave.

In another browser window, select the DeleteDelete link for the same movie, and then delete the movie.

In the previous browser window, post changes to the movie.

Production code may want to detect concurrency conflicts. See Handle concurrency conflicts for more information.

Examine the Pages/Movies/Edit.cshtml.cs file:

public class EditModel : PageModel
{
 private readonly RazorPagesMovieContext _context;

 public EditModel(RazorPagesMovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);

 if (Movie == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
 }
}

When an HTTP GET request is made to the Movies/Edit page (for example, http://localhost:5000/Movies/Edit/2):

The OnGetAsync method fetches the movie from the database and returns the Page method.

The Page method renders the Pages/Movies/Edit.cshtml Razor Page. The Pages/Movies/Edit.cshtml file contains

the model directive (@model RazorPagesMovie.Pages.Movies.EditModel), which makes the movie model available

on the page.

The Edit form is displayed with the values from the movie.

Additional resources

When the Movies/Edit page is posted:

[BindProperty]
public Movie Movie { get; set; }

The form values on the page are bound to the Movie property. The [BindProperty] attribute enables Model

binding.

If there are errors in the model state (for example, ReleaseDate cannot be converted to a date), the form is

displayed with the submitted values.

If there are no model errors, the movie is saved.

The HTTP GET methods in the Index, Create, and Delete Razor pages follow a similar pattern. The HTTP POST

OnPostAsync method in the Create Razor Page follows a similar pattern to the OnPostAsync method in the Edit

Razor Page.

Search is added in the next tutorial.

YouTube version of this tutorial

 P R E V I O U S : W O R K I N G W I T H AP R E V I O U S : W O R K I N G W I T H A

D A TA B A S ED A TA B A S E

N E X T : A D DN E X T : A D D

S E A R C HS E A R C H

https://youtu.be/yLnnleREMtQ

Part 6, add search to ASP.NET Core Razor Pages
9/22/2020 • 9 minutes to read • Edit Online

public class IndexModel : PageModel
{
 private readonly RazorPagesMovie.Data.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Data.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }
 [BindProperty(SupportsGet = true)]
 public string SearchString { get; set; }
 // Requires using Microsoft.AspNetCore.Mvc.Rendering;
 public SelectList Genres { get; set; }
 [BindProperty(SupportsGet = true)]
 public string MovieGenre { get; set; }

WARNINGWARNING

[BindProperty(SupportsGet = true)]

By Rick Anderson

View or download sample code (how to download).

View or download sample code (how to download).

In the following sections, searching movies by genre or name is added.

Add the following highlighted properties to Pages/Movies/Index.cshtml.cs:

SearchString : contains the text users enter in the search text box. SearchString has the [BindProperty]

attribute. [BindProperty] binds form values and query strings with the same name as the property.

(SupportsGet = true) is required for binding on GET requests.

Genres : contains the list of genres. Genres allows the user to select a genre from the list. SelectList requires

using Microsoft.AspNetCore.Mvc.Rendering;

MovieGenre : contains the specific genre the user selects (for example, "Western").

Genres and MovieGenre are used later in this tutorial.

For security reasons, you must opt in to binding GET request data to page model properties. Verify user input before

mapping it to properties. Opting into GET binding is useful when addressing scenarios that rely on query string or route

values.

To bind a property on GET requests, set the [BindProperty] attribute's SupportsGet property to true :

For more information, see ASP.NET Core Community Standup: Bind on GET discussion (YouTube).

Update the Index page's OnGetAsync method with the following code:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/search.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute
https://www.youtube.com/watch?v=p7iHB9V-KVU&feature=youtu.be&t=54m27s

public async Task OnGetAsync()
{
 var movies = from m in _context.Movie
 select m;
 if (!string.IsNullOrEmpty(SearchString))
 {
 movies = movies.Where(s => s.Title.Contains(SearchString));
 }

 Movie = await movies.ToListAsync();
}

// using System.Linq;
var movies = from m in _context.Movie
 select m;

if (!string.IsNullOrEmpty(SearchString))
{
 movies = movies.Where(s => s.Title.Contains(SearchString));
}

NOTENOTE

The first line of the OnGetAsync method creates a LINQ query to select the movies:

The query is only defined at this point, it has notnot been run against the database.

If the SearchString property is not null or empty, the movies query is modified to filter on the search string:

The s => s.Title.Contains() code is a Lambda Expression. Lambdas are used in method-based LINQ queries as

arguments to standard query operator methods such as the Where method or Contains (used in the preceding

code). LINQ queries are not executed when they're defined or when they're modified by calling a method (such as

Where , Contains or OrderBy). Rather, query execution is deferred. That means the evaluation of an expression is

delayed until its realized value is iterated over or the ToListAsync method is called. See Query Execution for more

information.

The Contains method is run on the database, not in the C# code. The case sensitivity on the query depends on the database

and the collation. On SQL Server, Contains maps to SQL LIKE, which is case insensitive. In SQLite, with the default collation,

it's case sensitive.

Navigate to the Movies page and append a query string such as ?searchString=Ghost to the URL (for example,

https://localhost:5001/Movies?searchString=Ghost). The filtered movies are displayed.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/query-syntax-and-method-syntax-in-linq
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/en-us/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/like-transact-sql

@page "{searchString?}"

If the following route template is added to the Index page, the search string can be passed as a URL segment (for

example, https://localhost:5001/Movies/Ghost).

The preceding route constraint allows searching the title as route data (a URL segment) instead of as a query string

value. The ? in "{searchString?}" means this is an optional route parameter.

The ASP.NET Core runtime uses model binding to set the value of the SearchString property from the query string

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 @*Markup removed for brevity.*@

(?searchString=Ghost) or route data (https://localhost:5001/Movies/Ghost). Model binding is not case sensitive.

However, you can't expect users to modify the URL to search for a movie. In this step, UI is added to filter movies. If

you added the route constraint "{searchString?}" , remove it.

Open the Pages/Movies/Index.cshtml file, and add the <form> markup highlighted in the following code:

The HTML <form> tag uses the following Tag Helpers:

Form Tag Helper. When the form is submitted, the filter string is sent to the Pages/Movies/Index page via query

string.

Input Tag Helper

Save the changes and test the filter.

Search by genre

public async Task OnGetAsync()
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!string.IsNullOrEmpty(SearchString))
 {
 movies = movies.Where(s => s.Title.Contains(SearchString));
 }

 if (!string.IsNullOrEmpty(MovieGenre))
 {
 movies = movies.Where(x => x.Genre == MovieGenre);
 }
 Genres = new SelectList(await genreQuery.Distinct().ToListAsync());
 Movie = await movies.ToListAsync();
}

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

Update the OnGetAsync method with the following code:

The following code is a LINQ query that retrieves all the genres from the database.

Genres = new SelectList(await genreQuery.Distinct().ToListAsync());

Add search by genre to the Razor PageAdd search by genre to the Razor Page

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 @*Markup removed for brevity.*@

Additional resources

The SelectList of genres is created by projecting the distinct genres.

Update Index.cshtml as follows:

Test the app by searching by genre, by movie title, and by both.

YouTube version of this tutorial

 P R E V I O U S : U P D A T I N G T H EP R E V I O U S : U P D A T I N G T H E

P A G E SP A G E S

N E X T : A D D I N G A N E WN E X T : A D D I N G A N E W

F I E L DF I E L D

View or download sample code (how to download).

View or download sample code (how to download).

In the following sections, searching movies by genre or name is added.

Add the following highlighted properties to Pages/Movies/Index.cshtml.cs:

https://youtu.be/4B6pHtdyo08
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start

public class IndexModel : PageModel
{
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }
 [BindProperty(SupportsGet = true)]
 public string SearchString { get; set; }
 // Requires using Microsoft.AspNetCore.Mvc.Rendering;
 public SelectList Genres { get; set; }
 [BindProperty(SupportsGet = true)]
 public string MovieGenre { get; set; }

WARNINGWARNING

[BindProperty(SupportsGet = true)]

public async Task OnGetAsync()
{
 var movies = from m in _context.Movie
 select m;
 if (!string.IsNullOrEmpty(SearchString))
 {
 movies = movies.Where(s => s.Title.Contains(SearchString));
 }

 Movie = await movies.ToListAsync();
}

// using System.Linq;
var movies = from m in _context.Movie
 select m;

SearchString : contains the text users enter in the search text box. SearchString has the [BindProperty]

attribute. [BindProperty] binds form values and query strings with the same name as the property.

(SupportsGet = true) is required for binding on GET requests.

Genres : contains the list of genres. Genres allows the user to select a genre from the list. SelectList requires

using Microsoft.AspNetCore.Mvc.Rendering;

MovieGenre : contains the specific genre the user selects (for example, "Western").

Genres and MovieGenre are used later in this tutorial.

For security reasons, you must opt in to binding GET request data to page model properties. Verify user input before

mapping it to properties. Opting into GET binding is useful when addressing scenarios that rely on query string or route

values.

To bind a property on GET requests, set the [BindProperty] attribute's SupportsGet property to true :

For more information, see ASP.NET Core Community Standup: Bind on GET discussion (YouTube).

Update the Index page's OnGetAsync method with the following code:

The first line of the OnGetAsync method creates a LINQ query to select the movies:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute
https://www.youtube.com/watch?v=p7iHB9V-KVU&feature=youtu.be&t=54m27s
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

if (!string.IsNullOrEmpty(SearchString))
{
 movies = movies.Where(s => s.Title.Contains(SearchString));
}

@page "{searchString?}"

The query is only defined at this point, it has notnot been run against the database.

If the SearchString property is not null or empty, the movies query is modified to filter on the search string:

The s => s.Title.Contains() code is a Lambda Expression. Lambdas are used in method-based LINQ queries as

arguments to standard query operator methods such as the Where method or Contains (used in the preceding

code). LINQ queries are not executed when they're defined or when they're modified by calling a method (such as

Where , Contains or OrderBy). Rather, query execution is deferred. That means the evaluation of an expression is

delayed until its realized value is iterated over or the ToListAsync method is called. See Query Execution for more

information.

Note:Note: The Contains method is run on the database, not in the C# code. The case sensitivity on the query depends

on the database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case insensitive. In SQLite,

with the default collation, it's case sensitive.

Navigate to the Movies page and append a query string such as ?searchString=Ghost to the URL (for example,

https://localhost:5001/Movies?searchString=Ghost). The filtered movies are displayed.

If the following route template is added to the Index page, the search string can be passed as a URL segment (for

example, https://localhost:5001/Movies/Ghost).

The preceding route constraint allows searching the title as route data (a URL segment) instead of as a query string

value. The ? in "{searchString?}" means this is an optional route parameter.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/query-syntax-and-method-syntax-in-linq
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/en-us/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/like-transact-sql

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 @*Markup removed for brevity.*@

The ASP.NET Core runtime uses model binding to set the value of the SearchString property from the query string

(?searchString=Ghost) or route data (https://localhost:5001/Movies/Ghost). Model binding is not case sensitive.

However, you can't expect users to modify the URL to search for a movie. In this step, UI is added to filter movies. If

you added the route constraint "{searchString?}" , remove it.

Open the Pages/Movies/Index.cshtml file, and add the <form> markup highlighted in the following code:

The HTML <form> tag uses the following Tag Helpers:

Form Tag Helper. When the form is submitted, the filter string is sent to the Pages/Movies/Index page via query

string.

Input Tag Helper

Search by genre

public async Task OnGetAsync()
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!string.IsNullOrEmpty(SearchString))
 {
 movies = movies.Where(s => s.Title.Contains(SearchString));
 }

 if (!string.IsNullOrEmpty(MovieGenre))
 {
 movies = movies.Where(x => x.Genre == MovieGenre);
 }
 Genres = new SelectList(await genreQuery.Distinct().ToListAsync());
 Movie = await movies.ToListAsync();
}

Save the changes and test the filter.

Update the OnGetAsync method with the following code:

The following code is a LINQ query that retrieves all the genres from the database.

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

Genres = new SelectList(await genreQuery.Distinct().ToListAsync());

Add search by genre to the Razor PageAdd search by genre to the Razor Page

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 @*Markup removed for brevity.*@

Additional resources

The SelectList of genres is created by projecting the distinct genres.

Update Index.cshtml as follows:

Test the app by searching by genre, by movie title, and by both. The preceding code uses the Select Tag Helper and

Option Tag Helper.

YouTube version of this tutorial

 P R E V I O U S : U P D A T I N G T H EP R E V I O U S : U P D A T I N G T H E

P A G E SP A G E S

N E X T : A D D I N G A N E WN E X T : A D D I N G A N E W

F I E L DF I E L D

https://youtu.be/4B6pHtdyo08

Part 7, add a new field to a Razor Page in ASP.NET
Core
9/22/2020 • 10 minutes to read • Edit Online

Adding a Rating Property to the Movie Model

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>

By Rick Anderson

View or download sample code (how to download).

View or download sample code (how to download).

In this section Entity Framework Code First Migrations is used to:

Add a new field to the model.

Migrate the new field schema change to the database.

When using EF Code First to automatically create a database, Code First:

Adds an __EFMigrationsHistory table to the database to track whether the schema of the database is in sync

with the model classes it was generated from.

If the model classes aren't in sync with the DB, EF throws an exception.

Automatic verification of schema/model in sync makes it easier to find inconsistent database/code issues.

Open the Models/Movie.cs file and add a Rating property:

Build the app.

Edit Pages/Movies/Index.cshtml, and add a Rating field:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/new-field.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/new-db

 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">

 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Rating)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Movie)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Rating)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Update the following pages:

Add the Rating field to the Delete and Details pages.

context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M,
 Rating = "R"
 },

Add a migration for the rating fieldAdd a migration for the rating field

Add-Migration Rating
Update-Database

Update Create.cshtml with a Rating field.

Add the Rating field to the Edit Page.

The app won't work until the DB is updated to include the new field. Running the app without updating the database

throws a SqlException :

SqlException: Invalid column name 'Rating'.

The SqlException exception is caused by the updated Movie model class being different than the schema of the

Movie table of the database. (There's no Rating column in the database table.)

There are a few approaches to resolving the error :

1. Have the Entity Framework automatically drop and re-create the database using the new model class

schema. This approach is convenient early in the development cycle; it allows you to quickly evolve the

model and database schema together. The downside is that you lose existing data in the database. Don't use

this approach on a production database! Dropping the DB on schema changes and using an initializer to

automatically seed the database with test data is often a productive way to develop an app.

2. Explicitly modify the schema of the existing database so that it matches the model classes. The advantage of

this approach is that you keep your data. You can make this change either manually or by creating a database

change script.

3. Use Code First Migrations to update the database schema.

For this tutorial, use Code First Migrations.

Update the SeedData class so that it provides a value for the new column. A sample change is shown below, but

you'll want to make this change for each new Movie block.

See the completed SeedData.cs file.

Build the solution.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From the ToolsTools menu, select NuGet Package Manager > Package Manager ConsoleNuGet Package Manager > Package Manager Console. In the PMC, enter the

following commands:

The Add-Migration command tells the framework to:

Compare the Movie model with the Movie DB schema.

Create code to migrate the DB schema to the new model.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30/Pages/Movies/Create.cshtml
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30/Models/SeedDataRating.cs

Additional resources

Adding a Rating Property to the Movie Model

The name "Rating" is arbitrary and is used to name the migration file. It's helpful to use a meaningful name for the

migration file.

The Update-Database command tells the framework to apply the schema changes to the database and to preserve

existing data.

 If you delete all the records in the DB, the initializer will seed the DB and include the Rating field. You can do this

with the delete links in the browser or from Sql Server Object Explorer (SSOX).

Another option is to delete the database and use migrations to re-create the database. To delete the database in

SSOX:

Update-Database

Select the database in SSOX.

Right click on the database, and select Delete.

Check Close existing connectionsClose existing connections .

Select OKOK.

In the PMC, update the database:

Run the app and verify you can create/edit/display movies with a Rating field. If the database isn't seeded, set a

break point in the SeedData.Initialize method.

YouTube version of this tutorial

 P R E V I O U S : A D D I N GP R E V I O U S : A D D I N G

S E A R C HS E A R C H

N E X T : A D D I N GN E X T : A D D I N G

V A L I D A T I O NV A L I D A T I O N

View or download sample code (how to download).

View or download sample code (how to download).

In this section Entity Framework Code First Migrations is used to:

Add a new field to the model.

Migrate the new field schema change to the database.

When using EF Code First to automatically create a database, Code First:

Adds a table to the database to track whether the schema of the database is in sync with the model classes it was

generated from.

If the model classes aren't in sync with the DB, EF throws an exception.

Automatic verification of schema/model in sync makes it easier to find inconsistent database/code issues.

Open the Models/Movie.cs file and add a Rating property:

https://youtu.be/3i7uMxiGGR8
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/new-db

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">

 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Rating)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Movie)

Build the app.

Edit Pages/Movies/Index.cshtml, and add a Rating field:

 {
 <tr><td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Rating)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Update the following pages:

Add the Rating field to the Delete and Details pages.

Update Create.cshtml with a Rating field.

Add the Rating field to the Edit Page.

The app won't work until the DB is updated to include the new field. If run now, the app throws a SqlException :

SqlException: Invalid column name 'Rating'.

This error is caused by the updated Movie model class being different than the schema of the Movie table of the

database. (There's no Rating column in the database table.)

There are a few approaches to resolving the error :

1. Have the Entity Framework automatically drop and re-create the database using the new model class

schema. This approach is convenient early in the development cycle; it allows you to quickly evolve the

model and database schema together. The downside is that you lose existing data in the database. Don't use

this approach on a production database! Dropping the DB on schema changes and using an initializer to

automatically seed the database with test data is often a productive way to develop an app.

2. Explicitly modify the schema of the existing database so that it matches the model classes. The advantage of

this approach is that you keep your data. You can make this change either manually or by creating a database

change script.

3. Use Code First Migrations to update the database schema.

For this tutorial, use Code First Migrations.

Update the SeedData class so that it provides a value for the new column. A sample change is shown below, but

you'll want to make this change for each new Movie block.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie22/Pages/Movies/Create.cshtml

context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M,
 Rating = "R"
 },

Add a migration for the rating fieldAdd a migration for the rating field

Add-Migration Rating
Update-Database

Additional resources

See the completed SeedData.cs file.

Build the solution.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From the ToolsTools menu, select NuGet Package Manager > Package Manager ConsoleNuGet Package Manager > Package Manager Console. In the PMC, enter the

following commands:

The Add-Migration command tells the framework to:

Compare the Movie model with the Movie DB schema.

Create code to migrate the DB schema to the new model.

The name "Rating" is arbitrary and is used to name the migration file. It's helpful to use a meaningful name for the

migration file.

The Update-Database command tells the framework to apply the schema changes to the database.

 If you delete all the records in the DB, the initializer will seed the DB and include the Rating field. You can do this

with the delete links in the browser or from Sql Server Object Explorer (SSOX).

Another option is to delete the database and use migrations to re-create the database. To delete the database in

SSOX:

Update-Database

Select the database in SSOX.

Right click on the database, and select Delete.

Check Close existing connectionsClose existing connections .

Select OKOK.

In the PMC, update the database:

Run the app and verify you can create/edit/display movies with a Rating field. If the database isn't seeded, set a

break point in the SeedData.Initialize method.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie22/Models/SeedDataRating.cs

YouTube version of this tutorial

 P R E V I O U S : A D D I N GP R E V I O U S : A D D I N G

S E A R C HS E A R C H

N E X T : A D D I N GN E X T : A D D I N G

V A L I D A T I O NV A L I D A T I O N

https://youtu.be/3i7uMxiGGR8

Part 8, add validation to an ASP.NET Core Razor Page
9/22/2020 • 9 minutes to read • Edit Online

Validation

Add validation rules to the movie model

By Rick Anderson

In this section, validation logic is added to the Movie model. The validation rules are enforced any time a user

creates or edits a movie.

A key tenet of software development is called DRY ("DDon't RRepeat YYourself"). Razor Pages encourages development

where functionality is specified once, and it's reflected throughout the app. DRY can help:

Reduce the amount of code in an app.

Make the code less error prone, and easier to test and maintain.

The validation support provided by Razor Pages and Entity Framework is a good example of the DRY principle.

Validation rules are declaratively specified in one place (in the model class), and the rules are enforced everywhere

in the app.

The DataAnnotations namespace provides a set of built-in validation attributes that are applied declaratively to a

class or property. DataAnnotations also contains formatting attributes like DataType that help with formatting and

don't provide any validation.

Update the Movie class to take advantage of the built-in Required , StringLength , RegularExpression , and Range

validation attributes.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/validation.md
https://twitter.com/RickAndMSFT
https://wikipedia.org/wiki/Don%27t_repeat_yourself

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

Validation Error UI in Razor PagesValidation Error UI in Razor Pages

The validation attributes specify behavior that you want to enforce on the model properties they're applied to:

The Required and MinimumLength attributes indicate that a property must have a value; but nothing prevents

a user from entering white space to satisfy this validation.

The RegularExpression attribute is used to limit what characters can be input. In the preceding code, "Genre":

Must only use letters.

The first letter is required to be uppercase. White space, numbers, and special characters are not allowed.

The RegularExpression "Rating":

Requires that the first character be an uppercase letter.

Allows special characters and numbers in subsequent spaces. "PG-13" is valid for a rating, but fails for a

"Genre".

The Range attribute constrains a value to within a specified range.

The StringLength attribute lets you set the maximum length of a string property, and optionally its

minimum length.

Value types (such as decimal , int , float , DateTime) are inherently required and don't need the

[Required] attribute.

Having validation rules automatically enforced by ASP.NET Core helps make your app more robust. It also ensures

that you can't forget to validate something and inadvertently let bad data into the database.

Run the app and navigate to Pages/Movies.

Select the Create NewCreate New link. Complete the form with some invalid values. When jQuery client-side validation

detects the error, it displays an error message.

NOTENOTE
You may not be able to enter decimal commas in decimal fields. To support jQuery validation for non-English locales that use

a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. See this

GitHub issue 4076 for instructions on adding decimal comma.

Notice how the form has automatically rendered a validation error message in each field containing an invalid

value. The errors are enforced both client-side (using JavaScript and jQuery) and server-side (when a user has

JavaScript disabled).

A significant benefit is that nono code changes were necessary in the Create or Edit pages. Once DataAnnotations

were applied to the model, the validation UI was enabled. The Razor Pages created in this tutorial automatically

picked up the validation rules (using validation attributes on the properties of the Movie model class). Test

validation using the Edit page, the same validation is applied.

The form data isn't posted to the server until there are no client-side validation errors. Verify form data isn't posted

by one or more of the following approaches:

Put a break point in the OnPostAsync method. Submit the form (select CreateCreate or SaveSave). The break point is never

hit.

Use the Fiddler tool.

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://www.telerik.com/fiddler

Server-side validationServer-side validation

<form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>

Using DataType Attributes

Use the browser developer tools to monitor network traffic.

When JavaScript is disabled in the browser, submitting the form with errors will post to the server.

Optional, test server-side validation:

if (!ModelState.IsValid)
{
 return Page();
}

Disable JavaScript in the browser. You can disable JavaScript using browser's developer tools. If you can't

disable JavaScript in the browser, try another browser.

Set a break point in the OnPostAsync method of the Create or Edit page.

Submit a form with invalid data.

Verify the model state is invalid:

Alternatively, you can Disable client-side validation on the server.

The following code shows a portion of the Create.cshtml page scaffolded earlier in the tutorial. It's used by the

Create and Edit pages to display the initial form and to redisplay the form in the event of an error.

The Input Tag Helper uses the DataAnnotations attributes and produces HTML attributes needed for jQuery

Validation on the client-side. The Validation Tag Helper displays validation errors. See Validation for more

information.

The Create and Edit pages have no validation rules in them. The validation rules and the error strings are specified

only in the Movie class. These validation rules are automatically applied to Razor Pages that edit the Movie model.

When validation logic needs to change, it's done only in the model. Validation is applied consistently throughout the

application (validation logic is defined in one place). Validation in one place helps keep the code clean, and makes it

easier to maintain and update.

Examine the Movie class. The System.ComponentModel.DataAnnotations namespace provides formatting attributes in

addition to the built-in set of validation attributes. The DataType attribute is applied to the ReleaseDate and Price

properties.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

[Display(Name = "Release Date")]
[DataType(DataType.Date)]
public DateTime ReleaseDate { get; set; }

[Range(1, 100)]
[DataType(DataType.Currency)]
public decimal Price { get; set; }

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
public DateTime ReleaseDate { get; set; }

[Range(typeof(DateTime), "1/1/1966", "1/1/2020")]

The DataType attributes only provide hints for the view engine to format the data (and supplies attributes such as

<a> for URL's and for email). Use the RegularExpression attribute to validate

the format of the data. The DataType attribute is used to specify a data type that's more specific than the database

intrinsic type. DataType attributes are not validation attributes. In the sample application, only the date is displayed,

without time.

The DataType Enumeration provides for many data types, such as Date, Time, PhoneNumber, Currency,

EmailAddress, and more. The DataType attribute can also enable the application to automatically provide type-

specific features. For example, a mailto: link can be created for DataType.EmailAddress . A date selector can be

provided for DataType.Date in browsers that support HTML5. The DataType attributes emit HTML 5 data-

(pronounced data dash) attributes that HTML 5 browsers consume. The DataType attributes do notnot provide any

validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the data field is displayed

according to the default formats based on the server's CultureInfo .

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly

map Price to currency in the database. For more information, see Data Types.

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should be applied when the value is displayed for

editing. You might not want that behavior for some fields. For example, in currency values, you probably don't want

the currency symbol in the edit UI.

The DisplayFormat attribute can be used by itself, but it's generally a good idea to use the DataType attribute. The

DataType attribute conveys the semantics of the data as opposed to how to render it on a screen, and provides the

following benefits that you don't get with DisplayFormat:

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate

currency symbol, email links, etc.)

By default, the browser will render data using the correct format based on your locale.

The DataType attribute can enable the ASP.NET Core framework to choose the right field template to render the

data. The DisplayFormat , if used by itself, uses the string template.

Note:Note: jQuery validation doesn't work with the Range attribute and DateTime . For example, the following code will

always display a client-side validation error, even when the date is in the specified range:

It's generally not a good practice to compile hard dates in your models, so using the Range attribute and DateTime

is discouraged.

https://docs.microsoft.com/en-us/ef/core/modeling/relational/data-types

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), StringLength(5)]
 public string Rating { get; set; }
}

Apply migrationsApply migrations

[StringLength(60, MinimumLength = 3)]
[Required]
public string Title { get; set; }

CREATE TABLE [dbo].[Movie] (
 [ID] INT IDENTITY (1, 1) NOT NULL,
 [Title] NVARCHAR (MAX) NULL,
 [ReleaseDate] DATETIME2 (7) NOT NULL,
 [Genre] NVARCHAR (MAX) NULL,
 [Price] DECIMAL (18, 2) NOT NULL,
 [Rating] NVARCHAR (MAX) NULL,
 CONSTRAINT [PK_Movie] PRIMARY KEY CLUSTERED ([ID] ASC)
);

The following code shows combining attributes on one line:

Get started with Razor Pages and EF Core shows advanced EF Core operations with Razor Pages.

The DataAnnotations applied to the class changes the schema. For example, the DataAnnotations applied to the

Title field:

Limits the characters to 60.

Doesn't allow a null value.

Visual Studio

Visual Studio Code / Visual Studio for Mac

The Movie table currently has the following schema:

The preceding schema changes don't cause EF to throw an exception. However, create a migration so the schema is

consistent with the model.

From the ToolsTools menu, select NuGet Package Manager > Package Manager ConsoleNuGet Package Manager > Package Manager Console. In the PMC, enter the

following commands:

Add-Migration New_DataAnnotations
Update-Database

public partial class New_DataAnnotations : Migration
{
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.AlterColumn<string>(
 name: "Title",
 table: "Movie",
 maxLength: 60,
 nullable: false,
 oldClrType: typeof(string),
 oldNullable: true);

 migrationBuilder.AlterColumn<string>(
 name: "Rating",
 table: "Movie",
 maxLength: 5,
 nullable: false,
 oldClrType: typeof(string),
 oldNullable: true);

 migrationBuilder.AlterColumn<string>(
 name: "Genre",
 table: "Movie",
 maxLength: 30,
 nullable: false,
 oldClrType: typeof(string),
 oldNullable: true);
 }

CREATE TABLE [dbo].[Movie] (
 [ID] INT IDENTITY (1, 1) NOT NULL,
 [Title] NVARCHAR (60) NOT NULL,
 [ReleaseDate] DATETIME2 (7) NOT NULL,
 [Genre] NVARCHAR (30) NOT NULL,
 [Price] DECIMAL (18, 2) NOT NULL,
 [Rating] NVARCHAR (5) NOT NULL,
 CONSTRAINT [PK_Movie] PRIMARY KEY CLUSTERED ([ID] ASC)
);

Publish to AzurePublish to Azure

Additional resources

Update-Database runs the Up methods of the New_DataAnnotations class. Examine the Up method:

The updated Movie table has the following schema:

For information on deploying to Azure, see Tutorial: Build an ASP.NET Core app in Azure with SQL Database.

Thanks for completing this introduction to Razor Pages. Get started with Razor Pages and EF Core is an excellent

follow up to this tutorial.

Tag Helpers in forms in ASP.NET Core

Globalization and localization in ASP.NET Core

Tag Helpers in ASP.NET Core

Author Tag Helpers in ASP.NET Core

YouTube version of this tutorial

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-dotnetcore-sqldb
https://youtu.be/b63m66eu7us

P R E V I O U S : A D D I N G A N E WP R E V I O U S : A D D I N G A N E W

F I E L DF I E L D

Create a web app with ASP.NET Core MVC
9/22/2020 • 2 minutes to read • Edit Online

This tutorial teaches ASP.NET Core MVC web development with controllers and views. If you're new to ASP.NET Core

web development, consider the Razor Pages version of this tutorial, which provides an easier starting point.

The tutorial series includes the following:

1. Get started

2. Add a controller

3. Add a view

4. Add a model

5. Work with SQL Server LocalDB

6. Controller methods and views

7. Add search

8. Add a new field

9. Add validation

10. Examine the Details and Delete methods

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/index.md

Get started with ASP.NET Core MVC
9/22/2020 • 10 minutes to read • Edit Online

Prerequisites

Create a web app

By Rick Anderson

This tutorial teaches ASP.NET Core MVC web development with controllers and views. If you're new to ASP.NET Core

web development, consider the Razor Pages version of this tutorial, which provides an easier starting point.

This tutorial teaches the basics of building an ASP.NET Core MVC web app.

The app manages a database of movie titles. You learn how to:

Create a web app.

Add and scaffold a model.

Work with a database.

Add search and validation.

At the end, you have an app that can manage and display movie data.

View or download sample code (how to download).

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the Visual Studio select Create a new projectCreate a new project.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application and then select NextNext.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/start-mvc.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/first-mvc-app/start-mvc/sample
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1

Name the project MvcMovieMvcMovie and select CreateCreate. It's important to name the project MvcMovieMvcMovie so when you

copy code, the namespace will match.

Select Web Application(Model-View-Controller)Web Application(Model-View-Controller) , and then select CreateCreate.

Run the appRun the app

Visual Studio used the default template for the MVC project you just created. You have a working app right now by

entering a project name and selecting a few options. This is a basic starter project.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Select Ctr l-F5Ctr l-F5 to run the app in non-debug mode.

Visual Studio displays the following dialog:

Select YesYes if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes if you agree to trust the development certificate.

Visual Studio starts IIS Express and runs the app. Notice that the address bar shows localhost:port# and not

something like example.com . That's because localhost is the standard hostname for your local computer.

When Visual Studio creates a web project, a random port is used for the web server.

Launching the app with Ctrl+F5 (non-debug mode) allows you to make code changes, save the file, refresh

the browser, and see the code changes. Many developers prefer to use non-debug mode to quickly launch

the app and view changes.

You can launch the app in debug or non-debug mode from the DebugDebug menu item:

You can debug the app by selecting the IIS ExpressIIS Express button

The following image shows the app:

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

Visual Studio help

Visual Studio

Visual Studio Code

Visual Studio for Mac

Learn to debug C# code using Visual Studio

Introduction to the Visual Studio IDE

In the next part of this tutorial, you learn about MVC and start writing some code.

N E X TN E X T

This tutorial teaches ASP.NET Core MVC web development with controllers and views. If you're new to ASP.NET Core

web development, consider the Razor Pages version of this tutorial, which provides an easier starting point.

This tutorial teaches the basics of building an ASP.NET Core MVC web app.

The app manages a database of movie titles. You learn how to:

Create a web app.

Add and scaffold a model.

Work with a database.

Add search and validation.

At the end, you have an app that can manage and display movie data.

View or download sample code (how to download).

https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/ide/visual-studio-ide?view=vs-2017
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/first-mvc-app/start-mvc/sample

Prerequisites

WARNINGWARNING

Create a web app

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't work with

Visual Studio.

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the Visual Studio select Create a new projectCreate a new project.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application and then select NextNext.

Name the project MvcMovieMvcMovie and select CreateCreate. It's important to name the project MvcMovieMvcMovie so when you

copy code, the namespace will match.

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124

Run the appRun the app

Select Web Application(Model-View-Controller)Web Application(Model-View-Controller) , and then select CreateCreate.

Visual Studio used the default template for the MVC project you just created. You have a working app right now by

entering a project name and selecting a few options. This is a basic starter project, and it's a good place to start.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Select Ctr l-F5Ctr l-F5 to run the app in non-debug mode.

Visual Studio displays the following dialog:

Select YesYes if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes if you agree to trust the development certificate.

Visual Studio starts IIS Express and runs the app. Notice that the address bar shows localhost:port# and not

something like example.com . That's because localhost is the standard hostname for your local computer.

When Visual Studio creates a web project, a random port is used for the web server.

Launching the app with Ctrl+F5 (non-debug mode) allows you to make code changes, save the file, refresh

the browser, and see the code changes. Many developers prefer to use non-debug mode to quickly launch

the app and view changes.

You can launch the app in debug or non-debug mode from the DebugDebug menu item:

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

You can debug the app by selecting the IIS ExpressIIS Express button

Select AcceptAccept to consent to tracking. This app doesn't track personal information. The template generated

code includes assets to help meet General Data Protection Regulation (GDPR).

The following image shows the app after accepting tracking:

Visual Studio help

Visual Studio

Visual Studio Code

Visual Studio for Mac

Learn to debug C# code using Visual Studio

Introduction to the Visual Studio IDE

In the next part of this tutorial, you learn about MVC and start writing some code.

N E X TN E X T

https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/ide/visual-studio-ide?view=vs-2017

Part 2, add a controller to an ASP.NET Core MVC app
9/22/2020 • 12 minutes to read • Edit Online

Add a controller

By Rick Anderson

The Model-View-Controller (MVC) architectural pattern separates an app into three main components: MModel, VView,

and CController. The MVC pattern helps you create apps that are more testable and easier to update than traditional

monolithic apps. MVC-based apps contain:

MModels: Classes that represent the data of the app. The model classes use validation logic to enforce business

rules for that data. Typically, model objects retrieve and store model state in a database. In this tutorial, a

Movie model retrieves movie data from a database, provides it to the view or updates it. Updated data is

written to a database.

VViews: Views are the components that display the app's user interface (UI). Generally, this UI displays the

model data.

CControllers: Classes that handle browser requests. They retrieve model data and call view templates that

return a response. In an MVC app, the view only displays information; the controller handles and responds to

user input and interaction. For example, the controller handles route data and query-string values, and

passes these values to the model. The model might use these values to query the database. For example,

https://localhost:5001/Home/Privacy has route data of Home (the controller) and Privacy (the action

method to call on the home controller). https://localhost:5001/Movies/Edit/5 is a request to edit the movie

with ID=5 using the movie controller. Route data is explained later in the tutorial.

The MVC pattern helps you create apps that separate the different aspects of the app (input logic, business logic,

and UI logic), while providing a loose coupling between these elements. The pattern specifies where each kind of

logic should be located in the app. The UI logic belongs in the view. Input logic belongs in the controller. Business

logic belongs in the model. This separation helps you manage complexity when you build an app, because it

enables you to work on one aspect of the implementation at a time without impacting the code of another. For

example, you can work on the view code without depending on the business logic code.

We cover these concepts in this tutorial series and show you how to use them to build a movie app. The MVC

project contains folders for the Controllers and Views.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click Controllers > Add > ControllerControllers > Add > Controller

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/adding-controller.md
https://twitter.com/RickAndMSFT

In the Add ScaffoldAdd Scaffold dialog box, select Controller Class - EmptyController Class - Empty

In the Add Empty MVC Controller dialogAdd Empty MVC Controller dialog, enter HelloWorldControllerHelloWorldController and select ADDADD.

Replace the contents of Controllers/HelloWorldController.cs with the following:

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 //
 // GET: /HelloWorld/

 public string Index()
 {
 return "This is my default action...";
 }

 //
 // GET: /HelloWorld/Welcome/

 public string Welcome()
 {
 return "This is the Welcome action method...";
 }
 }
}

Every public method in a controller is callable as an HTTP endpoint. In the sample above, both methods return a

string. Note the comments preceding each method.

An HTTP endpoint is a targetable URL in the web application, such as https://localhost:5001/HelloWorld , and

combines the protocol used: HTTPS , the network location of the web server (including the TCP port):

localhost:5001 and the target URI HelloWorld .

The first comment states this is an HTTP GET method that's invoked by appending /HelloWorld/ to the base URL.

The second comment specifies an HTTP GET method that's invoked by appending /HelloWorld/Welcome/ to the URL.

Later on in the tutorial the scaffolding engine is used to generate HTTP POST methods which update data.

Run the app in non-debug mode and append "HelloWorld" to the path in the address bar. The Index method

returns a string.

https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

MVC invokes controller classes (and the action methods within them) depending on the incoming URL. The default

URL routing logic used by MVC uses a format like this to determine what code to invoke:

/[Controller]/[ActionName]/[Parameters]

The routing format is set in the Configure method in Startup.cs file.

When you browse to the app and don't supply any URL segments, it defaults to the "Home" controller and the

"Index" method specified in the template line highlighted above.

The first URL segment determines the controller class to run. So localhost:{PORT}/HelloWorld maps to the

HelloWorldHelloWorldController class. The second part of the URL segment determines the action method on the class. So

localhost:{PORT}/HelloWorld/Index would cause the Index method of the HelloWorldController class to run.

Notice that you only had to browse to localhost:{PORT}/HelloWorld and the Index method was called by default.

That's because Index is the default method that will be called on a controller if a method name isn't explicitly

specified. The third part of the URL segment (id) is for route data. Route data is explained later in the tutorial.

Browse to https://localhost:{PORT}/HelloWorld/Welcome . The Welcome method runs and returns the string

This is the Welcome action method... . For this URL, the controller is HelloWorld and Welcome is the action

method. You haven't used the [Parameters] part of the URL yet.

Modify the code to pass some parameter information from the URL to the controller. For example,

/HelloWorld/Welcome?name=Rick&numtimes=4 . Change the Welcome method to include two parameters as shown in the

following code.

// GET: /HelloWorld/Welcome/
// Requires using System.Text.Encodings.Web;
public string Welcome(string name, int numTimes = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, NumTimes is: {numTimes}");
}

public string Welcome(string name, int ID = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, ID: {ID}");
}

The preceding code:

Uses the C# optional-parameter feature to indicate that the numTimes parameter defaults to 1 if no value is

passed for that parameter.

Uses HtmlEncoder.Default.Encode to protect the app from malicious input (namely JavaScript).

Uses Interpolated Strings in $"Hello {name}, NumTimes is: {numTimes}" .

Run the app and browse to:

https://localhost:{PORT}/HelloWorld/Welcome?name=Rick&numtimes=4

(Replace {PORT} with your port number.) You can try different values for name and numtimes in the URL. The MVC

model binding system automatically maps the named parameters from the query string in the address bar to

parameters in your method. See Model Binding for more information.

In the image above, the URL segment (Parameters) isn't used, the name and numTimes parameters are passed in

the query string. The ? (question mark) in the above URL is a separator, and the query string follows. The &

character separates field-value pairs.

Replace the Welcome method with the following code:

Run the app and enter the following URL: https://localhost:{PORT}/HelloWorld/Welcome/3?name=Rick

This time the third URL segment matched the route parameter id . The Welcome method contains a parameter id

that matched the URL template in the MapControllerRoute method. The trailing ? (in id?) indicates the id

parameter is optional.

https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/interpolated-strings
https://wikipedia.org/wiki/Query_string

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

Add a controller

In these examples the controller has been doing the "VC" portion of MVC - that is, the VView and the CController

work. The controller is returning HTML directly. Generally you don't want controllers returning HTML directly, since

that becomes very cumbersome to code and maintain. Instead you typically use a separate Razor view template file

to generate the HTML response. You do that in the next tutorial.

 P R E V I O U SP R E V I O U S N E X TN E X T

The Model-View-Controller (MVC) architectural pattern separates an app into three main components: MModel, VView,

and CController. The MVC pattern helps you create apps that are more testable and easier to update than traditional

monolithic apps. MVC-based apps contain:

MModels: Classes that represent the data of the app. The model classes use validation logic to enforce business

rules for that data. Typically, model objects retrieve and store model state in a database. In this tutorial, a

Movie model retrieves movie data from a database, provides it to the view or updates it. Updated data is

written to a database.

VViews: Views are the components that display the app's user interface (UI). Generally, this UI displays the

model data.

CControllers: Classes that handle browser requests. They retrieve model data and call view templates that

return a response. In an MVC app, the view only displays information; the controller handles and responds to

user input and interaction. For example, the controller handles route data and query-string values, and

passes these values to the model. The model might use these values to query the database. For example,

https://localhost:5001/Home/About has route data of Home (the controller) and About (the action method to

call on the home controller). https://localhost:5001/Movies/Edit/5 is a request to edit the movie with ID=5

using the movie controller. Route data is explained later in the tutorial.

The MVC pattern helps you create apps that separate the different aspects of the app (input logic, business logic,

and UI logic), while providing a loose coupling between these elements. The pattern specifies where each kind of

logic should be located in the app. The UI logic belongs in the view. Input logic belongs in the controller. Business

logic belongs in the model. This separation helps you manage complexity when you build an app, because it

enables you to work on one aspect of the implementation at a time without impacting the code of another. For

example, you can work on the view code without depending on the business logic code.

We cover these concepts in this tutorial series and show you how to use them to build a movie app. The MVC

project contains folders for the Controllers and Views.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click Controllers > Add > ControllerControllers > Add > Controller

In the Add ScaffoldAdd Scaffold dialog box, select MVC Controller - EmptyMVC Controller - Empty

In the Add Empty MVC Controller dialogAdd Empty MVC Controller dialog, enter HelloWorldControllerHelloWorldController and select ADDADD.

Replace the contents of Controllers/HelloWorldController.cs with the following:

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 //
 // GET: /HelloWorld/

 public string Index()
 {
 return "This is my default action...";
 }

 //
 // GET: /HelloWorld/Welcome/

 public string Welcome()
 {
 return "This is the Welcome action method...";
 }
 }
}

Every public method in a controller is callable as an HTTP endpoint. In the sample above, both methods return a

string. Note the comments preceding each method.

An HTTP endpoint is a targetable URL in the web application, such as https://localhost:5001/HelloWorld , and

combines the protocol used: HTTPS , the network location of the web server (including the TCP port):

localhost:5001 and the target URI HelloWorld .

The first comment states this is an HTTP GET method that's invoked by appending /HelloWorld/ to the base URL.

The second comment specifies an HTTP GET method that's invoked by appending /HelloWorld/Welcome/ to the URL.

Later on in the tutorial the scaffolding engine is used to generate HTTP POST methods which update data.

Run the app in non-debug mode and append "HelloWorld" to the path in the address bar. The Index method

returns a string.

https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

MVC invokes controller classes (and the action methods within them) depending on the incoming URL. The default

URL routing logic used by MVC uses a format like this to determine what code to invoke:

/[Controller]/[ActionName]/[Parameters]

The routing format is set in the Configure method in Startup.cs file.

When you browse to the app and don't supply any URL segments, it defaults to the "Home" controller and the

"Index" method specified in the template line highlighted above.

The first URL segment determines the controller class to run. So localhost:{PORT}/HelloWorld maps to the

HelloWorldController class. The second part of the URL segment determines the action method on the class. So

localhost:{PORT}/HelloWorld/Index would cause the Index method of the HelloWorldController class to run.

Notice that you only had to browse to localhost:{PORT}/HelloWorld and the Index method was called by default.

This is because Index is the default method that will be called on a controller if a method name isn't explicitly

specified. The third part of the URL segment (id) is for route data. Route data is explained later in the tutorial.

Browse to https://localhost:{PORT}/HelloWorld/Welcome . The Welcome method runs and returns the string

This is the Welcome action method... . For this URL, the controller is HelloWorld and Welcome is the action

method. You haven't used the [Parameters] part of the URL yet.

Modify the code to pass some parameter information from the URL to the controller. For example,

/HelloWorld/Welcome?name=Rick&numtimes=4 . Change the Welcome method to include two parameters as shown in the

following code.

// GET: /HelloWorld/Welcome/
// Requires using System.Text.Encodings.Web;
public string Welcome(string name, int numTimes = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, NumTimes is: {numTimes}");
}

public string Welcome(string name, int ID = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, ID: {ID}");
}

The preceding code:

Uses the C# optional-parameter feature to indicate that the numTimes parameter defaults to 1 if no value is

passed for that parameter.

Uses HtmlEncoder.Default.Encode to protect the app from malicious input (namely JavaScript).

Uses Interpolated Strings in $"Hello {name}, NumTimes is: {numTimes}" .

Run the app and browse to:

https://localhost:{PORT}/HelloWorld/Welcome?name=Rick&numtimes=4

(Replace {PORT} with your port number.) You can try different values for name and numtimes in the URL. The MVC

model binding system automatically maps the named parameters from the query string in the address bar to

parameters in your method. See Model Binding for more information.

In the image above, the URL segment (Parameters) isn't used, the name and numTimes parameters are passed in

the query string. The ? (question mark) in the above URL is a separator, and the query string follows. The &

character separates field-value pairs.

Replace the Welcome method with the following code:

Run the app and enter the following URL: https://localhost:{PORT}/HelloWorld/Welcome/3?name=Rick

This time the third URL segment matched the route parameter id . The Welcome method contains a parameter id

that matched the URL template in the MapRoute method. The trailing ? (in id?) indicates the id parameter is

optional.

https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/interpolated-strings
https://wikipedia.org/wiki/Query_string

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

In these examples the controller has been doing the "VC" portion of MVC - that is, the view and controller work. The

controller is returning HTML directly. Generally you don't want controllers returning HTML directly, since that

becomes very cumbersome to code and maintain. Instead you typically use a separate Razor view template file to

help generate the HTML response. You do that in the next tutorial.

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 3, add a view to an ASP.NET Core MVC app
9/22/2020 • 16 minutes to read • Edit Online

public IActionResult Index()
{
 return View();
}

Add a view

By Rick Anderson

In this section you modify the HelloWorldController class to use Razor view files to cleanly encapsulate the process

of generating HTML responses to a client.

You create a view template file using Razor. Razor-based view templates have a .cshtml file extension. They provide

an elegant way to create HTML output with C#.

Currently the Index method returns a string with a message that's hard-coded in the controller class. In the

HelloWorldController class, replace the Index method with the following code:

The preceding code calls the controller's View method. It uses a view template to generate an HTML response.

Controller methods (also known as action methods), such as the Index method above, generally return an

IActionResult (or a class derived from ActionResult), not a type like string .

Visual Studio

Visual Studio Code

Visual Studio for Mac

Right click on the Views folder, and then Add > New FolderAdd > New Folder and name the folder HelloWorld.

Right click on the Views/HelloWorld folder, and then Add > New ItemAdd > New Item.

In the Add New Item - MvcMovieAdd New Item - MvcMovie dialog

In the search box in the upper-right, enter view

Select Razor ViewRazor View

Keep the NameName box value, Index.cshtml.

Select AddAdd

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/adding-view.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.view
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>Hello from our View Template!</p>

Replace the contents of the Views/HelloWorld/Index.cshtml Razor view file with the following:

Navigate to https://localhost:{PORT}/HelloWorld . The Index method in the HelloWorldController didn't do much;

it ran the statement return View(); , which specified that the method should use a view template file to render a

response to the browser. Because a view template file name wasn't specified, MVC defaulted to using the default

view file. The default view file has the same name as the method (Index), so the view template in

/Views/HelloWorld/Index.cshtml is used. The image below shows the string "Hello from our View Template!" hard-

coded in the view.

Change views and layout pages

Change the title, footer, and menu link in the layout file

Select the menu links (MvcMovieMvcMovie, HomeHome, and Pr ivacyPrivacy). Each page shows the same menu layout. The menu layout

is implemented in the Views/Shared/_Layout.cshtml file. Open the Views/Shared/_Layout.cshtml file.

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it across

multiple pages in your site. Find the @RenderBody() line. RenderBody is a placeholder where all the view-specific

pages you create show up, wrapped in the layout page. For example, if you select the Pr ivacyPrivacy link, the

Views/Home/Privacy.cshtmlViews/Home/Privacy.cshtml view is rendered inside the RenderBody method.

Replace the content of the Views/Shared/_Layout.cshtml file with the following markup. The changes are

highlighted:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-shadow
mb-3">
 <div class="container">
 Movie App
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-
collapse" aria-controls="navbarSupportedContent"
 aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Privacy">Privacy

 </div>
 </div>
 </nav>
 </header>
 <div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>

 <footer class="border-top footer text-muted">
 <div class="container">
 © 2020 - Movie App - <a asp-area="" asp-controller="Home" asp-action="Privacy">Privacy
 </div>
 </footer>
 <script src="~/lib/jquery/dist/jquery.min.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 @RenderSection("Scripts", required: false)
</body>
</html>

The preceding markup made the following changes:

3 occurrences of MvcMovie to Movie App .

The anchor element MvcMovie

to Movie App .

In the preceding markup, the asp-area="" anchor Tag Helper attribute and attribute value was omitted because this

app is not using Areas.

NoteNote: The Movies controller has not been implemented. At this point, the Movie App link is not functional.

Save your changes and select the Pr ivacyPrivacy link. Notice how the title on the browser tab displays Pr ivacy Policy -Pr ivacy Policy -

@{
 Layout = "_Layout";
}

@{
 ViewData["Title"] = "Movie List";
}

<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

<title>@ViewData["Title"] - Movie App</title>

Movie AppMovie App instead of Pr ivacy Policy - Mvc MoviePrivacy Policy - Mvc Movie:

Select the HomeHome link and notice that the title and anchor text also display Movie AppMovie App. We were able to make the

change once in the layout template and have all pages on the site reflect the new link text and new title.

Examine the Views/_ViewStart.cshtml file:

The Views/_ViewStart.cshtml file brings in the Views/Shared/_Layout.cshtml file to each view. The Layout property

can be used to set a different layout view, or set it to null so no layout file will be used.

Change the title and <h2> element of the Views/HelloWorld/Index.cshtml view file:

The title and <h2> element are slightly different so you can see which bit of code changes the display.

ViewData["Title"] = "Movie List"; in the code above sets the Title property of the ViewData dictionary to

"Movie List". The Title property is used in the <title> HTML element in the layout page:

Save the change and navigate to https://localhost:{PORT}/HelloWorld . Notice that the browser title, the primary

heading, and the secondary headings have changed. (If you don't see changes in the browser, you might be viewing

Passing Data from the Controller to the View

cached content. Press Ctrl+F5 in your browser to force the response from the server to be loaded.) The browser title

is created with ViewData["Title"] we set in the Index.cshtml view template and the additional "- Movie App" added

in the layout file.

The content in the Index.cshtml view template is merged with the Views/Shared/_Layout.cshtml view template. A

single HTML response is sent to the browser. Layout templates make it easy to make changes that apply across all

of the pages in an app. To learn more, see Layout.

Our little bit of "data" (in this case the "Hello from our View Template!" message) is hard-coded, though. The MVC

application has a "V" (view) and you've got a "C" (controller), but no "M" (model) yet.

Controller actions are invoked in response to an incoming URL request. A controller class is where the code is

written that handles the incoming browser requests. The controller retrieves data from a data source and decides

what type of response to send back to the browser. View templates can be used from a controller to generate and

format an HTML response to the browser.

Controllers are responsible for providing the data required in order for a view template to render a response. A best

practice: View templates should notnot perform business logic or interact with a database directly. Rather, a view

template should work only with the data that's provided to it by the controller. Maintaining this "separation of

concerns" helps keep the code clean, testable, and maintainable.

Currently, the Welcome method in the HelloWorldController class takes a name and a ID parameter and then

outputs the values directly to the browser. Rather than have the controller render this response as a string, change

the controller to use a view template instead. The view template generates a dynamic response, which means that

appropriate bits of data must be passed from the controller to the view in order to generate the response. Do this

by having the controller put the dynamic data (parameters) that the view template needs in a ViewData dictionary

that the view template can then access.

In HelloWorldController.cs, change the Welcome method to add a Message and NumTimes value to the ViewData

dictionary. The ViewData dictionary is a dynamic object, which means any type can be used; the ViewData object

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Welcome(string name, int numTimes = 1)
 {
 ViewData["Message"] = "Hello " + name;
 ViewData["NumTimes"] = numTimes;

 return View();
 }
 }
}

@{
 ViewData["Title"] = "Welcome";
}

<h2>Welcome</h2>

 @for (int i = 0; i < (int)ViewData["NumTimes"]; i++)
 {
 @ViewData["Message"]
 }

has no defined properties until you put something inside it. The MVC model binding system automatically maps the

named parameters (name and numTimes) from the query string in the address bar to parameters in your method.

The complete HelloWorldController.cs file looks like this:

The ViewData dictionary object contains data that will be passed to the view.

Create a Welcome view template named Views/HelloWorld/Welcome.cshtml.

You'll create a loop in the Welcome.cshtml view template that displays "Hello" NumTimes . Replace the contents of

Views/HelloWorld/Welcome.cshtml with the following:

Save your changes and browse to the following URL:

https://localhost:{PORT}/HelloWorld/Welcome?name=Rick&numtimes=4

Data is taken from the URL and passed to the controller using the MVC model binder . The controller packages the

data into a ViewData dictionary and passes that object to the view. The view then renders the data as HTML to the

browser.

public IActionResult Index()
{
 return View();
}

Add a view

In the sample above, the ViewData dictionary was used to pass data from the controller to a view. Later in the

tutorial, a view model is used to pass data from a controller to a view. The view model approach to passing data is

generally much preferred over the ViewData dictionary approach. See When to use ViewBag, ViewData, or

TempData for more information.

In the next tutorial, a database of movies is created.

 P R E V I O U SP R E V I O U S N E X TN E X T

In this section you modify the HelloWorldController class to use Razor view files to cleanly encapsulate the process

of generating HTML responses to a client.

You create a view template file using Razor. Razor-based view templates have a .cshtml file extension. They provide

an elegant way to create HTML output with C#.

Currently the Index method returns a string with a message that's hard-coded in the controller class. In the

HelloWorldController class, replace the Index method with the following code:

The preceding code calls the controller's View method. It uses a view template to generate an HTML response.

Controller methods (also known as action methods), such as the Index method above, generally return an

IActionResult (or a class derived from ActionResult), not a type like string .

Visual Studio

https://www.rachelappel.com/when-to-use-viewbag-viewdata-or-tempdata-in-asp-net-mvc-3-applications/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.view
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>Hello from our View Template!</p>

Visual Studio Code

Visual Studio for Mac

Right click on the Views folder, and then Add > New FolderAdd > New Folder and name the folder HelloWorld.

Right click on the Views/HelloWorld folder, and then Add > New ItemAdd > New Item.

In the Add New Item - MvcMovieAdd New Item - MvcMovie dialog

In the search box in the upper-right, enter view

Select Razor ViewRazor View

Keep the NameName box value, Index.cshtml.

Select AddAdd

Replace the contents of the Views/HelloWorld/Index.cshtml Razor view file with the following:

Navigate to https://localhost:{PORT}/HelloWorld . The Index method in the HelloWorldController didn't do much;

it ran the statement return View(); , which specified that the method should use a view template file to render a

response to the browser. Because a view template file name wasn't specified, MVC defaulted to using the default

view file. The default view file has the same name as the method (Index), so in the /Views/HelloWorld/Index.cshtml

is used. The image below shows the string "Hello from our View Template!" hard-coded in the view.

Change views and layout pages

Change the title, footer, and menu link in the layout file

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App</title>

 <environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.1.3/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute"

Select the menu links (MvcMovieMvcMovie, HomeHome, and Pr ivacyPrivacy). Each page shows the same menu layout. The menu layout

is implemented in the Views/Shared/_Layout.cshtml file. Open the Views/Shared/_Layout.cshtml file.

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it across

multiple pages in your site. Find the @RenderBody() line. RenderBody is a placeholder where all the view-specific

pages you create show up, wrapped in the layout page. For example, if you select the Pr ivacyPrivacy link, the

Views/Home/Privacy.cshtmlViews/Home/Privacy.cshtml view is rendered inside the RenderBody method.

In the title and footer elements, change MvcMovie to Movie App .

Change the anchor element

MvcMovie to

Movie App .

The following markup shows the highlighted changes:

value="absolute"
 crossorigin="anonymous"
 integrity="sha256-eSi1q2PG6J7g7ib17yAaWMcrr5GrtohYChqibrV7PBE="/>
 </environment>
 <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-shadow
mb-3">
 <div class="container">
 Movie App
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-
collapse" aria-controls="navbarSupportedContent"
 aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Privacy">Privacy

 </div>
 </div>
 </nav>
 </header>
 <div class="container">
 <partial name="_CookieConsentPartial" />
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>

 <footer class="border-top footer text-muted">
 <div class="container">
 © 2019 - Movie App - <a asp-area="" asp-controller="Home" asp-action="Privacy">Privacy
 </div>
 </footer>

 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js"></script>
 </environment>
 <environment exclude="Development">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=">
 </script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4.1.3/js/bootstrap.bundle.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha256-E/V4cWE4qvAeO5MOhjtGtqDzPndRO1LBk8lJ/PR7CA4=">
 </script>
 </environment>
 <script src="~/js/site.js" asp-append-version="true"></script>

 @RenderSection("Scripts", required: false)
</body>
</html>

@{
 Layout = "_Layout";
}

@{
 ViewData["Title"] = "Movie List";
}

<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

In the preceding markup, the asp-area anchor Tag Helper attribute was omitted because this app is not using

Areas.

NoteNote: The Movies controller has not been implemented. At this point, the Movie App link is not functional.

Save your changes and select the Pr ivacyPrivacy link. Notice how the title on the browser tab displays Pr ivacy Policy -Pr ivacy Policy -

Movie AppMovie App instead of Pr ivacy Policy - Mvc MoviePrivacy Policy - Mvc Movie:

Select the HomeHome link and notice that the title and anchor text also display Movie AppMovie App. We were able to make the

change once in the layout template and have all pages on the site reflect the new link text and new title.

Examine the Views/_ViewStart.cshtml file:

The Views/_ViewStart.cshtml file brings in the Views/Shared/_Layout.cshtml file to each view. The Layout property

can be used to set a different layout view, or set it to null so no layout file will be used.

Change the title and <h2> element of the Views/HelloWorld/Index.cshtml view file:

The title and <h2> element are slightly different so you can see which bit of code changes the display.

ViewData["Title"] = "Movie List"; in the code above sets the Title property of the ViewData dictionary to

"Movie List". The Title property is used in the <title> HTML element in the layout page:

<title>@ViewData["Title"] - Movie App</title>

Passing Data from the Controller to the View

Save the change and navigate to https://localhost:{PORT}/HelloWorld . Notice that the browser title, the primary

heading, and the secondary headings have changed. (If you don't see changes in the browser, you might be viewing

cached content. Press Ctrl+F5 in your browser to force the response from the server to be loaded.) The browser title

is created with ViewData["Title"] we set in the Index.cshtml view template and the additional "- Movie App" added

in the layout file.

Also notice how the content in the Index.cshtml view template was merged with the Views/Shared/_Layout.cshtml

view template and a single HTML response was sent to the browser. Layout templates make it really easy to make

changes that apply across all of the pages in your application. To learn more see Layout.

Our little bit of "data" (in this case the "Hello from our View Template!" message) is hard-coded, though. The MVC

application has a "V" (view) and you've got a "C" (controller), but no "M" (model) yet.

Controller actions are invoked in response to an incoming URL request. A controller class is where the code is

written that handles the incoming browser requests. The controller retrieves data from a data source and decides

what type of response to send back to the browser. View templates can be used from a controller to generate and

format an HTML response to the browser.

Controllers are responsible for providing the data required in order for a view template to render a response. A best

practice: View templates should notnot perform business logic or interact with a database directly. Rather, a view

template should work only with the data that's provided to it by the controller. Maintaining this "separation of

concerns" helps keep the code clean, testable, and maintainable.

Currently, the Welcome method in the HelloWorldController class takes a name and a ID parameter and then

outputs the values directly to the browser. Rather than have the controller render this response as a string, change

the controller to use a view template instead. The view template generates a dynamic response, which means that

appropriate bits of data must be passed from the controller to the view in order to generate the response. Do this

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Welcome(string name, int numTimes = 1)
 {
 ViewData["Message"] = "Hello " + name;
 ViewData["NumTimes"] = numTimes;

 return View();
 }
 }
}

@{
 ViewData["Title"] = "Welcome";
}

<h2>Welcome</h2>

 @for (int i = 0; i < (int)ViewData["NumTimes"]; i++)
 {
 @ViewData["Message"]
 }

by having the controller put the dynamic data (parameters) that the view template needs in a ViewData dictionary

that the view template can then access.

In HelloWorldController.cs, change the Welcome method to add a Message and NumTimes value to the ViewData

dictionary. The ViewData dictionary is a dynamic object, which means any type can be used; the ViewData object

has no defined properties until you put something inside it. The MVC model binding system automatically maps the

named parameters (name and numTimes) from the query string in the address bar to parameters in your method.

The complete HelloWorldController.cs file looks like this:

The ViewData dictionary object contains data that will be passed to the view.

Create a Welcome view template named Views/HelloWorld/Welcome.cshtml.

You'll create a loop in the Welcome.cshtml view template that displays "Hello" NumTimes . Replace the contents of

Views/HelloWorld/Welcome.cshtml with the following:

Save your changes and browse to the following URL:

https://localhost:{PORT}/HelloWorld/Welcome?name=Rick&numtimes=4

Data is taken from the URL and passed to the controller using the MVC model binder . The controller packages the

data into a ViewData dictionary and passes that object to the view. The view then renders the data as HTML to the

browser.

In the sample above, the ViewData dictionary was used to pass data from the controller to a view. Later in the

tutorial, a view model is used to pass data from a controller to a view. The view model approach to passing data is

generally much preferred over the ViewData dictionary approach. See When to use ViewBag, ViewData, or

TempData for more information.

In the next tutorial, a database of movies is created.

 P R E V I O U SP R E V I O U S N E X TN E X T

https://www.rachelappel.com/when-to-use-viewbag-viewdata-or-tempdata-in-asp-net-mvc-3-applications/

Part 4, add a model to an ASP.NET Core MVC app
9/22/2020 • 28 minutes to read • Edit Online

Add a data model class

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int Id { get; set; }
 public string Title { get; set; }

 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Add NuGet packages

By Rick Anderson and Tom Dykstra

In this section, you add classes for managing movies in a database. These classes will be the "MModel" part of the

MMVC app.

You use these classes with Entity Framework Core (EF Core) to work with a database. EF Core is an object-relational

mapping (ORM) framework that simplifies the data access code that you have to write.

The model classes you create are known as POCO classes (from PPlain OOld CCLR OObjects) because they don't have

any dependency on EF Core. They just define the properties of the data that will be stored in the database.

In this tutorial, you write the model classes first, and EF Core creates the database.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Right-click the Models folder > AddAdd > ClassClass . Name the file Movie.cs.

Update the Movie.cs file with the following code:

The Movie class contains an Id field, which is required by the database for the primary key.

The DataType attribute on ReleaseDate specifies the type of the data (Date). With this attribute:

The user is not required to enter time information in the date field.

Only the date is displayed, not time information.

DataAnnotations are covered in a later tutorial.

Visual Studio

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/adding-model.md
https://twitter.com/RickAndMSFT
https://github.com/tdykstra
https://docs.microsoft.com/en-us/ef/core
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatype
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations

Install-Package Microsoft.EntityFrameworkCore.SqlServer

Create a database context class

using Microsoft.EntityFrameworkCore;
using MvcMovie.Models;

namespace MvcMovie.Data
{
 public class MvcMovieContext : DbContext
 {
 public MvcMovieContext (DbContextOptions<MvcMovieContext> options)
 : base(options)
 {
 }

 public DbSet<Movie> Movie { get; set; }
 }
}

Visual Studio Code

Visual Studio for Mac

From the ToolsTools menu, select NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console (PMC).

In the PMC, run the following command:

The preceding command adds the EF Core SQL Server provider. The provider package installs the EF Core package

as a dependency. Additional packages are installed automatically in the scaffolding step later in the tutorial.

A database context class is needed to coordinate EF Core functionality (Create, Read, Update, Delete) for the Movie

model. The database context is derived from Microsoft.EntityFrameworkCore.DbContext and specifies the entities to

include in the data model.

Create a Data folder.

Add a Data/MvcMovieContext.cs file with the following code:

The preceding code creates a DbSet<Movie> property for the entity set. In Entity Framework terminology, an entity

set typically corresponds to a database table. An entity corresponds to a row in the table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1

Register the database context

using MvcMovie.Data;
using Microsoft.EntityFrameworkCore;

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews();

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

Add a database connection string

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "MvcMovieContext": "Server=(localdb)\\mssqllocaldb;Database=MvcMovieContext-
1;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

Scaffold movie pages

ASP.NET Core is built with dependency injection (DI). Services (such as the EF Core DB context) must be registered

with DI during application startup. Components that require these services (such as Razor Pages) are provided

these services via constructor parameters. The constructor code that gets a DB context instance is shown later in the

tutorial. In this section, you register the database context with the DI container.

Add the following using statements at the top of Startup.cs:

Add the following highlighted code in Startup.ConfigureServices :

Visual Studio

Visual Studio Code / Visual Studio for Mac

The name of the connection string is passed in to the context by calling a method on a DbContextOptions object.

For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Add a connection string to the appsettings.json file:

Visual Studio

Visual Studio Code / Visual Studio for Mac

Build the project as a check for compiler errors.

Use the scaffolding tool to produce Create, Read, Update, and Delete (CRUD) pages for the movie model.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the Controllers folder > Add > New Scaffolded Item> Add > New Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select MVC Controller with views, using Entity Framework > AddMVC Controller with views, using Entity Framework > Add.

Complete the Add ControllerAdd Controller dialog:

Model class:Model class: Movie (MvcMovie.Models)

Data context class:Data context class: MvcMovieContext (MvcMovie.Data)

Initial migration

Add-Migration InitialCreate
Update-Database

Views:Views: Keep the default of each option checked

Controller name:Controller name: Keep the default MoviesController

Select AddAdd

Visual Studio creates:

A movies controller (Controllers/MoviesController.cs)

Razor view files for Create, Delete, Details, Edit, and Index pages (Views/Movies/*.cshtml)

The automatic creation of these files is known as scaffolding.

You can't use the scaffolded pages yet because the database doesn't exist. If you run the app and click on the MovieMovie

AppApp link, you get a Cannot open database or no such table: Movie error message.

Use the EF Core Migrations feature to create the database. Migrations is a set of tools that let you create and update

a database to match your data model.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From the ToolsTools menu, select NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console (PMC).

In the PMC, enter the following commands:

Add-Migration InitialCreate : Generates a Migrations/{timestamp}_InitialCreate.cs migration file. The

InitialCreate argument is the migration name. Any name can be used, but by convention, a name is

selected that describes the migration. Because this is the first migration, the generated class contains code to

create the database schema. The database schema is based on the model specified in the MvcMovieContext

class.

The InitialCreate classThe InitialCreate class

public partial class Initial : Migration
{
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name: "Movie",
 columns: table => new
 {
 Id = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 Title = table.Column<string>(nullable: true),
 ReleaseDate = table.Column<DateTime>(nullable: false),
 Genre = table.Column<string>(nullable: true),
 Price = table.Column<decimal>(nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Movie", x => x.Id);
 });
 }

 protected override void Down(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.DropTable(
 name: "Movie");
 }
}

Test the app

SqlException: Cannot open database "MvcMovieContext-1" requested by the login. The login failed.

Update-Database : Updates the database to the latest migration, which the previous command created. This

command runs the Up method in the Migrations/{time-stamp}_InitialCreate.cs file, which creates the

database.

The database update command generates the following warning:

No type was specified for the decimal column 'Price' on entity type 'Movie'. This will cause values to be

silently truncated if they do not fit in the default precision and scale. Explicitly specify the SQL server

column type that can accommodate all the values using 'HasColumnType()'.

You can ignore that warning, it will be fixed in a later tutorial.

For more information on the PMC tools for EF Core, see EF Core tools reference - PMC in Visual Studio.

Examine the Migrations/{timestamp}_InitialCreate.cs migration file:

The Up method creates the Movie table and configures Id as the primary key. The Down method reverts the

schema changes made by the Up migration.

Run the app and click the Movie AppMovie App link.

If you get an exception similar to one of the following:

Visual Studio

Visual Studio Code / Visual Studio for Mac

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell

Dependency injection in the controller

public class MoviesController : Controller
{
 private readonly MvcMovieContext _context;

 public MoviesController(MvcMovieContext context)
 {
 _context = context;
 }

Strongly typed models and the @model keyword

You probably missed the migrations step.

NOTENOTE

Test the CreateCreate page. Enter and submit data.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English

locales that use a comma (",") for a decimal point and for non US-English date formats, the app must be globalized.

For globalization instructions, see this GitHub issue.

Test the EditEdit, DetailsDetails , and DeleteDelete pages.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Open the Controllers/MoviesController.cs file and examine the constructor :

The constructor uses Dependency Injection to inject the database context (MvcMovieContext) into the controller. The

database context is used in each of the CRUD methods in the controller.

Earlier in this tutorial, you saw how a controller can pass data or objects to a view using the ViewData dictionary.

The ViewData dictionary is a dynamic object that provides a convenient late-bound way to pass information to a

view.

MVC also provides the ability to pass strongly typed model objects to a view. This strongly typed approach enables

compile time code checking. The scaffolding mechanism used this approach (that is, passing a strongly typed

model) with the MoviesController class and views.

Examine the generated Details method in the Controllers/MoviesController.cs file:

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://wikipedia.org/wiki/Create,_read,_update_and_delete

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);

return View(movie);

The id parameter is generally passed as route data. For example https://localhost:5001/movies/details/1 sets:

The controller to the movies controller (the first URL segment).

The action to details (the second URL segment).

The id to 1 (the last URL segment).

You can also pass in the id with a query string as follows:

https://localhost:5001/movies/details?id=1

The id parameter is defined as a nullable type (int?) in case an ID value isn't provided.

A lambda expression is passed in to FirstOrDefaultAsync to select movie entities that match the route data or

query string value.

If a movie is found, an instance of the Movie model is passed to the Details view:

Examine the contents of the Views/Movies/Details.cshtml file:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/statements-expressions-operators/lambda-expressions

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Details";
}

<h1>Details</h1>

<div>
 <h4>Movie</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Title)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Title)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.ReleaseDate)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Genre)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Genre)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Price)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Price)
 </dd>
 </dl>
</div>
<div>
 <a asp-action="Edit" asp-route-id="@Model.Id">Edit |
 <a asp-action="Index">Back to List
</div>

@model MvcMovie.Models.Movie

// GET: Movies
public async Task<IActionResult> Index()
{
 return View(await _context.Movie.ToListAsync());
}

The @model statement at the top of the view file specifies the type of object that the view expects. When the movie

controller was created, the following @model statement was included:

This @model directive allows access to the movie that the controller passed to the view. The Model object is

strongly typed. For example, in the Details.cshtml view, the code passes each movie field to the DisplayNameFor and

DisplayFor HTML Helpers with the strongly typed Model object. The Create and Edit methods and views also

pass a Movie model object.

Examine the Index.cshtml view and the Index method in the Movies controller. Notice how the code creates a List

object when it calls the View method. The code passes this Movies list from the Index action method to the view:

@model IEnumerable<MvcMovie.Models.Movie>

@model IEnumerable<MvcMovie.Models.Movie>

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.Id">Edit |
 <a asp-action="Details" asp-route-id="@item.Id">Details |
 <a asp-action="Delete" asp-route-id="@item.Id">Delete
 </td>
 </tr>
}
 </tbody>
</table>

When the movies controller was created, scaffolding included the following @model statement at the top of the

Index.cshtml file:

The @model directive allows you to access the list of movies that the controller passed to the view by using a Model

object that's strongly typed. For example, in the Index.cshtml view, the code loops through the movies with a

foreach statement over the strongly typed Model object:

Additional resources

Add a data model class

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int Id { get; set; }
 public string Title { get; set; }

 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Scaffold the movie model

Because the Model object is strongly typed (as an IEnumerable<Movie> object), each item in the loop is typed as

Movie . Among other benefits, this means that you get compile time checking of the code.

Tag Helpers

Globalization and localization

 P R E V I O U S A D D I N G AP R E V I O U S A D D I N G A

V I E WV I E W

N E X T W O R K I N G W I T HN E X T W O R K I N G W I T H

S Q LS Q L

Visual Studio

Visual Studio Code / Visual Studio for Mac

Right-click the Models folder > AddAdd > ClassClass . Name the class MovieMovie.

Add the following properties to the Movie class:

The Movie class contains:

The Id field which is required by the database for the primary key.

[DataType(DataType.Date)] : The DataType attribute specifies the type of the data (Date). With this attribute:

The user is not required to enter time information in the date field.

Only the date is displayed, not time information.

DataAnnotations are covered in a later tutorial.

In this section, the movie model is scaffolded. That is, the scaffolding tool produces pages for Create, Read, Update,

and Delete (CRUD) operations for the movie model.

Visual Studio

Visual Studio Code

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the Controllers folder > Add > New Scaffolded Item> Add > New Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select MVC Controller with views, using Entity Framework > AddMVC Controller with views, using Entity Framework > Add.

Complete the Add ControllerAdd Controller dialog:

Model class:Model class: Movie (MvcMovie.Models)

Data context class:Data context class: Select the ++ icon and add the default MvcMovie.Models.MvcMovieContextMvcMovie.Models.MvcMovieContext

An unhandled exception occurred while processing the request.

SqlException: Cannot open database "MvcMovieContext-<GUID removed>" requested by the login. The login failed.
Login failed for user 'Rick'.

System.Data.SqlClient.SqlInternalConnectionTds..ctor(DbConnectionPoolIdentity identity, SqlConnectionString

Views:Views: Keep the default of each option checked

Controller name:Controller name: Keep the default MoviesController

Select AddAdd

Visual Studio creates:

An Entity Framework Core database context class (Data/MvcMovieContext.cs)

A movies controller (Controllers/MoviesController.cs)

Razor view files for Create, Delete, Details, Edit, and Index pages (Views/Movies/*.cshtml)

The automatic creation of the database context and CRUD (create, read, update, and delete) action methods and

views is known as scaffolding.

If you run the app and click on the Mvc MovieMvc Movie link, you get an error similar to the following:

Visual Studio

Visual Studio Code / Visual Studio for Mac

https://wikipedia.org/wiki/Create,_read,_update_and_delete

Initial migration

Examine the context registered with dependency injection

You need to create the database, and you use the EF Core Migrations feature to do that. Migrations lets you create a

database that matches your data model and update the database schema when your data model changes.

In this section, the following tasks are completed:

Add an initial migration.

Update the database with the initial migration.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Add-Migration Initial
Update-Database

1. From the ToolsTools menu, select NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console (PMC).

2. In the PMC, enter the following commands:

The Add-Migration command generates code to create the initial database schema.

The database schema is based on the model specified in the MvcMovieContext class. The Initial argument

is the migration name. Any name can be used, but by convention, a name that describes the migration is

used. For more information, see Tutorial: Using the migrations feature - ASP.NET MVC with EF Core.

The Update-Database command runs the Up method in the Migrations/{time-stamp}_InitialCreate.cs file,

which creates the database.

ASP.NET Core is built with dependency injection (DI). Services (such as the EF Core DB context) are registered with

DI during application startup. Components that require these services (such as Razor Pages) are provided these

services via constructor parameters. The constructor code that gets a DB context instance is shown later in the

tutorial.

Visual Studio

Visual Studio Code / Visual Studio for Mac

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies
 // is needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

// Unused usings removed.
using Microsoft.EntityFrameworkCore;
using MvcMovie.Models; // Enables public DbSet<Movie> Movie

namespace MvcMovie.Data
{
 public class MvcMovieContext : DbContext
 {
 public MvcMovieContext (DbContextOptions<MvcMovieContext> options)
 : base(options)
 {
 }

 public DbSet<Movie> Movie { get; set; }
 }
}

Test the appTest the app

SqlException: Cannot open database "MvcMovieContext-GUID" requested by the login. The login failed.
Login failed for user 'User-name'.

The scaffolding tool automatically created a DB context and registered it with the DI container.

Examine the following Startup.ConfigureServices method. The highlighted line was added by the scaffolder :

The MvcMovieContext coordinates EF Core functionality (Create, Read, Update, Delete, etc.) for the Movie model. The

data context (MvcMovieContext) is derived from Microsoft.EntityFrameworkCore.DbContext. The data context

specifies which entities are included in the data model:

The preceding code creates a DbSet<Movie> property for the entity set. In Entity Framework terminology, an entity

set typically corresponds to a database table. An entity corresponds to a row in the table.

The name of the connection string is passed in to the context by calling a method on a DbContextOptions object.

For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Run the app and append /Movies to the URL in the browser (http://localhost:port/movies).

If you get a database exception similar to the following:

You missed the migrations step.

Test the CreateCreate link. Enter and submit data.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies
 // is needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

public class MoviesController : Controller
{
 private readonly MvcMovieContext _context;

 public MoviesController(MvcMovieContext context)
 {
 _context = context;
 }

Strongly typed models and the @model keyword

NOTENOTE
You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English

locales that use a comma (",") for a decimal point and for non US-English date formats, the app must be globalized.

For globalization instructions, see this GitHub issue.

Test the EditEdit, DetailsDetails , and DeleteDelete links.

Examine the Startup class:

The preceding highlighted code shows the movie database context being added to the Dependency Injection

container :

services.AddDbContext<MvcMovieContext>(options => specifies the database to use and the connection string.

=> is a lambda operator

Open the Controllers/MoviesController.cs file and examine the constructor :

The constructor uses Dependency Injection to inject the database context (MvcMovieContext) into the controller. The

database context is used in each of the CRUD methods in the controller.

Earlier in this tutorial, you saw how a controller can pass data or objects to a view using the ViewData dictionary.

The ViewData dictionary is a dynamic object that provides a convenient late-bound way to pass information to a

view.

MVC also provides the ability to pass strongly typed model objects to a view. This strongly typed approach enables

better compile time checking of your code. The scaffolding mechanism used this approach (that is, passing a

strongly typed model) with the MoviesController class and views when it created the methods and views.

Examine the generated Details method in the Controllers/MoviesController.cs file:

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/operators/lambda-operator
https://wikipedia.org/wiki/Create,_read,_update_and_delete

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);

return View(movie);

The id parameter is generally passed as route data. For example https://localhost:5001/movies/details/1 sets:

The controller to the movies controller (the first URL segment).

The action to details (the second URL segment).

The id to 1 (the last URL segment).

You can also pass in the id with a query string as follows:

https://localhost:5001/movies/details?id=1

The id parameter is defined as a nullable type (int?) in case an ID value isn't provided.

A lambda expression is passed in to FirstOrDefaultAsync to select movie entities that match the route data or

query string value.

If a movie is found, an instance of the Movie model is passed to the Details view:

Examine the contents of the Views/Movies/Details.cshtml file:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/statements-expressions-operators/lambda-expressions

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Details";
}

<h1>Details</h1>

<div>
 <h4>Movie</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Title)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Title)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.ReleaseDate)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Genre)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Genre)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Price)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Price)
 </dd>
 </dl>
</div>
<div>
 <a asp-action="Edit" asp-route-id="@Model.Id">Edit |
 <a asp-action="Index">Back to List
</div>

@model MvcMovie.Models.Movie

By including a @model statement at the top of the view file, you can specify the type of object that the view expects.

When you created the movie controller, the following @model statement was automatically included at the top of

the Details.cshtml file:

This @model directive allows you to access the movie that the controller passed to the view by using a Model object

that's strongly typed. For example, in the Details.cshtml view, the code passes each movie field to the

DisplayNameFor and DisplayFor HTML Helpers with the strongly typed Model object. The Create and Edit

methods and views also pass a Movie model object.

Examine the Index.cshtml view and the Index method in the Movies controller. Notice how the code creates a List

object when it calls the View method. The code passes this Movies list from the Index action method to the view:

// GET: Movies
public async Task<IActionResult> Index()
{
 return View(await _context.Movie.ToListAsync());
}

@model IEnumerable<MvcMovie.Models.Movie>

When you created the movies controller, scaffolding automatically included the following @model statement at the

top of the Index.cshtml file:

The @model directive allows you to access the list of movies that the controller passed to the view by using a Model

object that's strongly typed. For example, in the Index.cshtml view, the code loops through the movies with a

foreach statement over the strongly typed Model object:

@model IEnumerable<MvcMovie.Models.Movie>

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.Id">Edit |
 <a asp-action="Details" asp-route-id="@item.Id">Details |
 <a asp-action="Delete" asp-route-id="@item.Id">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Additional resources

Because the Model object is strongly typed (as an IEnumerable<Movie> object), each item in the loop is typed as

Movie . Among other benefits, this means that you get compile time checking of the code:

Tag Helpers

Globalization and localization

 P R E V I O U S A D D I N G AP R E V I O U S A D D I N G A

V I E WV I E W

N E X T W O R K I N G W I T H AN E X T W O R K I N G W I T H A

D A TA B A S ED A TA B A S E

Part 5, work with a database in an ASP.NET Core
MVC app
9/22/2020 • 9 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews();

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

"ConnectionStrings": {
 "MvcMovieContext": "Server=(localdb)\\mssqllocaldb;Database=MvcMovieContext-
2;Trusted_Connection=True;MultipleActiveResultSets=true"
}

SQL Server Express LocalDB

By Rick Anderson

The MvcMovieContext object handles the task of connecting to the database and mapping Movie objects to

database records. The database context is registered with the Dependency Injection container in the

ConfigureServices method in the Startup.cs file:

Visual Studio

Visual Studio Code / Visual Studio for Mac

The ASP.NET Core Configuration system reads the ConnectionString . For local development, it gets the connection

string from the appsettings.json file:

When the app is deployed to a test or production server, an environment variable can be used to set the connection

string to a production SQL Server. See Configuration for more information.

Visual Studio

Visual Studio Code / Visual Studio for Mac

LocalDB is a lightweight version of the SQL Server Express Database Engine that's targeted for program

development. LocalDB starts on demand and runs in user mode, so there's no complex configuration. By default,

LocalDB database creates .mdf files in the C:/Users/{user} directory.

From the ViewView menu, open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX).

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/working-with-sql.md
https://twitter.com/RickAndMSFT

Right click on the Movie table > View Designer> View Designer

Note the key icon next to ID . By default, EF will make a property named ID the primary key.

Right click on the Movie table > View Data> View Data

Seed the database
Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using MvcMovie.Data;
using System;
using System.Linq;

namespace MvcMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new MvcMovieContext(
 serviceProvider.GetRequiredService<
 DbContextOptions<MvcMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns and no movies are added.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using MvcMovie.Data;
using MvcMovie.Models;
using System;

namespace MvcMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();

 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

Replace the contents of Program.cs with the following code:

Test the app

Visual Studio

Visual Studio Code / Visual Studio for Mac

Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX.

Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force

initialization, IIS Express must be stopped and restarted. You can do this with any of the following

approaches:

Right click the IIS Express system tray icon in the notification area and tap ExitExit or Stop S iteStop S ite

If you were running VS in non-debug mode, press F5 to run in debug mode

If you were running VS in debug mode, stop the debugger and press F5

The app shows the seeded data.

 P R E V I O U SP R E V I O U S N E X TN E X T

By Rick Anderson

The MvcMovieContext object handles the task of connecting to the database and mapping Movie objects to

https://twitter.com/RickAndMSFT

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies
 // is needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

"ConnectionStrings": {
 "MvcMovieContext": "Server=(localdb)\\mssqllocaldb;Database=MvcMovieContext-
2;Trusted_Connection=True;MultipleActiveResultSets=true"
}

SQL Server Express LocalDB

database records. The database context is registered with the Dependency Injection container in the

ConfigureServices method in the Startup.cs file:

Visual Studio

Visual Studio Code / Visual Studio for Mac

The ASP.NET Core Configuration system reads the ConnectionString . For local development, it gets the connection

string from the appsettings.json file:

When you deploy the app to a test or production server, you can use an environment variable or another approach

to set the connection string to a real SQL Server. See Configuration for more information.

Visual Studio

Visual Studio Code / Visual Studio for Mac

LocalDB is a lightweight version of the SQL Server Express Database Engine that's targeted for program

development. LocalDB starts on demand and runs in user mode, so there's no complex configuration. By default,

LocalDB database creates .mdf files in the C:/Users/{user} directory.

From the ViewView menu, open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX).

Right click on the Movie table > View Designer> View Designer

Note the key icon next to ID . By default, EF will make a property named ID the primary key.

Right click on the Movie table > View Data> View Data

Seed the database
Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace MvcMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new MvcMovieContext(
 serviceProvider.GetRequiredService<
 DbContextOptions<MvcMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns and no movies are added.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using System;
using Microsoft.EntityFrameworkCore;
using MvcMovie.Models;
using MvcMovie;

namespace MvcMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<MvcMovieContext>();
 context.Database.Migrate();
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

Replace the contents of Program.cs with the following code:

Test the app

Visual Studio

Visual Studio Code / Visual Studio for Mac

Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX.

Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force

initialization, IIS Express must be stopped and restarted. You can do this with any of the following

approaches:

Right click the IIS Express system tray icon in the notification area and tap ExitExit or Stop S iteStop S ite

If you were running VS in non-debug mode, press F5 to run in debug mode

If you were running VS in debug mode, stop the debugger and press F5

The app shows the seeded data.

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 6, controller methods and views in ASP.NET Core
9/22/2020 • 9 minutes to read • Edit Online

By Rick Anderson

We have a good start to the movie app, but the presentation isn't ideal, for example, ReleaseDateReleaseDate should be two

words.

Open the Models/Movie.cs file and add the highlighted lines shown below:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/controller-methods-views.md
https://twitter.com/RickAndMSFT

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int Id { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

We cover DataAnnotations in the next tutorial. The Display attribute specifies what to display for the name of a field

(in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data (Date), so

the time information stored in the field isn't displayed.

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly

map Price to currency in the database. For more information, see Data Types.

Browse to the Movies controller and hold the mouse pointer over an EditEdit link to see the target URL.

The EditEdit, DetailsDetails , and DeleteDelete links are generated by the Core MVC Anchor Tag Helper in the

Views/Movies/Index.cshtml file.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter
https://docs.microsoft.com/en-us/ef/core/modeling/relational/data-types

 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
</tr>

 <td>
 Edit |
 Details |
 Delete
</td>

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.FindAsync(id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the

code above, the AnchorTagHelper dynamically generates the HTML href attribute value from the controller action

method and route id. You use View SourceView Source from your favorite browser or use the developer tools to examine the

generated markup. A portion of the generated HTML is shown below:

Recall the format for routing set in the Startup.cs file:

ASP.NET Core translates https://localhost:5001/Movies/Edit/4 into a request to the Edit action method of the

Movies controller with the parameter Id of 4. (Controller methods are also known as action methods.)

Tag Helpers are one of the most popular new features in ASP.NET Core. For more information, see Additional

resources.

 Open the Movies controller and examine the two Edit action methods. The following code shows the

HTTP GET Edit method, which fetches the movie and populates the edit form generated by the Edit.cshtml Razor

file.

The following code shows the HTTP POST Edit method, which processes the posted movie values:

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

The following code shows the HTTP POST Edit method, which processes the posted movie values:

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

The [Bind] attribute is one way to protect against over-posting. You should only include properties in the [Bind]

attribute that you want to change. For more information, see Protect your controller from over-posting. ViewModels

provide an alternative approach to prevent over-posting.

Notice the second Edit action method is preceded by the [HttpPost] attribute.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application#overpost
https://docs.microsoft.com/en-us/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application
https://rachelappel.com/use-viewmodels-to-manage-data-amp-organize-code-in-asp-net-mvc-applications/

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 return View(movie);
}

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

<form asp-action="Edit">

The HttpPost attribute specifies that this Edit method can be invoked only for POST requests. You could apply

the [HttpGet] attribute to the first edit method, but that's not necessary because [HttpGet] is the default.

The ValidateAntiForgeryToken attribute is used to prevent forgery of a request and is paired up with an anti-forgery

token generated in the edit view file (Views/Movies/Edit.cshtml). The edit view file generates the anti-forgery token

with the Form Tag Helper.

The Form Tag Helper generates a hidden anti-forgery token that must match the [ValidateAntiForgeryToken]

generated anti-forgery token in the Edit method of the Movies controller. For more information, see Prevent

Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core.

The HttpGet Edit method takes the movie ID parameter, looks up the movie using the Entity Framework

FindAsync method, and returns the selected movie to the Edit view. If a movie cannot be found, NotFound (HTTP

404) is returned.

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.FindAsync(id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

When the scaffolding system created the Edit view, it examined the Movie class and created code to render

<label> and <input> elements for each property of the class. The following example shows the Edit view that was

generated by the Visual Studio scaffolding system:

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Edit";
}

<h1>Edit</h1>

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form asp-action="Edit">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Id" />
 <div class="form-group">
 <label asp-for="Title" class="control-label"></label>
 <input asp-for="Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="ReleaseDate" class="control-label"></label>
 <input asp-for="ReleaseDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Genre" class="control-label"></label>
 <input asp-for="Genre" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Price" class="control-label"></label>
 <input asp-for="Price" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Notice how the view template has a @model MvcMovie.Models.Movie statement at the top of the file.

@model MvcMovie.Models.Movie specifies that the view expects the model for the view template to be of type Movie .

The scaffolded code uses several Tag Helper methods to streamline the HTML markup. The Label Tag Helper

displays the name of the field ("Title", "ReleaseDate", "Genre", or "Price"). The Input Tag Helper renders an HTML

<input> element. The Validation Tag Helper displays any validation messages associated with that property.

Run the application and navigate to the /Movies URL. Click an EditEdit link. In the browser, view the source for the

page. The generated HTML for the <form> element is shown below.

<form action="/Movies/Edit/7" method="post">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />
 <div class="text-danger" />
 <input type="hidden" data-val="true" data-val-required="The ID field is required." id="ID" name="ID"
value="7" />
 <div class="form-group">
 <label class="control-label col-md-2" for="Genre" />
 <div class="col-md-10">
 <input class="form-control" type="text" id="Genre" name="Genre" value="Western" />
 <span class="text-danger field-validation-valid" data-valmsg-for="Genre" data-valmsg-
replace="true">
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-2" for="Price" />
 <div class="col-md-10">
 <input class="form-control" type="text" data-val="true" data-val-number="The field Price must
be a number." data-val-required="The Price field is required." id="Price" name="Price" value="3.99" />
 <span class="text-danger field-validation-valid" data-valmsg-for="Price" data-valmsg-
replace="true">
 </div>
 </div>
 <!-- Markup removed for brevity -->
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </div>
 </div>
 <input name="__RequestVerificationToken" type="hidden"
value="CfDJ8Inyxgp63fRFqUePGvuI5jGZsloJu1L7X9le1gy7NCIlSduCRx9jDQClrV9pOTTmqUyXnJBXhmrjcUVDJyDUMm7-
MF_9rK8aAZdRdlOri7FmKVkRe_2v5LIHGKFcTjPrWPYnc9AdSbomkiOSaTEg7RU" />
</form>

Processing the POST Request

The <input> elements are in an HTML <form> element whose action attribute is set to post to the

/Movies/Edit/id URL. The form data will be posted to the server when the Save button is clicked. The last line

before the closing </form> element shows the hidden XSRF token generated by the Form Tag Helper.

The following listing shows the [HttpPost] version of the Edit action method.

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 return View(movie);
}

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

The [ValidateAntiForgeryToken] attribute validates the hidden XSRF token generated by the anti-forgery token

generator in the Form Tag Helper

The model binding system takes the posted form values and creates a Movie object that's passed as the movie

parameter. The ModelState.IsValid method verifies that the data submitted in the form can be used to modify (edit

or update) a Movie object. If the data is valid, it's saved. The updated (edited) movie data is saved to the database

by calling the SaveChangesAsync method of database context. After saving the data, the code redirects the user to

the Index action method of the MoviesController class, which displays the movie collection, including the changes

just made.

Before the form is posted to the server, client-side validation checks any validation rules on the fields. If there are

any validation errors, an error message is displayed and the form isn't posted. If JavaScript is disabled, you won't

have client-side validation but the server will detect the posted values that are not valid, and the form values will be

redisplayed with error messages. Later in the tutorial we examine Model Validation in more detail. The Validation

Tag Helper in the Views/Movies/Edit.cshtml view template takes care of displaying appropriate error messages.

Additional resources

All the HttpGet methods in the movie controller follow a similar pattern. They get a movie object (or list of objects,

in the case of Index), and pass the object (model) to the view. The Create method passes an empty movie object

to the Create view. All the methods that create, edit, delete, or otherwise modify data do so in the [HttpPost]

overload of the method. Modifying data in an HTTP GET method is a security risk. Modifying data in an HTTP GET

method also violates HTTP best practices and the architectural REST pattern, which specifies that GET requests

shouldn't change the state of your application. In other words, performing a GET operation should be a safe

operation that has no side effects and doesn't modify your persisted data.

Globalization and localization

Introduction to Tag Helpers

Author Tag Helpers

Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core

Protect your controller from over-posting

http://rest.elkstein.org/
https://docs.microsoft.com/en-us/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application

ViewModels

Form Tag Helper

Input Tag Helper

Label Tag Helper

Select Tag Helper

Validation Tag Helper

 P R E V I O U SP R E V I O U S N E X TN E X T

https://rachelappel.com/use-viewmodels-to-manage-data-amp-organize-code-in-asp-net-mvc-applications/

Part 7, add search to an ASP.NET Core MVC app
9/22/2020 • 7 minutes to read • Edit Online

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

var movies = from m in _context.Movie
 select m;

if (!String.IsNullOrEmpty(searchString))
{
 movies = movies.Where(s => s.Title.Contains(searchString));
}

By Rick Anderson

In this section, you add search capability to the Index action method that lets you search movies by genre or name.

Update the Index method found inside Controllers/MoviesController.cs with the following code:

The first line of the Index action method creates a LINQ query to select the movies:

The query is only defined at this point, it has notnot been run against the database.

If the searchString parameter contains a string, the movies query is modified to filter on the value of the search

string:

The s => s.Title.Contains() code above is a Lambda Expression. Lambdas are used in method-based LINQ

queries as arguments to standard query operator methods such as the Where method or Contains (used in the

code above). LINQ queries are not executed when they're defined or when they're modified by calling a method

such as Where , Contains , or OrderBy . Rather, query execution is deferred. That means that the evaluation of an

expression is delayed until its realized value is actually iterated over or the ToListAsync method is called. For more

information about deferred query execution, see Query Execution.

Note: The Contains method is run on the database, not in the c# code shown above. The case sensitivity on the

query depends on the database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case

insensitive. In SQLite, with the default collation, it's case sensitive.

Navigate to /Movies/Index . Append a query string such as ?searchString=Ghost to the URL. The filtered movies are

displayed.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/search.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/standard/using-linq
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/standard/using-linq
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.where
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/en-us/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/en-us/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/like-transact-sql

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

If you change the signature of the Index method to have a parameter named id , the id parameter will match

the optional {id} placeholder for the default routes set in Startup.cs.

Change the parameter to id and all occurrences of searchString change to id .

The previous Index method:

The updated Index method with id parameter :

public async Task<IActionResult> Index(string id)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(id))
 {
 movies = movies.Where(s => s.Title.Contains(id));
 }

 return View(await movies.ToListAsync());
}

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

You can now pass the search title as route data (a URL segment) instead of as a query string value.

However, you can't expect users to modify the URL every time they want to search for a movie. So now you'll add UI

elements to help them filter movies. If you changed the signature of the Index method to test how to pass the

route-bound ID parameter, change it back so that it takes a parameter named searchString :

Open the Views/Movies/Index.cshtml file, and add the <form> markup highlighted below:

 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>

<form asp-controller="Movies" asp-action="Index">
 <p>
 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>

[HttpPost]
public string Index(string searchString, bool notUsed)
{
 return "From [HttpPost]Index: filter on " + searchString;
}

The HTML <form> tag uses the Form Tag Helper, so when you submit the form, the filter string is posted to the

Index action of the movies controller. Save your changes and then test the filter.

There's no [HttpPost] overload of the Index method as you might expect. You don't need it, because the method

isn't changing the state of the app, just filtering data.

You could add the following [HttpPost] Index method.

The notUsed parameter is used to create an overload for the Index method. We'll talk about that later in the

tutorial.

If you add this method, the action invoker would match the [HttpPost] Index method, and the [HttpPost] Index

method would run as shown in the image below.

However, even if you add this [HttpPost] version of the Index method, there's a limitation in how this has all been

implemented. Imagine that you want to bookmark a particular search or you want to send a link to friends that they

can click in order to see the same filtered list of movies. Notice that the URL for the HTTP POST request is the same

as the URL for the GET request (localhost:{PORT}/Movies/Index) -- there's no search information in the URL. The

search string information is sent to the server as a form field value. You can verify that with the browser Developer

tools or the excellent Fiddler tool. The image below shows the Chrome browser Developer tools:

https://developer.mozilla.org/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data
https://www.telerik.com/fiddler

You can see the search parameter and XSRF token in the request body. Note, as mentioned in the previous tutorial,

the Form Tag Helper generates an XSRF anti-forgery token. We're not modifying data, so we don't need to validate

the token in the controller method.

Because the search parameter is in the request body and not the URL, you can't capture that search information to

bookmark or share with others. Fix this by specifying the request should be HTTP GET found in the

Views/Movies/Index.cshtml file.

@model IEnumerable<MvcMovie.Models.Movie>

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-action="Create">Create New
</p>
<form asp-controller="Movies" asp-action="Index" method="get">
 <p>
 Title: <input type="text" name="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Title)

<form asp-controller="Movies" asp-action="Index" method="get">

Add Search by genre

Now when you submit a search, the URL contains the search query string. Searching will also go to the

HttpGet Index action method, even if you have a HttpPost Index method.

The following markup shows the change to the form tag:

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace MvcMovie.Models
{
 public class MovieGenreViewModel
 {
 public List<Movie> Movies { get; set; }
 public SelectList Genres { get; set; }
 public string MovieGenre { get; set; }
 public string SearchString { get; set; }
 }
}

// GET: Movies
public async Task<IActionResult> Index(string movieGenre, string searchString)
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!string.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 if (!string.IsNullOrEmpty(movieGenre))
 {
 movies = movies.Where(x => x.Genre == movieGenre);
 }

 var movieGenreVM = new MovieGenreViewModel
 {
 Genres = new SelectList(await genreQuery.Distinct().ToListAsync()),
 Movies = await movies.ToListAsync()
 };

 return View(movieGenreVM);
}

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

Add the following MovieGenreViewModel class to the Models folder :

The movie-genre view model will contain:

A list of movies.

A SelectList containing the list of genres. This allows the user to select a genre from the list.

MovieGenre , which contains the selected genre.

SearchString , which contains the text users enter in the search text box.

Replace the Index method in MoviesController.cs with the following code:

The following code is a LINQ query that retrieves all the genres from the database.

Add search by genre to the Index view

The SelectList of genres is created by projecting the distinct genres (we don't want our select list to have duplicate

genres).

When the user searches for the item, the search value is retained in the search box.

Update Index.cshtml found in Views/Movies/ as follows:

@model MvcMovie.Models.MovieGenreViewModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-action="Create">Create New
</p>
<form asp-controller="Movies" asp-action="Index" method="get">
 <p>

 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>

 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Movies)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.Id">Edit |
 <a asp-action="Details" asp-route-id="@item.Id">Details |
 <a asp-action="Delete" asp-route-id="@item.Id">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.Movies[0].Title)

In the preceding code, the DisplayNameFor HTML Helper inspects the Title property referenced in the lambda

expression to determine the display name. Since the lambda expression is inspected rather than evaluated, you

don't receive an access violation when model , model.Movies , or model.Movies[0] are null or empty. When the

lambda expression is evaluated (for example, @Html.DisplayFor(modelItem => item.Title)), the model's property

values are evaluated.

Test the app by searching by genre, by movie title, and by both:

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 8, add a new field to an ASP.NET Core MVC app
9/22/2020 • 4 minutes to read • Edit Online

Add a Rating Property to the Movie Model

public class Movie
{
 public int Id { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

[Bind("Id,Title,ReleaseDate,Genre,Price,Rating")]

By Rick Anderson

In this section Entity Framework Code First Migrations is used to:

Add a new field to the model.

Migrate the new field to the database.

When EF Code First is used to automatically create a database, Code First:

Adds a table to the database to track the schema of the database.

Verifies the database is in sync with the model classes it was generated from. If they aren't in sync, EF throws an

exception. This makes it easier to find inconsistent database/code issues.

Add a Rating property to Models/Movie.cs:

Build the app

Visual Studio

Visual Studio Code

Visual Studio for Mac

Ctrl+Shift+B

Because you've added a new field to the Movie class, you need to update the binding white list so this new

property will be included. In MoviesController.cs, update the [Bind] attribute for both the Create and Edit action

methods to include the Rating property:

Update the view templates in order to display, create, and edit the new Rating property in the browser view.

Edit the /Views/Movies/Index.cshtml file and add a Rating field:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/new-field.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/new-db

<thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Rating)
 </th>
 <th></th>
 </tr>
</thead>
<tbody>
 @foreach (var item in Model.Movies)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Rating)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.Id">Edit |

Update the /Views/Movies/Create.cshtml with a Rating field.

Visual Studio / Visual Studio for Mac

Visual Studio Code

You can copy/paste the previous "form group" and let intelliSense help you update the fields. IntelliSense works

with Tag Helpers.

new Movie
{
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-1-11"),
 Genre = "Romantic Comedy",
 Rating = "R",
 Price = 7.99M
},

Update the remaining templates.

Update the SeedData class so that it provides a value for the new column. A sample change is shown below, but

you'll want to make this change for each new Movie .

The app won't work until the DB is updated to include the new field. If it's run now, the following SqlException is

thrown:

SqlException: Invalid column name 'Rating'.

This error occurs because the updated Movie model class is different than the schema of the Movie table of the

existing database. (There's no Rating column in the database table.)

There are a few approaches to resolving the error :

1. Have the Entity Framework automatically drop and re-create the database based on the new model class

schema. This approach is very convenient early in the development cycle when you're doing active

development on a test database; it allows you to quickly evolve the model and database schema together.

The downside, though, is that you lose existing data in the database — so you don't want to use this

approach on a production database! Using an initializer to automatically seed a database with test data is

often a productive way to develop an application. This is a good approach for early development and when

using SQLite.

2. Explicitly modify the schema of the existing database so that it matches the model classes. The advantage of

this approach is that you keep your data. You can make this change either manually or by creating a database

change script.

3. Use Code First Migrations to update the database schema.

For this tutorial, Code First Migrations is used.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Add-Migration Rating
Update-Database

From the ToolsTools menu, select NuGet Package Manager > Package Manager ConsoleNuGet Package Manager > Package Manager Console.

In the PMC, enter the following commands:

The Add-Migration command tells the migration framework to examine the current Movie model with the current

Movie DB schema and create the necessary code to migrate the DB to the new model.

The name "Rating" is arbitrary and is used to name the migration file. It's helpful to use a meaningful name for the

migration file.

If all the records in the DB are deleted, the initialize method will seed the DB and include the Rating field.

Run the app and verify you can create, edit, and display movies with a Rating field.

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 9, add validation to an ASP.NET Core MVC app
9/22/2020 • 9 minutes to read • Edit Online

Keeping things DRY

Add validation rules to the movie model

public class Movie
{
 public int Id { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

By Rick Anderson

In this section:

Validation logic is added to the Movie model.

You ensure that the validation rules are enforced any time a user creates or edits a movie.

One of the design tenets of MVC is DRY ("Don't Repeat Yourself"). ASP.NET Core MVC encourages you to specify

functionality or behavior only once, and then have it be reflected everywhere in an app. This reduces the amount of

code you need to write and makes the code you do write less error prone, easier to test, and easier to maintain.

The validation support provided by MVC and Entity Framework Core Code First is a good example of the DRY

principle in action. You can declaratively specify validation rules in one place (in the model class) and the rules are

enforced everywhere in the app.

The DataAnnotations namespace provides a set of built-in validation attributes that are applied declaratively to a

class or property. DataAnnotations also contains formatting attributes like DataType that help with formatting and

don't provide any validation.

Update the Movie class to take advantage of the built-in Required , StringLength , RegularExpression , and Range

validation attributes.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/validation.md
https://twitter.com/RickAndMSFT
https://wikipedia.org/wiki/Don%27t_repeat_yourself

Validation Error UI

The validation attributes specify behavior that you want to enforce on the model properties they're applied to:

The Required and MinimumLength attributes indicate that a property must have a value; but nothing prevents

a user from entering white space to satisfy this validation.

The RegularExpression attribute is used to limit what characters can be input. In the preceding code, "Genre":

Must only use letters.

The first letter is required to be uppercase. White space, numbers, and special characters are not allowed.

The RegularExpression "Rating":

Requires that the first character be an uppercase letter.

Allows special characters and numbers in subsequent spaces. "PG-13" is valid for a rating, but fails for a

"Genre".

The Range attribute constrains a value to within a specified range.

The StringLength attribute lets you set the maximum length of a string property, and optionally its

minimum length.

Value types (such as decimal , int , float , DateTime) are inherently required and don't need the

[Required] attribute.

Having validation rules automatically enforced by ASP.NET Core helps make your app more robust. It also ensures

that you can't forget to validate something and inadvertently let bad data into the database.

Run the app and navigate to the Movies controller.

Tap the Create NewCreate New link to add a new movie. Fill out the form with some invalid values. As soon as jQuery client

side validation detects the error, it displays an error message.

NOTENOTE
You may not be able to enter decimal commas in decimal fields. To support jQuery validation for non-English locales that use

a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. See this

GitHub issue 4076 for instructions on adding decimal comma.

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420

How validation works

// GET: Movies/Create
public IActionResult Create()
{
 return View();
}

// POST: Movies/Create
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
 [Bind("ID,Title,ReleaseDate,Genre,Price, Rating")] Movie movie)
{
 if (ModelState.IsValid)
 {
 _context.Add(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
 }
 return View(movie);
}

Notice how the form has automatically rendered an appropriate validation error message in each field containing

an invalid value. The errors are enforced both client-side (using JavaScript and jQuery) and server-side (in case a

user has JavaScript disabled).

A significant benefit is that you didn't need to change a single line of code in the MoviesController class or in the

Create.cshtml view in order to enable this validation UI. The controller and views you created earlier in this tutorial

automatically picked up the validation rules that you specified by using validation attributes on the properties of the

Movie model class. Test validation using the Edit action method, and the same validation is applied.

The form data isn't sent to the server until there are no client side validation errors. You can verify this by putting a

break point in the HTTP Post method, by using the Fiddler tool , or the F12 Developer tools.

You might wonder how the validation UI was generated without any updates to the code in the controller or views.

The following code shows the two Create methods.

The first (HTTP GET) Create action method displays the initial Create form. The second ([HttpPost]) version

handles the form post. The second Create method (The [HttpPost] version) calls ModelState.IsValid to check

whether the movie has any validation errors. Calling this method evaluates any validation attributes that have been

applied to the object. If the object has validation errors, the Create method re-displays the form. If there are no

errors, the method saves the new movie in the database. In our movie example, the form isn't posted to the server

when there are validation errors detected on the client side; the second Create method is never called when there

are client side validation errors. If you disable JavaScript in your browser, client validation is disabled and you can

test the HTTP POST Create method ModelState.IsValid detecting any validation errors.

You can set a break point in the [HttpPost] Create method and verify the method is never called, client side

validation won't submit the form data when validation errors are detected. If you disable JavaScript in your browser,

then submit the form with errors, the break point will be hit. You still get full validation without JavaScript.

The following image shows how to disable JavaScript in the Firefox browser.

https://www.telerik.com/fiddler
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide

The following image shows how to disable JavaScript in the Chrome browser.

After you disable JavaScript, post invalid data and step through the debugger.

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form asp-action="Create">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Title" class="control-label"></label>
 <input asp-for="Title" class="form-control" />

 </div>

 @*Markup removed for brevity.*@

Using DataType Attributes

The portion of the Create.cshtml view template is shown in the following markup:

The preceding markup is used by the action methods to display the initial form and to redisplay it in the event of an

error.

The Input Tag Helper uses the DataAnnotations attributes and produces HTML attributes needed for jQuery

Validation on the client side. The Validation Tag Helper displays validation errors. See Validation for more

information.

What's really nice about this approach is that neither the controller nor the Create view template knows anything

about the actual validation rules being enforced or about the specific error messages displayed. The validation rules

and the error strings are specified only in the Movie class. These same validation rules are automatically applied to

the Edit view and any other views templates you might create that edit your model.

When you need to change validation logic, you can do so in exactly one place by adding validation attributes to the

model (in this example, the Movie class). You won't have to worry about different parts of the application being

inconsistent with how the rules are enforced — all validation logic will be defined in one place and used

everywhere. This keeps the code very clean, and makes it easy to maintain and evolve. And it means that you'll be

fully honoring the DRY principle.

Open the Movie.cs file and examine the Movie class. The System.ComponentModel.DataAnnotations namespace

provides formatting attributes in addition to the built-in set of validation attributes. We've already applied a

DataType enumeration value to the release date and to the price fields. The following code shows the ReleaseDate

and Price properties with the appropriate DataType attribute.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

[Display(Name = "Release Date")]
[DataType(DataType.Date)]
public DateTime ReleaseDate { get; set; }

[Range(1, 100)]
[DataType(DataType.Currency)]
public decimal Price { get; set; }

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
public DateTime ReleaseDate { get; set; }

NOTENOTE

The DataType attributes only provide hints for the view engine to format the data (and supplies elements/attributes

such as <a> for URL's and for email. You can use the RegularExpression

attribute to validate the format of the data. The DataType attribute is used to specify a data type that's more specific

than the database intrinsic type, they're not validation attributes. In this case we only want to keep track of the date,

not the time. The DataType Enumeration provides for many data types, such as Date, Time, PhoneNumber,

Currency, EmailAddress and more. The DataType attribute can also enable the application to automatically provide

type-specific features. For example, a mailto: link can be created for DataType.EmailAddress , and a date selector

can be provided for DataType.Date in browsers that support HTML5. The DataType attributes emit HTML 5 data-

(pronounced data dash) attributes that HTML 5 browsers can understand. The DataType attributes do notnot provide

any validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the data field is displayed

according to the default formats based on the server's CultureInfo .

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should also be applied when the value is displayed

in a text box for editing. (You might not want that for some fields — for example, for currency values, you probably

don't want the currency symbol in the text box for editing.)

You can use the DisplayFormat attribute by itself, but it's generally a good idea to use the DataType attribute. The

DataType attribute conveys the semantics of the data as opposed to how to render it on a screen, and provides the

following benefits that you don't get with DisplayFormat:

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate

currency symbol, email links, etc.)

By default, the browser will render data using the correct format based on your locale.

The DataType attribute can enable MVC to choose the right field template to render the data (the

DisplayFormat if used by itself uses the string template).

jQuery validation doesn't work with the Range attribute and DateTime . For example, the following code will always display

a client side validation error, even when the date is in the specified range:

[Range(typeof(DateTime), "1/1/1966", "1/1/2020")]

You will need to disable jQuery date validation to use the Range attribute with DateTime . It's generally not a good

practice to compile hard dates in your models, so using the Range attribute and DateTime is discouraged.

The following code shows combining attributes on one line:

public class Movie
{
 public int Id { get; set; }

 [StringLength(60, MinimumLength = 3)]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), StringLength(5)]
 public string Rating { get; set; }
}

Additional resources

In the next part of the series, we review the app and make some improvements to the automatically generated

Details and Delete methods.

Working with Forms

Globalization and localization

Introduction to Tag Helpers

Author Tag Helpers

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 10, examine the Details and Delete methods of
an ASP.NET Core app
9/22/2020 • 3 minutes to read • Edit Online

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

By Rick Anderson

Open the Movie controller and examine the Details method:

The MVC scaffolding engine that created this action method adds a comment showing an HTTP request that

invokes the method. In this case it's a GET request with three URL segments, the Movies controller, the Details

method, and an id value. Recall these segments are defined in Startup.cs.

EF makes it easy to search for data using the FirstOrDefaultAsync method. An important security feature built into

the method is that the code verifies that the search method has found a movie before it tries to do anything with it.

For example, a hacker could introduce errors into the site by changing the URL created by the links from

http://localhost:{PORT}/Movies/Details/1 to something like http://localhost:{PORT}/Movies/Details/12345 (or

some other value that doesn't represent an actual movie). If you didn't check for a null movie, the app would throw

an exception.

Examine the Delete and DeleteConfirmed methods.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/details.md
https://twitter.com/RickAndMSFT

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 var movie = await _context.Movie.FindAsync(id);
 _context.Movie.Remove(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
}

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{

Note that the HTTP GET Delete method doesn't delete the specified movie, it returns a view of the movie where you

can submit (HttpPost) the deletion. Performing a delete operation in response to a GET request (or for that matter,

performing an edit operation, create operation, or any other operation that changes data) opens up a security hole.

The [HttpPost] method that deletes the data is named DeleteConfirmed to give the HTTP POST method a unique

signature or name. The two method signatures are shown below:

The common language runtime (CLR) requires overloaded methods to have a unique parameter signature (same

method name but different list of parameters). However, here you need two Delete methods -- one for GET and

one for POST -- that both have the same parameter signature. (They both need to accept a single integer as a

parameter.)

There are two approaches to this problem, one is to give the methods different names. That's what the scaffolding

mechanism did in the preceding example. However, this introduces a small problem: ASP.NET maps segments of a

URL to action methods by name, and if you rename a method, routing normally wouldn't be able to find that

method. The solution is what you see in the example, which is to add the ActionName("Delete") attribute to the

DeleteConfirmed method. That attribute performs mapping for the routing system so that a URL that includes

/Delete/ for a POST request will find the DeleteConfirmed method.

Another common work around for methods that have identical names and signatures is to artificially change the

// POST: Movies/Delete/6
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Delete(int id, bool notUsed)

Publish to AzurePublish to Azure

signature of the POST method to include an extra (unused) parameter. That's what we did in a previous post when

we added the notUsed parameter. You could do the same thing here for the [HttpPost] Delete method:

For information on deploying to Azure, see Tutorial: Build an ASP.NET Core and SQL Database app in Azure App

Service.

P R E V I O U SP R E V I O U S

https://docs.microsoft.com/en-us/azure/app-service/tutorial-dotnetcore-sqldb-app

Build a Blazor todo list app
9/22/2020 • 4 minutes to read • Edit Online

Prerequisites

Create a todo list Blazor app

By Daniel Roth and Luke Latham

This tutorial shows you how to build and modify a Blazor app. You learn how to:

Create a todo list Blazor app project

Modify Razor components

Use event handling and data binding in components

Use routing in a Blazor app

At the end of this tutorial, you'll have a working todo list app.

.NET Core 3.1 SDK or later

dotnet new blazorserver -o TodoList

cd TodoList

dotnet new razorcomponent -n Todo -o Pages

IMPORTANTIMPORTANT

@page "/todo"

<h3>Todo</h3>

1. Create a new Blazor app named TodoList in a command shell:

The preceding command creates a folder named TodoList to hold the app. The TodoList folder is the root

folder of the project. Change directories to the TodoList folder with the following command:

2. Add a new Todo Razor component to the app in the Pages folder using the following command:

Razor component file names require a capitalized first letter. Open the Pages folder and confirm that the Todo

component file name starts with a capital letter T . The file name should be Todo.razor .

3. In Pages/Todo.razor provide the initial markup for the component:

4. Add the Todo component to the navigation bar.

The NavMenu component (Shared/NavMenu.razor) is used in the app's layout. Layouts are components that

allow you to avoid duplication of content in the app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/build-a-blazor-app.md
https://github.com/danroth27
https://github.com/guardrex
https://dotnet.microsoft.com/download/dotnet-core/3.1

<li class="nav-item px-3">
 <NavLink class="nav-link" href="todo">
 Todo
 </NavLink>

public class TodoItem
{
 public string Title { get; set; }
 public bool IsDone { get; set; }
}

@page "/todo"

<h3>Todo</h3>

 @foreach (var todo in todos)
 {
 @todo.Title
 }

@code {
 private IList<TodoItem> todos = new List<TodoItem>();
}

Add a <NavLink> element for the Todo component by adding the following list item markup below the

existing list items in the Shared/NavMenu.razor file:

5. Build and run the app by executing the dotnet run command in the command shell from the TodoList

folder. Visit the new Todo page to confirm that the link to the Todo component works.

6. Add a TodoItem.cs file to the root of the project (the TodoList folder) to hold a class that represents a todo

item. Use the following C# code for the TodoItem class:

7. Return to the Todo component (Pages/Todo.razor):

Add a field for the todo items in an @code block. The Todo component uses this field to maintain the

state of the todo list.

Add unordered list markup and a foreach loop to render each todo item as a list item ().

8. The app requires UI elements for adding todo items to the list. Add a text input (<input>) and a button (

<button>) below the unordered list (...):

@page "/todo"

<h3>Todo</h3>

 @foreach (var todo in todos)
 {
 @todo.Title
 }

<input placeholder="Something todo" />
<button>Add todo</button>

@code {
 private IList<TodoItem> todos = new List<TodoItem>();
}

<input placeholder="Something todo" />
<button @onclick="AddTodo">Add todo</button>

@code {
 private IList<TodoItem> todos = new List<TodoItem>();

 private void AddTodo()
 {
 // Todo: Add the todo
 }
}

private IList<TodoItem> todos = new List<TodoItem>();
private string newTodo;

<input placeholder="Something todo" @bind="newTodo" />

9. Stop the running app in the command shell. Many command shells accept the keyboard command Ctrl+c
to stop an app. Rebuild and run the app with the dotnet run command. When the Add todo button is

selected, nothing happens because an event handler isn't wired up to the button.

10. Add an AddTodo method to the Todo component and register it for button selections using the @onclick

attribute. The AddTodo C# method is called when the button is selected:

11. To get the title of the new todo item, add a newTodo string field at the top of the @code block and bind it to

the value of the text input using the bind attribute in the <input> element:

12. Update the AddTodo method to add the TodoItem with the specified title to the list. Clear the value of the text

input by setting newTodo to an empty string:

@page "/todo"

<h3>Todo</h3>

 @foreach (var todo in todos)
 {
 @todo.Title
 }

<input placeholder="Something todo" @bind="newTodo" />
<button @onclick="AddTodo">Add todo</button>

@code {
 private IList<TodoItem> todos = new List<TodoItem>();
 private string newTodo;

 private void AddTodo()
 {
 if (!string.IsNullOrWhiteSpace(newTodo))
 {
 todos.Add(new TodoItem { Title = newTodo });
 newTodo = string.Empty;
 }
 }
}

 @foreach (var todo in todos)
 {

 <input type="checkbox" @bind="todo.IsDone" />
 <input @bind="todo.Title" />

 }

<h3>Todo (@todos.Count(todo => !todo.IsDone))</h3>

13. Stop the running app in the command shell. Rebuild and run the app with the dotnet run command. Add

some todo items to the todo list to test the new code.

14. The title text for each todo item can be made editable, and a check box can help the user keep track of

completed items. Add a check box input for each todo item and bind its value to the IsDone property.

Change @todo.Title to an <input> element bound to @todo.Title :

15. To verify that these values are bound, update the <h3> header to show a count of the number of todo items

that aren't complete (IsDone is false).

16. The completed Todo component (Pages/Todo.razor):

Next steps

@page "/todo"

<h3>Todo (@todos.Count(todo => !todo.IsDone))</h3>

 @foreach (var todo in todos)
 {

 <input type="checkbox" @bind="todo.IsDone" />
 <input @bind="todo.Title" />

 }

<input placeholder="Something todo" @bind="newTodo" />
<button @onclick="AddTodo">Add todo</button>

@code {
 private IList<TodoItem> todos = new List<TodoItem>();
 private string newTodo;

 private void AddTodo()
 {
 if (!string.IsNullOrWhiteSpace(newTodo))
 {
 todos.Add(new TodoItem { Title = newTodo });
 newTodo = string.Empty;
 }
 }
}

17. Stop the running app in the command shell. Rebuild and run the app with the dotnet run command. Add

todo items to test the new code.

In this tutorial, you learned how to:

Create a todo list Blazor app project

Modify Razor components

Use event handling and data binding in components

Use routing in a Blazor app

Learn about tooling for ASP.NET Core Blazor :

Tooling for ASP.NET Core Blazor

Tutorial: Create a web API with ASP.NET Core
9/22/2020 • 47 minutes to read • Edit Online

Overview

A P IA P I DESC RIP T IO NDESC RIP T IO N REQ UEST B O DYREQ UEST B O DY RESP O N SE B O DYRESP O N SE B O DY

GET /api/TodoItems Get all to-do items None Array of to-do items

GET /api/TodoItems/{id} Get an item by ID None To-do item

POST /api/TodoItems Add a new item To-do item To-do item

PUT /api/TodoItems/{id} Update an existing item To-do item None

DELETE
/api/TodoItems/{id}

Delete an item None None

By Rick Anderson, Kirk Larkin, and Mike Wasson

This tutorial teaches the basics of building a web API with ASP.NET Core.

In this tutorial, you learn how to:

Create a web API project.

Add a model class and a database context.

Scaffold a controller with CRUD methods.

Configure routing, URL paths, and return values.

Call the web API with Postman.

At the end, you have a web API that can manage "to-do" items stored in a database.

This tutorial creates the following API:

The following diagram shows the design of the app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-web-api.md
https://twitter.com/RickAndMSFT
https://twitter.com/serpent5
https://github.com/mikewasson

Prerequisites

Create a web project

Test the projectTest the project

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.8 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET 5.0 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the FileFile menu, select NewNew > ProjectProject.

Select the ASP.NET Core Web ApplicationASP.NET Core Web Application template and click NextNext.

Name the project TodoApi and click CreateCreate.

In the Create a new ASP.NET Core Web ApplicationCreate a new ASP.NET Core Web Application dialog, confirm that .NET Core.NET Core and ASP.NET Core 5.0ASP.NET Core 5.0

are selected. Select the APIAPI template and click CreateCreate.

The project template creates a WeatherForecast API with support for Swagger.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run without the debugger.

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet/5.0

Visual Studio displays the following dialog:

Select YesYes if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes if you agree to trust the development certificate.

Visual Studio launches:

The IIS Express web server.

The default browser and navigates to https://localhost:<port>/https://localhost:5001/swagger/index.html ,

where <port> is a randomly chosen port number.

The Swagger page /swagger/index.html is displayed. Select GETGET > Tr y it outTr y it out > ExecuteExecute. The page displays:

The Curl command to test the WeatherForecast API.

The URL to test the WeatherForecast API.

The response code, body, and headers.

A drop down list box with media types and the example value and schema.

Swagger is used to generate useful documentation and help pages for web APIs. This tutorial focuses on creating a

web API. For more information on Swagger, see ASP.NET Core Web API help pages with Swagger / OpenAPI.

Copy and past the Request URLRequest URL in the browser : https://localhost:<port>/WeatherForecast

JSON similar to the following is returned:

https://curl.haxx.se/

[
 {
 "date": "2019-07-16T19:04:05.7257911-06:00",
 "temperatureC": 52,
 "temperatureF": 125,
 "summary": "Mild"
 },
 {
 "date": "2019-07-17T19:04:05.7258461-06:00",
 "temperatureC": 36,
 "temperatureF": 96,
 "summary": "Warm"
 },
 {
 "date": "2019-07-18T19:04:05.7258467-06:00",
 "temperatureC": 39,
 "temperatureF": 102,
 "summary": "Cool"
 },
 {
 "date": "2019-07-19T19:04:05.7258471-06:00",
 "temperatureC": 10,
 "temperatureF": 49,
 "summary": "Bracing"
 },
 {
 "date": "2019-07-20T19:04:05.7258474-06:00",
 "temperatureC": -1,
 "temperatureF": 31,
 "summary": "Chilly"
 }
]

Update the launchUrlUpdate the launchUrl

"launchUrl": "api/TodoItems",

Add a model class

In Properties\launchSettings.json, update launchUrl from "swagger" to "api/TodoItems" :

Because Swagger has been removed, the preceding markup changes the URL that is launched to the GET method of

the controller added in the following sections.

A model is a set of classes that represent the data that the app manages. The model for this app is a single

TodoItem class.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the project. Select AddAdd > New FolderNew Folder . Name the folder Models.

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoItem and select AddAdd.

Replace the template code with the following:

namespace TodoApi.Models
{
 public class TodoItem
 {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 }
}

Add a database context

Add NuGet packagesAdd NuGet packages

The Id property functions as the unique key in a relational database.

Model classes can go anywhere in the project, but the Models folder is used by convention.

The database context is the main class that coordinates Entity Framework functionality for a data model. This class is

created by deriving from the Microsoft.EntityFrameworkCore.DbContext class.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From the ToolsTools menu, select NuGet Package Manager > Manage NuGet Packages for SolutionNuGet Package Manager > Manage NuGet Packages for Solution.

Select the BrowseBrowse tab, and then enter **Microsoft. EntityFrameworkCore.SqlSer verEntityFrameworkCore.SqlSer ver in the search box.

Select the Include prereleaseInclude prerelease checkbox so the 5.0 RC version is available.

Select Microsoft.EntityFrameworkCore.SqlSer verMicrosoft.EntityFrameworkCore.SqlSer ver in the left pane.

Select the ProjectProject check box in the right pane and then select InstallInstall .

Use the preceding instructions to add the Microsoft.EntityFrameworkCore.InMemor yMicrosoft.EntityFrameworkCore.InMemor y NuGet package.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext

Add the TodoContext database context

Register the database context

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoContext and click AddAdd.

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
 public class TodoContext : DbContext
 {
 public TodoContext(DbContextOptions<TodoContext> options)
 : base(options)
 {
 }

 public DbSet<TodoItem> TodoItems { get; set; }
 }
}

Enter the following code:

In ASP.NET Core, services such as the DB context must be registered with the dependency injection (DI) container.

The container provides the service to controllers.

Update Startup.cs with the following code:

// Unused usings removed
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.EntityFrameworkCore;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddControllers();
 }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseHttpsRedirection();
 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
 }
 }
}

Scaffold a controller

The preceding code:

Removes the Swagger calls.

Removes unused using declarations.

Adds the database context to the DI container.

Specifies that the database context will use an in-memory database.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Right-click the Controllers folder.

Select AddAdd > New Scaffolded ItemNew Scaffolded Item.

Update the PostTodoItem create method

// POST: api/TodoItems
[HttpPost]
public async Task<ActionResult<TodoItem>> PostTodoItem(TodoItem todoItem)
{
 _context.TodoItems.Add(todoItem);
 await _context.SaveChangesAsync();

 //return CreatedAtAction("GetTodoItem", new { id = todoItem.Id }, todoItem);
 return CreatedAtAction(nameof(GetTodoItem), new { id = todoItem.Id }, todoItem);
}

Install PostmanInstall Postman

Select API Controller with actions, using Entity FrameworkAPI Controller with actions, using Entity Framework , and then select AddAdd.

In the Add API Controller with actions, using Entity FrameworkAdd API Controller with actions, using Entity Framework dialog:

Select TodoItem (TodoApi.Models)TodoItem (TodoApi.Models) in the Model classModel class .

Select TodoContext (TodoApi.Models)TodoContext (TodoApi.Models) in the Data context classData context class .

Select AddAdd.

The generated code:

Marks the class with the [ApiController] attribute. This attribute indicates that the controller responds to web

API requests. For information about specific behaviors that the attribute enables, see Create web APIs with

ASP.NET Core.

Uses DI to inject the database context (TodoContext) into the controller. The database context is used in each of

the CRUD methods in the controller.

The ASP.NET Core templates for :

Controllers with views include [action] in the route template.

API controllers don't include [action] in the route template.

When the [action] token isn't in the route template, the action name is excluded from the route. That is, the

action's associated method name isn't used in the matching route.

Replace the return statement in the PostTodoItem to use the nameof operator :

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. The method gets the value

of the to-do item from the body of the HTTP request.

For more information, see Attribute routing with Http[Verb] attributes.

The CreatedAtAction method:

Returns an HTTP 201 status code if successful. HTTP 201 is the standard response for an HTTP POST method that

creates a new resource on the server.

Adds a Location header to the response. The Location header specifies the URI of the newly created to-do item.

For more information, see 10.2.2 201 Created.

References the GetTodoItem action to create the Location header's URI. The C# nameof keyword is used to

avoid hard-coding the action name in the CreatedAtAction call.

This tutorial uses Postman to test the web API.

Install Postman

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://wikipedia.org/wiki/Create,_read,_update_and_delete
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/nameof
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://developer.mozilla.org/docs/Web/HTTP/Status/201
https://developer.mozilla.org/docs/Web/HTTP/Headers/Location
https://developer.mozilla.org/docs/Glossary/URI
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.getpostman.com/downloads/

Test PostTodoItem with PostmanTest PostTodoItem with Postman

Test the location header URITest the location header URI

Start the web app.

Start Postman.

Disable SSL cer tificate ver ificationSSL cer tificate ver ification

From FileFile > SettingsSettings (GeneralGeneral tab), disable SSL cer tificate ver ificationSSL cer tificate ver ification.

WARNINGWARNING
Re-enable SSL certificate verification after testing the controller.

{
 "name":"walk dog",
 "isComplete":true
}

Create a new request.

Set the HTTP method to POST .

Set the URI to https://localhost:<port>/api/TodoItems . For example, https://localhost:5001/api/TodoItems .

Select the BodyBody tab.

Select the rawraw radio button.

Set the type to JSON (application/json)JSON (application/json) .

In the request body enter JSON for a to-do item:

Select SendSend.

The location header URI can be tested in the browser. Copy and paste the location header URI into the browser.

To test in Postman:

Select the HeadersHeaders tab in the ResponseResponse pane.

Examine the GET methods

[
 {
 "id": 1,
 "name": "Item1",
 "isComplete": false
 }
]

Test Get with PostmanTest Get with Postman

Copy the LocationLocation header value:

Set the HTTP method to GET .

Set the URI to https://localhost:<port>/api/TodoItems/1 . For example,

https://localhost:5001/api/TodoItems/1 .

Select SendSend.

Two GET endpoints are implemented:

GET /api/TodoItems

GET /api/TodoItems/{id}

Test the app by calling the two endpoints from a browser or Postman. For example:

https://localhost:5001/api/TodoItems

https://localhost:5001/api/TodoItems/1

A response similar to the following is produced by the call to GetTodoItems :

Create a new request.

Set the HTTP method to GETGET.

Set the request URI to https://localhost:<port>/api/TodoItems . For example,

https://localhost:5001/api/TodoItems .

Routing and URL paths

// GET: api/TodoItems/5
[HttpGet("{id}")]
public async Task<ActionResult<TodoItem>> GetTodoItem(long id)
{
 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 return NotFound();
 }

 return todoItem;
}

Return values

Set Two pane viewTwo pane view in Postman.

Select SendSend.

This app uses an in-memory database. If the app is stopped and started, the preceding GET request will not return

any data. If no data is returned, POST data to the app.

The [HttpGet] attribute denotes a method that responds to an HTTP GET request. The URL path for each method is

constructed as follows:

[Route("api/[controller]")]
[ApiController]
public class TodoItemsController : ControllerBase
{
 private readonly TodoContext _context;

 public TodoItemsController(TodoContext context)
 {
 _context = context;
 }

Start with the template string in the controller's Route attribute:

Replace [controller] with the name of the controller, which by convention is the controller class name

minus the "Controller" suffix. For this sample, the controller class name is TodoItemsTodoItemsController, so the

controller name is "TodoItems". ASP.NET Core routing is case insensitive.

If the [HttpGet] attribute has a route template (for example, [HttpGet("products")]), append that to the

path. This sample doesn't use a template. For more information, see Attribute routing with Http[Verb]

attributes.

In the following GetTodoItem method, "{id}" is a placeholder variable for the unique identifier of the to-do item.

When GetTodoItem is invoked, the value of "{id}" in the URL is provided to the method in its id parameter.

The return type of the GetTodoItems and GetTodoItem methods is ActionResult<T> type. ASP.NET Core

automatically serializes the object to JSON and writes the JSON into the body of the response message. The

response code for this return type is 200 OK, assuming there are no unhandled exceptions. Unhandled exceptions

are translated into 5xx errors.

ActionResult return types can represent a wide range of HTTP status codes. For example, GetTodoItem can return

two different status values:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpgetattribute
https://www.json.org/
https://developer.mozilla.org/docs/Web/HTTP/Status/200

The PutTodoItem method

// PUT: api/TodoItems/5
[HttpPut("{id}")]
public async Task<IActionResult> PutTodoItem(long id, TodoItem todoItem)
{
 if (id != todoItem.Id)
 {
 return BadRequest();
 }

 _context.Entry(todoItem).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!TodoItemExists(id))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return NoContent();
}

Test the PutTodoItem methodTest the PutTodoItem method

 {
 "Id":1,
 "name":"feed fish",
 "isComplete":true
 }

If no item matches the requested ID, the method returns a 404 status NotFound error code.

Otherwise, the method returns 200 with a JSON response body. Returning item results in an HTTP 200

response.

Examine the PutTodoItem method:

PutTodoItem is similar to PostTodoItem , except it uses HTTP PUT. The response is 204 (No Content). According to

the HTTP specification, a PUT request requires the client to send the entire updated entity, not just the changes. To

support partial updates, use HTTP PATCH.

If you get an error calling PutTodoItem , call GET to ensure there's an item in the database.

This sample uses an in-memory database that must be initialized each time the app is started. There must be an

item in the database before you make a PUT call. Call GET to ensure there's an item in the database before making a

PUT call.

Update the to-do item that has Id = 1 and set its name to "feed fish" :

The following image shows the Postman update:

https://developer.mozilla.org/docs/Web/HTTP/Status/404
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppatchattribute

The DeleteTodoItem method

// DELETE: api/TodoItems/5
[HttpDelete("{id}")]
public async Task<IActionResult> DeleteTodoItem(long id)
{
 var todoItem = await _context.TodoItems.FindAsync(id);
 if (todoItem == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todoItem);
 await _context.SaveChangesAsync();

 return NoContent();
}

Test the DeleteTodoItem methodTest the DeleteTodoItem method

Prevent over-posting

Examine the DeleteTodoItem method:

Use Postman to delete a to-do item:

Set the method to DELETE .

Set the URI of the object to delete (for example https://localhost:5001/api/TodoItems/1).

Select SendSend.

Currently the sample app exposes the entire TodoItem object. Production apps typically limit the data that's input

and returned using a subset of the model. There are multiple reasons behind this and security is a major one. The

subset of a model is usually referred to as a Data Transfer Object (DTO), input model, or view model. DTODTO is used in

this article.

namespace TodoApi.Models
{
 public class TodoItem
 {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 public string Secret { get; set; }
 }
}

public class TodoItemDTO
{
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
}

// GET: api/TodoItems
[HttpGet]
public async Task<ActionResult<IEnumerable<TodoItemDTO>>> GetTodoItems()
{
 return await _context.TodoItems
 .Select(x => ItemToDTO(x))
 .ToListAsync();
}

[HttpGet("{id}")]
public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
{
 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 return NotFound();
 }

 return ItemToDTO(todoItem);
}

[HttpPut("{id}")]
public async Task<IActionResult> UpdateTodoItem(long id, TodoItemDTO todoItemDTO)
{
 if (id != todoItemDTO.Id)
 {

A DTO may be used to:

Prevent over-posting.

Hide properties that clients are not supposed to view.

Omit some properties in order to reduce payload size.

Flatten object graphs that contain nested objects. Flattened object graphs can be more convenient for clients.

To demonstrate the DTO approach, update the TodoItem class to include a secret field:

The secret field needs to be hidden from this app, but an administrative app could choose to expose it.

Verify you can post and get the secret field.

Create a DTO model:

Update the TodoItemsController to use TodoItemDTO :

 {
 return BadRequest();
 }

 var todoItem = await _context.TodoItems.FindAsync(id);
 if (todoItem == null)
 {
 return NotFound();
 }

 todoItem.Name = todoItemDTO.Name;
 todoItem.IsComplete = todoItemDTO.IsComplete;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException) when (!TodoItemExists(id))
 {
 return NotFound();
 }

 return NoContent();
}

[HttpPost]
public async Task<ActionResult<TodoItemDTO>> CreateTodoItem(TodoItemDTO todoItemDTO)
{
 var todoItem = new TodoItem
 {
 IsComplete = todoItemDTO.IsComplete,
 Name = todoItemDTO.Name
 };

 _context.TodoItems.Add(todoItem);
 await _context.SaveChangesAsync();

 return CreatedAtAction(
 nameof(GetTodoItem),
 new { id = todoItem.Id },
 ItemToDTO(todoItem));
}

[HttpDelete("{id}")]
public async Task<IActionResult> DeleteTodoItem(long id)
{
 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todoItem);
 await _context.SaveChangesAsync();

 return NoContent();
}

private bool TodoItemExists(long id) =>
 _context.TodoItems.Any(e => e.Id == id);

private static TodoItemDTO ItemToDTO(TodoItem todoItem) =>
 new TodoItemDTO
 {
 Id = todoItem.Id,
 Name = todoItem.Name,
 IsComplete = todoItem.IsComplete
 };

Call the web API with JavaScript

Overview

A P IA P I DESC RIP T IO NDESC RIP T IO N REQ UEST B O DYREQ UEST B O DY RESP O N SE B O DYRESP O N SE B O DY

GET /api/TodoItems Get all to-do items None Array of to-do items

GET /api/TodoItems/{id} Get an item by ID None To-do item

POST /api/TodoItems Add a new item To-do item To-do item

PUT /api/TodoItems/{id} Update an existing item To-do item None

DELETE
/api/TodoItems/{id}

Delete an item None None

Prerequisites

Verify you can't post or get the secret field.

See Tutorial: Call an ASP.NET Core web API with JavaScript.

In this tutorial, you learn how to:

Create a web API project.

Add a model class and a database context.

Scaffold a controller with CRUD methods.

Configure routing, URL paths, and return values.

Call the web API with Postman.

At the end, you have a web API that can manage "to-do" items stored in a database.

This tutorial creates the following API:

The following diagram shows the design of the app.

Visual Studio

Create a web project

Test the APITest the API

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the FileFile menu, select NewNew > ProjectProject.

Select the ASP.NET Core Web ApplicationASP.NET Core Web Application template and click NextNext.

Name the project TodoApi and click CreateCreate.

In the Create a new ASP.NET Core Web ApplicationCreate a new ASP.NET Core Web Application dialog, confirm that .NET Core.NET Core and ASP.NET Core 3.1ASP.NET Core 3.1

are selected. Select the APIAPI template and click CreateCreate.

The project template creates a WeatherForecast API. Call the Get method from a browser to test the app.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run the app. Visual Studio launches a browser and navigates to

https://localhost:<port>/WeatherForecast , where <port> is a randomly chosen port number.

If you get a dialog box that asks if you should trust the IIS Express certificate, select YesYes . In the Security WarningSecurity Warning

dialog that appears next, select YesYes .

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1

[
 {
 "date": "2019-07-16T19:04:05.7257911-06:00",
 "temperatureC": 52,
 "temperatureF": 125,
 "summary": "Mild"
 },
 {
 "date": "2019-07-17T19:04:05.7258461-06:00",
 "temperatureC": 36,
 "temperatureF": 96,
 "summary": "Warm"
 },
 {
 "date": "2019-07-18T19:04:05.7258467-06:00",
 "temperatureC": 39,
 "temperatureF": 102,
 "summary": "Cool"
 },
 {
 "date": "2019-07-19T19:04:05.7258471-06:00",
 "temperatureC": 10,
 "temperatureF": 49,
 "summary": "Bracing"
 },
 {
 "date": "2019-07-20T19:04:05.7258474-06:00",
 "temperatureC": -1,
 "temperatureF": 31,
 "summary": "Chilly"
 }
]

Add a model class

public class TodoItem
{
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
}

JSON similar to the following is returned:

A model is a set of classes that represent the data that the app manages. The model for this app is a single

TodoItem class.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the project. Select AddAdd > New FolderNew Folder . Name the folder Models.

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoItem and select AddAdd.

Replace the template code with the following code:

The Id property functions as the unique key in a relational database.

Model classes can go anywhere in the project, but the Models folder is used by convention.

Add a database context

Add NuGet packagesAdd NuGet packages

Add the TodoContext database context

The database context is the main class that coordinates Entity Framework functionality for a data model. This class is

created by deriving from the Microsoft.EntityFrameworkCore.DbContext class.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From the ToolsTools menu, select NuGet Package Manager > Manage NuGet Packages for SolutionNuGet Package Manager > Manage NuGet Packages for Solution.

Select the BrowseBrowse tab, and then enter Microsoft.EntityFrameworkCore.SqlSer verMicrosoft.EntityFrameworkCore.SqlSer ver in the search box.

Select Microsoft.EntityFrameworkCore.SqlSer verMicrosoft.EntityFrameworkCore.SqlSer ver in the left pane.

Select the ProjectProject check box in the right pane and then select InstallInstall .

Use the preceding instructions to add the Microsoft.EntityFrameworkCore.InMemor yMicrosoft.EntityFrameworkCore.InMemor y NuGet package.

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoContext and click AddAdd.

Enter the following code:

Register the database context

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
 public class TodoContext : DbContext
 {
 public TodoContext(DbContextOptions<TodoContext> options)
 : base(options)
 {
 }

 public DbSet<TodoItem> TodoItems { get; set; }
 }
}

In ASP.NET Core, services such as the DB context must be registered with the dependency injection (DI) container.

The container provides the service to controllers.

Update Startup.cs with the following highlighted code:

// Unused usings removed
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.EntityFrameworkCore;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddControllers();
 }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseHttpsRedirection();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
 }
 }
}

Scaffold a controller

The preceding code:

Removes unused using declarations.

Adds the database context to the DI container.

Specifies that the database context will use an in-memory database.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Right-click the Controllers folder.

Select AddAdd > New Scaffolded ItemNew Scaffolded Item.

Select API Controller with actions, using Entity FrameworkAPI Controller with actions, using Entity Framework , and then select AddAdd.

Examine the PostTodoItem create method

// POST: api/TodoItems
[HttpPost]
public async Task<ActionResult<TodoItem>> PostTodoItem(TodoItem todoItem)
{
 _context.TodoItems.Add(todoItem);
 await _context.SaveChangesAsync();

 //return CreatedAtAction("GetTodoItem", new { id = todoItem.Id }, todoItem);
 return CreatedAtAction(nameof(GetTodoItem), new { id = todoItem.Id }, todoItem);
}

Install PostmanInstall Postman

In the Add API Controller with actions, using Entity FrameworkAdd API Controller with actions, using Entity Framework dialog:

Select TodoItem (TodoApi.Models)TodoItem (TodoApi.Models) in the Model classModel class .

Select TodoContext (TodoApi.Models)TodoContext (TodoApi.Models) in the Data context classData context class .

Select AddAdd.

The generated code:

Marks the class with the [ApiController] attribute. This attribute indicates that the controller responds to web

API requests. For information about specific behaviors that the attribute enables, see Create web APIs with

ASP.NET Core.

Uses DI to inject the database context (TodoContext) into the controller. The database context is used in each of

the CRUD methods in the controller.

The ASP.NET Core templates for :

Controllers with views include [action] in the route template.

API controllers don't include [action] in the route template.

When the [action] token isn't in the route template, the action name is excluded from the route. That is, the

action's associated method name isn't used in the matching route.

Replace the return statement in the PostTodoItem to use the nameof operator :

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. The method gets the value

of the to-do item from the body of the HTTP request.

For more information, see Attribute routing with Http[Verb] attributes.

The CreatedAtAction method:

Returns an HTTP 201 status code if successful. HTTP 201 is the standard response for an HTTP POST method that

creates a new resource on the server.

Adds a Location header to the response. The Location header specifies the URI of the newly created to-do item.

For more information, see 10.2.2 201 Created.

References the GetTodoItem action to create the Location header's URI. The C# nameof keyword is used to

avoid hard-coding the action name in the CreatedAtAction call.

This tutorial uses Postman to test the web API.

Install Postman

Start the web app.

Start Postman.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://wikipedia.org/wiki/Create,_read,_update_and_delete
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/nameof
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://developer.mozilla.org/docs/Web/HTTP/Headers/Location
https://developer.mozilla.org/docs/Glossary/URI
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.getpostman.com/downloads/

Test PostTodoItem with PostmanTest PostTodoItem with Postman

Test the location header URI with PostmanTest the location header URI with Postman

Disable SSL cer tificate ver ificationSSL cer tificate ver ification

From FileFile > SettingsSettings (GeneralGeneral tab), disable SSL cer tificate ver ificationSSL cer tificate ver ification.

WARNINGWARNING
Re-enable SSL certificate verification after testing the controller.

{
 "name":"walk dog",
 "isComplete":true
}

Create a new request.

Set the HTTP method to POST .

Set the URI to https://localhost:<port>/api/TodoItems . For example, https://localhost:5001/api/TodoItems .

Select the BodyBody tab.

Select the rawraw radio button.

Set the type to JSON (application/json)JSON (application/json) .

In the request body enter JSON for a to-do item:

Select SendSend.

Select the HeadersHeaders tab in the ResponseResponse pane.

Copy the LocationLocation header value:

Examine the GET methods

[
 {
 "id": 1,
 "name": "Item1",
 "isComplete": false
 }
]

Test Get with PostmanTest Get with Postman

Set the HTTP method to GET .

Set the URI to https://localhost:<port>/api/TodoItems/1 . For example,

https://localhost:5001/api/TodoItems/1 .

Select SendSend.

These methods implement two GET endpoints:

GET /api/TodoItems

GET /api/TodoItems/{id}

Test the app by calling the two endpoints from a browser or Postman. For example:

https://localhost:5001/api/TodoItems

https://localhost:5001/api/TodoItems/1

A response similar to the following is produced by the call to GetTodoItems :

Create a new request.

Set the HTTP method to GETGET.

Set the request URI to https://localhost:<port>/api/TodoItems . For example,

https://localhost:5001/api/TodoItems .

Set Two pane viewTwo pane view in Postman.

Select SendSend.

Routing and URL paths

// GET: api/TodoItems/5
[HttpGet("{id}")]
public async Task<ActionResult<TodoItem>> GetTodoItem(long id)
{
 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 return NotFound();
 }

 return todoItem;
}

Return values

This app uses an in-memory database. If the app is stopped and started, the preceding GET request will not return

any data. If no data is returned, POST data to the app.

The [HttpGet] attribute denotes a method that responds to an HTTP GET request. The URL path for each method is

constructed as follows:

[Route("api/[controller]")]
[ApiController]
public class TodoItemsController : ControllerBase
{
 private readonly TodoContext _context;

 public TodoItemsController(TodoContext context)
 {
 _context = context;
 }

Start with the template string in the controller's Route attribute:

Replace [controller] with the name of the controller, which by convention is the controller class name

minus the "Controller" suffix. For this sample, the controller class name is TodoItemsTodoItemsController, so the

controller name is "TodoItems". ASP.NET Core routing is case insensitive.

If the [HttpGet] attribute has a route template (for example, [HttpGet("products")]), append that to the

path. This sample doesn't use a template. For more information, see Attribute routing with Http[Verb]

attributes.

In the following GetTodoItem method, "{id}" is a placeholder variable for the unique identifier of the to-do item.

When GetTodoItem is invoked, the value of "{id}" in the URL is provided to the method in its id parameter.

The return type of the GetTodoItems and GetTodoItem methods is ActionResult<T> type. ASP.NET Core

automatically serializes the object to JSON and writes the JSON into the body of the response message. The

response code for this return type is 200, assuming there are no unhandled exceptions. Unhandled exceptions are

translated into 5xx errors.

ActionResult return types can represent a wide range of HTTP status codes. For example, GetTodoItem can return

two different status values:

If no item matches the requested ID, the method returns a 404 NotFound error code.

Otherwise, the method returns 200 with a JSON response body. Returning item results in an HTTP 200

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpgetattribute
https://www.json.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound

The PutTodoItem method

// PUT: api/TodoItems/5
[HttpPut("{id}")]
public async Task<IActionResult> PutTodoItem(long id, TodoItem todoItem)
{
 if (id != todoItem.Id)
 {
 return BadRequest();
 }

 _context.Entry(todoItem).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!TodoItemExists(id))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return NoContent();
}

Test the PutTodoItem methodTest the PutTodoItem method

 {
 "Id":1,
 "name":"feed fish",
 "isComplete":true
 }

response.

Examine the PutTodoItem method:

PutTodoItem is similar to PostTodoItem , except it uses HTTP PUT. The response is 204 (No Content). According to

the HTTP specification, a PUT request requires the client to send the entire updated entity, not just the changes. To

support partial updates, use HTTP PATCH.

If you get an error calling PutTodoItem , call GET to ensure there's an item in the database.

This sample uses an in-memory database that must be initialized each time the app is started. There must be an

item in the database before you make a PUT call. Call GET to ensure there's an item in the database before making a

PUT call.

Update the to-do item that has Id = 1 and set its name to "feed fish":

The following image shows the Postman update:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppatchattribute

The DeleteTodoItem method

// DELETE: api/TodoItems/5
[HttpDelete("{id}")]
public async Task<ActionResult<TodoItem>> DeleteTodoItem(long id)
{
 var todoItem = await _context.TodoItems.FindAsync(id);
 if (todoItem == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todoItem);
 await _context.SaveChangesAsync();

 return todoItem;
}

Test the DeleteTodoItem methodTest the DeleteTodoItem method

Prevent over-posting

Examine the DeleteTodoItem method:

Use Postman to delete a to-do item:

Set the method to DELETE .

Set the URI of the object to delete (for example https://localhost:5001/api/TodoItems/1).

Select SendSend.

Currently the sample app exposes the entire TodoItem object. Production apps typically limit the data that's input

and returned using a subset of the model. There are multiple reasons behind this and security is a major one. The

subset of a model is usually referred to as a Data Transfer Object (DTO), input model, or view model. DTODTO is used in

this article.

public class TodoItem
{
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 public string Secret { get; set; }
}

public class TodoItemDTO
{
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
}

 [HttpGet]
 public async Task<ActionResult<IEnumerable<TodoItemDTO>>> GetTodoItems()
 {
 return await _context.TodoItems
 .Select(x => ItemToDTO(x))
 .ToListAsync();
 }

 [HttpGet("{id}")]
 public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
 {
 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 return NotFound();
 }

 return ItemToDTO(todoItem);
 }

 [HttpPut("{id}")]
 public async Task<IActionResult> UpdateTodoItem(long id, TodoItemDTO todoItemDTO)
 {
 if (id != todoItemDTO.Id)
 {
 return BadRequest();
 }

 var todoItem = await _context.TodoItems.FindAsync(id);

A DTO may be used to:

Prevent over-posting.

Hide properties that clients are not supposed to view.

Omit some properties in order to reduce payload size.

Flatten object graphs that contain nested objects. Flattened object graphs can be more convenient for clients.

To demonstrate the DTO approach, update the TodoItem class to include a secret field:

The secret field needs to be hidden from this app, but an administrative app could choose to expose it.

Verify you can post and get the secret field.

Create a DTO model:

Update the TodoItemsController to use TodoItemDTO :

 var todoItem = await _context.TodoItems.FindAsync(id);
 if (todoItem == null)
 {
 return NotFound();
 }

 todoItem.Name = todoItemDTO.Name;
 todoItem.IsComplete = todoItemDTO.IsComplete;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException) when (!TodoItemExists(id))
 {
 return NotFound();
 }

 return NoContent();
 }

 [HttpPost]
 public async Task<ActionResult<TodoItemDTO>> CreateTodoItem(TodoItemDTO todoItemDTO)
 {
 var todoItem = new TodoItem
 {
 IsComplete = todoItemDTO.IsComplete,
 Name = todoItemDTO.Name
 };

 _context.TodoItems.Add(todoItem);
 await _context.SaveChangesAsync();

 return CreatedAtAction(
 nameof(GetTodoItem),
 new { id = todoItem.Id },
 ItemToDTO(todoItem));
 }

 [HttpDelete("{id}")]
 public async Task<IActionResult> DeleteTodoItem(long id)
 {
 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todoItem);
 await _context.SaveChangesAsync();

 return NoContent();
 }

 private bool TodoItemExists(long id) =>
 _context.TodoItems.Any(e => e.Id == id);

 private static TodoItemDTO ItemToDTO(TodoItem todoItem) =>
 new TodoItemDTO
 {
 Id = todoItem.Id,
 Name = todoItem.Name,
 IsComplete = todoItem.IsComplete
 };
}

Verify you can't post or get the secret field.

Call the web API with JavaScript

Overview 2.1

A P IA P I DESC RIP T IO NDESC RIP T IO N REQ UEST B O DYREQ UEST B O DY RESP O N SE B O DYRESP O N SE B O DY

GET /api/TodoItems Get all to-do items None Array of to-do items

GET /api/TodoItems/{id} Get an item by ID None To-do item

POST /api/TodoItems Add a new item To-do item To-do item

PUT /api/TodoItems/{id} Update an existing item To-do item None

DELETE /api/TodoItems/{id}

Delete an item None None

Prerequisites 2.1

See Tutorial: Call an ASP.NET Core web API with JavaScript.

In this tutorial, you learn how to:

Create a web API project.

Add a model class and a database context.

Add a controller.

Add CRUD methods.

Configure routing and URL paths.

Specify return values.

Call the web API with Postman.

Call the web API with JavaScript.

At the end, you have a web API that can manage "to-do" items stored in a relational database.

This tutorial creates the following API:

The following diagram shows the design of the app.

Visual Studio

Visual Studio Code

WARNINGWARNING

Create a web project 2.1

Test the API 2.1Test the API 2.1

Visual Studio for Mac

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't work with

Visual Studio.

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the FileFile menu, select NewNew > ProjectProject.

Select the ASP.NET Core Web ApplicationASP.NET Core Web Application template and click NextNext.

Name the project TodoApi and click CreateCreate.

In the Create a new ASP.NET Core Web ApplicationCreate a new ASP.NET Core Web Application dialog, confirm that .NET Core.NET Core and ASP.NET Core 2.2ASP.NET Core 2.2

are selected. Select the APIAPI template and click CreateCreate. Don'tDon't select Enable Docker Suppor tEnable Docker Suppor t.

The project template creates a values API. Call the Get method from a browser to test the app.

Visual Studio

Visual Studio Code

Visual Studio for Mac

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124

["value1","value2"]

Add a model class 2.1

namespace TodoApi.Models
{
 public class TodoItem
 {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 }
}

Add a database context 2.1

Press Ctrl+F5 to run the app. Visual Studio launches a browser and navigates to

https://localhost:<port>/api/values , where <port> is a randomly chosen port number.

If you get a dialog box that asks if you should trust the IIS Express certificate, select YesYes . In the Security WarningSecurity Warning

dialog that appears next, select YesYes .

The following JSON is returned:

A model is a set of classes that represent the data that the app manages. The model for this app is a single

TodoItem class.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the project. Select AddAdd > New FolderNew Folder . Name the folder Models.

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoItem and select AddAdd.

Replace the template code with the following code:

The Id property functions as the unique key in a relational database.

Model classes can go anywhere in the project, but the Models folder is used by convention.

The database context is the main class that coordinates Entity Framework functionality for a data model. This class is

created by deriving from the Microsoft.EntityFrameworkCore.DbContext class.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoContext and click AddAdd.

Replace the template code with the following code:

Register the database context 2.1

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
 public class TodoContext : DbContext
 {
 public TodoContext(DbContextOptions<TodoContext> options)
 : base(options)
 {
 }

 public DbSet<TodoItem> TodoItems { get; set; }
 }
}

In ASP.NET Core, services such as the DB context must be registered with the dependency injection (DI) container.

The container provides the service to controllers.

Update Startup.cs with the following highlighted code:

// Unused usings removed
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 // This method gets called by the runtime. Use this method to add services to the
 //container.
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<TodoContext>(opt =>
 opt.UseInMemoryDatabase("TodoList"));
 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
 }

 // This method gets called by the runtime. Use this method to configure the HTTP
 //request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 // The default HSTS value is 30 days. You may want to change this for
 // production scenarios, see https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseMvc();
 }
 }
}

Add a controller 2.1

The preceding code:

Removes unused using declarations.

Adds the database context to the DI container.

Specifies that the database context will use an in-memory database.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Right-click the Controllers folder.

Select AddAdd > New ItemNew Item.

In the Add New ItemAdd New Item dialog, select the API Controller ClassAPI Controller Class template.

Name the class TodoController, and select AddAdd.

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

 public TodoController(TodoContext context)
 {
 _context = context;

 if (_context.TodoItems.Count() == 0)
 {
 // Create a new TodoItem if collection is empty,
 // which means you can't delete all TodoItems.
 _context.TodoItems.Add(new TodoItem { Name = "Item1" });
 _context.SaveChanges();
 }
 }
 }
}

Replace the template code with the following code:

The preceding code:

Add Get methods 2.1

// GET: api/Todo
[HttpGet]
public async Task<ActionResult<IEnumerable<TodoItem>>> GetTodoItems()
{
 return await _context.TodoItems.ToListAsync();
}

// GET: api/Todo/5
[HttpGet("{id}")]
public async Task<ActionResult<TodoItem>> GetTodoItem(long id)
{
 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 return NotFound();
 }

 return todoItem;
}

[
 {
 "id": 1,
 "name": "Item1",
 "isComplete": false
 }
]

Defines an API controller class without methods.

Marks the class with the [ApiController] attribute. This attribute indicates that the controller responds to web

API requests. For information about specific behaviors that the attribute enables, see Create web APIs with

ASP.NET Core.

Uses DI to inject the database context (TodoContext) into the controller. The database context is used in each of

the CRUD methods in the controller.

Adds an item named Item1 to the database if the database is empty. This code is in the constructor, so it runs

every time there's a new HTTP request. If you delete all items, the constructor creates Item1 again the next time

an API method is called. So it may look like the deletion didn't work when it actually did work.

To provide an API that retrieves to-do items, add the following methods to the TodoController class:

These methods implement two GET endpoints:

GET /api/todo

GET /api/todo/{id}

Stop the app if it's still running. Then run it again to include the latest changes.

Test the app by calling the two endpoints from a browser. For example:

https://localhost:<port>/api/todo

https://localhost:<port>/api/todo/1

The following HTTP response is produced by the call to GetTodoItems :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://wikipedia.org/wiki/Create,_read,_update_and_delete

Routing and URL paths 2.1

// GET: api/Todo/5
[HttpGet("{id}")]
public async Task<ActionResult<TodoItem>> GetTodoItem(long id)
{
 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 return NotFound();
 }

 return todoItem;
}

Return values 2.1

Test the GetTodoItems method 2.1

The [HttpGet] attribute denotes a method that responds to an HTTP GET request. The URL path for each method is

constructed as follows:

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class TodoController : ControllerBase
 {
 private readonly TodoContext _context;

Start with the template string in the controller's Route attribute:

Replace [controller] with the name of the controller, which by convention is the controller class name

minus the "Controller" suffix. For this sample, the controller class name is TodoTodoController, so the controller

name is "todo". ASP.NET Core routing is case insensitive.

If the [HttpGet] attribute has a route template (for example, [HttpGet("products")]), append that to the

path. This sample doesn't use a template. For more information, see Attribute routing with Http[Verb]

attributes.

In the following GetTodoItem method, "{id}" is a placeholder variable for the unique identifier of the to-do item.

When GetTodoItem is invoked, the value of "{id}" in the URL is provided to the method in its id parameter.

The return type of the GetTodoItems and GetTodoItem methods is ActionResult<T> type. ASP.NET Core

automatically serializes the object to JSON and writes the JSON into the body of the response message. The

response code for this return type is 200, assuming there are no unhandled exceptions. Unhandled exceptions are

translated into 5xx errors.

ActionResult return types can represent a wide range of HTTP status codes. For example, GetTodoItem can return

two different status values:

If no item matches the requested ID, the method returns a 404 NotFound error code.

Otherwise, the method returns 200 with a JSON response body. Returning item results in an HTTP 200

response.

This tutorial uses Postman to test the web API.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpgetattribute
https://www.json.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound

WARNINGWARNING

Add a Create method 2.1

Install Postman.

Start the web app.

Start Postman.

Disable SSL cer tificate ver ificationSSL cer tificate ver ification.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From FileFile > SettingsSettings (GeneralGeneral tab), disable SSL cer tificate ver ificationSSL cer tificate ver ification.

Re-enable SSL certificate verification after testing the controller.

Create a new request.

Set Two pane viewTwo pane view in Postman.

Select SendSend.

Set the HTTP method to GETGET.

Set the request URI to https://localhost:<port>/api/todo . For example, https://localhost:5001/api/todo .

Add the following PostTodoItem method inside of Controllers/TodoController.cs:

https://www.getpostman.com/downloads/

// POST: api/Todo
[HttpPost]
public async Task<ActionResult<TodoItem>> PostTodoItem(TodoItem item)
{
 _context.TodoItems.Add(item);
 await _context.SaveChangesAsync();

 return CreatedAtAction(nameof(GetTodoItem), new { id = item.Id }, item);
}

Test the PostTodoItem method 2.1Test the PostTodoItem method 2.1

The preceding code is an HTTP POST method, as indicated by the [HttpPost] attribute. The method gets the value

of the to-do item from the body of the HTTP request.

The CreatedAtAction method:

// GET: api/Todo/5
[HttpGet("{id}")]
public async Task<ActionResult<TodoItem>> GetTodoItem(long id)
{
 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 return NotFound();
 }

 return todoItem;
}

Returns an HTTP 201 status code, if successful. HTTP 201 is the standard response for an HTTP POST method

that creates a new resource on the server.

Adds a Location header to the response. The Location header specifies the URI of the newly created to-do

item. For more information, see 10.2.2 201 Created.

References the GetTodoItem action to create the Location header's URI. The C# nameof keyword is used to

avoid hard-coding the action name in the CreatedAtAction call.

{
 "name":"walk dog",
 "isComplete":true
}

Build the project.

In Postman, set the HTTP method to POST .

Set the URI to https://localhost:<port>/api/TodoItem . For example, https://localhost:5001/api/TodoItem .

Select the BodyBody tab.

Select the rawraw radio button.

Set the type to JSON (application/json)JSON (application/json) .

In the request body enter JSON for a to-do item:

Select SendSend.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Test the location header URI 2.1Test the location header URI 2.1

Add a PutTodoItem method 2.1

If you get a 405 Method Not Allowed error, it's probably the result of not compiling the project after adding

the PostTodoItem method.

Select the HeadersHeaders tab in the ResponseResponse pane.

Copy the LocationLocation header value:

Set the method to GET. * Set the URI to https://localhost:<port>/api/TodoItems/2 . For example,

https://localhost:5001/api/TodoItems/2 .

Select SendSend.

// PUT: api/Todo/5
[HttpPut("{id}")]
public async Task<IActionResult> PutTodoItem(long id, TodoItem item)
{
 if (id != item.Id)
 {
 return BadRequest();
 }

 _context.Entry(item).State = EntityState.Modified;
 await _context.SaveChangesAsync();

 return NoContent();
}

Test the PutTodoItem method 2.1Test the PutTodoItem method 2.1

 {
 "Id":1,
 "name":"feed fish",
 "isComplete":true
 }

Add the following PutTodoItem method:

PutTodoItem is similar to PostTodoItem , except it uses HTTP PUT. The response is 204 (No Content). According to

the HTTP specification, a PUT request requires the client to send the entire updated entity, not just the changes. To

support partial updates, use HTTP PATCH.

If you get an error calling PutTodoItem , call GET to ensure there's an item in the database.

This sample uses an in-memory database that must be initialized each time the app is started. There must be an

item in the database before you make a PUT call. Call GET to ensure there's an item in the database before making a

PUT call.

Update the to-do item that has Id = 1 and set its name to "feed fish":

The following image shows the Postman update:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppatchattribute

Add a DeleteTodoItem method 2.1

// DELETE: api/Todo/5
[HttpDelete("{id}")]
public async Task<IActionResult> DeleteTodoItem(long id)
{
 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 return NotFound();
 }

 _context.TodoItems.Remove(todoItem);
 await _context.SaveChangesAsync();

 return NoContent();
}

Test the DeleteTodoItem method 2.1Test the DeleteTodoItem method 2.1

Call the web API with JavaScript 2.1

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 // The default HSTS value is 30 days. You may want to change this for
 // production scenarios, see https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
 }

 app.UseDefaultFiles();
 app.UseStaticFiles();
 app.UseHttpsRedirection();
 app.UseMvc();
}

Add the following DeleteTodoItem method:

The DeleteTodoItem response is 204 (No Content).

Use Postman to delete a to-do item:

Set the method to DELETE .

Set the URI of the object to delete (for example, https://localhost:5001/api/todo/1).

Select SendSend.

The sample app allows you to delete all the items. However, when the last item is deleted, a new one is created by

the model class constructor the next time the API is called.

In this section, an HTML page is added that uses JavaScript to call the web API. jQuery initiates the request.

JavaScript updates the page with the details from the web API's response.

Configure the app to serve static files and enable default file mapping by updating Startup.cs with the following

highlighted code:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>To-do CRUD</title>
 <style>
 input[type='submit'], button, [aria-label] {
 cursor: pointer;
 }

 #spoiler {
 display: none;
 }

 table {
 font-family: Arial, sans-serif;
 border: 1px solid;
 border-collapse: collapse;
 }

 th {
 background-color: #0066CC;
 color: white;
 }

 td {
 border: 1px solid;
 padding: 5px;
 }
 </style>
</head>
<body>
 <h1>To-do CRUD</h1>
 <h3>Add</h3>
 <form action="javascript:void(0);" method="POST" onsubmit="addItem()">
 <input type="text" id="add-name" placeholder="New to-do">
 <input type="submit" value="Add">
 </form>

 <div id="spoiler">
 <h3>Edit</h3>
 <form class="my-form">
 <input type="hidden" id="edit-id">
 <input type="checkbox" id="edit-isComplete">
 <input type="text" id="edit-name">
 <input type="submit" value="Save">
 ✖
 </form>
 </div>

 <p id="counter"></p>

 <table>
 <tr>
 <th>Is Complete</th>
 <th>Name</th>
 <th></th>
 <th></th>
 </tr>
 <tbody id="todos"></tbody>
 </table>

 <script src="https://code.jquery.com/jquery-3.3.1.min.js"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="

Create a wwwroot folder in the project directory.

Add an HTML file named index.html to the wwwroot directory. Replace its contents with the following markup:

 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="
 crossorigin="anonymous"></script>
 <script src="site.js"></script>
</body>
</html>

const uri = "api/todo";
let todos = null;
function getCount(data) {
 const el = $("#counter");
 let name = "to-do";
 if (data) {
 if (data > 1) {
 name = "to-dos";
 }
 el.text(data + " " + name);
 } else {
 el.text("No " + name);
 }
}

$(document).ready(function() {
 getData();
});

function getData() {
 $.ajax({
 type: "GET",
 url: uri,
 cache: false,
 success: function(data) {
 const tBody = $("#todos");

 $(tBody).empty();

 getCount(data.length);

 $.each(data, function(key, item) {
 const tr = $("<tr></tr>")
 .append(
 $("<td></td>").append(
 $("<input/>", {
 type: "checkbox",
 disabled: true,
 checked: item.isComplete
 })
)
)
 .append($("<td></td>").text(item.name))
 .append(
 $("<td></td>").append(
 $("<button>Edit</button>").on("click", function() {
 editItem(item.id);
 })
)
)
 .append(
 $("<td></td>").append(
 $("<button>Delete</button>").on("click", function() {
 deleteItem(item.id);
 })
)
);

 tr.appendTo(tBody);
 });

Add a JavaScript file named site.js to the wwwroot directory. Replace its contents with the following code:

 });

 todos = data;
 }
 });
}

function addItem() {
 const item = {
 name: $("#add-name").val(),
 isComplete: false
 };

 $.ajax({
 type: "POST",
 accepts: "application/json",
 url: uri,
 contentType: "application/json",
 data: JSON.stringify(item),
 error: function(jqXHR, textStatus, errorThrown) {
 alert("Something went wrong!");
 },
 success: function(result) {
 getData();
 $("#add-name").val("");
 }
 });
}

function deleteItem(id) {
 $.ajax({
 url: uri + "/" + id,
 type: "DELETE",
 success: function(result) {
 getData();
 }
 });
}

function editItem(id) {
 $.each(todos, function(key, item) {
 if (item.id === id) {
 $("#edit-name").val(item.name);
 $("#edit-id").val(item.id);
 $("#edit-isComplete")[0].checked = item.isComplete;
 }
 });
 $("#spoiler").css({ display: "block" });
}

$(".my-form").on("submit", function() {
 const item = {
 name: $("#edit-name").val(),
 isComplete: $("#edit-isComplete").is(":checked"),
 id: $("#edit-id").val()
 };

 $.ajax({
 url: uri + "/" + $("#edit-id").val(),
 type: "PUT",
 accepts: "application/json",
 contentType: "application/json",
 data: JSON.stringify(item),
 success: function(result) {
 getData();
 }
 });

 closeInput();
 return false;

 return false;
});

function closeInput() {
 $("#spoiler").css({ display: "none" });
}

Get a list of to-do items 2.1Get a list of to-do items 2.1

A change to the ASP.NET Core project's launch settings may be required to test the HTML page locally:

Open Properties\launchSettings.json.

Remove the launchUrl property to force the app to open at index.html—the project's default file.

This sample calls all of the CRUD methods of the web API. Following are explanations of the calls to the API.

jQuery sends an HTTP GET request to the web API, which returns JSON representing an array of to-do items. The

success callback function is invoked if the request succeeds. In the callback, the DOM is updated with the to-do

information.

$(document).ready(function() {
 getData();
});

function getData() {
 $.ajax({
 type: "GET",
 url: uri,
 cache: false,
 success: function(data) {
 const tBody = $("#todos");

 $(tBody).empty();

 getCount(data.length);

 $.each(data, function(key, item) {
 const tr = $("<tr></tr>")
 .append(
 $("<td></td>").append(
 $("<input/>", {
 type: "checkbox",
 disabled: true,
 checked: item.isComplete
 })
)
)
 .append($("<td></td>").text(item.name))
 .append(
 $("<td></td>").append(
 $("<button>Edit</button>").on("click", function() {
 editItem(item.id);
 })
)
)
 .append(
 $("<td></td>").append(
 $("<button>Delete</button>").on("click", function() {
 deleteItem(item.id);
 })
)
);

 tr.appendTo(tBody);
 });

 todos = data;
 }
 });
}

Add a to-do item 2.1Add a to-do item 2.1
jQuery sends an HTTP POST request with the to-do item in the request body. The accepts and contentType

options are set to application/json to specify the media type being received and sent. The to-do item is converted

to JSON by using JSON.stringify. When the API returns a successful status code, the getData function is invoked to

update the HTML table.

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify

function addItem() {
 const item = {
 name: $("#add-name").val(),
 isComplete: false
 };

 $.ajax({
 type: "POST",
 accepts: "application/json",
 url: uri,
 contentType: "application/json",
 data: JSON.stringify(item),
 error: function(jqXHR, textStatus, errorThrown) {
 alert("Something went wrong!");
 },
 success: function(result) {
 getData();
 $("#add-name").val("");
 }
 });
}

Update a to-do item 2.1Update a to-do item 2.1

$.ajax({
 url: uri + "/" + $("#edit-id").val(),
 type: "PUT",
 accepts: "application/json",
 contentType: "application/json",
 data: JSON.stringify(item),
 success: function(result) {
 getData();
 }
});

Delete a to-do item 2.1Delete a to-do item 2.1

$.ajax({
 url: uri + "/" + id,
 type: "DELETE",
 success: function(result) {
 getData();
 }
});

Add authentication support to a web API 2.1

Updating a to-do item is similar to adding one. The url changes to add the unique identifier of the item, and the

type is PUT .

Deleting a to-do item is accomplished by setting the type on the AJAX call to DELETE and specifying the item's

unique identifier in the URL.

ASP.NET Core Identity adds user interface (UI) login functionality to ASP.NET Core web apps. To secure web APIs and

SPAs, use one of the following:

Azure Active Directory

Azure Active Directory B2C (Azure AD B2C)

IdentityServer4

https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-protect-backend-with-aad
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw
https://identityserver.io

Additional resources 2.1

IdentityServer4 is an OpenID Connect and OAuth 2.0 framework for ASP.NET Core. IdentityServer4 enables the

following security features:

Authentication as a Service (AaaS)

Single sign-on/off (SSO) over multiple application types

Access control for APIs

Federation Gateway

For more information, see Welcome to IdentityServer4.

View or download sample code for this tutorial. See how to download.

For more information, see the following resources:

Create web APIs with ASP.NET Core

ASP.NET Core Web API help pages with Swagger / OpenAPI

Razor Pages with Entity Framework Core in ASP.NET Core - Tutorial 1 of 8

Routing to controller actions in ASP.NET Core

Controller action return types in ASP.NET Core web API

Deploy ASP.NET Core apps to Azure App Service

Host and deploy ASP.NET Core

YouTube version of this tutorial

https://docs.identityserver.io/en/latest/index.html
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/first-web-api/samples
https://www.youtube.com/watch?v=TTkhEyGBfAk

Create a web API with ASP.NET Core and MongoDB
9/22/2020 • 21 minutes to read • Edit Online

Prerequisites

Configure MongoDB

By Pratik Khandelwal and Scott Addie

This tutorial creates a web API that performs Create, Read, Update, and Delete (CRUD) operations on a MongoDB

NoSQL database.

In this tutorial, you learn how to:

Configure MongoDB

Create a MongoDB database

Define a MongoDB collection and schema

Perform MongoDB CRUD operations from a web API

Customize JSON serialization

View or download sample code (how to download)

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core SDK 3.0 or later

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

MongoDB

If using Windows, MongoDB is installed at C:\Program Files\MongoDB by default. Add C:\Program

Files\MongoDB\Server\<version_number>\bin to the Path environment variable. This change enables MongoDB

access from anywhere on your development machine.

Use the mongo Shell in the following steps to create a database, make collections, and store documents. For more

information on mongo Shell commands, see Working with the mongo Shell.

mongod --dbpath <data_directory_path>

mongo

1. Choose a directory on your development machine for storing the data. For example, C:\BooksData on

Windows. Create the directory if it doesn't exist. The mongo Shell doesn't create new directories.

2. Open a command shell. Run the following command to connect to MongoDB on default port 27017.

Remember to replace <data_directory_path> with the directory you chose in the previous step.

3. Open another command shell instance. Connect to the default test database by running the following

command:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mongo-app.md
https://twitter.com/K2Prk
https://twitter.com/Scott_Addie
https://www.mongodb.com/what-is-mongodb
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/first-mongo-app/samples
https://dotnet.microsoft.com/download/dotnet-core
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/mongo/#working-with-the-mongo-shell

use BookstoreDb

db.createCollection('Books')

{ "ok" : 1 }

db.Books.insertMany([{'Name':'Design Patterns','Price':54.93,'Category':'Computers','Author':'Ralph
Johnson'}, {'Name':'Clean Code','Price':43.15,'Category':'Computers','Author':'Robert C. Martin'}])

{
 "acknowledged" : true,
 "insertedIds" : [
 ObjectId("5bfd996f7b8e48dc15ff215d"),
 ObjectId("5bfd996f7b8e48dc15ff215e")
]
}

NOTENOTE

db.Books.find({}).pretty()

4. Run the following in a command shell:

If it doesn't already exist, a database named BookstoreDb is created. If the database does exist, its connection

is opened for transactions.

5. Create a Books collection using following command:

The following result is displayed:

6. Define a schema for the Books collection and insert two documents using the following command:

The following result is displayed:

The ID's shown in this article will not match the IDs when you run this sample.

7. View the documents in the database using the following command:

The following result is displayed:

Create the ASP.NET Core web API project

Add an entity model

{
 "_id" : ObjectId("5bfd996f7b8e48dc15ff215d"),
 "Name" : "Design Patterns",
 "Price" : 54.93,
 "Category" : "Computers",
 "Author" : "Ralph Johnson"
}
{
 "_id" : ObjectId("5bfd996f7b8e48dc15ff215e"),
 "Name" : "Clean Code",
 "Price" : 43.15,
 "Category" : "Computers",
 "Author" : "Robert C. Martin"
}

The schema adds an autogenerated _id property of type ObjectId for each document.

The database is ready. You can start creating the ASP.NET Core web API.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Install-Package MongoDB.Driver -Version {VERSION}

1. Go to FileFile > NewNew > ProjectProject.

2. Select the ASP.NET Core Web ApplicationASP.NET Core Web Application project type, and select NextNext.

3. Name the project BooksApi, and select CreateCreate.

4. Select the .NET Core.NET Core target framework and ASP.NET Core 3.0ASP.NET Core 3.0 . Select the APIAPI project template, and select

CreateCreate.

5. Visit the NuGet Gallery: MongoDB.Driver to determine the latest stable version of the .NET driver for

MongoDB. In the Package Manager ConsolePackage Manager Console window, navigate to the project root. Run the following

command to install the .NET driver for MongoDB:

1. Add a Models directory to the project root.

2. Add a Book class to the Models directory with the following code:

https://www.nuget.org/packages/MongoDB.Driver/

Add a configuration model

using MongoDB.Bson;
using MongoDB.Bson.Serialization.Attributes;

namespace BooksApi.Models
{
 public class Book
 {
 [BsonId]
 [BsonRepresentation(BsonType.ObjectId)]
 public string Id { get; set; }

 [BsonElement("Name")]
 public string BookName { get; set; }

 public decimal Price { get; set; }

 public string Category { get; set; }

 public string Author { get; set; }
 }
}

In the preceding class, the Id property:

Is required for mapping the Common Language Runtime (CLR) object to the MongoDB collection.

Is annotated with [BsonId] to designate this property as the document's primary key.

Is annotated with [BsonRepresentation(BsonType.ObjectId)] to allow passing the parameter as type

string instead of an ObjectId structure. Mongo handles the conversion from string to ObjectId .

The BookName property is annotated with the [BsonElement] attribute. The attribute's value of Name

represents the property name in the MongoDB collection.

{
 "BookstoreDatabaseSettings": {
 "BooksCollectionName": "Books",
 "ConnectionString": "mongodb://localhost:27017",
 "DatabaseName": "BookstoreDb"
 },
 "Logging": {
 "IncludeScopes": false,
 "Debug": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "Console": {
 "LogLevel": {
 "Default": "Warning"
 }
 }
 }
}

1. Add the following database configuration values to appsettings.json:

2. Add a BookstoreDatabaseSettings.cs file to the Models directory with the following code:

https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonIdAttribute.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonRepresentationAttribute.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_ObjectId.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonElementAttribute.htm

Add a CRUD operations service

namespace BooksApi.Models
{
 public class BookstoreDatabaseSettings : IBookstoreDatabaseSettings
 {
 public string BooksCollectionName { get; set; }
 public string ConnectionString { get; set; }
 public string DatabaseName { get; set; }
 }

 public interface IBookstoreDatabaseSettings
 {
 string BooksCollectionName { get; set; }
 string ConnectionString { get; set; }
 string DatabaseName { get; set; }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 // requires using Microsoft.Extensions.Options
 services.Configure<BookstoreDatabaseSettings>(
 Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

 services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
 sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

 services.AddControllers();
}

using BooksApi.Models;

The preceding BookstoreDatabaseSettings class is used to store the appsettings.json file's

BookstoreDatabaseSettings property values. The JSON and C# property names are named identically to ease

the mapping process.

3. Add the following highlighted code to Startup.ConfigureServices :

In the preceding code:

The configuration instance to which the appsettings.json file's BookstoreDatabaseSettings section binds is

registered in the Dependency Injection (DI) container. For example, a BookstoreDatabaseSettings object's

ConnectionString property is populated with the BookstoreDatabaseSettings:ConnectionString property in

appsettings.json.

The IBookstoreDatabaseSettings interface is registered in DI with a singleton service lifetime. When

injected, the interface instance resolves to a BookstoreDatabaseSettings object.

4. Add the following code to the top of Startup.cs to resolve the BookstoreDatabaseSettings and

IBookstoreDatabaseSettings references:

1. Add a Services directory to the project root.

2. Add a BookService class to the Services directory with the following code:

using BooksApi.Models;
using MongoDB.Driver;
using System.Collections.Generic;
using System.Linq;

namespace BooksApi.Services
{
 public class BookService
 {
 private readonly IMongoCollection<Book> _books;

 public BookService(IBookstoreDatabaseSettings settings)
 {
 var client = new MongoClient(settings.ConnectionString);
 var database = client.GetDatabase(settings.DatabaseName);

 _books = database.GetCollection<Book>(settings.BooksCollectionName);
 }

 public List<Book> Get() =>
 _books.Find(book => true).ToList();

 public Book Get(string id) =>
 _books.Find<Book>(book => book.Id == id).FirstOrDefault();

 public Book Create(Book book)
 {
 _books.InsertOne(book);
 return book;
 }

 public void Update(string id, Book bookIn) =>
 _books.ReplaceOne(book => book.Id == id, bookIn);

 public void Remove(Book bookIn) =>
 _books.DeleteOne(book => book.Id == bookIn.Id);

 public void Remove(string id) =>
 _books.DeleteOne(book => book.Id == id);
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<BookstoreDatabaseSettings>(
 Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

 services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
 sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

 services.AddSingleton<BookService>();

 services.AddControllers();
}

In the preceding code, an IBookstoreDatabaseSettings instance is retrieved from DI via constructor injection.

This technique provides access to the appsettings.json configuration values that were added in the Add a

configuration model section.

3. Add the following highlighted code to Startup.ConfigureServices :

In the preceding code, the BookService class is registered with DI to support constructor injection in

consuming classes. The singleton service lifetime is most appropriate because BookService takes a direct

Add a controller

using BooksApi.Models;
using BooksApi.Services;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;

namespace BooksApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class BooksController : ControllerBase
 {
 private readonly BookService _bookService;

 public BooksController(BookService bookService)
 {
 _bookService = bookService;
 }

using BooksApi.Services;

dependency on MongoClient . Per the official Mongo Client reuse guidelines, MongoClient should be

registered in DI with a singleton service lifetime.

4. Add the following code to the top of Startup.cs to resolve the BookService reference:

The BookService class uses the following MongoDB.Driver members to perform CRUD operations against the

database:

public BookService(IBookstoreDatabaseSettings settings)
{
 var client = new MongoClient(settings.ConnectionString);
 var database = client.GetDatabase(settings.DatabaseName);

 _books = database.GetCollection<Book>(settings.BooksCollectionName);
}

MongoClient: Reads the server instance for performing database operations. The constructor of this class is

provided the MongoDB connection string:

IMongoDatabase: Represents the Mongo database for performing operations. This tutorial uses the generic

GetCollection<TDocument>(collection) method on the interface to gain access to data in a specific collection.

Perform CRUD operations against the collection after this method is called. In the

GetCollection<TDocument>(collection) method call:

collection represents the collection name.

TDocument represents the CLR object type stored in the collection.

GetCollection<TDocument>(collection) returns a MongoCollection object representing the collection. In this tutorial,

the following methods are invoked on the collection:

DeleteOne: Deletes a single document matching the provided search criteria.

Find<TDocument>: Returns all documents in the collection matching the provided search criteria.

InsertOne: Inserts the provided object as a new document in the collection.

ReplaceOne: Replaces the single document matching the provided search criteria with the provided object.

Add a BooksController class to the Controllers directory with the following code:

https://mongodb.github.io/mongo-csharp-driver/2.8/reference/driver/connecting/#re-use
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_MongoClient.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_IMongoDatabase.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoDatabase_GetCollection__1.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_MongoCollection.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_DeleteOne.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollectionExtensions_Find__1_1.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_InsertOne.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_ReplaceOne.htm

 [HttpGet]
 public ActionResult<List<Book>> Get() =>
 _bookService.Get();

 [HttpGet("{id:length(24)}", Name = "GetBook")]
 public ActionResult<Book> Get(string id)
 {
 var book = _bookService.Get(id);

 if (book == null)
 {
 return NotFound();
 }

 return book;
 }

 [HttpPost]
 public ActionResult<Book> Create(Book book)
 {
 _bookService.Create(book);

 return CreatedAtRoute("GetBook", new { id = book.Id.ToString() }, book);
 }

 [HttpPut("{id:length(24)}")]
 public IActionResult Update(string id, Book bookIn)
 {
 var book = _bookService.Get(id);

 if (book == null)
 {
 return NotFound();
 }

 _bookService.Update(id, bookIn);

 return NoContent();
 }

 [HttpDelete("{id:length(24)}")]
 public IActionResult Delete(string id)
 {
 var book = _bookService.Get(id);

 if (book == null)
 {
 return NotFound();
 }

 _bookService.Remove(book.Id);

 return NoContent();
 }
 }
}

The preceding web API controller :

Uses the BookService class to perform CRUD operations.

Contains action methods to support GET, POST, PUT, and DELETE HTTP requests.

Calls CreatedAtRoute in the Create action method to return an HTTP 201 response. Status code 201 is the

standard response for an HTTP POST method that creates a new resource on the server. CreatedAtRoute also

adds a Location header to the response. The Location header specifies the URI of the newly created book.

https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.createdatroute
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Test the web API

Configure JSON serialization options

[
 {
 "id":"5bfd996f7b8e48dc15ff215d",
 "bookName":"Design Patterns",
 "price":54.93,
 "category":"Computers",
 "author":"Ralph Johnson"
 },
 {
 "id":"5bfd996f7b8e48dc15ff215e",
 "bookName":"Clean Code",
 "price":43.15,
 "category":"Computers",
 "author":"Robert C. Martin"
 }
]

{
 "id":"{ID}",
 "bookName":"Clean Code",
 "price":43.15,
 "category":"Computers",
 "author":"Robert C. Martin"
}

1. Build and run the app.

2. Navigate to http://localhost:<port>/api/books to test the controller's parameterless Get action method.

The following JSON response is displayed:

3. Navigate to http://localhost:<port>/api/books/{id here} to test the controller's overloaded Get action

method. The following JSON response is displayed:

There are two details to change about the JSON responses returned in the Test the web API section:

The property names' default camel casing should be changed to match the Pascal casing of the CLR object's

property names.

The bookName property should be returned as Name .

To satisfy the preceding requirements, make the following changes:

1. JSON.NET has been removed from ASP.NET shared framework. Add a package reference to

Microsoft.AspNetCore.Mvc.NewtonsoftJson .

2. In Startup.ConfigureServices , chain the following highlighted code on to the AddControllers method call:

https://nuget.org/packages/Microsoft.AspNetCore.Mvc.NewtonsoftJson

Prerequisites

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<BookstoreDatabaseSettings>(
 Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

 services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
 sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

 services.AddSingleton<BookService>();

 services.AddControllers()
 .AddNewtonsoftJson(options => options.UseMemberCasing());
}

[BsonElement("Name")]
[JsonProperty("Name")]
public string BookName { get; set; }

using Newtonsoft.Json;

With the preceding change, property names in the web API's serialized JSON response match their

corresponding property names in the CLR object type. For example, the Book class's Author property

serializes as Author .

3. In Models/Book.cs, annotate the BookName property with the following [JsonProperty] attribute:

The [JsonProperty] attribute's value of Name represents the property name in the web API's serialized JSON

response.

4. Add the following code to the top of Models/Book.cs to resolve the [JsonProperty] attribute reference:

5. Repeat the steps defined in the Test the web API section. Notice the difference in JSON property names.

This tutorial creates a web API that performs Create, Read, Update, and Delete (CRUD) operations on a MongoDB

NoSQL database.

In this tutorial, you learn how to:

Configure MongoDB

Create a MongoDB database

Define a MongoDB collection and schema

Perform MongoDB CRUD operations from a web API

Customize JSON serialization

View or download sample code (how to download)

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core SDK 2.2

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

MongoDB

https://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_JsonPropertyAttribute.htm
https://www.mongodb.com/what-is-mongodb
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/first-mongo-app/samples
https://dotnet.microsoft.com/download/dotnet-core
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/

Configure MongoDB
If using Windows, MongoDB is installed at C:\Program Files\MongoDB by default. Add C:\Program

Files\MongoDB\Server\<version_number>\bin to the Path environment variable. This change enables MongoDB

access from anywhere on your development machine.

Use the mongo Shell in the following steps to create a database, make collections, and store documents. For more

information on mongo Shell commands, see Working with the mongo Shell.

mongod --dbpath <data_directory_path>

mongo

use BookstoreDb

db.createCollection('Books')

{ "ok" : 1 }

db.Books.insertMany([{'Name':'Design Patterns','Price':54.93,'Category':'Computers','Author':'Ralph
Johnson'}, {'Name':'Clean Code','Price':43.15,'Category':'Computers','Author':'Robert C. Martin'}])

{
 "acknowledged" : true,
 "insertedIds" : [
 ObjectId("5bfd996f7b8e48dc15ff215d"),
 ObjectId("5bfd996f7b8e48dc15ff215e")
]
}

1. Choose a directory on your development machine for storing the data. For example, C:\BooksData on

Windows. Create the directory if it doesn't exist. The mongo Shell doesn't create new directories.

2. Open a command shell. Run the following command to connect to MongoDB on default port 27017.

Remember to replace <data_directory_path> with the directory you chose in the previous step.

3. Open another command shell instance. Connect to the default test database by running the following

command:

4. Run the following in a command shell:

If it doesn't already exist, a database named BookstoreDb is created. If the database does exist, its connection

is opened for transactions.

5. Create a Books collection using following command:

The following result is displayed:

6. Define a schema for the Books collection and insert two documents using the following command:

The following result is displayed:

https://docs.mongodb.com/manual/mongo/#working-with-the-mongo-shell

Create the ASP.NET Core web API project

Add an entity model

NOTENOTE

db.Books.find({}).pretty()

{
 "_id" : ObjectId("5bfd996f7b8e48dc15ff215d"),
 "Name" : "Design Patterns",
 "Price" : 54.93,
 "Category" : "Computers",
 "Author" : "Ralph Johnson"
}
{
 "_id" : ObjectId("5bfd996f7b8e48dc15ff215e"),
 "Name" : "Clean Code",
 "Price" : 43.15,
 "Category" : "Computers",
 "Author" : "Robert C. Martin"
}

The ID's shown in this article will not match the IDs when you run this sample.

7. View the documents in the database using the following command:

The following result is displayed:

The schema adds an autogenerated _id property of type ObjectId for each document.

The database is ready. You can start creating the ASP.NET Core web API.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Install-Package MongoDB.Driver -Version {VERSION}

1. Go to FileFile > NewNew > ProjectProject.

2. Select the ASP.NET Core Web ApplicationASP.NET Core Web Application project type, and select NextNext.

3. Name the project BooksApi, and select CreateCreate.

4. Select the .NET Core.NET Core target framework and ASP.NET Core 2.2ASP.NET Core 2.2 . Select the APIAPI project template, and select

CreateCreate.

5. Visit the NuGet Gallery: MongoDB.Driver to determine the latest stable version of the .NET driver for

MongoDB. In the Package Manager ConsolePackage Manager Console window, navigate to the project root. Run the following

command to install the .NET driver for MongoDB:

1. Add a Models directory to the project root.

2. Add a Book class to the Models directory with the following code:

https://www.nuget.org/packages/MongoDB.Driver/

Add a configuration model

using MongoDB.Bson;
using MongoDB.Bson.Serialization.Attributes;

namespace BooksApi.Models
{
 public class Book
 {
 [BsonId]
 [BsonRepresentation(BsonType.ObjectId)]
 public string Id { get; set; }

 [BsonElement("Name")]
 public string BookName { get; set; }

 public decimal Price { get; set; }

 public string Category { get; set; }

 public string Author { get; set; }
 }
}

In the preceding class, the Id property:

Is required for mapping the Common Language Runtime (CLR) object to the MongoDB collection.

Is annotated with [BsonId] to designate this property as the document's primary key.

Is annotated with [BsonRepresentation(BsonType.ObjectId)] to allow passing the parameter as type

string instead of an ObjectId structure. Mongo handles the conversion from string to ObjectId .

The BookName property is annotated with the [BsonElement] attribute. The attribute's value of Name

represents the property name in the MongoDB collection.

{
 "BookstoreDatabaseSettings": {
 "BooksCollectionName": "Books",
 "ConnectionString": "mongodb://localhost:27017",
 "DatabaseName": "BookstoreDb"
 },
 "Logging": {
 "IncludeScopes": false,
 "Debug": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "Console": {
 "LogLevel": {
 "Default": "Warning"
 }
 }
 }
}

1. Add the following database configuration values to appsettings.json:

2. Add a BookstoreDatabaseSettings.cs file to the Models directory with the following code:

https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonIdAttribute.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonRepresentationAttribute.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_ObjectId.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonElementAttribute.htm

Add a CRUD operations service

namespace BooksApi.Models
{
 public class BookstoreDatabaseSettings : IBookstoreDatabaseSettings
 {
 public string BooksCollectionName { get; set; }
 public string ConnectionString { get; set; }
 public string DatabaseName { get; set; }
 }

 public interface IBookstoreDatabaseSettings
 {
 string BooksCollectionName { get; set; }
 string ConnectionString { get; set; }
 string DatabaseName { get; set; }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<BookstoreDatabaseSettings>(
 Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

 services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
 sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

using BooksApi.Models;

The preceding BookstoreDatabaseSettings class is used to store the appsettings.json file's

BookstoreDatabaseSettings property values. The JSON and C# property names are named identically to ease

the mapping process.

3. Add the following highlighted code to Startup.ConfigureServices :

In the preceding code:

The configuration instance to which the appsettings.json file's BookstoreDatabaseSettings section binds is

registered in the Dependency Injection (DI) container. For example, a BookstoreDatabaseSettings object's

ConnectionString property is populated with the BookstoreDatabaseSettings:ConnectionString property in

appsettings.json.

The IBookstoreDatabaseSettings interface is registered in DI with a singleton service lifetime. When

injected, the interface instance resolves to a BookstoreDatabaseSettings object.

4. Add the following code to the top of Startup.cs to resolve the BookstoreDatabaseSettings and

IBookstoreDatabaseSettings references:

1. Add a Services directory to the project root.

2. Add a BookService class to the Services directory with the following code:

using BooksApi.Models;
using MongoDB.Driver;
using System.Collections.Generic;
using System.Linq;

namespace BooksApi.Services
{
 public class BookService
 {
 private readonly IMongoCollection<Book> _books;

 public BookService(IBookstoreDatabaseSettings settings)
 {
 var client = new MongoClient(settings.ConnectionString);
 var database = client.GetDatabase(settings.DatabaseName);

 _books = database.GetCollection<Book>(settings.BooksCollectionName);
 }

 public List<Book> Get() =>
 _books.Find(book => true).ToList();

 public Book Get(string id) =>
 _books.Find<Book>(book => book.Id == id).FirstOrDefault();

 public Book Create(Book book)
 {
 _books.InsertOne(book);
 return book;
 }

 public void Update(string id, Book bookIn) =>
 _books.ReplaceOne(book => book.Id == id, bookIn);

 public void Remove(Book bookIn) =>
 _books.DeleteOne(book => book.Id == bookIn.Id);

 public void Remove(string id) =>
 _books.DeleteOne(book => book.Id == id);
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<BookstoreDatabaseSettings>(
 Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

 services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
 sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

 services.AddSingleton<BookService>();

 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

In the preceding code, an IBookstoreDatabaseSettings instance is retrieved from DI via constructor injection.

This technique provides access to the appsettings.json configuration values that were added in the Add a

configuration model section.

3. Add the following highlighted code to Startup.ConfigureServices :

In the preceding code, the BookService class is registered with DI to support constructor injection in

Add a controller

using BooksApi.Models;
using BooksApi.Services;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;

namespace BooksApi.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class BooksController : ControllerBase
 {
 private readonly BookService _bookService;

 public BooksController(BookService bookService)
 {
 _bookService = bookService;

using BooksApi.Services;

consuming classes. The singleton service lifetime is most appropriate because BookService takes a direct

dependency on MongoClient . Per the official Mongo Client reuse guidelines, MongoClient should be

registered in DI with a singleton service lifetime.

4. Add the following code to the top of Startup.cs to resolve the BookService reference:

The BookService class uses the following MongoDB.Driver members to perform CRUD operations against the

database:

public BookService(IBookstoreDatabaseSettings settings)
{
 var client = new MongoClient(settings.ConnectionString);
 var database = client.GetDatabase(settings.DatabaseName);

 _books = database.GetCollection<Book>(settings.BooksCollectionName);
}

MongoClient: Reads the server instance for performing database operations. The constructor of this class is

provided the MongoDB connection string:

IMongoDatabase: Represents the Mongo database for performing operations. This tutorial uses the generic

GetCollection<TDocument>(collection) method on the interface to gain access to data in a specific collection.

Perform CRUD operations against the collection after this method is called. In the

GetCollection<TDocument>(collection) method call:

collection represents the collection name.

TDocument represents the CLR object type stored in the collection.

GetCollection<TDocument>(collection) returns a MongoCollection object representing the collection. In this tutorial,

the following methods are invoked on the collection:

DeleteOne: Deletes a single document matching the provided search criteria.

Find<TDocument>: Returns all documents in the collection matching the provided search criteria.

InsertOne: Inserts the provided object as a new document in the collection.

ReplaceOne: Replaces the single document matching the provided search criteria with the provided object.

Add a BooksController class to the Controllers directory with the following code:

https://mongodb.github.io/mongo-csharp-driver/2.8/reference/driver/connecting/#re-use
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_MongoClient.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_IMongoDatabase.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoDatabase_GetCollection__1.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_MongoCollection.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_DeleteOne.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollectionExtensions_Find__1_1.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_InsertOne.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_ReplaceOne.htm

 _bookService = bookService;
 }

 [HttpGet]
 public ActionResult<List<Book>> Get() =>
 _bookService.Get();

 [HttpGet("{id:length(24)}", Name = "GetBook")]
 public ActionResult<Book> Get(string id)
 {
 var book = _bookService.Get(id);

 if (book == null)
 {
 return NotFound();
 }

 return book;
 }

 [HttpPost]
 public ActionResult<Book> Create(Book book)
 {
 _bookService.Create(book);

 return CreatedAtRoute("GetBook", new { id = book.Id.ToString() }, book);
 }

 [HttpPut("{id:length(24)}")]
 public IActionResult Update(string id, Book bookIn)
 {
 var book = _bookService.Get(id);

 if (book == null)
 {
 return NotFound();
 }

 _bookService.Update(id, bookIn);

 return NoContent();
 }

 [HttpDelete("{id:length(24)}")]
 public IActionResult Delete(string id)
 {
 var book = _bookService.Get(id);

 if (book == null)
 {
 return NotFound();
 }

 _bookService.Remove(book.Id);

 return NoContent();
 }
 }
}

The preceding web API controller :

Uses the BookService class to perform CRUD operations.

Contains action methods to support GET, POST, PUT, and DELETE HTTP requests.

Calls CreatedAtRoute in the Create action method to return an HTTP 201 response. Status code 201 is the

standard response for an HTTP POST method that creates a new resource on the server. CreatedAtRoute also

https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.createdatroute
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Test the web API

Configure JSON serialization options

adds a Location header to the response. The Location header specifies the URI of the newly created book.

[
 {
 "id":"5bfd996f7b8e48dc15ff215d",
 "bookName":"Design Patterns",
 "price":54.93,
 "category":"Computers",
 "author":"Ralph Johnson"
 },
 {
 "id":"5bfd996f7b8e48dc15ff215e",
 "bookName":"Clean Code",
 "price":43.15,
 "category":"Computers",
 "author":"Robert C. Martin"
 }
]

{
 "id":"{ID}",
 "bookName":"Clean Code",
 "price":43.15,
 "category":"Computers",
 "author":"Robert C. Martin"
}

1. Build and run the app.

2. Navigate to http://localhost:<port>/api/books to test the controller's parameterless Get action method.

The following JSON response is displayed:

3. Navigate to http://localhost:<port>/api/books/{id here} to test the controller's overloaded Get action

method. The following JSON response is displayed:

There are two details to change about the JSON responses returned in the Test the web API section:

The property names' default camel casing should be changed to match the Pascal casing of the CLR object's

property names.

The bookName property should be returned as Name .

To satisfy the preceding requirements, make the following changes:

1. In Startup.ConfigureServices , chain the following highlighted code on to the AddMvc method call:

Add authentication support to a web API

Next steps

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<BookstoreDatabaseSettings>(
 Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

 services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
 sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

 services.AddSingleton<BookService>();

 services.AddMvc()
 .AddJsonOptions(options => options.UseMemberCasing())
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

[BsonElement("Name")]
[JsonProperty("Name")]
public string BookName { get; set; }

using Newtonsoft.Json;

With the preceding change, property names in the web API's serialized JSON response match their

corresponding property names in the CLR object type. For example, the Book class's Author property

serializes as Author .

2. In Models/Book.cs, annotate the BookName property with the following [JsonProperty] attribute:

The [JsonProperty] attribute's value of Name represents the property name in the web API's serialized JSON

response.

3. Add the following code to the top of Models/Book.cs to resolve the [JsonProperty] attribute reference:

4. Repeat the steps defined in the Test the web API section. Notice the difference in JSON property names.

ASP.NET Core Identity adds user interface (UI) login functionality to ASP.NET Core web apps. To secure web APIs and

SPAs, use one of the following:

Azure Active Directory

Azure Active Directory B2C (Azure AD B2C)

IdentityServer4

IdentityServer4 is an OpenID Connect and OAuth 2.0 framework for ASP.NET Core. IdentityServer4 enables the

following security features:

Authentication as a Service (AaaS)

Single sign-on/off (SSO) over multiple application types

Access control for APIs

Federation Gateway

For more information, see Welcome to IdentityServer4.

For more information on building ASP.NET Core web APIs, see the following resources:

https://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_JsonPropertyAttribute.htm
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-protect-backend-with-aad
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw
https://identityserver.io
https://docs.identityserver.io/en/latest/index.html

YouTube version of this article

Create web APIs with ASP.NET Core

Controller action return types in ASP.NET Core web API

https://www.youtube.com/watch?v=7uJt_sOenyo&feature=youtu.be

Tutorial: Call an ASP.NET Core web API with
JavaScript
9/22/2020 • 5 minutes to read • Edit Online

Prerequisites

Call the web API with JavaScript

By Rick Anderson

This tutorial shows how to call an ASP.NET Core web API with JavaScript, using the Fetch API.

For ASP.NET Core 2.2, see the 2.2 version of Call the web API with JavaScript.

Complete Tutorial: Create a web API

Familiarity with CSS, HTML, and JavaScript

In this section, you'll add an HTML page containing forms for creating and managing to-do items. Event handlers

are attached to elements on the page. The event handlers result in HTTP requests to the web API's action methods.

The Fetch API's fetch function initiates each HTTP request.

The fetch function returns a Promise object, which contains an HTTP response represented as a Response object.

A common pattern is to extract the JSON response body by invoking the json function on the Response object.

JavaScript updates the page with the details from the web API's response.

The simplest fetch call accepts a single parameter representing the route. A second parameter, known as the

init object, is optional. init is used to configure the HTTP request.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseDefaultFiles();
 app.UseStaticFiles();

 app.UseHttpsRedirection();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
}

1. Configure the app to serve static files and enable default file mapping. The following highlighted code is

needed in the Configure method of Startup.cs:

2. Create a wwwroot folder in the project root.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/web-api-javascript.md
https://twitter.com/RickAndMSFT
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#microsoft_aspnetcore_builder_staticfileextensions_usestaticfiles_microsoft_aspnetcore_builder_iapplicationbuilder_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#microsoft_aspnetcore_builder_defaultfilesextensions_usedefaultfiles_microsoft_aspnetcore_builder_iapplicationbuilder_

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>To-do CRUD</title>
 <link rel="stylesheet" href="css/site.css" />
</head>
<body>
 <h1>To-do CRUD</h1>
 <h3>Add</h3>
 <form action="javascript:void(0);" method="POST" onsubmit="addItem()">
 <input type="text" id="add-name" placeholder="New to-do">
 <input type="submit" value="Add">
 </form>

 <div id="editForm">
 <h3>Edit</h3>
 <form action="javascript:void(0);" onsubmit="updateItem()">
 <input type="hidden" id="edit-id">
 <input type="checkbox" id="edit-isComplete">
 <input type="text" id="edit-name">
 <input type="submit" value="Save">
 ✖
 </form>
 </div>

 <p id="counter"></p>

 <table>
 <tr>
 <th>Is Complete?</th>
 <th>Name</th>
 <th></th>
 <th></th>
 </tr>
 <tbody id="todos"></tbody>
 </table>

 <script src="js/site.js" asp-append-version="true"></script>
 <script type="text/javascript">
 getItems();
 </script>
</body>
</html>

const uri = 'api/TodoItems';
let todos = [];

function getItems() {
 fetch(uri)
 .then(response => response.json())
 .then(data => _displayItems(data))
 .catch(error => console.error('Unable to get items.', error));
}

function addItem() {
 const addNameTextbox = document.getElementById('add-name');

3. Create a js folder inside of the wwwroot folder.

4. Add an HTML file named index.html to the wwwroot folder. Replace the contents of index.html with the

following markup:

5. Add a JavaScript file named site.js to the wwwroot/js folder. Replace the contents of site.js with the following

code:

 const item = {
 isComplete: false,
 name: addNameTextbox.value.trim()
 };

 fetch(uri, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 },
 body: JSON.stringify(item)
 })
 .then(response => response.json())
 .then(() => {
 getItems();
 addNameTextbox.value = '';
 })
 .catch(error => console.error('Unable to add item.', error));
}

function deleteItem(id) {
 fetch(`${uri}/${id}`, {
 method: 'DELETE'
 })
 .then(() => getItems())
 .catch(error => console.error('Unable to delete item.', error));
}

function displayEditForm(id) {
 const item = todos.find(item => item.id === id);

 document.getElementById('edit-name').value = item.name;
 document.getElementById('edit-id').value = item.id;
 document.getElementById('edit-isComplete').checked = item.isComplete;
 document.getElementById('editForm').style.display = 'block';
}

function updateItem() {
 const itemId = document.getElementById('edit-id').value;
 const item = {
 id: parseInt(itemId, 10),
 isComplete: document.getElementById('edit-isComplete').checked,
 name: document.getElementById('edit-name').value.trim()
 };

 fetch(`${uri}/${itemId}`, {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 },
 body: JSON.stringify(item)
 })
 .then(() => getItems())
 .catch(error => console.error('Unable to update item.', error));

 closeInput();

 return false;
}

function closeInput() {
 document.getElementById('editForm').style.display = 'none';
}

function _displayCount(itemCount) {
 const name = (itemCount === 1) ? 'to-do' : 'to-dos';

Get a list of to-do itemsGet a list of to-do items

fetch(uri)
 .then(response => response.json())
 .then(data => _displayItems(data))
 .catch(error => console.error('Unable to get items.', error));

 document.getElementById('counter').innerText = `${itemCount} ${name}`;
}

function _displayItems(data) {
 const tBody = document.getElementById('todos');
 tBody.innerHTML = '';

 _displayCount(data.length);

 const button = document.createElement('button');

 data.forEach(item => {
 let isCompleteCheckbox = document.createElement('input');
 isCompleteCheckbox.type = 'checkbox';
 isCompleteCheckbox.disabled = true;
 isCompleteCheckbox.checked = item.isComplete;

 let editButton = button.cloneNode(false);
 editButton.innerText = 'Edit';
 editButton.setAttribute('onclick', `displayEditForm(${item.id})`);

 let deleteButton = button.cloneNode(false);
 deleteButton.innerText = 'Delete';
 deleteButton.setAttribute('onclick', `deleteItem(${item.id})`);

 let tr = tBody.insertRow();

 let td1 = tr.insertCell(0);
 td1.appendChild(isCompleteCheckbox);

 let td2 = tr.insertCell(1);
 let textNode = document.createTextNode(item.name);
 td2.appendChild(textNode);

 let td3 = tr.insertCell(2);
 td3.appendChild(editButton);

 let td4 = tr.insertCell(3);
 td4.appendChild(deleteButton);
 });

 todos = data;
}

A change to the ASP.NET Core project's launch settings may be required to test the HTML page locally:

1. Open Properties\launchSettings.json.

2. Remove the launchUrl property to force the app to open at index.html—the project's default file.

This sample calls all of the CRUD methods of the web API. Following are explanations of the web API requests.

In the following code, an HTTP GET request is sent to the api/TodoItems route:

When the web API returns a successful status code, the _displayItems function is invoked. Each to-do item in the

array parameter accepted by _displayItems is added to a table with EditEdit and DeleteDelete buttons. If the web API

request fails, an error is logged to the browser's console.

Add a to-do itemAdd a to-do item

function addItem() {
 const addNameTextbox = document.getElementById('add-name');

 const item = {
 isComplete: false,
 name: addNameTextbox.value.trim()
 };

 fetch(uri, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 },
 body: JSON.stringify(item)
 })
 .then(response => response.json())
 .then(() => {
 getItems();
 addNameTextbox.value = '';
 })
 .catch(error => console.error('Unable to add item.', error));
}

Update a to-do itemUpdate a to-do item

fetch(`${uri}/${itemId}`, {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 },
 body: JSON.stringify(item)
})
.then(() => getItems())
.catch(error => console.error('Unable to update item.', error));

Delete a to-do itemDelete a to-do item

In the following code:

An item variable is declared to construct an object literal representation of the to-do item.

A Fetch request is configured with the following options:

An HTTP POST request is sent to the api/TodoItems route.

method —specifies the POST HTTP action verb.

body —specifies the JSON representation of the request body. The JSON is produced by passing the

object literal stored in item to the JSON.stringify function.

headers —specifies the Accept and Content-Type HTTP request headers. Both headers are set to

application/json to specify the media type being received and sent, respectively.

When the web API returns a successful status code, the getItems function is invoked to update the HTML table. If

the web API request fails, an error is logged to the browser's console.

Updating a to-do item is similar to adding one; however, there are two significant differences:

The route is suffixed with the unique identifier of the item to update. For example, api/TodoItems/1.

The HTTP action verb is PUT, as indicated by the method option.

To delete a to-do item, set the request's method option to DELETE and specify the item's unique identifier in the

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify

fetch(`${uri}/${id}`, {
 method: 'DELETE'
})
.then(() => getItems())
.catch(error => console.error('Unable to delete item.', error));

URL.

Advance to the next tutorial to learn how to generate web API help pages:

Get started with Swashbuckle and ASP.NET Core

Create backend services for native mobile apps with
ASP.NET Core
9/22/2020 • 8 minutes to read • Edit Online

The Sample Native Mobile App

By Steve Smith

Mobile apps can communicate with ASP.NET Core backend services. For instructions on connecting local web

services from iOS simulators and Android emulators, see Connect to Local Web Services from iOS Simulators and

Android Emulators.

View or download sample backend services code

This tutorial demonstrates how to create backend services using ASP.NET Core MVC to support native mobile apps.

It uses the Xamarin Forms ToDoRest app as its native client, which includes separate native clients for Android, iOS,

Windows Universal, and Window Phone devices. You can follow the linked tutorial to create the native app (and

install the necessary free Xamarin tools), as well as download the Xamarin sample solution. The Xamarin sample

includes an ASP.NET Web API 2 services project, which this article's ASP.NET Core app replaces (with no changes

required by the client).

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mobile/native-mobile-backend.md
https://ardalis.com/
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/connect-to-local-web-services
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mobile/native-mobile-backend/sample
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/consuming/rest

FeaturesFeatures
The ToDoRest app supports listing, adding, deleting, and updating To-Do items. Each item has an ID, a Name, Notes,

and a property indicating whether it's been Done yet.

The main view of the items, as shown above, lists each item's name and indicates if it's done with a checkmark.

Tapping the + icon opens an add item dialog:

Tapping an item on the main list screen opens up an edit dialog where the item's Name, Notes, and Done settings

can be modified, or the item can be deleted:

// URL of REST service (Xamarin ReadOnly Service)
//public static string RestUrl = "http://developer.xamarin.com:8081/api/todoitems{0}";

// use your machine's IP address
public static string RestUrl = "http://192.168.1.207:5000/api/todoitems/{0}";

Creating the ASP.NET Core Project

This sample is configured by default to use backend services hosted at developer.xamarin.com, which allow read-

only operations. To test it out yourself against the ASP.NET Core app created in the next section running on your

computer, you'll need to update the app's RestUrl constant. Navigate to the ToDoREST project and open the

Constants.cs file. Replace the RestUrl with a URL that includes your machine's IP address (not localhost or

127.0.0.1, since this address is used from the device emulator, not from your machine). Include the port number as

well (5000). In order to test that your services work with a device, ensure you don't have an active firewall blocking

access to this port.

Create a new ASP.NET Core Web Application in Visual Studio. Choose the Web API template and No Authentication.

Name the project ToDoApi.

var host = new WebHostBuilder()
 .UseKestrel()
 .UseUrls("http://*:5000")
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

NOTENOTE

The application should respond to all requests made to port 5000. Update Program.cs to include

.UseUrls("http://*:5000") to achieve this:

Make sure you run the application directly, rather than behind IIS Express, which ignores non-local requests by default. Run

dotnet run from a command prompt, or choose the application name profile from the Debug Target dropdown in the Visual

Studio toolbar.

Add a model class to represent To-Do items. Mark required fields with the [Required] attribute:

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run

using System.ComponentModel.DataAnnotations;

namespace ToDoApi.Models
{
 public class ToDoItem
 {
 [Required]
 public string ID { get; set; }

 [Required]
 public string Name { get; set; }

 [Required]
 public string Notes { get; set; }

 public bool Done { get; set; }
 }
}

using System.Collections.Generic;
using ToDoApi.Models;

namespace ToDoApi.Interfaces
{
 public interface IToDoRepository
 {
 bool DoesItemExist(string id);
 IEnumerable<ToDoItem> All { get; }
 ToDoItem Find(string id);
 void Insert(ToDoItem item);
 void Update(ToDoItem item);
 void Delete(string id);
 }
}

using System.Collections.Generic;
using System.Linq;
using ToDoApi.Interfaces;
using ToDoApi.Models;

namespace ToDoApi.Services
{
 public class ToDoRepository : IToDoRepository
 {
 private List<ToDoItem> _toDoList;

 public ToDoRepository()
 {
 InitializeData();
 }

 public IEnumerable<ToDoItem> All
 {
 get { return _toDoList; }
 }

 public bool DoesItemExist(string id)
 {
 return _toDoList.Any(item => item.ID == id);

The API methods require some way to work with data. Use the same IToDoRepository interface the original

Xamarin sample uses:

For this sample, the implementation just uses a private collection of items:

 return _toDoList.Any(item => item.ID == id);
 }

 public ToDoItem Find(string id)
 {
 return _toDoList.FirstOrDefault(item => item.ID == id);
 }

 public void Insert(ToDoItem item)
 {
 _toDoList.Add(item);
 }

 public void Update(ToDoItem item)
 {
 var todoItem = this.Find(item.ID);
 var index = _toDoList.IndexOf(todoItem);
 _toDoList.RemoveAt(index);
 _toDoList.Insert(index, item);
 }

 public void Delete(string id)
 {
 _toDoList.Remove(this.Find(id));
 }

 private void InitializeData()
 {
 _toDoList = new List<ToDoItem>();

 var todoItem1 = new ToDoItem
 {
 ID = "6bb8a868-dba1-4f1a-93b7-24ebce87e243",
 Name = "Learn app development",
 Notes = "Attend Xamarin University",
 Done = true
 };

 var todoItem2 = new ToDoItem
 {
 ID = "b94afb54-a1cb-4313-8af3-b7511551b33b",
 Name = "Develop apps",
 Notes = "Use Xamarin Studio/Visual Studio",
 Done = false
 };

 var todoItem3 = new ToDoItem
 {
 ID = "ecfa6f80-3671-4911-aabe-63cc442c1ecf",
 Name = "Publish apps",
 Notes = "All app stores",
 Done = false,
 };

 _toDoList.Add(todoItem1);
 _toDoList.Add(todoItem2);
 _toDoList.Add(todoItem3);
 }
 }
}

Configure the implementation in Startup.cs:

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 services.AddSingleton<IToDoRepository,ToDoRepository>();
}

TIPTIP

Creating the Controller

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using ToDoApi.Interfaces;
using ToDoApi.Models;

namespace ToDoApi.Controllers
{
 [Route("api/[controller]")]
 public class ToDoItemsController : Controller
 {
 private readonly IToDoRepository _toDoRepository;

 public ToDoItemsController(IToDoRepository toDoRepository)
 {
 _toDoRepository = toDoRepository;
 }

Reading ItemsReading Items

At this point, you're ready to create the ToDoItemsController.

Learn more about creating web APIs in Build your first Web API with ASP.NET Core MVC and Visual Studio.

Add a new controller to the project, ToDoItemsController. It should inherit from

Microsoft.AspNetCore.Mvc.Controller. Add a Route attribute to indicate that the controller will handle requests

made to paths starting with api/todoitems . The [controller] token in the route is replaced by the name of the

controller (omitting the Controller suffix), and is especially helpful for global routes. Learn more about routing.

The controller requires an IToDoRepository to function; request an instance of this type through the controller's

constructor. At runtime, this instance will be provided using the framework's support for dependency injection.

This API supports four different HTTP verbs to perform CRUD (Create, Read, Update, Delete) operations on the data

source. The simplest of these is the Read operation, which corresponds to an HTTP GET request.

Requesting a list of items is done with a GET request to the List method. The [HttpGet] attribute on the List

method indicates that this action should only handle GET requests. The route for this action is the route specified on

the controller. You don't necessarily need to use the action name as part of the route. You just need to ensure each

action has a unique and unambiguous route. Routing attributes can be applied at both the controller and method

levels to build up specific routes.

[HttpGet]
public IActionResult List()
{
 return Ok(_toDoRepository.All);
}

Creating ItemsCreating Items

The List method returns a 200 OK response code and all of the ToDo items, serialized as JSON.

You can test your new API method using a variety of tools, such as Postman, shown here:

By convention, creating new data items is mapped to the HTTP POST verb. The Create method has an [HttpPost]

attribute applied to it and accepts a ToDoItem instance. Since the item argument is passed in the body of the

POST, this parameter specifies the [FromBody] attribute.

Inside the method, the item is checked for validity and prior existence in the data store, and if no issues occur, it's

added using the repository. Checking ModelState.IsValid performs model validation, and should be done in every

API method that accepts user input.

https://www.getpostman.com/docs/

[HttpPost]
public IActionResult Create([FromBody] ToDoItem item)
{
 try
 {
 if (item == null || !ModelState.IsValid)
 {
 return BadRequest(ErrorCode.TodoItemNameAndNotesRequired.ToString());
 }
 bool itemExists = _toDoRepository.DoesItemExist(item.ID);
 if (itemExists)
 {
 return StatusCode(StatusCodes.Status409Conflict, ErrorCode.TodoItemIDInUse.ToString());
 }
 _toDoRepository.Insert(item);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotCreateItem.ToString());
 }
 return Ok(item);
}

public enum ErrorCode
{
 TodoItemNameAndNotesRequired,
 TodoItemIDInUse,
 RecordNotFound,
 CouldNotCreateItem,
 CouldNotUpdateItem,
 CouldNotDeleteItem
}

The sample uses an enum containing error codes that are passed to the mobile client:

Test adding new items using Postman by choosing the POST verb providing the new object in JSON format in the

Body of the request. You should also add a request header specifying a Content-Type of application/json .

Updating ItemsUpdating Items

[HttpPut]
public IActionResult Edit([FromBody] ToDoItem item)
{
 try
 {
 if (item == null || !ModelState.IsValid)
 {
 return BadRequest(ErrorCode.TodoItemNameAndNotesRequired.ToString());
 }
 var existingItem = _toDoRepository.Find(item.ID);
 if (existingItem == null)
 {
 return NotFound(ErrorCode.RecordNotFound.ToString());
 }
 _toDoRepository.Update(item);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotUpdateItem.ToString());
 }
 return NoContent();
}

The method returns the newly created item in the response.

Modifying records is done using HTTP PUT requests. Other than this change, the Edit method is almost identical

to Create . Note that if the record isn't found, the Edit action will return a NotFound (404) response.

Deleting ItemsDeleting Items

[HttpDelete("{id}")]
public IActionResult Delete(string id)
{
 try
 {
 var item = _toDoRepository.Find(id);
 if (item == null)
 {
 return NotFound(ErrorCode.RecordNotFound.ToString());
 }
 _toDoRepository.Delete(id);
 }
 catch (Exception)
 {
 return BadRequest(ErrorCode.CouldNotDeleteItem.ToString());
 }
 return NoContent();
}

To test with Postman, change the verb to PUT. Specify the updated object data in the Body of the request.

This method returns a NoContent (204) response when successful, for consistency with the pre-existing API.

Deleting records is accomplished by making DELETE requests to the service, and passing the ID of the item to be

deleted. As with updates, requests for items that don't exist will receive NotFound responses. Otherwise, a

successful request will get a NoContent (204) response.

Common Web API Conventions

Additional resources

Note that when testing the delete functionality, nothing is required in the Body of the request.

As you develop the backend services for your app, you will want to come up with a consistent set of conventions or

policies for handling cross-cutting concerns. For example, in the service shown above, requests for specific records

that weren't found received a NotFound response, rather than a BadRequest response. Similarly, commands made

to this service that passed in model bound types always checked ModelState.IsValid and returned a BadRequest

for invalid model types.

Once you've identified a common policy for your APIs, you can usually encapsulate it in a filter. Learn more about

how to encapsulate common API policies in ASP.NET Core MVC applications.

Authentication and Authorization

https://docs.microsoft.com/en-us/archive/msdn-magazine/2016/august/asp-net-core-real-world-asp-net-core-mvc-filters
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/authentication-and-authorization

Publish an ASP.NET Core web API to Azure API
Management with Visual Studio
9/22/2020 • 4 minutes to read • Edit Online

Set up

Configure the app

Add SwaggerAdd Swagger

By Matt Soucoup

Open a free Azure account if you don't have one.

Create a new Azure API Management instance if you haven't already.

Create a web API app project.

Adding Swagger definitions to the ASP.NET Core web API allows Azure API Management to read the app's API

definitions. Complete the following steps.

services.AddSwaggerGen();

1. Add the Swashbuckle.AspNetCore NuGet package to the ASP.NET Core web API project:

2. Add the following line to the Startup.ConfigureServices method:

3. Add the following line to the Startup.Configure method:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/publish-to-azure-api-management-using-vs.md
https://twitter.com/codemillmatt
https://azure.microsoft.com/free/dotnet/
https://docs.microsoft.com/en-us/azure/api-management/get-started-create-service-instance
https://www.nuget.org/packages/Swashbuckle.AspNetCore

Change the API routingChange the API routing

Publish the web API to Azure App Service

Publish the API app to Azure App ServicePublish the API app to Azure App Service

app.UseSwagger();

Next, you'll change the URL structure needed to access the Get action of the WeatherForecastController . Complete

the following steps:

[ApiController]
public class WeatherForecastController : ControllerBase

[HttpGet]
[Route("/")]
public IEnumerable<WeatherForecast> Get()

1. Open the WeatherForecastController.cs file.

2. Delete the [Route("[controller]")] class-level attribute. The class definition will look like the following:

3. Add a [Route("/")] attribute to the Get() action. The function definition will look like the following:

Complete the following steps to publish the ASP.NET Core web API to Azure API Management:

1. Publish the API app to Azure App Service.

2. Add a blank API to the Azure API Management service instance.

3. Publish the ASP.NET Core web API app to the Azure API Management service instance.

Complete the following steps to publish the ASP.NET Core web API to Azure API Management:

1. In Solution ExplorerSolution Explorer , right-click the project and select PublishPublish :

2. In the PublishPublish dialog, select AzureAzure and select the NextNext button:

3. Select Azure App Ser vice (Windows)Azure App Ser vice (Windows) and select the NextNext button:

4. Select Create a new Azure App Ser viceCreate a new Azure App Ser vice.

The Create App Ser viceCreate App Ser vice dialog appears. The App NameApp Name, Resource GroupResource Group, and App Ser vice PlanApp Ser vice Plan entry

fields are populated. You can keep these names or change them.

5. Select the CreateCreate button.

After creation is completed, the dialog is automatically closed and the PublishPublish dialog gets focus again. The instance

that was created is automatically selected.

At this point, you need to add an API to the Azure API Management service. Leave Visual Studio open while you

Add an API to Azure API ManagementAdd an API to Azure API Management

complete the following tasks.

1. Open the API Management Service instance created previously in the Azure portal. Select the APIsAPIs blade:

2. From the Add a new APIAdd a new API panel, select the Blank APIBlank API tile:

3. Enter the following values in the Create a blank APICreate a blank API dialog that appears:

Display NameDisplay Name: WeatherForecasts

NameName: weatherforecasts

API Url suffixAPI Url suffix: v1

Leave the Web ser vice URLWeb ser vice URL field empty.

Publish the ASP.NET Core web API to Azure API ManagementPublish the ASP.NET Core web API to Azure API Management

4. Select the CreateCreate button.

The blank API is created.

1. Switch back to Visual Studio. The PublishPublish dialog should still be open where you left off before.

2. Select the newly published Azure App Service so it's highlighted.

3. Select the NextNext button.

4. The dialog now shows the Azure API Management service created before. Expand it and the APIs folder to

see the blank API you created.

5. Select the blank API's name and select the FinishFinish button.

6. The dialog closes and a summary screen appears with information about the publish. Select the PublishPublish

button.

The web API will publish to both Azure App Service and Azure API Management. A new browser window will

appear and show the API running in Azure App Service. You can close that window.

7. Switch back to the Azure API Management instance in the Azure portal.

8. Refresh the browser window.

9. Select the blank API you created in the preceding steps. It's now populated and you can explore around.

Configure the published API nameConfigure the published API name
Notice the name of the API is different than what you named it. The published API is named WeatherAPI; however,

you named it WeatherForecasts when you created it. Complete the following steps to fix the name:

services.AddSwaggerGen();

services.AddSwaggerGen(config =>
{
 config.SwaggerDoc("WeatherForecasts", new Microsoft.OpenApi.Models.OpenApiInfo
 {
 Title = "Weather Forecasts",
 Version = "v1"
 });
});

1. Delete the following line from the Startup.ConfigureServices method:

2. Add the following code to the Startup.ConfigureServices method:

3. Open the newly created publish profile. It can be found from Solution ExplorerSolution Explorer in the

Properties/PublishProfiles folder.

4. Change the <OpenAPIDocumentName> element's value from v1 to WeatherForecasts .

5. Republish the ASP.NET Core web API and open the Azure API Management instance in the Azure portal.

Verify the web API is workingVerify the web API is working

6. Refresh the page in your browser. You'll see the name of the API is now correct.

You can test the deployed ASP.NET Core web API in Azure API Management from the Azure portal with the

following steps:

1. Open the TestTest tab.

2. Select // or the GetGet operation.

3. Select SendSend.

A successful response will look like the following:

Clean up
When you've finished testing the app, go to the Azure portal and delete the app.

1. Select Resource groupsResource groups , then select the resource group you created.

2. In the Resource groupsResource groups page, select DeleteDelete.

https://portal.azure.com/

Next steps

Additional resources

3. Enter the name of the resource group and select DeleteDelete. Your app and all other resources created in this

tutorial are now deleted from Azure.

Continuous deployment to Azure with Visual Studio and Git with ASP.NET Core

Azure API Management

Azure App Service

https://docs.microsoft.com/en-us/azure/api-management/api-management-key-concepts
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview

Tutorial: Get started with ASP.NET Core SignalR
9/22/2020 • 13 minutes to read • Edit Online

Prerequisites

Create a web app project

This tutorial teaches the basics of building a real-time app using SignalR. You learn how to:

Create a web project.

Add the SignalR client library.

Create a SignalR hub.

Configure the project to use SignalR.

Add code that sends messages from any client to all connected clients.

At the end, you'll have a working chat app:

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the menu, select File > New ProjectFile > New Project.

In the Create a new projectCreate a new project dialog, select ASP.NET Core Web ApplicationASP.NET Core Web Application, and then select NextNext.

In the Configure your new projectConfigure your new project dialog, name the project SignalRChat, and then select CreateCreate.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/signalr.md
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1

Add the SignalR client library

In the Create a new ASP.NET Core web ApplicationCreate a new ASP.NET Core web Application dialog, select .NET Core.NET Core and ASP.NET Core 3.1ASP.NET Core 3.1 .

Select Web ApplicationWeb Application to create a project that uses Razor Pages, and then select CreateCreate.

The SignalR server library is included in the ASP.NET Core 3.1 shared framework. The JavaScript client library isn't

automatically included in the project. For this tutorial, you use Library Manager (LibMan) to get the client library

from unpkg. unpkg is a content delivery network (CDN) that can deliver anything found in npm, the Node.js

package manager.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the project, and select AddAdd > Client-S ide L ibrar yClient-S ide L ibrar y .

In the Add Client-S ide L ibrar yAdd Client-S ide L ibrar y dialog, for ProviderProvider select unpkgunpkg.

For L ibrar yLibrar y , enter @microsoft/signalr@latest .

Select Choose specific filesChoose specific files , expand the dist/browser folder, and select signalr.js and signalr.min.js.

Set Target LocationTarget Location to wwwroot/js/signalr/, and select InstallInstall .

Create a SignalR hub

Configure SignalR

LibMan creates a wwwroot/js/signalr folder and copies the selected files to it.

A hub is a class that serves as a high-level pipeline that handles client-server communication.

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRChat.Hubs
{
 public class ChatHub : Hub
 {
 public async Task SendMessage(string user, string message)
 {
 await Clients.All.SendAsync("ReceiveMessage", user, message);
 }
 }
}

In the SignalRChat project folder, create a Hubs folder.

In the Hubs folder, create a ChatHub.cs file with the following code:

The ChatHub class inherits from the SignalR Hub class. The Hub class manages connections, groups, and

messaging.

The SendMessage method can be called by a connected client to send a message to all clients. JavaScript

client code that calls the method is shown later in the tutorial. SignalR code is asynchronous to provide

maximum scalability.

The SignalR server must be configured to pass SignalR requests to SignalR.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.HttpsPolicy;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using SignalRChat.Hubs;

namespace SignalRChat
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 // This method gets called by the runtime. Use this method to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 services.AddSignalR();
 }

 // This method gets called by the runtime. Use this method to configure the HTTP request
pipeline.
 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 // The default HSTS value is 30 days. You may want to change this for production
scenarios, see https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 endpoints.MapHub<ChatHub>("/chathub");
 });
 }
 }
}

Add the following highlighted code to the Startup.cs file.

These changes add SignalR to the ASP.NET Core dependency injection and routing systems.

Add SignalR client code

@page
 <div class="container">
 <div class="row"> </div>
 <div class="row">
 <div class="col-2">User</div>
 <div class="col-4"><input type="text" id="userInput" /></div>
 </div>
 <div class="row">
 <div class="col-2">Message</div>
 <div class="col-4"><input type="text" id="messageInput" /></div>
 </div>
 <div class="row"> </div>
 <div class="row">
 <div class="col-6">
 <input type="button" id="sendButton" value="Send Message" />
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-12">
 <hr />
 </div>
 </div>
 <div class="row">
 <div class="col-6">
 <ul id="messagesList">
 </div>
 </div>
<script src="~/js/signalr/dist/browser/signalr.js"></script>
<script src="~/js/chat.js"></script>

Replace the content in Pages\Index.cshtml with the following code:

The preceding code:

Creates text boxes for name and message text, and a submit button.

Creates a list with id="messagesList" for displaying messages that are received from the SignalR hub.

Includes script references to SignalR and the chat.js application code that you create in the next step.

In the wwwroot/js folder, create a chat.js file with the following code:

Run the app

"use strict";

var connection = new signalR.HubConnectionBuilder().withUrl("/chatHub").build();

//Disable send button until connection is established
document.getElementById("sendButton").disabled = true;

connection.on("ReceiveMessage", function (user, message) {
 var msg = message.replace(/&/g, "&").replace(/</g, "<").replace(/>/g, ">");
 var encodedMsg = user + " says " + msg;
 var li = document.createElement("li");
 li.textContent = encodedMsg;
 document.getElementById("messagesList").appendChild(li);
});

connection.start().then(function () {
 document.getElementById("sendButton").disabled = false;
}).catch(function (err) {
 return console.error(err.toString());
});

document.getElementById("sendButton").addEventListener("click", function (event) {
 var user = document.getElementById("userInput").value;
 var message = document.getElementById("messageInput").value;
 connection.invoke("SendMessage", user, message).catch(function (err) {
 return console.error(err.toString());
 });
 event.preventDefault();
});

The preceding code:

Creates and starts a connection.

Adds to the submit button a handler that sends messages to the hub.

Adds to the connection object a handler that receives messages from the hub and adds them to the list.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press CTRL+F5CTRL+F5 to run the app without debugging.

Copy the URL from the address bar, open another browser instance or tab, and paste the URL in the address

bar.

Choose either browser, enter a name and message, and select the Send MessageSend Message button.

The name and message are displayed on both pages instantly.

TIPTIP

dotnet dev-certs https --clean
dotnet dev-certs https --trust

If the app doesn't work, open your browser developer tools (F12) and go to the console. You might see errors related

to your HTML and JavaScript code. For example, suppose you put signalr.js in a different folder than directed. In that

case the reference to that file won't work and you'll see a 404 error in the console.

If you get the error ERR_SPDY_INADEQUATE_TRANSPORT_SECURITY in Chrome, run these commands to update your

development certificate:

This tutorial teaches the basics of building a real-time app using SignalR. You learn how to:

Create a web project.

Add the SignalR client library.

Create a SignalR hub.

Configure the project to use SignalR.

Add code that sends messages from any client to all connected clients. At the end, you'll have a working chat

app:

Prerequisites

WARNINGWARNING

Create a web project

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2017 version 15.9 or later with the ASP.NET and web developmentASP.NET and web development workload. You can use

Visual Studio 2019, but some project creation steps differ from what's shown in the tutorial.

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't work with

Visual Studio.

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the menu, select File > New ProjectFile > New Project.

In the New ProjectNew Project dialog, select Installed > Visual C# > Web > ASP.NET Core Web ApplicationInstalled > Visual C# > Web > ASP.NET Core Web Application.

Name the project SignalRChat.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124

Add the SignalR client library

Select Web ApplicationWeb Application to create a project that uses Razor Pages.

Select a target framework of .NET Core.NET Core, select ASP.NET Core 2.2ASP.NET Core 2.2 , and click OKOK.

The SignalR server library is included in the Microsoft.AspNetCore.App metapackage. The JavaScript client library

isn't automatically included in the project. For this tutorial, you use Library Manager (LibMan) to get the client

library from unpkg. unpkg is a content delivery network (CDN) that can deliver anything found in npm, the Node.js

package manager.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the project, and select AddAdd > Client-S ide L ibrar yClient-S ide L ibrar y .

In the Add Client-S ide L ibrar yAdd Client-S ide L ibrar y dialog, for ProviderProvider select unpkgunpkg.

For L ibrar yLibrar y , enter @microsoft/signalr@3 , and select the latest version that isn't preview.

Select Choose specific filesChoose specific files , expand the dist/browser folder, and select signalr.js and signalr.min.js.

Set Target LocationTarget Location to wwwroot/lib/signalr/, and select InstallInstall .

LibMan creates a wwwroot/lib/signalr folder and copies the selected files to it.

Create a SignalR hub

Configure SignalR

A hub is a class that serves as a high-level pipeline that handles client-server communication.

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRChat.Hubs
{
 public class ChatHub : Hub
 {
 public async Task SendMessage(string user, string message)
 {
 await Clients.All.SendAsync("ReceiveMessage", user, message);
 }
 }
}

In the SignalRChat project folder, create a Hubs folder.

In the Hubs folder, create a ChatHub.cs file with the following code:

The ChatHub class inherits from the SignalR Hub class. The Hub class manages connections, groups, and

messaging.

The SendMessage method can be called by a connected client to send a message to all clients. JavaScript

client code that calls the method is shown later in the tutorial. SignalR code is asynchronous to provide

maximum scalability.

The SignalR server must be configured to pass SignalR requests to SignalR.

Add the following highlighted code to the Startup.cs file.

Add SignalR client code

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using SignalRChat.Hubs;

namespace SignalRChat
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 // This method gets called by the runtime. Use this method to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies is needed for a
given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

 services.AddSignalR();
 }

 // This method gets called by the runtime. Use this method to configure the HTTP request
pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();
 app.UseSignalR(routes =>
 {
 routes.MapHub<ChatHub>("/chathub");
 });
 app.UseMvc();
 }
 }
}

These changes add SignalR to the ASP.NET Core dependency injection system and the middleware pipeline.

@page
<div class="container">
 <div class="row"> </div>
 <div class="row">
 <div class="col-6"> </div>
 <div class="col-6">
 User..........<input type="text" id="userInput" />

 Message...<input type="text" id="messageInput" />
 <input type="button" id="sendButton" value="Send Message" />
 </div>
 </div>
 <div class="row">
 <div class="col-12">
 <hr />
 </div>
 </div>
 <div class="row">
 <div class="col-6"> </div>
 <div class="col-6">
 <ul id="messagesList">
 </div>
 </div>
</div>
<script src="~/lib/signalr/dist/browser/signalr.js"></script>
<script src="~/js/chat.js"></script>

Replace the content in Pages\Index.cshtml with the following code:

The preceding code:

Creates text boxes for name and message text, and a submit button.

Creates a list with id="messagesList" for displaying messages that are received from the SignalR hub.

Includes script references to SignalR and the chat.js application code that you create in the next step.

In the wwwroot/js folder, create a chat.js file with the following code:

Run the app

"use strict";

var connection = new signalR.HubConnectionBuilder().withUrl("/chatHub").build();

//Disable send button until connection is established
document.getElementById("sendButton").disabled = true;

connection.on("ReceiveMessage", function (user, message) {
 var msg = message.replace(/&/g, "&").replace(/</g, "<").replace(/>/g, ">");
 var encodedMsg = user + " says " + msg;
 var li = document.createElement("li");
 li.textContent = encodedMsg;
 document.getElementById("messagesList").appendChild(li);
});

connection.start().then(function(){
 document.getElementById("sendButton").disabled = false;
}).catch(function (err) {
 return console.error(err.toString());
});

document.getElementById("sendButton").addEventListener("click", function (event) {
 var user = document.getElementById("userInput").value;
 var message = document.getElementById("messageInput").value;
 connection.invoke("SendMessage", user, message).catch(function (err) {
 return console.error(err.toString());
 });
 event.preventDefault();
});

The preceding code:

Creates and starts a connection.

Adds to the submit button a handler that sends messages to the hub.

Adds to the connection object a handler that receives messages from the hub and adds them to the list.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press CTRL+F5CTRL+F5 to run the app without debugging.

Copy the URL from the address bar, open another browser instance or tab, and paste the URL in the address

bar.

Choose either browser, enter a name and message, and select the Send MessageSend Message button.

The name and message are displayed on both pages instantly.

TIPTIP

Additional resources

If the app doesn't work, open your browser developer tools (F12) and go to the console. You might see errors related to your

HTML and JavaScript code. For example, suppose you put signalr.js in a different folder than directed. In that case the

reference to that file won't work and you'll see a 404 error in the console.

Youtube version of this tutorial

https://www.youtube.com/watch?v=iKlVmu-r0JQ

Use ASP.NET Core SignalR with TypeScript and
Webpack
9/22/2020 • 21 minutes to read • Edit Online

Prerequisites

Create the ASP.NET Core web app

By Sébastien Sougnez and Scott Addie

Webpack enables developers to bundle and build the client-side resources of a web app. This tutorial demonstrates

using Webpack in an ASP.NET Core SignalR web app whose client is written in TypeScript.

In this tutorial, you learn how to:

Scaffold a starter ASP.NET Core SignalR app

Configure the SignalR TypeScript client

Configure a build pipeline using Webpack

Configure the SignalR server

Enable communication between client and server

View or download sample code (how to download)

Visual Studio

Visual Studio Code

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 3.0 or later

Node.js with npm

Visual Studio

Visual Studio Code

Configure Visual Studio to look for npm in the PATH environment variable. By default, Visual Studio uses the version

of npm found in its installation directory. Follow these instructions in Visual Studio:

1. Launch Visual Studio. At the start window, select Continue without codeContinue without code.

2. Navigate to ToolsTools > OptionsOptions > Projects and SolutionsProjects and Solutions > Web Package ManagementWeb Package Management > External WebExternal Web

ToolsTools .

3. Select the $(PATH) entry from the list. Click the up arrow to move the entry to the second position in the list,

and select OKOK.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/signalr-typescript-webpack.md
https://twitter.com/ssougnez
https://twitter.com/Scott_Addie
https://webpack.js.org/
https://www.typescriptlang.org/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/signalr-typescript-webpack/sample
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://nodejs.org/
https://www.npmjs.com/

Configure Webpack and TypeScript

Visual Studio configuration is complete.

1. Use the FileFile > NewNew > ProjectProject menu option and choose the ASP.NET Core Web ApplicationASP.NET Core Web Application template. Select

NextNext.

2. Name the project SignalRWebPack, and select CreateCreate.

3. Select .NET Core from the target framework drop-down, and select ASP.NET Core 3.1 from the framework

selector drop-down. Select the EmptyEmpty template, and select CreateCreate.

Add the Microsoft.TypeScript.MSBuild package to the project:

1. In Solution ExplorerSolution Explorer (right pane), right-click the project node and select Manage NuGet PackagesManage NuGet Packages . In the

BrowseBrowse tab, search for Microsoft.TypeScript.MSBuild , and then click InstallInstall on the right to install the package.

Visual Studio adds the NuGet package under the DependenciesDependencies node in Solution ExplorerSolution Explorer , enabling TypeScript

compilation in the project.

The following steps configure the conversion of TypeScript to JavaScript and the bundling of client-side resources.

npm init -y

1. Run the following command in the project root to create a package.json file:

2. Add the highlighted property to the package.json file and save the file changes:

{
 "name": "SignalRWebPack",
 "version": "1.0.0",
 "private": true,
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

npm i -D -E clean-webpack-plugin@3.0.0 css-loader@3.4.2 html-webpack-plugin@3.2.0 mini-css-extract-
plugin@0.9.0 ts-loader@6.2.1 typescript@3.7.5 webpack@4.41.5 webpack-cli@3.3.10

"scripts": {
 "build": "webpack --mode=development --watch",
 "release": "webpack --mode=production",
 "publish": "npm run release && dotnet publish -c Release"
},

Setting the private property to true prevents package installation warnings in the next step.

3. Install the required npm packages. Run the following command from the project root:

Some command details to note:

A version number follows the @ sign for each package name. npm installs those specific package

versions.

The -E option disables npm's default behavior of writing semantic versioning range operators to

package.json. For example, "webpack": "4.41.5" is used instead of "webpack": "^4.41.5" . This option

prevents unintended upgrades to newer package versions.

See the npm-install docs for more detail.

4. Replace the scripts property of the package.json file with the following code:

Some explanation of the scripts:

build : Bundles the client-side resources in development mode and watches for file changes. The file

watcher causes the bundle to regenerate each time a project file changes. The mode option disables

production optimizations, such as tree shaking and minification. Only use build in development.

release : Bundles the client-side resources in production mode.

publish : Runs the release script to bundle the client-side resources in production mode. It calls the .NET

Core CLI's publish command to publish the app.

5. Create a file named webpack.config.js, in the project root, with the following code:

https://semver.org/
https://docs.npmjs.com/cli/install
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish

const path = require("path");
const HtmlWebpackPlugin = require("html-webpack-plugin");
const { CleanWebpackPlugin } = require("clean-webpack-plugin");
const MiniCssExtractPlugin = require("mini-css-extract-plugin");
module.exports = {
 entry: "./src/index.ts",
 output: {
 path: path.resolve(__dirname, "wwwroot"),
 filename: "[name].[chunkhash].js",
 publicPath: "/"
 },
 resolve: {
 extensions: [".js", ".ts"]
 },
 module: {
 rules: [
 {
 test: /\.ts$/,
 use: "ts-loader"
 },
 {
 test: /\.css$/,
 use: [MiniCssExtractPlugin.loader, "css-loader"]
 }
]
 },
 plugins: [
 new CleanWebpackPlugin(),
 new HtmlWebpackPlugin({
 template: "./src/index.html"
 }),
 new MiniCssExtractPlugin({
 filename: "css/[name].[chunkhash].css"
 })
]
};

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>ASP.NET Core SignalR</title>
</head>
<body>
 <div id="divMessages" class="messages">
 </div>
 <div class="input-zone">
 <label id="lblMessage" for="tbMessage">Message:</label>
 <input id="tbMessage" class="input-zone-input" type="text" />
 <button id="btnSend">Send</button>
 </div>
</body>
</html>

The preceding file configures the Webpack compilation. Some configuration details to note:

The output property overrides the default value of dist. The bundle is instead emitted in the wwwroot

directory.

The resolve.extensions array includes .js to import the SignalR client JavaScript.

6. Create a new src directory in the project root to store the project's client-side assets.

7. Create src/index.html with the following markup.

*, *::before, *::after {
 box-sizing: border-box;
}

html, body {
 margin: 0;
 padding: 0;
}

.input-zone {
 align-items: center;
 display: flex;
 flex-direction: row;
 margin: 10px;
}

.input-zone-input {
 flex: 1;
 margin-right: 10px;
}

.message-author {
 font-weight: bold;
}

.messages {
 border: 1px solid #000;
 margin: 10px;
 max-height: 300px;
 min-height: 300px;
 overflow-y: auto;
 padding: 5px;
}

{
 "compilerOptions": {
 "target": "es5"
 }
}

The preceding HTML defines the homepage's boilerplate markup.

8. Create a new src/css directory. Its purpose is to store the project's .css files.

9. Create src/css/main.css with the following CSS:

The preceding main.css file styles the app.

10. Create src/tsconfig.json with the following JSON:

The preceding code configures the TypeScript compiler to produce ECMAScript 5-compatible JavaScript.

11. Create src/index.ts with the following code:

https://wikipedia.org/wiki/ECMAScript

Configure the app

import "./css/main.css";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
 if (e.key === "Enter") {
 send();
 }
});

btnSend.addEventListener("click", send);

function send() {
}

The preceding TypeScript retrieves references to DOM elements and attaches two event handlers:

keyup : This event fires when the user types in the tbMessage textbox. The send function is called when

the user presses the EnterEnter key.

click : This event fires when the user clicks the SendSend button. The send function is called.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseRouting();
 app.UseDefaultFiles();
 app.UseStaticFiles();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapHub<ChatHub>("/hub");
 });

}

app.UseEndpoints(endpoints =>
{
 endpoints.MapHub<ChatHub>("/hub");
});

1. In Startup.Configure , add calls to UseDefaultFiles and UseStaticFiles.

The preceding code allows the server to locate and serve the index.html file. The file is served whether the

user enters its full URL or the root URL of the web app.

2. At the end of Startup.Configure , map a /hub route to the ChatHub hub. Replace the code that displays Hello

World! with the following line:

3. In Startup.ConfigureServices , call AddSignalR.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#microsoft_aspnetcore_builder_defaultfilesextensions_usedefaultfiles_microsoft_aspnetcore_builder_iapplicationbuilder_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#microsoft_aspnetcore_builder_staticfileextensions_usestaticfiles_microsoft_aspnetcore_builder_iapplicationbuilder_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr#microsoft_extensions_dependencyinjection_signalrdependencyinjectionextensions_addsignalr_microsoft_extensions_dependencyinjection_iservicecollection_

Enable client and server communication

services.AddSignalR();

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRWebPack.Hubs
{
 public class ChatHub : Hub
 {
 }
}

using SignalRWebPack.Hubs;

4. Create a new directory named Hubs in the project root SignalRWebPack/ to store the SignalR hub.

5. Create hub Hubs/ChatHub.cs with the following code:

6. Add the following using statement at the top of the Startup.cs file to resolve the ChatHub reference:

The app currently displays a basic form to send messages, but is not yet functional. The server is listening to a

specific route but does nothing with sent messages.

npm i @microsoft/signalr @types/node

1. Run the following command at the project root:

The preceding command installs:

The SignalR TypeScript client, which allows the client to send messages to the server.

The TypeScript type definitions for Node.js, which enables compile-time checking of Node.js types.

2. Add the highlighted code to the src/index.ts file:

https://www.npmjs.com/package/@microsoft/signalr

import "./css/main.css";
import * as signalR from "@microsoft/signalr";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

const connection = new signalR.HubConnectionBuilder()
 .withUrl("/hub")
 .build();

connection.on("messageReceived", (username: string, message: string) => {
 let m = document.createElement("div");

 m.innerHTML =
 `<div class="message-author">${username}</div><div>${message}</div>`;

 divMessages.appendChild(m);
 divMessages.scrollTop = divMessages.scrollHeight;
});

connection.start().catch(err => document.write(err));

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
 if (e.key === "Enter") {
 send();
 }
});

btnSend.addEventListener("click", send);

function send() {
}

The preceding code supports receiving messages from the server. The HubConnectionBuilder class creates a

new builder for configuring the server connection. The withUrl function configures the hub URL.

SignalR enables the exchange of messages between a client and a server. Each message has a specific name.

For example, messages with the name messageReceived can run the logic responsible for displaying the new

message in the messages zone. Listening to a specific message can be done via the on function. Any

number of message names can be listened to. It's also possible to pass parameters to the message, such as

the author's name and the content of the message received. Once the client receives a message, a new div

element is created with the author's name and the message content in its innerHTML attribute. It's added to

the main div element displaying the messages.

3. Now that the client can receive a message, configure it to send messages. Add the highlighted code to the

src/index.ts file:

import "./css/main.css";
import * as signalR from "@microsoft/signalr";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

const connection = new signalR.HubConnectionBuilder()
 .withUrl("/hub")
 .build();

connection.on("messageReceived", (username: string, message: string) => {
 let messages = document.createElement("div");

 messages.innerHTML =
 `<div class="message-author">${username}</div><div>${message}</div>`;

 divMessages.appendChild(messages);
 divMessages.scrollTop = divMessages.scrollHeight;
});

connection.start().catch(err => document.write(err));

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
 if (e.key === "Enter") {
 send();
 }
});

btnSend.addEventListener("click", send);

function send() {
 connection.send("newMessage", username, tbMessage.value)
 .then(() => tbMessage.value = "");
}

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRWebPack.Hubs
{
 public class ChatHub : Hub
 {
 public async Task NewMessage(long username, string message)
 {
 await Clients.All.SendAsync("messageReceived", username, message);
 }
 }
}

Sending a message through the WebSockets connection requires calling the send method. The method's

first parameter is the message name. The message data inhabits the other parameters. In this example, a

message identified as newMessage is sent to the server. The message consists of the username and the user

input from a text box. If the send works, the text box value is cleared.

4. Add the NewMessage method to the ChatHub class:

The preceding code broadcasts received messages to all connected users once the server receives them. It's

unnecessary to have a generic on method to receive all the messages. A method named after the message

name suffices.

In this example, the TypeScript client sends a message identified as newMessage . The C# NewMessage method

Test the app

expects the data sent by the client. A call is made to SendAsync on Clients.All. The received messages are sent

to all clients connected to the hub.

Confirm that the app works with the following steps.

Visual Studio

Visual Studio Code

npm run release

1. Run Webpack in release mode. Using the Package Manager ConsolePackage Manager Console window, run the following command

in the project root. If you are not in the project root, enter cd SignalRWebPack before entering the command.

This command generates the client-side assets to be served when running the app. The assets are placed in

the wwwroot folder.

Webpack completed the following tasks:

Purged the contents of the wwwroot directory.

Converted the TypeScript to JavaScript in a process known as transpilation.

Mangled the generated JavaScript to reduce file size in a process known as minification.

Copied the processed JavaScript, CSS, and HTML files from src to the wwwroot directory.

Injected the following elements into the wwwroot/index.html file:

A <link> tag, referencing the wwwroot/main.<hash>.css file. This tag is placed immediately

before the closing </head> tag.

A <script> tag, referencing the minified wwwroot/main.<hash>.js file. This tag is placed

immediately before the closing </body> tag.

2. Select DebugDebug > Star t without debuggingStar t without debugging to launch the app in a browser without attaching the debugger.

The wwwroot/index.html file is served at http://localhost:<port_number> .

If you get compile errors, try closing and reopening the solution.

3. Open another browser instance (any browser). Paste the URL in the address bar.

4. Choose either browser, type something in the MessageMessage text box, and click the SendSend button. The unique user

name and message are displayed on both pages instantly.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.clientproxyextensions.sendasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.ihubclients-1.all

Prerequisites

Create the ASP.NET Core web app

Visual Studio

Visual Studio Code

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

Node.js with npm

Visual Studio

Visual Studio Code

Configure Visual Studio to look for npm in the PATH environment variable. By default, Visual Studio uses the version

of npm found in its installation directory. Follow these instructions in Visual Studio:

1. Navigate to ToolsTools > OptionsOptions > Projects and SolutionsProjects and Solutions > Web Package ManagementWeb Package Management > External WebExternal Web

ToolsTools .

2. Select the $(PATH) entry from the list. Click the up arrow to move the entry to the second position in the list.

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://nodejs.org/
https://www.npmjs.com/

Configure Webpack and TypeScript

Visual Studio configuration is completed. It's time to create the project.

1. Use the FileFile > NewNew > ProjectProject menu option and choose the ASP.NET Core Web ApplicationASP.NET Core Web Application template.

2. Name the project SignalRWebPack, and select CreateCreate.

3. Select .NET Core from the target framework drop-down, and select ASP.NET Core 2.2 from the framework

selector drop-down. Select the EmptyEmpty template, and select CreateCreate.

The following steps configure the conversion of TypeScript to JavaScript and the bundling of client-side resources.

npm init -y

{
 "name": "SignalRWebPack",
 "version": "1.0.0",
 "private": true,
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

1. Run the following command in the project root to create a package.json file:

2. Add the highlighted property to the package.json file:

Setting the private property to true prevents package installation warnings in the next step.

3. Install the required npm packages. Run the following command from the project root:

npm install -D -E clean-webpack-plugin@1.0.1 css-loader@2.1.0 html-webpack-plugin@4.0.0-beta.5 mini-css-
extract-plugin@0.5.0 ts-loader@5.3.3 typescript@3.3.3 webpack@4.29.3 webpack-cli@3.2.3

"scripts": {
 "build": "webpack --mode=development --watch",
 "release": "webpack --mode=production",
 "publish": "npm run release && dotnet publish -c Release"
},

Some command details to note:

A version number follows the @ sign for each package name. npm installs those specific package

versions.

The -E option disables npm's default behavior of writing semantic versioning range operators to

package.json. For example, "webpack": "4.29.3" is used instead of "webpack": "^4.29.3" . This option

prevents unintended upgrades to newer package versions.

See the npm-install docs for more detail.

4. Replace the scripts property of the package.json file with the following code:

Some explanation of the scripts:

build : Bundles the client-side resources in development mode and watches for file changes. The file

watcher causes the bundle to regenerate each time a project file changes. The mode option disables

production optimizations, such as tree shaking and minification. Only use build in development.

release : Bundles the client-side resources in production mode.

publish : Runs the release script to bundle the client-side resources in production mode. It calls the .NET

Core CLI's publish command to publish the app.

5. Create a file named webpack.config.js in the project root, with the following code:

https://semver.org/
https://docs.npmjs.com/cli/install
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish

const path = require("path");
const HtmlWebpackPlugin = require("html-webpack-plugin");
const CleanWebpackPlugin = require("clean-webpack-plugin");
const MiniCssExtractPlugin = require("mini-css-extract-plugin");

module.exports = {
 entry: "./src/index.ts",
 output: {
 path: path.resolve(__dirname, "wwwroot"),
 filename: "[name].[chunkhash].js",
 publicPath: "/"
 },
 resolve: {
 extensions: [".js", ".ts"]
 },
 module: {
 rules: [
 {
 test: /\.ts$/,
 use: "ts-loader"
 },
 {
 test: /\.css$/,
 use: [MiniCssExtractPlugin.loader, "css-loader"]
 }
]
 },
 plugins: [
 new CleanWebpackPlugin(["wwwroot/*"]),
 new HtmlWebpackPlugin({
 template: "./src/index.html"
 }),
 new MiniCssExtractPlugin({
 filename: "css/[name].[chunkhash].css"
 })
]
};

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>ASP.NET Core SignalR</title>
</head>
<body>
 <div id="divMessages" class="messages">
 </div>
 <div class="input-zone">
 <label id="lblMessage" for="tbMessage">Message:</label>
 <input id="tbMessage" class="input-zone-input" type="text" />
 <button id="btnSend">Send</button>
 </div>
</body>
</html>

The preceding file configures the Webpack compilation. Some configuration details to note:

The output property overrides the default value of dist. The bundle is instead emitted in the wwwroot

directory.

The resolve.extensions array includes .js to import the SignalR client JavaScript.

6. Create a new src directory in the project root to store the project's client-side assets.

7. Create src/index.html with the following markup.

*, *::before, *::after {
 box-sizing: border-box;
}

html, body {
 margin: 0;
 padding: 0;
}

.input-zone {
 align-items: center;
 display: flex;
 flex-direction: row;
 margin: 10px;
}

.input-zone-input {
 flex: 1;
 margin-right: 10px;
}

.message-author {
 font-weight: bold;
}

.messages {
 border: 1px solid #000;
 margin: 10px;
 max-height: 300px;
 min-height: 300px;
 overflow-y: auto;
 padding: 5px;
}

{
 "compilerOptions": {
 "target": "es5"
 }
}

The preceding HTML defines the homepage's boilerplate markup.

8. Create a new src/css directory. Its purpose is to store the project's .css files.

9. Create src/css/main.css with the following markup:

The preceding main.css file styles the app.

10. Create src/tsconfig.json with the following JSON:

The preceding code configures the TypeScript compiler to produce ECMAScript 5-compatible JavaScript.

11. Create src/index.ts with the following code:

https://wikipedia.org/wiki/ECMAScript

Configure the ASP.NET Core app

import "./css/main.css";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
 if (e.keyCode === 13) {
 send();
 }
});

btnSend.addEventListener("click", send);

function send() {
}

The preceding TypeScript retrieves references to DOM elements and attaches two event handlers:

keyup : This event fires when the user types in the tbMessage textbox. The send function is called when

the user presses the EnterEnter key.

click : This event fires when the user clicks the SendSend button. The send function is called.

app.UseDefaultFiles();
app.UseStaticFiles();

services.AddSignalR();

app.UseSignalR(options =>
{
 options.MapHub<ChatHub>("/hub");
});

1. The code provided in the Startup.Configure method displays Hello World!. Replace the app.Run method call

with calls to UseDefaultFiles and UseStaticFiles.

The preceding code allows the server to locate and serve the index.html file, whether the user enters its full

URL or the root URL of the web app.

2. Call AddSignalR in Startup.ConfigureServices . It adds the SignalR services to the project.

3. Map a /hub route to the ChatHub hub. Add the following lines at the end of Startup.Configure :

4. Create a new directory, called Hubs, in the project root. Its purpose is to store the SignalR hub, which is

created in the next step.

5. Create hub Hubs/ChatHub.cs with the following code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#microsoft_aspnetcore_builder_defaultfilesextensions_usedefaultfiles_microsoft_aspnetcore_builder_iapplicationbuilder_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#microsoft_aspnetcore_builder_staticfileextensions_usestaticfiles_microsoft_aspnetcore_builder_iapplicationbuilder_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr#microsoft_extensions_dependencyinjection_signalrdependencyinjectionextensions_addsignalr_microsoft_extensions_dependencyinjection_iservicecollection_

Enable client and server communication

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRWebPack.Hubs
{
 public class ChatHub : Hub
 {
 }
}

using SignalRWebPack.Hubs;

6. Add the following code at the top of the Startup.cs file to resolve the ChatHub reference:

The app currently displays a simple form to send messages. Nothing happens when you try to do so. The server is

listening to a specific route but does nothing with sent messages.

npm install @aspnet/signalr

1. Run the following command at the project root:

The preceding command installs the SignalR TypeScript client, which allows the client to send messages to

the server.

2. Add the highlighted code to the src/index.ts file:

https://www.npmjs.com/package/@microsoft/signalr

import "./css/main.css";
import * as signalR from "@aspnet/signalr";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

const connection = new signalR.HubConnectionBuilder()
 .withUrl("/hub")
 .build();

connection.on("messageReceived", (username: string, message: string) => {
 let m = document.createElement("div");

 m.innerHTML =
 `<div class="message-author">${username}</div><div>${message}</div>`;

 divMessages.appendChild(m);
 divMessages.scrollTop = divMessages.scrollHeight;
});

connection.start().catch(err => document.write(err));

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
 if (e.keyCode === 13) {
 send();
 }
});

btnSend.addEventListener("click", send);

function send() {
}

The preceding code supports receiving messages from the server. The HubConnectionBuilder class creates a

new builder for configuring the server connection. The withUrl function configures the hub URL.

SignalR enables the exchange of messages between a client and a server. Each message has a specific name.

For example, messages with the name messageReceived can run the logic responsible for displaying the new

message in the messages zone. Listening to a specific message can be done via the on function. You can

listen to any number of message names. It's also possible to pass parameters to the message, such as the

author's name and the content of the message received. Once the client receives a message, a new div

element is created with the author's name and the message content in its innerHTML attribute. The new

message is added to the main div element displaying the messages.

3. Now that the client can receive a message, configure it to send messages. Add the highlighted code to the

src/index.ts file:

import "./css/main.css";
import * as signalR from "@aspnet/signalr";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

const connection = new signalR.HubConnectionBuilder()
 .withUrl("/hub")
 .build();

connection.on("messageReceived", (username: string, message: string) => {
 let messageContainer = document.createElement("div");

 messageContainer.innerHTML =
 `<div class="message-author">${username}</div><div>${message}</div>`;

 divMessages.appendChild(messageContainer);
 divMessages.scrollTop = divMessages.scrollHeight;
});

connection.start().catch(err => document.write(err));

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
 if (e.keyCode === 13) {
 send();
 }
});

btnSend.addEventListener("click", send);

function send() {
 connection.send("newMessage", username, tbMessage.value)
 .then(() => tbMessage.value = "");
}

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRWebPack.Hubs
{
 public class ChatHub : Hub
 {
 public async Task NewMessage(long username, string message)
 {
 await Clients.All.SendAsync("messageReceived", username, message);
 }
 }
}

Sending a message through the WebSockets connection requires calling the send method. The method's

first parameter is the message name. The message data inhabits the other parameters. In this example, a

message identified as newMessage is sent to the server. The message consists of the username and the user

input from a text box. If the send works, the text box value is cleared.

4. Add the NewMessage method to the ChatHub class:

The preceding code broadcasts received messages to all connected users once the server receives them. It's

unnecessary to have a generic on method to receive all the messages. A method named after the message

name suffices.

In this example, the TypeScript client sends a message identified as newMessage . The C# NewMessage method

Test the app

expects the data sent by the client. A call is made to SendAsync on Clients.All. The received messages are sent

to all clients connected to the hub.

Confirm that the app works with the following steps.

Visual Studio

Visual Studio Code

npm run release

1. Run Webpack in release mode. Using the Package Manager ConsolePackage Manager Console window, run the following command

in the project root. If you are not in the project root, enter cd SignalRWebPack before entering the command.

This command generates the client-side assets to be served when running the app. The assets are placed in

the wwwroot folder.

Webpack completed the following tasks:

Purged the contents of the wwwroot directory.

Converted the TypeScript to JavaScript in a process known as transpilation.

Mangled the generated JavaScript to reduce file size in a process known as minification.

Copied the processed JavaScript, CSS, and HTML files from src to the wwwroot directory.

Injected the following elements into the wwwroot/index.html file:

A <link> tag, referencing the wwwroot/main.<hash>.css file. This tag is placed immediately

before the closing </head> tag.

A <script> tag, referencing the minified wwwroot/main.<hash>.js file. This tag is placed

immediately before the closing </body> tag.

2. Select DebugDebug > Star t without debuggingStar t without debugging to launch the app in a browser without attaching the debugger.

The wwwroot/index.html file is served at http://localhost:<port_number> .

3. Open another browser instance (any browser). Paste the URL in the address bar.

4. Choose either browser, type something in the MessageMessage text box, and click the SendSend button. The unique user

name and message are displayed on both pages instantly.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.clientproxyextensions.sendasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.ihubclients-1.all

Additional resources
ASP.NET Core SignalR JavaScript client

Use hubs in ASP.NET Core SignalR

Use ASP.NET Core SignalR with Blazor WebAssembly
9/22/2020 • 7 minutes to read • Edit Online

Prerequisites

Create a hosted Blazor WebAssembly app project

NOTENOTE

By Daniel Roth and Luke Latham

This tutorial teaches the basics of building a real-time app using SignalR with Blazor WebAssembly. You learn how

to:

Create a Blazor WebAssembly Hosted app project

Add the SignalR client library

Add a SignalR hub

Add SignalR services and an endpoint for the SignalR hub

Add Razor component code for chat

At the end of this tutorial, you'll have a working chat app.

View or download sample code (how to download)

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

Visual Studio 2019 16.6 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Follow the guidance for your choice of tooling:

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

Visual Studio 16.6 or later and .NET Core SDK 3.1.300 or later are required.

1. Create a new project.

2. Select Blazor AppBlazor App and select NextNext.

3. Type BlazorSignalRApp in the Project nameProject name field. Confirm the LocationLocation entry is correct or provide a

location for the project. Select CreateCreate.

4. Choose the Blazor WebAssembly AppBlazor WebAssembly App template.

5. Under AdvancedAdvanced, select the ASP.NET Core hostedASP.NET Core hosted check box.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/signalr-blazor-webassembly.md
https://github.com/danroth27
https://github.com/guardrex
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/signalr-blazor-webassembly/samples/
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1

Add the SignalR client library

Add a SignalR hub

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.SignalR;

namespace BlazorSignalRApp.Server.Hubs
{
 public class ChatHub : Hub
 {
 public async Task SendMessage(string user, string message)
 {
 await Clients.All.SendAsync("ReceiveMessage", user, message);
 }
 }
}

Add services and an endpoint for the SignalR hub

6. Select CreateCreate.

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

1. In Solution ExplorerSolution Explorer , right-click the BlazorSignalRApp.Client project and select Manage NuGetManage NuGet

PackagesPackages .

2. In the Manage NuGet PackagesManage NuGet Packages dialog, confirm that the Package sourcePackage source is set to nuget.org .

3. With BrowseBrowse selected, type Microsoft.AspNetCore.SignalR.Client in the search box.

4. In the search results, select the Microsoft.AspNetCore.SignalR.Client package and select InstallInstall .

5. If the Preview ChangesPreview Changes dialog appears, select OKOK.

6. If the L icense AcceptanceLicense Acceptance dialog appears, select I AcceptI Accept if you agree with the license terms.

In the BlazorSignalRApp.Server project, create a Hubs (plural) folder and add the following ChatHub class (

Hubs/ChatHub.cs):

using BlazorSignalRApp.Server.Hubs;

1. In the BlazorSignalRApp.Server project, open the Startup.cs file.

2. Add the namespace for the ChatHub class to the top of the file:

3. Add SignalR and Response Compression Middleware services to Startup.ConfigureServices :

https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR.Client

Add Razor component code for chat

public void ConfigureServices(IServiceCollection services)
{
 services.AddSignalR();
 services.AddControllersWithViews();
 services.AddResponseCompression(opts =>
 {
 opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.Concat(
 new[] { "application/octet-stream" });
 });
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseResponseCompression();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseWebAssemblyDebugging();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseBlazorFrameworkFiles();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 endpoints.MapHub<ChatHub>("/chathub");
 endpoints.MapFallbackToFile("index.html");
 });
}

4. In Startup.Configure :

Use Response Compression Middleware at the top of the processing pipeline's configuration.

Between the endpoints for controllers and the client-side fallback, add an endpoint for the hub.

1. In the BlazorSignalRApp.Client project, open the Pages/Index.razor file.

2. Replace the markup with the following code:

@page "/"
@using Microsoft.AspNetCore.SignalR.Client
@inject NavigationManager NavigationManager
@implements IDisposable

<div class="form-group">
 <label>
 User:
 <input @bind="userInput" />
 </label>
</div>
<div class="form-group">
 <label>
 Message:
 <input @bind="messageInput" size="50" />
 </label>
</div>
<button @onclick="Send" disabled="@(!IsConnected)">Send</button>

<hr>

<ul id="messagesList">
 @foreach (var message in messages)
 {
 @message
 }

@code {
 private HubConnection hubConnection;
 private List<string> messages = new List<string>();
 private string userInput;
 private string messageInput;

 protected override async Task OnInitializedAsync()
 {
 hubConnection = new HubConnectionBuilder()
 .WithUrl(NavigationManager.ToAbsoluteUri("/chathub"))
 .Build();

 hubConnection.On<string, string>("ReceiveMessage", (user, message) =>
 {
 var encodedMsg = $"{user}: {message}";
 messages.Add(encodedMsg);
 StateHasChanged();
 });

 await hubConnection.StartAsync();
 }

 Task Send() =>
 hubConnection.SendAsync("SendMessage", userInput, messageInput);

 public bool IsConnected =>
 hubConnection.State == HubConnectionState.Connected;

 public void Dispose()
 {
 _ = hubConnection.DisposeAsync();
 }
}

Run the app
1. Follow the guidance for your tooling:

Next steps

Additional resources

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

1. In Solution ExplorerSolution Explorer , select the BlazorSignalRApp.Server project. Press F5 to run the app with debugging

or Ctrl+F5 to run the app without debugging.

2. Copy the URL from the address bar, open another browser instance or tab, and paste the URL in the address

bar.

3. Choose either browser, enter a name and message, and select the button to send the message. The name and

message are displayed on both pages instantly:

Quotes: Star Trek VI: The Undiscovered Country ©1991 Paramount

In this tutorial, you learned how to:

Create a Blazor WebAssembly Hosted app project

Add the SignalR client library

Add a SignalR hub

Add SignalR services and an endpoint for the SignalR hub

Add Razor component code for chat

To learn more about building Blazor apps, see the Blazor documentation:

Introduction to ASP.NET Core Blazor

Introduction to ASP.NET Core SignalR

SignalR cross-origin negotiation for authentication

https://www.paramountmovies.com/movies/star-trek-vi-the-undiscovered-country

Tutorial: Create a gRPC client and server in ASP.NET
Core
9/22/2020 • 9 minutes to read • Edit Online

Prerequisites

Create a gRPC service

By John Luo

This tutorial shows how to create a .NET Core gRPC client and an ASP.NET Core gRPC Server.

At the end, you'll have a gRPC client that communicates with the gRPC Greeter service.

View or download sample code (how to download).

In this tutorial, you:

Create a gRPC Server.

Create a gRPC client.

Test the gRPC client service with the gRPC Greeter service.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

Start Visual Studio and select Create a new projectCreate a new project. Alternatively, from the Visual Studio FileFile menu, select

NewNew > ProjectProject.

In the Create a new projectCreate a new project dialog, select gRPC Ser vicegRPC Ser vice and select NextNext:

Name the project GrpcGreeterGrpcGreeter . It's important to name the project GrpcGreeter so the namespaces will

match when you copy and paste code.

Select CreateCreate.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/grpc/grpc-start.md
https://github.com/juntaoluo
https://grpc.io/docs/guides/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/grpc/grpc-start/sample
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1

Run the serviceRun the service

In the Create a new gRPC ser viceCreate a new gRPC ser vice dialog:

The gRPC Ser vicegRPC Ser vice template is selected.

Select CreateCreate.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run without the debugger.

Visual Studio displays the following dialog:

Select YesYes if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes if you agree to trust the development certificate.

Visual Studio starts IIS Express and runs the app. The address bar shows localhost:port# and not something

like example.com . That's because localhost is the standard hostname for the local computer. Localhost only

serves web requests from the local computer. When Visual Studio creates a web project, a random port is

used for the web server.

The logs show the service listening on https://localhost:5001 .

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

info: Microsoft.Hosting.Lifetime[0]
 Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development

NOTENOTE

Examine the project filesExamine the project files

Create the gRPC client in a .NET console app

Add required packagesAdd required packages

PMC option to install packagesPMC option to install packages

The gRPC template is configured to use Transport Layer Security (TLS). gRPC clients need to use HTTPS to call the server.

macOS doesn't support ASP.NET Core gRPC with TLS. Additional configuration is required to successfully run gRPC services on

macOS. For more information, see Unable to start ASP.NET Core gRPC app on macOS.

GrpcGreeter project files:

greet.proto: The Protos/greet.proto file defines the Greeter gRPC and is used to generate the gRPC server

assets. For more information, see Introduction to gRPC.

Services folder : Contains the implementation of the Greeter service.

appSettings.json: Contains configuration data, such as protocol used by Kestrel. For more information, see

Configuration in ASP.NET Core.

Program.cs: Contains the entry point for the gRPC service. For more information, see .NET Generic Host.

Startup.cs: Contains code that configures app behavior. For more information, see App startup.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Open a second instance of Visual Studio and select Create a new projectCreate a new project.

In the Create a new projectCreate a new project dialog, select Console App (.NET Core)Console App (.NET Core) and select NextNext.

In the Project nameProject name text box, enter GrpcGreeterClientGrpcGreeterClient and select CreateCreate.

The gRPC client project requires the following packages:

Grpc.Net.Client, which contains the .NET Core client.

Google.Protobuf, which contains protobuf message APIs for C#.

Grpc.Tools, which contains C# tooling support for protobuf files. The tooling package isn't required at runtime, so

the dependency is marked with PrivateAssets="All" .

Visual Studio

Visual Studio Code

Visual Studio for Mac

Install the packages using either the Package Manager Console (PMC) or Manage NuGet Packages.

From Visual Studio, select ToolsTools > NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console

From the Package Manager ConsolePackage Manager Console window, run cd GrpcGreeterClient to change directories to the

folder containing the GrpcGreeterClient.csproj files.

https://tools.ietf.org/html/rfc5246
https://www.nuget.org/packages/Grpc.Net.Client
https://www.nuget.org/packages/Google.Protobuf/
https://www.nuget.org/packages/Grpc.Tools/

Manage NuGet Packages option to install packagesManage NuGet Packages option to install packages

Add greet.protoAdd greet.proto

Create the Greeter clientCreate the Greeter client

Install-Package Grpc.Net.Client
Install-Package Google.Protobuf
Install-Package Grpc.Tools

Run the following commands:

Right-click the project in Solution ExplorerSolution Explorer > Manage NuGet PackagesManage NuGet Packages

Select the BrowseBrowse tab.

Enter Grpc.Net.ClientGrpc.Net.Client in the search box.

Select the Grpc.Net.ClientGrpc.Net.Client package from the BrowseBrowse tab and select InstallInstall .

Repeat for Google.Protobuf and Grpc.Tools .

Create a Protos folder in the gRPC client project.

Copy the Protos\greet.proto file from the gRPC Greeter service to the gRPC client project.

Edit the GrpcGreeterClient.csproj project file:

Visual Studio

Visual Studio Code

Visual Studio for Mac

Right-click the project and select Edit Project FileEdit Project File.

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Client" />
</ItemGroup>

Add an item group with a <Protobuf> element that refers to the greet.proto file:

Build the project to create the types in the GrpcGreeter namespace. The GrpcGreeter types are generated

automatically by the build process.

Update the gRPC client Program.cs file with the following code:

using System;
using System.Net.Http;
using System.Threading.Tasks;
using GrpcGreeter;
using Grpc.Net.Client;

namespace GrpcGreeterClient
{
 class Program
 {
 static async Task Main(string[] args)
 {
 // The port number(5001) must match the port of the gRPC server.
 using var channel = GrpcChannel.ForAddress("https://localhost:5001");
 var client = new Greeter.GreeterClient(channel);
 var reply = await client.SayHelloAsync(
 new HelloRequest { Name = "GreeterClient" });
 Console.WriteLine("Greeting: " + reply.Message);
 Console.WriteLine("Press any key to exit...");
 Console.ReadKey();
 }
 }
}

static async Task Main(string[] args)
{
 // The port number(5001) must match the port of the gRPC server.
 using var channel = GrpcChannel.ForAddress("https://localhost:5001");
 var client = new Greeter.GreeterClient(channel);
 var reply = await client.SayHelloAsync(
 new HelloRequest { Name = "GreeterClient" });
 Console.WriteLine("Greeting: " + reply.Message);
 Console.WriteLine("Press any key to exit...");
 Console.ReadKey();
}

static async Task Main(string[] args)
{
 // The port number(5001) must match the port of the gRPC server.
 using var channel = GrpcChannel.ForAddress("https://localhost:5001");
 var client = new Greeter.GreeterClient(channel);
 var reply = await client.SayHelloAsync(
 new HelloRequest { Name = "GreeterClient" });
 Console.WriteLine("Greeting: " + reply.Message);
 Console.WriteLine("Press any key to exit...");
 Console.ReadKey();
}

Test the gRPC client with the gRPC Greeter service

Program.cs contains the entry point and logic for the gRPC client.

The Greeter client is created by:

Instantiating a GrpcChannel containing the information for creating the connection to the gRPC service.

Using the GrpcChannel to construct the Greeter client:

The Greeter client calls the asynchronous SayHello method. The result of the SayHello call is displayed:

Visual Studio

Greeting: Hello GreeterClient
Press any key to exit...

info: Microsoft.Hosting.Lifetime[0]
 Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: C:\GH\aspnet\docs\4\Docs\aspnetcore\tutorials\grpc\grpc-start\sample\GrpcGreeter
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
 Request starting HTTP/2 POST https://localhost:5001/Greet.Greeter/SayHello application/grpc
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
 Executing endpoint 'gRPC - /Greet.Greeter/SayHello'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
 Executed endpoint 'gRPC - /Greet.Greeter/SayHello'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
 Request finished in 78.32260000000001ms 200 application/grpc

NOTENOTE

WARNINGWARNING

Next stepsNext steps

Visual Studio Code

Visual Studio for Mac

In the Greeter service, press Ctrl+F5 to start the server without the debugger.

In the GrpcGreeterClient project, press Ctrl+F5 to start the client without the debugger.

The client sends a greeting to the service with a message containing its name, GreeterClient. The service sends the

message "Hello GreeterClient" as a response. The "Hello GreeterClient" response is displayed in the command

prompt:

The gRPC service records the details of the successful call in the logs written to the command prompt:

The code in this article requires the ASP.NET Core HTTPS development certificate to secure the gRPC service. If the .NET gRPC

client fails with the message The remote certificate is invalid according to the validation procedure. or

The SSL connection could not be established. , the development certificate isn't trusted. To fix this issue, see Call a gRPC

service with an untrusted/invalid certificate.

ASP.NET Core gRPC is not currently supported on Azure App Service or IIS. The HTTP/2 implementation of Http.Sys does not

support HTTP response trailing headers which gRPC relies on. For more information, see this GitHub issue.

Introduction to gRPC on .NET Core

gRPC services with C#

Migrating gRPC services from C-core to ASP.NET Core

https://github.com/dotnet/AspNetCore/issues/9020

Razor Pages with Entity Framework Core in ASP.NET
Core - Tutorial 1 of 8
9/22/2020 • 50 minutes to read • Edit Online

Prerequisites

Database engines

Troubleshooting

The sample app

By Tom Dykstra and Rick Anderson

This is the first in a series of tutorials that show how to use Entity Framework (EF) Core in an ASP.NET Core Razor

Pages app. The tutorials build a web site for a fictional Contoso University. The site includes functionality such as

student admission, course creation, and instructor assignments. The tutorial uses the code first approach. For

information on following this tutorial using the database first approach, see this Github issue.

Download or view the completed app. Download instructions.

If you're new to Razor Pages, go through the Get started with Razor Pages tutorial series before starting this one.

Visual Studio

Visual Studio Code

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.0 SDK or later

The Visual Studio instructions use SQL Server LocalDB, a version of SQL Server Express that runs only on Windows.

The Visual Studio Code instructions use SQLite, a cross-platform database engine.

If you choose to use SQLite, download and install a third-party tool for managing and viewing a SQLite database,

such as DB Browser for SQLite.

If you run into a problem you can't resolve, compare your code to the completed project. A good way to get help is

by posting a question to StackOverflow.com, using the ASP.NET Core tag or the EF Core tag.

The app built in these tutorials is a basic university web site. Users can view and update student, course, and

instructor information. Here are a few of the screens created in the tutorial.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/intro.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/issues/16897
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-2016-express-localdb
https://www.sqlite.org/
https://sqlitebrowser.org/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core

The UI style of this site is based on the built-in project templates. The tutorial's focus is on how to use EF Core, not

how to customize the UI.

Follow the link at the top of the page to get the source code for the completed project. The cu30 folder has the code

for the ASP.NET Core 3.0 version of the tutorial. Files that reflect the state of the code for tutorials 1-7 can be found

in the cu30snapshots folder.

Visual Studio

Visual Studio Code

To run the app after downloading the completed project:

Create the web app project

Set up the site style

Update-Database

Build the project.

In Package Manager Console (PMC) run the following command:

Run the project to seed the database.

Visual Studio

Visual Studio Code

From the Visual Studio FileFile menu, select NewNew > ProjectProject.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application.

Name the project ContosoUniversity. It's important to use this exact name including capitalization, so the

namespaces match when code is copied and pasted.

Select .NET Core.NET Core and ASP.NET Core 3.0ASP.NET Core 3.0 in the dropdowns, and then select Web ApplicationWeb Application.

Set up the site header, footer, and menu by updating Pages/Shared/_Layout.cshtml:

Change each occurrence of "ContosoUniversity" to "Contoso University". There are three occurrences.

Delete the HomeHome and Pr ivacyPrivacy menu entries, and add entries for AboutAbout, StudentsStudents , CoursesCourses , InstructorsInstructors ,

and Depar tmentsDepar tments .

The changes are highlighted.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Contoso University</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-shadow
mb-3">
 <div class="container">
 Contoso University
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-
collapse" aria-controls="navbarSupportedContent"
 aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 About

 <li class="nav-item">
 Students

 <li class="nav-item">
 Courses

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
page="/Instructors/Index">Instructors

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
page="/Departments/Index">Departments

 </div>
 </div>
 </nav>
 </header>
 <div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>

 <footer class="border-top footer text-muted">
 <div class="container">
 © 2019 - Contoso University - <a asp-area="" asp-page="/Privacy">Privacy
 </div>
 </footer>

 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>

 @RenderSection("Scripts", required: false)
</body>
</html>

In Pages/Index.cshtml, replace the contents of the file with the following code to replace the text about ASP.NET Core

with text about this app:

@page
@model IndexModel
@{
 ViewData["Title"] = "Home page";
}

<div class="row mb-auto">
 <div class="col-md-4">
 <div class="row no-gutters border mb-4">
 <div class="col p-4 mb-4 ">
 <p class="card-text">
 Contoso University is a sample application that
 demonstrates how to use Entity Framework Core in an
 ASP.NET Core Razor Pages web app.
 </p>
 </div>
 </div>
 </div>
 <div class="col-md-4">
 <div class="row no-gutters border mb-4">
 <div class="col p-4 d-flex flex-column position-static">
 <p class="card-text mb-auto">
 You can build the application by following the steps in a series of tutorials.
 </p>
 <p>
 <a href="https://docs.microsoft.com/aspnet/core/data/ef-rp/intro" class="stretched-
link">See the tutorial
 </p>
 </div>
 </div>
 </div>
 <div class="col-md-4">
 <div class="row no-gutters border mb-4">
 <div class="col p-4 d-flex flex-column">
 <p class="card-text mb-auto">
 You can download the completed project from GitHub.
 </p>
 <p>
 <a href="https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-
rp/intro/samples" class="stretched-link">See project source code
 </p>
 </div>
 </div>
 </div>
</div>

The data model

Run the app to verify that the home page appears.

The following sections create a data model:

The Student entity

The Enrollment entity

A student can enroll in any number of courses, and a course can have any number of students enrolled in it.

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Create a Models folder in the project folder.

Create Models/Student.cs with the following code:

The ID property becomes the primary key column of the database table that corresponds to this class. By default,

EF Core interprets a property that's named ID or classnameID as the primary key. So the alternative automatically

recognized name for the Student class primary key is StudentID . For more information, see EF Core - Keys.

The Enrollments property is a navigation property. Navigation properties hold other entities that are related to this

entity. In this case, the Enrollments property of a Student entity holds all of the Enrollment entities that are

related to that Student. For example, if a Student row in the database has two related Enrollment rows, the

Enrollments navigation property contains those two Enrollment entities.

In the database, an Enrollment row is related to a Student row if its StudentID column contains the student's ID

value. For example, suppose a Student row has ID=1. Related Enrollment rows will have StudentID = 1. StudentID is

a foreign key in the Enrollment table.

The Enrollments property is defined as ICollection<Enrollment> because there may be multiple related Enrollment

entities. You can use other collection types, such as List<Enrollment> or HashSet<Enrollment> . When

ICollection<Enrollment> is used, EF Core creates a HashSet<Enrollment> collection by default.

https://docs.microsoft.com/en-us/ef/core/modeling/keys?tabs=data-annotations
https://docs.microsoft.com/en-us/ef/core/modeling/relationships

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

The Course entity

Create Models/Enrollment.cs with the following code:

The EnrollmentID property is the primary key; this entity uses the classnameID pattern instead of ID by itself. For

a production data model, choose one pattern and use it consistently. This tutorial uses both just to illustrate that

both work. Using ID without classname makes it easier to implement some kinds of data model changes.

The Grade property is an enum . The question mark after the Grade type declaration indicates that the Grade

property is nullable. A grade that's null is different from a zero grade—null means a grade isn't known or hasn't

been assigned yet.

The StudentID property is a foreign key, and the corresponding navigation property is Student . An Enrollment

entity is associated with one Student entity, so the property contains a single Student entity.

The CourseID property is a foreign key, and the corresponding navigation property is Course . An Enrollment

entity is associated with one Course entity.

EF Core interprets a property as a foreign key if it's named <navigation property name><primary key property name> .

For example, StudentID is the foreign key for the Student navigation property, since the Student entity's primary

key is ID . Foreign key properties can also be named <primary key property name> . For example, CourseID since

the Course entity's primary key is CourseID .

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Scaffold Student pages

Create Models/Course.cs with the following code:

The Enrollments property is a navigation property. A Course entity can be related to any number of Enrollment

entities.

The DatabaseGenerated attribute allows the app to specify the primary key rather than having the database

generate it.

Build the project to validate that there are no compiler errors.

In this section, you use the ASP.NET Core scaffolding tool to generate:

An EF Core context class. The context is the main class that coordinates Entity Framework functionality for a

given data model. It derives from the Microsoft.EntityFrameworkCore.DbContext class.

Razor pages that handle Create, Read, Update, and Delete (CRUD) operations for the Student entity.

Visual Studio

Visual Studio Code

Create a Students folder in the Pages folder.

In Solution ExplorerSolution Explorer , right-click the Pages/Students folder and select AddAdd > New Scaffolded ItemNew Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select Razor Pages using Entity Framework (CRUD)Razor Pages using Entity Framework (CRUD) > ADDADD.

In the Add Razor Pages using Entity Framework (CRUD)Add Razor Pages using Entity Framework (CRUD) dialog:

In the Model classModel class drop-down, select Student (ContosoUniversity.Models)Student (ContosoUniversity.Models) .

In the Data context classData context class row, select the ++ (plus) sign.

Change the data context name from ContosoUniversity.Models.ContosoUniversityContext to

ContosoUniversity.Data.SchoolContext.

Select AddAdd.

The following packages are automatically installed:

Database connection string

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "SchoolContext": "Server=
(localdb)\\mssqllocaldb;Database=SchoolContext6;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

Update the database context class

Microsoft.VisualStudio.Web.CodeGeneration.Design

Microsoft.EntityFrameworkCore.SqlServer

Microsoft.Extensions.Logging.Debug

Microsoft.EntityFrameworkCore.Tools

If you have a problem with the preceding step, build the project and retry the scaffold step.

The scaffolding process:

Creates Razor pages in the Pages/Students folder :

Creates Data/SchoolContext.cs.

Adds the context to dependency injection in Startup.cs.

Adds a database connection string to appsettings.json.

Create.cshtml and Create.cshtml.cs

Delete.cshtml and Delete.cshtml.cs

Details.cshtml and Details.cshtml.cs

Edit.cshtml and Edit.cshtml.cs

Index.cshtml and Index.cshtml.cs

Visual Studio

Visual Studio Code

The connection string specifies SQL Server LocalDB.

LocalDB is a lightweight version of the SQL Server Express Database Engine and is intended for app development,

not production use. By default, LocalDB creates .mdf files in the C:/Users/<user> directory.

The main class that coordinates EF Core functionality for a given data model is the database context class. The

context is derived from Microsoft.EntityFrameworkCore.DbContext. The context specifies which entities are included

in the data model. In this project, the class is named SchoolContext .

Update SchoolContext.cs with the following code:

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-2016-express-localdb
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext

using Microsoft.EntityFrameworkCore;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext (DbContextOptions<SchoolContext> options)
 : base(options)
 {
 }

 public DbSet<Student> Students { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Course> Courses { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 }
 }
}

Startup.cs

The highlighted code creates a DbSet<TEntity> property for each entity set. In EF Core terminology:

An entity set typically corresponds to a database table.

An entity corresponds to a row in the table.

Since an entity set contains multiple entities, the DBSet properties should be plural names. Since the scaffolding

tool created a Student DBSet, this step changes it to plural Students .

To make the Razor Pages code match the new DBSet name, make a global change across the whole project of

_context.Student to _context.Students . There are 8 occurrences.

Build the project to verify there are no compiler errors.

ASP.NET Core is built with dependency injection. Services (such as the EF Core database context) are registered with

dependency injection during application startup. Components that require these services (such as Razor Pages) are

provided these services via constructor parameters. The constructor code that gets a database context instance is

shown later in the tutorial.

The scaffolding tool automatically registered the context class with the dependency injection container.

Visual Studio

Visual Studio Code

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();

 services.AddDbContext<SchoolContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("SchoolContext")));
}

In ConfigureServices , the highlighted lines were added by the scaffolder :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1

Create the database

using ContosoUniversity.Data;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using System;

namespace ContosoUniversity
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateHostBuilder(args).Build();

 CreateDbIfNotExists(host);

 host.Run();
 }

 private static void CreateDbIfNotExists(IHost host)
 {
 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<SchoolContext>();
 context.Database.EnsureCreated();
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred creating the DB.");
 }
 }
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

The name of the connection string is passed in to the context by calling a method on a DbContextOptions object.

For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Update Program.cs to create the database if it doesn't exist:

The EnsureCreated method takes no action if a database for the context exists. If no database exists, it creates the

database and schema. EnsureCreated enables the following workflow for handling data model changes:

Delete the database. Any existing data is lost.

Change the data model. For example, add an EmailAddress field.

Run the app.

EnsureCreated creates a database with the new schema.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.infrastructure.databasefacade.ensurecreated#microsoft_entityframeworkcore_infrastructure_databasefacade_ensurecreated

Test the appTest the app

Seed the database

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 context.Database.EnsureCreated();

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2019-09-
01")},
 new Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2017-09-
01")},
 new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2018-09-
01")},
 new Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2017-09-
01")},
 new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2017-09-01")},
 new Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2016-09-
01")},
 new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2018-09-
01")},
 new Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2019-09-
01")}
 };

 context.Students.AddRange(students);
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course{CourseID=1050,Title="Chemistry",Credits=3},
 new Course{CourseID=4022,Title="Microeconomics",Credits=3},

This workflow works well early in development when the schema is rapidly evolving, as long as you don't need to

preserve data. The situation is different when data that has been entered into the database needs to be preserved.

When that is the case, use migrations.

Later in the tutorial series, you delete the database that was created by EnsureCreated and use migrations instead.

A database that is created by EnsureCreated can't be updated by using migrations.

Run the app.

Select the StudentsStudents link and then Create NewCreate New .

Test the Edit, Details, and Delete links.

The EnsureCreated method creates an empty database. This section adds code that populates the database with test

data.

Create Data/DbInitializer.cs with the following code:

 new Course{CourseID=4022,Title="Microeconomics",Credits=3},
 new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
 new Course{CourseID=1045,Title="Calculus",Credits=4},
 new Course{CourseID=3141,Title="Trigonometry",Credits=4},
 new Course{CourseID=2021,Title="Composition",Credits=3},
 new Course{CourseID=2042,Title="Literature",Credits=4}
 };

 context.Courses.AddRange(courses);
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
 new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
 new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
 new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
 new Enrollment{StudentID=3,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
 new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
 new Enrollment{StudentID=6,CourseID=1045},
 new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
 };

 context.Enrollments.AddRange(enrollments);
 context.SaveChanges();
 }
 }
}

Drop-Database

View the database

The code checks if there are any students in the database. If there are no students, it adds test data to the database.

It creates the test data in arrays rather than List<T> collections to optimize performance.

// context.Database.EnsureCreated();
DbInitializer.Initialize(context);

In Program.cs, replace the EnsureCreated call with a DbInitializer.Initialize call:

Visual Studio

Visual Studio Code

Stop the app if it's running, and run the following command in the Package Manager ConsolePackage Manager Console (PMC):

Restart the app.

Select the Students page to see the seeded data.

Visual Studio

Visual Studio Code

Open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX) from the ViewView menu in Visual Studio.

In SSOX, select (localdb)\MSSQLLocalDB > Databases > SchoolContext-{GUID}(localdb)\MSSQLLocalDB > Databases > SchoolContext-{GUID} . The database name is

generated from the context name you provided earlier plus a dash and a GUID.

Asynchronous code

public async Task OnGetAsync()
{
 Students = await _context.Students.ToListAsync();
}

Next steps

Expand the TablesTables node.

Right-click the StudentStudent table and click View DataView Data to see the columns created and the rows inserted into the

table.

Right-click the StudentStudent table and click View CodeView Code to see how the Student model maps to the Student table

schema.

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available threads

might be in use. When that happens, the server can't process new requests until the threads are freed up. With

synchronous code, many threads may be tied up while they aren't actually doing any work because they're waiting

for I/O to complete. With asynchronous code, when a process is waiting for I/O to complete, its thread is freed up

for the server to use for processing other requests. As a result, asynchronous code enables server resources to be

used more efficiently, and the server can handle more traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time. For low traffic situations, the

performance hit is negligible, while for high traffic situations, the potential performance improvement is substantial.

In the following code, the async keyword, Task<T> return value, await keyword, and ToListAsync method make

the code execute asynchronously.

The async keyword tells the compiler to:

The Task<T> return type represents ongoing work.

The await keyword causes the compiler to split the method into two parts. The first part ends with the

operation that's started asynchronously. The second part is put into a callback method that's called when the

operation completes.

ToListAsync is the asynchronous version of the ToList extension method.

Generate callbacks for parts of the method body.

Create the Task object that's returned.

Some things to be aware of when writing asynchronous code that uses EF Core:

Only statements that cause queries or commands to be sent to the database are executed asynchronously. That

includes ToListAsync , SingleOrDefaultAsync , FirstOrDefaultAsync , and SaveChangesAsync . It doesn't include

statements that just change an IQueryable , such as

var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF Core context isn't thread safe: don't try to do multiple operations in parallel.

To take advantage of the performance benefits of async code, verify that library packages (such as for paging)

use async if they call EF Core methods that send queries to the database.

For more information about asynchronous programming in .NET, see Async Overview and Asynchronous

programming with async and await.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/async-return-types#bkmk_taskreturntype
https://docs.microsoft.com/en-us/dotnet/standard/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/

Prerequisites

Database engines

Troubleshooting

The sample app

N E X TN E X T

T U TO R I A LT U TO R I A L

This is the first in a series of tutorials that show how to use Entity Framework (EF) Core in an ASP.NET Core Razor

Pages app. The tutorials build a web site for a fictional Contoso University. The site includes functionality such as

student admission, course creation, and instructor assignments. The tutorial uses the code first approach. For

information on following this tutorial using the database first approach, see this Github issue.

Download or view the completed app. Download instructions.

If you're new to Razor Pages, go through the Get started with Razor Pages tutorial series before starting this one.

Visual Studio

Visual Studio Code

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.0 SDK or later

The Visual Studio instructions use SQL Server LocalDB, a version of SQL Server Express that runs only on Windows.

The Visual Studio Code instructions use SQLite, a cross-platform database engine.

If you choose to use SQLite, download and install a third-party tool for managing and viewing a SQLite database,

such as DB Browser for SQLite.

If you run into a problem you can't resolve, compare your code to the completed project. A good way to get help is

by posting a question to StackOverflow.com, using the ASP.NET Core tag or the EF Core tag.

The app built in these tutorials is a basic university web site. Users can view and update student, course, and

instructor information. Here are a few of the screens created in the tutorial.

https://github.com/dotnet/AspNetCore.Docs/issues/16897
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-2016-express-localdb
https://www.sqlite.org/
https://sqlitebrowser.org/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core

The UI style of this site is based on the built-in project templates. The tutorial's focus is on how to use EF Core, not

how to customize the UI.

Follow the link at the top of the page to get the source code for the completed project. The cu30 folder has the code

for the ASP.NET Core 3.0 version of the tutorial. Files that reflect the state of the code for tutorials 1-7 can be found

in the cu30snapshots folder.

Visual Studio

Visual Studio Code

To run the app after downloading the completed project:

Create the web app project

Set up the site style

Update-Database

Build the project.

In Package Manager Console (PMC) run the following command:

Run the project to seed the database.

Visual Studio

Visual Studio Code

From the Visual Studio FileFile menu, select NewNew > ProjectProject.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application.

Name the project ContosoUniversity. It's important to use this exact name including capitalization, so the

namespaces match when code is copied and pasted.

Select .NET Core.NET Core and ASP.NET Core 3.0ASP.NET Core 3.0 in the dropdowns, and then select Web ApplicationWeb Application.

Set up the site header, footer, and menu by updating Pages/Shared/_Layout.cshtml:

Change each occurrence of "ContosoUniversity" to "Contoso University". There are three occurrences.

Delete the HomeHome and Pr ivacyPrivacy menu entries, and add entries for AboutAbout, StudentsStudents , CoursesCourses , InstructorsInstructors ,

and Depar tmentsDepar tments .

The changes are highlighted.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Contoso University</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-shadow
mb-3">
 <div class="container">
 Contoso University
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-
collapse" aria-controls="navbarSupportedContent"
 aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 About

 <li class="nav-item">
 Students

 <li class="nav-item">
 Courses

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
page="/Instructors/Index">Instructors

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
page="/Departments/Index">Departments

 </div>
 </div>
 </nav>
 </header>
 <div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>

 <footer class="border-top footer text-muted">
 <div class="container">
 © 2019 - Contoso University - <a asp-area="" asp-page="/Privacy">Privacy
 </div>
 </footer>

 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>

 @RenderSection("Scripts", required: false)
</body>
</html>

In Pages/Index.cshtml, replace the contents of the file with the following code to replace the text about ASP.NET Core

with text about this app:

@page
@model IndexModel
@{
 ViewData["Title"] = "Home page";
}

<div class="row mb-auto">
 <div class="col-md-4">
 <div class="row no-gutters border mb-4">
 <div class="col p-4 mb-4 ">
 <p class="card-text">
 Contoso University is a sample application that
 demonstrates how to use Entity Framework Core in an
 ASP.NET Core Razor Pages web app.
 </p>
 </div>
 </div>
 </div>
 <div class="col-md-4">
 <div class="row no-gutters border mb-4">
 <div class="col p-4 d-flex flex-column position-static">
 <p class="card-text mb-auto">
 You can build the application by following the steps in a series of tutorials.
 </p>
 <p>
 <a href="https://docs.microsoft.com/aspnet/core/data/ef-rp/intro" class="stretched-
link">See the tutorial
 </p>
 </div>
 </div>
 </div>
 <div class="col-md-4">
 <div class="row no-gutters border mb-4">
 <div class="col p-4 d-flex flex-column">
 <p class="card-text mb-auto">
 You can download the completed project from GitHub.
 </p>
 <p>
 <a href="https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-
rp/intro/samples" class="stretched-link">See project source code
 </p>
 </div>
 </div>
 </div>
</div>

The data model

Run the app to verify that the home page appears.

The following sections create a data model:

The Student entity

The Enrollment entity

A student can enroll in any number of courses, and a course can have any number of students enrolled in it.

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Create a Models folder in the project folder.

Create Models/Student.cs with the following code:

The ID property becomes the primary key column of the database table that corresponds to this class. By default,

EF Core interprets a property that's named ID or classnameID as the primary key. So the alternative automatically

recognized name for the Student class primary key is StudentID . For more information, see EF Core - Keys.

The Enrollments property is a navigation property. Navigation properties hold other entities that are related to this

entity. In this case, the Enrollments property of a Student entity holds all of the Enrollment entities that are

related to that Student. For example, if a Student row in the database has two related Enrollment rows, the

Enrollments navigation property contains those two Enrollment entities.

In the database, an Enrollment row is related to a Student row if its StudentID column contains the student's ID

value. For example, suppose a Student row has ID=1. Related Enrollment rows will have StudentID = 1. StudentID is

a foreign key in the Enrollment table.

The Enrollments property is defined as ICollection<Enrollment> because there may be multiple related Enrollment

entities. You can use other collection types, such as List<Enrollment> or HashSet<Enrollment> . When

ICollection<Enrollment> is used, EF Core creates a HashSet<Enrollment> collection by default.

https://docs.microsoft.com/en-us/ef/core/modeling/keys?tabs=data-annotations
https://docs.microsoft.com/en-us/ef/core/modeling/relationships

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

The Course entity

Create Models/Enrollment.cs with the following code:

The EnrollmentID property is the primary key; this entity uses the classnameID pattern instead of ID by itself. For

a production data model, choose one pattern and use it consistently. This tutorial uses both just to illustrate that

both work. Using ID without classname makes it easier to implement some kinds of data model changes.

The Grade property is an enum . The question mark after the Grade type declaration indicates that the Grade

property is nullable. A grade that's null is different from a zero grade—null means a grade isn't known or hasn't

been assigned yet.

The StudentID property is a foreign key, and the corresponding navigation property is Student . An Enrollment

entity is associated with one Student entity, so the property contains a single Student entity.

The CourseID property is a foreign key, and the corresponding navigation property is Course . An Enrollment

entity is associated with one Course entity.

EF Core interprets a property as a foreign key if it's named <navigation property name><primary key property name> .

For example, StudentID is the foreign key for the Student navigation property, since the Student entity's primary

key is ID . Foreign key properties can also be named <primary key property name> . For example, CourseID since

the Course entity's primary key is CourseID .

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Scaffold Student pages

Create Models/Course.cs with the following code:

The Enrollments property is a navigation property. A Course entity can be related to any number of Enrollment

entities.

The DatabaseGenerated attribute allows the app to specify the primary key rather than having the database

generate it.

Build the project to validate that there are no compiler errors.

In this section, you use the ASP.NET Core scaffolding tool to generate:

An EF Core context class. The context is the main class that coordinates Entity Framework functionality for a

given data model. It derives from the Microsoft.EntityFrameworkCore.DbContext class.

Razor pages that handle Create, Read, Update, and Delete (CRUD) operations for the Student entity.

Visual Studio

Visual Studio Code

Create a Students folder in the Pages folder.

In Solution ExplorerSolution Explorer , right-click the Pages/Students folder and select AddAdd > New Scaffolded ItemNew Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select Razor Pages using Entity Framework (CRUD)Razor Pages using Entity Framework (CRUD) > ADDADD.

In the Add Razor Pages using Entity Framework (CRUD)Add Razor Pages using Entity Framework (CRUD) dialog:

In the Model classModel class drop-down, select Student (ContosoUniversity.Models)Student (ContosoUniversity.Models) .

In the Data context classData context class row, select the ++ (plus) sign.

Change the data context name from ContosoUniversity.Models.ContosoUniversityContext to

ContosoUniversity.Data.SchoolContext.

Select AddAdd.

The following packages are automatically installed:

Database connection string

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "SchoolContext": "Server=
(localdb)\\mssqllocaldb;Database=SchoolContext6;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

Update the database context class

Microsoft.VisualStudio.Web.CodeGeneration.Design

Microsoft.EntityFrameworkCore.SqlServer

Microsoft.Extensions.Logging.Debug

Microsoft.EntityFrameworkCore.Tools

If you have a problem with the preceding step, build the project and retry the scaffold step.

The scaffolding process:

Creates Razor pages in the Pages/Students folder :

Creates Data/SchoolContext.cs.

Adds the context to dependency injection in Startup.cs.

Adds a database connection string to appsettings.json.

Create.cshtml and Create.cshtml.cs

Delete.cshtml and Delete.cshtml.cs

Details.cshtml and Details.cshtml.cs

Edit.cshtml and Edit.cshtml.cs

Index.cshtml and Index.cshtml.cs

Visual Studio

Visual Studio Code

The connection string specifies SQL Server LocalDB.

LocalDB is a lightweight version of the SQL Server Express Database Engine and is intended for app development,

not production use. By default, LocalDB creates .mdf files in the C:/Users/<user> directory.

The main class that coordinates EF Core functionality for a given data model is the database context class. The

context is derived from Microsoft.EntityFrameworkCore.DbContext. The context specifies which entities are included

in the data model. In this project, the class is named SchoolContext .

Update SchoolContext.cs with the following code:

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-2016-express-localdb
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext

using Microsoft.EntityFrameworkCore;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext (DbContextOptions<SchoolContext> options)
 : base(options)
 {
 }

 public DbSet<Student> Students { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Course> Courses { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 }
 }
}

Startup.cs

The highlighted code creates a DbSet<TEntity> property for each entity set. In EF Core terminology:

An entity set typically corresponds to a database table.

An entity corresponds to a row in the table.

Since an entity set contains multiple entities, the DBSet properties should be plural names. Since the scaffolding

tool created a Student DBSet, this step changes it to plural Students .

To make the Razor Pages code match the new DBSet name, make a global change across the whole project of

_context.Student to _context.Students . There are 8 occurrences.

Build the project to verify there are no compiler errors.

ASP.NET Core is built with dependency injection. Services (such as the EF Core database context) are registered with

dependency injection during application startup. Components that require these services (such as Razor Pages) are

provided these services via constructor parameters. The constructor code that gets a database context instance is

shown later in the tutorial.

The scaffolding tool automatically registered the context class with the dependency injection container.

Visual Studio

Visual Studio Code

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();

 services.AddDbContext<SchoolContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("SchoolContext")));
}

In ConfigureServices , the highlighted lines were added by the scaffolder :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1

Create the database

using ContosoUniversity.Data;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using System;

namespace ContosoUniversity
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateHostBuilder(args).Build();

 CreateDbIfNotExists(host);

 host.Run();
 }

 private static void CreateDbIfNotExists(IHost host)
 {
 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<SchoolContext>();
 context.Database.EnsureCreated();
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred creating the DB.");
 }
 }
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

The name of the connection string is passed in to the context by calling a method on a DbContextOptions object.

For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Update Program.cs to create the database if it doesn't exist:

The EnsureCreated method takes no action if a database for the context exists. If no database exists, it creates the

database and schema. EnsureCreated enables the following workflow for handling data model changes:

Delete the database. Any existing data is lost.

Change the data model. For example, add an EmailAddress field.

Run the app.

EnsureCreated creates a database with the new schema.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.infrastructure.databasefacade.ensurecreated#microsoft_entityframeworkcore_infrastructure_databasefacade_ensurecreated

Test the appTest the app

Seed the database

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 context.Database.EnsureCreated();

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2019-09-
01")},
 new Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2017-09-
01")},
 new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2018-09-
01")},
 new Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2017-09-
01")},
 new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2017-09-01")},
 new Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2016-09-
01")},
 new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2018-09-
01")},
 new Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2019-09-
01")}
 };

 context.Students.AddRange(students);
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course{CourseID=1050,Title="Chemistry",Credits=3},
 new Course{CourseID=4022,Title="Microeconomics",Credits=3},

This workflow works well early in development when the schema is rapidly evolving, as long as you don't need to

preserve data. The situation is different when data that has been entered into the database needs to be preserved.

When that is the case, use migrations.

Later in the tutorial series, you delete the database that was created by EnsureCreated and use migrations instead.

A database that is created by EnsureCreated can't be updated by using migrations.

Run the app.

Select the StudentsStudents link and then Create NewCreate New .

Test the Edit, Details, and Delete links.

The EnsureCreated method creates an empty database. This section adds code that populates the database with test

data.

Create Data/DbInitializer.cs with the following code:

 new Course{CourseID=4022,Title="Microeconomics",Credits=3},
 new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
 new Course{CourseID=1045,Title="Calculus",Credits=4},
 new Course{CourseID=3141,Title="Trigonometry",Credits=4},
 new Course{CourseID=2021,Title="Composition",Credits=3},
 new Course{CourseID=2042,Title="Literature",Credits=4}
 };

 context.Courses.AddRange(courses);
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
 new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
 new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
 new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
 new Enrollment{StudentID=3,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
 new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
 new Enrollment{StudentID=6,CourseID=1045},
 new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
 };

 context.Enrollments.AddRange(enrollments);
 context.SaveChanges();
 }
 }
}

Drop-Database

View the database

The code checks if there are any students in the database. If there are no students, it adds test data to the database.

It creates the test data in arrays rather than List<T> collections to optimize performance.

// context.Database.EnsureCreated();
DbInitializer.Initialize(context);

In Program.cs, replace the EnsureCreated call with a DbInitializer.Initialize call:

Visual Studio

Visual Studio Code

Stop the app if it's running, and run the following command in the Package Manager ConsolePackage Manager Console (PMC):

Restart the app.

Select the Students page to see the seeded data.

Visual Studio

Visual Studio Code

Open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX) from the ViewView menu in Visual Studio.

In SSOX, select (localdb)\MSSQLLocalDB > Databases > SchoolContext-{GUID}(localdb)\MSSQLLocalDB > Databases > SchoolContext-{GUID} . The database name is

generated from the context name you provided earlier plus a dash and a GUID.

Asynchronous code

public async Task OnGetAsync()
{
 Students = await _context.Students.ToListAsync();
}

Next steps

Expand the TablesTables node.

Right-click the StudentStudent table and click View DataView Data to see the columns created and the rows inserted into the

table.

Right-click the StudentStudent table and click View CodeView Code to see how the Student model maps to the Student table

schema.

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available threads

might be in use. When that happens, the server can't process new requests until the threads are freed up. With

synchronous code, many threads may be tied up while they aren't actually doing any work because they're waiting

for I/O to complete. With asynchronous code, when a process is waiting for I/O to complete, its thread is freed up

for the server to use for processing other requests. As a result, asynchronous code enables server resources to be

used more efficiently, and the server can handle more traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time. For low traffic situations, the

performance hit is negligible, while for high traffic situations, the potential performance improvement is substantial.

In the following code, the async keyword, Task<T> return value, await keyword, and ToListAsync method make

the code execute asynchronously.

The async keyword tells the compiler to:

The Task<T> return type represents ongoing work.

The await keyword causes the compiler to split the method into two parts. The first part ends with the

operation that's started asynchronously. The second part is put into a callback method that's called when the

operation completes.

ToListAsync is the asynchronous version of the ToList extension method.

Generate callbacks for parts of the method body.

Create the Task object that's returned.

Some things to be aware of when writing asynchronous code that uses EF Core:

Only statements that cause queries or commands to be sent to the database are executed asynchronously. That

includes ToListAsync , SingleOrDefaultAsync , FirstOrDefaultAsync , and SaveChangesAsync . It doesn't include

statements that just change an IQueryable , such as

var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF Core context isn't thread safe: don't try to do multiple operations in parallel.

To take advantage of the performance benefits of async code, verify that library packages (such as for paging)

use async if they call EF Core methods that send queries to the database.

For more information about asynchronous programming in .NET, see Async Overview and Asynchronous

programming with async and await.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/async-return-types#bkmk_taskreturntype
https://docs.microsoft.com/en-us/dotnet/standard/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/

Prerequisites

Troubleshooting

The Contoso University web app

N E X TN E X T

T U TO R I A LT U TO R I A L

The Contoso University sample web app demonstrates how to create an ASP.NET Core Razor Pages app using Entity

Framework (EF) Core.

The sample app is a web site for a fictional Contoso University. It includes functionality such as student admission,

course creation, and instructor assignments. This page is the first in a series of tutorials that explain how to build the

Contoso University sample app.

Download or view the completed app. Download instructions.

Visual Studio

Visual Studio Code

Visual Studio 2019 with the following workloads:

ASP.NET and web developmentASP.NET and web development

.NET Core cross-platform development.NET Core cross-platform development

.NET Core 2.1 SDK or later

Familiarity with Razor Pages. New programmers should complete Get started with Razor Pages before starting this

series.

If you run into a problem you can't resolve, you can generally find the solution by comparing your code to the

completed project. A good way to get help is by posting a question to StackOverflow.com for ASP.NET Core or EF

Core.

The app built in these tutorials is a basic university web site.

Users can view and update student, course, and instructor information. Here are a few of the screens created in the

tutorial.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core

The UI style of this site is close to what's generated by the built-in templates. The tutorial focus is on EF Core with

Create the ContosoUniversity Razor Pages web app

Set up the site style

Razor Pages, not the UI.

Visual Studio

Visual Studio Code

From the Visual Studio FileFile menu, select NewNew > ProjectProject.

Create a new ASP.NET Core Web Application. Name the project ContosoUniversityContosoUniversity . It's important to name the

project ContosoUniversity so the namespaces match when code is copy/pasted.

Select ASP.NET Core 2.1ASP.NET Core 2.1 in the dropdown, and then select Web ApplicationWeb Application.

For images of the preceding steps, see Create a Razor web app. Run the app.

A few changes set up the site menu, layout, and home page. Update Pages/Shared/_Layout.cshtml with the

following changes:

Change each occurrence of "ContosoUniversity" to "Contoso University". There are three occurrences.

Add menu entries for StudentsStudents , CoursesCourses , InstructorsInstructors , and Depar tmentsDepar tments , and delete the ContactContact menu

entry.

The changes are highlighted. (All the markup is not displayed.)

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] : Contoso University</title>

 <environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
 Toggle navigation

 </button>
 <a asp-page="/Index" class="navbar-brand">Contoso University
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-page="/Index">Home
 <a asp-page="/About">About
 <a asp-page="/Students/Index">Students
 <a asp-page="/Courses/Index">Courses
 <a asp-page="/Instructors/Index">Instructors
 <a asp-page="/Departments/Index">Departments

 </div>
 </div>
 </nav>

 <partial name="_CookieConsentPartial" />

 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2018 : Contoso University</p>
 </footer>
 </div>

 @*Remaining markup not shown for brevity.*@

In Pages/Index.cshtml, replace the contents of the file with the following code to replace the text about ASP.NET and

MVC with text about this app:

@page
@model IndexModel
@{
 ViewData["Title"] = "Home page";
}

<div class="jumbotron">
 <h1>Contoso University</h1>
</div>
<div class="row">
 <div class="col-md-4">
 <h2>Welcome to Contoso University</h2>
 <p>
 Contoso University is a sample application that
 demonstrates how to use Entity Framework Core in an
 ASP.NET Core Razor Pages web app.
 </p>
 </div>
 <div class="col-md-4">
 <h2>Build it from scratch</h2>
 <p>You can build the application by following the steps in a series of tutorials.</p>
 <p>
 <a class="btn btn-default"
 href="https://docs.microsoft.com/aspnet/core/data/ef-rp/intro">
 See the tutorial »

 </p>
 </div>
 <div class="col-md-4">
 <h2>Download it</h2>
 <p>You can download the completed project from GitHub.</p>
 <p>
 <a class="btn btn-default"
 href="https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-
rp/intro/samples/">
 See project source code »

 </p>
 </div>
</div>

Create the data model

The Student entityThe Student entity

Create entity classes for the Contoso University app. Start with the following three entities:

There's a one-to-many relationship between Student and Enrollment entities. There's a one-to-many relationship

between Course and Enrollment entities. A student can enroll in any number of courses. A course can have any

number of students enrolled in it.

In the following sections, a class for each one of these entities is created.

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

The Enrollment entityThe Enrollment entity

Create a Models folder. In the Models folder, create a class file named Student.cs with the following code:

The ID property becomes the primary key column of the database (DB) table that corresponds to this class. By

default, EF Core interprets a property that's named ID or classnameID as the primary key. In classnameID ,

classname is the name of the class. The alternative automatically recognized primary key is StudentID in the

preceding example.

The Enrollments property is a navigation property. Navigation properties link to other entities that are related to

this entity. In this case, the Enrollments property of a Student entity holds all of the Enrollment entities that are

related to that Student . For example, if a Student row in the DB has two related Enrollment rows, the Enrollments

navigation property contains those two Enrollment entities. A related Enrollment row is a row that contains that

student's primary key value in the StudentID column. For example, suppose the student with ID=1 has two rows in

the Enrollment table. The Enrollment table has two rows with StudentID = 1. StudentID is a foreign key in the

Enrollment table that specifies the student in the Student table.

If a navigation property can hold multiple entities, the navigation property must be a list type, such as

ICollection<T> . ICollection<T> can be specified, or a type such as List<T> or HashSet<T> . When ICollection<T>

is used, EF Core creates a HashSet<T> collection by default. Navigation properties that hold multiple entities come

from many-to-many and one-to-many relationships.

In the Models folder, create Enrollment.cs with the following code:

https://docs.microsoft.com/en-us/ef/core/modeling/relationships

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

The Course entityThe Course entity

The EnrollmentID property is the primary key. This entity uses the classnameID pattern instead of ID like the

Student entity. Typically developers choose one pattern and use it throughout the data model. In a later tutorial,

using ID without classname is shown to make it easier to implement inheritance in the data model.

The Grade property is an enum . The question mark after the Grade type declaration indicates that the Grade

property is nullable. A grade that's null is different from a zero grade -- null means a grade isn't known or hasn't

been assigned yet.

The StudentID property is a foreign key, and the corresponding navigation property is Student . An Enrollment

entity is associated with one Student entity, so the property contains a single Student entity. The Student entity

differs from the Student.Enrollments navigation property, which contains multiple Enrollment entities.

The CourseID property is a foreign key, and the corresponding navigation property is Course . An Enrollment

entity is associated with one Course entity.

EF Core interprets a property as a foreign key if it's named <navigation property name><primary key property name> .

For example, StudentID for the Student navigation property, since the Student entity's primary key is ID . Foreign

key properties can also be named <primary key property name> . For example, CourseID since the Course entity's

primary key is CourseID .

In the Models folder, create Course.cs with the following code:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Scaffold the student model

The Enrollments property is a navigation property. A Course entity can be related to any number of Enrollment

entities.

The DatabaseGenerated attribute allows the app to specify the primary key rather than having the DB generate it.

In this section, the student model is scaffolded. That is, the scaffolding tool produces pages for Create, Read, Update,

and Delete (CRUD) operations for the student model.

Build the project.

Create the Pages/Students folder.

Visual Studio

Visual Studio Code

In Solution ExplorerSolution Explorer , right click on the Pages/Students folder > AddAdd > New Scaffolded ItemNew Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select Razor Pages using Entity Framework (CRUD)Razor Pages using Entity Framework (CRUD) > ADDADD.

Complete the Add Razor Pages using Entity Framework (CRUD)Add Razor Pages using Entity Framework (CRUD) dialog:

In the Model classModel class drop-down, select Student (ContosoUniversity.Models)Student (ContosoUniversity.Models) .

In the Data context classData context class row, select the ++ (plus) sign and change the generated name to

ContosoUniversity.Models.SchoolContextContosoUniversity.Models.SchoolContext.

In the Data context classData context class drop-down, select ContosoUniversity.Models.SchoolContextContosoUniversity.Models.SchoolContext

Select AddAdd.

Files createdFiles created

File updatesFile updates

Examine the context registered with dependency injection

See Scaffold the movie model if you have a problem with the preceding step.

The scaffold process created and changed the following files:

Pages/Students Create, Delete, Details, Edit, Index.

Data/SchoolContext.cs

Startup.cs : Changes to this file are detailed in the next section.

appsettings.json : The connection string used to connect to a local database is added.

ASP.NET Core is built with dependency injection. Services (such as the EF Core DB context) are registered with

dependency injection during application startup. Components that require these services (such as Razor Pages) are

provided these services via constructor parameters. The constructor code that gets a db context instance is shown

later in the tutorial.

The scaffolding tool automatically created a DB Context and registered it with the dependency injection container.

Examine the ConfigureServices method in Startup.cs. The highlighted line was added by the scaffolder :

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for
 //non -essential cookies is needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

 services.AddDbContext<SchoolContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("SchoolContext")));
}

Update main

The name of the connection string is passed in to the context by calling a method on a DbContextOptions object.

For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

In Program.cs, modify the Main method to do the following:

Get a DB context instance from the dependency injection container.

Call the EnsureCreated.

Dispose the context when the EnsureCreated method completes.

The following code shows the updated Program.cs file.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.infrastructure.databasefacade.ensurecreated#microsoft_entityframeworkcore_infrastructure_databasefacade_ensurecreated

using ContosoUniversity.Models; // SchoolContext
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection; // CreateScope
using Microsoft.Extensions.Logging;
using System;

namespace ContosoUniversity
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<SchoolContext>();
 context.Database.EnsureCreated();
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred creating the DB.");
 }
 }

 host.Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

Test the appTest the app

EnsureCreated ensures that the database for the context exists. If it exists, no action is taken. If it does not exist, then

the database and all its schema are created. EnsureCreated does not use migrations to create the database. A

database that is created with EnsureCreated cannot be later updated using migrations.

EnsureCreated is called on app start, which allows the following work flow:

Delete the DB.

Change the DB schema (for example, add an EmailAddress field).

Run the app.

EnsureCreated creates a DB with the EmailAddress column.

EnsureCreated is convenient early in development when the schema is rapidly evolving. Later in the tutorial the DB

is deleted and migrations are used.

Run the app and accept the cookie policy. This app doesn't keep personal information. You can read about the

cookie policy at EU General Data Protection Regulation (GDPR) support.

Select the StudentsStudents link and then Create NewCreate New .

Test the Edit, Details, and Delete links.

Examine the SchoolContext DB context

using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Models
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options)
 : base(options)
 {
 }

 public DbSet<Student> Student { get; set; }
 public DbSet<Enrollment> Enrollment { get; set; }
 public DbSet<Course> Course { get; set; }
 }
}

SQL Server Express LocalDBSQL Server Express LocalDB

Add code to initialize the DB with test data

using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Models
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 context.Database.EnsureCreated();

 // Look for any students.
 if (context.Student.Any())
 {

The main class that coordinates EF Core functionality for a given data model is the DB context class. The data

context is derived from Microsoft.EntityFrameworkCore.DbContext. The data context specifies which entities are

included in the data model. In this project, the class is named SchoolContext .

Update SchoolContext.cs with the following code:

The highlighted code creates a DbSet<TEntity> property for each entity set. In EF Core terminology:

An entity set typically corresponds to a DB table.

An entity corresponds to a row in the table.

DbSet<Enrollment> and DbSet<Course> could be omitted. EF Core includes them implicitly because the Student

entity references the Enrollment entity, and the Enrollment entity references the Course entity. For this tutorial,

keep DbSet<Enrollment> and DbSet<Course> in the SchoolContext .

The connection string specifies SQL Server LocalDB. LocalDB is a lightweight version of the SQL Server Express

Database Engine and is intended for app development, not production use. LocalDB starts on demand and runs in

user mode, so there's no complex configuration. By default, LocalDB creates .mdf DB files in the C:/Users/<user>

directory.

EF Core creates an empty DB. In this section, an Initialize method is written to populate it with test data.

In the Data folder, create a new class file named DbInitializer.cs and add the following code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-2016-express-localdb

 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2005-09-
01")},
 new Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2003-09-01")},
 new Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2001-09-01")},
 new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2003-09-01")},
 new Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2005-09-01")}
 };
 foreach (Student s in students)
 {
 context.Student.Add(s);
 }
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course{CourseID=1050,Title="Chemistry",Credits=3},
 new Course{CourseID=4022,Title="Microeconomics",Credits=3},
 new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
 new Course{CourseID=1045,Title="Calculus",Credits=4},
 new Course{CourseID=3141,Title="Trigonometry",Credits=4},
 new Course{CourseID=2021,Title="Composition",Credits=3},
 new Course{CourseID=2042,Title="Literature",Credits=4}
 };
 foreach (Course c in courses)
 {
 context.Course.Add(c);
 }
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
 new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
 new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
 new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
 new Enrollment{StudentID=3,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
 new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
 new Enrollment{StudentID=6,CourseID=1045},
 new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
 };
 foreach (Enrollment e in enrollments)
 {
 context.Enrollment.Add(e);
 }
 context.SaveChanges();
 }
 }
}

Note: The preceding code uses Models for the namespace (namespace ContosoUniversity.Models) rather than Data .

Models is consistent with the scaffolder-generated code. For more information, see this GitHub scaffolding issue.

The code checks if there are any students in the DB. If there are no students in the DB, the DB is initialized with test

data. It loads test data into arrays rather than List<T> collections to optimize performance.

https://github.com/aspnet/Scaffolding/issues/822

public class Program
{
 public static void Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<SchoolContext>();
 // using ContosoUniversity.Data;
 DbInitializer.Initialize(context);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred creating the DB.");
 }
 }

 host.Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
}

Drop-Database

View the DB

Asynchronous code

The EnsureCreated method automatically creates the DB for the DB context. If the DB exists, EnsureCreated returns

without modifying the DB.

In Program.cs, modify the Main method to call Initialize :

Visual Studio

Visual Studio Code

Stop the app if it's running, and run the following command in the Package Manager ConsolePackage Manager Console (PMC):

The database name is generated from the context name you provided earlier plus a dash and a GUID. Thus, the

database name will be "SchoolContext-{GUID}". The GUID will be different for each user. Open SQL Ser ver ObjectSQL Ser ver Object

ExplorerExplorer (SSOX) from the ViewView menu in Visual Studio. In SSOX, click (localdb)\MSSQLLocalDB > Databases >(localdb)\MSSQLLocalDB > Databases >

SchoolContext-{GUID}SchoolContext-{GUID} .

Expand the TablesTables node.

Right-click the StudentStudent table and click View DataView Data to see the columns created and the rows inserted into the table.

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available threads

might be in use. When that happens, the server can't process new requests until the threads are freed up. With

public async Task OnGetAsync()
{
 Student = await _context.Student.ToListAsync();
}

Additional resources

synchronous code, many threads may be tied up while they aren't actually doing any work because they're waiting

for I/O to complete. With asynchronous code, when a process is waiting for I/O to complete, its thread is freed up

for the server to use for processing other requests. As a result, asynchronous code enables server resources to be

used more efficiently, and the server is enabled to handle more traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time. For low traffic situations, the

performance hit is negligible, while for high traffic situations, the potential performance improvement is substantial.

In the following code, the async keyword, Task<T> return value, await keyword, and ToListAsync method make

the code execute asynchronously.

The async keyword tells the compiler to:

Generate callbacks for parts of the method body.

Automatically create the Task object that's returned. For more information, see Task Return Type.

The implicit return type Task represents ongoing work.

The await keyword causes the compiler to split the method into two parts. The first part ends with the

operation that's started asynchronously. The second part is put into a callback method that's called when the

operation completes.

ToListAsync is the asynchronous version of the ToList extension method.

Some things to be aware of when writing asynchronous code that uses EF Core:

Only statements that cause queries or commands to be sent to the DB are executed asynchronously. That

includes, ToListAsync , SingleOrDefaultAsync , FirstOrDefaultAsync , and SaveChangesAsync . It doesn't include

statements that just change an IQueryable , such as

var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF Core context isn't thread safe: don't try to do multiple operations in parallel.

To take advantage of the performance benefits of async code, verify that library packages (such as for paging)

use async if they call EF Core methods that send queries to the DB.

For more information about asynchronous programming in .NET, see Async Overview and Asynchronous

programming with async and await.

In the next tutorial, basic CRUD (create, read, update, delete) operations are examined.

YouTube version of this tutorial

N E X TN E X T

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/async-return-types#bkmk_taskreturntype
https://docs.microsoft.com/en-us/dotnet/standard/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://www.youtube.com/watch?v=P7iTtQnkrNs

Part 2, Razor Pages with EF Core in ASP.NET Core -
CRUD
9/22/2020 • 22 minutes to read • Edit Online

No repository

Update the Details page

Read enrollmentsRead enrollments

public async Task<IActionResult> OnGetAsync(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 Student = await _context.Students.FirstOrDefaultAsync(m => m.ID == id);

 if (Student == null)
 {
 return NotFound();
 }
 return Page();
}

By Tom Dykstra, Jon P Smith, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you created

by following the tutorial.

In this tutorial, the scaffolded CRUD (create, read, update, delete) code is reviewed and customized.

Some developers use a service layer or repository pattern to create an abstraction layer between the UI (Razor

Pages) and the data access layer. This tutorial doesn't do that. To minimize complexity and keep the tutorial focused

on EF Core, EF Core code is added directly to the page model classes.

The scaffolded code for the Students pages doesn't include enrollment data. In this section, you add enrollments to

the Details page.

To display a student's enrollment data on the page, you need to read it. The scaffolded code in

Pages/Students/Details.cshtml.cs reads only the Student data, without the Enrollment data:

Replace the OnGetAsync method with the following code to read enrollment data for the selected student. The

changes are highlighted.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/crud.md
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

public async Task<IActionResult> OnGetAsync(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 Student = await _context.Students
 .Include(s => s.Enrollments)
 .ThenInclude(e => e.Course)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (Student == null)
 {
 return NotFound();
 }
 return Page();
}

Display enrollmentsDisplay enrollments

The Include and ThenInclude methods cause the context to load the Student.Enrollments navigation property, and

within each enrollment the Enrollment.Course navigation property. These methods are examined in detail in the

Reading related data tutorial.

The AsNoTracking method improves performance in scenarios where the entities returned are not updated in the

current context. AsNoTracking is discussed later in this tutorial.

Replace the code in Pages/Students/Details.cshtml with the following code to display a list of enrollments. The

changes are highlighted.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.include
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.theninclude#microsoft_entityframeworkcore_entityframeworkqueryableextensions_theninclude__3_microsoft_entityframeworkcore_query_iincludablequeryable___0_system_collections_generic_ienumerable___1___system_linq_expressions_expression_system_func___1___2___
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.asnotracking#microsoft_entityframeworkcore_entityframeworkqueryableextensions_asnotracking__1_system_linq_iqueryable___0__

@page
@model ContosoUniversity.Pages.Students.DetailsModel

@{
 ViewData["Title"] = "Details";
}

<h1>Details</h1>

<div>
 <h4>Student</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Student.LastName)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Student.LastName)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Student.FirstMidName)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Student.FirstMidName)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Student.EnrollmentDate)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Student.EnrollmentDate)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Student.Enrollments)
 </dt>
 <dd class="col-sm-10">
 <table class="table">
 <tr>
 <th>Course Title</th>
 <th>Grade</th>
 </tr>
 @foreach (var item in Model.Student.Enrollments)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Course.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Grade)
 </td>
 </tr>
 }
 </table>
 </dd>
 </dl>
</div>
<div>
 <a asp-page="./Edit" asp-route-id="@Model.Student.ID">Edit |
 <a asp-page="./Index">Back to List
</div>

The preceding code loops through the entities in the Enrollments navigation property. For each enrollment, it

displays the course title and the grade. The course title is retrieved from the Course entity that's stored in the

Course navigation property of the Enrollments entity.

Run the app, select the StudentsStudents tab, and click the DetailsDetails link for a student. The list of courses and grades for the

Ways to read one entityWays to read one entity

Route data vs. query stringRoute data vs. query string

Update the Create page

public async Task<IActionResult> OnPostAsync()
{
 var emptyStudent = new Student();

 if (await TryUpdateModelAsync<Student>(
 emptyStudent,
 "student", // Prefix for form value.
 s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
 {
 _context.Students.Add(emptyStudent);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 return Page();
}

TryUpdateModelAsyncTryUpdateModelAsync

Overposting

selected student is displayed.

The generated code uses FirstOrDefaultAsync to read one entity. This method returns null if nothing is found;

otherwise, it returns the first row found that satisfies the query filter criteria. FirstOrDefaultAsync is generally a

better choice than the following alternatives:

SingleOrDefaultAsync - Throws an exception if there's more than one entity that satisfies the query filter. To

determine if more than one row could be returned by the query, SingleOrDefaultAsync tries to fetch multiple

rows. This extra work is unnecessary if the query can only return one entity, as when it searches on a unique key.

FindAsync - Finds an entity with the primary key (PK). If an entity with the PK is being tracked by the context, it's

returned without a request to the database. This method is optimized to look up a single entity, but you can't call

Include with FindAsync . So if related data is needed, FirstOrDefaultAsync is the better choice.

The URL for the Details page is https://localhost:<port>/Students/Details?id=1 . The entity's primary key value is in

the query string. Some developers prefer to pass the key value in route data:

https://localhost:<port>/Students/Details/1 . For more information, see Update the generated code.

The scaffolded OnPostAsync code for the Create page is vulnerable to overposting. Replace the OnPostAsync

method in Pages/Students/Create.cshtml.cs with the following code.

The preceding code creates a Student object and then uses posted form fields to update the Student object's

properties. The TryUpdateModelAsync method:

Uses the posted form values from the PageContext property in the PageModel.

Updates only the properties listed (s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate).

Looks for form fields with a "student" prefix. For example, Student.FirstMidName . It's not case sensitive.

Uses the model binding system to convert form values from strings to the types in the Student model. For

example, EnrollmentDate has to be converted to DateTime.

Run the app, and create a student entity to test the Create page.

Using TryUpdateModel to update fields with posted values is a security best practice because it prevents

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.firstordefaultasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_firstordefaultasync__1_system_linq_iqueryable___0__system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.singleordefaultasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_singleordefaultasync__1_system_linq_iqueryable___0__system_linq_expressions_expression_system_func___0_system_boolean___system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.findasync#microsoft_entityframeworkcore_dbcontext_findasync_system_type_system_object___
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.tryupdatemodelasync#microsoft_aspnetcore_mvc_controllerbase_tryupdatemodelasync_system_object_system_type_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.pagecontext#microsoft_aspnetcore_mvc_razorpages_pagemodel_pagecontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel

public class Student
{
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }
 public string Secret { get; set; }
}

View modelView model

overposting. For example, suppose the Student entity includes a Secret property that this web page shouldn't

update or add:

Even if the app doesn't have a Secret field on the create or update Razor Page, a hacker could set the Secret value

by overposting. A hacker could use a tool such as Fiddler, or write some JavaScript, to post a Secret form value.

The original code doesn't limit the fields that the model binder uses when it creates a Student instance.

Whatever value the hacker specified for the Secret form field is updated in the database. The following image

shows the Fiddler tool adding the Secret field (with the value "OverPost") to the posted form values.

The value "OverPost" is successfully added to the Secret property of the inserted row. That happens even though

the app designer never intended the Secret property to be set with the Create page.

View models provide an alternative way to prevent overposting.

The application model is often called the domain model. The domain model typically contains all the properties

required by the corresponding entity in the database. The view model contains only the properties needed for the

UI that it is used for (for example, the Create page).

In addition to the view model, some apps use a binding model or input model to pass data between the Razor

Pages page model class and the browser.

Consider the following Student view model:

using System;

namespace ContosoUniversity.Models
{
 public class StudentVM
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }
 }
}

[BindProperty]
public StudentVM StudentVM { get; set; }

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var entry = _context.Add(new Student());
 entry.CurrentValues.SetValues(StudentVM);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
}

Update the Edit page

The following code uses the StudentVM view model to create a new student:

The SetValues method sets the values of this object by reading values from another PropertyValues object.

SetValues uses property name matching. The view model type doesn't need to be related to the model type, it just

needs to have properties that match.

Using StudentVM requires Create.cshtml be updated to use StudentVM rather than Student .

In Pages/Students/Edit.cshtml.cs, replace the OnGetAsync and OnPostAsync methods with the following code.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyvalues.setvalues#microsoft_entityframeworkcore_changetracking_propertyvalues_setvalues_system_object_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyvalues
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu30snapshots/2-crud/Pages/Students/CreateVM.cshtml

public async Task<IActionResult> OnGetAsync(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 Student = await _context.Students.FindAsync(id);

 if (Student == null)
 {
 return NotFound();
 }
 return Page();
}

public async Task<IActionResult> OnPostAsync(int id)
{
 var studentToUpdate = await _context.Students.FindAsync(id);

 if (studentToUpdate == null)
 {
 return NotFound();
 }

 if (await TryUpdateModelAsync<Student>(
 studentToUpdate,
 "student",
 s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 return Page();
}

Entity States

The code changes are similar to the Create page with a few exceptions:

FirstOrDefaultAsync has been replaced with FindAsync. When you don't have to include related data, FindAsync

is more efficient.

OnPostAsync has an id parameter.

The current student is fetched from the database, rather than creating an empty student.

Run the app, and test it by creating and editing a student.

The database context keeps track of whether entities in memory are in sync with their corresponding rows in the

database. This tracking information determines what happens when SaveChangesAsync is called. For example,

when a new entity is passed to the AddAsync method, that entity's state is set to Added. When SaveChangesAsync is

called, the database context issues a SQL INSERT command.

An entity may be in one of the following states:

Added : The entity doesn't yet exist in the database. The SaveChanges method issues an INSERT statement.

Unchanged : No changes need to be saved with this entity. An entity has this status when it's read from the

database.

Modified : Some or all of the entity's property values have been modified. The SaveChanges method issues

an UPDATE statement.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1.findasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechangesasync#microsoft_entityframeworkcore_dbcontext_savechangesasync_system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.addasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate#microsoft_entityframeworkcore_entitystate_added
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate

Update the Delete page

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Students
{
 public class DeleteModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Student Student { get; set; }
 public string ErrorMessage { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id, bool? saveChangesError = false)
 {
 if (id == null)
 {
 return NotFound();
 }

 Student = await _context.Students
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (Student == null)
 {
 return NotFound();
 }

 if (saveChangesError.GetValueOrDefault())
 {
 ErrorMessage = "Delete failed. Try again";
 }

 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)

Deleted : The entity has been marked for deletion. The SaveChanges method issues a DELETE statement.

Detached : The entity isn't being tracked by the database context.

In a desktop app, state changes are typically set automatically. An entity is read, changes are made, and the entity

state is automatically changed to Modified . Calling SaveChanges generates a SQL UPDATE statement that updates

only the changed properties.

In a web app, the DbContext that reads an entity and displays the data is disposed after a page is rendered. When a

page's OnPostAsync method is called, a new web request is made and with a new instance of the DbContext .

Rereading the entity in that new context simulates desktop processing.

In this section, you implement a custom error message when the call to SaveChanges fails.

Replace the code in Pages/Students/Delete.cshtml.cs with the following code. The changes are highlighted (other

than cleanup of using statements).

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 var student = await _context.Students.FindAsync(id);

 if (student == null)
 {
 return NotFound();
 }

 try
 {
 _context.Students.Remove(student);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 return RedirectToAction("./Delete",
 new { id, saveChangesError = true });
 }
 }
 }
}

The preceding code adds the optional parameter saveChangesError to the OnGetAsync method signature.

saveChangesError indicates whether the method was called after a failure to delete the student object. The delete

operation might fail because of transient network problems. Transient network errors are more likely when the

database is in the cloud. The saveChangesError parameter is false when the Delete page OnGetAsync is called from

the UI. When OnGetAsync is called by OnPostAsync (because the delete operation failed), the saveChangesError

parameter is true.

The OnPostAsync method retrieves the selected entity, then calls the Remove method to set the entity's status to

Deleted . When SaveChanges is called, a SQL DELETE command is generated. If Remove fails:

The database exception is caught.

The Delete pages OnGetAsync method is called with saveChangesError=true .

Add an error message to the Delete Razor Page (Pages/Students/Delete.cshtml):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.remove#microsoft_entityframeworkcore_dbcontext_remove_system_object_

@page
@model ContosoUniversity.Pages.Students.DeleteModel

@{
 ViewData["Title"] = "Delete";
}

<h1>Delete</h1>

<p class="text-danger">@Model.ErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Student</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Student.LastName)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Student.LastName)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Student.FirstMidName)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Student.FirstMidName)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Student.EnrollmentDate)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Student.EnrollmentDate)
 </dd>
 </dl>

 <form method="post">
 <input type="hidden" asp-for="Student.ID" />
 <input type="submit" value="Delete" class="btn btn-danger" /> |
 <a asp-page="./Index">Back to List
 </form>
</div>

Next steps

Run the app and delete a student to test the Delete page.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

In this tutorial, the scaffolded CRUD (create, read, update, delete) code is reviewed and customized.

To minimize complexity and keep these tutorials focused on EF Core, EF Core code is used in the page models.

Some developers use a service layer or repository pattern in to create an abstraction layer between the UI (Razor

Pages) and the data access layer.

In this tutorial, the Create, Edit, Delete, and Details Razor Pages in the Students folder are examined.

The scaffolded code uses the following pattern for Create, Edit, and Delete pages:

Get and display the requested data with the HTTP GET method OnGetAsync .

SingleOrDefaultAsync vs. FirstOrDefaultAsync

FindAsyncFindAsync

Customize the Details page

<td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
</td>

@page "{id:int?}"

Save changes to the data with the HTTP POST method OnPostAsync .

The Index and Details pages get and display the requested data with the HTTP GET method OnGetAsync

The generated code uses FirstOrDefaultAsync, which is generally preferred over SingleOrDefaultAsync.

FirstOrDefaultAsync is more efficient than SingleOrDefaultAsync at fetching one entity:

Unless the code needs to verify that there's not more than one entity returned from the query.

SingleOrDefaultAsync fetches more data and does unnecessary work.

SingleOrDefaultAsync throws an exception if there's more than one entity that fits the filter part.

FirstOrDefaultAsync doesn't throw if there's more than one entity that fits the filter part.

In much of the scaffolded code, FindAsync can be used in place of FirstOrDefaultAsync .

FindAsync :

Finds an entity with the primary key (PK). If an entity with the PK is being tracked by the context, it's returned

without a request to the DB.

Is simple and concise.

Is optimized to look up a single entity.

Can have perf benefits in some situations, but that rarely happens for typical web apps.

Implicitly uses FirstAsync instead of SingleAsync.

But if you want to Include other entities, then FindAsync is no longer appropriate. This means that you may need

to abandon FindAsync and move to a query as your app progresses.

Browse to Pages/Students page. The EditEdit, DetailsDetails , and DeleteDelete links are generated by the Anchor Tag Helper in the

Pages/Students/Index.cshtml file.

Run the app and select a DetailsDetails link. The URL is of the form http://localhost:5000/Students/Details?id=2 . The

Student ID is passed using a query string (?id=2).

Update the Edit, Details, and Delete Razor Pages to use the "{id:int}" route template. Change the page directive

for each of these pages from @page to @page "{id:int}" .

A request to the page with the "{id:int}" route template that does notnot include a integer route value returns an HTTP

404 (not found) error. For example, http://localhost:5000/Students/Details returns a 404 error. To make the ID

optional, append ? to the route constraint:

Run the app, click on a Details link, and verify the URL is passing the ID as route data (

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.firstordefaultasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_firstordefaultasync__1_system_linq_iqueryable___0__system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.singleordefaultasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_singleordefaultasync__1_system_linq_iqueryable___0__system_linq_expressions_expression_system_func___0_system_boolean___system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.findasync#microsoft_entityframeworkcore_dbcontext_findasync_system_type_system_object___
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.firstasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_firstasync__1_system_linq_iqueryable___0__system_linq_expressions_expression_system_func___0_system_boolean___system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.singleasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_singleasync__1_system_linq_iqueryable___0__system_linq_expressions_expression_system_func___0_system_boolean___system_threading_cancellationtoken_

Add related dataAdd related data

public async Task<IActionResult> OnGetAsync(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 Student = await _context.Student
 .Include(s => s.Enrollments)
 .ThenInclude(e => e.Course)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (Student == null)
 {
 return NotFound();
 }
 return Page();
}

Display related enrollments on the Details pageDisplay related enrollments on the Details page

http://localhost:5000/Students/Details/2).

Don't globally change @page to @page "{id:int}" , doing so breaks the links to the Home and Create pages.

The scaffolded code for the Students Index page doesn't include the Enrollments property. In this section, the

contents of the Enrollments collection is displayed in the Details page.

The OnGetAsync method of Pages/Students/Details.cshtml.cs uses the FirstOrDefaultAsync method to retrieve a

single Student entity. Add the following highlighted code:

The Include and ThenInclude methods cause the context to load the Student.Enrollments navigation property, and

within each enrollment the Enrollment.Course navigation property. These methods are examined in detail in the

reading-related data tutorial.

The AsNoTracking method improves performance in scenarios when the entities returned are not updated in the

current context. AsNoTracking is discussed later in this tutorial.

Open Pages/Students/Details.cshtml. Add the following highlighted code to display a list of enrollments:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.include
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.theninclude#microsoft_entityframeworkcore_entityframeworkqueryableextensions_theninclude__3_microsoft_entityframeworkcore_query_iincludablequeryable___0_system_collections_generic_ienumerable___1___system_linq_expressions_expression_system_func___1___2___
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.asnotracking#microsoft_entityframeworkcore_entityframeworkqueryableextensions_asnotracking__1_system_linq_iqueryable___0__

@page "{id:int}"
@model ContosoUniversity.Pages.Students.DetailsModel

@{
 ViewData["Title"] = "Details";
}

<h2>Details</h2>

<div>
 <h4>Student</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Student.LastName)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Student.LastName)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Student.FirstMidName)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Student.FirstMidName)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Student.EnrollmentDate)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Student.EnrollmentDate)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Student.Enrollments)
 </dt>
 <dd>
 <table class="table">
 <tr>
 <th>Course Title</th>
 <th>Grade</th>
 </tr>
 @foreach (var item in Model.Student.Enrollments)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Course.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Grade)
 </td>
 </tr>
 }
 </table>
 </dd>
 </dl>
</div>
<div>
 <a asp-page="./Edit" asp-route-id="@Model.Student.ID">Edit |
 <a asp-page="./Index">Back to List
</div>

If code indentation is wrong after the code is pasted, press CTRL-K-D to correct it.

The preceding code loops through the entities in the Enrollments navigation property. For each enrollment, it

displays the course title and the grade. The course title is retrieved from the Course entity that's stored in the

Course navigation property of the Enrollments entity.

Update the Create page

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var emptyStudent = new Student();

 if (await TryUpdateModelAsync<Student>(
 emptyStudent,
 "student", // Prefix for form value.
 s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
 {
 _context.Student.Add(emptyStudent);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 return null;
}

TryUpdateModelAsyncTryUpdateModelAsync

var emptyStudent = new Student();

if (await TryUpdateModelAsync<Student>(
 emptyStudent,
 "student", // Prefix for form value.
 s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
{

OverpostingOverposting

Run the app, select the StudentsStudents tab, and click the DetailsDetails link for a student. The list of courses and grades for the

selected student is displayed.

Update the OnPostAsync method in Pages/Students/Create.cshtml.cs with the following code:

Examine the TryUpdateModelAsync code:

In the preceding code, TryUpdateModelAsync<Student> tries to update the emptyStudent object using the posted form

values from the PageContext property in the PageModel. TryUpdateModelAsync only updates the properties listed (

s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate).

In the preceding sample:

The second argument ("student", // Prefix) is the prefix uses to look up values. It's not case sensitive.

The posted form values are converted to the types in the Student model using model binding.

Using TryUpdateModel to update fields with posted values is a security best practice because it prevents

overposting. For example, suppose the Student entity includes a Secret property that this web page shouldn't

update or add:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.tryupdatemodelasync#microsoft_aspnetcore_mvc_controllerbase_tryupdatemodelasync_system_object_system_type_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.pagecontext#microsoft_aspnetcore_mvc_razorpages_pagemodel_pagecontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel

public class Student
{
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }
 public string Secret { get; set; }
}

View modelView model

Even if the app doesn't have a Secret field on the create/update Razor Page, a hacker could set the Secret value

by overposting. A hacker could use a tool such as Fiddler, or write some JavaScript, to post a Secret form value.

The original code doesn't limit the fields that the model binder uses when it creates a Student instance.

Whatever value the hacker specified for the Secret form field is updated in the DB. The following image shows the

Fiddler tool adding the Secret field (with the value "OverPost") to the posted form values.

The value "OverPost" is successfully added to the Secret property of the inserted row. The app designer never

intended the Secret property to be set with the Create page.

A view model typically contains a subset of the properties included in the model used by the application. The

application model is often called the domain model. The domain model typically contains all the properties required

by the corresponding entity in the DB. The view model contains only the properties needed for the UI layer (for

example, the Create page). In addition to the view model, some apps use a binding model or input model to pass

data between the Razor Pages page model class and the browser. Consider the following Student view model:

using System;

namespace ContosoUniversity.Models
{
 public class StudentVM
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }
 }
}

[BindProperty]
public StudentVM StudentVM { get; set; }

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var entry = _context.Add(new Student());
 entry.CurrentValues.SetValues(StudentVM);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
}

Update the Edit page

View models provide an alternative way to prevent overposting. The view model contains only the properties to

view (display) or update.

The following code uses the StudentVM view model to create a new student:

The SetValues method sets the values of this object by reading values from another PropertyValues object.

SetValues uses property name matching. The view model type doesn't need to be related to the model type, it just

needs to have properties that match.

Using StudentVM requires CreateVM.cshtml be updated to use StudentVM rather than Student .

In Razor Pages, the PageModel derived class is the view model.

Update the page model for the Edit page. The major changes are highlighted:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyvalues.setvalues#microsoft_entityframeworkcore_changetracking_propertyvalues_setvalues_system_object_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyvalues
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu21/Pages/Students/CreateVM.cshtml

public class EditModel : PageModel
{
 private readonly SchoolContext _context;

 public EditModel(SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Student Student { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Student = await _context.Student.FindAsync(id);

 if (Student == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var studentToUpdate = await _context.Student.FindAsync(id);

 if (await TryUpdateModelAsync<Student>(
 studentToUpdate,
 "student",
 s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 return Page();
 }
}

Test the Edit and Create pagesTest the Edit and Create pages

Entity States

The code changes are similar to the Create page with a few exceptions:

OnPostAsync has an optional id parameter.

The current student is fetched from the DB, rather than creating an empty student.

FirstOrDefaultAsync has been replaced with FindAsync. FindAsync is a good choice when selecting an entity

from the primary key. See FindAsync for more information.

Create and edit a few student entities.

The DB context keeps track of whether entities in memory are in sync with their corresponding rows in the DB. The

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1.findasync

Update the Delete page

public class DeleteModel : PageModel
{
 private readonly SchoolContext _context;

 public DeleteModel(SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Student Student { get; set; }
 public string ErrorMessage { get; set; }

DB context sync information determines what happens when SaveChangesAsync is called. For example, when a new

entity is passed to the AddAsync method, that entity's state is set to Added. When SaveChangesAsync is called, the DB

context issues a SQL INSERT command.

An entity may be in one of the following states:

Added : The entity doesn't yet exist in the DB. The SaveChanges method issues an INSERT statement.

Unchanged : No changes need to be saved with this entity. An entity has this status when it's read from the DB.

Modified : Some or all of the entity's property values have been modified. The SaveChanges method issues

an UPDATE statement.

Deleted : The entity has been marked for deletion. The SaveChanges method issues a DELETE statement.

Detached : The entity isn't being tracked by the DB context.

In a desktop app, state changes are typically set automatically. An entity is read, changes are made, and the entity

state to automatically be changed to Modified . Calling SaveChanges generates a SQL UPDATE statement that

updates only the changed properties.

In a web app, the DbContext that reads an entity and displays the data is disposed after a page is rendered. When a

page's OnPostAsync method is called, a new web request is made and with a new instance of the DbContext . Re-

reading the entity in that new context simulates desktop processing.

In this section, code is added to implement a custom error message when the call to SaveChanges fails. Add a string

to contain possible error messages:

Replace the OnGetAsync method with the following code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechangesasync#microsoft_entityframeworkcore_dbcontext_savechangesasync_system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.addasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate#microsoft_entityframeworkcore_entitystate_added
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate

public async Task<IActionResult> OnGetAsync(int? id, bool? saveChangesError = false)
{
 if (id == null)
 {
 return NotFound();
 }

 Student = await _context.Student
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (Student == null)
 {
 return NotFound();
 }

 if (saveChangesError.GetValueOrDefault())
 {
 ErrorMessage = "Delete failed. Try again";
 }

 return Page();
}

The Delete pages OnPostAsync methodThe Delete pages OnPostAsync method

public async Task<IActionResult> OnPostAsync(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var student = await _context.Student
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (student == null)
 {
 return NotFound();
 }

 try
 {
 _context.Student.Remove(student);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 return RedirectToAction("./Delete",
 new { id, saveChangesError = true });
 }
}

The preceding code contains the optional parameter saveChangesError . saveChangesError indicates whether the

method was called after a failure to delete the student object. The delete operation might fail because of transient

network problems. Transient network errors are more likely in the cloud. saveChangesError is false when the Delete

page OnGetAsync is called from the UI. When OnGetAsync is called by OnPostAsync (because the delete operation

failed), the saveChangesError parameter is true.

Replace the OnPostAsync with the following code:

Update the Delete Razor PageUpdate the Delete Razor Page

@page "{id:int}"
@model ContosoUniversity.Pages.Students.DeleteModel

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@Model.ErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>
<div>

Common errors

@page "{id:int}"

Additional resources

The preceding code retrieves the selected entity, then calls the Remove method to set the entity's status to Deleted .

When SaveChanges is called, a SQL DELETE command is generated. If Remove fails:

The DB exception is caught.

The Delete pages OnGetAsync method is called with saveChangesError=true .

Add the following highlighted error message to the Delete Razor Page.

Test Delete.

Students/Index or other links don't work:

Verify the Razor Page contains the correct @page directive. For example, The Students/Index Razor Page should notnot

contain a route template:

Each Razor Page must include the @page directive.

YouTube version of this tutorial

 P R E V I O U SP R E V I O U S N E X TN E X T

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.remove#microsoft_entityframeworkcore_dbcontext_remove_system_object_
https://www.youtube.com/watch?v=K4X1MT2jt6o

Part 3, Razor Pages with EF Core in ASP.NET Core -
Sort, Filter, Paging
9/22/2020 • 29 minutes to read • Edit Online

Add sorting

By Tom Dykstra, Rick Anderson, and Jon P Smith

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you created

by following the tutorial.

This tutorial adds sorting, filtering, and paging functionality to the Students pages.

The following illustration shows a completed page. The column headings are clickable links to sort the column. Click

a column heading repeatedly to switch between ascending and descending sort order.

Replace the code in Pages/Students/Index.cshtml.cs with the following code to add sorting.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/sort-filter-page.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://twitter.com/thereformedprog
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Students
{
 public class IndexModel : PageModel
 {
 private readonly SchoolContext _context;

 public IndexModel(SchoolContext context)
 {
 _context = context;
 }

 public string NameSort { get; set; }
 public string DateSort { get; set; }
 public string CurrentFilter { get; set; }
 public string CurrentSort { get; set; }

 public IList<Student> Students { get; set; }

 public async Task OnGetAsync(string sortOrder)
 {
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";

 IQueryable<Student> studentsIQ = from s in _context.Students
 select s;

 switch (sortOrder)
 {
 case "name_desc":
 studentsIQ = studentsIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentsIQ = studentsIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentsIQ = studentsIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentsIQ = studentsIQ.OrderBy(s => s.LastName);
 break;
 }

 Students = await studentsIQ.AsNoTracking().ToListAsync();
 }
 }
}

The preceding code:

Adds properties to contain the sorting parameters.

Changes the name of the Student property to Students .

Replaces the code in the OnGetAsync method.

The OnGetAsync method receives a sortOrder parameter from the query string in the URL. The URL (including the

query string) is generated by the Anchor Tag Helper.

NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
DateSort = sortOrder == "Date" ? "date_desc" : "Date";

C URREN T SO RT O RDERC URREN T SO RT O RDER L A ST N A M E H Y P ERL IN KL A ST N A M E H Y P ERL IN K DAT E H Y P ERL IN KDAT E H Y P ERL IN K

Last Name ascending descending ascending

Last Name descending ascending ascending

Date ascending ascending descending

Date descending ascending ascending

IQueryable<Student> studentsIQ = from s in _context.Students
 select s;

switch (sortOrder)
{
 case "name_desc":
 studentsIQ = studentsIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentsIQ = studentsIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentsIQ = studentsIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentsIQ = studentsIQ.OrderBy(s => s.LastName);
 break;
}

Students = await studentsIQ.AsNoTracking().ToListAsync();

The sortOrder parameter is either "Name" or "Date." The sortOrder parameter is optionally followed by "_desc" to

specify descending order. The default sort order is ascending.

When the Index page is requested from the StudentsStudents link, there's no query string. The students are displayed in

ascending order by last name. Ascending order by last name is the default (fall-through case) in the switch

statement. When the user clicks a column heading link, the appropriate sortOrder value is provided in the query

string value.

NameSort and DateSort are used by the Razor Page to configure the column heading hyperlinks with the

appropriate query string values:

The code uses the C# conditional operator ?:. The ?: operator is a ternary operator (it takes three operands). The

first line specifies that when sortOrder is null or empty, NameSort is set to "name_desc." If sortOrder is notnot null or

empty, NameSort is set to an empty string.

These two statements enable the page to set the column heading hyperlinks as follows:

The method uses LINQ to Entities to specify the column to sort by. The code initializes an IQueryable<Student>

before the switch statement, and modifies it in the switch statement:

When an IQueryable is created or modified, no query is sent to the database. The query isn't executed until the

IQueryable object is converted into a collection. IQueryable are converted to a collection by calling a method such

as ToListAsync . Therefore, the IQueryable code results in a single query that's not executed until the following

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/conditional-operator

Students = await studentsIQ.AsNoTracking().ToListAsync();

Add column heading hyperlinks to the Student Index pageAdd column heading hyperlinks to the Student Index page

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
 ViewData["Title"] = "Students";
}

<h2>Students</h2>
<p>
 <a asp-page="Create">Create New
</p>

<table class="table">
 <thead>
 <tr>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort">
 @Html.DisplayNameFor(model => model.Students[0].LastName)

 </th>
 <th>
 @Html.DisplayNameFor(model => model.Students[0].FirstMidName)
 </th>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort">
 @Html.DisplayNameFor(model => model.Students[0].EnrollmentDate)

 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Students)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

statement:

OnGetAsync could get verbose with a large number of sortable columns. For information about an alternative way

to code this functionality, see Use dynamic LINQ to simplify code in the MVC version of this tutorial series.

Replace the code in Students/Index.cshtml, with the following code. The changes are highlighted.

Add filtering

Update the OnGetAsync methodUpdate the OnGetAsync method

The preceding code:

Adds hyperlinks to the LastName and EnrollmentDate column headings.

Uses the information in NameSort and DateSort to set up hyperlinks with the current sort order values.

Changes the page heading from Index to Students.

Changes Model.Student to Model.Students .

To verify that sorting works:

Run the app and select the StudentsStudents tab.

Click the column headings.

To add filtering to the Students Index page:

A text box and a submit button is added to the Razor Page. The text box supplies a search string on the first or

last name.

The page model is updated to use the text box value.

Replace the code in Students/Index.cshtml.cs with the following code to add filtering:

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Students
{
 public class IndexModel : PageModel
 {
 private readonly SchoolContext _context;

 public IndexModel(SchoolContext context)
 {
 _context = context;
 }

 public string NameSort { get; set; }
 public string DateSort { get; set; }
 public string CurrentFilter { get; set; }
 public string CurrentSort { get; set; }

 public IList<Student> Students { get; set; }

 public async Task OnGetAsync(string sortOrder, string searchString)
 {
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";

 CurrentFilter = searchString;

 IQueryable<Student> studentsIQ = from s in _context.Students
 select s;
 if (!String.IsNullOrEmpty(searchString))
 {
 studentsIQ = studentsIQ.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }

 switch (sortOrder)
 {
 case "name_desc":
 studentsIQ = studentsIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentsIQ = studentsIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentsIQ = studentsIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentsIQ = studentsIQ.OrderBy(s => s.LastName);
 break;
 }

 Students = await studentsIQ.AsNoTracking().ToListAsync();
 }
 }
}

The preceding code:

Adds the searchString parameter to the OnGetAsync method, and saves the parameter value in the

IQueryable vs. IEnumerableIQueryable vs. IEnumerable

Where(s => s.LastName.ToUpper().Contains(searchString.ToUpper())`

Update the Razor pageUpdate the Razor page

CurrentFilter property. The search string value is received from a text box that's added in the next section.

Adds to the LINQ statement a Where clause. The Where clause selects only students whose first name or last

name contains the search string. The LINQ statement is executed only if there's a value to search for.

The code calls the Where method on an IQueryable object, and the filter is processed on the server. In some

scenarios, the app might be calling the Where method as an extension method on an in-memory collection. For

example, suppose _context.Students changes from EF Core DbSet to a repository method that returns an

IEnumerable collection. The result would normally be the same but in some cases may be different.

For example, the .NET Framework implementation of Contains performs a case-sensitive comparison by default. In

SQL Server, Contains case-sensitivity is determined by the collation setting of the SQL Server instance. SQL Server

defaults to case-insensitive. SQLite defaults to case-sensitive. ToUpper could be called to make the test explicitly

case-insensitive:

The preceding code would ensure that the filter is case-insensitive even if the Where method is called on an

IEnumerable or runs on SQLite.

When Contains is called on an IEnumerable collection, the .NET Core implementation is used. When Contains is

called on an IQueryable object, the database implementation is used.

Calling Contains on an IQueryable is usually preferable for performance reasons. With IQueryable , the filtering is

done by the database server. If an IEnumerable is created first, all the rows have to be returned from the database

server.

There's a performance penalty for calling ToUpper . The ToUpper code adds a function in the WHERE clause of the

TSQL SELECT statement. The added function prevents the optimizer from using an index. Given that SQL is installed

as case-insensitive, it's best to avoid the ToUpper call when it's not needed.

For more information, see How to use case-insensitive query with Sqlite provider.

Replace the code in Pages/Students/Index.cshtml to create a SearchSearch button and assorted chrome.

https://github.com/aspnet/EntityFrameworkCore/issues/11414

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
 ViewData["Title"] = "Students";
}

<h2>Students</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form asp-page="./Index" method="get">
 <div class="form-actions no-color">
 <p>
 Find by name:
 <input type="text" name="SearchString" value="@Model.CurrentFilter" />
 <input type="submit" value="Search" class="btn btn-primary" /> |
 <a asp-page="./Index">Back to full List
 </p>
 </div>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort">
 @Html.DisplayNameFor(model => model.Students[0].LastName)

 </th>
 <th>
 @Html.DisplayNameFor(model => model.Students[0].FirstMidName)
 </th>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort">
 @Html.DisplayNameFor(model => model.Students[0].EnrollmentDate)

 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Students)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

https://localhost:<port>/Students?SearchString=an

Add paging

Create the PaginatedList classCreate the PaginatedList class

The preceding code uses the <form> tag helper to add the search text box and button. By default, the <form> tag

helper submits form data with a POST. With POST, the parameters are passed in the HTTP message body and not in

the URL. When HTTP GET is used, the form data is passed in the URL as query strings. Passing the data with query

strings enables users to bookmark the URL. The W3C guidelines recommend that GET should be used when the

action doesn't result in an update.

Test the app:

Select the StudentsStudents tab and enter a search string. If you're using SQLite, the filter is case-insensitive only if

you implemented the optional ToUpper code shown earlier.

Select SearchSearch.

Notice that the URL contains the search string. For example:

If the page is bookmarked, the bookmark contains the URL to the page and the SearchString query string. The

method="get" in the form tag is what caused the query string to be generated.

Currently, when a column heading sort link is selected, the filter value from the SearchSearch box is lost. The lost filter

value is fixed in the next section.

In this section, a PaginatedList class is created to support paging. The PaginatedList class uses Skip and Take

statements to filter data on the server instead of retrieving all rows of the table. The following illustration shows the

paging buttons.

In the project folder, create PaginatedList.cs with the following code:

https://www.w3.org/2001/tag/doc/whenToUseGet.html

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity
{
 public class PaginatedList<T> : List<T>
 {
 public int PageIndex { get; private set; }
 public int TotalPages { get; private set; }

 public PaginatedList(List<T> items, int count, int pageIndex, int pageSize)
 {
 PageIndex = pageIndex;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);

 this.AddRange(items);
 }

 public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 1);
 }
 }

 public bool HasNextPage
 {
 get
 {
 return (PageIndex < TotalPages);
 }
 }

 public static async Task<PaginatedList<T>> CreateAsync(
 IQueryable<T> source, int pageIndex, int pageSize)
 {
 var count = await source.CountAsync();
 var items = await source.Skip(
 (pageIndex - 1) * pageSize)
 .Take(pageSize).ToListAsync();
 return new PaginatedList<T>(items, count, pageIndex, pageSize);
 }
 }
}

Add paging to the PageModel classAdd paging to the PageModel class

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;

The CreateAsync method in the preceding code takes page size and page number and applies the appropriate

Skip and Take statements to the IQueryable . When ToListAsync is called on the IQueryable , it returns a List

containing only the requested page. The properties HasPreviousPage and HasNextPage are used to enable or disable

PreviousPrevious and NextNext paging buttons.

The CreateAsync method is used to create the PaginatedList<T> . A constructor can't create the PaginatedList<T>

object; constructors can't run asynchronous code.

Replace the code in Students/Index.cshtml.cs to add paging.

using Microsoft.EntityFrameworkCore;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Students
{
 public class IndexModel : PageModel
 {
 private readonly SchoolContext _context;

 public IndexModel(SchoolContext context)
 {
 _context = context;
 }

 public string NameSort { get; set; }
 public string DateSort { get; set; }
 public string CurrentFilter { get; set; }
 public string CurrentSort { get; set; }

 public PaginatedList<Student> Students { get; set; }

 public async Task OnGetAsync(string sortOrder,
 string currentFilter, string searchString, int? pageIndex)
 {
 CurrentSort = sortOrder;
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";
 if (searchString != null)
 {
 pageIndex = 1;
 }
 else
 {
 searchString = currentFilter;
 }

 CurrentFilter = searchString;

 IQueryable<Student> studentsIQ = from s in _context.Students
 select s;
 if (!String.IsNullOrEmpty(searchString))
 {
 studentsIQ = studentsIQ.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }
 switch (sortOrder)
 {
 case "name_desc":
 studentsIQ = studentsIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentsIQ = studentsIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentsIQ = studentsIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentsIQ = studentsIQ.OrderBy(s => s.LastName);
 break;
 }

 int pageSize = 3;
 Students = await PaginatedList<Student>.CreateAsync(
 studentsIQ.AsNoTracking(), pageIndex ?? 1, pageSize);
 }
 }
}

}

Add paging links to the Razor PageAdd paging links to the Razor Page

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
 ViewData["Title"] = "Students";
}

<h2>Students</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form asp-page="./Index" method="get">
 <div class="form-actions no-color">
 <p>
 Find by name:
 <input type="text" name="SearchString" value="@Model.CurrentFilter" />
 <input type="submit" value="Search" class="btn btn-primary" /> |
 <a asp-page="./Index">Back to full List

The preceding code:

Changes the type of the Students property from IList<Student> to PaginatedList<Student> .

Adds the page index, the current sortOrder , and the currentFilter to the OnGetAsync method signature.

Saves the sort order in the CurrentSort property.

Resets page index to 1 when there's a new search string.

Uses the PaginatedList class to get Student entities.

All the parameters that OnGetAsync receives are null when:

The page is called from the StudentsStudents link.

The user hasn't clicked a paging or sorting link.

When a paging link is clicked, the page index variable contains the page number to display.

The CurrentSort property provides the Razor Page with the current sort order. The current sort order must be

included in the paging links to keep the sort order while paging.

The CurrentFilter property provides the Razor Page with the current filter string. The CurrentFilter value:

Must be included in the paging links in order to maintain the filter settings during paging.

Must be restored to the text box when the page is redisplayed.

If the search string is changed while paging, the page is reset to 1. The page has to be reset to 1 because the new

filter can result in different data to display. When a search value is entered and SubmitSubmit is selected:

The search string is changed.

The searchString parameter isn't null.

The PaginatedList.CreateAsync method converts the student query to a single page of students in a collection type

that supports paging. That single page of students is passed to the Razor Page.

The two question marks after pageIndex in the PaginatedList.CreateAsync call represent the null-coalescing

operator. The null-coalescing operator defines a default value for a nullable type. The expression (pageIndex ?? 1)

means return the value of pageIndex if it has a value. If pageIndex doesn't have a value, return 1.

Replace the code in Students/Index.cshtml with the following code. The changes are highlighted:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operator

 <a asp-page="./Index">Back to full List
 </p>
 </div>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort"
 asp-route-currentFilter="@Model.CurrentFilter">
 @Html.DisplayNameFor(model => model.Students[0].LastName)

 </th>
 <th>
 @Html.DisplayNameFor(model => model.Students[0].FirstMidName)
 </th>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort"
 asp-route-currentFilter="@Model.CurrentFilter">
 @Html.DisplayNameFor(model => model.Students[0].EnrollmentDate)

 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Students)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

@{
 var prevDisabled = !Model.Students.HasPreviousPage ? "disabled" : "";
 var nextDisabled = !Model.Students.HasNextPage ? "disabled" : "";
}

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Students.PageIndex - 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-primary @prevDisabled">
 Previous

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Students.PageIndex + 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-primary @nextDisabled">
 Next

<a asp-page="./Index" asp-route-sortOrder="@Model.NameSort"
 asp-route-currentFilter="@Model.CurrentFilter">
 @Html.DisplayNameFor(model => model.Students[0].LastName)

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Students.PageIndex - 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-primary @prevDisabled">
 Previous

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Students.PageIndex + 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-primary @nextDisabled">
 Next

Add grouping

The column header links use the query string to pass the current search string to the OnGetAsync method:

The paging buttons are displayed by tag helpers:

Run the app and navigate to the students page.

To make sure paging works, click the paging links in different sort orders.

To verify that paging works correctly with sorting and filtering, enter a search string and try paging.

This section creates an About page that displays how many students have enrolled for each enrollment date. The

Create the view modelCreate the view model

using System;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class EnrollmentDateGroup
 {
 [DataType(DataType.Date)]
 public DateTime? EnrollmentDate { get; set; }

 public int StudentCount { get; set; }
 }
}

Create the Razor PageCreate the Razor Page

@page
@model ContosoUniversity.Pages.AboutModel

@{
 ViewData["Title"] = "Student Body Statistics";
}

<h2>Student Body Statistics</h2>

<table>
 <tr>
 <th>
 Enrollment Date
 </th>
 <th>
 Students
 </th>
 </tr>

 @foreach (var item in Model.Students)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 @item.StudentCount
 </td>
 </tr>
 }
</table>

Create the page modelCreate the page model

update uses grouping and includes the following steps:

Create a view model for the data used by the AboutAbout page.

Update the About page to use the view model.

Create a Models/SchoolViewModels folder.

Create SchoolViewModels/EnrollmentDateGroup.cs with the following code:

Create a Pages/About.cshtml file with the following code:

Create a Pages/About.cshtml.cs file with the following code:

using ContosoUniversity.Models.SchoolViewModels;
using ContosoUniversity.Data;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using ContosoUniversity.Models;

namespace ContosoUniversity.Pages
{
 public class AboutModel : PageModel
 {
 private readonly SchoolContext _context;

 public AboutModel(SchoolContext context)
 {
 _context = context;
 }

 public IList<EnrollmentDateGroup> Students { get; set; }

 public async Task OnGetAsync()
 {
 IQueryable<EnrollmentDateGroup> data =
 from student in _context.Students
 group student by student.EnrollmentDate into dateGroup
 select new EnrollmentDateGroup()
 {
 EnrollmentDate = dateGroup.Key,
 StudentCount = dateGroup.Count()
 };

 Students = await data.AsNoTracking().ToListAsync();
 }
 }
}

The LINQ statement groups the student entities by enrollment date, calculates the number of entities in each group,

and stores the results in a collection of EnrollmentDateGroup view model objects.

Run the app and navigate to the About page. The count of students for each enrollment date is displayed in a table.

Next steps

Add sorting to the Index page

public class IndexModel : PageModel
{
 private readonly SchoolContext _context;

 public IndexModel(SchoolContext context)
 {
 _context = context;
 }

 public string NameSort { get; set; }
 public string DateSort { get; set; }
 public string CurrentFilter { get; set; }
 public string CurrentSort { get; set; }

In the next tutorial, the app uses migrations to update the data model.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

In this tutorial, sorting, filtering, grouping, and paging, functionality is added.

The following illustration shows a completed page. The column headings are clickable links to sort the column.

Clicking a column heading repeatedly switches between ascending and descending sort order.

If you run into problems you can't solve, download the completed app.

Add strings to the Students/Index.cshtml.cs PageModel to contain the sorting parameters:

Update the Students/Index.cshtml.cs OnGetAsync with the following code:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

public async Task OnGetAsync(string sortOrder)
{
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";

 IQueryable<Student> studentIQ = from s in _context.Student
 select s;

 switch (sortOrder)
 {
 case "name_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentIQ = studentIQ.OrderBy(s => s.LastName);
 break;
 }

 Student = await studentIQ.AsNoTracking().ToListAsync();
}

The preceding code receives a sortOrder parameter from the query string in the URL. The URL (including the

query string) is generated by the Anchor Tag Helper

The sortOrder parameter is either "Name" or "Date." The sortOrder parameter is optionally followed by "_desc" to

specify descending order. The default sort order is ascending.

When the Index page is requested from the StudentsStudents link, there's no query string. The students are displayed in

ascending order by last name. Ascending order by last name is the default (fall-through case) in the switch

statement. When the user clicks a column heading link, the appropriate sortOrder value is provided in the query

string value.

NameSort and DateSort are used by the Razor Page to configure the column heading hyperlinks with the

appropriate query string values:

public async Task OnGetAsync(string sortOrder)
{
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";

 IQueryable<Student> studentIQ = from s in _context.Student
 select s;

 switch (sortOrder)
 {
 case "name_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentIQ = studentIQ.OrderBy(s => s.LastName);
 break;
 }

 Student = await studentIQ.AsNoTracking().ToListAsync();
}

NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
DateSort = sortOrder == "Date" ? "date_desc" : "Date";

C URREN T SO RT O RDERC URREN T SO RT O RDER L A ST N A M E H Y P ERL IN KL A ST N A M E H Y P ERL IN K DAT E H Y P ERL IN KDAT E H Y P ERL IN K

Last Name ascending descending ascending

Last Name descending ascending ascending

Date ascending ascending descending

Date descending ascending ascending

The following code contains the C# conditional ?: operator:

The first line specifies that when sortOrder is null or empty, NameSort is set to "name_desc." If sortOrder is notnot

null or empty, NameSort is set to an empty string.

The ?: operator is also known as the ternary operator.

These two statements enable the page to set the column heading hyperlinks as follows:

The method uses LINQ to Entities to specify the column to sort by. The code initializes an IQueryable<Student>

before the switch statement, and modifies it in the switch statement:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/conditional-operator

public async Task OnGetAsync(string sortOrder)
{
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";

 IQueryable<Student> studentIQ = from s in _context.Student
 select s;

 switch (sortOrder)
 {
 case "name_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentIQ = studentIQ.OrderBy(s => s.LastName);
 break;
 }

 Student = await studentIQ.AsNoTracking().ToListAsync();
}

Student = await studentIQ.AsNoTracking().ToListAsync();

Add column heading hyperlinks to the Student Index pageAdd column heading hyperlinks to the Student Index page

When an IQueryable is created or modified, no query is sent to the database. The query isn't executed until the

IQueryable object is converted into a collection. IQueryable are converted to a collection by calling a method such

as ToListAsync . Therefore, the IQueryable code results in a single query that's not executed until the following

statement:

OnGetAsync could get verbose with a large number of sortable columns.

Replace the code in Students/Index.cshtml, with the following highlighted code:

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>
<p>
 <a asp-page="Create">Create New
</p>

<table class="table">
 <thead>
 <tr>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort">
 @Html.DisplayNameFor(model => model.Student[0].LastName)

 </th>
 <th>
 @Html.DisplayNameFor(model => model.Student[0].FirstMidName)
 </th>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort">
 @Html.DisplayNameFor(model => model.Student[0].EnrollmentDate)

 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Student)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

The preceding code:

Adds hyperlinks to the LastName and EnrollmentDate column headings.

Uses the information in NameSort and DateSort to set up hyperlinks with the current sort order values.

To verify that sorting works:

Run the app and select the StudentsStudents tab.

Click Last NameLast Name.

Click Enrollment DateEnrollment Date.

Add a Search Box to the Students Index page

Add filtering functionality to the Index methodAdd filtering functionality to the Index method

public async Task OnGetAsync(string sortOrder, string searchString)
{
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";
 CurrentFilter = searchString;

 IQueryable<Student> studentIQ = from s in _context.Student
 select s;
 if (!String.IsNullOrEmpty(searchString))
 {
 studentIQ = studentIQ.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }

 switch (sortOrder)
 {
 case "name_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentIQ = studentIQ.OrderBy(s => s.LastName);
 break;
 }

 Student = await studentIQ.AsNoTracking().ToListAsync();
}

To get a better understanding of the code:

In Students/Index.cshtml.cs, set a breakpoint on switch (sortOrder) .

Add a watch for NameSort and DateSort .

In Students/Index.cshtml, set a breakpoint on @Html.DisplayNameFor(model => model.Student[0].LastName) .

Step through the debugger.

To add filtering to the Students Index page:

A text box and a submit button is added to the Razor Page. The text box supplies a search string on the first or

last name.

The page model is updated to use the text box value.

Update the Students/Index.cshtml.cs OnGetAsync with the following code:

The preceding code:

Adds the searchString parameter to the OnGetAsync method. The search string value is received from a text box

that's added in the next section.

Added to the LINQ statement a Where clause. The Where clause selects only students whose first name or last

name contains the search string. The LINQ statement is executed only if there's a value to search for.

Note: The preceding code calls the Where method on an IQueryable object, and the filter is processed on the

server. In some scenarios, the app might be calling the Where method as an extension method on an in-memory

Add a Search Box to the Student Index pageAdd a Search Box to the Student Index page

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form asp-page="./Index" method="get">
 <div class="form-actions no-color">
 <p>
 Find by name:
 <input type="text" name="SearchString" value="@Model.CurrentFilter" />
 <input type="submit" value="Search" class="btn btn-default" /> |
 <a asp-page="./Index">Back to full List
 </p>
 </div>
</form>

<table class="table">

collection. For example, suppose _context.Students changes from EF Core DbSet to a repository method that

returns an IEnumerable collection. The result would normally be the same but in some cases may be different.

For example, the .NET Framework implementation of Contains performs a case-sensitive comparison by default. In

SQL Server, Contains case-sensitivity is determined by the collation setting of the SQL Server instance. SQL Server

defaults to case-insensitive. ToUpper could be called to make the test explicitly case-insensitive:

Where(s => s.LastName.ToUpper().Contains(searchString.ToUpper())

The preceding code would ensure that results are case-insensitive if the code changes to use IEnumerable . When

Contains is called on an IEnumerable collection, the .NET Core implementation is used. When Contains is called

on an IQueryable object, the database implementation is used. Returning an IEnumerable from a repository can

have a significant performance penalty:

1. All the rows are returned from the DB server.

2. The filter is applied to all the returned rows in the application.

There's a performance penalty for calling ToUpper . The ToUpper code adds a function in the WHERE clause of the

TSQL SELECT statement. The added function prevents the optimizer from using an index. Given that SQL is installed

as case-insensitive, it's best to avoid the ToUpper call when it's not needed.

In Pages/Students/Index.cshtml, add the following highlighted code to create a SearchSearch button and assorted

chrome.

The preceding code uses the <form> tag helper to add the search text box and button. By default, the <form> tag

helper submits form data with a POST. With POST, the parameters are passed in the HTTP message body and not in

the URL. When HTTP GET is used, the form data is passed in the URL as query strings. Passing the data with query

strings enables users to bookmark the URL. The W3C guidelines recommend that GET should be used when the

action doesn't result in an update.

Test the app:

Select the StudentsStudents tab and enter a search string.

https://www.w3.org/2001/tag/doc/whenToUseGet.html

http://localhost:5000/Students?SearchString=an

Add paging functionality to the Students Index page

Select SearchSearch.

Notice that the URL contains the search string.

If the page is bookmarked, the bookmark contains the URL to the page and the SearchString query string. The

method="get" in the form tag is what caused the query string to be generated.

Currently, when a column heading sort link is selected, the filter value from the SearchSearch box is lost. The lost filter

value is fixed in the next section.

In this section, a PaginatedList class is created to support paging. The PaginatedList class uses Skip and Take

statements to filter data on the server instead of retrieving all rows of the table. The following illustration shows the

paging buttons.

In the project folder, create PaginatedList.cs with the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity
{
 public class PaginatedList<T> : List<T>
 {
 public int PageIndex { get; private set; }
 public int TotalPages { get; private set; }

 public PaginatedList(List<T> items, int count, int pageIndex, int pageSize)
 {
 PageIndex = pageIndex;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);

 this.AddRange(items);
 }

 public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 1);
 }
 }

 public bool HasNextPage
 {
 get
 {
 return (PageIndex < TotalPages);
 }
 }

 public static async Task<PaginatedList<T>> CreateAsync(
 IQueryable<T> source, int pageIndex, int pageSize)
 {
 var count = await source.CountAsync();
 var items = await source.Skip(
 (pageIndex - 1) * pageSize)
 .Take(pageSize).ToListAsync();
 return new PaginatedList<T>(items, count, pageIndex, pageSize);
 }
 }
}

Add paging functionality to the Index method

public PaginatedList<Student> Student { get; set; }

The CreateAsync method in the preceding code takes page size and page number and applies the appropriate

Skip and Take statements to the IQueryable . When ToListAsync is called on the IQueryable , it returns a List

containing only the requested page. The properties HasPreviousPage and HasNextPage are used to enable or disable

PreviousPrevious and NextNext paging buttons.

The CreateAsync method is used to create the PaginatedList<T> . A constructor can't create the PaginatedList<T>

object, constructors can't run asynchronous code.

In Students/Index.cshtml.cs, update the type of Student from IList<Student> to PaginatedList<Student> :

public async Task OnGetAsync(string sortOrder,
 string currentFilter, string searchString, int? pageIndex)
{
 CurrentSort = sortOrder;
 NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 DateSort = sortOrder == "Date" ? "date_desc" : "Date";
 if (searchString != null)
 {
 pageIndex = 1;
 }
 else
 {
 searchString = currentFilter;
 }

 CurrentFilter = searchString;

 IQueryable<Student> studentIQ = from s in _context.Student
 select s;
 if (!String.IsNullOrEmpty(searchString))
 {
 studentIQ = studentIQ.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }
 switch (sortOrder)
 {
 case "name_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 studentIQ = studentIQ.OrderBy(s => s.LastName);
 break;
 }

 int pageSize = 3;
 Student = await PaginatedList<Student>.CreateAsync(
 studentIQ.AsNoTracking(), pageIndex ?? 1, pageSize);
}

public async Task OnGetAsync(string sortOrder,
 string currentFilter, string searchString, int? pageIndex)

Update the Students/Index.cshtml.cs OnGetAsync with the following code:

The preceding code adds the page index, the current sortOrder , and the currentFilter to the method signature.

All the parameters are null when:

The page is called from the StudentsStudents link.

The user hasn't clicked a paging or sorting link.

When a paging link is clicked, the page index variable contains the page number to display.

CurrentSort provides the Razor Page with the current sort order. The current sort order must be included in the

paging links to keep the sort order while paging.

CurrentFilter provides the Razor Page with the current filter string. The CurrentFilter value:

if (searchString != null)
{
 pageIndex = 1;
}
else
{
 searchString = currentFilter;
}

Student = await PaginatedList<Student>.CreateAsync(
 studentIQ.AsNoTracking(), pageIndex ?? 1, pageSize);

Add paging links to the student Razor Page

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-page="Create">Create New
</p>

<form asp-page="./Index" method="get">
 <div class="form-actions no-color">
 <p>
 Find by name: <input type="text" name="SearchString" value="@Model.CurrentFilter" />
 <input type="submit" value="Search" class="btn btn-default" /> |
 <a asp-page="./Index">Back to full List
 </p>
 </div>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort"
 asp-route-currentFilter="@Model.CurrentFilter">

Must be included in the paging links in order to maintain the filter settings during paging.

Must be restored to the text box when the page is redisplayed.

If the search string is changed while paging, the page is reset to 1. The page has to be reset to 1 because the new

filter can result in different data to display. When a search value is entered and SubmitSubmit is selected:

The search string is changed.

The searchString parameter isn't null.

The PaginatedList.CreateAsync method converts the student query to a single page of students in a collection type

that supports paging. That single page of students is passed to the Razor Page.

The two question marks in PaginatedList.CreateAsync represent the null-coalescing operator. The null-coalescing

operator defines a default value for a nullable type. The expression (pageIndex ?? 1) means return the value of

pageIndex if it has a value. If pageIndex doesn't have a value, return 1.

Update the markup in Students/Index.cshtml. The changes are highlighted:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operator

 asp-route-currentFilter="@Model.CurrentFilter">
 @Html.DisplayNameFor(model => model.Student[0].LastName)

 </th>
 <th>
 @Html.DisplayNameFor(model => model.Student[0].FirstMidName)
 </th>
 <th>
 <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort"
 asp-route-currentFilter="@Model.CurrentFilter">
 @Html.DisplayNameFor(model => model.Student[0].EnrollmentDate)

 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Student)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

@{
 var prevDisabled = !Model.Student.HasPreviousPage ? "disabled" : "";
 var nextDisabled = !Model.Student.HasNextPage ? "disabled" : "";
}

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Student.PageIndex - 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-default @prevDisabled">
 Previous

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Student.PageIndex + 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-default @nextDisabled">
 Next

<a asp-page="./Index" asp-route-sortOrder="@Model.NameSort"
 asp-route-currentFilter="@Model.CurrentFilter">
 @Html.DisplayNameFor(model => model.Student[0].LastName)

The column header links use the query string to pass the current search string to the OnGetAsync method so that

the user can sort within filter results:

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Student.PageIndex - 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-default @prevDisabled">
 Previous

<a asp-page="./Index"
 asp-route-sortOrder="@Model.CurrentSort"
 asp-route-pageIndex="@(Model.Student.PageIndex + 1)"
 asp-route-currentFilter="@Model.CurrentFilter"
 class="btn btn-default @nextDisabled">
 Next

Update the About page to show student statistics

The paging buttons are displayed by tag helpers:

Run the app and navigate to the students page.

To make sure paging works, click the paging links in different sort orders.

To verify that paging works correctly with sorting and filtering, enter a search string and try paging.

To get a better understanding of the code:

In Students/Index.cshtml.cs, set a breakpoint on switch (sortOrder) .

Add a watch for NameSort , DateSort , CurrentSort , and Model.Student.PageIndex .

In Students/Index.cshtml, set a breakpoint on @Html.DisplayNameFor(model => model.Student[0].LastName) .

Step through the debugger.

In this step, Pages/About.cshtml is updated to display how many students have enrolled for each enrollment date.

The update uses grouping and includes the following steps:

Create the view modelCreate the view model

using System;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class EnrollmentDateGroup
 {
 [DataType(DataType.Date)]
 public DateTime? EnrollmentDate { get; set; }

 public int StudentCount { get; set; }
 }
}

Update the About page modelUpdate the About page model

Create a view model for the data used by the AboutAbout Page.

Update the About page to use the view model.

Create a SchoolViewModels folder in the Models folder.

In the SchoolViewModels folder, add a EnrollmentDateGroup.cs with the following code:

The web templates in ASP.NET Core 2.2 do not include the About page. If you are using ASP.NET Core 2.2, create the

About Razor Page.

Update the Pages/About.cshtml.cs file with the following code:

using ContosoUniversity.Models.SchoolViewModels;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using ContosoUniversity.Models;

namespace ContosoUniversity.Pages
{
 public class AboutModel : PageModel
 {
 private readonly SchoolContext _context;

 public AboutModel(SchoolContext context)
 {
 _context = context;
 }

 public IList<EnrollmentDateGroup> Student { get; set; }

 public async Task OnGetAsync()
 {
 IQueryable<EnrollmentDateGroup> data =
 from student in _context.Student
 group student by student.EnrollmentDate into dateGroup
 select new EnrollmentDateGroup()
 {
 EnrollmentDate = dateGroup.Key,
 StudentCount = dateGroup.Count()
 };

 Student = await data.AsNoTracking().ToListAsync();
 }
 }
}

Modify the About Razor PageModify the About Razor Page

The LINQ statement groups the student entities by enrollment date, calculates the number of entities in each group,

and stores the results in a collection of EnrollmentDateGroup view model objects.

Replace the code in the Pages/About.cshtml file with the following code:

@page
@model ContosoUniversity.Pages.AboutModel

@{
 ViewData["Title"] = "Student Body Statistics";
}

<h2>Student Body Statistics</h2>

<table>
 <tr>
 <th>
 Enrollment Date
 </th>
 <th>
 Students
 </th>
 </tr>

 @foreach (var item in Model.Student)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 @item.StudentCount
 </td>
 </tr>
 }
</table>

Additional resources

Run the app and navigate to the About page. The count of students for each enrollment date is displayed in a table.

If you run into problems you can't solve, download the completed app for this stage.

Debugging ASP.NET Core 2.x source

YouTube version of this tutorial

In the next tutorial, the app uses migrations to update the data model.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots/cu-part3-sorting
https://github.com/dotnet/AspNetCore.Docs/issues/4155
https://www.youtube.com/watch?v=MDs7PFpoMqI

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 4, Razor Pages with EF Core migrations in
ASP.NET Core
9/22/2020 • 11 minutes to read • Edit Online

NOTENOTE

By Tom Dykstra, Jon P Smith, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you created

by following the tutorial.

This tutorial introduces the EF Core migrations feature for managing data model changes.

When a new app is developed, the data model changes frequently. Each time the model changes, the model gets out

of sync with the database. This tutorial series started by configuring the Entity Framework to create the database if

it doesn't exist. Each time the data model changes, you have to drop the database. The next time the app runs, the

call to EnsureCreated re-creates the database to match the new data model. The DbInitializer class then runs to

seed the new database.

This approach to keeping the database in sync with the data model works well until you deploy the app to

production. When the app is running in production, it's usually storing data that needs to be maintained. The app

can't start with a test database each time a change is made (such as adding a new column). The EF Core Migrations

feature solves this problem by enabling EF Core to update the database schema instead of creating a new database.

Rather than dropping and recreating the database when the data model changes, migrations updates the schema

and retains existing data.

SQLite limitationsSQLite limitations

This tutorial uses the Entity Framework Core migrations feature where possible. Migrations updates the database schema to

match changes in the data model. However, migrations only does the kinds of changes that the database engine supports,

and SQLite's schema change capabilities are limited. For example, adding a column is supported, but removing a column is not

supported. If a migration is created to remove a column, the ef migrations add command succeeds but the

ef database update command fails.

The workaround for the SQLite limitations is to manually write migrations code to perform a table rebuild when something in

the table changes. The code would go in the Up and Down methods for a migration and would involve:

Creating a new table.

Copying data from the old table to the new table.

Dropping the old table.

Renaming the new table.

Writing database-specific code of this type is outside the scope of this tutorial. Instead, this tutorial drops and re-creates the

database whenever an attempt to apply a migration would fail. For more information, see the following resources:

SQLite EF Core Database Provider Limitations

Customize migration code

Data seeding

SQLite ALTER TABLE statement

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/migrations.md
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://docs.microsoft.com/en-us/ef/core/providers/sqlite/limitations
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/#customize-migration-code
https://docs.microsoft.com/en-us/ef/core/modeling/data-seeding
https://sqlite.org/lang_altertable.html

Drop the database

Drop-Database

Create an initial migration

Add-Migration InitialCreate
Update-Database

Up and Down methods

using System;
using Microsoft.EntityFrameworkCore.Metadata;
using Microsoft.EntityFrameworkCore.Migrations;

namespace ContosoUniversity.Migrations
{
 public partial class InitialCreate : Migration
 {
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name: "Course",
 columns: table => new
 {
 CourseID = table.Column<int>(nullable: false),
 Title = table.Column<string>(nullable: true),
 Credits = table.Column<int>(nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Course", x => x.CourseID);
 });

 migrationBuilder.CreateTable(
 name: "Student",
 columns: table => new
 {
 ID = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
SqlServerValueGenerationStrategy.IdentityColumn),
 LastName = table.Column<string>(nullable: true),
 FirstMidName = table.Column<string>(nullable: true),

Visual Studio

Visual Studio Code

Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX) to delete the database, or run the following command in the PackagePackage

Manager ConsoleManager Console (PMC):

Visual Studio

Visual Studio Code

Run the following commands in the PMC:

The EF Core migrations add command generated code to create the database. This migrations code is in the

Migrations<timestamp>_InitialCreate.cs file. The Up method of the InitialCreate class creates the database

tables that correspond to the data model entity sets. The Down method deletes them, as shown in the following

example:

 EnrollmentDate = table.Column<DateTime>(nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Student", x => x.ID);
 });

 migrationBuilder.CreateTable(
 name: "Enrollment",
 columns: table => new
 {
 EnrollmentID = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
SqlServerValueGenerationStrategy.IdentityColumn),
 CourseID = table.Column<int>(nullable: false),
 StudentID = table.Column<int>(nullable: false),
 Grade = table.Column<int>(nullable: true)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Enrollment", x => x.EnrollmentID);
 table.ForeignKey(
 name: "FK_Enrollment_Course_CourseID",
 column: x => x.CourseID,
 principalTable: "Course",
 principalColumn: "CourseID",
 onDelete: ReferentialAction.Cascade);
 table.ForeignKey(
 name: "FK_Enrollment_Student_StudentID",
 column: x => x.StudentID,
 principalTable: "Student",
 principalColumn: "ID",
 onDelete: ReferentialAction.Cascade);
 });

 migrationBuilder.CreateIndex(
 name: "IX_Enrollment_CourseID",
 table: "Enrollment",
 column: "CourseID");

 migrationBuilder.CreateIndex(
 name: "IX_Enrollment_StudentID",
 table: "Enrollment",
 column: "StudentID");
 }

 protected override void Down(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.DropTable(
 name: "Enrollment");

 migrationBuilder.DropTable(
 name: "Course");

 migrationBuilder.DropTable(
 name: "Student");
 }
 }
}

The preceding code is for the initial migration. The code:

Was generated by the migrations add InitialCreate command.

Is executed by the database update command.

Creates a database for the data model specified by the database context class.

The migrations history table

The data model snapshot

Remove EnsureCreated

context.Database.EnsureCreated();

Applying migrations in production

Troubleshooting

SqlException: Cannot open database "ContosoUniversity" requested by the login.
The login failed.
Login failed for user 'user name'.

The migration name parameter ("InitialCreate" in the example) is used for the file name. The migration name can be

any valid file name. It's best to choose a word or phrase that summarizes what is being done in the migration. For

example, a migration that added a department table might be called "AddDepartmentTable."

Use SSOX or your SQLite tool to inspect the database.

Notice the addition of an __EFMigrationsHistory table. The __EFMigrationsHistory table keeps track of which

migrations have been applied to the database.

View the data in the __EFMigrationsHistory table. It shows one row for the first migration.

Migrations creates a snapshot of the current data model in Migrations/SchoolContextModelSnapshot.cs. When you

add a migration, EF determines what changed by comparing the current data model to the snapshot file.

Because the snapshot file tracks the state of the data model, you can't delete a migration by deleting the

<timestamp>_<migrationname>.cs file. To back out the most recent migration, you have to use the migrations remove

command. That command deletes the migration and ensures the snapshot is correctly reset. For more information,

see dotnet ef migrations remove.

This tutorial series started by using EnsureCreated . EnsureCreated doesn't create a migrations history table and so

can't be used with migrations. It's designed for testing or rapid prototyping where the database is dropped and re-

created frequently.

From this point forward, the tutorials will use migrations.

In Data/DBInitializer.cs, comment out the following line:

Run the app and verify that the database is seeded.

We recommend that production apps notnot call Database.Migrate at application startup. Migrate shouldn't be called

from an app that is deployed to a server farm. If the app is scaled out to multiple server instances, it's hard to

ensure database schema updates don't happen from multiple servers or conflict with read/write access.

Database migration should be done as part of deployment, and in a controlled way. Production database migration

approaches include:

Using migrations to create SQL scripts and using the SQL scripts in deployment.

Running dotnet ef database update from a controlled environment.

If the app uses SQL Server LocalDB and displays the following exception:

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet#dotnet-ef-migrations-remove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.relationaldatabasefacadeextensions.migrate#microsoft_entityframeworkcore_relationaldatabasefacadeextensions_migrate_microsoft_entityframeworkcore_infrastructure_databasefacade_

Additional resourcesAdditional resources

Next steps

Drop the database

Drop-Database

Create an initial migration and update the DB

The solution may be to run dotnet ef database update at a command prompt.

EF Core CLI.

Package Manager Console (Visual Studio)

The next tutorial builds out the data model, adding entity properties and new entities.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

In this tutorial, the EF Core migrations feature for managing data model changes is used.

If you run into problems you can't solve, download the completed app.

When a new app is developed, the data model changes frequently. Each time the model changes, the model gets out

of sync with the database. This tutorial started by configuring the Entity Framework to create the database if it

doesn't exist. Each time the data model changes:

The DB is dropped.

EF creates a new one that matches the model.

The app seeds the DB with test data.

This approach to keeping the DB in sync with the data model works well until you deploy the app to production.

When the app is running in production, it's usually storing data that needs to be maintained. The app can't start with

a test DB each time a change is made (such as adding a new column). The EF Core Migrations feature solves this

problem by enabling EF Core to update the DB schema instead of creating a new DB.

Rather than dropping and recreating the DB when the data model changes, migrations updates the schema and

retains existing data.

Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX) or the database drop command:

Visual Studio

Visual Studio Code

In the Package Manager ConsolePackage Manager Console (PMC), run the following command:

Run Get-Help about_EntityFrameworkCore from the PMC to get help information.

Build the project and create the first migration.

Visual Studio

Visual Studio Code

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

Add-Migration InitialCreate
Update-Database

Examine the Up and Down methodsExamine the Up and Down methods

public partial class InitialCreate : Migration
{
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name: "Course",
 columns: table => new
 {
 CourseID = table.Column<int>(nullable: false),
 Title = table.Column<string>(nullable: true),
 Credits = table.Column<int>(nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Course", x => x.CourseID);
 });

 migrationBuilder.CreateTable(
 protected override void Down(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.DropTable(
 name: "Enrollment");

 migrationBuilder.DropTable(
 name: "Course");

 migrationBuilder.DropTable(
 name: "Student");
 }
}

The data model snapshotThe data model snapshot

The EF Core migrations add command generated code to create the DB. This migrations code is in the

Migrations<timestamp>_InitialCreate.cs file. The Up method of the InitialCreate class creates the DB tables that

correspond to the data model entity sets. The Down method deletes them, as shown in the following example:

Migrations calls the Up method to implement the data model changes for a migration. When you enter a

command to roll back the update, migrations calls the Down method.

The preceding code is for the initial migration. That code was created when the migrations add InitialCreate

command was run. The migration name parameter ("InitialCreate" in the example) is used for the file name. The

migration name can be any valid file name. It's best to choose a word or phrase that summarizes what is being

done in the migration. For example, a migration that added a department table might be called

"AddDepartmentTable."

If the initial migration is created and the DB exists:

The DB creation code is generated.

The DB creation code doesn't need to run because the DB already matches the data model. If the DB creation

code is run, it doesn't make any changes because the DB already matches the data model.

When the app is deployed to a new environment, the DB creation code must be run to create the DB.

Previously the DB was dropped and doesn't exist, so migrations creates the new DB.

Migrations create a snapshot of the current database schema in Migrations/SchoolContextModelSnapshot.cs. When

Remove EnsureCreated and test the appRemove EnsureCreated and test the app

context.Database.EnsureCreated();

Inspect the databaseInspect the database

Applying migrations in production

Troubleshooting

you add a migration, EF determines what changed by comparing the data model to the snapshot file.

To delete a migration, use the following command:

Visual Studio

Visual Studio Code

Remove-Migration

The remove migrations command deletes the migration and ensures the snapshot is correctly reset.

For early development, EnsureCreated was used. In this tutorial, migrations are used. EnsureCreated has the

following limitations:

Bypasses migrations and creates the DB and schema.

Doesn't create a migrations table.

Can not be used with migrations.

Is designed for testing or rapid prototyping where the DB is dropped and re-created frequently.

Remove EnsureCreated :

Run the app and verify the DB is seeded.

Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer to inspect the DB. Notice the addition of an __EFMigrationsHistory table. The

__EFMigrationsHistory table keeps track of which migrations have been applied to the DB. View the data in the

__EFMigrationsHistory table, it shows one row for the first migration. The last log in the preceding CLI output

example shows the INSERT statement that creates this row.

Run the app and verify that everything works.

We recommend production apps should notnot call Database.Migrate at application startup. Migrate shouldn't be

called from an app in server farm. For example, if the app has been cloud deployed with scale-out (multiple

instances of the app are running).

Database migration should be done as part of deployment, and in a controlled way. Production database migration

approaches include:

Using migrations to create SQL scripts and using the SQL scripts in deployment.

Running dotnet ef database update from a controlled environment.

EF Core uses the __MigrationsHistory table to see if any migrations need to run. If the DB is up-to-date, no

migration is run.

Download the completed app.

The app generates the following exception:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.relationaldatabasefacadeextensions.migrate#microsoft_entityframeworkcore_relationaldatabasefacadeextensions_migrate_microsoft_entityframeworkcore_infrastructure_databasefacade_
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu21snapshots/cu-part4-migrations

SqlException: Cannot open database "ContosoUniversity" requested by the login.
The login failed.
Login failed for user 'user name'.

Additional resourcesAdditional resources

Solution: Run dotnet ef database update

YouTube version of this tutorial

.NET Core CLI.

Package Manager Console (Visual Studio)

 P R E V I O U SP R E V I O U S N E X TN E X T

https://www.youtube.com/watch?v=OWSUuMLKTJo
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell

Part 5, Razor Pages with EF Core in ASP.NET Core -
Data Model
9/22/2020 • 57 minutes to read • Edit Online

By Tom Dykstra and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you created

by following the tutorial.

The previous tutorials worked with a basic data model that was composed of three entities. In this tutorial:

More entities and relationships are added.

The data model is customized by specifying formatting, validation, and database mapping rules.

The completed data model is shown in the following illustration:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/complex-data-model.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

The Student entity

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [Required]
 [StringLength(50)]
 [Display(Name = "Last Name")]
 public string LastName { get; set; }
 [Required]
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Enrollment Date")]
 public DateTime EnrollmentDate { get; set; }
 [Display(Name = "Full Name")]
 public string FullName
 {
 get
 {
 return LastName + ", " + FirstMidName;
 }
 }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

The FullName calculated propertyThe FullName calculated property

Replace the code in Models/Student.cs with the following code:

The preceding code adds a FullName property and adds the following attributes to existing properties:

[DataType]

[DisplayFormat]

[StringLength]

[Column]

[Required]

[Display]

FullName is a calculated property that returns a value that's created by concatenating two other properties.

The DataType attributeThe DataType attribute

[DataType(DataType.Date)]

The DisplayFormat attributeThe DisplayFormat attribute

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]

The StringLength attributeThe StringLength attribute

[StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]

FullName can't be set, so it has only a get accessor. No FullName column is created in the database.

For student enrollment dates, all of the pages currently display the time of day along with the date, although only

the date is relevant. By using data annotation attributes, you can make one code change that will fix the display

format in every page that shows the data.

The DataType attribute specifies a data type that's more specific than the database intrinsic type. In this case only the

date should be displayed, not the date and time. The DataType Enumeration provides for many data types, such as

Date, Time, PhoneNumber, Currency, EmailAddress, etc. The DataType attribute can also enable the app to

automatically provide type-specific features. For example:

The mailto: link is automatically created for DataType.EmailAddress .

The date selector is provided for DataType.Date in most browsers.

The DataType attribute emits HTML 5 data- (pronounced data dash) attributes. The DataType attributes don't

provide validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the date field is displayed

according to the default formats based on the server's CultureInfo.

The DisplayFormat attribute is used to explicitly specify the date format. The ApplyFormatInEditMode setting

specifies that the formatting should also be applied to the edit UI. Some fields shouldn't use ApplyFormatInEditMode .

For example, the currency symbol should generally not be displayed in an edit text box.

The DisplayFormat attribute can be used by itself. It's generally a good idea to use the DataType attribute with the

DisplayFormat attribute. The DataType attribute conveys the semantics of the data as opposed to how to render it

on a screen. The DataType attribute provides the following benefits that are not available in DisplayFormat :

The browser can enable HTML5 features. For example, show a calendar control, the locale-appropriate currency

symbol, email links, and client-side input validation.

By default, the browser renders data using the correct format based on the locale.

For more information, see the <input> Tag Helper documentation.

Data validation rules and validation error messages can be specified with attributes. The StringLength attribute

specifies the minimum and maximum length of characters that are allowed in a data field. The code shown limits

names to no more than 50 characters. An example that sets the minimum string length is shown later.

The StringLength attribute also provides client-side and server-side validation. The minimum value has no impact

on the database schema.

The StringLength attribute doesn't prevent a user from entering white space for a name. The RegularExpression

attribute can be used to apply restrictions to the input. For example, the following code requires the first character

to be upper case and the remaining characters to be alphabetical:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatypeattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatype
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.stringlengthattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.regularexpressionattribute

[RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]

The Column attributeThe Column attribute

[Column("FirstName")]
public string FirstMidName { get; set; }

The Required attributeThe Required attribute

[Required]

Visual Studio

Visual Studio Code

In SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX), open the Student table designer by double-clicking the StudentStudent table.

The preceding image shows the schema for the Student table. The name fields have type nvarchar(MAX) . When a

migration is created and applied later in this tutorial, the name fields become nvarchar(50) as a result of the string

length attributes.

Attributes can control how classes and properties are mapped to the database. In the Student model, the Column

attribute is used to map the name of the FirstMidName property to "FirstName" in the database.

When the database is created, property names on the model are used for column names (except when the Column

attribute is used). The Student model uses FirstMidName for the first-name field because the field might also

contain a middle name.

With the [Column] attribute, Student.FirstMidName in the data model maps to the FirstName column of the

Student table. The addition of the Column attribute changes the model backing the SchoolContext . The model

backing the SchoolContext no longer matches the database. That discrepancy will be resolved by adding a

migration later in this tutorial.

The Required attribute makes the name properties required fields. The Required attribute isn't needed for non-

nullable types such as value types (for example, DateTime , int , and double). Types that can't be null are

automatically treated as required fields.

The Required attribute must be used with MinimumLength for the MinimumLength to be enforced.

[Display(Name = "Last Name")]
[Required]
[StringLength(50, MinimumLength=2)]
public string LastName { get; set; }

The Display attributeThe Display attribute

[Display(Name = "Last Name")]

Create a migrationCreate a migration

SqlException: Invalid column name 'FirstName'.

MinimumLength and Required allow whitespace to satisfy the validation. Use the RegularExpression attribute for full

control over the string.

The Display attribute specifies that the caption for the text boxes should be "First Name", "Last Name", "Full Name",

and "Enrollment Date." The default captions had no space dividing the words, for example "Lastname."

Run the app and go to the Students page. An exception is thrown. The [Column] attribute causes EF to expect to find

a column named FirstName , but the column name in the database is still FirstMidName .

Visual Studio

Visual Studio Code

The error message is similar to the following example:

Add-Migration ColumnFirstName
Update-Database

An operation was scaffolded that may result in the loss of data.
Please review the migration for accuracy.

In the PMC, enter the following commands to create a new migration and update the database:

The first of these commands generates the following warning message:

The warning is generated because the name fields are now limited to 50 characters. If a name in the database

had more than 50 characters, the 51 to last character would be lost.

Open the Student table in SSOX:

NOTENOTE

The Instructor Entity

Before the migration was applied, the name columns were of type nvarchar(MAX). The name columns are

now nvarchar(50) . The column name has changed from FirstMidName to FirstName .

Run the app and go to the Students page.

Notice that times are not input or displayed along with dates.

Select Create NewCreate New , and try to enter a name longer than 50 characters.

In the following sections, building the app at some stages generates compiler errors. The instructions specify when to build

the app.

Create Models/Instructor.cs with the following code:

https://docs.microsoft.com/en-us/sql/t-sql/data-types/nchar-and-nvarchar-transact-sql

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Instructor
 {
 public int ID { get; set; }

 [Required]
 [Display(Name = "Last Name")]
 [StringLength(50)]
 public string LastName { get; set; }

 [Required]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 [StringLength(50)]
 public string FirstMidName { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Hire Date")]
 public DateTime HireDate { get; set; }

 [Display(Name = "Full Name")]
 public string FullName
 {
 get { return LastName + ", " + FirstMidName; }
 }

 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 public OfficeAssignment OfficeAssignment { get; set; }
 }
}

[DataType(DataType.Date),Display(Name = "Hire Date"),DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",
ApplyFormatInEditMode = true)]

Navigation propertiesNavigation properties

public ICollection<CourseAssignment> CourseAssignments { get; set; }

public OfficeAssignment OfficeAssignment { get; set; }

The OfficeAssignment entity

Multiple attributes can be on one line. The HireDate attributes could be written as follows:

The CourseAssignments and OfficeAssignment properties are navigation properties.

An instructor can teach any number of courses, so CourseAssignments is defined as a collection.

An instructor can have at most one office, so the OfficeAssignment property holds a single OfficeAssignment entity.

OfficeAssignment is null if no office is assigned.

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class OfficeAssignment
 {
 [Key]
 public int InstructorID { get; set; }
 [StringLength(50)]
 [Display(Name = "Office Location")]
 public string Location { get; set; }

 public Instructor Instructor { get; set; }
 }
}

The Key attributeThe Key attribute

[Key]
public int InstructorID { get; set; }

The Instructor navigation propertyThe Instructor navigation property

The Course Entity

Create Models/OfficeAssignment.cs with the following code:

The [Key] attribute is used to identify a property as the primary key (PK) when the property name is something

other than classnameID or ID.

There's a one-to-zero-or-one relationship between the Instructor and OfficeAssignment entities. An office

assignment only exists in relation to the instructor it's assigned to. The OfficeAssignment PK is also its foreign key

(FK) to the Instructor entity.

EF Core can't automatically recognize InstructorID as the PK of OfficeAssignment because InstructorID doesn't

follow the ID or classnameID naming convention. Therefore, the Key attribute is used to identify InstructorID as

the PK:

By default, EF Core treats the key as non-database-generated because the column is for an identifying relationship.

The Instructor.OfficeAssignment navigation property can be null because there might not be an OfficeAssignment

row for a given instructor. An instructor might not have an office assignment.

The OfficeAssignment.Instructor navigation property will always have an instructor entity because the foreign key

InstructorID type is int , a non-nullable value type. An office assignment can't exist without an instructor.

When an Instructor entity has a related OfficeAssignment entity, each entity has a reference to the other one in its

navigation property.

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 [Display(Name = "Number")]
 public int CourseID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Title { get; set; }

 [Range(0, 5)]
 public int Credits { get; set; }

 public int DepartmentID { get; set; }

 public Department Department { get; set; }
 public ICollection<Enrollment> Enrollments { get; set; }
 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 }
}

The DatabaseGenerated attributeThe DatabaseGenerated attribute

Update Models/Course.cs with the following code:

The Course entity has a foreign key (FK) property DepartmentID . DepartmentID points to the related Department

entity. The Course entity has a Department navigation property.

EF Core doesn't require a foreign key property for a data model when the model has a navigation property for a

related entity. EF Core automatically creates FKs in the database wherever they're needed. EF Core creates shadow

properties for automatically created FKs. However, explicitly including the FK in the data model can make updates

simpler and more efficient. For example, consider a model where the FK property DepartmentID is not included.

When a course entity is fetched to edit:

The Department property is null if it's not explicitly loaded.

To update the course entity, the Department entity must first be fetched.

When the FK property DepartmentID is included in the data model, there's no need to fetch the Department entity

before an update.

The [DatabaseGenerated(DatabaseGeneratedOption.None)] attribute specifies that the PK is provided by the application

rather than generated by the database.

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties

[DatabaseGenerated(DatabaseGeneratedOption.None)]
[Display(Name = "Number")]
public int CourseID { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int DepartmentID { get; set; }
public Department Department { get; set; }

public ICollection<Enrollment> Enrollments { get; set; }

public ICollection<CourseAssignment> CourseAssignments { get; set; }

The Department entity

By default, EF Core assumes that PK values are generated by the database. Database-generated is generally the best

approach. For Course entities, the user specifies the PK. For example, a course number such as a 1000 series for the

math department, a 2000 series for the English department.

The DatabaseGenerated attribute can also be used to generate default values. For example, the database can

automatically generate a date field to record the date a row was created or updated. For more information, see

Generated Properties.

The foreign key (FK) properties and navigation properties in the Course entity reflect the following relationships:

A course is assigned to one department, so there's a DepartmentID FK and a Department navigation property.

A course can have any number of students enrolled in it, so the Enrollments navigation property is a collection:

A course may be taught by multiple instructors, so the CourseAssignments navigation property is a collection:

CourseAssignment is explained later.

Create Models/Department.cs with the following code:

https://docs.microsoft.com/en-us/ef/core/modeling/generated-properties

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Department
 {
 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Name { get; set; }

 [DataType(DataType.Currency)]
 [Column(TypeName = "money")]
 public decimal Budget { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 public Instructor Administrator { get; set; }
 public ICollection<Course> Courses { get; set; }
 }
}

The Column attributeThe Column attribute

[Column(TypeName="money")]
public decimal Budget { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int? InstructorID { get; set; }
public Instructor Administrator { get; set; }

Previously the Column attribute was used to change column name mapping. In the code for the Department entity,

the Column attribute is used to change SQL data type mapping. The Budget column is defined using the SQL

Server money type in the database:

Column mapping is generally not required. EF Core chooses the appropriate SQL Server data type based on the

CLR type for the property. The CLR decimal type maps to a SQL Server decimal type. Budget is for currency, and

the money data type is more appropriate for currency.

The FK and navigation properties reflect the following relationships:

A department may or may not have an administrator.

An administrator is always an instructor. Therefore the InstructorID property is included as the FK to the

Instructor entity.

The navigation property is named Administrator but holds an Instructor entity:

The question mark (?) in the preceding code specifies the property is nullable.

A department may have many courses, so there's a Courses navigation property:

public ICollection<Course> Courses { get; set; }

modelBuilder.Entity<Department>()
 .HasOne(d => d.Administrator)
 .WithMany()
 .OnDelete(DeleteBehavior.Restrict)

The Enrollment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 [DisplayFormat(NullDisplayText = "No grade")]
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

Foreign key and navigation propertiesForeign key and navigation properties

By convention, EF Core enables cascade delete for non-nullable FKs and for many-to-many relationships. This

default behavior can result in circular cascade delete rules. Circular cascade delete rules cause an exception when a

migration is added.

For example, if the Department.InstructorID property was defined as non-nullable, EF Core would configure a

cascade delete rule. In that case, the department would be deleted when the instructor assigned as its administrator

is deleted. In this scenario, a restrict rule would make more sense. The following fluent API would set a restrict rule

and disable cascade delete.

An enrollment record is for one course taken by one student.

Update Models/Enrollment.cs with the following code:

The FK properties and navigation properties reflect the following relationships:

public int CourseID { get; set; }
public Course Course { get; set; }

public int StudentID { get; set; }
public Student Student { get; set; }

Many-to-Many Relationships

The CourseAssignment entity

An enrollment record is for one course, so there's a CourseID FK property and a Course navigation property:

An enrollment record is for one student, so there's a StudentID FK property and a Student navigation property:

There's a many-to-many relationship between the Student and Course entities. The Enrollment entity functions as

a many-to-many join table with payload in the database. "With payload" means that the Enrollment table contains

additional data besides FKs for the joined tables (in this case, the PK and Grade).

The following illustration shows what these relationships look like in an entity diagram. (This diagram was

generated using EF Power Tools for EF 6.x. Creating the diagram isn't part of the tutorial.)

Each relationship line has a 1 at one end and an asterisk (*) at the other, indicating a one-to-many relationship.

If the Enrollment table didn't include grade information, it would only need to contain the two FKs (CourseID and

StudentID). A many-to-many join table without payload is sometimes called a pure join table (PJT).

The Instructor and Course entities have a many-to-many relationship using a pure join table.

Note: EF 6.x supports implicit join tables for many-to-many relationships, but EF Core doesn't. For more

information, see Many-to-many relationships in EF Core 2.0.

https://marketplace.visualstudio.com/items?itemName=ErikEJ.EntityFramework6PowerToolsCommunityEdition
https://blog.oneunicorn.com/2017/09/25/many-to-many-relationships-in-ef-core-2-0-part-1-the-basics/

namespace ContosoUniversity.Models
{
 public class CourseAssignment
 {
 public int InstructorID { get; set; }
 public int CourseID { get; set; }
 public Instructor Instructor { get; set; }
 public Course Course { get; set; }
 }
}

Create Models/CourseAssignment.cs with the following code:

The Instructor-to-Courses many-to-many relationship requires a join table, and the entity for that join table is

CourseAssignment.

It's common to name a join entity EntityName1EntityName2 . For example, the Instructor-to-Courses join table using

this pattern would be CourseInstructor . However, we recommend using a name that describes the relationship.

Data models start out simple and grow. Join tables without payload (PJTs) frequently evolve to include payload. By

starting with a descriptive entity name, the name doesn't need to change when the join table changes. Ideally, the

join entity would have its own natural (possibly single word) name in the business domain. For example, Books and

Customers could be linked with a join entity called Ratings. For the Instructor-to-Courses many-to-many

Composite keyComposite key

Update the database context

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 public DbSet<Department> Departments { get; set; }
 public DbSet<Instructor> Instructors { get; set; }
 public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
 public DbSet<CourseAssignment> CourseAssignments { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 modelBuilder.Entity<Department>().ToTable("Department");
 modelBuilder.Entity<Instructor>().ToTable("Instructor");
 modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
 modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");

 modelBuilder.Entity<CourseAssignment>()
 .HasKey(c => new { c.CourseID, c.InstructorID });
 }
 }
}

relationship, CourseAssignment is preferred over CourseInstructor .

The two FKs in CourseAssignment (InstructorID and CourseID) together uniquely identify each row of the

CourseAssignment table. CourseAssignment doesn't require a dedicated PK. The InstructorID and CourseID

properties function as a composite PK. The only way to specify composite PKs to EF Core is with the fluent API. The

next section shows how to configure the composite PK.

The composite key ensures that:

Multiple rows are allowed for one course.

Multiple rows are allowed for one instructor.

Multiple rows aren't allowed for the same instructor and course.

The Enrollment join entity defines its own PK, so duplicates of this sort are possible. To prevent such duplicates:

Add a unique index on the FK fields, or

Configure Enrollment with a primary composite key similar to CourseAssignment . For more information, see

Indexes.

Update Data/SchoolContext.cs with the following code:

The preceding code adds the new entities and configures the CourseAssignment entity's composite PK.

https://docs.microsoft.com/en-us/ef/core/modeling/indexes

Fluent API alternative to attributes

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Blog>()
 .Property(b => b.Url)
 .IsRequired();
}

Entity diagram

The OnModelCreating method in the preceding code uses the fluent API to configure EF Core behavior. The API is

called "fluent" because it's often used by stringing a series of method calls together into a single statement. The

following code is an example of the fluent API:

In this tutorial, the fluent API is used only for database mapping that can't be done with attributes. However, the

fluent API can specify most of the formatting, validation, and mapping rules that can be done with attributes.

Some attributes such as MinimumLength can't be applied with the fluent API. MinimumLength doesn't change the

schema, it only applies a minimum length validation rule.

Some developers prefer to use the fluent API exclusively so that they can keep their entity classes "clean." Attributes

and the fluent API can be mixed. There are some configurations that can only be done with the fluent API (specifying

a composite PK). There are some configurations that can only be done with attributes (MinimumLength). The

recommended practice for using fluent API or attributes:

Choose one of these two approaches.

Use the chosen approach consistently as much as possible.

Some of the attributes used in this tutorial are used for :

Validation only (for example, MinimumLength).

EF Core configuration only (for example, HasKey).

Validation and EF Core configuration (for example, [StringLength(50)]).

For more information about attributes vs. fluent API, see Methods of configuration.

The following illustration shows the diagram that EF Power Tools create for the completed School model.

https://docs.microsoft.com/en-us/ef/core/modeling/#use-fluent-api-to-configure-a-model
https://docs.microsoft.com/en-us/ef/core/modeling/

Seed the database

using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 //context.Database.EnsureCreated();

The preceding diagram shows:

Several one-to-many relationship lines (1 to *).

The one-to-zero-or-one relationship line (1 to 0..1) between the Instructor and OfficeAssignment entities.

The zero-or-one-to-many relationship line (0..1 to *) between the Instructor and Department entities.

Update the code in Data/DbInitializer.cs:

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student { FirstMidName = "Carson", LastName = "Alexander",
 EnrollmentDate = DateTime.Parse("2016-09-01") },
 new Student { FirstMidName = "Meredith", LastName = "Alonso",
 EnrollmentDate = DateTime.Parse("2018-09-01") },
 new Student { FirstMidName = "Arturo", LastName = "Anand",
 EnrollmentDate = DateTime.Parse("2019-09-01") },
 new Student { FirstMidName = "Gytis", LastName = "Barzdukas",
 EnrollmentDate = DateTime.Parse("2018-09-01") },
 new Student { FirstMidName = "Yan", LastName = "Li",
 EnrollmentDate = DateTime.Parse("2018-09-01") },
 new Student { FirstMidName = "Peggy", LastName = "Justice",
 EnrollmentDate = DateTime.Parse("2017-09-01") },
 new Student { FirstMidName = "Laura", LastName = "Norman",
 EnrollmentDate = DateTime.Parse("2019-09-01") },
 new Student { FirstMidName = "Nino", LastName = "Olivetto",
 EnrollmentDate = DateTime.Parse("2011-09-01") }
 };

 context.Students.AddRange(students);
 context.SaveChanges();

 var instructors = new Instructor[]
 {
 new Instructor { FirstMidName = "Kim", LastName = "Abercrombie",
 HireDate = DateTime.Parse("1995-03-11") },
 new Instructor { FirstMidName = "Fadi", LastName = "Fakhouri",
 HireDate = DateTime.Parse("2002-07-06") },
 new Instructor { FirstMidName = "Roger", LastName = "Harui",
 HireDate = DateTime.Parse("1998-07-01") },
 new Instructor { FirstMidName = "Candace", LastName = "Kapoor",
 HireDate = DateTime.Parse("2001-01-15") },
 new Instructor { FirstMidName = "Roger", LastName = "Zheng",
 HireDate = DateTime.Parse("2004-02-12") }
 };

 context.Instructors.AddRange(instructors);
 context.SaveChanges();

 var departments = new Department[]
 {
 new Department { Name = "English", Budget = 350000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID },
 new Department { Name = "Mathematics", Budget = 100000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID },
 new Department { Name = "Engineering", Budget = 350000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID },
 new Department { Name = "Economics", Budget = 100000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID }
 };

 context.Departments.AddRange(departments);
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course {CourseID = 1050, Title = "Chemistry", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Engineering").DepartmentID

 DepartmentID = departments.Single(s => s.Name == "Engineering").DepartmentID
 },
 new Course {CourseID = 4022, Title = "Microeconomics", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Economics").DepartmentID
 },
 new Course {CourseID = 4041, Title = "Macroeconomics", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Economics").DepartmentID
 },
 new Course {CourseID = 1045, Title = "Calculus", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "Mathematics").DepartmentID
 },
 new Course {CourseID = 3141, Title = "Trigonometry", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "Mathematics").DepartmentID
 },
 new Course {CourseID = 2021, Title = "Composition", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "English").DepartmentID
 },
 new Course {CourseID = 2042, Title = "Literature", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "English").DepartmentID
 },
 };

 context.Courses.AddRange(courses);
 context.SaveChanges();

 var officeAssignments = new OfficeAssignment[]
 {
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID,
 Location = "Smith 17" },
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID,
 Location = "Gowan 27" },
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID,
 Location = "Thompson 304" },
 };

 context.OfficeAssignments.AddRange(officeAssignments);
 context.SaveChanges();

 var courseInstructors = new CourseAssignment[]
 {
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Macroeconomics").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Calculus").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Trigonometry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID

 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Literature").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
 },
 };

 context.CourseAssignments.AddRange(courseInstructors);
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 Grade = Grade.A
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 Grade = Grade.C
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Macroeconomics").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Calculus").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Trigonometry").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Anand").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Anand").ID,
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Barzdukas").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Li").ID,
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Justice").ID,
 CourseID = courses.Single(c => c.Title == "Literature").CourseID,
 Grade = Grade.B
 }
 };

 foreach (Enrollment e in enrollments)

 foreach (Enrollment e in enrollments)
 {
 var enrollmentInDataBase = context.Enrollments.Where(
 s =>
 s.Student.ID == e.StudentID &&
 s.Course.CourseID == e.CourseID).SingleOrDefault();
 if (enrollmentInDataBase == null)
 {
 context.Enrollments.Add(e);
 }
 }
 context.SaveChanges();
 }
 }
}

Add a migration

Add-Migration ComplexDataModel

An operation was scaffolded that may result in the loss of data.
Please review the migration for accuracy.
To undo this action, use 'ef migrations remove'

The ALTER TABLE statement conflicted with the FOREIGN KEY constraint
"FK_dbo.Course_dbo.Department_DepartmentID". The conflict occurred in
database "ContosoUniversity", table "dbo.Department", column 'DepartmentID'.

Apply the migration or drop and re-create

The preceding code provides seed data for the new entities. Most of this code creates new entity objects and loads

sample data. The sample data is used for testing. See Enrollments and CourseAssignments for examples of how

many-to-many join tables can be seeded.

Build the project.

Visual Studio

Visual Studio Code

In PMC, run the following command.

The preceding command displays a warning about possible data loss.

If the database update command is run, the following error is produced:

In the next section, you see what to do about this error.

Now that you have an existing database, you need to think about how to apply changes to it. This tutorial shows

two alternatives:

Drop and re-create the database. Choose this section if you're using SQLite.

Apply the migration to the existing database. The instructions in this section work for SQL Server only, not fornot for

SQLiteSQLite.

Either choice works for SQL Server. While the apply-migration method is more complex and time-consuming, it's

the preferred approach for real-world, production environments.

Drop and re-create the database
Skip this section if you're using SQL Server and want to do the apply-migration approach in the following section.

To force EF Core to create a new database, drop and update the database:

Visual Studio

Visual Studio Code

Drop-Database

Add-Migration InitialCreate
Update-Database

In the Package Manager ConsolePackage Manager Console (PMC), run the following command:

Delete the Migrations folder, then run the following command:

Run the app. Running the app runs the DbInitializer.Initialize method. The DbInitializer.Initialize populates

the new database.

Visual Studio

Visual Studio Code

Open the database in SSOX:

If SSOX was opened previously, click the RefreshRefresh button.

Expand the TablesTables node. The created tables are displayed.

Examine the CourseAssignmentCourseAssignment table:

Right-click the CourseAssignmentCourseAssignment table and select View DataView Data.

Verify the CourseAssignmentCourseAssignment table contains data.

Apply the migration

migrationBuilder.AddColumn<int>(
 name: "DepartmentID",
 table: "Course",
 type: "int",
 nullable: false,
 defaultValue: 0);

Fix the foreign key constraintsFix the foreign key constraints

This section is optional. These steps work only for SQL Server LocalDB and only if you skipped the preceding Drop

and re-create the database section.

When migrations are run with existing data, there may be FK constraints that are not satisfied with the existing data.

With production data, steps must be taken to migrate the existing data. This section provides an example of fixing

FK constraint violations. Don't make these code changes without a backup. Don't make these code changes if you

completed the preceding Drop and re-create the database section.

The {timestamp}_ComplexDataModel.cs file contains the following code:

The preceding code adds a non-nullable DepartmentID FK to the Course table. The database from the previous

tutorial contains rows in Course , so that table cannot be updated by migrations.

To make the ComplexDataModel migration work with existing data:

Change the code to give the new column (DepartmentID) a default value.

Create a fake department named "Temp" to act as the default department.

In the ComplexDataModel migration class, update the Up method:

Open the {timestamp}_ComplexDataModel.cs file.

Comment out the line of code that adds the DepartmentID column to the Course table.

migrationBuilder.AlterColumn<string>(
 name: "Title",
 table: "Course",
 maxLength: 50,
 nullable: true,
 oldClrType: typeof(string),
 oldNullable: true);

//migrationBuilder.AddColumn<int>(
// name: "DepartmentID",
// table: "Course",
// nullable: false,
// defaultValue: 0);

migrationBuilder.CreateTable(
 name: "Department",
 columns: table => new
 {
 DepartmentID = table.Column<int>(type: "int", nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy", SqlServerValueGenerationStrategy.IdentityColumn),
 Budget = table.Column<decimal>(type: "money", nullable: false),
 InstructorID = table.Column<int>(type: "int", nullable: true),
 Name = table.Column<string>(type: "nvarchar(50)", maxLength: 50, nullable: true),
 StartDate = table.Column<DateTime>(type: "datetime2", nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Department", x => x.DepartmentID);
 table.ForeignKey(
 name: "FK_Department_Instructor_InstructorID",
 column: x => x.InstructorID,
 principalTable: "Instructor",
 principalColumn: "ID",
 onDelete: ReferentialAction.Restrict);
 });

 migrationBuilder.Sql("INSERT INTO dbo.Department (Name, Budget, StartDate) VALUES ('Temp', 0.00, GETDATE())");
// Default value for FK points to department created above, with
// defaultValue changed to 1 in following AddColumn statement.

migrationBuilder.AddColumn<int>(
 name: "DepartmentID",
 table: "Course",
 nullable: false,
 defaultValue: 1);

Add the following highlighted code. The new code goes after the .CreateTable(name: "Department" block:

With the preceding changes, existing Course rows will be related to the "Temp" department after the

ComplexDataModel.Up method runs.

The way of handling the situation shown here is simplified for this tutorial. A production app would:

Include code or scripts to add Department rows and related Course rows to the new Department rows.

Not use the "Temp" department or the default value for Course.DepartmentID .

Visual Studio

Visual Studio Code

In the Package Manager ConsolePackage Manager Console (PMC), run the following command:

Next steps

Update-Database

Because the DbInitializer.Initialize method is designed to work only with an empty database, use SSOX to

delete all the rows in the Student and Course tables. (Cascade delete will take care of the Enrollment table.)

Run the app. Running the app runs the DbInitializer.Initialize method. The DbInitializer.Initialize populates

the new database.

The next two tutorials show how to read and update related data.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

The previous tutorials worked with a basic data model that was composed of three entities. In this tutorial:

More entities and relationships are added.

The data model is customized by specifying formatting, validation, and database mapping rules.

The entity classes for the completed data model are shown in the following illustration:

Customize the data model with attributes

The DataType attributeThe DataType attribute

If you run into problems you can't solve, download the completed app.

In this section, the data model is customized using attributes.

The student pages currently displays the time of the enrollment date. Typically, date fields show only the date and

not the time.

Update Models/Student.cs with the following highlighted code:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]

The DataType attribute specifies a data type that's more specific than the database intrinsic type. In this case only the

date should be displayed, not the date and time. The DataType Enumeration provides for many data types, such as

Date, Time, PhoneNumber, Currency, EmailAddress, etc. The DataType attribute can also enable the app to

automatically provide type-specific features. For example:

The mailto: link is automatically created for DataType.EmailAddress .

The date selector is provided for DataType.Date in most browsers.

The DataType attribute emits HTML 5 data- (pronounced data dash) attributes that HTML 5 browsers consume.

The DataType attributes don't provide validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the date field is displayed

according to the default formats based on the server's CultureInfo.

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should also be applied to the edit UI. Some fields

shouldn't use ApplyFormatInEditMode . For example, the currency symbol should generally not be displayed in an

edit text box.

The DisplayFormat attribute can be used by itself. It's generally a good idea to use the DataType attribute with the

DisplayFormat attribute. The DataType attribute conveys the semantics of the data as opposed to how to render it

on a screen. The DataType attribute provides the following benefits that are not available in DisplayFormat :

The browser can enable HTML5 features. For example, show a calendar control, the locale-appropriate currency

symbol, email links, client-side input validation, etc.

By default, the browser renders data using the correct format based on the locale.

For more information, see the <input> Tag Helper documentation.

Run the app. Navigate to the Students Index page. Times are no longer displayed. Every view that uses the Student

model displays the date without time.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatypeattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatype

The StringLength attributeThe StringLength attribute

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [StringLength(50)]
 public string LastName { get; set; }
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Data validation rules and validation error messages can be specified with attributes. The StringLength attribute

specifies the minimum and maximum length of characters that are allowed in a data field. The StringLength

attribute also provides client-side and server-side validation. The minimum value has no impact on the database

schema.

Update the Student model with the following code:

The preceding code limits names to no more than 50 characters. The StringLength attribute doesn't prevent a user

from entering white space for a name. The RegularExpression attribute is used to apply restrictions to the input. For

example, the following code requires the first character to be upper case and the remaining characters to be

alphabetical:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.stringlengthattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.regularexpressionattribute

[RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]

Run the app:

Navigate to the Students page.

Select Create NewCreate New , and enter a name longer than 50 characters.

Select CreateCreate, client-side validation shows an error message.

In SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX), open the Student table designer by double-clicking the StudentStudent table.

The preceding image shows the schema for the Student table. The name fields have type nvarchar(MAX) because

migrations has not been run on the DB. When migrations are run later in this tutorial, the name fields become

The Column attributeThe Column attribute

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [StringLength(50)]
 public string LastName { get; set; }
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 [Column("FirstName")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

SqlException: Invalid column name 'FirstName'.

Add-Migration ColumnFirstName
Update-Database

nvarchar(50) .

Attributes can control how classes and properties are mapped to the database. In this section, the Column attribute

is used to map the name of the FirstMidName property to "FirstName" in the DB.

When the DB is created, property names on the model are used for column names (except when the Column

attribute is used).

The Student model uses FirstMidName for the first-name field because the field might also contain a middle name.

Update the Student.cs file with the following highlighted code:

With the preceding change, Student.FirstMidName in the app maps to the FirstName column of the Student table.

The addition of the Column attribute changes the model backing the SchoolContext . The model backing the

SchoolContext no longer matches the database. If the app is run before applying migrations, the following

exception is generated:

To update the DB:

Build the project.

Open a command window in the project folder. Enter the following commands to create a new migration and

update the DB:

Visual Studio

Visual Studio Code

The migrations add ColumnFirstName command generates the following warning message:

An operation was scaffolded that may result in the loss of data.
Please review the migration for accuracy.

NOTENOTE

Student entity update

The warning is generated because the name fields are now limited to 50 characters. If a name in the DB had more

than 50 characters, the 51 to last character would be lost.

Test the app.

Open the Student table in SSOX:

Before migration was applied, the name columns were of type nvarchar(MAX). The name columns are now

nvarchar(50) . The column name has changed from FirstMidName to FirstName .

In the following section, building the app at some stages generates compiler errors. The instructions specify when to build the

app.

Update Models/Student.cs with the following code:

https://docs.microsoft.com/en-us/sql/t-sql/data-types/nchar-and-nvarchar-transact-sql

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [Required]
 [StringLength(50)]
 [Display(Name = "Last Name")]
 public string LastName { get; set; }
 [Required]
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Enrollment Date")]
 public DateTime EnrollmentDate { get; set; }
 [Display(Name = "Full Name")]
 public string FullName
 {
 get
 {
 return LastName + ", " + FirstMidName;
 }
 }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

The Required attributeThe Required attribute

[Display(Name = "Last Name")]
[StringLength(50, MinimumLength=1)]
public string LastName { get; set; }

The Display attributeThe Display attribute

The FullName calculated propertyThe FullName calculated property

Create the Instructor Entity

The Required attribute makes the name properties required fields. The Required attribute isn't needed for non-

nullable types such as value types (DateTime , int , double , etc.). Types that can't be null are automatically treated

as required fields.

The Required attribute could be replaced with a minimum length parameter in the StringLength attribute:

The Display attribute specifies that the caption for the text boxes should be "First Name", "Last Name", "Full Name",

and "Enrollment Date." The default captions had no space dividing the words, for example "Lastname."

FullName is a calculated property that returns a value that's created by concatenating two other properties.

FullName cannot be set, it has only a get accessor. No FullName column is created in the database.

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Instructor
 {
 public int ID { get; set; }

 [Required]
 [Display(Name = "Last Name")]
 [StringLength(50)]
 public string LastName { get; set; }

 [Required]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 [StringLength(50)]
 public string FirstMidName { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Hire Date")]
 public DateTime HireDate { get; set; }

 [Display(Name = "Full Name")]
 public string FullName
 {
 get { return LastName + ", " + FirstMidName; }
 }

 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 public OfficeAssignment OfficeAssignment { get; set; }
 }
}

[DataType(DataType.Date),Display(Name = "Hire Date"),DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",
ApplyFormatInEditMode = true)]

The CourseAssignments and OfficeAssignment navigation propertiesThe CourseAssignments and OfficeAssignment navigation properties

Create Models/Instructor.cs with the following code:

Multiple attributes can be on one line. The HireDate attributes could be written as follows:

The CourseAssignments and OfficeAssignment properties are navigation properties.

An instructor can teach any number of courses, so CourseAssignments is defined as a collection.

public ICollection<CourseAssignment> CourseAssignments { get; set; }

public OfficeAssignment OfficeAssignment { get; set; }

Create the OfficeAssignment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class OfficeAssignment
 {
 [Key]
 public int InstructorID { get; set; }
 [StringLength(50)]
 [Display(Name = "Office Location")]
 public string Location { get; set; }

 public Instructor Instructor { get; set; }
 }
}

The Key attributeThe Key attribute

If a navigation property holds multiple entities:

It must be a list type where the entries can be added, deleted, and updated.

Navigation property types include:

ICollection<T>

List<T>

HashSet<T>

If ICollection<T> is specified, EF Core creates a HashSet<T> collection by default.

The CourseAssignment entity is explained in the section on many-to-many relationships.

Contoso University business rules state that an instructor can have at most one office. The OfficeAssignment

property holds a single OfficeAssignment entity. OfficeAssignment is null if no office is assigned.

Create Models/OfficeAssignment.cs with the following code:

The [Key] attribute is used to identify a property as the primary key (PK) when the property name is something

other than classnameID or ID.

There's a one-to-zero-or-one relationship between the Instructor and OfficeAssignment entities. An office

assignment only exists in relation to the instructor it's assigned to. The OfficeAssignment PK is also its foreign key

[Key]
public int InstructorID { get; set; }

The Instructor navigation propertyThe Instructor navigation property

[Required]
public Instructor Instructor { get; set; }

Modify the Course Entity

(FK) to the Instructor entity. EF Core can't automatically recognize InstructorID as the PK of OfficeAssignment

because:

InstructorID doesn't follow the ID or classnameID naming convention.

Therefore, the Key attribute is used to identify InstructorID as the PK:

By default, EF Core treats the key as non-database-generated because the column is for an identifying relationship.

The OfficeAssignment navigation property for the Instructor entity is nullable because:

Reference types (such as classes are nullable).

An instructor might not have an office assignment.

The OfficeAssignment entity has a non-nullable Instructor navigation property because:

InstructorID is non-nullable.

An office assignment can't exist without an instructor.

When an Instructor entity has a related OfficeAssignment entity, each entity has a reference to the other one in its

navigation property.

The [Required] attribute could be applied to the Instructor navigation property:

The preceding code specifies that there must be a related instructor. The preceding code is unnecessary because the

InstructorID foreign key (which is also the PK) is non-nullable.

Update Models/Course.cs with the following code:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 [Display(Name = "Number")]
 public int CourseID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Title { get; set; }

 [Range(0, 5)]
 public int Credits { get; set; }

 public int DepartmentID { get; set; }

 public Department Department { get; set; }
 public ICollection<Enrollment> Enrollments { get; set; }
 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 }
}

The DatabaseGenerated attributeThe DatabaseGenerated attribute

[DatabaseGenerated(DatabaseGeneratedOption.None)]
[Display(Name = "Number")]
public int CourseID { get; set; }

The Course entity has a foreign key (FK) property DepartmentID . DepartmentID points to the related Department

entity. The Course entity has a Department navigation property.

EF Core doesn't require a FK property for a data model when the model has a navigation property for a related

entity.

EF Core automatically creates FKs in the database wherever they're needed. EF Core creates shadow properties for

automatically created FKs. Having the FK in the data model can make updates simpler and more efficient. For

example, consider a model where the FK property DepartmentID is not included. When a course entity is fetched to

edit:

The Department entity is null if it's not explicitly loaded.

To update the course entity, the Department entity must first be fetched.

When the FK property DepartmentID is included in the data model, there's no need to fetch the Department entity

before an update.

The [DatabaseGenerated(DatabaseGeneratedOption.None)] attribute specifies that the PK is provided by the application

rather than generated by the database.

By default, EF Core assumes that PK values are generated by the DB. DB generated PK values is generally the best

approach. For Course entities, the user specifies the PK. For example, a course number such as a 1000 series for the

math department, a 2000 series for the English department.

The DatabaseGenerated attribute can also be used to generate default values. For example, the DB can automatically

generate a date field to record the date a row was created or updated. For more information, see Generated

Properties.

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties
https://docs.microsoft.com/en-us/ef/core/modeling/generated-properties

Foreign key and navigation propertiesForeign key and navigation properties

public int DepartmentID { get; set; }
public Department Department { get; set; }

public ICollection<Enrollment> Enrollments { get; set; }

public ICollection<CourseAssignment> CourseAssignments { get; set; }

Create the Department entity

The foreign key (FK) properties and navigation properties in the Course entity reflect the following relationships:

A course is assigned to one department, so there's a DepartmentID FK and a Department navigation property.

A course can have any number of students enrolled in it, so the Enrollments navigation property is a collection:

A course may be taught by multiple instructors, so the CourseAssignments navigation property is a collection:

CourseAssignment is explained later.

Create Models/Department.cs with the following code:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Department
 {
 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Name { get; set; }

 [DataType(DataType.Currency)]
 [Column(TypeName = "money")]
 public decimal Budget { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 public Instructor Administrator { get; set; }
 public ICollection<Course> Courses { get; set; }
 }
}

The Column attributeThe Column attribute

[Column(TypeName="money")]
public decimal Budget { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int? InstructorID { get; set; }
public Instructor Administrator { get; set; }

Previously the Column attribute was used to change column name mapping. In the code for the Department entity,

the Column attribute is used to change SQL data type mapping. The Budget column is defined using the SQL

Server money type in the DB:

Column mapping is generally not required. EF Core generally chooses the appropriate SQL Server data type based

on the CLR type for the property. The CLR decimal type maps to a SQL Server decimal type. Budget is for

currency, and the money data type is more appropriate for currency.

The FK and navigation properties reflect the following relationships:

A department may or may not have an administrator.

An administrator is always an instructor. Therefore the InstructorID property is included as the FK to the

Instructor entity.

The navigation property is named Administrator but holds an Instructor entity:

The question mark (?) in the preceding code specifies the property is nullable.

A department may have many courses, so there's a Courses navigation property:

public ICollection<Course> Courses { get; set; }

Update the Enrollment entity

Note: By convention, EF Core enables cascade delete for non-nullable FKs and for many-to-many relationships.

Cascading delete can result in circular cascade delete rules. Circular cascade delete rules causes an exception when

a migration is added.

For example, if the Department.InstructorID property was defined as non-nullable:

modelBuilder.Entity<Department>()
 .HasOne(d => d.Administrator)
 .WithMany()
 .OnDelete(DeleteBehavior.Restrict)

EF Core configures a cascade delete rule to delete the department when the instructor is deleted.

Deleting the department when the instructor is deleted isn't the intended behavior.

The following fluent API would set a restrict rule instead of cascade.

The preceding code disables cascade delete on the department-instructor relationship.

An enrollment record is for one course taken by one student.

Update Models/Enrollment.cs with the following code:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 [DisplayFormat(NullDisplayText = "No grade")]
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

Foreign key and navigation propertiesForeign key and navigation properties

public int CourseID { get; set; }
public Course Course { get; set; }

public int StudentID { get; set; }
public Student Student { get; set; }

Many-to-Many Relationships

The FK properties and navigation properties reflect the following relationships:

An enrollment record is for one course, so there's a CourseID FK property and a Course navigation property:

An enrollment record is for one student, so there's a StudentID FK property and a Student navigation property:

There's a many-to-many relationship between the Student and Course entities. The Enrollment entity functions as

a many-to-many join table with payload in the database. "With payload" means that the Enrollment table contains

additional data besides FKs for the joined tables (in this case, the PK and Grade).

The following illustration shows what these relationships look like in an entity diagram. (This diagram was

generated using EF Power Tools for EF 6.x. Creating the diagram isn't part of the tutorial.)

https://marketplace.visualstudio.com/items?itemName=ErikEJ.EntityFramework6PowerToolsCommunityEdition

The CourseAssignment entity

Each relationship line has a 1 at one end and an asterisk (*) at the other, indicating a one-to-many relationship.

If the Enrollment table didn't include grade information, it would only need to contain the two FKs (CourseID and

StudentID). A many-to-many join table without payload is sometimes called a pure join table (PJT).

The Instructor and Course entities have a many-to-many relationship using a pure join table.

Note: EF 6.x supports implicit join tables for many-to-many relationships, but EF Core doesn't. For more

information, see Many-to-many relationships in EF Core 2.0.

Create Models/CourseAssignment.cs with the following code:

https://blog.oneunicorn.com/2017/09/25/many-to-many-relationships-in-ef-core-2-0-part-1-the-basics/

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class CourseAssignment
 {
 public int InstructorID { get; set; }
 public int CourseID { get; set; }
 public Instructor Instructor { get; set; }
 public Course Course { get; set; }
 }
}

Instructor-to-CoursesInstructor-to-Courses

Composite keyComposite key

The Instructor-to-Courses many-to-many relationship:

Requires a join table that must be represented by an entity set.

Is a pure join table (table without payload).

It's common to name a join entity EntityName1EntityName2 . For example, the Instructor-to-Courses join table using

this pattern is CourseInstructor . However, we recommend using a name that describes the relationship.

Data models start out simple and grow. No-payload joins (PJTs) frequently evolve to include payload. By starting

with a descriptive entity name, the name doesn't need to change when the join table changes. Ideally, the join entity

would have its own natural (possibly single word) name in the business domain. For example, Books and

Customers could be linked with a join entity called Ratings. For the Instructor-to-Courses many-to-many

relationship, CourseAssignment is preferred over CourseInstructor .

Update the DB context

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Models
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollment { get; set; }
 public DbSet<Student> Student { get; set; }
 public DbSet<Department> Departments { get; set; }
 public DbSet<Instructor> Instructors { get; set; }
 public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
 public DbSet<CourseAssignment> CourseAssignments { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 modelBuilder.Entity<Department>().ToTable("Department");
 modelBuilder.Entity<Instructor>().ToTable("Instructor");
 modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
 modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");

 modelBuilder.Entity<CourseAssignment>()
 .HasKey(c => new { c.CourseID, c.InstructorID });
 }
 }
}

Fluent API alternative to attributes

FKs are not nullable. The two FKs in CourseAssignment (InstructorID and CourseID) together uniquely identify

each row of the CourseAssignment table. CourseAssignment doesn't require a dedicated PK. The InstructorID and

CourseID properties function as a composite PK. The only way to specify composite PKs to EF Core is with the

fluent API. The next section shows how to configure the composite PK.

The composite key ensures:

Multiple rows are allowed for one course.

Multiple rows are allowed for one instructor.

Multiple rows for the same instructor and course isn't allowed.

The Enrollment join entity defines its own PK, so duplicates of this sort are possible. To prevent such duplicates:

Add a unique index on the FK fields, or

Configure Enrollment with a primary composite key similar to CourseAssignment . For more information, see

Indexes.

Add the following highlighted code to Data/SchoolContext.cs:

The preceding code adds the new entities and configures the CourseAssignment entity's composite PK.

The OnModelCreating method in the preceding code uses the fluent API to configure EF Core behavior. The API is

https://docs.microsoft.com/en-us/ef/core/modeling/indexes

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Blog>()
 .Property(b => b.Url)
 .IsRequired();
}

Entity Diagram Showing Relationships

called "fluent" because it's often used by stringing a series of method calls together into a single statement. The

following code is an example of the fluent API:

In this tutorial, the fluent API is used only for DB mapping that can't be done with attributes. However, the fluent API

can specify most of the formatting, validation, and mapping rules that can be done with attributes.

Some attributes such as MinimumLength can't be applied with the fluent API. MinimumLength doesn't change the

schema, it only applies a minimum length validation rule.

Some developers prefer to use the fluent API exclusively so that they can keep their entity classes "clean." Attributes

and the fluent API can be mixed. There are some configurations that can only be done with the fluent API (specifying

a composite PK). There are some configurations that can only be done with attributes (MinimumLength). The

recommended practice for using fluent API or attributes:

Choose one of these two approaches.

Use the chosen approach consistently as much as possible.

Some of the attributes used in the this tutorial are used for :

Validation only (for example, MinimumLength).

EF Core configuration only (for example, HasKey).

Validation and EF Core configuration (for example, [StringLength(50)]).

For more information about attributes vs. fluent API, see Methods of configuration.

The following illustration shows the diagram that EF Power Tools create for the completed School model.

https://docs.microsoft.com/en-us/ef/core/modeling/#use-fluent-api-to-configure-a-model
https://docs.microsoft.com/en-us/ef/core/modeling/

Seed the DB with Test Data

using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 //context.Database.EnsureCreated();

The preceding diagram shows:

Several one-to-many relationship lines (1 to *).

The one-to-zero-or-one relationship line (1 to 0..1) between the Instructor and OfficeAssignment entities.

The zero-or-one-to-many relationship line (0..1 to *) between the Instructor and Department entities.

Update the code in Data/DbInitializer.cs:

 // Look for any students.
 if (context.Student.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student { FirstMidName = "Carson", LastName = "Alexander",
 EnrollmentDate = DateTime.Parse("2010-09-01") },
 new Student { FirstMidName = "Meredith", LastName = "Alonso",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Arturo", LastName = "Anand",
 EnrollmentDate = DateTime.Parse("2013-09-01") },
 new Student { FirstMidName = "Gytis", LastName = "Barzdukas",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Yan", LastName = "Li",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Peggy", LastName = "Justice",
 EnrollmentDate = DateTime.Parse("2011-09-01") },
 new Student { FirstMidName = "Laura", LastName = "Norman",
 EnrollmentDate = DateTime.Parse("2013-09-01") },
 new Student { FirstMidName = "Nino", LastName = "Olivetto",
 EnrollmentDate = DateTime.Parse("2005-09-01") }
 };

 foreach (Student s in students)
 {
 context.Student.Add(s);
 }
 context.SaveChanges();

 var instructors = new Instructor[]
 {
 new Instructor { FirstMidName = "Kim", LastName = "Abercrombie",
 HireDate = DateTime.Parse("1995-03-11") },
 new Instructor { FirstMidName = "Fadi", LastName = "Fakhouri",
 HireDate = DateTime.Parse("2002-07-06") },
 new Instructor { FirstMidName = "Roger", LastName = "Harui",
 HireDate = DateTime.Parse("1998-07-01") },
 new Instructor { FirstMidName = "Candace", LastName = "Kapoor",
 HireDate = DateTime.Parse("2001-01-15") },
 new Instructor { FirstMidName = "Roger", LastName = "Zheng",
 HireDate = DateTime.Parse("2004-02-12") }
 };

 foreach (Instructor i in instructors)
 {
 context.Instructors.Add(i);
 }
 context.SaveChanges();

 var departments = new Department[]
 {
 new Department { Name = "English", Budget = 350000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID },
 new Department { Name = "Mathematics", Budget = 100000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID },
 new Department { Name = "Engineering", Budget = 350000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID },
 new Department { Name = "Economics", Budget = 100000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID }
 };

 foreach (Department d in departments)

 foreach (Department d in departments)
 {
 context.Departments.Add(d);
 }
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course {CourseID = 1050, Title = "Chemistry", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Engineering").DepartmentID
 },
 new Course {CourseID = 4022, Title = "Microeconomics", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Economics").DepartmentID
 },
 new Course {CourseID = 4041, Title = "Macroeconomics", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Economics").DepartmentID
 },
 new Course {CourseID = 1045, Title = "Calculus", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "Mathematics").DepartmentID
 },
 new Course {CourseID = 3141, Title = "Trigonometry", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "Mathematics").DepartmentID
 },
 new Course {CourseID = 2021, Title = "Composition", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "English").DepartmentID
 },
 new Course {CourseID = 2042, Title = "Literature", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "English").DepartmentID
 },
 };

 foreach (Course c in courses)
 {
 context.Courses.Add(c);
 }
 context.SaveChanges();

 var officeAssignments = new OfficeAssignment[]
 {
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID,
 Location = "Smith 17" },
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID,
 Location = "Gowan 27" },
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID,
 Location = "Thompson 304" },
 };

 foreach (OfficeAssignment o in officeAssignments)
 {
 context.OfficeAssignments.Add(o);
 }
 context.SaveChanges();

 var courseInstructors = new CourseAssignment[]
 {
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
 },

 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Macroeconomics").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Calculus").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Trigonometry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Literature").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
 },
 };

 foreach (CourseAssignment ci in courseInstructors)
 {
 context.CourseAssignments.Add(ci);
 }
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 Grade = Grade.A
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 Grade = Grade.C
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Macroeconomics").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Calculus").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Trigonometry").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Anand").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Anand").ID,
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 Grade = Grade.B
 },

 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Barzdukas").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Li").ID,
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Justice").ID,
 CourseID = courses.Single(c => c.Title == "Literature").CourseID,
 Grade = Grade.B
 }
 };

 foreach (Enrollment e in enrollments)
 {
 var enrollmentInDataBase = context.Enrollment.Where(
 s =>
 s.Student.ID == e.StudentID &&
 s.Course.CourseID == e.CourseID).SingleOrDefault();
 if (enrollmentInDataBase == null)
 {
 context.Enrollment.Add(e);
 }
 }
 context.SaveChanges();
 }
 }
}

Add a migration

Add-Migration ComplexDataModel

An operation was scaffolded that may result in the loss of data.
Please review the migration for accuracy.
Done. To undo this action, use 'ef migrations remove'

The ALTER TABLE statement conflicted with the FOREIGN KEY constraint
"FK_dbo.Course_dbo.Department_DepartmentID". The conflict occurred in
database "ContosoUniversity", table "dbo.Department", column 'DepartmentID'.

The preceding code provides seed data for the new entities. Most of this code creates new entity objects and loads

sample data. The sample data is used for testing. See Enrollments and CourseAssignments for examples of how

many-to-many join tables can be seeded.

Build the project.

Visual Studio

Visual Studio Code

The preceding command displays a warning about possible data loss.

If the database update command is run, the following error is produced:

Apply the migration

Drop and re-create the databaseDrop and re-create the database

Drop-Database
Update-Database

Now that you have an existing database, you need to think about how to apply future changes to it. This tutorial

shows two approaches:

Drop and re-create the database

Apply the migration to the existing database. While this method is more complex and time-consuming, it's the

preferred approach for real-world, production environments. NoteNote: This is an optional section of the tutorial. You

can do the drop and re-create steps and skip this section. If you do want to follow the steps in this section, don't

do the drop and re-create steps.

The code in the updated DbInitializer adds seed data for the new entities. To force EF Core to create a new DB,

drop and update the DB:

Visual Studio

Visual Studio Code

In the Package Manager ConsolePackage Manager Console (PMC), run the following command:

Run Get-Help about_EntityFrameworkCore from the PMC to get help information.

Run the app. Running the app runs the DbInitializer.Initialize method. The DbInitializer.Initialize populates

the new DB.

Open the DB in SSOX:

If SSOX was opened previously, click the RefreshRefresh button.

Expand the TablesTables node. The created tables are displayed.

Examine the CourseAssignmentCourseAssignment table:

Right-click the CourseAssignmentCourseAssignment table and select View DataView Data.

Verify the CourseAssignmentCourseAssignment table contains data.

Apply the migration to the existing databaseApply the migration to the existing database

migrationBuilder.AddColumn<int>(
 name: "DepartmentID",
 table: "Course",
 type: "int",
 nullable: false,
 defaultValue: 0);

Fix the foreign key constraintsFix the foreign key constraints

This section is optional. These steps work only if you skipped the preceding Drop and re-create the database

section.

When migrations are run with existing data, there may be FK constraints that are not satisfied with the existing data.

With production data, steps must be taken to migrate the existing data. This section provides an example of fixing

FK constraint violations. Don't make these code changes without a backup. Don't make these code changes if you

completed the previous section and updated the database.

The {timestamp}_ComplexDataModel.cs file contains the following code:

The preceding code adds a non-nullable DepartmentID FK to the Course table. The DB from the previous tutorial

contains rows in Course , so that table cannot be updated by migrations.

To make the ComplexDataModel migration work with existing data:

Change the code to give the new column (DepartmentID) a default value.

Create a fake department named "Temp" to act as the default department.

Update the ComplexDataModel classes Up method:

Open the {timestamp}_ComplexDataModel.cs file.

Comment out the line of code that adds the DepartmentID column to the Course table.

migrationBuilder.AlterColumn<string>(
 name: "Title",
 table: "Course",
 maxLength: 50,
 nullable: true,
 oldClrType: typeof(string),
 oldNullable: true);

//migrationBuilder.AddColumn<int>(
// name: "DepartmentID",
// table: "Course",
// nullable: false,
// defaultValue: 0);

migrationBuilder.CreateTable(
 name: "Department",
 columns: table => new
 {
 DepartmentID = table.Column<int>(type: "int", nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy", SqlServerValueGenerationStrategy.IdentityColumn),
 Budget = table.Column<decimal>(type: "money", nullable: false),
 InstructorID = table.Column<int>(type: "int", nullable: true),
 Name = table.Column<string>(type: "nvarchar(50)", maxLength: 50, nullable: true),
 StartDate = table.Column<DateTime>(type: "datetime2", nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Department", x => x.DepartmentID);
 table.ForeignKey(
 name: "FK_Department_Instructor_InstructorID",
 column: x => x.InstructorID,
 principalTable: "Instructor",
 principalColumn: "ID",
 onDelete: ReferentialAction.Restrict);
 });

 migrationBuilder.Sql("INSERT INTO dbo.Department (Name, Budget, StartDate) VALUES ('Temp', 0.00, GETDATE())");
// Default value for FK points to department created above, with
// defaultValue changed to 1 in following AddColumn statement.

migrationBuilder.AddColumn<int>(
 name: "DepartmentID",
 table: "Course",
 nullable: false,
 defaultValue: 1);

Additional resources

Add the following highlighted code. The new code goes after the .CreateTable(name: "Department" block:

With the preceding changes, existing Course rows will be related to the "Temp" department after the

ComplexDataModel Up method runs.

A production app would:

Include code or scripts to add Department rows and related Course rows to the new Department rows.

Not use the "Temp" department or the default value for Course.DepartmentID .

The next tutorial covers related data.

YouTube version of this tutorial(Part 1)

YouTube version of this tutorial(Part 2)

https://www.youtube.com/watch?v=0n2f0ObgCoA
https://www.youtube.com/watch?v=Je0Z5K1TNmY

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 6, Razor Pages with EF Core in ASP.NET Core -
Read Related Data
9/22/2020 • 28 minutes to read • Edit Online

By Tom Dykstra, Jon P Smith, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you created

by following the tutorial.

This tutorial shows how to read and display related data. Related data is data that EF Core loads into navigation

properties.

The following illustrations show the completed pages for this tutorial:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/read-related-data.md
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

Eager, explicit, and lazy loading
There are several ways that EF Core can load related data into the navigation properties of an entity:

Eager loading. Eager loading is when a query for one type of entity also loads related entities. When an entity

is read, its related data is retrieved. This typically results in a single join query that retrieves all of the data

that's needed. EF Core will issue multiple queries for some types of eager loading. Issuing multiple queries

can be more efficient than a giant single query. Eager loading is specified with the Include and ThenInclude

methods.

Eager loading sends multiple queries when a collection navigation is included:

One query for the main query

One query for each collection "edge" in the load tree.

Separate queries with Load : The data can be retrieved in separate queries, and EF Core "fixes up" the

navigation properties. "Fixes up" means that EF Core automatically populates the navigation properties.

https://docs.microsoft.com/en-us/ef/core/querying/related-data#eager-loading

Create Course pages

Separate queries with Load is more like explicit loading than eager loading.

Note:Note: EF Core automatically fixes up navigation properties to any other entities that were previously loaded

into the context instance. Even if the data for a navigation property is not explicitly included, the property

may still be populated if some or all of the related entities were previously loaded.

Explicit loading. When the entity is first read, related data isn't retrieved. Code must be written to retrieve the

related data when it's needed. Explicit loading with separate queries results in multiple queries sent to the

database. With explicit loading, the code specifies the navigation properties to be loaded. Use the Load

method to do explicit loading. For example:

Lazy loading. When the entity is first read, related data isn't retrieved. The first time a navigation property is

accessed, the data required for that navigation property is automatically retrieved. A query is sent to the

database each time a navigation property is accessed for the first time. Lazy loading can hurt performance,

for example when developers use N+1 patterns, loading a parent and enumerating through children.

The Course entity includes a navigation property that contains the related Department entity.

https://docs.microsoft.com/en-us/ef/core/querying/related-data#explicit-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading

Scaffold Course pagesScaffold Course pages

Display the department nameDisplay the department name

To display the name of the assigned department for a course:

Load the related Department entity into the Course.Department navigation property.

Get the name from the Department entity's Name property.

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold Student pages with the following exceptions:

Create a Pages/Courses folder.

Use Course for the model class.

Use the existing context class instead of creating a new one.

Open Pages/Courses/Index.cshtml.cs and examine the OnGetAsync method. The scaffolding engine specified

eager loading for the Department navigation property. The Include method specifies eager loading.

Run the app and select the CoursesCourses link. The department column displays the DepartmentID , which isn't

useful.

Update Pages/Courses/Index.cshtml.cs with the following code:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
 public class IndexModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public IndexModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public IList<Course> Courses { get; set; }

 public async Task OnGetAsync()
 {
 Courses = await _context.Courses
 .Include(c => c.Department)
 .AsNoTracking()
 .ToListAsync();
 }
 }
}

The preceding code changes the Course property to Courses and adds AsNoTracking . AsNoTracking improves

performance because the entities returned are not tracked. The entities don't need to be tracked because they're not

updated in the current context.

Update Pages/Courses/Index.cshtml with the following code.

@page
@model ContosoUniversity.Pages.Courses.IndexModel

@{
 ViewData["Title"] = "Courses";
}

<h1>Courses</h1>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Courses[0].CourseID)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Courses[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Courses[0].Credits)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Courses[0].Department)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Courses)
{
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.CourseID)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Credits)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Department.Name)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.CourseID">Edit |
 <a asp-page="./Details" asp-route-id="@item.CourseID">Details |
 <a asp-page="./Delete" asp-route-id="@item.CourseID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

The following changes have been made to the scaffolded code:

Changed the Course property name to Courses .

Added a NumberNumber column that shows the CourseID property value. By default, primary keys aren't

scaffolded because normally they're meaningless to end users. However, in this case the primary key is

meaningful.

Changed the Depar tmentDepar tment column to display the department name. The code displays the Name property of

Loading related data with SelectLoading related data with Select

public IList<CourseViewModel> CourseVM { get; set; }

public async Task OnGetAsync()
{
 CourseVM = await _context.Courses
 .Select(p => new CourseViewModel
 {
 CourseID = p.CourseID,
 Title = p.Title,
 Credits = p.Credits,
 DepartmentName = p.Department.Name
 }).ToListAsync();
}

public class CourseViewModel
{
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }
 public string DepartmentName { get; set; }
}

@Html.DisplayFor(modelItem => item.Department.Name)

the Department entity that's loaded into the Department navigation property:

Run the app and select the CoursesCourses tab to see the list with department names.

The OnGetAsync method loads related data with the Include method. The Select method is an alternative that

loads only the related data needed. For single items, like the Department.Name it uses a SQL INNER JOIN. For

collections, it uses another database access, but so does the Include operator on collections.

The following code loads related data with the Select method:

The preceding code doesn't return any entity types, therefore no tracking is done. For more information about the

EF tracking, see Tracking vs. No-Tracking Queries.

The CourseViewModel :

See IndexSelect.cshtml and IndexSelect.cshtml.cs for a complete example.

https://docs.microsoft.com/en-us/ef/core/querying/tracking
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu30snapshots/6-related/Pages/Courses/IndexSelect.cshtml
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu30snapshots/6-related/Pages/Courses/IndexSelect.cshtml.cs

Create Instructor pages

Create a view modelCreate a view model

This section scaffolds Instructor pages and adds related Courses and Enrollments to the Instructors Index page.

This page reads and displays related data in the following ways:

The list of instructors displays related data from the OfficeAssignment entity (Office in the preceding image). The

Instructor and OfficeAssignment entities are in a one-to-zero-or-one relationship. Eager loading is used for the

OfficeAssignment entities. Eager loading is typically more efficient when the related data needs to be displayed.

In this case, office assignments for the instructors are displayed.

When the user selects an instructor, related Course entities are displayed. The Instructor and Course entities

are in a many-to-many relationship. Eager loading is used for the Course entities and their related Department

entities. In this case, separate queries might be more efficient because only courses for the selected instructor

are needed. This example shows how to use eager loading for navigation properties in entities that are in

navigation properties.

When the user selects a course, related data from the Enrollments entity is displayed. In the preceding image,

student name and grade are displayed. The Course and Enrollment entities are in a one-to-many relationship.

The instructors page shows data from three different tables. A view model is needed that includes three properties

representing the three tables.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class InstructorIndexData
 {
 public IEnumerable<Instructor> Instructors { get; set; }
 public IEnumerable<Course> Courses { get; set; }
 public IEnumerable<Enrollment> Enrollments { get; set; }
 }
}

Scaffold Instructor pagesScaffold Instructor pages

Create SchoolViewModels/InstructorIndexData.cs with the following code:

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold the student pages with the following exceptions:

Create a Pages/Instructors folder.

Use Instructor for the model class.

Use the existing context class instead of creating a new one.

To see what the scaffolded page looks like before you update it, run the app and navigate to the Instructors page.

Update Pages/Instructors/Index.cshtml.cs with the following code:

using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels; // Add VM
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class IndexModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public IndexModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public InstructorIndexData InstructorData { get; set; }
 public int InstructorID { get; set; }
 public int CourseID { get; set; }

 public async Task OnGetAsync(int? id, int? courseID)
 {
 InstructorData = new InstructorIndexData();
 InstructorData.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = InstructorData.Instructors
 .Where(i => i.ID == id.Value).Single();
 InstructorData.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 var selectedCourse = InstructorData.Courses
 .Where(x => x.CourseID == courseID).Single();
 InstructorData.Enrollments = selectedCourse.Enrollments;
 }
 }
 }
}

The OnGetAsync method accepts optional route data for the ID of the selected instructor.

Examine the query in the Pages/Instructors/Index.cshtml.cs file:

InstructorData.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

if (id != null)
{
 InstructorID = id.Value;
 Instructor instructor = InstructorData.Instructors
 .Where(i => i.ID == id.Value).Single();
 InstructorData.Courses = instructor.CourseAssignments.Select(s => s.Course);
}

The code specifies eager loading for the following navigation properties:

Instructor.OfficeAssignment

Instructor.CourseAssignments

CourseAssignments.Course

Course.Department

Course.Enrollments

Enrollment.Student

Notice the repetition of Include and ThenInclude methods for CourseAssignments and Course . This repetition is

necessary to specify eager loading for two navigation properties of the Course entity.

The following code executes when an instructor is selected (id != null).

The selected instructor is retrieved from the list of instructors in the view model. The view model's Courses

property is loaded with the Course entities from that instructor's CourseAssignments navigation property.

The Where method returns a collection. But in this case, the filter will select a single entity, so the Single method is

called to convert the collection into a single Instructor entity. The Instructor entity provides access to the

CourseAssignments property. CourseAssignments provides access to the related Course entities.

if (courseID != null)
{
 CourseID = courseID.Value;
 var selectedCourse = InstructorData.Courses
 .Where(x => x.CourseID == courseID).Single();
 InstructorData.Enrollments = selectedCourse.Enrollments;
}

Update the instructors Index pageUpdate the instructors Index page

@page "{id:int?}"
@model ContosoUniversity.Pages.Instructors.IndexModel

@{
 ViewData["Title"] = "Instructors";
}

<h2>Instructors</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>Last Name</th>
 <th>First Name</th>

The Single method is used on a collection when the collection has only one item. The Single method throws an

exception if the collection is empty or if there's more than one item. An alternative is SingleOrDefault , which

returns a default value (null in this case) if the collection is empty.

The following code populates the view model's Enrollments property when a course is selected:

Update Pages/Instructors/Index.cshtml with the following code.

 <th>Hire Date</th>
 <th>Office</th>
 <th>Courses</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.InstructorData.Instructors)
 {
 string selectedRow = "";
 if (item.ID == Model.InstructorID)
 {
 selectedRow = "table-success";
 }
 <tr class="@selectedRow">
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.HireDate)
 </td>
 <td>
 @if (item.OfficeAssignment != null)
 {
 @item.OfficeAssignment.Location
 }
 </td>
 <td>
 @{
 foreach (var course in item.CourseAssignments)
 {
 @course.Course.CourseID @: @course.Course.Title

 }
 }
 </td>
 <td>
 <a asp-page="./Index" asp-route-id="@item.ID">Select |
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

@if (Model.InstructorData.Courses != null)
{
 <h3>Courses Taught by Selected Instructor</h3>
 <table class="table">
 <tr>
 <th></th>
 <th>Number</th>
 <th>Title</th>
 <th>Department</th>
 </tr>

 @foreach (var item in Model.InstructorData.Courses)
 {
 string selectedRow = "";
 if (item.CourseID == Model.CourseID)
 {
 selectedRow = "table-success";
 }
 <tr class="@selectedRow">
 <td>

 <td>
 <a asp-page="./Index" asp-route-courseID="@item.CourseID">Select
 </td>
 <td>
 @item.CourseID
 </td>
 <td>
 @item.Title
 </td>
 <td>
 @item.Department.Name
 </td>
 </tr>
 }

 </table>
}

@if (Model.InstructorData.Enrollments != null)
{
 <h3>
 Students Enrolled in Selected Course
 </h3>
 <table class="table">
 <tr>
 <th>Name</th>
 <th>Grade</th>
 </tr>
 @foreach (var item in Model.InstructorData.Enrollments)
 {
 <tr>
 <td>
 @item.Student.FullName
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Grade)
 </td>
 </tr>
 }
 </table>
}

The preceding code makes the following changes:

@if (item.OfficeAssignment != null)
{
 @item.OfficeAssignment.Location
}

Updates the page directive from @page to @page "{id:int?}" . "{id:int?}" is a route template. The route

template changes integer query strings in the URL to route data. For example, clicking on the SelectSelect link for

an instructor with only the @page directive produces a URL like the following:

https://localhost:5001/Instructors?id=2

When the page directive is @page "{id:int?}" , the URL is:

https://localhost:5001/Instructors/2

Adds an OfficeOffice column that displays item.OfficeAssignment.Location only if item.OfficeAssignment isn't

null. Because this is a one-to-zero-or-one relationship, there might not be a related OfficeAssignment entity.

Adds a CoursesCourses column that displays courses taught by each instructor. See Explicit line transition for more

about this razor syntax.

string selectedRow = "";
if (item.CourseID == Model.CourseID)
{
 selectedRow = "success";
}
<tr class="@selectedRow">

<a asp-action="Index" asp-route-id="@item.ID">Select |

Adds code that dynamically adds class="success" to the tr element of the selected instructor and course.

This sets a background color for the selected row using a Bootstrap class.

Adds a new hyperlink labeled SelectSelect. This link sends the selected instructor's ID to the Index method and

sets a background color.

Adds a table of courses for the selected Instructor.

Adds a table of student enrollments for the selected course.

Run the app and select the InstructorsInstructors tab. The page displays the Location (office) from the related

OfficeAssignment entity. If OfficeAssignment is null, an empty table cell is displayed.

Click on the SelectSelect link for an instructor. The row style changes and courses assigned to that instructor are

displayed.

Select a course to see the list of enrolled students and their grades.

Using Single
The Single method can pass in the Where condition instead of calling the Where method separately:

public async Task OnGetAsync(int? id, int? courseID)
{
 InstructorData = new InstructorIndexData();

 InstructorData.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = InstructorData.Instructors.Single(
 i => i.ID == id.Value);
 InstructorData.Courses = instructor.CourseAssignments.Select(
 s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 InstructorData.Enrollments = InstructorData.Courses.Single(
 x => x.CourseID == courseID).Enrollments;
 }
}

Explicit loading

InstructorData.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

Use of Single with a Where condition is a matter of personal preference. It provides no benefits over using the

Where method.

The current code specifies eager loading for Enrollments and Students :

Suppose users rarely want to see enrollments in a course. In that case, an optimization would be to only load the

enrollment data if it's requested. In this section, the OnGetAsync is updated to use explicit loading of Enrollments

and Students .

Update Pages/Instructors/Index.cshtml.cs with the following code.

using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels; // Add VM
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class IndexModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public IndexModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public InstructorIndexData InstructorData { get; set; }
 public int InstructorID { get; set; }
 public int CourseID { get; set; }

 public async Task OnGetAsync(int? id, int? courseID)
 {
 InstructorData = new InstructorIndexData();
 InstructorData.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 //.Include(i => i.CourseAssignments)
 // .ThenInclude(i => i.Course)
 // .ThenInclude(i => i.Enrollments)
 // .ThenInclude(i => i.Student)
 //.AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = InstructorData.Instructors
 .Where(i => i.ID == id.Value).Single();
 InstructorData.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 var selectedCourse = InstructorData.Courses
 .Where(x => x.CourseID == courseID).Single();
 await _context.Entry(selectedCourse).Collection(x => x.Enrollments).LoadAsync();
 foreach (Enrollment enrollment in selectedCourse.Enrollments)
 {
 await _context.Entry(enrollment).Reference(x => x.Student).LoadAsync();
 }
 InstructorData.Enrollments = selectedCourse.Enrollments;
 }
 }
 }
}

The preceding code drops the ThenInclude method calls for enrollment and student data. If a course is selected, the

explicit loading code retrieves:

The Enrollment entities for the selected course.

Next steps

The Student entities for each Enrollment .

Notice that the preceding code comments out .AsNoTracking() . Navigation properties can only be explicitly loaded

for tracked entities.

Test the app. From a user's perspective, the app behaves identically to the previous version.

The next tutorial shows how to update related data.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

In this tutorial, related data is read and displayed. Related data is data that EF Core loads into navigation properties.

If you run into problems you can't solve, download or view the completed app. Download instructions.

The following illustrations show the completed pages for this tutorial:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

Eager, explicit, and lazy Loading of related data
There are several ways that EF Core can load related data into the navigation properties of an entity:

Eager loading. Eager loading is when a query for one type of entity also loads related entities. When the

entity is read, its related data is retrieved. This typically results in a single join query that retrieves all of the

data that's needed. EF Core will issue multiple queries for some types of eager loading. Issuing multiple

queries can be more efficient than was the case for some queries in EF6 where there was a single query.

https://docs.microsoft.com/en-us/ef/core/querying/related-data#eager-loading

Create a Course page that displays department name

Eager loading is specified with the Include and ThenInclude methods.

Eager loading sends multiple queries when a collection navigation is included:

One query for the main query

One query for each collection "edge" in the load tree.

Separate queries with Load : The data can be retrieved in separate queries, and EF Core "fixes up" the

navigation properties. "fixes up" means that EF Core automatically populates the navigation properties.

Separate queries with Load is more like explicit loading than eager loading.

Note: EF Core automatically fixes up navigation properties to any other entities that were previously loaded

into the context instance. Even if the data for a navigation property is not explicitly included, the property

may still be populated if some or all of the related entities were previously loaded.

Explicit loading. When the entity is first read, related data isn't retrieved. Code must be written to retrieve the

related data when it's needed. Explicit loading with separate queries results in multiple queries sent to the DB.

With explicit loading, the code specifies the navigation properties to be loaded. Use the Load method to do

explicit loading. For example:

Lazy loading. Lazy loading was added to EF Core in version 2.1. When the entity is first read, related data isn't

retrieved. The first time a navigation property is accessed, the data required for that navigation property is

automatically retrieved. A query is sent to the DB each time a navigation property is accessed for the first

time.

The Select operator loads only the related data needed.

The Course entity includes a navigation property that contains the Department entity. The Department entity

contains the department that the course is assigned to.

To display the name of the assigned department in a list of courses:

Get the Name property from the Department entity.

The Department entity comes from the Course.Department navigation property.

https://docs.microsoft.com/en-us/ef/core/querying/related-data#explicit-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading

Scaffold the Course modelScaffold the Course model

public async Task OnGetAsync()
{
 Course = await _context.Courses
 .Include(c => c.Department)
 .AsNoTracking()
 .ToListAsync();
}

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold the student model and use Course for the model class.

The preceding command scaffolds the Course model. Open the project in Visual Studio.

Open Pages/Courses/Index.cshtml.cs and examine the OnGetAsync method. The scaffolding engine specified eager

loading for the Department navigation property. The Include method specifies eager loading.

Run the app and select the CoursesCourses link. The department column displays the DepartmentID , which isn't useful.

Update the OnGetAsync method with the following code:

The preceding code adds AsNoTracking . AsNoTracking improves performance because the entities returned are not

tracked. The entities are not tracked because they're not updated in the current context.

Update Pages/Courses/Index.cshtml with the following highlighted markup:

@page
@model ContosoUniversity.Pages.Courses.IndexModel
@{
 ViewData["Title"] = "Courses";
}

<h2>Courses</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Course[0].CourseID)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Course[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Course[0].Credits)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Course[0].Department)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Course)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.CourseID)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Credits)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Department.Name)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.CourseID">Edit |
 <a asp-page="./Details" asp-route-id="@item.CourseID">Details |
 <a asp-page="./Delete" asp-route-id="@item.CourseID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

The following changes have been made to the scaffolded code:

Changed the heading from Index to Courses.

Added a NumberNumber column that shows the CourseID property value. By default, primary keys aren't

scaffolded because normally they're meaningless to end users. However, in this case the primary key is

meaningful.

Changed the Depar tmentDepar tment column to display the department name. The code displays the Name property of

the Department entity that's loaded into the Department navigation property:

Loading related data with SelectLoading related data with Select

public async Task OnGetAsync()
{
 Course = await _context.Courses
 .Include(c => c.Department)
 .AsNoTracking()
 .ToListAsync();
}

public IList<CourseViewModel> CourseVM { get; set; }

public async Task OnGetAsync()
{
 CourseVM = await _context.Courses
 .Select(p => new CourseViewModel
 {
 CourseID = p.CourseID,
 Title = p.Title,
 Credits = p.Credits,
 DepartmentName = p.Department.Name
 }).ToListAsync();
}

@Html.DisplayFor(modelItem => item.Department.Name)

Run the app and select the CoursesCourses tab to see the list with department names.

The OnGetAsync method loads related data with the Include method:

The Select operator loads only the related data needed. For single items, like the Department.Name it uses a SQL

INNER JOIN. For collections, it uses another database access, but so does the Include operator on collections.

The following code loads related data with the Select method:

The CourseViewModel :

public class CourseViewModel
{
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }
 public string DepartmentName { get; set; }
}

Create an Instructors page that shows Courses and Enrollments

See IndexSelect.cshtml and IndexSelect.cshtml.cs for a complete example.

In this section, the Instructors page is created.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu/Pages/Courses/IndexSelect.cshtml
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu/Pages/Courses/IndexSelect.cshtml.cs

This page reads and displays related data in the following ways:

The list of instructors displays related data from the OfficeAssignment entity (Office in the preceding image). The

Instructor and OfficeAssignment entities are in a one-to-zero-or-one relationship. Eager loading is used for the

OfficeAssignment entities. Eager loading is typically more efficient when the related data needs to be displayed.

In this case, office assignments for the instructors are displayed.

When the user selects an instructor (Harui in the preceding image), related Course entities are displayed. The

Create a view model for the Instructor Index viewCreate a view model for the Instructor Index view

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class InstructorIndexData
 {
 public IEnumerable<Instructor> Instructors { get; set; }
 public IEnumerable<Course> Courses { get; set; }
 public IEnumerable<Enrollment> Enrollments { get; set; }
 }
}

Scaffold the Instructor modelScaffold the Instructor model

Instructor and Course entities are in a many-to-many relationship. Eager loading is used for the Course

entities and their related Department entities. In this case, separate queries might be more efficient because only

courses for the selected instructor are needed. This example shows how to use eager loading for navigation

properties in entities that are in navigation properties.

When the user selects a course (Chemistry in the preceding image), related data from the Enrollments entity is

displayed. In the preceding image, student name and grade are displayed. The Course and Enrollment entities

are in a one-to-many relationship.

The instructors page shows data from three different tables. A view model is created that includes the three entities

representing the three tables.

In the SchoolViewModels folder, create InstructorIndexData.cs with the following code:

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold the student model and use Instructor for the model class.

The preceding command scaffolds the Instructor model. Run the app and navigate to the instructors page.

Replace Pages/Instructors/Index.cshtml.cs with the following code:

using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels; // Add VM
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class IndexModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public IndexModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public InstructorIndexData Instructor { get; set; }
 public int InstructorID { get; set; }

 public async Task OnGetAsync(int? id)
 {
 Instructor = new InstructorIndexData();
 Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 }
 }
 }
}

Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

Update the instructors Index pageUpdate the instructors Index page

The OnGetAsync method accepts optional route data for the ID of the selected instructor.

Examine the query in the Pages/Instructors/Index.cshtml.cs file:

The query has two includes:

OfficeAssignment : Displayed in the instructors view.

CourseAssignments : Which brings in the courses taught.

Update Pages/Instructors/Index.cshtml with the following markup:

@page "{id:int?}"
@model ContosoUniversity.Pages.Instructors.IndexModel

@{
 ViewData["Title"] = "Instructors";
}

<h2>Instructors</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>Last Name</th>
 <th>First Name</th>
 <th>Hire Date</th>
 <th>Office</th>
 <th>Courses</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Instructor.Instructors)
 {
 string selectedRow = "";
 if (item.ID == Model.InstructorID)
 {
 selectedRow = "success";
 }
 <tr class="@selectedRow">
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.HireDate)
 </td>
 <td>
 @if (item.OfficeAssignment != null)
 {
 @item.OfficeAssignment.Location
 }
 </td>
 <td>
 @{
 foreach (var course in item.CourseAssignments)
 {
 @course.Course.CourseID @: @course.Course.Title

 }
 }
 </td>
 <td>
 <a asp-page="./Index" asp-route-id="@item.ID">Select |
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Add courses taught by selected instructorAdd courses taught by selected instructor

The preceding markup makes the following changes:

@if (item.OfficeAssignment != null)
{
 @item.OfficeAssignment.Location
}

string selectedRow = "";
if (item.CourseID == Model.CourseID)
{
 selectedRow = "success";
}
<tr class="@selectedRow">

<a asp-action="Index" asp-route-id="@item.ID">Select |

Updates the page directive from @page to @page "{id:int?}" . "{id:int?}" is a route template. The route

template changes integer query strings in the URL to route data. For example, clicking on the SelectSelect link for

an instructor with only the @page directive produces a URL like the following:

http://localhost:1234/Instructors?id=2

When the page directive is @page "{id:int?}" , the previous URL is:

http://localhost:1234/Instructors/2

Page title is InstructorsInstructors .

Added an OfficeOffice column that displays item.OfficeAssignment.Location only if item.OfficeAssignment isn't

null. Because this is a one-to-zero-or-one relationship, there might not be a related OfficeAssignment entity.

Added a CoursesCourses column that displays courses taught by each instructor. See Explicit line transition for more

about this razor syntax.

Added code that dynamically adds class="success" to the tr element of the selected instructor. This sets a

background color for the selected row using a Bootstrap class.

Added a new hyperlink labeled SelectSelect. This link sends the selected instructor's ID to the Index method and

sets a background color.

Run the app and select the InstructorsInstructors tab. The page displays the Location (office) from the related

OfficeAssignment entity. If OfficeAssignment` is null, an empty table cell is displayed.

Click on the SelectSelect link. The row style changes.

Update the OnGetAsync method in Pages/Instructors/Index.cshtml.cs with the following code:

public async Task OnGetAsync(int? id, int? courseID)
{
 Instructor = new InstructorIndexData();
 Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = Instructor.Instructors.Where(
 i => i.ID == id.Value).Single();
 Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 Instructor.Enrollments = Instructor.Courses.Where(
 x => x.CourseID == courseID).Single().Enrollments;
 }
}

Add public int CourseID { get; set; }

public class IndexModel : PageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public IndexModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public InstructorIndexData Instructor { get; set; }
 public int InstructorID { get; set; }
 public int CourseID { get; set; }

 public async Task OnGetAsync(int? id, int? courseID)
 {
 Instructor = new InstructorIndexData();
 Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = Instructor.Instructors.Where(
 i => i.ID == id.Value).Single();
 Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 Instructor.Enrollments = Instructor.Courses.Where(
 x => x.CourseID == courseID).Single().Enrollments;
 }
 }

Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

Examine the updated query:

The preceding query adds the Department entities.

The following code executes when an instructor is selected (id != null). The selected instructor is retrieved from

the list of instructors in the view model. The view model's Courses property is loaded with the Course entities

from that instructor's CourseAssignments navigation property.

if (id != null)
{
 InstructorID = id.Value;
 Instructor instructor = Instructor.Instructors.Where(
 i => i.ID == id.Value).Single();
 Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
}

if (courseID != null)
{
 CourseID = courseID.Value;
 Instructor.Enrollments = Instructor.Courses.Where(
 x => x.CourseID == courseID).Single().Enrollments;
}

The Where method returns a collection. In the preceding Where method, only a single Instructor entity is

returned. The Single method converts the collection into a single Instructor entity. The Instructor entity

provides access to the CourseAssignments property. CourseAssignments provides access to the related Course

entities.

The Single method is used on a collection when the collection has only one item. The Single method throws an

exception if the collection is empty or if there's more than one item. An alternative is SingleOrDefault , which

returns a default value (null in this case) if the collection is empty. Using SingleOrDefault on an empty collection:

Results in an exception (from trying to find a Courses property on a null reference).

The exception message would less clearly indicate the cause of the problem.

The following code populates the view model's Enrollments property when a course is selected:

Add the following markup to the end of the Pages/Instructors/Index.cshtml Razor Page:

 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

@if (Model.Instructor.Courses != null)
{
 <h3>Courses Taught by Selected Instructor</h3>
 <table class="table">
 <tr>
 <th></th>
 <th>Number</th>
 <th>Title</th>
 <th>Department</th>
 </tr>

 @foreach (var item in Model.Instructor.Courses)
 {
 string selectedRow = "";
 if (item.CourseID == Model.CourseID)
 {
 selectedRow = "success";
 }
 <tr class="@selectedRow">
 <td>
 <a asp-page="./Index" asp-route-courseID="@item.CourseID">Select
 </td>
 <td>
 @item.CourseID
 </td>
 <td>
 @item.Title
 </td>
 <td>
 @item.Department.Name
 </td>
 </tr>
 }

 </table>
}

Show student dataShow student data

The preceding markup displays a list of courses related to an instructor when an instructor is selected.

Test the app. Click on a SelectSelect link on the instructors page.

In this section, the app is updated to show the student data for a selected course.

Update the query in the OnGetAsync method in Pages/Instructors/Index.cshtml.cs with the following code:

Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

@if (Model.Instructor.Enrollments != null)
{
 <h3>
 Students Enrolled in Selected Course
 </h3>
 <table class="table">
 <tr>
 <th>Name</th>
 <th>Grade</th>
 </tr>
 @foreach (var item in Model.Instructor.Enrollments)
 {
 <tr>
 <td>
 @item.Student.FullName
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Grade)
 </td>
 </tr>
 }
 </table>
}

Update Pages/Instructors/Index.cshtml. Add the following markup to the end of the file:

The preceding markup displays a list of the students who are enrolled in the selected course.

Refresh the page and select an instructor. Select a course to see the list of enrolled students and their grades.

Using Single
The Single method can pass in the Where condition instead of calling the Where method separately:

public async Task OnGetAsync(int? id, int? courseID)
{
 Instructor = new InstructorIndexData();

 Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = Instructor.Instructors.Single(
 i => i.ID == id.Value);
 Instructor.Courses = instructor.CourseAssignments.Select(
 s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 Instructor.Enrollments = Instructor.Courses.Single(
 x => x.CourseID == courseID).Enrollments;
 }
}

Explicit loading

Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

The preceding Single approach provides no benefits over using Where . Some developers prefer the Single

approach style.

The current code specifies eager loading for Enrollments and Students :

Suppose users rarely want to see enrollments in a course. In that case, an optimization would be to only load the

enrollment data if it's requested. In this section, the OnGetAsync is updated to use explicit loading of Enrollments

and Students .

Update the OnGetAsync with the following code:

public async Task OnGetAsync(int? id, int? courseID)
{
 Instructor = new InstructorIndexData();
 Instructor.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 //.Include(i => i.CourseAssignments)
 // .ThenInclude(i => i.Course)
 // .ThenInclude(i => i.Enrollments)
 // .ThenInclude(i => i.Student)
 // .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 InstructorID = id.Value;
 Instructor instructor = Instructor.Instructors.Where(
 i => i.ID == id.Value).Single();
 Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 CourseID = courseID.Value;
 var selectedCourse = Instructor.Courses.Where(x => x.CourseID == courseID).Single();
 await _context.Entry(selectedCourse).Collection(x => x.Enrollments).LoadAsync();
 foreach (Enrollment enrollment in selectedCourse.Enrollments)
 {
 await _context.Entry(enrollment).Reference(x => x.Student).LoadAsync();
 }
 Instructor.Enrollments = selectedCourse.Enrollments;
 }
}

Additional resources

The preceding code drops the ThenInclude method calls for enrollment and student data. If a course is selected, the

highlighted code retrieves:

The Enrollment entities for the selected course.

The Student entities for each Enrollment .

Notice the preceding code comments out .AsNoTracking() . Navigation properties can only be explicitly loaded for

tracked entities.

Test the app. From a users perspective, the app behaves identically to the previous version.

The next tutorial shows how to update related data.

YouTube version of this tutorial (part1)

YouTube version of this tutorial (part2)

 P R E V I O U SP R E V I O U S N E X TN E X T

https://www.youtube.com/watch?v=PzKimUDmrvE
https://www.youtube.com/watch?v=xvDDrIHv5ko

Part 7, Razor Pages with EF Core in ASP.NET Core -
Update Related Data
9/22/2020 • 32 minutes to read • Edit Online

By Tom Dykstra, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you created

by following the tutorial.

This tutorial shows how to update related data. The following illustrations show some of the completed pages.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/update-related-data.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

Update the Course Create and Edit pages

Create a base class for Course Create and EditCreate a base class for Course Create and Edit

The scaffolded code for the Course Create and Edit pages has a Department drop-down list that shows Department

ID (an integer). The drop-down should show the Department name, so both of these pages need a list of

department names. To provide that list, use a base class for the Create and Edit pages.

Create a Pages/Courses/DepartmentNamePageModel.cs file with the following code:

using ContosoUniversity.Data;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace ContosoUniversity.Pages.Courses
{
 public class DepartmentNamePageModel : PageModel
 {
 public SelectList DepartmentNameSL { get; set; }

 public void PopulateDepartmentsDropDownList(SchoolContext _context,
 object selectedDepartment = null)
 {
 var departmentsQuery = from d in _context.Departments
 orderby d.Name // Sort by name.
 select d;

 DepartmentNameSL = new SelectList(departmentsQuery.AsNoTracking(),
 "DepartmentID", "Name", selectedDepartment);
 }
 }
}

Update the Course Create page modelUpdate the Course Create page model

The preceding code creates a SelectList to contain the list of department names. If selectedDepartment is specified,

that department is selected in the SelectList .

The Create and Edit page model classes will derive from DepartmentNamePageModel .

A Course is assigned to a Department. The base class for the Create and Edit pages provides a SelectList for

selecting the department. The drop-down list that uses the SelectList sets the Course.DepartmentID foreign key

(FK) property. EF Core uses the Course.DepartmentID FK to load the Department navigation property.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.selectlist

Update Pages/Courses/Create.cshtml.cs with the following code:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
 public class CreateModel : DepartmentNamePageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public CreateModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 PopulateDepartmentsDropDownList(_context);
 return Page();
 }

 [BindProperty]
 public Course Course { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 var emptyCourse = new Course();

 if (await TryUpdateModelAsync<Course>(
 emptyCourse,
 "course", // Prefix for form value.
 s => s.CourseID, s => s.DepartmentID, s => s.Title, s => s.Credits))
 {
 _context.Courses.Add(emptyCourse);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 // Select DepartmentID if TryUpdateModelAsync fails.
 PopulateDepartmentsDropDownList(_context, emptyCourse.DepartmentID);
 return Page();
 }
 }
}

Update the Course Create Razor pageUpdate the Course Create Razor page

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

The preceding code:

Derives from DepartmentNamePageModel .

Uses TryUpdateModelAsync to prevent overposting.

Removes ViewData["DepartmentID"] . DepartmentNameSL from the base class is a strongly typed model and will be

used by the Razor page. Strongly typed models are preferred over weakly typed. For more information, see

Weakly typed data (ViewData and ViewBag).

Update Pages/Courses/Create.cshtml with the following code:

https://github.com/MicrosoftDocs/feedback/issues/2515

@page
@model ContosoUniversity.Pages.Courses.CreateModel
@{
 ViewData["Title"] = "Create Course";
}
<h2>Create</h2>
<h4>Course</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Course.CourseID" class="control-label"></label>
 <input asp-for="Course.CourseID" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Title" class="control-label"></label>
 <input asp-for="Course.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Credits" class="control-label"></label>
 <input asp-for="Course.Credits" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Department" class="control-label"></label>
 <select asp-for="Course.DepartmentID" class="form-control"
 asp-items="@Model.DepartmentNameSL">
 <option value="">-- Select Department --</option>
 </select>

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>
<div>
 <a asp-page="Index">Back to List
</div>
@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

The preceding code makes the following changes:

Changes the caption from Depar tmentIDDepar tmentID to Depar tmentDepar tment.

Replaces "ViewBag.DepartmentID" with DepartmentNameSL (from the base class).

Adds the "Select Department" option. This change renders "Select Department" in the drop-down when no

department has been selected yet, rather than the first department.

Adds a validation message when the department isn't selected.

The Razor Page uses the Select Tag Helper:

<div class="form-group">
 <label asp-for="Course.Department" class="control-label"></label>
 <select asp-for="Course.DepartmentID" class="form-control"
 asp-items="@Model.DepartmentNameSL">
 <option value="">-- Select Department --</option>
 </select>

</div>

Update the Course Edit page modelUpdate the Course Edit page model

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
 public class EditModel : DepartmentNamePageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Course Course { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .Include(c => c.Department).FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course == null)
 {
 return NotFound();
 }

 // Select current DepartmentID.
 PopulateDepartmentsDropDownList(_context, Course.DepartmentID);
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 var courseToUpdate = await _context.Courses.FindAsync(id);

 if (courseToUpdate == null)
 {
 return NotFound();
 }

Test the Create page. The Create page displays the department name rather than the department ID.

Update Pages/Courses/Edit.cshtml.cs with the following code:

 }

 if (await TryUpdateModelAsync<Course>(
 courseToUpdate,
 "course", // Prefix for form value.
 c => c.Credits, c => c.DepartmentID, c => c.Title))
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 // Select DepartmentID if TryUpdateModelAsync fails.
 PopulateDepartmentsDropDownList(_context, courseToUpdate.DepartmentID);
 return Page();
 }
 }
}

Update the Course Edit Razor pageUpdate the Course Edit Razor page

The changes are similar to those made in the Create page model. In the preceding code,

PopulateDepartmentsDropDownList passes in the department ID, which selects that department in the drop-down list.

Update Pages/Courses/Edit.cshtml with the following code:

@page
@model ContosoUniversity.Pages.Courses.EditModel

@{
 ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<h4>Course</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Course.CourseID" />
 <div class="form-group">
 <label asp-for="Course.CourseID" class="control-label"></label>
 <div>@Html.DisplayFor(model => model.Course.CourseID)</div>
 </div>
 <div class="form-group">
 <label asp-for="Course.Title" class="control-label"></label>
 <input asp-for="Course.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Credits" class="control-label"></label>
 <input asp-for="Course.Credits" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Department" class="control-label"></label>
 <select asp-for="Course.DepartmentID" class="form-control"
 asp-items="@Model.DepartmentNameSL"></select>

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="./Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Update the Course Details and Delete pages

The preceding code makes the following changes:

Displays the course ID. Generally the Primary Key (PK) of an entity isn't displayed. PKs are usually meaningless to

users. In this case, the PK is the course number.

Changes the caption for the Department drop-down from Depar tmentIDDepar tmentID to Depar tmentDepar tment.

Replaces "ViewBag.DepartmentID" with DepartmentNameSL (from the base class).

The page contains a hidden field (<input type="hidden">) for the course number. Adding a <label> tag helper with

asp-for="Course.CourseID" doesn't eliminate the need for the hidden field. <input type="hidden"> is required for

the course number to be included in the posted data when the user clicks SaveSave.

Update the Course page modelsUpdate the Course page models

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
 public class DeleteModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Course Course { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .AsNoTracking()
 .Include(c => c.Department)
 .FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses.FindAsync(id);

 if (Course != null)
 {
 _context.Courses.Remove(Course);
 await _context.SaveChangesAsync();
 }

 return RedirectToPage("./Index");
 }
 }
}

AsNoTracking can improve performance when tracking isn't required.

Update Pages/Courses/Delete.cshtml.cs with the following code to add AsNoTracking :

Make the same change in the Pages/Courses/Details.cshtml.cs file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.asnotracking#microsoft_entityframeworkcore_entityframeworkqueryableextensions_asnotracking__1_system_linq_iqueryable___0__

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
 public class DetailsModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public DetailsModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public Course Course { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .AsNoTracking()
 .Include(c => c.Department)
 .FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course == null)
 {
 return NotFound();
 }
 return Page();
 }
 }
}

Update the Course Razor pagesUpdate the Course Razor pages
Update Pages/Courses/Delete.cshtml with the following code:

@page
@model ContosoUniversity.Pages.Courses.DeleteModel

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Course</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Course.CourseID)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Course.CourseID)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Course.Title)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Course.Title)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Course.Credits)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Course.Credits)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Course.Department)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Course.Department.Name)
 </dd>
 </dl>

 <form method="post">
 <input type="hidden" asp-for="Course.CourseID" />
 <input type="submit" value="Delete" class="btn btn-danger" /> |
 <a asp-page="./Index">Back to List
 </form>
</div>

Make the same changes to the Details page.

@page
@model ContosoUniversity.Pages.Courses.DetailsModel

@{
 ViewData["Title"] = "Details";
}

<h2>Details</h2>

<div>
 <h4>Course</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Course.CourseID)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Course.CourseID)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Course.Title)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Course.Title)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Course.Credits)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Course.Credits)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Course.Department)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Course.Department.Name)
 </dd>
 </dl>
</div>
<div>
 <a asp-page="./Edit" asp-route-id="@Model.Course.CourseID">Edit |
 <a asp-page="./Index">Back to List
</div>

Test the Course pages

Update the instructor Create and Edit pages

Test the create, edit, details, and delete pages.

Instructors may teach any number of courses. The following image shows the instructor Edit page with an array of

course checkboxes.

Create a class for assigned courses dataCreate a class for assigned courses data

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class AssignedCourseData
 {
 public int CourseID { get; set; }
 public string Title { get; set; }
 public bool Assigned { get; set; }
 }
}

Create an Instructor page model base classCreate an Instructor page model base class

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels;
using Microsoft.AspNetCore.Mvc.RazorPages;
using System.Collections.Generic;

The checkboxes enable changes to courses an instructor is assigned to. A checkbox is displayed for every course in

the database. Courses that the instructor is assigned to are selected. The user can select or clear checkboxes to

change course assignments. If the number of courses were much greater, a different UI might work better. But the

method of managing a many-to-many relationship shown here wouldn't change. To create or delete relationships,

you manipulate a join entity.

Create SchoolViewModels/AssignedCourseData.cs with the following code:

The AssignedCourseData class contains data to create the check boxes for courses assigned to an instructor.

Create the Pages/Instructors/InstructorCoursesPageModel.cs base class:

using System.Linq;

namespace ContosoUniversity.Pages.Instructors
{
 public class InstructorCoursesPageModel : PageModel
 {

 public List<AssignedCourseData> AssignedCourseDataList;

 public void PopulateAssignedCourseData(SchoolContext context,
 Instructor instructor)
 {
 var allCourses = context.Courses;
 var instructorCourses = new HashSet<int>(
 instructor.CourseAssignments.Select(c => c.CourseID));
 AssignedCourseDataList = new List<AssignedCourseData>();
 foreach (var course in allCourses)
 {
 AssignedCourseDataList.Add(new AssignedCourseData
 {
 CourseID = course.CourseID,
 Title = course.Title,
 Assigned = instructorCourses.Contains(course.CourseID)
 });
 }
 }

 public void UpdateInstructorCourses(SchoolContext context,
 string[] selectedCourses, Instructor instructorToUpdate)
 {
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(
 new CourseAssignment
 {
 InstructorID = instructorToUpdate.ID,
 CourseID = course.CourseID
 });
 }
 }
 else
 {
 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove
 = instructorToUpdate
 .CourseAssignments
 .SingleOrDefault(i => i.CourseID == course.CourseID);
 context.Remove(courseToRemove);
 }
 }
 }
 }
 }
}

if (selectedCourses == null)
{
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
}

if (selectedCoursesHS.Contains(course.CourseID.ToString()))
{
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(
 new CourseAssignment
 {
 InstructorID = instructorToUpdate.ID,
 CourseID = course.CourseID
 });
 }
}

else
{
 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove
 = instructorToUpdate
 .CourseAssignments
 .SingleOrDefault(i => i.CourseID == course.CourseID);
 context.Remove(courseToRemove);
 }
}

Handle office locationHandle office location

The InstructorCoursesPageModel is the base class you will use for the Edit and Create page models.

PopulateAssignedCourseData reads all Course entities to populate AssignedCourseDataList . For each course, the

code sets the CourseID , title, and whether or not the instructor is assigned to the course. A HashSet is used for

efficient lookups.

Since the Razor page doesn't have a collection of Course entities, the model binder can't automatically update the

CourseAssignments navigation property. Instead of using the model binder to update the CourseAssignments

navigation property, you do that in the new UpdateInstructorCourses method. Therefore you need to exclude the

CourseAssignments property from model binding. This doesn't require any change to the code that calls

TryUpdateModel because you're using the overload with declared properties and CourseAssignments isn't in the

include list.

If no check boxes were selected, the code in UpdateInstructorCourses initializes the CourseAssignments navigation

property with an empty collection and returns:

The code then loops through all courses in the database and checks each course against the ones currently assigned

to the instructor versus the ones that were selected in the page. To facilitate efficient lookups, the latter two

collections are stored in HashSet objects.

If the check box for a course was selected but the course isn't in the Instructor.CourseAssignments navigation

property, the course is added to the collection in the navigation property.

If the check box for a course wasn't selected, but the course is in the Instructor.CourseAssignments navigation

property, the course is removed from the navigation property.

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.hashset-1

Update the Instructor Edit page modelUpdate the Instructor Edit page model

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class EditModel : InstructorCoursesPageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Instructor = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments).ThenInclude(i => i.Course)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (Instructor == null)
 {
 return NotFound();
 }
 PopulateAssignedCourseData(_context, Instructor);
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id, string[] selectedCourses)
 {
 if (id == null)
 {
 return NotFound();
 }

 var instructorToUpdate = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .FirstOrDefaultAsync(s => s.ID == id);

 if (instructorToUpdate == null)
 {

Another relationship the edit page has to handle is the one-to-zero-or-one relationship that the Instructor entity has

with the OfficeAssignment entity. The instructor edit code must handle the following scenarios:

If the user clears the office assignment, delete the OfficeAssignment entity.

If the user enters an office assignment and it was empty, create a new OfficeAssignment entity.

If the user changes the office assignment, update the OfficeAssignment entity.

Update Pages/Instructors/Edit.cshtml.cs with the following code:

 {
 return NotFound();
 }

 if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "Instructor",
 i => i.FirstMidName, i => i.LastName,
 i => i.HireDate, i => i.OfficeAssignment))
 {
 if (String.IsNullOrWhiteSpace(
 instructorToUpdate.OfficeAssignment?.Location))
 {
 instructorToUpdate.OfficeAssignment = null;
 }
 UpdateInstructorCourses(_context, selectedCourses, instructorToUpdate);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 UpdateInstructorCourses(_context, selectedCourses, instructorToUpdate);
 PopulateAssignedCourseData(_context, instructorToUpdate);
 return Page();
 }
 }
}

Update the Instructor Edit Razor pageUpdate the Instructor Edit Razor page

@page
@model ContosoUniversity.Pages.Instructors.EditModel
@{
 ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Instructor</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Instructor.ID" />
 <div class="form-group">
 <label asp-for="Instructor.LastName" class="control-label"></label>
 <input asp-for="Instructor.LastName" class="form-control" />

 </div>
 <div class="form-group">

The preceding code:

Gets the current Instructor entity from the database using eager loading for the OfficeAssignment ,

CourseAssignment , and CourseAssignment.Course navigation properties.

Updates the retrieved Instructor entity with values from the model binder. TryUpdateModel prevents

overposting.

If the office location is blank, sets Instructor.OfficeAssignment to null. When Instructor.OfficeAssignment is

null, the related row in the OfficeAssignment table is deleted.

Calls PopulateAssignedCourseData in OnGetAsync to provide information for the checkboxes using the

AssignedCourseData view model class.

Calls UpdateInstructorCourses in OnPostAsync to apply information from the checkboxes to the Instructor entity

being edited.

Calls PopulateAssignedCourseData and UpdateInstructorCourses in OnPostAsync if TryUpdateModel fails. These

method calls restore the assigned course data entered on the page when it is redisplayed with an error message.

Update Pages/Instructors/Edit.cshtml with the following code:

 <div class="form-group">
 <label asp-for="Instructor.FirstMidName" class="control-label"></label>
 <input asp-for="Instructor.FirstMidName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.HireDate" class="control-label"></label>
 <input asp-for="Instructor.HireDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />

 </div>
 <div class="form-group">
 <div class="table">
 <table>
 <tr>
 @{
 int cnt = 0;

 foreach (var course in Model.AssignedCourseDataList)
 {
 if (cnt++ % 3 == 0)
 {
 @:</tr><tr>
 }
 @:<td>
 <input type="checkbox"
 name="selectedCourses"
 value="@course.CourseID"
 @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
 @course.CourseID @: @course.Title
 @:</td>
 }
 @:</tr>
 }
 </table>
 </div>
 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="./Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

The preceding code creates an HTML table that has three columns. Each column has a checkbox and a caption

containing the course number and title. The checkboxes all have the same name ("selectedCourses"). Using the

same name informs the model binder to treat them as a group. The value attribute of each checkbox is set to

CourseID . When the page is posted, the model binder passes an array that consists of the CourseID values for only

the checkboxes that are selected.

When the checkboxes are initially rendered, courses assigned to the instructor are selected.

Note: The approach taken here to edit instructor course data works well when there's a limited number of courses.

For collections that are much larger, a different UI and a different updating method would be more useable and

Update the Instructor Create pageUpdate the Instructor Create page

efficient.

Run the app and test the updated Instructors Edit page. Change some course assignments. The changes are

reflected on the Index page.

Update the Instructor Create page model and Razor page with code similar to the Edit page:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class CreateModel : InstructorCoursesPageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public CreateModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 var instructor = new Instructor();
 instructor.CourseAssignments = new List<CourseAssignment>();

 // Provides an empty collection for the foreach loop
 // foreach (var course in Model.AssignedCourseDataList)
 // in the Create Razor page.
 PopulateAssignedCourseData(_context, instructor);
 return Page();
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnPostAsync(string[] selectedCourses)
 {
 var newInstructor = new Instructor();
 if (selectedCourses != null)
 {
 newInstructor.CourseAssignments = new List<CourseAssignment>();
 foreach (var course in selectedCourses)
 {
 var courseToAdd = new CourseAssignment
 {
 CourseID = int.Parse(course)
 };
 newInstructor.CourseAssignments.Add(courseToAdd);
 }
 }

 if (await TryUpdateModelAsync<Instructor>(
 newInstructor,
 "Instructor",
 i => i.FirstMidName, i => i.LastName,
 i => i.HireDate, i => i.OfficeAssignment))
 {
 _context.Instructors.Add(newInstructor);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 PopulateAssignedCourseData(_context, newInstructor);
 return Page();
 }
 }
}

@page
@model ContosoUniversity.Pages.Instructors.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Instructor</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Instructor.LastName" class="control-label"></label>
 <input asp-for="Instructor.LastName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.FirstMidName" class="control-label"></label>
 <input asp-for="Instructor.FirstMidName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.HireDate" class="control-label"></label>
 <input asp-for="Instructor.HireDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />

 </div>
 <div class="form-group">
 <div class="table">
 <table>
 <tr>
 @{
 int cnt = 0;

 foreach (var course in Model.AssignedCourseDataList)
 {
 if (cnt++ % 3 == 0)
 {
 @:</tr><tr>
 }
 @:<td>
 <input type="checkbox"
 name="selectedCourses"
 value="@course.CourseID"
 @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
 @course.CourseID @: @course.Title
 @:</td>
 }
 @:</tr>
 }
 </table>
 </div>
 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Update the Instructor Delete page

Test the instructor Create page.

Update Pages/Instructors/Delete.cshtml.cs with the following code:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class DeleteModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Instructor = await _context.Instructors.FirstOrDefaultAsync(m => m.ID == id);

 if (Instructor == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Instructor instructor = await _context.Instructors
 .Include(i => i.CourseAssignments)
 .SingleAsync(i => i.ID == id);

 if (instructor == null)
 {
 return RedirectToPage("./Index");
 }

 var departments = await _context.Departments
 .Where(d => d.InstructorID == id)
 .ToListAsync();
 departments.ForEach(d => d.InstructorID = null);

 _context.Instructors.Remove(instructor);

 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 }
}

Next steps

The preceding code makes the following changes:

Uses eager loading for the CourseAssignments navigation property. CourseAssignments must be included or

they aren't deleted when the instructor is deleted. To avoid needing to read them, configure cascade delete in

the database.

If the instructor to be deleted is assigned as administrator of any departments, removes the instructor

assignment from those departments.

Run the app and test the Delete page.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

This tutorial demonstrates updating related data. If you run into problems you can't solve, download or view the

completed app. Download instructions.

The following illustrations shows some of the completed pages.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

Create a base class to share common code

Examine and test the Create and Edit course pages. Create a new course. The department is selected by its primary

key (an integer), not its name. Edit the new course. When you have finished testing, delete the new course.

The Courses/Create and Courses/Edit pages each need a list of department names. Create the

Pages/Courses/DepartmentNamePageModel.cshtml.cs base class for the Create and Edit pages:

using ContosoUniversity.Data;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace ContosoUniversity.Pages.Courses
{
 public class DepartmentNamePageModel : PageModel
 {
 public SelectList DepartmentNameSL { get; set; }

 public void PopulateDepartmentsDropDownList(SchoolContext _context,
 object selectedDepartment = null)
 {
 var departmentsQuery = from d in _context.Departments
 orderby d.Name // Sort by name.
 select d;

 DepartmentNameSL = new SelectList(departmentsQuery.AsNoTracking(),
 "DepartmentID", "Name", selectedDepartment);
 }
 }
}

Customize the Courses Pages

The preceding code creates a SelectList to contain the list of department names. If selectedDepartment is specified,

that department is selected in the SelectList .

The Create and Edit page model classes will derive from DepartmentNamePageModel .

When a new course entity is created, it must have a relationship to an existing department. To add a department

while creating a course, the base class for Create and Edit contains a drop-down list for selecting the department.

The drop-down list sets the Course.DepartmentID foreign key (FK) property. EF Core uses the Course.DepartmentID

FK to load the Department navigation property.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.selectlist

Update the Create page model with the following code:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
 public class CreateModel : DepartmentNamePageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public CreateModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 PopulateDepartmentsDropDownList(_context);
 return Page();
 }

 [BindProperty]
 public Course Course { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var emptyCourse = new Course();

 if (await TryUpdateModelAsync<Course>(
 emptyCourse,
 "course", // Prefix for form value.
 s => s.CourseID, s => s.DepartmentID, s => s.Title, s => s.Credits))
 {
 _context.Courses.Add(emptyCourse);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 // Select DepartmentID if TryUpdateModelAsync fails.
 PopulateDepartmentsDropDownList(_context, emptyCourse.DepartmentID);
 return Page();
 }
 }
}

Update the Courses Create pageUpdate the Courses Create page

The preceding code:

Derives from DepartmentNamePageModel .

Uses TryUpdateModelAsync to prevent overposting.

Replaces ViewData["DepartmentID"] with DepartmentNameSL (from the base class).

ViewData["DepartmentID"] is replaced with the strongly typed DepartmentNameSL . Strongly typed models are

preferred over weakly typed. For more information, see Weakly typed data (ViewData and ViewBag).

Update Pages/Courses/Create.cshtml with the following code:

@page
@model ContosoUniversity.Pages.Courses.CreateModel
@{
 ViewData["Title"] = "Create Course";
}
<h2>Create</h2>
<h4>Course</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Course.CourseID" class="control-label"></label>
 <input asp-for="Course.CourseID" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Title" class="control-label"></label>
 <input asp-for="Course.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Credits" class="control-label"></label>
 <input asp-for="Course.Credits" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Department" class="control-label"></label>
 <select asp-for="Course.DepartmentID" class="form-control"
 asp-items="@Model.DepartmentNameSL">
 <option value="">-- Select Department --</option>
 </select>

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>
<div>
 <a asp-page="Index">Back to List
</div>
@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

The preceding markup makes the following changes:

Changes the caption from Depar tmentIDDepar tmentID to Depar tmentDepar tment.

Replaces "ViewBag.DepartmentID" with DepartmentNameSL (from the base class).

Adds the "Select Department" option. This change renders "Select Department" rather than the first department.

Adds a validation message when the department isn't selected.

The Razor Page uses the Select Tag Helper:

<div class="form-group">
 <label asp-for="Course.Department" class="control-label"></label>
 <select asp-for="Course.DepartmentID" class="form-control"
 asp-items="@Model.DepartmentNameSL">
 <option value="">-- Select Department --</option>
 </select>

</div>

Update the Courses Edit page.Update the Courses Edit page.

Test the Create page. The Create page displays the department name rather than the department ID.

Replace the code in Pages/Courses/Edit.cshtml.cs with the following code:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
 public class EditModel : DepartmentNamePageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Course Course { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .Include(c => c.Department).FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course == null)
 {
 return NotFound();
 }

 // Select current DepartmentID.
 PopulateDepartmentsDropDownList(_context,Course.DepartmentID);
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var courseToUpdate = await _context.Courses.FindAsync(id);

 if (await TryUpdateModelAsync<Course>(
 courseToUpdate,
 "course", // Prefix for form value.
 c => c.Credits, c => c.DepartmentID, c => c.Title))
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }

 // Select DepartmentID if TryUpdateModelAsync fails.
 PopulateDepartmentsDropDownList(_context, courseToUpdate.DepartmentID);
 return Page();
 }
 }
}

The changes are similar to those made in the Create page model. In the preceding code,

PopulateDepartmentsDropDownList passes in the department ID, which select the department specified in the drop-

@page
@model ContosoUniversity.Pages.Courses.EditModel

@{
 ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<h4>Course</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Course.CourseID" />
 <div class="form-group">
 <label asp-for="Course.CourseID" class="control-label"></label>
 <div>@Html.DisplayFor(model => model.Course.CourseID)</div>
 </div>
 <div class="form-group">
 <label asp-for="Course.Title" class="control-label"></label>
 <input asp-for="Course.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Credits" class="control-label"></label>
 <input asp-for="Course.Credits" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Course.Department" class="control-label"></label>
 <select asp-for="Course.DepartmentID" class="form-control"
 asp-items="@Model.DepartmentNameSL"></select>

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="./Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

down list.

Update Pages/Courses/Edit.cshtml with the following markup:

The preceding markup makes the following changes:

Displays the course ID. Generally the Primary Key (PK) of an entity isn't displayed. PKs are usually meaningless to

users. In this case, the PK is the course number.

Changes the caption from Depar tmentIDDepar tmentID to Depar tmentDepar tment.

Replaces "ViewBag.DepartmentID" with DepartmentNameSL (from the base class).

The page contains a hidden field (<input type="hidden">) for the course number. Adding a <label> tag helper with

asp-for="Course.CourseID" doesn't eliminate the need for the hidden field. <input type="hidden"> is required for

Add AsNoTracking to the Details and Delete page models

public class DeleteModel : PageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Course Course { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .AsNoTracking()
 .Include(c => c.Department)
 .FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course != null)
 {
 _context.Courses.Remove(Course);
 await _context.SaveChangesAsync();
 }

 return RedirectToPage("./Index");
 }
}

the course number to be included in the posted data when the user clicks SaveSave.

Test the updated code. Create, edit, and delete a course.

AsNoTracking can improve performance when tracking isn't required. Add AsNoTracking to the Delete and Details

page model. The following code shows the updated Delete page model:

Update the OnGetAsync method in the Pages/Courses/Details.cshtml.cs file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.asnotracking#microsoft_entityframeworkcore_entityframeworkqueryableextensions_asnotracking__1_system_linq_iqueryable___0__

public async Task<IActionResult> OnGetAsync(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 Course = await _context.Courses
 .AsNoTracking()
 .Include(c => c.Department)
 .FirstOrDefaultAsync(m => m.CourseID == id);

 if (Course == null)
 {
 return NotFound();
 }
 return Page();
}

Modify the Delete and Details pagesModify the Delete and Details pages
Update the Delete Razor page with the following markup:

@page
@model ContosoUniversity.Pages.Courses.DeleteModel

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Course</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Course.CourseID)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Course.CourseID)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Course.Title)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Course.Title)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Course.Credits)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Course.Credits)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Course.Department)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Course.Department.DepartmentID)
 </dd>
 </dl>

 <form method="post">
 <input type="hidden" asp-for="Course.CourseID" />
 <input type="submit" value="Delete" class="btn btn-default" /> |
 <a asp-page="./Index">Back to List
 </form>
</div>

Test the Course pagesTest the Course pages

Update the instructor pages

Add office locationAdd office location

Make the same changes to the Details page.

Test create, edit, details, and delete.

The following sections update the instructor pages.

When editing an instructor record, you may want to update the instructor's office assignment. The Instructor

entity has a one-to-zero-or-one relationship with the OfficeAssignment entity. The instructor code must handle:

If the user clears the office assignment, delete the OfficeAssignment entity.

If the user enters an office assignment and it was empty, create a new OfficeAssignment entity.

public class EditModel : PageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Instructor = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (Instructor == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var instructorToUpdate = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .FirstOrDefaultAsync(s => s.ID == id);

 if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "Instructor",
 i => i.FirstMidName, i => i.LastName,
 i => i.HireDate, i => i.OfficeAssignment))
 {
 if (String.IsNullOrWhiteSpace(
 instructorToUpdate.OfficeAssignment?.Location))
 {
 instructorToUpdate.OfficeAssignment = null;
 }
 await _context.SaveChangesAsync();
 }
 return RedirectToPage("./Index");

 }
}

If the user changes the office assignment, update the OfficeAssignment entity.

Update the instructors Edit page model with the following code:

The preceding code:

Update the instructor Edit pageUpdate the instructor Edit page

@page
@model ContosoUniversity.Pages.Instructors.EditModel
@{
 ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Instructor</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Instructor.ID" />
 <div class="form-group">
 <label asp-for="Instructor.LastName" class="control-label"></label>
 <input asp-for="Instructor.LastName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.FirstMidName" class="control-label"></label>
 <input asp-for="Instructor.FirstMidName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.HireDate" class="control-label"></label>
 <input asp-for="Instructor.HireDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="./Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Add Course assignments to the instructor Edit page

Gets the current Instructor entity from the database using eager loading for the OfficeAssignment navigation

property.

Updates the retrieved Instructor entity with values from the model binder. TryUpdateModel prevents

overposting.

If the office location is blank, sets Instructor.OfficeAssignment to null. When Instructor.OfficeAssignment is

null, the related row in the OfficeAssignment table is deleted.

Update Pages/Instructors/Edit.cshtml with the office location:

Verify you can change an instructors office location.

Instructors may teach any number of courses. In this section, you add the ability to change course assignments. The

Add classes to support Create and Edit instructor pagesAdd classes to support Create and Edit instructor pages

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class AssignedCourseData
 {
 public int CourseID { get; set; }
 public string Title { get; set; }
 public bool Assigned { get; set; }
 }
}

following image shows the updated instructor Edit page:

Course and Instructor has a many-to-many relationship. To add and remove relationships, you add and remove

entities from the CourseAssignments join entity set.

Check boxes enable changes to courses an instructor is assigned to. A check box is displayed for every course in the

database. Courses that the instructor is assigned to are checked. The user can select or clear check boxes to change

course assignments. If the number of courses were much greater :

You'd probably use a different user interface to display the courses.

The method of manipulating a join entity to create or delete relationships wouldn't change.

Create SchoolViewModels/AssignedCourseData.cs with the following code:

The AssignedCourseData class contains data to create the check boxes for assigned courses by an instructor.

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels;
using Microsoft.AspNetCore.Mvc.RazorPages;
using System.Collections.Generic;
using System.Linq;

namespace ContosoUniversity.Pages.Instructors
{
 public class InstructorCoursesPageModel : PageModel
 {

 public List<AssignedCourseData> AssignedCourseDataList;

 public void PopulateAssignedCourseData(SchoolContext context,
 Instructor instructor)
 {
 var allCourses = context.Courses;
 var instructorCourses = new HashSet<int>(
 instructor.CourseAssignments.Select(c => c.CourseID));
 AssignedCourseDataList = new List<AssignedCourseData>();
 foreach (var course in allCourses)
 {
 AssignedCourseDataList.Add(new AssignedCourseData
 {
 CourseID = course.CourseID,
 Title = course.Title,
 Assigned = instructorCourses.Contains(course.CourseID)
 });
 }
 }

 public void UpdateInstructorCourses(SchoolContext context,
 string[] selectedCourses, Instructor instructorToUpdate)
 {
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(
 new CourseAssignment
 {
 InstructorID = instructorToUpdate.ID,
 CourseID = course.CourseID
 });
 }
 }
 else
 {
 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove
 = instructorToUpdate
 .CourseAssignments
 .SingleOrDefault(i => i.CourseID == course.CourseID);

Create the Pages/Instructors/InstructorCoursesPageModel.cshtml.cs base class:

 .SingleOrDefault(i => i.CourseID == course.CourseID);
 context.Remove(courseToRemove);
 }
 }
 }
 }
 }
}

Instructors Edit page modelInstructors Edit page model

The InstructorCoursesPageModel is the base class you will use for the Edit and Create page models.

PopulateAssignedCourseData reads all Course entities to populate AssignedCourseDataList . For each course, the

code sets the CourseID , title, and whether or not the instructor is assigned to the course. A HashSet is used to

create efficient lookups.

Update the instructor Edit page model with the following code:

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.hashset-1

public class EditModel : InstructorCoursesPageModel
{
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Instructor = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments).ThenInclude(i => i.Course)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (Instructor == null)
 {
 return NotFound();
 }
 PopulateAssignedCourseData(_context, Instructor);
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int? id, string[] selectedCourses)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var instructorToUpdate = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .FirstOrDefaultAsync(s => s.ID == id);

 if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "Instructor",
 i => i.FirstMidName, i => i.LastName,
 i => i.HireDate, i => i.OfficeAssignment))
 {
 if (String.IsNullOrWhiteSpace(
 instructorToUpdate.OfficeAssignment?.Location))
 {
 instructorToUpdate.OfficeAssignment = null;
 }
 UpdateInstructorCourses(_context, selectedCourses, instructorToUpdate);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 UpdateInstructorCourses(_context, selectedCourses, instructorToUpdate);
 PopulateAssignedCourseData(_context, instructorToUpdate);
 return Page();
 }
}

@page
@model ContosoUniversity.Pages.Instructors.EditModel
@{
 ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Instructor</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Instructor.ID" />
 <div class="form-group">
 <label asp-for="Instructor.LastName" class="control-label"></label>
 <input asp-for="Instructor.LastName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.FirstMidName" class="control-label"></label>
 <input asp-for="Instructor.FirstMidName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.HireDate" class="control-label"></label>
 <input asp-for="Instructor.HireDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />

 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <table>
 <tr>
 @{
 int cnt = 0;

 foreach (var course in Model.AssignedCourseDataList)
 {
 if (cnt++ % 3 == 0)
 {
 @:</tr><tr>
 }
 @:<td>
 <input type="checkbox"
 name="selectedCourses"
 value="@course.CourseID"
 @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
 @course.CourseID @: @course.Title
 @:</td>
 }
 @:</tr>
 }
 </table>
 </div>
 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </form>
 </div>

The preceding code handles office assignment changes.

Update the instructor Razor View:

 </div>
</div>

<div>
 <a asp-page="./Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

NOTENOTE

Update the instructors Create pageUpdate the instructors Create page

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class CreateModel : InstructorCoursesPageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public CreateModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 var instructor = new Instructor();
 instructor.CourseAssignments = new List<CourseAssignment>();

 // Provides an empty collection for the foreach loop
 // foreach (var course in Model.AssignedCourseDataList)
 // in the Create Razor page.
 PopulateAssignedCourseData(_context, instructor);

When you paste the code in Visual Studio, line breaks are changed in a way that breaks the code. Press Ctrl+Z one time to

undo the automatic formatting. Ctrl+Z fixes the line breaks so that they look like what you see here. The indentation doesn't

have to be perfect, but the @:</tr><tr> , @:<td> , @:</td> , and @:</tr> lines must each be on a single line as shown.

With the block of new code selected, press Tab three times to line up the new code with the existing code. Vote on or review

the status of this bug with this link.

The preceding code creates an HTML table that has three columns. Each column has a check box and a caption

containing the course number and title. The check boxes all have the same name ("selectedCourses"). Using the

same name informs the model binder to treat them as a group. The value attribute of each check box is set to

CourseID . When the page is posted, the model binder passes an array that consists of the CourseID values for only

the check boxes that are selected.

When the check boxes are initially rendered, courses assigned to the instructor have checked attributes.

Run the app and test the updated instructors Edit page. Change some course assignments. The changes are

reflected on the Index page.

Note: The approach taken here to edit instructor course data works well when there's a limited number of courses.

For collections that are much larger, a different UI and a different updating method would be more useable and

efficient.

Update the instructor Create page model with the following code:

https://developercommunity.visualstudio.com/content/problem/147795/razor-editor-malforms-pasted-markup-and-creates-in.html

 PopulateAssignedCourseData(_context, instructor);
 return Page();
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnPostAsync(string[] selectedCourses)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var newInstructor = new Instructor();
 if (selectedCourses != null)
 {
 newInstructor.CourseAssignments = new List<CourseAssignment>();
 foreach (var course in selectedCourses)
 {
 var courseToAdd = new CourseAssignment
 {
 CourseID = int.Parse(course)
 };
 newInstructor.CourseAssignments.Add(courseToAdd);
 }
 }

 if (await TryUpdateModelAsync<Instructor>(
 newInstructor,
 "Instructor",
 i => i.FirstMidName, i => i.LastName,
 i => i.HireDate, i => i.OfficeAssignment))
 {
 _context.Instructors.Add(newInstructor);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 PopulateAssignedCourseData(_context, newInstructor);
 return Page();
 }
 }
}

@page
@model ContosoUniversity.Pages.Instructors.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Instructor</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Instructor.LastName" class="control-label"></label>
 <input asp-for="Instructor.LastName" class="form-control" />

 </div>

The preceding code is similar to the Pages/Instructors/Edit.cshtml.cs code.

Update the instructor Create Razor page with the following markup:

 </div>
 <div class="form-group">
 <label asp-for="Instructor.FirstMidName" class="control-label"></label>
 <input asp-for="Instructor.FirstMidName" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Instructor.HireDate" class="control-label"></label>
 <input asp-for="Instructor.HireDate" class="form-control" />

 </div>

 <div class="form-group">
 <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />

 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <table>
 <tr>
 @{
 int cnt = 0;

 foreach (var course in Model.AssignedCourseDataList)
 {
 if (cnt++ % 3 == 0)
 {
 @:</tr><tr>
 }
 @:<td>
 <input type="checkbox"
 name="selectedCourses"
 value="@course.CourseID"
 @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
 @course.CourseID @: @course.Title
 @:</td>
 }
 @:</tr>
 }
 </table>
 </div>
 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Update the Delete page

Test the instructor Create page.

Update the Delete page model with the following code:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
 public class DeleteModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Instructor Instructor { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Instructor = await _context.Instructors.SingleAsync(m => m.ID == id);

 if (Instructor == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id)
 {
 Instructor instructor = await _context.Instructors
 .Include(i => i.CourseAssignments)
 .SingleAsync(i => i.ID == id);

 var departments = await _context.Departments
 .Where(d => d.InstructorID == id)
 .ToListAsync();
 departments.ForEach(d => d.InstructorID = null);

 _context.Instructors.Remove(instructor);

 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 }
}

The preceding code makes the following changes:

Uses eager loading for the CourseAssignments navigation property. CourseAssignments must be included or

they aren't deleted when the instructor is deleted. To avoid needing to read them, configure cascade delete in

the database.

If the instructor to be deleted is assigned as administrator of any departments, removes the instructor

assignment from those departments.

Additional resources
YouTube version of this tutorial (Part 1)

YouTube version of this tutorial (Part 2)

 P R E V I O U SP R E V I O U S N E X TN E X T

https://www.youtube.com/watch?v=Csh6gkmwc9E
https://www.youtube.com/watch?v=mOAankB_Zgc

Part 8, Razor Pages with EF Core in ASP.NET Core -
Concurrency
9/22/2020 • 36 minutes to read • Edit Online

Concurrency conflicts

Pessimistic concurrency (locking)Pessimistic concurrency (locking)

Optimistic concurrencyOptimistic concurrency

By Rick Anderson, Tom Dykstra, and Jon P Smith

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you created

by following the tutorial.

This tutorial shows how to handle conflicts when multiple users update an entity concurrently (at the same time).

A concurrency conflict occurs when:

A user navigates to the edit page for an entity.

Another user updates the same entity before the first user's change is written to the database.

If concurrency detection isn't enabled, whoever updates the database last overwrites the other user's changes. If this

risk is acceptable, the cost of programming for concurrency might outweigh the benefit.

One way to prevent concurrency conflicts is to use database locks. This is called pessimistic concurrency. Before the

app reads a database row that it intends to update, it requests a lock. Once a row is locked for update access, no

other users are allowed to lock the row until the first lock is released.

Managing locks has disadvantages. It can be complex to program and can cause performance problems as the

number of users increases. Entity Framework Core provides no built-in support for it, and this tutorial doesn't show

how to implement it.

Optimistic concurrency allows concurrency conflicts to happen, and then reacts appropriately when they do. For

example, Jane visits the Department edit page and changes the budget for the English department from

$350,000.00 to $0.00.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/concurrency.md
https://twitter.com/RickAndMSFT
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

Before Jane clicks SaveSave, John visits the same page and changes the Start Date field from 9/1/2007 to 9/1/2013.

Jane clicks SaveSave first and sees her change take effect, since the browser displays the Index page with zero as the

Conflict detection in EF Core

Budget amount.

John clicks SaveSave on an Edit page that still shows a budget of $350,000.00. What happens next is determined by

how you handle concurrency conflicts:

You can keep track of which property a user has modified and update only the corresponding columns in the

database.

In the scenario, no data would be lost. Different properties were updated by the two users. The next time

someone browses the English department, they will see both Jane's and John's changes. This method of

updating can reduce the number of conflicts that could result in data loss. This approach has some

disadvantages:

Can't avoid data loss if competing changes are made to the same property.

Is generally not practical in a web app. It requires maintaining significant state in order to keep track of all

fetched values and new values. Maintaining large amounts of state can affect app performance.

Can increase app complexity compared to concurrency detection on an entity.

You can let John's change overwrite Jane's change.

The next time someone browses the English department, they will see 9/1/2013 and the fetched

$350,000.00 value. This approach is called a Client Wins or Last in Wins scenario. (All values from the client

take precedence over what's in the data store.) If you don't do any coding for concurrency handling, Client

Wins happens automatically.

You can prevent John's change from being updated in the database. Typically, the app would:

Display an error message.

Show the current state of the data.

Allow the user to reapply the changes.

This is called a Store Wins scenario. (The data-store values take precedence over the values submitted by the

client.) You implement the Store Wins scenario in this tutorial. This method ensures that no changes are

overwritten without a user being alerted.

EF Core throws DbConcurrencyException exceptions when it detects conflicts. The data model has to be configured to

enable conflict detection. Options for enabling conflict detection include the following:

Configure EF Core to include the original values of columns configured as concurrency tokens in the Where

clause of Update and Delete commands.

When SaveChanges is called, the Where clause looks for the original values of any properties annotated with

the ConcurrencyCheckAttribute attribute. The update statement won't find a row to update if any of the

concurrency token properties changed since the row was first read. EF Core interprets that as a concurrency

conflict. For database tables that have many columns, this approach can result in very large Where clauses,

and can require large amounts of state. Therefore this approach is generally not recommended, and it isn't

the method used in this tutorial.

In the database table, include a tracking column that can be used to determine when a row has been

changed.

In a SQL Server database, the data type of the tracking column is rowversion . The rowversion value is a

sequential number that's incremented each time the row is updated. In an Update or Delete command, the

Where clause includes the original value of the tracking column (the original row version number). If the row

being updated has been changed by another user, the value in the rowversion column is different than the

original value. In that case, the Update or Delete statement can't find the row to update because of the Where

https://docs.microsoft.com/en-us/ef/core/modeling/concurrency
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.concurrencycheckattribute

Add a tracking property

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Department
 {
 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Name { get; set; }

 [DataType(DataType.Currency)]
 [Column(TypeName = "money")]
 public decimal Budget { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 [Timestamp]
 public byte[] RowVersion { get; set; }

 public Instructor Administrator { get; set; }
 public ICollection<Course> Courses { get; set; }
 }
}

modelBuilder.Entity<Department>()
 .Property<byte[]>("RowVersion")
 .IsRowVersion();

clause. EF Core throws a concurrency exception when no rows are affected by an Update or Delete

command.

In Models/Department.cs, add a tracking property named RowVersion:

The TimestampAttribute attribute is what identifies the column as a concurrency tracking column. The fluent API is

an alternative way to specify the tracking property:

Visual Studio

Visual Studio Code

For a SQL Server database, the [Timestamp] attribute on an entity property defined as byte array:

Causes the column to be included in DELETE and UPDATE WHERE clauses.

Sets the column type in the database to rowversion.

The database generates a sequential row version number that's incremented each time the row is updated. In an

Update or Delete command, the Where clause includes the fetched row version value. If the row being updated

has changed since it was fetched:

The current row version value doesn't match the fetched value.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.timestampattribute
https://docs.microsoft.com/en-us/sql/t-sql/data-types/rowversion-transact-sql

SET NOCOUNT ON;
UPDATE [Department] SET [Name] = @p0
WHERE [DepartmentID] = @p1 AND [RowVersion] = @p2;
SELECT [RowVersion]
FROM [Department]
WHERE @@ROWCOUNT = 1 AND [DepartmentID] = @p1;

SET NOCOUNT ON;
UPDATE [Department] SET [Name] = @p0
WHERE [DepartmentID] = @p1 AND [RowVersion] = @p2;
SELECT [RowVersion]
FROM [Department]
WHERE @@ROWCOUNT = 1 AND [DepartmentID] = @p1;

Update the databaseUpdate the database

The Update or Delete commands don't find a row because the Where clause looks for the fetched row version

value.

A DbUpdateConcurrencyException is thrown.

The following code shows a portion of the T-SQL generated by EF Core when the Department name is updated:

The preceding highlighted code shows the WHERE clause containing RowVersion . If the database RowVersion

doesn't equal the RowVersion parameter (@p2), no rows are updated.

The following highlighted code shows the T-SQL that verifies exactly one row was updated:

@@ROWCOUNT returns the number of rows affected by the last statement. If no rows are updated, EF Core throws

a DbUpdateConcurrencyException .

Adding the RowVersion property changes the data model, which requires a migration.

Build the project.

Visual Studio

Visual Studio Code

Add-Migration RowVersion

Run the following command in the PMC:

This command:

Creates the Migrations/{time stamp}_RowVersion.cs migration file.

Updates the Migrations/SchoolContextModelSnapshot.cs file. The update adds the following highlighted

code to the BuildModel method:

https://docs.microsoft.com/en-us/sql/t-sql/functions/rowcount-transact-sql

Scaffold Department pages

Update the Index page

modelBuilder.Entity("ContosoUniversity.Models.Department", b =>
 {
 b.Property<int>("DepartmentID")
 .ValueGeneratedOnAdd()
 .HasAnnotation("SqlServer:ValueGenerationStrategy",
SqlServerValueGenerationStrategy.IdentityColumn);

 b.Property<decimal>("Budget")
 .HasColumnType("money");

 b.Property<int?>("InstructorID");

 b.Property<string>("Name")
 .HasMaxLength(50);

 b.Property<byte[]>("RowVersion")
 .IsConcurrencyToken()
 .ValueGeneratedOnAddOrUpdate();

 b.Property<DateTime>("StartDate");

 b.HasKey("DepartmentID");

 b.HasIndex("InstructorID");

 b.ToTable("Department");
 });

Visual Studio

Visual Studio Code

Update-Database

Run the following command in the PMC:

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold Student pages with the following exceptions:

Create a Pages/Departments folder.

Use Department for the model class.

Use the existing context class instead of creating a new one.

Build the project.

The scaffolding tool created a RowVersion column for the Index page, but that field wouldn't be displayed in a

production app. In this tutorial, the last byte of the RowVersion is displayed to help show how concurrency handling

works. The last byte isn't guaranteed to be unique by itself.

Update Pages\Departments\Index.cshtml page:

Replace Index with Departments.

@page
@model ContosoUniversity.Pages.Departments.IndexModel

@{
 ViewData["Title"] = "Departments";
}

<h2>Departments</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].Name)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].Budget)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].StartDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].Administrator)
 </th>
 <th>
 RowVersion
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Department)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Budget)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.StartDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Administrator.FullName)
 </td>
 <td>
 @item.RowVersion[7]
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.DepartmentID">Edit |
 <a asp-page="./Details" asp-route-id="@item.DepartmentID">Details |
 <a asp-page="./Delete" asp-route-id="@item.DepartmentID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Change the code containing RowVersion to show just the last byte of the byte array.

Replace FirstMidName with FullName.

The following code shows the updated page:

Update the Edit page model

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Departments
{
 public class EditModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Department Department { get; set; }
 // Replace ViewData["InstructorID"]
 public SelectList InstructorNameSL { get; set; }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Department = await _context.Departments
 .Include(d => d.Administrator) // eager loading
 .AsNoTracking() // tracking not required
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 if (Department == null)
 {
 return NotFound();
 }

 // Use strongly typed data rather than ViewData.
 InstructorNameSL = new SelectList(_context.Instructors,
 "ID", "FirstMidName");

 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var departmentToUpdate = await _context.Departments
 .Include(i => i.Administrator)
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 if (departmentToUpdate == null)
 {
 return HandleDeletedDepartment();
 }

 _context.Entry(departmentToUpdate)
 .Property("RowVersion").OriginalValue = Department.RowVersion;

 if (await TryUpdateModelAsync<Department>(

Update Pages\Departments\Edit.cshtml.cs with the following code:

 if (await TryUpdateModelAsync<Department>(
 departmentToUpdate,
 "Department",
 s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
 {
 try
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 catch (DbUpdateConcurrencyException ex)
 {
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty, "Unable to save. " +
 "The department was deleted by another user.");
 return Page();
 }

 var dbValues = (Department)databaseEntry.ToObject();
 await setDbErrorMessage(dbValues, clientValues, _context);

 // Save the current RowVersion so next postback
 // matches unless an new concurrency issue happens.
 Department.RowVersion = (byte[])dbValues.RowVersion;
 // Clear the model error for the next postback.
 ModelState.Remove("Department.RowVersion");
 }
 }

 InstructorNameSL = new SelectList(_context.Instructors,
 "ID", "FullName", departmentToUpdate.InstructorID);

 return Page();
 }

 private IActionResult HandleDeletedDepartment()
 {
 var deletedDepartment = new Department();
 // ModelState contains the posted data because of the deletion error
 // and will overide the Department instance values when displaying Page().
 ModelState.AddModelError(string.Empty,
 "Unable to save. The department was deleted by another user.");
 InstructorNameSL = new SelectList(_context.Instructors, "ID", "FullName", Department.InstructorID);
 return Page();
 }

 private async Task setDbErrorMessage(Department dbValues,
 Department clientValues, SchoolContext context)
 {

 if (dbValues.Name != clientValues.Name)
 {
 ModelState.AddModelError("Department.Name",
 $"Current value: {dbValues.Name}");
 }
 if (dbValues.Budget != clientValues.Budget)
 {
 ModelState.AddModelError("Department.Budget",
 $"Current value: {dbValues.Budget:c}");
 }
 if (dbValues.StartDate != clientValues.StartDate)
 {
 ModelState.AddModelError("Department.StartDate",
 $"Current value: {dbValues.StartDate:d}");
 }
 if (dbValues.InstructorID != clientValues.InstructorID)

 if (dbValues.InstructorID != clientValues.InstructorID)
 {
 Instructor dbInstructor = await _context.Instructors
 .FindAsync(dbValues.InstructorID);
 ModelState.AddModelError("Department.InstructorID",
 $"Current value: {dbInstructor?.FullName}");
 }

 ModelState.AddModelError(string.Empty,
 "The record you attempted to edit "
 + "was modified by another user after you. The "
 + "edit operation was canceled and the current values in the database "
 + "have been displayed. If you still want to edit this record, click "
 + "the Save button again.");
 }
 }
}

public async Task<IActionResult> OnPostAsync(int id)
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var departmentToUpdate = await _context.Departments
 .Include(i => i.Administrator)
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 if (departmentToUpdate == null)
 {
 return HandleDeletedDepartment();
 }

 _context.Entry(departmentToUpdate)
 .Property("RowVersion").OriginalValue = Department.RowVersion;

The OriginalValue is updated with the rowVersion value from the entity when it was fetched in the OnGet method.

EF Core generates a SQL UPDATE command with a WHERE clause containing the original RowVersion value. If no

rows are affected by the UPDATE command (no rows have the original RowVersion value), a

DbUpdateConcurrencyException exception is thrown.

In the preceding highlighted code:

The value in Department.RowVersion is what was in the entity when it was originally fetched in the Get request for

the Edit page. The value is provided to the OnPost method by a hidden field in the Razor page that displays the

entity to be edited. The hidden field value is copied to Department.RowVersion by the model binder.

OriginalValue is what EF Core will use in the Where clause. Before the highlighted line of code executes,

OriginalValue has the value that was in the database when FirstOrDefaultAsync was called in this method,

which might be different from what was displayed on the Edit page.

The highlighted code makes sure that EF Core uses the original RowVersion value from the displayed

Department entity in the SQL UPDATE statement's Where clause.

When a concurrency error happens, the following highlighted code gets the client values (the values posted to this

method) and the database values.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyentry.originalvalue#microsoft_entityframeworkcore_changetracking_propertyentry_originalvalue

if (await TryUpdateModelAsync<Department>(
 departmentToUpdate,
 "Department",
 s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
{
 try
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 catch (DbUpdateConcurrencyException ex)
 {
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty, "Unable to save. " +
 "The department was deleted by another user.");
 return Page();
 }

 var dbValues = (Department)databaseEntry.ToObject();
 await setDbErrorMessage(dbValues, clientValues, _context);

 // Save the current RowVersion so next postback
 // matches unless an new concurrency issue happens.
 Department.RowVersion = (byte[])dbValues.RowVersion;
 // Clear the model error for the next postback.
 ModelState.Remove("Department.RowVersion");
 }

The following code adds a custom error message for each column that has database values different from what was

posted to OnPostAsync :

private async Task setDbErrorMessage(Department dbValues,
 Department clientValues, SchoolContext context)
{

 if (dbValues.Name != clientValues.Name)
 {
 ModelState.AddModelError("Department.Name",
 $"Current value: {dbValues.Name}");
 }
 if (dbValues.Budget != clientValues.Budget)
 {
 ModelState.AddModelError("Department.Budget",
 $"Current value: {dbValues.Budget:c}");
 }
 if (dbValues.StartDate != clientValues.StartDate)
 {
 ModelState.AddModelError("Department.StartDate",
 $"Current value: {dbValues.StartDate:d}");
 }
 if (dbValues.InstructorID != clientValues.InstructorID)
 {
 Instructor dbInstructor = await _context.Instructors
 .FindAsync(dbValues.InstructorID);
 ModelState.AddModelError("Department.InstructorID",
 $"Current value: {dbInstructor?.FullName}");
 }

 ModelState.AddModelError(string.Empty,
 "The record you attempted to edit "
 + "was modified by another user after you. The "
 + "edit operation was canceled and the current values in the database "
 + "have been displayed. If you still want to edit this record, click "
 + "the Save button again.");
}

The following highlighted code sets the RowVersion value to the new value retrieved from the database. The next

time the user clicks SaveSave, only concurrency errors that happen since the last display of the Edit page will be caught.

if (await TryUpdateModelAsync<Department>(
 departmentToUpdate,
 "Department",
 s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
{
 try
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 catch (DbUpdateConcurrencyException ex)
 {
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty, "Unable to save. " +
 "The department was deleted by another user.");
 return Page();
 }

 var dbValues = (Department)databaseEntry.ToObject();
 await setDbErrorMessage(dbValues, clientValues, _context);

 // Save the current RowVersion so next postback
 // matches unless an new concurrency issue happens.
 Department.RowVersion = (byte[])dbValues.RowVersion;
 // Clear the model error for the next postback.
 ModelState.Remove("Department.RowVersion");
 }

Update the Edit pageUpdate the Edit page

The ModelState.Remove statement is required because ModelState has the old RowVersion value. In the Razor Page,

the ModelState value for a field takes precedence over the model property values when both are present.

Update Pages/Departments/Edit.cshtml with the following code:

@page "{id:int}"
@model ContosoUniversity.Pages.Departments.EditModel
@{
 ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Department</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Department.DepartmentID" />
 <input type="hidden" asp-for="Department.RowVersion" />
 <div class="form-group">
 <label>RowVersion</label>
 @Model.Department.RowVersion[7]
 </div>
 <div class="form-group">
 <label asp-for="Department.Name" class="control-label"></label>
 <input asp-for="Department.Name" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Department.Budget" class="control-label"></label>
 <input asp-for="Department.Budget" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Department.StartDate" class="control-label"></label>
 <input asp-for="Department.StartDate" class="form-control" />

 </div>
 <div class="form-group">
 <label class="control-label">Instructor</label>
 <select asp-for="Department.InstructorID" class="form-control"
 asp-items="@Model.InstructorNameSL"></select>

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>
<div>
 <a asp-page="./Index">Back to List
</div>
@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Test concurrency conflicts with the Edit pageTest concurrency conflicts with the Edit page

The preceding code:

Updates the page directive from @page to @page "{id:int}" .

Adds a hidden row version. RowVersion must be added so postback binds the value.

Displays the last byte of RowVersion for debugging purposes.

Replaces ViewData with the strongly-typed InstructorNameSL .

Open two browsers instances of Edit on the English department:

Run the app and select Departments.

Right-click the EditEdit hyperlink for the English department and select Open in new tabOpen in new tab.

In the first tab, click the EditEdit hyperlink for the English department.

The two browser tabs display the same information.

Change the name in the first browser tab and click SaveSave.

The browser shows the Index page with the changed value and updated rowVersion indicator. Note the updated

rowVersion indicator, it's displayed on the second postback in the other tab.

Change a different field in the second browser tab.

Click SaveSave. You see error messages for all fields that don't match the database values:

Update the Delete page model

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Departments
{
 public class DeleteModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Department Department { get; set; }
 public string ConcurrencyErrorMessage { get; set; }

 public async Task<IActionResult> OnGetAsync(int id, bool? concurrencyError)
 {
 Department = await _context.Departments
 .Include(d => d.Administrator)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 if (Department == null)
 {
 return NotFound();
 }

 if (concurrencyError.GetValueOrDefault())
 {
 ConcurrencyErrorMessage = "The record you attempted to delete "
 + "was modified by another user after you selected delete. "
 + "The delete operation was canceled and the current values in the "
 + "database have been displayed. If you still want to delete this "
 + "record, click the Delete button again.";
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id)
 {
 try
 {
 if (await _context.Departments.AnyAsync(
 m => m.DepartmentID == id))
 {
 // Department.rowVersion value is from when the entity
 // was fetched. If it doesn't match the DB, a
 // DbUpdateConcurrencyException exception is thrown.
 _context.Departments.Remove(Department);
 await _context.SaveChangesAsync();

This browser window didn't intend to change the Name field. Copy and paste the current value (Languages) into the

Name field. Tab out. Client-side validation removes the error message.

Click SaveSave again. The value you entered in the second browser tab is saved. You see the saved values in the Index

page.

Update Pages/Departments/Delete.cshtml.cs with the following code:

 }
 return RedirectToPage("./Index");
 }
 catch (DbUpdateConcurrencyException)
 {
 return RedirectToPage("./Delete",
 new { concurrencyError = true, id = id });
 }
 }
 }
}

Update the Delete pageUpdate the Delete page

The Delete page detects concurrency conflicts when the entity has changed after it was fetched.

Department.RowVersion is the row version when the entity was fetched. When EF Core creates the SQL DELETE

command, it includes a WHERE clause with RowVersion . If the SQL DELETE command results in zero rows affected:

The RowVersion in the SQL DELETE command doesn't match RowVersion in the database.

A DbUpdateConcurrencyException exception is thrown.

OnGetAsync is called with the concurrencyError .

Update Pages/Departments/Delete.cshtml with the following code:

@page "{id:int}"
@model ContosoUniversity.Pages.Departments.DeleteModel

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@Model.ConcurrencyErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Department</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Department.Name)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.Name)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.Budget)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.Budget)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.StartDate)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.StartDate)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.RowVersion)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.RowVersion[7])
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.Administrator)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.Administrator.FullName)
 </dd>
 </dl>

 <form method="post">
 <input type="hidden" asp-for="Department.DepartmentID" />
 <input type="hidden" asp-for="Department.RowVersion" />
 <div class="form-actions no-color">
 <input type="submit" value="Delete" class="btn btn-danger" /> |
 <a asp-page="./Index">Back to List
 </div>
</form>
</div>

The preceding code makes the following changes:

Updates the page directive from @page to @page "{id:int}" .

Adds an error message.

Replaces FirstMidName with FullName in the AdministratorAdministrator field.

Changes RowVersion to display the last byte.

Test concurrency conflictsTest concurrency conflicts

Additional resources

Next steps

Concurrency conflicts

Optimistic concurrencyOptimistic concurrency

Adds a hidden row version. RowVersion must be added so postback binds the value.

Create a test department.

Open two browsers instances of Delete on the test department:

Run the app and select Departments.

Right-click the DeleteDelete hyperlink for the test department and select Open in new tabOpen in new tab.

Click the EditEdit hyperlink for the test department.

The two browser tabs display the same information.

Change the budget in the first browser tab and click SaveSave.

The browser shows the Index page with the changed value and updated rowVersion indicator. Note the updated

rowVersion indicator, it's displayed on the second postback in the other tab.

Delete the test department from the second tab. A concurrency error is display with the current values from the

database. Clicking DeleteDelete deletes the entity, unless RowVersion has been updated.

Concurrency Tokens in EF Core

Handle concurrency in EF Core

Debugging ASP.NET Core 2.x source

This is the last tutorial in the series. Additional topics are covered in the MVC version of this tutorial series.

P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

This tutorial shows how to handle conflicts when multiple users update an entity concurrently (at the same time). If

you run into problems you can't solve, download or view the completed app. Download instructions.

A concurrency conflict occurs when:

A user navigates to the edit page for an entity.

Another user updates the same entity before the first user's change is written to the DB.

If concurrency detection isn't enabled, when concurrent updates occur :

The last update wins. That is, the last update values are saved to the DB.

The first of the current updates are lost.

Optimistic concurrency allows concurrency conflicts to happen, and then reacts appropriately when they do. For

example, Jane visits the Department edit page and changes the budget for the English department from

$350,000.00 to $0.00.

https://docs.microsoft.com/en-us/ef/core/modeling/concurrency
https://docs.microsoft.com/en-us/ef/core/saving/concurrency
https://github.com/dotnet/AspNetCore.Docs/issues/4155
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples

Before Jane clicks SaveSave, John visits the same page and changes the Start Date field from 9/1/2007 to 9/1/2013.

Handling concurrency

Jane clicks SaveSave first and sees her change when the browser displays the Index page.

John clicks SaveSave on an Edit page that still shows a budget of $350,000.00. What happens next is determined by

how you handle concurrency conflicts.

Optimistic concurrency includes the following options:

You can keep track of which property a user has modified and update only the corresponding columns in the

DB.

In the scenario, no data would be lost. Different properties were updated by the two users. The next time

someone browses the English department, they will see both Jane's and John's changes. This method of

updating can reduce the number of conflicts that could result in data loss. This approach:

Can't avoid data loss if competing changes are made to the same property.

Is generally not practical in a web app. It requires maintaining significant state in order to keep track of all

fetched values and new values. Maintaining large amounts of state can affect app performance.

Can increase app complexity compared to concurrency detection on an entity.

You can let John's change overwrite Jane's change.

The next time someone browses the English department, they will see 9/1/2013 and the fetched

$350,000.00 value. This approach is called a Client Wins or Last in Wins scenario. (All values from the client

take precedence over what's in the data store.) If you don't do any coding for concurrency handling, Client

Wins happens automatically.

You can prevent John's change from being updated in the DB. Typically, the app would:

Display an error message.

Show the current state of the data.

Allow the user to reapply the changes.

This is called a Store Wins scenario. (The data-store values take precedence over the values submitted by the

client.) You implement the Store Wins scenario in this tutorial. This method ensures that no changes are

overwritten without a user being alerted.

When a property is configured as a concurrency token:

EF Core verifies that property has not been modified after it was fetched. The check occurs when SaveChanges

or SaveChangesAsync is called.

If the property has been changed after it was fetched, a DbUpdateConcurrencyException is thrown.

https://docs.microsoft.com/en-us/ef/core/modeling/concurrency
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechanges#microsoft_entityframeworkcore_dbcontext_savechanges
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechangesasync#microsoft_entityframeworkcore_dbcontext_savechangesasync_system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbupdateconcurrencyexception

Detecting concurrency conflicts on a propertyDetecting concurrency conflicts on a property

Detecting concurrency conflicts on a rowDetecting concurrency conflicts on a row

Add a tracking property to the Department entityAdd a tracking property to the Department entity

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Department
 {
 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Name { get; set; }

 [DataType(DataType.Currency)]
 [Column(TypeName = "money")]
 public decimal Budget { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 [Timestamp]
 public byte[] RowVersion { get; set; }

 public Instructor Administrator { get; set; }
 public ICollection<Course> Courses { get; set; }
 }
}

The DB and data model must be configured to support throwing DbUpdateConcurrencyException .

Concurrency conflicts can be detected at the property level with the ConcurrencyCheck attribute. The attribute can

be applied to multiple properties on the model. For more information, see Data Annotations-ConcurrencyCheck.

The [ConcurrencyCheck] attribute isn't used in this tutorial.

To detect concurrency conflicts, a rowversion tracking column is added to the model. rowversion :

Is SQL Server specific. Other databases may not provide a similar feature.

Is used to determine that an entity has not been changed since it was fetched from the DB.

The DB generates a sequential rowversion number that's incremented each time the row is updated. In an Update

or Delete command, the Where clause includes the fetched value of rowversion . If the row being updated has

changed:

rowversion doesn't match the fetched value.

The Update or Delete commands don't find a row because the Where clause includes the fetched rowversion .

A DbUpdateConcurrencyException is thrown.

In EF Core, when no rows have been updated by an Update or Delete command, a concurrency exception is

thrown.

In Models/Department.cs, add a tracking property named RowVersion:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.concurrencycheckattribute
https://docs.microsoft.com/en-us/ef/core/modeling/concurrency#data-annotations
https://docs.microsoft.com/en-us/sql/t-sql/data-types/rowversion-transact-sql

modelBuilder.Entity<Department>()
 .Property<byte[]>("RowVersion")
 .IsRowVersion();

SET NOCOUNT ON;
UPDATE [Department] SET [Name] = @p0
WHERE [DepartmentID] = @p1 AND [RowVersion] = @p2;
SELECT [RowVersion]
FROM [Department]
WHERE @@ROWCOUNT = 1 AND [DepartmentID] = @p1;

SET NOCOUNT ON;
UPDATE [Department] SET [Name] = @p0
WHERE [DepartmentID] = @p1 AND [RowVersion] = @p2;
SELECT [RowVersion]
FROM [Department]
WHERE @@ROWCOUNT = 1 AND [DepartmentID] = @p1;

Update the DBUpdate the DB

dotnet ef migrations add RowVersion
dotnet ef database update

Scaffold the Departments model

The Timestamp attribute specifies that this column is included in the Where clause of Update and Delete

commands. The attribute is called Timestamp because previous versions of SQL Server used a SQL timestamp data

type before the SQL rowversion type replaced it.

The fluent API can also specify the tracking property:

The following code shows a portion of the T-SQL generated by EF Core when the Department name is updated:

The preceding highlighted code shows the WHERE clause containing RowVersion . If the DB RowVersion doesn't

equal the RowVersion parameter (@p2), no rows are updated.

The following highlighted code shows the T-SQL that verifies exactly one row was updated:

@@ROWCOUNT returns the number of rows affected by the last statement. In no rows are updated, EF Core

throws a DbUpdateConcurrencyException .

You can see the T-SQL EF Core generates in the output window of Visual Studio.

Adding the RowVersion property changes the DB model, which requires a migration.

Build the project. Enter the following in a command window:

The preceding commands:

Adds the Migrations/{time stamp}_RowVersion.cs migration file.

Updates the Migrations/SchoolContextModelSnapshot.cs file. The update adds the following highlighted

code to the BuildModel method:

Runs migrations to update the DB.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.timestampattribute
https://docs.microsoft.com/en-us/sql/t-sql/functions/rowcount-transact-sql

Update the Departments Index pageUpdate the Departments Index page

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold the student model and use Department for the model class.

The preceding command scaffolds the Department model. Open the project in Visual Studio.

Build the project.

The scaffolding engine created a RowVersion column for the Index page, but that field shouldn't be displayed. In this

tutorial, the last byte of the RowVersion is displayed to help understand concurrency. The last byte isn't guaranteed

to be unique. A real app wouldn't display RowVersion or the last byte of RowVersion .

Update the Index page:

Replace Index with Departments.

Replace the markup containing RowVersion with the last byte of RowVersion .

Replace FirstMidName with FullName.

The following markup shows the updated page:

@page
@model ContosoUniversity.Pages.Departments.IndexModel

@{
 ViewData["Title"] = "Departments";
}

<h2>Departments</h2>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].Name)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].Budget)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].StartDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department[0].Administrator)
 </th>
 <th>
 RowVersion
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Department) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Budget)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.StartDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Administrator.FullName)
 </td>
 <td>
 @item.RowVersion[7]
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.DepartmentID">Edit |
 <a asp-page="./Details" asp-route-id="@item.DepartmentID">Details |
 <a asp-page="./Delete" asp-route-id="@item.DepartmentID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Update the Edit page modelUpdate the Edit page model

using ContosoUniversity.Data;
using ContosoUniversity.Models;

Update Pages\Departments\Edit.cshtml.cs with the following code:

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Departments
{
 public class EditModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

 public EditModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Department Department { get; set; }
 // Replace ViewData["InstructorID"]
 public SelectList InstructorNameSL { get; set; }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Department = await _context.Departments
 .Include(d => d.Administrator) // eager loading
 .AsNoTracking() // tracking not required
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 if (Department == null)
 {
 return NotFound();
 }

 // Use strongly typed data rather than ViewData.
 InstructorNameSL = new SelectList(_context.Instructors,
 "ID", "FirstMidName");

 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id)
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var departmentToUpdate = await _context.Departments
 .Include(i => i.Administrator)
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 // null means Department was deleted by another user.
 if (departmentToUpdate == null)
 {
 return HandleDeletedDepartment();
 }

 // Update the RowVersion to the value when this entity was
 // fetched. If the entity has been updated after it was
 // fetched, RowVersion won't match the DB RowVersion and
 // a DbUpdateConcurrencyException is thrown.
 // A second postback will make them match, unless a new
 // concurrency issue happens.
 _context.Entry(departmentToUpdate)
 .Property("RowVersion").OriginalValue = Department.RowVersion;

 if (await TryUpdateModelAsync<Department>(

 if (await TryUpdateModelAsync<Department>(
 departmentToUpdate,
 "Department",
 s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
 {
 try
 {
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 catch (DbUpdateConcurrencyException ex)
 {
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty, "Unable to save. " +
 "The department was deleted by another user.");
 return Page();
 }

 var dbValues = (Department)databaseEntry.ToObject();
 await setDbErrorMessage(dbValues, clientValues, _context);

 // Save the current RowVersion so next postback
 // matches unless an new concurrency issue happens.
 Department.RowVersion = (byte[])dbValues.RowVersion;
 // Must clear the model error for the next postback.
 ModelState.Remove("Department.RowVersion");
 }
 }

 InstructorNameSL = new SelectList(_context.Instructors,
 "ID", "FullName", departmentToUpdate.InstructorID);

 return Page();
 }

 private IActionResult HandleDeletedDepartment()
 {
 var deletedDepartment = new Department();
 // ModelState contains the posted data because of the deletion error and will overide the
Department instance values when displaying Page().
 ModelState.AddModelError(string.Empty,
 "Unable to save. The department was deleted by another user.");
 InstructorNameSL = new SelectList(_context.Instructors, "ID", "FullName", Department.InstructorID);
 return Page();
 }

 private async Task setDbErrorMessage(Department dbValues,
 Department clientValues, SchoolContext context)
 {

 if (dbValues.Name != clientValues.Name)
 {
 ModelState.AddModelError("Department.Name",
 $"Current value: {dbValues.Name}");
 }
 if (dbValues.Budget != clientValues.Budget)
 {
 ModelState.AddModelError("Department.Budget",
 $"Current value: {dbValues.Budget:c}");
 }
 if (dbValues.StartDate != clientValues.StartDate)
 {
 ModelState.AddModelError("Department.StartDate",
 $"Current value: {dbValues.StartDate:d}");
 }

 if (dbValues.InstructorID != clientValues.InstructorID)
 {
 Instructor dbInstructor = await _context.Instructors
 .FindAsync(dbValues.InstructorID);
 ModelState.AddModelError("Department.InstructorID",
 $"Current value: {dbInstructor?.FullName}");
 }

 ModelState.AddModelError(string.Empty,
 "The record you attempted to edit "
 + "was modified by another user after you. The "
 + "edit operation was canceled and the current values in the database "
 + "have been displayed. If you still want to edit this record, click "
 + "the Save button again.");
 }
 }
}

public async Task<IActionResult> OnPostAsync(int id)
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 var departmentToUpdate = await _context.Departments
 .Include(i => i.Administrator)
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 // null means Department was deleted by another user.
 if (departmentToUpdate == null)
 {
 return HandleDeletedDepartment();
 }

 // Update the RowVersion to the value when this entity was
 // fetched. If the entity has been updated after it was
 // fetched, RowVersion won't match the DB RowVersion and
 // a DbUpdateConcurrencyException is thrown.
 // A second postback will make them match, unless a new
 // concurrency issue happens.
 _context.Entry(departmentToUpdate)
 .Property("RowVersion").OriginalValue = Department.RowVersion;

To detect a concurrency issue, the OriginalValue is updated with the rowVersion value from the entity it was

fetched. EF Core generates a SQL UPDATE command with a WHERE clause containing the original RowVersion

value. If no rows are affected by the UPDATE command (no rows have the original RowVersion value), a

DbUpdateConcurrencyException exception is thrown.

In the preceding code, Department.RowVersion is the value when the entity was fetched. OriginalValue is the value

in the DB when FirstOrDefaultAsync was called in this method.

The following code gets the client values (the values posted to this method) and the DB values:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyentry.originalvalue#microsoft_entityframeworkcore_changetracking_propertyentry_originalvalue

try
{
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
}
catch (DbUpdateConcurrencyException ex)
{
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty, "Unable to save. " +
 "The department was deleted by another user.");
 return Page();
 }

 var dbValues = (Department)databaseEntry.ToObject();
 await setDbErrorMessage(dbValues, clientValues, _context);

 // Save the current RowVersion so next postback
 // matches unless an new concurrency issue happens.
 Department.RowVersion = (byte[])dbValues.RowVersion;
 // Must clear the model error for the next postback.
 ModelState.Remove("Department.RowVersion");
}

private async Task setDbErrorMessage(Department dbValues,
 Department clientValues, SchoolContext context)
{

 if (dbValues.Name != clientValues.Name)
 {
 ModelState.AddModelError("Department.Name",
 $"Current value: {dbValues.Name}");
 }
 if (dbValues.Budget != clientValues.Budget)
 {
 ModelState.AddModelError("Department.Budget",
 $"Current value: {dbValues.Budget:c}");
 }
 if (dbValues.StartDate != clientValues.StartDate)
 {
 ModelState.AddModelError("Department.StartDate",
 $"Current value: {dbValues.StartDate:d}");
 }
 if (dbValues.InstructorID != clientValues.InstructorID)
 {
 Instructor dbInstructor = await _context.Instructors
 .FindAsync(dbValues.InstructorID);
 ModelState.AddModelError("Department.InstructorID",
 $"Current value: {dbInstructor?.FullName}");
 }

 ModelState.AddModelError(string.Empty,
 "The record you attempted to edit "
 + "was modified by another user after you. The "
 + "edit operation was canceled and the current values in the database "
 + "have been displayed. If you still want to edit this record, click "
 + "the Save button again.");
}

The following code adds a custom error message for each column that has DB values different from what was

posted to OnPostAsync :

try
{
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
}
catch (DbUpdateConcurrencyException ex)
{
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty, "Unable to save. " +
 "The department was deleted by another user.");
 return Page();
 }

 var dbValues = (Department)databaseEntry.ToObject();
 await setDbErrorMessage(dbValues, clientValues, _context);

 // Save the current RowVersion so next postback
 // matches unless an new concurrency issue happens.
 Department.RowVersion = (byte[])dbValues.RowVersion;
 // Must clear the model error for the next postback.
 ModelState.Remove("Department.RowVersion");
}

Update the Edit page

The following highlighted code sets the RowVersion value to the new value retrieved from the DB. The next time the

user clicks SaveSave, only concurrency errors that happen since the last display of the Edit page will be caught.

The ModelState.Remove statement is required because ModelState has the old RowVersion value. In the Razor Page,

the ModelState value for a field takes precedence over the model property values when both are present.

Update Pages/Departments/Edit.cshtml with the following markup:

@page "{id:int}"
@model ContosoUniversity.Pages.Departments.EditModel
@{
 ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Department</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Department.DepartmentID" />
 <input type="hidden" asp-for="Department.RowVersion" />
 <div class="form-group">
 <label>RowVersion</label>
 @Model.Department.RowVersion[7]
 </div>
 <div class="form-group">
 <label asp-for="Department.Name" class="control-label"></label>
 <input asp-for="Department.Name" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Department.Budget" class="control-label"></label>
 <input asp-for="Department.Budget" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Department.StartDate" class="control-label"></label>
 <input asp-for="Department.StartDate" class="form-control" />

 </div>
 <div class="form-group">
 <label class="control-label">Instructor</label>
 <select asp-for="Department.InstructorID" class="form-control"
 asp-items="@Model.InstructorNameSL"></select>

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>
<div>
 <a asp-page="./Index">Back to List
</div>
@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Test concurrency conflicts with the Edit page

The preceding markup:

Updates the page directive from @page to @page "{id:int}" .

Adds a hidden row version. RowVersion must be added so post back binds the value.

Displays the last byte of RowVersion for debugging purposes.

Replaces ViewData with the strongly-typed InstructorNameSL .

Open two browsers instances of Edit on the English department:

Run the app and select Departments.

Right-click the EditEdit hyperlink for the English department and select Open in new tabOpen in new tab.

In the first tab, click the EditEdit hyperlink for the English department.

The two browser tabs display the same information.

Change the name in the first browser tab and click SaveSave.

The browser shows the Index page with the changed value and updated rowVersion indicator. Note the updated

rowVersion indicator, it's displayed on the second postback in the other tab.

Change a different field in the second browser tab.

Click SaveSave. You see error messages for all fields that don't match the DB values:

This browser window didn't intend to change the Name field. Copy and paste the current value (Languages) into the

Name field. Tab out. Client-side validation removes the error message.

Update the Delete page

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Departments
{
 public class DeleteModel : PageModel
 {
 private readonly ContosoUniversity.Data.SchoolContext _context;

Click SaveSave again. The value you entered in the second browser tab is saved. You see the saved values in the Index

page.

Update the Delete page model with the following code:

 public DeleteModel(ContosoUniversity.Data.SchoolContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Department Department { get; set; }
 public string ConcurrencyErrorMessage { get; set; }

 public async Task<IActionResult> OnGetAsync(int id, bool? concurrencyError)
 {
 Department = await _context.Departments
 .Include(d => d.Administrator)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

 if (Department == null)
 {
 return NotFound();
 }

 if (concurrencyError.GetValueOrDefault())
 {
 ConcurrencyErrorMessage = "The record you attempted to delete "
 + "was modified by another user after you selected delete. "
 + "The delete operation was canceled and the current values in the "
 + "database have been displayed. If you still want to delete this "
 + "record, click the Delete button again.";
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync(int id)
 {
 try
 {
 if (await _context.Departments.AnyAsync(
 m => m.DepartmentID == id))
 {
 // Department.rowVersion value is from when the entity
 // was fetched. If it doesn't match the DB, a
 // DbUpdateConcurrencyException exception is thrown.
 _context.Departments.Remove(Department);
 await _context.SaveChangesAsync();
 }
 return RedirectToPage("./Index");
 }
 catch (DbUpdateConcurrencyException)
 {
 return RedirectToPage("./Delete",
 new { concurrencyError = true, id = id });
 }
 }
 }
}

Update the Delete pageUpdate the Delete page

The Delete page detects concurrency conflicts when the entity has changed after it was fetched.

Department.RowVersion is the row version when the entity was fetched. When EF Core creates the SQL DELETE

command, it includes a WHERE clause with RowVersion . If the SQL DELETE command results in zero rows affected:

The RowVersion in the SQL DELETE command doesn't match RowVersion in the DB.

A DbUpdateConcurrencyException exception is thrown.

OnGetAsync is called with the concurrencyError .

@page "{id:int}"
@model ContosoUniversity.Pages.Departments.DeleteModel

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@Model.ConcurrencyErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Department</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Department.Name)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.Name)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.Budget)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.Budget)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.StartDate)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.StartDate)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.RowVersion)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.RowVersion[7])
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Department.Administrator)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Department.Administrator.FullName)
 </dd>
 </dl>

 <form method="post">
 <input type="hidden" asp-for="Department.DepartmentID" />
 <input type="hidden" asp-for="Department.RowVersion" />
 <div class="form-actions no-color">
 <input type="submit" value="Delete" class="btn btn-default" /> |
 <a asp-page="./Index">Back to List
 </div>
</form>
</div>

Update Pages/Departments/Delete.cshtml with the following code:

The preceding code makes the following changes:

Updates the page directive from @page to @page "{id:int}" .

Adds an error message.

Replaces FirstMidName with FullName in the AdministratorAdministrator field.

Test concurrency conflicts with the Delete pageTest concurrency conflicts with the Delete page

Additional resourcesAdditional resources

Changes RowVersion to display the last byte.

Adds a hidden row version. RowVersion must be added so post back binds the value.

Create a test department.

Open two browsers instances of Delete on the test department:

Run the app and select Departments.

Right-click the DeleteDelete hyperlink for the test department and select Open in new tabOpen in new tab.

Click the EditEdit hyperlink for the test department.

The two browser tabs display the same information.

Change the budget in the first browser tab and click SaveSave.

The browser shows the Index page with the changed value and updated rowVersion indicator. Note the updated

rowVersion indicator, it's displayed on the second postback in the other tab.

Delete the test department from the second tab. A concurrency error is display with the current values from the DB.

Clicking DeleteDelete deletes the entity, unless RowVersion has been updated.

See Inheritance on how to inherit a data model.

Concurrency Tokens in EF Core

Handle concurrency in EF Core

YouTube version of this tutorial(Handling Concurrency Conflicts)

YouTube version of this tutorial(Part 2)

YouTube version of this tutorial(Part 3)

P R E V I O U SP R E V I O U S

https://docs.microsoft.com/en-us/ef/core/modeling/concurrency
https://docs.microsoft.com/en-us/ef/core/saving/concurrency
https://youtu.be/EosxHTFgYps
https://www.youtube.com/watch?v=kcxERLnaGO0
https://www.youtube.com/watch?v=d4RbpfvELRs

ASP.NET Core MVC with EF Core - tutorial series
9/22/2020 • 2 minutes to read • Edit Online

This tutorial has notnot been updated to ASP.NET Core 3.0. The Razor Pages version has been updated. For information

on when this might be updated, see this GitHub issue.

This tutorial teaches ASP.NET Core MVC and Entity Framework Core with controllers and views. Razor Pages is an

alternative programming model that was introduced in ASP.NET Core 2.0. For new development, we recommend

Razor Pages over MVC with controllers and views. There is a Razor Pages version of this tutorial. Each tutorial

covers some material the other doesn't:

Some things this MVC tutorial has that the Razor Pages tutorial doesn't:

Implement inheritance in the data model

Perform raw SQL queries

Use dynamic LINQ to simplify code

Some things the Razor Pages tutorial has that this one doesn't:

Use Select method to load related data

A version available for ASP.NET Core 3.0

1. Get started

2. Create, Read, Update, and Delete operations

3. Sorting, filtering, paging, and grouping

4. Migrations

5. Create a complex data model

6. Reading related data

7. Updating related data

8. Handle concurrency conflicts

9. Inheritance

10. Advanced topics

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/index.md
https://github.com/dotnet/AspNetCore.Docs/issues/13920

Tutorial: Get started with EF Core in an ASP.NET MVC
web app
9/22/2020 • 21 minutes to read • Edit Online

Prerequisites

This tutorial has notnot been updated to ASP.NET Core 3.0. The Razor Pages version has been updated. Most of the

code changes for the ASP.NET Core 3.0 and later version of this tutorial:

Are in the Startup.cs and Program.cs files.

Can be found in the Razor Pages version.

For information on when this might be updated, see this GitHub issue.

This tutorial teaches ASP.NET Core MVC and Entity Framework Core with controllers and views. Razor Pages is an

alternative programming model that was introduced in ASP.NET Core 2.0. For new development, we recommend

Razor Pages over MVC with controllers and views. There is a Razor Pages version of this tutorial. Each tutorial

covers some material the other doesn't:

Some things this MVC tutorial has that the Razor Pages tutorial doesn't:

Implement inheritance in the data model

Perform raw SQL queries

Use dynamic LINQ to simplify code

Some things the Razor Pages tutorial has that this one doesn't:

Use Select method to load related data

A version available for ASP.NET Core 3.0

The Contoso University sample web application demonstrates how to create ASP.NET Core 2.2 MVC web

applications using Entity Framework (EF) Core 2.2 and Visual Studio 2017 or 2019.

The sample application is a web site for a fictional Contoso University. It includes functionality such as student

admission, course creation, and instructor assignments. This is the first in a series of tutorials that explain how to

build the Contoso University sample application from scratch.

In this tutorial, you:

Create an ASP.NET Core MVC web app

Set up the site style

Learn about EF Core NuGet packages

Create the data model

Create the database context

Register the context for dependency injection

Initialize the database with test data

Create a controller and views

View the database

.NET Core SDK 2.2

Visual Studio 2019 with the following workloads:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/intro.md
https://github.com/dotnet/AspNetCore.Docs/issues/13920
https://dotnet.microsoft.com/download
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019

Troubleshooting

TIPTIP

Contoso University web app

ASP.NET and web developmentASP.NET and web development workload

.NET Core cross-platform development.NET Core cross-platform development workload

If you run into a problem you can't resolve, you can generally find the solution by comparing your code to the

completed project. For a list of common errors and how to solve them, see the Troubleshooting section of the last

tutorial in the series. If you don't find what you need there, you can post a question to StackOverflow.com for

ASP.NET Core or EF Core.

This is a series of 10 tutorials, each of which builds on what is done in earlier tutorials. Consider saving a copy of the project

after each successful tutorial completion. Then if you run into problems, you can start over from the previous tutorial instead

of going back to the beginning of the whole series.

The application you'll be building in these tutorials is a simple university web site.

Users can view and update student, course, and instructor information. Here are a few of the screens you'll create.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core

Create web app
Open Visual Studio.

From the FileFile menu, select New > ProjectNew > Project.

From the left pane, select Installed > Visual C# > WebInstalled > Visual C# > Web.

Select the ASP.NET Core Web ApplicationASP.NET Core Web Application project template.

Enter ContosoUniversityContosoUniversity as the name and click OKOK.

Wait for the New ASP.NET Core Web ApplicationNew ASP.NET Core Web Application dialog to appear.

Select .NET Core.NET Core, ASP.NET Core 2.2ASP.NET Core 2.2 and the Web Application (Model-View-Controller)Web Application (Model-View-Controller) template.

Set up the site style

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Contoso University</title>

 <environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.1.3/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute"
 crossorigin="anonymous"
 integrity="sha256-eSi1q2PG6J7g7ib17yAaWMcrr5GrtohYChqibrV7PBE="/>
 </environment>
 <link rel="stylesheet" href="~/css/site.css" />
</head>

Make sure AuthenticationAuthentication is set to No AuthenticationNo Authentication.

Select OKOK

A few simple changes will set up the site menu, layout, and home page.

Open Views/Shared/_Layout.cshtml and make the following changes:

Change each occurrence of "ContosoUniversity" to "Contoso University". There are three occurrences.

Add menu entries for AboutAbout, StudentsStudents , CoursesCourses , InstructorsInstructors , and Depar tmentsDepar tments , and delete the Pr ivacyPrivacy

menu entry.

The changes are highlighted.

</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-shadow
mb-3">
 <div class="container">
 Contoso
University
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-
collapse" aria-controls="navbarSupportedContent"
 aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="About">About

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Students" asp-
action="Index">Students

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Courses" asp-
action="Index">Courses

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Instructors" asp-
action="Index">Instructors

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Departments" asp-
action="Index">Departments

 </div>
 </div>
 </nav>
 </header>
 <div class="container">
 <partial name="_CookieConsentPartial" />
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>

 <footer class="border-top footer text-muted">
 <div class="container">
 © 2019 - Contoso University - <a asp-area="" asp-controller="Home" asp-
action="Privacy">Privacy
 </div>
 </footer>

 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js"></script>
 </environment>
 <environment exclude="Development">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=">
 </script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4.1.3/js/bootstrap.bundle.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha256-E/V4cWE4qvAeO5MOhjtGtqDzPndRO1LBk8lJ/PR7CA4=">
 </script>
 </environment>
 <script src="~/js/site.js" asp-append-version="true"></script>

 @RenderSection("Scripts", required: false)
</body>
</html>

@{
 ViewData["Title"] = "Home Page";
}

<div class="jumbotron">
 <h1>Contoso University</h1>
</div>
<div class="row">
 <div class="col-md-4">
 <h2>Welcome to Contoso University</h2>
 <p>
 Contoso University is a sample application that
 demonstrates how to use Entity Framework Core in an
 ASP.NET Core MVC web application.
 </p>
 </div>
 <div class="col-md-4">
 <h2>Build it from scratch</h2>
 <p>You can build the application by following the steps in a series of tutorials.</p>
 <p>See the
tutorial »</p>
 </div>
 <div class="col-md-4">
 <h2>Download it</h2>
 <p>You can download the completed project from GitHub.</p>
 <p><a class="btn btn-default"
href="https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final">See
project source code »</p>
 </div>
</div>

In Views/Home/Index.cshtml, replace the contents of the file with the following code to replace the text about

ASP.NET and MVC with text about this application:

Press CTRL+F5 to run the project or choose Debug > Star t Without DebuggingDebug > Star t Without Debugging from the menu. You see the

home page with tabs for the pages you'll create in these tutorials.

About EF Core NuGet packages

Create the data model

To add EF Core support to a project, install the database provider that you want to target. This tutorial uses SQL

Server, and the provider package is Microsoft.EntityFrameworkCore.SqlServer. This package is included in the

Microsoft.AspNetCore.App metapackage, so you don't need to reference the package.

The EF SQL Server package and its dependencies (Microsoft.EntityFrameworkCore and

Microsoft.EntityFrameworkCore.Relational) provide runtime support for EF. You'll add a tooling package later, in the

Migrations tutorial.

For information about other database providers that are available for Entity Framework Core, see Database

providers.

Next you'll create entity classes for the Contoso University application. You'll start with the following three entities.

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.SqlServer/
https://docs.microsoft.com/en-us/ef/core/providers/

The Student entityThe Student entity

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

There's a one-to-many relationship between Student and Enrollment entities, and there's a one-to-many

relationship between Course and Enrollment entities. In other words, a student can be enrolled in any number of

courses, and a course can have any number of students enrolled in it.

In the following sections you'll create a class for each one of these entities.

In the Models folder, create a class file named Student.cs and replace the template code with the following code.

The ID property will become the primary key column of the database table that corresponds to this class. By

default, the Entity Framework interprets a property that's named ID or classnameID as the primary key.

The Enrollments property is a navigation property. Navigation properties hold other entities that are related to this

entity. In this case, the Enrollments property of a Student entity will hold all of the Enrollment entities that are

related to that Student entity. In other words, if a given Student row in the database has two related Enrollment

rows (rows that contain that student's primary key value in their StudentID foreign key column), that Student

entity's Enrollments navigation property will contain those two Enrollment entities.

If a navigation property can hold multiple entities (as in many-to-many or one-to-many relationships), its type must

be a list in which entries can be added, deleted, and updated, such as ICollection<T> . You can specify

ICollection<T> or a type such as List<T> or HashSet<T> . If you specify ICollection<T> , EF creates a HashSet<T>

collection by default.

https://docs.microsoft.com/en-us/ef/core/modeling/relationships

The Enrollment entityThe Enrollment entity

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

The Course entityThe Course entity

In the Models folder, create Enrollment.cs and replace the existing code with the following code:

The EnrollmentID property will be the primary key; this entity uses the classnameID pattern instead of ID by itself

as you saw in the Student entity. Ordinarily you would choose one pattern and use it throughout your data model.

Here, the variation illustrates that you can use either pattern. In a later tutorial, you'll see how using ID without

classname makes it easier to implement inheritance in the data model.

The Grade property is an enum . The question mark after the Grade type declaration indicates that the Grade

property is nullable. A grade that's null is different from a zero grade -- null means a grade isn't known or hasn't

been assigned yet.

The StudentID property is a foreign key, and the corresponding navigation property is Student . An Enrollment

entity is associated with one Student entity, so the property can only hold a single Student entity (unlike the

Student.Enrollments navigation property you saw earlier, which can hold multiple Enrollment entities).

The CourseID property is a foreign key, and the corresponding navigation property is Course . An Enrollment

entity is associated with one Course entity.

Entity Framework interprets a property as a foreign key property if it's named

<navigation property name><primary key property name> (for example, StudentID for the Student navigation

property since the Student entity's primary key is ID). Foreign key properties can also be named simply

<primary key property name> (for example, CourseID since the Course entity's primary key is CourseID).

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Create the database context

In the Models folder, create Course.cs and replace the existing code with the following code:

The Enrollments property is a navigation property. A Course entity can be related to any number of Enrollment

entities.

We'll say more about the DatabaseGenerated attribute in a later tutorial in this series. Basically, this attribute lets you

enter the primary key for the course rather than having the database generate it.

The main class that coordinates Entity Framework functionality for a given data model is the database context class.

You create this class by deriving from the Microsoft.EntityFrameworkCore.DbContext class. In your code you specify

which entities are included in the data model. You can also customize certain Entity Framework behavior. In this

project, the class is named SchoolContext .

In the project folder, create a folder named Data.

In the Data folder create a new class file named SchoolContext.cs, and replace the template code with the following

code:

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 }
}

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 }
 }
}

Register the SchoolContext

This code creates a DbSet property for each entity set. In Entity Framework terminology, an entity set typically

corresponds to a database table, and an entity corresponds to a row in the table.

You could've omitted the DbSet<Enrollment> and DbSet<Course> statements and it would work the same. The Entity

Framework would include them implicitly because the Student entity references the Enrollment entity and the

Enrollment entity references the Course entity.

When the database is created, EF creates tables that have names the same as the DbSet property names. Property

names for collections are typically plural (Students rather than Student), but developers disagree about whether

table names should be pluralized or not. For these tutorials you'll override the default behavior by specifying

singular table names in the DbContext. To do that, add the following highlighted code after the last DbSet property.

ASP.NET Core implements dependency injection by default. Services (such as the EF database context) are registered

with dependency injection during application startup. Components that require these services (such as MVC

controllers) are provided these services via constructor parameters. You'll see the controller constructor code that

gets a context instance later in this tutorial.

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddDbContext<SchoolContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddMvc();
}

using ContosoUniversity.Data;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Http;

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity1;Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

SQL Server Express LocalDBSQL Server Express LocalDB

Initialize DB with test data

To register SchoolContext as a service, open Startup.cs, and add the highlighted lines to the ConfigureServices

method.

The name of the connection string is passed in to the context by calling a method on a DbContextOptionsBuilder

object. For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Add using statements for ContosoUniversity.Data and Microsoft.EntityFrameworkCore namespaces, and then build

the project.

Open the appsettings.json file and add a connection string as shown in the following example.

The connection string specifies a SQL Server LocalDB database. LocalDB is a lightweight version of the SQL Server

Express Database Engine and is intended for application development, not production use. LocalDB starts on

demand and runs in user mode, so there's no complex configuration. By default, LocalDB creates .mdf database files

in the C:/Users/<user> directory.

The Entity Framework will create an empty database for you. In this section, you write a method that's called after

the database is created in order to populate it with test data.

Here you'll use the EnsureCreated method to automatically create the database. In a later tutorial you'll see how to

handle model changes by using Code First Migrations to change the database schema instead of dropping and re-

creating the database.

using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 context.Database.EnsureCreated();

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2005-09-
01")},
 new Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2003-09-01")},
 new Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002-09-01")},
 new Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2001-09-01")},
 new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2003-09-01")},
 new Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2005-09-01")}
 };
 foreach (Student s in students)
 {
 context.Students.Add(s);
 }
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course{CourseID=1050,Title="Chemistry",Credits=3},
 new Course{CourseID=4022,Title="Microeconomics",Credits=3},
 new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
 new Course{CourseID=1045,Title="Calculus",Credits=4},
 new Course{CourseID=3141,Title="Trigonometry",Credits=4},
 new Course{CourseID=2021,Title="Composition",Credits=3},
 new Course{CourseID=2042,Title="Literature",Credits=4}
 };
 foreach (Course c in courses)
 {
 context.Courses.Add(c);
 }
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
 new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
 new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
 new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
 new Enrollment{StudentID=3,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
 new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
 new Enrollment{StudentID=6,CourseID=1045},

In the Data folder, create a new class file named DbInitializer.cs and replace the template code with the following

code, which causes a database to be created when needed and loads test data into the new database.

 new Enrollment{StudentID=6,CourseID=1045},
 new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
 };
 foreach (Enrollment e in enrollments)
 {
 context.Enrollments.Add(e);
 }
 context.SaveChanges();
 }
 }
}

public static void Main(string[] args)
{
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 try
 {
 var context = services.GetRequiredService<SchoolContext>();
 DbInitializer.Initialize(context);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred while seeding the database.");
 }
 }

 host.Run();
}

using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Data;

Create controller and views

The code checks if there are any students in the database, and if not, it assumes the database is new and needs to be

seeded with test data. It loads test data into arrays rather than List<T> collections to optimize performance.

In Program.cs, modify the Main method to do the following on application startup:

Get a database context instance from the dependency injection container.

Call the seed method, passing to it the context.

Dispose the context when the seed method is done.

Add using statements:

In older tutorials, you may see similar code in the Configure method in Startup.cs. We recommend that you use the

Configure method only to set up the request pipeline. Application startup code belongs in the Main method.

Now the first time you run the application, the database will be created and seeded with test data. Whenever you

change your data model, you can delete the database, update your seed method, and start afresh with a new

database the same way. In later tutorials, you'll see how to modify the database when the data model changes,

without deleting and re-creating it.

Next, you'll use the scaffolding engine in Visual Studio to add an MVC controller and views that will use EF to query

and save data.

The automatic creation of CRUD action methods and views is known as scaffolding. Scaffolding differs from code

generation in that the scaffolded code is a starting point that you can modify to suit your own requirements,

whereas you typically don't modify generated code. When you need to customize generated code, you use partial

classes or you regenerate the code when things change.

Right-click the ControllersControllers folder in Solution ExplorerSolution Explorer and select Add > New Scaffolded ItemAdd > New Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog box:

Select MVC controller with views, using Entity FrameworkMVC controller with views, using Entity Framework .

Click AddAdd. The Add MVC Controller with views, using Entity FrameworkAdd MVC Controller with views, using Entity Framework dialog box appears.

In Model classModel class select StudentStudent.

In Data context classData context class select SchoolContextSchoolContext.

Accept the default StudentsControllerStudentsController as the name.

Click AddAdd.

When you click AddAdd, the Visual Studio scaffolding engine creates a StudentsController.cs file and a set of

views (.cshtml files) that work with the controller.

(The scaffolding engine can also create the database context for you if you don't create it manually first as you did

earlier for this tutorial. You can specify a new context class in the Add ControllerAdd Controller box by clicking the plus sign to

the right of Data context classData context class . Visual Studio will then create your DbContext class as well as the controller and

views.)

You'll notice that the controller takes a SchoolContext as a constructor parameter.

namespace ContosoUniversity.Controllers
{
 public class StudentsController : Controller
 {
 private readonly SchoolContext _context;

 public StudentsController(SchoolContext context)
 {
 _context = context;
 }

public async Task<IActionResult> Index()
{
 return View(await _context.Students.ToListAsync());
}

ASP.NET Core dependency injection takes care of passing an instance of SchoolContext into the controller. You

configured that in the Startup.cs file earlier.

The controller contains an Index action method, which displays all students in the database. The method gets a list

of students from the Students entity set by reading the Students property of the database context instance:

You'll learn about the asynchronous programming elements in this code later in the tutorial.

The Views/Students/Index.cshtml view displays this list in a table:

@model IEnumerable<ContosoUniversity.Models.Student>

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.LastName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.FirstMidName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.EnrollmentDate)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Press CTRL+F5 to run the project or choose Debug > Star t Without DebuggingDebug > Star t Without Debugging from the menu.

Click the Students tab to see the test data that the DbInitializer.Initialize method inserted. Depending on how

narrow your browser window is, you'll see the Students tab link at the top of the page or you'll have to click the

navigation icon in the upper right corner to see the link.

View the database
When you started the application, the DbInitializer.Initialize method calls EnsureCreated . EF saw that there was

no database and so it created one, then the remainder of the Initialize method code populated the database with

data. You can use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX) to view the database in Visual Studio.

Close the browser.

If the SSOX window isn't already open, select it from the ViewView menu in Visual Studio.

In SSOX, click (localdb)\MSSQLLocalDB > Databases(localdb)\MSSQLLocalDB > Databases , and then click the entry for the database name that's in

the connection string in your appsettings.json file.

Expand the TablesTables node to see the tables in your database.

Conventions

Asynchronous code

Right-click the StudentStudent table and click View DataView Data to see the columns that were created and the rows that were

inserted into the table.

The .mdf and .ldf database files are in the C:\Users\<yourusername> folder.

Because you're calling EnsureCreated in the initializer method that runs on app start, you could now make a change

to the Student class, delete the database, run the application again, and the database would automatically be re-

created to match your change. For example, if you add an EmailAddress property to the Student class, you'll see a

new EmailAddress column in the re-created table.

The amount of code you had to write in order for the Entity Framework to be able to create a complete database for

you is minimal because of the use of conventions, or assumptions that the Entity Framework makes.

The names of DbSet properties are used as table names. For entities not referenced by a DbSet property,

entity class names are used as table names.

Entity property names are used for column names.

Entity properties that are named ID or classnameID are recognized as primary key properties.

A property is interpreted as a foreign key property if it's named <navigation property name><primary key

property name> (for example, StudentID for the Student navigation property since the Student entity's

primary key is ID). Foreign key properties can also be named simply <primary key property name> (for

example, EnrollmentID since the Enrollment entity's primary key is EnrollmentID).

Conventional behavior can be overridden. For example, you can explicitly specify table names, as you saw earlier in

this tutorial. And you can set column names and set any property as primary key or foreign key, as you'll see in a

later tutorial in this series.

public async Task<IActionResult> Index()
{
 return View(await _context.Students.ToListAsync());
}

Get the code

Next steps

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available threads

might be in use. When that happens, the server can't process new requests until the threads are freed up. With

synchronous code, many threads may be tied up while they aren't actually doing any work because they're waiting

for I/O to complete. With asynchronous code, when a process is waiting for I/O to complete, its thread is freed up

for the server to use for processing other requests. As a result, asynchronous code enables server resources to be

used more efficiently, and the server is enabled to handle more traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time, but for low traffic situations the

performance hit is negligible, while for high traffic situations, the potential performance improvement is substantial.

In the following code, the async keyword, Task<T> return value, await keyword, and ToListAsync method make

the code execute asynchronously.

The async keyword tells the compiler to generate callbacks for parts of the method body and to

automatically create the Task<IActionResult> object that's returned.

The return type Task<IActionResult> represents ongoing work with a result of type IActionResult .

The await keyword causes the compiler to split the method into two parts. The first part ends with the

operation that's started asynchronously. The second part is put into a callback method that's called when the

operation completes.

ToListAsync is the asynchronous version of the ToList extension method.

Some things to be aware of when you are writing asynchronous code that uses the Entity Framework:

Only statements that cause queries or commands to be sent to the database are executed asynchronously.

That includes, for example, ToListAsync , SingleOrDefaultAsync , and SaveChangesAsync . It doesn't include, for

example, statements that just change an IQueryable , such as

var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF context isn't thread safe: don't try to do multiple operations in parallel. When you call any async EF

method, always use the await keyword.

If you want to take advantage of the performance benefits of async code, make sure that any library

packages that you're using (such as for paging), also use async if they call any Entity Framework methods

that cause queries to be sent to the database.

For more information about asynchronous programming in .NET, see Async Overview.

Download or view the completed application.

In this tutorial, you:

Created ASP.NET Core MVC web app

Set up the site style

https://docs.microsoft.com/en-us/dotnet/articles/standard/async
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final

Learned about EF Core NuGet packages

Created the data model

Created the database context

Registered the SchoolContext

Initialized DB with test data

Created controller and views

Viewed the database

In the following tutorial, you'll learn how to perform basic CRUD (create, read, update, delete) operations.

Advance to the next tutorial to learn how to perform basic CRUD (create, read, update, delete) operations.

Implement basic CRUD functionality

Tutorial: Implement CRUD Functionality - ASP.NET
MVC with EF Core
9/22/2020 • 19 minutes to read • Edit Online

NOTENOTE

Prerequisites

Customize the Details page

In the previous tutorial, you created an MVC application that stores and displays data using the Entity Framework

and SQL Server LocalDB. In this tutorial, you'll review and customize the CRUD (create, read, update, delete) code

that the MVC scaffolding automatically creates for you in controllers and views.

It's a common practice to implement the repository pattern in order to create an abstraction layer between your controller

and the data access layer. To keep these tutorials simple and focused on teaching how to use the Entity Framework itself, they

don't use repositories. For information about repositories with EF, see the last tutorial in this series.

In this tutorial, you:

Customize the Details page

Update the Create page

Update the Edit page

Update the Delete page

Close database connections

Get started with EF Core and ASP.NET Core MVC

The scaffolded code for the Students Index page left out the Enrollments property, because that property holds a

collection. In the DetailsDetails page, you'll display the contents of the collection in an HTML table.

In Controllers/StudentsController.cs, the action method for the Details view uses the SingleOrDefaultAsync method

to retrieve a single Student entity. Add code that calls Include . ThenInclude , and AsNoTracking methods, as

shown in the following highlighted code.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/crud.md

public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var student = await _context.Students
 .Include(s => s.Enrollments)
 .ThenInclude(e => e.Course)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);

 if (student == null)
 {
 return NotFound();
 }

 return View(student);
}

Route dataRoute data

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

http://localhost:1230/Instructor/Index/1?courseID=2021

http://localhost:1230/Instructor/Index?id=1&CourseID=2021

<a asp-action="Edit" asp-route-id="@item.ID">Edit

The Include and ThenInclude methods cause the context to load the Student.Enrollments navigation property,

and within each enrollment the Enrollment.Course navigation property. You'll learn more about these methods in

the read related data tutorial.

The AsNoTracking method improves performance in scenarios where the entities returned won't be updated in the

current context's lifetime. You'll learn more about AsNoTracking at the end of this tutorial.

The key value that's passed to the Details method comes from route data. Route data is data that the model

binder found in a segment of the URL. For example, the default route specifies controller, action, and id segments:

In the following URL, the default route maps Instructor as the controller, Index as the action, and 1 as the id; these

are route data values.

The last part of the URL ("?courseID=2021") is a query string value. The model binder will also pass the ID value to

the Index method id parameter if you pass it as a query string value:

In the Index page, hyperlink URLs are created by tag helper statements in the Razor view. In the following Razor

code, the id parameter matches the default route, so id is added to the route data.

This generates the following HTML when item.ID is 6:

Edit

<a asp-action="Edit" asp-route-studentID="@item.ID">Edit

Edit

Add enrollments to the Details viewAdd enrollments to the Details view

<dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.LastName)
</dt>
<dd class="col-sm-10">
 @Html.DisplayFor(model => model.LastName)
</dd>

<dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Enrollments)
</dt>
<dd class="col-sm-10">
 <table class="table">
 <tr>
 <th>Course Title</th>
 <th>Grade</th>
 </tr>
 @foreach (var item in Model.Enrollments)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Course.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Grade)
 </td>
 </tr>
 }
 </table>
</dd>

In the following Razor code, studentID doesn't match a parameter in the default route, so it's added as a query

string.

This generates the following HTML when item.ID is 6:

For more information about tag helpers, see Tag Helpers in ASP.NET Core.

Open Views/Students/Details.cshtml. Each field is displayed using DisplayNameFor and DisplayFor helpers, as

shown in the following example:

After the last field and immediately before the closing </dl> tag, add the following code to display a list of

enrollments:

If code indentation is wrong after you paste the code, press CTRL-K-D to correct it.

This code loops through the entities in the Enrollments navigation property. For each enrollment, it displays the

course title and the grade. The course title is retrieved from the Course entity that's stored in the Course navigation

property of the Enrollments entity.

Run the app, select the StudentsStudents tab, and click the DetailsDetails link for a student. You see the list of courses and grades

Update the Create page

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
 [Bind("EnrollmentDate,FirstMidName,LastName")] Student student)
{
 try
 {
 if (ModelState.IsValid)
 {
 _context.Add(student);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists " +
 "see your system administrator.");
 }
 return View(student);
}

for the selected student:

In StudentsController.cs, modify the HttpPost Create method by adding a try-catch block and removing ID from the

Bind attribute.

This code adds the Student entity created by the ASP.NET Core MVC model binder to the Students entity set and

then saves the changes to the database. (Model binder refers to the ASP.NET Core MVC functionality that makes it

easier for you to work with data submitted by a form; a model binder converts posted form values to CLR types and

passes them to the action method in parameters. In this case, the model binder instantiates a Student entity for you

using property values from the Form collection.)

Security note about overpostingSecurity note about overposting

public class Student
{
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }
 public string Secret { get; set; }
}

You removed ID from the Bind attribute because ID is the primary key value which SQL Server will set

automatically when the row is inserted. Input from the user doesn't set the ID value.

Other than the Bind attribute, the try-catch block is the only change you've made to the scaffolded code. If an

exception that derives from DbUpdateException is caught while the changes are being saved, a generic error

message is displayed. DbUpdateException exceptions are sometimes caused by something external to the

application rather than a programming error, so the user is advised to try again. Although not implemented in this

sample, a production quality application would log the exception. For more information, see the Log for insightLog for insight

section in Monitoring and Telemetry (Building Real-World Cloud Apps with Azure).

The ValidateAntiForgeryToken attribute helps prevent cross-site request forgery (CSRF) attacks. The token is

automatically injected into the view by the FormTagHelper and is included when the form is submitted by the user.

The token is validated by the ValidateAntiForgeryToken attribute. For more information, see Prevent Cross-Site

Request Forgery (XSRF/CSRF) attacks in ASP.NET Core.

The Bind attribute that the scaffolded code includes on the Create method is one way to protect against

overposting in create scenarios. For example, suppose the Student entity includes a Secret property that you don't

want this web page to set.

Even if you don't have a Secret field on the web page, a hacker could use a tool such as Fiddler, or write some

JavaScript, to post a Secret form value. Without the Bind attribute limiting the fields that the model binder uses

when it creates a Student instance, the model binder would pick up that Secret form value and use it to create the

Student entity instance. Then whatever value the hacker specified for the Secret form field would be updated in

your database. The following image shows the Fiddler tool adding the Secret field (with the value "OverPost") to

the posted form values.

https://docs.microsoft.com/en-us/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry

Test the Create pageTest the Create page

The value "OverPost" would then be successfully added to the Secret property of the inserted row, although you

never intended that the web page be able to set that property.

You can prevent overposting in edit scenarios by reading the entity from the database first and then calling

TryUpdateModel , passing in an explicit allowed properties list. That's the method used in these tutorials.

An alternative way to prevent overposting that's preferred by many developers is to use view models rather than

entity classes with model binding. Include only the properties you want to update in the view model. Once the MVC

model binder has finished, copy the view model properties to the entity instance, optionally using a tool such as

AutoMapper. Use _context.Entry on the entity instance to set its state to Unchanged , and then set

Property("PropertyName").IsModified to true on each entity property that's included in the view model. This method

works in both edit and create scenarios.

The code in Views/Students/Create.cshtml uses label , input , and span (for validation messages) tag helpers for

each field.

Run the app, select the StudentsStudents tab, and click Create NewCreate New .

Enter names and a date. Try entering an invalid date if your browser lets you do that. (Some browsers force you to

use a date picker.) Then click CreateCreate to see the error message.

This is server-side validation that you get by default; in a later tutorial you'll see how to add attributes that will

generate code for client-side validation also. The following highlighted code shows the model validation check in

the Create method.

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
 [Bind("EnrollmentDate,FirstMidName,LastName")] Student student)
{
 try
 {
 if (ModelState.IsValid)
 {
 _context.Add(student);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists " +
 "see your system administrator.");
 }
 return View(student);
}

Update the Edit page

Recommended HttpPost Edit code: Read and updateRecommended HttpPost Edit code: Read and update

Change the date to a valid value and click CreateCreate to see the new student appear in the IndexIndex page.

In StudentController.cs, the HttpGet Edit method (the one without the HttpPost attribute) uses the

SingleOrDefaultAsync method to retrieve the selected Student entity, as you saw in the Details method. You don't

need to change this method.

Replace the HttpPost Edit action method with the following code.

[HttpPost, ActionName("Edit")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> EditPost(int? id)
{
 if (id == null)
 {
 return NotFound();
 }
 var studentToUpdate = await _context.Students.FirstOrDefaultAsync(s => s.ID == id);
 if (await TryUpdateModelAsync<Student>(
 studentToUpdate,
 "",
 s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
 {
 try
 {
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists, " +
 "see your system administrator.");
 }
 }
 return View(studentToUpdate);
}

Alternative HttpPost Edit code: Create and attachAlternative HttpPost Edit code: Create and attach

These changes implement a security best practice to prevent overposting. The scaffolder generated a Bind

attribute and added the entity created by the model binder to the entity set with a Modified flag. That code isn't

recommended for many scenarios because the Bind attribute clears out any pre-existing data in fields not listed in

the Include parameter.

The new code reads the existing entity and calls TryUpdateModel to update fields in the retrieved entity based on

user input in the posted form data. The Entity Framework's automatic change tracking sets the Modified flag on the

fields that are changed by form input. When the SaveChanges method is called, the Entity Framework creates SQL

statements to update the database row. Concurrency conflicts are ignored, and only the table columns that were

updated by the user are updated in the database. (A later tutorial shows how to handle concurrency conflicts.)

As a best practice to prevent overposting, the fields that you want to be updateable by the EditEdit page are declared in

the TryUpdateModel parameters. (The empty string preceding the list of fields in the parameter list is for a prefix to

use with the form fields names.) Currently there are no extra fields that you're protecting, but listing the fields that

you want the model binder to bind ensures that if you add fields to the data model in the future, they're

automatically protected until you explicitly add them here.

As a result of these changes, the method signature of the HttpPost Edit method is the same as the HttpGet Edit

method; therefore you've renamed the method EditPost .

The recommended HttpPost edit code ensures that only changed columns get updated and preserves data in

properties that you don't want included for model binding. However, the read-first approach requires an extra

database read, and can result in more complex code for handling concurrency conflicts. An alternative is to attach

an entity created by the model binder to the EF context and mark it as modified. (Don't update your project with this

code, it's only shown to illustrate an optional approach.)

public async Task<IActionResult> Edit(int id, [Bind("ID,EnrollmentDate,FirstMidName,LastName")] Student
student)
{
 if (id != student.ID)
 {
 return NotFound();
 }
 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(student);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists, " +
 "see your system administrator.");
 }
 }
 return View(student);
}

Entity StatesEntity States

You can use this approach when the web page UI includes all of the fields in the entity and can update any of them.

The scaffolded code uses the create-and-attach approach but only catches DbUpdateConcurrencyException exceptions

and returns 404 error codes. The example shown catches any database update exception and displays an error

message.

The database context keeps track of whether entities in memory are in sync with their corresponding rows in the

database, and this information determines what happens when you call the SaveChanges method. For example,

when you pass a new entity to the Add method, that entity's state is set to Added . Then when you call the

SaveChanges method, the database context issues a SQL INSERT command.

An entity may be in one of the following states:

Added . The entity doesn't yet exist in the database. The SaveChanges method issues an INSERT statement.

Unchanged . Nothing needs to be done with this entity by the SaveChanges method. When you read an entity

from the database, the entity starts out with this status.

Modified . Some or all of the entity's property values have been modified. The SaveChanges method issues

an UPDATE statement.

Deleted . The entity has been marked for deletion. The SaveChanges method issues a DELETE statement.

Detached . The entity isn't being tracked by the database context.

In a desktop application, state changes are typically set automatically. You read an entity and make changes to some

of its property values. This causes its entity state to automatically be changed to Modified . Then when you call

SaveChanges , the Entity Framework generates a SQL UPDATE statement that updates only the actual properties that

you changed.

In a web app, the DbContext that initially reads an entity and displays its data to be edited is disposed after a page is

rendered. When the HttpPost Edit action method is called, a new web request is made and you have a new

instance of the DbContext . If you re-read the entity in that new context, you simulate desktop processing.

Test the Edit pageTest the Edit page

Update the Delete page

But if you don't want to do the extra read operation, you have to use the entity object created by the model binder.

The simplest way to do this is to set the entity state to Modified as is done in the alternative HttpPost Edit code

shown earlier. Then when you call SaveChanges , the Entity Framework updates all columns of the database row,

because the context has no way to know which properties you changed.

If you want to avoid the read-first approach, but you also want the SQL UPDATE statement to update only the fields

that the user actually changed, the code is more complex. You have to save the original values in some way (such as

by using hidden fields) so that they're available when the HttpPost Edit method is called. Then you can create a

Student entity using the original values, call the Attach method with that original version of the entity, update the

entity's values to the new values, and then call SaveChanges .

Run the app, select the StudentsStudents tab, then click an EditEdit hyperlink.

Change some of the data and click SaveSave. The IndexIndex page opens and you see the changed data.

In StudentController.cs, the template code for the HttpGet Delete method uses the SingleOrDefaultAsync method

to retrieve the selected Student entity, as you saw in the Details and Edit methods. However, to implement a custom

error message when the call to SaveChanges fails, you'll add some functionality to this method and its

corresponding view.

As you saw for update and create operations, delete operations require two action methods. The method that's

called in response to a GET request displays a view that gives the user a chance to approve or cancel the delete

operation. If the user approves it, a POST request is created. When that happens, the HttpPost Delete method is

called and then that method actually performs the delete operation.

You'll add a try-catch block to the HttpPost Delete method to handle any errors that might occur when the

database is updated. If an error occurs, the HttpPost Delete method calls the HttpGet Delete method, passing it a

parameter that indicates that an error has occurred. The HttpGet Delete method then redisplays the confirmation

public async Task<IActionResult> Delete(int? id, bool? saveChangesError = false)
{
 if (id == null)
 {
 return NotFound();
 }

 var student = await _context.Students
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);
 if (student == null)
 {
 return NotFound();
 }

 if (saveChangesError.GetValueOrDefault())
 {
 ViewData["ErrorMessage"] =
 "Delete failed. Try again, and if the problem persists " +
 "see your system administrator.";
 }

 return View(student);
}

The read-first approach to HttpPost DeleteThe read-first approach to HttpPost Delete

[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 var student = await _context.Students.FindAsync(id);
 if (student == null)
 {
 return RedirectToAction(nameof(Index));
 }

 try
 {
 _context.Students.Remove(student);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 return RedirectToAction(nameof(Delete), new { id = id, saveChangesError = true });
 }
}

page along with the error message, giving the user an opportunity to cancel or try again.

Replace the HttpGet Delete action method with the following code, which manages error reporting.

This code accepts an optional parameter that indicates whether the method was called after a failure to save

changes. This parameter is false when the HttpGet Delete method is called without a previous failure. When it's

called by the HttpPost Delete method in response to a database update error, the parameter is true and an error

message is passed to the view.

Replace the HttpPost Delete action method (named DeleteConfirmed) with the following code, which performs the

actual delete operation and catches any database update errors.

This code retrieves the selected entity, then calls the Remove method to set the entity's status to Deleted . When

The create-and-attach approach to HttpPost DeleteThe create-and-attach approach to HttpPost Delete

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 try
 {
 Student studentToDelete = new Student() { ID = id };
 _context.Entry(studentToDelete).State = EntityState.Deleted;
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 return RedirectToAction(nameof(Delete), new { id = id, saveChangesError = true });
 }
}

Update the Delete viewUpdate the Delete view

<h2>Delete</h2>
<p class="text-danger">@ViewData["ErrorMessage"]</p>
<h3>Are you sure you want to delete this?</h3>

SaveChanges is called, a SQL DELETE command is generated.

If improving performance in a high-volume application is a priority, you could avoid an unnecessary SQL query by

instantiating a Student entity using only the primary key value and then setting the entity state to Deleted . That's

all that the Entity Framework needs in order to delete the entity. (Don't put this code in your project; it's here just to

illustrate an alternative.)

If the entity has related data that should also be deleted, make sure that cascade delete is configured in the

database. With this approach to entity deletion, EF might not realize there are related entities to be deleted.

In Views/Student/Delete.cshtml, add an error message between the h2 heading and the h3 heading, as shown in the

following example:

Run the app, select the StudentsStudents tab, and click a DeleteDelete hyperlink:

Close database connections

Handle transactions

No-tracking queries

Click DeleteDelete. The Index page is displayed without the deleted student. (You'll see an example of the error handling

code in action in the concurrency tutorial.)

To free up the resources that a database connection holds, the context instance must be disposed as soon as

possible when you are done with it. The ASP.NET Core built-in dependency injection takes care of that task for you.

In Startup.cs, you call the AddDbContext extension method to provision the DbContext class in the ASP.NET Core DI

container. That method sets the service lifetime to Scoped by default. Scoped means the context object lifetime

coincides with the web request life time, and the Dispose method will be called automatically at the end of the web

request.

By default the Entity Framework implicitly implements transactions. In scenarios where you make changes to

multiple rows or tables and then call SaveChanges , the Entity Framework automatically makes sure that either all of

your changes succeed or they all fail. If some changes are done first and then an error happens, those changes are

automatically rolled back. For scenarios where you need more control -- for example, if you want to include

operations done outside of Entity Framework in a transaction -- see Transactions.

When a database context retrieves table rows and creates entity objects that represent them, by default it keeps

track of whether the entities in memory are in sync with what's in the database. The data in memory acts as a cache

and is used when you update an entity. This caching is often unnecessary in a web application because context

instances are typically short-lived (a new one is created and disposed for each request) and the context that reads

an entity is typically disposed before that entity is used again.

You can disable tracking of entity objects in memory by calling the AsNoTracking method. Typical scenarios in

which you might want to do that include the following:

https://github.com/aspnet/EntityFrameworkCore/blob/03bcb5122e3f577a84498545fcf130ba79a3d987/src/Microsoft.EntityFrameworkCore/EntityFrameworkServiceCollectionExtensions.cs
https://docs.microsoft.com/en-us/ef/core/saving/transactions

Get the code

Next steps

During the context lifetime you don't need to update any entities, and you don't need EF to automatically

load navigation properties with entities retrieved by separate queries. Frequently these conditions are met in

a controller's HttpGet action methods.

You are running a query that retrieves a large volume of data, and only a small portion of the returned data

will be updated. It may be more efficient to turn off tracking for the large query, and run a query later for the

few entities that need to be updated.

You want to attach an entity in order to update it, but earlier you retrieved the same entity for a different

purpose. Because the entity is already being tracked by the database context, you can't attach the entity that

you want to change. One way to handle this situation is to call AsNoTracking on the earlier query.

For more information, see Tracking vs. No-Tracking.

Download or view the completed application.

In this tutorial, you:

Customized the Details page

Updated the Create page

Updated the Edit page

Updated the Delete page

Closed database connections

Advance to the next tutorial to learn how to expand the functionality of the IndexIndex page by adding sorting, filtering,

and paging.

Next: Sorting, filtering, and paging

https://docs.microsoft.com/en-us/ef/core/querying/tracking
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final

Tutorial: Add sorting, filtering, and paging - ASP.NET
MVC with EF Core
9/22/2020 • 14 minutes to read • Edit Online

Prerequisites

Add column sort links

In the previous tutorial, you implemented a set of web pages for basic CRUD operations for Student entities. In this

tutorial you'll add sorting, filtering, and paging functionality to the Students Index page. You'll also create a page

that does simple grouping.

The following illustration shows what the page will look like when you're done. The column headings are links that

the user can click to sort by that column. Clicking a column heading repeatedly toggles between ascending and

descending sort order.

In this tutorial, you:

Add column sort links

Add a Search box

Add paging to Students Index

Add paging to Index method

Add paging links

Create an About page

Implement CRUD Functionality

To add sorting to the Student Index page, you'll change the Index method of the Students controller and add code

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/sort-filter-page.md

Add sorting Functionality to the Index methodAdd sorting Functionality to the Index method

public async Task<IActionResult> Index(string sortOrder)
{
 ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";
 var students = from s in _context.Students
 select s;
 switch (sortOrder)
 {
 case "name_desc":
 students = students.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 students = students.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 students = students.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 students = students.OrderBy(s => s.LastName);
 break;
 }
 return View(await students.AsNoTracking().ToListAsync());
}

to the Student Index view.

In StudentsController.cs, replace the Index method with the following code:

This code receives a sortOrder parameter from the query string in the URL. The query string value is provided by

ASP.NET Core MVC as a parameter to the action method. The parameter will be a string that's either "Name" or

"Date", optionally followed by an underscore and the string "desc" to specify descending order. The default sort

order is ascending.

The first time the Index page is requested, there's no query string. The students are displayed in ascending order by

last name, which is the default as established by the fall-through case in the switch statement. When the user

clicks a column heading hyperlink, the appropriate sortOrder value is provided in the query string.

The two ViewData elements (NameSortParm and DateSortParm) are used by the view to configure the column

heading hyperlinks with the appropriate query string values.

public async Task<IActionResult> Index(string sortOrder)
{
 ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";
 var students = from s in _context.Students
 select s;
 switch (sortOrder)
 {
 case "name_desc":
 students = students.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 students = students.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 students = students.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 students = students.OrderBy(s => s.LastName);
 break;
 }
 return View(await students.AsNoTracking().ToListAsync());
}

C URREN T SO RT O RDERC URREN T SO RT O RDER L A ST N A M E H Y P ERL IN KL A ST N A M E H Y P ERL IN K DAT E H Y P ERL IN KDAT E H Y P ERL IN K

Last Name ascending descending ascending

Last Name descending ascending ascending

Date ascending ascending descending

Date descending ascending ascending

Add column heading hyperlinks to the Student Index viewAdd column heading hyperlinks to the Student Index view

These are ternary statements. The first one specifies that if the sortOrder parameter is null or empty,

NameSortParm should be set to "name_desc"; otherwise, it should be set to an empty string. These two statements

enable the view to set the column heading hyperlinks as follows:

The method uses LINQ to Entities to specify the column to sort by. The code creates an IQueryable variable before

the switch statement, modifies it in the switch statement, and calls the ToListAsync method after the switch

statement. When you create and modify IQueryable variables, no query is sent to the database. The query isn't

executed until you convert the IQueryable object into a collection by calling a method such as ToListAsync .

Therefore, this code results in a single query that's not executed until the return View statement.

This code could get verbose with a large number of columns. The last tutorial in this series shows how to write code

that lets you pass the name of the OrderBy column in a string variable.

Replace the code in Views/Students/Index.cshtml, with the following code to add column heading hyperlinks. The

changed lines are highlighted.

@model IEnumerable<ContosoUniversity.Models.Student>

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 <a asp-action="Index" asp-route-
sortOrder="@ViewData["NameSortParm"]">@Html.DisplayNameFor(model => model.LastName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.FirstMidName)
 </th>
 <th>
 <a asp-action="Index" asp-route-
sortOrder="@ViewData["DateSortParm"]">@Html.DisplayNameFor(model => model.EnrollmentDate)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

This code uses the information in ViewData properties to set up hyperlinks with the appropriate query string

values.

Run the app, select the StudentsStudents tab, and click the Last NameLast Name and Enrollment DateEnrollment Date column headings to verify

that sorting works.

Add a Search box

Add filtering functionality to the Index methodAdd filtering functionality to the Index method

public async Task<IActionResult> Index(string sortOrder, string searchString)
{
 ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";
 ViewData["CurrentFilter"] = searchString;

 var students = from s in _context.Students
 select s;
 if (!String.IsNullOrEmpty(searchString))
 {
 students = students.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }
 switch (sortOrder)
 {
 case "name_desc":
 students = students.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 students = students.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 students = students.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 students = students.OrderBy(s => s.LastName);
 break;
 }
 return View(await students.AsNoTracking().ToListAsync());
}

To add filtering to the Students Index page, you'll add a text box and a submit button to the view and make

corresponding changes in the Index method. The text box will let you enter a string to search for in the first name

and last name fields.

In StudentsController.cs, replace the Index method with the following code (the changes are highlighted).

NOTENOTE

Add a Search Box to the Student Index ViewAdd a Search Box to the Student Index View

<p>
 <a asp-action="Create">Create New
</p>

<form asp-action="Index" method="get">
 <div class="form-actions no-color">
 <p>
 Find by name: <input type="text" name="SearchString" value="@ViewData["CurrentFilter"]" />
 <input type="submit" value="Search" class="btn btn-default" /> |
 <a asp-action="Index">Back to Full List
 </p>
 </div>
</form>

<table class="table">

You've added a searchString parameter to the Index method. The search string value is received from a text box

that you'll add to the Index view. You've also added to the LINQ statement a where clause that selects only students

whose first name or last name contains the search string. The statement that adds the where clause is executed only

if there's a value to search for.

Here you are calling the Where method on an IQueryable object, and the filter will be processed on the server. In some

scenarios you might be calling the Where method as an extension method on an in-memory collection. (For example,

suppose you change the reference to _context.Students so that instead of an EF DbSet it references a repository method

that returns an IEnumerable collection.) The result would normally be the same but in some cases may be different.

For example, the .NET Framework implementation of the Contains method performs a case-sensitive comparison by default,

but in SQL Server this is determined by the collation setting of the SQL Server instance. That setting defaults to case-

insensitive. You could call the ToUpper method to make the test explicitly case-insensitive: Where(s =>

s.LastName.ToUpper().Contains(searchString.ToUpper()). That would ensure that results stay the same if you change the code

later to use a repository which returns an IEnumerable collection instead of an IQueryable object. (When you call the

Contains method on an IEnumerable collection, you get the .NET Framework implementation; when you call it on an

IQueryable object, you get the database provider implementation.) However, there's a performance penalty for this solution.

The ToUpper code would put a function in the WHERE clause of the TSQL SELECT statement. That would prevent the

optimizer from using an index. Given that SQL is mostly installed as case-insensitive, it's best to avoid the ToUpper code

until you migrate to a case-sensitive data store.

In Views/Student/Index.cshtml, add the highlighted code immediately before the opening table tag in order to

create a caption, a text box, and a SearchSearch button.

This code uses the <form> tag helper to add the search text box and button. By default, the <form> tag helper

submits form data with a POST, which means that parameters are passed in the HTTP message body and not in the

URL as query strings. When you specify HTTP GET, the form data is passed in the URL as query strings, which

enables users to bookmark the URL. The W3C guidelines recommend that you should use GET when the action

doesn't result in an update.

Run the app, select the StudentsStudents tab, enter a search string, and click Search to verify that filtering is working.

http://localhost:5813/Students?SearchString=an

Add paging to Students Index

Notice that the URL contains the search string.

If you bookmark this page, you'll get the filtered list when you use the bookmark. Adding method="get" to the

form tag is what caused the query string to be generated.

At this stage, if you click a column heading sort link you'll lose the filter value that you entered in the SearchSearch box.

You'll fix that in the next section.

To add paging to the Students Index page, you'll create a PaginatedList class that uses Skip and Take statements

to filter data on the server instead of always retrieving all rows of the table. Then you'll make additional changes in

the Index method and add paging buttons to the Index view. The following illustration shows the paging buttons.

In the project folder, create PaginatedList.cs , and then replace the template code with the following code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity
{
 public class PaginatedList<T> : List<T>
 {
 public int PageIndex { get; private set; }
 public int TotalPages { get; private set; }

 public PaginatedList(List<T> items, int count, int pageIndex, int pageSize)
 {
 PageIndex = pageIndex;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);

 this.AddRange(items);
 }

 public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 1);
 }
 }

 public bool HasNextPage
 {
 get
 {
 return (PageIndex < TotalPages);
 }
 }

 public static async Task<PaginatedList<T>> CreateAsync(IQueryable<T> source, int pageIndex, int
pageSize)
 {
 var count = await source.CountAsync();
 var items = await source.Skip((pageIndex - 1) * pageSize).Take(pageSize).ToListAsync();
 return new PaginatedList<T>(items, count, pageIndex, pageSize);
 }
 }
}

Add paging to Index method

The CreateAsync method in this code takes page size and page number and applies the appropriate Skip and

Take statements to the IQueryable . When ToListAsync is called on the IQueryable , it will return a List containing

only the requested page. The properties HasPreviousPage and HasNextPage can be used to enable or disable

PreviousPrevious and NextNext paging buttons.

A CreateAsync method is used instead of a constructor to create the PaginatedList<T> object because constructors

can't run asynchronous code.

In StudentsController.cs, replace the Index method with the following code.

public async Task<IActionResult> Index(
 string sortOrder,
 string currentFilter,
 string searchString,
 int? pageNumber)
{
 ViewData["CurrentSort"] = sortOrder;
 ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
 ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";

 if (searchString != null)
 {
 pageNumber = 1;
 }
 else
 {
 searchString = currentFilter;
 }

 ViewData["CurrentFilter"] = searchString;

 var students = from s in _context.Students
 select s;
 if (!String.IsNullOrEmpty(searchString))
 {
 students = students.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }
 switch (sortOrder)
 {
 case "name_desc":
 students = students.OrderByDescending(s => s.LastName);
 break;
 case "Date":
 students = students.OrderBy(s => s.EnrollmentDate);
 break;
 case "date_desc":
 students = students.OrderByDescending(s => s.EnrollmentDate);
 break;
 default:
 students = students.OrderBy(s => s.LastName);
 break;
 }

 int pageSize = 3;
 return View(await PaginatedList<Student>.CreateAsync(students.AsNoTracking(), pageNumber ?? 1, pageSize));
}

public async Task<IActionResult> Index(
 string sortOrder,
 string currentFilter,
 string searchString,
 int? pageNumber)

This code adds a page number parameter, a current sort order parameter, and a current filter parameter to the

method signature.

The first time the page is displayed, or if the user hasn't clicked a paging or sorting link, all the parameters will be

null. If a paging link is clicked, the page variable will contain the page number to display.

The ViewData element named CurrentSort provides the view with the current sort order, because this must be

included in the paging links in order to keep the sort order the same while paging.

if (searchString != null)
{
 pageNumber = 1;
}
else
{
 searchString = currentFilter;
}

return View(await PaginatedList<Student>.CreateAsync(students.AsNoTracking(), pageNumber ?? 1, pageSize));

Add paging links

@model PaginatedList<ContosoUniversity.Models.Student>

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>

<form asp-action="Index" method="get">
 <div class="form-actions no-color">
 <p>
 Find by name: <input type="text" name="SearchString" value="@ViewData["CurrentFilter"]" />
 <input type="submit" value="Search" class="btn btn-default" /> |
 <a asp-action="Index">Back to Full List
 </p>
 </div>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 <a asp-action="Index" asp-route-sortOrder="@ViewData["NameSortParm"]" asp-route-
currentFilter="@ViewData["CurrentFilter"]">Last Name
 </th>
 <th>
 First Name

The ViewData element named CurrentFilter provides the view with the current filter string. This value must be

included in the paging links in order to maintain the filter settings during paging, and it must be restored to the text

box when the page is redisplayed.

If the search string is changed during paging, the page has to be reset to 1, because the new filter can result in

different data to display. The search string is changed when a value is entered in the text box and the Submit button

is pressed. In that case, the searchString parameter isn't null.

At the end of the Index method, the PaginatedList.CreateAsync method converts the student query to a single

page of students in a collection type that supports paging. That single page of students is then passed to the view.

The PaginatedList.CreateAsync method takes a page number. The two question marks represent the null-coalescing

operator. The null-coalescing operator defines a default value for a nullable type; the expression (pageNumber ?? 1)

means return the value of pageNumber if it has a value, or return 1 if pageNumber is null.

In Views/Students/Index.cshtml, replace the existing code with the following code. The changes are highlighted.

 First Name
 </th>
 <th>
 <a asp-action="Index" asp-route-sortOrder="@ViewData["DateSortParm"]" asp-route-
currentFilter="@ViewData["CurrentFilter"]">Enrollment Date
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

@{
 var prevDisabled = !Model.HasPreviousPage ? "disabled" : "";
 var nextDisabled = !Model.HasNextPage ? "disabled" : "";
}

<a asp-action="Index"
 asp-route-sortOrder="@ViewData["CurrentSort"]"
 asp-route-pageNumber="@(Model.PageIndex - 1)"
 asp-route-currentFilter="@ViewData["CurrentFilter"]"
 class="btn btn-default @prevDisabled">
 Previous

<a asp-action="Index"
 asp-route-sortOrder="@ViewData["CurrentSort"]"
 asp-route-pageNumber="@(Model.PageIndex + 1)"
 asp-route-currentFilter="@ViewData["CurrentFilter"]"
 class="btn btn-default @nextDisabled">
 Next

<a asp-action="Index" asp-route-sortOrder="@ViewData["DateSortParm"]" asp-route-currentFilter
="@ViewData["CurrentFilter"]">Enrollment Date

The @model statement at the top of the page specifies that the view now gets a PaginatedList<T> object instead of

a List<T> object.

The column header links use the query string to pass the current search string to the controller so that the user can

sort within filter results:

The paging buttons are displayed by tag helpers:

<a asp-action="Index"
 asp-route-sortOrder="@ViewData["CurrentSort"]"
 asp-route-pageNumber="@(Model.PageIndex - 1)"
 asp-route-currentFilter="@ViewData["CurrentFilter"]"
 class="btn btn-default @prevDisabled">
 Previous

Create an About page

Create the view modelCreate the view model

Run the app and go to the Students page.

Click the paging links in different sort orders to make sure paging works. Then enter a search string and try paging

again to verify that paging also works correctly with sorting and filtering.

For the Contoso University website's AboutAbout page, you'll display how many students have enrolled for each

enrollment date. This requires grouping and simple calculations on the groups. To accomplish this, you'll do the

following:

Create a view model class for the data that you need to pass to the view.

Create the About method in the Home controller.

Create the About view.

Create a SchoolViewModels folder in the Models folder.

In the new folder, add a class file EnrollmentDateGroup.cs and replace the template code with the following code:

using System;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class EnrollmentDateGroup
 {
 [DataType(DataType.Date)]
 public DateTime? EnrollmentDate { get; set; }

 public int StudentCount { get; set; }
 }
}

Modify the Home ControllerModify the Home Controller

using Microsoft.EntityFrameworkCore;
using ContosoUniversity.Data;
using ContosoUniversity.Models.SchoolViewModels;

public class HomeController : Controller
{
 private readonly SchoolContext _context;

 public HomeController(SchoolContext context)
 {
 _context = context;
 }

public async Task<ActionResult> About()
{
 IQueryable<EnrollmentDateGroup> data =
 from student in _context.Students
 group student by student.EnrollmentDate into dateGroup
 select new EnrollmentDateGroup()
 {
 EnrollmentDate = dateGroup.Key,
 StudentCount = dateGroup.Count()
 };
 return View(await data.AsNoTracking().ToListAsync());
}

Create the About ViewCreate the About View

In HomeController.cs, add the following using statements at the top of the file:

Add a class variable for the database context immediately after the opening curly brace for the class, and get an

instance of the context from ASP.NET Core DI:

Add an About method with the following code:

The LINQ statement groups the student entities by enrollment date, calculates the number of entities in each group,

and stores the results in a collection of EnrollmentDateGroup view model objects.

Add a Views/Home/About.cshtml file with the following code:

@model IEnumerable<ContosoUniversity.Models.SchoolViewModels.EnrollmentDateGroup>

@{
 ViewData["Title"] = "Student Body Statistics";
}

<h2>Student Body Statistics</h2>

<table>
 <tr>
 <th>
 Enrollment Date
 </th>
 <th>
 Students
 </th>
 </tr>

 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 @item.StudentCount
 </td>
 </tr>
 }
</table>

Get the code

Next steps

Run the app and go to the About page. The count of students for each enrollment date is displayed in a table.

Download or view the completed application.

In this tutorial, you:

Added column sort links

Added a Search box

Added paging to Students Index

Added paging to Index method

Added paging links

Created an About page

Advance to the next tutorial to learn how to handle data model changes by using migrations.

Next: Handle data model changes

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final

Tutorial: Using the migrations feature - ASP.NET MVC
with EF Core
9/22/2020 • 7 minutes to read • Edit Online

Prerequisites

About migrations

Change the connection string

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity2;Trusted_Connection=True;MultipleActiveResultSets=true"
 },

In this tutorial, you start using the EF Core migrations feature for managing data model changes. In later tutorials,

you'll add more migrations as you change the data model.

In this tutorial, you:

Learn about migrations

Change the connection string

Create an initial migration

Examine Up and Down methods

Learn about the data model snapshot

Apply the migration

Sorting, filtering, and paging

When you develop a new application, your data model changes frequently, and each time the model changes, it gets

out of sync with the database. You started these tutorials by configuring the Entity Framework to create the

database if it doesn't exist. Then each time you change the data model -- add, remove, or change entity classes or

change your DbContext class -- you can delete the database and EF creates a new one that matches the model, and

seeds it with test data.

This method of keeping the database in sync with the data model works well until you deploy the application to

production. When the application is running in production it's usually storing data that you want to keep, and you

don't want to lose everything each time you make a change such as adding a new column. The EF Core Migrations

feature solves this problem by enabling EF to update the database schema instead of creating a new database.

To work with migrations, you can use the Package Manager ConsolePackage Manager Console (PMC) or the CLI. These tutorials show how

to use CLI commands. Information about the PMC is at the end of this tutorial.

In the appsettings.json file, change the name of the database in the connection string to ContosoUniversity2 or

some other name that you haven't used on the computer you're using.

This change sets up the project so that the first migration will create a new database. This isn't required to get

started with migrations, but you'll see later why it's a good idea.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/migrations.md

NOTENOTE

dotnet ef database drop

Create an initial migration

dotnet tool install --global dotnet-ef
dotnet ef migrations add InitialCreate

As an alternative to changing the database name, you can delete the database. Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX) or

the database drop CLI command:

The following section explains how to run CLI commands.

Save your changes and build the project. Then open a command window and navigate to the project folder. Here's a

quick way to do that:

In Solution ExplorerSolution Explorer , right-click the project and choose Open Folder in File ExplorerOpen Folder in File Explorer from the context

menu.

Enter "cmd" in the address bar and press Enter.

Enter the following command in the command window:

info: Microsoft.EntityFrameworkCore.Infrastructure[10403]
 Entity Framework Core 2.2.0-rtm-35687 initialized 'SchoolContext' using provider
'Microsoft.EntityFrameworkCore.SqlServer' with options: None
Done. To undo this action, use 'ef migrations remove'

Examine Up and Down methods

public partial class InitialCreate : Migration
{
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name: "Course",
 columns: table => new
 {
 CourseID = table.Column<int>(nullable: false),
 Credits = table.Column<int>(nullable: false),
 Title = table.Column<string>(nullable: true)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Course", x => x.CourseID);
 });

 // Additional code not shown
 }

 protected override void Down(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.DropTable(
 name: "Enrollment");
 // Additional code not shown
 }
}

dotnet tool install --global dotnet-ef installs dotnet ef as a global tool.

In the preceding commands, output similar to the following is displayed:

If you see an error message "cannot access the file ... ContosoUniversity.dll because it is being used by another

process.", find the IIS Express icon in the Windows System Tray, and right-click it, then click ContosoUniversity >ContosoUniversity >

Stop S iteStop S ite.

When you executed the migrations add command, EF generated the code that will create the database from

scratch. This code is in the Migrations folder, in the file named <timestamp>_InitialCreate.cs. The Up method of the

InitialCreate class creates the database tables that correspond to the data model entity sets, and the Down

method deletes them, as shown in the following example.

Migrations calls the Up method to implement the data model changes for a migration. When you enter a

command to roll back the update, Migrations calls the Down method.

This code is for the initial migration that was created when you entered the migrations add InitialCreate

command. The migration name parameter ("InitialCreate" in the example) is used for the file name and can be

whatever you want. It's best to choose a word or phrase that summarizes what is being done in the migration. For

example, you might name a later migration "AddDepartmentTable".

If you created the initial migration when the database already exists, the database creation code is generated but it

doesn't have to run because the database already matches the data model. When you deploy the app to another

environment where the database doesn't exist yet, this code will run to create your database, so it's a good idea to

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet

The data model snapshot

Apply the migration

dotnet ef database update

info: Microsoft.EntityFrameworkCore.Infrastructure[10403]
 Entity Framework Core 2.2.0-rtm-35687 initialized 'SchoolContext' using provider
'Microsoft.EntityFrameworkCore.SqlServer' with options: None
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (274ms) [Parameters=[], CommandType='Text', CommandTimeout='60']
 CREATE DATABASE [ContosoUniversity2];
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (60ms) [Parameters=[], CommandType='Text', CommandTimeout='60']
 IF SERVERPROPERTY('EngineEdition') <> 5
 BEGIN
 ALTER DATABASE [ContosoUniversity2] SET READ_COMMITTED_SNAPSHOT ON;
 END;
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (15ms) [Parameters=[], CommandType='Text', CommandTimeout='30']
 CREATE TABLE [__EFMigrationsHistory] (
 [MigrationId] nvarchar(150) NOT NULL,
 [ProductVersion] nvarchar(32) NOT NULL,
 CONSTRAINT [PK___EFMigrationsHistory] PRIMARY KEY ([MigrationId])
);

<logs omitted for brevity>

info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (3ms) [Parameters=[], CommandType='Text', CommandTimeout='30']
 INSERT INTO [__EFMigrationsHistory] ([MigrationId], [ProductVersion])
 VALUES (N'20190327172701_InitialCreate', N'2.2.0-rtm-35687');
Done.

test it first. That's why you changed the name of the database in the connection string earlier -- so that migrations

can create a new one from scratch.

Migrations creates a snapshot of the current database schema in Migrations/SchoolContextModelSnapshot.cs.

When you add a migration, EF determines what changed by comparing the data model to the snapshot file.

Use the dotnet ef migrations remove command to remove a migration. dotnet ef migrations remove deletes the

migration and ensures the snapshot is correctly reset. If dotnet ef migrations remove fails, use

dotnet ef migrations remove -v to get more information on the failure.

See EF Core Migrations in Team Environments for more information about how the snapshot file is used.

In the command window, enter the following command to create the database and tables in it.

The output from the command is similar to the migrations add command, except that you see logs for the SQL

commands that set up the database. Most of the logs are omitted in the following sample output. If you prefer not

to see this level of detail in log messages, you can change the log level in the appsettings.Development.json file. For

more information, see Logging in .NET Core and ASP.NET Core.

Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer to inspect the database as you did in the first tutorial. You'll notice the addition

of an __EFMigrationsHistory table that keeps track of which migrations have been applied to the database. View the

data in that table and you'll see one row for the first migration. (The last log in the preceding CLI output example

shows the INSERT statement that creates this row.)

Run the application to verify that everything still works the same as before.

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet#dotnet-ef-migrations-remove
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/teams

Compare CLI and PMC

Get the code

Next step

The EF tooling for managing migrations is available from .NET Core CLI commands or from PowerShell cmdlets in

the Visual Studio Package Manager ConsolePackage Manager Console (PMC) window. This tutorial shows how to use the CLI, but you can

use the PMC if you prefer.

The EF commands for the PMC commands are in the Microsoft.EntityFrameworkCore.Tools package. This package is

included in the Microsoft.AspNetCore.App metapackage, so you don't need to add a package reference if your app

has a package reference for Microsoft.AspNetCore.App .

Impor tant:Impor tant: This isn't the same package as the one you install for the CLI by editing the .csproj file. The name of this

one ends in Tools , unlike the CLI package name which ends in Tools.DotNet .

For more information about the CLI commands, see .NET Core CLI.

For more information about the PMC commands, see Package Manager Console (Visual Studio).

Download or view the completed application.

In this tutorial, you:

Learned about migrations

Learned about NuGet migration packages

Changed the connection string

Created an initial migration

Examined Up and Down methods

Learned about the data model snapshot

Applied the migration

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Tools
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final

Advance to the next tutorial to begin looking at more advanced topics about expanding the data model. Along the

way you'll create and apply additional migrations.

Create and apply additional migrations

Tutorial: Create a complex data model - ASP.NET
MVC with EF Core
9/22/2020 • 30 minutes to read • Edit Online

In the previous tutorials, you worked with a simple data model that was composed of three entities. In this tutorial,

you'll add more entities and relationships and you'll customize the data model by specifying formatting, validation,

and database mapping rules.

When you're finished, the entity classes will make up the completed data model that's shown in the following

illustration:

In this tutorial, you:

Customize the Data model

Make changes to Student entity

Create Instructor entity

Create OfficeAssignment entity

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/complex-data-model.md

Prerequisites

Customize the Data model

The DataType attributeThe DataType attribute

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Modify Course entity

Create Department entity

Modify Enrollment entity

Update the database context

Seed database with test data

Add a migration

Change the connection string

Update the database

Using EF Core migrations

In this section you'll see how to customize the data model by using attributes that specify formatting, validation, and

database mapping rules. Then in several of the following sections you'll create the complete School data model by

adding attributes to the classes you already created and creating new classes for the remaining entity types in the

model.

For student enrollment dates, all of the web pages currently display the time along with the date, although all you

care about for this field is the date. By using data annotation attributes, you can make one code change that will fix

the display format in every view that shows the data. To see an example of how to do that, you'll add an attribute to

the EnrollmentDate property in the Student class.

In Models/Student.cs, add a using statement for the System.ComponentModel.DataAnnotations namespace and add

DataType and DisplayFormat attributes to the EnrollmentDate property, as shown in the following example:

The DataType attribute is used to specify a data type that's more specific than the database intrinsic type. In this

case we only want to keep track of the date, not the date and time. The DataType Enumeration provides for many

data types, such as Date, Time, PhoneNumber, Currency, EmailAddress, and more. The DataType attribute can also

enable the application to automatically provide type-specific features. For example, a mailto: link can be created

for DataType.EmailAddress , and a date selector can be provided for DataType.Date in browsers that support HTML5.

The DataType attribute emits HTML 5 data- (pronounced data dash) attributes that HTML 5 browsers can

understand. The DataType attributes don't provide any validation.

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]

The StringLength attributeThe StringLength attribute

DataType.Date doesn't specify the format of the date that's displayed. By default, the data field is displayed

according to the default formats based on the server's CultureInfo.

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should also be applied when the value is displayed

in a text box for editing. (You might not want that for some fields -- for example, for currency values, you might not

want the currency symbol in the text box for editing.)

You can use the DisplayFormat attribute by itself, but it's generally a good idea to use the DataType attribute also.

The DataType attribute conveys the semantics of the data as opposed to how to render it on a screen, and provides

the following benefits that you don't get with DisplayFormat :

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate

currency symbol, email links, some client-side input validation, etc.).

By default, the browser will render data using the correct format based on your locale.

For more information, see the <input> tag helper documentation.

Run the app, go to the Students Index page and notice that times are no longer displayed for the enrollment dates.

The same will be true for any view that uses the Student model.

You can also specify data validation rules and validation error messages using attributes. The StringLength

attribute sets the maximum length in the database and provides client side and server side validation for ASP.NET

Core MVC. You can also specify the minimum string length in this attribute, but the minimum value has no impact

on the database schema.

Suppose you want to ensure that users don't enter more than 50 characters for a name. To add this limitation, add

StringLength attributes to the LastName and FirstMidName properties, as shown in the following example:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [StringLength(50)]
 public string LastName { get; set; }
 [StringLength(50)]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

[RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]

dotnet ef migrations add MaxLengthOnNames

dotnet ef database update

The Column attributeThe Column attribute

The StringLength attribute won't prevent a user from entering white space for a name. You can use the

RegularExpression attribute to apply restrictions to the input. For example, the following code requires the first

character to be upper case and the remaining characters to be alphabetical:

The MaxLength attribute provides functionality similar to the StringLength attribute but doesn't provide client side

validation.

The database model has now changed in a way that requires a change in the database schema. You'll use migrations

to update the schema without losing any data that you may have added to the database by using the application UI.

Save your changes and build the project. Then open the command window in the project folder and enter the

following commands:

The migrations add command warns that data loss may occur, because the change makes the maximum length

shorter for two columns. Migrations creates a file named <timeStamp>_MaxLengthOnNames.cs. This file contains

code in the Up method that will update the database to match the current data model. The database update

command ran that code.

The timestamp prefixed to the migrations file name is used by Entity Framework to order the migrations. You can

create multiple migrations before running the update-database command, and then all of the migrations are

applied in the order in which they were created.

Run the app, select the StudentsStudents tab, click Create NewCreate New , and try to enter either name longer than 50 characters.

The application should prevent you from doing this.

You can also use attributes to control how your classes and properties are mapped to the database. Suppose you

had used the name FirstMidName for the first-name field because the field might also contain a middle name. But

you want the database column to be named FirstName , because users who will be writing ad-hoc queries against

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [StringLength(50)]
 public string LastName { get; set; }
 [StringLength(50)]
 [Column("FirstName")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

dotnet ef migrations add ColumnFirstName

dotnet ef database update

the database are accustomed to that name. To make this mapping, you can use the Column attribute.

The Column attribute specifies that when the database is created, the column of the Student table that maps to the

FirstMidName property will be named FirstName . In other words, when your code refers to Student.FirstMidName ,

the data will come from or be updated in the FirstName column of the Student table. If you don't specify column

names, they're given the same name as the property name.

In the Student.cs file, add a using statement for System.ComponentModel.DataAnnotations.Schema and add the column

name attribute to the FirstMidName property, as shown in the following highlighted code:

The addition of the Column attribute changes the model backing the SchoolContext , so it won't match the database.

Save your changes and build the project. Then open the command window in the project folder and enter the

following commands to create another migration:

In SQL Ser ver Object ExplorerSQL Ser ver Object Explorer , open the Student table designer by double-clicking the StudentStudent table.

NOTENOTE

Changes to Student entity

Before you applied the first two migrations, the name columns were of type nvarchar(MAX). They're now

nvarchar(50) and the column name has changed from FirstMidName to FirstName.

If you try to compile before you finish creating all of the entity classes in the following sections, you might get compiler errors.

In Models/Student.cs, replace the code you added earlier with the following code. The changes are highlighted.

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 [Required]
 [StringLength(50)]
 [Display(Name = "Last Name")]
 public string LastName { get; set; }
 [Required]
 [StringLength(50)]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 public string FirstMidName { get; set; }
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Enrollment Date")]
 public DateTime EnrollmentDate { get; set; }
 [Display(Name = "Full Name")]
 public string FullName
 {
 get
 {
 return LastName + ", " + FirstMidName;
 }
 }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

The Required attributeThe Required attribute

[Display(Name = "Last Name")]
[Required]
[StringLength(50, MinimumLength=2)]
public string LastName { get; set; }

The Display attributeThe Display attribute

The FullName calculated propertyThe FullName calculated property

Create Instructor entity

The Required attribute makes the name properties required fields. The Required attribute isn't needed for non-

nullable types such as value types (DateTime, int, double, float, etc.). Types that can't be null are automatically

treated as required fields.

The Required attribute must be used with MinimumLength for the MinimumLength to be enforced.

The Display attribute specifies that the caption for the text boxes should be "First Name", "Last Name", "Full Name",

and "Enrollment Date" instead of the property name in each instance (which has no space dividing the words).

FullName is a calculated property that returns a value that's created by concatenating two other properties.

Therefore it has only a get accessor, and no FullName column will be generated in the database.

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Instructor
 {
 public int ID { get; set; }

 [Required]
 [Display(Name = "Last Name")]
 [StringLength(50)]
 public string LastName { get; set; }

 [Required]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 [StringLength(50)]
 public string FirstMidName { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Hire Date")]
 public DateTime HireDate { get; set; }

 [Display(Name = "Full Name")]
 public string FullName
 {
 get { return LastName + ", " + FirstMidName; }
 }

 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 public OfficeAssignment OfficeAssignment { get; set; }
 }
}

[DataType(DataType.Date),Display(Name = "Hire Date"),DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",
ApplyFormatInEditMode = true)]

The CourseAssignments and OfficeAssignment navigation propertiesThe CourseAssignments and OfficeAssignment navigation properties

Create Models/Instructor.cs, replacing the template code with the following code:

Notice that several properties are the same in the Student and Instructor entities. In the Implementing Inheritance

tutorial later in this series, you'll refactor this code to eliminate the redundancy.

You can put multiple attributes on one line, so you could also write the HireDate attributes as follows:

The CourseAssignments and OfficeAssignment properties are navigation properties.

public ICollection<CourseAssignment> CourseAssignments { get; set; }

public OfficeAssignment OfficeAssignment { get; set; }

Create OfficeAssignment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class OfficeAssignment
 {
 [Key]
 public int InstructorID { get; set; }
 [StringLength(50)]
 [Display(Name = "Office Location")]
 public string Location { get; set; }

 public Instructor Instructor { get; set; }
 }
}

The Key attributeThe Key attribute

[Key]
public int InstructorID { get; set; }

An instructor can teach any number of courses, so CourseAssignments is defined as a collection.

If a navigation property can hold multiple entities, its type must be a list in which entries can be added, deleted, and

updated. You can specify ICollection<T> or a type such as List<T> or HashSet<T> . If you specify ICollection<T> ,

EF creates a HashSet<T> collection by default.

The reason why these are CourseAssignment entities is explained below in the section about many-to-many

relationships.

Contoso University business rules state that an instructor can only have at most one office, so the OfficeAssignment

property holds a single OfficeAssignment entity (which may be null if no office is assigned).

Create Models/OfficeAssignment.cs with the following code:

There's a one-to-zero-or-one relationship between the Instructor and the OfficeAssignment entities. An office

assignment only exists in relation to the instructor it's assigned to, and therefore its primary key is also its foreign

key to the Instructor entity. But the Entity Framework can't automatically recognize InstructorID as the primary key

of this entity because its name doesn't follow the ID or classnameID naming convention. Therefore, the Key

attribute is used to identify it as the key:

The Instructor navigation propertyThe Instructor navigation property

Modify Course entity

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 [Display(Name = "Number")]
 public int CourseID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Title { get; set; }

 [Range(0, 5)]
 public int Credits { get; set; }

 public int DepartmentID { get; set; }

 public Department Department { get; set; }
 public ICollection<Enrollment> Enrollments { get; set; }
 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 }
}

You can also use the Key attribute if the entity does have its own primary key but you want to name the property

something other than classnameID or ID.

By default, EF treats the key as non-database-generated because the column is for an identifying relationship.

The Instructor entity has a nullable OfficeAssignment navigation property (because an instructor might not have an

office assignment), and the OfficeAssignment entity has a non-nullable Instructor navigation property (because

an office assignment can't exist without an instructor -- InstructorID is non-nullable). When an Instructor entity

has a related OfficeAssignment entity, each entity will have a reference to the other one in its navigation property.

You could put a [Required] attribute on the Instructor navigation property to specify that there must be a related

instructor, but you don't have to do that because the InstructorID foreign key (which is also the key to this table) is

non-nullable.

In Models/Course.cs, replace the code you added earlier with the following code. The changes are highlighted.

The course entity has a foreign key property DepartmentID which points to the related Department entity and it has

a Department navigation property.

The Entity Framework doesn't require you to add a foreign key property to your data model when you have a

The DatabaseGenerated attributeThe DatabaseGenerated attribute

[DatabaseGenerated(DatabaseGeneratedOption.None)]
[Display(Name = "Number")]
public int CourseID { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int DepartmentID { get; set; }
public Department Department { get; set; }

public ICollection<Enrollment> Enrollments { get; set; }

public ICollection<CourseAssignment> CourseAssignments { get; set; }

Create Department entity

navigation property for a related entity. EF automatically creates foreign keys in the database wherever they're

needed and creates shadow properties for them. But having the foreign key in the data model can make updates

simpler and more efficient. For example, when you fetch a course entity to edit, the Department entity is null if you

don't load it, so when you update the course entity, you would have to first fetch the Department entity. When the

foreign key property DepartmentID is included in the data model, you don't need to fetch the Department entity

before you update.

The DatabaseGenerated attribute with the None parameter on the CourseID property specifies that primary key

values are provided by the user rather than generated by the database.

By default, Entity Framework assumes that primary key values are generated by the database. That's what you want

in most scenarios. However, for Course entities, you'll use a user-specified course number such as a 1000 series for

one department, a 2000 series for another department, and so on.

The DatabaseGenerated attribute can also be used to generate default values, as in the case of database columns

used to record the date a row was created or updated. For more information, see Generated Properties.

The foreign key properties and navigation properties in the Course entity reflect the following relationships:

A course is assigned to one department, so there's a DepartmentID foreign key and a Department navigation

property for the reasons mentioned above.

A course can have any number of students enrolled in it, so the Enrollments navigation property is a collection:

A course may be taught by multiple instructors, so the CourseAssignments navigation property is a collection (the

type CourseAssignment is explained later):

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties
https://docs.microsoft.com/en-us/ef/core/modeling/generated-properties

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Department
 {
 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Name { get; set; }

 [DataType(DataType.Currency)]
 [Column(TypeName = "money")]
 public decimal Budget { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 public Instructor Administrator { get; set; }
 public ICollection<Course> Courses { get; set; }
 }
}

The Column attributeThe Column attribute

[Column(TypeName="money")]
public decimal Budget { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int? InstructorID { get; set; }
public Instructor Administrator { get; set; }

Create Models/Department.cs with the following code:

Earlier you used the Column attribute to change column name mapping. In the code for the Department entity, the

Column attribute is being used to change SQL data type mapping so that the column will be defined using the SQL

Server money type in the database:

Column mapping is generally not required, because the Entity Framework chooses the appropriate SQL Server data

type based on the CLR type that you define for the property. The CLR decimal type maps to a SQL Server decimal

type. But in this case you know that the column will be holding currency amounts, and the money data type is more

appropriate for that.

The foreign key and navigation properties reflect the following relationships:

A department may or may not have an administrator, and an administrator is always an instructor. Therefore the

InstructorID property is included as the foreign key to the Instructor entity, and a question mark is added after the

int type designation to mark the property as nullable. The navigation property is named Administrator but holds

an Instructor entity:

A department may have many courses, so there's a Courses navigation property:

public ICollection<Course> Courses { get; set; }

NOTENOTE

modelBuilder.Entity<Department>()
 .HasOne(d => d.Administrator)
 .WithMany()
 .OnDelete(DeleteBehavior.Restrict)

Modify Enrollment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 [DisplayFormat(NullDisplayText = "No grade")]
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

Foreign key and navigation propertiesForeign key and navigation properties

By convention, the Entity Framework enables cascade delete for non-nullable foreign keys and for many-to-many

relationships. This can result in circular cascade delete rules, which will cause an exception when you try to add a migration.

For example, if you didn't define the Department.InstructorID property as nullable, EF would configure a cascade delete rule

to delete the department when you delete the instructor, which isn't what you want to have happen. If your business rules

required the InstructorID property to be non-nullable, you would have to use the following fluent API statement to

disable cascade delete on the relationship:

In Models/Enrollment.cs, replace the code you added earlier with the following code:

The foreign key properties and navigation properties reflect the following relationships:

An enrollment record is for a single course, so there's a CourseID foreign key property and a Course navigation

public int CourseID { get; set; }
public Course Course { get; set; }

public int StudentID { get; set; }
public Student Student { get; set; }

Many-to-Many relationships

property:

An enrollment record is for a single student, so there's a StudentID foreign key property and a Student navigation

property:

There's a many-to-many relationship between the Student and Course entities, and the Enrollment entity functions

as a many-to-many join table with payload in the database. "With payload" means that the Enrollment table

contains additional data besides foreign keys for the joined tables (in this case, a primary key and a Grade

property).

The following illustration shows what these relationships look like in an entity diagram. (This diagram was

generated using the Entity Framework Power Tools for EF 6.x; creating the diagram isn't part of the tutorial, it's just

being used here as an illustration.)

Each relationship line has a 1 at one end and an asterisk (*) at the other, indicating a one-to-many relationship.

If the Enrollment table didn't include grade information, it would only need to contain the two foreign keys

CourseID and StudentID. In that case, it would be a many-to-many join table without payload (or a pure join table)

in the database. The Instructor and Course entities have that kind of many-to-many relationship, and your next step

is to create an entity class to function as a join table without payload.

(EF 6.x supports implicit join tables for many-to-many relationships, but EF Core doesn't. For more information, see

the discussion in the EF Core GitHub repository.)

https://github.com/aspnet/EntityFramework/issues/1368

The CourseAssignment entity

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class CourseAssignment
 {
 public int InstructorID { get; set; }
 public int CourseID { get; set; }
 public Instructor Instructor { get; set; }
 public Course Course { get; set; }
 }
}

Join entity namesJoin entity names

Composite keyComposite key

Update the database context

Create Models/CourseAssignment.cs with the following code:

A join table is required in the database for the Instructor-to-Courses many-to-many relationship, and it has to be

represented by an entity set. It's common to name a join entity EntityName1EntityName2 , which in this case would be

CourseInstructor . However, we recommend that you choose a name that describes the relationship. Data models

start out simple and grow, with no-payload joins frequently getting payloads later. If you start with a descriptive

entity name, you won't have to change the name later. Ideally, the join entity would have its own natural (possibly

single word) name in the business domain. For example, Books and Customers could be linked through Ratings. For

this relationship, CourseAssignment is a better choice than CourseInstructor .

Since the foreign keys are not nullable and together uniquely identify each row of the table, there's no need for a

separate primary key. The InstructorID and CourseID properties should function as a composite primary key. The

only way to identify composite primary keys to EF is by using the fluent API (it can't be done by using attributes).

You'll see how to configure the composite primary key in the next section.

The composite key ensures that while you can have multiple rows for one course, and multiple rows for one

instructor, you can't have multiple rows for the same instructor and course. The Enrollment join entity defines its

own primary key, so duplicates of this sort are possible. To prevent such duplicates, you could add a unique index

on the foreign key fields, or configure Enrollment with a primary composite key similar to CourseAssignment . For

more information, see Indexes.

Add the following highlighted code to the Data/SchoolContext.cs file:

https://docs.microsoft.com/en-us/ef/core/modeling/indexes

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 public DbSet<Department> Departments { get; set; }
 public DbSet<Instructor> Instructors { get; set; }
 public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
 public DbSet<CourseAssignment> CourseAssignments { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 modelBuilder.Entity<Department>().ToTable("Department");
 modelBuilder.Entity<Instructor>().ToTable("Instructor");
 modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
 modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");

 modelBuilder.Entity<CourseAssignment>()
 .HasKey(c => new { c.CourseID, c.InstructorID });
 }
 }
}

About a fluent API alternative

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Blog>()
 .Property(b => b.Url)
 .IsRequired();
}

This code adds the new entities and configures the CourseAssignment entity's composite primary key.

The code in the OnModelCreating method of the DbContext class uses the fluent API to configure EF behavior. The

API is called "fluent" because it's often used by stringing a series of method calls together into a single statement, as

in this example from the EF Core documentation:

In this tutorial, you're using the fluent API only for database mapping that you can't do with attributes. However, you

can also use the fluent API to specify most of the formatting, validation, and mapping rules that you can do by using

attributes. Some attributes such as MinimumLength can't be applied with the fluent API. As mentioned previously,

MinimumLength doesn't change the schema, it only applies a client and server side validation rule.

Some developers prefer to use the fluent API exclusively so that they can keep their entity classes "clean." You can

mix attributes and fluent API if you want, and there are a few customizations that can only be done by using fluent

API, but in general the recommended practice is to choose one of these two approaches and use that consistently as

much as possible. If you do use both, note that wherever there's a conflict, Fluent API overrides attributes.

For more information about attributes vs. fluent API, see Methods of configuration.

https://docs.microsoft.com/en-us/ef/core/modeling/#use-fluent-api-to-configure-a-model
https://docs.microsoft.com/en-us/ef/core/modeling/

Entity Diagram Showing Relationships

Seed database with test data

using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {

The following illustration shows the diagram that the Entity Framework Power Tools create for the completed

School model.

Besides the one-to-many relationship lines (1 to *), you can see here the one-to-zero-or-one relationship line (1 to

0..1) between the Instructor and OfficeAssignment entities and the zero-or-one-to-many relationship line (0..1 to *)

between the Instructor and Department entities.

Replace the code in the Data/DbInitializer.cs file with the following code in order to provide seed data for the new

entities you've created.

 {
 public static void Initialize(SchoolContext context)
 {
 //context.Database.EnsureCreated();

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {
 new Student { FirstMidName = "Carson", LastName = "Alexander",
 EnrollmentDate = DateTime.Parse("2010-09-01") },
 new Student { FirstMidName = "Meredith", LastName = "Alonso",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Arturo", LastName = "Anand",
 EnrollmentDate = DateTime.Parse("2013-09-01") },
 new Student { FirstMidName = "Gytis", LastName = "Barzdukas",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Yan", LastName = "Li",
 EnrollmentDate = DateTime.Parse("2012-09-01") },
 new Student { FirstMidName = "Peggy", LastName = "Justice",
 EnrollmentDate = DateTime.Parse("2011-09-01") },
 new Student { FirstMidName = "Laura", LastName = "Norman",
 EnrollmentDate = DateTime.Parse("2013-09-01") },
 new Student { FirstMidName = "Nino", LastName = "Olivetto",
 EnrollmentDate = DateTime.Parse("2005-09-01") }
 };

 foreach (Student s in students)
 {
 context.Students.Add(s);
 }
 context.SaveChanges();

 var instructors = new Instructor[]
 {
 new Instructor { FirstMidName = "Kim", LastName = "Abercrombie",
 HireDate = DateTime.Parse("1995-03-11") },
 new Instructor { FirstMidName = "Fadi", LastName = "Fakhouri",
 HireDate = DateTime.Parse("2002-07-06") },
 new Instructor { FirstMidName = "Roger", LastName = "Harui",
 HireDate = DateTime.Parse("1998-07-01") },
 new Instructor { FirstMidName = "Candace", LastName = "Kapoor",
 HireDate = DateTime.Parse("2001-01-15") },
 new Instructor { FirstMidName = "Roger", LastName = "Zheng",
 HireDate = DateTime.Parse("2004-02-12") }
 };

 foreach (Instructor i in instructors)
 {
 context.Instructors.Add(i);
 }
 context.SaveChanges();

 var departments = new Department[]
 {
 new Department { Name = "English", Budget = 350000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID },
 new Department { Name = "Mathematics", Budget = 100000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID },
 new Department { Name = "Engineering", Budget = 350000,
 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID },
 new Department { Name = "Economics", Budget = 100000,
 StartDate = DateTime.Parse("2007-09-01"),

 StartDate = DateTime.Parse("2007-09-01"),
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID }
 };

 foreach (Department d in departments)
 {
 context.Departments.Add(d);
 }
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course {CourseID = 1050, Title = "Chemistry", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Engineering").DepartmentID
 },
 new Course {CourseID = 4022, Title = "Microeconomics", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Economics").DepartmentID
 },
 new Course {CourseID = 4041, Title = "Macroeconomics", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "Economics").DepartmentID
 },
 new Course {CourseID = 1045, Title = "Calculus", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "Mathematics").DepartmentID
 },
 new Course {CourseID = 3141, Title = "Trigonometry", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "Mathematics").DepartmentID
 },
 new Course {CourseID = 2021, Title = "Composition", Credits = 3,
 DepartmentID = departments.Single(s => s.Name == "English").DepartmentID
 },
 new Course {CourseID = 2042, Title = "Literature", Credits = 4,
 DepartmentID = departments.Single(s => s.Name == "English").DepartmentID
 },
 };

 foreach (Course c in courses)
 {
 context.Courses.Add(c);
 }
 context.SaveChanges();

 var officeAssignments = new OfficeAssignment[]
 {
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID,
 Location = "Smith 17" },
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID,
 Location = "Gowan 27" },
 new OfficeAssignment {
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID,
 Location = "Thompson 304" },
 };

 foreach (OfficeAssignment o in officeAssignments)
 {
 context.OfficeAssignments.Add(o);
 }
 context.SaveChanges();

 var courseInstructors = new CourseAssignment[]
 {
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID

 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Macroeconomics").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Calculus").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Trigonometry").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Harui").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
 },
 new CourseAssignment {
 CourseID = courses.Single(c => c.Title == "Literature").CourseID,
 InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
 },
 };

 foreach (CourseAssignment ci in courseInstructors)
 {
 context.CourseAssignments.Add(ci);
 }
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 Grade = Grade.A
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 Grade = Grade.C
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alexander").ID,
 CourseID = courses.Single(c => c.Title == "Macroeconomics").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Calculus").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Trigonometry").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Alonso").ID,
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Anand").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID
 },

 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Anand").ID,
 CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Barzdukas").ID,
 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Li").ID,
 CourseID = courses.Single(c => c.Title == "Composition").CourseID,
 Grade = Grade.B
 },
 new Enrollment {
 StudentID = students.Single(s => s.LastName == "Justice").ID,
 CourseID = courses.Single(c => c.Title == "Literature").CourseID,
 Grade = Grade.B
 }
 };

 foreach (Enrollment e in enrollments)
 {
 var enrollmentInDataBase = context.Enrollments.Where(
 s =>
 s.Student.ID == e.StudentID &&
 s.Course.CourseID == e.CourseID).SingleOrDefault();
 if (enrollmentInDataBase == null)
 {
 context.Enrollments.Add(e);
 }
 }
 context.SaveChanges();
 }
 }
}

Add a migration

dotnet ef migrations add ComplexDataModel

An operation was scaffolded that may result in the loss of data. Please review the migration for accuracy.
Done. To undo this action, use 'ef migrations remove'

As you saw in the first tutorial, most of this code simply creates new entity objects and loads sample data into

properties as required for testing. Notice how the many-to-many relationships are handled: the code creates

relationships by creating entities in the Enrollments and CourseAssignment join entity sets.

Save your changes and build the project. Then open the command window in the project folder and enter the

migrations add command (don't do the update-database command yet):

You get a warning about possible data loss.

If you tried to run the database update command at this point (don't do it yet), you would get the following error :

The ALTER TABLE statement conflicted with the FOREIGN KEY constraint

"FK_dbo.Course_dbo.Department_DepartmentID". The conflict occurred in database "ContosoUniversity", table

"dbo.Department", column 'DepartmentID'.

Sometimes when you execute migrations with existing data, you need to insert stub data into the database to

satisfy foreign key constraints. The generated code in the Up method adds a non-nullable DepartmentID foreign

key to the Course table. If there are already rows in the Course table when the code runs, the AddColumn operation

fails because SQL Server doesn't know what value to put in the column that can't be null. For this tutorial you'll run

the migration on a new database, but in a production application you'd have to make the migration handle existing

data, so the following directions show an example of how to do that.

To make this migration work with existing data you have to change the code to give the new column a default value,

and create a stub department named "Temp" to act as the default department. As a result, existing Course rows will

all be related to the "Temp" department after the Up method runs.

migrationBuilder.AlterColumn<string>(
 name: "Title",
 table: "Course",
 maxLength: 50,
 nullable: true,
 oldClrType: typeof(string),
 oldNullable: true);

//migrationBuilder.AddColumn<int>(
// name: "DepartmentID",
// table: "Course",
// nullable: false,
// defaultValue: 0);

Open the {timestamp}_ComplexDataModel.cs file.

Comment out the line of code that adds the DepartmentID column to the Course table.

Add the following highlighted code after the code that creates the Department table:

Change the connection string

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity3;Trusted_Connection=True;MultipleActiveResultSets=true"
 },

migrationBuilder.CreateTable(
 name: "Department",
 columns: table => new
 {
 DepartmentID = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
SqlServerValueGenerationStrategy.IdentityColumn),
 Budget = table.Column<decimal>(type: "money", nullable: false),
 InstructorID = table.Column<int>(nullable: true),
 Name = table.Column<string>(maxLength: 50, nullable: true),
 StartDate = table.Column<DateTime>(nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Department", x => x.DepartmentID);
 table.ForeignKey(
 name: "FK_Department_Instructor_InstructorID",
 column: x => x.InstructorID,
 principalTable: "Instructor",
 principalColumn: "ID",
 onDelete: ReferentialAction.Restrict);
 });

migrationBuilder.Sql("INSERT INTO dbo.Department (Name, Budget, StartDate) VALUES ('Temp', 0.00,
GETDATE())");
// Default value for FK points to department created above, with
// defaultValue changed to 1 in following AddColumn statement.

migrationBuilder.AddColumn<int>(
 name: "DepartmentID",
 table: "Course",
 nullable: false,
 defaultValue: 1);

In a production application, you would write code or scripts to add Department rows and relate Course rows to the

new Department rows. You would then no longer need the "Temp" department or the default value on the

Course.DepartmentID column.

Save your changes and build the project.

You now have new code in the DbInitializer class that adds seed data for the new entities to an empty database.

To make EF create a new empty database, change the name of the database in the connection string in

appsettings.json to ContosoUniversity3 or some other name that you haven't used on the computer you're using.

Save your change to appsettings.json.

NOTENOTE

dotnet ef database drop

Update the database

dotnet ef database update

As an alternative to changing the database name, you can delete the database. Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX) or

the database drop CLI command:

After you have changed the database name or deleted the database, run the database update command in the

command window to execute the migrations.

Run the app to cause the DbInitializer.Initialize method to run and populate the new database.

Open the database in SSOX as you did earlier, and expand the TablesTables node to see that all of the tables have been

created. (If you still have SSOX open from the earlier time, click the RefreshRefresh button.)

Run the app to trigger the initializer code that seeds the database.

Right-click the CourseAssignmentCourseAssignment table and select View DataView Data to verify that it has data in it.

Get the code

Next steps

Download or view the completed application.

In this tutorial, you:

Customized the Data model

Made changes to Student entity

Created Instructor entity

Created OfficeAssignment entity

Modified Course entity

Created Department entity

Modified Enrollment entity

Updated the database context

Seeded database with test data

Added a migration

Changed the connection string

Updated the database

Advance to the next tutorial to learn more about how to access related data.

Next: Access related data

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final

Tutorial: Read related data - ASP.NET MVC with EF
Core
9/22/2020 • 14 minutes to read • Edit Online

In the previous tutorial, you completed the School data model. In this tutorial, you'll read and display related data --

that is, data that the Entity Framework loads into navigation properties.

The following illustrations show the pages that you'll work with.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/read-related-data.md

Prerequisites

Learn how to load related data

In this tutorial, you:

Learn how to load related data

Create a Courses page

Create an Instructors page

Learn about explicit loading

Create a complex data model

There are several ways that Object-Relational Mapping (ORM) software such as Entity Framework can load related

data into the navigation properties of an entity:

Eager loading. When the entity is read, related data is retrieved along with it. This typically results in a single

Performance considerationsPerformance considerations

Create a Courses page

join query that retrieves all of the data that's needed. You specify eager loading in Entity Framework Core by

using the Include and ThenInclude methods.

You can retrieve some of the data in separate queries, and EF "fixes up" the navigation properties. That is, EF

automatically adds the separately retrieved entities where they belong in navigation properties of previously

retrieved entities. For the query that retrieves related data, you can use the Load method instead of a

method that returns a list or object, such as ToList or Single .

Explicit loading. When the entity is first read, related data isn't retrieved. You write code that retrieves the

related data if it's needed. As in the case of eager loading with separate queries, explicit loading results in

multiple queries sent to the database. The difference is that with explicit loading, the code specifies the

navigation properties to be loaded. In Entity Framework Core 1.1 you can use the Load method to do

explicit loading. For example:

Lazy loading. When the entity is first read, related data isn't retrieved. However, the first time you attempt to

access a navigation property, the data required for that navigation property is automatically retrieved. A

query is sent to the database each time you try to get data from a navigation property for the first time.

Entity Framework Core 1.0 doesn't support lazy loading.

If you know you need related data for every entity retrieved, eager loading often offers the best performance,

because a single query sent to the database is typically more efficient than separate queries for each entity

retrieved. For example, suppose that each department has ten related courses. Eager loading of all related data

would result in just a single (join) query and a single round trip to the database. A separate query for courses for

each department would result in eleven round trips to the database. The extra round trips to the database are

especially detrimental to performance when latency is high.

On the other hand, in some scenarios separate queries is more efficient. Eager loading of all related data in one

query might cause a very complex join to be generated, which SQL Server can't process efficiently. Or if you need to

access an entity's navigation properties only for a subset of a set of the entities you're processing, separate queries

might perform better because eager loading of everything up front would retrieve more data than you need. If

performance is critical, it's best to test performance both ways in order to make the best choice.

public async Task<IActionResult> Index()
{
 var courses = _context.Courses
 .Include(c => c.Department)
 .AsNoTracking();
 return View(await courses.ToListAsync());
}

The Course entity includes a navigation property that contains the Department entity of the department that the

course is assigned to. To display the name of the assigned department in a list of courses, you need to get the Name

property from the Department entity that's in the Course.Department navigation property.

Create a controller named CoursesController for the Course entity type, using the same options for the MVCMVC

Controller with views, using Entity FrameworkController with views, using Entity Framework scaffolder that you did earlier for the Students controller, as

shown in the following illustration:

Open CoursesController.cs and examine the Index method. The automatic scaffolding has specified eager loading

for the Department navigation property by using the Include method.

Replace the Index method with the following code that uses a more appropriate name for the IQueryable that

returns Course entities (courses instead of schoolContext):

Open Views/Courses/Index.cshtml and replace the template code with the following code. The changes are

highlighted:

@model IEnumerable<ContosoUniversity.Models.Course>

@{
 ViewData["Title"] = "Courses";
}

<h2>Courses</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.CourseID)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Credits)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Department)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.CourseID)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Credits)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Department.Name)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.CourseID">Edit |
 <a asp-action="Details" asp-route-id="@item.CourseID">Details |
 <a asp-action="Delete" asp-route-id="@item.CourseID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

You've made the following changes to the scaffolded code:

Changed the heading from Index to Courses.

Added a NumberNumber column that shows the CourseID property value. By default, primary keys aren't

scaffolded because normally they're meaningless to end users. However, in this case the primary key is

meaningful and you want to show it.

Changed the Depar tmentDepar tment column to display the department name. The code displays the Name property of

the Department entity that's loaded into the Department navigation property:

Create an Instructors page

@Html.DisplayFor(modelItem => item.Department.Name)

Run the app and select the CoursesCourses tab to see the list with department names.

In this section, you'll create a controller and view for the Instructor entity in order to display the Instructors page:

This page reads and displays related data in the following ways:

The list of instructors displays related data from the OfficeAssignment entity. The Instructor and

OfficeAssignment entities are in a one-to-zero-or-one relationship. You'll use eager loading for the

OfficeAssignment entities. As explained earlier, eager loading is typically more efficient when you need the

related data for all retrieved rows of the primary table. In this case, you want to display office assignments

for all displayed instructors.

When the user selects an instructor, related Course entities are displayed. The Instructor and Course entities

are in a many-to-many relationship. You'll use eager loading for the Course entities and their related

Department entities. In this case, separate queries might be more efficient because you need courses only for

the selected instructor. However, this example shows how to use eager loading for navigation properties

within entities that are themselves in navigation properties.

When the user selects a course, related data from the Enrollments entity set is displayed. The Course and

Enrollment entities are in a one-to-many relationship. You'll use separate queries for Enrollment entities and

their related Student entities.

Create a view model for the Instructor Index viewCreate a view model for the Instructor Index view

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class InstructorIndexData
 {
 public IEnumerable<Instructor> Instructors { get; set; }
 public IEnumerable<Course> Courses { get; set; }
 public IEnumerable<Enrollment> Enrollments { get; set; }
 }
}

Create the Instructor controller and viewsCreate the Instructor controller and views

using ContosoUniversity.Models.SchoolViewModels;

The Instructors page shows data from three different tables. Therefore, you'll create a view model that includes

three properties, each holding the data for one of the tables.

In the SchoolViewModels folder, create InstructorIndexData.cs and replace the existing code with the following code:

Create an Instructors controller with EF read/write actions as shown in the following illustration:

Open InstructorsController.cs and add a using statement for the ViewModels namespace:

Replace the Index method with the following code to do eager loading of related data and put it in the view model.

public async Task<IActionResult> Index(int? id, int? courseID)
{
 var viewModel = new InstructorIndexData();
 viewModel.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 ViewData["InstructorID"] = id.Value;
 Instructor instructor = viewModel.Instructors.Where(
 i => i.ID == id.Value).Single();
 viewModel.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 ViewData["CourseID"] = courseID.Value;
 viewModel.Enrollments = viewModel.Courses.Where(
 x => x.CourseID == courseID).Single().Enrollments;
 }

 return View(viewModel);
}

viewModel.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

The method accepts optional route data (id) and a query string parameter (courseID) that provide the ID values

of the selected instructor and selected course. The parameters are provided by the SelectSelect hyperlinks on the page.

The code begins by creating an instance of the view model and putting in it the list of instructors. The code specifies

eager loading for the Instructor.OfficeAssignment and the Instructor.CourseAssignments navigation properties.

Within the CourseAssignments property, the Course property is loaded, and within that, the Enrollments and

Department properties are loaded, and within each Enrollment entity the Student property is loaded.

Since the view always requires the OfficeAssignment entity, it's more efficient to fetch that in the same query.

Course entities are required when an instructor is selected in the web page, so a single query is better than multiple

queries only if the page is displayed more often with a course selected than without.

The code repeats CourseAssignments and Course because you need two properties from Course . The first string of

ThenInclude calls gets CourseAssignment.Course , Course.Enrollments , and Enrollment.Student .

viewModel.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

viewModel.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Enrollments)
 .ThenInclude(i => i.Student)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .AsNoTracking()
 .OrderBy(i => i.LastName)
 .ToListAsync();

if (id != null)
{
 ViewData["InstructorID"] = id.Value;
 Instructor instructor = viewModel.Instructors.Where(
 i => i.ID == id.Value).Single();
 viewModel.Courses = instructor.CourseAssignments.Select(s => s.Course);
}

.Single(i => i.ID == id.Value)

At that point in the code, another ThenInclude would be for navigation properties of Student , which you don't

need. But calling Include starts over with Instructor properties, so you have to go through the chain again, this

time specifying Course.Department instead of Course.Enrollments .

The following code executes when an instructor was selected. The selected instructor is retrieved from the list of

instructors in the view model. The view model's Courses property is then loaded with the Course entities from that

instructor's CourseAssignments navigation property.

The Where method returns a collection, but in this case the criteria passed to that method result in only a single

Instructor entity being returned. The Single method converts the collection into a single Instructor entity, which

gives you access to that entity's CourseAssignments property. The CourseAssignments property contains

CourseAssignment entities, from which you want only the related Course entities.

You use the Single method on a collection when you know the collection will have only one item. The Single

method throws an exception if the collection passed to it's empty or if there's more than one item. An alternative is

SingleOrDefault , which returns a default value (null in this case) if the collection is empty. However, in this case that

would still result in an exception (from trying to find a Courses property on a null reference), and the exception

message would less clearly indicate the cause of the problem. When you call the Single method, you can also pass

in the Where condition instead of calling the Where method separately:

.Where(i => i.ID == id.Value).Single()

if (courseID != null)
{
 ViewData["CourseID"] = courseID.Value;
 viewModel.Enrollments = viewModel.Courses.Where(
 x => x.CourseID == courseID).Single().Enrollments;
}

Modify the Instructor Index viewModify the Instructor Index view

Instead of:

Next, if a course was selected, the selected course is retrieved from the list of courses in the view model. Then the

view model's Enrollments property is loaded with the Enrollment entities from that course's Enrollments

navigation property.

In Views/Instructors/Index.cshtml, replace the template code with the following code. The changes are highlighted.

@model ContosoUniversity.Models.SchoolViewModels.InstructorIndexData

@{
 ViewData["Title"] = "Instructors";
}

<h2>Instructors</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>Last Name</th>
 <th>First Name</th>
 <th>Hire Date</th>
 <th>Office</th>
 <th>Courses</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Instructors)
 {
 string selectedRow = "";
 if (item.ID == (int?)ViewData["InstructorID"])
 {
 selectedRow = "success";
 }
 <tr class="@selectedRow">
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.HireDate)
 </td>
 <td>
 @if (item.OfficeAssignment != null)
 {
 @item.OfficeAssignment.Location
 }
 </td>
 <td>
 @{
 foreach (var course in item.CourseAssignments)
 {
 @course.Course.CourseID @: @course.Course.Title

 }
 }
 </td>
 <td>
 <a asp-action="Index" asp-route-id="@item.ID">Select |
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

You've made the following changes to the existing code:

@if (item.OfficeAssignment != null)
{
 @item.OfficeAssignment.Location
}

string selectedRow = "";
if (item.ID == (int?)ViewData["InstructorID"])
{
 selectedRow = "success";
}
<tr class="@selectedRow">

<a asp-action="Index" asp-route-id="@item.ID">Select |

Changed the model class to InstructorIndexData .

Changed the page title from IndexIndex to InstructorsInstructors .

Added an OfficeOffice column that displays item.OfficeAssignment.Location only if item.OfficeAssignment isn't

null. (Because this is a one-to-zero-or-one relationship, there might not be a related OfficeAssignment entity.)

Added a CoursesCourses column that displays courses taught by each instructor. For more information, see the

Explicit line transition section of the Razor syntax article.

Added code that dynamically adds class="success" to the tr element of the selected instructor. This sets a

background color for the selected row using a Bootstrap class.

Added a new hyperlink labeled SelectSelect immediately before the other links in each row, which causes the

selected instructor's ID to be sent to the Index method.

Run the app and select the InstructorsInstructors tab. The page displays the Location property of related OfficeAssignment

entities and an empty table cell when there's no related OfficeAssignment entity.

In the Views/Instructors/Index.cshtml file, after the closing table element (at the end of the file), add the following

code. This code displays a list of courses related to an instructor when an instructor is selected.

@if (Model.Courses != null)
{
 <h3>Courses Taught by Selected Instructor</h3>
 <table class="table">
 <tr>
 <th></th>
 <th>Number</th>
 <th>Title</th>
 <th>Department</th>
 </tr>

 @foreach (var item in Model.Courses)
 {
 string selectedRow = "";
 if (item.CourseID == (int?)ViewData["CourseID"])
 {
 selectedRow = "success";
 }
 <tr class="@selectedRow">
 <td>
 @Html.ActionLink("Select", "Index", new { courseID = item.CourseID })
 </td>
 <td>
 @item.CourseID
 </td>
 <td>
 @item.Title
 </td>
 <td>
 @item.Department.Name
 </td>
 </tr>
 }

 </table>
}

This code reads the Courses property of the view model to display a list of courses. It also provides a SelectSelect

hyperlink that sends the ID of the selected course to the Index action method.

Refresh the page and select an instructor. Now you see a grid that displays courses assigned to the selected

instructor, and for each course you see the name of the assigned department.

@if (Model.Enrollments != null)
{
 <h3>
 Students Enrolled in Selected Course
 </h3>
 <table class="table">
 <tr>
 <th>Name</th>
 <th>Grade</th>
 </tr>
 @foreach (var item in Model.Enrollments)
 {
 <tr>
 <td>
 @item.Student.FullName
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Grade)
 </td>
 </tr>
 }
 </table>
}

After the code block you just added, add the following code. This displays a list of the students who are enrolled in a

course when that course is selected.

This code reads the Enrollments property of the view model in order to display a list of students enrolled in the

course.

Refresh the page again and select an instructor. Then select a course to see the list of enrolled students and their

About explicit loading

grades.

When you retrieved the list of instructors in InstructorsController.cs, you specified eager loading for the

CourseAssignments navigation property.

Suppose you expected users to only rarely want to see enrollments in a selected instructor and course. In that case,

you might want to load the enrollment data only if it's requested. To see an example of how to do explicit loading,

replace the Index method with the following code, which removes eager loading for Enrollments and loads that

property explicitly. The code changes are highlighted.

public async Task<IActionResult> Index(int? id, int? courseID)
{
 var viewModel = new InstructorIndexData();
 viewModel.Instructors = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .ThenInclude(i => i.Department)
 .OrderBy(i => i.LastName)
 .ToListAsync();

 if (id != null)
 {
 ViewData["InstructorID"] = id.Value;
 Instructor instructor = viewModel.Instructors.Where(
 i => i.ID == id.Value).Single();
 viewModel.Courses = instructor.CourseAssignments.Select(s => s.Course);
 }

 if (courseID != null)
 {
 ViewData["CourseID"] = courseID.Value;
 var selectedCourse = viewModel.Courses.Where(x => x.CourseID == courseID).Single();
 await _context.Entry(selectedCourse).Collection(x => x.Enrollments).LoadAsync();
 foreach (Enrollment enrollment in selectedCourse.Enrollments)
 {
 await _context.Entry(enrollment).Reference(x => x.Student).LoadAsync();
 }
 viewModel.Enrollments = selectedCourse.Enrollments;
 }

 return View(viewModel);
}

Get the code

Next steps

The new code drops the ThenInclude method calls for enrollment data from the code that retrieves instructor

entities. It also drops AsNoTracking . If an instructor and course are selected, the highlighted code retrieves

Enrollment entities for the selected course, and Student entities for each Enrollment.

Run the app, go to the Instructors Index page now and you'll see no difference in what's displayed on the page,

although you've changed how the data is retrieved.

Download or view the completed application.

In this tutorial, you:

Learned how to load related data

Created a Courses page

Created an Instructors page

Learned about explicit loading

Advance to the next tutorial to learn how to update related data.

Update related data

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final

Tutorial: Update related data - ASP.NET MVC with EF
Core
9/22/2020 • 18 minutes to read • Edit Online

In the previous tutorial you displayed related data; in this tutorial you'll update related data by updating foreign key

fields and navigation properties.

The following illustrations show some of the pages that you'll work with.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/update-related-data.md

Prerequisites

Customize Courses pages

In this tutorial, you:

Customize Courses pages

Add Instructors Edit page

Add courses to Edit page

Update Delete page

Add office location and courses to Create page

Read related data

When a new course entity is created, it must have a relationship to an existing department. To facilitate this, the

scaffolded code includes controller methods and Create and Edit views that include a drop-down list for selecting

the department. The drop-down list sets the Course.DepartmentID foreign key property, and that's all the Entity

Framework needs in order to load the Department navigation property with the appropriate Department entity.

You'll use the scaffolded code, but change it slightly to add error handling and sort the drop-down list.

In CoursesController.cs, delete the four Create and Edit methods and replace them with the following code:

public IActionResult Create()
{
 PopulateDepartmentsDropDownList();
 return View();
}

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create([Bind("CourseID,Credits,DepartmentID,Title")] Course course)
{
 if (ModelState.IsValid)
 {
 _context.Add(course);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 PopulateDepartmentsDropDownList(course.DepartmentID);
 return View(course);
}

public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var course = await _context.Courses
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.CourseID == id);
 if (course == null)
 {
 return NotFound();
 }
 PopulateDepartmentsDropDownList(course.DepartmentID);
 return View(course);
}

[HttpPost, ActionName("Edit")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> EditPost(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var courseToUpdate = await _context.Courses
 .FirstOrDefaultAsync(c => c.CourseID == id);

 if (await TryUpdateModelAsync<Course>(courseToUpdate,
 "",
 c => c.Credits, c => c.DepartmentID, c => c.Title))
 {
 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists, " +
 "see your system administrator.");
 }
 return RedirectToAction(nameof(Index));
 }
 PopulateDepartmentsDropDownList(courseToUpdate.DepartmentID);
 return View(courseToUpdate);
}

private void PopulateDepartmentsDropDownList(object selectedDepartment = null)
{
 var departmentsQuery = from d in _context.Departments
 orderby d.Name
 select d;
 ViewBag.DepartmentID = new SelectList(departmentsQuery.AsNoTracking(), "DepartmentID", "Name",
selectedDepartment);
}

public IActionResult Create()
{
 PopulateDepartmentsDropDownList();
 return View();
}

After the Edit HttpPost method, create a new method that loads department info for the drop-down list.

The PopulateDepartmentsDropDownList method gets a list of all departments sorted by name, creates a SelectList

collection for a drop-down list, and passes the collection to the view in ViewBag . The method accepts the optional

selectedDepartment parameter that allows the calling code to specify the item that will be selected when the drop-

down list is rendered. The view will pass the name "DepartmentID" to the <select> tag helper, and the helper then

knows to look in the ViewBag object for a SelectList named "DepartmentID".

The HttpGet Create method calls the PopulateDepartmentsDropDownList method without setting the selected item,

because for a new course the department isn't established yet:

The HttpGet Edit method sets the selected item, based on the ID of the department that's already assigned to the

public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var course = await _context.Courses
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.CourseID == id);
 if (course == null)
 {
 return NotFound();
 }
 PopulateDepartmentsDropDownList(course.DepartmentID);
 return View(course);
}

Add .AsNoTracking to Details and Delete methodsAdd .AsNoTracking to Details and Delete methods

public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var course = await _context.Courses
 .Include(c => c.Department)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.CourseID == id);
 if (course == null)
 {
 return NotFound();
 }

 return View(course);
}

course being edited:

The HttpPost methods for both Create and Edit also include code that sets the selected item when they redisplay

the page after an error. This ensures that when the page is redisplayed to show the error message, whatever

department was selected stays selected.

To optimize performance of the Course Details and Delete pages, add AsNoTracking calls in the Details and

HttpGet Delete methods.

public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var course = await _context.Courses
 .Include(c => c.Department)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.CourseID == id);
 if (course == null)
 {
 return NotFound();
 }

 return View(course);
}

Modify the Course viewsModify the Course views

<div class="form-group">
 <label asp-for="Department" class="control-label"></label>
 <select asp-for="DepartmentID" class="form-control" asp-items="ViewBag.DepartmentID">
 <option value="">-- Select Department --</option>
 </select>

<div class="form-group">
 <label asp-for="CourseID" class="control-label"></label>
 <div>@Html.DisplayFor(model => model.CourseID)</div>
</div>

In Views/Courses/Create.cshtml, add a "Select Department" option to the Depar tmentDepar tment drop-down list, change the

caption from Depar tmentIDDepar tmentID to Depar tmentDepar tment, and add a validation message.

In Views/Courses/Edit.cshtml, make the same change for the Department field that you just did in Create.cshtml.

Also in Views/Courses/Edit.cshtml, add a course number field before the TitleTitle field. Because the course number is

the primary key, it's displayed, but it can't be changed.

There's already a hidden field (<input type="hidden">) for the course number in the Edit view. Adding a <label>

tag helper doesn't eliminate the need for the hidden field because it doesn't cause the course number to be included

in the posted data when the user clicks SaveSave on the EditEdit page.

In Views/Courses/Delete.cshtml, add a course number field at the top and change department ID to department

name.

@model ContosoUniversity.Models.Course

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Course</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.CourseID)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.CourseID)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Title)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Title)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Credits)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Credits)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Department)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Department.Name)
 </dd>
 </dl>

 <form asp-action="Delete">
 <div class="form-actions no-color">
 <input type="submit" value="Delete" class="btn btn-default" /> |
 <a asp-action="Index">Back to List
 </div>
 </form>
</div>

Test the Course pagesTest the Course pages

In Views/Courses/Details.cshtml, make the same change that you just did for Delete.cshtml.

Run the app, select the CoursesCourses tab, click Create NewCreate New , and enter data for a new course:

Click CreateCreate. The Courses Index page is displayed with the new course added to the list. The department name in

the Index page list comes from the navigation property, showing that the relationship was established correctly.

Click EditEdit on a course in the Courses Index page.

Add Instructors Edit page

Update the Instructors controllerUpdate the Instructors controller

Change data on the page and click SaveSave. The Courses Index page is displayed with the updated course data.

When you edit an instructor record, you want to be able to update the instructor's office assignment. The Instructor

entity has a one-to-zero-or-one relationship with the OfficeAssignment entity, which means your code has to

handle the following situations:

If the user clears the office assignment and it originally had a value, delete the OfficeAssignment entity.

If the user enters an office assignment value and it originally was empty, create a new OfficeAssignment

entity.

If the user changes the value of an office assignment, change the value in an existing OfficeAssignment

entity.

In InstructorsController.cs, change the code in the HttpGet Edit method so that it loads the Instructor entity's

OfficeAssignment navigation property and calls AsNoTracking :

public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var instructor = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);
 if (instructor == null)
 {
 return NotFound();
 }
 return View(instructor);
}

[HttpPost, ActionName("Edit")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> EditPost(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var instructorToUpdate = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .FirstOrDefaultAsync(s => s.ID == id);

 if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "",
 i => i.FirstMidName, i => i.LastName, i => i.HireDate, i => i.OfficeAssignment))
 {
 if (String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment?.Location))
 {
 instructorToUpdate.OfficeAssignment = null;
 }
 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists, " +
 "see your system administrator.");
 }
 return RedirectToAction(nameof(Index));
 }
 return View(instructorToUpdate);
}

Replace the HttpPost Edit method with the following code to handle office assignment updates:

The code does the following:

Changes the method name to EditPost because the signature is now the same as the HttpGet Edit

method (the ActionName attribute specifies that the /Edit/ URL is still used).

Gets the current Instructor entity from the database using eager loading for the OfficeAssignment navigation

Update the Instructor Edit viewUpdate the Instructor Edit view

<div class="form-group">
 <label asp-for="OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="OfficeAssignment.Location" class="form-control" />

</div>

if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "",
 i => i.FirstMidName, i => i.LastName, i => i.HireDate, i => i.OfficeAssignment))

if (String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment?.Location))
{
 instructorToUpdate.OfficeAssignment = null;
}

property. This is the same as what you did in the HttpGet Edit method.

Updates the retrieved Instructor entity with values from the model binder. The TryUpdateModel overload

enables you to declare the properties you want to include. This prevents over-posting, as explained in the

second tutorial.

If the office location is blank, sets the Instructor.OfficeAssignment property to null so that the related row in

the OfficeAssignment table will be deleted.

Saves the changes to the database.

In Views/Instructors/Edit.cshtml, add a new field for editing the office location, at the end before the SaveSave button:

Run the app, select the InstructorsInstructors tab, and then click EditEdit on an instructor. Change the Office LocationOffice Location and click

SaveSave.

Add courses to Edit page
Instructors may teach any number of courses. Now you'll enhance the Instructor Edit page by adding the ability to

change course assignments using a group of check boxes, as shown in the following screen shot:

Update the Instructors controllerUpdate the Instructors controller

The relationship between the Course and Instructor entities is many-to-many. To add and remove relationships, you

add and remove entities to and from the CourseAssignments join entity set.

The UI that enables you to change which courses an instructor is assigned to is a group of check boxes. A check box

for every course in the database is displayed, and the ones that the instructor is currently assigned to are selected.

The user can select or clear check boxes to change course assignments. If the number of courses were much greater,

you would probably want to use a different method of presenting the data in the view, but you'd use the same

method of manipulating a join entity to create or delete relationships.

To provide data to the view for the list of check boxes, you'll use a view model class.

Create AssignedCourseData.cs in the SchoolViewModels folder and replace the existing code with the following

code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
 public class AssignedCourseData
 {
 public int CourseID { get; set; }
 public string Title { get; set; }
 public bool Assigned { get; set; }
 }
}

public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var instructor = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments).ThenInclude(i => i.Course)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.ID == id);
 if (instructor == null)
 {
 return NotFound();
 }
 PopulateAssignedCourseData(instructor);
 return View(instructor);
}

private void PopulateAssignedCourseData(Instructor instructor)
{
 var allCourses = _context.Courses;
 var instructorCourses = new HashSet<int>(instructor.CourseAssignments.Select(c => c.CourseID));
 var viewModel = new List<AssignedCourseData>();
 foreach (var course in allCourses)
 {
 viewModel.Add(new AssignedCourseData
 {
 CourseID = course.CourseID,
 Title = course.Title,
 Assigned = instructorCourses.Contains(course.CourseID)
 });
 }
 ViewData["Courses"] = viewModel;
}

In InstructorsController.cs, replace the HttpGet Edit method with the following code. The changes are highlighted.

The code adds eager loading for the Courses navigation property and calls the new PopulateAssignedCourseData

method to provide information for the check box array using the AssignedCourseData view model class.

The code in the PopulateAssignedCourseData method reads through all Course entities in order to load a list of

courses using the view model class. For each course, the code checks whether the course exists in the instructor's

Courses navigation property. To create efficient lookup when checking whether a course is assigned to the

instructor, the courses assigned to the instructor are put into a HashSet collection. The Assigned property is set to

true for courses the instructor is assigned to. The view will use this property to determine which check boxes must

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int? id, string[] selectedCourses)
{
 if (id == null)
 {
 return NotFound();
 }

 var instructorToUpdate = await _context.Instructors
 .Include(i => i.OfficeAssignment)
 .Include(i => i.CourseAssignments)
 .ThenInclude(i => i.Course)
 .FirstOrDefaultAsync(m => m.ID == id);

 if (await TryUpdateModelAsync<Instructor>(
 instructorToUpdate,
 "",
 i => i.FirstMidName, i => i.LastName, i => i.HireDate, i => i.OfficeAssignment))
 {
 if (String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment?.Location))
 {
 instructorToUpdate.OfficeAssignment = null;
 }
 UpdateInstructorCourses(selectedCourses, instructorToUpdate);
 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 ModelState.AddModelError("", "Unable to save changes. " +
 "Try again, and if the problem persists, " +
 "see your system administrator.");
 }
 return RedirectToAction(nameof(Index));
 }
 UpdateInstructorCourses(selectedCourses, instructorToUpdate);
 PopulateAssignedCourseData(instructorToUpdate);
 return View(instructorToUpdate);
}

be displayed as selected. Finally, the list is passed to the view in ViewData .

Next, add the code that's executed when the user clicks SaveSave. Replace the EditPost method with the following

code, and add a new method that updates the Courses navigation property of the Instructor entity.

private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in _context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID =
instructorToUpdate.ID, CourseID = course.CourseID });
 }
 }
 else
 {

 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.FirstOrDefault(i =>
i.CourseID == course.CourseID);
 _context.Remove(courseToRemove);
 }
 }
 }
}

The method signature is now different from the HttpGet Edit method, so the method name changes from

EditPost back to Edit .

Since the view doesn't have a collection of Course entities, the model binder can't automatically update the

CourseAssignments navigation property. Instead of using the model binder to update the CourseAssignments

navigation property, you do that in the new UpdateInstructorCourses method. Therefore, you need to exclude the

CourseAssignments property from model binding. This doesn't require any change to the code that calls

TryUpdateModel because you're using the overload that requires explicit approval and CourseAssignments isn't in the

include list.

If no check boxes were selected, the code in UpdateInstructorCourses initializes the CourseAssignments navigation

property with an empty collection and returns:

private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in _context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID =
instructorToUpdate.ID, CourseID = course.CourseID });
 }
 }
 else
 {

 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.FirstOrDefault(i =>
i.CourseID == course.CourseID);
 _context.Remove(courseToRemove);
 }
 }
 }
}

The code then loops through all courses in the database and checks each course against the ones currently assigned

to the instructor versus the ones that were selected in the view. To facilitate efficient lookups, the latter two

collections are stored in HashSet objects.

If the check box for a course was selected but the course isn't in the Instructor.CourseAssignments navigation

property, the course is added to the collection in the navigation property.

private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in _context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID =
instructorToUpdate.ID, CourseID = course.CourseID });
 }
 }
 else
 {

 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.FirstOrDefault(i =>
i.CourseID == course.CourseID);
 _context.Remove(courseToRemove);
 }
 }
 }
}

If the check box for a course wasn't selected, but the course is in the Instructor.CourseAssignments navigation

property, the course is removed from the navigation property.

private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
 if (selectedCourses == null)
 {
 instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
 return;
 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);
 var instructorCourses = new HashSet<int>
 (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
 foreach (var course in _context.Courses)
 {
 if (selectedCoursesHS.Contains(course.CourseID.ToString()))
 {
 if (!instructorCourses.Contains(course.CourseID))
 {
 instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID =
instructorToUpdate.ID, CourseID = course.CourseID });
 }
 }
 else
 {

 if (instructorCourses.Contains(course.CourseID))
 {
 CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.FirstOrDefault(i =>
i.CourseID == course.CourseID);
 _context.Remove(courseToRemove);
 }
 }
 }
}

Update the Instructor viewsUpdate the Instructor views

NOTENOTE

In Views/Instructors/Edit.cshtml, add a CoursesCourses field with an array of check boxes by adding the following code

immediately after the div elements for the OfficeOffice field and before the div element for the SaveSave button.

When you paste the code in Visual Studio, line breaks might be changed in a way that breaks the code. If the code looks

different after pasting, press Ctrl+Z one time to undo the automatic formatting. This will fix the line breaks so that they look

like what you see here. The indentation doesn't have to be perfect, but the @:</tr><tr> , @:<td> , @:</td> , and

@:</tr> lines must each be on a single line as shown or you'll get a runtime error. With the block of new code selected,

press Tab three times to line up the new code with the existing code. This problem is fixed in Visual Studio 2019.

<div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <table>
 <tr>
 @{
 int cnt = 0;
 List<ContosoUniversity.Models.SchoolViewModels.AssignedCourseData> courses =
ViewBag.Courses;

 foreach (var course in courses)
 {
 if (cnt++ % 3 == 0)
 {
 @:</tr><tr>
 }
 @:<td>
 <input type="checkbox"
 name="selectedCourses"
 value="@course.CourseID"
 @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
 @course.CourseID @: @course.Title
 @:</td>
 }
 @:</tr>
 }
 </table>
 </div>
</div>

This code creates an HTML table that has three columns. In each column is a check box followed by a caption that

consists of the course number and title. The check boxes all have the same name ("selectedCourses"), which informs

the model binder that they're to be treated as a group. The value attribute of each check box is set to the value of

CourseID . When the page is posted, the model binder passes an array to the controller that consists of the

CourseID values for only the check boxes which are selected.

When the check boxes are initially rendered, those that are for courses assigned to the instructor have checked

attributes, which selects them (displays them checked).

Run the app, select the InstructorsInstructors tab, and click EditEdit on an instructor to see the EditEdit page.

NOTENOTE

Update Delete page

Change some course assignments and click Save. The changes you make are reflected on the Index page.

The approach taken here to edit instructor course data works well when there's a limited number of courses. For collections

that are much larger, a different UI and a different updating method would be required.

In InstructorsController.cs, delete the DeleteConfirmed method and insert the following code in its place.

[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 Instructor instructor = await _context.Instructors
 .Include(i => i.CourseAssignments)
 .SingleAsync(i => i.ID == id);

 var departments = await _context.Departments
 .Where(d => d.InstructorID == id)
 .ToListAsync();
 departments.ForEach(d => d.InstructorID = null);

 _context.Instructors.Remove(instructor);

 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
}

Add office location and courses to Create page

This code makes the following changes:

Does eager loading for the CourseAssignments navigation property. You have to include this or EF won't

know about related CourseAssignment entities and won't delete them. To avoid needing to read them here

you could configure cascade delete in the database.

If the instructor to be deleted is assigned as administrator of any departments, removes the instructor

assignment from those departments.

In InstructorsController.cs, delete the HttpGet and HttpPost Create methods, and then add the following code in

their place:

public IActionResult Create()
{
 var instructor = new Instructor();
 instructor.CourseAssignments = new List<CourseAssignment>();
 PopulateAssignedCourseData(instructor);
 return View();
}

// POST: Instructors/Create
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create([Bind("FirstMidName,HireDate,LastName,OfficeAssignment")] Instructor
instructor, string[] selectedCourses)
{
 if (selectedCourses != null)
 {
 instructor.CourseAssignments = new List<CourseAssignment>();
 foreach (var course in selectedCourses)
 {
 var courseToAdd = new CourseAssignment { InstructorID = instructor.ID, CourseID = int.Parse(course)
};
 instructor.CourseAssignments.Add(courseToAdd);
 }
 }
 if (ModelState.IsValid)
 {
 _context.Add(instructor);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 PopulateAssignedCourseData(instructor);
 return View(instructor);
}

instructor.CourseAssignments = new List<CourseAssignment>();

This code is similar to what you saw for the Edit methods except that initially no courses are selected. The HttpGet

Create method calls the PopulateAssignedCourseData method not because there might be courses selected but in

order to provide an empty collection for the foreach loop in the view (otherwise the view code would throw a null

reference exception).

The HttpPost Create method adds each selected course to the CourseAssignments navigation property before it

checks for validation errors and adds the new instructor to the database. Courses are added even if there are model

errors so that when there are model errors (for an example, the user keyed an invalid date), and the page is

redisplayed with an error message, any course selections that were made are automatically restored.

Notice that in order to be able to add courses to the CourseAssignments navigation property you have to initialize

the property as an empty collection:

As an alternative to doing this in controller code, you could do it in the Instructor model by changing the property

getter to automatically create the collection if it doesn't exist, as shown in the following example:

private ICollection<CourseAssignment> _courseAssignments;
public ICollection<CourseAssignment> CourseAssignments
{
 get
 {
 return _courseAssignments ?? (_courseAssignments = new List<CourseAssignment>());
 }
 set
 {
 _courseAssignments = value;
 }
}

<div class="form-group">
 <label asp-for="OfficeAssignment.Location" class="control-label"></label>
 <input asp-for="OfficeAssignment.Location" class="form-control" />

</div>

<div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <table>
 <tr>
 @{
 int cnt = 0;
 List<ContosoUniversity.Models.SchoolViewModels.AssignedCourseData> courses =
ViewBag.Courses;

 foreach (var course in courses)
 {
 if (cnt++ % 3 == 0)
 {
 @:</tr><tr>
 }
 @:<td>
 <input type="checkbox"
 name="selectedCourses"
 value="@course.CourseID"
 @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
 @course.CourseID @: @course.Title
 @:</td>
 }
 @:</tr>
 }
 </table>
 </div>
</div>

Handling Transactions

If you modify the CourseAssignments property in this way, you can remove the explicit property initialization code in

the controller.

In Views/Instructor/Create.cshtml, add an office location text box and check boxes for courses before the Submit

button. As in the case of the Edit page, fix the formatting if Visual Studio reformats the code when you paste it.

Test by running the app and creating an instructor.

As explained in the CRUD tutorial, the Entity Framework implicitly implements transactions. For scenarios where

you need more control -- for example, if you want to include operations done outside of Entity Framework in a

transaction -- see Transactions.

https://docs.microsoft.com/en-us/ef/core/saving/transactions

Get the code

Next steps

Download or view the completed application.

In this tutorial, you:

Customized Courses pages

Added Instructors Edit page

Added courses to Edit page

Updated Delete page

Added office location and courses to Create page

Advance to the next tutorial to learn how to handle concurrency conflicts.

Handle concurrency conflicts

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final

Tutorial: Handle concurrency - ASP.NET MVC with EF
Core
9/22/2020 • 18 minutes to read • Edit Online

In earlier tutorials, you learned how to update data. This tutorial shows how to handle conflicts when multiple users

update the same entity at the same time.

You'll create web pages that work with the Department entity and handle concurrency errors. The following

illustrations show the Edit and Delete pages, including some messages that are displayed if a concurrency conflict

occurs.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/concurrency.md

Prerequisites

Concurrency conflicts

In this tutorial, you:

Learn about concurrency conflicts

Add a tracking property

Create Departments controller and views

Update Index view

Update Edit methods

Update Edit view

Test concurrency conflicts

Update the Delete page

Update Details and Create views

Update related data

A concurrency conflict occurs when one user displays an entity's data in order to edit it, and then another user

updates the same entity's data before the first user's change is written to the database. If you don't enable the

detection of such conflicts, whoever updates the database last overwrites the other user's changes. In many

applications, this risk is acceptable: if there are few users, or few updates, or if isn't really critical if some changes are

overwritten, the cost of programming for concurrency might outweigh the benefit. In that case, you don't have to

configure the application to handle concurrency conflicts.

Pessimistic concurrency (locking)Pessimistic concurrency (locking)

Optimistic ConcurrencyOptimistic Concurrency

If your application does need to prevent accidental data loss in concurrency scenarios, one way to do that is to use

database locks. This is called pessimistic concurrency. For example, before you read a row from a database, you

request a lock for read-only or for update access. If you lock a row for update access, no other users are allowed to

lock the row either for read-only or update access, because they would get a copy of data that's in the process of

being changed. If you lock a row for read-only access, others can also lock it for read-only access but not for update.

Managing locks has disadvantages. It can be complex to program. It requires significant database management

resources, and it can cause performance problems as the number of users of an application increases. For these

reasons, not all database management systems support pessimistic concurrency. Entity Framework Core provides

no built-in support for it, and this tutorial doesn't show you how to implement it.

The alternative to pessimistic concurrency is optimistic concurrency. Optimistic concurrency means allowing

concurrency conflicts to happen, and then reacting appropriately if they do. For example, Jane visits the Department

Edit page and changes the Budget amount for the English department from $350,000.00 to $0.00.

Before Jane clicks SaveSave, John visits the same page and changes the Start Date field from 9/1/2007 to 9/1/2013.

Jane clicks SaveSave first and sees her change when the browser returns to the Index page.

Then John clicks SaveSave on an Edit page that still shows a budget of $350,000.00. What happens next is determined

by how you handle concurrency conflicts.

Some of the options include the following:

You can keep track of which property a user has modified and update only the corresponding columns in the

database.

In the example scenario, no data would be lost, because different properties were updated by the two users.

The next time someone browses the English department, they will see both Jane's and John's changes -- a

start date of 9/1/2013 and a budget of zero dollars. This method of updating can reduce the number of

conflicts that could result in data loss, but it can't avoid data loss if competing changes are made to the same

Detecting concurrency conflictsDetecting concurrency conflicts

property of an entity. Whether the Entity Framework works this way depends on how you implement your

update code. It's often not practical in a web application, because it can require that you maintain large

amounts of state in order to keep track of all original property values for an entity as well as new values.

Maintaining large amounts of state can affect application performance because it either requires server

resources or must be included in the web page itself (for example, in hidden fields) or in a cookie.

You can let John's change overwrite Jane's change.

The next time someone browses the English department, they will see 9/1/2013 and the restored

$350,000.00 value. This is called a Client Wins or Last in Wins scenario. (All values from the client take

precedence over what's in the data store.) As noted in the introduction to this section, if you don't do any

coding for concurrency handling, this will happen automatically.

You can prevent John's change from being updated in the database.

Typically, you would display an error message, show him the current state of the data, and allow him to

reapply his changes if he still wants to make them. This is called a Store Wins scenario. (The data-store values

take precedence over the values submitted by the client.) You'll implement the Store Wins scenario in this

tutorial. This method ensures that no changes are overwritten without a user being alerted to what's

happening.

You can resolve conflicts by handling DbConcurrencyException exceptions that the Entity Framework throws. In order

to know when to throw these exceptions, the Entity Framework must be able to detect conflicts. Therefore, you must

configure the database and the data model appropriately. Some options for enabling conflict detection include the

following:

In the database table, include a tracking column that can be used to determine when a row has been

changed. You can then configure the Entity Framework to include that column in the Where clause of SQL

Update or Delete commands.

The data type of the tracking column is typically rowversion . The rowversion value is a sequential number

that's incremented each time the row is updated. In an Update or Delete command, the Where clause

includes the original value of the tracking column (the original row version) . If the row being updated has

been changed by another user, the value in the rowversion column is different than the original value, so the

Update or Delete statement can't find the row to update because of the Where clause. When the Entity

Framework finds that no rows have been updated by the Update or Delete command (that is, when the

number of affected rows is zero), it interprets that as a concurrency conflict.

Configure the Entity Framework to include the original values of every column in the table in the Where

clause of Update and Delete commands.

As in the first option, if anything in the row has changed since the row was first read, the Where clause won't

return a row to update, which the Entity Framework interprets as a concurrency conflict. For database tables

that have many columns, this approach can result in very large Where clauses, and can require that you

maintain large amounts of state. As noted earlier, maintaining large amounts of state can affect application

performance. Therefore this approach is generally not recommended, and it isn't the method used in this

tutorial.

If you do want to implement this approach to concurrency, you have to mark all non-primary-key properties

in the entity you want to track concurrency for by adding the ConcurrencyCheck attribute to them. That

change enables the Entity Framework to include all columns in the SQL Where clause of Update and Delete

statements.

In the remainder of this tutorial you'll add a rowversion tracking property to the Department entity, create a

controller and views, and test to verify that everything works correctly.

Add a tracking property

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Department
 {
 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]
 public string Name { get; set; }

 [DataType(DataType.Currency)]
 [Column(TypeName = "money")]
 public decimal Budget { get; set; }

 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Start Date")]
 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 [Timestamp]
 public byte[] RowVersion { get; set; }

 public Instructor Administrator { get; set; }
 public ICollection<Course> Courses { get; set; }
 }
}

modelBuilder.Entity<Department>()
 .Property(p => p.RowVersion).IsConcurrencyToken();

dotnet ef migrations add RowVersion

dotnet ef database update

Create Departments controller and views

In Models/Department.cs, add a tracking property named RowVersion:

The Timestamp attribute specifies that this column will be included in the Where clause of Update and Delete

commands sent to the database. The attribute is called Timestamp because previous versions of SQL Server used a

SQL timestamp data type before the SQL rowversion replaced it. The .NET type for rowversion is a byte array.

If you prefer to use the fluent API, you can use the IsConcurrencyToken method (in Data/SchoolContext.cs) to specify

the tracking property, as shown in the following example:

By adding a property you changed the database model, so you need to do another migration.

Save your changes and build the project, and then enter the following commands in the command window:

Scaffold a Departments controller and views as you did earlier for Students, Courses, and Instructors.

ViewData["InstructorID"] = new SelectList(_context.Instructors, "ID", "FullName", department.InstructorID);

Update Index view

In the DepartmentsController.cs file, change all four occurrences of "FirstMidName" to "FullName" so that the

department administrator drop-down lists will contain the full name of the instructor rather than just the last name.

The scaffolding engine created a RowVersion column in the Index view, but that field shouldn't be displayed.

Replace the code in Views/Departments/Index.cshtml with the following code.

@model IEnumerable<ContosoUniversity.Models.Department>

@{
 ViewData["Title"] = "Departments";
}

<h2>Departments</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Name)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Budget)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.StartDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Administrator)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Budget)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.StartDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Administrator.FullName)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.DepartmentID">Edit |
 <a asp-action="Details" asp-route-id="@item.DepartmentID">Details |
 <a asp-action="Delete" asp-route-id="@item.DepartmentID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Update Edit methods

This changes the heading to "Departments", deletes the RowVersion column, and shows full name instead of first

name for the administrator.

In both the HttpGet Edit method and the Details method, add AsNoTracking . In the HttpGet Edit method, add

eager loading for the Administrator.

var department = await _context.Departments
 .Include(i => i.Administrator)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.DepartmentID == id);

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int? id, byte[] rowVersion)
{
 if (id == null)
 {
 return NotFound();
 }

 var departmentToUpdate = await _context.Departments.Include(i => i.Administrator).FirstOrDefaultAsync(m =>
m.DepartmentID == id);

 if (departmentToUpdate == null)
 {
 Department deletedDepartment = new Department();
 await TryUpdateModelAsync(deletedDepartment);
 ModelState.AddModelError(string.Empty,
 "Unable to save changes. The department was deleted by another user.");
 ViewData["InstructorID"] = new SelectList(_context.Instructors, "ID", "FullName",
deletedDepartment.InstructorID);
 return View(deletedDepartment);
 }

 _context.Entry(departmentToUpdate).Property("RowVersion").OriginalValue = rowVersion;

 if (await TryUpdateModelAsync<Department>(
 departmentToUpdate,
 "",
 s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
 {
 try
 {
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateConcurrencyException ex)
 {
 var exceptionEntry = ex.Entries.Single();
 var clientValues = (Department)exceptionEntry.Entity;
 var databaseEntry = exceptionEntry.GetDatabaseValues();
 if (databaseEntry == null)
 {
 ModelState.AddModelError(string.Empty,
 "Unable to save changes. The department was deleted by another user.");
 }
 else
 {
 var databaseValues = (Department)databaseEntry.ToObject();

 if (databaseValues.Name != clientValues.Name)
 {
 ModelState.AddModelError("Name", $"Current value: {databaseValues.Name}");
 }
 if (databaseValues.Budget != clientValues.Budget)
 {
 ModelState.AddModelError("Budget", $"Current value: {databaseValues.Budget:c}");
 }
 if (databaseValues.StartDate != clientValues.StartDate)
 {

Replace the existing code for the HttpPost Edit method with the following code:

 ModelState.AddModelError("StartDate", $"Current value: {databaseValues.StartDate:d}");
 }
 if (databaseValues.InstructorID != clientValues.InstructorID)
 {
 Instructor databaseInstructor = await _context.Instructors.FirstOrDefaultAsync(i => i.ID ==
databaseValues.InstructorID);
 ModelState.AddModelError("InstructorID", $"Current value: {databaseInstructor?.FullName}");
 }

 ModelState.AddModelError(string.Empty, "The record you attempted to edit "
 + "was modified by another user after you got the original value. The "
 + "edit operation was canceled and the current values in the database "
 + "have been displayed. If you still want to edit this record, click "
 + "the Save button again. Otherwise click the Back to List hyperlink.");
 departmentToUpdate.RowVersion = (byte[])databaseValues.RowVersion;
 ModelState.Remove("RowVersion");
 }
 }
 }
 ViewData["InstructorID"] = new SelectList(_context.Instructors, "ID", "FullName",
departmentToUpdate.InstructorID);
 return View(departmentToUpdate);
}

_context.Entry(departmentToUpdate).Property("RowVersion").OriginalValue = rowVersion;

var exceptionEntry = ex.Entries.Single();

var clientValues = (Department)exceptionEntry.Entity;
var databaseEntry = exceptionEntry.GetDatabaseValues();

The code begins by trying to read the department to be updated. If the FirstOrDefaultAsync method returns null,

the department was deleted by another user. In that case the code uses the posted form values to create a

department entity so that the Edit page can be redisplayed with an error message. As an alternative, you wouldn't

have to re-create the department entity if you display only an error message without redisplaying the department

fields.

The view stores the original RowVersion value in a hidden field, and this method receives that value in the

rowVersion parameter. Before you call SaveChanges , you have to put that original RowVersion property value in the

OriginalValues collection for the entity.

Then when the Entity Framework creates a SQL UPDATE command, that command will include a WHERE clause that

looks for a row that has the original RowVersion value. If no rows are affected by the UPDATE command (no rows

have the original RowVersion value), the Entity Framework throws a DbUpdateConcurrencyException exception.

The code in the catch block for that exception gets the affected Department entity that has the updated values from

the Entries property on the exception object.

The Entries collection will have just one EntityEntry object. You can use that object to get the new values entered

by the user and the current database values.

The code adds a custom error message for each column that has database values different from what the user

entered on the Edit page (only one field is shown here for brevity).

var databaseValues = (Department)databaseEntry.ToObject();

if (databaseValues.Name != clientValues.Name)
{
 ModelState.AddModelError("Name", $"Current value: {databaseValues.Name}");

departmentToUpdate.RowVersion = (byte[])databaseValues.RowVersion;
ModelState.Remove("RowVersion");

Update Edit view

Finally, the code sets the RowVersion value of the departmentToUpdate to the new value retrieved from the database.

This new RowVersion value will be stored in the hidden field when the Edit page is redisplayed, and the next time

the user clicks SaveSave, only concurrency errors that happen since the redisplay of the Edit page will be caught.

The ModelState.Remove statement is required because ModelState has the old RowVersion value. In the view, the

ModelState value for a field takes precedence over the model property values when both are present.

In Views/Departments/Edit.cshtml, make the following changes:

Add a hidden field to save the RowVersion property value, immediately following the hidden field for the

DepartmentID property.

Add a "Select Administrator" option to the drop-down list.

@model ContosoUniversity.Models.Department

@{
 ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<h4>Department</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form asp-action="Edit">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="DepartmentID" />
 <input type="hidden" asp-for="RowVersion" />
 <div class="form-group">
 <label asp-for="Name" class="control-label"></label>
 <input asp-for="Name" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Budget" class="control-label"></label>
 <input asp-for="Budget" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="StartDate" class="control-label"></label>
 <input asp-for="StartDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="InstructorID" class="control-label"></label>
 <select asp-for="InstructorID" class="form-control" asp-items="ViewBag.InstructorID">
 <option value="">-- Select Administrator --</option>
 </select>

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Test concurrency conflicts
Run the app and go to the Departments Index page. Right-click the EditEdit hyperlink for the English department and

select Open in new tabOpen in new tab, then click the EditEdit hyperlink for the English department. The two browser tabs now

display the same information.

Change a field in the first browser tab and click SaveSave.

The browser shows the Index page with the changed value.

Change a field in the second browser tab.

Click SaveSave. You see an error message:

Update the Delete page

Update the Delete methods in the Departments controllerUpdate the Delete methods in the Departments controller

Click SaveSave again. The value you entered in the second browser tab is saved. You see the saved values when the

Index page appears.

For the Delete page, the Entity Framework detects concurrency conflicts caused by someone else editing the

department in a similar manner. When the HttpGet Delete method displays the confirmation view, the view

includes the original RowVersion value in a hidden field. That value is then available to the HttpPost Delete method

that's called when the user confirms the deletion. When the Entity Framework creates the SQL DELETE command, it

includes a WHERE clause with the original RowVersion value. If the command results in zero rows affected

(meaning the row was changed after the Delete confirmation page was displayed), a concurrency exception is

thrown, and the HttpGet Delete method is called with an error flag set to true in order to redisplay the

confirmation page with an error message. It's also possible that zero rows were affected because the row was

deleted by another user, so in that case no error message is displayed.

In DepartmentsController.cs, replace the HttpGet Delete method with the following code:

public async Task<IActionResult> Delete(int? id, bool? concurrencyError)
{
 if (id == null)
 {
 return NotFound();
 }

 var department = await _context.Departments
 .Include(d => d.Administrator)
 .AsNoTracking()
 .FirstOrDefaultAsync(m => m.DepartmentID == id);
 if (department == null)
 {
 if (concurrencyError.GetValueOrDefault())
 {
 return RedirectToAction(nameof(Index));
 }
 return NotFound();
 }

 if (concurrencyError.GetValueOrDefault())
 {
 ViewData["ConcurrencyErrorMessage"] = "The record you attempted to delete "
 + "was modified by another user after you got the original values. "
 + "The delete operation was canceled and the current values in the "
 + "database have been displayed. If you still want to delete this "
 + "record, click the Delete button again. Otherwise "
 + "click the Back to List hyperlink.";
 }

 return View(department);
}

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Delete(Department department)
{
 try
 {
 if (await _context.Departments.AnyAsync(m => m.DepartmentID == department.DepartmentID))
 {
 _context.Departments.Remove(department);
 await _context.SaveChangesAsync();
 }
 return RedirectToAction(nameof(Index));
 }
 catch (DbUpdateConcurrencyException /* ex */)
 {
 //Log the error (uncomment ex variable name and write a log.)
 return RedirectToAction(nameof(Delete), new { concurrencyError = true, id = department.DepartmentID });
 }
}

The method accepts an optional parameter that indicates whether the page is being redisplayed after a concurrency

error. If this flag is true and the department specified no longer exists, it was deleted by another user. In that case,

the code redirects to the Index page. If this flag is true and the Department does exist, it was changed by another

user. In that case, the code sends an error message to the view using ViewData .

Replace the code in the HttpPost Delete method (named DeleteConfirmed) with the following code:

In the scaffolded code that you just replaced, this method accepted only a record ID:

public async Task<IActionResult> DeleteConfirmed(int id)

public async Task<IActionResult> Delete(Department department)

Update the Delete viewUpdate the Delete view

You've changed this parameter to a Department entity instance created by the model binder. This gives EF access to

the RowVersion property value in addition to the record key.

You have also changed the action method name from DeleteConfirmed to Delete . The scaffolded code used the

name DeleteConfirmed to give the HttpPost method a unique signature. (The CLR requires overloaded methods to

have different method parameters.) Now that the signatures are unique, you can stick with the MVC convention and

use the same name for the HttpPost and HttpGet delete methods.

If the department is already deleted, the AnyAsync method returns false and the application just goes back to the

Index method.

If a concurrency error is caught, the code redisplays the Delete confirmation page and provides a flag that indicates

it should display a concurrency error message.

In Views/Departments/Delete.cshtml, replace the scaffolded code with the following code that adds an error

message field and hidden fields for the DepartmentID and RowVersion properties. The changes are highlighted.

@model ContosoUniversity.Models.Department

@{
 ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@ViewData["ConcurrencyErrorMessage"]</p>

<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Department</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Name)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Name)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Budget)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Budget)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.StartDate)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.StartDate)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Administrator)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Administrator.FullName)
 </dd>
 </dl>

 <form asp-action="Delete">
 <input type="hidden" asp-for="DepartmentID" />
 <input type="hidden" asp-for="RowVersion" />
 <div class="form-actions no-color">
 <input type="submit" value="Delete" class="btn btn-default" /> |
 <a asp-action="Index">Back to List
 </div>
 </form>
</div>

This makes the following changes:

Adds an error message between the h2 and h3 headings.

Replaces FirstMidName with FullName in the AdministratorAdministrator field.

Removes the RowVersion field.

Adds a hidden field for the RowVersion property.

Run the app and go to the Departments Index page. Right-click the DeleteDelete hyperlink for the English department

and select Open in new tabOpen in new tab, then in the first tab click the EditEdit hyperlink for the English department.

In the first window, change one of the values, and click SaveSave:

In the second tab, click DeleteDelete. You see the concurrency error message, and the Department values are refreshed

with what's currently in the database.

Update Details and Create views

If you click DeleteDelete again, you're redirected to the Index page, which shows that the department has been deleted.

You can optionally clean up scaffolded code in the Details and Create views.

Replace the code in Views/Departments/Details.cshtml to delete the RowVersion column and show the full name of

the Administrator.

@model ContosoUniversity.Models.Department

@{
 ViewData["Title"] = "Details";
}

<h2>Details</h2>

<div>
 <h4>Department</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Name)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Name)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Budget)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Budget)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.StartDate)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.StartDate)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Administrator)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Administrator.FullName)
 </dd>
 </dl>
</div>
<div>
 <a asp-action="Edit" asp-route-id="@Model.DepartmentID">Edit |
 <a asp-action="Index">Back to List
</div>

Replace the code in Views/Departments/Create.cshtml to add a Select option to the drop-down list.

@model ContosoUniversity.Models.Department

@{
 ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Department</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form asp-action="Create">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Name" class="control-label"></label>
 <input asp-for="Name" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Budget" class="control-label"></label>
 <input asp-for="Budget" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="StartDate" class="control-label"></label>
 <input asp-for="StartDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="InstructorID" class="control-label"></label>
 <select asp-for="InstructorID" class="form-control" asp-items="ViewBag.InstructorID">
 <option value="">-- Select Administrator --</option>
 </select>
 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Get the code

Additional resources

Next steps

Download or view the completed application.

For more information about how to handle concurrency in EF Core, see Concurrency conflicts.

In this tutorial, you:

Learned about concurrency conflicts

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final
https://docs.microsoft.com/en-us/ef/core/saving/concurrency

Added a tracking property

Created Departments controller and views

Updated Index view

Updated Edit methods

Updated Edit view

Tested concurrency conflicts

Updated the Delete page

Updated Details and Create views

Advance to the next tutorial to learn how to implement table-per-hierarchy inheritance for the Instructor and

Student entities.

Next: Implement table-per-hierarchy inheritance

Tutorial: Implement inheritance - ASP.NET MVC with
EF Core
9/22/2020 • 8 minutes to read • Edit Online

Prerequisites

Map inheritance to database

In the previous tutorial, you handled concurrency exceptions. This tutorial will show you how to implement

inheritance in the data model.

In object-oriented programming, you can use inheritance to facilitate code reuse. In this tutorial, you'll change the

Instructor and Student classes so that they derive from a Person base class which contains properties such as

LastName that are common to both instructors and students. You won't add or change any web pages, but you'll

change some of the code and those changes will be automatically reflected in the database.

In this tutorial, you:

Map inheritance to database

Create the Person class

Update Instructor and Student

Add Person to the model

Create and update migrations

Test the implementation

Handle Concurrency

The Instructor and Student classes in the School data model have several properties that are identical:

Suppose you want to eliminate the redundant code for the properties that are shared by the Instructor and

Student entities. Or you want to write a service that can format names without caring whether the name came

from an instructor or a student. You could create a Person base class that contains only those shared properties,

then make the Instructor and Student classes inherit from that base class, as shown in the following illustration:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/inheritance.md

WARNINGWARNING

There are several ways this inheritance structure could be represented in the database. You could have a Person

table that includes information about both students and instructors in a single table. Some of the columns could

apply only to instructors (HireDate), some only to students (EnrollmentDate), some to both (LastName, FirstName).

Typically, you'd have a discriminator column to indicate which type each row represents. For example, the

discriminator column might have "Instructor" for instructors and "Student" for students.

This pattern of generating an entity inheritance structure from a single database table is called table-per-hierarchy

(TPH) inheritance.

An alternative is to make the database look more like the inheritance structure. For example, you could have only

the name fields in the Person table and have separate Instructor and Student tables with the date fields.

Table Per Type (TPT) is not supported by EF Core 3.x, however it is has been implemented in EF Core 5.0.

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-5.0/plan

TIPTIP

Create the Person class

This pattern of making a database table for each entity class is called table per type (TPT) inheritance.

Yet another option is to map all non-abstract types to individual tables. All properties of a class, including inherited

properties, map to columns of the corresponding table. This pattern is called Table-per-Concrete Class (TPC)

inheritance. If you implemented TPC inheritance for the Person, Student, and Instructor classes as shown earlier, the

Student and Instructor tables would look no different after implementing inheritance than they did before.

TPC and TPH inheritance patterns generally deliver better performance than TPT inheritance patterns, because TPT

patterns can result in complex join queries.

This tutorial demonstrates how to implement TPH inheritance. TPH is the only inheritance pattern that the Entity

Framework Core supports. What you'll do is create a Person class, change the Instructor and Student classes to

derive from Person , add the new class to the DbContext , and create a migration.

Consider saving a copy of the project before making the following changes. Then if you run into problems and need to start

over, it will be easier to start from the saved project instead of reversing steps done for this tutorial or going back to the

beginning of the whole series.

In the Models folder, create Person.cs and replace the template code with the following code:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public abstract class Person
 {
 public int ID { get; set; }

 [Required]
 [StringLength(50)]
 [Display(Name = "Last Name")]
 public string LastName { get; set; }
 [Required]
 [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
 [Column("FirstName")]
 [Display(Name = "First Name")]
 public string FirstMidName { get; set; }

 [Display(Name = "Full Name")]
 public string FullName
 {
 get
 {
 return LastName + ", " + FirstMidName;
 }
 }
 }
}

Update Instructor and Student

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Instructor : Person
 {
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Hire Date")]
 public DateTime HireDate { get; set; }

 public ICollection<CourseAssignment> CourseAssignments { get; set; }
 public OfficeAssignment OfficeAssignment { get; set; }
 }
}

In Instructor.cs, derive the Instructor class from the Person class and remove the key and name fields. The code will

look like the following example:

Make the same changes in Student.cs.

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Student : Person
 {
 [DataType(DataType.Date)]
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 [Display(Name = "Enrollment Date")]
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

Add Person to the model

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 public DbSet<Department> Departments { get; set; }
 public DbSet<Instructor> Instructors { get; set; }
 public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
 public DbSet<CourseAssignment> CourseAssignments { get; set; }
 public DbSet<Person> People { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 modelBuilder.Entity<Department>().ToTable("Department");
 modelBuilder.Entity<Instructor>().ToTable("Instructor");
 modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
 modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");
 modelBuilder.Entity<Person>().ToTable("Person");

 modelBuilder.Entity<CourseAssignment>()
 .HasKey(c => new { c.CourseID, c.InstructorID });
 }
 }
}

Add the Person entity type to SchoolContext.cs. The new lines are highlighted.

This is all that the Entity Framework needs in order to configure table-per-hierarchy inheritance. As you'll see, when

the database is updated, it will have a Person table in place of the Student and Instructor tables.

Create and update migrations

dotnet ef migrations add Inheritance

protected override void Up(MigrationBuilder migrationBuilder)
{
 migrationBuilder.DropForeignKey(
 name: "FK_Enrollment_Student_StudentID",
 table: "Enrollment");

 migrationBuilder.DropIndex(name: "IX_Enrollment_StudentID", table: "Enrollment");

 migrationBuilder.RenameTable(name: "Instructor", newName: "Person");
 migrationBuilder.AddColumn<DateTime>(name: "EnrollmentDate", table: "Person", nullable: true);
 migrationBuilder.AddColumn<string>(name: "Discriminator", table: "Person", nullable: false, maxLength: 128,
defaultValue: "Instructor");
 migrationBuilder.AlterColumn<DateTime>(name: "HireDate", table: "Person", nullable: true);
 migrationBuilder.AddColumn<int>(name: "OldId", table: "Person", nullable: true);

 // Copy existing Student data into new Person table.
 migrationBuilder.Sql("INSERT INTO dbo.Person (LastName, FirstName, HireDate, EnrollmentDate, Discriminator,
OldId) SELECT LastName, FirstName, null AS HireDate, EnrollmentDate, 'Student' AS Discriminator, ID AS OldId
FROM dbo.Student");
 // Fix up existing relationships to match new PK's.
 migrationBuilder.Sql("UPDATE dbo.Enrollment SET StudentId = (SELECT ID FROM dbo.Person WHERE OldId =
Enrollment.StudentId AND Discriminator = 'Student')");

 // Remove temporary key
 migrationBuilder.DropColumn(name: "OldID", table: "Person");

 migrationBuilder.DropTable(
 name: "Student");

 migrationBuilder.CreateIndex(
 name: "IX_Enrollment_StudentID",
 table: "Enrollment",
 column: "StudentID");

 migrationBuilder.AddForeignKey(
 name: "FK_Enrollment_Person_StudentID",
 table: "Enrollment",
 column: "StudentID",
 principalTable: "Person",
 principalColumn: "ID",
 onDelete: ReferentialAction.Cascade);
}

Save your changes and build the project. Then open the command window in the project folder and enter the

following command:

Don't run the database update command yet. That command will result in lost data because it will drop the

Instructor table and rename the Student table to Person. You need to provide custom code to preserve existing data.

Open Migrations/<timestamp>_Inheritance.cs and replace the Up method with the following code:

This code takes care of the following database update tasks:

Removes foreign key constraints and indexes that point to the Student table.

Renames the Instructor table as Person and makes changes needed for it to store Student data:

Adds nullable EnrollmentDate for students.

dotnet ef database update

NOTENOTE

Test the implementation

Adds Discriminator column to indicate whether a row is for a student or an instructor.

Makes HireDate nullable since student rows won't have hire dates.

Adds a temporary field that will be used to update foreign keys that point to students. When you copy

students into the Person table they will get new primary key values.

Copies data from the Student table into the Person table. This causes students to get assigned new primary

key values.

Fixes foreign key values that point to students.

Re-creates foreign key constraints and indexes, now pointing them to the Person table.

(If you had used GUID instead of integer as the primary key type, the student primary key values wouldn't have to

change, and several of these steps could have been omitted.)

Run the database update command:

(In a production system you would make corresponding changes to the Down method in case you ever had to use

that to go back to the previous database version. For this tutorial you won't be using the Down method.)

It's possible to get other errors when making schema changes in a database that has existing data. If you get migration errors

that you can't resolve, you can either change the database name in the connection string or delete the database. With a new

database, there's no data to migrate, and the update-database command is more likely to complete without errors. To delete

the database, use SSOX or run the database drop CLI command.

Run the app and try various pages. Everything works the same as it did before.

In SQL Ser ver Object ExplorerSQL Ser ver Object Explorer , expand Data Connections/SchoolContextData Connections/SchoolContext and then TablesTables , and you see that

the Student and Instructor tables have been replaced by a Person table. Open the Person table designer and you see

that it has all of the columns that used to be in the Student and Instructor tables.

Get the code

Additional resources

Next steps

Right-click the Person table, and then click Show Table DataShow Table Data to see the discriminator column.

Download or view the completed application.

For more information about inheritance in Entity Framework Core, see Inheritance.

In this tutorial, you:

Mapped inheritance to database

Created the Person class

Updated Instructor and Student

Added Person to the model

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final
https://docs.microsoft.com/en-us/ef/core/modeling/inheritance

Created and update migrations

Tested the implementation

Advance to the next tutorial to learn how to handle a variety of relatively advanced Entity Framework scenarios.

Next: Advanced topics

Tutorial: Learn about advanced scenarios - ASP.NET
MVC with EF Core
9/22/2020 • 13 minutes to read • Edit Online

Prerequisites

Perform raw SQL queries

Call a query to return entities

In the previous tutorial, you implemented table-per-hierarchy inheritance. This tutorial introduces several topics that

are useful to be aware of when you go beyond the basics of developing ASP.NET Core web applications that use

Entity Framework Core.

In this tutorial, you:

Perform raw SQL queries

Call a query to return entities

Call a query to return other types

Call an update query

Examine SQL queries

Create an abstraction layer

Learn about Automatic change detection

Learn about EF Core source code and development plans

Learn how to use dynamic LINQ to simplify code

Implement Inheritance

One of the advantages of using the Entity Framework is that it avoids tying your code too closely to a particular

method of storing data. It does this by generating SQL queries and commands for you, which also frees you from

having to write them yourself. But there are exceptional scenarios when you need to run specific SQL queries that

you have manually created. For these scenarios, the Entity Framework Code First API includes methods that enable

you to pass SQL commands directly to the database. You have the following options in EF Core 1.0:

Use the DbSet.FromSql method for queries that return entity types. The returned objects must be of the type

expected by the DbSet object, and they're automatically tracked by the database context unless you turn

tracking off.

Use the Database.ExecuteSqlCommand for non-query commands.

If you need to run a query that returns types that aren't entities, you can use ADO.NET with the database connection

provided by EF. The returned data isn't tracked by the database context, even if you use this method to retrieve

entity types.

As is always true when you execute SQL commands in a web application, you must take precautions to protect your

site against SQL injection attacks. One way to do that is to use parameterized queries to make sure that strings

submitted by a web page can't be interpreted as SQL commands. In this tutorial you'll use parameterized queries

when integrating user input into a query.

The DbSet<TEntity> class provides a method that you can use to execute a query that returns an entity of type

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/advanced.md

public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 string query = "SELECT * FROM Department WHERE DepartmentID = {0}";
 var department = await _context.Departments
 .FromSql(query, id)
 .Include(d => d.Administrator)
 .AsNoTracking()
 .FirstOrDefaultAsync();

 if (department == null)
 {
 return NotFound();
 }

 return View(department);
}

Call a query to return other types

TEntity . To see how this works you'll change the code in the Details method of the Department controller.

In DepartmentsController.cs, in the Details method, replace the code that retrieves a department with a FromSql

method call, as shown in the following highlighted code:

To verify that the new code works correctly, select the Depar tmentsDepar tments tab and then DetailsDetails for one of the

departments.

Earlier you created a student statistics grid for the About page that showed the number of students for each

enrollment date. You got the data from the Students entity set (_context.Students) and used LINQ to project the

results into a list of EnrollmentDateGroup view model objects. Suppose you want to write the SQL itself rather than

using LINQ. To do that you need to run a SQL query that returns something other than entity objects. In EF Core 1.0,

one way to do that is write ADO.NET code and get the database connection from EF.

In HomeController.cs, replace the About method with the following code:

public async Task<ActionResult> About()
{
 List<EnrollmentDateGroup> groups = new List<EnrollmentDateGroup>();
 var conn = _context.Database.GetDbConnection();
 try
 {
 await conn.OpenAsync();
 using (var command = conn.CreateCommand())
 {
 string query = "SELECT EnrollmentDate, COUNT(*) AS StudentCount "
 + "FROM Person "
 + "WHERE Discriminator = 'Student' "
 + "GROUP BY EnrollmentDate";
 command.CommandText = query;
 DbDataReader reader = await command.ExecuteReaderAsync();

 if (reader.HasRows)
 {
 while (await reader.ReadAsync())
 {
 var row = new EnrollmentDateGroup { EnrollmentDate = reader.GetDateTime(0), StudentCount =
reader.GetInt32(1) };
 groups.Add(row);
 }
 }
 reader.Dispose();
 }
 }
 finally
 {
 conn.Close();
 }
 return View(groups);
}

using System.Data.Common;

Call an update query

Add a using statement:

Run the app and go to the About page. It displays the same data it did before.

Suppose Contoso University administrators want to perform global changes in the database, such as changing the

number of credits for every course. If the university has a large number of courses, it would be inefficient to retrieve

them all as entities and change them individually. In this section you'll implement a web page that enables the user

to specify a factor by which to change the number of credits for all courses, and you'll make the change by

public IActionResult UpdateCourseCredits()
{
 return View();
}

[HttpPost]
public async Task<IActionResult> UpdateCourseCredits(int? multiplier)
{
 if (multiplier != null)
 {
 ViewData["RowsAffected"] =
 await _context.Database.ExecuteSqlCommandAsync(
 "UPDATE Course SET Credits = Credits * {0}",
 parameters: multiplier);
 }
 return View();
}

executing a SQL UPDATE statement. The web page will look like the following illustration:

In CoursesController.cs, add UpdateCourseCredits methods for HttpGet and HttpPost:

When the controller processes an HttpGet request, nothing is returned in ViewData["RowsAffected"] , and the view

displays an empty text box and a submit button, as shown in the preceding illustration.

When the UpdateUpdate button is clicked, the HttpPost method is called, and multiplier has the value entered in the text

box. The code then executes the SQL that updates courses and returns the number of affected rows to the view in

ViewData . When the view gets a RowsAffected value, it displays the number of rows updated.

In Solution ExplorerSolution Explorer , right-click the Views/Courses folder, and then click Add > New ItemAdd > New Item.

In the Add New ItemAdd New Item dialog, click ASP.NET CoreASP.NET Core under InstalledInstalled in the left pane, click Razor ViewRazor View , and name

the new view UpdateCourseCredits.cshtml.

In Views/Courses/UpdateCourseCredits.cshtml, replace the template code with the following code:

@{
 ViewBag.Title = "UpdateCourseCredits";
}

<h2>Update Course Credits</h2>

@if (ViewData["RowsAffected"] == null)
{
 <form asp-action="UpdateCourseCredits">
 <div class="form-actions no-color">
 <p>
 Enter a number to multiply every course's credits by: @Html.TextBox("multiplier")
 </p>
 <p>
 <input type="submit" value="Update" class="btn btn-default" />
 </p>
 </div>
 </form>
}
@if (ViewData["RowsAffected"] != null)
{
 <p>
 Number of rows updated: @ViewData["RowsAffected"]
 </p>
}
<div>
 @Html.ActionLink("Back to List", "Index")
</div>

Run the UpdateCourseCredits method by selecting the CoursesCourses tab, then adding "/UpdateCourseCredits" to the

end of the URL in the browser's address bar (for example: http://localhost:5813/Courses/UpdateCourseCredits).

Enter a number in the text box:

Click UpdateUpdate. You see the number of rows affected:

Examine SQL queries

Microsoft.EntityFrameworkCore.Database.Command:Information: Executed DbCommand (56ms) [Parameters=
[@__id_0='?'], CommandType='Text', CommandTimeout='30']
SELECT TOP(2) [s].[ID], [s].[Discriminator], [s].[FirstName], [s].[LastName], [s].[EnrollmentDate]
FROM [Person] AS [s]
WHERE ([s].[Discriminator] = N'Student') AND ([s].[ID] = @__id_0)
ORDER BY [s].[ID]
Microsoft.EntityFrameworkCore.Database.Command:Information: Executed DbCommand (122ms) [Parameters=
[@__id_0='?'], CommandType='Text', CommandTimeout='30']
SELECT [s.Enrollments].[EnrollmentID], [s.Enrollments].[CourseID], [s.Enrollments].[Grade], [s.Enrollments].
[StudentID], [e.Course].[CourseID], [e.Course].[Credits], [e.Course].[DepartmentID], [e.Course].[Title]
FROM [Enrollment] AS [s.Enrollments]
INNER JOIN [Course] AS [e.Course] ON [s.Enrollments].[CourseID] = [e.Course].[CourseID]
INNER JOIN (
 SELECT TOP(1) [s0].[ID]
 FROM [Person] AS [s0]
 WHERE ([s0].[Discriminator] = N'Student') AND ([s0].[ID] = @__id_0)
 ORDER BY [s0].[ID]
) AS [t] ON [s.Enrollments].[StudentID] = [t].[ID]
ORDER BY [t].[ID]

Create an abstraction layer

Click Back to L istBack to L ist to see the list of courses with the revised number of credits.

Note that production code would ensure that updates always result in valid data. The simplified code shown here

could multiply the number of credits enough to result in numbers greater than 5. (The Credits property has a

[Range(0, 5)] attribute.) The update query would work but the invalid data could cause unexpected results in other

parts of the system that assume the number of credits is 5 or less.

For more information about raw SQL queries, see Raw SQL Queries.

Sometimes it's helpful to be able to see the actual SQL queries that are sent to the database. Built-in logging

functionality for ASP.NET Core is automatically used by EF Core to write logs that contain the SQL for queries and

updates. In this section you'll see some examples of SQL logging.

Open StudentsController.cs and in the Details method set a breakpoint on the if (student == null) statement.

Run the app in debug mode, and go to the Details page for a student.

Go to the OutputOutput window showing debug output, and you see the query:

You'll notice something here that might surprise you: the SQL selects up to 2 rows (TOP(2)) from the Person table.

The SingleOrDefaultAsync method doesn't resolve to 1 row on the server. Here's why:

If the query would return multiple rows, the method returns null.

To determine whether the query would return multiple rows, EF has to check if it returns at least 2.

Note that you don't have to use debug mode and stop at a breakpoint to get logging output in the OutputOutput window.

It's just a convenient way to stop the logging at the point you want to look at the output. If you don't do that,

logging continues and you have to scroll back to find the parts you're interested in.

Many developers write code to implement the repository and unit of work patterns as a wrapper around code that

works with the Entity Framework. These patterns are intended to create an abstraction layer between the data

access layer and the business logic layer of an application. Implementing these patterns can help insulate your

application from changes in the data store and can facilitate automated unit testing or test-driven development

(TDD). However, writing additional code to implement these patterns isn't always the best choice for applications

that use EF, for several reasons:

https://docs.microsoft.com/en-us/ef/core/querying/raw-sql

Automatic change detection

_context.ChangeTracker.AutoDetectChangesEnabled = false;

EF Core source code and development plans

Reverse engineer from existing database

Use dynamic LINQ to simplify code

The EF context class itself insulates your code from data-store-specific code.

The EF context class can act as a unit-of-work class for database updates that you do using EF.

EF includes features for implementing TDD without writing repository code.

For information about how to implement the repository and unit of work patterns, see the Entity Framework 5

version of this tutorial series.

Entity Framework Core implements an in-memory database provider that can be used for testing. For more

information, see Test with InMemory.

The Entity Framework determines how an entity has changed (and therefore which updates need to be sent to the

database) by comparing the current values of an entity with the original values. The original values are stored when

the entity is queried or attached. Some of the methods that cause automatic change detection are the following:

DbContext.SaveChanges

DbContext.Entry

ChangeTracker.Entries

If you're tracking a large number of entities and you call one of these methods many times in a loop, you might get

significant performance improvements by temporarily turning off automatic change detection using the

ChangeTracker.AutoDetectChangesEnabled property. For example:

The Entity Framework Core source is at https://github.com/dotnet/efcore. The EF Core repository contains nightly

builds, issue tracking, feature specs, design meeting notes, and the roadmap for future development. You can file or

find bugs, and contribute.

Although the source code is open, Entity Framework Core is fully supported as a Microsoft product. The Microsoft

Entity Framework team keeps control over which contributions are accepted and tests all code changes to ensure

the quality of each release.

To reverse engineer a data model including entity classes from an existing database, use the scaffold-dbcontext

command. See the getting-started tutorial.

The third tutorial in this series shows how to write LINQ code by hard-coding column names in a switch

statement. With two columns to choose from, this works fine, but if you have many columns the code could get

verbose. To solve that problem, you can use the EF.Property method to specify the name of the property as a

string. To try out this approach, replace the Index method in the StudentsController with the following code.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://docs.microsoft.com/en-us/ef/core/miscellaneous/testing/in-memory
https://github.com/dotnet/efcore
https://github.com/dotnet/efcore/wiki/Roadmap
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell#scaffold-dbcontext
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/existing-db

 public async Task<IActionResult> Index(
 string sortOrder,
 string currentFilter,
 string searchString,
 int? pageNumber)
 {
 ViewData["CurrentSort"] = sortOrder;
 ViewData["NameSortParm"] =
 String.IsNullOrEmpty(sortOrder) ? "LastName_desc" : "";
 ViewData["DateSortParm"] =
 sortOrder == "EnrollmentDate" ? "EnrollmentDate_desc" : "EnrollmentDate";

 if (searchString != null)
 {
 pageNumber = 1;
 }
 else
 {
 searchString = currentFilter;
 }

 ViewData["CurrentFilter"] = searchString;

 var students = from s in _context.Students
 select s;

 if (!String.IsNullOrEmpty(searchString))
 {
 students = students.Where(s => s.LastName.Contains(searchString)
 || s.FirstMidName.Contains(searchString));
 }

 if (string.IsNullOrEmpty(sortOrder))
 {
 sortOrder = "LastName";
 }

 bool descending = false;
 if (sortOrder.EndsWith("_desc"))
 {
 sortOrder = sortOrder.Substring(0, sortOrder.Length - 5);
 descending = true;
 }

 if (descending)
 {
 students = students.OrderByDescending(e => EF.Property<object>(e, sortOrder));
 }
 else
 {
 students = students.OrderBy(e => EF.Property<object>(e, sortOrder));
 }

 int pageSize = 3;
 return View(await PaginatedList<Student>.CreateAsync(students.AsNoTracking(),
 pageNumber ?? 1, pageSize));
 }

Acknowledgments
Tom Dykstra and Rick Anderson (twitter @RickAndMSFT) wrote this tutorial. Rowan Miller, Diego Vega, and other

members of the Entity Framework team assisted with code reviews and helped debug issues that arose while we

were writing code for the tutorials. John Parente and Paul Goldman worked on updating the tutorial for ASP.NET

Core 2.2.

Troubleshoot common errors
ContosoUniversity.dll used by another processContosoUniversity.dll used by another process

Migration scaffolded with no code in Up and Down methodsMigration scaffolded with no code in Up and Down methods

Errors while running database updateErrors while running database update

dotnet ef database drop

Error locating SQL Server instanceError locating SQL Server instance

Get the code

Error message:

Cannot open '...bin\Debug\netcoreapp1.0\ContosoUniversity.dll' for writing -- 'The process cannot access the

file '...\bin\Debug\netcoreapp1.0\ContosoUniversity.dll' because it is being used by another process.

Solution:

Stop the site in IIS Express. Go to the Windows System Tray, find IIS Express and right-click its icon, select the

Contoso University site, and then click Stop S iteStop S ite.

Possible cause:

The EF CLI commands don't automatically close and save code files. If you have unsaved changes when you run the

migrations add command, EF won't find your changes.

Solution:

Run the migrations remove command, save your code changes and rerun the migrations add command.

It's possible to get other errors when making schema changes in a database that has existing data. If you get

migration errors you can't resolve, you can either change the database name in the connection string or delete the

database. With a new database, there's no data to migrate, and the update-database command is much more likely

to complete without errors.

The simplest approach is to rename the database in appsettings.json. The next time you run database update , a new

database will be created.

To delete a database in SSOX, right-click the database, click DeleteDelete, and then in the Delete DatabaseDelete Database dialog box

select Close existing connectionsClose existing connections and click OKOK.

To delete a database by using the CLI, run the database drop CLI command:

Error Message:

A network-related or instance-specific error occurred while establishing a connection to SQL Server. The server

was not found or was not accessible. Verify that the instance name is correct and that SQL Server is configured

to allow remote connections. (provider : SQL Network Interfaces, error : 26 - Error Locating Server/Instance

Specified)

Solution:

Check the connection string. If you have manually deleted the database file, change the name of the database in the

construction string to start over with a new database.

Download or view the completed application.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final

Additional resources

Next steps

For more information about EF Core, see the Entity Framework Core documentation. A book is also available: Entity

Framework Core in Action.

For information on how to deploy a web app, see Host and deploy ASP.NET Core.

For information about other topics related to ASP.NET Core MVC, such as authentication and authorization, see

Introduction to ASP.NET Core.

In this tutorial, you:

Performed raw SQL queries

Called a query to return entities

Called a query to return other types

Called an update query

Examined SQL queries

Created an abstraction layer

Learned about Automatic change detection

Learned about EF Core source code and development plans

Learned how to use dynamic LINQ to simplify code

This completes this series of tutorials on using the Entity Framework Core in an ASP.NET Core MVC application. This

series worked with a new database; an alternative is to reverse engineer a model from an existing database.

Tutorial: EF Core with MVC, existing database

https://docs.microsoft.com/en-us/ef/core
https://www.manning.com/books/entity-framework-core-in-action
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/existing-db?toc=/aspnet/core/toc.json&bc=/aspnet/core/breadcrumb/toc.json

ASP.NET Core fundamentals
9/22/2020 • 17 minutes to read • Edit Online

The Startup class

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("RazorPagesMovieContext")));

 services.AddControllersWithViews();
 services.AddRazorPages();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
 }
}

Dependency injection (services)

This article provides an overview of key topics for understanding how to develop ASP.NET Core apps.

The Startup class is where:

Services required by the app are configured.

The app's request handling pipeline is defined, as a series of middleware components.

Here's a sample Startup class:

For more information, see App startup in ASP.NET Core.

ASP.NET Core includes a built-in dependency injection (DI) framework that makes configured services available

throughout an app. For example, a logging component is a service.

Code to configure (or register) services is added to the Startup.ConfigureServices method. For example:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/index.md

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("RazorPagesMovieContext")));

 services.AddControllersWithViews();
 services.AddRazorPages();
}

public class IndexModel : PageModel
{
 private readonly RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovieContext context)
 {
 _context = context;
 }

 // ...

 public async Task OnGetAsync()
 {
 Movies = await _context.Movies.ToListAsync();
 }
}

Middleware

public void Configure(IApplicationBuilder app)
{
 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
}

Services are typically resolved from DI using constructor injection. With constructor injection, a class declares a

constructor parameter of either the required type or an interface. The DI framework provides an instance of this

service at runtime.

The following example uses constructor injection to resolve a RazorPagesMovieContext from DI:

If the built-in Inversion of Control (IoC) container doesn't meet all of an app's needs, a third-party IoC container

can be used instead.

For more information, see Dependency injection in ASP.NET Core.

The request handling pipeline is composed as a series of middleware components. Each component performs

operations on an HttpContext and either invokes the next middleware in the pipeline or terminates the request.

By convention, a middleware component is added to the pipeline by invoking a Use... extension method in the

Startup.Configure method. For example, to enable rendering of static files, call UseStaticFiles .

The following example configures a request handling pipeline:

Host

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Non-web scenariosNon-web scenarios

Servers

ASP.NET Core includes a rich set of built-in middleware. Custom middleware components can also be written.

For more information, see ASP.NET Core Middleware.

On startup, an ASP.NET Core app builds a host. The host encapsulates all of the app's resources, such as:

An HTTP server implementation

Middleware components

Logging

Dependency injection (DI) services

Configuration

There are two different hosts:

.NET Generic Host

ASP.NET Core Web Host

The .NET Generic Host is recommended. The ASP.NET Core Web Host is available only for backwards compatibility.

The following example creates a .NET Generic Host:

The CreateDefaultBuilder and ConfigureWebHostDefaults methods configure a host with a set of default options,

such as:

Use Kestrel as the web server and enable IIS integration.

Load configuration from appsettings.json, appsettings.{Environment Name}.json, environment variables,

command line arguments, and other configuration sources.

Send logging output to the console and debug providers.

For more information, see .NET Generic Host.

The Generic Host allows other types of apps to use cross-cutting framework extensions, such as logging,

dependency injection (DI), configuration, and app lifetime management. For more information, see .NET Generic

Host and Background tasks with hosted services in ASP.NET Core.

An ASP.NET Core app uses an HTTP server implementation to listen for HTTP requests. The server surfaces

requests to the app as a set of request features composed into an HttpContext .

Configuration

Environments

Windows

macOS

Linux

ASP.NET Core provides the following server implementations:

Kestrel is a cross-platform web server. Kestrel is often run in a reverse proxy configuration using IIS. In ASP.NET

Core 2.0 or later, Kestrel can be run as a public-facing edge server exposed directly to the Internet.

IIS HTTP Server is a server for Windows that uses IIS. With this server, the ASP.NET Core app and IIS run in the

same process.

HTTP.sys is a server for Windows that isn't used with IIS.

For more information, see Web server implementations in ASP.NET Core.

ASP.NET Core provides a configuration framework that gets settings as name-value pairs from an ordered set of

configuration providers. Built-in configuration providers are available for a variety of sources, such as .json files,

.xml files, environment variables, and command-line arguments. Write custom configuration providers to support

other sources.

By default, ASP.NET Core apps are configured to read from appsettings.json, environment variables, the command

line, and more. When the app's configuration is loaded, values from environment variables override values from

appsettings.json.

The preferred way to read related configuration values is using the options pattern. For more information, see Bind

hierarchical configuration data using the options pattern.

For managing confidential configuration data such as passwords, ASP.NET Core provides the Secret Manager. For

production secrets, we recommend Azure Key Vault.

For more information, see Configuration in ASP.NET Core.

Execution environments, such as Development , Staging , and Production , are a first-class notion in ASP.NET Core.

Specify the environment an app is running in by setting the ASPNETCORE_ENVIRONMENT environment variable.

ASP.NET Core reads that environment variable at app startup and stores the value in an IWebHostEnvironment

implementation. This implementation is available anywhere in an app via dependency injection (DI).

The following example configures the app to provide detailed error information when running in the Development

environment:

https://www.iis.net/

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 endpoints.MapRazorPages();
 });
}

Logging

For more information, see Use multiple environments in ASP.NET Core.

ASP.NET Core supports a logging API that works with a variety of built-in and third-party logging providers.

Available providers include:

Console

Debug

Event Tracing on Windows

Windows Event Log

TraceSource

Azure App Service

Azure Application Insights

To create logs, resolve an ILogger<TCategoryName> service from dependency injection (DI) and call logging

methods such as LogInformation. For example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.loginformation

public class TodoController : ControllerBase
{
 private readonly ILogger _logger;

 public TodoController(ILogger<TodoController> logger)
 {
 _logger = logger;
 }

 [HttpGet("{id}", Name = "GetTodo")]
 public ActionResult<TodoItem> GetById(string id)
 {
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {Id}", id);

 // Item lookup code removed.

 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({Id}) NOT FOUND", id);
 return NotFound();
 }

 return item;
 }
}

Routing

Error handling

Make HTTP requests

Logging methods such as LogInformation support any number of fields. These fields are commonly used to

construct a message string , but some logging providers send these to a data store as separate fields. This feature

makes it possible for logging providers to implement semantic logging, also known as structured logging.

For more information, see Logging in .NET Core and ASP.NET Core.

A route is a URL pattern that is mapped to a handler. The handler is typically a Razor page, an action method in an

MVC controller, or a middleware. ASP.NET Core routing gives you control over the URLs used by your app.

For more information, see Routing in ASP.NET Core.

ASP.NET Core has built-in features for handling errors, such as:

A developer exception page

Custom error pages

Static status code pages

Startup exception handling

For more information, see Handle errors in ASP.NET Core.

An implementation of IHttpClientFactory is available for creating HttpClient instances. The factory:

Provides a central location for naming and configuring logical HttpClient instances. For example, register and

configure a github client for accessing GitHub. Register and configure a default client for other purposes.

Supports registration and chaining of multiple delegating handlers to build an outgoing request middleware

pipeline. This pattern is similar to ASP.NET Core's inbound middleware pipeline. The pattern provides a

mechanism to manage cross-cutting concerns for HTTP requests, including caching, error handling,

https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging

Content root

Web root

<ItemGroup>
 <Content Update="wwwroot\local***.*" CopyToPublishDirectory="Never" />
</ItemGroup>

The Startup class

serialization, and logging.

Integrates with Polly, a popular third-party library for transient fault handling.

Manages the pooling and lifetime of underlying HttpClientHandler instances to avoid common DNS problems

that occur when managing HttpClient lifetimes manually.

Adds a configurable logging experience via ILogger for all requests sent through clients created by the factory.

For more information, see Make HTTP requests using IHttpClientFactory in ASP.NET Core.

The content root is the base path for :

The executable hosting the app (.exe).

Compiled assemblies that make up the app (.dll).

Content files used by the app, such as:

The Web root, typically the wwwroot folder.

Razor files (.cshtml, .razor)

Configuration files (.json, .xml)

Data files (.db)

During development, the content root defaults to the project's root directory. This directory is also the base path

for both the app's content files and the Web root. Specify a different content root by setting its path when building

the host. For more information, see Content root.

The web root is the base path for public, static resource files, such as:

Stylesheets (.css)

JavaScript (.js)

Images (.png, .jpg)

By default, static files are served only from the web root directory and its sub-directories. The web root path

defaults to {content root}/wwwroot. Specify a different web root by setting its path when building the host. For

more information, see Web root.

Prevent publishing files in wwwroot with the <Content> project item in the project file. The following example

prevents publishing content in wwwroot/local and its sub-directories:

In Razor .cshtml files, tilde-slash (~/) points to the web root. A path beginning with ~/ is referred to as a virtual

path.

For more information, see Static files in ASP.NET Core.

This article is an overview of key topics for understanding how to develop ASP.NET Core apps.

The Startup class is where:

Services required by the app are configured.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger
https://docs.microsoft.com/en-us/visualstudio/msbuild/common-msbuild-project-items#content

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<MovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MovieDb")));
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseMvc();
 }
}

Dependency injection (services)

public class IndexModel : PageModel
{
 private readonly RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovieContext context)
 {
 _context = context;
 }

 // ...

 public async Task OnGetAsync()
 {
 Movies = await _context.Movies.ToListAsync();
 }
}

The request handling pipeline is defined.

Services are components that are used by the app. For example, a logging component is a service. Code to

configure (or register) services is added to the Startup.ConfigureServices method.

The request handling pipeline is composed as a series of middleware components. For example, a middleware

might handle requests for static files or redirect HTTP requests to HTTPS. Each middleware performs asynchronous

operations on an HttpContext and then either invokes the next middleware in the pipeline or terminates the

request. Code to configure the request handling pipeline is added to the Startup.Configure method.

Here's a sample Startup class:

For more information, see App startup in ASP.NET Core.

ASP.NET Core has a built-in dependency injection (DI) framework that makes configured services available to an

app's classes. One way to get an instance of a service in a class is to create a constructor with a parameter of the

required type. The parameter can be the service type or an interface. The DI system provides the service at

runtime.

Here's a class that uses DI to get an Entity Framework Core context object. The highlighted line is an example of

constructor injection:

While DI is built in, it's designed to let you plug in a third-party Inversion of Control (IoC) container if you prefer.

Middleware

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<MovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MovieDb")));
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseMvc();
 }
}

Host

For more information, see Dependency injection in ASP.NET Core.

The request handling pipeline is composed as a series of middleware components. Each component performs

asynchronous operations on an HttpContext and then either invokes the next middleware in the pipeline or

terminates the request.

By convention, a middleware component is added to the pipeline by invoking its Use... extension method in the

Startup.Configure method. For example, to enable rendering of static files, call UseStaticFiles .

The highlighted code in the following example configures the request handling pipeline:

ASP.NET Core includes a rich set of built-in middleware, and you can write custom middleware.

For more information, see ASP.NET Core Middleware.

An ASP.NET Core app builds a host on startup. The host is an object that encapsulates all of the app's resources,

such as:

An HTTP server implementation

Middleware components

Logging

DI

Configuration

The main reason for including all of the app's interdependent resources in one object is lifetime management:

control over app startup and graceful shutdown.

Two hosts are available: the Web Host and the Generic Host. In ASP.NET Core 2.x, the Generic Host is only for non-

web scenarios.

The code to create a host is in Program.Main :

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
}

Non-web scenariosNon-web scenarios

Servers

Configuration

The CreateDefaultBuilder method configures a host with commonly used options, such as the following:

Use Kestrel as the web server and enable IIS integration.

Load configuration from appsettings.json, appsettings.{Environment Name}.json, environment variables,

command line arguments, and other configuration sources.

Send logging output to the console and debug providers.

For more information, see ASP.NET Core Web Host.

The Generic Host allows other types of apps to use cross-cutting framework extensions, such as logging,

dependency injection (DI), configuration, and app lifetime management. For more information, see .NET Generic

Host and Background tasks with hosted services in ASP.NET Core.

An ASP.NET Core app uses an HTTP server implementation to listen for HTTP requests. The server surfaces

requests to the app as a set of request features composed into an HttpContext .

Windows

macOS

Linux

ASP.NET Core provides the following server implementations:

Kestrel is a cross-platform web server. Kestrel is often run in a reverse proxy configuration using IIS. Kestrel can

be run as a public-facing edge server exposed directly to the Internet.

IIS HTTP Server is a server for windows that uses IIS. With this server, the ASP.NET Core app and IIS run in the

same process.

HTTP.sys is a server for Windows that isn't used with IIS.

Windows

macOS

Linux

ASP.NET Core provides the following server implementations:

Kestrel is a cross-platform web server. Kestrel is often run in a reverse proxy configuration using IIS. Kestrel can

be run as a public-facing edge server exposed directly to the Internet.

HTTP.sys is a server for Windows that isn't used with IIS.

For more information, see Web server implementations in ASP.NET Core.

https://www.iis.net/
https://www.iis.net/

Options

var options = new WebSocketOptions
{
 KeepAliveInterval = TimeSpan.FromSeconds(120),
 ReceiveBufferSize = 4096
};

app.UseWebSockets(options);

Environments

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseMvc();
}

ASP.NET Core provides a configuration framework that gets settings as name-value pairs from an ordered set of

configuration providers. There are built-in configuration providers for a variety of sources, such as .json files, .xml

files, environment variables, and command-line arguments. You can also write custom configuration providers.

For example, you could specify that configuration comes from appsettings.json and environment variables. Then

when the value of ConnectionString is requested, the framework looks first in the appsettings.json file. If the value

is found there but also in an environment variable, the value from the environment variable would take

precedence.

For managing confidential configuration data such as passwords, ASP.NET Core provides a Secret Manager tool.

For production secrets, we recommend Azure Key Vault.

For more information, see Configuration in ASP.NET Core.

Where possible, ASP.NET Core follows the options pattern for storing and retrieving configuration values. The

options pattern uses classes to represent groups of related settings.

For example, the following code sets WebSockets options:

For more information, see Options pattern in ASP.NET Core.

Execution environments, such as Development, Staging, and Production, are a first-class notion in ASP.NET Core.

You can specify the environment an app is running in by setting the ASPNETCORE_ENVIRONMENT environment variable.

ASP.NET Core reads that environment variable at app startup and stores the value in an IHostingEnvironment

implementation. The environment object is available anywhere in the app via DI.

The following sample code from the Startup class configures the app to provide detailed error information only

when it runs in development:

For more information, see Use multiple environments in ASP.NET Core.

Logging

public class TodoController : ControllerBase
{
 private readonly ILogger _logger;

 public TodoController(ILogger<TodoController> logger)
 {
 _logger = logger;
 }

 [HttpGet("{id}", Name = "GetTodo")]
 public ActionResult<TodoItem> GetById(string id)
 {
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {Id}", id);
 // Item lookup code removed.
 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({Id}) NOT FOUND", id);
 return NotFound();
 }
 return item;
 }
}

Routing

Error handling

ASP.NET Core supports a logging API that works with a variety of built-in and third-party logging providers.

Available providers include the following:

Console

Debug

Event Tracing on Windows

Windows Event Log

TraceSource

Azure App Service

Azure Application Insights

Write logs from anywhere in an app's code by getting an ILogger object from DI and calling log methods.

Here's sample code that uses an ILogger object, with constructor injection and the logging method calls

highlighted.

The ILogger interface lets you pass any number of fields to the logging provider. The fields are commonly used to

construct a message string, but the provider can also send them as separate fields to a data store. This feature

makes it possible for logging providers to implement semantic logging, also known as structured logging.

For more information, see Logging in .NET Core and ASP.NET Core.

A route is a URL pattern that is mapped to a handler. The handler is typically a Razor page, an action method in an

MVC controller, or a middleware. ASP.NET Core routing gives you control over the URLs used by your app.

For more information, see Routing in ASP.NET Core.

ASP.NET Core has built-in features for handling errors, such as:

A developer exception page

https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging

Make HTTP requests

Content root

Web root

Custom error pages

Static status code pages

Startup exception handling

For more information, see Handle errors in ASP.NET Core.

An implementation of IHttpClientFactory is available for creating HttpClient instances. The factory:

Provides a central location for naming and configuring logical HttpClient instances. For example, a github

client can be registered and configured to access GitHub. A default client can be registered for other purposes.

Supports registration and chaining of multiple delegating handlers to build an outgoing request middleware

pipeline. This pattern is similar to the inbound middleware pipeline in ASP.NET Core. The pattern provides a

mechanism to manage cross-cutting concerns around HTTP requests, including caching, error handling,

serialization, and logging.

Integrates with Polly, a popular third-party library for transient fault handling.

Manages the pooling and lifetime of underlying HttpClientHandler instances to avoid common DNS problems

that occur when manually managing HttpClient lifetimes.

Adds a configurable logging experience (via ILogger) for all requests sent through clients created by the

factory.

For more information, see Make HTTP requests using IHttpClientFactory in ASP.NET Core.

The content root is the base path to the:

Executable hosting the app (.exe).

Compiled assemblies that make up the app (.dll).

Non-code content files used by the app, such as:

Web root, typically the published wwwroot folder.

Razor files (.cshtml, .razor)

Configuration files (.json, .xml)

Data files (.db)

During development:

The content root defaults to the project's root directory.

The project's root directory is used to create the:

Path to the app's non-code content files in the project's root directory.

Web root, typically the wwwroot folder in the project's root directory.

An alternative content root path can be specified when building the host. For more information, see ASP.NET Core

Web Host.

The web root is the base path to public, non-code, static resource files, such as:

Stylesheets (.css)

JavaScript (.js)

Images (.png, .jpg)

<ItemGroup>
 <Content Update="wwwroot\local***.*" CopyToPublishDirectory="Never" />
</ItemGroup>

Static files are only served by default from the web root directory (and sub-directories).

The web root path defaults to {content root}/wwwroot, but a different web root can be specified when building the

host. For more information, see Web root.

Prevent publishing files in wwwroot with the <Content> project item in the project file. The following example

prevents publishing content in the wwwroot/local directory and sub-directories:

In Razor (.cshtml) files, the tilde-slash (~/) points to the web root. A path beginning with ~/ is referred to as a

virtual path.

For more information, see Static files in ASP.NET Core.

https://docs.microsoft.com/en-us/visualstudio/msbuild/common-msbuild-project-items#content

App startup in ASP.NET Core
9/22/2020 • 13 minutes to read • Edit Online

The Startup class

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

By Rick Anderson, Tom Dykstra, and Steve Smith

The Startup class configures services and the app's request pipeline.

ASP.NET Core apps use a Startup class, which is named Startup by convention. The Startup class:

Optionally includes a ConfigureServices method to configure the app's services. A service is a reusable

component that provides app functionality. Services are registered in ConfigureServices and consumed

across the app via dependency injection (DI) or ApplicationServices.

Includes a Configure method to create the app's request processing pipeline.

ConfigureServices and Configure are called by the ASP.NET Core runtime when the app starts:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/startup.md
https://twitter.com/RickAndMSFT
https://github.com/tdykstra
https://ardalis.com
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder.applicationservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

public class Startup
{
 private readonly IWebHostEnvironment _env;

 public Startup(IConfiguration configuration, IWebHostEnvironment env)
 {
 Configuration = configuration;
 _env = env;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 if (_env.IsDevelopment())
 {
 }
 else
 {
 }
 }
}

Multiple StartupMultiple Startup

The preceding sample is for Razor Pages; the MVC version is similar.

The Startup class is specified when the app's host is built. The Startup class is typically specified by calling

the WebHostBuilderExtensions.UseStartup<TStartup> method on the host builder :

The host provides services that are available to the Startup class constructor. The app adds additional

services via ConfigureServices . Both the host and app services are available in Configure and throughout

the app.

Only the following service types can be injected into the Startup constructor when using the Generic Host

(IHostBuilder):

IWebHostEnvironment

IHostEnvironment

IConfiguration

Most services are not available until the Configure method is called.

When the app defines separate Startup classes for different environments (for example, StartupDevelopment

), the appropriate Startup class is selected at runtime. The class whose name suffix matches the current

environment is prioritized. If the app is run in the Development environment and includes both a Startup

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.usestartup
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration

The ConfigureServices method

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {

 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));
 services.AddDefaultIdentity<IdentityUser>(
 options => options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<ApplicationDbContext>();

 services.AddRazorPages();
 }

The Configure method

class and a StartupDevelopment class, the StartupDevelopment class is used. For more information, see Use

multiple environments.

See The host for more information on the host. For information on handling errors during startup, see

Startup exception handling.

The ConfigureServices method is:

Optional.

Called by the host before the Configure method to configure the app's services.

Where configuration options are set by convention.

The host may configure some services before Startup methods are called. For more information, see The

host.

For features that require substantial setup, there are Add{Service} extension methods on IServiceCollection.

For example, AddAddDbContext, AddAddDefaultIdentity, AddAddEntityFrameworkStores, and AddAddRazorPages:

Adding services to the service container makes them available within the app and in the Configure method.

The services are resolved via dependency injection or from ApplicationServices.

The Configure method is used to specify how the app responds to HTTP requests. The request pipeline is

configured by adding middleware components to an IApplicationBuilder instance. IApplicationBuilder is

available to the Configure method, but it isn't registered in the service container. Hosting creates an

IApplicationBuilder and passes it directly to Configure .

The ASP.NET Core templates configure the pipeline with support for :

Developer Exception Page

Exception handler

HTTP Strict Transport Security (HSTS)

HTTPS redirection

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicecollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder.applicationservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

Configure services without Startup

Static files

ASP.NET Core MVC and Razor Pages

The preceding sample is for Razor Pages; the MVC version is similar.

Each Use extension method adds one or more middleware components to the request pipeline. For instance,

UseStaticFiles configures middleware to serve static files.

Each middleware component in the request pipeline is responsible for invoking the next component in the

pipeline or short-circuiting the chain, if appropriate.

Additional services, such as IWebHostEnvironment , ILoggerFactory , or anything defined in ConfigureServices ,

can be specified in the Configure method signature. These services are injected if they're available.

For more information on how to use IApplicationBuilder and the order of middleware processing, see

ASP.NET Core Middleware.

To configure services and the request processing pipeline without using a Startup class, call

ConfigureServices and Configure convenience methods on the host builder. Multiple calls to

ConfigureServices append to one another. If multiple Configure method calls exist, the last Configure call is

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.ConfigureServices(services =>
 {
 services.AddControllersWithViews();
 })
 .Configure(app =>
 {
 var loggerFactory = app.ApplicationServices
 .GetRequiredService<ILoggerFactory>();
 var logger = loggerFactory.CreateLogger<Program>();
 var env = app.ApplicationServices.GetRequiredService<IWebHostEnvironment>();
 var config = app.ApplicationServices.GetRequiredService<IConfiguration>();

 logger.LogInformation("Logged in Configure");

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 var configValue = config["MyConfigKey"];
 });
 });
 });
}

Extend Startup with startup filters

used.

Use IStartupFilter:

To configure middleware at the beginning or end of an app's Configure middleware pipeline without an

explicit call to Use{Middleware} . IStartupFilter is used by ASP.NET Core to add defaults to the beginning

of the pipeline without having to make the app author explicitly register the default middleware.

IStartupFilter allows a different component call Use{Middleware} on behalf of the app author.

To create a pipeline of Configure methods. IStartupFilter.Configure can set a middleware to run before or

after middleware added by libraries.

IStartupFilter implements Configure, which receives and returns an Action<IApplicationBuilder> . An

IApplicationBuilder defines a class to configure an app's request pipeline. For more information, see Create a

middleware pipeline with IApplicationBuilder.

Each IStartupFilter can add one or more middlewares in the request pipeline. The filters are invoked in the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartupfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartupfilter.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder

public class RequestSetOptionsMiddleware
{
 private readonly RequestDelegate _next;

 public RequestSetOptionsMiddleware(RequestDelegate next)
 {
 _next = next;
 }

 // Test with https://localhost:5001/Privacy/?option=Hello
 public async Task Invoke(HttpContext httpContext)
 {
 var option = httpContext.Request.Query["option"];

 if (!string.IsNullOrWhiteSpace(option))
 {
 httpContext.Items["option"] = WebUtility.HtmlEncode(option);
 }

 await _next(httpContext);
 }
}

public class RequestSetOptionsStartupFilter : IStartupFilter
{
 public Action<IApplicationBuilder> Configure(Action<IApplicationBuilder> next)
 {
 return builder =>
 {
 builder.UseMiddleware<RequestSetOptionsMiddleware>();
 next(builder);
 };
 }
}

order they were added to the service container. Filters may add middleware before or after passing control to

the next filter, thus they append to the beginning or end of the app pipeline.

The following example demonstrates how to register a middleware with IStartupFilter . The

RequestSetOptionsMiddleware middleware sets an options value from a query string parameter :

The RequestSetOptionsMiddleware is configured in the RequestSetOptionsStartupFilter class:

The IStartupFilter is registered in the service container in ConfigureServices.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 })
 .ConfigureServices(services =>
 {
 services.AddTransient<IStartupFilter,
 RequestSetOptionsStartupFilter>();
 });
}

Add configuration at startup from an external assembly

Additional resources

The Startup class

When a query string parameter for option is provided, the middleware processes the value assignment

before the ASP.NET Core middleware renders the response.

Middleware execution order is set by the order of IStartupFilter registrations:

Multiple IStartupFilter implementations may interact with the same objects. If ordering is important,

order their IStartupFilter service registrations to match the order that their middlewares should run.

Libraries may add middleware with one or more IStartupFilter implementations that run before or

after other app middleware registered with IStartupFilter . To invoke an IStartupFilter middleware

before a middleware added by a library's IStartupFilter :

Position the service registration before the library is added to the service container.

To invoke afterward, position the service registration after the library is added.

An IHostingStartup implementation allows adding enhancements to an app at startup from an external

assembly outside of the app's Startup class. For more information, see Use hosting startup assemblies in

ASP.NET Core.

The host

Use multiple environments in ASP.NET Core

ASP.NET Core Middleware

Logging in .NET Core and ASP.NET Core

Configuration in ASP.NET Core

ASP.NET Core apps use a Startup class, which is named Startup by convention. The Startup class:

Optionally includes a ConfigureServices method to configure the app's services. A service is a reusable

component that provides app functionality. Services are registered in ConfigureServices and consumed

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices

public class Startup
{
 // Use this method to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 ...
 }

 // Use this method to configure the HTTP request pipeline.
 public void Configure(IApplicationBuilder app)
 {
 ...
 }
}

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
}

across the app via dependency injection (DI) or ApplicationServices.

Includes a Configure method to create the app's request processing pipeline.

ConfigureServices and Configure are called by the ASP.NET Core runtime when the app starts:

The Startup class is specified when the app's host is built. The Startup class is typically specified by calling

the WebHostBuilderExtensions.UseStartup<TStartup> method on the host builder :

The host provides services that are available to the Startup class constructor. The app adds additional

services via ConfigureServices . Both the host and app services are then available in Configure and

throughout the app.

A common use of dependency injection into the Startup class is to inject:

IHostingEnvironment to configure services by environment.

IConfiguration to read configuration.

ILoggerFactory to create a logger in Startup.ConfigureServices .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder.applicationservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.usestartup
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory

public class Startup
{
 private readonly IHostingEnvironment _env;
 private readonly IConfiguration _config;
 private readonly ILoggerFactory _loggerFactory;

 public Startup(IHostingEnvironment env, IConfiguration config,
 ILoggerFactory loggerFactory)
 {
 _env = env;
 _config = config;
 _loggerFactory = loggerFactory;
 }

 public void ConfigureServices(IServiceCollection services)
 {
 var logger = _loggerFactory.CreateLogger<Startup>();

 if (_env.IsDevelopment())
 {
 // Development service configuration

 logger.LogInformation("Development environment");
 }
 else
 {
 // Non-development service configuration

 logger.LogInformation("Environment: {EnvironmentName}", _env.EnvironmentName);
 }

 // Configuration is available during startup.
 // Examples:
 // _config["key"]
 // _config["subsection:suboption1"]
 }
}

Multiple StartupMultiple Startup

The ConfigureServices method

Most services are not available until the Configure method is called.

When the app defines separate Startup classes for different environments (for example, StartupDevelopment

), the appropriate Startup class is selected at runtime. The class whose name suffix matches the current

environment is prioritized. If the app is run in the Development environment and includes both a Startup

class and a StartupDevelopment class, the StartupDevelopment class is used. For more information, see Use

multiple environments.

See The host for more information on the host. For information on handling errors during startup, see

Startup exception handling.

The ConfigureServices method is:

Optional.

Called by the host before the Configure method to configure the app's services.

Where configuration options are set by convention.

The host may configure some services before Startup methods are called. For more information, see The

host.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));
 services.AddDefaultIdentity<IdentityUser>()
 .AddDefaultUI(UIFramework.Bootstrap4)
 .AddEntityFrameworkStores<ApplicationDbContext>();

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
}

The Configure method

For features that require substantial setup, there are Add{Service} extension methods on IServiceCollection.

For example, AddAddDbContext, AddAddDefaultIdentity, AddAddEntityFrameworkStores, and AddAddRazorPages:

Adding services to the service container makes them available within the app and in the Configure method.

The services are resolved via dependency injection or from ApplicationServices.

See SetCompatibilityVersion for more information on SetCompatibilityVersion .

The Configure method is used to specify how the app responds to HTTP requests. The request pipeline is

configured by adding middleware components to an IApplicationBuilder instance. IApplicationBuilder is

available to the Configure method, but it isn't registered in the service container. Hosting creates an

IApplicationBuilder and passes it directly to Configure .

The ASP.NET Core templates configure the pipeline with support for :

Developer Exception Page

Exception handler

HTTP Strict Transport Security (HSTS)

HTTPS redirection

Static files

ASP.NET Core MVC and Razor Pages

General Data Protection Regulation (GDPR)

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicecollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder.applicationservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseMvc();
}

Configure services without Startup

Each Use extension method adds one or more middleware components to the request pipeline. For instance,

UseStaticFiles configures middleware to serve static files.

Each middleware component in the request pipeline is responsible for invoking the next component in the

pipeline or short-circuiting the chain, if appropriate.

Additional services, such as IHostingEnvironment and ILoggerFactory , or anything defined in

ConfigureServices , can be specified in the Configure method signature. These services are injected if they're

available.

For more information on how to use IApplicationBuilder and the order of middleware processing, see

ASP.NET Core Middleware.

To configure services and the request processing pipeline without using a Startup class, call

ConfigureServices and Configure convenience methods on the host builder. Multiple calls to

ConfigureServices append to one another. If multiple Configure method calls exist, the last Configure call is

used.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles

public class Program
{
 public static IHostingEnvironment HostingEnvironment { get; set; }
 public static IConfiguration Configuration { get; set; }

 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 })
 .ConfigureServices(services =>
 {
 ...
 })
 .Configure(app =>
 {
 var loggerFactory = app.ApplicationServices
 .GetRequiredService<ILoggerFactory>();
 var logger = loggerFactory.CreateLogger<Program>();
 var env = app.ApplicationServices.GetRequiredService<IHostingEnvironment>();
 var config = app.ApplicationServices.GetRequiredService<IConfiguration>();

 logger.LogInformation("Logged in Configure");

 if (env.IsDevelopment())
 {
 ...
 }
 else
 {
 ...
 }

 var configValue = config["subsection:suboption1"];

 ...
 });
}

Extend Startup with startup filters
Use IStartupFilter:

To configure middleware at the beginning or end of an app's Configure middleware pipeline without an

explicit call to Use{Middleware} . IStartupFilter is used by ASP.NET Core to add defaults to the beginning

of the pipeline without having to make the app author explicitly register the default middleware.

IStartupFilter allows a different component call Use{Middleware} on behalf of the app author.

To create a pipeline of Configure methods. IStartupFilter.Configure can set a middleware to run before or

after middleware added by libraries.

IStartupFilter implements Configure, which receives and returns an Action<IApplicationBuilder> . An

IApplicationBuilder defines a class to configure an app's request pipeline. For more information, see Create a

middleware pipeline with IApplicationBuilder.

Each IStartupFilter can add one or more middlewares in the request pipeline. The filters are invoked in the

order they were added to the service container. Filters may add middleware before or after passing control to

the next filter, thus they append to the beginning or end of the app pipeline.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartupfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartupfilter.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder

public class RequestSetOptionsMiddleware
{
 private readonly RequestDelegate _next;
 private IOptions<AppOptions> _injectedOptions;

 public RequestSetOptionsMiddleware(
 RequestDelegate next, IOptions<AppOptions> injectedOptions)
 {
 _next = next;
 _injectedOptions = injectedOptions;
 }

 public async Task Invoke(HttpContext httpContext)
 {
 Console.WriteLine("RequestSetOptionsMiddleware.Invoke");

 var option = httpContext.Request.Query["option"];

 if (!string.IsNullOrWhiteSpace(option))
 {
 _injectedOptions.Value.Option = WebUtility.HtmlEncode(option);
 }

 await _next(httpContext);
 }
}

public class RequestSetOptionsStartupFilter : IStartupFilter
{
 public Action<IApplicationBuilder> Configure(Action<IApplicationBuilder> next)
 {
 return builder =>
 {
 builder.UseMiddleware<RequestSetOptionsMiddleware>();
 next(builder);
 };
 }
}

WebHost.CreateDefaultBuilder(args)
 .ConfigureServices(services =>
 {
 services.AddTransient<IStartupFilter,
 RequestSetOptionsStartupFilter>();
 })
 .UseStartup<Startup>()
 .Build();

The following example demonstrates how to register a middleware with IStartupFilter . The

RequestSetOptionsMiddleware middleware sets an options value from a query string parameter :

The RequestSetOptionsMiddleware is configured in the RequestSetOptionsStartupFilter class:

The IStartupFilter is registered in the service container in ConfigureServices.

When a query string parameter for option is provided, the middleware processes the value assignment

before the ASP.NET Core middleware renders the response.

Middleware execution order is set by the order of IStartupFilter registrations:

Multiple IStartupFilter implementations may interact with the same objects. If ordering is important,

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices

Add configuration at startup from an external assembly

Additional resources

order their IStartupFilter service registrations to match the order that their middlewares should run.

Libraries may add middleware with one or more IStartupFilter implementations that run before or

after other app middleware registered with IStartupFilter . To invoke an IStartupFilter middleware

before a middleware added by a library's IStartupFilter :

Position the service registration before the library is added to the service container.

To invoke afterward, position the service registration after the library is added.

An IHostingStartup implementation allows adding enhancements to an app at startup from an external

assembly outside of the app's Startup class. For more information, see Use hosting startup assemblies in

ASP.NET Core.

The host

Use multiple environments in ASP.NET Core

ASP.NET Core Middleware

Logging in .NET Core and ASP.NET Core

Configuration in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup

Dependency injection in ASP.NET Core
9/22/2020 • 40 minutes to read • Edit Online

Overview of dependency injection

public class MyDependency
{
 public void WriteMessage(string message)
 {
 Console.WriteLine($"MyDependency.WriteMessage called. Message:
{message}");
 }
}

public class IndexModel : PageModel
{
 private readonly MyDependency _dependency = new MyDependency();

 public void OnGet()
 {
 _dependency.WriteMessage("IndexModel.OnGet created this message.");
 }
}

By Kirk Larkin, Steve Smith, Scott Addie, and Brandon Dahler

ASP.NET Core supports the dependency injection (DI) software design pattern, which is

a technique for achieving Inversion of Control (IoC) between classes and their

dependencies.

For more information specific to dependency injection within MVC controllers, see

Dependency injection into controllers in ASP.NET Core.

For more information on dependency injection of options, see Options pattern in

ASP.NET Core.

View or download sample code (how to download)

A dependency is an object that another object depends on. Examine the following

MyDependency class with a WriteMessage method that other classes depend on:

A class can create an instance of the MyDependency class to make use of its

WriteMessage method. In the following example, the MyDependency class is a

dependency of the IndexModel class:

The class creates and directly depends on the MyDependency class. Code dependencies,

such as in the previous example, are problematic and should be avoided for the

following reasons:

To replace MyDependency with a different implementation, the IndexModel class

must be modified.

If MyDependency has dependencies, they must also be configured by the

IndexModel class. In a large project with multiple classes depending on

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/dependency-injection.md
https://twitter.com/serpent5
https://ardalis.com/
https://scottaddie.com
https://github.com/brandondahler
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#dependency-inversion
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/dependency-injection/samples

public interface IMyDependency
{
 void WriteMessage(string message);
}

public class MyDependency : IMyDependency
{
 public void WriteMessage(string message)
 {
 Console.WriteLine($"MyDependency.WriteMessage Message: {message}");
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddScoped<IMyDependency, MyDependency>();

 services.AddRazorPages();
}

MyDependency , the configuration code becomes scattered across the app.

This implementation is difficult to unit test. The app should use a mock or stub

MyDependency class, which isn't possible with this approach.

Dependency injection addresses these problems through:

The use of an interface or base class to abstract the dependency implementation.

Registration of the dependency in a service container. ASP.NET Core provides a

built-in service container, IServiceProvider. Services are typically registered in the

app's Startup.ConfigureServices method.

Injection of the service into the constructor of the class where it's used. The

framework takes on the responsibility of creating an instance of the dependency

and disposing of it when it's no longer needed.

In the sample app, the IMyDependency interface defines the WriteMessage method:

This interface is implemented by a concrete type, MyDependency :

The sample app registers the IMyDependency service with the concrete type

MyDependency . The AddScoped method registers the service with a scoped lifetime, the

lifetime of a single request. Service lifetimes are described later in this topic.

In the sample app, the IMyDependency service is requested and used to call the

WriteMessage method:

https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/dependency-injection/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addscoped

public class Index2Model : PageModel
{
 private readonly IMyDependency _myDependency;

 public Index2Model(IMyDependency myDependency)
 {
 _myDependency = myDependency;
 }

 public void OnGet()
 {
 _myDependency.WriteMessage("Index2Model.OnGet");
 }
}

public class MyDependency2 : IMyDependency
{
 private readonly ILogger<MyDependency2> _logger;

 public MyDependency2(ILogger<MyDependency2> logger)
 {
 _logger = logger;
 }

 public void WriteMessage(string message)
 {
 _logger.LogInformation($"MyDependency2.WriteMessage Message: {message}");
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddScoped<IMyDependency, MyDependency2>();

 services.AddRazorPages();
}

By using the DI pattern, the controller :

Doesn't use the concrete type MyDependency , only the IMyDependency interface it

implements. That makes it easy to change the implementation that the controller

uses without modifying the controller.

Doesn't create an instance of MyDependency , it's created by the DI container.

The implementation of the IMyDependency interface can be improved by using the

built-in logging API:

The updated ConfigureServices method registers the new IMyDependency

implementation:

MyDependency2 depends on ILogger<TCategoryName>, which it requests in the

constructor. ILogger<TCategoryName> is a framework-provided service.

It's not unusual to use dependency injection in a chained fashion. Each requested

dependency in turn requests its own dependencies. The container resolves the

dependencies in the graph and returns the fully resolved service. The collective set of

dependencies that must be resolved is typically referred to as a dependency tree,

dependency graph, or object graph.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1

public class AboutModel : PageModel
{
 private readonly ILogger _logger;

 public AboutModel(ILogger<AboutModel> logger)
 {
 _logger = logger;
 }

 public string Message { get; set; }

 public void OnGet()
 {
 Message = $"About page visited at {DateTime.UtcNow.ToLongTimeString()}";
 _logger.LogInformation(Message);
 }
}

Services injected into Startup

public void Configure(IApplicationBuilder app, ILogger<Startup> logger)
{
 ...
}

The container resolves ILogger<TCategoryName> by taking advantage of (generic) open

types, eliminating the need to register every (generic) constructed type.

In dependency injection terminology, a service:

Is typically an object that provides a service to other objects, such as the

IMyDependency service.

Is not related to a web service, although the service may use a web service.

The framework provides a robust logging system. The IMyDependency

implementations shown in the preceding examples were written to demonstrate basic

DI, not to implement logging. Most apps shouldn't need to write loggers. The

following code demonstrates using the default logging, which doesn't require any

services to be registered in ConfigureServices :

Using the preceding code, there is no need to update ConfigureServices , because

logging is provided by the framework.

Services can be injected into the Startup constructor and the Startup.Configure

method.

Only the following services can be injected into the Startup constructor when using

the Generic Host (IHostBuilder):

IWebHostEnvironment

IHostEnvironment

IConfiguration

Any service registered with the DI container can be injected into the

Startup.Configure method:

For more information, see App startup in ASP.NET Core and Access configuration in

Startup.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#open-and-closed-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#constructed-types
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration

Register groups of services with extension methods

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));
 services.AddDefaultIdentity<IdentityUser>(options =>
options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<ApplicationDbContext>();
 services.AddRazorPages();
}

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<PositionOptions>(
 Configuration.GetSection(PositionOptions.Position));
 services.Configure<ColorOptions>(
 Configuration.GetSection(ColorOptions.Color));

 services.AddScoped<IMyDependency, MyDependency>();
 services.AddScoped<IMyDependency2, MyDependency2>();

 services.AddRazorPages();
}

The ASP.NET Core framework uses a convention for registering a group of related

services. The convention is to use a single Add{GROUP_NAME} extension method to

register all of the services required by a framework feature. For example, the

<Microsoft.Extensions.DependencyInjection.MvcServiceCollectionExtensions.AddContr

ollers> extension method registers the services required for MVC controllers.

The following code is generated by the Razor Pages template using individual user

accounts and shows how to add additional services to the container using the

extension methods AddDbContext and AddDefaultIdentity:

 Consider the following ConfigureServices method, which registers services and

configures options:

Related groups of registrations can be moved to an extension method to register

services. For example, the configuration services are added to the following class:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionuiextensions.adddefaultidentity

using ConfigSample.Options;
using Microsoft.Extensions.Configuration;

namespace Microsoft.Extensions.DependencyInjection
{
 public static class MyConfigServiceCollectionExtensions
 {
 public static IServiceCollection AddConfig(
 this IServiceCollection services, IConfiguration config)
 {
 services.Configure<PositionOptions>(
 config.GetSection(PositionOptions.Position));
 services.Configure<ColorOptions>(
 config.GetSection(ColorOptions.Color));

 return services;
 }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddConfig(Configuration)
 .AddMyDependencyGroup();

 services.AddRazorPages();
}

Service lifetimes

TransientTransient

ScopedScoped

The remaining services are registered in a similar class. The following

ConfigureServices method uses the new extension methods to register the services:

Note:Note: Each services.Add{GROUP_NAME} extension method adds and potentially

configures services. For example, AddControllersWithViews adds the services MVC

controllers with views require, and AddRazorPages adds the services Razor Pages

requires. We recommended that apps follow this naming convention. Place extension

methods in the Microsoft.Extensions.DependencyInjection namespace to encapsulate

groups of service registrations.

Services can be registered with one of the following lifetimes:

Transient

Scoped

Singleton

The following sections describe each of the preceding lifetimes. Choose an

appropriate lifetime for each registered service.

Transient lifetime services are created each time they're requested from the service

container. This lifetime works best for lightweight, stateless services. Register transient

services with AddTransient.

In apps that process requests, transient services are disposed at the end of the

request.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addcontrollerswithviews
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addrazorpages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addtransient

 SingletonSingleton

WARNINGWARNING

Scoped lifetime services are created once per client request (connection). Register

scoped services with AddScoped.

In apps that process requests, scoped services are disposed at the end of the request.

When using Entity Framework Core, the AddDbContext extension method registers

DbContext types with a scoped lifetime by default.

Do notnot resolve a scoped service from a singleton. It may cause the service to have

incorrect state when processing subsequent requests. It's fine to:

Resolve a singleton service from a scoped or transient service.

Resolve a scoped service from another scoped or transient service.

By default, in the development environment, resolving a service from another service

with a longer lifetime throws an exception. For more information, see Scope

validation.

To use scoped services in middleware, use one of the following approaches:

Inject the service into the middleware's Invoke or InvokeAsync method. Using

constructor injection throws a runtime exception because it forces the scoped

service to behave like a singleton. The sample in the Lifetime and registration

options section demonstrates the InvokeAsync approach.

Use Factory-based middleware. Middleware registered using this approach is

activated per client request (connection), which allows scoped services to be

injected into the middleware's InvokeAsync method.

For more information, see Write custom ASP.NET Core middleware.

Singleton lifetime services are created either :

The first time they're requested.

By the developer, when providing an implementation instance directly to the

container. This approach is rarely needed.

Every subsequent request uses the same instance. If the app requires singleton

behavior, allow the service container to manage the service's lifetime. Don't implement

the singleton design pattern and provide code to dispose of the singleton. Services

should never be disposed by code that resolved the service from the container. If a

type or factory is registered as a singleton, the container disposes the singleton

automatically.

Register singleton services with AddSingleton. Singleton services must be thread safe

and are often used in stateless services.

In apps that process requests, singleton services are disposed when the

ServiceProvider is disposed on application shutdown. Because memory is not

released until the app is shut down, consider memory use with a singleton service.

Do notnot resolve a scoped service from a singleton. It may cause the service to have incorrect

state when processing subsequent requests. It's fine to resolve a singleton service from a

scoped or transient service.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addscoped
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addsingleton
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.serviceprovider

Service registration methods

M ET H O DM ET H O D

A UTO M AT ICA UTO M AT IC
O B JEC TO B JEC T
DISP O SA LDISP O SA L

M ULT IP L EM ULT IP L E
IM P L EM EN TAT IO N SIM P L EM EN TAT IO N S PA SS A RGSPA SS A RGS

Add{LIFETIME}
<{SERVICE},
{IMPLEMENTATION}>
()

Example:
services.AddSingleton<IMyDep,
MyDep>();

Yes Yes No

Add{LIFETIME}
<{SERVICE}>(sp =>
new
{IMPLEMENTATION})

Examples:
services.AddSingleton<IMyDep>
(sp => new MyDep());

services.AddSingleton<IMyDep>
(sp => new MyDep(99));

Yes Yes Yes

Add{LIFETIME}
<{IMPLEMENTATION}>
()

Example:
services.AddSingleton<MyDep>
();

Yes No No

AddSingleton<{SERVICE}>
(new {IMPLEMENTATION})

Examples:
services.AddSingleton<IMyDep>
(new MyDep());

services.AddSingleton<IMyDep>
(new MyDep(99));

No Yes Yes

AddSingleton(new
{IMPLEMENTATION})

Examples:
services.AddSingleton(new
MyDep());

services.AddSingleton(new
MyDep(99));

No No Yes

The framework provides service registration extension methods that are useful in

specific scenarios:

For more information on type disposal, see the Disposal of services section. It's

common to use multiple implementations when mocking types for testing.

The framework also provides TryAdd{LIFETIME} extension methods, which register the

service only if there isn't already an implementation registered.

In the following example, the call to AddSingleton registers MyDependency as an

implementation for IMyDependency . The call to TryAddSingleton has no effect because

IMyDependency already has a registered implementation:

services.AddSingleton<IMyDependency, MyDependency>();
// The following line has no effect:
services.TryAddSingleton<IMyDependency, DifferentDependency>();

public interface IMyDependency1 { }
public interface IMyDependency2 { }

public class MyDependency : IMyDependency1, IMyDependency2 { }

services.TryAddEnumerable(ServiceDescriptor.Singleton<IMyDependency1,
MyDependency>());
services.TryAddEnumerable(ServiceDescriptor.Singleton<IMyDependency2,
MyDependency>());
services.TryAddEnumerable(ServiceDescriptor.Singleton<IMyDependency1,
MyDependency>());

var myKey = Configuration["MyKey"];
var descriptor = new ServiceDescriptor(
 typeof(IMyDependency),
 sp => new MyDependency5(myKey),
 ServiceLifetime.Transient);

services.Add(descriptor);

Constructor injection behaviorConstructor injection behavior

For more information, see:

TryAdd

TryAddTransient

TryAddScoped

TryAddSingleton

The TryAddEnumerable(ServiceDescriptor) methods register the service only if there

isn't already an implementation of the same type. Multiple services are resolved via

IEnumerable<{SERVICE}> . When registering services, the developer should add an

instance if one of the same type hasn't already been added. Generally, library authors

use TryAddEnumerable to avoid registering multiple copies of an implementation in the

container.

In the following example, the first call to TryAddEnumerable registers MyDependency as

an implementation for IMyDependency1 . The second call registers MyDependency for

IMyDependency2 . The third call has no effect because IMyDependency1 already has a

registered implementation of MyDependency :

Service registration is generally order independent except when registering multiple

implementations of the same type.

IServiceCollection is a collection of ServiceDescriptor objects. The following example

shows how to register a service by creating and adding a ServiceDescriptor :

The built-in Add{LIFETIME} methods use the same approach. For example, see the

AddScoped source code.

Services can be resolved by using:

IServiceProvider

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryadd
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddtransient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddscoped
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddsingleton
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddenumerable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor
https://github.com/dotnet/extensions/blob/v3.1.6/src/DependencyInjection/DI.Abstractions/src/ServiceCollectionServiceExtensions.cs#L216-L237
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider

Entity Framework contexts

Lifetime and registration options

public interface IOperation
{
 string OperationId { get; }
}

public interface IOperationTransient : IOperation { }
public interface IOperationScoped : IOperation { }
public interface IOperationSingleton : IOperation { }

public class Operation : IOperationTransient, IOperationScoped,
IOperationSingleton
{
 public Operation()
 {
 OperationId = Guid.NewGuid().ToString()[^4..];
 }

 public string OperationId { get; }
}

ActivatorUtilities:

Creates objects that aren't registered in the container.

Used with framework features, such as Tag Helpers, MVC controllers, and

model binders.

Constructors can accept arguments that aren't provided by dependency injection, but

the arguments must assign default values.

When services are resolved by IServiceProvider or ActivatorUtilities , constructor

injection requires a public constructor.

When services are resolved by ActivatorUtilities , constructor injection requires that

only one applicable constructor exists. Constructor overloads are supported, but only

one overload can exist whose arguments can all be fulfilled by dependency injection.

By default, Entity Framework contexts are added to the service container using the

scoped lifetime because web app database operations are normally scoped to the

client request. To use a different lifetime, specify the lifetime by using an

AddDbContext overload. Services of a given lifetime shouldn't use a database context

with a lifetime that's shorter than the service's lifetime.

To demonstrate the difference between service lifetimes and their registration options,

consider the following interfaces that represent a task as an operation with an

identifier, OperationId . Depending on how the lifetime of an operation's service is

configured for the following interfaces, the container provides either the same or

different instances of the service when requested by a class:

The following Operation class implements all of the preceding interfaces. The

Operation constructor generates a GUID and stores the last 4 characters in the

OperationId property:

The Startup.ConfigureServices method creates multiple registrations of the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.activatorutilities
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontext

public void ConfigureServices(IServiceCollection services)
{
 services.AddTransient<IOperationTransient, Operation>();
 services.AddScoped<IOperationScoped, Operation>();
 services.AddSingleton<IOperationSingleton, Operation>();

 services.AddRazorPages();
}

public class IndexModel : PageModel
{
 private readonly ILogger _logger;
 private readonly IOperationTransient _transientOperation;
 private readonly IOperationSingleton _singletonOperation;
 private readonly IOperationScoped _scopedOperation;

 public IndexModel(ILogger<IndexModel> logger,
 IOperationTransient transientOperation,
 IOperationScoped scopedOperation,
 IOperationSingleton singletonOperation)
 {
 _logger = logger;
 _transientOperation = transientOperation;
 _scopedOperation = scopedOperation;
 _singletonOperation = singletonOperation;
 }

 public void OnGet()
 {
 _logger.LogInformation("Transient: " + _transientOperation.OperationId);
 _logger.LogInformation("Scoped: " + _scopedOperation.OperationId);
 _logger.LogInformation("Singleton: " + _singletonOperation.OperationId);
 }
}

Operation class according to the named lifetimes:

The sample app demonstrates object lifetimes both within and between requests. The

IndexModel and the middleware request each kind of IOperation type and log the

OperationId for each:

Similar to the IndexModel , the middleware resolves the same services:

public class MyMiddleware
{
 private readonly RequestDelegate _next;
 private readonly ILogger _logger;

 private readonly IOperationTransient _transientOperation;
 private readonly IOperationSingleton _singletonOperation;

 public MyMiddleware(RequestDelegate next, ILogger<MyMiddleware> logger,
 IOperationTransient transientOperation,
 IOperationSingleton singletonOperation)
 {
 _logger = logger;
 _transientOperation = transientOperation;
 _singletonOperation = singletonOperation;
 _next = next;
 }

 public async Task InvokeAsync(HttpContext context,
 IOperationScoped scopedOperation)
 {
 _logger.LogInformation("Transient: " + _transientOperation.OperationId);
 _logger.LogInformation("Scoped: " + scopedOperation.OperationId);
 _logger.LogInformation("Singleton: " + _singletonOperation.OperationId);

 await _next(context);
 }
}

public static class MyMiddlewareExtensions
{
 public static IApplicationBuilder UseMyMiddleware(this IApplicationBuilder
builder)
 {
 return builder.UseMiddleware<MyMiddleware>();
 }
}

public async Task InvokeAsync(HttpContext context,
 IOperationScoped scopedOperation)
{
 _logger.LogInformation("Transient: " + _transientOperation.OperationId);
 _logger.LogInformation("Scoped: " + scopedOperation.OperationId);
 _logger.LogInformation("Singleton: " + _singletonOperation.OperationId);

 await _next(context);
}

Scoped services must be resolved in the InvokeAsync method:

The logger output shows:

Transient objects are always different. The transient OperationId value is different

in the IndexModel and in the middleware.

Scoped objects are the same for each request but different across each request.

Singleton objects are the same for every request.

To reduce the logging output, set "Logging:LogLevel:Microsoft:Error" in the

appsettings.Development.json file:

{
 "MyKey": "MyKey from appsettings.Developement.json",
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "System": "Debug",
 "Microsoft": "Error"
 }
 }
}

Call services from main

public class Program
{
 public static void Main(string[] args)
 {
 var host = CreateHostBuilder(args).Build();

 using (var serviceScope = host.Services.CreateScope())
 {
 var services = serviceScope.ServiceProvider;

 try
 {
 var myDependency = services.GetRequiredService<IMyDependency>();
 myDependency.WriteMessage("Call services from main");
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred.");
 }
 }

 host.Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Scope validation

Create an IServiceScope with IServiceScopeFactory.CreateScope to resolve a scoped

service within the app's scope. This approach is useful to access a scoped service at

startup to run initialization tasks.

The following example shows how to access the scoped IMyDependency service and

call its WriteMessage method in Program.Main :

When the app runs in the Development environment and calls CreateDefaultBuilder to

build the host, the default service provider performs checks to verify that:

Scoped services aren't resolved from the root service provider.

Scoped services aren't injected into singletons.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescope
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescopefactory.createscope

Request Services

NOTENOTE

Design services for dependency injection

Disposal of servicesDisposal of services

public class Service1 : IDisposable
{
 private bool _disposed;

 public void Write(string message)
 {

The root service provider is created when BuildServiceProvider is called. The root

service provider's lifetime corresponds to the app's lifetime when the provider starts

with the app and is disposed when the app shuts down.

Scoped services are disposed by the container that created them. If a scoped service is

created in the root container, the service's lifetime is effectively promoted to singleton

because it's only disposed by the root container when the app shuts down. Validating

service scopes catches these situations when BuildServiceProvider is called.

For more information, see Scope validation.

The services available within an ASP.NET Core request are exposed through the

HttpContext.RequestServices collection. When services are requested from inside of a

request, the services and their dependencies are resolved from the RequestServices

collection.

The framework creates a scope per request and RequestServices exposes the scoped

service provider. All scoped services are valid for as long as the request is active.

Prefer requesting dependencies as constructor parameters to resolving services from the

RequestServices collection. This results in classes that are easier to test.

When designing services for dependency injection:

Avoid stateful, static classes and members. Avoid creating global state by designing

apps to use singleton services instead.

Avoid direct instantiation of dependent classes within services. Direct instantiation

couples the code to a particular implementation.

Make services small, well-factored, and easily tested.

If a class has a lot of injected dependencies, it might be a sign that the class has too

many responsibilities and violates the Single Responsibility Principle (SRP). Attempt to

refactor the class by moving some of its responsibilities into new classes. Keep in

mind that Razor Pages page model classes and MVC controller classes should focus

on UI concerns.

The container calls Dispose for the IDisposable types it creates. Services resolved from

the container should never be disposed by the developer. If a type or factory is

registered as a singleton, the container disposes the singleton automatically.

In the following example, the services are created by the service container and

disposed automatically:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectioncontainerbuilderextensions.buildserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.requestservices#microsoft_aspnetcore_http_httpcontext_requestservices
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#single-responsibility
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable

 {
 Console.WriteLine($"Service1: {message}");
 }

 public void Dispose()
 {
 if (_disposed)
 return;

 Console.WriteLine("Service1.Dispose");
 _disposed = true;
 }
}

public class Service2 : IDisposable
{
 private bool _disposed;

 public void Write(string message)
 {
 Console.WriteLine($"Service2: {message}");
 }

 public void Dispose()
 {
 if (_disposed)
 return;

 Console.WriteLine("Service2.Dispose");
 _disposed = true;
 }
}

public interface IService3
{
 public void Write(string message);
}

public class Service3 : IService3, IDisposable
{
 private bool _disposed;

 public Service3(string myKey)
 {
 MyKey = myKey;
 }

 public string MyKey { get; }

 public void Write(string message)
 {
 Console.WriteLine($"Service3: {message}, MyKey = {MyKey}");
 }

 public void Dispose()
 {
 if (_disposed)
 return;

 Console.WriteLine("Service3.Dispose");
 _disposed = true;
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddScoped<Service1>();
 services.AddSingleton<Service2>();

 var myKey = Configuration["MyKey"];
 services.AddSingleton<IService3>(sp => new Service3(myKey));

 services.AddRazorPages();
}

public class IndexModel : PageModel
{
 private readonly Service1 _service1;
 private readonly Service2 _service2;
 private readonly IService3 _service3;

 public IndexModel(Service1 service1, Service2 service2, IService3 service3)
 {
 _service1 = service1;
 _service2 = service2;
 _service3 = service3;
 }

 public void OnGet()
 {
 _service1.Write("IndexModel.OnGet");
 _service2.Write("IndexModel.OnGet");
 _service3.Write("IndexModel.OnGet");
 }
}

Service1: IndexModel.OnGet
Service2: IndexModel.OnGet
Service3: IndexModel.OnGet
Service1.Dispose

Services not created by the service containerServices not created by the service container

public void ConfigureServices(IServiceCollection services)
{
 services.AddSingleton(new Service1());
 services.AddSingleton(new Service2());

 services.AddRazorPages();
}

IDisposable guidance for Transient and shared instancesIDisposable guidance for Transient and shared instances
Transient, limited lifetimeTransient, limited lifetime

The debug console shows the following output after each refresh of the Index page:

Consider the following code:

In the preceding code:

The service instances aren't created by the service container.

The framework doesn't dispose of the services automatically.

The developer is responsible for disposing the services.

ScenarioScenario

Shared instance, limited lifetimeShared instance, limited lifetime

General IDisposable guidelinesGeneral IDisposable guidelines

Default service container replacement

The app requires an IDisposable instance with a transient lifetime for either of the

following scenarios:

The instance is resolved in the root scope (root container).

The instance should be disposed before the scope ends.

SolutionSolution

Use the factory pattern to create an instance outside of the parent scope. In this

situation, the app would generally have a Create method that calls the final type's

constructor directly. If the final type has other dependencies, the factory can:

Receive an IServiceProvider in its constructor.

Use ActivatorUtilities.CreateInstance to instantiate the instance outside of the

container, while using the container for its dependencies.

ScenarioScenario

The app requires a shared IDisposable instance across multiple services, but the

IDisposable instance should have a limited lifetime.

SolutionSolution

Register the instance with a scoped lifetime. Use IServiceScopeFactory.CreateScope to

create a new IServiceScope. Use the scope's IServiceProvider to get required services.

Dispose the scope when it's no longer needed.

Don't register IDisposable instances with a transient lifetime. Use the factory

pattern instead.

Don't resolve IDisposable instances with a transient or scoped lifetime in the root

scope. The only exception to this is if the app creates/recreates and disposes

IServiceProvider, but this isn't an ideal pattern.

Receiving an IDisposable dependency via DI doesn't require that the receiver

implement IDisposable itself. The receiver of the IDisposable dependency shouldn't

call Dispose on that dependency.

Use scopes to control the lifetimes of services. Scopes aren't hierarchical, and

there's no special connection among scopes.

The built-in service container is designed to serve the needs of the framework and

most consumer apps. We recommend using the built-in container unless you need a

specific feature that it doesn't support, such as:

Property injection

Injection based on name

Child containers

Custom lifetime management

Func<T> support for lazy initialization

Convention-based registration

The following third-party containers can be used with ASP.NET Core apps:

Autofac

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.activatorutilities.createinstance
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescopefactory.createscope
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescope
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://autofac.readthedocs.io/en/latest/integration/aspnetcore.html

Thread safety

Recommendations

DryIoc

Grace

LightInject

Lamar

Stashbox

Unity

Create thread-safe singleton services. If a singleton service has a dependency on a

transient service, the transient service may also require thread safety depending on

how it's used by the singleton.

The factory method of single service, such as the second argument to

AddSingleton<TService>(IServiceCollection, Func<IServiceProvider,TService>),

doesn't need to be thread-safe. Like a type (static) constructor, it's guaranteed to be

called only once by a single thread.

async/await and Task based service resolution isn't supported. Because C#

doesn't support asynchronous constructors, use asynchronous methods after

synchronously resolving the service.

Avoid storing data and configuration directly in the service container. For

example, a user's shopping cart shouldn't typically be added to the service

container. Configuration should use the options pattern. Similarly, avoid "data

holder" objects that only exist to allow access to another object. It's better to

request the actual item via DI.

Avoid static access to services. For example, avoid capturing

IApplicationBuilder.ApplicationServices as a static field or property for use

elsewhere.

Keep DI factories fast and synchronous.

Avoid using the service locator pattern. For example, don't invoke GetService to

obtain a service instance when you can use DI instead:

Incorrect:Incorrect:

CorrectCorrect:

https://www.nuget.org/packages/DryIoc.Microsoft.DependencyInjection
https://www.nuget.org/packages/Grace.DependencyInjection.Extensions
https://github.com/seesharper/LightInject.Microsoft.DependencyInjection
https://jasperfx.github.io/lamar/
https://github.com/z4kn4fein/stashbox-extensions-dependencyinjection
https://www.nuget.org/packages/Unity.Microsoft.DependencyInjection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addsingleton
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder.applicationservices#microsoft_aspnetcore_builder_iapplicationbuilder_applicationservices
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider.getservice

public class MyClass
{
 private readonly IOptionsMonitor<MyOptions> _optionsMonitor;

 public MyClass(IOptionsMonitor<MyOptions> optionsMonitor)
 {
 _optionsMonitor = optionsMonitor;
 }

 public void MyMethod()
 {
 var option = _optionsMonitor.CurrentValue.Option;

 ...
 }
}

Another service locator variation to avoid is injecting a factory that resolves

dependencies at runtime. Both of these practices mix Inversion of Control

strategies.

Avoid static access to HttpContext (for example,

IHttpContextAccessor.HttpContext).

 Avoid calls to BuildServiceProvider in ConfigureServices . Calling

BuildServiceProvider typically happens when the developer wants to resolve a

service in ConfigureServices . For example, consider the case where the

LoginPath is loaded from configuration. Avoid the following approach:

In the preceding image, selecting the green wavy line under

services.BuildServiceProvider shows the following ASP0000 warning:

ASP0000 Calling 'BuildServiceProvider' from application code results in an

additional copy of singleton services being created. Consider alternatives

such as dependency injecting services as parameters to 'Configure'.

Calling BuildServiceProvider creates a second container, which can create torn

singletons and cause references to object graphs across multiple containers.

A correct way to get LoginPath is to use the options pattern's built-in support

for DI:

https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#dependency-inversion
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor.httpcontext#microsoft_aspnetcore_http_ihttpcontextaccessor_httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectioncontainerbuilderextensions.buildserviceprovider

Recommended patterns for multi-tenancy in DI

Framework-provided services

SERVIC E T Y P ESERVIC E T Y P E L IF ET IM EL IF ET IM E

Microsoft.AspNetCore.Hosting.Builder.IApplica
tionBuilderFactory

Transient

IHostApplicationLifetime Singleton

IWebHostEnvironment Singleton

public void ConfigureServices(IServiceCollection services)
{

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationSchem
e)
 .AddCookie();

 services.AddOptions<CookieAuthenticationOptions>(
 CookieAuthenticationDefaults.AuthenticationScheme)
 .Configure<IMyService>((options, myService) =>
 {
 options.LoginPath = myService.GetLoginPath();
 });

 services.AddRazorPages();
}

Disposable transient services are captured by the container for disposal. This

can turn into a memory leak if resolved from the top level container.

Enable scope validation to make sure the app doesn't have singletons that

capture scoped services. For more information, see Scope validation.

Like all sets of recommendations, you may encounter situations where ignoring a

recommendation is required. Exceptions are rare, mostly special cases within the

framework itself.

DI is an alternative to static/global object access patterns. You may not be able to

realize the benefits of DI if you mix it with static object access.

Orchard Core is an application framework for building modular, multi-tenant

applications on ASP.NET Core. For more information, see the Orchard Core

Documentation.

See the Orchard Core samples for examples of how to build modular and multi-tenant

apps using just the Orchard Core Framework without any of its CMS-specific features.

The Startup.ConfigureServices method registers services that the app uses, including

platform features, such as Entity Framework Core and ASP.NET Core MVC. Initially, the

IServiceCollection provided to ConfigureServices has services defined by the

framework depending on how the host was configured. For apps based on the

ASP.NET Core templates, the framework registers more than 250 services.

The following table lists a small sample of these framework-registered services:

https://github.com/OrchardCMS/OrchardCore
https://docs.orchardcore.net/en/dev/
https://github.com/OrchardCMS/OrchardCore.Samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.builder.iapplicationbuilderfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostenvironment

Microsoft.AspNetCore.Hosting.IStartup Singleton

Microsoft.AspNetCore.Hosting.IStartupFilter Transient

Microsoft.AspNetCore.Hosting.Server.IServer Singleton

Microsoft.AspNetCore.Http.IHttpContextFacto
ry

Transient

Microsoft.Extensions.Logging.ILogger<TCateg
oryName>

Singleton

Microsoft.Extensions.Logging.ILoggerFactory Singleton

Microsoft.Extensions.ObjectPool.ObjectPoolPr
ovider

Singleton

Microsoft.Extensions.Options.IConfigureOptio
ns<TOptions>

Transient

Microsoft.Extensions.Options.IOptions<TOpti
ons>

Singleton

System.Diagnostics.DiagnosticSource Singleton

System.Diagnostics.DiagnosticListener Singleton

SERVIC E T Y P ESERVIC E T Y P E L IF ET IM EL IF ET IM E

Additional resources
Dependency injection into views in ASP.NET Core

Dependency injection into controllers in ASP.NET Core

Dependency injection in requirement handlers in ASP.NET Core

ASP.NET Core Blazor dependency injection

NDC Conference Patterns for DI app development

App startup in ASP.NET Core

Factory-based middleware activation in ASP.NET Core

Four ways to dispose IDisposables in ASP.NET Core

Writing Clean Code in ASP.NET Core with Dependency Injection (MSDN)

Explicit Dependencies Principle

Inversion of Control Containers and the Dependency Injection Pattern (Martin

Fowler)

How to register a service with multiple interfaces in ASP.NET Core DI

By Steve Smith, Scott Addie, and Brandon Dahler

ASP.NET Core supports the dependency injection (DI) software design pattern, which is

a technique for achieving Inversion of Control (IoC) between classes and their

dependencies.

For more information specific to dependency injection within MVC controllers, see

Dependency injection into controllers in ASP.NET Core.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartupfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.iserver
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.objectpool.objectpoolprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.diagnosticsource
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.diagnosticlistener
https://www.youtube.com/watch?v=x-C-CNBVTaY
https://andrewlock.net/four-ways-to-dispose-idisposables-in-asp-net-core/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2016/may/asp-net-writing-clean-code-in-asp-net-core-with-dependency-injection
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies
https://www.martinfowler.com/articles/injection.html
https://andrewlock.net/how-to-register-a-service-with-multiple-interfaces-for-in-asp-net-core-di/
https://ardalis.com/
https://scottaddie.com
https://github.com/brandondahler
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#dependency-inversion

Overview of dependency injection

public class MyDependency
{
 public MyDependency()
 {
 }

 public Task WriteMessage(string message)
 {
 Console.WriteLine(
 $"MyDependency.WriteMessage called. Message: {message}");

 return Task.FromResult(0);
 }
}

public class IndexModel : PageModel
{
 MyDependency _dependency = new MyDependency();

 public async Task OnGetAsync()
 {
 await _dependency.WriteMessage(
 "IndexModel.OnGetAsync created this message.");
 }
}

View or download sample code (how to download)

A dependency is any object that another object requires. Examine the following

MyDependency class with a WriteMessage method that other classes in an app depend

upon:

An instance of the MyDependency class can be created to make the WriteMessage

method available to a class. The MyDependency class is a dependency of the

IndexModel class:

The class creates and directly depends on the MyDependency instance. Code

dependencies (such as the previous example) are problematic and should be avoided

for the following reasons:

To replace MyDependency with a different implementation, the class must be

modified.

If MyDependency has dependencies, they must be configured by the class. In a large

project with multiple classes depending on MyDependency , the configuration code

becomes scattered across the app.

This implementation is difficult to unit test. The app should use a mock or stub

MyDependency class, which isn't possible with this approach.

Dependency injection addresses these problems through:

The use of an interface or base class to abstract the dependency implementation.

Registration of the dependency in a service container. ASP.NET Core provides a

built-in service container, IServiceProvider. Services are registered in the app's

Startup.ConfigureServices method.

Injection of the service into the constructor of the class where it's used. The

https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/dependency-injection/samples
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider

public interface IMyDependency
{
 Task WriteMessage(string message);
}

public class MyDependency : IMyDependency
{
 private readonly ILogger<MyDependency> _logger;

 public MyDependency(ILogger<MyDependency> logger)
 {
 _logger = logger;
 }

 public Task WriteMessage(string message)
 {
 _logger.LogInformation(
 "MyDependency.WriteMessage called. Message: {Message}",
 message);

 return Task.FromResult(0);
 }
}

services.AddSingleton(typeof(ILogger<>), typeof(Logger<>));

framework takes on the responsibility of creating an instance of the dependency

and disposing of it when it's no longer needed.

In the sample app, the IMyDependency interface defines a method that the service

provides to the app:

This interface is implemented by a concrete type, MyDependency :

MyDependency requests an ILogger<TCategoryName> in its constructor. It's not

unusual to use dependency injection in a chained fashion. Each requested dependency

in turn requests its own dependencies. The container resolves the dependencies in the

graph and returns the fully resolved service. The collective set of dependencies that

must be resolved is typically referred to as a dependency tree, dependency graph, or

object graph.

IMyDependency and ILogger<TCategoryName> must be registered in the service

container. IMyDependency is registered in Startup.ConfigureServices .

ILogger<TCategoryName> is registered by the logging abstractions infrastructure, so it's

a framework-provided service registered by default by the framework.

The container resolves ILogger<TCategoryName> by taking advantage of (generic) open

types, eliminating the need to register every (generic) constructed type:

In the sample app, the IMyDependency service is registered with the concrete type

MyDependency . The registration scopes the service lifetime to the lifetime of a single

request. Service lifetimes are described later in this topic.

https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/dependency-injection/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#open-and-closed-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#constructed-types

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddScoped<IMyDependency, MyDependency>();
 services.AddTransient<IOperationTransient, Operation>();
 services.AddScoped<IOperationScoped, Operation>();
 services.AddSingleton<IOperationSingleton, Operation>();
 services.AddSingleton<IOperationSingletonInstance>(new Operation(Guid.Empty));

 // OperationService depends on each of the other Operation types.
 services.AddTransient<OperationService, OperationService>();
}

NOTENOTE

public class MyDependency : IMyDependency
{
 public MyDependency(IConfiguration config)
 {
 var myStringValue = config["MyStringKey"];

 // Use myStringValue
 }

 ...
}

Each services.Add{SERVICE_NAME} extension method adds (and potentially configures)

services. For example, services.AddMvc() adds the services Razor Pages and MVC require.

We recommended that apps follow this convention. Place extension methods in the

Microsoft.Extensions.DependencyInjection namespace to encapsulate groups of service

registrations.

If the service's constructor requires a built in type, such as a string , the type can be

injected by using configuration or the options pattern:

An instance of the service is requested via the constructor of a class where the service

is used and assigned to a private field. The field is used to access the service as

necessary throughout the class.

In the sample app, the IMyDependency instance is requested and used to call the

service's WriteMessage method:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/built-in-types-table

public class IndexModel : PageModel
{
 private readonly IMyDependency _myDependency;

 public IndexModel(
 IMyDependency myDependency,
 OperationService operationService,
 IOperationTransient transientOperation,
 IOperationScoped scopedOperation,
 IOperationSingleton singletonOperation,
 IOperationSingletonInstance singletonInstanceOperation)
 {
 _myDependency = myDependency;
 OperationService = operationService;
 TransientOperation = transientOperation;
 ScopedOperation = scopedOperation;
 SingletonOperation = singletonOperation;
 SingletonInstanceOperation = singletonInstanceOperation;
 }

 public OperationService OperationService { get; }
 public IOperationTransient TransientOperation { get; }
 public IOperationScoped ScopedOperation { get; }
 public IOperationSingleton SingletonOperation { get; }
 public IOperationSingletonInstance SingletonInstanceOperation { get; }

 public async Task OnGetAsync()
 {
 await _myDependency.WriteMessage(
 "IndexModel.OnGetAsync created this message.");
 }
}

Services injected into Startup

public void Configure(IApplicationBuilder app, IOptions<MyOptions> options)
{
 ...
}

Framework-provided services

Only the following service types can be injected into the Startup constructor when

using the Generic Host (IHostBuilder):

IWebHostEnvironment

IHostEnvironment

IConfiguration

Services can be injected into Startup.Configure :

For more information, see App startup in ASP.NET Core.

The Startup.ConfigureServices method is responsible for defining the services that

the app uses, including platform features, such as Entity Framework Core and ASP.NET

Core MVC. Initially, the IServiceCollection provided to ConfigureServices has

services defined by the framework depending on how the host was configured. It's not

uncommon for an app based on an ASP.NET Core template to have hundreds of

services registered by the framework. A small sample of framework-registered

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration

SERVIC E T Y P ESERVIC E T Y P E L IF ET IM EL IF ET IM E

Microsoft.AspNetCore.Hosting.Builder.IApplica
tionBuilderFactory

Transient

Microsoft.AspNetCore.Hosting.IApplicationLife
time

Singleton

Microsoft.AspNetCore.Hosting.IHostingEnviro
nment

Singleton

Microsoft.AspNetCore.Hosting.IStartup Singleton

Microsoft.AspNetCore.Hosting.IStartupFilter Transient

Microsoft.AspNetCore.Hosting.Server.IServer Singleton

Microsoft.AspNetCore.Http.IHttpContextFacto
ry

Transient

Microsoft.Extensions.Logging.ILogger<TCateg
oryName>

Singleton

Microsoft.Extensions.Logging.ILoggerFactory Singleton

Microsoft.Extensions.ObjectPool.ObjectPoolPr
ovider

Singleton

Microsoft.Extensions.Options.IConfigureOptio
ns<TOptions>

Transient

Microsoft.Extensions.Options.IOptions<TOpti
ons>

Singleton

System.Diagnostics.DiagnosticSource Singleton

System.Diagnostics.DiagnosticListener Singleton

Register additional services with extension methods

services is listed in the following table.

When a service collection extension method is available to register a service (and its

dependent services, if required), the convention is to use a single Add{SERVICE_NAME}

extension method to register all of the services required by that service. The following

code is an example of how to add additional services to the container using the

extension methods AddDbContext<TContext> and AddIdentityCore:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.builder.iapplicationbuilderfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartupfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.iserver
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.objectpool.objectpoolprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.diagnosticsource
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.diagnosticlistener
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.addidentitycore

public void ConfigureServices(IServiceCollection services)
{
 ...

 services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 ...
}

Service lifetimes

TransientTransient

ScopedScoped

WARNINGWARNING

SingletonSingleton

WARNINGWARNING

For more information, see the ServiceCollection class in the API documentation.

Choose an appropriate lifetime for each registered service. ASP.NET Core services can

be configured with the following lifetimes:

Transient lifetime services (AddTransient) are created each time they're requested from

the service container. This lifetime works best for lightweight, stateless services.

In apps that process requests, transient services are disposed at the end of the

request.

Scoped lifetime services (AddScoped) are created once per client request (connection).

In apps that process requests, scoped services are disposed at the end of the request.

When using a scoped service in a middleware, inject the service into the Invoke or

InvokeAsync method. Don't inject via constructor injection because it forces the service to

behave like a singleton. For more information, see Write custom ASP.NET Core middleware.

Singleton lifetime services (AddSingleton) are created the first time they're requested

(or when Startup.ConfigureServices is run and an instance is specified with the

service registration). Every subsequent request uses the same instance. If the app

requires singleton behavior, allowing the service container to manage the service's

lifetime is recommended. Don't implement the singleton design pattern and provide

user code to manage the object's lifetime in the class.

In apps that process requests, singleton services are disposed when the

ServiceProvider is disposed at app shutdown.

It's dangerous to resolve a scoped service from a singleton. It may cause the service to have

incorrect state when processing subsequent requests.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addtransient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addscoped
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addsingleton
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.serviceprovider

Service registration methods

M ET H O DM ET H O D

A UTO M AT ICA UTO M AT IC
O B JEC TO B JEC T
DISP O SA LDISP O SA L

M ULT IP L EM ULT IP L E
IM P L EM EN TAT IO N SIM P L EM EN TAT IO N S PA SS A RGSPA SS A RGS

Add{LIFETIME}
<{SERVICE},
{IMPLEMENTATION}>
()

Example:
services.AddSingleton<IMyDep,
MyDep>();

Yes Yes No

Add{LIFETIME}
<{SERVICE}>(sp =>
new
{IMPLEMENTATION})

Examples:
services.AddSingleton<IMyDep>
(sp => new MyDep());

services.AddSingleton<IMyDep>
(sp => new MyDep("A
string!"));

Yes Yes Yes

Add{LIFETIME}
<{IMPLEMENTATION}>
()

Example:
services.AddSingleton<MyDep>
();

Yes No No

AddSingleton<{SERVICE}>
(new {IMPLEMENTATION})

Examples:
services.AddSingleton<IMyDep>
(new MyDep());

services.AddSingleton<IMyDep>
(new MyDep("A string!"));

No Yes Yes

AddSingleton(new
{IMPLEMENTATION})

Examples:
services.AddSingleton(new
MyDep());

services.AddSingleton(new
MyDep("A string!"));

No No Yes

Service registration extension methods offer overloads that are useful in specific

scenarios.

For more information on type disposal, see the Disposal of services section. A

common scenario for multiple implementations is mocking types for testing.

TryAdd{LIFETIME} methods only register the service if there isn't already an

implementation registered.

In the following example, the first line registers MyDependency for IMyDependency . The

second line has no effect because IMyDependency already has a registered

implementation:

services.AddSingleton<IMyDependency, MyDependency>();
// The following line has no effect:
services.TryAddSingleton<IMyDependency, DifferentDependency>();

public interface IMyDep1 {}
public interface IMyDep2 {}

public class MyDep : IMyDep1, IMyDep2 {}

services.TryAddEnumerable(ServiceDescriptor.Singleton<IMyDep1, MyDep>());
services.TryAddEnumerable(ServiceDescriptor.Singleton<IMyDep2, MyDep>());
// Two registrations of MyDep for IMyDep1 is avoided by the following line:
services.TryAddEnumerable(ServiceDescriptor.Singleton<IMyDep1, MyDep>());

Constructor injection behaviorConstructor injection behavior

Entity Framework contexts

For more information, see:

TryAdd

TryAddTransient

TryAddScoped

TryAddSingleton

TryAddEnumerable(ServiceDescriptor) methods only register the service if there isn't

already an implementation of the same type. Multiple services are resolved via

IEnumerable<{SERVICE}> . When registering services, the developer only wants to add

an instance if one of the same type hasn't already been added. Generally, this method

is used by library authors to avoid registering two copies of an instance in the

container.

In the following example, the first line registers MyDep for IMyDep1 . The second line

registers MyDep for IMyDep2 . The third line has no effect because IMyDep1 already

has a registered implementation of MyDep :

Services can be resolved by two mechanisms:

IServiceProvider

ActivatorUtilities: Permits object creation without service registration in the

dependency injection container. ActivatorUtilities is used with user-facing

abstractions, such as Tag Helpers, MVC controllers, and model binders.

Constructors can accept arguments that aren't provided by dependency injection, but

the arguments must assign default values.

When services are resolved by IServiceProvider or ActivatorUtilities , constructor

injection requires a public constructor.

When services are resolved by ActivatorUtilities , constructor injection requires that

only one applicable constructor exists. Constructor overloads are supported, but only

one overload can exist whose arguments can all be fulfilled by dependency injection.

Entity Framework contexts are usually added to the service container using the scoped

lifetime because web app database operations are normally scoped to the client

request. The default lifetime is scoped if a lifetime isn't specified by an

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryadd
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddtransient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddscoped
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddsingleton
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddenumerable
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.activatorutilities

Lifetime and registration options

public interface IOperation
{
 Guid OperationId { get; }
}

public interface IOperationTransient : IOperation
{
}

public interface IOperationScoped : IOperation
{
}

public interface IOperationSingleton : IOperation
{
}

public interface IOperationSingletonInstance : IOperation
{
}

public class Operation : IOperationTransient,
 IOperationScoped,
 IOperationSingleton,
 IOperationSingletonInstance
{
 public Operation() : this(Guid.NewGuid())
 {
 }

 public Operation(Guid id)
 {
 OperationId = id;
 }

 public Guid OperationId { get; private set; }
}

AddDbContext<TContext> overload when registering the database context. Services

of a given lifetime shouldn't use a database context with a shorter lifetime than the

service.

To demonstrate the difference between the lifetime and registration options, consider

the following interfaces that represent tasks as an operation with a unique identifier,

OperationId . Depending on how the lifetime of an operations service is configured

for the following interfaces, the container provides either the same or a different

instance of the service when requested by a class:

The interfaces are implemented in the Operation class. The Operation constructor

generates a GUID if one isn't supplied:

An OperationService is registered that depends on each of the other Operation types.

When OperationService is requested via dependency injection, it receives either a

new instance of each service or an existing instance based on the lifetime of the

dependent service.

When transient services are created when requested from the container, the

OperationId of the IOperationTransient service is different than the OperationId

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontext

public class OperationService
{
 public OperationService(
 IOperationTransient transientOperation,
 IOperationScoped scopedOperation,
 IOperationSingleton singletonOperation,
 IOperationSingletonInstance instanceOperation)
 {
 TransientOperation = transientOperation;
 ScopedOperation = scopedOperation;
 SingletonOperation = singletonOperation;
 SingletonInstanceOperation = instanceOperation;
 }

 public IOperationTransient TransientOperation { get; }
 public IOperationScoped ScopedOperation { get; }
 public IOperationSingleton SingletonOperation { get; }
 public IOperationSingletonInstance SingletonInstanceOperation { get; }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddScoped<IMyDependency, MyDependency>();
 services.AddTransient<IOperationTransient, Operation>();
 services.AddScoped<IOperationScoped, Operation>();
 services.AddSingleton<IOperationSingleton, Operation>();
 services.AddSingleton<IOperationSingletonInstance>(new Operation(Guid.Empty));

 // OperationService depends on each of the other Operation types.
 services.AddTransient<OperationService, OperationService>();
}

of the OperationService . OperationService receives a new instance of the

IOperationTransient class. The new instance yields a different OperationId .

When scoped services are created per client request, the OperationId of the

IOperationScoped service is the same as that of OperationService within a client

request. Across client requests, both services share a different OperationId value.

When singleton and singleton-instance services are created once and used across

all client requests and all services, the OperationId is constant across all service

requests.

In Startup.ConfigureServices , each type is added to the container according to its

named lifetime:

The IOperationSingletonInstance service is using a specific instance with a known ID

of Guid.Empty . It's clear when this type is in use (its GUID is all zeroes).

The sample app demonstrates object lifetimes within and between individual requests.

The sample app's IndexModel requests each kind of IOperation type and the

OperationService . The page then displays all of the page model class's and service's

OperationId values through property assignments:

public class IndexModel : PageModel
{
 private readonly IMyDependency _myDependency;

 public IndexModel(
 IMyDependency myDependency,
 OperationService operationService,
 IOperationTransient transientOperation,
 IOperationScoped scopedOperation,
 IOperationSingleton singletonOperation,
 IOperationSingletonInstance singletonInstanceOperation)
 {
 _myDependency = myDependency;
 OperationService = operationService;
 TransientOperation = transientOperation;
 ScopedOperation = scopedOperation;
 SingletonOperation = singletonOperation;
 SingletonInstanceOperation = singletonInstanceOperation;
 }

 public OperationService OperationService { get; }
 public IOperationTransient TransientOperation { get; }
 public IOperationScoped ScopedOperation { get; }
 public IOperationSingleton SingletonOperation { get; }
 public IOperationSingletonInstance SingletonInstanceOperation { get; }

 public async Task OnGetAsync()
 {
 await _myDependency.WriteMessage(
 "IndexModel.OnGetAsync created this message.");
 }
}

Two following output shows the results of two requests:

First request:First request:

Controller operations:

Transient: d233e165-f417-469b-a866-1cf1935d2518

Scoped: 5d997e2d-55f5-4a64-8388-51c4e3a1ad19

Singleton: 01271bc1-9e31-48e7-8f7c-7261b040ded9

Instance: 00000000-0000-0000-0000-000000000000

OperationService operations:

Transient: c6b049eb-1318-4e31-90f1-eb2dd849ff64

Scoped: 5d997e2d-55f5-4a64-8388-51c4e3a1ad19

Singleton: 01271bc1-9e31-48e7-8f7c-7261b040ded9

Instance: 00000000-0000-0000-0000-000000000000

Second request:Second request:

Controller operations:

Transient: b63bd538-0a37-4ff1-90ba-081c5138dda0

Scoped: 31e820c5-4834-4d22-83fc-a60118acb9f4

Singleton: 01271bc1-9e31-48e7-8f7c-7261b040ded9

Instance: 00000000-0000-0000-0000-000000000000

OperationService operations:

Transient: c4cbacb8-36a2-436d-81c8-8c1b78808aaf

Call services from main

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

public class Program
{
 public static async Task Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var serviceScope = host.Services.CreateScope())
 {
 var services = serviceScope.ServiceProvider;

 try
 {
 var serviceContext = services.GetRequiredService<MyScopedService>
();
 // Use the context here
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred.");
 }
 }

 await host.RunAsync();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
}

Scoped: 31e820c5-4834-4d22-83fc-a60118acb9f4

Singleton: 01271bc1-9e31-48e7-8f7c-7261b040ded9

Instance: 00000000-0000-0000-0000-000000000000

Observe which of the OperationId values vary within a request and between

requests:

Transient objects are always different. The transient OperationId value for both the

first and second client requests are different for both OperationService operations

and across client requests. A new instance is provided to each service request and

client request.

Scoped objects are the same within a client request but different across client

requests.

Singleton objects are the same for every object and every request regardless of

whether an Operation instance is provided in Startup.ConfigureServices .

Create an IServiceScope with IServiceScopeFactory.CreateScope to resolve a scoped

service within the app's scope. This approach is useful to access a scoped service at

startup to run initialization tasks. The following example shows how to obtain a

context for the MyScopedService in Program.Main :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescope
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescopefactory.createscope

Scope validation

Request Services

NOTENOTE

Design services for dependency injection

When the app is running in the Development environment, the default service

provider performs checks to verify that:

Scoped services aren't directly or indirectly resolved from the root service provider.

Scoped services aren't directly or indirectly injected into singletons.

The root service provider is created when BuildServiceProvider is called. The root

service provider's lifetime corresponds to the app/server's lifetime when the provider

starts with the app and is disposed when the app shuts down.

Scoped services are disposed by the container that created them. If a scoped service is

created in the root container, the service's lifetime is effectively promoted to singleton

because it's only disposed by the root container when app/server is shut down.

Validating service scopes catches these situations when BuildServiceProvider is

called.

For more information, see ASP.NET Core Web Host.

The services available within an ASP.NET Core request from HttpContext are exposed

through the HttpContext.RequestServices collection.

Request Services represent the services configured and requested as part of the app.

When the objects specify dependencies, these are satisfied by the types found in

RequestServices , not ApplicationServices .

Generally, the app shouldn't use these properties directly. Instead, request the types

that classes require via class constructors and allow the framework inject the

dependencies. This yields classes that are easier to test.

Prefer requesting dependencies as constructor parameters to accessing the

RequestServices collection.

Best practices are to:

Design services to use dependency injection to obtain their dependencies.

Avoid stateful, static classes and members. Design apps to use singleton services

instead, which avoid creating global state.

Avoid direct instantiation of dependent classes within services. Direct instantiation

couples the code to a particular implementation.

Make app classes small, well-factored, and easily tested.

If a class seems to have too many injected dependencies, this is generally a sign that

the class has too many responsibilities and is violating the Single Responsibility

Principle (SRP). Attempt to refactor the class by moving some of its responsibilities

into a new class. Keep in mind that Razor Pages page model classes and MVC

controller classes should focus on UI concerns. Business rules and data access

implementation details should be kept in classes appropriate to these separate

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectioncontainerbuilderextensions.buildserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.requestservices#microsoft_aspnetcore_http_httpcontext_requestservices
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#single-responsibility
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#separation-of-concerns

Disposal of servicesDisposal of services

public class Service1 : IDisposable {}
public class Service2 : IDisposable {}

public interface IService3 {}
public class Service3 : IService3, IDisposable {}

public void ConfigureServices(IServiceCollection services)
{
 services.AddScoped<Service1>();
 services.AddSingleton<Service2>();
 services.AddSingleton<IService3>(sp => new Service3());
}

public class Service1 : IDisposable {}
public class Service2 : IDisposable {}

public void ConfigureServices(IServiceCollection services)
{
 services.AddSingleton<Service1>(new Service1());
 services.AddSingleton(new Service2());
}

IDisposable guidance for Transient and shared instancesIDisposable guidance for Transient and shared instances
Transient, limited lifetimeTransient, limited lifetime

concerns.

The container calls Dispose for the IDisposable types it creates. If an instance is added

to the container by user code, it isn't disposed automatically.

In the following example, the services are created by the service container and

disposed automatically:

In the following example:

The service instances aren't created by the service container.

The intended service lifetimes aren't known by the framework.

The framework doesn't dispose of the services automatically.

If the services aren't explicitly disposed in developer code, they persist until the app

shuts down.

ScenarioScenario

The app requires an IDisposable instance with a transient lifetime for either of the

following scenarios:

The instance is resolved in the root scope.

The instance should be disposed before the scope ends.

SolutionSolution

Use the factory pattern to create an instance outside of the parent scope. In this

situation, the app would generally have a Create method that calls the final type's

constructor directly. If the final type has other dependencies, the factory can:

Receive an IServiceProvider in its constructor.

Use ActivatorUtilities.CreateInstance to instantiate the instance outside the

container, while using the container for its dependencies.

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.activatorutilities.createinstance

Shared Instance, limited lifetimeShared Instance, limited lifetime

General GuidelinesGeneral Guidelines

Default service container replacement

Thread safetyThread safety

ScenarioScenario

The app requires a shared IDisposable instance across multiple services, but the

IDisposable should have a limited lifetime.

SolutionSolution

Register the instance with a Scoped lifetime. Use IServiceScopeFactory.CreateScope to

start and create a new IServiceScope. Use the scope's IServiceProvider to get required

services. Dispose the scope when the lifetime should end.

Don't register IDisposable instances with a Transient scope. Use the factory pattern

instead.

Don't resolve Transient or Scoped IDisposable instances in the root scope. The only

general exception is when the app creates/recreates and disposes the

IServiceProvider, which isn't an ideal pattern.

Receiving an IDisposable dependency via DI doesn't require that the receiver

implement IDisposable itself. The receiver of the IDisposable dependency shouldn't

call Dispose on that dependency.

Scopes should be used to control lifetimes of services. Scopes aren't hierarchical,

and there's no special connection among scopes.

The built-in service container is designed to serve the needs of the framework and

most consumer apps. We recommend using the built-in container unless you need a

specific feature that the built-in container doesn't support, such as:

Property injection

Injection based on name

Child containers

Custom lifetime management

Func<T> support for lazy initialization

Convention-based registration

The following third-party containers can be used with ASP.NET Core apps:

Autofac

DryIoc

Grace

LightInject

Lamar

Stashbox

Unity

Create thread-safe singleton services. If a singleton service has a dependency on a

transient service, the transient service may also require thread safety depending how

it's used by the singleton.

The factory method of single service, such as the second argument to

AddSingleton<TService>(IServiceCollection, Func<IServiceProvider,TService>),

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescopefactory.createscope
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescope
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://autofac.readthedocs.io/en/latest/integration/aspnetcore.html
https://www.nuget.org/packages/DryIoc.Microsoft.DependencyInjection
https://www.nuget.org/packages/Grace.DependencyInjection.Extensions
https://github.com/seesharper/LightInject.Microsoft.DependencyInjection
https://jasperfx.github.io/lamar/
https://github.com/z4kn4fein/stashbox-extensions-dependencyinjection
https://www.nuget.org/packages/Unity.Microsoft.DependencyInjection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addsingleton

Recommendations

doesn't need to be thread-safe. Like a type (static) constructor, it's guaranteed to be

called once by a single thread.

async/await and Task based service resolution is not supported. C# does not

support asynchronous constructors; therefore, the recommended pattern is to

use asynchronous methods after synchronously resolving the service.

Avoid storing data and configuration directly in the service container. For

example, a user's shopping cart shouldn't typically be added to the service

container. Configuration should use the options pattern. Similarly, avoid "data

holder" objects that only exist to allow access to some other object. It's better to

request the actual item via DI.

Avoid static access to services. For example, avoid statically-typing

IApplicationBuilder.ApplicationServices for use elsewhere.

Avoid using the service locator pattern, which mixes Inversion of Control

strategies.

public class MyClass()

 public void MyMethod()
 {
 var optionsMonitor =
 _services.GetService<IOptionsMonitor<MyOptions>>();
 var option = optionsMonitor.CurrentValue.Option;

 ...
 }

public class MyClass
{
 private readonly IOptionsMonitor<MyOptions> _optionsMonitor;

 public MyClass(IOptionsMonitor<MyOptions> optionsMonitor)
 {
 _optionsMonitor = optionsMonitor;
 }

 public void MyMethod()
 {
 var option = _optionsMonitor.CurrentValue.Option;

 ...
 }
}

Don't invoke GetService to obtain a service instance when you can use

DI instead:

Incorrect:Incorrect:

CorrectCorrect:

Avoid injecting a factory that resolves dependencies at runtime using

GetService.

Avoid static access to HttpContext (for example,

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder.applicationservices#microsoft_aspnetcore_builder_iapplicationbuilder_applicationservices
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#dependency-inversion
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider.getservice
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider.getservice

Additional resources

IHttpContextAccessor.HttpContext).

Like all sets of recommendations, you may encounter situations where ignoring a

recommendation is required. Exceptions are rare, mostly special cases within the

framework itself.

DI is an alternative to static/global object access patterns. You may not be able to

realize the benefits of DI if you mix it with static object access.

Dependency injection into views in ASP.NET Core

Dependency injection into controllers in ASP.NET Core

Dependency injection in requirement handlers in ASP.NET Core

ASP.NET Core Blazor dependency injection

App startup in ASP.NET Core

Factory-based middleware activation in ASP.NET Core

Four ways to dispose IDisposables in ASP.NET Core

Writing Clean Code in ASP.NET Core with Dependency Injection (MSDN)

Explicit Dependencies Principle

Inversion of Control Containers and the Dependency Injection Pattern (Martin

Fowler)

How to register a service with multiple interfaces in ASP.NET Core DI

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor.httpcontext#microsoft_aspnetcore_http_ihttpcontextaccessor_httpcontext
https://andrewlock.net/four-ways-to-dispose-idisposables-in-asp-net-core/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2016/may/asp-net-writing-clean-code-in-asp-net-core-with-dependency-injection
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies
https://www.martinfowler.com/articles/injection.html
https://andrewlock.net/how-to-register-a-service-with-multiple-interfaces-for-in-asp-net-core-di/

ASP.NET Core Middleware
9/22/2020 • 22 minutes to read • Edit Online

Create a middleware pipeline with IApplicationBuilder

By Rick Anderson and Steve Smith

Middleware is software that's assembled into an app pipeline to handle requests and responses. Each

component:

Chooses whether to pass the request to the next component in the pipeline.

Can perform work before and after the next component in the pipeline.

Request delegates are used to build the request pipeline. The request delegates handle each HTTP

request.

Request delegates are configured using Run, Map, and Use extension methods. An individual request

delegate can be specified in-line as an anonymous method (called in-line middleware), or it can be

defined in a reusable class. These reusable classes and in-line anonymous methods are middleware, also

called middleware components. Each middleware component in the request pipeline is responsible for

invoking the next component in the pipeline or short-circuiting the pipeline. When a middleware short-

circuits, it's called a terminal middleware because it prevents further middleware from processing the

request.

Migrate HTTP handlers and modules to ASP.NET Core middleware explains the difference between

request pipelines in ASP.NET Core and ASP.NET 4.x and provides additional middleware samples.

The ASP.NET Core request pipeline consists of a sequence of request delegates, called one after the other.

The following diagram demonstrates the concept. The thread of execution follows the black arrows.

Each delegate can perform operations before and after the next delegate. Exception-handling delegates

should be called early in the pipeline, so they can catch exceptions that occur in later stages of the

pipeline.

The simplest possible ASP.NET Core app sets up a single request delegate that handles all requests. This

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/middleware/index.md
https://twitter.com/RickAndMSFT
https://ardalis.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.runextensions.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mapextensions.map
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.useextensions.use

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello, World!");
 });
 }
}

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Use(async (context, next) =>
 {
 // Do work that doesn't write to the Response.
 await next.Invoke();
 // Do logging or other work that doesn't write to the Response.
 });

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from 2nd delegate.");
 });
 }
}

WARNINGWARNING

case doesn't include an actual request pipeline. Instead, a single anonymous function is called in

response to every HTTP request.

Chain multiple request delegates together with Use. The next parameter represents the next delegate in

the pipeline. You can short-circuit the pipeline by not calling the next parameter. You can typically

perform actions both before and after the next delegate, as the following example demonstrates:

When a delegate doesn't pass a request to the next delegate, it's called short-circuiting the request

pipeline. Short-circuiting is often desirable because it avoids unnecessary work. For example, Static File

Middleware can act as a terminal middleware by processing a request for a static file and short-circuiting

the rest of the pipeline. Middleware added to the pipeline before the middleware that terminates further

processing still processes code after their next.Invoke statements. However, see the following warning

about attempting to write to a response that has already been sent.

Don't call next.Invoke after the response has been sent to the client. Changes to HttpResponse after the

response has started throw an exception. For example, setting headers and a status code throw an exception.

Writing to the response body after calling next :

May cause a protocol violation. For example, writing more than the stated Content-Length .

May corrupt the body format. For example, writing an HTML footer to a CSS file.

HasStarted is a useful hint to indicate if headers have been sent or the body has been written to.

Run delegates don't receive a next parameter. The first Run delegate is always terminal and terminates

the pipeline. Run is a convention. Some middleware components may expose Run[Middleware] methods

that run at the end of the pipeline:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.useextensions.use
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpresponse
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpresponse.hasstarted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.runextensions.run

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Use(async (context, next) =>
 {
 // Do work that doesn't write to the Response.
 await next.Invoke();
 // Do logging or other work that doesn't write to the Response.
 });

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from 2nd delegate.");
 });
 }
}

Middleware order

If you would like to see code comments translated to languages other than English, let us know in this

GitHub discussion issue.

In the preceding example, the Run delegate writes "Hello from 2nd delegate." to the response and then

terminates the pipeline. If another Use or Run delegate is added after the Run delegate, it's not called.

The following diagram shows the complete request processing pipeline for ASP.NET Core MVC and

Razor Pages apps. You can see how, in a typical app, existing middlewares are ordered and where custom

middlewares are added. You have full control over how to reorder existing middlewares or inject new

custom middlewares as necessary for your scenarios.

The EndpointEndpoint middleware in the preceding diagram executes the filter pipeline for the corresponding

app type—MVC or Razor Pages.

The order that middleware components are added in the Startup.Configure method defines the order in

which the middleware components are invoked on requests and the reverse order for the response. The

order is cr iticalcr itical for security, performance, and functionality.

The following Startup.Configure method adds security-related middleware components in the

recommended order :

https://github.com/MicrosoftDocs/feedback/issues/2515

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 // app.UseCookiePolicy();

 app.UseRouting();
 // app.UseRequestLocalization();
 // app.UseCors();

 app.UseAuthentication();
 app.UseAuthorization();
 // app.UseSession();
 // app.UseResponseCaching();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
 });
}

In the preceding code:

Middleware that is not added when creating a new web app with individual users accounts is

commented out.

Not every middleware needs to go in this exact order, but many do. For example:

UseCors , UseAuthentication , and UseAuthorization must go in the order shown.

UseCors currently must go before UseResponseCaching due to this bug.

The following Startup.Configure method adds middleware components for common app scenarios:

1. Exception/error handling

2. HTTPS Redirection Middleware (UseHttpsRedirection) redirects HTTP requests to HTTPS.

3. Static File Middleware (UseStaticFiles) returns static files and short-circuits further request processing.

4. Cookie Policy Middleware (UseCookiePolicy) conforms the app to the EU General Data Protection

Regulation (GDPR) regulations.

When the app runs in the Development environment:

When the app runs in the Production environment:

Developer Exception Page Middleware (UseDeveloperExceptionPage) reports app

runtime errors.

Database Error Page Middleware reports database runtime errors.

Exception Handler Middleware (UseExceptionHandler) catches exceptions thrown in the

following middlewares.

HTTP Strict Transport Security Protocol (HSTS) Middleware (UseHsts) adds the

Strict-Transport-Security header.

https://github.com/dotnet/aspnetcore/issues/23218
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.developerexceptionpageextensions.usedeveloperexceptionpage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hstsbuilderextensions.usehsts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpspolicybuilderextensions.usehttpsredirection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyappbuilderextensions.usecookiepolicy

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();
 app.UseRouting();
 app.UseAuthentication();
 app.UseAuthorization();
 app.UseSession();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

5. Routing Middleware (UseRouting) to route requests.

6. Authentication Middleware (UseAuthentication) attempts to authenticate the user before they're

allowed access to secure resources.

7. Authorization Middleware (UseAuthorization) authorizes a user to access secure resources.

8. Session Middleware (UseSession) establishes and maintains session state. If the app uses session

state, call Session Middleware after Cookie Policy Middleware and before MVC Middleware.

9. Endpoint Routing Middleware (UseEndpoints with MapRazorPages) to add Razor Pages endpoints to

the request pipeline.

In the preceding example code, each middleware extension method is exposed on IApplicationBuilder

through the Microsoft.AspNetCore.Builder namespace.

UseExceptionHandler is the first middleware component added to the pipeline. Therefore, the Exception

Handler Middleware catches any exceptions that occur in later calls.

Static File Middleware is called early in the pipeline so that it can handle requests and short-circuit

without going through the remaining components. The Static File Middleware provides nono authorization

checks. Any files served by Static File Middleware, including those under wwwroot, are publicly available.

For an approach to secure static files, see Static files in ASP.NET Core.

If the request isn't handled by the Static File Middleware, it's passed on to the Authentication Middleware

(UseAuthentication), which performs authentication. Authentication doesn't short-circuit unauthenticated

requests. Although Authentication Middleware authenticates requests, authorization (and rejection)

occurs only after MVC selects a specific Razor Page or MVC controller and action.

The following example demonstrates a middleware order where requests for static files are handled by

Static File Middleware before Response Compression Middleware. Static files aren't compressed with this

middleware order. The Razor Pages responses can be compressed.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.userouting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authorizationappbuilderextensions.useauthorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionmiddlewareextensions.usesession
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.maprazorpages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication

public void Configure(IApplicationBuilder app)
{
 // Static files aren't compressed by Static File Middleware.
 app.UseStaticFiles();

 app.UseResponseCompression();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

Forwarded Headers Middleware orderForwarded Headers Middleware order

Branch the middleware pipeline

For Single Page Applications (SPAs), the SPA middleware UseSpaStaticFiles usually comes last in the

middleware pipeline. The SPA middleware comes last:

To allow all other middlewares to respond to matching requests first.

To allow SPAs with client-side routing to run for all routes that are unrecognized by the server app.

For more details on SPAs, see the guides for the React and Angular project templates.

Forwarded Headers Middleware should run before other middleware. This ordering ensures that the

middleware relying on forwarded headers information can consume the header values for processing. To

run Forwarded Headers Middleware after diagnostics and error handling middleware, see Forwarded

Headers Middleware order.

Map extensions are used as a convention for branching the pipeline. Map branches the request pipeline

based on matches of the given request path. If the request path starts with the given path, the branch is

executed.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.spastaticfilesextensions.usespastaticfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mapextensions.map

public class Startup
{
 private static void HandleMapTest1(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map Test 1");
 });
 }

 private static void HandleMapTest2(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map Test 2");
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.Map("/map1", HandleMapTest1);

 app.Map("/map2", HandleMapTest2);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from non-Map delegate. <p>");
 });
 }
}

REQ UESTREQ UEST RESP O N SERESP O N SE

localhost:1234 Hello from non-Map delegate.

localhost:1234/map1 Map Test 1

localhost:1234/map2 Map Test 2

localhost:1234/map3 Hello from non-Map delegate.

app.Map("/level1", level1App => {
 level1App.Map("/level2a", level2AApp => {
 // "/level1/level2a" processing
 });
 level1App.Map("/level2b", level2BApp => {
 // "/level1/level2b" processing
 });
});

The following table shows the requests and responses from http://localhost:1234 using the previous

code.

When Map is used, the matched path segments are removed from HttpRequest.Path and appended to

HttpRequest.PathBase for each request.

Map supports nesting, for example:

Map can also match multiple segments at once:

public class Startup
{
 private static void HandleMultiSeg(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map multiple segments.");
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.Map("/map1/seg1", HandleMultiSeg);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from non-Map delegate.");
 });
 }
}

public class Startup
{
 private static void HandleBranch(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 var branchVer = context.Request.Query["branch"];
 await context.Response.WriteAsync($"Branch used = {branchVer}");
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.MapWhen(context => context.Request.Query.ContainsKey("branch"),
 HandleBranch);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from non-Map delegate. <p>");
 });
 }
}

REQ UESTREQ UEST RESP O N SERESP O N SE

localhost:1234 Hello from non-Map delegate.

localhost:1234/?branch=master Branch used = master

MapWhen branches the request pipeline based on the result of the given predicate. Any predicate of type

Func<HttpContext, bool> can be used to map requests to a new branch of the pipeline. In the following

example, a predicate is used to detect the presence of a query string variable branch :

The following table shows the requests and responses from http://localhost:1234 using the previous

code:

UseWhen also branches the request pipeline based on the result of the given predicate. Unlike with

MapWhen , this branch is rejoined to the main pipeline if it doesn't short-circuit or contain a terminal

middleware:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mapwhenextensions.mapwhen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usewhenextensions.usewhen

public class Startup
{
 private readonly ILogger<Startup> _logger;

 public Startup(ILogger<Startup> logger)
 {
 _logger = logger;
 }

 private void HandleBranchAndRejoin(IApplicationBuilder app)
 {
 app.Use(async (context, next) =>
 {
 var branchVer = context.Request.Query["branch"];
 _logger.LogInformation("Branch used = {branchVer}", branchVer);

 // Do work that doesn't write to the Response.
 await next();
 // Do other work that doesn't write to the Response.
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseWhen(context => context.Request.Query.ContainsKey("branch"),
 HandleBranchAndRejoin);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from main pipeline.");
 });
 }
}

Built-in middleware

M IDDL EWA REM IDDL EWA RE DESC RIP T IO NDESC RIP T IO N O RDERO RDER

Authentication Provides authentication support. Before HttpContext.User is

needed. Terminal for OAuth
callbacks.

Authorization Provides authorization support. Immediately after the
Authentication Middleware.

Cookie Policy Tracks consent from users for
storing personal information and
enforces minimum standards for
cookie fields, such as secure and

SameSite .

Before middleware that issues
cookies. Examples: Authentication,
Session, MVC (TempData).

In the preceding example, a response of "Hello from main pipeline." is written for all requests. If the

request includes a query string variable branch , its value is logged before the main pipeline is rejoined.

ASP.NET Core ships with the following middleware components. The Order column provides notes on

middleware placement in the request processing pipeline and under what conditions the middleware

may terminate request processing. When a middleware short-circuits the request processing pipeline

and prevents further downstream middleware from processing a request, it's called a terminal

middleware. For more information on short-circuiting, see the Create a middleware pipeline with

IApplicationBuilder section.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authorizationappbuilderextensions.useauthorization

CORS Configures Cross-Origin Resource
Sharing.

Before components that use CORS.
UseCors currently must go before

UseResponseCaching due to this

bug.

Diagnostics Several separate middlewares that
provide a developer exception page,
exception handling, status code
pages, and the default web page for
new apps.

Before components that generate
errors. Terminal for exceptions or
serving the default web page for
new apps.

Forwarded Headers Forwards proxied headers onto the
current request.

Before components that consume
the updated fields. Examples:
scheme, host, client IP, method.

Health Check Checks the health of an ASP.NET
Core app and its dependencies,
such as checking database
availability.

Terminal if a request matches a
health check endpoint.

Header Propagation Propagates HTTP headers from the
incoming request to the outgoing
HTTP Client requests.

HTTP Method Override Allows an incoming POST request to
override the method.

Before components that consume
the updated method.

HTTPS Redirection Redirect all HTTP requests to HTTPS. Before components that consume
the URL.

HTTP Strict Transport Security
(HSTS)

Security enhancement middleware
that adds a special response header.

Before responses are sent and after
components that modify requests.
Examples: Forwarded Headers, URL
Rewriting.

MVC Processes requests with MVC/Razor
Pages.

Terminal if a request matches a
route.

OWIN Interop with OWIN-based apps,
servers, and middleware.

Terminal if the OWIN Middleware
fully processes the request.

Response Caching Provides support for caching
responses.

Before components that require
caching. UseCORS must come

before UseResponseCaching .

Response Compression Provides support for compressing
responses.

Before components that require
compression.

Request Localization Provides localization support. Before localization sensitive
components.

Endpoint Routing Defines and constrains request
routes.

Terminal for matching routes.

M IDDL EWA REM IDDL EWA RE DESC RIP T IO NDESC RIP T IO N O RDERO RDER

https://github.com/dotnet/aspnetcore/issues/23218
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpmethodoverrideextensions

SPA Handles all requests from this point
in the middleware chain by
returning the default page for the
Single Page Application (SPA)

Late in the chain, so that other
middleware for serving static files,
MVC actions, etc., takes precedence.

Session Provides support for managing user
sessions.

Before components that require
Session.

Static Files Provides support for serving static
files and directory browsing.

Terminal if a request matches a file.

URL Rewrite Provides support for rewriting URLs
and redirecting requests.

Before components that consume
the URL.

WebSockets Enables the WebSockets protocol. Before components that are
required to accept WebSocket
requests.

M IDDL EWA REM IDDL EWA RE DESC RIP T IO NDESC RIP T IO N O RDERO RDER

Additional resources
Lifetime and registration options contains a complete sample of middleware with scoped, transient,

and singleton lifetime services.

Write custom ASP.NET Core middleware

Test ASP.NET Core middleware

Migrate HTTP handlers and modules to ASP.NET Core middleware

App startup in ASP.NET Core

Request Features in ASP.NET Core

Factory-based middleware activation in ASP.NET Core

Middleware activation with a third-party container in ASP.NET Core

By Rick Anderson and Steve Smith

Middleware is software that's assembled into an app pipeline to handle requests and responses. Each

component:

Chooses whether to pass the request to the next component in the pipeline.

Can perform work before and after the next component in the pipeline.

Request delegates are used to build the request pipeline. The request delegates handle each HTTP

request.

Request delegates are configured using Run, Map, and Use extension methods. An individual request

delegate can be specified in-line as an anonymous method (called in-line middleware), or it can be

defined in a reusable class. These reusable classes and in-line anonymous methods are middleware, also

called middleware components. Each middleware component in the request pipeline is responsible for

invoking the next component in the pipeline or short-circuiting the pipeline. When a middleware short-

circuits, it's called a terminal middleware because it prevents further middleware from processing the

request.

Migrate HTTP handlers and modules to ASP.NET Core middleware explains the difference between

request pipelines in ASP.NET Core and ASP.NET 4.x and provides additional middleware samples.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.spaapplicationbuilderextensions.usespa
https://twitter.com/RickAndMSFT
https://ardalis.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.runextensions.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mapextensions.map
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.useextensions.use

Create a middleware pipeline with IApplicationBuilder

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello, World!");
 });
 }
}

The ASP.NET Core request pipeline consists of a sequence of request delegates, called one after the other.

The following diagram demonstrates the concept. The thread of execution follows the black arrows.

Each delegate can perform operations before and after the next delegate. Exception-handling delegates

should be called early in the pipeline, so they can catch exceptions that occur in later stages of the

pipeline.

The simplest possible ASP.NET Core app sets up a single request delegate that handles all requests. This

case doesn't include an actual request pipeline. Instead, a single anonymous function is called in

response to every HTTP request.

The first Run delegate terminates the pipeline.

Chain multiple request delegates together with Use. The next parameter represents the next delegate in

the pipeline. You can short-circuit the pipeline by not calling the next parameter. You can typically

perform actions both before and after the next delegate, as the following example demonstrates:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.runextensions.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.useextensions.use

public class Startup
{
 public void Configure(IApplicationBuilder app)
 {
 app.Use(async (context, next) =>
 {
 // Do work that doesn't write to the Response.
 await next.Invoke();
 // Do logging or other work that doesn't write to the Response.
 });

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from 2nd delegate.");
 });
 }
}

WARNINGWARNING

Middleware order

When a delegate doesn't pass a request to the next delegate, it's called short-circuiting the request

pipeline. Short-circuiting is often desirable because it avoids unnecessary work. For example, Static File

Middleware can act as a terminal middleware by processing a request for a static file and short-circuiting

the rest of the pipeline. Middleware added to the pipeline before the middleware that terminates further

processing still processes code after their next.Invoke statements. However, see the following warning

about attempting to write to a response that has already been sent.

Don't call next.Invoke after the response has been sent to the client. Changes to HttpResponse after the

response has started throw an exception. For example, changes such as setting headers and a status code throw

an exception. Writing to the response body after calling next :

May cause a protocol violation. For example, writing more than the stated Content-Length .

May corrupt the body format. For example, writing an HTML footer to a CSS file.

HasStarted is a useful hint to indicate if headers have been sent or the body has been written to.

The order that middleware components are added in the Startup.Configure method defines the order in

which the middleware components are invoked on requests and the reverse order for the response. The

order is cr iticalcr itical for security, performance, and functionality.

The following Startup.Configure method adds security related middleware components in the

recommended order :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpresponse
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpresponse.hasstarted

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 // app.UseRequestLocalization();
 // app.UseCors();

 app.UseAuthentication();
 // app.UseSession();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

In the preceding code:

Middleware that is not added when creating a new web app with individual users accounts is

commented out.

Not every middleware needs to go in this exact order, but many do. For example, UseCors and

UseAuthentication must go in the order shown.

The following Startup.Configure method adds middleware components for common app scenarios:

1. Exception/error handling

2. HTTPS Redirection Middleware (UseHttpsRedirection) redirects HTTP requests to HTTPS.

3. Static File Middleware (UseStaticFiles) returns static files and short-circuits further request processing.

4. Cookie Policy Middleware (UseCookiePolicy) conforms the app to the EU General Data Protection

Regulation (GDPR) regulations.

5. Authentication Middleware (UseAuthentication) attempts to authenticate the user before they're

allowed access to secure resources.

When the app runs in the Development environment:

When the app runs in the Production environment:

Developer Exception Page Middleware (UseDeveloperExceptionPage) reports app

runtime errors.

Database Error Page Middleware (

Microsoft.AspNetCore.Builder.DatabaseErrorPageExtensions.UseDatabaseErrorPage)

reports database runtime errors.

Exception Handler Middleware (UseExceptionHandler) catches exceptions thrown in the

following middlewares.

HTTP Strict Transport Security Protocol (HSTS) Middleware (UseHsts) adds the

Strict-Transport-Security header.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.developerexceptionpageextensions.usedeveloperexceptionpage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hstsbuilderextensions.usehsts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpspolicybuilderextensions.usehttpsredirection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyappbuilderextensions.usecookiepolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();
 app.UseAuthentication();
 app.UseSession();
 app.UseMvc();
}

public void Configure(IApplicationBuilder app)
{
 // Static files aren't compressed by Static File Middleware.
 app.UseStaticFiles();

 app.UseResponseCompression();

 app.UseMvcWithDefaultRoute();
}

Use, Run, and Map

6. Session Middleware (UseSession) establishes and maintains session state. If the app uses session

state, call Session Middleware after Cookie Policy Middleware and before MVC Middleware.

7. MVC (UseMvc) to add MVC to the request pipeline.

In the preceding example code, each middleware extension method is exposed on IApplicationBuilder

through the Microsoft.AspNetCore.Builder namespace.

UseExceptionHandler is the first middleware component added to the pipeline. Therefore, the Exception

Handler Middleware catches any exceptions that occur in later calls.

Static File Middleware is called early in the pipeline so that it can handle requests and short-circuit

without going through the remaining components. The Static File Middleware provides nono authorization

checks. Any files served by Static File Middleware, including those under wwwroot, are publicly available.

For an approach to secure static files, see Static files in ASP.NET Core.

If the request isn't handled by the Static File Middleware, it's passed on to the Authentication Middleware

(UseAuthentication), which performs authentication. Authentication doesn't short-circuit unauthenticated

requests. Although Authentication Middleware authenticates requests, authorization (and rejection)

occurs only after MVC selects a specific Razor Page or MVC controller and action.

The following example demonstrates a middleware order where requests for static files are handled by

Static File Middleware before Response Compression Middleware. Static files aren't compressed with this

middleware order. The MVC responses from UseMvcWithDefaultRoute can be compressed.

Configure the HTTP pipeline using Use, Run, and Map. The Use method can short-circuit the pipeline

(that is, if it doesn't call a next request delegate). Run is a convention, and some middleware

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionmiddlewareextensions.usesession
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvc
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvcwithdefaultroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.useextensions.use
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.runextensions.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mapextensions.map

public class Startup
{
 private static void HandleMapTest1(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map Test 1");
 });
 }

 private static void HandleMapTest2(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map Test 2");
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.Map("/map1", HandleMapTest1);

 app.Map("/map2", HandleMapTest2);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from non-Map delegate. <p>");
 });
 }
}

REQ UESTREQ UEST RESP O N SERESP O N SE

localhost:1234 Hello from non-Map delegate.

localhost:1234/map1 Map Test 1

localhost:1234/map2 Map Test 2

localhost:1234/map3 Hello from non-Map delegate.

components may expose Run[Middleware] methods that run at the end of the pipeline.

Map extensions are used as a convention for branching the pipeline. Map branches the request pipeline

based on matches of the given request path. If the request path starts with the given path, the branch is

executed.

The following table shows the requests and responses from http://localhost:1234 using the previous

code.

When Map is used, the matched path segments are removed from HttpRequest.Path and appended to

HttpRequest.PathBase for each request.

MapWhen branches the request pipeline based on the result of the given predicate. Any predicate of type

Func<HttpContext, bool> can be used to map requests to a new branch of the pipeline. In the following

example, a predicate is used to detect the presence of a query string variable branch :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mapextensions.map
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mapwhenextensions.mapwhen

public class Startup
{
 private static void HandleBranch(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 var branchVer = context.Request.Query["branch"];
 await context.Response.WriteAsync($"Branch used = {branchVer}");
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.MapWhen(context => context.Request.Query.ContainsKey("branch"),
 HandleBranch);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from non-Map delegate. <p>");
 });
 }
}

REQ UESTREQ UEST RESP O N SERESP O N SE

localhost:1234 Hello from non-Map delegate.

localhost:1234/?branch=master Branch used = master

app.Map("/level1", level1App => {
 level1App.Map("/level2a", level2AApp => {
 // "/level1/level2a" processing
 });
 level1App.Map("/level2b", level2BApp => {
 // "/level1/level2b" processing
 });
});

The following table shows the requests and responses from http://localhost:1234 using the previous

code.

Map supports nesting, for example:

Map can also match multiple segments at once:

public class Startup
{
 private static void HandleMultiSeg(IApplicationBuilder app)
 {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map multiple segments.");
 });
 }

 public void Configure(IApplicationBuilder app)
 {
 app.Map("/map1/seg1", HandleMultiSeg);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from non-Map delegate.");
 });
 }
}

Built-in middleware

M IDDL EWA REM IDDL EWA RE DESC RIP T IO NDESC RIP T IO N O RDERO RDER

Authentication Provides authentication support. Before HttpContext.User is

needed. Terminal for OAuth
callbacks.

Cookie Policy Tracks consent from users for
storing personal information and
enforces minimum standards for
cookie fields, such as secure and

SameSite .

Before middleware that issues
cookies. Examples: Authentication,
Session, MVC (TempData).

CORS Configures Cross-Origin Resource
Sharing.

Before components that use CORS.

Diagnostics Several separate middlewares that
provide a developer exception page,
exception handling, status code
pages, and the default web page for
new apps.

Before components that generate
errors. Terminal for exceptions or
serving the default web page for
new apps.

Forwarded Headers Forwards proxied headers onto the
current request.

Before components that consume
the updated fields. Examples:
scheme, host, client IP, method.

ASP.NET Core ships with the following middleware components. The Order column provides notes on

middleware placement in the request processing pipeline and under what conditions the middleware

may terminate request processing. When a middleware short-circuits the request processing pipeline

and prevents further downstream middleware from processing a request, it's called a terminal

middleware. For more information on short-circuiting, see the Create a middleware pipeline with

IApplicationBuilder section.

Health Check Checks the health of an ASP.NET
Core app and its dependencies,
such as checking database
availability.

Terminal if a request matches a
health check endpoint.

HTTP Method Override Allows an incoming POST request to
override the method.

Before components that consume
the updated method.

HTTPS Redirection Redirect all HTTP requests to HTTPS. Before components that consume
the URL.

HTTP Strict Transport Security
(HSTS)

Security enhancement middleware
that adds a special response header.

Before responses are sent and after
components that modify requests.
Examples: Forwarded Headers, URL
Rewriting.

MVC Processes requests with MVC/Razor
Pages.

Terminal if a request matches a
route.

OWIN Interop with OWIN-based apps,
servers, and middleware.

Terminal if the OWIN Middleware
fully processes the request.

Response Caching Provides support for caching
responses.

Before components that require
caching.

Response Compression Provides support for compressing
responses.

Before components that require
compression.

Request Localization Provides localization support. Before localization sensitive
components.

Endpoint Routing Defines and constrains request
routes.

Terminal for matching routes.

Session Provides support for managing user
sessions.

Before components that require
Session.

Static Files Provides support for serving static
files and directory browsing.

Terminal if a request matches a file.

URL Rewrite Provides support for rewriting URLs
and redirecting requests.

Before components that consume
the URL.

WebSockets Enables the WebSockets protocol. Before components that are
required to accept WebSocket
requests.

M IDDL EWA REM IDDL EWA RE DESC RIP T IO NDESC RIP T IO N O RDERO RDER

Additional resources
Write custom ASP.NET Core middleware

Test ASP.NET Core middleware

Migrate HTTP handlers and modules to ASP.NET Core middleware

App startup in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpmethodoverrideextensions

Request Features in ASP.NET Core

Factory-based middleware activation in ASP.NET Core

Middleware activation with a third-party container in ASP.NET Core

.NET Generic Host
9/22/2020 • 32 minutes to read • Edit Online

Host definition

Set up a host

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

The ASP.NET Core templates create a .NET Core Generic Host, HostBuilder.

A host is an object that encapsulates an app's resources, such as:

Dependency injection (DI)

Logging

Configuration

IHostedService implementations

When a host starts, it calls IHostedService.StartAsync on each implementation of IHostedService registered in

the service container's collection of hosted services. In a web app, one of the IHostedService

implementations is a web service that starts an HTTP server implementation.

The main reason for including all of the app's interdependent resources in one object is lifetime management:

control over app startup and graceful shutdown.

The host is typically configured, built, and run by code in the Program class. The Main method:

Calls a CreateHostBuilder method to create and configure a builder object.

Calls Build and Run methods on the builder object.

The ASP.NET Core web templates generate the following code to create a Generic Host:

The following code creates a Generic Host using non-HTTP workload. The IHostedService implementation is

added to the DI container :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/host/generic-host.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice.startasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHostedService<Worker>();
 });
}

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

Default builder settings

For an HTTP workload, the Main method is the same but CreateHostBuilder calls ConfigureWebHostDefaults :

The preceding code is generated by the ASP.NET Core templates.

If the app uses Entity Framework Core, don't change the name or signature of the CreateHostBuilder method.

The Entity Framework Core tools expect to find a CreateHostBuilder method that configures the host without

running the app. For more information, see Design-time DbContext Creation.

The CreateDefaultBuilder method:

Sets the content root to the path returned by GetCurrentDirectory.

Loads host configuration from:

Loads app configuration from:

Adds the following logging providers:

Enables scope validation and dependency validation when the environment is Development.

Environment variables prefixed with DOTNET_ .

Command-line arguments.

appsettings.json.

appsettings.{Environment}.json.

Secret Manager when the app runs in the Development environment.

Environment variables.

Command-line arguments.

Console

Debug

EventSource

EventLog (only when running on Windows)

The ConfigureWebHostDefaults method:

Loads host configuration from environment variables prefixed with ASPNETCORE_ .

Sets Kestrel server as the web server and configures it using the app's hosting configuration providers. For

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dbcontext-creation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.serviceprovideroptions.validateonbuild#microsoft_extensions_dependencyinjection_serviceprovideroptions_validateonbuild

Framework-provided services

IHostApplicationLifetime

the Kestrel server's default options, see Kestrel web server implementation in ASP.NET Core.

Adds Host Filtering middleware.

Adds Forwarded Headers middleware if ASPNETCORE_FORWARDEDHEADERS_ENABLED equals true .

Enables IIS integration. For the IIS default options, see Host ASP.NET Core on Windows with IIS.

The Settings for all app types and Settings for web apps sections later in this article show how to override

default builder settings.

The following services are registered automatically:

IHostApplicationLifetime

IHostLifetime

IHostEnvironment / IWebHostEnvironment

For more information on framework-provided services, see Dependency injection in ASP.NET Core.

Inject the IHostApplicationLifetime (formerly IApplicationLifetime) service into any class to handle post-

startup and graceful shutdown tasks. Three properties on the interface are cancellation tokens used to

register app start and app stop event handler methods. The interface also includes a StopApplication

method.

The following example is an IHostedService implementation that registers IHostApplicationLifetime events:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationlifetime

internal class LifetimeEventsHostedService : IHostedService
{
 private readonly ILogger _logger;
 private readonly IHostApplicationLifetime _appLifetime;

 public LifetimeEventsHostedService(
 ILogger<LifetimeEventsHostedService> logger,
 IHostApplicationLifetime appLifetime)
 {
 _logger = logger;
 _appLifetime = appLifetime;
 }

 public Task StartAsync(CancellationToken cancellationToken)
 {
 _appLifetime.ApplicationStarted.Register(OnStarted);
 _appLifetime.ApplicationStopping.Register(OnStopping);
 _appLifetime.ApplicationStopped.Register(OnStopped);

 return Task.CompletedTask;
 }

 public Task StopAsync(CancellationToken cancellationToken)
 {
 return Task.CompletedTask;
 }

 private void OnStarted()
 {
 _logger.LogInformation("OnStarted has been called.");

 // Perform post-startup activities here
 }

 private void OnStopping()
 {
 _logger.LogInformation("OnStopping has been called.");

 // Perform on-stopping activities here
 }

 private void OnStopped()
 {
 _logger.LogInformation("OnStopped has been called.");

 // Perform post-stopped activities here
 }
}

IHostLifetime

IHostEnvironment

The IHostLifetime implementation controls when the host starts and when it stops. The last implementation

registered is used.

Microsoft.Extensions.Hosting.Internal.ConsoleLifetime is the default IHostLifetime implementation.

ConsoleLifetime :

Listens for Ctrl+C/SIGINT or SIGTERM and calls StopApplication to start the shutdown process.

Unblocks extensions such as RunAsync and WaitForShutdownAsync.

Inject the IHostEnvironment service into a class to get information about the following settings:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationlifetime.stopapplication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment

Host configuration

// using Microsoft.Extensions.Configuration;

Host.CreateDefaultBuilder(args)
 .ConfigureHostConfiguration(configHost =>
 {
 configHost.SetBasePath(Directory.GetCurrentDirectory());
 configHost.AddJsonFile("hostsettings.json", optional: true);
 configHost.AddEnvironmentVariables(prefix: "PREFIX_");
 configHost.AddCommandLine(args);
 });

App configuration

Settings for all app types

ApplicationNameApplicationName

ApplicationName

EnvironmentName

ContentRootPath

Web apps implement the IWebHostEnvironment interface, which inherits IHostEnvironment and adds the

WebRootPath.

Host configuration is used for the properties of the IHostEnvironment implementation.

Host configuration is available from HostBuilderContext.Configuration inside ConfigureAppConfiguration.

After ConfigureAppConfiguration , HostBuilderContext.Configuration is replaced with the app config.

To add host configuration, call ConfigureHostConfiguration on IHostBuilder . ConfigureHostConfiguration can

be called multiple times with additive results. The host uses whichever option sets a value last on a given key.

The environment variable provider with prefix DOTNET_ and command-line arguments are included by

CreateDefaultBuilder . For web apps, the environment variable provider with prefix ASPNETCORE_ is added.

The prefix is removed when the environment variables are read. For example, the environment variable value

for ASPNETCORE_ENVIRONMENT becomes the host configuration value for the environment key.

The following example creates host configuration:

App configuration is created by calling ConfigureAppConfiguration on IHostBuilder .

ConfigureAppConfiguration can be called multiple times with additive results. The app uses whichever option

sets a value last on a given key.

The configuration created by ConfigureAppConfiguration is available at HostBuilderContext.Configuration for

subsequent operations and as a service from DI. The host configuration is also added to the app

configuration.

For more information, see Configuration in ASP.NET Core.

This section lists host settings that apply to both HTTP and non-HTTP workloads. By default, environment

variables used to configure these settings can have a DOTNET_ or ASPNETCORE_ prefix.

The IHostEnvironment.ApplicationName property is set from host configuration during host construction.

KeyKey : applicationName

TypeType: string

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuildercontext.configuration#microsoft_extensions_hosting_hostbuildercontext_configuration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurehostconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuildercontext.configuration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.applicationname

ContentRootContentRoot

Host.CreateDefaultBuilder(args)
 .UseContentRoot("c:\\content-root")
 //...

EnvironmentNameEnvironmentName

Host.CreateDefaultBuilder(args)
 .UseEnvironment("Development")
 //...

ShutdownTimeoutShutdownTimeout

DefaultDefault: The name of the assembly that contains the app's entry point.

Environment var iableEnvironment var iable: <PREFIX_>APPLICATIONNAME

To set this value, use the environment variable.

The IHostEnvironment.ContentRootPath property determines where the host begins searching for content

files. If the path doesn't exist, the host fails to start.

KeyKey : contentRoot

TypeType: string

DefaultDefault: The folder where the app assembly resides.

Environment var iableEnvironment var iable: <PREFIX_>CONTENTROOT

To set this value, use the environment variable or call UseContentRoot on IHostBuilder :

For more information, see:

Fundamentals: Content root

WebRoot

The IHostEnvironment.EnvironmentName property can be set to any value. Framework-defined values

include Development , Staging , and Production . Values aren't case-sensitive.

KeyKey : environment

TypeType: string

DefaultDefault: Production

Environment var iableEnvironment var iable: <PREFIX_>ENVIRONMENT

To set this value, use the environment variable or call UseEnvironment on IHostBuilder :

HostOptions.ShutdownTimeout sets the timeout for StopAsync. The default value is five seconds. During the

timeout period, the host:

Triggers IHostApplicationLifetime.ApplicationStopping.

Attempts to stop hosted services, logging errors for services that fail to stop.

If the timeout period expires before all of the hosted services stop, any remaining active services are stopped

when the app shuts down. The services stop even if they haven't finished processing. If services require

additional time to stop, increase the timeout.

KeyKey : shutdownTimeoutSeconds

TypeType: int

DefaultDefault: 5 seconds

Environment var iableEnvironment var iable: <PREFIX_>SHUTDOWNTIMEOUTSECONDS

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.contentrootpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.environmentname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostoptions.shutdowntimeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.stopasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationlifetime.applicationstopping

Host.CreateDefaultBuilder(args)
 .ConfigureServices((hostContext, services) =>
 {
 services.Configure<HostOptions>(option =>
 {
 option.ShutdownTimeout = System.TimeSpan.FromSeconds(20);
 });
 });

Settings for web apps

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.CaptureStartupErrors(true);
 webBuilder.UseStartup<Startup>();
 });

CaptureStartupErrorsCaptureStartupErrors

webBuilder.CaptureStartupErrors(true);

DetailedErrorsDetailedErrors

webBuilder.UseSetting(WebHostDefaults.DetailedErrorsKey, "true");

HostingStartupAssembliesHostingStartupAssemblies

To set this value, use the environment variable or configure HostOptions . The following example sets the

timeout to 20 seconds:

Some host settings apply only to HTTP workloads. By default, environment variables used to configure these

settings can have a DOTNET_ or ASPNETCORE_ prefix.

Extension methods on IWebHostBuilder are available for these settings. Code samples that show how to call

the extension methods assume webBuilder is an instance of IWebHostBuilder , as in the following example:

When false , errors during startup result in the host exiting. When true , the host captures exceptions

during startup and attempts to start the server.

KeyKey : captureStartupErrors

TypeType: bool (true or 1)

DefaultDefault: Defaults to false unless the app runs with Kestrel behind IIS, where the default is true .

Environment var iableEnvironment var iable: <PREFIX_>CAPTURESTARTUPERRORS

To set this value, use configuration or call CaptureStartupErrors :

When enabled, or when the environment is Development , the app captures detailed errors.

KeyKey : detailedErrors

TypeType: bool (true or 1)

DefaultDefault: false

Environment var iableEnvironment var iable: <PREFIX_>_DETAILEDERRORS

To set this value, use configuration or call UseSetting :

webBuilder.UseSetting(WebHostDefaults.HostingStartupAssembliesKey, "assembly1;assembly2");

HostingStartupExcludeAssembliesHostingStartupExcludeAssemblies

webBuilder.UseSetting(WebHostDefaults.HostingStartupExcludeAssembliesKey, "assembly1;assembly2");

HTTPS_PortHTTPS_Port

webBuilder.UseSetting("https_port", "8080");

PreferHostingUrlsPreferHostingUrls

webBuilder.PreferHostingUrls(false);

PreventHostingStartupPreventHostingStartup

A semicolon-delimited string of hosting startup assemblies to load on startup. Although the configuration

value defaults to an empty string, the hosting startup assemblies always include the app's assembly. When

hosting startup assemblies are provided, they're added to the app's assembly for loading when the app builds

its common services during startup.

KeyKey : hostingStartupAssemblies

TypeType: string

DefaultDefault: Empty string

Environment var iableEnvironment var iable: <PREFIX_>_HOSTINGSTARTUPASSEMBLIES

To set this value, use configuration or call UseSetting :

A semicolon-delimited string of hosting startup assemblies to exclude on startup.

KeyKey : hostingStartupExcludeAssemblies

TypeType: string

DefaultDefault: Empty string

Environment var iableEnvironment var iable: <PREFIX_>_HOSTINGSTARTUPEXCLUDEASSEMBLIES

To set this value, use configuration or call UseSetting :

The HTTPS redirect port. Used in enforcing HTTPS.

KeyKey : https_port

TypeType: string

DefaultDefault: A default value isn't set.

Environment var iableEnvironment var iable: <PREFIX_>HTTPS_PORT

To set this value, use configuration or call UseSetting :

Indicates whether the host should listen on the URLs configured with the IWebHostBuilder instead of those

URLs configured with the IServer implementation.

KeyKey : preferHostingUrls

TypeType: bool (true or 1)

DefaultDefault: true

Environment var iableEnvironment var iable: <PREFIX_>_PREFERHOSTINGURLS

To set this value, use the environment variable or call PreferHostingUrls :

webBuilder.UseSetting(WebHostDefaults.PreventHostingStartupKey, "true");

StartupAssemblyStartupAssembly

webBuilder.UseStartup("StartupAssemblyName");

webBuilder.UseStartup<Startup>();

URLsURLs

webBuilder.UseUrls("http://*:5000;http://localhost:5001;https://hostname:5002");

WebRootWebRoot

Prevents the automatic loading of hosting startup assemblies, including hosting startup assemblies

configured by the app's assembly. For more information, see Use hosting startup assemblies in ASP.NET Core.

KeyKey : preventHostingStartup

TypeType: bool (true or 1)

DefaultDefault: false

Environment var iableEnvironment var iable: <PREFIX_>_PREVENTHOSTINGSTARTUP

To set this value, use the environment variable or call UseSetting :

The assembly to search for the Startup class.

KeyKey : startupAssembly

TypeType: string

DefaultDefault: The app's assembly

Environment var iableEnvironment var iable: <PREFIX_>STARTUPASSEMBLY

To set this value, use the environment variable or call UseStartup . UseStartup can take an assembly name (

string) or a type (TStartup). If multiple UseStartup methods are called, the last one takes precedence.

A semicolon-delimited list of IP addresses or host addresses with ports and protocols that the server should

listen on for requests. For example, http://localhost:123 . Use "*" to indicate that the server should listen for

requests on any IP address or hostname using the specified port and protocol (for example, http://*:5000).

The protocol (http:// or https://) must be included with each URL. Supported formats vary among

servers.

KeyKey : urls

TypeType: string

DefaultDefault: http://localhost:5000 and https://localhost:5001

Environment var iableEnvironment var iable: <PREFIX_>URLS

To set this value, use the environment variable or call UseUrls :

Kestrel has its own endpoint configuration API. For more information, see Kestrel web server implementation

in ASP.NET Core.

The IWebHostEnvironment.WebRootPath property determines the relative path to the app's static assets. If the

path doesn't exist, a no-op file provider is used.

KeyKey : webroot

TypeType: string

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostenvironment.webrootpath#microsoft_aspnetcore_hosting_iwebhostenvironment_webrootpath

webBuilder.UseWebRoot("public");

Manage the host lifetime

RunRun

RunAsyncRunAsync

RunConsoleAsyncRunConsoleAsync

StartStart

StartAsyncStartAsync

StopAsyncStopAsync

WaitForShutdownWaitForShutdown

WaitForShutdownAsyncWaitForShutdownAsync

External controlExternal control

DefaultDefault: The default is wwwroot . The path to {content root}/wwwroot must exist.

Environment var iableEnvironment var iable: <PREFIX_>WEBROOT

To set this value, use the environment variable or call UseWebRoot on IWebHostBuilder :

For more information, see:

Fundamentals: Web root

ContentRoot

Call methods on the built IHost implementation to start and stop the app. These methods affect all

IHostedService implementations that are registered in the service container.

Run runs the app and blocks the calling thread until the host is shut down.

RunAsync runs the app and returns a Task that completes when the cancellation token or shutdown is

triggered.

RunConsoleAsync enables console support, builds and starts the host, and waits for Ctrl+C/SIGINT or

SIGTERM to shut down.

Start starts the host synchronously.

StartAsync starts the host and returns a Task that completes when the cancellation token or shutdown is

triggered.

WaitForStartAsync is called at the start of StartAsync , which waits until it's complete before continuing. This

can be used to delay startup until signaled by an external event.

StopAsync attempts to stop the host within the provided timeout.

WaitForShutdown blocks the calling thread until shutdown is triggered by the IHostLifetime, such as via

Ctrl+C/SIGINT or SIGTERM.

WaitForShutdownAsync returns a Task that completes when shutdown is triggered via the given token and

calls StopAsync.

Direct control of the host lifetime can be achieved using methods that can be called externally:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.runasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.runconsoleasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.start
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.startasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostlifetime.waitforstartasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.stopasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.waitforshutdown
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.waitforshutdownasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.stopasync

public class Program
{
 private IHost _host;

 public Program()
 {
 _host = new HostBuilder()
 .Build();
 }

 public async Task StartAsync()
 {
 _host.StartAsync();
 }

 public async Task StopAsync()
 {
 using (_host)
 {
 await _host.StopAsync(TimeSpan.FromSeconds(5));
 }
 }
}

Introduction

ASP.NET Core apps configure and launch a host. The host is responsible for app startup and lifetime

management.

This article covers the ASP.NET Core Generic Host (HostBuilder), which is used for apps that don't process

HTTP requests.

The purpose of Generic Host is to decouple the HTTP pipeline from the Web Host API to enable a wider array

of host scenarios. Messaging, background tasks, and other non-HTTP workloads based on Generic Host

benefit from cross-cutting capabilities, such as configuration, dependency injection (DI), and logging.

Generic Host is new in ASP.NET Core 2.1 and isn't suitable for web hosting scenarios. For web hosting

scenarios, use the Web Host. Generic Host will replace Web Host in a future release and act as the primary

host API in both HTTP and non-HTTP scenarios.

View or download sample code (how to download)

When running the sample app in Visual Studio Code, use an external or integrated terminal. Don't run the

sample in an internalConsole .

To set the console in Visual Studio Code:

1. Open the .vscode/launch.json file.

2. In the .NET Core Launch (console).NET Core Launch (console) configuration, locate the consoleconsole entry. Set the value to either

externalTerminal or integratedTerminal .

The Generic Host library is available in the Microsoft.Extensions.Hosting namespace and provided by the

Microsoft.Extensions.Hosting package. The Microsoft.Extensions.Hosting package is included in the

Microsoft.AspNetCore.App metapackage (ASP.NET Core 2.1 or later).

IHostedService is the entry point to code execution. Each IHostedService implementation is executed in the

order of service registration in ConfigureServices. StartAsync is called on each IHostedService when the host

starts, and StopAsync is called in reverse registration order when the host shuts down gracefully.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/generic-host/samples/
https://code.visualstudio.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting
https://www.nuget.org/packages/Microsoft.Extensions.Hosting/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice.startasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice.stopasync

Set up a host

public static async Task Main(string[] args)
{
 var host = new HostBuilder()
 .Build();

 await host.RunAsync();
}

Options

Shutdown timeoutShutdown timeout

var host = new HostBuilder()
 .ConfigureServices((hostContext, services) =>
 {
 services.Configure<HostOptions>(option =>
 {
 option.ShutdownTimeout = System.TimeSpan.FromSeconds(20);
 });
 })
 .Build();

Default services

Host configuration

Extension methodsExtension methods

Application key (name)Application key (name)

IHostBuilder is the main component that libraries and apps use to initialize, build, and run the host:

HostOptions configure options for the IHost.

ShutdownTimeout sets the timeout for StopAsync. The default value is five seconds.

The following option configuration in Program.Main increases the default five-second shutdown timeout to 20

seconds:

The following services are registered during host initialization:

Environment (IHostingEnvironment)

HostBuilderContext

Configuration (IConfiguration)

IApplicationLifetime (Microsoft.Extensions.Hosting.Internal.ApplicationLifetime)

IHostLifetime (Microsoft.Extensions.Hosting.Internal.ConsoleLifetime)

IHost

Options (AddOptions)

Logging (AddLogging)

Host configuration is created by:

Calling extension methods on IHostBuilder to set the content root and environment.

Reading configuration from configuration providers in ConfigureHostConfiguration.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostoptions.shutdowntimeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.stopasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuildercontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.addoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.loggingservicecollectionextensions.addlogging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurehostconfiguration

Content rootContent root

var host = new HostBuilder()
 .UseContentRoot("c:\\<content-root>")

EnvironmentEnvironment

var host = new HostBuilder()
 .UseEnvironment(EnvironmentName.Development)

ConfigureHostConfigurationConfigureHostConfiguration

The IHostingEnvironment.ApplicationName property is set from host configuration during host construction.

To set the value explicitly, use the HostDefaults.ApplicationKey:

KeyKey : applicationName

TypeType: string

DefaultDefault: The name of the assembly containing the app's entry point.

Set usingSet using: HostBuilderContext.HostingEnvironment.ApplicationName

Environment var iableEnvironment var iable: <PREFIX_>APPLICATIONNAME (<PREFIX_> is optional and user-defined)

This setting determines where the host begins searching for content files.

KeyKey : contentRoot

TypeType: string

DefaultDefault: Defaults to the folder where the app assembly resides.

Set usingSet using: UseContentRoot

Environment var iableEnvironment var iable: <PREFIX_>CONTENTROOT (<PREFIX_> is optional and user-defined)

If the path doesn't exist, the host fails to start.

For more information, see Fundamentals: Content root.

Sets the app's environment.

KeyKey : environment

TypeType: string

DefaultDefault: Production

Set usingSet using: UseEnvironment

Environment var iableEnvironment var iable: <PREFIX_>ENVIRONMENT (<PREFIX_> is optional and user-defined)

The environment can be set to any value. Framework-defined values include Development , Staging , and

Production . Values aren't case-sensitive.

ConfigureHostConfiguration uses an IConfigurationBuilder to create an IConfiguration for the host. The host

configuration is used to initialize the IHostingEnvironment for use in the app's build process.

ConfigureHostConfiguration can be called multiple times with additive results. The host uses whichever

option sets a value last on a given key.

No providers are included by default. You must explicitly specify whatever configuration providers the app

requires in ConfigureHostConfiguration, including:

File configuration (for example, from a hostsettings.json file).

Environment variable configuration.

Command-line argument configuration.

Any other required configuration providers.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment.applicationname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostdefaults.applicationkey
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurehostconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurehostconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurehostconfiguration

{
 "environment": "Development"
}

var host = new HostBuilder()
 .ConfigureHostConfiguration(configHost =>
 {
 configHost.SetBasePath(Directory.GetCurrentDirectory());
 configHost.AddJsonFile("hostsettings.json", optional: true);
 configHost.AddEnvironmentVariables(prefix: "PREFIX_");
 configHost.AddCommandLine(args);
 })

ConfigureAppConfiguration

File configuration of the host is enabled by specifying the app's base path with SetBasePath followed by a call

to one of the file configuration providers. The sample app uses a JSON file, hostsettings.json, and calls

AddJsonFile to consume the file's host configuration settings.

To add environment variable configuration of the host, call AddEnvironmentVariables on the host builder.

AddEnvironmentVariables accepts an optional user-defined prefix. The sample app uses a prefix of PREFIX_ .

The prefix is removed when the environment variables are read. When the sample app's host is configured,

the environment variable value for PREFIX_ENVIRONMENT becomes the host configuration value for the

environment key.

During development when using Visual Studio or running an app with dotnet run , environment variables

may be set in the Properties/launchSettings.json file. In Visual Studio Code, environment variables may be set

in the .vscode/launch.json file during development. For more information, see Use multiple environments in

ASP.NET Core.

Command-line configuration is added by calling AddCommandLine. Command-line configuration is added

last to permit command-line arguments to override configuration provided by the earlier configuration

providers.

hostsettings.json:

Additional configuration can be provided with the applicationName and contentRoot keys.

Example HostBuilder configuration using ConfigureHostConfiguration:

App configuration is created by calling ConfigureAppConfiguration on the IHostBuilder implementation.

ConfigureAppConfiguration uses an IConfigurationBuilder to create an IConfiguration for the app.

ConfigureAppConfiguration can be called multiple times with additive results. The app uses whichever option

sets a value last on a given key. The configuration created by ConfigureAppConfiguration is available at

HostBuilderContext.Configuration for subsequent operations and in Services.

App configuration automatically receives host configuration provided by ConfigureHostConfiguration.

Example app configuration using ConfigureAppConfiguration:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.jsonconfigurationextensions.addjsonfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.environmentvariablesextensions.addenvironmentvariables
https://visualstudio.microsoft.com
https://code.visualstudio.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.commandlineconfigurationextensions.addcommandline
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurehostconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuildercontext.configuration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.services
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configureappconfiguration

var host = new HostBuilder()
 .ConfigureAppConfiguration((hostContext, configApp) =>
 {
 configApp.SetBasePath(Directory.GetCurrentDirectory());
 configApp.AddJsonFile("appsettings.json", optional: true);
 configApp.AddJsonFile(
 $"appsettings.{hostContext.HostingEnvironment.EnvironmentName}.json",
 optional: true);
 configApp.AddEnvironmentVariables(prefix: "PREFIX_");
 configApp.AddCommandLine(args);
 })

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

{
 "Logging": {
 "LogLevel": {
 "Default": "Error",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

<ItemGroup>
 <Content Include="***.json" Exclude="bin***;obj***"
 CopyToOutputDirectory="PreserveNewest" />
</ItemGroup>

appsettings.json:

appsettings.Development.json:

appsettings.Production.json:

To move settings files to the output directory, specify the settings files as MSBuild project items in the project

file. The sample app moves its JSON app settings files and hostsettings.json with the following <Content>

item:

https://docs.microsoft.com/en-us/visualstudio/msbuild/common-msbuild-project-items

NOTENOTE

ConfigureServices

var host = new HostBuilder()
 .ConfigureServices((hostContext, services) =>
 {
 if (hostContext.HostingEnvironment.IsDevelopment())
 {
 // Development service configuration
 }
 else
 {
 // Non-development service configuration
 }

 services.AddHostedService<LifetimeEventsHostedService>();
 services.AddHostedService<TimedHostedService>();
 })

ConfigureLogging

var host = new HostBuilder()
 .ConfigureLogging((hostContext, configLogging) =>
 {
 configLogging.AddConsole();
 configLogging.AddDebug();
 })

UseConsoleLifetimeUseConsoleLifetime

var host = new HostBuilder()
 .UseConsoleLifetime()

Configuration extension methods, such as AddJsonFile and AddEnvironmentVariables require additional NuGet

packages, such as Microsoft.Extensions.Configuration.Json and

Microsoft.Extensions.Configuration.EnvironmentVariables. Unless the app uses the Microsoft.AspNetCore.App

metapackage, these packages must be added to the project in addition to the core Microsoft.Extensions.Configuration

package. For more information, see Configuration in ASP.NET Core.

ConfigureServices adds services to the app's dependency injection container. ConfigureServices can be called

multiple times with additive results.

A hosted service is a class with background task logic that implements the IHostedService interface. For more

information, see Background tasks with hosted services in ASP.NET Core.

The sample app uses the AddHostedService extension method to add a service for lifetime events,

LifetimeEventsHostedService , and a timed background task, TimedHostedService , to the app:

ConfigureLogging adds a delegate for configuring the provided ILoggingBuilder. ConfigureLogging may be

called multiple times with additive results.

UseConsoleLifetime listens for Ctrl+C/SIGINT or SIGTERM and calls StopApplication to start the shutdown

process. UseConsoleLifetime unblocks extensions such as RunAsync and WaitForShutdownAsync.

Microsoft.Extensions.Hosting.Internal.ConsoleLifetime is pre-registered as the default lifetime

implementation. The last lifetime registered is used.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.jsonconfigurationextensions.addjsonfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.environmentvariablesextensions.addenvironmentvariables
https://www.nuget.org/packages/Microsoft.Extensions.Configuration.Json
https://www.nuget.org/packages/Microsoft.Extensions.Configuration.EnvironmentVariables
https://www.nuget.org/packages/Microsoft.Extensions.Configuration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.configureservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.configureservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/generic-host/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.configurelogging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggingbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.configurelogging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.useconsolelifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.stopapplication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.useconsolelifetime

Container configuration

namespace GenericHostSample
{
 internal class ServiceContainer
 {
 }
}

using System;
using Microsoft.Extensions.DependencyInjection;

namespace GenericHostSample
{
 internal class ServiceContainerFactory :
 IServiceProviderFactory<ServiceContainer>
 {
 public ServiceContainer CreateBuilder(
 IServiceCollection services)
 {
 return new ServiceContainer();
 }

 public IServiceProvider CreateServiceProvider(
 ServiceContainer containerBuilder)
 {
 throw new NotImplementedException();
 }
 }
}

var host = new HostBuilder()
 .UseServiceProviderFactory<ServiceContainer>(new ServiceContainerFactory())
 .ConfigureContainer<ServiceContainer>((hostContext, container) =>
 {
 })

Extensibility

To support plugging in other containers, the host can accept an IServiceProviderFactory<TContainerBuilder>.

Providing a factory isn't part of the DI container registration but is instead a host intrinsic used to create the

concrete DI container. UseServiceProviderFactory(IServiceProviderFactory<TContainerBuilder>) overrides the

default factory used to create the app's service provider.

Custom container configuration is managed by the ConfigureContainer method. ConfigureContainer provides

a strongly-typed experience for configuring the container on top of the underlying host API.

ConfigureContainer can be called multiple times with additive results.

Create a service container for the app:

Provide a service container factory:

Use the factory and configure the custom service container for the app:

Host extensibility is performed with extension methods on IHostBuilder. The following example shows how an

extension method extends an IHostBuilder implementation with the TimedHostedService example

demonstrated in Background tasks with hosted services in ASP.NET Core.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iserviceproviderfactory-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.useserviceproviderfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurecontainer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurecontainer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurecontainer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostbuilder

var host = new HostBuilder()
 .UseHostedService<TimedHostedService>()
 .Build();

await host.StartAsync();

using System;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

public static class Extensions
{
 public static IHostBuilder UseHostedService<T>(this IHostBuilder hostBuilder)
 where T : class, IHostedService, IDisposable
 {
 return hostBuilder.ConfigureServices(services =>
 services.AddHostedService<T>());
 }
}

Manage the host

RunRun

public class Program
{
 public void Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 host.Run();
 }
}

RunAsyncRunAsync

public class Program
{
 public static async Task Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 await host.RunAsync();
 }
}

RunConsoleAsyncRunConsoleAsync

An app establishes the UseHostedService extension method to register the hosted service passed in T :

The IHost implementation is responsible for starting and stopping the IHostedService implementations that

are registered in the service container.

Run runs the app and blocks the calling thread until the host is shut down:

RunAsync runs the app and returns a Task that completes when the cancellation token or shutdown is

triggered:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.runasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task

public class Program
{
 public static async Task Main(string[] args)
 {
 var hostBuilder = new HostBuilder();

 await hostBuilder.RunConsoleAsync();
 }
}

Start and StopAsyncStart and StopAsync

public class Program
{
 public static async Task Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 using (host)
 {
 host.Start();

 await host.StopAsync(TimeSpan.FromSeconds(5));
 }
 }
}

StartAsync and StopAsyncStartAsync and StopAsync

public class Program
{
 public static async Task Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 using (host)
 {
 await host.StartAsync();

 await host.StopAsync();
 }
 }
}

WaitForShutdownWaitForShutdown

RunConsoleAsync enables console support, builds and starts the host, and waits for Ctrl+C/SIGINT or

SIGTERM to shut down.

Start starts the host synchronously.

StopAsync attempts to stop the host within the provided timeout.

StartAsync starts the app.

StopAsync stops the app.

WaitForShutdown is triggered via the IHostLifetime, such as

Microsoft.Extensions.Hosting.Internal.ConsoleLifetime (listens for Ctrl+C/SIGINT or SIGTERM).

WaitForShutdown calls StopAsync.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.runconsoleasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.start
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.stopasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.startasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.stopasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.waitforshutdown
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.waitforshutdown
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.stopasync

public class Program
{
 public void Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 using (host)
 {
 host.Start();

 host.WaitForShutdown();
 }
 }
}

WaitForShutdownAsyncWaitForShutdownAsync

public class Program
{
 public static async Task Main(string[] args)
 {
 var host = new HostBuilder()
 .Build();

 using (host)
 {
 await host.StartAsync();

 await host.WaitForShutdownAsync();
 }

 }
}

External controlExternal control

WaitForShutdownAsync returns a Task that completes when shutdown is triggered via the given token and

calls StopAsync.

External control of the host can be achieved using methods that can be called externally:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.waitforshutdownasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.stopasync

public class Program
{
 private IHost _host;

 public Program()
 {
 _host = new HostBuilder()
 .Build();
 }

 public async Task StartAsync()
 {
 _host.StartAsync();
 }

 public async Task StopAsync()
 {
 using (_host)
 {
 await _host.StopAsync(TimeSpan.FromSeconds(5));
 }
 }
}

IHostingEnvironment interface

public class MyClass
{
 private readonly IHostingEnvironment _env;

 public MyClass(IHostingEnvironment env)
 {
 _env = env;
 }

 public void DoSomething()
 {
 var environmentName = _env.EnvironmentName;
 }
}

IApplicationLifetime interface

C A N C EL L AT IO N TO KENC A N C EL L AT IO N TO KEN T RIGGERED W H EN …T RIGGERED W H EN …

ApplicationStarted The host has fully started.

WaitForStartAsync is called at the start of StartAsync, which waits until it's complete before continuing. This

can be used to delay startup until signaled by an external event.

IHostingEnvironment provides information about the app's hosting environment. Use constructor injection to

obtain the IHostingEnvironment in order to use its properties and extension methods:

For more information, see Use multiple environments in ASP.NET Core.

IApplicationLifetime allows for post-startup and shutdown activities, including graceful shutdown requests.

Three properties on the interface are cancellation tokens used to register Action methods that define startup

and shutdown events.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostlifetime.waitforstartasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.startasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstarted

ApplicationStopped The host is completing a graceful shutdown. All requests
should be processed. Shutdown blocks until this event
completes.

ApplicationStopping The host is performing a graceful shutdown. Requests may
still be processing. Shutdown blocks until this event
completes.

C A N C EL L AT IO N TO KENC A N C EL L AT IO N TO KEN T RIGGERED W H EN …T RIGGERED W H EN …

internal class LifetimeEventsHostedService : IHostedService
{
 private readonly ILogger _logger;
 private readonly IApplicationLifetime _appLifetime;

 public LifetimeEventsHostedService(
 ILogger<LifetimeEventsHostedService> logger,
 IApplicationLifetime appLifetime)
 {
 _logger = logger;
 _appLifetime = appLifetime;
 }

 public Task StartAsync(CancellationToken cancellationToken)
 {
 _appLifetime.ApplicationStarted.Register(OnStarted);
 _appLifetime.ApplicationStopping.Register(OnStopping);
 _appLifetime.ApplicationStopped.Register(OnStopped);

 return Task.CompletedTask;
 }

 public Task StopAsync(CancellationToken cancellationToken)
 {
 return Task.CompletedTask;
 }

 private void OnStarted()
 {
 _logger.LogInformation("OnStarted has been called.");

 // Perform post-startup activities here
 }

 private void OnStopping()
 {
 _logger.LogInformation("OnStopping has been called.");

 // Perform on-stopping activities here
 }

 private void OnStopped()
 {
 _logger.LogInformation("OnStopped has been called.");

 // Perform post-stopped activities here
 }
}

Constructor-inject the IApplicationLifetime service into any class. The sample app uses constructor injection

into a LifetimeEventsHostedService class (an IHostedService implementation) to register the events.

LifetimeEventsHostedService.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstopped
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstopping
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/generic-host/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice

public class MyClass
{
 private readonly IApplicationLifetime _appLifetime;

 public MyClass(IApplicationLifetime appLifetime)
 {
 _appLifetime = appLifetime;
 }

 public void Shutdown()
 {
 _appLifetime.StopApplication();
 }
}

Host definition

Set up a host

StopApplication requests termination of the app. The following class uses StopApplication to gracefully shut

down an app when the class's Shutdown method is called:

The ASP.NET Core templates create a .NET Core Generic Host (HostBuilder).

A host is an object that encapsulates an app's resources, such as:

Dependency injection (DI)

Logging

Configuration

IHostedService implementations

When a host starts, it calls IHostedService.StartAsync on each implementation of IHostedService registered in

the service container's collection of hosted services. In a web app, one of the IHostedService

implementations is a web service that starts an HTTP server implementation.

The main reason for including all of the app's interdependent resources in one object is lifetime management:

control over app startup and graceful shutdown.

The host is typically configured, built, and run by code in the Program class. The Main method:

Calls a CreateHostBuilder method to create and configure a builder object.

Calls Build and Run methods on the builder object.

The ASP.NET Core web templates generate the following code to create a host:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.stopapplication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.stopapplication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice.startasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHostedService<Worker>();
 });
}

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

Default builder settings

The following code creates a non-HTTP workload with a IHostedService implementation added to the DI

container.

For an HTTP workload, the Main method is the same but CreateHostBuilder calls ConfigureWebHostDefaults :

If the app uses Entity Framework Core, don't change the name or signature of the CreateHostBuilder method.

The Entity Framework Core tools expect to find a CreateHostBuilder method that configures the host without

running the app. For more information, see Design-time DbContext Creation.

The CreateDefaultBuilder method:

Sets the content root to the path returned by GetCurrentDirectory.

Loads host configuration from:

Loads app configuration from:

Environment variables prefixed with DOTNET_ .

Command-line arguments.

appsettings.json.

appsettings.{Environment}.json.

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dbcontext-creation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory

Framework-provided services

IHostApplicationLifetime

Adds the following logging providers:

Enables scope validation and dependency validation when the environment is Development.

Secret Manager when the app runs in the Development environment.

Environment variables.

Command-line arguments.

Console

Debug

EventSource

EventLog (only when running on Windows)

The ConfigureWebHostDefaults method:

Loads host configuration from environment variables prefixed with ASPNETCORE_ .

Sets Kestrel server as the web server and configures it using the app's hosting configuration providers. For

the Kestrel server's default options, see Kestrel web server implementation in ASP.NET Core.

Adds Host Filtering middleware.

Adds Forwarded Headers middleware if ASPNETCORE_FORWARDEDHEADERS_ENABLED equals true .

Enables IIS integration. For the IIS default options, see Host ASP.NET Core on Windows with IIS.

The Settings for all app types and Settings for web apps sections later in this article show how to override

default builder settings.

The following services are registered automatically:

IHostApplicationLifetime

IHostLifetime

IHostEnvironment / IWebHostEnvironment

For more information on framework-provided services, see Dependency injection in ASP.NET Core.

Inject the IHostApplicationLifetime (formerly IApplicationLifetime) service into any class to handle post-

startup and graceful shutdown tasks. Three properties on the interface are cancellation tokens used to

register app start and app stop event handler methods. The interface also includes a StopApplication

method.

The following example is an IHostedService implementation that registers IHostApplicationLifetime events:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.serviceprovideroptions.validateonbuild#microsoft_extensions_dependencyinjection_serviceprovideroptions_validateonbuild
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationlifetime

internal class LifetimeEventsHostedService : IHostedService
{
 private readonly ILogger _logger;
 private readonly IHostApplicationLifetime _appLifetime;

 public LifetimeEventsHostedService(
 ILogger<LifetimeEventsHostedService> logger,
 IHostApplicationLifetime appLifetime)
 {
 _logger = logger;
 _appLifetime = appLifetime;
 }

 public Task StartAsync(CancellationToken cancellationToken)
 {
 _appLifetime.ApplicationStarted.Register(OnStarted);
 _appLifetime.ApplicationStopping.Register(OnStopping);
 _appLifetime.ApplicationStopped.Register(OnStopped);

 return Task.CompletedTask;
 }

 public Task StopAsync(CancellationToken cancellationToken)
 {
 return Task.CompletedTask;
 }

 private void OnStarted()
 {
 _logger.LogInformation("OnStarted has been called.");

 // Perform post-startup activities here
 }

 private void OnStopping()
 {
 _logger.LogInformation("OnStopping has been called.");

 // Perform on-stopping activities here
 }

 private void OnStopped()
 {
 _logger.LogInformation("OnStopped has been called.");

 // Perform post-stopped activities here
 }
}

IHostLifetime

IHostEnvironment

The IHostLifetime implementation controls when the host starts and when it stops. The last implementation

registered is used.

Microsoft.Extensions.Hosting.Internal.ConsoleLifetime is the default IHostLifetime implementation.

ConsoleLifetime :

Listens for Ctrl+C/SIGINT or SIGTERM and calls StopApplication to start the shutdown process.

Unblocks extensions such as RunAsync and WaitForShutdownAsync.

Inject the IHostEnvironment service into a class to get information about the following settings:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationlifetime.stopapplication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment

Host configuration

// using Microsoft.Extensions.Configuration;

Host.CreateDefaultBuilder(args)
 .ConfigureHostConfiguration(configHost =>
 {
 configHost.SetBasePath(Directory.GetCurrentDirectory());
 configHost.AddJsonFile("hostsettings.json", optional: true);
 configHost.AddEnvironmentVariables(prefix: "PREFIX_");
 configHost.AddCommandLine(args);
 });

App configuration

Settings for all app types

ApplicationNameApplicationName

ApplicationName

EnvironmentName

ContentRootPath

Web apps implement the IWebHostEnvironment interface, which inherits IHostEnvironment and adds the

WebRootPath.

Host configuration is used for the properties of the IHostEnvironment implementation.

Host configuration is available from HostBuilderContext.Configuration inside ConfigureAppConfiguration.

After ConfigureAppConfiguration , HostBuilderContext.Configuration is replaced with the app config.

To add host configuration, call ConfigureHostConfiguration on IHostBuilder . ConfigureHostConfiguration can

be called multiple times with additive results. The host uses whichever option sets a value last on a given key.

The environment variable provider with prefix DOTNET_ and command-line arguments are included by

CreateDefaultBuilder . For web apps, the environment variable provider with prefix ASPNETCORE_ is added.

The prefix is removed when the environment variables are read. For example, the environment variable value

for ASPNETCORE_ENVIRONMENT becomes the host configuration value for the environment key.

The following example creates host configuration:

App configuration is created by calling ConfigureAppConfiguration on IHostBuilder .

ConfigureAppConfiguration can be called multiple times with additive results. The app uses whichever option

sets a value last on a given key.

The configuration created by ConfigureAppConfiguration is available at HostBuilderContext.Configuration for

subsequent operations and as a service from DI. The host configuration is also added to the app

configuration.

For more information, see Configuration in ASP.NET Core.

This section lists host settings that apply to both HTTP and non-HTTP workloads. By default, environment

variables used to configure these settings can have a DOTNET_ or ASPNETCORE_ prefix.

The IHostEnvironment.ApplicationName property is set from host configuration during host construction.

KeyKey : applicationName

TypeType: string

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuildercontext.configuration#microsoft_extensions_hosting_hostbuildercontext_configuration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configurehostconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuildercontext.configuration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.applicationname

ContentRootContentRoot

Host.CreateDefaultBuilder(args)
 .UseContentRoot("c:\\content-root")
 //...

EnvironmentNameEnvironmentName

Host.CreateDefaultBuilder(args)
 .UseEnvironment("Development")
 //...

ShutdownTimeoutShutdownTimeout

DefaultDefault: The name of the assembly that contains the app's entry point.

Environment var iableEnvironment var iable: <PREFIX_>APPLICATIONNAME

To set this value, use the environment variable.

The IHostEnvironment.ContentRootPath property determines where the host begins searching for content

files. If the path doesn't exist, the host fails to start.

KeyKey : contentRoot

TypeType: string

DefaultDefault: The folder where the app assembly resides.

Environment var iableEnvironment var iable: <PREFIX_>CONTENTROOT

To set this value, use the environment variable or call UseContentRoot on IHostBuilder :

For more information, see:

Fundamentals: Content root

WebRoot

The IHostEnvironment.EnvironmentName property can be set to any value. Framework-defined values

include Development , Staging , and Production . Values aren't case-sensitive.

KeyKey : environment

TypeType: string

DefaultDefault: Production

Environment var iableEnvironment var iable: <PREFIX_>ENVIRONMENT

To set this value, use the environment variable or call UseEnvironment on IHostBuilder :

HostOptions.ShutdownTimeout sets the timeout for StopAsync. The default value is five seconds. During the

timeout period, the host:

Triggers IHostApplicationLifetime.ApplicationStopping.

Attempts to stop hosted services, logging errors for services that fail to stop.

If the timeout period expires before all of the hosted services stop, any remaining active services are stopped

when the app shuts down. The services stop even if they haven't finished processing. If services require

additional time to stop, increase the timeout.

KeyKey : shutdownTimeoutSeconds

TypeType: int

DefaultDefault: 5 seconds

Environment var iableEnvironment var iable: <PREFIX_>SHUTDOWNTIMEOUTSECONDS

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.contentrootpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.environmentname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostoptions.shutdowntimeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.stopasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationlifetime.applicationstopping

Host.CreateDefaultBuilder(args)
 .ConfigureServices((hostContext, services) =>
 {
 services.Configure<HostOptions>(option =>
 {
 option.ShutdownTimeout = System.TimeSpan.FromSeconds(20);
 });
 });

Disable app configuration reload on changeDisable app configuration reload on change

WARNINGWARNING

Settings for web apps

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.CaptureStartupErrors(true);
 webBuilder.UseStartup<Startup>();
 });

CaptureStartupErrorsCaptureStartupErrors

To set this value, use the environment variable or configure HostOptions . The following example sets the

timeout to 20 seconds:

By default, appsettings.json and appsettings.{Environment}.json are reloaded when the file changes. To disable

this reload behavior in ASP.NET Core 5.0 Preview 3 or later, set the hostBuilder:reloadConfigOnChange key to

false .

KeyKey : hostBuilder:reloadConfigOnChange

TypeType: bool (true or 1)

DefaultDefault: true

Command-line argumentCommand-line argument: hostBuilder:reloadConfigOnChange

Environment var iableEnvironment var iable: <PREFIX_>hostBuilder:reloadConfigOnChange

The colon (:) separator doesn't work with environment variable hierarchical keys on all platforms. For more

information, see Environment variables.

Some host settings apply only to HTTP workloads. By default, environment variables used to configure these

settings can have a DOTNET_ or ASPNETCORE_ prefix.

Extension methods on IWebHostBuilder are available for these settings. Code samples that show how to call

the extension methods assume webBuilder is an instance of IWebHostBuilder , as in the following example:

When false , errors during startup result in the host exiting. When true , the host captures exceptions

during startup and attempts to start the server.

KeyKey : captureStartupErrors

TypeType: bool (true or 1)

DefaultDefault: Defaults to false unless the app runs with Kestrel behind IIS, where the default is true .

Environment var iableEnvironment var iable: <PREFIX_>CAPTURESTARTUPERRORS

To set this value, use configuration or call CaptureStartupErrors :

webBuilder.CaptureStartupErrors(true);

DetailedErrorsDetailedErrors

webBuilder.UseSetting(WebHostDefaults.DetailedErrorsKey, "true");

HostingStartupAssembliesHostingStartupAssemblies

webBuilder.UseSetting(WebHostDefaults.HostingStartupAssembliesKey, "assembly1;assembly2");

HostingStartupExcludeAssembliesHostingStartupExcludeAssemblies

webBuilder.UseSetting(WebHostDefaults.HostingStartupExcludeAssembliesKey, "assembly1;assembly2");

HTTPS_PortHTTPS_Port

When enabled, or when the environment is Development , the app captures detailed errors.

KeyKey : detailedErrors

TypeType: bool (true or 1)

DefaultDefault: false

Environment var iableEnvironment var iable: <PREFIX_>_DETAILEDERRORS

To set this value, use configuration or call UseSetting :

A semicolon-delimited string of hosting startup assemblies to load on startup. Although the configuration

value defaults to an empty string, the hosting startup assemblies always include the app's assembly. When

hosting startup assemblies are provided, they're added to the app's assembly for loading when the app builds

its common services during startup.

KeyKey : hostingStartupAssemblies

TypeType: string

DefaultDefault: Empty string

Environment var iableEnvironment var iable: <PREFIX_>_HOSTINGSTARTUPASSEMBLIES

To set this value, use configuration or call UseSetting :

A semicolon-delimited string of hosting startup assemblies to exclude on startup.

KeyKey : hostingStartupExcludeAssemblies

TypeType: string

DefaultDefault: Empty string

Environment var iableEnvironment var iable: <PREFIX_>_HOSTINGSTARTUPEXCLUDEASSEMBLIES

To set this value, use configuration or call UseSetting :

The HTTPS redirect port. Used in enforcing HTTPS.

KeyKey : https_port

TypeType: string

DefaultDefault: A default value isn't set.

Environment var iableEnvironment var iable: <PREFIX_>HTTPS_PORT

To set this value, use configuration or call UseSetting :

webBuilder.UseSetting("https_port", "8080");

PreferHostingUrlsPreferHostingUrls

webBuilder.PreferHostingUrls(false);

PreventHostingStartupPreventHostingStartup

webBuilder.UseSetting(WebHostDefaults.PreventHostingStartupKey, "true");

StartupAssemblyStartupAssembly

webBuilder.UseStartup("StartupAssemblyName");

webBuilder.UseStartup<Startup>();

URLsURLs

Indicates whether the host should listen on the URLs configured with the IWebHostBuilder instead of those

URLs configured with the IServer implementation.

KeyKey : preferHostingUrls

TypeType: bool (true or 1)

DefaultDefault: true

Environment var iableEnvironment var iable: <PREFIX_>_PREFERHOSTINGURLS

To set this value, use the environment variable or call PreferHostingUrls :

Prevents the automatic loading of hosting startup assemblies, including hosting startup assemblies

configured by the app's assembly. For more information, see Use hosting startup assemblies in ASP.NET Core.

KeyKey : preventHostingStartup

TypeType: bool (true or 1)

DefaultDefault: false

Environment var iableEnvironment var iable: <PREFIX_>_PREVENTHOSTINGSTARTUP

To set this value, use the environment variable or call UseSetting :

The assembly to search for the Startup class.

KeyKey : startupAssembly

TypeType: string

DefaultDefault: The app's assembly

Environment var iableEnvironment var iable: <PREFIX_>STARTUPASSEMBLY

To set this value, use the environment variable or call UseStartup . UseStartup can take an assembly name (

string) or a type (TStartup). If multiple UseStartup methods are called, the last one takes precedence.

A semicolon-delimited list of IP addresses or host addresses with ports and protocols that the server should

listen on for requests. For example, http://localhost:123 . Use "*" to indicate that the server should listen for

requests on any IP address or hostname using the specified port and protocol (for example, http://*:5000).

The protocol (http:// or https://) must be included with each URL. Supported formats vary among

servers.

webBuilder.UseUrls("http://*:5000;http://localhost:5001;https://hostname:5002");

WebRootWebRoot

webBuilder.UseWebRoot("public");

Manage the host lifetime

RunRun

RunAsyncRunAsync

RunConsoleAsyncRunConsoleAsync

StartStart

StartAsyncStartAsync

KeyKey : urls

TypeType: string

DefaultDefault: http://localhost:5000 and https://localhost:5001

Environment var iableEnvironment var iable: <PREFIX_>URLS

To set this value, use the environment variable or call UseUrls :

Kestrel has its own endpoint configuration API. For more information, see Kestrel web server implementation

in ASP.NET Core.

The IWebHostEnvironment.WebRootPath property determines the relative path to the app's static assets. If the

path doesn't exist, a no-op file provider is used.

KeyKey : webroot

TypeType: string

DefaultDefault: The default is wwwroot . The path to {content root}/wwwroot must exist.

Environment var iableEnvironment var iable: <PREFIX_>WEBROOT

To set this value, use the environment variable or call UseWebRoot on IWebHostBuilder :

For more information, see:

Fundamentals: Web root

ContentRoot

Call methods on the built IHost implementation to start and stop the app. These methods affect all

IHostedService implementations that are registered in the service container.

Run runs the app and blocks the calling thread until the host is shut down.

RunAsync runs the app and returns a Task that completes when the cancellation token or shutdown is

triggered.

RunConsoleAsync enables console support, builds and starts the host, and waits for Ctrl+C/SIGINT or

SIGTERM to shut down.

Start starts the host synchronously.

StartAsync starts the host and returns a Task that completes when the cancellation token or shutdown is

triggered.

WaitForStartAsync is called at the start of StartAsync , which waits until it's complete before continuing. This

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostenvironment.webrootpath#microsoft_aspnetcore_hosting_iwebhostenvironment_webrootpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.runasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.runconsoleasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.start
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.startasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostlifetime.waitforstartasync

StopAsyncStopAsync

WaitForShutdownWaitForShutdown

WaitForShutdownAsyncWaitForShutdownAsync

External controlExternal control

public class Program
{
 private IHost _host;

 public Program()
 {
 _host = new HostBuilder()
 .Build();
 }

 public async Task StartAsync()
 {
 _host.StartAsync();
 }

 public async Task StopAsync()
 {
 using (_host)
 {
 await _host.StopAsync(TimeSpan.FromSeconds(5));
 }
 }
}

Additional resources

can be used to delay startup until signaled by an external event.

StopAsync attempts to stop the host within the provided timeout.

WaitForShutdown blocks the calling thread until shutdown is triggered by the IHostLifetime, such as via

Ctrl+C/SIGINT or SIGTERM.

WaitForShutdownAsync returns a Task that completes when shutdown is triggered via the given token and

calls StopAsync.

Direct control of the host lifetime can be achieved using methods that can be called externally:

Background tasks with hosted services in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.stopasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.waitforshutdown
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostingabstractionshostextensions.waitforshutdownasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihost.stopasync

ASP.NET Core Web Host
9/22/2020 • 17 minutes to read • Edit Online

Set up a host

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
}

ASP.NET Core apps configure and launch a host. The host is responsible for app startup and lifetime

management. At a minimum, the host configures a server and a request processing pipeline. The host can also

set up logging, dependency injection, and configuration.

This article covers the Web Host, which remains available only for backward compatibility. The Generic Host is

recommended for all app types.

This article covers the Web Host, which is for hosting web apps. For other kinds of apps, use the Generic Host.

Create a host using an instance of IWebHostBuilder. This is typically performed in the app's entry point, the Main

method.

In the project templates, Main is located in Program.cs. A typical app calls CreateDefaultBuilder to start setting

up a host:

The code that calls CreateDefaultBuilder is in a method named CreateWebHostBuilder , which separates it from

the code in Main that calls Run on the builder object. This separation is required if you use Entity Framework

Core tools. The tools expect to find a CreateWebHostBuilder method that they can call at design time to configure

the host without running the app. An alternative is to implement IDesignTimeDbContextFactory . For more

information, see Design-time DbContext Creation.

CreateDefaultBuilder performs the following tasks:

Configures Kestrel server as the web server using the app's hosting configuration providers. For the Kestrel

server's default options, see Kestrel web server implementation in ASP.NET Core.

Sets the content root to the path returned by Directory.GetCurrentDirectory.

Loads host configuration from:

Loads app configuration in the following order from:

Environment variables prefixed with ASPNETCORE_ (for example, ASPNETCORE_ENVIRONMENT).

Command-line arguments.

appsettings.json.

appsettings.{Environment}.json.

Secret Manager when the app runs in the Development environment using the entry assembly.

Environment variables.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/host/web-host.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dbcontext-creation
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory

Configures logging for console and debug output. Logging includes log filtering rules specified in a Logging

configuration section of an appsettings.json or appsettings.{Environment}.json file.

When running behind IIS with the ASP.NET Core Module, CreateDefaultBuilder enables IIS Integration, which

configures the app's base address and port. IIS Integration also configures the app to capture startup errors.

For the IIS default options, see Host ASP.NET Core on Windows with IIS.

Sets ServiceProviderOptions.ValidateScopes to true if the app's environment is Development. For more

information, see Scope validation.

Command-line arguments.

The configuration defined by CreateDefaultBuilder can be overridden and augmented by

ConfigureAppConfiguration, ConfigureLogging, and other methods and extension methods of IWebHostBuilder.

A few examples follow:

WebHost.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddXmlFile("appsettings.xml", optional: true, reloadOnChange: true);
 })
 ...

WebHost.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 {
 logging.SetMinimumLevel(LogLevel.Warning);
 })
 ...

ConfigureAppConfiguration is used to specify additional IConfiguration for the app. The following

ConfigureAppConfiguration call adds a delegate to include app configuration in the appsettings.xml file.

ConfigureAppConfiguration may be called multiple times. Note that this configuration doesn't apply to the

host (for example, server URLs or environment). See the Host configuration values section.

The following ConfigureLogging call adds a delegate to configure the minimum logging level

(SetMinimumLevel) to LogLevel.Warning. This setting overrides the settings in

appsettings.Development.json (LogLevel.Debug) and appsettings.Production.json (LogLevel.Error)

configured by CreateDefaultBuilder . ConfigureLogging may be called multiple times.

WebHost.CreateDefaultBuilder(args)
 .ConfigureKestrel((context, options) =>
 {
 options.Limits.MaxRequestBodySize = 20000000;
 });

The following call to ConfigureKestrel overrides the default Limits.MaxRequestBodySize of 30,000,000

bytes established when Kestrel was configured by CreateDefaultBuilder :

WebHost.CreateDefaultBuilder(args)
 .UseKestrel(options =>
 {
 options.Limits.MaxRequestBodySize = 20000000;
 });

The following call to UseKestrel overrides the default Limits.MaxRequestBodySize of 30,000,000 bytes

established when Kestrel was configured by CreateDefaultBuilder :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.serviceprovideroptions.validatescopes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.configurelogging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggingbuilderextensions.setminimumlevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderkestrelextensions.usekestrel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxrequestbodysize

NOTENOTE

Host configuration values

Application Key (Name)Application Key (Name)

WebHost.CreateDefaultBuilder(args)
 .UseSetting(WebHostDefaults.ApplicationKey, "CustomApplicationName")

Capture Startup ErrorsCapture Startup Errors

The content root determines where the host searches for content files, such as MVC view files. When the app is

started from the project's root folder, the project's root folder is used as the content root. This is the default used

in Visual Studio and the dotnet new templates.

For more information on app configuration, see Configuration in ASP.NET Core.

As an alternative to using the static CreateDefaultBuilder method, creating a host from WebHostBuilder is a supported

approach with ASP.NET Core 2.x.

When setting up a host, Configure and ConfigureServices methods can be provided. If a Startup class is

specified, it must define a Configure method. For more information, see App startup in ASP.NET Core. Multiple

calls to ConfigureServices append to one another. Multiple calls to Configure or UseStartup on the

WebHostBuilder replace previous settings.

WebHostBuilder relies on the following approaches to set the host configuration values:

Host builder configuration, which includes environment variables with the format

ASPNETCORE_{configurationKey} . For example, ASPNETCORE_ENVIRONMENT .

Extensions such as UseContentRoot and UseConfiguration (see the Override configuration section).

UseSetting and the associated key. When setting a value with UseSetting , the value is set as a string

regardless of the type.

The host uses whichever option sets a value last. For more information, see Override configuration in the next

section.

The IWebHostEnvironment.ApplicationName property is automatically set when UseStartup or Configure is called

during host construction. The value is set to the name of the assembly containing the app's entry point. To set the

value explicitly, use the WebHostDefaults.ApplicationKey:

The IHostingEnvironment.ApplicationName property is automatically set when UseStartup or Configure is called

during host construction. The value is set to the name of the assembly containing the app's entry point. To set the

value explicitly, use the WebHostDefaults.ApplicationKey:

KeyKey : applicationName

TypeType: string

DefaultDefault: The name of the assembly containing the app's entry point.

Set usingSet using: UseSetting

Environment var iableEnvironment var iable: ASPNETCORE_APPLICATIONNAME

This setting controls the capture of startup errors.

KeyKey : captureStartupErrors

TypeType: bool (true or 1)

DefaultDefault: Defaults to false unless the app runs with Kestrel behind IIS, where the default is true .

Set usingSet using: CaptureStartupErrors

https://visualstudio.microsoft.com
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.configureservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.usecontentroot
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.usesetting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.usestartup
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostdefaults.applicationkey
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment.applicationname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.usestartup
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostdefaults.applicationkey

WebHost.CreateDefaultBuilder(args)
 .CaptureStartupErrors(true)

Content rootContent root

WebHost.CreateDefaultBuilder(args)
 .UseContentRoot("c:\\<content-root>")

Detailed ErrorsDetailed Errors

WebHost.CreateDefaultBuilder(args)
 .UseSetting(WebHostDefaults.DetailedErrorsKey, "true")

EnvironmentEnvironment

Environment var iableEnvironment var iable: ASPNETCORE_CAPTURESTARTUPERRORS

When false , errors during startup result in the host exiting. When true , the host captures exceptions during

startup and attempts to start the server.

This setting determines where ASP.NET Core begins searching for content files.

KeyKey : contentRoot

TypeType: string

DefaultDefault: Defaults to the folder where the app assembly resides.

Set usingSet using: UseContentRoot

Environment var iableEnvironment var iable: ASPNETCORE_CONTENTROOT

The content root is also used as the base path for the web root. If the content root path doesn't exist, the host fails

to start.

For more information, see:

Fundamentals: Content root

Web root

Determines if detailed errors should be captured.

KeyKey : detailedErrors

TypeType: bool (true or 1)

DefaultDefault: false

Set usingSet using: UseSetting

Environment var iableEnvironment var iable: ASPNETCORE_DETAILEDERRORS

When enabled (or when the Environment is set to Development), the app captures detailed exceptions.

Sets the app's environment.

KeyKey : environment

TypeType: string

DefaultDefault: Production

Set usingSet using: UseEnvironment

Environment var iableEnvironment var iable: ASPNETCORE_ENVIRONMENT

The environment can be set to any value. Framework-defined values include Development , Staging , and

Production . Values aren't case sensitive. By default, the Environment is read from the ASPNETCORE_ENVIRONMENT

environment variable. When using Visual Studio, environment variables may be set in the launchSettings.json file.

https://visualstudio.microsoft.com

WebHost.CreateDefaultBuilder(args)
 .UseEnvironment(EnvironmentName.Development)

Hosting Startup AssembliesHosting Startup Assemblies

WebHost.CreateDefaultBuilder(args)
 .UseSetting(WebHostDefaults.HostingStartupAssembliesKey, "assembly1;assembly2")

HTTPS PortHTTPS Port

WebHost.CreateDefaultBuilder(args)
 .UseSetting("https_port", "8080")

Hosting Startup Exclude AssembliesHosting Startup Exclude Assemblies

WebHost.CreateDefaultBuilder(args)
 .UseSetting(WebHostDefaults.HostingStartupExcludeAssembliesKey, "assembly1;assembly2")

Prefer Hosting URLsPrefer Hosting URLs

For more information, see Use multiple environments in ASP.NET Core.

Sets the app's hosting startup assemblies.

KeyKey : hostingStartupAssemblies

TypeType: string

DefaultDefault: Empty string

Set usingSet using: UseSetting

Environment var iableEnvironment var iable: ASPNETCORE_HOSTINGSTARTUPASSEMBLIES

A semicolon-delimited string of hosting startup assemblies to load on startup.

Although the configuration value defaults to an empty string, the hosting startup assemblies always include the

app's assembly. When hosting startup assemblies are provided, they're added to the app's assembly for loading

when the app builds its common services during startup.

Set the HTTPS redirect port. Used in enforcing HTTPS.

KeyKey : https_port TypeType: string DefaultDefault: A default value isn't set. Set usingSet using: UseSetting Environment var iableEnvironment var iable:

ASPNETCORE_HTTPS_PORT

A semicolon-delimited string of hosting startup assemblies to exclude on startup.

KeyKey : hostingStartupExcludeAssemblies

TypeType: string

DefaultDefault: Empty string

Set usingSet using: UseSetting

Environment var iableEnvironment var iable: ASPNETCORE_HOSTINGSTARTUPEXCLUDEASSEMBLIES

Indicates whether the host should listen on the URLs configured with the WebHostBuilder instead of those

configured with the IServer implementation.

KeyKey : preferHostingUrls

TypeType: bool (true or 1)

DefaultDefault: true

Set usingSet using: PreferHostingUrls

WebHost.CreateDefaultBuilder(args)
 .PreferHostingUrls(false)

Prevent Hosting StartupPrevent Hosting Startup

WebHost.CreateDefaultBuilder(args)
 .UseSetting(WebHostDefaults.PreventHostingStartupKey, "true")

Server URLsServer URLs

WebHost.CreateDefaultBuilder(args)
 .UseUrls("http://*:5000;http://localhost:5001;https://hostname:5002")

Shutdown TimeoutShutdown Timeout

Environment var iableEnvironment var iable: ASPNETCORE_PREFERHOSTINGURLS

Prevents the automatic loading of hosting startup assemblies, including hosting startup assemblies configured

by the app's assembly. For more information, see Use hosting startup assemblies in ASP.NET Core.

KeyKey : preventHostingStartup

TypeType: bool (true or 1)

DefaultDefault: false

Set usingSet using: UseSetting

Environment var iableEnvironment var iable: ASPNETCORE_PREVENTHOSTINGSTARTUP

Indicates the IP addresses or host addresses with ports and protocols that the server should listen on for

requests.

KeyKey : urls

TypeType: string

DefaultDefault: http://localhost:5000

Set usingSet using: UseUrls

Environment var iableEnvironment var iable: ASPNETCORE_URLS

Set to a semicolon-separated (;) list of URL prefixes to which the server should respond. For example,

http://localhost:123 . Use "*" to indicate that the server should listen for requests on any IP address or

hostname using the specified port and protocol (for example, http://*:5000). The protocol (http:// or

https://) must be included with each URL. Supported formats vary among servers.

Kestrel has its own endpoint configuration API. For more information, see Kestrel web server implementation in

ASP.NET Core.

Specifies the amount of time to wait for Web Host to shut down.

KeyKey : shutdownTimeoutSeconds

TypeType: int

DefaultDefault: 5

Set usingSet using: UseShutdownTimeout

Environment var iableEnvironment var iable: ASPNETCORE_SHUTDOWNTIMEOUTSECONDS

Although the key accepts an int with UseSetting (for example,

.UseSetting(WebHostDefaults.ShutdownTimeoutKey, "10")), the UseShutdownTimeout extension method takes a

TimeSpan.

During the timeout period, hosting:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useshutdowntimeout
https://docs.microsoft.com/en-us/dotnet/api/system.timespan

WebHost.CreateDefaultBuilder(args)
 .UseShutdownTimeout(TimeSpan.FromSeconds(10))

Startup AssemblyStartup Assembly

WebHost.CreateDefaultBuilder(args)
 .UseStartup("StartupAssemblyName")

WebHost.CreateDefaultBuilder(args)
 .UseStartup<TStartup>()

Web rootWeb root

WebHost.CreateDefaultBuilder(args)
 .UseWebRoot("public")

Override configuration

Triggers IApplicationLifetime.ApplicationStopping.

Attempts to stop hosted services, logging any errors for services that fail to stop.

If the timeout period expires before all of the hosted services stop, any remaining active services are stopped

when the app shuts down. The services stop even if they haven't finished processing. If services require

additional time to stop, increase the timeout.

Determines the assembly to search for the Startup class.

KeyKey : startupAssembly

TypeType: string

DefaultDefault: The app's assembly

Set usingSet using: UseStartup

Environment var iableEnvironment var iable: ASPNETCORE_STARTUPASSEMBLY

The assembly by name (string) or type (TStartup) can be referenced. If multiple UseStartup methods are

called, the last one takes precedence.

Sets the relative path to the app's static assets.

KeyKey : webroot

TypeType: string

DefaultDefault: The default is wwwroot . The path to {content root}/wwwroot must exist. If the path doesn't exist, a no-op

file provider is used.

Set usingSet using: UseWebRoot

Environment var iableEnvironment var iable: ASPNETCORE_WEBROOT

For more information, see:

Fundamentals: Web root

Content root

Use Configuration to configure Web Host. In the following example, host configuration is optionally specified in a

hostsettings.json file. Any configuration loaded from the hostsettings.json file may be overridden by command-

line arguments. The built configuration (in config) is used to configure the host with UseConfiguration.

IWebHostBuilder configuration is added to the app's configuration, but the converse isn't true—

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime.applicationstopping
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useconfiguration

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args)
 {
 var config = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("hostsettings.json", optional: true)
 .AddCommandLine(args)
 .Build();

 return WebHost.CreateDefaultBuilder(args)
 .UseUrls("http://*:5000")
 .UseConfiguration(config)
 .Configure(app =>
 {
 app.Run(context =>
 context.Response.WriteAsync("Hello, World!"));
 });
 }
}

{
 urls: "http://*:5005"
}

NOTENOTE

dotnet run --urls "http://*:8080"

Manage the host

host.Run();

ConfigureAppConfiguration doesn't affect the IWebHostBuilder configuration.

Overriding the configuration provided by UseUrls with hostsettings.json config first, command-line argument

config second:

hostsettings.json:

UseConfiguration only copies keys from the provided IConfiguration to the host builder configuration. Therefore,

setting reloadOnChange: true for JSON, INI, and XML settings files has no effect.

To specify the host run on a particular URL, the desired value can be passed in from a command prompt when

executing dotnet run. The command-line argument overrides the urls value from the hostsettings.json file, and

the server listens on port 8080:

RunRun

The Run method starts the web app and blocks the calling thread until the host is shut down:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useconfiguration
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run

using (host)
{
 host.Start();
 Console.ReadLine();
}

var urls = new List<string>()
{
 "http://*:5000",
 "http://localhost:5001"
};

var host = new WebHostBuilder()
 .UseKestrel()
 .UseStartup<Startup>()
 .Start(urls.ToArray());

using (host)
{
 Console.ReadLine();
}

using (var host = WebHost.Start(app => app.Response.WriteAsync("Hello, World!")))
{
 Console.WriteLine("Use Ctrl-C to shutdown the host...");
 host.WaitForShutdown();
}

using (var host = WebHost.Start("http://localhost:8080", app => app.Response.WriteAsync("Hello, World!")))
{
 Console.WriteLine("Use Ctrl-C to shutdown the host...");
 host.WaitForShutdown();
}

Star tStar t

Run the host in a non-blocking manner by calling its Start method:

If a list of URLs is passed to the Start method, it listens on the URLs specified:

The app can initialize and start a new host using the pre-configured defaults of CreateDefaultBuilder using a

static convenience method. These methods start the server without console output and with WaitForShutdown

wait for a break (Ctrl-C/SIGINT or SIGTERM):

Star t(RequestDelegate app)Star t(RequestDelegate app)

Start with a RequestDelegate :

Make a request in the browser to http://localhost:5000 to receive the response "Hello World!" WaitForShutdown

blocks until a break (Ctrl-C/SIGINT or SIGTERM) is issued. The app displays the Console.WriteLine message and

waits for a keypress to exit.

Star t(str ing ur l, RequestDelegate app)Star t(str ing ur l, RequestDelegate app)

Start with a URL and RequestDelegate :

Produces the same result as Star t(RequestDelegate app)Star t(RequestDelegate app) , except the app responds on http://localhost:8080 .

Star t(Action<IRouteBuilder> routeBuilder)Star t(Action<IRouteBuilder> routeBuilder)

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostextensions.waitforshutdown

using (var host = WebHost.Start(router => router
 .MapGet("hello/{name}", (req, res, data) =>
 res.WriteAsync($"Hello, {data.Values["name"]}!"))
 .MapGet("buenosdias/{name}", (req, res, data) =>
 res.WriteAsync($"Buenos dias, {data.Values["name"]}!"))
 .MapGet("throw/{message?}", (req, res, data) =>
 throw new Exception((string)data.Values["message"] ?? "Uh oh!"))
 .MapGet("{greeting}/{name}", (req, res, data) =>
 res.WriteAsync($"{data.Values["greeting"]}, {data.Values["name"]}!"))
 .MapGet("", (req, res, data) => res.WriteAsync("Hello, World!"))))
{
 Console.WriteLine("Use Ctrl-C to shutdown the host...");
 host.WaitForShutdown();
}

REQ UESTREQ UEST RESP O N SERESP O N SE

http://localhost:5000/hello/Martin Hello, Martin!

http://localhost:5000/buenosdias/Catrina Buenos dias, Catrina!

http://localhost:5000/throw/ooops! Throws an exception with string "ooops!"

http://localhost:5000/throw Throws an exception with string "Uh oh!"

http://localhost:5000/Sante/Kevin Sante, Kevin!

http://localhost:5000 Hello World!

using (var host = WebHost.Start("http://localhost:8080", router => router
 .MapGet("hello/{name}", (req, res, data) =>
 res.WriteAsync($"Hello, {data.Values["name"]}!"))
 .MapGet("buenosdias/{name}", (req, res, data) =>
 res.WriteAsync($"Buenos dias, {data.Values["name"]}!"))
 .MapGet("throw/{message?}", (req, res, data) =>
 throw new Exception((string)data.Values["message"] ?? "Uh oh!"))
 .MapGet("{greeting}/{name}", (req, res, data) =>
 res.WriteAsync($"{data.Values["greeting"]}, {data.Values["name"]}!"))
 .MapGet("", (req, res, data) => res.WriteAsync("Hello, World!"))))
{
 Console.WriteLine("Use Ctrl-C to shut down the host...");
 host.WaitForShutdown();
}

Use an instance of IRouteBuilder (Microsoft.AspNetCore.Routing) to use routing middleware:

Use the following browser requests with the example:

WaitForShutdown blocks until a break (Ctrl-C/SIGINT or SIGTERM) is issued. The app displays the

Console.WriteLine message and waits for a keypress to exit.

Star t(str ing ur l, Action<IRouteBuilder> routeBuilder)Star t(str ing ur l, Action<IRouteBuilder> routeBuilder)

Use a URL and an instance of IRouteBuilder :

Produces the same result as Star t(Action<IRouteBuilder> routeBuilder)Star t(Action<IRouteBuilder> routeBuilder) , except the app responds at

http://localhost:8080 .

https://www.nuget.org/packages/Microsoft.AspNetCore.Routing/

using (var host = WebHost.StartWith(app =>
 app.Use(next =>
 {
 return async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 };
 })))
{
 Console.WriteLine("Use Ctrl-C to shut down the host...");
 host.WaitForShutdown();
}

using (var host = WebHost.StartWith("http://localhost:8080", app =>
 app.Use(next =>
 {
 return async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 };
 })))
{
 Console.WriteLine("Use Ctrl-C to shut down the host...");
 host.WaitForShutdown();
}

IWebHostEnvironment interface

Star tWith(Action<IApplicationBuilder> app)Star tWith(Action<IApplicationBuilder> app)

Provide a delegate to configure an IApplicationBuilder :

Make a request in the browser to http://localhost:5000 to receive the response "Hello World!" WaitForShutdown

blocks until a break (Ctrl-C/SIGINT or SIGTERM) is issued. The app displays the Console.WriteLine message and

waits for a keypress to exit.

Star tWith(str ing ur l, Action<IApplicationBuilder> app)Star tWith(str ing ur l, Action<IApplicationBuilder> app)

Provide a URL and a delegate to configure an IApplicationBuilder :

Produces the same result as Star tWith(Action<IApplicationBuilder> app)Star tWith(Action<IApplicationBuilder> app) , except the app responds on

http://localhost:8080 .

The IWebHostEnvironment interface provides information about the app's web hosting environment. Use

constructor injection to obtain the IWebHostEnvironment in order to use its properties and extension methods:

public class CustomFileReader
{
 private readonly IWebHostEnvironment _env;

 public CustomFileReader(IWebHostEnvironment env)
 {
 _env = env;
 }

 public string ReadFile(string filePath)
 {
 var fileProvider = _env.WebRootFileProvider;
 // Process the file here
 }
}

public class Startup
{
 public Startup(IWebHostEnvironment env)
 {
 HostingEnvironment = env;
 }

 public IWebHostEnvironment HostingEnvironment { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 if (HostingEnvironment.IsDevelopment())
 {
 // Development configuration
 }
 else
 {
 // Staging/Production configuration
 }

 var contentRootPath = HostingEnvironment.ContentRootPath;
 }
}

NOTENOTE

A convention-based approach can be used to configure the app at startup based on the environment.

Alternatively, inject the IWebHostEnvironment into the Startup constructor for use in ConfigureServices :

In addition to the IsDevelopment extension method, IWebHostEnvironment offers IsStaging , IsProduction , and

IsEnvironment(string environmentName) methods. For more information, see Use multiple environments in ASP.NET

Core.

The IWebHostEnvironment service can also be injected directly into the Configure method for setting up the

processing pipeline:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 // In Development, use the Developer Exception Page
 app.UseDeveloperExceptionPage();
 }
 else
 {
 // In Staging/Production, route exceptions to /error
 app.UseExceptionHandler("/error");
 }

 var contentRootPath = env.ContentRootPath;
}

public async Task Invoke(HttpContext context, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 // Configure middleware for Development
 }
 else
 {
 // Configure middleware for Staging/Production
 }

 var contentRootPath = env.ContentRootPath;
}

IHostingEnvironment interface

public class CustomFileReader
{
 private readonly IHostingEnvironment _env;

 public CustomFileReader(IHostingEnvironment env)
 {
 _env = env;
 }

 public string ReadFile(string filePath)
 {
 var fileProvider = _env.WebRootFileProvider;
 // Process the file here
 }
}

IWebHostEnvironment can be injected into the Invoke method when creating custom middleware:

The IHostingEnvironment interface provides information about the app's web hosting environment. Use

constructor injection to obtain the IHostingEnvironment in order to use its properties and extension methods:

A convention-based approach can be used to configure the app at startup based on the environment.

Alternatively, inject the IHostingEnvironment into the Startup constructor for use in ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment

public class Startup
{
 public Startup(IHostingEnvironment env)
 {
 HostingEnvironment = env;
 }

 public IHostingEnvironment HostingEnvironment { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 if (HostingEnvironment.IsDevelopment())
 {
 // Development configuration
 }
 else
 {
 // Staging/Production configuration
 }

 var contentRootPath = HostingEnvironment.ContentRootPath;
 }
}

NOTENOTE

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 // In Development, use the Developer Exception Page
 app.UseDeveloperExceptionPage();
 }
 else
 {
 // In Staging/Production, route exceptions to /error
 app.UseExceptionHandler("/error");
 }

 var contentRootPath = env.ContentRootPath;
}

In addition to the IsDevelopment extension method, IHostingEnvironment offers IsStaging , IsProduction , and

IsEnvironment(string environmentName) methods. For more information, see Use multiple environments in ASP.NET

Core.

The IHostingEnvironment service can also be injected directly into the Configure method for setting up the

processing pipeline:

IHostingEnvironment can be injected into the Invoke method when creating custom middleware:

public async Task Invoke(HttpContext context, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 // Configure middleware for Development
 }
 else
 {
 // Configure middleware for Staging/Production
 }

 var contentRootPath = env.ContentRootPath;
}

IHostApplicationLifetime interface

C A N C EL L AT IO N TO KENC A N C EL L AT IO N TO KEN T RIGGERED W H EN …T RIGGERED W H EN …

ApplicationStarted The host has fully started.

ApplicationStopped The host is completing a graceful shutdown. All requests
should be processed. Shutdown blocks until this event
completes.

ApplicationStopping The host is performing a graceful shutdown. Requests may
still be processing. Shutdown blocks until this event
completes.

IHostApplicationLifetime allows for post-startup and shutdown activities. Three properties on the interface are

cancellation tokens used to register Action methods that define startup and shutdown events.

public class Startup
{
 public void Configure(IApplicationBuilder app, IHostApplicationLifetime appLifetime)
 {
 appLifetime.ApplicationStarted.Register(OnStarted);
 appLifetime.ApplicationStopping.Register(OnStopping);
 appLifetime.ApplicationStopped.Register(OnStopped);

 Console.CancelKeyPress += (sender, eventArgs) =>
 {
 appLifetime.StopApplication();
 // Don't terminate the process immediately, wait for the Main thread to exit gracefully.
 eventArgs.Cancel = true;
 };
 }

 private void OnStarted()
 {
 // Perform post-startup activities here
 }

 private void OnStopping()
 {
 // Perform on-stopping activities here
 }

 private void OnStopped()
 {
 // Perform post-stopped activities here
 }
}

public class MyClass
{
 private readonly IHostApplicationLifetime _appLifetime;

 public MyClass(IHostApplicationLifetime appLifetime)
 {
 _appLifetime = appLifetime;
 }

 public void Shutdown()
 {
 _appLifetime.StopApplication();
 }
}

IApplicationLifetime interface

C A N C EL L AT IO N TO KENC A N C EL L AT IO N TO KEN T RIGGERED W H EN …T RIGGERED W H EN …

ApplicationStarted The host has fully started.

StopApplication requests termination of the app. The following class uses StopApplication to gracefully shut

down an app when the class's Shutdown method is called:

IApplicationLifetime allows for post-startup and shutdown activities. Three properties on the interface are

cancellation tokens used to register Action methods that define startup and shutdown events.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstarted

ApplicationStopped The host is completing a graceful shutdown. All requests
should be processed. Shutdown blocks until this event
completes.

ApplicationStopping The host is performing a graceful shutdown. Requests may
still be processing. Shutdown blocks until this event
completes.

C A N C EL L AT IO N TO KENC A N C EL L AT IO N TO KEN T RIGGERED W H EN …T RIGGERED W H EN …

public class Startup
{
 public void Configure(IApplicationBuilder app, IApplicationLifetime appLifetime)
 {
 appLifetime.ApplicationStarted.Register(OnStarted);
 appLifetime.ApplicationStopping.Register(OnStopping);
 appLifetime.ApplicationStopped.Register(OnStopped);

 Console.CancelKeyPress += (sender, eventArgs) =>
 {
 appLifetime.StopApplication();
 // Don't terminate the process immediately, wait for the Main thread to exit gracefully.
 eventArgs.Cancel = true;
 };
 }

 private void OnStarted()
 {
 // Perform post-startup activities here
 }

 private void OnStopping()
 {
 // Perform on-stopping activities here
 }

 private void OnStopped()
 {
 // Perform post-stopped activities here
 }
}

public class MyClass
{
 private readonly IApplicationLifetime _appLifetime;

 public MyClass(IApplicationLifetime appLifetime)
 {
 _appLifetime = appLifetime;
 }

 public void Shutdown()
 {
 _appLifetime.StopApplication();
 }
}

Scope validation

StopApplication requests termination of the app. The following class uses StopApplication to gracefully shut

down an app when the class's Shutdown method is called:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstopped
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.iapplicationlifetime.applicationstopping
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime.stopapplication

WebHost.CreateDefaultBuilder(args)
 .UseDefaultServiceProvider((context, options) => {
 options.ValidateScopes = true;
 })

Additional resources

CreateDefaultBuilder sets ServiceProviderOptions.ValidateScopes to true if the app's environment is

Development.

When ValidateScopes is set to true , the default service provider performs checks to verify that:

Scoped services aren't directly or indirectly resolved from the root service provider.

Scoped services aren't directly or indirectly injected into singletons.

The root service provider is created when BuildServiceProvider is called. The root service provider's lifetime

corresponds to the app/server's lifetime when the provider starts with the app and is disposed when the app

shuts down.

Scoped services are disposed by the container that created them. If a scoped service is created in the root

container, the service's lifetime is effectively promoted to singleton because it's only disposed by the root

container when app/server is shut down. Validating service scopes catches these situations when

BuildServiceProvider is called.

To always validate scopes, including in the Production environment, configure the ServiceProviderOptions with

UseDefaultServiceProvider on the host builder :

Host ASP.NET Core on Windows with IIS

Host ASP.NET Core on Linux with Nginx

Host ASP.NET Core on Linux with Apache

Host ASP.NET Core in a Windows Service

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.serviceprovideroptions.validatescopes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectioncontainerbuilderextensions.buildserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.serviceprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderextensions.usedefaultserviceprovider

Web server implementations in ASP.NET Core
9/22/2020 • 7 minutes to read • Edit Online

Kestrel

Hosting models

By Tom Dykstra, Steve Smith, Stephen Halter, and Chris Ross

An ASP.NET Core app runs with an in-process HTTP server implementation. The server implementation listens for

HTTP requests and surfaces them to the app as a set of request features composed into an HttpContext.

Kestrel is the default web server specified by the ASP.NET Core project templates.

Use Kestrel:

By itself as an edge server processing requests directly from a network, including the Internet.

With a reverse proxy server, such as Internet Information Services (IIS), Nginx, or Apache. A reverse proxy

server receives HTTP requests from the Internet and forwards them to Kestrel.

Either hosting configuration—with or without a reverse proxy server—is supported.

For Kestrel configuration guidance and information on when to use Kestrel in a reverse proxy configuration, see

Kestrel web server implementation in ASP.NET Core.

Windows

macOS

Linux

ASP.NET Core ships with the following:

Kestrel server is the default, cross-platform HTTP server implementation.

IIS HTTP Server is an in-process server for IIS.

HTTP.sys server is a Windows-only HTTP server based on the HTTP.sys kernel driver and HTTP Server API.

When using IIS or IIS Express, the app either runs:

In the same process as the IIS worker process (the in-process hosting model) with the IIS HTTP Server. In-

process is the recommended configuration.

In a process separate from the IIS worker process (the out-of-process hosting model) with the Kestrel server.

The ASP.NET Core Module is a native IIS module that handles native IIS requests between IIS and the in-process

IIS HTTP Server or Kestrel. For more information, see ASP.NET Core Module.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/servers/index.md
https://github.com/tdykstra
https://ardalis.com/
https://twitter.com/halter73
https://github.com/Tratcher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://www.iis.net/
https://nginx.org
https://httpd.apache.org/
https://docs.microsoft.com/en-us/windows/desktop/http/http-api-start-page
https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/introduction-to-iis-architecture
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

Using in-process hosting, an ASP.NET Core app runs in the same process as its IIS worker process. In-process

hosting provides improved performance over out-of-process hosting because requests aren't proxied over the

loopback adapter, a network interface that returns outgoing network traffic back to the same machine. IIS handles

process management with the Windows Process Activation Service (WAS).

Using out-of-process hosting, ASP.NET Core apps run in a process separate from the IIS worker process, and the

module handles process management. The module starts the process for the ASP.NET Core app when the first

request arrives and restarts the app if it shuts down or crashes. This is essentially the same behavior as seen with

apps that run in-process that are managed by the Windows Process Activation Service (WAS).

For more information and configuration guidance, see the following topics:

Host ASP.NET Core on Windows with IIS

ASP.NET Core Module

Windows

macOS

Linux

ASP.NET Core ships with the following:

Kestrel server is the default, cross-platform HTTP server.

HTTP.sys server is a Windows-only HTTP server based on the HTTP.sys kernel driver and HTTP Server API.

When using IIS or IIS Express, the app runs in a process separate from the IIS worker process (out-of-process)

with the Kestrel server.

Because ASP.NET Core apps run in a process separate from the IIS worker process, the module handles process

management. The module starts the process for the ASP.NET Core app when the first request arrives and restarts

the app if it shuts down or crashes. This is essentially the same behavior as seen with apps that run in-process

that are managed by the Windows Process Activation Service (WAS).

The following diagram illustrates the relationship between IIS, the ASP.NET Core Module, and an app hosted out-

of-process:

Requests arrive from the web to the kernel-mode HTTP.sys driver. The driver routes the requests to IIS on the

website's configured port, usually 80 (HTTP) or 443 (HTTPS). The module forwards the requests to Kestrel on a

random port for the app, which isn't port 80 or 443.

The module specifies the port via an environment variable at startup, and the IIS Integration Middleware

configures the server to listen on http://localhost:{port} . Additional checks are performed, and requests that

don't originate from the module are rejected. The module doesn't support HTTPS forwarding, so requests are

forwarded over HTTP even if received by IIS over HTTPS.

After Kestrel picks up the request from the module, the request is pushed into the ASP.NET Core middleware

pipeline. The middleware pipeline handles the request and passes it on as an HttpContext instance to the app's

logic. Middleware added by IIS Integration updates the scheme, remote IP, and pathbase to account for

forwarding the request to Kestrel. The app's response is passed back to IIS, which pushes it back out to the HTTP

client that initiated the request.

For IIS and ASP.NET Core Module configuration guidance, see the following topics:

https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was
https://docs.microsoft.com/en-us/windows/desktop/http/http-api-start-page
https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/introduction-to-iis-architecture
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was

Nginx with KestrelNginx with Kestrel

Apache with KestrelApache with Kestrel

HTTP.sys

ASP.NET Core server infrastructure

Custom servers

Server startup

Host ASP.NET Core on Windows with IIS

ASP.NET Core Module

For information on how to use Nginx on Linux as a reverse proxy server for Kestrel, see Host ASP.NET Core on

Linux with Nginx.

For information on how to use Apache on Linux as a reverse proxy server for Kestrel, see Host ASP.NET Core on

Linux with Apache.

If ASP.NET Core apps are run on Windows, HTTP.sys is an alternative to Kestrel. Kestrel is generally recommended

for best performance. HTTP.sys can be used in scenarios where the app is exposed to the Internet and required

capabilities are supported by HTTP.sys but not Kestrel. For more information, see HTTP.sys web server

implementation in ASP.NET Core.

HTTP.sys can also be used for apps that are only exposed to an internal network.

For HTTP.sys configuration guidance, see HTTP.sys web server implementation in ASP.NET Core.

The IApplicationBuilder available in the Startup.Configure method exposes the ServerFeatures property of type

IFeatureCollection. Kestrel and HTTP.sys only expose a single feature each, IServerAddressesFeature, but different

server implementations may expose additional functionality.

IServerAddressesFeature can be used to find out which port the server implementation has bound at runtime.

If the built-in servers don't meet the app's requirements, a custom server implementation can be created. The

Open Web Interface for .NET (OWIN) guide demonstrates how to write a Nowin-based IServer implementation.

Only the feature interfaces that the app uses require implementation, though at a minimum IHttpRequestFeature

and IHttpResponseFeature must be supported.

The server is launched when the Integrated Development Environment (IDE) or editor starts the app:

Visual Studio: Launch profiles can be used to start the app and server with either IIS Express/ASP.NET Core

Module or the console.

Visual Studio Code: The app and server are started by Omnisharp, which activates the CoreCLR debugger.

Visual Studio for Mac: The app and server are started by the Mono Soft-Mode Debugger.

When launching the app from a command prompt in the project's folder, dotnet run launches the app and server

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder.serverfeatures#microsoft_aspnetcore_builder_iapplicationbuilder_serverfeatures
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.ifeaturecollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.features.iserveraddressesfeature
https://github.com/Bobris/Nowin
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.iserver
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.ihttprequestfeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.ihttpresponsefeature
https://visualstudio.microsoft.com
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview
https://code.visualstudio.com/
https://github.com/OmniSharp/omnisharp-vscode
https://visualstudio.microsoft.com/vs/mac/
https://www.mono-project.com/docs/advanced/runtime/docs/soft-debugger/
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run

HTTP/2 support

Additional resources

(Kestrel and HTTP.sys only). The configuration is specified by the -c|--configuration option, which is set to either

Debug (default) or Release .

A launchSettings.json file provides configuration when launching an app with dotnet run or with a debugger

built into tooling, such as Visual Studio. If launch profiles are present in a launchSettings.json file, use the

--launch-profile {PROFILE NAME} option with the dotnet run command or select the profile in Visual Studio. For

more information, see dotnet run and .NET Core distribution packaging.

HTTP/2 is supported with ASP.NET Core in the following deployment scenarios:

Kestrel

HTTP.sys

IIS (in-process)

IIS (out-of-process)

Operating system

Target framework: .NET Core 2.2 or later

Windows Server 2016/Windows 10 or later†

Linux with OpenSSL 1.0.2 or later (for example, Ubuntu 16.04 or later)

HTTP/2 will be supported on macOS in a future release.

Windows Server 2016/Windows 10 or later

Target framework: Not applicable to HTTP.sys deployments.

Windows Server 2016/Windows 10 or later ; IIS 10 or later

Target framework: .NET Core 2.2 or later

Windows Server 2016/Windows 10 or later ; IIS 10 or later

Public-facing edge server connections use HTTP/2, but the reverse proxy connection to Kestrel uses

HTTP/1.1.

Target framework: Not applicable to IIS out-of-process deployments.

†Kestrel has limited support for HTTP/2 on Windows Server 2012 R2 and Windows 8.1. Support is limited

because the list of supported TLS cipher suites available on these operating systems is limited. A certificate

generated using an Elliptic Curve Digital Signature Algorithm (ECDSA) may be required to secure TLS

connections.

HTTP.sys

IIS (out-of-process)

Windows Server 2016/Windows 10 or later

Target framework: Not applicable to HTTP.sys deployments.

Windows Server 2016/Windows 10 or later ; IIS 10 or later

Public-facing edge server connections use HTTP/2, but the reverse proxy connection to Kestrel uses

HTTP/1.1.

Target framework: Not applicable to IIS out-of-process deployments.

An HTTP/2 connection must use Application-Layer Protocol Negotiation (ALPN) and TLS 1.2 or later. For more

information, see the topics that pertain to your server deployment scenarios.

Kestrel web server implementation in ASP.NET Core

ASP.NET Core Module

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run
https://docs.microsoft.com/en-us/dotnet/core/build/distribution-packaging
https://httpwg.org/specs/rfc7540.html
https://tools.ietf.org/html/rfc7301#section-3

Host ASP.NET Core on Windows with IIS

Deploy ASP.NET Core apps to Azure App Service

Host ASP.NET Core on Linux with Nginx

Host ASP.NET Core on Linux with Apache

HTTP.sys web server implementation in ASP.NET Core

Configuration in ASP.NET Core
9/22/2020 • 60 minutes to read • Edit Online

Default configuration

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

By Rick Anderson and Kirk Larkin

Configuration in ASP.NET Core is performed using one or more configuration providers.

Configuration providers read configuration data from key-value pairs using a variety of

configuration sources:

Settings files, such as appsettings.json

Environment variables

Azure Key Vault

Azure App Configuration

Command-line arguments

Custom providers, installed or created

Directory files

In-memory .NET objects

View or download sample code (how to download)

ASP.NET Core web apps created with dotnet new or Visual Studio generate the following code:

CreateDefaultBuilder provides default configuration for the app in the following order :

1. ChainedConfigurationProvider : Adds an existing IConfiguration as a source. In the default

configuration case, adds the host configuration and setting it as the first source for the app

configuration.

2. appsettings.json using the JSON configuration provider.

3. appsettings. Environment .json using the JSON configuration provider. For example,

appsettings.ProductionProduction.json and appsettings.DevelopmentDevelopment.json.

4. App secrets when the app runs in the Development environment.

5. Environment variables using the Environment Variables configuration provider.

6. Command-line arguments using the Command-line configuration provider.

Configuration providers that are added later override previous key settings. For example, if

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/configuration/index.md
https://twitter.com/RickAndMSFT
https://twitter.com/serpent5
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.chainedconfigurationsource

public class Index2Model : PageModel
{
 private IConfigurationRoot ConfigRoot;

 public Index2Model(IConfiguration configRoot)
 {
 ConfigRoot = (IConfigurationRoot)configRoot;
 }

 public ContentResult OnGet()
 {
 string str = "";
 foreach (var provider in ConfigRoot.Providers.ToList())
 {
 str += provider.ToString() + "\n";
 }

 return Content(str);
 }
}

appsettings.jsonappsettings.json

{
 "Position": {
 "Title": "Editor",
 "Name": "Joe Smith"
 },
 "MyKey": "My appsettings.json Value",
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*"
}

MyKey is set in both appsettings.json and the environment, the environment value is used. Using

the default configuration providers, the Command-line configuration provider overrides all

other providers.

For more information on CreateDefaultBuilder , see Default builder settings.

The following code displays the enabled configuration providers in the order they were added:

Consider the following appsettings.json file:

The following code from the sample download displays several of the preceding configurations

settings:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample

public class TestModel : PageModel
{
 // requires using Microsoft.Extensions.Configuration;
 private readonly IConfiguration Configuration;

 public TestModel(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 var myKeyValue = Configuration["MyKey"];
 var title = Configuration["Position:Title"];
 var name = Configuration["Position:Name"];
 var defaultLogLevel = Configuration["Logging:LogLevel:Default"];

 return Content($"MyKey value: {myKeyValue} \n" +
 $"Title: {title} \n" +
 $"Name: {name} \n" +
 $"Default Log Level: {defaultLogLevel}");
 }
}

Bind hierarchical configuration data using the options patternBind hierarchical configuration data using the options pattern

 "Position": {
 "Title": "Editor",
 "Name": "Joe Smith"
 }

public class PositionOptions
{
 public const string Position = "Position";

 public string Title { get; set; }
 public string Name { get; set; }
}

The default JsonConfigurationProvider loads configuration in the following order :

1. appsettings.json

2. appsettings. Environment .json : For example, the appsettings.ProductionProduction.json and

appsettings.DevelopmentDevelopment.json files. The environment version of the file is loaded based on

the IHostingEnvironment.EnvironmentName. For more information, see Use multiple

environments in ASP.NET Core.

appsettings. Environment .json values override keys in appsettings.json. For example, by default:

In development, appsettings.DevelopmentDevelopment.json configuration overwrites values found in

appsettings.json.

In production, appsettings.ProductionProduction.json configuration overwrites values found in

appsettings.json. For example, when deploying the app to Azure.

The preferred way to read related configuration values is using the options pattern. For example,

to read the following configuration values:

Create the following PositionOptions class:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.json.jsonconfigurationprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment.environmentname

public class Test22Model : PageModel
{
 private readonly IConfiguration Configuration;

 public Test22Model(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 var positionOptions = new PositionOptions();
 Configuration.GetSection(PositionOptions.Position).Bind(positionOptions);

 return Content($"Title: {positionOptions.Title} \n" +
 $"Name: {positionOptions.Name}");
 }
}

public class Test21Model : PageModel
{
 private readonly IConfiguration Configuration;
 public PositionOptions positionOptions { get; private set; }

 public Test21Model(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 positionOptions = Configuration.GetSection(PositionOptions.Position)
 .Get<PositionOptions>();

 return Content($"Title: {positionOptions.Title} \n" +
 $"Name: {positionOptions.Name}");
 }
}

An options class:

Must be non-abstract with a public parameterless constructor.

All public read-write properties of the type are bound.

Fields are notnot bound. In the preceding code, Position is not bound. The Position property

is used so the string "Position" doesn't need to be hard coded in the app when binding the

class to a configuration provider.

The following code:

Calls ConfigurationBinder.Bind to bind the PositionOptions class to the Position section.

Displays the Position configuration data.

In the preceding code, by default, changes to the JSON configuration file after the app has

started are read.

ConfigurationBinder.Get<T> binds and returns the specified type. ConfigurationBinder.Get<T>

may be more convenient than using ConfigurationBinder.Bind . The following code shows how

to use ConfigurationBinder.Get<T> with the PositionOptions class:

In the preceding code, by default, changes to the JSON configuration file after the app has

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.bind
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.get

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<PositionOptions>(Configuration.GetSection(
 PositionOptions.Position));
 services.AddRazorPages();
}

public class Test2Model : PageModel
{
 private readonly PositionOptions _options;

 public Test2Model(IOptions<PositionOptions> options)
 {
 _options = options.Value;
 }

 public ContentResult OnGet()
 {
 return Content($"Title: {_options.Title} \n" +
 $"Name: {_options.Name}");
 }
}

Combining service collection

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<PositionOptions>(
 Configuration.GetSection(PositionOptions.Position));
 services.Configure<ColorOptions>(
 Configuration.GetSection(ColorOptions.Color));

 services.AddScoped<IMyDependency, MyDependency>();
 services.AddScoped<IMyDependency2, MyDependency2>();

 services.AddRazorPages();
}

started are read.

An alternative approach when using the options patternoptions pattern is to bind the Position section and

add it to the dependency injection service container. In the following code, PositionOptions is

added to the service container with Configure and bound to configuration:

Using the preceding code, the following code reads the position options:

In the preceding code, changes to the JSON configuration file after the app has started are notnot

read. To read changes after the app has started, use IOptionsSnapshot.

Using the default configuration, the appsettings.json and appsettings. Environment .json files are

enabled with reloadOnChange: true. Changes made to the appsettings.json and appsettings.

Environment .json file afterafter the app starts are read by the JSON configuration provider.

See JSON configuration provider in this document for information on adding additional JSON

configuration files.

 Consider the following ConfigureServices method, which registers services and configures

options:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsconfigurationservicecollectionextensions.configure
https://github.com/dotnet/extensions/blob/release/3.1/src/Hosting/Hosting/src/Host.cs#L74-L75

using ConfigSample.Options;
using Microsoft.Extensions.Configuration;

namespace Microsoft.Extensions.DependencyInjection
{
 public static class MyConfigServiceCollectionExtensions
 {
 public static IServiceCollection AddConfig(
 this IServiceCollection services, IConfiguration config)
 {
 services.Configure<PositionOptions>(
 config.GetSection(PositionOptions.Position));
 services.Configure<ColorOptions>(
 config.GetSection(ColorOptions.Color));

 return services;
 }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddConfig(Configuration)
 .AddMyDependencyGroup();

 services.AddRazorPages();
}

Security and secret manager

Related groups of registrations can be moved to an extension method to register services. For

example, the configuration services are added to the following class:

The remaining services are registered in a similar class. The following ConfigureServices

method uses the new extension methods to register the services:

Note:Note: Each services.Add{GROUP_NAME} extension method adds and potentially configures

services. For example, AddControllersWithViews adds the services MVC controllers with views

require, and AddRazorPages adds the services Razor Pages requires. We recommended that

apps follow this naming convention. Place extension methods in the

Microsoft.Extensions.DependencyInjection namespace to encapsulate groups of service

registrations.

Configuration data guidelines:

Never store passwords or other sensitive data in configuration provider code or in plain text

configuration files. The Secret manager can be used to store secrets in development.

Don't use production secrets in development or test environments.

Specify secrets outside of the project so that they can't be accidentally committed to a source

code repository.

By default, Secret manager reads configuration settings after appsettings.json and appsettings.

Environment .json.

For more information on storing passwords or other sensitive data:

Use multiple environments in ASP.NET Core

Safe storage of app secrets in development in ASP.NET Core: Includes advice on using

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addcontrollerswithviews
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addrazorpages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection

 Environment variables

set MyKey="My key from Environment"
set Position__Title=Environment_Editor
set Position__Name=Environment_Rick
dotnet run

setx MyKey "My key from setx Environment" /M
setx Position__Title Setx_Environment_Editor /M
setx Position__Name Environment_Rick /M

environment variables to store sensitive data. The Secret Manager uses the File configuration

provider to store user secrets in a JSON file on the local system.

Azure Key Vault safely stores app secrets for ASP.NET Core apps. For more information, see

Azure Key Vault Configuration Provider in ASP.NET Core.

Using the default configuration, the EnvironmentVariablesConfigurationProvider loads

configuration from environment variable key-value pairs after reading appsettings.json,

appsettings. Environment .json, and Secret manager. Therefore, key values read from the

environment override values read from appsettings.json, appsettings. Environment .json, and

Secret manager.

The : separator doesn't work with environment variable hierarchical keys on all platforms. __ ,

the double underscore, is:

Supported by all platforms. For example, the : separator is not supported by Bash, but __

is.

Automatically replaced by a :

The following set commands:

Set the environment keys and values of the preceding example on Windows.

Test the settings when using the sample download. The dotnet run command must be run in

the project directory.

The preceding environment settings:

Are only set in processes launched from the command window they were set in.

Won't be read by browsers launched with Visual Studio.

The following setx commands can be used to set the environment keys and values on Windows.

Unlike set , setx settings are persisted. /M sets the variable in the system environment. If the

/M switch isn't used, a user environment variable is set.

To test that the preceding commands override appsettings.json and appsettings. Environment

.json:

With Visual Studio: Exit and restart Visual Studio.

With the CLI: Start a new command window and enter dotnet run .

Call AddEnvironmentVariables with a string to specify a prefix for environment variables:

https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.environmentvariables.environmentvariablesconfigurationprovider
https://linuxhint.com/bash-environment-variables/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.environmentvariablesextensions.addenvironmentvariables

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddEnvironmentVariables(prefix: "MyCustomPrefix_");
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

set MyCustomPrefix_MyKey="My key with MyCustomPrefix_ Environment"
set MyCustomPrefix_Position__Title=Editor_with_customPrefix
set MyCustomPrefix_Position__Name=Environment_Rick_cp
dotnet run

Environment variables set in launchSettings.jsonEnvironment variables set in launchSettings.json

Command-line

In the preceding code:

config.AddEnvironmentVariables(prefix: "MyCustomPrefix_") is added after the default

configuration providers. For an example of ordering the configuration providers, see JSON

configuration provider.

Environment variables set with the MyCustomPrefix_ prefix override the default configuration

providers. This includes environment variables without the prefix.

The prefix is stripped off when the configuration key-value pairs are read.

The following commands test the custom prefix:

The default configuration loads environment variables and command line arguments prefixed

with DOTNET_ and ASPNETCORE_ . The DOTNET_ and ASPNETCORE_ prefixes are used by ASP.NET

Core for host and app configuration, but not for user configuration. For more information on

host and app configuration, see .NET Generic Host.

On Azure App Service, select New application settingNew application setting on the Settings > ConfigurationSettings > Configuration

page. Azure App Service application settings are:

Encrypted at rest and transmitted over an encrypted channel.

Exposed as environment variables.

For more information, see Azure Apps: Override app configuration using the Azure Portal.

See Connection string prefixes for information on Azure database connection strings.

Environment variables set in launchSettings.json override those set in the system environment.

Using the default configuration, the CommandLineConfigurationProvider loads configuration

from command-line argument key-value pairs after the following configuration sources:

https://azure.microsoft.com/services/app-service/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.commandline.commandlineconfigurationprovider

Command-line argumentsCommand-line arguments

dotnet run MyKey="My key from command line" Position:Title=Cmd Position:Name=Cmd_Rick

dotnet run /MyKey "Using /" /Position:Title=Cmd_ /Position:Name=Cmd_Rick

dotnet run --MyKey "Using --" --Position:Title=Cmd-- --Position:Name=Cmd--Rick

Switch mappingsSwitch mappings

appsettings.json and appsettings. Environment .json files.

App secrets (Secret Manager) in the Development environment.

Environment variables.

By default, configuration values set on the command-line override configuration values set with

all the other configuration providers.

The following command sets keys and values using = :

The following command sets keys and values using / :

The following command sets keys and values using -- :

The key value:

Must follow = , or the key must have a prefix of -- or / when the value follows a space.

Isn't required if = is used. For example, MySetting= .

Within the same command, don't mix command-line argument key-value pairs that use = with

key-value pairs that use a space.

Switch mappings allow keykey name replacement logic. Provide a dictionary of switch

replacements to the AddCommandLine method.

When the switch mappings dictionary is used, the dictionary is checked for a key that matches

the key provided by a command-line argument. If the command-line key is found in the

dictionary, the dictionary value is passed back to set the key-value pair into the app's

configuration. A switch mapping is required for any command-line key prefixed with a single

dash (-).

Switch mappings dictionary key rules:

Switches must start with - or -- .

The switch mappings dictionary must not contain duplicate keys.

To use a switch mappings dictionary, pass it into the call to AddCommandLine :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.commandlineconfigurationextensions.addcommandline

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args)
 {
 var switchMappings = new Dictionary<string, string>()
 {
 { "-k1", "key1" },
 { "-k2", "key2" },
 { "--alt3", "key3" },
 { "--alt4", "key4" },
 { "--alt5", "key5" },
 { "--alt6", "key6" },
 };

 return Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddCommandLine(args, switchMappings);
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

public class Test3Model : PageModel
{
 private readonly IConfiguration Config;

 public Test3Model(IConfiguration configuration)
 {
 Config = configuration;
 }

 public ContentResult OnGet()
 {
 return Content(
 $"Key1: '{Config["Key1"]}'\n" +
 $"Key2: '{Config["Key2"]}'\n" +
 $"Key3: '{Config["Key3"]}'\n" +
 $"Key4: '{Config["Key4"]}'\n" +
 $"Key5: '{Config["Key5"]}'\n" +
 $"Key6: '{Config["Key6"]}'");
 }
}

dotnet run -k1 value1 -k2 value2 --alt3=value2 /alt4=value3 --alt5 value5 /alt6 value6

The following code shows the key values for the replaced keys:

The following command works to test key replacement:

For apps that use switch mappings, the call to CreateDefaultBuilder shouldn't pass arguments.

The CreateDefaultBuilder method's AddCommandLine call doesn't include mapped switches, and

there's no way to pass the switch-mapping dictionary to CreateDefaultBuilder . The solution isn't

to pass the arguments to CreateDefaultBuilder but instead to allow the ConfigurationBuilder

Hierarchical configuration data

{
 "Position": {
 "Title": "Editor",
 "Name": "Joe Smith"
 },
 "MyKey": "My appsettings.json Value",
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*"
}

public class TestModel : PageModel
{
 // requires using Microsoft.Extensions.Configuration;
 private readonly IConfiguration Configuration;

 public TestModel(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 var myKeyValue = Configuration["MyKey"];
 var title = Configuration["Position:Title"];
 var name = Configuration["Position:Name"];
 var defaultLogLevel = Configuration["Logging:LogLevel:Default"];

 return Content($"MyKey value: {myKeyValue} \n" +
 $"Title: {title} \n" +
 $"Name: {name} \n" +
 $"Default Log Level: {defaultLogLevel}");
 }
}

Configuration keys and values

method's AddCommandLine method to process both the arguments and the switch-mapping

dictionary.

The Configuration API reads hierarchical configuration data by flattening the hierarchical data

with the use of a delimiter in the configuration keys.

The sample download contains the following appsettings.json file:

The following code from the sample download displays several of the configurations settings:

The preferred way to read hierarchical configuration data is using the options pattern. For more

information, see Bind hierarchical configuration data in this document.

GetSection and GetChildren methods are available to isolate sections and children of a section in

the configuration data. These methods are described later in GetSection, GetChildren, and Exists.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationsection.getsection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration.getchildren

Configuration providers

P RO VIDERP RO VIDER P RO VIDES C O N F IGURAT IO N F RO MP RO VIDES C O N F IGURAT IO N F RO M

Azure Key Vault configuration provider Azure Key Vault

Azure App configuration provider Azure App Configuration

Command-line configuration provider Command-line parameters

Custom configuration provider Custom source

Environment Variables configuration provider Environment variables

File configuration provider INI, JSON, and XML files

Key-per-file configuration provider Directory files

Memory configuration provider In-memory collections

Secret Manager File in the user profile directory

Configuration keys:

Are case-insensitive. For example, ConnectionString and connectionstring are treated as

equivalent keys.

If a key and value is set in more than one configuration providers, the value from the last

provider added is used. For more information, see Default configuration.

Hierarchical keys

The ConfigurationBinder supports binding arrays to objects using array indices in

configuration keys. Array binding is described in the Bind an array to a class section.

Within the Configuration API, a colon separator (:) works on all platforms.

In environment variables, a colon separator may not work on all platforms. A double

underscore, __ , is supported by all platforms and is automatically converted into a

colon : .

In Azure Key Vault, hierarchical keys use -- as a separator. The Azure Key Vault

configuration provider automatically replaces -- with a : when the secrets are

loaded into the app's configuration.

Configuration values:

Are strings.

Null values can't be stored in configuration or bound to objects.

The following table shows the configuration providers available to ASP.NET Core apps.

Configuration sources are read in the order that their configuration providers are specified.

Order configuration providers in code to suit the priorities for the underlying configuration

sources that the app requires.

A typical sequence of configuration providers is:

1. appsettings.json

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder
https://docs.microsoft.com/en-us/azure/azure-app-configuration/quickstart-aspnet-core-app

Connection string prefixesConnection string prefixes

C O N N EC T IO N ST RIN G P REF IXC O N N EC T IO N ST RIN G P REF IX P RO VIDERP RO VIDER

CUSTOMCONNSTR_ Custom provider

MYSQLCONNSTR_ MySQL

SQLAZURECONNSTR_ Azure SQL Database

SQLCONNSTR_ SQL Server

EN VIRO N M EN T VA RIA B L E KEYEN VIRO N M EN T VA RIA B L E KEY
C O N VERT ED C O N F IGURAT IO NC O N VERT ED C O N F IGURAT IO N
KEYKEY

P RO VIDER C O N F IGURAT IO NP RO VIDER C O N F IGURAT IO N
EN T RYEN T RY

CUSTOMCONNSTR_{KEY} ConnectionStrings:{KEY} Configuration entry not created.

MYSQLCONNSTR_{KEY} ConnectionStrings:{KEY} Key:
ConnectionStrings:
{KEY}_ProviderName

:
Value:
MySql.Data.MySqlClient

SQLAZURECONNSTR_{KEY} ConnectionStrings:{KEY} Key:
ConnectionStrings:
{KEY}_ProviderName

:
Value: System.Data.SqlClient

2. appsettings. Environment .json

3. Secret Manager

4. Environment variables using the Environment Variables configuration provider.

5. Command-line arguments using the Command-line configuration provider.

A common practice is to add the Command-line configuration provider last in a series of

providers to allow command-line arguments to override configuration set by the other

providers.

The preceding sequence of providers is used in the default configuration.

The Configuration API has special processing rules for four connection string environment

variables. These connection strings are involved in configuring Azure connection strings for the

app environment. Environment variables with the prefixes shown in the table are loaded into the

app with the default configuration or when no prefix is supplied to AddEnvironmentVariables .

When an environment variable is discovered and loaded into configuration with any of the four

prefixes shown in the table:

The configuration key is created by removing the environment variable prefix and adding a

configuration key section (ConnectionStrings).

A new configuration key-value pair is created that represents the database connection

provider (except for CUSTOMCONNSTR_ , which has no stated provider).

https://www.mysql.com/
https://azure.microsoft.com/services/sql-database/
https://www.microsoft.com/sql-server/

SQLCONNSTR_{KEY} ConnectionStrings:{KEY} Key:
ConnectionStrings:
{KEY}_ProviderName

:
Value: System.Data.SqlClient

EN VIRO N M EN T VA RIA B L E KEYEN VIRO N M EN T VA RIA B L E KEY
C O N VERT ED C O N F IGURAT IO NC O N VERT ED C O N F IGURAT IO N
KEYKEY

P RO VIDER C O N F IGURAT IO NP RO VIDER C O N F IGURAT IO N
EN T RYEN T RY

File configuration provider

INI configuration providerINI configuration provider

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.Sources.Clear();

 var env = hostingContext.HostingEnvironment;

 config.AddIniFile("MyIniConfig.ini", optional: true, reloadOnChange: true)
 .AddIniFile($"MyIniConfig.{env.EnvironmentName}.ini",
 optional: true, reloadOnChange: true);

 config.AddEnvironmentVariables();

 if (args != null)
 {
 config.AddCommandLine(args);
 }
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

FileConfigurationProvider is the base class for loading configuration from the file system. The

following configuration providers derive from FileConfigurationProvider :

INI configuration provider

JSON configuration provider

XML configuration provider

The IniConfigurationProvider loads configuration from INI file key-value pairs at runtime.

The following code clears all the configuration providers and adds several configuration

providers:

In the preceding code, settings in the MyIniConfig.ini and MyIniConfig. Environment .ini files are

overridden by settings in the:

Environment variables configuration provider

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.fileconfigurationprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.ini.iniconfigurationprovider

MyKey="MyIniConfig.ini Value"

[Position]
Title="My INI Config title"
Name="My INI Config name"

[Logging:LogLevel]
Default=Information
Microsoft=Warning

public class TestModel : PageModel
{
 // requires using Microsoft.Extensions.Configuration;
 private readonly IConfiguration Configuration;

 public TestModel(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 var myKeyValue = Configuration["MyKey"];
 var title = Configuration["Position:Title"];
 var name = Configuration["Position:Name"];
 var defaultLogLevel = Configuration["Logging:LogLevel:Default"];

 return Content($"MyKey value: {myKeyValue} \n" +
 $"Title: {title} \n" +
 $"Name: {name} \n" +
 $"Default Log Level: {defaultLogLevel}");
 }
}

JSON configuration providerJSON configuration provider

Command-line configuration provider.

The sample download contains the following MyIniConfig.ini file:

The following code from the sample download displays several of the preceding configurations

settings:

The JsonConfigurationProvider loads configuration from JSON file key-value pairs.

Overloads can specify:

Whether the file is optional.

Whether the configuration is reloaded if the file changes.

Consider the following code:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.json.jsonconfigurationprovider

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddJsonFile("MyConfig.json",
 optional: true,
 reloadOnChange: true);
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

The preceding code:

Configures the JSON configuration provider to load the MyConfig.json file with the following

options:

Reads the default configuration providers before the MyConfig.json file. Settings in the

MyConfig.json file override setting in the default configuration providers, including the

Environment variables configuration provider and the Command-line configuration provider.

optional: true : The file is optional.

reloadOnChange: true : The file is reloaded when changes are saved.

You typically don'tdon't want a custom JSON file overriding values set in the Environment variables

configuration provider and the Command-line configuration provider.

The following code clears all the configuration providers and adds several configuration

providers:

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.Sources.Clear();

 var env = hostingContext.HostingEnvironment;

 config.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json",
 optional: true, reloadOnChange: true);

 config.AddJsonFile("MyConfig.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"MyConfig.{env.EnvironmentName}.json",
 optional: true, reloadOnChange: true);

 config.AddEnvironmentVariables();

 if (args != null)
 {
 config.AddCommandLine(args);
 }
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

{
 "Position": {
 "Title": "My Config title",
 "Name": "My Config Smith"
 },
 "MyKey": "MyConfig.json Value",
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*"
}

In the preceding code, settings in the MyConfig.json and MyConfig. Environment .json files:

Override settings in the appsettings.json and appsettings. Environment .json files.

Are overridden by settings in the Environment variables configuration provider and the

Command-line configuration provider.

The sample download contains the following MyConfig.json file:

The following code from the sample download displays several of the preceding configurations

settings:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample

public class TestModel : PageModel
{
 // requires using Microsoft.Extensions.Configuration;
 private readonly IConfiguration Configuration;

 public TestModel(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 var myKeyValue = Configuration["MyKey"];
 var title = Configuration["Position:Title"];
 var name = Configuration["Position:Name"];
 var defaultLogLevel = Configuration["Logging:LogLevel:Default"];

 return Content($"MyKey value: {myKeyValue} \n" +
 $"Title: {title} \n" +
 $"Name: {name} \n" +
 $"Default Log Level: {defaultLogLevel}");
 }
}

XML configuration providerXML configuration provider

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.Sources.Clear();

 var env = hostingContext.HostingEnvironment;

 config.AddXmlFile("MyXMLFile.xml", optional: true, reloadOnChange: true)
 .AddXmlFile($"MyXMLFile.{env.EnvironmentName}.xml",
 optional: true, reloadOnChange: true);

 config.AddEnvironmentVariables();

 if (args != null)
 {
 config.AddCommandLine(args);
 }
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

The XmlConfigurationProvider loads configuration from XML file key-value pairs at runtime.

The following code clears all the configuration providers and adds several configuration

providers:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.xml.xmlconfigurationprovider

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <MyKey>MyXMLFile Value</MyKey>
 <Position>
 <Title>Title from MyXMLFile</Title>
 <Name>Name from MyXMLFile</Name>
 </Position>
 <Logging>
 <LogLevel>
 <Default>Information</Default>
 <Microsoft>Warning</Microsoft>
 </LogLevel>
 </Logging>
</configuration>

public class TestModel : PageModel
{
 // requires using Microsoft.Extensions.Configuration;
 private readonly IConfiguration Configuration;

 public TestModel(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 var myKeyValue = Configuration["MyKey"];
 var title = Configuration["Position:Title"];
 var name = Configuration["Position:Name"];
 var defaultLogLevel = Configuration["Logging:LogLevel:Default"];

 return Content($"MyKey value: {myKeyValue} \n" +
 $"Title: {title} \n" +
 $"Name: {name} \n" +
 $"Default Log Level: {defaultLogLevel}");
 }
}

In the preceding code, settings in the MyXMLFile.xml and MyXMLFile. Environment .xml files are

overridden by settings in the:

Environment variables configuration provider

Command-line configuration provider.

The sample download contains the following MyXMLFile.xml file:

The following code from the sample download displays several of the preceding configurations

settings:

Repeating elements that use the same element name work if the name attribute is used to

distinguish the elements:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <section name="section0">
 <key name="key0">value 00</key>
 <key name="key1">value 01</key>
 </section>
 <section name="section1">
 <key name="key0">value 10</key>
 <key name="key1">value 11</key>
 </section>
</configuration>

public class IndexModel : PageModel
{
 private readonly IConfiguration Configuration;

 public IndexModel(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 var key00 = "section:section0:key:key0";
 var key01 = "section:section0:key:key1";
 var key10 = "section:section1:key:key0";
 var key11 = "section:section1:key:key1";

 var val00 = Configuration[key00];
 var val01 = Configuration[key01];
 var val10 = Configuration[key10];
 var val11 = Configuration[key11];

 return Content($"{key00} value: {val00} \n" +
 $"{key01} value: {val01} \n" +
 $"{key10} value: {val10} \n" +
 $"{key10} value: {val11} \n"
);
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <key attribute="value" />
 <section>
 <key attribute="value" />
 </section>
</configuration>

Key-per-file configuration provider

The following code reads the previous configuration file and displays the keys and values:

Attributes can be used to supply values:

The previous configuration file loads the following keys with value :

key:attribute

section:key:attribute

The KeyPerFileConfigurationProvider uses a directory's files as configuration key-value pairs.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.keyperfile.keyperfileconfigurationprovider

.ConfigureAppConfiguration((hostingContext, config) =>
{
 var path = Path.Combine(
 Directory.GetCurrentDirectory(), "path/to/files");
 config.AddKeyPerFile(directoryPath: path, optional: true);
})

Memory configuration provider

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args)
 {
 var Dict = new Dictionary<string, string>
 {
 {"MyKey", "Dictionary MyKey Value"},
 {"Position:Title", "Dictionary_Title"},
 {"Position:Name", "Dictionary_Name" },
 {"Logging:LogLevel:Default", "Warning"}
 };

 return Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddInMemoryCollection(Dict);
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

The key is the file name. The value contains the file's contents. The Key-per-file configuration

provider is used in Docker hosting scenarios.

To activate key-per-file configuration, call the AddKeyPerFile extension method on an instance of

ConfigurationBuilder. The directoryPath to the files must be an absolute path.

Overloads permit specifying:

An Action<KeyPerFileConfigurationSource> delegate that configures the source.

Whether the directory is optional and the path to the directory.

The double-underscore (__) is used as a configuration key delimiter in file names. For example,

the file name Logging__LogLevel__System produces the configuration key

Logging:LogLevel:System .

Call ConfigureAppConfiguration when building the host to specify the app's configuration:

The MemoryConfigurationProvider uses an in-memory collection as configuration key-value

pairs.

The following code adds a memory collection to the configuration system:

The following code from the sample download displays the preceding configurations settings:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.keyperfileconfigurationbuilderextensions.addkeyperfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.memory.memoryconfigurationprovider
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample

public class TestModel : PageModel
{
 // requires using Microsoft.Extensions.Configuration;
 private readonly IConfiguration Configuration;

 public TestModel(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 var myKeyValue = Configuration["MyKey"];
 var title = Configuration["Position:Title"];
 var name = Configuration["Position:Name"];
 var defaultLogLevel = Configuration["Logging:LogLevel:Default"];

 return Content($"MyKey value: {myKeyValue} \n" +
 $"Title: {title} \n" +
 $"Name: {name} \n" +
 $"Default Log Level: {defaultLogLevel}");
 }
}

GetValue

public class TestNumModel : PageModel
{
 private readonly IConfiguration Configuration;

 public TestNumModel(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 var number = Configuration.GetValue<int>("NumberKey", 99);
 return Content($"{number}");
 }
}

GetSection, GetChildren, and Exists

In the preceding code, config.AddInMemoryCollection(Dict) is added after the default

configuration providers. For an example of ordering the configuration providers, see JSON

configuration provider.

See Bind an array for another example using MemoryConfigurationProvider .

ConfigurationBinder.GetValue<T> extracts a single value from configuration with a specified key

and converts it to the specified type:

In the preceding code, if NumberKey isn't found in the configuration, the default value of 99 is

used.

For the examples that follow, consider the following MySubsection.json file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.getvalue

{
 "section0": {
 "key0": "value00",
 "key1": "value01"
 },
 "section1": {
 "key0": "value10",
 "key1": "value11"
 },
 "section2": {
 "subsection0": {
 "key0": "value200",
 "key1": "value201"
 },
 "subsection1": {
 "key0": "value210",
 "key1": "value211"
 }
 }
}

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddJsonFile("MySubsection.json",
 optional: true,
 reloadOnChange: true);
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

GetSectionGetSection

The following code adds MySubsection.json to the configuration providers:

IConfiguration.GetSection returns a configuration subsection with the specified subsection key.

The following code returns values for section1 :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration.getsection

public class TestSectionModel : PageModel
{
 private readonly IConfiguration Config;

 public TestSectionModel(IConfiguration configuration)
 {
 Config = configuration.GetSection("section1");
 }

 public ContentResult OnGet()
 {
 return Content(
 $"section1:key0: '{Config["key0"]}'\n" +
 $"section1:key1: '{Config["key1"]}'");
 }
}

public class TestSection2Model : PageModel
{
 private readonly IConfiguration Config;

 public TestSection2Model(IConfiguration configuration)
 {
 Config = configuration.GetSection("section2:subsection0");
 }

 public ContentResult OnGet()
 {
 return Content(
 $"section2:subsection0:key0 '{Config["key0"]}'\n" +
 $"section2:subsection0:key1:'{Config["key1"]}'");
 }
}

GetChildren and ExistsGetChildren and Exists

The following code returns values for section2:subsection0 :

GetSection never returns null . If a matching section isn't found, an empty

IConfigurationSection is returned.

When GetSection returns a matching section, Value isn't populated. A Key and Path are returned

when the section exists.

The following code calls IConfiguration.GetChildren and returns values for section2:subsection0

:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationsection.value#microsoft_extensions_configuration_iconfigurationsection_value
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationsection.key#microsoft_extensions_configuration_iconfigurationsection_key
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationsection.path#microsoft_extensions_configuration_iconfigurationsection_path
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration.getchildren

public class TestSection4Model : PageModel
{
 private readonly IConfiguration Config;

 public TestSection4Model(IConfiguration configuration)
 {
 Config = configuration;
 }

 public ContentResult OnGet()
 {
 string s = null;
 var selection = Config.GetSection("section2");
 if (!selection.Exists())
 {
 throw new System.Exception("section2 does not exist.");
 }
 var children = selection.GetChildren();

 foreach (var subSection in children)
 {
 int i = 0;
 var key1 = subSection.Key + ":key" + i++.ToString();
 var key2 = subSection.Key + ":key" + i.ToString();
 s += key1 + " value: " + selection[key1] + "\n";
 s += key2 + " value: " + selection[key2] + "\n";
 }
 return Content(s);
 }
}

Bind an array

{
 "array": {
 "entries": {
 "0": "value00",
 "1": "value10",
 "2": "value20",
 "4": "value40",
 "5": "value50"
 }
 }
}

The preceding code calls ConfigurationExtensions.Exists to verify the section exists:

The ConfigurationBinder.Bind supports binding arrays to objects using array indices in

configuration keys. Any array format that exposes a numeric key segment is capable of array

binding to a POCO class array.

Consider MyArray.json from the sample download:

The following code adds MyArray.json to the configuration providers:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.exists
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.bind
https://wikipedia.org/wiki/Plain_Old_CLR_Object
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples/3.x/ConfigSample

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddJsonFile("MyArray.json",
 optional: true,
 reloadOnChange: true);
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

public class ArrayModel : PageModel
{
 private readonly IConfiguration Config;
 public ArrayExample _array { get; private set; }

 public ArrayModel(IConfiguration config)
 {
 Config = config;
 }

 public ContentResult OnGet()
 {
 _array = Config.GetSection("array").Get<ArrayExample>();
 string s = null;

 for (int j = 0; j < _array.Entries.Length; j++)
 {
 s += $"Index: {j} Value: {_array.Entries[j]} \n";
 }

 return Content(s);
 }
}

Index: 0 Value: value00
Index: 1 Value: value10
Index: 2 Value: value20
Index: 3 Value: value40
Index: 4 Value: value50

The following code reads the configuration and displays the values:

The preceding code returns the following output:

In the preceding output, Index 3 has value value40 , corresponding to "4": "value40", in

MyArray.json. The bound array indices are continuous and not bound to the configuration key

index. The configuration binder isn't capable of binding null values or creating null entries in

bound objects

The following code loads the array:entries configuration with the AddInMemoryCollection

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.memoryconfigurationbuilderextensions.addinmemorycollection

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args)
 {
 var arrayDict = new Dictionary<string, string>
 {
 {"array:entries:0", "value0"},
 {"array:entries:1", "value1"},
 {"array:entries:2", "value2"},
 // 3 Skipped
 {"array:entries:4", "value4"},
 {"array:entries:5", "value5"}
 };

 return Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddInMemoryCollection(arrayDict);
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

public class ArrayModel : PageModel
{
 private readonly IConfiguration Config;
 public ArrayExample _array { get; private set; }

 public ArrayModel(IConfiguration config)
 {
 Config = config;
 }

 public ContentResult OnGet()
 {
 _array = Config.GetSection("array").Get<ArrayExample>();
 string s = null;

 for (int j = 0; j < _array.Entries.Length; j++)
 {
 s += $"Index: {j} Value: {_array.Entries[j]} \n";
 }

 return Content(s);
 }
}

extension method:

The following code reads the configuration in the arrayDict Dictionary and displays the

values:

The preceding code returns the following output:

Index: 0 Value: value0
Index: 1 Value: value1
Index: 2 Value: value2
Index: 3 Value: value4
Index: 4 Value: value5

{
 "array:entries:3": "value3"
}

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args)
 {
 var arrayDict = new Dictionary<string, string>
 {
 {"array:entries:0", "value0"},
 {"array:entries:1", "value1"},
 {"array:entries:2", "value2"},
 // 3 Skipped
 {"array:entries:4", "value4"},
 {"array:entries:5", "value5"}
 };

 return Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddInMemoryCollection(arrayDict);
 config.AddJsonFile("Value3.json",
 optional: false, reloadOnChange: false);
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

Index #3 in the bound object holds the configuration data for the array:4 configuration key and

its value of value4 . When configuration data containing an array is bound, the array indices in

the configuration keys are used to iterate the configuration data when creating the object. A null

value can't be retained in configuration data, and a null-valued entry isn't created in a bound

object when an array in configuration keys skip one or more indices.

The missing configuration item for index #3 can be supplied before binding to the ArrayExample

instance by any configuration provider that reads the index #3 key/value pair. Consider the

following Value3.json file from the sample download:

The following code includes configuration for Value3.json and the arrayDict Dictionary :

The following code reads the preceding configuration and displays the values:

public class ArrayModel : PageModel
{
 private readonly IConfiguration Config;
 public ArrayExample _array { get; private set; }

 public ArrayModel(IConfiguration config)
 {
 Config = config;
 }

 public ContentResult OnGet()
 {
 _array = Config.GetSection("array").Get<ArrayExample>();
 string s = null;

 for (int j = 0; j < _array.Entries.Length; j++)
 {
 s += $"Index: {j} Value: {_array.Entries[j]} \n";
 }

 return Content(s);
 }
}

Index: 0 Value: value0
Index: 1 Value: value1
Index: 2 Value: value2
Index: 3 Value: value3
Index: 4 Value: value4
Index: 5 Value: value5

Custom configuration provider

public class EFConfigurationValue
{
 public string Id { get; set; }
 public string Value { get; set; }
}

The preceding code returns the following output:

Custom configuration providers aren't required to implement array binding.

The sample app demonstrates how to create a basic configuration provider that reads

configuration key-value pairs from a database using Entity Framework (EF).

The provider has the following characteristics:

The EF in-memory database is used for demonstration purposes. To use a database that

requires a connection string, implement a secondary ConfigurationBuilder to supply the

connection string from another configuration provider.

The provider reads a database table into configuration at startup. The provider doesn't query

the database on a per-key basis.

Reload-on-change isn't implemented, so updating the database after the app starts has no

effect on the app's configuration.

Define an EFConfigurationValue entity for storing configuration values in the database.

Models/EFConfigurationValue.cs:

https://docs.microsoft.com/en-us/ef/core/

// using Microsoft.EntityFrameworkCore;

public class EFConfigurationContext : DbContext
{
 public EFConfigurationContext(DbContextOptions options) : base(options)
 {
 }

 public DbSet<EFConfigurationValue> Values { get; set; }
}

// using Microsoft.EntityFrameworkCore;
// using Microsoft.Extensions.Configuration;

public class EFConfigurationSource : IConfigurationSource
{
 private readonly Action<DbContextOptionsBuilder> _optionsAction;

 public EFConfigurationSource(Action<DbContextOptionsBuilder> optionsAction)
 {
 _optionsAction = optionsAction;
 }

 public IConfigurationProvider Build(IConfigurationBuilder builder)
 {
 return new EFConfigurationProvider(_optionsAction);
 }
}

Add an EFConfigurationContext to store and access the configured values.

EFConfigurationProvider/EFConfigurationContext.cs:

Create a class that implements IConfigurationSource.

EFConfigurationProvider/EFConfigurationSource.cs:

Create the custom configuration provider by inheriting from ConfigurationProvider. The

configuration provider initializes the database when it's empty. Since configuration keys are

case-insensitive, the dictionary used to initialize the database is created with the case-insensitive

comparer (StringComparer.OrdinalIgnoreCase).

EFConfigurationProvider/EFConfigurationProvider.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationsource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationprovider
https://docs.microsoft.com/en-us/dotnet/api/system.stringcomparer.ordinalignorecase#system_stringcomparer_ordinalignorecase

// using Microsoft.EntityFrameworkCore;
// using Microsoft.Extensions.Configuration;

public class EFConfigurationProvider : ConfigurationProvider
{
 public EFConfigurationProvider(Action<DbContextOptionsBuilder> optionsAction)
 {
 OptionsAction = optionsAction;
 }

 Action<DbContextOptionsBuilder> OptionsAction { get; }

 public override void Load()
 {
 var builder = new DbContextOptionsBuilder<EFConfigurationContext>();

 OptionsAction(builder);

 using (var dbContext = new EFConfigurationContext(builder.Options))
 {
 dbContext.Database.EnsureCreated();

 Data = !dbContext.Values.Any()
 ? CreateAndSaveDefaultValues(dbContext)
 : dbContext.Values.ToDictionary(c => c.Id, c => c.Value);
 }
 }

 private static IDictionary<string, string> CreateAndSaveDefaultValues(
 EFConfigurationContext dbContext)
 {
 // Quotes (c)2005 Universal Pictures: Serenity
 // https://www.uphe.com/movies/serenity
 var configValues =
 new Dictionary<string, string>(StringComparer.OrdinalIgnoreCase)
 {
 { "quote1", "I aim to misbehave." },
 { "quote2", "I swallowed a bug." },
 { "quote3", "You can't stop the signal, Mal." }
 };

 dbContext.Values.AddRange(configValues
 .Select(kvp => new EFConfigurationValue
 {
 Id = kvp.Key,
 Value = kvp.Value
 })
 .ToArray());

 dbContext.SaveChanges();

 return configValues;
 }
}

An AddEFConfiguration extension method permits adding the configuration source to a

ConfigurationBuilder .

Extensions/EntityFrameworkExtensions.cs:

// using Microsoft.EntityFrameworkCore;
// using Microsoft.Extensions.Configuration;

public static class EntityFrameworkExtensions
{
 public static IConfigurationBuilder AddEFConfiguration(
 this IConfigurationBuilder builder,
 Action<DbContextOptionsBuilder> optionsAction)
 {
 return builder.Add(new EFConfigurationSource(optionsAction));
 }
}

// using Microsoft.EntityFrameworkCore;

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddEFConfiguration(
 options => options.UseInMemoryDatabase("InMemoryDb"));
 })

Access configuration in Startup

The following code shows how to use the custom EFConfigurationProvider in Program.cs:

The following code displays configuration data in Startup methods:

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 Console.WriteLine($"MyKey : {Configuration["MyKey"]}");
 }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 Console.WriteLine($"Position:Title : {Configuration["Position:Title"]}");

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

Access configuration in Razor Pages

@page
@model Test5Model
@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

Configuration value for 'MyKey': @Configuration["MyKey"]

For an example of accessing configuration using startup convenience methods, see App startup:

Convenience methods.

The following code displays configuration data in a Razor Page:

In the following code, MyOptions is added to the service container with Configure and bound to

configuration:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsconfigurationservicecollectionextensions.configure

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<MyOptions>(Configuration.GetSection("MyOptions"));

 services.AddRazorPages();
}

@page
@model SampleApp.Pages.Test3Model
@using Microsoft.Extensions.Options
@inject IOptions<MyOptions> optionsAccessor

<p>Option1: @optionsAccessor.Value.Option1</p>
<p>Option2: @optionsAccessor.Value.Option2</p>

Access configuration in a MVC view file

@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

Configuration value for 'MyKey': @Configuration["MyKey"]

Configure options with a delegate

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<MyOptions>(myOptions =>
 {
 myOptions.Option1 = "Value configured in delegate";
 myOptions.Option2 = 500;
 });

 services.AddRazorPages();
}

The following markup uses the @inject Razor directive to resolve and display the options

values:

The following code displays configuration data in a MVC view:

Options configured in a delegate override values set in the configuration providers.

Configuring options with a delegate is demonstrated as Example 2 in the sample app.

In the following code, an IConfigureOptions<TOptions> service is added to the service container.

It uses a delegate to configure values for MyOptions :

The following code displays the options values:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1

public class Test2Model : PageModel
{
 private readonly IOptions<MyOptions> _optionsDelegate;

 public Test2Model(IOptions<MyOptions> optionsDelegate)
 {
 _optionsDelegate = optionsDelegate;
 }

 public ContentResult OnGet()
 {
 return Content($"Option1: {_optionsDelegate.Value.Option1} \n" +
 $"Option2: {_optionsDelegate.Value.Option2}");
 }
}

Host versus app configuration

Default host configuration

Other configuration

In the preceding example, the values of Option1 and Option2 are specified in appsettings.json

and then overridden by the configured delegate.

Before the app is configured and started, a host is configured and launched. The host is

responsible for app startup and lifetime management. Both the app and the host are configured

using the configuration providers described in this topic. Host configuration key-value pairs are

also included in the app's configuration. For more information on how the configuration

providers are used when the host is built and how configuration sources affect host

configuration, see ASP.NET Core fundamentals.

 ASP.N ET Core 2.2 version of this topicFor details on the default configuration when using the Web Host, see the .

Host configuration is provided from:

Web Host default configuration is established (ConfigureWebHostDefaults):

Environment variables prefixed with DOTNET_ (for example, DOTNET_ENVIRONMENT) using

the Environment Variables configuration provider. The prefix (DOTNET_) is stripped

when the configuration key-value pairs are loaded.

Command-line arguments using the Command-line configuration provider.

Kestrel is used as the web server and configured using the app's configuration

providers.

Add Host Filtering Middleware.

Add Forwarded Headers Middleware if the ASPNETCORE_FORWARDEDHEADERS_ENABLED

environment variable is set to true .

Enable IIS integration.

This topic only pertains to app configuration. Other aspects of running and hosting ASP.NET

Core apps are configured using configuration files not covered in this topic:

launch.json/launchSettings.json are tooling configuration files for the Development

environment, described:

In Use multiple environments in ASP.NET Core.

Across the documentation set where the files are used to configure ASP.NET Core apps

for Development scenarios.

Add configuration from an external assembly

Additional resources

using Microsoft.Extensions.Configuration;

Host versus app configuration

web.config is a server configuration file, described in the following topics:

Host ASP.NET Core on Windows with IIS

ASP.NET Core Module

Environment variables set in launchSettings.json override those set in the system environment.

For more information on migrating app configuration from earlier versions of ASP.NET, see

Migrate from ASP.NET to ASP.NET Core.

An IHostingStartup implementation allows adding enhancements to an app at startup from an

external assembly outside of the app's Startup class. For more information, see Use hosting

startup assemblies in ASP.NET Core.

Configuration source code

Options pattern in ASP.NET Core

ASP.NET Core Blazor configuration

App configuration in ASP.NET Core is based on key-value pairs established by configuration

providers. Configuration providers read configuration data into key-value pairs from a variety of

configuration sources:

Azure Key Vault

Azure App Configuration

Command-line arguments

Custom providers (installed or created)

Directory files

Environment variables

In-memory .NET objects

Settings files

Configuration packages for common configuration provider scenarios

(Microsoft.Extensions.Configuration) are included in the Microsoft.AspNetCore.App

metapackage.

Code examples that follow and in the sample app use the Microsoft.Extensions.Configuration

namespace:

The options pattern is an extension of the configuration concepts described in this topic. Options

use classes to represent groups of related settings. For more information, see Options pattern in

ASP.NET Core.

View or download sample code (how to download)

Before the app is configured and started, a host is configured and launched. The host is

responsible for app startup and lifetime management. Both the app and the host are configured

using the configuration providers described in this topic. Host configuration key-value pairs are

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup
https://github.com/dotnet/extensions/tree/master/src/Configuration
https://www.nuget.org/packages/Microsoft.Extensions.Configuration/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/index/samples

Other configuration

Default configuration

Security

also included in the app's configuration. For more information on how the configuration

providers are used when the host is built and how configuration sources affect host

configuration, see ASP.NET Core fundamentals.

This topic only pertains to app configuration. Other aspects of running and hosting ASP.NET

Core apps are configured using configuration files not covered in this topic:

launch.json/launchSettings.json are tooling configuration files for the Development

environment, described:

web.config is a server configuration file, described in the following topics:

In Use multiple environments in ASP.NET Core.

Across the documentation set where the files are used to configure ASP.NET Core apps

for Development scenarios.

Host ASP.NET Core on Windows with IIS

ASP.NET Core Module

For more information on migrating app configuration from earlier versions of ASP.NET, see

Migrate from ASP.NET to ASP.NET Core.

Web apps based on the ASP.NET Core dotnet new templates call CreateDefaultBuilder when

building a host. CreateDefaultBuilder provides default configuration for the app in the following

order :

The following applies to apps using the Web Host. For details on the default configuration when

using the Generic Host, see the latest version of this topic.

Host configuration is provided from:

App configuration is provided from:

Environment variables prefixed with ASPNETCORE_ (for example,

ASPNETCORE_ENVIRONMENT) using the Environment Variables Configuration Provider. The

prefix (ASPNETCORE_) is stripped when the configuration key-value pairs are loaded.

Command-line arguments using the Command-line Configuration Provider.

appsettings.json using the File Configuration Provider.

appsettings.{Environment}.json using the File Configuration Provider.

Secret Manager when the app runs in the Development environment using the entry

assembly.

Environment variables using the Environment Variables Configuration Provider.

Command-line arguments using the Command-line Configuration Provider.

Adopt the following practices to secure sensitive configuration data:

Never store passwords or other sensitive data in configuration provider code or in plain text

configuration files.

Don't use production secrets in development or test environments.

Specify secrets outside of the project so that they can't be accidentally committed to a source

code repository.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder

Hierarchical configuration data

{
 "section0": {
 "key0": "value",
 "key1": "value"
 },
 "section1": {
 "key0": "value",
 "key1": "value"
 }
}

Conventions
Sources and providersSources and providers

For more information, see the following topics:

Use multiple environments in ASP.NET Core

Safe storage of app secrets in development in ASP.NET Core: Includes advice on using

environment variables to store sensitive data. The Secret Manager uses the File Configuration

Provider to store user secrets in a JSON file on the local system. The File Configuration

Provider is described later in this topic.

Azure Key Vault safely stores app secrets for ASP.NET Core apps. For more information, see

Azure Key Vault Configuration Provider in ASP.NET Core.

The Configuration API is capable of maintaining hierarchical configuration data by flattening the

hierarchical data with the use of a delimiter in the configuration keys.

In the following JSON file, four keys exist in a structured hierarchy of two sections:

When the file is read into configuration, unique keys are created to maintain the original

hierarchical data structure of the configuration source. The sections and keys are flattened with

the use of a colon (:) to maintain the original structure:

section0:key0

section0:key1

section1:key0

section1:key1

GetSection and GetChildren methods are available to isolate sections and children of a section in

the configuration data. These methods are described later in GetSection, GetChildren, and Exists.

At app startup, configuration sources are read in the order that their configuration providers are

specified.

Configuration providers that implement change detection have the ability to reload

configuration when an underlying setting is changed. For example, the File Configuration

Provider (described later in this topic) and the Azure Key Vault Configuration Provider

implement change detection.

IConfiguration is available in the app's dependency injection (DI) container. IConfiguration can be

injected into a Razor Pages PageModel or MVC Controller to obtain configuration for the class.

In the following examples, the _config field is used to access configuration values:

https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationsection.getsection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration.getchildren
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller

public class IndexModel : PageModel
{
 private readonly IConfiguration _config;

 public IndexModel(IConfiguration config)
 {
 _config = config;
 }
}

public class HomeController : Controller
{
 private readonly IConfiguration _config;

 public HomeController(IConfiguration config)
 {
 _config = config;
 }
}

KeysKeys

ValuesValues

Providers

P RO VIDERP RO VIDER P RO VIDES C O N F IGURAT IO N F RO M …P RO VIDES C O N F IGURAT IO N F RO M …

Configuration providers can't utilize DI, as it's not available when they're set up by the host.

Configuration keys adopt the following conventions:

Keys are case-insensitive. For example, ConnectionString and connectionstring are treated

as equivalent keys.

If a value for the same key is set by the same or different configuration providers, the last

value set on the key is the value used. For more information on duplicate JSON keys, see this

GitHub issue.

Hierarchical keys

The ConfigurationBinder supports binding arrays to objects using array indices in

configuration keys. Array binding is described in the Bind an array to a class section.

Within the Configuration API, a colon separator (:) works on all platforms.

In environment variables, a colon separator may not work on all platforms. A double

underscore (__) is supported by all platforms and is automatically converted into a

colon.

In Azure Key Vault, hierarchical keys use -- (two dashes) as a separator. Write code to

replace the dashes with a colon when the secrets are loaded into the app's

configuration.

Configuration values adopt the following conventions:

Values are strings.

Null values can't be stored in configuration or bound to objects.

The following table shows the configuration providers available to ASP.NET Core apps.

https://github.com/dotnet/extensions/issues/2381
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder

Azure Key Vault Configuration Provider (Security
topics)

Azure Key Vault

Azure App Configuration Provider (Azure
documentation)

Azure App Configuration

Command-line Configuration Provider Command-line parameters

Custom configuration provider Custom source

Environment Variables Configuration Provider Environment variables

File Configuration Provider Files (INI, JSON, XML)

Key-per-file Configuration Provider Directory files

Memory Configuration Provider In-memory collections

User secrets (Secret Manager) (Security topics) File in the user profile directory

P RO VIDERP RO VIDER P RO VIDES C O N F IGURAT IO N F RO M …P RO VIDES C O N F IGURAT IO N F RO M …

Configure the host builder with UseConfiguration

Configuration sources are read in the order that their configuration providers are specified at

startup. The configuration providers described in this topic are described in alphabetical order,

not in the order that the code arranges them. Order configuration providers in code to suit the

priorities for the underlying configuration sources that the app requires.

A typical sequence of configuration providers is:

1. Files (appsettings.json, appsettings.{Environment}.json, where {Environment} is the app's

current hosting environment)

2. Azure Key Vault

3. User secrets (Secret Manager) (Development environment only)

4. Environment variables

5. Command-line arguments

A common practice is to position the Command-line Configuration Provider last in a series of

providers to allow command-line arguments to override configuration set by the other

providers.

The preceding sequence of providers is used when a new host builder is initialized with

CreateDefaultBuilder . For more information, see the Default configuration section.

To configure the host builder, call UseConfiguration on the host builder with the configuration.

https://docs.microsoft.com/en-us/azure/azure-app-configuration/quickstart-aspnet-core-app
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useconfiguration

public static IWebHostBuilder CreateWebHostBuilder(string[] args)
{
 var dict = new Dictionary<string, string>
 {
 {"MemoryCollectionKey1", "value1"},
 {"MemoryCollectionKey2", "value2"}
 };

 var config = new ConfigurationBuilder()
 .AddInMemoryCollection(dict)
 .Build();

 return WebHost.CreateDefaultBuilder(args)
 .UseConfiguration(config)
 .UseStartup<Startup>();
}

ConfigureAppConfiguration

public class Program
{
 public static Dictionary<string, string> arrayDict =
 new Dictionary<string, string>
 {
 {"array:entries:0", "value0"},
 {"array:entries:1", "value1"},
 {"array:entries:2", "value2"},
 {"array:entries:4", "value4"},
 {"array:entries:5", "value5"}
 };

 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddInMemoryCollection(arrayDict);
 config.AddJsonFile(
 "json_array.json", optional: false, reloadOnChange: false);
 config.AddJsonFile(
 "starship.json", optional: false, reloadOnChange: false);
 config.AddXmlFile(
 "tvshow.xml", optional: false, reloadOnChange: false);
 config.AddEFConfiguration(
 options => options.UseInMemoryDatabase("InMemoryDb"));
 config.AddCommandLine(args);
 })
 .UseStartup<Startup>();
}

Override previous configuration with command-line argumentsOverride previous configuration with command-line arguments

Call ConfigureAppConfiguration when building the host to specify the app's configuration

providers in addition to those added automatically by CreateDefaultBuilder :

To provide app configuration that can be overridden with command-line arguments, call

AddCommandLine last:

.ConfigureAppConfiguration((hostingContext, config) =>
{
 // Call other providers here
 config.AddCommandLine(args);
})

Remove providers added by CreateDefaultBuilderRemove providers added by CreateDefaultBuilder

.ConfigureAppConfiguration((hostingContext, config) =>
{
 config.Sources.Clear();
 // Add providers here
})

Consume configuration during app startupConsume configuration during app startup

Command-line Configuration Provider

.ConfigureAppConfiguration((hostingContext, config) =>
{
 // Call other providers here
 config.AddCommandLine(args);
})

To remove the providers added by CreateDefaultBuilder , call Clear on the

IConfigurationBuilder.Sources first:

Configuration supplied to the app in ConfigureAppConfiguration is available during the app's

startup, including Startup.ConfigureServices . For more information, see the Access

configuration during startup section.

The CommandLineConfigurationProvider loads configuration from command-line argument

key-value pairs at runtime.

To activate command-line configuration, the AddCommandLine extension method is called on an

instance of ConfigurationBuilder.

AddCommandLine is automatically called when CreateDefaultBuilder(string []) is called. For

more information, see the Default configuration section.

CreateDefaultBuilder also loads:

Optional configuration from appsettings.json and appsettings.{Environment}.json files.

User secrets (Secret Manager) in the Development environment.

Environment variables.

CreateDefaultBuilder adds the Command-line Configuration Provider last. Command-line

arguments passed at runtime override configuration set by the other providers.

CreateDefaultBuilder acts when the host is constructed. Therefore, command-line configuration

activated by CreateDefaultBuilder can affect how the host is configured.

For apps based on the ASP.NET Core templates, AddCommandLine has already been called by

CreateDefaultBuilder . To add additional configuration providers and maintain the ability to

override configuration from those providers with command-line arguments, call the app's

additional providers in ConfigureAppConfiguration and call AddCommandLine last.

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.icollection-1.clear
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationbuilder.sources#microsoft_extensions_configuration_iconfigurationbuilder_sources
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.commandline.commandlineconfigurationprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.commandlineconfigurationextensions.addcommandline
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder

ArgumentsArguments

KEY P REF IXKEY P REF IX EXA M P L EEXA M P L E

No prefix CommandLineKey1=value1

Two dashes (--) --CommandLineKey2=value2 ,

--CommandLineKey2 value2

Forward slash (/) /CommandLineKey3=value3 ,

/CommandLineKey3 value3

dotnet run CommandLineKey1=value1 --CommandLineKey2=value2 /CommandLineKey3=value3
dotnet run --CommandLineKey1 value1 /CommandLineKey2 value2
dotnet run CommandLineKey1= CommandLineKey2=value2

Switch mappingsSwitch mappings

ExampleExample

The sample app takes advantage of the static convenience method CreateDefaultBuilder to

build the host, which includes a call to AddCommandLine.

1. Open a command prompt in the project's directory.

2. Supply a command-line argument to the dotnet run command,

dotnet run CommandLineKey=CommandLineValue .

3. After the app is running, open a browser to the app at http://localhost:5000 .

4. Observe that the output contains the key-value pair for the configuration command-line

argument provided to dotnet run .

The value must follow an equals sign (=), or the key must have a prefix (-- or /) when the

value follows a space. The value isn't required if an equals sign is used (for example,

CommandLineKey=).

Within the same command, don't mix command-line argument key-value pairs that use an

equals sign with key-value pairs that use a space.

Example commands:

Switch mappings allow key name replacement logic. When manually building configuration with

a ConfigurationBuilder, provide a dictionary of switch replacements to the AddCommandLine

method.

When the switch mappings dictionary is used, the dictionary is checked for a key that matches

the key provided by a command-line argument. If the command-line key is found in the

dictionary, the dictionary value (the key replacement) is passed back to set the key-value pair

into the app's configuration. A switch mapping is required for any command-line key prefixed

with a single dash (-).

Switch mappings dictionary key rules:

Switches must start with a dash (-) or double-dash (--).

The switch mappings dictionary must not contain duplicate keys.

Create a switch mappings dictionary. In the following example, two switch mappings are created:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.commandlineconfigurationextensions.addcommandline
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.commandlineconfigurationextensions.addcommandline

public static readonly Dictionary<string, string> _switchMappings =
 new Dictionary<string, string>
 {
 { "-CLKey1", "CommandLineKey1" },
 { "-CLKey2", "CommandLineKey2" }
 };

.ConfigureAppConfiguration((hostingContext, config) =>
{
 config.AddCommandLine(args, _switchMappings);
})

KEYKEY VA L UEVA L UE

-CLKey1 CommandLineKey1

-CLKey2 CommandLineKey2

dotnet run -CLKey1=value1 -CLKey2=value2

KEYKEY VA L UEVA L UE

CommandLineKey1 value1

CommandLineKey2 value2

Environment Variables Configuration Provider

When the host is built, call AddCommandLine with the switch mappings dictionary:

For apps that use switch mappings, the call to CreateDefaultBuilder shouldn't pass arguments.

The CreateDefaultBuilder method's AddCommandLine call doesn't include mapped switches, and

there's no way to pass the switch mapping dictionary to CreateDefaultBuilder . The solution isn't

to pass the arguments to CreateDefaultBuilder but instead to allow the ConfigurationBuilder

method's AddCommandLine method to process both the arguments and the switch mapping

dictionary.

After the switch mappings dictionary is created, it contains the data shown in the following table.

If the switch-mapped keys are used when starting the app, configuration receives the

configuration value on the key supplied by the dictionary:

After running the preceding command, configuration contains the values shown in the following

table.

The EnvironmentVariablesConfigurationProvider loads configuration from environment variable

key-value pairs at runtime.

To activate environment variables configuration, call the AddEnvironmentVariables extension

method on an instance of ConfigurationBuilder.

The : separator doesn't work with environment variable hierarchical keys on all platforms. __ ,

the double underscore, is:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.environmentvariables.environmentvariablesconfigurationprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.environmentvariablesextensions.addenvironmentvariables
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder

.ConfigureAppConfiguration((hostingContext, config) =>
{
 config.AddEnvironmentVariables(prefix: "PREFIX_");
})

FilteredConfiguration = _config.AsEnumerable();

PrefixesPrefixes

Supported by all platforms. For example, the : separator is not supported by Bash, but __

is.

Automatically replaced by a :

Azure App Service permits setting environment variables in the Azure Portal that can override

app configuration using the Environment Variables Configuration Provider. For more

information, see Azure Apps: Override app configuration using the Azure Portal.

AddEnvironmentVariables is used to load environment variables prefixed with ASPNETCORE_ for

host configuration when a new host builder is initialized with the Web Host and

CreateDefaultBuilder is called. For more information, see the Default configuration section.

CreateDefaultBuilder also loads:

App configuration from unprefixed environment variables by calling

AddEnvironmentVariables without a prefix.

Optional configuration from appsettings.json and appsettings.{Environment}.json files.

User secrets (Secret Manager) in the Development environment.

Command-line arguments.

The Environment Variables Configuration Provider is called after configuration is established

from user secrets and appsettings files. Calling the provider in this position allows the

environment variables read at runtime to override configuration set by user secrets and

appsettings files.

To provide app configuration from additional environment variables, call the app's additional

providers in ConfigureAppConfiguration and call AddEnvironmentVariables with the prefix:

Call AddEnvironmentVariables last to allow environment variables with the given prefix to

override values from other providers.

ExampleExample

The sample app takes advantage of the static convenience method CreateDefaultBuilder to

build the host, which includes a call to AddEnvironmentVariables .

1. Run the sample app. Open a browser to the app at http://localhost:5000 .

2. Observe that the output contains the key-value pair for the environment variable

ENVIRONMENT . The value reflects the environment in which the app is running, typically

Development when running locally.

To keep the list of environment variables rendered by the app short, the app filters environment

variables. See the sample app's Pages/Index.cshtml.cs file.

To expose all of the environment variables available to the app, change the

FilteredConfiguration in Pages/Index.cshtml.cs to the following:

https://linuxhint.com/bash-environment-variables/
https://azure.microsoft.com/services/app-service/

var config = new ConfigurationBuilder()
 .AddEnvironmentVariables("CUSTOM_")
 .Build();

C O N N EC T IO N ST RIN G P REF IXC O N N EC T IO N ST RIN G P REF IX P RO VIDERP RO VIDER

CUSTOMCONNSTR_ Custom provider

MYSQLCONNSTR_ MySQL

SQLAZURECONNSTR_ Azure SQL Database

SQLCONNSTR_ SQL Server

EN VIRO N M EN T VA RIA B L E KEYEN VIRO N M EN T VA RIA B L E KEY
C O N VERT ED C O N F IGURAT IO NC O N VERT ED C O N F IGURAT IO N
KEYKEY

P RO VIDER C O N F IGURAT IO NP RO VIDER C O N F IGURAT IO N
EN T RYEN T RY

CUSTOMCONNSTR_{KEY} ConnectionStrings:{KEY} Configuration entry not created.

MYSQLCONNSTR_{KEY} ConnectionStrings:{KEY} Key:
ConnectionStrings:
{KEY}_ProviderName

:
Value:
MySql.Data.MySqlClient

Environment variables loaded into the app's configuration are filtered when supplying a prefix to

the AddEnvironmentVariables method. For example, to filter environment variables on the prefix

CUSTOM_ , supply the prefix to the configuration provider :

The prefix is stripped off when the configuration key-value pairs are created.

When the host builder is created, host configuration is provided by environment variables. For

more information on the prefix used for these environment variables, see the Default

configuration section.

Connection str ing prefixesConnection str ing prefixes

The Configuration API has special processing rules for four connection string environment

variables involved in configuring Azure connection strings for the app environment.

Environment variables with the prefixes shown in the table are loaded into the app if no prefix is

supplied to AddEnvironmentVariables .

When an environment variable is discovered and loaded into configuration with any of the four

prefixes shown in the table:

The configuration key is created by removing the environment variable prefix and adding a

configuration key section (ConnectionStrings).

A new configuration key-value pair is created that represents the database connection

provider (except for CUSTOMCONNSTR_ , which has no stated provider).

https://www.mysql.com/
https://azure.microsoft.com/services/sql-database/
https://www.microsoft.com/sql-server/

SQLAZURECONNSTR_{KEY} ConnectionStrings:{KEY} Key:
ConnectionStrings:
{KEY}_ProviderName

:
Value: System.Data.SqlClient

SQLCONNSTR_{KEY} ConnectionStrings:{KEY} Key:
ConnectionStrings:
{KEY}_ProviderName

:
Value: System.Data.SqlClient

EN VIRO N M EN T VA RIA B L E KEYEN VIRO N M EN T VA RIA B L E KEY
C O N VERT ED C O N F IGURAT IO NC O N VERT ED C O N F IGURAT IO N
KEYKEY

P RO VIDER C O N F IGURAT IO NP RO VIDER C O N F IGURAT IO N
EN T RYEN T RY

_config["ConnectionStrings:ReleaseDB"]

File Configuration Provider

INI Configuration ProviderINI Configuration Provider

.ConfigureAppConfiguration((hostingContext, config) =>
{
 config.AddIniFile(
 "config.ini", optional: true, reloadOnChange: true);
})

ExampleExample

A custom connection string environment variable is created on the server :

Name: CUSTOMCONNSTR_ReleaseDB

Value: Data Source=ReleaseSQLServer;Initial Catalog=MyReleaseDB;Integrated Security=True

If IConfiguration is injected and assigned to a field named _config , read the value:

FileConfigurationProvider is the base class for loading configuration from the file system. The

following configuration providers are dedicated to specific file types:

INI Configuration Provider

JSON Configuration Provider

XML Configuration Provider

The IniConfigurationProvider loads configuration from INI file key-value pairs at runtime.

To activate INI file configuration, call the AddIniFile extension method on an instance of

ConfigurationBuilder.

The colon can be used to as a section delimiter in INI file configuration.

Overloads permit specifying:

Whether the file is optional.

Whether the configuration is reloaded if the file changes.

The IFileProvider used to access the file.

Call ConfigureAppConfiguration when building the host to specify the app's configuration:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.fileconfigurationprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.ini.iniconfigurationprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iniconfigurationextensions.addinifile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider

[section0]
key0=value
key1=value

[section1]
subsection:key=value

[section2:subsection0]
key=value

[section2:subsection1]
key=value

JSON Configuration ProviderJSON Configuration Provider

A generic example of an INI configuration file:

The previous configuration file loads the following keys with value :

section0:key0

section0:key1

section1:subsection:key

section2:subsection0:key

section2:subsection1:key

The JsonConfigurationProvider loads configuration from JSON file key-value pairs during

runtime.

To activate JSON file configuration, call the AddJsonFile extension method on an instance of

ConfigurationBuilder.

Overloads permit specifying:

Whether the file is optional.

Whether the configuration is reloaded if the file changes.

The IFileProvider used to access the file.

AddJsonFile is automatically called twice when a new host builder is initialized with

CreateDefaultBuilder . The method is called to load configuration from:

appsettings.json: This file is read first. The environment version of the file can override the

values provided by the appsettings.json file.

appsettings.{Environment}.json: The environment version of the file is loaded based on the

IHostingEnvironment.EnvironmentName.

For more information, see the Default configuration section.

CreateDefaultBuilder also loads:

Environment variables.

User secrets (Secret Manager) in the Development environment.

Command-line arguments.

The JSON Configuration Provider is established first. Therefore, user secrets, environment

variables, and command-line arguments override configuration set by the appsettings files.

Call ConfigureAppConfiguration when building the host to specify the app's configuration for

files other than appsettings.json and appsettings.{Environment}.json:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.json.jsonconfigurationprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.jsonconfigurationextensions.addjsonfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment.environmentname

.ConfigureAppConfiguration((hostingContext, config) =>
{
 config.AddJsonFile(
 "config.json", optional: true, reloadOnChange: true);
})

XML Configuration ProviderXML Configuration Provider

ExampleExample

The sample app takes advantage of the static convenience method CreateDefaultBuilder to

build the host, which includes two calls to AddJsonFile :

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

The first call to AddJsonFile loads configuration from appsettings.json:

The second call to AddJsonFile loads configuration from appsettings.{Environment}.json.

For appsettings.Development.json in the sample app, the following file is loaded:

1. Run the sample app. Open a browser to the app at http://localhost:5000 .

2. The output contains key-value pairs for the configuration based on the app's environment.

The log level for the key Logging:LogLevel:Default is Debug when running the app in the

Development environment.

3. Run the sample app again in the Production environment:

4. The settings in the appsettings.Development.json no longer override the settings in

appsettings.json. The log level for the key Logging:LogLevel:Default is Warning .

a. Open the Properties/launchSettings.json file.

b. In the ConfigurationSample profile, change the value of the ASPNETCORE_ENVIRONMENT

environment variable to Production .

c. Save the file and run the app with dotnet run in a command shell.

The XmlConfigurationProvider loads configuration from XML file key-value pairs at runtime.

To activate XML file configuration, call the AddXmlFile extension method on an instance of

ConfigurationBuilder.

Overloads permit specifying:

Whether the file is optional.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.xml.xmlconfigurationprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.xmlconfigurationextensions.addxmlfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder

.ConfigureAppConfiguration((hostingContext, config) =>
{
 config.AddXmlFile(
 "config.xml", optional: true, reloadOnChange: true);
})

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <section0>
 <key0>value</key0>
 <key1>value</key1>
 </section0>
 <section1>
 <key0>value</key0>
 <key1>value</key1>
 </section1>
</configuration>

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <section name="section0">
 <key name="key0">value</key>
 <key name="key1">value</key>
 </section>
 <section name="section1">
 <key name="key0">value</key>
 <key name="key1">value</key>
 </section>
</configuration>

Whether the configuration is reloaded if the file changes.

The IFileProvider used to access the file.

The root node of the configuration file is ignored when the configuration key-value pairs are

created. Don't specify a Document Type Definition (DTD) or namespace in the file.

Call ConfigureAppConfiguration when building the host to specify the app's configuration:

XML configuration files can use distinct element names for repeating sections:

The previous configuration file loads the following keys with value :

section0:key0

section0:key1

section1:key0

section1:key1

Repeating elements that use the same element name work if the name attribute is used to

distinguish the elements:

The previous configuration file loads the following keys with value :

section:section0:key:key0

section:section0:key:key1

section:section1:key:key0

section:section1:key:key1

Attributes can be used to supply values:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <key attribute="value" />
 <section>
 <key attribute="value" />
 </section>
</configuration>

Key-per-file Configuration Provider

.ConfigureAppConfiguration((hostingContext, config) =>
{
 var path = Path.Combine(
 Directory.GetCurrentDirectory(), "path/to/files");
 config.AddKeyPerFile(directoryPath: path, optional: true);
})

Memory Configuration Provider

The previous configuration file loads the following keys with value :

key:attribute

section:key:attribute

The KeyPerFileConfigurationProvider uses a directory's files as configuration key-value pairs.

The key is the file name. The value contains the file's contents. The Key-per-file Configuration

Provider is used in Docker hosting scenarios.

To activate key-per-file configuration, call the AddKeyPerFile extension method on an instance of

ConfigurationBuilder. The directoryPath to the files must be an absolute path.

Overloads permit specifying:

An Action<KeyPerFileConfigurationSource> delegate that configures the source.

Whether the directory is optional and the path to the directory.

The double-underscore (__) is used as a configuration key delimiter in file names. For example,

the file name Logging__LogLevel__System produces the configuration key

Logging:LogLevel:System .

Call ConfigureAppConfiguration when building the host to specify the app's configuration:

The MemoryConfigurationProvider uses an in-memory collection as configuration key-value

pairs.

To activate in-memory collection configuration, call the AddInMemoryCollection extension

method on an instance of ConfigurationBuilder.

The configuration provider can be initialized with an IEnumerable<KeyValuePair<String,String>> .

Call ConfigureAppConfiguration when building the host to specify the app's configuration.

In the following example, a configuration dictionary is created:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.keyperfile.keyperfileconfigurationprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.keyperfileconfigurationbuilderextensions.addkeyperfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.memory.memoryconfigurationprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.memoryconfigurationbuilderextensions.addinmemorycollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder

public static readonly Dictionary<string, string> _dict =
 new Dictionary<string, string>
 {
 {"MemoryCollectionKey1", "value1"},
 {"MemoryCollectionKey2", "value2"}
 };

.ConfigureAppConfiguration((hostingContext, config) =>
{
 config.AddInMemoryCollection(_dict);
})

GetValue

public class IndexModel : PageModel
{
 public IndexModel(IConfiguration config)
 {
 _config = config;
 }

 public int NumberConfig { get; private set; }

 public void OnGet()
 {
 NumberConfig = _config.GetValue<int>("NumberKey", 99);
 }
}

GetSection, GetChildren, and Exists

The dictionary is used with a call to AddInMemoryCollection to provide the configuration:

ConfigurationBinder.GetValue<T> extracts a single value from configuration with a specified key

and converts it to the specified noncollection type. An overload accepts a default value.

The following example:

Extracts the string value from configuration with the key NumberKey . If NumberKey isn't found

in the configuration keys, the default value of 99 is used.

Types the value as an int .

Stores the value in the NumberConfig property for use by the page.

For the examples that follow, consider the following JSON file. Four keys are found across two

sections, one of which includes a pair of subsections:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.getvalue

{
 "section0": {
 "key0": "value",
 "key1": "value"
 },
 "section1": {
 "key0": "value",
 "key1": "value"
 },
 "section2": {
 "subsection0" : {
 "key0": "value",
 "key1": "value"
 },
 "subsection1" : {
 "key0": "value",
 "key1": "value"
 }
 }
}

GetSectionGetSection

var configSection = _config.GetSection("section1");

var configSection = _config.GetSection("section2:subsection0");

GetChildrenGetChildren

When the file is read into configuration, the following unique hierarchical keys are created to

hold the configuration values:

section0:key0

section0:key1

section1:key0

section1:key1

section2:subsection0:key0

section2:subsection0:key1

section2:subsection1:key0

section2:subsection1:key1

IConfiguration.GetSection extracts a configuration subsection with the specified subsection key.

To return an IConfigurationSection containing only the key-value pairs in section1 , call

GetSection and supply the section name:

The configSection doesn't have a value, only a key and a path.

Similarly, to obtain the values for keys in section2:subsection0 , call GetSection and supply the

section path:

GetSection never returns null . If a matching section isn't found, an empty

IConfigurationSection is returned.

When GetSection returns a matching section, Value isn't populated. A Key and Path are returned

when the section exists.

A call to IConfiguration.GetChildren on section2 obtains an

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration.getsection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationsection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationsection.value#microsoft_extensions_configuration_iconfigurationsection_value
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationsection.key#microsoft_extensions_configuration_iconfigurationsection_key
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationsection.path#microsoft_extensions_configuration_iconfigurationsection_path
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration.getchildren

var configSection = _config.GetSection("section2");

var children = configSection.GetChildren();

ExistsExists

var sectionExists = _config.GetSection("section2:subsection2").Exists();

Bind to an object graph

public class TvShow
{
 public Metadata Metadata { get; set; }
 public Actors Actors { get; set; }
 public string Legal { get; set; }
}

public class Metadata
{
 public string Series { get; set; }
 public string Title { get; set; }
 public DateTime AirDate { get; set; }
 public int Episodes { get; set; }
}

public class Actors
{
 public string Names { get; set; }
}

IEnumerable<IConfigurationSection> that includes:

subsection0

subsection1

Use ConfigurationExtensions.Exists to determine if a configuration section exists:

Given the example data, sectionExists is false because there isn't a section2:subsection2

section in the configuration data.

Bind is capable of binding an entire POCO object graph. As with binding a simple object, only

public read/write properties are bound.

The sample contains a TvShow model whose object graph includes Metadata and Actors

classes (Models/TvShow.cs):

The sample app has a tvshow.xml file containing the configuration data:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.exists
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.bind

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <tvshow>
 <metadata>
 <series>Dr. Who</series>
 <title>The Sun Makers</title>
 <airdate>11/26/1977</airdate>
 <episodes>4</episodes>
 </metadata>
 <actors>
 <names>Tom Baker, Louise Jameson, John Leeson</names>
 </actors>
 <legal>(c)1977 BBC https://www.bbc.co.uk/programmes/b006q2x0</legal>
 </tvshow>
</configuration>

var tvShow = new TvShow();
_config.GetSection("tvshow").Bind(tvShow);
TvShow = tvShow;

TvShow = _config.GetSection("tvshow").Get<TvShow>();

Bind an array to a class

NOTENOTE

KEYKEY VA L UEVA L UE

array:entries:0 value0

array:entries:1 value1

array:entries:2 value2

array:entries:4 value4

Configuration is bound to the entire TvShow object graph with the Bind method. The bound

instance is assigned to a property for rendering:

ConfigurationBinder.Get<T> binds and returns the specified type. Get<T> is more convenient

than using Bind . The following code shows how to use Get<T> with the preceding example:

The sample app demonstrates the concepts explained in this section.

The Bind supports binding arrays to objects using array indices in configuration keys. Any array

format that exposes a numeric key segment (:0: , :1: , … :{n}:) is capable of array binding to

a POCO class array.

Binding is provided by convention. Custom configuration providers aren't required to implement array

binding.

In-memor y array processingIn-memor y array processing

Consider the configuration keys and values shown in the following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.get
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.bind

array:entries:5 value5

KEYKEY VA L UEVA L UE

public class Program
{
 public static Dictionary<string, string> arrayDict =
 new Dictionary<string, string>
 {
 {"array:entries:0", "value0"},
 {"array:entries:1", "value1"},
 {"array:entries:2", "value2"},
 {"array:entries:4", "value4"},
 {"array:entries:5", "value5"}
 };

 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddInMemoryCollection(arrayDict);
 config.AddJsonFile(
 "json_array.json", optional: false, reloadOnChange: false);
 config.AddJsonFile(
 "starship.json", optional: false, reloadOnChange: false);
 config.AddXmlFile(
 "tvshow.xml", optional: false, reloadOnChange: false);
 config.AddEFConfiguration(
 options => options.UseInMemoryDatabase("InMemoryDb"));
 config.AddCommandLine(args);
 })
 .UseStartup<Startup>();
}

public class ArrayExample
{
 public string[] Entries { get; set; }
}

var arrayExample = new ArrayExample();
_config.GetSection("array").Bind(arrayExample);

These keys and values are loaded in the sample app using the Memory Configuration Provider :

The array skips a value for index #3. The configuration binder isn't capable of binding null values

or creating null entries in bound objects, which becomes clear in a moment when the result of

binding this array to an object is demonstrated.

In the sample app, a POCO class is available to hold the bound configuration data:

The configuration data is bound to the object:

ConfigurationBinder.Get<T> syntax can also be used, which results in more compact code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.get

ArrayExample = _config.GetSection("array").Get<ArrayExample>();

ARRAYEXAMPLE.ENTRIES IN DEX IN DEX ARRAYEXAMPLE.ENTRIES VA L UE VA L UE

0 value0

1 value1

2 value2

3 value4

4 value5

{
 "array:entries:3": "value3"
}

config.AddJsonFile(
 "missing_value.json", optional: false, reloadOnChange: false);

KEYKEY VA L UEVA L UE

array:entries:3 value3

ARRAYEXAMPLE.ENTRIES IN DEX IN DEX ARRAYEXAMPLE.ENTRIES VA L UE VA L UE

0 value0

1 value1

The bound object, an instance of ArrayExample , receives the array data from configuration.

Index #3 in the bound object holds the configuration data for the array:4 configuration key and

its value of value4 . When configuration data containing an array is bound, the array indices in

the configuration keys are merely used to iterate the configuration data when creating the

object. A null value can't be retained in configuration data, and a null-valued entry isn't created

in a bound object when an array in configuration keys skip one or more indices.

The missing configuration item for index #3 can be supplied before binding to the ArrayExample

instance by any configuration provider that produces the correct key-value pair in configuration.

If the sample included an additional JSON Configuration Provider with the missing key-value

pair, the ArrayExample.Entries matches the complete configuration array:

missing_value.json:

In ConfigureAppConfiguration :

The key-value pair shown in the table is loaded into configuration.

If the ArrayExample class instance is bound after the JSON Configuration Provider includes the

entry for index #3, the ArrayExample.Entries array includes the value.

2 value2

3 value3

4 value4

5 value5

ARRAYEXAMPLE.ENTRIES IN DEX IN DEX ARRAYEXAMPLE.ENTRIES VA L UE VA L UE

{
 "json_array": {
 "key": "valueA",
 "subsection": [
 "valueB",
 "valueC",
 "valueD"
]
 }
}

KEYKEY VA L UEVA L UE

json_array:key valueA

json_array:subsection:0 valueB

json_array:subsection:1 valueC

json_array:subsection:2 valueD

public class JsonArrayExample
{
 public string Key { get; set; }
 public string[] Subsection { get; set; }
}

JSONARRAYEXAMPLE.SUBSECTION IN DEX IN DEX JSONARRAYEXAMPLE.SUBSECTION VA L UE VA L UE

0 valueB

JSON array processingJSON array processing

If a JSON file contains an array, configuration keys are created for the array elements with a

zero-based section index. In the following configuration file, subsection is an array:

The JSON Configuration Provider reads the configuration data into the following key-value

pairs:

In the sample app, the following POCO class is available to bind the configuration key-value

pairs:

After binding, JsonArrayExample.Key holds the value valueA . The subsection values are stored in

the POCO array property, Subsection .

1 valueC

2 valueD

JSONARRAYEXAMPLE.SUBSECTION IN DEX IN DEX JSONARRAYEXAMPLE.SUBSECTION VA L UE VA L UE

Custom configuration provider

public class EFConfigurationValue
{
 public string Id { get; set; }
 public string Value { get; set; }
}

public class EFConfigurationContext : DbContext
{
 public EFConfigurationContext(DbContextOptions options) : base(options)
 {
 }

 public DbSet<EFConfigurationValue> Values { get; set; }
}

The sample app demonstrates how to create a basic configuration provider that reads

configuration key-value pairs from a database using Entity Framework (EF).

The provider has the following characteristics:

The EF in-memory database is used for demonstration purposes. To use a database that

requires a connection string, implement a secondary ConfigurationBuilder to supply the

connection string from another configuration provider.

The provider reads a database table into configuration at startup. The provider doesn't query

the database on a per-key basis.

Reload-on-change isn't implemented, so updating the database after the app starts has no

effect on the app's configuration.

Define an EFConfigurationValue entity for storing configuration values in the database.

Models/EFConfigurationValue.cs:

Add an EFConfigurationContext to store and access the configured values.

EFConfigurationProvider/EFConfigurationContext.cs:

Create a class that implements IConfigurationSource.

EFConfigurationProvider/EFConfigurationSource.cs:

https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationsource

public class EFConfigurationSource : IConfigurationSource
{
 private readonly Action<DbContextOptionsBuilder> _optionsAction;

 public EFConfigurationSource(Action<DbContextOptionsBuilder> optionsAction)
 {
 _optionsAction = optionsAction;
 }

 public IConfigurationProvider Build(IConfigurationBuilder builder)
 {
 return new EFConfigurationProvider(_optionsAction);
 }
}

Create the custom configuration provider by inheriting from ConfigurationProvider. The

configuration provider initializes the database when it's empty.

EFConfigurationProvider/EFConfigurationProvider.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationprovider

public class EFConfigurationProvider : ConfigurationProvider
{
 public EFConfigurationProvider(Action<DbContextOptionsBuilder> optionsAction)
 {
 OptionsAction = optionsAction;
 }

 Action<DbContextOptionsBuilder> OptionsAction { get; }

 // Load config data from EF DB.
 public override void Load()
 {
 var builder = new DbContextOptionsBuilder<EFConfigurationContext>();

 OptionsAction(builder);

 using (var dbContext = new EFConfigurationContext(builder.Options))
 {
 dbContext.Database.EnsureCreated();

 Data = !dbContext.Values.Any()
 ? CreateAndSaveDefaultValues(dbContext)
 : dbContext.Values.ToDictionary(c => c.Id, c => c.Value);
 }
 }

 private static IDictionary<string, string> CreateAndSaveDefaultValues(
 EFConfigurationContext dbContext)
 {
 // Quotes (c)2005 Universal Pictures: Serenity
 // https://www.uphe.com/movies/serenity
 var configValues =
 new Dictionary<string, string>(StringComparer.OrdinalIgnoreCase)
 {
 { "quote1", "I aim to misbehave." },
 { "quote2", "I swallowed a bug." },
 { "quote3", "You can't stop the signal, Mal." }
 };

 dbContext.Values.AddRange(configValues
 .Select(kvp => new EFConfigurationValue
 {
 Id = kvp.Key,
 Value = kvp.Value
 })
 .ToArray());

 dbContext.SaveChanges();

 return configValues;
 }
}

An AddEFConfiguration extension method permits adding the configuration source to a

ConfigurationBuilder .

Extensions/EntityFrameworkExtensions.cs:

public static class EntityFrameworkExtensions
{
 public static IConfigurationBuilder AddEFConfiguration(
 this IConfigurationBuilder builder,
 Action<DbContextOptionsBuilder> optionsAction)
 {
 return builder.Add(new EFConfigurationSource(optionsAction));
 }
}

public class Program
{
 public static Dictionary<string, string> arrayDict =
 new Dictionary<string, string>
 {
 {"array:entries:0", "value0"},
 {"array:entries:1", "value1"},
 {"array:entries:2", "value2"},
 {"array:entries:4", "value4"},
 {"array:entries:5", "value5"}
 };

 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddInMemoryCollection(arrayDict);
 config.AddJsonFile(
 "json_array.json", optional: false, reloadOnChange: false);
 config.AddJsonFile(
 "starship.json", optional: false, reloadOnChange: false);
 config.AddXmlFile(
 "tvshow.xml", optional: false, reloadOnChange: false);
 config.AddEFConfiguration(
 options => options.UseInMemoryDatabase("InMemoryDb"));
 config.AddCommandLine(args);
 })
 .UseStartup<Startup>();
}

Access configuration during startup

The following code shows how to use the custom EFConfigurationProvider in Program.cs:

Inject IConfiguration into the Startup constructor to access configuration values in

Startup.ConfigureServices . To access configuration in Startup.Configure , either inject

IConfiguration directly into the method or use the instance from the constructor :

public class Startup
{
 private readonly IConfiguration _config;

 public Startup(IConfiguration config)
 {
 _config = config;
 }

 public void ConfigureServices(IServiceCollection services)
 {
 var value = _config["key"];
 }

 public void Configure(IApplicationBuilder app, IConfiguration config)
 {
 var value = config["key"];
 }
}

Access configuration in a Razor Pages page or MVC view

@page
@model IndexModel
@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Index Page</title>
</head>
<body>
 <h1>Access configuration in a Razor Pages page</h1>
 <p>Configuration value for 'key': @Configuration["key"]</p>
</body>
</html>

For an example of accessing configuration using startup convenience methods, see App startup:

Convenience methods.

To access configuration settings in a Razor Pages page or an MVC view, add a using directive (C#

reference: using directive) for the Microsoft.Extensions.Configuration namespace and inject

IConfiguration into the page or view.

In a Razor Pages page:

In an MVC view:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-directive
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration

@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Index View</title>
</head>
<body>
 <h1>Access configuration in an MVC view</h1>
 <p>Configuration value for 'key': @Configuration["key"]</p>
</body>
</html>

Add configuration from an external assembly

Additional resources

An IHostingStartup implementation allows adding enhancements to an app at startup from an

external assembly outside of the app's Startup class. For more information, see Use hosting

startup assemblies in ASP.NET Core.

Options pattern in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup

Options pattern in ASP.NET Core
9/22/2020 • 34 minutes to read • Edit Online

Bind hierarchical configuration

 "Position": {
 "Title": "Editor",
 "Name": "Joe Smith"
 }

public class PositionOptions
{
 public const string Position = "Position";

 public string Title { get; set; }
 public string Name { get; set; }
}

By Kirk Larkin and Rick Anderson.

The options pattern uses classes to provide strongly typed access to groups of related settings. When

configuration settings are isolated by scenario into separate classes, the app adheres to two important software

engineering principles:

The Interface Segregation Principle (ISP) or Encapsulation: Scenarios (classes) that depend on configuration

settings depend only on the configuration settings that they use.

Separation of Concerns: Settings for different parts of the app aren't dependent or coupled to one another.

Options also provide a mechanism to validate configuration data. For more information, see the Options

validation section.

View or download sample code (how to download)

The preferred way to read related configuration values is using the options pattern. For example, to read the

following configuration values:

Create the following PositionOptions class:

An options class:

Must be non-abstract with a public parameterless constructor.

All public read-write properties of the type are bound.

Fields are notnot bound. In the preceding code, Position is not bound. The Position property is used so the

string "Position" doesn't need to be hard coded in the app when binding the class to a configuration

provider.

The following code:

Calls ConfigurationBinder.Bind to bind the PositionOptions class to the Position section.

Displays the Position configuration data.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/configuration/options.md
https://twitter.com/serpent5
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#encapsulation
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#separation-of-concerns
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/options/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.bind

public class Test22Model : PageModel
{
 private readonly IConfiguration Configuration;

 public Test22Model(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 var positionOptions = new PositionOptions();
 Configuration.GetSection(PositionOptions.Position).Bind(positionOptions);

 return Content($"Title: {positionOptions.Title} \n" +
 $"Name: {positionOptions.Name}");
 }
}

public class Test21Model : PageModel
{
 private readonly IConfiguration Configuration;
 public PositionOptions positionOptions { get; private set; }

 public Test21Model(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public ContentResult OnGet()
 {
 positionOptions = Configuration.GetSection(PositionOptions.Position)
 .Get<PositionOptions>();

 return Content($"Title: {positionOptions.Title} \n" +
 $"Name: {positionOptions.Name}");
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<PositionOptions>(Configuration.GetSection(
 PositionOptions.Position));
 services.AddRazorPages();
}

In the preceding code, by default, changes to the JSON configuration file after the app has started are read.

ConfigurationBinder.Get<T> binds and returns the specified type. ConfigurationBinder.Get<T> may be more

convenient than using ConfigurationBinder.Bind . The following code shows how to use

ConfigurationBinder.Get<T> with the PositionOptions class:

In the preceding code, by default, changes to the JSON configuration file after the app has started are read.

An alternative approach when using the options patternoptions pattern is to bind the Position section and add it to the

dependency injection service container. In the following code, PositionOptions is added to the service

container with Configure and bound to configuration:

Using the preceding code, the following code reads the position options:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbinder.get
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsconfigurationservicecollectionextensions.configure

public class Test2Model : PageModel
{
 private readonly PositionOptions _options;

 public Test2Model(IOptions<PositionOptions> options)
 {
 _options = options.Value;
 }

 public ContentResult OnGet()
 {
 return Content($"Title: {_options.Title} \n" +
 $"Name: {_options.Name}");
 }
}

Options interfaces

In the preceding code, changes to the JSON configuration file after the app has started are notnot read. To read

changes after the app has started, use IOptionsSnapshot.

IOptions<TOptions>:

Does notnot support:

Is registered as a Singleton and can be injected into any service lifetime.

Reading of configuration data after the app has started.

Named options

IOptionsSnapshot<TOptions>:

Is useful in scenarios where options should be recomputed on every request. For more information, see Use

IOptionsSnapshot to read updated data.

Is registered as Scoped and therefore cannot be injected into a Singleton service.

Supports named options

IOptionsMonitor<TOptions>:

Is used to retrieve options and manage options notifications for TOptions instances.

Is registered as a Singleton and can be injected into any service lifetime.

Supports:

Change notifications

Named options

Reloadable configuration

Selective options invalidation (IOptionsMonitorCache<TOptions>)

Post-configuration scenarios enable setting or changing options after all IConfigureOptions<TOptions>

configuration occurs.

IOptionsFactory<TOptions> is responsible for creating new options instances. It has a single Create method.

The default implementation takes all registered IConfigureOptions<TOptions> and

IPostConfigureOptions<TOptions> and runs all the configurations first, followed by the post-configuration. It

distinguishes between IConfigureNamedOptions<TOptions> and IConfigureOptions<TOptions> and only calls

the appropriate interface.

IOptionsMonitorCache<TOptions> is used by IOptionsMonitor<TOptions> to cache TOptions instances. The

IOptionsMonitorCache<TOptions> invalidates options instances in the monitor so that the value is recomputed

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsfactory-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsfactory-1.create
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1

Use IOptionsSnapshot to read updated data

public class TestSnapModel : PageModel
{
 private readonly MyOptions _snapshotOptions;

 public TestSnapModel(IOptionsSnapshot<MyOptions> snapshotOptionsAccessor)
 {
 _snapshotOptions = snapshotOptionsAccessor.Value;
 }

 public ContentResult OnGet()
 {
 return Content($"Option1: {_snapshotOptions.Option1} \n" +
 $"Option2: {_snapshotOptions.Option2}");
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<MyOptions>(Configuration.GetSection("MyOptions"));

 services.AddRazorPages();
}

IOptionsMonitor

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<MyOptions>(Configuration.GetSection("MyOptions"));

 services.AddRazorPages();
}

(TryRemove). Values can be manually introduced with TryAdd. The Clear method is used when all named

instances should be recreated on demand.

Using IOptionsSnapshot<TOptions>, options are computed once per request when accessed and cached for

the lifetime of the request. Changes to the configuration are read after the app starts when using configuration

providers that support reading updated configuration values.

The difference between IOptionsMonitor and IOptionsSnapshot is that:

IOptionsMonitor is a singleton service that retrieves current option values at any time, which is especially

useful in singleton dependencies.

IOptionsSnapshot is a scoped service and provides a snapshot of the options at the time the

IOptionsSnapshot<T> object is constructed. Options snapshots are designed for use with transient and

scoped dependencies.

The following code uses IOptionsSnapshot<TOptions>.

The following code registers a configuration instance which MyOptions binds against:

In the preceding code, changes to the JSON configuration file after the app has started are read.

The following code registers a configuration instance which MyOptions binds against.

The following example uses IOptionsMonitor<TOptions>:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.tryremove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.tryadd
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.clear
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1

public class TestMonitorModel : PageModel
{
 private readonly IOptionsMonitor<MyOptions> _optionsDelegate;

 public TestMonitorModel(IOptionsMonitor<MyOptions> optionsDelegate)
 {
 _optionsDelegate = optionsDelegate;
 }

 public ContentResult OnGet()
 {
 return Content($"Option1: {_optionsDelegate.CurrentValue.Option1} \n" +
 $"Option2: {_optionsDelegate.CurrentValue.Option2}");
 }
}

Named options support using IConfigureNamedOptions

{
 "TopItem": {
 "Month": {
 "Name": "Green Widget",
 "Model": "GW46"
 },
 "Year": {
 "Name": "Orange Gadget",
 "Model": "OG35"
 }
 }
}

public class TopItemSettings
{
 public const string Month = "Month";
 public const string Year = "Year";

 public string Name { get; set; }
 public string Model { get; set; }
}

In the preceding code, by default, changes to the JSON configuration file after the app has started are read.

Named options:

Are useful when multiple configuration sections bind to the same properties.

Are case sensitive.

Consider the following appsettings.json file:

Rather than creating two classes to bind TopItem:Month and TopItem:Year , the following class is used for each

section:

The following code configures the named options:

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<TopItemSettings>(TopItemSettings.Month,
 Configuration.GetSection("TopItem:Month"));
 services.Configure<TopItemSettings>(TopItemSettings.Year,
 Configuration.GetSection("TopItem:Year"));

 services.AddRazorPages();
}

public class TestNOModel : PageModel
{
 private readonly TopItemSettings _monthTopItem;
 private readonly TopItemSettings _yearTopItem;

 public TestNOModel(IOptionsSnapshot<TopItemSettings> namedOptionsAccessor)
 {
 _monthTopItem = namedOptionsAccessor.Get(TopItemSettings.Month);
 _yearTopItem = namedOptionsAccessor.Get(TopItemSettings.Year);
 }

 public ContentResult OnGet()
 {
 return Content($"Month:Name {_monthTopItem.Name} \n" +
 $"Month:Model {_monthTopItem.Model} \n\n" +
 $"Year:Name {_yearTopItem.Name} \n" +
 $"Year:Model {_yearTopItem.Model} \n");
 }
}

OptionsBuilder API

Use DI services to configure options

The following code displays the named options:

All options are named instances. IConfigureOptions<TOptions> instances are treated as targeting the

Options.DefaultName instance, which is string.Empty . IConfigureNamedOptions<TOptions> also implements

IConfigureOptions<TOptions>. The default implementation of the IOptionsFactory<TOptions> has logic to use

each appropriately. The null named option is used to target all of the named instances instead of a specific

named instance. ConfigureAll and PostConfigureAll use this convention.

OptionsBuilder<TOptions> is used to configure TOptions instances. OptionsBuilder streamlines creating

named options as it's only a single parameter to the initial AddOptions<TOptions>(string optionsName) call

instead of appearing in all of the subsequent calls. Options validation and the ConfigureOptions overloads that

accept service dependencies are only available via OptionsBuilder .

OptionsBuilder is used in the Options validation section.

Services can be accessed from dependency injection while configuring options in two ways:

services.AddOptions<MyOptions>("optionalName")
 .Configure<Service1, Service2, Service3, Service4, Service5>(
 (o, s, s2, s3, s4, s5) =>
 o.Property = DoSomethingWith(s, s2, s3, s4, s5));

Pass a configuration delegate to Configure on OptionsBuilder<TOptions>. OptionsBuilder<TOptions>

provides overloads of Configure that allow use of up to five services to configure options:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsfactory-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.configureall
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.postconfigureall
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure

 Options validation

{
 "MyConfig": {
 "Key1": "My Key One",
 "Key2": 10,
 "Key3": 32
 }
}

public class MyConfigOptions
{
 public const string MyConfig = "MyConfig";

 [RegularExpression(@"^[a-zA-Z''-'\s]{1,40}$")]
 public string Key1 { get; set; }
 [Range(0, 1000,
 ErrorMessage = "Value for {0} must be between {1} and {2}.")]
 public int Key2 { get; set; }
 public int Key3 { get; set; }
}

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddOptions<MyConfigOptions>()
 .Bind(Configuration.GetSection(MyConfigOptions.MyConfig))
 .ValidateDataAnnotations();

 services.AddControllersWithViews();
 }

Create a type that implements IConfigureOptions<TOptions> or IConfigureNamedOptions<TOptions>

and register the type as a service.

We recommend passing a configuration delegate to Configure, since creating a service is more complex.

Creating a type is equivalent to what the framework does when calling Configure. Calling Configure registers a

transient generic IConfigureNamedOptions<TOptions>, which has a constructor that accepts the generic

service types specified.

Options validation enables option values to be validated.

Consider the following appsettings.json file:

The following class binds to the "MyConfig" configuration section and applies a couple of DataAnnotations

rules:

The following code:

Calls AddOptions to get an OptionsBuilder<TOptions> that binds to the MyConfigOptions class.

Calls ValidateDataAnnotations to enable validation using DataAnnotations .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.addoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsbuilderdataannotationsextensions.validatedataannotations

public class HomeController : Controller
{
 private readonly ILogger<HomeController> _logger;
 private readonly IOptions<MyConfigOptions> _config;

 public HomeController(IOptions<MyConfigOptions> config,
 ILogger<HomeController> logger)
 {
 _config = config;
 _logger = logger;

 try
 {
 var configValue = _config.Value;

 }
 catch (OptionsValidationException ex)
 {
 foreach (var failure in ex.Failures)
 {
 _logger.LogError(failure);
 }
 }
 }

 public ContentResult Index()
 {
 string msg;
 try
 {
 msg = $"Key1: {_config.Value.Key1} \n" +
 $"Key2: {_config.Value.Key2} \n" +
 $"Key3: {_config.Value.Key3}";
 }
 catch (OptionsValidationException optValEx)
 {
 return Content(optValEx.Message);
 }
 return Content(msg);
 }

The ValidateDataAnnotations extension method is defined in the Microsoft.Extensions.Options.DataAnnotations

NuGet package. For web apps that use the Microsoft.NET.Sdk.Web SDK, this package is referenced implicitly

from the shared framework.

The following code displays the configuration values or the validation errors:

The following code applies a more complex validation rule using a delegate:

https://www.nuget.org/packages/Microsoft.Extensions.Options.DataAnnotations

public void ConfigureServices(IServiceCollection services)
{
 services.AddOptions<MyConfigOptions>()
 .Bind(Configuration.GetSection(MyConfigOptions.MyConfig))
 .ValidateDataAnnotations()
 .Validate(config =>
 {
 if (config.Key2 != 0)
 {
 return config.Key3 > config.Key2;
 }

 return true;
 }, "Key3 must be > than Key2."); // Failure message.

 services.AddControllersWithViews();
}

IValidateOptions for complex validationIValidateOptions for complex validation

public class MyConfigValidation : IValidateOptions<MyConfigOptions>
{
 public MyConfigOptions _config { get; private set; }

 public MyConfigValidation(IConfiguration config)
 {
 _config = config.GetSection(MyConfigOptions.MyConfig)
 .Get<MyConfigOptions>();
 }

 public ValidateOptionsResult Validate(string name, MyConfigOptions options)
 {
 string vor=null;
 var rx = new Regex(@"^[a-zA-Z''-'\s]{1,40}$");
 var match = rx.Match(options.Key1);

 if (string.IsNullOrEmpty(match.Value))
 {
 vor = $"{options.Key1} doesn't match RegEx \n";
 }

 if (options.Key2 < 0 || options.Key2 > 1000)
 {
 vor = $"{options.Key2} doesn't match Range 0 - 1000 \n";
 }

 if (_config.Key2 != default)
 {
 if(_config.Key3 <= _config.Key2)
 {
 vor += "Key3 must be > than Key2.";
 }
 }

 if (vor != null)
 {
 return ValidateOptionsResult.Fail(vor);
 }

 return ValidateOptionsResult.Success;
 }
}

The following class implements IValidateOptions<TOptions>:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ivalidateoptions-1

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<MyConfigOptions>(Configuration.GetSection(
 MyConfigOptions.MyConfig));
 services.TryAddEnumerable(ServiceDescriptor.Singleton<IValidateOptions
 <MyConfigOptions>, MyConfigValidation>());
 services.AddControllersWithViews();
}

Options post-configuration

services.PostConfigure<MyOptions>(myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

services.PostConfigure<MyOptions>("named_options_1", myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

services.PostConfigureAll<MyOptions>(myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

Accessing options during startup

public void Configure(IApplicationBuilder app,
 IOptionsMonitor<MyOptions> optionsAccessor)
{
 var option1 = optionsAccessor.CurrentValue.Option1;
}

Options.ConfigurationExtensions NuGet package

IValidateOptions enables moving the validation code out of StartUp and into a class.

Using the preceding code, validation is enabled in Startup.ConfigureServices with the following code:

Set post-configuration with IPostConfigureOptions<TOptions>. Post-configuration runs after all

IConfigureOptions<TOptions> configuration occurs:

PostConfigure is available to post-configure named options:

Use PostConfigureAll to post-configure all configuration instances:

IOptions<TOptions> and IOptionsMonitor<TOptions> can be used in Startup.Configure , since services are

built before the Configure method executes.

Don't use IOptions<TOptions> or IOptionsMonitor<TOptions> in Startup.ConfigureServices . An inconsistent

options state may exist due to the ordering of service registrations.

The Microsoft.Extensions.Options.ConfigurationExtensions package is implicitly referenced in ASP.NET Core

apps.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1.postconfigure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.postconfigureall
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://www.nuget.org/packages/Microsoft.Extensions.Options.ConfigurationExtensions/

Prerequisites

Options interfaces

General options configuration

The options pattern uses classes to represent groups of related settings. When configuration settings are

isolated by scenario into separate classes, the app adheres to two important software engineering principles:

The Interface Segregation Principle (ISP) or Encapsulation: Scenarios (classes) that depend on configuration

settings depend only on the configuration settings that they use.

Separation of Concerns: Settings for different parts of the app aren't dependent or coupled to one another.

Options also provide a mechanism to validate configuration data. For more information, see the Options

validation section.

View or download sample code (how to download)

Reference the Microsoft.AspNetCore.App metapackage or add a package reference to the

Microsoft.Extensions.Options.ConfigurationExtensions package.

IOptionsMonitor<TOptions> is used to retrieve options and manage options notifications for TOptions

instances. IOptionsMonitor<TOptions> supports the following scenarios:

Change notifications

Named options

Reloadable configuration

Selective options invalidation (IOptionsMonitorCache<TOptions>)

Post-configuration scenarios allow you to set or change options after all IConfigureOptions<TOptions>

configuration occurs.

IOptionsFactory<TOptions> is responsible for creating new options instances. It has a single Create method.

The default implementation takes all registered IConfigureOptions<TOptions> and

IPostConfigureOptions<TOptions> and runs all the configurations first, followed by the post-configuration. It

distinguishes between IConfigureNamedOptions<TOptions> and IConfigureOptions<TOptions> and only calls

the appropriate interface.

IOptionsMonitorCache<TOptions> is used by IOptionsMonitor<TOptions> to cache TOptions instances. The

IOptionsMonitorCache<TOptions> invalidates options instances in the monitor so that the value is recomputed

(TryRemove). Values can be manually introduced with TryAdd. The Clear method is used when all named

instances should be recreated on demand.

IOptionsSnapshot<TOptions> is useful in scenarios where options should be recomputed on every request.

For more information, see the Reload configuration data with IOptionsSnapshot section.

IOptions<TOptions> can be used to support options. However, IOptions<TOptions> doesn't support the

preceding scenarios of IOptionsMonitor<TOptions>. You may continue to use IOptions<TOptions> in existing

frameworks and libraries that already use the IOptions<TOptions> interface and don't require the scenarios

provided by IOptionsMonitor<TOptions>.

General options configuration is demonstrated as Example 1 in the sample app.

An options class must be non-abstract with a public parameterless constructor. The following class, MyOptions ,

has two properties, Option1 and Option2 . Setting default values is optional, but the class constructor in the

https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#encapsulation
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#separation-of-concerns
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/options/samples
https://www.nuget.org/packages/Microsoft.Extensions.Options.ConfigurationExtensions/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsfactory-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsfactory-1.create
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.tryremove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.tryadd
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.clear
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1

public class MyOptions
{
 public MyOptions()
 {
 // Set default value.
 Option1 = "value1_from_ctor";
 }

 public string Option1 { get; set; }
 public int Option2 { get; set; } = 5;
}

// Example #1: General configuration
// Register the Configuration instance which MyOptions binds against.
services.Configure<MyOptions>(Configuration);

private readonly MyOptions _options;

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #1: Simple options
var option1 = _options.Option1;
var option2 = _options.Option2;
SimpleOptions = $"option1 = {option1}, option2 = {option2}";

following example sets the default value of Option1 . Option2 has a default value set by initializing the

property directly (Models/MyOptions.cs):

The MyOptions class is added to the service container with Configure and bound to configuration:

The following page model uses constructor dependency injection with IOptionsMonitor<TOptions> to access

the settings (Pages/Index.cshtml.cs):

The sample's appsettings.json file specifies values for option1 and option2 :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsconfigurationservicecollectionextensions.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1

{
 "option1": "value1_from_json",
 "option2": -1,
 "subsection": {
 "suboption1": "subvalue1_from_json",
 "suboption2": 200
 },
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

option1 = value1_from_json, option2 = -1

NOTENOTE

var configBuilder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json", optional: true);
var config = configBuilder.Build();

services.Configure<MyOptions>(config);

Configure simple options with a delegate

public class MyOptionsWithDelegateConfig
{
 public MyOptionsWithDelegateConfig()
 {
 // Set default value.
 Option1 = "value1_from_ctor";
 }

 public string Option1 { get; set; }
 public int Option2 { get; set; } = 5;
}

When the app is run, the page model's OnGet method returns a string showing the option class values:

When using a custom ConfigurationBuilder to load options configuration from a settings file, confirm that the base path

is set correctly:

Explicitly setting the base path isn't required when loading options configuration from the settings file via

CreateDefaultBuilder.

Configuring simple options with a delegate is demonstrated as Example 2 in the sample app.

Use a delegate to set options values. The sample app uses the MyOptionsWithDelegateConfig class

(Models/MyOptionsWithDelegateConfig.cs):

In the following code, a second IConfigureOptions<TOptions> service is added to the service container. It uses

a delegate to configure the binding with MyOptionsWithDelegateConfig :

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.configurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1

// Example #2: Options bound and configured by a delegate
services.Configure<MyOptionsWithDelegateConfig>(myOptions =>
{
 myOptions.Option1 = "value1_configured_by_delegate";
 myOptions.Option2 = 500;
});

private readonly MyOptionsWithDelegateConfig _optionsWithDelegateConfig;

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #2: Options configured by delegate
var delegate_config_option1 = _optionsWithDelegateConfig.Option1;
var delegate_config_option2 = _optionsWithDelegateConfig.Option2;
SimpleOptionsWithDelegateConfig =
 $"delegate_option1 = {delegate_config_option1}, " +
 $"delegate_option2 = {delegate_config_option2}";

delegate_option1 = value1_configured_by_delegate, delegate_option2 = 500

Suboptions configuration

Index.cshtml.cs:

You can add multiple configuration providers. Configuration providers are available from NuGet packages and

are applied in the order that they're registered. For more information, see Configuration in ASP.NET Core.

Each call to Configure adds an IConfigureOptions<TOptions> service to the service container. In the preceding

example, the values of Option1 and Option2 are both specified in appsettings.json, but the values of Option1

and Option2 are overridden by the configured delegate.

When more than one configuration service is enabled, the last configuration source specified wins and sets the

configuration value. When the app is run, the page model's OnGet method returns a string showing the option

class values:

Suboptions configuration is demonstrated as Example 3 in the sample app.

Apps should create options classes that pertain to specific scenario groups (classes) in the app. Parts of the app

that require configuration values should only have access to the configuration values that they use.

When binding options to configuration, each property in the options type is bound to a configuration key of

the form property[:sub-property:] . For example, the MyOptions.Option1 property is bound to the key Option1

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1

// Example #3: Suboptions
// Bind options using a sub-section of the appsettings.json file.
services.Configure<MySubOptions>(Configuration.GetSection("subsection"));

{
 "option1": "value1_from_json",
 "option2": -1,
 "subsection": {
 "suboption1": "subvalue1_from_json",
 "suboption2": 200
 },
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

public class MySubOptions
{
 public MySubOptions()
 {
 // Set default values.
 SubOption1 = "value1_from_ctor";
 SubOption2 = 5;
 }

 public string SubOption1 { get; set; }
 public int SubOption2 { get; set; }
}

private readonly MySubOptions _subOptions;

, which is read from the option1 property in appsettings.json.

In the following code, a third IConfigureOptions<TOptions> service is added to the service container. It binds

MySubOptions to the section subsection of the appsettings.json file:

The GetSection method requires the Microsoft.Extensions.Configuration namespace.

The sample's appsettings.json file defines a subsection member with keys for suboption1 and suboption2 :

The MySubOptions class defines properties, SubOption1 and SubOption2 , to hold the options values

(Models/MySubOptions.cs):

The page model's OnGet method returns a string with the options values (Pages/Index.cshtml.cs):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #3: Suboptions
var subOption1 = _subOptions.SubOption1;
var subOption2 = _subOptions.SubOption2;
SubOptions = $"subOption1 = {subOption1}, subOption2 = {subOption2}";

subOption1 = subvalue1_from_json, subOption2 = 200

Options injection

private readonly MyOptions _options;

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #4: Bind options directly to the page
MyOptions = _options;

When the app is run, the OnGet method returns a string showing the suboption class values:

Options injection is demonstrated as Example 4 in the sample app.

Inject IOptionsMonitor<TOptions> into:

A Razor page or MVC view with the @inject Razor directive.

A page or view model.

The following example from the sample app injects IOptionsMonitor<TOptions> into a page model

(Pages/Index.cshtml.cs):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1

@page
@model IndexModel
@using Microsoft.Extensions.Options
@inject IOptionsMonitor<MyOptions> OptionsAccessor
@{
 ViewData["Title"] = "Options Sample";
}

<h1>@ViewData["Title"]</h1>

Reload configuration data with IOptionsSnapshot

private readonly MyOptions _snapshotOptions;

The sample app shows how to inject IOptionsMonitor<MyOptions> with an @inject directive:

When the app is run, the options values are shown in the rendered page:

Reloading configuration data with IOptionsSnapshot<TOptions> is demonstrated in Example 5 in the sample

app.

Using IOptionsSnapshot<TOptions>, options are computed once per request when accessed and cached for

the lifetime of the request.

The difference between IOptionsMonitor and IOptionsSnapshot is that:

IOptionsMonitor is a singleton service that retrieves current option values at any time, which is especially

useful in singleton dependencies.

IOptionsSnapshot is a scoped service and provides a snapshot of the options at the time the

IOptionsSnapshot<T> object is constructed. Options snapshots are designed for use with transient and

scoped dependencies.

The following example demonstrates how a new IOptionsSnapshot<TOptions> is created after appsettings.json

changes (Pages/Index.cshtml.cs). Multiple requests to the server return constant values provided by the

appsettings.json file until the file is changed and configuration reloads.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #5: Snapshot options
var snapshotOption1 = _snapshotOptions.Option1;
var snapshotOption2 = _snapshotOptions.Option2;
SnapshotOptions =
 $"snapshot option1 = {snapshotOption1}, " +
 $"snapshot option2 = {snapshotOption2}";

snapshot option1 = value1_from_json, snapshot option2 = -1

snapshot option1 = value1_from_json UPDATED, snapshot option2 = 200

Named options support with IConfigureNamedOptions

// Example #6: Named options (named_options_1)
// Register the ConfigurationBuilder instance which MyOptions binds against.
// Specify that the options loaded from configuration are named
// "named_options_1".
services.Configure<MyOptions>("named_options_1", Configuration);

// Example #6: Named options (named_options_2)
// Specify that the options loaded from the MyOptions class are named
// "named_options_2".
// Use a delegate to configure option values.
services.Configure<MyOptions>("named_options_2", myOptions =>
{
 myOptions.Option1 = "named_options_2_value1_from_action";
});

The following image shows the initial option1 and option2 values loaded from the appsettings.json file:

Change the values in the appsettings.json file to value1_from_json UPDATED and 200 . Save the appsettings.json

file. Refresh the browser to see that the options values are updated:

Named options support with IConfigureNamedOptions<TOptions> is demonstrated as Example 6 in the

sample app.

Named options support allows the app to distinguish between named options configurations. In the sample

app, named options are declared with OptionsServiceCollectionExtensions.Configure, which calls the

ConfigureNamedOptions<TOptions>.Configure extension method. Named options are case sensitive.

The sample app accesses the named options with Get (Pages/Index.cshtml.cs):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.configurenamedoptions-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1.get

private readonly MyOptions _named_options_1;
private readonly MyOptions _named_options_2;

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #6: Named options
var named_options_1 =
 $"named_options_1: option1 = {_named_options_1.Option1}, " +
 $"option2 = {_named_options_1.Option2}";
var named_options_2 =
 $"named_options_2: option1 = {_named_options_2.Option1}, " +
 $"option2 = {_named_options_2.Option2}";
NamedOptions = $"{named_options_1} {named_options_2}";

named_options_1: option1 = value1_from_json, option2 = -1
named_options_2: option1 = named_options_2_value1_from_action, option2 = 5

Configure all options with the ConfigureAll method

services.ConfigureAll<MyOptions>(myOptions =>
{
 myOptions.Option1 = "ConfigureAll replacement value";
});

named_options_1: option1 = ConfigureAll replacement value, option2 = -1
named_options_2: option1 = ConfigureAll replacement value, option2 = 5

Running the sample app, the named options are returned:

named_options_1 values are provided from configuration, which are loaded from the appsettings.json file.

named_options_2 values are provided by:

The named_options_2 delegate in ConfigureServices for Option1 .

The default value for Option2 provided by the MyOptions class.

Configure all options instances with the ConfigureAll method. The following code configures Option1 for all

configuration instances with a common value. Add the following code manually to the

Startup.ConfigureServices method:

Running the sample app after adding the code produces the following result:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.configureall

NOTENOTE

OptionsBuilder API

// Options.DefaultName = "" is used.
services.AddOptions<MyOptions>().Configure(o => o.Property = "default");

services.AddOptions<MyOptions>("optionalName")
 .Configure(o => o.Property = "named");

Use DI services to configure options

Options validation

All options are named instances. Existing IConfigureOptions<TOptions> instances are treated as targeting the

Options.DefaultName instance, which is string.Empty . IConfigureNamedOptions<TOptions> also implements

IConfigureOptions<TOptions>. The default implementation of the IOptionsFactory<TOptions> has logic to use each

appropriately. The null named option is used to target all of the named instances instead of a specific named instance

(ConfigureAll and PostConfigureAll use this convention).

OptionsBuilder<TOptions> is used to configure TOptions instances. OptionsBuilder streamlines creating

named options as it's only a single parameter to the initial AddOptions<TOptions>(string optionsName) call

instead of appearing in all of the subsequent calls. Options validation and the ConfigureOptions overloads that

accept service dependencies are only available via OptionsBuilder .

You can access other services from dependency injection while configuring options in two ways:

services.AddOptions<MyOptions>("optionalName")
 .Configure<Service1, Service2, Service3, Service4, Service5>(
 (o, s, s2, s3, s4, s5) =>
 o.Property = DoSomethingWith(s, s2, s3, s4, s5));

Pass a configuration delegate to Configure on OptionsBuilder<TOptions>. OptionsBuilder<TOptions>

provides overloads of Configure that allow you to use up to five services to configure options:

Create your own type that implements IConfigureOptions<TOptions> or

IConfigureNamedOptions<TOptions> and register the type as a service.

We recommend passing a configuration delegate to Configure, since creating a service is more complex.

Creating your own type is equivalent to what the framework does for you when you use Configure. Calling

Configure registers a transient generic IConfigureNamedOptions<TOptions>, which has a constructor that

accepts the generic service types specified.

Options validation allows you to validate options when options are configured. Call Validate with a validation

method that returns true if options are valid and false if they aren't valid:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsfactory-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.configureall
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.postconfigureall
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1

// Registration
services.AddOptions<MyOptions>("optionalOptionsName")
 .Configure(o => { }) // Configure the options
 .Validate(o => YourValidationShouldReturnTrueIfValid(o),
 "custom error");

// Consumption
var monitor = services.BuildServiceProvider()
 .GetService<IOptionsMonitor<MyOptions>>();

try
{
 var options = monitor.Get("optionalOptionsName");
}
catch (OptionsValidationException e)
{
 // e.OptionsName returns "optionalOptionsName"
 // e.OptionsType returns typeof(MyOptions)
 // e.Failures returns a list of errors, which would contain
 // "custom error"
}

IMPORTANTIMPORTANT

public interface IValidateOptions<TOptions> where TOptions : class
{
 ValidateOptionsResult Validate(string name, TOptions options);
}

The preceding example sets the named options instance to optionalOptionsName . The default options instance

is Options.DefaultName .

Validation runs when the options instance is created. An options instance is guaranteed to pass validation the

first time it's accessed.

Options validation doesn't guard against options modifications after the options instance is created. For example,

IOptionsSnapshot options are created and validated once per request when the options are first accessed. The

IOptionsSnapshot options aren't validated again on subsequent access attempts for the same request.

The Validate method accepts a Func<TOptions, bool> . To fully customize validation, implement

IValidateOptions<TOptions> , which allows:

Validation of multiple options types:

class ValidateTwo : IValidateOptions<Option1>, IValidationOptions<Option2>

Validation that depends on another option type:

public DependsOnAnotherOptionValidator(IOptionsMonitor<AnotherOption> options)

IValidateOptions validates:

A specific named options instance.

All options when name is null .

Return a ValidateOptionsResult from your implementation of the interface:

Data Annotation-based validation is available from the Microsoft.Extensions.Options.DataAnnotations package

by calling the ValidateDataAnnotations method on OptionsBuilder<TOptions> .

Microsoft.Extensions.Options.DataAnnotations is included in the Microsoft.AspNetCore.App metapackage.

https://www.nuget.org/packages/Microsoft.Extensions.Options.DataAnnotations
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsbuilderdataannotationsextensions.validatedataannotations

using Microsoft.Extensions.DependencyInjection;

private class AnnotatedOptions
{
 [Required]
 public string Required { get; set; }

 [StringLength(5, ErrorMessage = "Too long.")]
 public string StringLength { get; set; }

 [Range(-5, 5, ErrorMessage = "Out of range.")]
 public int IntRange { get; set; }
}

[Fact]
public void CanValidateDataAnnotations()
{
 var services = new ServiceCollection();
 services.AddOptions<AnnotatedOptions>()
 .Configure(o =>
 {
 o.StringLength = "111111";
 o.IntRange = 10;
 o.Custom = "nowhere";
 })
 .ValidateDataAnnotations();

 var sp = services.BuildServiceProvider();

 var error = Assert.Throws<OptionsValidationException>(() =>
 sp.GetRequiredService<IOptionsMonitor<AnnotatedOptions>>().CurrentValue);
 ValidateFailure<AnnotatedOptions>(error, Options.DefaultName, 1,
 "DataAnnotation validation failed for members Required " +
 "with the error 'The Required field is required.'.",
 "DataAnnotation validation failed for members StringLength " +
 "with the error 'Too long.'.",
 "DataAnnotation validation failed for members IntRange " +
 "with the error 'Out of range.'.");
}

Options post-configuration

services.PostConfigure<MyOptions>(myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

services.PostConfigure<MyOptions>("named_options_1", myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

Eager validation (fail fast at startup) is under consideration for a future release.

Set post-configuration with IPostConfigureOptions<TOptions>. Post-configuration runs after all

IConfigureOptions<TOptions> configuration occurs:

PostConfigure is available to post-configure named options:

Use PostConfigureAll to post-configure all configuration instances:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1.postconfigure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.postconfigureall

services.PostConfigureAll<MyOptions>(myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

Accessing options during startup

public void Configure(IApplicationBuilder app, IOptionsMonitor<MyOptions> optionsAccessor)
{
 var option1 = optionsAccessor.CurrentValue.Option1;
}

Prerequisites

Options interfaces

IOptions<TOptions> and IOptionsMonitor<TOptions> can be used in Startup.Configure , since services are

built before the Configure method executes.

Don't use IOptions<TOptions> or IOptionsMonitor<TOptions> in Startup.ConfigureServices . An inconsistent

options state may exist due to the ordering of service registrations.

The options pattern uses classes to represent groups of related settings. When configuration settings are

isolated by scenario into separate classes, the app adheres to two important software engineering principles:

The Interface Segregation Principle (ISP) or Encapsulation: Scenarios (classes) that depend on configuration

settings depend only on the configuration settings that they use.

Separation of Concerns: Settings for different parts of the app aren't dependent or coupled to one another.

Options also provide a mechanism to validate configuration data. For more information, see the Options

validation section.

View or download sample code (how to download)

Reference the Microsoft.AspNetCore.App metapackage or add a package reference to the

Microsoft.Extensions.Options.ConfigurationExtensions package.

IOptionsMonitor<TOptions> is used to retrieve options and manage options notifications for TOptions

instances. IOptionsMonitor<TOptions> supports the following scenarios:

Change notifications

Named options

Reloadable configuration

Selective options invalidation (IOptionsMonitorCache<TOptions>)

Post-configuration scenarios allow you to set or change options after all IConfigureOptions<TOptions>

configuration occurs.

IOptionsFactory<TOptions> is responsible for creating new options instances. It has a single Create method.

The default implementation takes all registered IConfigureOptions<TOptions> and

IPostConfigureOptions<TOptions> and runs all the configurations first, followed by the post-configuration. It

distinguishes between IConfigureNamedOptions<TOptions> and IConfigureOptions<TOptions> and only calls

the appropriate interface.

IOptionsMonitorCache<TOptions> is used by IOptionsMonitor<TOptions> to cache TOptions instances. The

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#encapsulation
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#separation-of-concerns
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/configuration/options/samples
https://www.nuget.org/packages/Microsoft.Extensions.Options.ConfigurationExtensions/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsfactory-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsfactory-1.create
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1

General options configuration

public class MyOptions
{
 public MyOptions()
 {
 // Set default value.
 Option1 = "value1_from_ctor";
 }

 public string Option1 { get; set; }
 public int Option2 { get; set; } = 5;
}

// Example #1: General configuration
// Register the Configuration instance which MyOptions binds against.
services.Configure<MyOptions>(Configuration);

private readonly MyOptions _options;

IOptionsMonitorCache<TOptions> invalidates options instances in the monitor so that the value is recomputed

(TryRemove). Values can be manually introduced with TryAdd. The Clear method is used when all named

instances should be recreated on demand.

IOptionsSnapshot<TOptions> is useful in scenarios where options should be recomputed on every request.

For more information, see the Reload configuration data with IOptionsSnapshot section.

IOptions<TOptions> can be used to support options. However, IOptions<TOptions> doesn't support the

preceding scenarios of IOptionsMonitor<TOptions>. You may continue to use IOptions<TOptions> in existing

frameworks and libraries that already use the IOptions<TOptions> interface and don't require the scenarios

provided by IOptionsMonitor<TOptions>.

General options configuration is demonstrated as Example 1 in the sample app.

An options class must be non-abstract with a public parameterless constructor. The following class, MyOptions ,

has two properties, Option1 and Option2 . Setting default values is optional, but the class constructor in the

following example sets the default value of Option1 . Option2 has a default value set by initializing the

property directly (Models/MyOptions.cs):

The MyOptions class is added to the service container with Configure and bound to configuration:

The following page model uses constructor dependency injection with IOptionsMonitor<TOptions> to access

the settings (Pages/Index.cshtml.cs):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.tryremove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.tryadd
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitorcache-1.clear
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsconfigurationservicecollectionextensions.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #1: Simple options
var option1 = _options.Option1;
var option2 = _options.Option2;
SimpleOptions = $"option1 = {option1}, option2 = {option2}";

{
 "option1": "value1_from_json",
 "option2": -1,
 "subsection": {
 "suboption1": "subvalue1_from_json",
 "suboption2": 200
 },
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

option1 = value1_from_json, option2 = -1

NOTENOTE

var configBuilder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json", optional: true);
var config = configBuilder.Build();

services.Configure<MyOptions>(config);

Configure simple options with a delegate

The sample's appsettings.json file specifies values for option1 and option2 :

When the app is run, the page model's OnGet method returns a string showing the option class values:

When using a custom ConfigurationBuilder to load options configuration from a settings file, confirm that the base path

is set correctly:

Explicitly setting the base path isn't required when loading options configuration from the settings file via

CreateDefaultBuilder.

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.configurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder

public class MyOptionsWithDelegateConfig
{
 public MyOptionsWithDelegateConfig()
 {
 // Set default value.
 Option1 = "value1_from_ctor";
 }

 public string Option1 { get; set; }
 public int Option2 { get; set; } = 5;
}

// Example #2: Options bound and configured by a delegate
services.Configure<MyOptionsWithDelegateConfig>(myOptions =>
{
 myOptions.Option1 = "value1_configured_by_delegate";
 myOptions.Option2 = 500;
});

private readonly MyOptionsWithDelegateConfig _optionsWithDelegateConfig;

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #2: Options configured by delegate
var delegate_config_option1 = _optionsWithDelegateConfig.Option1;
var delegate_config_option2 = _optionsWithDelegateConfig.Option2;
SimpleOptionsWithDelegateConfig =
 $"delegate_option1 = {delegate_config_option1}, " +
 $"delegate_option2 = {delegate_config_option2}";

Configuring simple options with a delegate is demonstrated as Example 2 in the sample app.

Use a delegate to set options values. The sample app uses the MyOptionsWithDelegateConfig class

(Models/MyOptionsWithDelegateConfig.cs):

In the following code, a second IConfigureOptions<TOptions> service is added to the service container. It uses

a delegate to configure the binding with MyOptionsWithDelegateConfig :

Index.cshtml.cs:

You can add multiple configuration providers. Configuration providers are available from NuGet packages and

are applied in the order that they're registered. For more information, see Configuration in ASP.NET Core.

Each call to Configure adds an IConfigureOptions<TOptions> service to the service container. In the preceding

example, the values of Option1 and Option2 are both specified in appsettings.json, but the values of Option1

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1

delegate_option1 = value1_configured_by_delegate, delegate_option2 = 500

Suboptions configuration

// Example #3: Suboptions
// Bind options using a sub-section of the appsettings.json file.
services.Configure<MySubOptions>(Configuration.GetSection("subsection"));

{
 "option1": "value1_from_json",
 "option2": -1,
 "subsection": {
 "suboption1": "subvalue1_from_json",
 "suboption2": 200
 },
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

and Option2 are overridden by the configured delegate.

When more than one configuration service is enabled, the last configuration source specified wins and sets the

configuration value. When the app is run, the page model's OnGet method returns a string showing the option

class values:

Suboptions configuration is demonstrated as Example 3 in the sample app.

Apps should create options classes that pertain to specific scenario groups (classes) in the app. Parts of the app

that require configuration values should only have access to the configuration values that they use.

When binding options to configuration, each property in the options type is bound to a configuration key of

the form property[:sub-property:] . For example, the MyOptions.Option1 property is bound to the key Option1

, which is read from the option1 property in appsettings.json.

In the following code, a third IConfigureOptions<TOptions> service is added to the service container. It binds

MySubOptions to the section subsection of the appsettings.json file:

The GetSection method requires the Microsoft.Extensions.Configuration namespace.

The sample's appsettings.json file defines a subsection member with keys for suboption1 and suboption2 :

The MySubOptions class defines properties, SubOption1 and SubOption2 , to hold the options values

(Models/MySubOptions.cs):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration

public class MySubOptions
{
 public MySubOptions()
 {
 // Set default values.
 SubOption1 = "value1_from_ctor";
 SubOption2 = 5;
 }

 public string SubOption1 { get; set; }
 public int SubOption2 { get; set; }
}

private readonly MySubOptions _subOptions;

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #3: Suboptions
var subOption1 = _subOptions.SubOption1;
var subOption2 = _subOptions.SubOption2;
SubOptions = $"subOption1 = {subOption1}, subOption2 = {subOption2}";

subOption1 = subvalue1_from_json, subOption2 = 200

Options provided by a view model or with direct view injection

private readonly MyOptions _options;

The page model's OnGet method returns a string with the options values (Pages/Index.cshtml.cs):

When the app is run, the OnGet method returns a string showing the suboption class values:

Options provided by a view model or with direct view injection is demonstrated as Example 4 in the sample

app.

Options can be supplied in a view model or by injecting IOptionsMonitor<TOptions> directly into a view

(Pages/Index.cshtml.cs):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #4: Bind options directly to the page
MyOptions = _options;

@page
@model IndexModel
@using Microsoft.Extensions.Options
@inject IOptionsMonitor<MyOptions> OptionsAccessor
@{
 ViewData["Title"] = "Options Sample";
}

<h1>@ViewData["Title"]</h1>

Reload configuration data with IOptionsSnapshot

The sample app shows how to inject IOptionsMonitor<MyOptions> with an @inject directive:

When the app is run, the options values are shown in the rendered page:

Reloading configuration data with IOptionsSnapshot<TOptions> is demonstrated in Example 5 in the sample

app.

IOptionsSnapshot<TOptions> supports reloading options with minimal processing overhead.

Options are computed once per request when accessed and cached for the lifetime of the request.

The following example demonstrates how a new IOptionsSnapshot<TOptions> is created after appsettings.json

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1

private readonly MyOptions _snapshotOptions;

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #5: Snapshot options
var snapshotOption1 = _snapshotOptions.Option1;
var snapshotOption2 = _snapshotOptions.Option2;
SnapshotOptions =
 $"snapshot option1 = {snapshotOption1}, " +
 $"snapshot option2 = {snapshotOption2}";

snapshot option1 = value1_from_json, snapshot option2 = -1

snapshot option1 = value1_from_json UPDATED, snapshot option2 = 200

Named options support with IConfigureNamedOptions

changes (Pages/Index.cshtml.cs). Multiple requests to the server return constant values provided by the

appsettings.json file until the file is changed and configuration reloads.

The following image shows the initial option1 and option2 values loaded from the appsettings.json file:

Change the values in the appsettings.json file to value1_from_json UPDATED and 200 . Save the appsettings.json

file. Refresh the browser to see that the options values are updated:

Named options support with IConfigureNamedOptions<TOptions> is demonstrated as Example 6 in the

sample app.

Named options support allows the app to distinguish between named options configurations. In the sample

app, named options are declared with OptionsServiceCollectionExtensions.Configure, which calls the

ConfigureNamedOptions<TOptions>.Configure extension method. Named options are case sensitive.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.configurenamedoptions-1.configure

// Example #6: Named options (named_options_1)
// Register the ConfigurationBuilder instance which MyOptions binds against.
// Specify that the options loaded from configuration are named
// "named_options_1".
services.Configure<MyOptions>("named_options_1", Configuration);

// Example #6: Named options (named_options_2)
// Specify that the options loaded from the MyOptions class are named
// "named_options_2".
// Use a delegate to configure option values.
services.Configure<MyOptions>("named_options_2", myOptions =>
{
 myOptions.Option1 = "named_options_2_value1_from_action";
});

private readonly MyOptions _named_options_1;
private readonly MyOptions _named_options_2;

public IndexModel(
 IOptionsMonitor<MyOptions> optionsAccessor,
 IOptionsMonitor<MyOptionsWithDelegateConfig> optionsAccessorWithDelegateConfig,
 IOptionsMonitor<MySubOptions> subOptionsAccessor,
 IOptionsSnapshot<MyOptions> snapshotOptionsAccessor,
 IOptionsSnapshot<MyOptions> namedOptionsAccessor)
{
 _options = optionsAccessor.CurrentValue;
 _optionsWithDelegateConfig = optionsAccessorWithDelegateConfig.CurrentValue;
 _subOptions = subOptionsAccessor.CurrentValue;
 _snapshotOptions = snapshotOptionsAccessor.Value;
 _named_options_1 = namedOptionsAccessor.Get("named_options_1");
 _named_options_2 = namedOptionsAccessor.Get("named_options_2");
}

// Example #6: Named options
var named_options_1 =
 $"named_options_1: option1 = {_named_options_1.Option1}, " +
 $"option2 = {_named_options_1.Option2}";
var named_options_2 =
 $"named_options_2: option1 = {_named_options_2.Option1}, " +
 $"option2 = {_named_options_2.Option2}";
NamedOptions = $"{named_options_1} {named_options_2}";

named_options_1: option1 = value1_from_json, option2 = -1
named_options_2: option1 = named_options_2_value1_from_action, option2 = 5

Configure all options with the ConfigureAll method

The sample app accesses the named options with Get (Pages/Index.cshtml.cs):

Running the sample app, the named options are returned:

named_options_1 values are provided from configuration, which are loaded from the appsettings.json file.

named_options_2 values are provided by:

The named_options_2 delegate in ConfigureServices for Option1 .

The default value for Option2 provided by the MyOptions class.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionssnapshot-1.get

services.ConfigureAll<MyOptions>(myOptions =>
{
 myOptions.Option1 = "ConfigureAll replacement value";
});

named_options_1: option1 = ConfigureAll replacement value, option2 = -1
named_options_2: option1 = ConfigureAll replacement value, option2 = 5

NOTENOTE

OptionsBuilder API

// Options.DefaultName = "" is used.
services.AddOptions<MyOptions>().Configure(o => o.Property = "default");

services.AddOptions<MyOptions>("optionalName")
 .Configure(o => o.Property = "named");

Use DI services to configure options

Configure all options instances with the ConfigureAll method. The following code configures Option1 for all

configuration instances with a common value. Add the following code manually to the

Startup.ConfigureServices method:

Running the sample app after adding the code produces the following result:

All options are named instances. Existing IConfigureOptions<TOptions> instances are treated as targeting the

Options.DefaultName instance, which is string.Empty . IConfigureNamedOptions<TOptions> also implements

IConfigureOptions<TOptions>. The default implementation of the IOptionsFactory<TOptions> has logic to use each

appropriately. The null named option is used to target all of the named instances instead of a specific named instance

(ConfigureAll and PostConfigureAll use this convention).

OptionsBuilder<TOptions> is used to configure TOptions instances. OptionsBuilder streamlines creating

named options as it's only a single parameter to the initial AddOptions<TOptions>(string optionsName) call

instead of appearing in all of the subsequent calls. Options validation and the ConfigureOptions overloads that

accept service dependencies are only available via OptionsBuilder .

You can access other services from dependency injection while configuring options in two ways:

services.AddOptions<MyOptions>("optionalName")
 .Configure<Service1, Service2, Service3, Service4, Service5>(
 (o, s, s2, s3, s4, s5) =>
 o.Property = DoSomethingWith(s, s2, s3, s4, s5));

Pass a configuration delegate to Configure on OptionsBuilder<TOptions>. OptionsBuilder<TOptions>

provides overloads of Configure that allow you to use up to five services to configure options:

Create your own type that implements IConfigureOptions<TOptions> or

IConfigureNamedOptions<TOptions> and register the type as a service.

We recommend passing a configuration delegate to Configure, since creating a service is more complex.

Creating your own type is equivalent to what the framework does for you when you use Configure. Calling

Configure registers a transient generic IConfigureNamedOptions<TOptions>, which has a constructor that

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.configureall
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsfactory-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.configureall
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.postconfigureall
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsbuilder-1.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigurenamedoptions-1

Options post-configuration

services.PostConfigure<MyOptions>(myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

services.PostConfigure<MyOptions>("named_options_1", myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

services.PostConfigureAll<MyOptions>(myOptions =>
{
 myOptions.Option1 = "post_configured_option1_value";
});

Accessing options during startup

public void Configure(IApplicationBuilder app, IOptionsMonitor<MyOptions> optionsAccessor)
{
 var option1 = optionsAccessor.CurrentValue.Option1;
}

Additional resources

accepts the generic service types specified.

Set post-configuration with IPostConfigureOptions<TOptions>. Post-configuration runs after all

IConfigureOptions<TOptions> configuration occurs:

PostConfigure is available to post-configure named options:

Use PostConfigureAll to post-configure all configuration instances:

IOptions<TOptions> and IOptionsMonitor<TOptions> can be used in Startup.Configure , since services are

built before the Configure method executes.

Don't use IOptions<TOptions> or IOptionsMonitor<TOptions> in Startup.ConfigureServices . An inconsistent

options state may exist due to the ordering of service registrations.

Configuration in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.iconfigureoptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ipostconfigureoptions-1.postconfigure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.optionsservicecollectionextensions.postconfigureall
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptions-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1

Use multiple environments in ASP.NET Core
9/22/2020 • 21 minutes to read • Edit Online

Environments

By Rick Anderson and Kirk Larkin

ASP.NET Core configures app behavior based on the runtime environment using an environment variable.

View or download sample code (how to download)

To determine the runtime environment, ASP.NET Core reads from the following environment variables:

1. DOTNET_ENVIRONMENT

2. ASPNETCORE_ENVIRONMENT when ConfigureWebHostDefaults is called. The default ASP.NET Core web app

templates call ConfigureWebHostDefaults . The ASPNETCORE_ENVIRONMENT value overrides

DOTNET_ENVIRONMENT .

IHostEnvironment.EnvironmentName can be set to any value, but the following values are provided by the

framework:

Development : The launchSettings.json file sets ASPNETCORE_ENVIRONMENT to Development on the local

machine.

Staging

Production : The default if DOTNET_ENVIRONMENT and ASPNETCORE_ENVIRONMENT have not been set.

The following code:

Calls UseDeveloperExceptionPage when ASPNETCORE_ENVIRONMENT is set to Development .

Calls UseExceptionHandler when the value of ASPNETCORE_ENVIRONMENT is set to Staging , Production , or

Staging_2 .

Injects IWebHostEnvironment into Startup.Configure . This approach is useful when the app only

requires adjusting Startup.Configure for a few environments with minimal code differences per

environment.

Is similar to the code generated by the ASP.NET Core templates.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/environments.md
https://twitter.com/RickAndMSFT
https://twitter.com/serpent5
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/environments/3.1sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.generichostbuilderextensions.configurewebhostdefaults
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.environments.development
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.environments.staging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.environments.production
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.developerexceptionpageextensions.usedeveloperexceptionpage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostenvironment

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 if (env.IsProduction() || env.IsStaging() || env.IsEnvironment("Staging_2"))
 {
 app.UseExceptionHandler("/Error");
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

<environment include="Development">
 <div>The effective tag is: <environment include="Development"></div>
</environment>
<environment exclude="Development">
 <div>The effective tag is: <environment exclude="Development"></div>
</environment>
<environment include="Staging,Development,Staging_2">
 <div>
 The effective tag is:
 <environment include="Staging,Development,Staging_2">
 </div>
</environment>

Create EnvironmentsSampleCreate EnvironmentsSample

dotnet new webapp -o EnvironmentsSample
cd EnvironmentsSample
dotnet run --verbosity normal

The Environment Tag Helper uses the value of IHostEnvironment.EnvironmentName to include or exclude

markup in the element:

The About page from the sample code includes the preceding markup and displays the value of

IWebHostEnvironment.EnvironmentName .

On Windows and macOS, environment variables and values aren't case-sensitive. Linux environment

variables and values are case-sensitivecase-sensitive by default.

The sample code used in this document is based on a Razor Pages project named EnvironmentsSample.

The following code creates and runs a web app named EnvironmentsSample:

When the app runs, it displays some of the following output:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.environmentname#microsoft_extensions_hosting_ihostenvironment_environmentname
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/environments/3.1sample/EnvironmentsSample/Pages/About.cshtml
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/environments/3.1sample
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/environments/3.1sample

Using launch settings from c:\tmp\EnvironmentsSample\Properties\launchSettings.json
info: Microsoft.Hosting.Lifetime[0]
 Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: c:\tmp\EnvironmentsSample

Development and launchSettings.jsonDevelopment and launchSettings.json

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:64645",
 "sslPort": 44366
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "EnvironmentsSample": {
 "commandName": "Project",
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

The development environment can enable features that shouldn't be exposed in production. For example,

the ASP.NET Core templates enable the Developer Exception Page in the development environment.

The environment for local machine development can be set in the Properties\launchSettings.json file of the

project. Environment values set in launchSettings.json override values set in the system environment.

The launchSettings.json file:

Is only used on the local development machine.

Is not deployed.

contains profile settings.

The following JSON shows the launchSettings.json file for an ASP.NET Core web projected named

EnvironmentsSample created with Visual Studio or dotnet new :

The preceding markup contains two profiles:

IIS Express : The default profile used when launching the app from Visual Studio. The "commandName"

key has the value "IISExpress" , therefore, IISExpress is the web server. You can set the launch profile

to the project or any other profile included. For example, in the image below, selecting the project

name launches the Kestrel web server.

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

EnvironmentsSample : The profile name is the project name. This profile is used by default when

launching the app with dotnet run . The "commandName" key has the value "Project" , therefore, the

Kestrel web server is launched.

The value of commandName can specify the web server to launch. commandName can be any one of the

following:

IISExpress : Launches IIS Express.

IIS : No web server launched. IIS is expected to be available.

Project : Launches Kestrel.

The Visual Studio project properties DebugDebug tab provides a GUI to edit the launchSettings.json file. Changes

made to project profiles may not take effect until the web server is restarted. Kestrel must be restarted

before it can detect changes made to its environment.

The following launchSettings.json file contains multiple profiles:

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:64645",
 "sslPort": 44366
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "IISX-Production": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Production"
 }
 },
 "IISX-Staging": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Staging",
 "ASPNETCORE_DETAILEDERRORS": "1",
 "ASPNETCORE_SHUTDOWNTIMEOUTSECONDS": "3"
 }
 },
 "EnvironmentsSample": {
 "commandName": "Project",
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "KestrelStaging": {
 "commandName": "Project",
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Staging"
 }
 }
 }
}

Profiles can be selected:

dotnet run --launch-profile "SampleApp"

From the Visual Studio UI.

Using the dotnet run command in a command shell with the --launch-profile option set to the

profile's name. This approach only supports Kestrel profiles.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run

WARNINGWARNING

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": ".NET Core Launch (web)",
 "type": "coreclr",
 // Configuration ommitted for brevity.
 "env": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "ASPNETCORE_URLS": "https://localhost:5001",
 "ASPNETCORE_DETAILEDERRORS": "1",
 "ASPNETCORE_SHUTDOWNTIMEOUTSECONDS": "3"
 },
 // Configuration ommitted for brevity.

ProductionProduction

Set the environment

Azure App ServiceAzure App Service

launchSettings.json shouldn't store secrets. The Secret Manager tool can be used to store secrets for local

development.

When using Visual Studio Code, environment variables can be set in the .vscode/launch.json file. The

following example sets several Host configuration values environment variables:

The .vscode/launch.json file is only used by Visual Studio Code.

The production environment should be configured to maximize security, performance, and application

robustness. Some common settings that differ from development include:

Caching.

Client-side resources are bundled, minified, and potentially served from a CDN.

Diagnostic error pages disabled.

Friendly error pages enabled.

Production logging and monitoring enabled. For example, using Application Insights.

It's often useful to set a specific environment for testing with an environment variable or platform setting. If

the environment isn't set, it defaults to Production , which disables most debugging features. The method

for setting the environment depends on the operating system.

When the host is built, the last environment setting read by the app determines the app's environment. The

app's environment can't be changed while the app is running.

The About page from the sample code displays the value of IWebHostEnvironment.EnvironmentName .

To set the environment in Azure App Service, perform the following steps:

1. Select the app from the App Ser vicesApp Ser vices blade.

2. In the SettingsSettings group, select the ConfigurationConfiguration blade.

3. In the Application settingsApplication settings tab, select New application settingNew application setting.

4. In the Add/Edit application settingAdd/Edit application setting window, provide ASPNETCORE_ENVIRONMENT for the NameName. For

ValueValue, provide the environment (for example, Staging).

5. Select the Deployment slot settingDeployment slot setting check box if you wish the environment setting to remain with the

https://code.visualstudio.com/
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/environments/3.1sample/EnvironmentsSample/Pages/About.cshtml
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/environments/3.1sample
https://azure.microsoft.com/services/app-service/

WindowsWindows

set ASPNETCORE_ENVIRONMENT=Staging
dotnet run --no-launch-profile

$Env:ASPNETCORE_ENVIRONMENT = "Staging"
dotnet run --no-launch-profile

current slot when deployment slots are swapped. For more information, see Set up staging

environments in Azure App Service in the Azure documentation.

6. Select OKOK to close the Add/Edit application settingAdd/Edit application setting window.

7. Select SaveSave at the top of the ConfigurationConfiguration blade.

Azure App Service automatically restarts the app after an app setting is added, changed, or deleted in the

Azure portal.

Environment values in launchSettings.json override values set in the system environment.

To set the ASPNETCORE_ENVIRONMENT for the current session when the app is started using dotnet run, the

following commands are used:

Command promptCommand prompt

PowerShellPowerShell

The preceding command sets ASPNETCORE_ENVIRONMENT only for processes launched from that command

window.

To set the value globally in Windows, use either of the following approaches:

Open the Control PanelControl Panel > SystemSystem > Advanced system settingsAdvanced system settings and add or edit the

ASPNETCORE_ENVIRONMENT value:

https://docs.microsoft.com/en-us/azure/app-service/web-sites-staged-publishing
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run

<PropertyGroup>
 <EnvironmentName>Development</EnvironmentName>
</PropertyGroup>

setx ASPNETCORE_ENVIRONMENT Staging /M

[Environment]::SetEnvironmentVariable("ASPNETCORE_ENVIRONMENT", "Staging", "Machine")

Open an administrative command prompt and use the setx command or open an administrative

PowerShell command prompt and use [Environment]::SetEnvironmentVariable :

Command promptCommand prompt

The /M switch indicates to set the environment variable at the system level. If the /M switch isn't

used, the environment variable is set for the user account.

PowerShellPowerShell

The Machine option value indicates to set the environment variable at the system level. If the option

value is changed to User , the environment variable is set for the user account.

When the ASPNETCORE_ENVIRONMENT environment variable is set globally, it takes effect for dotnet run in any

command window opened after the value is set. Environment values in launchSettings.json override values

set in the system environment.

web.configweb.config

To set the ASPNETCORE_ENVIRONMENT environment variable with web.config, see the Setting environment

variables section of ASP.NET Core Module.

Project file or publish profileProject file or publish profile

For Windows IIS deployments:For Windows IIS deployments: Include the <EnvironmentName> property in the publish profile (.pubxml)

or project file. This approach sets the environment in web.config when the project is published:

Per IIS Application PoolPer IIS Application Pool

To set the ASPNETCORE_ENVIRONMENT environment variable for an app running in an isolated Application Pool

(supported on IIS 10.0 or later), see the AppCmd.exe command section of the Environment Variables

<environmentVariables> topic. When the ASPNETCORE_ENVIRONMENT environment variable is set for an app

pool, its value overrides a setting at the system level.

When hosting an app in IIS and adding or changing the ASPNETCORE_ENVIRONMENT environment variable, use

any one of the following approaches to have the new value picked up by apps:

Execute net stop was /y followed by net start w3svc from a command prompt.

Restart the server.

https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/environmentvariables/#appcmdexe

macOSmacOS

ASPNETCORE_ENVIRONMENT=Staging dotnet run

export ASPNETCORE_ENVIRONMENT=Staging

export ASPNETCORE_ENVIRONMENT=Staging

LinuxLinux

Set the environment in codeSet the environment in code

Configuration by environmentConfiguration by environment

Environment-based Startup class and methods
Inject IWebHostEnvironment into the Startup classInject IWebHostEnvironment into the Startup class

Setting the current environment for macOS can be performed in-line when running the app:

Alternatively, set the environment with export prior to running the app:

Machine-level environment variables are set in the .bashrc or .bash_profile file. Edit the file using any text

editor. Add the following statement:

For Linux distributions, use the export command at a command prompt for session-based variable settings

and bash_profile file for machine-level environment settings.

Call UseEnvironment when building the host. See .NET Generic Host.

To load configuration by environment, see Configuration in ASP.NET Core.

Inject IWebHostEnvironment into the Startup constructor. This approach is useful when the app requires

configuring Startup for only a few environments with minimal code differences per environment.

In the following example:

The environment is held in the _env field.

_env is used in ConfigureServices and Configure to apply startup configuration based on the app's

environment.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostinghostbuilderextensions.useenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostenvironment

public class Startup
{
 public Startup(IConfiguration configuration, IWebHostEnvironment env)
 {
 Configuration = configuration;
 _env = env;
 }

 public IConfiguration Configuration { get; }
 private readonly IWebHostEnvironment _env;

 public void ConfigureServices(IServiceCollection services)
 {
 if (_env.IsDevelopment())
 {
 Console.WriteLine(_env.EnvironmentName);
 }
 else if (_env.IsStaging())
 {
 Console.WriteLine(_env.EnvironmentName);
 }
 else
 {
 Console.WriteLine("Not dev or staging");
 }

 services.AddRazorPages();
 }

 public void Configure(IApplicationBuilder app)
 {
 if (_env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

Startup class conventionsStartup class conventions
When an ASP.NET Core app starts, the Startup class bootstraps the app. The app can define multiple

Startup classes for different environments. The appropriate Startup class is selected at runtime. The class

whose name suffix matches the current environment is prioritized. If a matching Startup{EnvironmentName}

class isn't found, the Startup class is used. This approach is useful when the app requires configuring

startup for several environments with many code differences per environment. Typical apps will not need

this approach.

To implement environment-based Startup classes, create a Startup{EnvironmentName} classes and a fallback

public class StartupDevelopment
{
 public StartupDevelopment(IConfiguration configuration)
 {
 Configuration = configuration;
 Console.WriteLine(MethodBase.GetCurrentMethod().DeclaringType.Name);
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseDeveloperExceptionPage();

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

public class StartupProduction
{
 public StartupProduction(IConfiguration configuration)
 {
 Configuration = configuration;
 Console.WriteLine(MethodBase.GetCurrentMethod().DeclaringType.Name);
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 }

 public void Configure(IApplicationBuilder app)
 {

 app.UseExceptionHandler("/Error");
 app.UseHsts();

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }

Startup class:

 }
}

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 Console.WriteLine(MethodBase.GetCurrentMethod().DeclaringType.Name);
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args)
 {
 var assemblyName = typeof(Startup).GetTypeInfo().Assembly.FullName;

 return Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup(assemblyName);
 });
 }
}

Startup method conventionsStartup method conventions

Use the UseStartup(IWebHostBuilder, String) overload that accepts an assembly name:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.usestartup

public class Startup
{
 private void StartupConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 }

 public void ConfigureDevelopmentServices(IServiceCollection services)
 {
 MyTrace.TraceMessage();
 StartupConfigureServices(services);
 }

 public void ConfigureStagingServices(IServiceCollection services)
 {
 MyTrace.TraceMessage();
 StartupConfigureServices(services);
 }

 public void ConfigureProductionServices(IServiceCollection services)
 {
 MyTrace.TraceMessage();
 StartupConfigureServices(services);
 }

 public void ConfigureServices(IServiceCollection services)
 {
 MyTrace.TraceMessage();
 StartupConfigureServices(services);
 }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 MyTrace.TraceMessage();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }

 public void ConfigureStaging(IApplicationBuilder app, IWebHostEnvironment env)
 {
 MyTrace.TraceMessage();

Configure and ConfigureServices support environment-specific versions of the form

Configure<EnvironmentName> and Configure<EnvironmentName>Services . If a matching

Configure<EnvironmentName>Services or Configure<EnvironmentName> method isn't found, the

ConfigureServices or Configure method is used, respectively. This approach is useful when the app

requires configuring startup for several environments with many code differences per environment:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices

 MyTrace.TraceMessage();

 app.UseExceptionHandler("/Error");
 app.UseHsts();

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

public static class MyTrace
{
 public static void TraceMessage([CallerMemberName] string memberName = "")
 {
 Console.WriteLine($"Method: {memberName}");
 }
}

Additional resources

Environments

App startup in ASP.NET Core

Configuration in ASP.NET Core

ASP.NET Core Blazor environments

By Rick Anderson

ASP.NET Core configures app behavior based on the runtime environment using an environment variable.

View or download sample code (how to download)

ASP.NET Core reads the environment variable ASPNETCORE_ENVIRONMENT at app startup and stores the value in

IHostingEnvironment.EnvironmentName. ASPNETCORE_ENVIRONMENT can be set to any value, but three values

are provided by the framework:

Development

Staging

Production (default)

https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/environments/sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.environmentname#microsoft_aspnetcore_hosting_ihostingenvironment_environmentname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.environmentname.development
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.environmentname.staging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.environmentname.production

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 if (env.IsProduction() || env.IsStaging() || env.IsEnvironment("Staging_2"))
 {
 app.UseExceptionHandler("/Error");
 }

 app.UseStaticFiles();
 app.UseMvc();
}

<environment include="Development">
 <div>The effective tag is: <environment include="Development"></div>
</environment>
<environment exclude="Development">
 <div>The effective tag is: <environment exclude="Development"></div>
</environment>
<environment include="Staging,Development,Staging_2">
 <div>
 The effective tag is:
 <environment include="Staging,Development,Staging_2">
 </div>
</environment>

DevelopmentDevelopment

The preceding code:

Calls UseDeveloperExceptionPage when ASPNETCORE_ENVIRONMENT is set to Development .

Calls UseExceptionHandler when the value of ASPNETCORE_ENVIRONMENT is set one of the following:

Staging

Production

Staging_2

The Environment Tag Helper uses the value of IHostingEnvironment.EnvironmentName to include or exclude

markup in the element:

On Windows and macOS, environment variables and values aren't case-sensitive. Linux environment

variables and values are case-sensitive by default.

The development environment can enable features that shouldn't be exposed in production. For example,

the ASP.NET Core templates enable the Developer Exception Page in the development environment.

The environment for local machine development can be set in the Properties\launchSettings.json file of the

project. Environment values set in launchSettings.json override values set in the system environment.

The following JSON shows three profiles from a launchSettings.json file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.developerexceptionpageextensions.usedeveloperexceptionpage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:54339/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_My_Environment": "1",
 "ASPNETCORE_DETAILEDERRORS": "1",
 "ASPNETCORE_ENVIRONMENT": "Staging"
 }
 },
 "EnvironmentsSample": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Staging"
 },
 "applicationUrl": "http://localhost:54340/"
 },
 "Kestrel Staging": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_My_Environment": "1",
 "ASPNETCORE_DETAILEDERRORS": "1",
 "ASPNETCORE_ENVIRONMENT": "Staging"
 },
 "applicationUrl": "http://localhost:51997/"
 }
 }
}

NOTENOTE

"EnvironmentsSample": {
 "commandName": "Project",
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
}

The applicationUrl property in launchSettings.json can specify a list of server URLs. Use a semicolon between the

URLs in the list:

When the app is launched with dotnet run, the first profile with "commandName": "Project" is used. The value

of commandName specifies the web server to launch. commandName can be any one of the following:

IISExpress

IIS

Project (which launches Kestrel)

When an app is launched with dotnet run:

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run

PS C:\Websites\EnvironmentsSample> dotnet run
Using launch settings from C:\Websites\EnvironmentsSample\Properties\launchSettings.json...
Hosting environment: Staging
Content root path: C:\Websites\EnvironmentsSample
Now listening on: http://localhost:54340
Application started. Press Ctrl+C to shut down.

WARNINGWARNING

launchSettings.json is read if available. environmentVariables settings in launchSettings.json override

environment variables.

The hosting environment is displayed.

The following output shows an app started with dotnet run:

The Visual Studio project properties DebugDebug tab provides a GUI to edit the launchSettings.json file:

Changes made to project profiles may not take effect until the web server is restarted. Kestrel must be

restarted before it can detect changes made to its environment.

launchSettings.json shouldn't store secrets. The Secret Manager tool can be used to store secrets for local

development.

When using Visual Studio Code, environment variables can be set in the .vscode/launch.json file. The

following example sets the environment to Development :

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run
https://code.visualstudio.com/

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": ".NET Core Launch (web)",

 ... additional VS Code configuration settings ...

 "env": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
]
}

ProductionProduction

Set the environment

Environment variable or platform settingEnvironment variable or platform setting
Azure App ServiceAzure App Service

A .vscode/launch.json file in the project isn't read when starting the app with dotnet run in the same way as

Properties/launchSettings.json. When launching an app in development that doesn't have a

launchSettings.json file, either set the environment with an environment variable or a command-line

argument to the dotnet run command.

The production environment should be configured to maximize security, performance, and app robustness.

Some common settings that differ from development include:

Caching.

Client-side resources are bundled, minified, and potentially served from a CDN.

Diagnostic error pages disabled.

Friendly error pages enabled.

Production logging and monitoring enabled. For example, Application Insights.

It's often useful to set a specific environment for testing with an environment variable or platform setting. If

the environment isn't set, it defaults to Production , which disables most debugging features. The method

for setting the environment depends on the operating system.

When the host is built, the last environment setting read by the app determines the app's environment. The

app's environment can't be changed while the app is running.

To set the environment in Azure App Service, perform the following steps:

1. Select the app from the App Ser vicesApp Ser vices blade.

2. In the SettingsSettings group, select the ConfigurationConfiguration blade.

3. In the Application settingsApplication settings tab, select New application settingNew application setting.

4. In the Add/Edit application settingAdd/Edit application setting window, provide ASPNETCORE_ENVIRONMENT for the NameName. For

ValueValue, provide the environment (for example, Staging).

5. Select the Deployment slot settingDeployment slot setting check box if you wish the environment setting to remain with the

current slot when deployment slots are swapped. For more information, see Set up staging

environments in Azure App Service in the Azure documentation.

6. Select OKOK to close the Add/Edit application settingAdd/Edit application setting window.

7. Select SaveSave at the top of the ConfigurationConfiguration blade.

Azure App Service automatically restarts the app after an app setting (environment variable) is added,

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://azure.microsoft.com/services/app-service/
https://docs.microsoft.com/en-us/azure/app-service/web-sites-staged-publishing

WindowsWindows

set ASPNETCORE_ENVIRONMENT=Development

$Env:ASPNETCORE_ENVIRONMENT = "Development"

changed, or deleted in the Azure portal.

To set the ASPNETCORE_ENVIRONMENT for the current session when the app is started using dotnet run, the

following commands are used:

Command promptCommand prompt

PowerShellPowerShell

These commands only take effect for the current window. When the window is closed, the

ASPNETCORE_ENVIRONMENT setting reverts to the default setting or machine value.

To set the value globally in Windows, use either of the following approaches:

setx ASPNETCORE_ENVIRONMENT Development /M

Open the Control PanelControl Panel > SystemSystem > Advanced system settingsAdvanced system settings and add or edit the

ASPNETCORE_ENVIRONMENT value:

Open an administrative command prompt and use the setx command or open an administrative

PowerShell command prompt and use [Environment]::SetEnvironmentVariable :

Command promptCommand prompt

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run

<PropertyGroup>
 <EnvironmentName>Development</EnvironmentName>
</PropertyGroup>

IMPORTANTIMPORTANT

macOSmacOS

ASPNETCORE_ENVIRONMENT=Development dotnet run

export ASPNETCORE_ENVIRONMENT=Development

[Environment]::SetEnvironmentVariable("ASPNETCORE_ENVIRONMENT", "Development", "Machine")

The /M switch indicates to set the environment variable at the system level. If the /M switch isn't

used, the environment variable is set for the user account.

PowerShellPowerShell

The Machine option value indicates to set the environment variable at the system level. If the option

value is changed to User , the environment variable is set for the user account.

When the ASPNETCORE_ENVIRONMENT environment variable is set globally, it takes effect for dotnet run in any

command window opened after the value is set.

web.configweb.config

To set the ASPNETCORE_ENVIRONMENT environment variable with web.config, see the Setting environment

variables section of ASP.NET Core Module.

Project file or publish profileProject file or publish profile

For Windows IIS deployments:For Windows IIS deployments: Include the <EnvironmentName> property in the publish profile (.pubxml)

or project file. This approach sets the environment in web.config when the project is published:

Per IIS Application PoolPer IIS Application Pool

To set the ASPNETCORE_ENVIRONMENT environment variable for an app running in an isolated Application Pool

(supported on IIS 10.0 or later), see the AppCmd.exe command section of the Environment Variables

<environmentVariables> topic. When the ASPNETCORE_ENVIRONMENT environment variable is set for an app

pool, its value overrides a setting at the system level.

When hosting an app in IIS and adding or changing the ASPNETCORE_ENVIRONMENT environment variable, use any

one of the following approaches to have the new value picked up by apps:

Execute net stop was /y followed by net start w3svc from a command prompt.

Restart the server.

Setting the current environment for macOS can be performed in-line when running the app:

Alternatively, set the environment with export prior to running the app:

Machine-level environment variables are set in the .bashrc or .bash_profile file. Edit the file using any text

editor. Add the following statement:

https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/environmentvariables/#appcmdexe

export ASPNETCORE_ENVIRONMENT=Development

LinuxLinux

Set the environment in codeSet the environment in code

Configuration by environmentConfiguration by environment

Environment-based Startup class and methods
Inject IHostingEnvironment into Startup.ConfigureInject IHostingEnvironment into Startup.Configure

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 // Development environment code
 }
 else
 {
 // Code for all other environments
 }
}

Inject IHostingEnvironment into the Startup classInject IHostingEnvironment into the Startup class

For Linux distributions, use the export command at a command prompt for session-based variable settings

and bash_profile file for machine-level environment settings.

Call UseEnvironment when building the host. See ASP.NET Core Web Host.

To load configuration by environment, we recommend:

appsettings files (appsettings.{Environment}.json). See Configuration in ASP.NET Core.

Environment variables (set on each system where the app is hosted). See ASP.NET Core Web Host and

Safe storage of app secrets in development in ASP.NET Core.

Secret Manager (in the Development environment only). See Safe storage of app secrets in development

in ASP.NET Core.

Inject IHostingEnvironment into Startup.Configure . This approach is useful when the app only requires

configuring Startup.Configure for only a few environments with minimal code differences per

environment.

Inject IHostingEnvironment into the Startup constructor and assign the service to a field for use

throughout the Startup class. This approach is useful when the app requires configuring startup for only a

few environments with minimal code differences per environment.

In the following example:

The environment is held in the _env field.

_env is used in ConfigureServices and Configure to apply startup configuration based on the app's

environment.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment

public class Startup
{
 private readonly IHostingEnvironment _env;

 public Startup(IHostingEnvironment env)
 {
 _env = env;
 }

 public void ConfigureServices(IServiceCollection services)
 {
 if (_env.IsDevelopment())
 {
 // Development environment code
 }
 else if (_env.IsStaging())
 {
 // Staging environment code
 }
 else
 {
 // Code for all other environments
 }
 }

 public void Configure(IApplicationBuilder app)
 {
 if (_env.IsDevelopment())
 {
 // Development environment code
 }
 else
 {
 // Code for all other environments
 }
 }
}

Startup class conventionsStartup class conventions
When an ASP.NET Core app starts, the Startup class bootstraps the app. The app can define separate

Startup classes for different environments (for example, StartupDevelopment). The appropriate Startup

class is selected at runtime. The class whose name suffix matches the current environment is prioritized. If a

matching Startup{EnvironmentName} class isn't found, the Startup class is used. This approach is useful

when the app requires configuring startup for several environments with many code differences per

environment.

To implement environment-based Startup classes, create a Startup{EnvironmentName} class for each

environment in use and a fallback Startup class:

// Startup class to use in the Development environment
public class StartupDevelopment
{
 public void ConfigureServices(IServiceCollection services)
 {
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 }
}

// Startup class to use in the Production environment
public class StartupProduction
{
 public void ConfigureServices(IServiceCollection services)
 {
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 }
}

// Fallback Startup class
// Selected if the environment doesn't match a Startup{EnvironmentName} class
public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 }
}

public static void Main(string[] args)
{
 CreateWebHostBuilder(args).Build().Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args)
{
 var assemblyName = typeof(Startup).GetTypeInfo().Assembly.FullName;

 return WebHost.CreateDefaultBuilder(args)
 .UseStartup(assemblyName);
}

Startup method conventionsStartup method conventions

Use the UseStartup(IWebHostBuilder, String) overload that accepts an assembly name:

Configure and ConfigureServices support environment-specific versions of the form

Configure<EnvironmentName> and Configure<EnvironmentName>Services . If a matching

Configure<EnvironmentName>Services or Configure<EnvironmentName> method isn't found, the

ConfigureServices or Configure method is used, respectively. This approach is useful when the app

requires configuring startup for several environments with many code differences per environment:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.usestartup
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.startupbase.configureservices

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 StartupConfigureServices(services);
 }

 public void ConfigureStagingServices(IServiceCollection services)
 {
 StartupConfigureServices(services);
 }

 private void StartupConfigureServices(IServiceCollection services)
 {
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 if (env.IsProduction() || env.IsStaging() || env.IsEnvironment("Staging_2"))
 {
 app.UseExceptionHandler("/Error");
 }

 app.UseStaticFiles();
 app.UseMvc();
 }

 public void ConfigureStaging(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (!env.IsStaging())
 {
 throw new Exception("Not staging.");
 }

 app.UseExceptionHandler("/Error");
 app.UseStaticFiles();
 app.UseMvc();
 }
}

Additional resources
App startup in ASP.NET Core

Configuration in ASP.NET Core

Logging in .NET Core and ASP.NET Core
9/22/2020 • 57 minutes to read • Edit Online

Logging providers

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

By Kirk Larkin, Juergen Gutsch and Rick Anderson

.NET Core supports a logging API that works with a variety of built-in and third-party logging providers. This article

shows how to use the logging API with built-in providers.

Most of the code examples shown in this article are from ASP.NET Core apps. The logging-specific parts of these

code snippets apply to any .NET Core app that uses the Generic Host. The ASP.NET Core web app templates use the

Generic Host.

View or download sample code (how to download)

Logging providers store logs, except for the Console provider which displays logs. For example, the Azure

Application Insights provider stores logs in Azure Application Insights. Multiple providers can be enabled.

The default ASP.NET Core web app templates:

Use the Generic Host.

Call CreateDefaultBuilder, which adds the following logging providers:

Console

Debug

EventSource

EventLog: Windows only

The preceding code shows the Program class created with the ASP.NET Core web app templates. The next several

sections provide samples based on the ASP.NET Core web app templates, which use the Generic Host. Non-host

console apps are discussed later in this document.

To override the default set of logging providers added by Host.CreateDefaultBuilder , call ClearProviders and add

the required logging providers. For example, the following code:

Calls ClearProviders to remove all the ILoggerProvider instances from the builder.

Adds the Console logging provider.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/logging/index.md
https://twitter.com/serpent5
https://github.com/JuergenGutsch
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/logging/index/samples/3.x
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggingbuilderextensions.clearproviders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerprovider

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 {
 logging.ClearProviders();
 logging.AddConsole();
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

Create logs

public class AboutModel : PageModel
{
 private readonly ILogger _logger;

 public AboutModel(ILogger<AboutModel> logger)
 {
 _logger = logger;
 }
 public string Message { get; set; }

 public void OnGet()
 {
 Message = $"About page visited at {DateTime.UtcNow.ToLongTimeString()}";
 _logger.LogInformation(Message);
 }
}

Configure logging

For additional providers, see:

Built-in logging providers

Third-party logging providers.

To create logs, use an ILogger<TCategoryName> object from dependency injection (DI).

The following example:

Creates a logger, ILogger<AboutModel> , which uses a log category of the fully qualified name of the type

AboutModel . The log category is a string that is associated with each log.

Calls LogInformation to log at the Information level. The Log level indicates the severity of the logged event.

Levels and categories are explained in more detail later in this document.

For information on Blazor, see Create logs in Blazor and Blazor WebAssembly in this document.

Create logs in Main and Startup shows how to create logs in Main and Startup .

Logging configuration is commonly provided by the Logging section of appsettings. {Environment} .json files. The

following appsettings.Development.json file is generated by the ASP.NET Core web app templates:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.loginformation

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 }
}

{
 "Logging": {
 "LogLevel": { // All providers, LogLevel applies to all the enabled providers.
 "Default": "Error", // Default logging, Error and higher.
 "Microsoft": "Warning" // All Microsoft* categories, Warning and higher.
 },
 "Debug": { // Debug provider.
 "LogLevel": {
 "Default": "Information", // Overrides preceding LogLevel:Default setting.
 "Microsoft.Hosting": "Trace" // Debug:Microsoft.Hosting category.
 }
 },
 "EventSource": { // EventSource provider
 "LogLevel": {
 "Default": "Warning" // All categories of EventSource provider.
 }
 }
 }
}

In the preceding JSON:

The "Default" , "Microsoft" , and "Microsoft.Hosting.Lifetime" categories are specified.

The "Microsoft" category applies to all categories that start with "Microsoft" . For example, this setting applies

to the "Microsoft.AspNetCore.Routing.EndpointMiddleware" category.

The "Microsoft" category logs at log level Warning and higher.

The "Microsoft.Hosting.Lifetime" category is more specific than the "Microsoft" category, so the

"Microsoft.Hosting.Lifetime" category logs at log level "Information" and higher.

A specific log provider is not specified, so LogLevel applies to all the enabled logging providers except for the

Windows EventLog.

The Logging property can have LogLevel and log provider properties. The LogLevel specifies the minimum level

to log for selected categories. In the preceding JSON, Information and Warning log levels are specified. LogLevel

indicates the severity of the log and ranges from 0 to 6:

Trace = 0, Debug = 1, Information = 2, Warning = 3, Error = 4, Critical = 5, and None = 6.

When a LogLevel is specified, logging is enabled for messages at the specified level and higher. In the preceding

JSON, the Default category is logged for Information and higher. For example, Information , Warning , Error ,

and Critical messages are logged. If no LogLevel is specified, logging defaults to the Information level. For

more information, see Log levels.

A provider property can specify a LogLevel property. LogLevel under a provider specifies levels to log for that

provider, and overrides the non-provider log settings. Consider the following appsettings.json file:

Settings in Logging.{providername}.LogLevel override settings in Logging.LogLevel . In the preceding JSON, the

Debug provider's default log level is set to Information :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel

Logging:Debug:LogLevel:Default:Information

The preceding setting specifies the Information log level for every Logging:Debug: category except

Microsoft.Hosting . When a specific category is listed, the specific category overrides the default category. In the

preceding JSON, the Logging:Debug:LogLevel categories "Microsoft.Hosting" and "Default" override the settings

in Logging:LogLevel

The minimum log level can be specified for any of:

Specific providers: For example, Logging:EventSource:LogLevel:Default:Information

Specific categories: For example, Logging:LogLevel:Microsoft:Warning

All providers and all categories: Logging:LogLevel:Default:Warning

Any logs below the minimum level are notnot:

Passed to the provider.

Logged or displayed.

To suppress all logs, specify LogLevel.None. LogLevel.None has a value of 6, which is higher than

LogLevel.Critical (5).

If a provider supports log scopes, IncludeScopes indicates whether they're enabled. For more information, see log

scopes

The following appsettings.json file contains all the providers enabled by default:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel

{
 "Logging": {
 "LogLevel": { // No provider, LogLevel applies to all the enabled providers.
 "Default": "Error",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Warning"
 },
 "Debug": { // Debug provider.
 "LogLevel": {
 "Default": "Information" // Overrides preceding LogLevel:Default setting.
 }
 },
 "Console": {
 "IncludeScopes": true,
 "LogLevel": {
 "Microsoft.AspNetCore.Mvc.Razor.Internal": "Warning",
 "Microsoft.AspNetCore.Mvc.Razor.Razor": "Debug",
 "Microsoft.AspNetCore.Mvc.Razor": "Error",
 "Default": "Information"
 }
 },
 "EventSource": {
 "LogLevel": {
 "Microsoft": "Information"
 }
 },
 "EventLog": {
 "LogLevel": {
 "Microsoft": "Information"
 }
 },
 "AzureAppServicesFile": {
 "IncludeScopes": true,
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AzureAppServicesBlob": {
 "IncludeScopes": true,
 "LogLevel": {
 "Microsoft": "Information"
 }
 },
 "ApplicationInsights": {
 "LogLevel": {
 "Default": "Information"
 }
 }
 }
}

In the preceding sample:

The categories and levels are not suggested values. The sample is provided to show all the default providers.

Settings in Logging.{providername}.LogLevel override settings in Logging.LogLevel . For example, the level in

Debug.LogLevel.Default overrides the level in LogLevel.Default .

Each default provider alias is used. Each provider defines an alias that can be used in configuration in place of

the fully qualified type name. The built-in providers aliases are:

Console

Debug

EventSource

EventLog

Set log level by command line, environment variables, and other
configuration

set Logging__LogLevel__Microsoft=Information
dotnet run

setx Logging__LogLevel__Microsoft=Information /M

How filtering rules are applied

AzureAppServicesFile

AzureAppServicesBlob

ApplicationInsights

Log level can be set by any of the configuration providers.

The : separator doesn't work with environment variable hierarchical keys on all platforms. __ , the double

underscore, is:

Supported by all platforms. For example, the : separator is not supported by Bash, but __ is.

Automatically replaced by a :

The following commands:

Set the environment key Logging:LogLevel:Microsoft to a value of Information on Windows.

Test the settings when using an app created with the ASP.NET Core web application templates. The dotnet run

command must be run in the project directory after using set .

The preceding environment setting:

Is only set in processes launched from the command window they were set in.

Isn't read by browsers launched with Visual Studio.

The following setx command also sets the environment key and value on Windows. Unlike set , setx settings are

persisted. The /M switch sets the variable in the system environment. If /M isn't used, a user environment variable

is set.

On Azure App Service, select New application settingNew application setting on the Settings > ConfigurationSettings > Configuration page. Azure App

Service application settings are:

Encrypted at rest and transmitted over an encrypted channel.

Exposed as environment variables.

For more information, see Azure Apps: Override app configuration using the Azure Portal.

For more information on setting ASP.NET Core configuration values using environment variables, see environment

variables. For information on using other configuration sources, including the command line, Azure Key Vault, Azure

App Configuration, other file formats, and more, see Configuration in ASP.NET Core.

When an ILogger<TCategoryName> object is created, the ILoggerFactory object selects a single rule per provider to

apply to that logger. All messages written by an ILogger instance are filtered based on the selected rules. The most

specific rule for each provider and category pair is selected from the available rules.

The following algorithm is used for each provider when an ILogger is created for a given category:

https://linuxhint.com/bash-environment-variables/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://azure.microsoft.com/services/app-service/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory

Logging output from dotnet run and Visual Studio

Log category

public class PrivacyModel : PageModel
{
 private readonly ILogger<PrivacyModel> _logger;

 public PrivacyModel(ILogger<PrivacyModel> logger)
 {
 _logger = logger;
 }

 public void OnGet()
 {
 _logger.LogInformation("GET Pages.PrivacyModel called.");
 }
}

public class ContactModel : PageModel
{
 private readonly ILogger _logger;

 public ContactModel(ILoggerFactory logger)
 {
 _logger = logger.CreateLogger("MyCategory");
 }

 public void OnGet()
 {
 _logger.LogInformation("GET Pages.ContactModel called.");
 }

Select all rules that match the provider or its alias. If no match is found, select all rules with an empty provider.

From the result of the preceding step, select rules with longest matching category prefix. If no match is found,

select all rules that don't specify a category.

If multiple rules are selected, take the lastlast one.

If no rules are selected, use MinimumLevel .

Logs created with the default logging providers are displayed:

In Visual Studio

In the console window when the app is run with dotnet run .

In the Debug output window when debugging.

In the ASP.NET Core Web Server window.

Logs that begin with "Microsoft" categories are from ASP.NET Core framework code. ASP.NET Core and application

code use the same logging API and providers.

When an ILogger object is created, a category is specified. That category is included with each log message created

by that instance of ILogger . The category string is arbitrary, but the convention is to use the class name. For

example, in a controller the name might be "TodoApi.Controllers.TodoController" . The ASP.NET Core web apps use

ILogger<T> to automatically get an ILogger instance that uses the fully qualified type name of T as the category:

To explicitly specify the category, call ILoggerFactory.CreateLogger :

Calling CreateLogger with a fixed name can be useful when used in multiple methods so the events can be

Log level

LO GL EVELLO GL EVEL VA L UEVA L UE M ET H O DM ET H O D DESC RIP T IO NDESC RIP T IO N

Trace 0 LogTrace Contain the most detailed
messages. These messages
may contain sensitive app
data. These messages are
disabled by default and
should notnot be enabled in
production.

Debug 1 LogDebug For debugging and
development. Use with
caution in production due to
the high volume.

Information 2 LogInformation Tracks the general flow of the
app. May have long-term
value.

Warning 3 LogWarning For abnormal or unexpected
events. Typically includes
errors or conditions that
don't cause the app to fail.

Error 4 LogError For errors and exceptions
that cannot be handled.
These messages indicate a
failure in the current
operation or request, not an
app-wide failure.

Critical 5 LogCritical For failures that require
immediate attention.
Examples: data loss
scenarios, out of disk space.

None 6 Specifies that a logging
category should not write
any messages.

organized by category.

ILogger<T> is equivalent to calling CreateLogger with the fully qualified type name of T .

The following table lists the LogLevel values, the convenience Log{LogLevel} extension method, and the suggested

usage:

In the previous table, the LogLevel is listed from lowest to highest severity.

The Log method's first parameter, LogLevel, indicates the severity of the log. Rather than calling Log(LogLevel, ...)

, most developers call the Log{LogLevel} extension methods. The Log{LogLevel} extension methods call the Log

method and specify the LogLevel. For example, the following two logging calls are functionally equivalent and

produce the same log:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logtrace
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logdebug
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.loginformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logwarning
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logerror
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logcritical
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions
https://github.com/dotnet/extensions/blob/release/3.1/src/Logging/Logging.Abstractions/src/LoggerExtensions.cs

[HttpGet]
public IActionResult Test1(int id)
{
 var routeInfo = ControllerContext.ToCtxString(id);

 _logger.Log(LogLevel.Information, MyLogEvents.TestItem, routeInfo);
 _logger.LogInformation(MyLogEvents.TestItem, routeInfo);

 return ControllerContext.MyDisplayRouteInfo();
}

[HttpGet("{id}")]
public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
{
 _logger.LogInformation(MyLogEvents.GetItem, "Getting item {Id}", id);

 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 _logger.LogWarning(MyLogEvents.GetItemNotFound, "Get({Id}) NOT FOUND", id);
 return NotFound();
 }

 return ItemToDTO(todoItem);
}

MyLogEvents.TestItem is the event ID. MyLogEvents is part of the sample app and is displayed in the Log event ID

section.

MyDisplayRouteInfo and ToCtxString are provided by the Rick.Docs.Samples.RouteInfo NuGet package. The

methods display Controller route information.

The following code creates Information and Warning logs:

In the preceding code, the first Log{LogLevel} parameter, MyLogEvents.GetItem , is the Log event ID. The second

parameter is a message template with placeholders for argument values provided by the remaining method

parameters. The method parameters are explained in the message template section later in this document.

Call the appropriate Log{LogLevel} method to control how much log output is written to a particular storage

medium. For example:

In production:

In development:

Logging at the Trace or Information levels produces a high-volume of detailed log messages. To control

costs and not exceed data storage limits, log Trace and Information level messages to a high-volume,

low-cost data store. Consider limiting Trace and Information to specific categories.

Logging at Warning through Critical levels should produce few log messages.

Costs and storage limits usually aren't a concern.

Few logs allow more flexibility in data store choices.

Set to Warning .

Add Trace or Information messages when troubleshooting. To limit output, set Trace or Information

only for the categories under investigation.

ASP.NET Core writes logs for framework events. For example, consider the log output for :

A Razor Pages app created with the ASP.NET Core templates.

https://github.com/Rick-Anderson/RouteInfo/blob/master/Microsoft.Docs.Samples.RouteInfo/ControllerContextExtensions.cs
https://www.nuget.org/packages/Rick.Docs.Samples.RouteInfo

info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
 Request starting HTTP/2 GET https://localhost:5001/Privacy
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
 Executing endpoint '/Privacy'
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[3]
 Route matched with {page = "/Privacy"}. Executing page /Privacy
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[101]
 Executing handler method DefaultRP.Pages.PrivacyModel.OnGet - ModelState is Valid
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[102]
 Executed handler method OnGet, returned result .
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[103]
 Executing an implicit handler method - ModelState is Valid
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[104]
 Executed an implicit handler method, returned result Microsoft.AspNetCore.Mvc.RazorPages.PageResult.
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[4]
 Executed page /Privacy in 74.5188ms
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
 Executed endpoint '/Privacy'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
 Request finished in 149.3023ms 200 text/html; charset=utf-8

{
 "Logging": { // Default, all providers.
 "LogLevel": {
 "Microsoft": "Warning"
 },
 "Console": { // Console provider.
 "LogLevel": {
 "Microsoft": "Information"
 }
 }
 }
}

Log event ID

public class MyLogEvents
{
 public const int GenerateItems = 1000;
 public const int ListItems = 1001;
 public const int GetItem = 1002;
 public const int InsertItem = 1003;
 public const int UpdateItem = 1004;
 public const int DeleteItem = 1005;

 public const int TestItem = 3000;

 public const int GetItemNotFound = 4000;
 public const int UpdateItemNotFound = 4001;
}

Logging set to Logging:Console:LogLevel:Microsoft:Information

Navigation to the Privacy page:

The following JSON sets Logging:Console:LogLevel:Microsoft:Information :

Each log can specify an event ID. The sample app uses the MyLogEvents class to define event IDs:

[HttpGet("{id}")]
public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
{
 _logger.LogInformation(MyLogEvents.GetItem, "Getting item {Id}", id);

 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 _logger.LogWarning(MyLogEvents.GetItemNotFound, "Get({Id}) NOT FOUND", id);
 return NotFound();
 }

 return ItemToDTO(todoItem);
}

info: TodoApi.Controllers.TodoItemsController[1002]
 Getting item 1
warn: TodoApi.Controllers.TodoItemsController[4000]
 Get(1) NOT FOUND

Log message template

[HttpGet("{id}")]
public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
{
 _logger.LogInformation(MyLogEvents.GetItem, "Getting item {Id}", id);

 var todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 _logger.LogWarning(MyLogEvents.GetItemNotFound, "Get({Id}) NOT FOUND", id);
 return NotFound();
 }

 return ItemToDTO(todoItem);
}

string p1 = "param1";
string p2 = "param2";
_logger.LogInformation("Parameter values: {p2}, {p1}", p1, p2);

An event ID associates a set of events. For example, all logs related to displaying a list of items on a page might be

1001.

The logging provider may store the event ID in an ID field, in the logging message, or not at all. The Debug provider

doesn't show event IDs. The console provider shows event IDs in brackets after the category:

Some logging providers store the event ID in a field, which allows for filtering on the ID.

Each log API uses a message template. The message template can contain placeholders for which arguments are

provided. Use names for the placeholders, not numbers.

The order of placeholders, not their names, determines which parameters are used to provide their values. In the

following code, the parameter names are out of sequence in the message template:

The preceding code creates a log message with the parameter values in sequence:

Parameter values: param1, param2

_logger.LogInformation("Getting item {Id} at {RequestTime}", id, DateTime.Now);

Log exceptions

[HttpGet("{id}")]
public IActionResult TestExp(int id)
{
 var routeInfo = ControllerContext.ToCtxString(id);
 _logger.LogInformation(MyLogEvents.TestItem, routeInfo);

 try
 {
 if (id == 3)
 {
 throw new Exception("Test exception");
 }
 }
 catch (Exception ex)
 {
 _logger.LogWarning(MyLogEvents.GetItemNotFound, ex, "TestExp({Id})", id);
 return NotFound();
 }

 return ControllerContext.MyDisplayRouteInfo();
}

Default log levelDefault log level

This approach allows logging providers to implement semantic or structured logging. The arguments themselves

are passed to the logging system, not just the formatted message template. This enables logging providers to store

the parameter values as fields. For example, consider the following logger method:

For example, when logging to Azure Table Storage:

Each Azure Table entity can have ID and RequestTime properties.

Tables with properties simplify queries on logged data. For example, a query can find all logs within a particular

RequestTime range without having to parse the time out of the text message.

The logger methods have overloads that take an exception parameter :

MyDisplayRouteInfo and ToCtxString are provided by the Rick.Docs.Samples.RouteInfo NuGet package. The

methods display Controller route information.

Exception logging is provider-specific.

If the default log level is not set, the default log level value is Information .

For example, consider the following web app:

Created with the ASP.NET web app templates.

appsettings.json and appsettings.Development.json deleted or renamed.

With the preceding setup, navigating to the privacy or home page produces many Trace , Debug , and Information

messages with Microsoft in the category name.

The following code sets the default log level when the default log level is not set in configuration:

https://github.com/NLog/NLog/wiki/How-to-use-structured-logging
https://github.com/Rick-Anderson/RouteInfo/blob/master/Microsoft.Docs.Samples.RouteInfo/ControllerContextExtensions.cs
https://www.nuget.org/packages/Rick.Docs.Samples.RouteInfo

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging => logging.SetMinimumLevel(LogLevel.Warning))
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Filter functionFilter function

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 {
 logging.AddFilter((provider, category, logLevel) =>
 {
 if (provider.Contains("ConsoleLoggerProvider")
 && category.Contains("Controller")
 && logLevel >= LogLevel.Information)
 {
 return true;
 }
 else if (provider.Contains("ConsoleLoggerProvider")
 && category.Contains("Microsoft")
 && logLevel >= LogLevel.Information)
 {
 return true;
 }
 else
 {
 return false;
 }
 });
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Generally, log levels should be specified in configuration and not code.

A filter function is invoked for all providers and categories that don't have rules assigned to them by configuration

or code:

The preceding code displays console logs when the category contains Controller or Microsoft and the log level is

Information or higher.

Generally, log levels should be specified in configuration and not code.

ASP.NET Core and EF Core categories

C AT EGO RYC AT EGO RY N OT ESN OT ES

Microsoft.AspNetCore General ASP.NET Core diagnostics.

Microsoft.AspNetCore.DataProtection Which keys were considered, found, and used.

Microsoft.AspNetCore.HostFiltering Hosts allowed.

Microsoft.AspNetCore.Hosting How long HTTP requests took to complete and what time they
started. Which hosting startup assemblies were loaded.

Microsoft.AspNetCore.Mvc MVC and Razor diagnostics. Model binding, filter execution,
view compilation, action selection.

Microsoft.AspNetCore.Routing Route matching information.

Microsoft.AspNetCore.Server Connection start, stop, and keep alive responses. HTTPS
certificate information.

Microsoft.AspNetCore.StaticFiles Files served.

Microsoft.EntityFrameworkCore General Entity Framework Core diagnostics. Database activity
and configuration, change detection, migrations.

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Trace",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 }
}

Log scopes

The following table contains some categories used by ASP.NET Core and Entity Framework Core, with notes about

the logs:

To view more categories in the console window, set appsettings.Development.jsonappsettings.Development.json to the following:

A scope can group a set of logical operations. This grouping can be used to attach the same data to each log that's

created as part of a set. For example, every log created as part of processing a transaction can include the

transaction ID.

A scope:

Is an IDisposable type that's returned by the BeginScope method.

Lasts until it's disposed.

The following providers support scopes:

Console

AzureAppServicesFile and AzureAppServicesBlob

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger.beginscope
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservices.batchingloggeroptions.includescopes#microsoft_extensions_logging_azureappservices_batchingloggeroptions_includescopes

[HttpGet("{id}")]
public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
{
 TodoItem todoItem;

 using (_logger.BeginScope("using block message"))
 {
 _logger.LogInformation(MyLogEvents.GetItem, "Getting item {Id}", id);

 todoItem = await _context.TodoItems.FindAsync(id);

 if (todoItem == null)
 {
 _logger.LogWarning(MyLogEvents.GetItemNotFound,
 "Get({Id}) NOT FOUND", id);
 return NotFound();
 }
 }

 return ItemToDTO(todoItem);
}

{
 "Logging": {
 "Debug": {
 "LogLevel": {
 "Default": "Information"
 }
 },
 "Console": {
 "IncludeScopes": true, // Required to use Scopes.
 "LogLevel": {
 "Microsoft": "Warning",
 "Default": "Information"
 }
 },
 "LogLevel": {
 "Default": "Debug"
 }
 }
}

Use a scope by wrapping logger calls in a using block:

The following JSON enables scopes for the console provider :

The following code enables scopes for the console provider :

public class Scopes
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureLogging((hostingContext, logging) =>
 {
 logging.ClearProviders();
 logging.AddConsole(options => options.IncludeScopes = true);
 logging.AddDebug();
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Built-in logging providers

ConsoleConsole

DebugDebug

Event SourceEvent Source

dotnet trace toolingdotnet trace tooling

Generally, logging should be specified in configuration and not code.

ASP.NET Core includes the following logging providers as part of the shared framework:

Console

Debug

EventSource

EventLog

The following logging providers are shipped by Microsoft, but not as part of the shared framework. They must be

installed as additional nuget.

AzureAppServicesFile and AzureAppServicesBlob

ApplicationInsights

For information on stdout and debug logging with the ASP.NET Core Module, see Troubleshoot ASP.NET Core on

Azure App Service and IIS and ASP.NET Core Module.

The Console provider logs output to the console. For more information on viewing Console logs in development,

see Logging output from dotnet run and Visual Studio.

The Debug provider writes log output by using the System.Diagnostics.Debug class. Calls to

System.Diagnostics.Debug.WriteLine write to the Debug provider.

On Linux, the Debug provider log location is distribution-dependent and may be one of the following:

/var/log/message

/var/log/syslog

The EventSource provider writes to a cross-platform event source with the name Microsoft-Extensions-Logging . On

Windows, the provider uses ETW.

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debug
https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal

The dotnet-trace tool is a cross-platform CLI global tool that enables the collection of .NET Core traces of a running

process. The tool collects Microsoft.Extensions.Logging.EventSource provider data using a LoggingEventSource.

See dotnet-trace for installation instructions.

Use the dotnet trace tooling to collect a trace from an app:

dotnet trace collect -p {PID}
 --providers Microsoft-Extensions-Logging:{Keyword}:{Provider Level}
 :FilterSpecs=\"
 {Logger Category 1}:{Category Level 1};
 {Logger Category 2}:{Category Level 2};
 ...
 {Logger Category N}:{Category Level N}\"

dotnet trace collect -p {PID}
 --providers 'Microsoft-Extensions-Logging:{Keyword}:{Provider Level}
 :FilterSpecs=\"
 {Logger Category 1}:{Category Level 1};
 {Logger Category 2}:{Category Level 2};
 ...
 {Logger Category N}:{Category Level N}\"'

KEY W O RDKEY W O RD DESC RIP T IO NDESC RIP T IO N

1 Log meta events about the LoggingEventSource . Doesn't

log events from ILogger .

2 Turns on the Message event when ILogger.Log() is

called. Provides information in a programmatic (not
formatted) way.

4 Turns on the FormatMessage event when

ILogger.Log() is called. Provides the formatted string

version of the information.

1. Run the app with the dotnet run command.

2. Determine the process identifier (PID) of the .NET Core app:

On Windows, use one of the following approaches:

On Linux, use the pidof command.

Task Manager (Ctrl+Alt+Del)

tasklist command

Get-Process Powershell command

Find the PID for the process that has the same name as the app's assembly.

3. Execute the dotnet trace command.

General command syntax:

When using a PowerShell command shell, enclose the --providers value in single quotes ('):

On non-Windows platforms, add the -f speedscope option to change the format of the output trace file to

speedscope .

The following table defines the Keyword:

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventsource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventsource.loggingeventsource
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/tasklist
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-process
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/pidof.html

8 Turns on the MessageJson event when ILogger.Log()

is called. Provides a JSON representation of the arguments.

KEY W O RDKEY W O RD DESC RIP T IO NDESC RIP T IO N

P RO VIDER L EVELP RO VIDER L EVEL DESC RIP T IO NDESC RIP T IO N

0 LogAlways

1 Critical

2 Error

3 Warning

4 Informational

5 Verbose

C AT EGO RY N A M ED VA L UEC AT EGO RY N A M ED VA L UE N UM ERIC VA L UEN UM ERIC VA L UE

Trace 0

Debug 1

Information 2

Warning 3

Error 4

Critical 5

P RO VIDER L EVELP RO VIDER L EVEL C AT EGO RY L EVELC AT EGO RY L EVEL

Verbose (5) Debug (1)

Informational (4) Information (2)

Warning (3) Warning (3)

The following table lists the provider levels:

The parsing for a category level can be either a string or a number:

The provider level and category level:

Are in reverse order.

The string constants aren't all identical.

If no FilterSpecs are specified then the EventSourceLogger implementation attempts to convert the

provider level to a category level and applies it to all categories.

Error (2) Error (4)

Critical (1) Critical (5)

P RO VIDER L EVELP RO VIDER L EVEL C AT EGO RY L EVELC AT EGO RY L EVEL

dotnet trace collect -p %PID% --providers Microsoft-Extensions-Logging:4:5

dotnet trace collect -p %PID% --providers Microsoft-Extensions-Logging:4:5:\"FilterSpecs=*:5\"

dotnet trace collect -p %PID% --providers Microsoft-Extensions-Logging:4:5:\"FilterSpecs=*:1\"

dotnet trace collect -p %PID% --providers Microsoft-Extensions-Logging:4:5:\"FilterSpecs=*:Debug\"

dotnet trace collect -p %PID% --providers Microsoft-Extensions-
Logging:4:2:FilterSpecs=\"Microsoft.AspNetCore.Hosting*:4\"

If FilterSpecs are provided, any category that is included in the list uses the category level encoded there,

all other categories are filtered out.

The following examples assume:

An app is running and calling logger.LogDebug("12345") .

The process ID (PID) has been set via set PID=12345 , where 12345 is the actual PID.

Consider the following command:

The preceding command:

Captures debug messages.

Doesn't apply a FilterSpecs .

Specifies level 5 which maps category Debug.

Consider the following command:

The preceding command:

Doesn't capture debug messages because the category level 5 is Critical .

Provides a FilterSpecs .

The following command captures debug messages because category level 1 specifies Debug .

The following command captures debug messages because category specifies Debug .

FilterSpecs entries for {Logger Category} and {Category Level} represent additional log filtering

conditions. Separate FilterSpecs entries with the ; semicolon character.

Example using a Windows command shell:

The preceding command activates:

The Event Source logger to produce formatted strings (4) for errors (2).

Microsoft.AspNetCore.Hosting logging at the Informational logging level (4).

4. Stop the dotnet trace tooling by pressing the Enter key or Ctrl+C.

PerfviewPerfview

Windows EventLogWindows EventLog

"Logging": {
 "EventLog": {
 "LogLevel": {
 "Default": "Information"
 }
 }
}

The trace is saved with the name trace.nettrace in the folder where the dotnet trace command is executed.

5. Open the trace with Perfview. Open the trace.nettrace file and explore the trace events.

If the app doesn't build the host with CreateDefaultBuilder , add the Event Source provider to the app's logging

configuration.

For more information, see:

Trace for performance analysis utility (dotnet-trace) (.NET Core documentation)

Trace for performance analysis utility (dotnet-trace) (dotnet/diagnostics GitHub repository documentation)

LoggingEventSource Class (.NET API Browser)

EventLevel

LoggingEventSource reference source (3.0): To obtain reference source for a different version, change the branch

to release/{Version} , where {Version} is the version of ASP.NET Core desired.

Perfview: Useful for viewing Event Source traces.

Use the PerfView utility to collect and view logs. There are other tools for viewing ETW logs, but PerfView provides

the best experience for working with the ETW events emitted by ASP.NET Core.

To configure PerfView for collecting events logged by this provider, add the string *Microsoft-Extensions-Logging to

the Additional ProvidersAdditional Providers list. Don't miss the * at the start of the string.

The EventLog provider sends log output to the Windows Event Log. Unlike the other providers, the EventLog

provider does notnot inherit the default non-provider settings. If EventLog log settings aren't specified, they default to

LogLevel.Warning.

To log events lower than LogLevel.Warning, explicitly set the log level. The following example sets the Event Log

default log level to LogLevel.Information:

AddEventLog overloads can pass in EventLogSettings. If null or not specified, the following default settings are

used:

LogName : "Application"

SourceName : ".NET Runtime"

MachineName : The local machine name is used.

The following code changes the SourceName from the default value of ".NET Runtime" to MyLogs :

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventsource.loggingeventsource
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracing.eventlevel
https://github.com/dotnet/extensions/blob/release/3.0/src/Logging/Logging.EventSource/src/LoggingEventSource.cs
https://github.com/Microsoft/perfview
https://github.com/dotnet/extensions/blob/release/3.1/src/Hosting/Hosting/src/Host.cs#L99-L103
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel#microsoft_extensions_logging_loglevel_warning
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel#microsoft_extensions_logging_loglevel_information
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventloggerfactoryextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventlog.eventlogsettings

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 {
 logging.AddEventLog(eventLogSettings =>
 {
 eventLogSettings.SourceName = "MyLogs";
 });
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Azure App ServiceAzure App Service

public class Scopes
{
 public class Program
 {
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging => logging.AddAzureWebAppDiagnostics())
 .ConfigureServices(serviceCollection => serviceCollection
 .Configure<AzureFileLoggerOptions>(options =>
 {
 options.FileName = "azure-diagnostics-";
 options.FileSizeLimit = 50 * 1024;
 options.RetainedFileCountLimit = 5;
 })
 .Configure<AzureBlobLoggerOptions>(options =>
 {
 options.BlobName = "log.txt";
 }))
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

The Microsoft.Extensions.Logging.AzureAppServices provider package writes logs to text files in an Azure App

Service app's file system and to blob storage in an Azure Storage account.

The provider package isn't included in the shared framework. To use the provider, add the provider package to the

project.

To configure provider settings, use AzureFileLoggerOptions and AzureBlobLoggerOptions, as shown in the

following example:

When deployed to Azure App Service, the app uses the settings in the App Service logs section of the App Ser viceApp Ser vice

https://www.nuget.org/packages/Microsoft.Extensions.Logging.AzureAppServices
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet#what-is-blob-storage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservices.azurefileloggeroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservices.azureblobloggeroptions
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log/#enable-application-logging-windows

Azure log streamingAzure log streaming

Azure Application InsightsAzure Application Insights

Third-party logging providers

page of the Azure portal. When the following settings are updated, the changes take effect immediately without

requiring a restart or redeployment of the app.

Application Logging (Filesystem)Application Logging (Filesystem)

Application Logging (Blob)Application Logging (Blob)

The default location for log files is in the D:\home\LogFiles\Application folder, and the default file name is

diagnostics-yyyymmdd.txt. The default file size limit is 10 MB, and the default maximum number of files retained is

2. The default blob name is {app-name}{timestamp}/yyyy/mm/dd/hh/{guid}-applicationLog.txt.

This provider only logs when the project runs in the Azure environment.

Azure log streaming supports viewing log activity in real time from:

The app server

The web server

Failed request tracing

To configure Azure log streaming:

Navigate to the App Ser vice logsApp Ser vice logs page from the app's portal page.

Set Application Logging (Filesystem)Application Logging (Filesystem) to OnOn.

Choose the log LevelLevel . This setting only applies to Azure log streaming.

Navigate to the Log StreamLog Stream page to view logs. The logged messages are logged with the ILogger interface.

The Microsoft.Extensions.Logging.ApplicationInsights provider package writes logs to Azure Application Insights.

Application Insights is a service that monitors a web app and provides tools for querying and analyzing the

telemetry data. If you use this provider, you can query and analyze your logs by using the Application Insights tools.

The logging provider is included as a dependency of Microsoft.ApplicationInsights.AspNetCore, which is the

package that provides all available telemetry for ASP.NET Core. If you use this package, you don't have to install the

provider package.

The Microsoft.ApplicationInsights.Web package is for ASP.NET 4.x, not ASP.NET Core.

For more information, see the following resources:

Application Insights overview

Application Insights for ASP.NET Core applications - Start here if you want to implement the full range of

Application Insights telemetry along with logging.

ApplicationInsightsLoggerProvider for .NET Core ILogger logs - Start here if you want to implement the logging

provider without the rest of Application Insights telemetry.

Application Insights logging adapters.

Install, configure, and initialize the Application Insights SDK - Interactive tutorial on the Microsoft Learn site.

Third-party logging frameworks that work with ASP.NET Core:

elmah.io (GitHub repo)

Gelf (GitHub repo)

JSNLog (GitHub repo)

KissLog.net (GitHub repo)

https://www.nuget.org/packages/Microsoft.Extensions.Logging.ApplicationInsights
https://docs.microsoft.com/en-us/azure/azure-monitor/app/cloudservices
https://www.nuget.org/packages/Microsoft.ApplicationInsights.AspNetCore
https://www.nuget.org/packages/Microsoft.ApplicationInsights.Web
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core
https://docs.microsoft.com/en-us/azure/azure-monitor/app/ilogger
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-trace-logs
https://docs.microsoft.com/en-us/learn/modules/instrument-web-app-code-with-application-insights
https://elmah.io/
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://docs.graylog.org/en/2.3/pages/gelf.html
https://github.com/mattwcole/gelf-extensions-logging
https://jsnlog.com/
https://github.com/mperdeck/jsnlog
https://kisslog.net/
https://github.com/catalingavan/KissLog-net

Non-host console app

Logging providersLogging providers

class Program
{
 static void Main(string[] args)
 {
 using var loggerFactory = LoggerFactory.Create(builder =>
 {
 builder
 .AddFilter("Microsoft", LogLevel.Warning)
 .AddFilter("System", LogLevel.Warning)
 .AddFilter("LoggingConsoleApp.Program", LogLevel.Debug)
 .AddConsole()
 .AddEventLog();
 });
 ILogger logger = loggerFactory.CreateLogger<Program>();
 logger.LogInformation("Example log message");
 }
}

Create logsCreate logs

Log4Net (GitHub repo)

Loggr (GitHub repo)

NLog (GitHub repo)

PLogger (GitHub repo)

Sentry (GitHub repo)

Serilog (GitHub repo)

Stackdriver (Github repo)

Some third-party frameworks can perform semantic logging, also known as structured logging.

Using a third-party framework is similar to using one of the built-in providers:

1. Add a NuGet package to your project.

2. Call an ILoggerFactory extension method provided by the logging framework.

For more information, see each provider's documentation. Third-party logging providers aren't supported by

Microsoft.

For an example of how to use the Generic Host in a non-web console app, see the Program.cs file of the Background

Tasks sample app (Background tasks with hosted services in ASP.NET Core).

Logging code for apps without Generic Host differs in the way providers are added and loggers are created.

In a non-host console app, call the provider's Add{provider name} extension method while creating a LoggerFactory

:

To create logs, use an ILogger<TCategoryName> object. Use the LoggerFactory to create an ILogger .

The following example creates a logger with LoggingConsoleApp.Program as the category.

https://logging.apache.org/log4net/
https://github.com/huorswords/Microsoft.Extensions.Logging.Log4Net.AspNetCore
https://loggr.net/
https://github.com/imobile3/Loggr.Extensions.Logging
https://nlog-project.org/
https://github.com/NLog/NLog.Extensions.Logging
https://www.nuget.org/packages/InvertedSoftware.PLogger.Core/
https://github.com/invertedsoftware/InvertedSoftware.PLogger.Core
https://sentry.io/welcome/
https://github.com/getsentry/sentry-dotnet
https://serilog.net/
https://github.com/serilog/serilog-aspnetcore
https://cloud.google.com/dotnet/docs/stackdriver#logging
https://github.com/googleapis/google-cloud-dotnet
https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/hosted-services/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1

class Program
{
 static void Main(string[] args)
 {
 using var loggerFactory = LoggerFactory.Create(builder =>
 {
 builder
 .AddFilter("Microsoft", LogLevel.Warning)
 .AddFilter("System", LogLevel.Warning)
 .AddFilter("LoggingConsoleApp.Program", LogLevel.Debug)
 .AddConsole()
 .AddEventLog();
 });
 ILogger logger = loggerFactory.CreateLogger<Program>();
 logger.LogInformation("Example log message");
 }
}

class Program
{
 static void Main(string[] args)
 {
 using var loggerFactory = LoggerFactory.Create(builder =>
 {
 builder
 .AddFilter("Microsoft", LogLevel.Warning)
 .AddFilter("System", LogLevel.Warning)
 .AddFilter("LoggingConsoleApp.Program", LogLevel.Debug)
 .AddConsole()
 .AddEventLog();
 });
 ILogger logger = loggerFactory.CreateLogger<Program>();
 logger.LogInformation("Example log message");
 }
}

Log during host construction

In the following example, the logger is used to create logs with Information as the level. The Log level indicates the

severity of the logged event.

Levels and categories are explained in more detail in this document.

Logging during host construction isn't directly supported. However, a separate logger can be used. In the following

example, a Serilog logger is used to log in CreateHostBuilder . AddSerilog uses the static configuration specified in

Log.Logger :

https://serilog.net/

using System;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args)
 {
 var builtConfig = new ConfigurationBuilder()
 .AddJsonFile("appsettings.json")
 .AddCommandLine(args)
 .Build();

 Log.Logger = new LoggerConfiguration()
 .WriteTo.Console()
 .WriteTo.File(builtConfig["Logging:FilePath"])
 .CreateLogger();

 try
 {
 return Host.CreateDefaultBuilder(args)
 .ConfigureServices((context, services) =>
 {
 services.AddRazorPages();
 })
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddConfiguration(builtConfig);
 })
 .ConfigureLogging(logging =>
 {
 logging.AddSerilog();
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
 catch (Exception ex)
 {
 Log.Fatal(ex, "Host builder error");

 throw;
 }
 finally
 {
 Log.CloseAndFlush();
 }
 }
}

Configure a service that depends on ILogger

Constructor injection of a logger into Startup works in earlier versions of ASP.NET Core because a separate DI

container is created for the Web Host. For information about why only one container is created for the Generic Host,

see the breaking change announcement.

https://github.com/aspnet/Announcements/issues/353

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllers();
 services.AddRazorPages();

 services.AddSingleton<IMyService>((container) =>
 {
 var logger = container.GetRequiredService<ILogger<MyService>>();
 return new MyService() { Logger = logger };
 });
}

Create logs in Main

public static void Main(string[] args)
{
 var host = CreateHostBuilder(args).Build();

 var logger = host.Services.GetRequiredService<ILogger<Program>>();
 logger.LogInformation("Host created.");

 host.Run();
}

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

Create logs in StartupCreate logs in Startup

To configure a service that depends on ILogger<T> , use constructor injection or provide a factory method. The

factory method approach is recommended only if there is no other option. For example, consider a service that

needs an ILogger<T> instance provided by DI:

The preceding highlighted code is a Func that runs the first time the DI container needs to construct an instance of

MyService . You can access any of the registered services in this way.

The following code logs in Main by getting an ILogger instance from DI after building the host:

The following code writes logs in Startup.Configure :

https://docs.microsoft.com/en-us/dotnet/api/system.func-2

public void Configure(IApplicationBuilder app, IWebHostEnvironment env,
 ILogger<Startup> logger)
{
 if (env.IsDevelopment())
 {
 logger.LogInformation("In Development.");
 app.UseDeveloperExceptionPage();
 }
 else
 {
 logger.LogInformation("Not Development.");
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 endpoints.MapRazorPages();
 });
}

No asynchronous logger methodsNo asynchronous logger methods

Change log levels in a running app

ILogger and ILoggerFactory

Writing logs before completion of the DI container setup in the Startup.ConfigureServices method is not

supported:

Logger injection into the Startup constructor is not supported.

Logger injection into the Startup.ConfigureServices method signature is not supported

The reason for this restriction is that logging depends on DI and on configuration, which in turns depends on DI.

The DI container isn't set up until ConfigureServices finishes.

For information on configuring a service that depends on ILogger<T> or why constructor injection of a logger into

Startup worked in earlier versions, see Configure a service that depends on ILogger

Logging should be so fast that it isn't worth the performance cost of asynchronous code. If a logging data store is

slow, don't write to it directly. Consider writing the log messages to a fast store initially, then moving them to the

slow store later. For example, when logging to SQL Server, don't do so directly in a Log method, since the Log

methods are synchronous. Instead, synchronously add log messages to an in-memory queue and have a

background worker pull the messages out of the queue to do the asynchronous work of pushing data to SQL

Server. For more information, see this GitHub issue.

The Logging API doesn't include a scenario to change log levels while an app is running. However, some

configuration providers are capable of reloading configuration, which takes immediate effect on logging

configuration. For example, the File Configuration Provider, reloads logging configuration by default. If

configuration is changed in code while an app is running, the app can call IConfigurationRoot.Reload to update the

app's logging configuration.

https://github.com/dotnet/AspNetCore.Docs/issues/11801
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationroot.reload

Apply log filter rules in code

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft", LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Create a custom logger

public void Configure(
 IApplicationBuilder app,
 IWebHostEnvironment env,
 ILoggerFactory loggerFactory)
{
 loggerFactory.AddProvider(new CustomLoggerProvider(new CustomLoggerConfiguration()));

Sample custom logger configurationSample custom logger configuration

The ILogger<TCategoryName> and ILoggerFactory interfaces and implementations are included in the .NET Core

SDK. They are also available in the following NuGet packages:

The interfaces are in Microsoft.Extensions.Logging.Abstractions.

The default implementations are in Microsoft.Extensions.Logging.

The preferred approach for setting log filter rules is by using Configuration.

The following example shows how to register filter rules in code:

logging.AddFilter("System", LogLevel.Debug) specifies the System category and log level Debug . The filter is

applied to all providers because a specific provider was not configured.

AddFilter<DebugLoggerProvider>("Microsoft", LogLevel.Information) specifies:

The Debug logging provider.

Log level Information and higher.

All categories starting with "Microsoft" .

To add a custom logger, add an ILoggerProvider with ILoggerFactory:

The ILoggerProvider creates one or more ILogger instances. The ILogger instances are used by the framework to

log the information.

The sample:

Is designed to be a very basic sample that sets the color of the log console by event ID and log level. Loggers

generally don't change by event ID and are not specific to log level.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory
https://www.nuget.org/packages/Microsoft.Extensions.Logging.Abstractions/
https://www.nuget.org/packages/microsoft.extensions.logging/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory

public class ColorConsoleLoggerConfiguration
{
 public LogLevel LogLevel { get; set; } = LogLevel.Warning;
 public int EventId { get; set; } = 0;
 public ConsoleColor Color { get; set; } = ConsoleColor.Yellow;
}

Create the custom loggerCreate the custom logger

public class ColorConsoleLogger : ILogger
{
 private readonly string _name;
 private readonly ColorConsoleLoggerConfiguration _config;

 public ColorConsoleLogger(string name, ColorConsoleLoggerConfiguration config)
 {
 _name = name;
 _config = config;
 }

 public IDisposable BeginScope<TState>(TState state)
 {
 return null;
 }

 public bool IsEnabled(LogLevel logLevel)
 {
 return logLevel == _config.LogLevel;
 }

 public void Log<TState>(LogLevel logLevel, EventId eventId, TState state,
 Exception exception, Func<TState, Exception, string> formatter)
 {
 if (!IsEnabled(logLevel))
 {
 return;
 }

 if (_config.EventId == 0 || _config.EventId == eventId.Id)
 {
 var color = Console.ForegroundColor;
 Console.ForegroundColor = _config.Color;
 Console.WriteLine($"{logLevel} - {eventId.Id} " +
 $"- {_name} - {formatter(state, exception)}");
 Console.ForegroundColor = color;
 }
 }
}

Creates different color console entries per log level and event ID using the following configuration type:

The preceding code sets the default level to Warning and the color to Yellow . If the EventId is set to 0, we will log

all events.

The ILogger implementation category name is typically the logging source. For example, the type where the logger

is created:

The preceding code:

Creates a logger instance per category name.

Checks logLevel == _config.LogLevel in IsEnabled , so each logLevel has a unique logger. Generally, loggers

should also be enabled for all higher log levels:

public bool IsEnabled(LogLevel logLevel)
{
 return logLevel >= _config.LogLevel;
}

Create the custom LoggerProviderCreate the custom LoggerProvider

public class ColorConsoleLoggerProvider : ILoggerProvider
{
 private readonly ColorConsoleLoggerConfiguration _config;
 private readonly ConcurrentDictionary<string, ColorConsoleLogger> _loggers = new
ConcurrentDictionary<string, ColorConsoleLogger>();

 public ColorConsoleLoggerProvider(ColorConsoleLoggerConfiguration config)
 {
 _config = config;
 }

 public ILogger CreateLogger(string categoryName)
 {
 return _loggers.GetOrAdd(categoryName, name => new ColorConsoleLogger(name, _config));
 }

 public void Dispose()
 {
 _loggers.Clear();
 }
}

Usage and registration of the custom loggerUsage and registration of the custom logger

The LoggerProvider is the class that creates the logger instances. Maybe it is not needed to create a logger instance

per category, but this makes sense for some Loggers, like NLog or log4net. Doing this you are also able to choose

different logging output targets per category if needed:

In the preceding code, CreateLogger creates a single instance of the ColorConsoleLogger per category name and

stores it in the ConcurrentDictionary<TKey,TValue> ;

Register the logger in the Startup.Configure :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.build.logging.loggerdescription.createlogger
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentdictionary-2

public void Configure(IApplicationBuilder app, IWebHostEnvironment env,
 ILoggerFactory loggerFactory)
{
 // Default registration.
 loggerFactory.AddProvider(new ColorConsoleLoggerProvider(
 new ColorConsoleLoggerConfiguration
 {
 LogLevel = LogLevel.Error,
 Color = ConsoleColor.Red
 }));

 // Custom registration with default values.
 loggerFactory.AddColorConsoleLogger();

 // Custom registration with a new configuration instance.
 loggerFactory.AddColorConsoleLogger(new ColorConsoleLoggerConfiguration
 {
 LogLevel = LogLevel.Debug,
 Color = ConsoleColor.Gray
 });

 // Custom registration with a configuration object.
 loggerFactory.AddColorConsoleLogger(c =>
 {
 c.LogLevel = LogLevel.Information;
 c.Color = ConsoleColor.Blue;
 });

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }
 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
 });
}

For the preceding code, provide at least one extension method for the ILoggerFactory :

public static class ColorConsoleLoggerExtensions
{
 public static ILoggerFactory AddColorConsoleLogger(
 this ILoggerFactory loggerFactory,
 ColorConsoleLoggerConfiguration config)
 {
 loggerFactory.AddProvider(new ColorConsoleLoggerProvider(config));
 return loggerFactory;
 }
 public static ILoggerFactory AddColorConsoleLogger(
 this ILoggerFactory loggerFactory)
 {
 var config = new ColorConsoleLoggerConfiguration();
 return loggerFactory.AddColorConsoleLogger(config);
 }
 public static ILoggerFactory AddColorConsoleLogger(
 this ILoggerFactory loggerFactory,
 Action<ColorConsoleLoggerConfiguration> configure)
 {
 var config = new ColorConsoleLoggerConfiguration();
 configure(config);
 return loggerFactory.AddColorConsoleLogger(config);
 }
}

Additional resources

Add providers

High-performance logging with LoggerMessage in ASP.NET Core

Logging bugs should be created in the github.com/dotnet/runtime/ repo.

ASP.NET Core Blazor logging

By Tom Dykstra and Steve Smith

.NET Core supports a logging API that works with a variety of built-in and third-party logging providers. This article

shows how to use the logging API with built-in providers.

View or download sample code (how to download)

A logging provider displays or stores logs. For example, the Console provider displays logs on the console, and the

Azure Application Insights provider stores them in Azure Application Insights. Logs can be sent to multiple

destinations by adding multiple providers.

To add a provider, call the provider's Add{provider name} extension method in Program.cs:

https://github.com/dotnet/runtime/issues
https://github.com/tdykstra
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/logging/index/samples

public static void Main(string[] args)
{
 var webHost = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 var env = hostingContext.HostingEnvironment;
 config.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json",
 optional: true, reloadOnChange: true);
 config.AddEnvironmentVariables();
 })
 .ConfigureLogging((hostingContext, logging) =>
 {
 // Requires `using Microsoft.Extensions.Logging;`
 logging.AddConfiguration(hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole();
 logging.AddDebug();
 logging.AddEventSourceLogger();
 })
 .UseStartup<Startup>()
 .Build();

 webHost.Run();
}

public static void Main(string[] args)
{
 CreateWebHostBuilder(args).Build().Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();

The preceding code requires references to Microsoft.Extensions.Logging and Microsoft.Extensions.Configuration .

The default project template calls CreateDefaultBuilder, which adds the following logging providers:

Console

Debug

EventSource (starting in ASP.NET Core 2.2)

If you use CreateDefaultBuilder , you can replace the default providers with your own choices. Call ClearProviders,

and add the providers you want.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggingbuilderextensions.clearproviders

public static void Main(string[] args)
{
 var host = CreateWebHostBuilder(args).Build();

 var todoRepository = host.Services.GetRequiredService<ITodoRepository>();
 todoRepository.Add(new Core.Model.TodoItem() { Name = "Feed the dog" });
 todoRepository.Add(new Core.Model.TodoItem() { Name = "Walk the dog" });

 var logger = host.Services.GetRequiredService<ILogger<Program>>();
 logger.LogInformation("Seeded the database.");

 host.Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging(logging =>
 {
 logging.ClearProviders();
 logging.AddConsole();
 });

Create logs

public class AboutModel : PageModel
{
 private readonly ILogger _logger;

 public AboutModel(ILogger<AboutModel> logger)
 {
 _logger = logger;
 }

public void OnGet()
{
 Message = $"About page visited at {DateTime.UtcNow.ToLongTimeString()}";
 _logger.LogInformation("Message displayed: {Message}", Message);
}

Create logs in StartupCreate logs in Startup

Learn more about built-in logging providers and third-party logging providers later in the article.

To create logs, use an ILogger<TCategoryName> object. In a web app or hosted service, get an ILogger from

dependency injection (DI). In non-host console apps, use the LoggerFactory to create an ILogger .

The following ASP.NET Core example creates a logger with TodoApiSample.Pages.AboutModel as the category. The log

category is a string that is associated with each log. The ILogger<T> instance provided by DI creates logs that have

the fully qualified name of type T as the category.

In the following ASP.NET Core and console app examples, the logger is used to create logs with Information as the

level. The Log level indicates the severity of the logged event.

Levels and categories are explained in more detail later in this article.

To write logs in the Startup class, include an ILogger parameter in the constructor signature:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1

public class Startup
{
 private readonly ILogger _logger;

 public Startup(IConfiguration configuration, ILogger<Startup> logger)
 {
 Configuration = configuration;
 _logger = logger;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 // Add our repository type
 services.AddSingleton<ITodoRepository, TodoRepository>();
 _logger.LogInformation("Added TodoRepository to services");
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 _logger.LogInformation("In Development environment");
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseMvc();
 }
}

Create logs in the Program classCreate logs in the Program class
To write logs in the Program class, get an ILogger instance from DI:

public static void Main(string[] args)
{
 var host = CreateWebHostBuilder(args).Build();

 var todoRepository = host.Services.GetRequiredService<ITodoRepository>();
 todoRepository.Add(new Core.Model.TodoItem() { Name = "Feed the dog" });
 todoRepository.Add(new Core.Model.TodoItem() { Name = "Walk the dog" });

 var logger = host.Services.GetRequiredService<ILogger<Program>>();
 logger.LogInformation("Seeded the database.");

 host.Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging(logging =>
 {
 logging.ClearProviders();
 logging.AddConsole();
 });

Logging during host construction isn't directly supported. However, a separate logger can be used. In the following

example, a Serilog logger is used to log in CreateWebHostBuilder . AddSerilog uses the static configuration specified

in Log.Logger :

https://serilog.net/

using System;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args)
 {
 var builtConfig = new ConfigurationBuilder()
 .AddJsonFile("appsettings.json")
 .AddCommandLine(args)
 .Build();

 Log.Logger = new LoggerConfiguration()
 .WriteTo.Console()
 .WriteTo.File(builtConfig["Logging:FilePath"])
 .CreateLogger();

 try
 {
 return WebHost.CreateDefaultBuilder(args)
 .ConfigureServices((context, services) =>
 {
 services.AddMvc();
 })
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddConfiguration(builtConfig);
 })
 .ConfigureLogging(logging =>
 {
 logging.AddSerilog();
 })
 .UseStartup<Startup>();
 }
 catch (Exception ex)
 {
 Log.Fatal(ex, "Host builder error");

 throw;
 }
 finally
 {
 Log.CloseAndFlush();
 }
 }
}

No asynchronous logger methodsNo asynchronous logger methods
Logging should be so fast that it isn't worth the performance cost of asynchronous code. If your logging data store

is slow, don't write to it directly. Consider writing the log messages to a fast store initially, then move them to the

slow store later. For example, if you're logging to SQL Server, you don't want to do that directly in a Log method,

since the Log methods are synchronous. Instead, synchronously add log messages to an in-memory queue and

have a background worker pull the messages out of the queue to do the asynchronous work of pushing data to

SQL Server. For more information, see this GitHub issue.

https://github.com/dotnet/AspNetCore.Docs/issues/11801

Configuration

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 },
 "Console":
 {
 "IncludeScopes": true
 }
 }
}

{
 "Logging": { // Default, all providers.
 "LogLevel": {
 "Microsoft": "Warning"
 },
 "Console": { // Console provider.
 "LogLevel": {
 "Microsoft": "Information"
 }
 }
 }
}

Logging provider configuration is provided by one or more configuration providers:

File formats (INI, JSON, and XML).

Command-line arguments.

Environment variables.

In-memory .NET objects.

The unencrypted Secret Manager storage.

An encrypted user store, such as Azure Key Vault.

Custom providers (installed or created).

For example, logging configuration is commonly provided by the Logging section of app settings files. The

following example shows the contents of a typical appsettings.Development.json file:

The Logging property can have LogLevel and log provider properties (Console is shown).

The LogLevel property under Logging specifies the minimum level to log for selected categories. In the example,

System and Microsoft categories log at Information level, and all others log at Debug level.

Other properties under Logging specify logging providers. The example is for the Console provider. If a provider

supports log scopes, IncludeScopes indicates whether they're enabled. A provider property (such as Console in the

example) may also specify a LogLevel property. LogLevel under a provider specifies levels to log for that provider.

If levels are specified in Logging.{providername}.LogLevel , they override anything set in Logging.LogLevel . For

example, consider the following JSON:

In the preceding JSON, the Console provider settings overrides the preceding (default) log level.

The Logging API doesn't include a scenario to change log levels while an app is running. However, some

configuration providers are capable of reloading configuration, which takes immediate effect on logging

Sample logging output

info: Microsoft.AspNetCore.Hosting.Internal.WebHost[1]
 Request starting HTTP/1.1 GET http://localhost:5000/api/todo/0
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
 Executing action method TodoApi.Controllers.TodoController.GetById (TodoApi) with arguments (0) -
ModelState is Valid
info: TodoApi.Controllers.TodoController[1002]
 Getting item 0
warn: TodoApi.Controllers.TodoController[4000]
 GetById(0) NOT FOUND
info: Microsoft.AspNetCore.Mvc.StatusCodeResult[1]
 Executing HttpStatusCodeResult, setting HTTP status code 404
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
 Executed action TodoApi.Controllers.TodoController.GetById (TodoApi) in 42.9286ms
info: Microsoft.AspNetCore.Hosting.Internal.WebHost[2]
 Request finished in 148.889ms 404

Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request starting HTTP/1.1 GET
http://localhost:53104/api/todo/0
Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Information: Executing action method
TodoApi.Controllers.TodoController.GetById (TodoApi) with arguments (0) - ModelState is Valid
TodoApi.Controllers.TodoController:Information: Getting item 0
TodoApi.Controllers.TodoController:Warning: GetById(0) NOT FOUND
Microsoft.AspNetCore.Mvc.StatusCodeResult:Information: Executing HttpStatusCodeResult, setting HTTP status code
404
Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Information: Executed action
TodoApi.Controllers.TodoController.GetById (TodoApi) in 152.5657ms
Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request finished in 316.3195ms 404

NuGet packages

Log category

configuration. For example, the File Configuration Provider, which is added by CreateDefaultBuilder to read

settings files, reloads logging configuration by default. If configuration is changed in code while an app is running,

the app can call IConfigurationRoot.Reload to update the app's logging configuration.

For information on implementing configuration providers, see Configuration in ASP.NET Core.

With the sample code shown in the preceding section, logs appear in the console when the app is run from the

command line. Here's an example of console output:

The preceding logs were generated by making an HTTP Get request to the sample app at

http://localhost:5000/api/todo/0 .

Here's an example of the same logs as they appear in the Debug window when you run the sample app in Visual

Studio:

The logs that are created by the ILogger calls shown in the preceding section begin with "TodoApi". The logs that

begin with "Microsoft" categories are from ASP.NET Core framework code. ASP.NET Core and application code are

using the same logging API and providers.

The remainder of this article explains some details and options for logging.

The ILogger and ILoggerFactory interfaces are in Microsoft.Extensions.Logging.Abstractions, and default

implementations for them are in Microsoft.Extensions.Logging.

When an ILogger object is created, a category is specified for it. That category is included with each log message

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationroot.reload
https://www.nuget.org/packages/Microsoft.Extensions.Logging.Abstractions/
https://www.nuget.org/packages/microsoft.extensions.logging/

public class TodoController : Controller
{
 private readonly ITodoRepository _todoRepository;
 private readonly ILogger _logger;

 public TodoController(ITodoRepository todoRepository,
 ILogger<TodoController> logger)
 {
 _todoRepository = todoRepository;
 _logger = logger;
 }

public class TodoController : Controller
{
 private readonly ITodoRepository _todoRepository;
 private readonly ILogger _logger;

 public TodoController(ITodoRepository todoRepository,
 ILoggerFactory logger)
 {
 _todoRepository = todoRepository;
 _logger = logger.CreateLogger("TodoApiSample.Controllers.TodoController");
 }

Log level

public IActionResult GetById(string id)
{
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {Id}", id);
 var item = _todoRepository.Find(id);
 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({Id}) NOT FOUND", id);
 return NotFound();
 }
 return new ObjectResult(item);
}

created by that instance of ILogger . The category may be any string, but the convention is to use the class name,

such as "TodoApi.Controllers.TodoController".

Use ILogger<T> to get an ILogger instance that uses the fully qualified type name of T as the category:

To explicitly specify the category, call ILoggerFactory.CreateLogger :

ILogger<T> is equivalent to calling CreateLogger with the fully qualified type name of T .

Every log specifies a LogLevel value. The log level indicates the severity or importance. For example, you might

write an Information log when a method ends normally and a Warning log when a method returns a 404 Not

Found status code.

The following code creates Information and Warning logs:

In the preceding code, the MyLogEvents.GetItem and MyLogEvents.GetItemNotFound parameters are the Log event ID.

The second parameter is a message template with placeholders for argument values provided by the remaining

method parameters. The method parameters are explained in the Log message template section in this article.

Log methods that include the level in the method name (for example, LogInformation and LogWarning) are

extension methods for ILogger. These methods call a Log method that takes a LogLevel parameter. You can call

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions

the Log method directly rather than one of these extension methods, but the syntax is relatively complicated. For

more information, see ILogger and the logger extensions source code.

ASP.NET Core defines the following log levels, ordered here from lowest to highest severity.

Trace = 0

For information that's typically valuable only for debugging. These messages may contain sensitive

application data and so shouldn't be enabled in a production environment. Disabled by default.

Debug = 1

For information that may be useful in development and debugging. Example:

Entering method Configure with flag set to true. Enable Debug level logs in production only when

troubleshooting, due to the high volume of logs.

Information = 2

For tracking the general flow of the app. These logs typically have some long-term value. Example:

Request received for path /api/todo

Warning = 3

For abnormal or unexpected events in the app flow. These may include errors or other conditions that don't

cause the app to stop but might need to be investigated. Handled exceptions are a common place to use the

Warning log level. Example: FileNotFoundException for file quotes.txt.

Error = 4

For errors and exceptions that cannot be handled. These messages indicate a failure in the current activity or

operation (such as the current HTTP request), not an app-wide failure. Example log message:

Cannot insert record due to duplicate key violation.

Critical = 5

For failures that require immediate attention. Examples: data loss scenarios, out of disk space.

Use the log level to control how much log output is written to a particular storage medium or display window. For

example:

In production:

During development:

Logging at the Trace through Information levels produces a high-volume of detailed log messages. To

control costs and not exceed data storage limits, log Trace through Information level messages to a

high-volume, low-cost data store.

Logging at Warning through Critical levels typically produces fewer, smaller log messages. Therefore,

costs and storage limits usually aren't a concern, which results in greater flexibility of data store choice.

Log Warning through Critical messages to the console.

Add Trace through Information messages when troubleshooting.

The Log filtering section later in this article explains how to control which log levels a provider handles.

ASP.NET Core writes logs for framework events. The log examples earlier in this article excluded logs below

Information level, so no Debug or Trace level logs were created. Here's an example of console logs produced by

running the sample app configured to show Debug logs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger
https://github.com/dotnet/extensions/blob/release/2.2/src/Logging/Logging.Abstractions/src/LoggerExtensions.cs

info: Microsoft.AspNetCore.Hosting.Internal.WebHost[1]
 Request starting HTTP/1.1 GET http://localhost:62555/api/todo/0
dbug: Microsoft.AspNetCore.Routing.Tree.TreeRouter[1]
 Request successfully matched the route with name 'GetTodo' and template 'api/Todo/{id}'.
dbug: Microsoft.AspNetCore.Mvc.Internal.ActionSelector[2]
 Action 'TodoApi.Controllers.TodoController.Update (TodoApi)' with id '089d59b6-92ec-472d-b552-
cc613dfd625d' did not match the constraint 'Microsoft.AspNetCore.Mvc.Internal.HttpMethodActionConstraint'
dbug: Microsoft.AspNetCore.Mvc.Internal.ActionSelector[2]
 Action 'TodoApi.Controllers.TodoController.Delete (TodoApi)' with id 'f3476abe-4bd9-4ad3-9261-
3ead09607366' did not match the constraint 'Microsoft.AspNetCore.Mvc.Internal.HttpMethodActionConstraint'
dbug: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
 Executing action TodoApi.Controllers.TodoController.GetById (TodoApi)
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
 Executing action method TodoApi.Controllers.TodoController.GetById (TodoApi) with arguments (0) -
ModelState is Valid
info: TodoApi.Controllers.TodoController[1002]
 Getting item 0
warn: TodoApi.Controllers.TodoController[4000]
 GetById(0) NOT FOUND
dbug: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
 Executed action method TodoApi.Controllers.TodoController.GetById (TodoApi), returned result
Microsoft.AspNetCore.Mvc.NotFoundResult.
info: Microsoft.AspNetCore.Mvc.StatusCodeResult[1]
 Executing HttpStatusCodeResult, setting HTTP status code 404
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
 Executed action TodoApi.Controllers.TodoController.GetById (TodoApi) in 0.8788ms
dbug: Microsoft.AspNetCore.Server.Kestrel[9]
 Connection id "0HL6L7NEFF2QD" completed keep alive response.
info: Microsoft.AspNetCore.Hosting.Internal.WebHost[2]
 Request finished in 2.7286ms 404

Log event ID

public IActionResult GetById(string id)
{
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {Id}", id);
 var item = _todoRepository.Find(id);
 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({Id}) NOT FOUND", id);
 return NotFound();
 }
 return new ObjectResult(item);
}

public class LoggingEvents
{
 public const int GenerateItems = 1000;
 public const int ListItems = 1001;
 public const int GetItem = 1002;
 public const int InsertItem = 1003;
 public const int UpdateItem = 1004;
 public const int DeleteItem = 1005;

 public const int GetItemNotFound = 4000;
 public const int UpdateItemNotFound = 4001;
}

Each log can specify an event ID. The sample app does this by using a locally defined LoggingEvents class:

An event ID associates a set of events. For example, all logs related to displaying a list of items on a page might be

info: TodoApi.Controllers.TodoController[1002]
 Getting item invalidid
warn: TodoApi.Controllers.TodoController[4000]
 GetById(invalidid) NOT FOUND

Log message template

public IActionResult GetById(string id)
{
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {Id}", id);
 var item = _todoRepository.Find(id);
 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({Id}) NOT FOUND", id);
 return NotFound();
 }
 return new ObjectResult(item);
}

string p1 = "parm1";
string p2 = "parm2";
_logger.LogInformation("Parameter values: {p2}, {p1}", p1, p2);

Parameter values: parm1, parm2

_logger.LogInformation("Getting item {Id} at {RequestTime}", id, DateTime.Now);

Logging exceptions

1001.

The logging provider may store the event ID in an ID field, in the logging message, or not at all. The Debug provider

doesn't show event IDs. The console provider shows event IDs in brackets after the category:

Each log specifies a message template. The message template can contain placeholders for which arguments are

provided. Use names for the placeholders, not numbers.

The order of placeholders, not their names, determines which parameters are used to provide their values. In the

following code, notice that the parameter names are out of sequence in the message template:

This code creates a log message with the parameter values in sequence:

The logging framework works this way so that logging providers can implement semantic logging, also known as

structured logging. The arguments themselves are passed to the logging system, not just the formatted message

template. This information enables logging providers to store the parameter values as fields. For example, suppose

logger method calls look like this:

If you're sending the logs to Azure Table Storage, each Azure Table entity can have ID and RequestTime properties,

which simplifies queries on log data. A query can find all logs within a particular RequestTime range without

parsing the time out of the text message.

The logger methods have overloads that let you pass in an exception, as in the following example:

https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging

catch (Exception ex)
{
 _logger.LogWarning(LoggingEvents.GetItemNotFound, ex, "GetById({Id}) NOT FOUND", id);
 return NotFound();
}
return new ObjectResult(item);

TodoApiSample.Controllers.TodoController: Warning: GetById(55) NOT FOUND

System.Exception: Item not found exception.
 at TodoApiSample.Controllers.TodoController.GetById(String id) in
C:\TodoApiSample\Controllers\TodoController.cs:line 226

Log filtering

Create filter rules in configurationCreate filter rules in configuration

{
 "Logging": {
 "Debug": {
 "LogLevel": {
 "Default": "Information"
 }
 },
 "Console": {
 "IncludeScopes": false,
 "LogLevel": {
 "Microsoft.AspNetCore.Mvc.Razor.Internal": "Warning",
 "Microsoft.AspNetCore.Mvc.Razor.Razor": "Debug",
 "Microsoft.AspNetCore.Mvc.Razor": "Error",
 "Default": "Information"
 }
 },
 "LogLevel": {
 "Default": "Debug"
 }
 }
}

Filter rules in codeFilter rules in code

Different providers handle the exception information in different ways. Here's an example of Debug provider output

from the code shown above.

You can specify a minimum log level for a specific provider and category or for all providers or all categories. Any

logs below the minimum level aren't passed to that provider, so they don't get displayed or stored.

To suppress all logs, specify LogLevel.None as the minimum log level. The integer value of LogLevel.None is 6,

which is higher than LogLevel.Critical (5).

The project template code calls CreateDefaultBuilder to set up logging for the Console, Debug, and EventSource

(ASP.NET Core 2.2 or later) providers. The CreateDefaultBuilder method sets up logging to look for configuration in

a Logging section, as explained earlier in this article.

The configuration data specifies minimum log levels by provider and category, as in the following example:

This JSON creates six filter rules: one for the Debug provider, four for the Console provider, and one for all

providers. A single rule is chosen for each provider when an ILogger object is created.

The following example shows how to register filter rules in code:

WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft", LogLevel.Trace));

How filtering rules are appliedHow filtering rules are applied

N UM B ERN UM B ER P RO VIDERP RO VIDER
C AT EGO RIES T H AT B EGINC AT EGO RIES T H AT B EGIN
W IT H . . .W IT H . . . M IN IM UM LO G L EVELM IN IM UM LO G L EVEL

1 Debug All categories Information

2 Console Microsoft.AspNetCore.Mvc.R
azor.Internal

Warning

3 Console Microsoft.AspNetCore.Mvc.R
azor.Razor

Debug

4 Console Microsoft.AspNetCore.Mvc.R
azor

Error

5 Console All categories Information

6 All providers All categories Debug

7 All providers System Debug

8 Debug Microsoft Trace

The second AddFilter specifies the Debug provider by using its type name. The first AddFilter applies to all

providers because it doesn't specify a provider type.

The configuration data and the AddFilter code shown in the preceding examples create the rules shown in the

following table. The first six come from the configuration example and the last two come from the code example.

When an ILogger object is created, the ILoggerFactory object selects a single rule per provider to apply to that

logger. All messages written by an ILogger instance are filtered based on the selected rules. The most specific rule

possible for each provider and category pair is selected from the available rules.

The following algorithm is used for each provider when an ILogger is created for a given category:

Select all rules that match the provider or its alias. If no match is found, select all rules with an empty provider.

From the result of the preceding step, select rules with longest matching category prefix. If no match is found,

select all rules that don't specify a category.

If multiple rules are selected, take the lastlast one.

If no rules are selected, use MinimumLevel .

With the preceding list of rules, suppose you create an ILogger object for category

"Microsoft.AspNetCore.Mvc.Razor.RazorViewEngine":

For the Debug provider, rules 1, 6, and 8 apply. Rule 8 is most specific, so that's the one selected.

For the Console provider, rules 3, 4, 5, and 6 apply. Rule 3 is most specific.

The resulting ILogger instance sends logs of Trace level and above to the Debug provider. Logs of Debug level

and above are sent to the Console provider.

Provider aliasesProvider aliases

Default minimum levelDefault minimum level

WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging(logging => logging.SetMinimumLevel(LogLevel.Warning));

Filter functionsFilter functions

WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging(logBuilder =>
 {
 logBuilder.AddFilter((provider, category, logLevel) =>
 {
 if (provider == "Microsoft.Extensions.Logging.Console.ConsoleLoggerProvider" &&
 category == "TodoApiSample.Controllers.TodoController")
 {
 return false;
 }
 return true;
 });
 });

System categories and levels

C AT EGO RYC AT EGO RY N OT ESN OT ES

Microsoft.AspNetCore General ASP.NET Core diagnostics.

Microsoft.AspNetCore.DataProtection Which keys were considered, found, and used.

Each provider defines an alias that can be used in configuration in place of the fully qualified type name. For the

built-in providers, use the following aliases:

Console

Debug

EventSource

EventLog

TraceSource

AzureAppServicesFile

AzureAppServicesBlob

ApplicationInsights

There's a minimum level setting that takes effect only if no rules from configuration or code apply for a given

provider and category. The following example shows how to set the minimum level:

If you don't explicitly set the minimum level, the default value is Information , which means that Trace and Debug

logs are ignored.

A filter function is invoked for all providers and categories that don't have rules assigned to them by configuration

or code. Code in the function has access to the provider type, category, and log level. For example:

Here are some categories used by ASP.NET Core and Entity Framework Core, with notes about what logs to expect

from them:

Microsoft.AspNetCore.HostFiltering Hosts allowed.

Microsoft.AspNetCore.Hosting How long HTTP requests took to complete and what time they
started. Which hosting startup assemblies were loaded.

Microsoft.AspNetCore.Mvc MVC and Razor diagnostics. Model binding, filter execution,
view compilation, action selection.

Microsoft.AspNetCore.Routing Route matching information.

Microsoft.AspNetCore.Server Connection start, stop, and keep alive responses. HTTPS
certificate information.

Microsoft.AspNetCore.StaticFiles Files served.

Microsoft.EntityFrameworkCore General Entity Framework Core diagnostics. Database activity
and configuration, change detection, migrations.

C AT EGO RYC AT EGO RY N OT ESN OT ES

Log scopes

public IActionResult GetById(string id)
{
 TodoItem item;
 using (_logger.BeginScope("Message attached to logs created in the using block"))
 {
 _logger.LogInformation(LoggingEvents.GetItem, "Getting item {Id}", id);
 item = _todoRepository.Find(id);
 if (item == null)
 {
 _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({Id}) NOT FOUND", id);
 return NotFound();
 }
 }
 return new ObjectResult(item);
}

.ConfigureLogging((hostingContext, logging) =>
{
 logging.AddConfiguration(hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole(options => options.IncludeScopes = true);
 logging.AddDebug();
})

A scope can group a set of logical operations. This grouping can be used to attach the same data to each log that's

created as part of a set. For example, every log created as part of processing a transaction can include the

transaction ID.

A scope is an IDisposable type that's returned by the BeginScope method and lasts until it's disposed. Use a scope

by wrapping logger calls in a using block:

The following code enables scopes for the console provider :

Program.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger.beginscope

NOTENOTE

info: TodoApiSample.Controllers.TodoController[1002]
 => RequestId:0HKV9C49II9CK RequestPath:/api/todo/0 => TodoApiSample.Controllers.TodoController.GetById
(TodoApi) => Message attached to logs created in the using block
 Getting item 0
warn: TodoApiSample.Controllers.TodoController[4000]
 => RequestId:0HKV9C49II9CK RequestPath:/api/todo/0 => TodoApiSample.Controllers.TodoController.GetById
(TodoApi) => Message attached to logs created in the using block
 GetById(0) NOT FOUND

Built-in logging providers

Console providerConsole provider

logging.AddConsole();

dotnet run

Debug providerDebug provider

logging.AddDebug();

Event Source providerEvent Source provider

Configuring the IncludeScopes console logger option is required to enable scope-based logging.

For information on configuration, see the Configuration section.

Each log message includes the scoped information:

ASP.NET Core ships the following providers:

Console

Debug

EventSource

EventLog

TraceSource

AzureAppServicesFile

AzureAppServicesBlob

ApplicationInsights

For information on stdout and debug logging with the ASP.NET Core Module, see Troubleshoot ASP.NET Core on

Azure App Service and IIS and ASP.NET Core Module.

The Microsoft.Extensions.Logging.Console provider package sends log output to the console.

To see console logging output, open a command prompt in the project folder and run the following command:

The Microsoft.Extensions.Logging.Debug provider package writes log output by using the

System.Diagnostics.Debug class (Debug.WriteLine method calls).

On Linux, this provider writes logs to /var/log/message.

The Microsoft.Extensions.Logging.EventSource provider package writes to an Event Source cross-platform with the

https://www.nuget.org/packages/Microsoft.Extensions.Logging.Console
https://www.nuget.org/packages/Microsoft.Extensions.Logging.Debug
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debug
https://www.nuget.org/packages/Microsoft.Extensions.Logging.EventSource

logging.AddEventSourceLogger();

Windows EventLog providerWindows EventLog provider

logging.AddEventLog();

"Logging": {
 "EventLog": {
 "LogLevel": {
 "Default": "Information"
 }
 }
}

name Microsoft-Extensions-Logging . On Windows, the provider uses ETW.

The Event Source provider is added automatically when CreateDefaultBuilder is called to build the host.

Use the PerfView utility to collect and view logs. There are other tools for viewing ETW logs, but PerfView provides

the best experience for working with the ETW events emitted by ASP.NET Core.

To configure PerfView for collecting events logged by this provider, add the string *Microsoft-Extensions-Logging to

the Additional ProvidersAdditional Providers list. (Don't miss the asterisk at the start of the string.)

The Microsoft.Extensions.Logging.EventLog provider package sends log output to the Windows Event Log.

AddEventLog overloads let you pass in EventLogSettings. If null or not specified, the following default settings are

used:

LogName : "Application"

SourceName : ".NET Runtime"

MachineName : The local machine name is used.

Events are logged for Warning level and higher. The following example sets the Event Log default log level to

LogLevel.Information:

https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://github.com/Microsoft/perfview
https://www.nuget.org/packages/Microsoft.Extensions.Logging.EventLog
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventloggerfactoryextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventlog.eventlogsettings
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel#microsoft_extensions_logging_loglevel_information

TraceSource providerTraceSource provider

logging.AddTraceSource(sourceSwitchName);

Azure App Service providerAzure App Service provider

logging.AddAzureWebAppDiagnostics();

Azure log streamingAzure log streaming

Azure Application Insights trace loggingAzure Application Insights trace logging

The Microsoft.Extensions.Logging.TraceSource provider package uses the TraceSource libraries and providers.

AddTraceSource overloads let you pass in a source switch and a trace listener.

To use this provider, an app has to run on the .NET Framework (rather than .NET Core). The provider can route

messages to a variety of listeners, such as the TextWriterTraceListener used in the sample app.

The Microsoft.Extensions.Logging.AzureAppServices provider package writes logs to text files in an Azure App

Service app's file system and to blob storage in an Azure Storage account.

The provider package isn't included in the Microsoft.AspNetCore.App metapackage. When targeting .NET

Framework or referencing the Microsoft.AspNetCore.App metapackage, add the provider package to the project.

An AddAzureWebAppDiagnostics overload lets you pass in AzureAppServicesDiagnosticsSettings. The settings

object can override default settings, such as the logging output template, blob name, and file size limit. (Output

template is a message template that's applied to all logs in addition to what's provided with an ILogger method

call.)

When you deploy to an App Service app, the application honors the settings in the App Service logs section of the

App Ser viceApp Ser vice page of the Azure portal. When the following settings are updated, the changes take effect

immediately without requiring a restart or redeployment of the app.

Application Logging (Filesystem)Application Logging (Filesystem)

Application Logging (Blob)Application Logging (Blob)

The default location for log files is in the D:\home\LogFiles\Application folder, and the default file name is

diagnostics-yyyymmdd.txt. The default file size limit is 10 MB, and the default maximum number of files retained is

2. The default blob name is {app-name}{timestamp}/yyyy/mm/dd/hh/{guid}-applicationLog.txt.

The provider only works when the project runs in the Azure environment. It has no effect when the project is run

locally—it doesn't write to local files or local development storage for blobs.

Azure log streaming lets you view log activity in real time from:

The app server

The web server

Failed request tracing

To configure Azure log streaming:

Navigate to the App Ser vice logsApp Ser vice logs page from your app's portal page.

Set Application Logging (Filesystem)Application Logging (Filesystem) to OnOn.

Choose the log LevelLevel . This setting only applies to Azure log streaming, not other logging providers in the app.

Navigate to the Log StreamLog Stream page to view app messages. They're logged by the app through the ILogger interface.

The Microsoft.Extensions.Logging.ApplicationInsights provider package writes logs to Azure Application Insights.

https://www.nuget.org/packages/Microsoft.Extensions.Logging.TraceSource
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracesource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.tracesourcefactoryextensions
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/trace-listeners
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.textwritertracelistener
https://www.nuget.org/packages/Microsoft.Extensions.Logging.AzureAppServices
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet#what-is-blob-storage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservicesloggerfactoryextensions.addazurewebappdiagnostics
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservices.azureappservicesdiagnosticssettings
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log/#enablediag
https://www.nuget.org/packages/Microsoft.Extensions.Logging.ApplicationInsights

Third-party logging providers

Additional resources

Application Insights is a service that monitors a web app and provides tools for querying and analyzing the

telemetry data. If you use this provider, you can query and analyze your logs by using the Application Insights tools.

The provider package isn't included in the shared framework. To use the provider, add the provider package to the

project. The logging provider is included as a dependency of Microsoft.ApplicationInsights.AspNetCore, which is the

package that provides all available telemetry for ASP.NET Core. If you use this package, you don't have to install the

provider package.

Don't use the Microsoft.ApplicationInsights.Web package—that's for ASP.NET 4.x.

For more information, see the following resources:

Application Insights overview

Application Insights for ASP.NET Core applications - Start here if you want to implement the full range of

Application Insights telemetry along with logging.

ApplicationInsightsLoggerProvider for .NET Core ILogger logs - Start here if you want to implement the logging

provider without the rest of Application Insights telemetry.

Application Insights logging adapters.

Install, configure, and initialize the Application Insights SDK - Interactive tutorial on the Microsoft Learn site.

Third-party logging frameworks that work with ASP.NET Core:

elmah.io (GitHub repo)

Gelf (GitHub repo)

JSNLog (GitHub repo)

KissLog.net (GitHub repo)

Log4Net (GitHub repo)

Loggr (GitHub repo)

NLog (GitHub repo)

Sentry (GitHub repo)

Serilog (GitHub repo)

Stackdriver (Github repo)

Some third-party frameworks can perform semantic logging, also known as structured logging.

Using a third-party framework is similar to using one of the built-in providers:

1. Add a NuGet package to your project.

2. Call an ILoggerFactory or ILoggingBuilder extension method provided by the logging framework.

For more information, see each provider's documentation. Third-party logging providers aren't supported by

Microsoft.

High-performance logging with LoggerMessage in ASP.NET Core

https://www.nuget.org/packages/Microsoft.ApplicationInsights.AspNetCore
https://www.nuget.org/packages/Microsoft.ApplicationInsights.Web
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core
https://docs.microsoft.com/en-us/azure/azure-monitor/app/ilogger
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-trace-logs
https://docs.microsoft.com/en-us/learn/modules/instrument-web-app-code-with-application-insights
https://elmah.io/
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://docs.graylog.org/en/2.3/pages/gelf.html
https://github.com/mattwcole/gelf-extensions-logging
https://jsnlog.com/
https://github.com/mperdeck/jsnlog
https://kisslog.net/
https://github.com/catalingavan/KissLog-net
https://logging.apache.org/log4net/
https://github.com/huorswords/Microsoft.Extensions.Logging.Log4Net.AspNetCore
https://loggr.net/
https://github.com/imobile3/Loggr.Extensions.Logging
https://nlog-project.org/
https://github.com/NLog/NLog.Extensions.Logging
https://sentry.io/welcome/
https://github.com/getsentry/sentry-dotnet
https://serilog.net/
https://github.com/serilog/serilog-aspnetcore
https://cloud.google.com/dotnet/docs/stackdriver#logging
https://github.com/googleapis/google-cloud-dotnet
https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging

Routing in ASP.NET Core
9/22/2020 • 101 minutes to read • Edit Online

Routing basics

By Ryan Nowak, Kirk Larkin, and Rick Anderson

Routing is responsible for matching incoming HTTP requests and dispatching those requests to the app's

executable endpoints. Endpoints are the app's units of executable request-handling code. Endpoints are

defined in the app and configured when the app starts. The endpoint matching process can extract values

from the request's URL and provide those values for request processing. Using endpoint information from

the app, routing is also able to generate URLs that map to endpoints.

Apps can configure routing using:

Controllers

Razor Pages

SignalR

gRPC Services

Endpoint-enabled middleware such as Health Checks.

Delegates and lambdas registered with routing.

This document covers low-level details of ASP.NET Core routing. For information on configuring routing:

For controllers, see Routing to controller actions in ASP.NET Core.

For Razor Pages conventions, see Razor Pages route and app conventions in ASP.NET Core.

The endpoint routing system described in this document applies to ASP.NET Core 3.0 and later. For

information on the previous routing system based on IRouter, select the ASP.NET Core 2.1 version using one

of the following approaches:

 ASP.N ET Core 2.1 rout ing

The version selector for a previous version.

Select .

View or download sample code (how to download)

The download samples for this document are enabled by a specific Startup class. To run a specific sample,

modify Program.cs to call the desired Startup class.

All ASP.NET Core templates include routing in the generated code. Routing is registered in the middleware

pipeline in Startup.Configure .

The following code shows a basic example of routing:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/routing.md
https://github.com/rynowak
https://twitter.com/serpent5
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/routing/samples/3.x

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 });
}

EndpointEndpoint

Routing uses a pair of middleware, registered by UseRouting and UseEndpoints:

UseRouting adds route matching to the middleware pipeline. This middleware looks at the set of

endpoints defined in the app, and selects the best match based on the request.

UseEndpoints adds endpoint execution to the middleware pipeline. It runs the delegate associated with

the selected endpoint.

The preceding example includes a single route to code endpoint using the MapGet method:

When an HTTP GET request is sent to the root URL / :

If the request method is not GET or the root URL is not / , no route matches and an HTTP 404 is

returned.

The request delegate shown executes.

Hello World! is written to the HTTP response. By default, the root URL / is

https://localhost:5001/ .

The MapGet method is used to define an endpointendpoint. An endpoint is something that can be:

Selected, by matching the URL and HTTP method.

Executed, by running the delegate.

Endpoints that can be matched and executed by the app are configured in UseEndpoints . For example,

MapGet, MapPost, and similar methods connect request delegates to the routing system. Additional methods

can be used to connect ASP.NET Core framework features to the routing system:

MapRazorPages for Razor Pages

MapControllers for controllers

MapHub<THub> for SignalR

MapGrpcService<TService> for gRPC

The following example shows routing with a more sophisticated route template:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.userouting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutebuilderextensions.mapget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutebuilderextensions.mapget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutebuilderextensions.mappost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutebuilderextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.maprazorpages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hubroutebuilder.maphub

app.UseEndpoints(endpoints =>
{
 endpoints.MapGet("/hello/{name:alpha}", async context =>
 {
 var name = context.Request.RouteValues["name"];
 await context.Response.WriteAsync($"Hello {name}!");
 });
});

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 // Matches request to an endpoint.
 app.UseRouting();

 // Endpoint aware middleware.
 // Middleware can use metadata from the matched endpoint.
 app.UseAuthentication();
 app.UseAuthorization();

 // Execute the matched endpoint.
 app.UseEndpoints(endpoints =>
 {
 // Configure the Health Check endpoint and require an authorized user.
 endpoints.MapHealthChecks("/healthz").RequireAuthorization();

 // Configure another endpoint, no authorization requirements.
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 });
}

The string /hello/{name:alpha} is a route templateroute template. It is used to configure how the endpoint is matched. In

this case, the template matches:

A URL like /hello/Ryan

Any URL path that begins with /hello/ followed by a sequence of alphabetic characters. :alpha applies

a route constraint that matches only alphabetic characters. Route constraints are explained later in this

document.

The second segment of the URL path, {name:alpha} :

Is bound to the name parameter.

Is captured and stored in HttpRequest.RouteValues.

The endpoint routing system described in this document is new as of ASP.NET Core 3.0. However, all versions

of ASP.NET Core support the same set of route template features and route constraints.

The following example shows routing with health checks and authorization:

If you would like to see code comments translated to languages other than English, let us know in this

GitHub discussion issue.

The preceding example demonstrates how:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.routevalues
https://github.com/MicrosoftDocs/feedback/issues/2515

Endpoint metadataEndpoint metadata

Routing concepts

ASP.NET Core endpoint definitionASP.NET Core endpoint definition

The authorization middleware can be used with routing.

Endpoints can be used to configure authorization behavior.

The MapHealthChecks call adds a health check endpoint. Chaining RequireAuthorization on to this call

attaches an authorization policy to the endpoint.

Calling UseAuthentication and UseAuthorization adds the authentication and authorization middleware.

These middleware are placed between UseRouting and UseEndpoints so that they can:

See which endpoint was selected by UseRouting .

Apply an authorization policy before UseEndpoints dispatches to the endpoint.

In the preceding example, there are two endpoints, but only the health check endpoint has an authorization

policy attached. If the request matches the health check endpoint, /healthz , an authorization check is

performed. This demonstrates that endpoints can have extra data attached to them. This extra data is called

endpoint metadatametadata:

The metadata can be processed by routing-aware middleware.

The metadata can be of any .NET type.

The routing system builds on top of the middleware pipeline by adding the powerful endpointendpoint concept.

Endpoints represent units of the app's functionality that are distinct from each other in terms of routing,

authorization, and any number of ASP.NET Core's systems.

An ASP.NET Core endpoint is:

Executable: Has a RequestDelegate.

Extensible: Has a Metadata collection.

Selectable: Optionally, has routing information.

Enumerable: The collection of endpoints can be listed by retrieving the EndpointDataSource from DI.

The following code shows how to retrieve and inspect the endpoint matching the current request:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.healthcheckendpointroutebuilderextensions.maphealthchecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authorizationendpointconventionbuilderextensions.requireauthorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authorizationappbuilderextensions.useauthorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.userouting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.endpoint.requestdelegate#microsoft_aspnetcore_http_endpoint_requestdelegate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.endpoint.metadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeendpoint.routepattern
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.endpointdatasource

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseRouting();

 app.Use(next => context =>
 {
 var endpoint = context.GetEndpoint();
 if (endpoint is null)
 {
 return Task.CompletedTask;
 }

 Console.WriteLine($"Endpoint: {endpoint.DisplayName}");

 if (endpoint is RouteEndpoint routeEndpoint)
 {
 Console.WriteLine("Endpoint has route pattern: " +
 routeEndpoint.RoutePattern.RawText);
 }

 foreach (var metadata in endpoint.Metadata)
 {
 Console.WriteLine($"Endpoint has metadata: {metadata}");
 }

 return Task.CompletedTask;
 });

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 });
}

The endpoint, if selected, can be retrieved from the HttpContext . Its properties can be inspected. Endpoint

objects are immutable and cannot be modified after creation. The most common type of endpoint is a

RouteEndpoint. RouteEndpoint includes information that allows it to be to selected by the routing system.

In the preceding code, app.Use configures an in-line middleware.

 The following code shows that, depending on where app.Use is called in the pipeline, there may not be an

endpoint:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeendpoint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.useextensions.use

// Location 1: before routing runs, endpoint is always null here
app.Use(next => context =>
{
 Console.WriteLine($"1. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
 return next(context);
});

app.UseRouting();

// Location 2: after routing runs, endpoint will be non-null if routing found a match
app.Use(next => context =>
{
 Console.WriteLine($"2. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
 return next(context);
});

app.UseEndpoints(endpoints =>
{
 // Location 3: runs when this endpoint matches
 endpoints.MapGet("/", context =>
 {
 Console.WriteLine(
 $"3. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
 return Task.CompletedTask;
 }).WithDisplayName("Hello");
});

// Location 4: runs after UseEndpoints - will only run if there was no match
app.Use(next => context =>
{
 Console.WriteLine($"4. Endpoint: {context.GetEndpoint()?.DisplayName ?? "(null)"}");
 return next(context);
});

1. Endpoint: (null)
2. Endpoint: Hello
3. Endpoint: Hello

1. Endpoint: (null)
2. Endpoint: (null)
4. Endpoint: (null)

This preceding sample adds Console.WriteLine statements that display whether or not an endpoint has been

selected. For clarity, the sample assigns a display name to the provided / endpoint.

Running this code with a URL of / displays:

Running this code with any other URL displays:

This output demonstrates that:

The endpoint is always null before UseRouting is called.

If a match is found, the endpoint is non-null between UseRouting and UseEndpoints.

The UseEndpoints middleware is terminalterminal when a match is found. Terminal middleware is defined later

in this document.

The middleware after UseEndpoints execute only when no match is found.

The UseRouting middleware uses the SetEndpoint method to attach the endpoint to the current context. It's

possible to replace the UseRouting middleware with custom logic and still get the benefits of using

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.endpointhttpcontextextensions.setendpoint

public class IntegratedMiddlewareStartup
{
 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 // Location 1: Before routing runs. Can influence request before routing runs.
 app.UseHttpMethodOverride();

 app.UseRouting();

 // Location 2: After routing runs. Middleware can match based on metadata.
 app.Use(next => context =>
 {
 var endpoint = context.GetEndpoint();
 if (endpoint?.Metadata.GetMetadata<AuditPolicyAttribute>()?.NeedsAudit
 == true)
 {
 Console.WriteLine($"ACCESS TO SENSITIVE DATA AT: {DateTime.UtcNow}");
 }

 return next(context);
 });

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello world!");
 });

 // Using metadata to configure the audit policy.
 endpoints.MapGet("/sensitive", async context =>
 {
 await context.Response.WriteAsync("sensitive data");
 })
 .WithMetadata(new AuditPolicyAttribute(needsAudit: true));
 });

 }
}

public class AuditPolicyAttribute : Attribute
{
 public AuditPolicyAttribute(bool needsAudit)
 {
 NeedsAudit = needsAudit;
 }

 public bool NeedsAudit { get; }
}

endpoints. Endpoints are a low-level primitive like middleware, and aren't coupled to the routing

implementation. Most apps don't need to replace UseRouting with custom logic.

The UseEndpoints middleware is designed to be used in tandem with the UseRouting middleware. The core

logic to execute an endpoint isn't complicated. Use GetEndpoint to retrieve the endpoint, and then invoke its

RequestDelegate property.

The following code demonstrates how middleware can influence or react to routing:

The preceding example demonstrates two important concepts:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.endpointhttpcontextextensions.getendpoint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.endpoint.requestdelegate#microsoft_aspnetcore_http_endpoint_requestdelegate

Comparing a terminal middleware and routingComparing a terminal middleware and routing

Middleware can run before UseRouting to modify the data that routing operates upon.

Middleware can run between UseRouting and UseEndpoints to process the results of routing before the

endpoint is executed.

Usually middleware that appears before routing modifies some property of the request, such as

UseRewriter, UseHttpMethodOverride, or UsePathBase.

Middleware that runs between UseRouting and UseEndpoints :

The combination of middleware and metadata allows configuring policies per-endpoint.

Usually inspects metadata to understand the endpoints.

Often makes security decisions, as done by UseAuthorization and UseCors .

The preceding code shows an example of a custom middleware that supports per-endpoint policies. The

middleware writes an audit log of access to sensitive data to the console. The middleware can be configured

to audit an endpoint with the AuditPolicyAttribute metadata. This sample demonstrates an opt-in pattern

where only endpoints that are marked as sensitive are audited. It's possible to define this logic in reverse,

auditing everything that isn't marked as safe, for example. The endpoint metadata system is flexible. This

logic could be designed in whatever way suits the use case.

The preceding sample code is intended to demonstrate the basic concepts of endpoints. The sample is notThe sample is not

intended for production useintended for production use. A more complete version of an audit log middleware would:

Log to a file or database.

Include details such as the user, IP address, name of the sensitive endpoint, and more.

The audit policy metadata AuditPolicyAttribute is defined as an Attribute for easier use with class-based

frameworks such as controllers and SignalR. When using route to code:

Metadata is attached with a builder API.

Class-based frameworks include all attributes on the corresponding method and class when creating

endpoints.

The best practices for metadata types are to define them either as interfaces or attributes. Interfaces and

attributes allow code reuse. The metadata system is flexible and doesn't impose any limitations.

The following code sample contrasts using middleware with using routing:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.rewritebuilderextensions.userewriter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpmethodoverrideextensions.usehttpmethodoverride
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usepathbaseextensions.usepathbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 // Approach 1: Writing a terminal middleware.
 app.Use(next => async context =>
 {
 if (context.Request.Path == "/")
 {
 await context.Response.WriteAsync("Hello terminal middleware!");
 return;
 }

 await next(context);
 });

 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 // Approach 2: Using routing.
 endpoints.MapGet("/Movie", async context =>
 {
 await context.Response.WriteAsync("Hello routing!");
 });
 });
}

The style of middleware shown with Approach 1: is terminal middlewareterminal middleware. It's called terminal middleware

because it does a matching operation:

The matching operation in the preceding sample is Path == "/" for the middleware and

Path == "/Movie" for routing.

When a match is successful, it executes some functionality and returns, rather than invoking the next

middleware.

It's called terminal middleware because it terminates the search, executes some functionality, and then

returns.

Comparing a terminal middleware and routing:

Both approaches allow terminating the processing pipeline:

Terminal middleware allows positioning the middleware at an arbitrary place in the pipeline:

Terminal middleware allows arbitrary code to determine when the middleware matches:

Endpoints interface with middleware such as UseAuthorization and UseCors .

Middleware terminates the pipeline by returning rather than invoking next .

Endpoints are always terminal.

Endpoints execute at the position of UseEndpoints.

Custom route matching code can be verbose and difficult to write correctly.

Routing provides straightforward solutions for typical apps. Most apps don't require custom route

matching code.

Using a terminal middleware with UseAuthorization or UseCors requires manual interfacing with

the authorization system.

An endpoint defines both:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 // Matches request to an endpoint.
 app.UseRouting();

 // Endpoint aware middleware.
 // Middleware can use metadata from the matched endpoint.
 app.UseAuthentication();
 app.UseAuthorization();

 // Execute the matched endpoint.
 app.UseEndpoints(endpoints =>
 {
 // Configure the Health Check endpoint and require an authorized user.
 endpoints.MapHealthChecks("/healthz").RequireAuthorization();

 // Configure another endpoint, no authorization requirements.
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 });
}

A delegate to process requests.

A collection of arbitrary metadata. The metadata is used to implement cross-cutting concerns based on

policies and configuration attached to each endpoint.

Terminal middleware can be an effective tool, but can require:

A significant amount of coding and testing.

Manual integration with other systems to achieve the desired level of flexibility.

Consider integrating with routing before writing a terminal middleware.

Existing terminal middleware that integrates with Map or MapWhen can usually be turned into a routing

aware endpoint. MapHealthChecks demonstrates the pattern for router-ware:

Write an extension method on IEndpointRouteBuilder.

Create a nested middleware pipeline using CreateApplicationBuilder.

Attach the middleware to the new pipeline. In this case, UseHealthChecks.

Build the middleware pipeline into a RequestDelegate.

Call Map and provide the new middleware pipeline.

Return the builder object provided by Map from the extension method.

The following code shows use of MapHealthChecks:

The preceding sample shows why returning the builder object is important. Returning the builder object

allows the app developer to configure policies such as authorization for the endpoint. In this example, the

health checks middleware has no direct integration with the authorization system.

The metadata system was created in response to the problems encountered by extensibility authors using

terminal middleware. It's problematic for each middleware to implement its own integration with the

authorization system.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mapwhenextensions.mapwhen
https://github.com/aspnet/AspNetCore/blob/master/src/Middleware/HealthChecks/src/Builder/HealthCheckEndpointRouteBuilderExtensions.cs#L16
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iendpointroutebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iendpointroutebuilder.createapplicationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.healthcheckapplicationbuilderextensions.usehealthchecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder.build
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.requestdelegate

URL matchingURL matching

WARNINGWARNING

Is the process by which routing matches an incoming request to an endpoint.

Is based on data in the URL path and headers.

Can be extended to consider any data in the request.

When a routing middleware executes, it sets an Endpoint and route values to a request feature on the

HttpContext from the current request:

Calling HttpContext.GetEndpoint gets the endpoint.

HttpRequest.RouteValues gets the collection of route values.

Middleware running after the routing middleware can inspect the endpoint and take action. For example, an

authorization middleware can interrogate the endpoint's metadata collection for an authorization policy.

After all of the middleware in the request processing pipeline is executed, the selected endpoint's delegate is

invoked.

The routing system in endpoint routing is responsible for all dispatching decisions. Because the middleware

applies policies based on the selected endpoint, it's important that:

Any decision that can affect dispatching or the application of security policies is made inside the routing

system.

For backwards-compatibility, when a Controller or Razor Pages endpoint delegate is executed, the properties of

RouteContext.RouteData are set to appropriate values based on the request processing performed thus far.

The RouteContext type will be marked obsolete in a future release:

Migrate RouteData.Values to HttpRequest.RouteValues .

Migrate RouteData.DataTokens to retrieve IDataTokensMetadata from the endpoint metadata.

URL matching operates in a configurable set of phases. In each phase, the output is a set of matches. The set

of matches can be narrowed down further by the next phase. The routing implementation does not

guarantee a processing order for matching endpoints. AllAll possible matches are processed at once. The URL

matching phases occur in the following order. ASP.NET Core:

1. Processes the URL path against the set of endpoints and their route templates, collecting allall of the

matches.

2. Takes the preceding list and removes matches that fail with route constraints applied.

3. Takes the preceding list and removes matches that fail the set of MatcherPolicy instances.

4. Uses the EndpointSelector to make a final decision from the preceding list.

The list of endpoints is prioritized according to:

The RouteEndpoint.Order

The route template precedence

All matching endpoints are processed in each phase until the EndpointSelector is reached. The

EndpointSelector is the final phase. It chooses the highest priority endpoint from the matches as the best

match. If there are other matches with the same priority as the best match, an ambiguous match exception is

thrown.

The route precedence is computed based on a more specificmore specific route template being given a higher priority.

For example, consider the templates /hello and /{message} :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.endpointhttpcontextextensions.getendpoint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routecontext.routedata#microsoft_aspnetcore_routing_routecontext_routedata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.idatatokensmetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.matcherpolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.matching.endpointselector
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeendpoint.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.matching.endpointselector

WARNINGWARNING

Route template precedence and endpoint selection orderRoute template precedence and endpoint selection order

URL generation conceptsURL generation concepts

Both match the URL path /hello .

/hello is more specific and therefore higher priority.

In general, route precedence does a good job of choosing the best match for the kinds of URL schemes used

in practice. Use Order only when necessary to avoid an ambiguity.

Due to the kinds of extensibility provided by routing, it isn't possible for the routing system to compute

ahead of time the ambiguous routes. Consider an example such as the route templates /{message:alpha}

and /{message:int} :

The alpha constraint matches only alphabetic characters.

The int constraint matches only numbers.

These templates have the same route precedence, but there's no single URL they both match.

If the routing system reported an ambiguity error at startup, it would block this valid use case.

The order of operations inside UseEndpoints doesn't influence the behavior of routing, with one exception.

MapControllerRoute and MapAreaRoute automatically assign an order value to their endpoints based on the order

they are invoked. This simulates long-time behavior of controllers without the routing system providing the same

guarantees as older routing implementations.

In the legacy implementation of routing, it's possible to implement routing extensibility that has a dependency on the

order in which routes are processed. Endpoint routing in ASP.NET Core 3.0 and later:

Doesn't have a concept of routes.

Doesn't provide ordering guarantees. All endpoints are processed at once.

If this means you're stuck using the legacy routing system, open a GitHub issue for assistance.

Route template precedence is a system that assigns each route template a value based on how specific it is.

Route template precedence:

Avoids the need to adjust the order of endpoints in common cases.

Attempts to match the common-sense expectations of routing behavior.

For example, consider templates /Products/List and /Products/{id} . It would be reasonable to assume that

/Products/List is a better match than /Products/{id} for the URL path /Products/List . The works because

the literal segment /List is considered to have better precedence than the parameter segment /{id} .

The details of how precedence works are coupled to how route templates are defined:

Templates with more segments are considered more specific.

A segment with literal text is considered more specific than a parameter segment.

A parameter segment with a constraint is considered more specific than one without.

A complex segment is considered as specific as a parameter segment with a constraint.

Catch-all parameters are the least specific. See catch-allcatch-all in the Route template reference for important

information on catch-all routes.

See the source code on GitHub for a reference of exact values.

URL generation:

Is the process by which routing can create a URL path based on a set of route values.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeendpoint.order#microsoft_aspnetcore_routing_routeendpoint_order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollerroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mvcarearoutebuilderextensions.maparearoute
https://github.com/dotnet/aspnetcore/issues
https://github.com/dotnet/aspnetcore/blob/master/src/Http/Routing/src/Template/RoutePrecedence.cs#L16
https://github.com/dotnet/aspnetcore/blob/master/src/Http/Routing/src/Template/RoutePrecedence.cs#L189

EXT EN SIO N M ET H O DEXT EN SIO N M ET H O D DESC RIP T IO NDESC RIP T IO N

GetPathByAddress Generates a URI with an absolute path based on the
provided values.

GetUriByAddress Generates an absolute URI based on the provided values.

WARNINGWARNING

Allows for a logical separation between endpoints and the URLs that access them.

Endpoint routing includes the LinkGenerator API. LinkGenerator is a singleton service available from DI. The

LinkGenerator API can be used outside of the context of an executing request. Mvc.IUrlHelper and scenarios

that rely on IUrlHelper, such as Tag Helpers, HTML Helpers, and Action Results, use the LinkGenerator API

internally to provide link generating capabilities.

The link generator is backed by the concept of an addressaddress and address schemesaddress schemes . An address scheme is a

way of determining the endpoints that should be considered for link generation. For example, the route

name and route values scenarios many users are familiar with from controllers and Razor Pages are

implemented as an address scheme.

The link generator can link to controllers and Razor Pages via the following extension methods:

GetPathByAction

GetUriByAction

GetPathByPage

GetUriByPage

Overloads of these methods accept arguments that include the HttpContext . These methods are functionally

equivalent to Url.Action and Url.Page, but offer additional flexibility and options.

The GetPath* methods are most similar to Url.Action and Url.Page , in that they generate a URI containing

an absolute path. The GetUri* methods always generate an absolute URI containing a scheme and host. The

methods that accept an HttpContext generate a URI in the context of the executing request. The ambient

route values, URL base path, scheme, and host from the executing request are used unless overridden.

LinkGenerator is called with an address. Generating a URI occurs in two steps:

1. An address is bound to a list of endpoints that match the address.

2. Each endpoint's RoutePattern is evaluated until a route pattern that matches the supplied values is found.

The resulting output is combined with the other URI parts supplied to the link generator and returned.

The methods provided by LinkGenerator support standard link generation capabilities for any type of

address. The most convenient way to use the link generator is through extension methods that perform

operations for a specific address type:

Pay attention to the following implications of calling LinkGenerator methods:

Use GetUri* extension methods with caution in an app configuration that doesn't validate the Host header

of incoming requests. If the Host header of incoming requests isn't validated, untrusted request input can be

sent back to the client in URIs in a view or page. We recommend that all production apps configure their

server to validate the Host header against known valid values.

Use LinkGenerator with caution in middleware in combination with Map or MapWhen . Map* changes the

base path of the executing request, which affects the output of link generation. All of the LinkGenerator APIs

allow specifying a base path. Specify an empty base path to undo the Map* affect on link generation.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.controllerlinkgeneratorextensions.getpathbyaction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.controllerlinkgeneratorextensions.geturibyaction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.pagelinkgeneratorextensions.getpathbypage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.pagelinkgeneratorextensions.geturibypage
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.urlhelper.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.urlhelperextensions.page
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeendpoint.routepattern#microsoft_aspnetcore_routing_routeendpoint_routepattern
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator.getpathbyaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator.geturibyaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator

Middleware exampleMiddleware example

public class ProductsLinkMiddleware
{
 private readonly LinkGenerator _linkGenerator;

 public ProductsLinkMiddleware(RequestDelegate next, LinkGenerator linkGenerator)
 {
 _linkGenerator = linkGenerator;
 }

 public async Task InvokeAsync(HttpContext httpContext)
 {
 var url = _linkGenerator.GetPathByAction("ListProducts", "Store");

 httpContext.Response.ContentType = "text/plain";

 await httpContext.Response.WriteAsync($"Go to {url} to see our products.");
 }
}

Route template reference

In the following example, a middleware uses the LinkGenerator API to create a link to an action method that

lists store products. Using the link generator by injecting it into a class and calling GenerateLink is available

to any class in an app:

Tokens within {} define route parameters that are bound if the route is matched. More than one route

parameter can be defined in a route segment, but route parameters must be separated by a literal value. For

example, {controller=Home}{action=Index} isn't a valid route, since there's no literal value between

{controller} and {action} . Route parameters must have a name and may have additional attributes

specified.

Literal text other than route parameters (for example, {id}) and the path separator / must match the text

in the URL. Text matching is case-insensitive and based on the decoded representation of the URL's path. To

match a literal route parameter delimiter { or } , escape the delimiter by repeating the character. For

example {{ or }} .

Asterisk * or double asterisk ** :

Can be used as a prefix to a route parameter to bind to the rest of the URI.

Are called a catch-allcatch-all parameters. For example, blog/{**slug} :

Matches any URI that starts with /blog and has any value following it.

The value following /blog is assigned to the slug route value.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://developer.mozilla.org/docs/Glossary/Slug

WARNINGWARNING

public static void Main(string[] args)
{
 AppContext.SetSwitch("Microsoft.AspNetCore.Routing.UseCorrectCatchAllBehavior",
 true);
 CreateHostBuilder(args).Build().Run();
}
// Remaining code removed for brevity.

A catch-allcatch-all parameter may match routes incorrectly due to a bug in routing. Apps impacted by this bug have the

following characteristics:

A catch-all route, for example, {**slug}"

The catch-all route fails to match requests it should match.

Removing other routes makes catch-all route start working.

See GitHub bugs 18677 and 16579 for example cases that hit this bug.

An opt-in fix for this bug is contained in .NET Core 3.1.301 SDK and later. The following code sets an internal switch

that fixes this bug:

Catch-all parameters can also match the empty string.

The catch-all parameter escapes the appropriate characters when the route is used to generate a URL,

including path separator / characters. For example, the route foo/{*path} with route values

{ path = "my/path" } generates foo/my%2Fpath . Note the escaped forward slash. To round-trip path

separator characters, use the ** route parameter prefix. The route foo/{**path} with { path = "my/path" }

generates foo/my/path .

URL patterns that attempt to capture a file name with an optional file extension have additional

considerations. For example, consider the template files/{filename}.{ext?} . When values for both

filename and ext exist, both values are populated. If only a value for filename exists in the URL, the route

matches because the trailing . is optional. The following URLs match this route:

/files/myFile.txt

/files/myFile

Route parameters may have default valuesdefault values designated by specifying the default value after the parameter

name separated by an equals sign (=). For example, {controller=Home} defines Home as the default value

for controller . The default value is used if no value is present in the URL for the parameter. Route

parameters are made optional by appending a question mark (?) to the end of the parameter name. For

example, id? . The difference between optional values and default route parameters is:

A route parameter with a default value always produces a value.

An optional parameter has a value only when a value is provided by the request URL.

Route parameters may have constraints that must match the route value bound from the URL. Adding :

and constraint name after the route parameter name specifies an inline constraint on a route parameter. If

the constraint requires arguments, they're enclosed in parentheses (...) after the constraint name. Multiple

inline constraints can be specified by appending another : and constraint name.

The constraint name and arguments are passed to the IInlineConstraintResolver service to create an instance

of IRouteConstraint to use in URL processing. For example, the route template blog/{article:minlength(10)}

specifies a minlength constraint with the argument 10 . For more information on route constraints and a list

of the constraints provided by the framework, see the Route constraint reference section.

https://github.com/dotnet/aspnetcore/issues/18677
https://github.com/dotnet/aspnetcore/issues/18677
https://github.com/dotnet/aspnetcore/issues/16579
https://dotnet.microsoft.com/download/dotnet-core/3.1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iinlineconstraintresolver
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint

RO UT E T EM P L AT ERO UT E T EM P L AT E EXA M P L E M ATC H IN G URIEXA M P L E M ATC H IN G URI T H E REQ UEST URI…T H E REQ UEST URI…

hello /hello Only matches the single path
/hello .

{Page=Home} / Matches and sets Page to Home .

{Page=Home} /Contact Matches and sets Page to

Contact .

{controller}/{action}/{id?} /Products/List Maps to the Products controller

and List action.

{controller}/{action}/{id?} /Products/Details/123 Maps to the Products controller

and Details action with id set to

123.

{controller=Home}/{action=Index}/{id?}/ Maps to the Home controller and

Index method. id is ignored.

{controller=Home}/{action=Index}/{id?}/Products Maps to the Products controller

and Index method. id is ignored.

Complex segmentsComplex segments

WARNINGWARNING

Route parameters may also have parameter transformers. Parameter transformers transform a parameter's

value when generating links and matching actions and pages to URLs. Like constraints, parameter

transformers can be added inline to a route parameter by adding a : and transformer name after the route

parameter name. For example, the route template blog/{article:slugify} specifies a slugify transformer.

For more information on parameter transformers, see the Parameter transformer reference section.

The following table demonstrates example route templates and their behavior :

Using a template is generally the simplest approach to routing. Constraints and defaults can also be specified

outside the route template.

Complex segments are processed by matching up literal delimiters from right to left in a non-greedy way.

For example, [Route("/a{b}c{d}")] is a complex segment. Complex segments work in a particular way that

must be understood to use them successfully. The example in this section demonstrates why complex

segments only really work well when the delimiter text doesn't appear inside the parameter values. Using a

regex and then manually extracting the values is needed for more complex cases.

When using System.Text.RegularExpressions to process untrusted input, pass a timeout. A malicious user can provide

input to RegularExpressions causing a Denial-of-Service attack. ASP.NET Core framework APIs that use

RegularExpressions pass a timeout.

This is a summary of the steps that routing performs with the template /a{b}c{d} and the URL path /abcd .

The | is used to help visualize how the algorithm works:

The first literal, right to left, is c . So /abcd is searched from right and finds /ab|c|d .

Everything to the right (d) is now matched to the route parameter {d} .

The next literal, right to left, is a . So /ab|c|d is searched starting where we left off, then a is found

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions
https://www.us-cert.gov/ncas/tips/ST04-015

 Route constraint reference

WARNINGWARNING

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES N OT ESN OT ES

int {id:int} 123456789 , -123456789 Matches any integer

bool {active:bool} true , FALSE Matches true or false .

Case-insensitive

datetime {dob:datetime} 2016-12-31 ,

2016-12-31 7:32pm

Matches a valid DateTime

value in the invariant
culture. See preceding
warning.

/|a|b|c|d .

The value to the right (b) is now matched to the route parameter {b} .

There is no remaining text and no remaining route template, so this is a match.

Here's an example of a negative case using the same template /a{b}c{d} and the URL path /aabcd . The |

is used to help visualize how the algorithm works. This case isn't a match, which is explained by the same

algorithm:

The first literal, right to left, is c . So /aabcd is searched from right and finds /aab|c|d .

Everything to the right (d) is now matched to the route parameter {d} .

The next literal, right to left, is a . So /aab|c|d is searched starting where we left off, then a is found

/a|a|b|c|d .

The value to the right (b) is now matched to the route parameter {b} .

At this point there is remaining text a , but the algorithm has run out of route template to parse, so this is

not a match.

Since the matching algorithm is non-greedy:

It matches the smallest amount of text possible in each step.

Any case where the delimiter value appears inside the parameter values results in not matching.

Regular expressions provide much more control over their matching behavior.

 Greedy matching, also know as lazy matching, matches the largest possible string. Non-greedy matches the

smallest possible string.

Route constraints execute when a match has occurred to the incoming URL and the URL path is tokenized

into route values. Route constraints generally inspect the route value associated via the route template and

make a true or false decision about whether the value is acceptable. Some route constraints use data outside

the route value to consider whether the request can be routed. For example, the HttpMethodRouteConstraint

can accept or reject a request based on its HTTP verb. Constraints are used in routing requests and link

generation.

Don't use constraints for input validation. If constraints are used for input validation, invalid input results in a 404

Not Found response. Invalid input should produce a 400 Bad Request with an appropriate error message. Route

constraints are used to disambiguate similar routes, not to validate the inputs for a particular route.

The following table demonstrates example route constraints and their expected behavior :

https://wikipedia.org/wiki/Regular_expression#Lazy_matching
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.constraints.httpmethodrouteconstraint

decimal {price:decimal} 49.99 , -1,000.01 Matches a valid decimal

value in the invariant
culture. See preceding
warning.

double {weight:double} 1.234 , -1,001.01e8 Matches a valid double

value in the invariant
culture. See preceding
warning.

float {weight:float} 1.234 , -1,001.01e8 Matches a valid float

value in the invariant
culture. See preceding
warning.

guid {id:guid} CD2C1638-1638-72D5-
1638-DEADBEEF1638

Matches a valid Guid

value

long {ticks:long} 123456789 , -123456789 Matches a valid long

value

minlength(value) {username:minlength(4)} Rick String must be at least 4
characters

maxlength(value) {filename:maxlength(8)} MyFile String must be no more
than 8 characters

length(length) {filename:length(12)} somefile.txt String must be exactly 12
characters long

length(min,max) {filename:length(8,16)} somefile.txt String must be at least 8
and no more than 16
characters long

min(value) {age:min(18)} 19 Integer value must be at
least 18

max(value) {age:max(120)} 91 Integer value must be no
more than 120

range(min,max) {age:range(18,120)} 91 Integer value must be at
least 18 but no more than
120

alpha {name:alpha} Rick String must consist of one
or more alphabetical
characters, a - z and

case-insensitive.

regex(expression) {ssn:regex(^\\d{{3}}-
\\d{{2}}-\\d{{4}}$)}

123-45-6789 String must match the
regular expression. See tips
about defining a regular
expression.

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES N OT ESN OT ES

required {name:required} Rick Used to enforce that a
non-parameter value is
present during URL
generation

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES N OT ESN OT ES

WARNINGWARNING

[Route("users/{id:int:min(1)}")]
public User GetUserById(int id) { }

WARNINGWARNING

Regular expressions in constraintsRegular expressions in constraints

WARNINGWARNING

app.UseEndpoints(endpoints =>
{
 endpoints.MapGet("{message:regex(^\\d{{3}}-\\d{{2}}-\\d{{4}}$)}",
 context =>
 {
 return context.Response.WriteAsync("inline-constraint match");
 });
 });

When using System.Text.RegularExpressions to process untrusted input, pass a timeout. A malicious user can provide

input to RegularExpressions causing a Denial-of-Service attack. ASP.NET Core framework APIs that use

RegularExpressions pass a timeout.

Multiple, colon delimited constraints can be applied to a single parameter. For example, the following

constraint restricts a parameter to an integer value of 1 or greater :

Route constraints that verify the URL and are converted to a CLR type always use the invariant culture. For example,

conversion to the CLR type int or DateTime . These constraints assume that the URL is not localizable. The

framework-provided route constraints don't modify the values stored in route values. All route values parsed from the

URL are stored as strings. For example, the float constraint attempts to convert the route value to a float, but the

converted value is used only to verify it can be converted to a float.

When using System.Text.RegularExpressions to process untrusted input, pass a timeout. A malicious user can provide

input to RegularExpressions causing a Denial-of-Service attack. ASP.NET Core framework APIs that use

RegularExpressions pass a timeout.

Regular expressions can be specified as inline constraints using the regex(...) route constraint. Methods in

the MapControllerRoute family also accept an object literal of constraints. If that form is used, string values

are interpreted as regular expressions.

The following code uses an inline regex constraint:

The following code uses an object literal to specify a regex constraint:

https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions
https://www.us-cert.gov/ncas/tips/ST04-015
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions
https://www.us-cert.gov/ncas/tips/ST04-015
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollerroute

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "people",
 pattern: "People/{ssn}",
 constraints: new { ssn = "^\\d{3}-\\d{2}-\\d{4}$", },
 defaults: new { controller = "People", action = "List", });
});

REGUL A R EXP RESSIO NREGUL A R EXP RESSIO N ESC A P ED REGUL A R EXP RESSIO NESC A P ED REGUL A R EXP RESSIO N

^\d{3}-\d{2}-\d{4}$ ^\\d{{3}}-\\d{{2}}-\\d{{4}}$

^[a-z]{2}$ ^[[a-z]]{{2}}$

EXP RESSIO NEXP RESSIO N ST RIN GST RIN G M ATC HM ATC H C O M M EN TC O M M EN T

[a-z]{2} hello Yes Substring matches

[a-z]{2} 123abc456 Yes Substring matches

[a-z]{2} mz Yes Matches expression

[a-z]{2} MZ Yes Not case sensitive

^[a-z]{2}$ hello No See ^ and $ above

^[a-z]{2}$ 123abc456 No See ^ and $ above

The ASP.NET Core framework adds

RegexOptions.IgnoreCase | RegexOptions.Compiled | RegexOptions.CultureInvariant to the regular expression

constructor. See RegexOptions for a description of these members.

Regular expressions use delimiters and tokens similar to those used by routing and the C# language. Regular

expression tokens must be escaped. To use the regular expression ^\d{3}-\d{2}-\d{4}$ in an inline

constraint, use one of the following:

Replace \ characters provided in the string as \\ characters in the C# source file in order to escape the

\ string escape character.

Verbatim string literals.

To escape routing parameter delimiter characters { , } , [,] , double the characters in the expression, for

example, {{ , }} , [[,]] . The following table shows a regular expression and its escaped version:

Regular expressions used in routing often start with the ^ character and match the starting position of the

string. The expressions often end with the $ character and match the end of the string. The ^ and $

characters ensure that the regular expression matches the entire route parameter value. Without the ^ and

$ characters, the regular expression matches any substring within the string, which is often undesirable. The

following table provides examples and explains why they match or fail to match:

For more information on regular expression syntax, see .NET Framework Regular Expressions.

To constrain a parameter to a known set of possible values, use a regular expression. For example,

{action:regex(^(list|get|create)$)} only matches the action route value to list , get , or create . If

https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/string
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

Custom route constraintsCustom route constraints

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllers();

 services.AddRouting(options =>
 {
 options.ConstraintMap.Add("customName", typeof(MyCustomConstraint));
 });
}

[Route("api/[controller]")]
[ApiController]
public class TestController : ControllerBase
{
 // GET /api/test/3
 [HttpGet("{id:customName}")]
 public IActionResult Get(string id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }

 // GET /api/test/my/3
 [HttpGet("my/{id:customName}")]
 public IActionResult Get(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

passed into the constraints dictionary, the string ^(list|get|create)$ is equivalent. Constraints that are

passed in the constraints dictionary that don't match one of the known constraints are also treated as regular

expressions. Constraints that are passed within a template that don't match one of the known constraints are

not treated as regular expressions.

Custom route constraints can be created by implementing the IRouteConstraint interface. The

IRouteConstraint interface contains Match, which returns true if the constraint is satisfied and false

otherwise.

Custom route constraints are rarely needed. Before implementing a custom route constraint, consider

alternatives, such as model binding.

The ASP.NET Core Constraints folder provides good examples of creating a constraints. For example,

GuidRouteConstraint.

To use a custom IRouteConstraint , the route constraint type must be registered with the app's

ConstraintMap in the service container. A ConstraintMap is a dictionary that maps route constraint keys to

IRouteConstraint implementations that validate those constraints. An app's ConstraintMap can be updated

in Startup.ConfigureServices either as part of a services.AddRouting call or by configuring RouteOptions

directly with services.Configure<RouteOptions> . For example:

The preceding constraint is applied in the following code:

MyDisplayRouteInfo is provided by the Rick.Docs.Samples.RouteInfo NuGet package and displays route

information.

The implementation of MyCustomConstraint prevents 0 being applied to a route parameter :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/system.web.routing.irouteconstraint.match
https://github.com/dotnet/aspnetcore/tree/master/src/Http/Routing/src/Constraints
https://github.com/dotnet/aspnetcore/blob/master/src/Http/Routing/src/Constraints/GuidRouteConstraint.cs#L18
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.routingservicecollectionextensions.addrouting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions
https://github.com/Rick-Anderson/RouteInfo/blob/master/Microsoft.Docs.Samples.RouteInfo/ControllerContextExtensions.cs
https://www.nuget.org/packages/Rick.Docs.Samples.RouteInfo

class MyCustomConstraint : IRouteConstraint
{
 private Regex _regex;

 public MyCustomConstraint()
 {
 _regex = new Regex(@"^[1-9]*$",
 RegexOptions.CultureInvariant | RegexOptions.IgnoreCase,
 TimeSpan.FromMilliseconds(100));
 }
 public bool Match(HttpContext httpContext, IRouter route, string routeKey,
 RouteValueDictionary values, RouteDirection routeDirection)
 {
 if (values.TryGetValue(routeKey, out object value))
 {
 var parameterValueString = Convert.ToString(value,
 CultureInfo.InvariantCulture);
 if (parameterValueString == null)
 {
 return false;
 }

 return _regex.IsMatch(parameterValueString);
 }

 return false;
 }
}

WARNINGWARNING

[HttpGet("{id}")]
public IActionResult Get(string id)
{
 if (id.Contains('0'))
 {
 return StatusCode(StatusCodes.Status406NotAcceptable);
 }

 return ControllerContext.MyDisplayRouteInfo(id);
}

When using System.Text.RegularExpressions to process untrusted input, pass a timeout. A malicious user can provide

input to RegularExpressions causing a Denial-of-Service attack. ASP.NET Core framework APIs that use

RegularExpressions pass a timeout.

The preceding code:

Prevents 0 in the {id} segment of the route.

Is shown to provide a basic example of implementing a custom constraint. It should not be used in a

production app.

The following code is a better approach to preventing an id containing a 0 from being processed:

The preceding code has the following advantages over the MyCustomConstraint approach:

It doesn't require a custom constraint.

It returns a more descriptive error when the route parameter includes 0 .

https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions
https://www.us-cert.gov/ncas/tips/ST04-015

 Parameter transformer reference

public class SlugifyParameterTransformer : IOutboundParameterTransformer
{
 public string TransformOutbound(object value)
 {
 if (value == null) { return null; }

 return Regex.Replace(value.ToString(),
 "([a-z])([A-Z])",
 "$1-$2",
 RegexOptions.CultureInvariant,
 TimeSpan.FromMilliseconds(100)).ToLowerInvariant();
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllers();

 services.AddRouting(options =>
 {
 options.ConstraintMap["slugify"] = typeof(SlugifyParameterTransformer);
 });
}

routes.MapControllerRoute(
 name: "default",
 template: "{controller:slugify=Home}/{action:slugify=Index}/{id?}");

Parameter transformers:

Execute when generating a link using LinkGenerator.

Implement Microsoft.AspNetCore.Routing.IOutboundParameterTransformer.

Are configured using ConstraintMap.

Take the parameter's route value and transform it to a new string value.

Result in using the transformed value in the generated link.

For example, a custom slugify parameter transformer in route pattern blog\{article:slugify} with

Url.Action(new { article = "MyTestArticle" }) generates blog\my-test-article .

Consider the following IOutboundParameterTransformer implementation:

To use a parameter transformer in a route pattern, configure it using ConstraintMap in

Startup.ConfigureServices :

The ASP.NET Core framework uses parameter transformers to transform the URI where an endpoint resolves.

For example, parameter transformers transform the route values used to match an area , controller ,

action , and page .

With the preceding route template, the action SubscriptionManagementController.GetAll is matched with the

URI /subscription-management/get-all . A parameter transformer doesn't change the route values used to

generate a link. For example, Url.Action("GetAll", "SubscriptionManagement") outputs

/subscription-management/get-all .

ASP.NET Core provides API conventions for using parameter transformers with generated routes:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.ioutboundparametertransformer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap

 URL generation reference

Troubleshooting URL generation with loggingTroubleshooting URL generation with logging

AddressesAddresses

The Microsoft.AspNetCore.Mvc.ApplicationModels.RouteTokenTransformerConvention MVC convention

applies a specified parameter transformer to all attribute routes in the app. The parameter transformer

transforms attribute route tokens as they are replaced. For more information, see Use a parameter

transformer to customize token replacement.

Razor Pages uses the PageRouteTransformerConvention API convention. This convention applies a

specified parameter transformer to all automatically discovered Razor Pages. The parameter transformer

transforms the folder and file name segments of Razor Pages routes. For more information, see Use a

parameter transformer to customize page routes.

This section contains a reference for the algorithm implemented by URL generation. In practice, most

complex examples of URL generation use controllers or Razor Pages. See routing in controllers for additional

information.

The URL generation process begins with a call to LinkGenerator.GetPathByAddress or a similar method. The

method is provided with an address, a set of route values, and optionally information about the current

request from HttpContext .

The first step is to use the address to resolve a set of candidate endpoints using an

IEndpointAddressScheme<TAddress> that matches the address's type.

Once of set of candidates is found by the address scheme, the endpoints are ordered and processed

iteratively until a URL generation operation succeeds. URL generation does notnot check for ambiguities, the

first result returned is the final result.

The first step in troubleshooting URL generation is setting the logging level of Microsoft.AspNetCore.Routing

to TRACE . LinkGenerator logs many details about its processing which can be useful to troubleshoot

problems.

See URL generation reference for details on URL generation.

Addresses are the concept in URL generation used to bind a call into the link generator to a set of candidate

endpoints.

Addresses are an extensible concept that come with two implementations by default:

Using endpoint name (string) as the address:

Using route values (RouteValuesAddress) as the address:

Provides similar functionality to MVC's route name.

Uses the IEndpointNameMetadata metadata type.

Resolves the provided string against the metadata of all registered endpoints.

Throws an exception on startup if multiple endpoints use the same name.

Recommended for general-purpose use outside of controllers and Razor Pages.

Provides similar functionality to controllers and Razor Pages legacy URL generation.

Very complex to extend and debug.

Provides the implementation used by IUrlHelper , Tag Helpers, HTML Helpers, Action Results, etc.

The role of the address scheme is to make the association between the address and matching endpoints by

arbitrary criteria:

The endpoint name scheme performs a basic dictionary lookup.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.routetokentransformerconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageroutetransformerconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator.getpathbyaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iendpointaddressscheme-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iendpointnamemetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routevaluesaddress

Ambient values and explicit valuesAmbient values and explicit values

public class WidgetController : Controller
{
 private readonly LinkGenerator _linkGenerator;

 public WidgetController(LinkGenerator linkGenerator)
 {
 _linkGenerator = linkGenerator;
 }

 public IActionResult Index()
 {
 var url = _linkGenerator.GetPathByAction(HttpContext,
 null, null,
 new { id = 17, });
 return Content(url);
 }

public IActionResult Index2()
{
 var url = _linkGenerator.GetPathByAction("Subscribe", "Home",
 new { id = 17, });
 return Content(url);
}

var url = _linkGenerator.GetPathByAction("Subscribe", null,
 new { id = 17, });

The route values scheme has a complex best subset of set algorithm.

From the current request, routing accesses the route values of the current request

HttpContext.Request.RouteValues . The values associated with the current request are referred to as the

ambient valuesambient values . For the purpose of clarity, the documentation refers to the route values passed in to

methods as explicit valuesexplicit values .

The following example shows ambient values and explicit values. It provides ambient values from the current

request and explicit values: { id = 17, } :

The preceding code:

Returns /Widget/Index/17

Gets LinkGenerator via DI.

The following code provides no ambient values and explicit values:

{ controller = "Home", action = "Subscribe", id = 17, } :

The preceding method returns /Home/Subscribe/17

The following code in the WidgetController returns /Widget/Subscribe/17 :

The following code provides the controller from ambient values in the current request and explicit values:

{ action = "Edit", id = 17, } :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator

public class GadgetController : Controller
{
 public IActionResult Index()
 {
 var url = Url.Action("Edit", new { id = 17, });
 return Content(url);
 }

public class IndexModel : PageModel
{
 public void OnGet()
 {
 var url = Url.Page("./Edit", new { id = 17, });
 ViewData["URL"] = url;
 }
}

URL generation processURL generation process

In the preceding code:

/Gadget/Edit/17 is returned.

Url gets the IUrlHelper.

Action generates a URL with an absolute path for an action method. The URL contains the specified

action name and route values.

The following code provides ambient values from the current request and explicit values:

{ page = "./Edit, id = 17, } :

The preceding code sets url to /Edit/17 when the Edit Razor Page contains the following page directive:

@page "{id:int}"

If the Edit page doesn't contain the "{id:int}" route template, url is /Edit?id=17 .

The behavior of MVC's IUrlHelper adds a layer of complexity in addition to the rules described here:

IUrlHelper always provides the route values from the current request as ambient values.

IUrlHelper.Action always copies the current action and controller route values as explicit values unless

overridden by the developer.

IUrlHelper.Page always copies the current page route value as an explicit value unless overridden.

IUrlHelper.Page always overrides the current handler route value with null as an explicit values unless

overridden.

Users are often surprised by the behavioral details of ambient values, because MVC doesn't seem to follow

its own rules. For historical and compatibility reasons, certain route values such as action , controller ,

page , and handler have their own special-case behavior.

The equivalent functionality provided by LinkGenerator.GetPathByAction and LinkGenerator.GetPathByPage

duplicates these anomalies of IUrlHelper for compatibility.

Once the set of candidate endpoints are found, the URL generation algorithm:

Processes the endpoints iteratively.

Returns the first successful result.

The first step in this process is called route value invalidationroute value invalidation. Route value invalidation is the process by

which routing decides which route values from the ambient values should be used and which should be

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.url#microsoft_aspnetcore_mvc_controllerbase_url
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.urlhelperextensions.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.urlhelperextensions.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.urlhelperextensions.page

ignored. Each ambient value is considered and either combined with the explicit values, or ignored.

The best way to think about the role of ambient values is that they attempt to save application developers

typing, in some common cases. Traditionally, the scenarios where ambient values are helpful are related to

MVC:

When linking to another action in the same controller, the controller name doesn't need to be specified.

When linking to another controller in the same area, the area name doesn't need to be specified.

When linking to the same action method, route values don't need to be specified.

When linking to another part of the app, you don't want to carry over route values that have no meaning

in that part of the app.

Calls to LinkGenerator or IUrlHelper that return null are usually caused by not understanding route value

invalidation. Troubleshoot route value invalidation by explicitly specifying more of the route values to see if

that solves the problem.

Route value invalidation works on the assumption that the app's URL scheme is hierarchical, with a hierarchy

formed from left-to-right. Consider the basic controller route template {controller}/{action}/{id?} to get

an intuitive sense of how this works in practice. A changechange to a value invalidatesinvalidates all of the route values that

appear to the right. This reflects the assumption about hierarchy. If the app has an ambient value for id , and

the operation specifies a different value for the controller :

id won't be reused because {controller} is to the left of {id?} .

Some examples demonstrating this principle:

If the explicit values contain a value for id , the ambient value for id is ignored. The ambient values for

controller and action can be used.

If the explicit values contain a value for action , any ambient value for action is ignored. The ambient

values for controller can be used. If the explicit value for action is different from the ambient value for

action , the id value won't be used. If the explicit value for action is the same as the ambient value for

action , the id value can be used.

If the explicit values contain a value for controller , any ambient value for controller is ignored. If the

explicit value for controller is different from the ambient value for controller , the action and id

values won't be used. If the explicit value for controller is the same as the ambient value for controller ,

the action and id values can be used.

This process is further complicated by the existence of attribute routes and dedicated conventional routes.

Controller conventional routes such as {controller}/{action}/{id?} specify a hierarchy using route

parameters. For dedicated conventional routes and attribute routes to controllers and Razor Pages:

There is a hierarchy of route values.

They don't appear in the template.

For these cases, URL generation defines the required valuesrequired values concept. Endpoints created by controllers and

Razor Pages have required values specified that allow route value invalidation to work.

The route value invalidation algorithm in detail:

The required value names are combined with the route parameters, then processed from left-to-right.

For each parameter, the ambient value and explicit value are compared:

If the ambient value and explicit value are the same, the process continues.

If the ambient value is present and the explicit value isn't, the ambient value is used when

generating the URL.

If the ambient value isn't present and the explicit value is, reject the ambient value and all

A M B IEN T VA L UESA M B IEN T VA L UES EXP L IC IT VA L UESEXP L IC IT VA L UES RESULTRESULT

controller = "Home" action = "About" /Home/About

controller = "Home" controller = "Order", action =
"About"

/Order/About

controller = "Home", color = "Red" action = "About" /Home/About

controller = "Home" action = "About", color = "Red" /Home/About?color=Red

Problems with route value invalidationProblems with route value invalidation

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute("default",
 "{culture}/{controller=Home}/{action=Index}/{id?}");
 endpoints.MapControllerRoute("blog", "{culture}/{**slug}",
 new { controller = "Blog", action = "ReadPost", });
});

subsequent ambient values.

If the ambient value and the explicit value are present, and the two values are different, reject the

ambient value and all subsequent ambient values.

At this point, the URL generation operation is ready to evaluate route constraints. The set of accepted values

is combined with the parameter default values, which is provided to constraints. If the constraints all pass, the

operation continues.

Next, the accepted valuesaccepted values can be used to expand the route template. The route template is processed:

From left-to-right.

Each parameter has its accepted value substituted.

With the following special cases:

If the accepted values is missing a value and the parameter has a default value, the default value is

used.

If the accepted values is missing a value and the parameter is optional, processing continues.

If any route parameter to the right of a missing optional parameter has a value, the operation fails.

Contiguous default-valued parameters and optional parameters are collapsed where possible.

Values explicitly provided that don't match a segment of the route are added to the query string. The

following table shows the result when using the route template {controller}/{action}/{id?} .

As of ASP.NET Core 3.0, some URL generation schemes used in earlier ASP.NET Core versions don't work well

with URL generation. The ASP.NET Core team plans to add features to address these needs in a future release.

For now the best solution is to use legacy routing.

The following code shows an example of a URL generation scheme that's not supported by routing.

In the preceding code, the culture route parameter is used for localization. The desire is to have the

culture parameter always accepted as an ambient value. However, the culture parameter is not accepted

as an ambient value because of the way required values work:

In the "default" route template, the culture route parameter is to the left of controller , so changes to

controller won't invalidate culture .

Configuring endpoint metadata

Host matching in routes with RequireHost

public void Configure(IApplicationBuilder app)
{
 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", context => context.Response.WriteAsync("Hi Contoso!"))
 .RequireHost("contoso.com");
 endpoints.MapGet("/", context => context.Response.WriteAsync("AdventureWorks!"))
 .RequireHost("adventure-works.com");
 endpoints.MapHealthChecks("/healthz").RequireHost("*:8080");
 });
}

In the "blog" route template, the culture route parameter is considered to be to the right of

controller , which appears in the required values.

The following links provide information on configuring endpoint metadata:

Enable Cors with endpoint routing

IAuthorizationPolicyProvider sample using a custom [MinimumAgeAuthorize] attribute

Test authentication with the [Authorize] attribute

RequireAuthorization

Selecting the scheme with the [Authorize] attribute

Apply policies using the [Authorize] attribute

Role-based authorization in ASP.NET Core

RequireHost applies a constraint to the route which requires the specified host. The RequireHost or [Host]

parameter can be:

Host: www.domain.com , matches www.domain.com with any port.

Host with wildcard: *.domain.com , matches www.domain.com , subdomain.domain.com , or

www.subdomain.domain.com on any port.

Port: *:5000 , matches port 5000 with any host.

Host and port: www.domain.com:5000 or *.domain.com:5000 , matches host and port.

Multiple parameters can be specified using RequireHost or [Host] . The constraint matches hosts valid for

any of the parameters. For example, [Host("domain.com", "*.domain.com")] matches domain.com ,

www.domain.com , and subdomain.domain.com .

The following code uses RequireHost to require the specified host on the route:

The following code uses the [Host] attribute on the controller to require any of the specified hosts:

https://github.com/dotnet/AspNetCore/tree/release/3.1/src/Security/samples/CustomPolicyProvider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authorizationendpointconventionbuilderextensions.requireauthorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.routingendpointconventionbuilderextensions.requirehost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.hostattribute

[Host("contoso.com", "adventure-works.com")]
public class ProductController : Controller
{
 public IActionResult Index()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

 [Host("example.com:8080")]
 public IActionResult Privacy()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }
}

Performance guidance for routing

When the [Host] attribute is applied to both the controller and action method:

The attribute on the action is used.

The controller attribute is ignored.

Most of routing was updated in ASP.NET Core 3.0 to increase performance.

When an app has performance problems, routing is often suspected as the problem. The reason routing is

suspected is that frameworks like controllers and Razor Pages report the amount of time spent inside the

framework in their logging messages. When there's a significant difference between the time reported by

controllers and the total time of the request:

Developers eliminate their app code as the source of the problem.

It's common to assume routing is the cause.

Routing is performance tested using thousands of endpoints. It's unlikely that a typical app will encounter a

performance problem just by being too large. The most common root cause of slow routing performance is

usually a badly-behaving custom middleware.

This following code sample demonstrates a basic technique for narrowing down the source of delay:

public void Configure(IApplicationBuilder app, ILogger<Startup> logger)
{
 app.Use(next => async context =>
 {
 var sw = Stopwatch.StartNew();
 await next(context);
 sw.Stop();

 logger.LogInformation("Time 1: {ElapsedMilliseconds}ms", sw.ElapsedMilliseconds);
 });

 app.UseRouting();

 app.Use(next => async context =>
 {
 var sw = Stopwatch.StartNew();
 await next(context);
 sw.Stop();

 logger.LogInformation("Time 2: {ElapsedMilliseconds}ms", sw.ElapsedMilliseconds);
 });

 app.UseAuthorization();

 app.Use(next => async context =>
 {
 var sw = Stopwatch.StartNew();
 await next(context);
 sw.Stop();

 logger.LogInformation("Time 3: {ElapsedMilliseconds}ms", sw.ElapsedMilliseconds);
 });

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Timing test.");
 });
 });
}

To time routing:

Interleave each middleware with a copy of the timing middleware shown in the preceding code.

Add a unique identifier to correlate the timing data with the code.

This is a basic way to narrow down the delay when it's significant, for example, more than 10ms . Subtracting

Time 2 from Time 1 reports the time spent inside the UseRouting middleware.

The following code uses a more compact approach to the preceding timing code:

public sealed class MyStopwatch : IDisposable
{
 ILogger<Startup> _logger;
 string _message;
 Stopwatch _sw;

 public MyStopwatch(ILogger<Startup> logger, string message)
 {
 _logger = logger;
 _message = message;
 _sw = Stopwatch.StartNew();
 }

 private bool disposed = false;

 public void Dispose()
 {
 if (!disposed)
 {
 _logger.LogInformation("{Message }: {ElapsedMilliseconds}ms",
 _message, _sw.ElapsedMilliseconds);

 disposed = true;
 }
 }
}

public void Configure(IApplicationBuilder app, ILogger<Startup> logger)
{
 int count = 0;
 app.Use(next => async context =>
 {
 using (new MyStopwatch(logger, $"Time {++count}"))
 {
 await next(context);
 }

 });

 app.UseRouting();

 app.Use(next => async context =>
 {
 using (new MyStopwatch(logger, $"Time {++count}"))
 {
 await next(context);
 }
 });

 app.UseAuthorization();

 app.Use(next => async context =>
 {
 using (new MyStopwatch(logger, $"Time {++count}"))
 {
 await next(context);
 }
 });

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Timing test.");
 });
 });
}

Potentially expensive routing featuresPotentially expensive routing features

Guidance for library authors

The following list provides some insight into routing features that are relatively expensive compared with

basic route templates:

Regular expressions: It's possible to write regular expressions that are complex, or have long running

time with a small amount of input.

Complex segments ({x}-{y}-{z}):

Are significantly more expensive than parsing a regular URL path segment.

Result in many more substrings being allocated.

The complex segment logic was not updated in ASP.NET Core 3.0 routing performance update.

Synchronous data access: Many complex apps have database access as part of their routing. ASP.NET

Core 2.2 and earlier routing might not provide the right extensibility points to support database

access routing. For example, IRouteConstraint, and IActionConstraint are synchronous. Extensibility

points such as MatcherPolicy and EndpointSelectorContext are asynchronous.

This section contains guidance for library authors building on top of routing. These details are intended to

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionconstraints.iactionconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.matcherpolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.endpointselectorcontext

Define endpointsDefine endpoints

app.UseEndpoints(endpoints =>
{
 // Your framework
 endpoints.MapMyFramework(...);

 endpoints.MapHealthChecks("/healthz");
});

app.UseEndpoints(endpoints =>
{
 // Your framework
 endpoints.MapMyFramework(...).RequireAuthorization()
 .WithMyFrameworkFeature(awesome: true);

 endpoints.MapHealthChecks("/healthz");
});

Creating routing-integrated middlewareCreating routing-integrated middleware

ensure that app developers have a good experience using libraries and frameworks that extend routing.

To create a framework that uses routing for URL matching, start by defining a user experience that builds on

top of UseEndpoints.

DODO build on top of IEndpointRouteBuilder. This allows users to compose your framework with other ASP.NET

Core features without confusion. Every ASP.NET Core template includes routing. Assume routing is present

and familiar for users.

DODO return a sealed concrete type from a call to MapMyFramework(...) that implements

IEndpointConventionBuilder. Most framework Map... methods follow this pattern. The

IEndpointConventionBuilder interface:

Allows composability of metadata.

Is targeted by a variety of extension methods.

Declaring your own type allows you to add your own framework-specific functionality to the builder. It's ok to

wrap a framework-declared builder and forward calls to it.

CONSIDERCONSIDER writing your own EndpointDataSource. EndpointDataSource is the low-level primitive for

declaring and updating a collection of endpoints. EndpointDataSource is a powerful API used by controllers

and Razor Pages.

The routing tests have a basic example of a non-updating data source.

DO NOTDO NOT attempt to register an EndpointDataSource by default. Require users to register your framework in

UseEndpoints. The philosophy of routing is that nothing is included by default, and that UseEndpoints is the

place to register endpoints.

CONSIDERCONSIDER defining metadata types as an interface.

DODO make it possible to use metadata types as an attribute on classes and methods.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iendpointroutebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iendpointconventionbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.endpointdatasource
https://github.com/aspnet/AspNetCore/blob/master/src/Http/Routing/test/testassets/RoutingSandbox/Framework/FrameworkEndpointDataSource.cs#L17
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints

public interface ICoolMetadata
{
 bool IsCool { get; }
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class CoolMetadataAttribute : Attribute, ICoolMetadata
{
 public bool IsCool => true;
}

public interface ICoolMetadata
{
 bool IsCool { get; }
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class CoolMetadataAttribute : Attribute, ICoolMetadata
{
 public bool IsCool => true;
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class SuppressCoolMetadataAttribute : Attribute, ICoolMetadata
{
 public bool IsCool => false;
}

[CoolMetadata]
public class MyController : Controller
{
 public void MyCool() { }

 [SuppressCoolMetadata]
 public void Uncool() { }
}

Frameworks like controllers and Razor Pages support applying metadata attributes to types and methods. If

you declare metadata types:

Make them accessible as attributes.

Most users are familiar with applying attributes.

Declaring a metadata type as an interface adds another layer of flexibility:

Interfaces are composable.

Developers can declare their own types that combine multiple policies.

DODO make it possible to override metadata, as shown in the following example:

The best way to follow these guidelines is to avoid defining marker metadatamarker metadata:

Don't just look for the presence of a metadata type.

Define a property on the metadata and check the property.

The metadata collection is ordered and supports overriding by priority. In the case of controllers, metadata

on the action method is most specific.

DODO make middleware useful with and without routing.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/

app.UseRouting();

app.UseAuthorization(new AuthorizationPolicy() { ... });

app.UseEndpoints(endpoints =>
{
 // Your framework
 endpoints.MapMyFramework(...).RequireAuthorization();
});

Debug diagnostics

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Debug",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 }
}

services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

// Use the routing logic of ASP.NET Core 2.1 or earlier:
services.AddMvc(options => options.EnableEndpointRouting = false)
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

As an example of this guideline, consider the UseAuthorization middleware. The authorization middleware

allows you to pass in a fallback policy. The fallback policy, if specified, applies to both:

Endpoints without a specified policy.

Requests that don't match an endpoint.

This makes the authorization middleware useful outside of the context of routing. The authorization

middleware can be used for traditional middleware programming.

For detailed routing diagnostic output, set Logging:LogLevel:Microsoft to Debug . In the development

environment, set the log level in appsettings.Development.json:

Routing is responsible for mapping request URIs to endpoints and dispatching incoming requests to those

endpoints. Routes are defined in the app and configured when the app starts. A route can optionally extract

values from the URL contained in the request, and these values can then be used for request processing.

Using route information from the app, routing is also able to generate URLs that map to endpoints.

To use the latest routing scenarios in ASP.NET Core 2.2, specify the compatibility version to the MVC services

registration in Startup.ConfigureServices :

The EnableEndpointRouting option determines if routing should internally use endpoint-based logic or the

IRouter-based logic of ASP.NET Core 2.1 or earlier. When the compatibility version is set to 2.2 or later, the

default value is true . Set the value to false to use the prior routing logic:

 ASP.N ET Core 2.1 version of this topicFor more information on IRouter-based routing, see the .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.enableendpointrouting#microsoft_aspnetcore_mvc_mvcoptions_enableendpointrouting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter

IMPORTANTIMPORTANT

Routing basics

This document covers low-level ASP.NET Core routing. For information on ASP.NET Core MVC routing, see Routing to

controller actions in ASP.NET Core. For information on routing conventions in Razor Pages, see Razor Pages route and

app conventions in ASP.NET Core.

View or download sample code (how to download)

Most apps should choose a basic and descriptive routing scheme so that URLs are readable and meaningful.

The default conventional route {controller=Home}/{action=Index}/{id?} :

Supports a basic and descriptive routing scheme.

Is a useful starting point for UI-based apps.

Developers commonly add additional terse routes to high-traffic areas of an app in specialized situations

using attribute routing or dedicated conventional routes. Specialized situations examples include, blog and

ecommerce endpoints.

Web APIs should use attribute routing to model the app's functionality as a set of resources where

operations are represented by HTTP verbs. This means that many operations, for example, GET, and POST, on

the same logical resource use the same URL. Attribute routing provides a level of control that's needed to

carefully design an API's public endpoint layout.

Razor Pages apps use default conventional routing to serve named resources in the Pages folder of an app.

Additional conventions are available that allow you to customize Razor Pages routing behavior. For more

information, see Introduction to Razor Pages in ASP.NET Core and Razor Pages route and app conventions in

ASP.NET Core.

URL generation support allows the app to be developed without hard-coding URLs to link the app together.

This support allows for starting with a basic routing configuration and modifying the routes after the app's

resource layout is determined.

Routing uses endpoints (Endpoint) to represent logical endpoints in an app.

An endpoint defines a delegate to process requests and a collection of arbitrary metadata. The metadata is

used implement cross-cutting concerns based on policies and configuration attached to each endpoint.

The routing system has the following characteristics:

Route template syntax is used to define routes with tokenized route parameters.

Conventional-style and attribute-style endpoint configuration is permitted.

IRouteConstraint is used to determine whether a URL parameter contains a valid value for a given

endpoint constraint.

App models, such as MVC/Razor Pages, register all of their endpoints, which have a predictable

implementation of routing scenarios.

The routing implementation makes routing decisions wherever desired in the middleware pipeline.

Middleware that appears after a Routing Middleware can inspect the result of the Routing

Middleware's endpoint decision for a given request URI.

It's possible to enumerate all of the endpoints in the app anywhere in the middleware pipeline.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/routing/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint

NOTENOTE

URL matchingURL matching

URL generation with LinkGeneratorURL generation with LinkGenerator

An app can use routing to generate URLs (for example, for redirection or links) based on endpoint

information and thus avoid hard-coded URLs, which helps maintainability.

URL generation is based on addresses, which support arbitrary extensibility:

The Link Generator API (LinkGenerator) can be resolved anywhere using dependency injection (DI)

to generate URLs.

Where the Link Generator API isn't available via DI, IUrlHelper offers methods to build URLs.

With the release of endpoint routing in ASP.NET Core 2.2, endpoint linking is limited to MVC/Razor Pages actions and

pages. The expansions of endpoint-linking capabilities is planned for future releases.

Routing is connected to the middleware pipeline by the RouterMiddleware class. ASP.NET Core MVC adds

routing to the middleware pipeline as part of its configuration and handles routing in MVC and Razor Pages

apps. To learn how to use routing as a standalone component, see the Use Routing Middleware section.

URL matching is the process by which routing dispatches an incoming request to an endpoint. This process is

based on data in the URL path but can be extended to consider any data in the request. The ability to dispatch

requests to separate handlers is key to scaling the size and complexity of an app.

The routing system in endpoint routing is responsible for all dispatching decisions. Since the middleware

applies policies based on the selected endpoint, it's important that any decision that can affect dispatching or

the application of security policies is made inside the routing system.

When the endpoint delegate is executed, the properties of RouteContext.RouteData are set to appropriate

values based on the request processing performed thus far.

RouteData.Values is a dictionary of route values produced from the route. These values are usually

determined by tokenizing the URL and can be used to accept user input or to make further dispatching

decisions inside the app.

RouteData.DataTokens is a property bag of additional data related to the matched route. DataTokens are

provided to support associating state data with each route so that the app can make decisions based on

which route matched. These values are developer-defined and do notnot affect the behavior of routing in any

way. Additionally, values stashed in RouteData.DataTokens can be of any type, in contrast to

RouteData.Values, which must be convertible to and from strings.

RouteData.Routers is a list of the routes that took part in successfully matching the request. Routes can be

nested inside of one another. The Routers property reflects the path through the logical tree of routes that

resulted in a match. Generally, the first item in Routers is the route collection and should be used for URL

generation. The last item in Routers is the route handler that matched.

URL generation is the process by which routing can create a URL path based on a set of route values. This

allows for a logical separation between your endpoints and the URLs that access them.

Endpoint routing includes the Link Generator API (LinkGenerator). LinkGenerator is a singleton service that

can be retrieved from DI. The API can be used outside of the context of an executing request. MVC's

IUrlHelper and scenarios that rely on IUrlHelper, such as Tag Helpers, HTML Helpers, and Action Results, use

the link generator to provide link generating capabilities.

The link generator is backed by the concept of an address and address schemes. An address scheme is a way

of determining the endpoints that should be considered for link generation. For example, the route name and

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.routermiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routecontext.routedata#microsoft_aspnetcore_routing_routecontext_routedata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.values
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.datatokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.datatokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.datatokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.values#microsoft_aspnetcore_routing_routedata_values
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.routers#microsoft_aspnetcore_routing_routedata_routers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.routers#microsoft_aspnetcore_routing_routedata_routers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.routers#microsoft_aspnetcore_routing_routedata_routers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.routers#microsoft_aspnetcore_routing_routedata_routers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper

EXT EN SIO N M ET H O DEXT EN SIO N M ET H O D DESC RIP T IO NDESC RIP T IO N

GetPathByAddress Generates a URI with an absolute path based on the
provided values.

GetUriByAddress Generates an absolute URI based on the provided values.

WARNINGWARNING

Differences from earlier versions of routing

route values scenarios many users are familiar with from MVC/Razor Pages are implemented as an address

scheme.

The link generator can link to MVC/Razor Pages actions and pages via the following extension methods:

GetPathByAction

GetUriByAction

GetPathByPage

GetUriByPage

An overload of these methods accepts arguments that include the HttpContext . These methods are

functionally equivalent to Url.Action and Url.Page but offer additional flexibility and options.

The GetPath* methods are most similar to Url.Action and Url.Page in that they generate a URI containing

an absolute path. The GetUri* methods always generate an absolute URI containing a scheme and host. The

methods that accept an HttpContext generate a URI in the context of the executing request. The ambient

route values, URL base path, scheme, and host from the executing request are used unless overridden.

LinkGenerator is called with an address. Generating a URI occurs in two steps:

1. An address is bound to a list of endpoints that match the address.

2. Each endpoint's RoutePattern is evaluated until a route pattern that matches the supplied values is found.

The resulting output is combined with the other URI parts supplied to the link generator and returned.

The methods provided by LinkGenerator support standard link generation capabilities for any type of

address. The most convenient way to use the link generator is through extension methods that perform

operations for a specific address type.

Pay attention to the following implications of calling LinkGenerator methods:

Use GetUri* extension methods with caution in an app configuration that doesn't validate the Host header

of incoming requests. If the Host header of incoming requests isn't validated, untrusted request input can be

sent back to the client in URIs in a view/page. We recommend that all production apps configure their server

to validate the Host header against known valid values.

Use LinkGenerator with caution in middleware in combination with Map or MapWhen . Map* changes the

base path of the executing request, which affects the output of link generation. All of the LinkGenerator APIs

allow specifying a base path. Always specify an empty base path to undo Map* 's affect on link generation.

A few differences exist between endpoint routing in ASP.NET Core 2.2 or later and earlier versions of routing

in ASP.NET Core:

The endpoint routing system doesn't support IRouter-based extensibility, including inheriting from

Route.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.controllerlinkgeneratorextensions.getpathbyaction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.controllerlinkgeneratorextensions.geturibyaction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.pagelinkgeneratorextensions.getpathbypage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.pagelinkgeneratorextensions.geturibypage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator.getpathbyaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator.geturibyaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route

app.UseMvc(routes =>
{
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

var link = Url.Action("ReadPost", "blog", new { id = 17, });

app.UseMvc(routes =>
{
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

var link = Url.Action("ReadPost", "Blog", new { id = 17, });

Endpoint routing doesn't support WebApiCompatShim. Use the 2.1 compatibility version (

.SetCompatibilityVersion(CompatibilityVersion.Version_2_1)) to continue using the compatibility

shim.

Endpoint Routing has different behavior for the casing of generated URIs when using conventional

routes.

Consider the following default route template:

Suppose you generate a link to an action using the following route:

With IRouter-based routing, this code generates a URI of /blog/ReadPost/17 , which respects the

casing of the provided route value. Endpoint routing in ASP.NET Core 2.2 or later produces

/Blog/ReadPost/17 ("Blog" is capitalized). Endpoint routing provides the

IOutboundParameterTransformer interface that can be used to customize this behavior globally or to

apply different conventions for mapping URLs.

For more information, see the Parameter transformer reference section.

Link Generation used by MVC/Razor Pages with conventional routes behaves differently when

attempting to link to an controller/action or page that doesn't exist.

Consider the following default route template:

Suppose you generate a link to an action using the default template with the following:

With IRouter -based routing, the result is always /Blog/ReadPost/17 , even if the BlogController

doesn't exist or doesn't have a ReadPost action method. As expected, endpoint routing in ASP.NET

Core 2.2 or later produces /Blog/ReadPost/17 if the action method exists. However, endpoint routing

produces an empty string if the action doesn't exist. Conceptually, endpoint routing doesn't assume

that the endpoint exists if the action doesn't exist.

The link generation ambient value invalidation algorithm behaves differently when used with

endpoint routing.

Ambient value invalidation is the algorithm that decides which route values from the currently

executing request (the ambient values) can be used in link generation operations. Conventional

routing always invalidated extra route values when linking to a different action. Attribute routing

didn't have this behavior prior to the release of ASP.NET Core 2.2. In earlier versions of ASP.NET Core,

links to another action that use the same route parameter names resulted in link generation errors. In

ASP.NET Core 2.2 or later, both forms of routing invalidate values when linking to another action.

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.WebApiCompatShim
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter

Middleware exampleMiddleware example

@page "{id}"
@Url.Page("/Login")

@page "{id?}"

RO UT ERO UT E
L IN K GEN ERAT ED W IT HL IN K GEN ERAT ED W IT H
URL.ACTION(NEW { CATEGORY = "ADMIN/PRODUCTS" }) ……

/search/{*page} /search/admin%2Fproducts (the forward slash is

encoded)

/search/{**page} /search/admin/products

Consider the following example in ASP.NET Core 2.1 or earlier. When linking to another action (or

another page), route values can be reused in undesirable ways.

In /Pages/Store/Product.cshtml:

In /Pages/Login.cshtml:

If the URI is /Store/Product/18 in ASP.NET Core 2.1 or earlier, the link generated on the Store/Info

page by @Url.Page("/Login") is /Login/18 . The id value of 18 is reused, even though the link

destination is different part of the app entirely. The id route value in the context of the /Login page

is probably a user ID value, not a store product ID value.

In endpoint routing with ASP.NET Core 2.2 or later, the result is /Login . Ambient values aren't reused

when the linked destination is a different action or page.

Round-tripping route parameter syntax: Forward slashes aren't encoded when using a double-asterisk

(**) catch-all parameter syntax.

During link generation, the routing system encodes the value captured in a double-asterisk (**)

catch-all parameter (for example, {**myparametername}) except the forward slashes. The double-

asterisk catch-all is supported with IRouter -based routing in ASP.NET Core 2.2 or later.

The single asterisk catch-all parameter syntax in prior versions of ASP.NET Core ({*myparametername})

remains supported, and forward slashes are encoded.

In the following example, a middleware uses the LinkGenerator API to create link to an action method that

lists store products. Using the link generator by injecting it into a class and calling GenerateLink is available

to any class in an app.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator

using Microsoft.AspNetCore.Routing;

public class ProductsLinkMiddleware
{
 private readonly LinkGenerator _linkGenerator;

 public ProductsLinkMiddleware(RequestDelegate next, LinkGenerator linkGenerator)
 {
 _linkGenerator = linkGenerator;
 }

 public async Task InvokeAsync(HttpContext httpContext)
 {
 var url = _linkGenerator.GetPathByAction("ListProducts", "Store");

 httpContext.Response.ContentType = "text/plain";

 await httpContext.Response.WriteAsync($"Go to {url} to see our products.");
 }
}

Create routesCreate routes

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

Most apps create routes by calling MapRoute or one of the similar extension methods defined on

IRouteBuilder. Any of the IRouteBuilder extension methods create an instance of Route and add it to the route

collection.

MapRoute doesn't accept a route handler parameter. MapRoute only adds routes that are handled by the

DefaultHandler. To learn more about routing in MVC, see Routing to controller actions in ASP.NET Core.

The following code example is an example of a MapRoute call used by a typical ASP.NET Core MVC route

definition:

This template matches a URL path and extracts the route values. For example, the path /Products/Details/17

generates the following route values: { controller = Products, action = Details, id = 17 } .

Route values are determined by splitting the URL path into segments and matching each segment with the

route parameter name in the route template. Route parameters are named. The parameters defined by

enclosing the parameter name in braces { ... } .

The preceding template could also match the URL path / and produce the values

{ controller = Home, action = Index } . This occurs because the {controller} and {action} route

parameters have default values and the id route parameter is optional. An equals sign (=) followed by a

value after the route parameter name defines a default value for the parameter. A question mark (?) after

the route parameter name defines an optional parameter.

Route parameters with a default value always produce a route value when the route matches. Optional

parameters don't produce a route value if there is no corresponding URL path segment. See the Route

template reference section for a thorough description of route template scenarios and syntax.

In the following example, the route parameter definition {id:int} defines a route constraint for the id

route parameter :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iroutebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iroutebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routebuilder.defaulthandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id:int}");

routes.MapRoute(
 name: "default_route",
 template: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" });

routes.MapRoute(
 name: "default_route",
 template: "{controller=Home}/{action=Index}/{id?}");

TIPTIP

routes.MapRoute(
 name: "blog",
 template: "Blog/{**article}",
 defaults: new { controller = "Blog", action = "ReadArticle" });

routes.MapRoute(
 name: "us_english_products",
 template: "en-US/Products/{id}",
 defaults: new { controller = "Products", action = "Details" },
 constraints: new { id = new IntRouteConstraint() },
 dataTokens: new { locale = "en-US" });

This template matches a URL path like /Products/Details/17 but not /Products/Details/Apples . Route

constraints implement IRouteConstraint and inspect route values to verify them. In this example, the route

value id must be convertible to an integer. See route-constraint-reference for an explanation of route

constraints provided by the framework.

Additional overloads of MapRoute accept values for constraints , dataTokens , and defaults . The typical

usage of these parameters is to pass an anonymously typed object, where the property names of the

anonymous type match route parameter names.

The following MapRoute examples create equivalent routes:

The inline syntax for defining constraints and defaults can be convenient for simple routes. However, there are

scenarios, such as data tokens, that aren't supported by inline syntax.

The following example demonstrates a few additional scenarios:

The preceding template matches a URL path like /Blog/All-About-Routing/Introduction and extracts the

values { controller = Blog, action = ReadArticle, article = All-About-Routing/Introduction } . The default

route values for controller and action are produced by the route even though there are no corresponding

route parameters in the template. Default values can be specified in the route template. The article route

parameter is defined as a catch-all by the appearance of an double asterisk (**) before the route parameter

name. Catch-all route parameters capture the remainder of the URL path and can also match the empty

string.

The following example adds route constraints and data tokens:

The preceding template matches a URL path like /en-US/Products/5 and extracts the values

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute

Route class URL generationRoute class URL generation

TIPTIP

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

NOTENOTE

Use Routing Middleware

{ controller = Products, action = Details, id = 5 } and the data tokens { locale = en-US } .

The Route class can also perform URL generation by combining a set of route values with its route template.

This is logically the reverse process of matching the URL path.

To better understand URL generation, imagine what URL you want to generate and then think about how a route

template would match that URL. What values would be produced? This is the rough equivalent of how URL generation

works in the Route class.

The following example uses a general ASP.NET Core MVC default route:

With the route values { controller = Products, action = List } , the URL /Products/List is generated. The

route values are substituted for the corresponding route parameters to form the URL path. Since id is an

optional route parameter, the URL is successfully generated without a value for id .

With the route values { controller = Home, action = Index } , the URL / is generated. The provided route

values match the default values, and the segments corresponding to the default values are safely omitted.

Both URLs generated round-trip with the following route definition (/Home/Index and /) produce the same

route values that were used to generate the URL.

An app using ASP.NET Core MVC should use UrlHelper to generate URLs instead of calling into routing directly.

For more information on URL generation, see the Url generation reference section.

Reference the Microsoft.AspNetCore.App metapackage in the app's project file.

Add routing to the service container in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routing.urlhelper

public void ConfigureServices(IServiceCollection services)
{
 services.AddRouting();
}

var trackPackageRouteHandler = new RouteHandler(context =>
{
 var routeValues = context.GetRouteData().Values;
 return context.Response.WriteAsync(
 $"Hello! Route values: {string.Join(", ", routeValues)}");
});

var routeBuilder = new RouteBuilder(app, trackPackageRouteHandler);

routeBuilder.MapRoute(
 "Track Package Route",
 "package/{operation:regex(^track|create$)}/{id:int}");

routeBuilder.MapGet("hello/{name}", context =>
{
 var name = context.GetRouteValue("name");
 // The route handler when HTTP GET "hello/<anything>" matches
 // To match HTTP GET "hello/<anything>/<anything>,
 // use routeBuilder.MapGet("hello/{*name}"
 return context.Response.WriteAsync($"Hi, {name}!");
});

var routes = routeBuilder.Build();
app.UseRouter(routes);

URIURI RESP O N SERESP O N SE

/package/create/3 Hello! Route values: [operation, create], [id, 3]

/package/track/-3 Hello! Route values: [operation, track], [id, -3]

/package/track/-3/ Hello! Route values: [operation, track], [id, -3]

/package/track/ The request falls through, no match.

GET /hello/Joe Hi, Joe!

POST /hello/Joe The request falls through, matches HTTP GET only.

GET /hello/Joe/Smith The request falls through, no match.

Routes must be configured in the Startup.Configure method. The sample app uses the following APIs:

RouteBuilder

MapGet: Matches only HTTP GET requests.

UseRouter

The following table shows the responses with the given URIs.

The framework provides a set of extension methods for creating routes

(RequestDelegateRouteBuilderExtensions):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.routingbuilderextensions.userouter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions

Route template reference

MapDelete

MapGet

MapMiddlewareDelete

MapMiddlewareGet

MapMiddlewarePost

MapMiddlewarePut

MapMiddlewareRoute

MapMiddlewareVerb

MapPost

MapPut

MapRoute

MapVerb

The Map[Verb] methods use constraints to limit the route to the HTTP Verb in the method name. For

example, see MapGet and MapVerb.

Tokens within curly braces ({ ... }) define route parameters that are bound if the route is matched. You can

define more than one route parameter in a route segment, but they must be separated by a literal value. For

example, {controller=Home}{action=Index} isn't a valid route, since there's no literal value between

{controller} and {action} . These route parameters must have a name and may have additional attributes

specified.

Literal text other than route parameters (for example, {id}) and the path separator / must match the text

in the URL. Text matching is case-insensitive and based on the decoded representation of the URLs path. To

match a literal route parameter delimiter ({ or }), escape the delimiter by repeating the character ({{ or

}}).

URL patterns that attempt to capture a file name with an optional file extension have additional

considerations. For example, consider the template files/{filename}.{ext?} . When values for both

filename and ext exist, both values are populated. If only a value for filename exists in the URL, the route

matches because the trailing period (.) is optional. The following URLs match this route:

/files/myFile.txt

/files/myFile

You can use an asterisk (*) or double asterisk (**) as a prefix to a route parameter to bind to the rest of the

URI. These are called a catch-all parameters. For example, blog/{**slug} matches any URI that starts with

/blog and has any value following it, which is assigned to the slug route value. Catch-all parameters can

also match the empty string.

The catch-all parameter escapes the appropriate characters when the route is used to generate a URL,

including path separator (/) characters. For example, the route foo/{*path} with route values

{ path = "my/path" } generates foo/my%2Fpath . Note the escaped forward slash. To round-trip path

separator characters, use the ** route parameter prefix. The route foo/{**path} with { path = "my/path" }

generates foo/my/path .

Route parameters may have default values designated by specifying the default value after the parameter

name separated by an equals sign (=). For example, {controller=Home} defines Home as the default value

for controller . The default value is used if no value is present in the URL for the parameter. Route

parameters are made optional by appending a question mark (?) to the end of the parameter name, as in

id? . The difference between optional values and default route parameters is that a route parameter with a

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapdelete
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewaredelete
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewareget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewarepost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewareput
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewareroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewareverb
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mappost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapput
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapverb
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapverb

RO UT E T EM P L AT ERO UT E T EM P L AT E EXA M P L E M ATC H IN G URIEXA M P L E M ATC H IN G URI T H E REQ UEST URI…T H E REQ UEST URI…

hello /hello Only matches the single path
/hello .

{Page=Home} / Matches and sets Page to Home .

{Page=Home} /Contact Matches and sets Page to

Contact .

{controller}/{action}/{id?} /Products/List Maps to the Products controller

and List action.

{controller}/{action}/{id?} /Products/Details/123 Maps to the Products controller

and Details action (id set to

123).

{controller=Home}/{action=Index}/{id?}/ Maps to the Home controller and

Index method (id is ignored).

TIPTIP

Reserved routing names

default value always produces a value—an optional parameter has a value only when a value is provided by

the request URL.

Route parameters may have constraints that must match the route value bound from the URL. Adding a

colon (:) and constraint name after the route parameter name specifies an inline constraint on a route

parameter. If the constraint requires arguments, they're enclosed in parentheses ((...)) after the constraint

name. Multiple inline constraints can be specified by appending another colon (:) and constraint name.

The constraint name and arguments are passed to the IInlineConstraintResolver service to create an instance

of IRouteConstraint to use in URL processing. For example, the route template blog/{article:minlength(10)}

specifies a minlength constraint with the argument 10 . For more information on route constraints and a list

of the constraints provided by the framework, see the Route constraint reference section.

Route parameters may also have parameter transformers, which transform a parameter's value when

generating links and matching actions and pages to URLs. Like constraints, parameter transformers can be

added inline to a route parameter by adding a colon (:) and transformer name after the route parameter

name. For example, the route template blog/{article:slugify} specifies a slugify transformer. For more

information on parameter transformers, see the Parameter transformer reference section.

The following table demonstrates example route templates and their behavior.

Using a template is generally the simplest approach to routing. Constraints and defaults can also be specified

outside the route template.

Enable Logging to see how the built-in routing implementations, such as Route, match requests.

The following keywords are reserved names and can't be used as route names or parameters:

action

area

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iinlineconstraintresolver
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route

Route constraint reference

WARNINGWARNING

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES N OT ESN OT ES

int {id:int} 123456789 , -123456789 Matches any integer.

bool {active:bool} true , FALSE Matches true or false .

Case-insensitive.

datetime {dob:datetime} 2016-12-31 ,

2016-12-31 7:32pm

Matches a valid DateTime

value in the invariant
culture. See preceding
warning.

decimal {price:decimal} 49.99 , -1,000.01 Matches a valid decimal

value in the invariant
culture. See preceding
warning.

double {weight:double} 1.234 , -1,001.01e8 Matches a valid double

value in the invariant
culture. See preceding
warning.

float {weight:float} 1.234 , -1,001.01e8 Matches a valid float

value in the invariant
culture. See preceding
warning.

guid {id:guid} CD2C1638-1638-72D5-
1638-DEADBEEF1638

,
{CD2C1638-1638-72D5-
1638-DEADBEEF1638}

Matches a valid Guid

value.

controller

handler

page

Route constraints execute when a match has occurred to the incoming URL and the URL path is tokenized

into route values. Route constraints generally inspect the route value associated via the route template and

make a yes/no decision about whether or not the value is acceptable. Some route constraints use data

outside the route value to consider whether the request can be routed. For example, the

HttpMethodRouteConstraint can accept or reject a request based on its HTTP verb. Constraints are used in

routing requests and link generation.

Don't use constraints for input validationinput validation. If constraints are used for input validationinput validation, invalid input results in a 404

- Not Found response instead of a 400 - Bad Request with an appropriate error message. Route constraints are used

to disambiguatedisambiguate similar routes, not to validate the inputs for a particular route.

The following table demonstrates example route constraints and their expected behavior.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.constraints.httpmethodrouteconstraint

long {ticks:long} 123456789 , -123456789 Matches a valid long

value.

minlength(value) {username:minlength(4)} Rick String must be at least 4
characters.

maxlength(value) {filename:maxlength(8)} MyFile String has maximum of 8
characters.

length(length) {filename:length(12)} somefile.txt String must be exactly 12
characters long.

length(min,max) {filename:length(8,16)} somefile.txt String must be at least 8
and has maximum of 16
characters.

min(value) {age:min(18)} 19 Integer value must be at
least 18.

max(value) {age:max(120)} 91 Integer value maximum of
120.

range(min,max) {age:range(18,120)} 91 Integer value must be at
least 18 and maximum of
120.

alpha {name:alpha} Rick String must consist of one
or more alphabetical
characters a - z . Case-

insensitive.

regex(expression) {ssn:regex(^\\d{{3}}-
\\d{{2}}-\\d{{4}}$)}

123-45-6789 String must match the
regular expression. See tips
about defining a regular
expression.

required {name:required} Rick Used to enforce that a
non-parameter value is
present during URL
generation.

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES N OT ESN OT ES

[Route("users/{id:int:min(1)}")]
public User GetUserById(int id) { }

Multiple, colon-delimited constraints can be applied to a single parameter. For example, the following

constraint restricts a parameter to an integer value of 1 or greater :

WARNINGWARNING

Regular expressions

REGUL A R EXP RESSIO NREGUL A R EXP RESSIO N ESC A P ED REGUL A R EXP RESSIO NESC A P ED REGUL A R EXP RESSIO N

^\d{3}-\d{2}-\d{4}$ ^\\d{{3}}-\\d{{2}}-\\d{{4}}$

^[a-z]{2}$ ^[[a-z]]{{2}}$

EXP RESSIO NEXP RESSIO N ST RIN GST RIN G M ATC HM ATC H C O M M EN TC O M M EN T

[a-z]{2} hello Yes Substring matches

[a-z]{2} 123abc456 Yes Substring matches

[a-z]{2} mz Yes Matches expression

[a-z]{2} MZ Yes Not case sensitive

^[a-z]{2}$ hello No See ^ and $ above

^[a-z]{2}$ 123abc456 No See ^ and $ above

Route constraints that verify the URL and are converted to a CLR type (such as int or DateTime) always use the

invariant culture. These constraints assume that the URL is non-localizable. The framework-provided route constraints

don't modify the values stored in route values. All route values parsed from the URL are stored as strings. For

example, the float constraint attempts to convert the route value to a float, but the converted value is used only to

verify it can be converted to a float.

The ASP.NET Core framework adds

RegexOptions.IgnoreCase | RegexOptions.Compiled | RegexOptions.CultureInvariant to the regular expression

constructor. See RegexOptions for a description of these members.

Regular expressions use delimiters and tokens similar to those used by routing and the C# language. Regular

expression tokens must be escaped. To use the regular expression ^\d{3}-\d{2}-\d{4}$ in routing:

The expression must have the single backslash \ characters provided in the string as double backslash

\\ characters in the source code.

The regular expression must us \\ in order to escape the \ string escape character.

The regular expression doesn't require \\ when using verbatim string literals.

To escape routing parameter delimiter characters { , } , [,] , double the characters in the expression {{ ,

} , [[,]] . The following table shows a regular expression and the escaped version:

Regular expressions used in routing often start with the caret ^ character and match starting position of the

string. The expressions often end with the dollar sign $ character and match end of the string. The ^ and

$ characters ensure that the regular expression match the entire route parameter value. Without the ^ and

$ characters, the regular expression match any substring within the string, which is often undesirable. The

following table provides examples and explains why they match or fail to match.

For more information on regular expression syntax, see .NET Framework Regular Expressions.

https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/string
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

Custom route constraints

services.AddRouting(options =>
{
 options.ConstraintMap.Add("customName", typeof(MyCustomConstraint));
});

[HttpGet("{id:customName}")]
public ActionResult<string> Get(string id)

Parameter transformer reference

services.AddRouting(options =>
{
 // Replace the type and the name used to refer to it with your own
 // IOutboundParameterTransformer implementation
 options.ConstraintMap["slugify"] = typeof(SlugifyParameterTransformer);
});

To constrain a parameter to a known set of possible values, use a regular expression. For example,

{action:regex(^(list|get|create)$)} only matches the action route value to list , get , or create . If

passed into the constraints dictionary, the string ^(list|get|create)$ is equivalent. Constraints that are

passed in the constraints dictionary (not inline within a template) that don't match one of the known

constraints are also treated as regular expressions.

In addition to the built-in route constraints, custom route constraints can be created by implementing the

IRouteConstraint interface. The IRouteConstraint interface contains a single method, Match , which returns

true if the constraint is satisfied and false otherwise.

To use a custom IRouteConstraint, the route constraint type must be registered with the app's ConstraintMap

in the app's service container. A ConstraintMap is a dictionary that maps route constraint keys to

IRouteConstraint implementations that validate those constraints. An app's ConstraintMap can be updated in

Startup.ConfigureServices either as part of a services.AddRouting call or by configuring RouteOptions

directly with services.Configure<RouteOptions> . For example:

The constraint can then be applied to routes in the usual manner, using the name specified when registering

the constraint type. For example:

Parameter transformers:

Execute when generating a link for a Route.

Implement Microsoft.AspNetCore.Routing.IOutboundParameterTransformer .

Are configured using ConstraintMap.

Take the parameter's route value and transform it to a new string value.

Result in using the transformed value in the generated link.

For example, a custom slugify parameter transformer in route pattern blog\{article:slugify} with

Url.Action(new { article = "MyTestArticle" }) generates blog\my-test-article .

To use a parameter transformer in a route pattern, configure it first using ConstraintMap in

Startup.ConfigureServices :

Parameter transformers are used by the framework to transform the URI where an endpoint resolves. For

example, ASP.NET Core MVC uses parameter transformers to transform the route value used to match an

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.routingservicecollectionextensions.addrouting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap

routes.MapRoute(
 name: "default",
 template: "{controller:slugify=Home}/{action:slugify=Index}/{id?}");

URL generation reference

app.Run(async (context) =>
{
 var dictionary = new RouteValueDictionary
 {
 { "operation", "create" },
 { "id", 123}
 };

 var vpc = new VirtualPathContext(context, null, dictionary,
 "Track Package Route");
 var path = routes.GetVirtualPath(vpc).VirtualPath;

 context.Response.ContentType = "text/html";
 await context.Response.WriteAsync("Menu<hr/>");
 await context.Response.WriteAsync(
 $"Create Package 123
");
});

area , controller , action , and page .

With the preceding route, the action SubscriptionManagementController.GetAll is matched with the URI

/subscription-management/get-all . A parameter transformer doesn't change the route values used to

generate a link. For example, Url.Action("GetAll", "SubscriptionManagement") outputs

/subscription-management/get-all .

ASP.NET Core provides API conventions for using a parameter transformers with generated routes:

ASP.NET Core MVC has the Microsoft.AspNetCore.Mvc.ApplicationModels.RouteTokenTransformerConvention

API convention. This convention applies a specified parameter transformer to all attribute routes in the

app. The parameter transformer transforms attribute route tokens as they are replaced. For more

information, see Use a parameter transformer to customize token replacement.

Razor Pages has the Microsoft.AspNetCore.Mvc.ApplicationModels.PageRouteTransformerConvention API

convention. This convention applies a specified parameter transformer to all automatically discovered

Razor Pages. The parameter transformer transforms the folder and file name segments of Razor Pages

routes. For more information, see Use a parameter transformer to customize page routes.

The following example shows how to generate a link to a route given a dictionary of route values and a

RouteCollection.

The VirtualPath generated at the end of the preceding sample is /package/create/123 . The dictionary

supplies the operation and id route values of the "Track Package Route" template,

package/{operation}/{id} . For details, see the sample code in the Use Routing Middleware section or the

sample app.

The second parameter to the VirtualPathContext constructor is a collection of ambient values. Ambient values

are convenient to use because they limit the number of values a developer must specify within a request

context. The current route values of the current request are considered ambient values for link generation. In

an ASP.NET Core MVC app's About action of the HomeController , you don't need to specify the controller

route value to link to the Index action—the ambient value of Home is used.

Ambient values that don't match a parameter are ignored. Ambient values are also ignored when an explicitly

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routecollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathdata.virtualpath#microsoft_aspnetcore_routing_virtualpathdata_virtualpath
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/routing/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext

A M B IEN T VA L UESA M B IEN T VA L UES EXP L IC IT VA L UESEXP L IC IT VA L UES RESULTRESULT

controller = "Home" action = "About" /Home/About

controller = "Home" controller = "Order", action =
"About"

/Order/About

controller = "Home", color = "Red" action = "About" /Home/About

controller = "Home" action = "About", color = "Red" /Home/About?color=Red

routes.MapRoute("blog_route", "blog/{*slug}",
 defaults: new { controller = "Blog", action = "ReadPost" });

Complex segments

services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

IMPORTANTIMPORTANT

Routing basics

provided value overrides the ambient value. Matching occurs from left to right in the URL.

Values explicitly provided but that don't match a segment of the route are added to the query string. The

following table shows the result when using the route template {controller}/{action}/{id?} .

If a route has a default value that doesn't correspond to a parameter and that value is explicitly provided, it

must match the default value:

Link generation only generates a link for this route when the matching values for controller and action

are provided.

Complex segments (for example [Route("/x{token}y")]) are processed by matching up literals from right to

left in a non-greedy way. See this code for a detailed explanation of how complex segments are matched. The

code sample is not used by ASP.NET Core, but it provides a good explanation of complex segments.

Routing is responsible for mapping request URIs to route handlers and dispatching an incoming requests.

Routes are defined in the app and configured when the app starts. A route can optionally extract values from

the URL contained in the request, and these values can then be used for request processing. Using

configured routes from the app, routing is able to generate URLs that map to route handlers.

To use the latest routing scenarios in ASP.NET Core 2.1, specify the compatibility version to the MVC services

registration in Startup.ConfigureServices :

This document covers low-level ASP.NET Core routing. For information on ASP.NET Core MVC routing, see Routing to

controller actions in ASP.NET Core. For information on routing conventions in Razor Pages, see Razor Pages route and

app conventions in ASP.NET Core.

View or download sample code (how to download)

Most apps should choose a basic and descriptive routing scheme so that URLs are readable and meaningful.

https://github.com/dotnet/AspNetCore/blob/release/2.2/src/Http/Routing/src/Patterns/RoutePatternMatcher.cs#L293
https://github.com/dotnet/AspNetCore/blob/release/2.2/src/Http/Routing/src/Patterns/RoutePatternMatcher.cs#L293
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/routing/samples

URL matchingURL matching

The default conventional route {controller=Home}/{action=Index}/{id?} :

Supports a basic and descriptive routing scheme.

Is a useful starting point for UI-based apps.

Developers commonly add additional terse routes to high-traffic areas of an app in specialized situations (for

example, blog and ecommerce endpoints) using attribute routing or dedicated conventional routes.

Web APIs should use attribute routing to model the app's functionality as a set of resources where

operations are represented by HTTP verbs. This means that many operations (for example, GET, POST) on the

same logical resource will use the same URL. Attribute routing provides a level of control that's needed to

carefully design an API's public endpoint layout.

Razor Pages apps use default conventional routing to serve named resources in the Pages folder of an app.

Additional conventions are available that allow you to customize Razor Pages routing behavior. For more

information, see Introduction to Razor Pages in ASP.NET Core and Razor Pages route and app conventions in

ASP.NET Core.

URL generation support allows the app to be developed without hard-coding URLs to link the app together.

This support allows for starting with a basic routing configuration and modifying the routes after the app's

resource layout is determined.

Routing uses routes implementations of IRouter to:

Map incoming requests to route handlers.

Generate the URLs used in responses.

By default, an app has a single collection of routes. When a request arrives, the routes in the collection are

processed in the order that they exist in the collection. The framework attempts to match an incoming

request URL to a route in the collection by calling the RouteAsync method on each route in the collection. A

response can use routing to generate URLs (for example, for redirection or links) based on route information

and thus avoid hard-coded URLs, which helps maintainability.

The routing system has the following characteristics:

Route template syntax is used to define routes with tokenized route parameters.

Conventional-style and attribute-style endpoint configuration is permitted.

IRouteConstraint is used to determine whether a URL parameter contains a valid value for a given

endpoint constraint.

App models, such as MVC/Razor Pages, register all of their routes, which have a predictable

implementation of routing scenarios.

A response can use routing to generate URLs (for example, for redirection or links) based on route

information and thus avoid hard-coded URLs, which helps maintainability.

URL generation is based on routes, which support arbitrary extensibility. IUrlHelper offers methods to

build URLs.

Routing is connected to the middleware pipeline by the RouterMiddleware class. ASP.NET Core MVC adds

routing to the middleware pipeline as part of its configuration and handles routing in MVC and Razor Pages

apps. To learn how to use routing as a standalone component, see the Use Routing Middleware section.

URL matching is the process by which routing dispatches an incoming request to a handler. This process is

based on data in the URL path but can be extended to consider any data in the request. The ability to dispatch

requests to separate handlers is key to scaling the size and complexity of an app.

Incoming requests enter the RouterMiddleware, which calls the RouteAsync method on each route in

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter.routeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.routermiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.routermiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter.routeasync

URL generationURL generation

TIPTIP

sequence. The IRouter instance chooses whether to handle the request by setting the RouteContext.Handler

to a non-null RequestDelegate. If a route sets a handler for the request, route processing stops, and the

handler is invoked to process the request. If no route handler is found to process the request, the middleware

hands the request off to the next middleware in the request pipeline.

The primary input to RouteAsync is the RouteContext.HttpContext associated with the current request. The

RouteContext.Handler and RouteContext.RouteData are outputs set after a route is matched.

A match that calls RouteAsync also sets the properties of the RouteContext.RouteData to appropriate values

based on the request processing performed thus far.

RouteData.Values is a dictionary of route values produced from the route. These values are usually

determined by tokenizing the URL and can be used to accept user input or to make further dispatching

decisions inside the app.

RouteData.DataTokens is a property bag of additional data related to the matched route. DataTokens are

provided to support associating state data with each route so that the app can make decisions based on

which route matched. These values are developer-defined and do notnot affect the behavior of routing in any

way. Additionally, values stashed in RouteData.DataTokens can be of any type, in contrast to

RouteData.Values, which must be convertible to and from strings.

RouteData.Routers is a list of the routes that took part in successfully matching the request. Routes can be

nested inside of one another. The Routers property reflects the path through the logical tree of routes that

resulted in a match. Generally, the first item in Routers is the route collection and should be used for URL

generation. The last item in Routers is the route handler that matched.

URL generation is the process by which routing can create a URL path based on a set of route values. This

allows for a logical separation between route handlers and the URLs that access them.

URL generation follows a similar iterative process, but it starts with user or framework code calling into the

GetVirtualPath method of the route collection. Each route has its GetVirtualPath method called in sequence

until a non-null VirtualPathData is returned.

The primary inputs to GetVirtualPath are:

VirtualPathContext.HttpContext

VirtualPathContext.Values

VirtualPathContext.AmbientValues

Routes primarily use the route values provided by Values and AmbientValues to decide whether it's possible

to generate a URL and what values to include. The AmbientValues are the set of route values that were

produced from matching the current request. In contrast, Values are the route values that specify how to

generate the desired URL for the current operation. The HttpContext is provided in case a route should obtain

services or additional data associated with the current context.

Think of VirtualPathContext.Values as a set of overrides for the VirtualPathContext.AmbientValues. URL generation

attempts to reuse route values from the current request to generate URLs for links using the same route or route

values.

The output of GetVirtualPath is a VirtualPathData. VirtualPathData is a parallel of RouteData. VirtualPathData

contains the VirtualPath for the output URL and some additional properties that should be set by the route.

The VirtualPathData.VirtualPath property contains the virtual path produced by the route. Depending on

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routecontext.handler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.requestdelegate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter.routeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routecontext.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routecontext.handler#microsoft_aspnetcore_routing_routecontext_handler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routecontext.routedata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter.routeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routecontext.routedata#microsoft_aspnetcore_routing_routecontext_routedata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.values
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.datatokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.datatokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.datatokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.values#microsoft_aspnetcore_routing_routedata_values
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.routers#microsoft_aspnetcore_routing_routedata_routers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.routers#microsoft_aspnetcore_routing_routedata_routers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.routers#microsoft_aspnetcore_routing_routedata_routers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.routers#microsoft_aspnetcore_routing_routedata_routers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter.getvirtualpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter.getvirtualpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathdata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter.getvirtualpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext.httpcontext#microsoft_aspnetcore_routing_virtualpathcontext_httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext.values#microsoft_aspnetcore_routing_virtualpathcontext_values
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext.ambientvalues#microsoft_aspnetcore_routing_virtualpathcontext_ambientvalues
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext.values#microsoft_aspnetcore_routing_virtualpathcontext_values
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext.ambientvalues#microsoft_aspnetcore_routing_virtualpathcontext_ambientvalues
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext.ambientvalues#microsoft_aspnetcore_routing_virtualpathcontext_ambientvalues
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext.values#microsoft_aspnetcore_routing_virtualpathcontext_values
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext.httpcontext#microsoft_aspnetcore_routing_virtualpathcontext_httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext.values
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext.ambientvalues
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter.getvirtualpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathdata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathdata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathdata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathdata.virtualpath#microsoft_aspnetcore_routing_virtualpathdata_virtualpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathdata.virtualpath

Create routesCreate routes

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id:int}");

your needs, you may need to process the path further. If you want to render the generated URL in HTML,

prepend the base path of the app.

The VirtualPathData.Router is a reference to the route that successfully generated the URL.

The VirtualPathData.DataTokens properties is a dictionary of additional data related to the route that

generated the URL. This is the parallel of RouteData.DataTokens.

Routing provides the Route class as the standard implementation of IRouter. Route uses the route template

syntax to define patterns to match against the URL path when RouteAsync is called. Route uses the same

route template to generate a URL when GetVirtualPath is called.

Most apps create routes by calling MapRoute or one of the similar extension methods defined on

IRouteBuilder. Any of the IRouteBuilder extension methods create an instance of Route and add it to the route

collection.

MapRoute doesn't accept a route handler parameter. MapRoute only adds routes that are handled by the

DefaultHandler. The default handler is an IRouter , and the handler might not handle the request. For

example, ASP.NET Core MVC is typically configured as a default handler that only handles requests that

match an available controller and action. To learn more about routing in MVC, see Routing to controller

actions in ASP.NET Core.

The following code example is an example of a MapRoute call used by a typical ASP.NET Core MVC route

definition:

This template matches a URL path and extracts the route values. For example, the path /Products/Details/17

generates the following route values: { controller = Products, action = Details, id = 17 } .

Route values are determined by splitting the URL path into segments and matching each segment with the

route parameter name in the route template. Route parameters are named. The parameters defined by

enclosing the parameter name in braces { ... } .

The preceding template could also match the URL path / and produce the values

{ controller = Home, action = Index } . This occurs because the {controller} and {action} route

parameters have default values and the id route parameter is optional. An equals sign (=) followed by a

value after the route parameter name defines a default value for the parameter. A question mark (?) after

the route parameter name defines an optional parameter.

Route parameters with a default value always produce a route value when the route matches. Optional

parameters don't produce a route value if there is no corresponding URL path segment. See the Route

template reference section for a thorough description of route template scenarios and syntax.

In the following example, the route parameter definition {id:int} defines a route constraint for the id

route parameter :

This template matches a URL path like /Products/Details/17 but not /Products/Details/Apples . Route

constraints implement IRouteConstraint and inspect route values to verify them. In this example, the route

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathdata.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathdata.datatokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routedata.datatokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter.routeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouter.getvirtualpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iroutebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iroutebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routebuilder.defaulthandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint

routes.MapRoute(
 name: "default_route",
 template: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" });

routes.MapRoute(
 name: "default_route",
 template: "{controller=Home}/{action=Index}/{id?}");

TIPTIP

routes.MapRoute(
 name: "blog",
 template: "Blog/{*article}",
 defaults: new { controller = "Blog", action = "ReadArticle" });

routes.MapRoute(
 name: "us_english_products",
 template: "en-US/Products/{id}",
 defaults: new { controller = "Products", action = "Details" },
 constraints: new { id = new IntRouteConstraint() },
 dataTokens: new { locale = "en-US" });

value id must be convertible to an integer. See route-constraint-reference for an explanation of route

constraints provided by the framework.

Additional overloads of MapRoute accept values for constraints , dataTokens , and defaults . The typical

usage of these parameters is to pass an anonymously typed object, where the property names of the

anonymous type match route parameter names.

The following MapRoute examples create equivalent routes:

The inline syntax for defining constraints and defaults can be convenient for simple routes. However, there are

scenarios, such as data tokens, that aren't supported by inline syntax.

The following example demonstrates a few additional scenarios:

The preceding template matches a URL path like /Blog/All-About-Routing/Introduction and extracts the

values { controller = Blog, action = ReadArticle, article = All-About-Routing/Introduction } . The default

route values for controller and action are produced by the route even though there are no corresponding

route parameters in the template. Default values can be specified in the route template. The article route

parameter is defined as a catch-all by the appearance of an asterisk (*) before the route parameter name.

Catch-all route parameters capture the remainder of the URL path and can also match the empty string.

The following example adds route constraints and data tokens:

The preceding template matches a URL path like /en-US/Products/5 and extracts the values

{ controller = Products, action = Details, id = 5 } and the data tokens { locale = en-US } .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.maprouteroutebuilderextensions.maproute

Route class URL generationRoute class URL generation

TIPTIP

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

NOTENOTE

Use routing middleware

The Route class can also perform URL generation by combining a set of route values with its route template.

This is logically the reverse process of matching the URL path.

To better understand URL generation, imagine what URL you want to generate and then think about how a route

template would match that URL. What values would be produced? This is the rough equivalent of how URL generation

works in the Route class.

The following example uses a general ASP.NET Core MVC default route:

With the route values { controller = Products, action = List } , the URL /Products/List is generated. The

route values are substituted for the corresponding route parameters to form the URL path. Since id is an

optional route parameter, the URL is successfully generated without a value for id .

With the route values { controller = Home, action = Index } , the URL / is generated. The provided route

values match the default values, and the segments corresponding to the default values are safely omitted.

Both URLs generated round-trip with the following route definition (/Home/Index and /) produce the same

route values that were used to generate the URL.

An app using ASP.NET Core MVC should use UrlHelper to generate URLs instead of calling into routing directly.

For more information on URL generation, see the Url generation reference section.

Reference the Microsoft.AspNetCore.App metapackage in the app's project file.

Add routing to the service container in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routing.urlhelper

public void ConfigureServices(IServiceCollection services)
{
 services.AddRouting();
}

var trackPackageRouteHandler = new RouteHandler(context =>
{
 var routeValues = context.GetRouteData().Values;
 return context.Response.WriteAsync(
 $"Hello! Route values: {string.Join(", ", routeValues)}");
});

var routeBuilder = new RouteBuilder(app, trackPackageRouteHandler);

routeBuilder.MapRoute(
 "Track Package Route",
 "package/{operation:regex(^track|create$)}/{id:int}");

routeBuilder.MapGet("hello/{name}", context =>
{
 var name = context.GetRouteValue("name");
 // The route handler when HTTP GET "hello/<anything>" matches
 // To match HTTP GET "hello/<anything>/<anything>,
 // use routeBuilder.MapGet("hello/{*name}"
 return context.Response.WriteAsync($"Hi, {name}!");
});

var routes = routeBuilder.Build();
app.UseRouter(routes);

URIURI RESP O N SERESP O N SE

/package/create/3 Hello! Route values: [operation, create], [id, 3]

/package/track/-3 Hello! Route values: [operation, track], [id, -3]

/package/track/-3/ Hello! Route values: [operation, track], [id, -3]

/package/track/ The request falls through, no match.

GET /hello/Joe Hi, Joe!

POST /hello/Joe The request falls through, matches HTTP GET only.

GET /hello/Joe/Smith The request falls through, no match.

Routes must be configured in the Startup.Configure method. The sample app uses the following APIs:

RouteBuilder

MapGet: Matches only HTTP GET requests.

UseRouter

The following table shows the responses with the given URIs.

If you're configuring a single route, call UseRouter passing in an IRouter instance. You won't need to use

RouteBuilder.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.routingbuilderextensions.userouter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.routingbuilderextensions.userouter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routebuilder

Route template reference

The framework provides a set of extension methods for creating routes

(RequestDelegateRouteBuilderExtensions):

MapDelete

MapGet

MapMiddlewareDelete

MapMiddlewareGet

MapMiddlewarePost

MapMiddlewarePut

MapMiddlewareRoute

MapMiddlewareVerb

MapPost

MapPut

MapRoute

MapVerb

Some of listed methods, such as MapGet, require a RequestDelegate. The RequestDelegate is used as the

route handler when the route matches. Other methods in this family allow configuring a middleware pipeline

for use as the route handler. If the Map* method doesn't accept a handler, such as MapRoute, it uses the

DefaultHandler.

The Map[Verb] methods use constraints to limit the route to the HTTP Verb in the method name. For

example, see MapGet and MapVerb.

Tokens within curly braces ({ ... }) define route parameters that are bound if the route is matched. You can

define more than one route parameter in a route segment, but they must be separated by a literal value. For

example, {controller=Home}{action=Index} isn't a valid route, since there's no literal value between

{controller} and {action} . These route parameters must have a name and may have additional attributes

specified.

Literal text other than route parameters (for example, {id}) and the path separator / must match the text

in the URL. Text matching is case-insensitive and based on the decoded representation of the URLs path. To

match a literal route parameter delimiter ({ or }), escape the delimiter by repeating the character ({{ or

}}).

URL patterns that attempt to capture a file name with an optional file extension have additional

considerations. For example, consider the template files/{filename}.{ext?} . When values for both

filename and ext exist, both values are populated. If only a value for filename exists in the URL, the route

matches because the trailing period (.) is optional. The following URLs match this route:

/files/myFile.txt

/files/myFile

You can use the asterisk (*) as a prefix to a route parameter to bind to the rest of the URI. This is called a

catch-all parameter. For example, blog/{*slug} matches any URI that starts with /blog and has any value

following it, which is assigned to the slug route value. Catch-all parameters can also match the empty

string.

The catch-all parameter escapes the appropriate characters when the route is used to generate a URL,

including path separator (/) characters. For example, the route foo/{*path} with route values

{ path = "my/path" } generates foo/my%2Fpath . Note the escaped forward slash.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapdelete
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewaredelete
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewareget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewarepost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewareput
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewareroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapmiddlewareverb
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mappost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapput
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapverb
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.requestdelegate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.requestdelegate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.maproute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routebuilder.defaulthandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapget
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.requestdelegateroutebuilderextensions.mapverb

RO UT E T EM P L AT ERO UT E T EM P L AT E EXA M P L E M ATC H IN G URIEXA M P L E M ATC H IN G URI T H E REQ UEST URI…T H E REQ UEST URI…

hello /hello Only matches the single path
/hello .

{Page=Home} / Matches and sets Page to Home .

{Page=Home} /Contact Matches and sets Page to

Contact .

{controller}/{action}/{id?} /Products/List Maps to the Products controller

and List action.

{controller}/{action}/{id?} /Products/Details/123 Maps to the Products controller

and Details action (id set to

123).

{controller=Home}/{action=Index}/{id?}/ Maps to the Home controller and

Index method (id is ignored).

TIPTIP

Route constraint reference

Route parameters may have default values designated by specifying the default value after the parameter

name separated by an equals sign (=). For example, {controller=Home} defines Home as the default value

for controller . The default value is used if no value is present in the URL for the parameter. Route

parameters are made optional by appending a question mark (?) to the end of the parameter name, as in

id? . The difference between optional values and default route parameters is that a route parameter with a

default value always produces a value—an optional parameter has a value only when a value is provided by

the request URL.

Route parameters may have constraints that must match the route value bound from the URL. Adding a

colon (:) and constraint name after the route parameter name specifies an inline constraint on a route

parameter. If the constraint requires arguments, they're enclosed in parentheses ((...)) after the constraint

name. Multiple inline constraints can be specified by appending another colon (:) and constraint name.

The constraint name and arguments are passed to the IInlineConstraintResolver service to create an instance

of IRouteConstraint to use in URL processing. For example, the route template blog/{article:minlength(10)}

specifies a minlength constraint with the argument 10 . For more information on route constraints and a list

of the constraints provided by the framework, see the Route constraint reference section.

The following table demonstrates example route templates and their behavior.

Using a template is generally the simplest approach to routing. Constraints and defaults can also be specified

outside the route template.

Enable Logging to see how the built-in routing implementations, such as Route, match requests.

Route constraints execute when a match has occurred to the incoming URL and the URL path is tokenized

into route values. Route constraints generally inspect the route value associated via the route template and

make a yes/no decision about whether or not the value is acceptable. Some route constraints use data

outside the route value to consider whether the request can be routed. For example, the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iinlineconstraintresolver
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route

WARNINGWARNING

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES N OT ESN OT ES

int {id:int} 123456789 , -123456789 Matches any integer

bool {active:bool} true , FALSE Matches true or false

(case-insensitive)

datetime {dob:datetime} 2016-12-31 ,

2016-12-31 7:32pm

Matches a valid DateTime

value in the invariant
culture. See preceding
warning.

decimal {price:decimal} 49.99 , -1,000.01 Matches a valid decimal

value in the invariant
culture. See preceding
warning.

double {weight:double} 1.234 , -1,001.01e8 Matches a valid double

value in the invariant
culture. See preceding
warning.

float {weight:float} 1.234 , -1,001.01e8 Matches a valid float

value in the invariant
culture. See preceding
warning.

guid {id:guid} CD2C1638-1638-72D5-
1638-DEADBEEF1638

,
{CD2C1638-1638-72D5-
1638-DEADBEEF1638}

Matches a valid Guid

value

long {ticks:long} 123456789 , -123456789 Matches a valid long

value

minlength(value) {username:minlength(4)} Rick String must be at least 4
characters

maxlength(value) {filename:maxlength(8)} Richard String must be no more
than 8 characters

length(length) {filename:length(12)} somefile.txt String must be exactly 12
characters long

HttpMethodRouteConstraint can accept or reject a request based on its HTTP verb. Constraints are used in

routing requests and link generation.

Don't use constraints for input validationinput validation. If constraints are used for input validationinput validation, invalid input results in a 404

- Not Found response instead of a 400 - Bad Request with an appropriate error message. Route constraints are used

to disambiguatedisambiguate similar routes, not to validate the inputs for a particular route.

The following table demonstrates example route constraints and their expected behavior.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.constraints.httpmethodrouteconstraint

length(min,max) {filename:length(8,16)} somefile.txt String must be at least 8
and no more than 16
characters long

min(value) {age:min(18)} 19 Integer value must be at
least 18

max(value) {age:max(120)} 91 Integer value must be no
more than 120

range(min,max) {age:range(18,120)} 91 Integer value must be at
least 18 but no more than
120

alpha {name:alpha} Rick String must consist of one
or more alphabetical
characters (a - z , case-

insensitive)

regex(expression) {ssn:regex(^\\d{{3}}-
\\d{{2}}-\\d{{4}}$)}

123-45-6789 String must match the
regular expression (see tips
about defining a regular
expression)

required {name:required} Rick Used to enforce that a
non-parameter value is
present during URL
generation

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES N OT ESN OT ES

[Route("users/{id:int:min(1)}")]
public User GetUserById(int id) { }

WARNINGWARNING

Regular expressions

Multiple, colon-delimited constraints can be applied to a single parameter. For example, the following

constraint restricts a parameter to an integer value of 1 or greater :

Route constraints that verify the URL and are converted to a CLR type (such as int or DateTime) always use the

invariant culture. These constraints assume that the URL is non-localizable. The framework-provided route constraints

don't modify the values stored in route values. All route values parsed from the URL are stored as strings. For

example, the float constraint attempts to convert the route value to a float, but the converted value is used only to

verify it can be converted to a float.

The ASP.NET Core framework adds

RegexOptions.IgnoreCase | RegexOptions.Compiled | RegexOptions.CultureInvariant to the regular expression

constructor. See RegexOptions for a description of these members.

Regular expressions use delimiters and tokens similar to those used by Routing and the C# language. Regular

expression tokens must be escaped. To use the regular expression ^\d{3}-\d{2}-\d{4}$ in routing, the

expression must have the \ (single backslash) characters provided in the string as \\ (double backslash)

https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions

REGUL A R EXP RESSIO NREGUL A R EXP RESSIO N ESC A P ED REGUL A R EXP RESSIO NESC A P ED REGUL A R EXP RESSIO N

^\d{3}-\d{2}-\d{4}$ ^\\d{{3}}-\\d{{2}}-\\d{{4}}$

^[a-z]{2}$ ^[[a-z]]{{2}}$

EXP RESSIO NEXP RESSIO N ST RIN GST RIN G M ATC HM ATC H C O M M EN TC O M M EN T

[a-z]{2} hello Yes Substring matches

[a-z]{2} 123abc456 Yes Substring matches

[a-z]{2} mz Yes Matches expression

[a-z]{2} MZ Yes Not case sensitive

^[a-z]{2}$ hello No See ^ and $ above

^[a-z]{2}$ 123abc456 No See ^ and $ above

Custom Route Constraints

characters in the C# source file in order to escape the \ string escape character (unless using verbatim

string literals). To escape routing parameter delimiter characters ({ , } , [,]), double the characters in the

expression ({{ , } , [[,]]). The following table shows a regular expression and the escaped version.

Regular expressions used in routing often start with the caret (^) character and match starting position of

the string. The expressions often end with the dollar sign ($) character and match end of the string. The ^

and $ characters ensure that the regular expression match the entire route parameter value. Without the ^

and $ characters, the regular expression match any substring within the string, which is often undesirable.

The following table provides examples and explains why they match or fail to match.

For more information on regular expression syntax, see .NET Framework Regular Expressions.

To constrain a parameter to a known set of possible values, use a regular expression. For example,

{action:regex(^(list|get|create)$)} only matches the action route value to list , get , or create . If

passed into the constraints dictionary, the string ^(list|get|create)$ is equivalent. Constraints that are

passed in the constraints dictionary (not inline within a template) that don't match one of the known

constraints are also treated as regular expressions.

In addition to the built-in route constraints, custom route constraints can be created by implementing the

IRouteConstraint interface. The IRouteConstraint interface contains a single method, Match , which returns

true if the constraint is satisfied and false otherwise.

To use a custom IRouteConstraint, the route constraint type must be registered with the app's ConstraintMap

in the app's service container. A ConstraintMap is a dictionary that maps route constraint keys to

IRouteConstraint implementations that validate those constraints. An app's ConstraintMap can be updated in

Startup.ConfigureServices either as part of a services.AddRouting call or by configuring RouteOptions

directly with services.Configure<RouteOptions> . For example:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/string
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions.constraintmap#microsoft_aspnetcore_routing_routeoptions_constraintmap
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.routingservicecollectionextensions.addrouting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeoptions

services.AddRouting(options =>
{
 options.ConstraintMap.Add("customName", typeof(MyCustomConstraint));
});

[HttpGet("{id:customName}")]
public ActionResult<string> Get(string id)

URL generation reference

app.Run(async (context) =>
{
 var dictionary = new RouteValueDictionary
 {
 { "operation", "create" },
 { "id", 123}
 };

 var vpc = new VirtualPathContext(context, null, dictionary,
 "Track Package Route");
 var path = routes.GetVirtualPath(vpc).VirtualPath;

 context.Response.ContentType = "text/html";
 await context.Response.WriteAsync("Menu<hr/>");
 await context.Response.WriteAsync(
 $"Create Package 123
");
});

A M B IEN T VA L UESA M B IEN T VA L UES EXP L IC IT VA L UESEXP L IC IT VA L UES RESULTRESULT

controller = "Home" action = "About" /Home/About

The constraint can then be applied to routes in the usual manner, using the name specified when registering

the constraint type. For example:

The following example shows how to generate a link to a route given a dictionary of route values and a

RouteCollection.

The VirtualPath generated at the end of the preceding sample is /package/create/123 . The dictionary

supplies the operation and id route values of the "Track Package Route" template,

package/{operation}/{id} . For details, see the sample code in the Use Routing Middleware section or the

sample app.

The second parameter to the VirtualPathContext constructor is a collection of ambient values. Ambient values

are convenient to use because they limit the number of values a developer must specify within a request

context. The current route values of the current request are considered ambient values for link generation. In

an ASP.NET Core MVC app's About action of the HomeController , you don't need to specify the controller

route value to link to the Index action—the ambient value of Home is used.

Ambient values that don't match a parameter are ignored. Ambient values are also ignored when an explicitly

provided value overrides the ambient value. Matching occurs from left to right in the URL.

Values explicitly provided but that don't match a segment of the route are added to the query string. The

following table shows the result when using the route template {controller}/{action}/{id?} .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routecollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathdata.virtualpath#microsoft_aspnetcore_routing_virtualpathdata_virtualpath
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/routing/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.virtualpathcontext

controller = "Home" controller = "Order", action =
"About"

/Order/About

controller = "Home", color = "Red" action = "About" /Home/About

controller = "Home" action = "About", color = "Red" /Home/About?color=Red

A M B IEN T VA L UESA M B IEN T VA L UES EXP L IC IT VA L UESEXP L IC IT VA L UES RESULTRESULT

routes.MapRoute("blog_route", "blog/{*slug}",
 defaults: new { controller = "Blog", action = "ReadPost" });

Complex segments

If a route has a default value that doesn't correspond to a parameter and that value is explicitly provided, it

must match the default value:

Link generation only generates a link for this route when the matching values for controller and action

are provided.

Complex segments (for example [Route("/x{token}y")]) are processed by matching up literals from right to

left in a non-greedy way. See this code for a detailed explanation of how complex segments are matched. The

code sample is not used by ASP.NET Core, but it provides a good explanation of complex segments.

https://github.com/aspnet/AspNetCore/blob/release/2.2/src/Http/Routing/src/Patterns/RoutePatternMatcher.cs#L293
https://github.com/aspnet/AspNetCore/blob/release/2.2/src/Http/Routing/src/Patterns/RoutePatternMatcher.cs#L293

Handle errors in ASP.NET Core
9/22/2020 • 19 minutes to read • Edit Online

Developer Exception Page

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

By Kirk Larkin, Tom Dykstra, and Steve Smith

This article covers common approaches to handling errors in ASP.NET Core web apps. See Handle errors in

ASP.NET Core web APIs for web APIs.

View or download sample code. (How to download.) The network tab on the F12 browser developer tools is

useful when testing the sample app.

The Developer Exception Page displays detailed information about request exceptions. The ASP.NET Core

templates generate the following code:

The preceding highlighted code enables the developer exception page when the app is running in the

Development environment.

The templates place UseDeveloperExceptionPage early in the middleware pipeline so that it can catch

exceptions thrown in middleware that follows.

The preceding code enables the Developer Exception Page onlyonly when the app runs in the Development

environment. Detailed exception information should not be displayed publicly when the app runs in the

Production environment. For more information on configuring environments, see Use multiple environments

in ASP.NET Core.

The Developer Exception Page includes the following information about the exception and the request:

Stack trace

Query string parameters if any

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/error-handling.md
https://twitter.com/serpent5
https://github.com/tdykstra/
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.developerexceptionpageextensions.usedeveloperexceptionpage

 Exception handler page

if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
}
else
{
 app.UseExceptionHandler("/Error");
 app.UseHsts();
}

Access the exceptionAccess the exception

Cookies if any

Headers

To configure a custom error handling page for the Production environment, call UseExceptionHandler. This

exception handling middleware:

Catches and logs exceptions.

Re-executes the request in an alternate pipeline using the path indicated. The request isn't re-executed if the

response has started. The template generated code re-executes the request using the /Error path.

In the following example, UseExceptionHandler adds the exception handling middleware in non-Development

environments:

The Razor Pages app template provides an Error page (.cshtml) and PageModel class (ErrorModel) in the

Pages folder. For an MVC app, the project template includes an Error action method and an Error view for the

Home controller.

Don't mark the error handler action method with HTTP method attributes, such as HttpGet . Explicit verbs

prevent some requests from reaching the action method. Allow anonymous access to the method if

unauthenticated users should see the error view.

Use IExceptionHandlerPathFeature to access the exception and the original request path in an error handler.

The following code adds ExceptionMessage to the default Pages/Error.cshtml.cs generated by the ASP.NET Core

templates:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.iexceptionhandlerpathfeature

[ResponseCache(Duration=0, Location=ResponseCacheLocation.None, NoStore=true)]
[IgnoreAntiforgeryToken]
public class ErrorModel : PageModel
{
 public string RequestId { get; set; }
 public bool ShowRequestId => !string.IsNullOrEmpty(RequestId);
 public string ExceptionMessage { get; set; }
 private readonly ILogger<ErrorModel> _logger;

 public ErrorModel(ILogger<ErrorModel> logger)
 {
 _logger = logger;
 }

 public void OnGet()
 {
 RequestId = Activity.Current?.Id ?? HttpContext.TraceIdentifier;

 var exceptionHandlerPathFeature =
 HttpContext.Features.Get<IExceptionHandlerPathFeature>();
 if (exceptionHandlerPathFeature?.Error is FileNotFoundException)
 {
 ExceptionMessage = "File error thrown";
 _logger.LogError(ExceptionMessage);
 }
 if (exceptionHandlerPathFeature?.Path == "/index")
 {
 ExceptionMessage += " from home page";
 }
 }
}

WARNINGWARNING

Exception handler lambda

Do notnot serve sensitive error information to clients. Serving errors is a security risk.

To test the exception in the sample app:

Set the environment to production.

Remove the comments from webBuilder.UseStartup<Startup>(); in Program.cs.

Select Tr igger an exceptionTrigger an exception on the home page.

An alternative to a custom exception handler page is to provide a lambda to UseExceptionHandler. Using a

lambda allows access to the error before returning the response.

The following code uses a lambda for exception handling:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler(errorApp =>
 {
 errorApp.Run(async context =>
 {
 context.Response.StatusCode = 500;
 context.Response.ContentType = "text/html";

 await context.Response.WriteAsync("<html lang=\"en\"><body>\r\n");
 await context.Response.WriteAsync("ERROR!

\r\n");

 var exceptionHandlerPathFeature =
 context.Features.Get<IExceptionHandlerPathFeature>();

 if (exceptionHandlerPathFeature?.Error is FileNotFoundException)
 {
 await context.Response.WriteAsync(
 "File error thrown!

\r\n");
 }

 await context.Response.WriteAsync(
 "Home
\r\n");
 await context.Response.WriteAsync("</body></html>\r\n");
 await context.Response.WriteAsync(new string(' ', 512));
 });
 });
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

WARNINGWARNING

UseStatusCodePages

Do notnot serve sensitive error information from IExceptionHandlerFeature or IExceptionHandlerPathFeature to clients.

Serving errors is a security risk.

To test the exception handling lambda in the sample app:

Set the environment to production.

Remove the comments from webBuilder.UseStartup<StartupLambda>(); in Program.cs.

Select Tr igger an exceptionTrigger an exception on the home page.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.iexceptionhandlerfeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.iexceptionhandlerpathfeature
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseStatusCodePages();

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

Status Code: 404; Not Found

UseStatusCodePages with format stringUseStatusCodePages with format string

By default, an ASP.NET Core app doesn't provide a status code page for HTTP error status codes, such as 404 -

Not Found. When the app encounters an HTTP 400-499 error condition that doesn't have a body, it returns the

status code and an empty response body. To provide status code pages, use the status code pages middleware.

To enable default text-only handlers for common error status codes, call UseStatusCodePages in the

Startup.Configure method:

Call UseStatusCodePages before request handling middleware. For example, call UseStatusCodePages before

the Static File Middleware and the Endpoints Middleware.

When UseStatusCodePages isn't used, navigating to a URL without an endpoint returns a browser dependent

error message indicating the endpoint can't be found. For example, navigating to Home/Privacy2 . When

UseStatusCodePages is called, the browser returns:

UseStatusCodePages isn't typically used in production because it returns a message that isn't useful to users.

To test UseStatusCodePages in the sample app:

Set the environment to production.

Remove the comments from webBuilder.UseStartup<StartupUseStatusCodePages>(); in Program.cs.

Select the links on the home page on the home page.

To customize the response content type and text, use the overload of UseStatusCodePages that takes a content

type and format string:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.statuscodepagesextensions.usestatuscodepages
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.statuscodepagesextensions.usestatuscodepages

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseStatusCodePages(
 "text/plain", "Status code page, status code: {0}");

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

UseStatusCodePages with lambdaUseStatusCodePages with lambda

In the preceding code, {0} is a placeholder for the error code.

UseStatusCodePages with a format string isn't typically used in production because it returns a message that

isn't useful to users.

To test UseStatusCodePages in the sample app, remove the comments from

webBuilder.UseStartup<StartupFormat>(); in Program.cs.

To specify custom error-handling and response-writing code, use the overload of UseStatusCodePages that

takes a lambda expression:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.statuscodepagesextensions.usestatuscodepages

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseStatusCodePages(async context =>
 {
 context.HttpContext.Response.ContentType = "text/plain";

 await context.HttpContext.Response.WriteAsync(
 "Status code page, status code: " +
 context.HttpContext.Response.StatusCode);
 });

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

UseStatusCodePagesWithRedirectsUseStatusCodePagesWithRedirects

UseStatusCodePages with a lambda isn't typically used in production because it returns a message that isn't

useful to users.

To test UseStatusCodePages in the sample app, remove the comments from

webBuilder.UseStartup<StartupStatusLambda>(); in Program.cs.

The UseStatusCodePagesWithRedirects extension method:

Sends a 302 - Found status code to the client.

Redirects the client to the error handling endpoint provided in the URL template. The error handling

endpoint typically displays error information and returns HTTP 200.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.statuscodepagesextensions.usestatuscodepageswithredirects
https://developer.mozilla.org/docs/Web/HTTP/Status/302

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseStatusCodePagesWithRedirects("/MyStatusCode?code={0}");

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

UseStatusCodePagesWithReExecuteUseStatusCodePagesWithReExecute

The URL template can include a {0} placeholder for the status code, as shown in the preceding code. If the

URL template starts with ~ (tilde), the ~ is replaced by the app's PathBase . When specifying an endpoint in

the app, create an MVC view or Razor page for the endpoint. For a Razor Pages example, see

Pages/MyStatusCode.cshtml in the sample app.

This method is commonly used when the app:

Should redirect the client to a different endpoint, usually in cases where a different app processes the error.

For web apps, the client's browser address bar reflects the redirected endpoint.

Shouldn't preserve and return the original status code with the initial redirect response.

To test UseStatusCodePages in the sample app, remove the comments from

webBuilder.UseStartup<StartupSCredirect>(); in Program.cs.

The UseStatusCodePagesWithReExecute extension method:

Returns the original status code to the client.

Generates the response body by re-executing the request pipeline using an alternate path.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x/ErrorHandlingSample/Pages
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.statuscodepagesextensions.usestatuscodepageswithreexecute

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseStatusCodePagesWithReExecute("/MyStatusCode2", "?code={0}");

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

If an endpoint within the app is specified, create an MVC view or Razor page for the endpoint. Ensure

UseStatusCodePagesWithReExecute is placed before UseRouting so the request can be rerouted to the status

page. For a Razor Pages example, see Pages/MyStatusCode2.cshtml in the sample app.

This method is commonly used when the app should:

Process the request without redirecting to a different endpoint. For web apps, the client's browser address

bar reflects the originally requested endpoint.

Preserve and return the original status code with the response.

The URL and query string templates may include a placeholder {0} for the status code. The URL template

must start with / .

The endpoint that processes the error can get the original URL that generated the error, as shown in the

following example:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x/ErrorHandlingSample/Pages
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x

[ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, NoStore = true)]
public class MyStatusCode2Model : PageModel
{
 public string RequestId { get; set; }
 public bool ShowRequestId => !string.IsNullOrEmpty(RequestId);

 public string ErrorStatusCode { get; set; }

 public string OriginalURL { get; set; }
 public bool ShowOriginalURL => !string.IsNullOrEmpty(OriginalURL);

 public void OnGet(string code)
 {
 RequestId = Activity.Current?.Id ?? HttpContext.TraceIdentifier;
 ErrorStatusCode = code;

 var statusCodeReExecuteFeature = HttpContext.Features.Get<
 IStatusCodeReExecuteFeature>();
 if (statusCodeReExecuteFeature != null)
 {
 OriginalURL =
 statusCodeReExecuteFeature.OriginalPathBase
 + statusCodeReExecuteFeature.OriginalPath
 + statusCodeReExecuteFeature.OriginalQueryString;
 }
 }
}

Disable status code pages

public void OnGet()
{
 // using Microsoft.AspNetCore.Diagnostics;
 var statusCodePagesFeature = HttpContext.Features.Get<IStatusCodePagesFeature>();

 if (statusCodePagesFeature != null)
 {
 statusCodePagesFeature.Enabled = false;
 }
}

Exception-handling code

Response headersResponse headers

For a Razor Pages example, see Pages/MyStatusCode2.cshtml in the sample app.

To test UseStatusCodePages in the sample app, remove the comments from

webBuilder.UseStartup<StartupSCreX>(); in Program.cs.

To disable status code pages for an MVC controller or action method, use the [SkipStatusCodePages] attribute.

To disable status code pages for specific requests in a Razor Pages handler method or in an MVC controller,

use IStatusCodePagesFeature:

Code in exception handling pages can also throw exceptions. Production error pages should be tested

thoroughly and take extra care to avoid throwing exceptions of their own.

Once the headers for a response are sent:

The app can't change the response's status code.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x/ErrorHandlingSample/Pages
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples/5.x
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.skipstatuscodepagesattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.istatuscodepagesfeature

Server exception handling

Startup exception handling

Database error page

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));
 services.AddDatabaseDeveloperPageExceptionFilter();
 services.AddDefaultIdentity<IdentityUser>(options => options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<ApplicationDbContext>();
 services.AddRazorPages();
}

Exception filters

Any exception pages or handlers can't run. The response must be completed or the connection aborted.

In addition to the exception handling logic in an app, the HTTP server implementation can handle some

exceptions. If the server catches an exception before response headers are sent, the server sends a

500 - Internal Server Error response without a response body. If the server catches an exception after

response headers are sent, the server closes the connection. Requests that aren't handled by the app are

handled by the server. Any exception that occurs when the server is handling the request is handled by the

server's exception handling. The app's custom error pages, exception handling middleware, and filters don't

affect this behavior.

Only the hosting layer can handle exceptions that take place during app startup. The host can be configured to

capture startup errors and capture detailed errors.

The hosting layer can show an error page for a captured startup error only if the error occurs after host

address/port binding. If binding fails:

The hosting layer logs a critical exception.

The dotnet process crashes.

No error page is displayed when the HTTP server is Kestrel.

When running on IIS (or Azure App Service) or IIS Express, a 502.5 - Process Failure is returned by the ASP.NET

Core Module if the process can't start. For more information, see Troubleshoot ASP.NET Core on Azure App

Service and IIS.

The Database developer page exception filter AddDatabaseDeveloperPageExceptionFilter captures database-

related exceptions that can be resolved by using Entity Framework Core migrations. When these exceptions

occur, an HTML response is generated with details of possible actions to resolve the issue. This page is enabled

only in the Development environment. The following code was generated by the ASP.NET Core Razor Pages

templates when individual user accounts were specified:

In MVC apps, exception filters can be configured globally or on a per-controller or per-action basis. In Razor

Pages apps, they can be configured globally or per page model. These filters handle any unhandled exceptions

that occur during the execution of a controller action or another filter. For more information, see Filters in

ASP.NET Core.

Exception filters are useful for trapping exceptions that occur within MVC actions, but they're not as flexible as

https://docs.microsoft.com/en-us/iis
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

Model state errors

Additional resources

Developer Exception Page

if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
}
else
{
 app.UseExceptionHandler("/Error");
 app.UseHsts();
}

the built-in exception handling middleware, UseExceptionHandler . We recommend using UseExceptionHandler ,

unless you need to perform error handling differently based on which MVC action is chosen.

For information about how to handle model state errors, see Model binding and Model validation.

Troubleshoot ASP.NET Core on Azure App Service and IIS

Common errors reference for Azure App Service and IIS with ASP.NET Core

By Tom Dykstra, and Steve Smith

This article covers common approaches to handling errors in ASP.NET Core web apps. See Handle errors in

ASP.NET Core web APIs for web APIs.

View or download sample code. (How to download.)

The Developer Exception Page displays detailed information about request exceptions. The ASP.NET Core

templates generate the following code:

The preceding code enables the developer exception page when the app is running in the Development

https://github.com/dotnet/aspnetcore/blob/master/src/Middleware/Diagnostics/src/ExceptionHandler/ExceptionHandlerMiddleware.cs
https://github.com/tdykstra/
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples

Exception handler page

if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
}
else
{
 app.UseExceptionHandler("/Error");
 app.UseHsts();
}

Access the exceptionAccess the exception

environment.

The templates place UseDeveloperExceptionPage before any middleware so exceptions are caught in the

middleware that follows.

The preceding code enables the Developer Exception Page only when the app is running in theonly when the app is running in the

Development environmentDevelopment environment. Detailed exception information should not be displayed publicly when the app

runs in production. For more information on configuring environments, see Use multiple environments in

ASP.NET Core.

The Developer Exception Page includes the following information about the exception and the request:

Stack trace

Query string parameters if any

Cookies if any

Headers

To configure a custom error handling page for the Production environment, use the Exception Handling

Middleware. The middleware:

Catches and logs exceptions.

Re-executes the request in an alternate pipeline for the page or controller indicated. The request isn't re-

executed if the response has started. The template generated code re-executes the request to /Error .

In the following example, UseExceptionHandler adds the Exception Handling Middleware in non-Development

environments:

The Razor Pages app template provides an Error page (.cshtml) and PageModel class (ErrorModel) in the

Pages folder. For an MVC app, the project template includes an Error action method and an Error view in the

Home controller.

Don't mark the error handler action method with HTTP method attributes, such as HttpGet . Explicit verbs

prevent some requests from reaching the method. Allow anonymous access to the method if unauthenticated

users should see the error view.

Use IExceptionHandlerPathFeature to access the exception and the original request path in an error handler

controller or page:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.developerexceptionpageextensions.usedeveloperexceptionpage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.iexceptionhandlerpathfeature

[ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, NoStore = true)]
public class ErrorModel : PageModel
{
 public string RequestId { get; set; }
 public bool ShowRequestId => !string.IsNullOrEmpty(RequestId);
 public string ExceptionMessage { get; set; }

 public void OnGet()
 {
 RequestId = Activity.Current?.Id ?? HttpContext.TraceIdentifier;

 var exceptionHandlerPathFeature =
 HttpContext.Features.Get<IExceptionHandlerPathFeature>();
 if (exceptionHandlerPathFeature?.Error is FileNotFoundException)
 {
 ExceptionMessage = "File error thrown";
 }
 if (exceptionHandlerPathFeature?.Path == "/index")
 {
 ExceptionMessage += " from home page";
 }
 }
}

WARNINGWARNING

Exception handler lambda

Do notnot serve sensitive error information to clients. Serving errors is a security risk.

To trigger the preceding exception handling page, set the environment to productions and force an exception.

An alternative to a custom exception handler page is to provide a lambda to UseExceptionHandler. Using a

lambda allows access to the error before returning the response.

Here's an example of using a lambda for exception handling:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler

if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
}
else
{
 app.UseExceptionHandler(errorApp =>
 {
 errorApp.Run(async context =>
 {
 context.Response.StatusCode = 500;
 context.Response.ContentType = "text/html";

 await context.Response.WriteAsync("<html lang=\"en\"><body>\r\n");
 await context.Response.WriteAsync("ERROR!

\r\n");

 var exceptionHandlerPathFeature =
 context.Features.Get<IExceptionHandlerPathFeature>();

 if (exceptionHandlerPathFeature?.Error is FileNotFoundException)
 {
 await context.Response.WriteAsync("File error thrown!

\r\n");
 }

 await context.Response.WriteAsync("Home
\r\n");
 await context.Response.WriteAsync("</body></html>\r\n");
 await context.Response.WriteAsync(new string(' ', 512)); // IE padding
 });
 });
 app.UseHsts();
}

WARNINGWARNING

UseStatusCodePages

app.UseStatusCodePages();

In the preceding code, await context.Response.WriteAsync(new string(' ', 512)); is added so the Internet

Explorer browser displays the error message rather than an IE error message. For more information, see this

GitHub issue.

Do notnot serve sensitive error information from IExceptionHandlerFeature or IExceptionHandlerPathFeature to clients.

Serving errors is a security risk.

To see the result of the exception handling lambda in the sample app, use the ProdEnvironment and

ErrorHandlerLambda preprocessor directives, and select Tr igger an exceptionTrigger an exception on the home page.

By default, an ASP.NET Core app doesn't provide a status code page for HTTP status codes, such as 404 - Not

Found. The app returns a status code and an empty response body. To provide status code pages, use Status

Code Pages middleware.

The middleware is made available by the Microsoft.AspNetCore.Diagnostics package.

To enable default text-only handlers for common error status codes, call UseStatusCodePages in the

Startup.Configure method:

Call UseStatusCodePages before request handling middleware (for example, Static File Middleware and MVC

Middleware).

https://github.com/dotnet/AspNetCore.Docs/issues/16144
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.iexceptionhandlerfeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.iexceptionhandlerpathfeature
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples
https://www.nuget.org/packages/Microsoft.AspNetCore.Diagnostics/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.statuscodepagesextensions.usestatuscodepages

Status Code: 404; Not Found

UseStatusCodePages with format string

app.UseStatusCodePages(
 "text/plain", "Status code page, status code: {0}");

UseStatusCodePages with lambda

app.UseStatusCodePages(async context =>
{
 context.HttpContext.Response.ContentType = "text/plain";

 await context.HttpContext.Response.WriteAsync(
 "Status code page, status code: " +
 context.HttpContext.Response.StatusCode);
});

UseStatusCodePagesWithRedirects

app.UseStatusCodePagesWithRedirects("/StatusCode?code={0}");

UseStatusCodePagesWithReExecute

When UseStatusCodePages isn't used, navigating to a URL without an endpoint returns a browser dependent

error message indicating the endpoint can't be found. For example, navigating to Home/Privacy2 . When

UseStatusCodePages is called, the browser returns:

To customize the response content type and text, use the overload of UseStatusCodePages that takes a content

type and format string:

To specify custom error-handling and response-writing code, use the overload of UseStatusCodePages that

takes a lambda expression:

The UseStatusCodePagesWithRedirects extension method:

Sends a 302 - Found status code to the client.

Redirects the client to the location provided in the URL template.

The URL template can include a {0} placeholder for the status code, as shown in the example. If the URL

template starts with ~ (tilde), the ~ is replaced by the app's PathBase . If you point to an endpoint within the

app, create an MVC view or Razor page for the endpoint. For a Razor Pages example, see

Pages/StatusCode.cshtml in the sample app.

This method is commonly used when the app:

Should redirect the client to a different endpoint, usually in cases where a different app processes the error.

For web apps, the client's browser address bar reflects the redirected endpoint.

Shouldn't preserve and return the original status code with the initial redirect response.

The UseStatusCodePagesWithReExecute extension method:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.statuscodepagesextensions.usestatuscodepages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.statuscodepagesextensions.usestatuscodepages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.statuscodepagesextensions.usestatuscodepageswithredirects
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.statuscodepagesextensions.usestatuscodepageswithreexecute

app.UseStatusCodePagesWithReExecute("/StatusCode","?code={0}");

@page "{code?}"

var statusCodeReExecuteFeature = HttpContext.Features.Get<IStatusCodeReExecuteFeature>();
if (statusCodeReExecuteFeature != null)
{
 OriginalURL =
 statusCodeReExecuteFeature.OriginalPathBase
 + statusCodeReExecuteFeature.OriginalPath
 + statusCodeReExecuteFeature.OriginalQueryString;
}

Disable status code pages

var statusCodePagesFeature = HttpContext.Features.Get<IStatusCodePagesFeature>();

if (statusCodePagesFeature != null)
{
 statusCodePagesFeature.Enabled = false;
}

Exception-handling code

Response headersResponse headers

Returns the original status code to the client.

Generates the response body by re-executing the request pipeline using an alternate path.

If you point to an endpoint within the app, create an MVC view or Razor page for the endpoint. Ensure

UseStatusCodePagesWithReExecute is placed before UseRouting so the request can be rerouted to the status

page. For a Razor Pages example, see Pages/StatusCode.cshtml in the sample app.

This method is commonly used when the app should:

Process the request without redirecting to a different endpoint. For web apps, the client's browser address

bar reflects the originally requested endpoint.

Preserve and return the original status code with the response.

The URL and query string templates may include a placeholder ({0}) for the status code. The URL template

must start with a slash (/). When using a placeholder in the path, confirm that the endpoint (page or

controller) can process the path segment. For example, a Razor Page for errors should accept the optional path

segment value with the @page directive:

The endpoint that processes the error can get the original URL that generated the error, as shown in the

following example:

To disable status code pages for an MVC controller or action method, use the [SkipStatusCodePages] attribute.

To disable status code pages for specific requests in a Razor Pages handler method or in an MVC controller,

use IStatusCodePagesFeature:

Code in exception handling pages can throw exceptions. It's often a good idea for production error pages to

consist of purely static content.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/error-handling/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.skipstatuscodepagesattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.istatuscodepagesfeature

Server exception handling

Startup exception handling

Database error page

if (env.IsDevelopment())
{
 app.UseDatabaseErrorPage();
}

Exception filters

Once the headers for a response are sent:

The app can't change the response's status code.

Any exception pages or handlers can't run. The response must be completed or the connection aborted.

In addition to the exception handling logic in your app, the HTTP server implementation can handle some

exceptions. If the server catches an exception before response headers are sent, the server sends a 500 -

Internal Server Error response without a response body. If the server catches an exception after response

headers are sent, the server closes the connection. Requests that aren't handled by your app are handled by

the server. Any exception that occurs when the server is handling the request is handled by the server's

exception handling. The app's custom error pages, exception handling middleware, and filters don't affect this

behavior.

Only the hosting layer can handle exceptions that take place during app startup. The host can be configured to

capture startup errors and capture detailed errors.

The hosting layer can show an error page for a captured startup error only if the error occurs after host

address/port binding. If binding fails:

The hosting layer logs a critical exception.

The dotnet process crashes.

No error page is displayed when the HTTP server is Kestrel.

When running on IIS (or Azure App Service) or IIS Express, a 502.5 - Process Failure is returned by the ASP.NET

Core Module if the process can't start. For more information, see Troubleshoot ASP.NET Core on Azure App

Service and IIS.

Database Error Page Middleware captures database-related exceptions that can be resolved by using Entity

Framework migrations. When these exceptions occur, an HTML response with details of possible actions to

resolve the issue is generated. This page should be enabled only in the Development environment. Enable the

page by adding code to Startup.Configure :

UseDatabaseErrorPage requires the Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore NuGet package.

In MVC apps, exception filters can be configured globally or on a per-controller or per-action basis. In Razor

Pages apps, they can be configured globally or per page model. These filters handle any unhandled exception

that occurs during the execution of a controller action or another filter. For more information, see Filters in

ASP.NET Core.

https://docs.microsoft.com/en-us/iis
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.databaseerrorpageextensions.usedatabaseerrorpage
https://www.nuget.org/packages/Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore/

TIPTIP

Model state errors

Additional resources

Exception filters are useful for trapping exceptions that occur within MVC actions, but they're not as flexible as the

Exception Handling Middleware. We recommend using the middleware. Use filters only where you need to perform

error handling differently based on which MVC action is chosen.

For information about how to handle model state errors, see Model binding and Model validation.

Troubleshoot ASP.NET Core on Azure App Service and IIS

Common errors reference for Azure App Service and IIS with ASP.NET Core

Make HTTP requests using IHttpClientFactory in
ASP.NET Core
9/22/2020 • 47 minutes to read • Edit Online

Consumption patterns

Basic usageBasic usage

By Glenn Condron, Ryan Nowak, Steve Gordon, Rick Anderson, and Kirk Larkin

An IHttpClientFactory can be registered and used to configure and create HttpClient instances in an app.

IHttpClientFactory offers the following benefits:

Provides a central location for naming and configuring logical HttpClient instances. For example, a client

named github could be registered and configured to access GitHub. A default client can be registered for

general access.

Codifies the concept of outgoing middleware via delegating handlers in HttpClient . Provides extensions for

Polly-based middleware to take advantage of delegating handlers in HttpClient .

Manages the pooling and lifetime of underlying HttpClientMessageHandler instances. Automatic management

avoids common DNS (Domain Name System) problems that occur when manually managing HttpClient

lifetimes.

Adds a configurable logging experience (via ILogger) for all requests sent through clients created by the

factory.

View or download sample code (how to download).

The sample code in this topic version uses System.Text.Json to deserialize JSON content returned in HTTP

responses. For samples that use Json.NET and ReadAsAsync<T> , use the version selector to select a 2.x version of

this topic.

There are several ways IHttpClientFactory can be used in an app:

Basic usage

Named clients

Typed clients

Generated clients

The best approach depends upon the app's requirements.

IHttpClientFactory can be registered by calling AddHttpClient :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/http-requests.md
https://github.com/glennc
https://github.com/rynowak
https://github.com/stevejgordon
https://twitter.com/RickAndMSFT
https://github.com/serpent5
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://github.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/http-requests/samples
https://docs.microsoft.com/en-us/dotnet/api/system.text.json

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddHttpClient();
 // Remaining code deleted for brevity.

public class BasicUsageModel : PageModel
{
 private readonly IHttpClientFactory _clientFactory;

 public IEnumerable<GitHubBranch> Branches { get; private set; }

 public bool GetBranchesError { get; private set; }

 public BasicUsageModel(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task OnGet()
 {
 var request = new HttpRequestMessage(HttpMethod.Get,
 "https://api.github.com/repos/aspnet/AspNetCore.Docs/branches");
 request.Headers.Add("Accept", "application/vnd.github.v3+json");
 request.Headers.Add("User-Agent", "HttpClientFactory-Sample");

 var client = _clientFactory.CreateClient();

 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 using var responseStream = await response.Content.ReadAsStreamAsync();
 Branches = await JsonSerializer.DeserializeAsync
 <IEnumerable<GitHubBranch>>(responseStream);
 }
 else
 {
 GetBranchesError = true;
 Branches = Array.Empty<GitHubBranch>();
 }
 }
}

Named clientsNamed clients

An IHttpClientFactory can be requested using dependency injection (DI). The following code uses

IHttpClientFactory to create an HttpClient instance:

Using IHttpClientFactory like in the preceding example is a good way to refactor an existing app. It has no

impact on how HttpClient is used. In places where HttpClient instances are created in an existing app, replace

those occurrences with calls to CreateClient.

Named clients are a good choice when:

The app requires many distinct uses of HttpClient .

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory.createclient

services.AddHttpClient("github", c =>
{
 c.BaseAddress = new Uri("https://api.github.com/");
 // Github API versioning
 c.DefaultRequestHeaders.Add("Accept", "application/vnd.github.v3+json");
 // Github requires a user-agent
 c.DefaultRequestHeaders.Add("User-Agent", "HttpClientFactory-Sample");
});

CreateClientCreateClient

Many HttpClient s have different configuration.

Configuration for a named HttpClient can be specified during registration in Startup.ConfigureServices :

In the preceding code the client is configured with:

The base address https://api.github.com/ .

Two headers required to work with the GitHub API.

Each time CreateClient is called:

A new instance of HttpClient is created.

The configuration action is called.

To create a named client, pass its name into CreateClient :

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory.createclient

public class NamedClientModel : PageModel
{
 private readonly IHttpClientFactory _clientFactory;

 public IEnumerable<GitHubPullRequest> PullRequests { get; private set; }

 public bool GetPullRequestsError { get; private set; }

 public bool HasPullRequests => PullRequests.Any();

 public NamedClientModel(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task OnGet()
 {
 var request = new HttpRequestMessage(HttpMethod.Get,
 "repos/aspnet/AspNetCore.Docs/pulls");

 var client = _clientFactory.CreateClient("github");

 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 using var responseStream = await response.Content.ReadAsStreamAsync();
 PullRequests = await JsonSerializer.DeserializeAsync
 <IEnumerable<GitHubPullRequest>>(responseStream);
 }
 else
 {
 GetPullRequestsError = true;
 PullRequests = Array.Empty<GitHubPullRequest>();
 }
 }
}

Typed clientsTyped clients

In the preceding code, the request doesn't need to specify a hostname. The code can pass just the path, since the

base address configured for the client is used.

Typed clients:

Provide the same capabilities as named clients without the need to use strings as keys.

Provides IntelliSense and compiler help when consuming clients.

Provide a single location to configure and interact with a particular HttpClient . For example, a single typed

client might be used:

Work with DI and can be injected where required in the app.

For a single backend endpoint.

To encapsulate all logic dealing with the endpoint.

A typed client accepts an HttpClient parameter in its constructor :

public class GitHubService
{
 public HttpClient Client { get; }

 public GitHubService(HttpClient client)
 {
 client.BaseAddress = new Uri("https://api.github.com/");
 // GitHub API versioning
 client.DefaultRequestHeaders.Add("Accept",
 "application/vnd.github.v3+json");
 // GitHub requires a user-agent
 client.DefaultRequestHeaders.Add("User-Agent",
 "HttpClientFactory-Sample");

 Client = client;
 }

 public async Task<IEnumerable<GitHubIssue>> GetAspNetDocsIssues()
 {
 var response = await Client.GetAsync(
 "/repos/aspnet/AspNetCore.Docs/issues?state=open&sort=created&direction=desc");

 response.EnsureSuccessStatusCode();

 using var responseStream = await response.Content.ReadAsStreamAsync();
 return await JsonSerializer.DeserializeAsync
 <IEnumerable<GitHubIssue>>(responseStream);
 }
}

services.AddHttpClient<GitHubService>();

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

In the preceding code:

The configuration is moved into the typed client.

The HttpClient object is exposed as a public property.

API-specific methods can be created that expose HttpClient functionality. For example, the GetAspNetDocsIssues

method encapsulates code to retrieve open issues.

The following code calls AddHttpClient in Startup.ConfigureServices to register a typed client class:

The typed client is registered as transient with DI. In the preceding code, AddHttpClient registers GitHubService

as a transient service. This registration uses a factory method to:

1. Create an instance of HttpClient .

2. Create an instance of GitHubService , passing in the instance of HttpClient to its constructor.

The typed client can be injected and consumed directly:

https://github.com/MicrosoftDocs/feedback/issues/2515
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientfactoryservicecollectionextensions.addhttpclient

public class TypedClientModel : PageModel
{
 private readonly GitHubService _gitHubService;

 public IEnumerable<GitHubIssue> LatestIssues { get; private set; }

 public bool HasIssue => LatestIssues.Any();

 public bool GetIssuesError { get; private set; }

 public TypedClientModel(GitHubService gitHubService)
 {
 _gitHubService = gitHubService;
 }

 public async Task OnGet()
 {
 try
 {
 LatestIssues = await _gitHubService.GetAspNetDocsIssues();
 }
 catch(HttpRequestException)
 {
 GetIssuesError = true;
 LatestIssues = Array.Empty<GitHubIssue>();
 }
 }
}

services.AddHttpClient<RepoService>(c =>
{
 c.BaseAddress = new Uri("https://api.github.com/");
 c.DefaultRequestHeaders.Add("Accept", "application/vnd.github.v3+json");
 c.DefaultRequestHeaders.Add("User-Agent", "HttpClientFactory-Sample");
});

The configuration for a typed client can be specified during registration in Startup.ConfigureServices , rather than

in the typed client's constructor :

The HttpClient can be encapsulated within a typed client. Rather than exposing it as a property, define a method

which calls the HttpClient instance internally:

public class RepoService
{
 // _httpClient isn't exposed publicly
 private readonly HttpClient _httpClient;

 public RepoService(HttpClient client)
 {
 _httpClient = client;
 }

 public async Task<IEnumerable<string>> GetRepos()
 {
 var response = await _httpClient.GetAsync("aspnet/repos");

 response.EnsureSuccessStatusCode();

 using var responseStream = await response.Content.ReadAsStreamAsync();
 return await JsonSerializer.DeserializeAsync
 <IEnumerable<string>>(responseStream);
 }
}

Generated clientsGenerated clients

public interface IHelloClient
{
 [Get("/helloworld")]
 Task<Reply> GetMessageAsync();
}

public class Reply
{
 public string Message { get; set; }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient("hello", c =>
 {
 c.BaseAddress = new Uri("http://localhost:5000");
 })
 .AddTypedClient(c => Refit.RestService.For<IHelloClient>(c));

 services.AddControllers();
}

In the preceding code, the HttpClient is stored in a private field. Access to the HttpClient is by the public

GetRepos method.

IHttpClientFactory can be used in combination with third-party libraries such as Refit. Refit is a REST library for

.NET. It converts REST APIs into live interfaces. An implementation of the interface is generated dynamically by the

RestService , using HttpClient to make the external HTTP calls.

An interface and a reply are defined to represent the external API and its response:

A typed client can be added, using Refit to generate the implementation:

The defined interface can be consumed where necessary, with the implementation provided by DI and Refit:

https://github.com/paulcbetts/refit

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly IHelloClient _client;

 public ValuesController(IHelloClient client)
 {
 _client = client;
 }

 [HttpGet("/")]
 public async Task<ActionResult<Reply>> Index()
 {
 return await _client.GetMessageAsync();
 }
}

Make POST, PUT, and DELETE requests

public async Task CreateItemAsync(TodoItem todoItem)
{
 var todoItemJson = new StringContent(
 JsonSerializer.Serialize(todoItem, _jsonSerializerOptions),
 Encoding.UTF8,
 "application/json");

 using var httpResponse =
 await _httpClient.PostAsync("/api/TodoItems", todoItemJson);

 httpResponse.EnsureSuccessStatusCode();
}

In the preceding examples, all HTTP requests use the GET HTTP verb. HttpClient also supports other HTTP verbs,

including:

POST

PUT

DELETE

PATCH

For a complete list of supported HTTP verbs, see HttpMethod.

The following example shows how to make an HTTP POST request:

In the preceding code, the CreateItemAsync method:

Serializes the TodoItem parameter to JSON using System.Text.Json . This uses an instance of

JsonSerializerOptions to configure the serialization process.

Creates an instance of StringContent to package the serialized JSON for sending in the HTTP request's body.

Calls PostAsync to send the JSON content to the specified URL. This is a relative URL that gets added to the

HttpClient.BaseAddress.

Calls EnsureSuccessStatusCode to throw an exception if the response status code does not indicate success.

HttpClient also supports other types of content. For example, MultipartContent and StreamContent. For a

complete list of supported content, see HttpContent.

The following example shows an HTTP PUT request:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmethod
https://docs.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializeroptions
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.stringcontent
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.postasync
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpresponsemessage.ensuresuccessstatuscode
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.multipartcontent
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.streamcontent
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpcontent

public async Task SaveItemAsync(TodoItem todoItem)
{
 var todoItemJson = new StringContent(
 JsonSerializer.Serialize(todoItem),
 Encoding.UTF8,
 "application/json");

 using var httpResponse =
 await _httpClient.PutAsync($"/api/TodoItems/{todoItem.Id}", todoItemJson);

 httpResponse.EnsureSuccessStatusCode();
}

public async Task DeleteItemAsync(long itemId)
{
 using var httpResponse =
 await _httpClient.DeleteAsync($"/api/TodoItems/{itemId}");

 httpResponse.EnsureSuccessStatusCode();
}

Outgoing request middleware

The preceding code is very similar to the POST example. The SaveItemAsync method calls PutAsync instead of

PostAsync .

The following example shows an HTTP DELETE request:

In the preceding code, the DeleteItemAsync method calls DeleteAsync. Because HTTP DELETE requests typically

contain no body, the DeleteAsync method doesn't provide an overload that accepts an instance of HttpContent .

To learn more about using different HTTP verbs with HttpClient , see HttpClient.

HttpClient has the concept of delegating handlers that can be linked together for outgoing HTTP requests.

IHttpClientFactory :

Simplifies defining the handlers to apply for each named client.

Supports registration and chaining of multiple handlers to build an outgoing request middleware pipeline.

Each of these handlers is able to perform work before and after the outgoing request. This pattern:

Is similar to the inbound middleware pipeline in ASP.NET Core.

Provides a mechanism to manage cross-cutting concerns around HTTP requests, such as:

caching

error handling

serialization

logging

To create a delegating handler :

Derive from DelegatingHandler.

Override SendAsync. Execute code before passing the request to the next handler in the pipeline:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.putasync
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.deleteasync
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.delegatinghandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.delegatinghandler.sendasync

public class ValidateHeaderHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 if (!request.Headers.Contains("X-API-KEY"))
 {
 return new HttpResponseMessage(HttpStatusCode.BadRequest)
 {
 Content = new StringContent(
 "You must supply an API key header called X-API-KEY")
 };
 }

 return await base.SendAsync(request, cancellationToken);
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddTransient<ValidateHeaderHandler>();

 services.AddHttpClient("externalservice", c =>
 {
 // Assume this is an "external" service which requires an API KEY
 c.BaseAddress = new Uri("https://localhost:5001/");
 })
 .AddHttpMessageHandler<ValidateHeaderHandler>();

 // Remaining code deleted for brevity.

services.AddTransient<SecureRequestHandler>();
services.AddTransient<RequestDataHandler>();

services.AddHttpClient("clientwithhandlers")
 // This handler is on the outside and called first during the
 // request, last during the response.
 .AddHttpMessageHandler<SecureRequestHandler>()
 // This handler is on the inside, closest to the request being
 // sent.
 .AddHttpMessageHandler<RequestDataHandler>();

The preceding code checks if the X-API-KEY header is in the request. If X-API-KEY is missing, BadRequest is

returned.

More than one handler can be added to the configuration for an HttpClient with

Microsoft.Extensions.DependencyInjection.HttpClientBuilderExtensions.AddHttpMessageHandler:

In the preceding code, the ValidateHeaderHandler is registered with DI. The IHttpClientFactory creates a separate

DI scope for each handler. Handlers can depend upon services of any scope. Services that handlers depend upon

are disposed when the handler is disposed.

Once registered, AddHttpMessageHandler can be called, passing in the type for the handler.

Multiple handlers can be registered in the order that they should execute. Each handler wraps the next handler

until the final HttpClientHandler executes the request:

Use one of the following approaches to share per-request state with message handlers:

Pass data into the handler using HttpRequestMessage.Properties.

https://docs.microsoft.com/en-us/dotnet/api/system.net.httpstatuscode#system_net_httpstatuscode_badrequest
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.addhttpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.addhttpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestmessage.properties#system_net_http_httprequestmessage_properties

Use Polly-based handlers

Handle transient faultsHandle transient faults

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient<UnreliableEndpointCallerService>()
 .AddTransientHttpErrorPolicy(p =>
 p.WaitAndRetryAsync(3, _ => TimeSpan.FromMilliseconds(600)));

 // Remaining code deleted for brevity.

Dynamically select policiesDynamically select policies

var timeout = Policy.TimeoutAsync<HttpResponseMessage>(
 TimeSpan.FromSeconds(10));
var longTimeout = Policy.TimeoutAsync<HttpResponseMessage>(
 TimeSpan.FromSeconds(30));

services.AddHttpClient("conditionalpolicy")
// Run some code to select a policy based on the request
 .AddPolicyHandler(request =>
 request.Method == HttpMethod.Get ? timeout : longTimeout);

Add multiple Polly handlersAdd multiple Polly handlers

Use IHttpContextAccessor to access the current request.

Create a custom AsyncLocal<T> storage object to pass the data.

IHttpClientFactory integrates with the third-party library Polly. Polly is a comprehensive resilience and transient

fault-handling library for .NET. It allows developers to express policies such as Retry, Circuit Breaker, Timeout,

Bulkhead Isolation, and Fallback in a fluent and thread-safe manner.

Extension methods are provided to enable the use of Polly policies with configured HttpClient instances. The

Polly extensions support adding Polly-based handlers to clients. Polly requires the Microsoft.Extensions.Http.Polly

NuGet package.

Faults typically occur when external HTTP calls are transient. AddTransientHttpErrorPolicy allows a policy to be

defined to handle transient errors. Policies configured with AddTransientHttpErrorPolicy handle the following

responses:

HttpRequestException

HTTP 5xx

HTTP 408

AddTransientHttpErrorPolicy provides access to a PolicyBuilder object configured to handle errors representing

a possible transient fault:

In the preceding code, a WaitAndRetryAsync policy is defined. Failed requests are retried up to three times with a

delay of 600 ms between attempts.

Extension methods are provided to add Polly-based handlers, for example, AddPolicyHandler. The following

AddPolicyHandler overload inspects the request to decide which policy to apply:

In the preceding code, if the outgoing request is an HTTP GET, a 10-second timeout is applied. For any other HTTP

method, a 30-second timeout is used.

It's common to nest Polly policies:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor
https://docs.microsoft.com/en-us/dotnet/api/system.threading.asynclocal-1
https://github.com/App-vNext/Polly
https://www.nuget.org/packages/Microsoft.Extensions.Http.Polly/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pollyhttpclientbuilderextensions.addtransienthttperrorpolicy
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pollyhttpclientbuilderextensions.addpolicyhandler

services.AddHttpClient("multiplepolicies")
 .AddTransientHttpErrorPolicy(p => p.RetryAsync(3))
 .AddTransientHttpErrorPolicy(
 p => p.CircuitBreakerAsync(5, TimeSpan.FromSeconds(30)));

Add policies from the Polly registryAdd policies from the Polly registry

public void ConfigureServices(IServiceCollection services)
{
 var timeout = Policy.TimeoutAsync<HttpResponseMessage>(
 TimeSpan.FromSeconds(10));
 var longTimeout = Policy.TimeoutAsync<HttpResponseMessage>(
 TimeSpan.FromSeconds(30));

 var registry = services.AddPolicyRegistry();

 registry.Add("regular", timeout);
 registry.Add("long", longTimeout);

 services.AddHttpClient("regularTimeoutHandler")
 .AddPolicyHandlerFromRegistry("regular");

 services.AddHttpClient("longTimeoutHandler")
 .AddPolicyHandlerFromRegistry("long");

 // Remaining code deleted for brevity.

HttpClient and lifetime management

In the preceding example:

Two handlers are added.

The first handler uses AddTransientHttpErrorPolicy to add a retry policy. Failed requests are retried up to three

times.

The second AddTransientHttpErrorPolicy call adds a circuit breaker policy. Further external requests are

blocked for 30 seconds if 5 failed attempts occur sequentially. Circuit breaker policies are stateful. All calls

through this client share the same circuit state.

An approach to managing regularly used policies is to define them once and register them with a PolicyRegistry

.

In the following code:

The "regular" and "long" policies are added.

AddPolicyHandlerFromRegistry adds the "regular" and "long" policies from the registry.

For more information on IHttpClientFactory and Polly integrations, see the Polly wiki.

A new HttpClient instance is returned each time CreateClient is called on the IHttpClientFactory . An

HttpMessageHandler is created per named client. The factory manages the lifetimes of the HttpMessageHandler

instances.

IHttpClientFactory pools the HttpMessageHandler instances created by the factory to reduce resource

consumption. An HttpMessageHandler instance may be reused from the pool when creating a new HttpClient

instance if its lifetime hasn't expired.

Pooling of handlers is desirable as each handler typically manages its own underlying HTTP connections. Creating

more handlers than necessary can result in connection delays. Some handlers also keep connections open

indefinitely, which can prevent the handler from reacting to DNS (Domain Name System) changes.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pollyhttpclientbuilderextensions.addtransienthttperrorpolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pollyhttpclientbuilderextensions.addpolicyhandlerfromregistry
https://github.com/App-vNext/Polly/wiki/Polly-and-HttpClientFactory
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmessagehandler

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient("extendedhandlerlifetime")
 .SetHandlerLifetime(TimeSpan.FromMinutes(5));

 // Remaining code deleted for brevity.

Alternatives to IHttpClientFactoryAlternatives to IHttpClientFactory

CookiesCookies

services.AddHttpClient("configured-disable-automatic-cookies")
 .ConfigurePrimaryHttpMessageHandler(() =>
 {
 return new SocketsHttpHandler()
 {
 UseCookies = false,
 };
 });

Logging

The default handler lifetime is two minutes. The default value can be overridden on a per named client basis:

HttpClient instances can generally be treated as .NET objects notnot requiring disposal. Disposal cancels outgoing

requests and guarantees the given HttpClient instance can't be used after calling Dispose. IHttpClientFactory

tracks and disposes resources used by HttpClient instances.

Keeping a single HttpClient instance alive for a long duration is a common pattern used before the inception of

IHttpClientFactory . This pattern becomes unnecessary after migrating to IHttpClientFactory .

Using IHttpClientFactory in a DI-enabled app avoids:

Resource exhaustion problems by pooling HttpMessageHandler instances.

Stale DNS problems by cycling HttpMessageHandler instances at regular intervals.

There are alternative ways to solve the preceding problems using a long-lived SocketsHttpHandler instance.

Create an instance of SocketsHttpHandler when the app starts and use it for the life of the app.

Configure PooledConnectionLifetime to an appropriate value based on DNS refresh times.

Create HttpClient instances using new HttpClient(handler, disposeHandler: false) as needed.

The preceding approaches solve the resource management problems that IHttpClientFactory solves in a similar

way.

The SocketsHttpHandler shares connections across HttpClient instances. This sharing prevents socket

exhaustion.

The SocketsHttpHandler cycles connections according to PooledConnectionLifetime to avoid stale DNS

problems.

The pooled HttpMessageHandler instances results in CookieContainer objects being shared. Unanticipated

CookieContainer object sharing often results in incorrect code. For apps that require cookies, consider either :

Disabling automatic cookie handling

Avoiding IHttpClientFactory

Call ConfigurePrimaryHttpMessageHandler to disable automatic cookie handling:

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.socketshttphandler.pooledconnectionlifetime#system_net_http_socketshttphandler_pooledconnectionlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.configureprimaryhttpmessagehandler

Configure the HttpMessageHandler

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient("configured-inner-handler")
 .ConfigurePrimaryHttpMessageHandler(() =>
 {
 return new HttpClientHandler()
 {
 AllowAutoRedirect = false,
 UseDefaultCredentials = true
 };
 });

 // Remaining code deleted for brevity.

Use IHttpClientFactory in a console app

Clients created via IHttpClientFactory record log messages for all requests. Enable the appropriate information

level in the logging configuration to see the default log messages. Additional logging, such as the logging of

request headers, is only included at trace level.

The log category used for each client includes the name of the client. A client named MyNamedClient, for

example, logs messages with a category of "System.Net.Http.HttpClient.MyNamedClientMyNamedClient.LogicalHandler".

Messages suffixed with LogicalHandler occur outside the request handler pipeline. On the request, messages are

logged before any other handlers in the pipeline have processed it. On the response, messages are logged after

any other pipeline handlers have received the response.

Logging also occurs inside the request handler pipeline. In the MyNamedClient example, those messages are

logged with the log category "System.Net.Http.HttpClient.MyNamedClientMyNamedClient.ClientHandler". For the request, this

occurs after all other handlers have run and immediately before the request is sent. On the response, this logging

includes the state of the response before it passes back through the handler pipeline.

Enabling logging outside and inside the pipeline enables inspection of the changes made by the other pipeline

handlers. This may include changes to request headers or to the response status code.

Including the name of the client in the log category enables log filtering for specific named clients.

It may be necessary to control the configuration of the inner HttpMessageHandler used by a client.

An IHttpClientBuilder is returned when adding named or typed clients. The

ConfigurePrimaryHttpMessageHandler extension method can be used to define a delegate. The delegate is used

to create and configure the primary HttpMessageHandler used by that client:

In a console app, add the following package references to the project:

Microsoft.Extensions.Hosting

Microsoft.Extensions.Http

In the following example:

IHttpClientFactory is registered in the Generic Host's service container.

MyService creates a client factory instance from the service, which is used to create an HttpClient .

HttpClient is used to retrieve a webpage.

Main creates a scope to execute the service's GetPage method and write the first 500 characters of the

webpage content to the console.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.configureprimaryhttpmessagehandler
https://www.nuget.org/packages/Microsoft.Extensions.Hosting
https://www.nuget.org/packages/Microsoft.Extensions.Http
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory

using System;
using System.Net.Http;
using System.Threading.Tasks;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
class Program
{
 static async Task<int> Main(string[] args)
 {
 var builder = new HostBuilder()
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHttpClient();
 services.AddTransient<IMyService, MyService>();
 }).UseConsoleLifetime();

 var host = builder.Build();

 using (var serviceScope = host.Services.CreateScope())
 {
 var services = serviceScope.ServiceProvider;

 try
 {
 var myService = services.GetRequiredService<IMyService>();
 var pageContent = await myService.GetPage();

 Console.WriteLine(pageContent.Substring(0, 500));
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();

 logger.LogError(ex, "An error occurred.");
 }
 }

 return 0;
 }

 public interface IMyService
 {
 Task<string> GetPage();
 }

 public class MyService : IMyService
 {
 private readonly IHttpClientFactory _clientFactory;

 public MyService(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task<string> GetPage()
 {
 // Content from BBC One: Dr. Who website (©BBC)
 var request = new HttpRequestMessage(HttpMethod.Get,
 "https://www.bbc.co.uk/programmes/b006q2x0");
 var client = _clientFactory.CreateClient();
 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 return await response.Content.ReadAsStringAsync();
 }
 else
 {

 return $"StatusCode: {response.StatusCode}";
 }
 }
 }
}

Header propagation middleware

Additional resources

Header propagation is an ASP.NET Core middleware to propagate HTTP headers from the incoming request to the

outgoing HTTP Client requests. To use header propagation:

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllers();

 services.AddHttpClient("MyForwardingClient").AddHeaderPropagation();
 services.AddHeaderPropagation(options =>
 {
 options.Headers.Add("X-TraceId");
 });
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseHttpsRedirection();

 app.UseHeaderPropagation();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
}

var client = clientFactory.CreateClient("MyForwardingClient");
var response = client.GetAsync(...);

Reference the Microsoft.AspNetCore.HeaderPropagation package.

Configure the middleware and HttpClient in Startup :

The client includes the configured headers on outbound requests:

Use HttpClientFactory to implement resilient HTTP requests

Implement HTTP call retries with exponential backoff with HttpClientFactory and Polly policies

Implement the Circuit Breaker pattern

How to serialize and deserialize JSON in .NET

By Glenn Condron, Ryan Nowak, and Steve Gordon

https://www.nuget.org/packages/Microsoft.AspNetCore.HeaderPropagation
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/implement-http-call-retries-exponential-backoff-polly
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/implement-circuit-breaker-pattern
https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-how-to
https://github.com/glennc
https://github.com/rynowak
https://github.com/stevejgordon

Consumption patterns

Basic usageBasic usage

services.AddHttpClient();

An IHttpClientFactory can be registered and used to configure and create HttpClient instances in an app. It offers

the following benefits:

Provides a central location for naming and configuring logical HttpClient instances. For example, a github

client can be registered and configured to access GitHub. A default client can be registered for other purposes.

Codifies the concept of outgoing middleware via delegating handlers in HttpClient and provides extensions

for Polly-based middleware to take advantage of that.

Manages the pooling and lifetime of underlying HttpClientMessageHandler instances to avoid common DNS

problems that occur when manually managing HttpClient lifetimes.

Adds a configurable logging experience (via ILogger) for all requests sent through clients created by the

factory.

View or download sample code (how to download)

There are several ways IHttpClientFactory can be used in an app:

Basic usage

Named clients

Typed clients

Generated clients

None of them are strictly superior to another. The best approach depends upon the app's constraints.

The IHttpClientFactory can be registered by calling the AddHttpClient extension method on the

IServiceCollection , inside the Startup.ConfigureServices method.

Once registered, code can accept an IHttpClientFactory anywhere services can be injected with dependency

injection (DI). The IHttpClientFactory can be used to create an HttpClient instance:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://github.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/http-requests/samples

public class BasicUsageModel : PageModel
{
 private readonly IHttpClientFactory _clientFactory;

 public IEnumerable<GitHubBranch> Branches { get; private set; }

 public bool GetBranchesError { get; private set; }

 public BasicUsageModel(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task OnGet()
 {
 var request = new HttpRequestMessage(HttpMethod.Get,
 "https://api.github.com/repos/aspnet/AspNetCore.Docs/branches");
 request.Headers.Add("Accept", "application/vnd.github.v3+json");
 request.Headers.Add("User-Agent", "HttpClientFactory-Sample");

 var client = _clientFactory.CreateClient();

 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 Branches = await response.Content
 .ReadAsAsync<IEnumerable<GitHubBranch>>();
 }
 else
 {
 GetBranchesError = true;
 Branches = Array.Empty<GitHubBranch>();
 }
 }
}

Named clientsNamed clients

services.AddHttpClient("github", c =>
{
 c.BaseAddress = new Uri("https://api.github.com/");
 // Github API versioning
 c.DefaultRequestHeaders.Add("Accept", "application/vnd.github.v3+json");
 // Github requires a user-agent
 c.DefaultRequestHeaders.Add("User-Agent", "HttpClientFactory-Sample");
});

Using IHttpClientFactory in this fashion is a good way to refactor an existing app. It has no impact on the way

HttpClient is used. In places where HttpClient instances are currently created, replace those occurrences with a

call to CreateClient.

If an app requires many distinct uses of HttpClient , each with a different configuration, an option is to use

named clientsnamed clients . Configuration for a named HttpClient can be specified during registration in

Startup.ConfigureServices .

In the preceding code, AddHttpClient is called, providing the name github. This client has some default

configuration applied—namely the base address and two headers required to work with the GitHub API.

Each time CreateClient is called, a new instance of HttpClient is created and the configuration action is called.

To consume a named client, a string parameter can be passed to CreateClient . Specify the name of the client to

be created:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory.createclient

public class NamedClientModel : PageModel
{
 private readonly IHttpClientFactory _clientFactory;

 public IEnumerable<GitHubPullRequest> PullRequests { get; private set; }

 public bool GetPullRequestsError { get; private set; }

 public bool HasPullRequests => PullRequests.Any();

 public NamedClientModel(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task OnGet()
 {
 var request = new HttpRequestMessage(HttpMethod.Get,
 "repos/aspnet/AspNetCore.Docs/pulls");

 var client = _clientFactory.CreateClient("github");

 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 PullRequests = await response.Content
 .ReadAsAsync<IEnumerable<GitHubPullRequest>>();
 }
 else
 {
 GetPullRequestsError = true;
 PullRequests = Array.Empty<GitHubPullRequest>();
 }
 }
}

Typed clientsTyped clients

In the preceding code, the request doesn't need to specify a hostname. It can pass just the path, since the base

address configured for the client is used.

Typed clients:

Provide the same capabilities as named clients without the need to use strings as keys.

Provides IntelliSense and compiler help when consuming clients.

Provide a single location to configure and interact with a particular HttpClient . For example, a single typed

client might be used for a single backend endpoint and encapsulate all logic dealing with that endpoint.

Work with DI and can be injected where required in your app.

A typed client accepts an HttpClient parameter in its constructor :

public class GitHubService
{
 public HttpClient Client { get; }

 public GitHubService(HttpClient client)
 {
 client.BaseAddress = new Uri("https://api.github.com/");
 // GitHub API versioning
 client.DefaultRequestHeaders.Add("Accept",
 "application/vnd.github.v3+json");
 // GitHub requires a user-agent
 client.DefaultRequestHeaders.Add("User-Agent",
 "HttpClientFactory-Sample");

 Client = client;
 }

 public async Task<IEnumerable<GitHubIssue>> GetAspNetDocsIssues()
 {
 var response = await Client.GetAsync(
 "/repos/aspnet/AspNetCore.Docs/issues?state=open&sort=created&direction=desc");

 response.EnsureSuccessStatusCode();

 var result = await response.Content
 .ReadAsAsync<IEnumerable<GitHubIssue>>();

 return result;
 }
}

services.AddHttpClient<GitHubService>();

In the preceding code, the configuration is moved into the typed client. The HttpClient object is exposed as a

public property. It's possible to define API-specific methods that expose HttpClient functionality. The

GetAspNetDocsIssues method encapsulates the code needed to query for and parse out the latest open issues

from a GitHub repository.

To register a typed client, the generic AddHttpClient extension method can be used within

Startup.ConfigureServices , specifying the typed client class:

The typed client is registered as transient with DI. The typed client can be injected and consumed directly:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientfactoryservicecollectionextensions.addhttpclient

public class TypedClientModel : PageModel
{
 private readonly GitHubService _gitHubService;

 public IEnumerable<GitHubIssue> LatestIssues { get; private set; }

 public bool HasIssue => LatestIssues.Any();

 public bool GetIssuesError { get; private set; }

 public TypedClientModel(GitHubService gitHubService)
 {
 _gitHubService = gitHubService;
 }

 public async Task OnGet()
 {
 try
 {
 LatestIssues = await _gitHubService.GetAspNetDocsIssues();
 }
 catch(HttpRequestException)
 {
 GetIssuesError = true;
 LatestIssues = Array.Empty<GitHubIssue>();
 }
 }
}

services.AddHttpClient<RepoService>(c =>
{
 c.BaseAddress = new Uri("https://api.github.com/");
 c.DefaultRequestHeaders.Add("Accept", "application/vnd.github.v3+json");
 c.DefaultRequestHeaders.Add("User-Agent", "HttpClientFactory-Sample");
});

If preferred, the configuration for a typed client can be specified during registration in Startup.ConfigureServices ,

rather than in the typed client's constructor :

It's possible to entirely encapsulate the HttpClient within a typed client. Rather than exposing it as a property,

public methods can be provided which call the HttpClient instance internally.

public class RepoService
{
 // _httpClient isn't exposed publicly
 private readonly HttpClient _httpClient;

 public RepoService(HttpClient client)
 {
 _httpClient = client;
 }

 public async Task<IEnumerable<string>> GetRepos()
 {
 var response = await _httpClient.GetAsync("aspnet/repos");

 response.EnsureSuccessStatusCode();

 var result = await response.Content
 .ReadAsAsync<IEnumerable<string>>();

 return result;
 }
}

Generated clientsGenerated clients

public interface IHelloClient
{
 [Get("/helloworld")]
 Task<Reply> GetMessageAsync();
}

public class Reply
{
 public string Message { get; set; }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient("hello", c =>
 {
 c.BaseAddress = new Uri("https://localhost:5001");
 })
 .AddTypedClient(c => Refit.RestService.For<IHelloClient>(c));

 services.AddMvc();
}

In the preceding code, the HttpClient is stored as a private field. All access to make external calls goes through

the GetRepos method.

IHttpClientFactory can be used in combination with other third-party libraries such as Refit. Refit is a REST

library for .NET. It converts REST APIs into live interfaces. An implementation of the interface is generated

dynamically by the RestService , using HttpClient to make the external HTTP calls.

An interface and a reply are defined to represent the external API and its response:

A typed client can be added, using Refit to generate the implementation:

The defined interface can be consumed where necessary, with the implementation provided by DI and Refit:

https://github.com/paulcbetts/refit

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly IHelloClient _client;

 public ValuesController(IHelloClient client)
 {
 _client = client;
 }

 [HttpGet("/")]
 public async Task<ActionResult<Reply>> Index()
 {
 return await _client.GetMessageAsync();
 }
}

Outgoing request middleware

public class ValidateHeaderHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 if (!request.Headers.Contains("X-API-KEY"))
 {
 return new HttpResponseMessage(HttpStatusCode.BadRequest)
 {
 Content = new StringContent(
 "You must supply an API key header called X-API-KEY")
 };
 }

 return await base.SendAsync(request, cancellationToken);
 }
}

HttpClient already has the concept of delegating handlers that can be linked together for outgoing HTTP

requests. The IHttpClientFactory makes it easy to define the handlers to apply for each named client. It supports

registration and chaining of multiple handlers to build an outgoing request middleware pipeline. Each of these

handlers is able to perform work before and after the outgoing request. This pattern is similar to the inbound

middleware pipeline in ASP.NET Core. The pattern provides a mechanism to manage cross-cutting concerns

around HTTP requests, including caching, error handling, serialization, and logging.

To create a handler, define a class deriving from DelegatingHandler. Override the SendAsync method to execute

code before passing the request to the next handler in the pipeline:

The preceding code defines a basic handler. It checks to see if an X-API-KEY header has been included on the

request. If the header is missing, it can avoid the HTTP call and return a suitable response.

During registration, one or more handlers can be added to the configuration for an HttpClient . This task is

accomplished via extension methods on the IHttpClientBuilder.

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.delegatinghandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.ihttpclientbuilder

services.AddTransient<ValidateHeaderHandler>();

services.AddHttpClient("externalservice", c =>
{
 // Assume this is an "external" service which requires an API KEY
 c.BaseAddress = new Uri("https://localhost:5000/");
})
.AddHttpMessageHandler<ValidateHeaderHandler>();

services.AddTransient<SecureRequestHandler>();
services.AddTransient<RequestDataHandler>();

services.AddHttpClient("clientwithhandlers")
 // This handler is on the outside and called first during the
 // request, last during the response.
 .AddHttpMessageHandler<SecureRequestHandler>()
 // This handler is on the inside, closest to the request being
 // sent.
 .AddHttpMessageHandler<RequestDataHandler>();

Use Polly-based handlers

Handle transient faultsHandle transient faults

In the preceding code, the ValidateHeaderHandler is registered with DI. The IHttpClientFactory creates a separate

DI scope for each handler. Handlers are free to depend upon services of any scope. Services that handlers depend

upon are disposed when the handler is disposed.

Once registered, AddHttpMessageHandler can be called, passing in the type for the handler.

Multiple handlers can be registered in the order that they should execute. Each handler wraps the next handler

until the final HttpClientHandler executes the request:

Use one of the following approaches to share per-request state with message handlers:

Pass data into the handler using HttpRequestMessage.Properties .

Use IHttpContextAccessor to access the current request.

Create a custom AsyncLocal storage object to pass the data.

IHttpClientFactory integrates with a popular third-party library called Polly. Polly is a comprehensive resilience

and transient fault-handling library for .NET. It allows developers to express policies such as Retry, Circuit Breaker,

Timeout, Bulkhead Isolation, and Fallback in a fluent and thread-safe manner.

Extension methods are provided to enable the use of Polly policies with configured HttpClient instances. The

Polly extensions:

Support adding Polly-based handlers to clients.

Can be used after installing the Microsoft.Extensions.Http.Polly NuGet package. The package isn't included in

the ASP.NET Core shared framework.

Most common faults occur when external HTTP calls are transient. A convenient extension method called

AddTransientHttpErrorPolicy is included which allows a policy to be defined to handle transient errors. Policies

configured with this extension method handle HttpRequestException , HTTP 5xx responses, and HTTP 408

responses.

The AddTransientHttpErrorPolicy extension can be used within Startup.ConfigureServices . The extension

provides access to a PolicyBuilder object configured to handle errors representing a possible transient fault:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.addhttpmessagehandler
https://github.com/App-vNext/Polly
https://www.nuget.org/packages/Microsoft.Extensions.Http.Polly/

services.AddHttpClient<UnreliableEndpointCallerService>()
 .AddTransientHttpErrorPolicy(p =>
 p.WaitAndRetryAsync(3, _ => TimeSpan.FromMilliseconds(600)));

Dynamically select policiesDynamically select policies

var timeout = Policy.TimeoutAsync<HttpResponseMessage>(
 TimeSpan.FromSeconds(10));
var longTimeout = Policy.TimeoutAsync<HttpResponseMessage>(
 TimeSpan.FromSeconds(30));

services.AddHttpClient("conditionalpolicy")
// Run some code to select a policy based on the request
 .AddPolicyHandler(request =>
 request.Method == HttpMethod.Get ? timeout : longTimeout);

Add multiple Polly handlersAdd multiple Polly handlers

services.AddHttpClient("multiplepolicies")
 .AddTransientHttpErrorPolicy(p => p.RetryAsync(3))
 .AddTransientHttpErrorPolicy(
 p => p.CircuitBreakerAsync(5, TimeSpan.FromSeconds(30)));

Add policies from the Polly registryAdd policies from the Polly registry

var registry = services.AddPolicyRegistry();

registry.Add("regular", timeout);
registry.Add("long", longTimeout);

services.AddHttpClient("regulartimeouthandler")
 .AddPolicyHandlerFromRegistry("regular");

In the preceding code, a WaitAndRetryAsync policy is defined. Failed requests are retried up to three times with a

delay of 600 ms between attempts.

Additional extension methods exist which can be used to add Polly-based handlers. One such extension is

AddPolicyHandler , which has multiple overloads. One overload allows the request to be inspected when defining

which policy to apply:

In the preceding code, if the outgoing request is an HTTP GET, a 10-second timeout is applied. For any other HTTP

method, a 30-second timeout is used.

It's common to nest Polly policies to provide enhanced functionality:

In the preceding example, two handlers are added. The first uses the AddTransientHttpErrorPolicy extension to

add a retry policy. Failed requests are retried up to three times. The second call to AddTransientHttpErrorPolicy

adds a circuit breaker policy. Further external requests are blocked for 30 seconds if five failed attempts occur

sequentially. Circuit breaker policies are stateful. All calls through this client share the same circuit state.

An approach to managing regularly used policies is to define them once and register them with a PolicyRegistry

. An extension method is provided which allows a handler to be added using a policy from the registry:

In the preceding code, two policies are registered when the PolicyRegistry is added to the ServiceCollection . To

use a policy from the registry, the AddPolicyHandlerFromRegistry method is used, passing the name of the policy

to apply.

Further information about IHttpClientFactory and Polly integrations can be found on the Polly wiki.

https://github.com/App-vNext/Polly/wiki/Polly-and-HttpClientFactory

HttpClient and lifetime management

services.AddHttpClient("extendedhandlerlifetime")
 .SetHandlerLifetime(TimeSpan.FromMinutes(5));

Alternatives to IHttpClientFactoryAlternatives to IHttpClientFactory

CookiesCookies

A new HttpClient instance is returned each time CreateClient is called on the IHttpClientFactory . There's an

HttpMessageHandler per named client. The factory manages the lifetimes of the HttpMessageHandler instances.

IHttpClientFactory pools the HttpMessageHandler instances created by the factory to reduce resource

consumption. An HttpMessageHandler instance may be reused from the pool when creating a new HttpClient

instance if its lifetime hasn't expired.

Pooling of handlers is desirable as each handler typically manages its own underlying HTTP connections. Creating

more handlers than necessary can result in connection delays. Some handlers also keep connections open

indefinitely, which can prevent the handler from reacting to DNS changes.

The default handler lifetime is two minutes. The default value can be overridden on a per named client basis. To

override it, call SetHandlerLifetime on the IHttpClientBuilder that is returned when creating the client:

Disposal of the client isn't required. Disposal cancels outgoing requests and guarantees the given HttpClient

instance can't be used after calling Dispose. IHttpClientFactory tracks and disposes resources used by

HttpClient instances. The HttpClient instances can generally be treated as .NET objects not requiring disposal.

Keeping a single HttpClient instance alive for a long duration is a common pattern used before the inception of

IHttpClientFactory . This pattern becomes unnecessary after migrating to IHttpClientFactory .

Using IHttpClientFactory in a DI-enabled app avoids:

Resource exhaustion problems by pooling HttpMessageHandler instances.

Stale DNS problems by cycling HttpMessageHandler instances at regular intervals.

There are alternative ways to solve the preceding problems using a long-lived SocketsHttpHandler instance.

Create an instance of SocketsHttpHandler when the app starts and use it for the life of the app.

Configure PooledConnectionLifetime to an appropriate value based on DNS refresh times.

Create HttpClient instances using new HttpClient(handler, disposeHandler: false) as needed.

The preceding approaches solve the resource management problems that IHttpClientFactory solves in a similar

way.

The SocketsHttpHandler shares connections across HttpClient instances. This sharing prevents socket

exhaustion.

The SocketsHttpHandler cycles connections according to PooledConnectionLifetime to avoid stale DNS

problems.

The pooled HttpMessageHandler instances results in CookieContainer objects being shared. Unanticipated

CookieContainer object sharing often results in incorrect code. For apps that require cookies, consider either :

Disabling automatic cookie handling

Avoiding IHttpClientFactory

Call ConfigurePrimaryHttpMessageHandler to disable automatic cookie handling:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.sethandlerlifetime
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.socketshttphandler.pooledconnectionlifetime#system_net_http_socketshttphandler_pooledconnectionlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.configureprimaryhttpmessagehandler

services.AddHttpClient("configured-disable-automatic-cookies")
 .ConfigurePrimaryHttpMessageHandler(() =>
 {
 return new SocketsHttpHandler()
 {
 UseCookies = false,
 };
 });

Logging

Configure the HttpMessageHandler

services.AddHttpClient("configured-inner-handler")
 .ConfigurePrimaryHttpMessageHandler(() =>
 {
 return new HttpClientHandler()
 {
 AllowAutoRedirect = false,
 UseDefaultCredentials = true
 };
 });

Use IHttpClientFactory in a console app

Clients created via IHttpClientFactory record log messages for all requests. Enable the appropriate information

level in your logging configuration to see the default log messages. Additional logging, such as the logging of

request headers, is only included at trace level.

The log category used for each client includes the name of the client. A client named MyNamedClient, for

example, logs messages with a category of System.Net.Http.HttpClient.MyNamedClient.LogicalHandler . Messages

suffixed with LogicalHandler occur outside the request handler pipeline. On the request, messages are logged

before any other handlers in the pipeline have processed it. On the response, messages are logged after any other

pipeline handlers have received the response.

Logging also occurs inside the request handler pipeline. In the MyNamedClient example, those messages are

logged against the log category System.Net.Http.HttpClient.MyNamedClient.ClientHandler . For the request, this

occurs after all other handlers have run and immediately before the request is sent out on the network. On the

response, this logging includes the state of the response before it passes back through the handler pipeline.

Enabling logging outside and inside the pipeline enables inspection of the changes made by the other pipeline

handlers. This may include changes to request headers, for example, or to the response status code.

Including the name of the client in the log category enables log filtering for specific named clients where

necessary.

It may be necessary to control the configuration of the inner HttpMessageHandler used by a client.

An IHttpClientBuilder is returned when adding named or typed clients. The

ConfigurePrimaryHttpMessageHandler extension method can be used to define a delegate. The delegate is used

to create and configure the primary HttpMessageHandler used by that client:

In a console app, add the following package references to the project:

Microsoft.Extensions.Hosting

Microsoft.Extensions.Http

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.configureprimaryhttpmessagehandler
https://www.nuget.org/packages/Microsoft.Extensions.Hosting
https://www.nuget.org/packages/Microsoft.Extensions.Http

using System;
using System.Net.Http;
using System.Threading.Tasks;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
class Program
{
 static async Task<int> Main(string[] args)
 {
 var builder = new HostBuilder()
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHttpClient();
 services.AddTransient<IMyService, MyService>();
 }).UseConsoleLifetime();

 var host = builder.Build();

 using (var serviceScope = host.Services.CreateScope())
 {
 var services = serviceScope.ServiceProvider;

 try
 {
 var myService = services.GetRequiredService<IMyService>();
 var pageContent = await myService.GetPage();

 Console.WriteLine(pageContent.Substring(0, 500));
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();

 logger.LogError(ex, "An error occurred.");
 }
 }

 return 0;
 }

 public interface IMyService
 {
 Task<string> GetPage();
 }

 public class MyService : IMyService
 {
 private readonly IHttpClientFactory _clientFactory;

 public MyService(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task<string> GetPage()
 {
 // Content from BBC One: Dr. Who website (©BBC)

In the following example:

IHttpClientFactory is registered in the Generic Host's service container.

MyService creates a client factory instance from the service, which is used to create an HttpClient .

HttpClient is used to retrieve a webpage.

Main creates a scope to execute the service's GetPage method and write the first 500 characters of the

webpage content to the console.

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory

 // Content from BBC One: Dr. Who website (©BBC)
 var request = new HttpRequestMessage(HttpMethod.Get,
 "https://www.bbc.co.uk/programmes/b006q2x0");
 var client = _clientFactory.CreateClient();
 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 return await response.Content.ReadAsStringAsync();
 }
 else
 {
 return $"StatusCode: {response.StatusCode}";
 }
 }
 }
}

Additional resources

Prerequisites

Consumption patterns

Basic usageBasic usage

Use HttpClientFactory to implement resilient HTTP requests

Implement HTTP call retries with exponential backoff with HttpClientFactory and Polly policies

Implement the Circuit Breaker pattern

By Glenn Condron, Ryan Nowak, and Steve Gordon

An IHttpClientFactory can be registered and used to configure and create HttpClient instances in an app. It offers

the following benefits:

Provides a central location for naming and configuring logical HttpClient instances. For example, a github

client can be registered and configured to access GitHub. A default client can be registered for other purposes.

Codifies the concept of outgoing middleware via delegating handlers in HttpClient and provides extensions

for Polly-based middleware to take advantage of that.

Manages the pooling and lifetime of underlying HttpClientMessageHandler instances to avoid common DNS

problems that occur when manually managing HttpClient lifetimes.

Adds a configurable logging experience (via ILogger) for all requests sent through clients created by the

factory.

View or download sample code (how to download)

Projects targeting .NET Framework require installation of the Microsoft.Extensions.Http NuGet package. Projects

that target .NET Core and reference the Microsoft.AspNetCore.App metapackage already include the

Microsoft.Extensions.Http package.

There are several ways IHttpClientFactory can be used in an app:

Basic usage

Named clients

Typed clients

Generated clients

None of them are strictly superior to another. The best approach depends upon the app's constraints.

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/implement-http-call-retries-exponential-backoff-polly
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/implement-circuit-breaker-pattern
https://github.com/glennc
https://github.com/rynowak
https://github.com/stevejgordon
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://github.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/http-requests/samples
https://www.nuget.org/packages/Microsoft.Extensions.Http/

services.AddHttpClient();

public class BasicUsageModel : PageModel
{
 private readonly IHttpClientFactory _clientFactory;

 public IEnumerable<GitHubBranch> Branches { get; private set; }

 public bool GetBranchesError { get; private set; }

 public BasicUsageModel(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task OnGet()
 {
 var request = new HttpRequestMessage(HttpMethod.Get,
 "https://api.github.com/repos/aspnet/AspNetCore.Docs/branches");
 request.Headers.Add("Accept", "application/vnd.github.v3+json");
 request.Headers.Add("User-Agent", "HttpClientFactory-Sample");

 var client = _clientFactory.CreateClient();

 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 Branches = await response.Content
 .ReadAsAsync<IEnumerable<GitHubBranch>>();
 }
 else
 {
 GetBranchesError = true;
 Branches = Array.Empty<GitHubBranch>();
 }
 }
}

Named clientsNamed clients

The IHttpClientFactory can be registered by calling the AddHttpClient extension method on the

IServiceCollection , inside the Startup.ConfigureServices method.

Once registered, code can accept an IHttpClientFactory anywhere services can be injected with dependency

injection (DI). The IHttpClientFactory can be used to create an HttpClient instance:

Using IHttpClientFactory in this fashion is a good way to refactor an existing app. It has no impact on the way

HttpClient is used. In places where HttpClient instances are currently created, replace those occurrences with a

call to CreateClient.

If an app requires many distinct uses of HttpClient , each with a different configuration, an option is to use

named clientsnamed clients . Configuration for a named HttpClient can be specified during registration in

Startup.ConfigureServices .

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory.createclient

services.AddHttpClient("github", c =>
{
 c.BaseAddress = new Uri("https://api.github.com/");
 // Github API versioning
 c.DefaultRequestHeaders.Add("Accept", "application/vnd.github.v3+json");
 // Github requires a user-agent
 c.DefaultRequestHeaders.Add("User-Agent", "HttpClientFactory-Sample");
});

public class NamedClientModel : PageModel
{
 private readonly IHttpClientFactory _clientFactory;

 public IEnumerable<GitHubPullRequest> PullRequests { get; private set; }

 public bool GetPullRequestsError { get; private set; }

 public bool HasPullRequests => PullRequests.Any();

 public NamedClientModel(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task OnGet()
 {
 var request = new HttpRequestMessage(HttpMethod.Get,
 "repos/aspnet/AspNetCore.Docs/pulls");

 var client = _clientFactory.CreateClient("github");

 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 PullRequests = await response.Content
 .ReadAsAsync<IEnumerable<GitHubPullRequest>>();
 }
 else
 {
 GetPullRequestsError = true;
 PullRequests = Array.Empty<GitHubPullRequest>();
 }
 }
}

Typed clientsTyped clients

In the preceding code, AddHttpClient is called, providing the name github. This client has some default

configuration applied—namely the base address and two headers required to work with the GitHub API.

Each time CreateClient is called, a new instance of HttpClient is created and the configuration action is called.

To consume a named client, a string parameter can be passed to CreateClient . Specify the name of the client to

be created:

In the preceding code, the request doesn't need to specify a hostname. It can pass just the path, since the base

address configured for the client is used.

Typed clients:

Provide the same capabilities as named clients without the need to use strings as keys.

Provides IntelliSense and compiler help when consuming clients.

public class GitHubService
{
 public HttpClient Client { get; }

 public GitHubService(HttpClient client)
 {
 client.BaseAddress = new Uri("https://api.github.com/");
 // GitHub API versioning
 client.DefaultRequestHeaders.Add("Accept",
 "application/vnd.github.v3+json");
 // GitHub requires a user-agent
 client.DefaultRequestHeaders.Add("User-Agent",
 "HttpClientFactory-Sample");

 Client = client;
 }

 public async Task<IEnumerable<GitHubIssue>> GetAspNetDocsIssues()
 {
 var response = await Client.GetAsync(
 "/repos/aspnet/AspNetCore.Docs/issues?state=open&sort=created&direction=desc");

 response.EnsureSuccessStatusCode();

 var result = await response.Content
 .ReadAsAsync<IEnumerable<GitHubIssue>>();

 return result;
 }
}

services.AddHttpClient<GitHubService>();

Provide a single location to configure and interact with a particular HttpClient . For example, a single typed

client might be used for a single backend endpoint and encapsulate all logic dealing with that endpoint.

Work with DI and can be injected where required in your app.

A typed client accepts an HttpClient parameter in its constructor :

In the preceding code, the configuration is moved into the typed client. The HttpClient object is exposed as a

public property. It's possible to define API-specific methods that expose HttpClient functionality. The

GetAspNetDocsIssues method encapsulates the code needed to query for and parse out the latest open issues

from a GitHub repository.

To register a typed client, the generic AddHttpClient extension method can be used within

Startup.ConfigureServices , specifying the typed client class:

The typed client is registered as transient with DI. The typed client can be injected and consumed directly:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientfactoryservicecollectionextensions.addhttpclient

public class TypedClientModel : PageModel
{
 private readonly GitHubService _gitHubService;

 public IEnumerable<GitHubIssue> LatestIssues { get; private set; }

 public bool HasIssue => LatestIssues.Any();

 public bool GetIssuesError { get; private set; }

 public TypedClientModel(GitHubService gitHubService)
 {
 _gitHubService = gitHubService;
 }

 public async Task OnGet()
 {
 try
 {
 LatestIssues = await _gitHubService.GetAspNetDocsIssues();
 }
 catch(HttpRequestException)
 {
 GetIssuesError = true;
 LatestIssues = Array.Empty<GitHubIssue>();
 }
 }
}

services.AddHttpClient<RepoService>(c =>
{
 c.BaseAddress = new Uri("https://api.github.com/");
 c.DefaultRequestHeaders.Add("Accept", "application/vnd.github.v3+json");
 c.DefaultRequestHeaders.Add("User-Agent", "HttpClientFactory-Sample");
});

If preferred, the configuration for a typed client can be specified during registration in Startup.ConfigureServices ,

rather than in the typed client's constructor :

It's possible to entirely encapsulate the HttpClient within a typed client. Rather than exposing it as a property,

public methods can be provided which call the HttpClient instance internally.

public class RepoService
{
 // _httpClient isn't exposed publicly
 private readonly HttpClient _httpClient;

 public RepoService(HttpClient client)
 {
 _httpClient = client;
 }

 public async Task<IEnumerable<string>> GetRepos()
 {
 var response = await _httpClient.GetAsync("aspnet/repos");

 response.EnsureSuccessStatusCode();

 var result = await response.Content
 .ReadAsAsync<IEnumerable<string>>();

 return result;
 }
}

Generated clientsGenerated clients

public interface IHelloClient
{
 [Get("/helloworld")]
 Task<Reply> GetMessageAsync();
}

public class Reply
{
 public string Message { get; set; }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddHttpClient("hello", c =>
 {
 c.BaseAddress = new Uri("http://localhost:5000");
 })
 .AddTypedClient(c => Refit.RestService.For<IHelloClient>(c));

 services.AddMvc();
}

In the preceding code, the HttpClient is stored as a private field. All access to make external calls goes through

the GetRepos method.

IHttpClientFactory can be used in combination with other third-party libraries such as Refit. Refit is a REST

library for .NET. It converts REST APIs into live interfaces. An implementation of the interface is generated

dynamically by the RestService , using HttpClient to make the external HTTP calls.

An interface and a reply are defined to represent the external API and its response:

A typed client can be added, using Refit to generate the implementation:

The defined interface can be consumed where necessary, with the implementation provided by DI and Refit:

https://github.com/paulcbetts/refit

[ApiController]
public class ValuesController : ControllerBase
{
 private readonly IHelloClient _client;

 public ValuesController(IHelloClient client)
 {
 _client = client;
 }

 [HttpGet("/")]
 public async Task<ActionResult<Reply>> Index()
 {
 return await _client.GetMessageAsync();
 }
}

Outgoing request middleware

public class ValidateHeaderHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 if (!request.Headers.Contains("X-API-KEY"))
 {
 return new HttpResponseMessage(HttpStatusCode.BadRequest)
 {
 Content = new StringContent(
 "You must supply an API key header called X-API-KEY")
 };
 }

 return await base.SendAsync(request, cancellationToken);
 }
}

HttpClient already has the concept of delegating handlers that can be linked together for outgoing HTTP

requests. The IHttpClientFactory makes it easy to define the handlers to apply for each named client. It supports

registration and chaining of multiple handlers to build an outgoing request middleware pipeline. Each of these

handlers is able to perform work before and after the outgoing request. This pattern is similar to the inbound

middleware pipeline in ASP.NET Core. The pattern provides a mechanism to manage cross-cutting concerns

around HTTP requests, including caching, error handling, serialization, and logging.

To create a handler, define a class deriving from DelegatingHandler. Override the SendAsync method to execute

code before passing the request to the next handler in the pipeline:

The preceding code defines a basic handler. It checks to see if an X-API-KEY header has been included on the

request. If the header is missing, it can avoid the HTTP call and return a suitable response.

During registration, one or more handlers can be added to the configuration for an HttpClient . This task is

accomplished via extension methods on the IHttpClientBuilder.

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.delegatinghandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.ihttpclientbuilder

services.AddTransient<ValidateHeaderHandler>();

services.AddHttpClient("externalservice", c =>
{
 // Assume this is an "external" service which requires an API KEY
 c.BaseAddress = new Uri("https://localhost:5000/");
})
.AddHttpMessageHandler<ValidateHeaderHandler>();

services.AddTransient<SecureRequestHandler>();
services.AddTransient<RequestDataHandler>();

services.AddHttpClient("clientwithhandlers")
 // This handler is on the outside and called first during the
 // request, last during the response.
 .AddHttpMessageHandler<SecureRequestHandler>()
 // This handler is on the inside, closest to the request being
 // sent.
 .AddHttpMessageHandler<RequestDataHandler>();

Use Polly-based handlers

Handle transient faultsHandle transient faults

In the preceding code, the ValidateHeaderHandler is registered with DI. The handler mustmust be registered in DI as a

transient service, never scoped. If the handler is registered as a scoped service and any services that the handler

depends upon are disposable:

The handler's services could be disposed before the handler goes out of scope.

The disposed handler services causes the handler to fail.

Once registered, AddHttpMessageHandler can be called, passing in the handler type.

Multiple handlers can be registered in the order that they should execute. Each handler wraps the next handler

until the final HttpClientHandler executes the request:

Use one of the following approaches to share per-request state with message handlers:

Pass data into the handler using HttpRequestMessage.Properties .

Use IHttpContextAccessor to access the current request.

Create a custom AsyncLocal storage object to pass the data.

IHttpClientFactory integrates with a popular third-party library called Polly. Polly is a comprehensive resilience

and transient fault-handling library for .NET. It allows developers to express policies such as Retry, Circuit Breaker,

Timeout, Bulkhead Isolation, and Fallback in a fluent and thread-safe manner.

Extension methods are provided to enable the use of Polly policies with configured HttpClient instances. The

Polly extensions:

Support adding Polly-based handlers to clients.

Can be used after installing the Microsoft.Extensions.Http.Polly NuGet package. The package isn't included in

the ASP.NET Core shared framework.

Most common faults occur when external HTTP calls are transient. A convenient extension method called

AddTransientHttpErrorPolicy is included which allows a policy to be defined to handle transient errors. Policies

configured with this extension method handle HttpRequestException , HTTP 5xx responses, and HTTP 408

responses.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.addhttpmessagehandler
https://github.com/App-vNext/Polly
https://www.nuget.org/packages/Microsoft.Extensions.Http.Polly/

services.AddHttpClient<UnreliableEndpointCallerService>()
 .AddTransientHttpErrorPolicy(p =>
 p.WaitAndRetryAsync(3, _ => TimeSpan.FromMilliseconds(600)));

Dynamically select policiesDynamically select policies

var timeout = Policy.TimeoutAsync<HttpResponseMessage>(
 TimeSpan.FromSeconds(10));
var longTimeout = Policy.TimeoutAsync<HttpResponseMessage>(
 TimeSpan.FromSeconds(30));

services.AddHttpClient("conditionalpolicy")
// Run some code to select a policy based on the request
 .AddPolicyHandler(request =>
 request.Method == HttpMethod.Get ? timeout : longTimeout);

Add multiple Polly handlersAdd multiple Polly handlers

services.AddHttpClient("multiplepolicies")
 .AddTransientHttpErrorPolicy(p => p.RetryAsync(3))
 .AddTransientHttpErrorPolicy(
 p => p.CircuitBreakerAsync(5, TimeSpan.FromSeconds(30)));

Add policies from the Polly registryAdd policies from the Polly registry

var registry = services.AddPolicyRegistry();

registry.Add("regular", timeout);
registry.Add("long", longTimeout);

services.AddHttpClient("regulartimeouthandler")
 .AddPolicyHandlerFromRegistry("regular");

The AddTransientHttpErrorPolicy extension can be used within Startup.ConfigureServices . The extension

provides access to a PolicyBuilder object configured to handle errors representing a possible transient fault:

In the preceding code, a WaitAndRetryAsync policy is defined. Failed requests are retried up to three times with a

delay of 600 ms between attempts.

Additional extension methods exist which can be used to add Polly-based handlers. One such extension is

AddPolicyHandler , which has multiple overloads. One overload allows the request to be inspected when defining

which policy to apply:

In the preceding code, if the outgoing request is an HTTP GET, a 10-second timeout is applied. For any other HTTP

method, a 30-second timeout is used.

It's common to nest Polly policies to provide enhanced functionality:

In the preceding example, two handlers are added. The first uses the AddTransientHttpErrorPolicy extension to

add a retry policy. Failed requests are retried up to three times. The second call to AddTransientHttpErrorPolicy

adds a circuit breaker policy. Further external requests are blocked for 30 seconds if five failed attempts occur

sequentially. Circuit breaker policies are stateful. All calls through this client share the same circuit state.

An approach to managing regularly used policies is to define them once and register them with a PolicyRegistry

. An extension method is provided which allows a handler to be added using a policy from the registry:

In the preceding code, two policies are registered when the PolicyRegistry is added to the ServiceCollection . To

use a policy from the registry, the AddPolicyHandlerFromRegistry method is used, passing the name of the policy

HttpClient and lifetime management

services.AddHttpClient("extendedhandlerlifetime")
 .SetHandlerLifetime(TimeSpan.FromMinutes(5));

Alternatives to IHttpClientFactoryAlternatives to IHttpClientFactory

CookiesCookies

to apply.

Further information about IHttpClientFactory and Polly integrations can be found on the Polly wiki.

A new HttpClient instance is returned each time CreateClient is called on the IHttpClientFactory . There's an

HttpMessageHandler per named client. The factory manages the lifetimes of the HttpMessageHandler instances.

IHttpClientFactory pools the HttpMessageHandler instances created by the factory to reduce resource

consumption. An HttpMessageHandler instance may be reused from the pool when creating a new HttpClient

instance if its lifetime hasn't expired.

Pooling of handlers is desirable as each handler typically manages its own underlying HTTP connections. Creating

more handlers than necessary can result in connection delays. Some handlers also keep connections open

indefinitely, which can prevent the handler from reacting to DNS changes.

The default handler lifetime is two minutes. The default value can be overridden on a per named client basis. To

override it, call SetHandlerLifetime on the IHttpClientBuilder that is returned when creating the client:

Disposal of the client isn't required. Disposal cancels outgoing requests and guarantees the given HttpClient

instance can't be used after calling Dispose. IHttpClientFactory tracks and disposes resources used by

HttpClient instances. The HttpClient instances can generally be treated as .NET objects not requiring disposal.

Keeping a single HttpClient instance alive for a long duration is a common pattern used before the inception of

IHttpClientFactory . This pattern becomes unnecessary after migrating to IHttpClientFactory .

Using IHttpClientFactory in a DI-enabled app avoids:

Resource exhaustion problems by pooling HttpMessageHandler instances.

Stale DNS problems by cycling HttpMessageHandler instances at regular intervals.

There are alternative ways to solve the preceding problems using a long-lived SocketsHttpHandler instance.

Create an instance of SocketsHttpHandler when the app starts and use it for the life of the app.

Configure PooledConnectionLifetime to an appropriate value based on DNS refresh times.

Create HttpClient instances using new HttpClient(handler, disposeHandler: false) as needed.

The preceding approaches solve the resource management problems that IHttpClientFactory solves in a similar

way.

The SocketsHttpHandler shares connections across HttpClient instances. This sharing prevents socket

exhaustion.

The SocketsHttpHandler cycles connections according to PooledConnectionLifetime to avoid stale DNS

problems.

The pooled HttpMessageHandler instances results in CookieContainer objects being shared. Unanticipated

CookieContainer object sharing often results in incorrect code. For apps that require cookies, consider either :

Disabling automatic cookie handling

Avoiding IHttpClientFactory

https://github.com/App-vNext/Polly/wiki/Polly-and-HttpClientFactory
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.sethandlerlifetime
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.socketshttphandler.pooledconnectionlifetime#system_net_http_socketshttphandler_pooledconnectionlifetime

services.AddHttpClient("configured-disable-automatic-cookies")
 .ConfigurePrimaryHttpMessageHandler(() =>
 {
 return new SocketsHttpHandler()
 {
 UseCookies = false,
 };
 });

Logging

Configure the HttpMessageHandler

services.AddHttpClient("configured-inner-handler")
 .ConfigurePrimaryHttpMessageHandler(() =>
 {
 return new HttpClientHandler()
 {
 AllowAutoRedirect = false,
 UseDefaultCredentials = true
 };
 });

Use IHttpClientFactory in a console app

Call ConfigurePrimaryHttpMessageHandler to disable automatic cookie handling:

Clients created via IHttpClientFactory record log messages for all requests. Enable the appropriate information

level in your logging configuration to see the default log messages. Additional logging, such as the logging of

request headers, is only included at trace level.

The log category used for each client includes the name of the client. A client named MyNamedClient, for

example, logs messages with a category of System.Net.Http.HttpClient.MyNamedClient.LogicalHandler . Messages

suffixed with LogicalHandler occur outside the request handler pipeline. On the request, messages are logged

before any other handlers in the pipeline have processed it. On the response, messages are logged after any other

pipeline handlers have received the response.

Logging also occurs inside the request handler pipeline. In the MyNamedClient example, those messages are

logged against the log category System.Net.Http.HttpClient.MyNamedClient.ClientHandler . For the request, this

occurs after all other handlers have run and immediately before the request is sent out on the network. On the

response, this logging includes the state of the response before it passes back through the handler pipeline.

Enabling logging outside and inside the pipeline enables inspection of the changes made by the other pipeline

handlers. This may include changes to request headers, for example, or to the response status code.

Including the name of the client in the log category enables log filtering for specific named clients where

necessary.

It may be necessary to control the configuration of the inner HttpMessageHandler used by a client.

An IHttpClientBuilder is returned when adding named or typed clients. The

ConfigurePrimaryHttpMessageHandler extension method can be used to define a delegate. The delegate is used

to create and configure the primary HttpMessageHandler used by that client:

In a console app, add the following package references to the project:

Microsoft.Extensions.Hosting

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.configureprimaryhttpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.configureprimaryhttpmessagehandler
https://www.nuget.org/packages/Microsoft.Extensions.Hosting

using System;
using System.Net.Http;
using System.Threading.Tasks;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
class Program
{
 static async Task<int> Main(string[] args)
 {
 var builder = new HostBuilder()
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHttpClient();
 services.AddTransient<IMyService, MyService>();
 }).UseConsoleLifetime();

 var host = builder.Build();

 using (var serviceScope = host.Services.CreateScope())
 {
 var services = serviceScope.ServiceProvider;

 try
 {
 var myService = services.GetRequiredService<IMyService>();
 var pageContent = await myService.GetPage();

 Console.WriteLine(pageContent.Substring(0, 500));
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();

 logger.LogError(ex, "An error occurred.");
 }
 }

 return 0;
 }

 public interface IMyService
 {
 Task<string> GetPage();
 }

 public class MyService : IMyService
 {
 private readonly IHttpClientFactory _clientFactory;

 public MyService(IHttpClientFactory clientFactory)
 {
 _clientFactory = clientFactory;
 }

 public async Task<string> GetPage()

Microsoft.Extensions.Http

In the following example:

IHttpClientFactory is registered in the Generic Host's service container.

MyService creates a client factory instance from the service, which is used to create an HttpClient .

HttpClient is used to retrieve a webpage.

Main creates a scope to execute the service's GetPage method and write the first 500 characters of the

webpage content to the console.

https://www.nuget.org/packages/Microsoft.Extensions.Http
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory

 public async Task<string> GetPage()
 {
 // Content from BBC One: Dr. Who website (©BBC)
 var request = new HttpRequestMessage(HttpMethod.Get,
 "https://www.bbc.co.uk/programmes/b006q2x0");
 var client = _clientFactory.CreateClient();
 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 return await response.Content.ReadAsStringAsync();
 }
 else
 {
 return $"StatusCode: {response.StatusCode}";
 }
 }
 }
}

Header propagation middleware
Header propagation is a community supported middleware to propagate HTTP headers from the incoming

request to the outgoing HTTP Client requests. To use header propagation:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

 services.AddHttpClient("MyForwardingClient").AddHeaderPropagation();
 services.AddHeaderPropagation(options =>
 {
 options.Headers.Add("X-TraceId");
 });
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 app.UseHeaderPropagation();

 app.UseMvc();
}

var client = clientFactory.CreateClient("MyForwardingClient");
var response = client.GetAsync(...);

Reference the community supported port of the package HeaderPropagation. ASP.NET Core 3.1 and later

supports Microsoft.AspNetCore.HeaderPropagation.

Configure the middleware and HttpClient in Startup :

The client includes the configured headers on outbound requests:

https://www.nuget.org/packages/HeaderPropagation
https://www.nuget.org/packages/Microsoft.AspNetCore.HeaderPropagation

Additional resources
Use HttpClientFactory to implement resilient HTTP requests

Implement HTTP call retries with exponential backoff with HttpClientFactory and Polly policies

Implement the Circuit Breaker pattern

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/implement-http-call-retries-exponential-backoff-polly
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/implement-circuit-breaker-pattern

Static files in ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

Serve static files

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Serve files in web rootServe files in web root

By Rick Anderson and Kirk Larkin

Static files, such as HTML, CSS, images, and JavaScript, are assets an ASP.NET Core app serves directly to

clients by default.

View or download sample code (how to download)

Static files are stored within the project's web root directory. The default directory is {content root}/wwwroot ,

but it can be changed with the UseWebRoot method. For more information, see Content root and Web root.

The CreateDefaultBuilder method sets the content root to the current directory:

The preceding code was created with the web app template.

Static files are accessible via a path relative to the web root. For example, the Web ApplicationWeb Application project

templates contain several folders within the wwwroot folder :

wwwroot

css

js

lib

Consider creating the wwwroot/images folder and adding the wwwroot/images/MyImage.jpg file. The URI

format to access a file in the images folder is https://<hostname>/images/<image_file_name> . For example,

https://localhost:5001/images/MyImage.jpg

The default web app templates call the UseStaticFiles method in Startup.Configure , which enables static files

to be served:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/static-files.md
https://twitter.com/RickAndMSFT
https://twitter.com/serpent5
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/static-files/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.usewebroot
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/owin.staticfileextensions.usestaticfiles

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

Serve files outside of web rootServe files outside of web root

The parameterless UseStaticFiles method overload marks the files in web root as servable. The following

markup references wwwroot/images/MyImage.jpg:

In the preceding code, the tilde character ~/ points to the web root.

Consider a directory hierarchy in which the static files to be served reside outside of the web root:

wwwroot

MyStaticFiles

css

images

js

images

red-rose.jpg

A request can access the red-rose.jpg file by configuring the Static File Middleware as follows:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 // using Microsoft.Extensions.FileProviders;
 // using System.IO;
 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(env.ContentRootPath, "MyStaticFiles")),
 RequestPath = "/StaticFiles"
 });

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

Set HTTP response headersSet HTTP response headers

In the preceding code, the MyStaticFiles directory hierarchy is exposed publicly via the StaticFiles URI

segment. A request to https://<hostname>/StaticFiles/images/red-rose.jpg serves the red-rose.jpg file.

The following markup references MyStaticFiles/images/red-rose.jpg:

A StaticFileOptions object can be used to set HTTP response headers. In addition to configuring static file

serving from the web root, the following code sets the Cache-Control header :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 const string cacheMaxAge = "604800";
 app.UseStaticFiles(new StaticFileOptions
 {
 OnPrepareResponse = ctx =>
 {
 // using Microsoft.AspNetCore.Http;
 ctx.Context.Response.Headers.Append(
 "Cache-Control", $"public, max-age={cacheMaxAge}");
 }
 });

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

Static file authorization

Static files are publicly cacheable for 600 seconds:

The Static File Middleware doesn't provide authorization checks. Any files served by it, including those under

wwwroot , are publicly accessible. To serve files based on authorization:

Store them outside of wwwroot and any directory accessible to the default Static File Middleware.

Call UseStaticFiles after UseAuthorization and specify the path:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 // wwwroot css, JavaScrip, and images don't require authentication.
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthentication();
 app.UseAuthorization();

 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(env.ContentRootPath, "MyStaticFiles")),
 RequestPath = "/StaticFiles"
 });

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
}

The preceding approach requires users to be authenticated:

Directory browsing

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));
 services.AddDefaultIdentity<IdentityUser>(options => options.SignIn.RequireConfirmedAccount
= true)
 .AddEntityFrameworkStores<ApplicationDbContext>();

 services.AddRazorPages();

 services.AddAuthorization(options =>
 {
 options.FallbackPolicy = new AuthorizationPolicyBuilder()
 .RequireAuthenticatedUser()
 .Build();
 });
 }

 // Remaining code ommitted for brevity.

For information on how to globally require all users to be authenticated, see Require authenticated

users.

An alternative approach to serve files based on authorization:

[Authorize]
public IActionResult BannerImage()
{
 var filePath = Path.Combine(
 _env.ContentRootPath, "MyStaticFiles", "images", "red-rose.jpg");

 return PhysicalFile(filePath, "image/jpeg");
}

Store them outside of wwwroot and any directory accessible to the Static File Middleware.

Serve them via an action method to which authorization is applied and return a FileResult object:

Directory browsing allows directory listing within specified directories.

Directory browsing is disabled by default for security reasons. For more information, see Considerations.

Enable directory browsing with:

AddDirectoryBrowser in Startup.ConfigureServices .

UseDirectoryBrowser in Startup.Configure .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fileresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.directorybrowserserviceextensions.adddirectorybrowser
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.directorybrowserextensions.usedirectorybrowser

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews();
 services.AddDirectoryBrowser();
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 // using Microsoft.Extensions.FileProviders;
 // using System.IO;
 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(env.WebRootPath, "images")),
 RequestPath = "/MyImages"
 });

 app.UseDirectoryBrowser(new DirectoryBrowserOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(env.WebRootPath, "images")),
 RequestPath = "/MyImages"
 });

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

Serve default documents

The preceding code allows directory browsing of the wwwroot/images folder using the URL

https://<hostname>/MyImages , with links to each file and folder :

Setting a default page provides visitors a starting point on a site. To serve a default page from wwwroot

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 app.UseDefaultFiles();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

var options = new DefaultFilesOptions();
options.DefaultFileNames.Clear();
options.DefaultFileNames.Add("mydefault.html");
app.UseDefaultFiles(options);
app.UseStaticFiles();

without a fully qualified URI, call the UseDefaultFiles method:

UseDefaultFiles must be called before UseStaticFiles to serve the default file. UseDefaultFiles is a URL

rewriter that doesn't serve the file.

With UseDefaultFiles , requests to a folder in wwwroot search for :

default.htm

default.html

index.htm

index.html

The first file found from the list is served as though the request were the fully qualified URI. The browser URL

continues to reflect the URI requested.

The following code changes the default file name to mydefault.html:

The following code shows Startup.Configure with the preceding code:

https://docs.microsoft.com/en-us/dotnet/api/owin.defaultfilesextensions.usedefaultfiles

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 var options = new DefaultFilesOptions();
 options.DefaultFileNames.Clear();
 options.DefaultFileNames.Add("mydefault.html");
 app.UseDefaultFiles(options);
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

UseFileServer for default documentsUseFileServer for default documents

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 app.UseFileServer();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

UseFileServer combines the functionality of UseStaticFiles , UseDefaultFiles , and optionally

UseDirectoryBrowser .

Call app.UseFileServer to enable the serving of static files and the default file. Directory browsing isn't

enabled. The following code shows Startup.Configure with UseFileServer :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.fileserverextensions.usefileserver

app.UseFileServer(enableDirectoryBrowsing: true);

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 app.UseFileServer(enableDirectoryBrowsing: true);

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

The following code enables the serving of static files, the default file, and directory browsing:

The following code shows Startup.Configure with the preceding code:

Consider the following directory hierarchy:

wwwroot

MyStaticFiles

css

images

js

images

default.html

MyImage.jpg

The following code enables the serving of static files, the default file, and directory browsing of

MyStaticFiles :

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews();
 services.AddDirectoryBrowser();
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 app.UseStaticFiles(); // For the wwwroot folder.

 // using Microsoft.Extensions.FileProviders;
 // using System.IO;
 app.UseFileServer(new FileServerOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(env.ContentRootPath, "MyStaticFiles")),
 RequestPath = "/StaticFiles",
 EnableDirectoryBrowsing = true
 });

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

URIURI RESP O N SERESP O N SE

https://<hostname>/StaticFiles/images/MyImage.jpg MyStaticFiles/images/MyImage.jpg

https://<hostname>/StaticFiles MyStaticFiles/default.html

AddDirectoryBrowser must be called when the EnableDirectoryBrowsing property value is true .

Using the file hierarchy and preceding code, URLs resolve as follows:

If no default-named file exists in the MyStaticFiles directory, https://<hostname>/StaticFiles returns the

directory listing with clickable links:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.directorybrowserserviceextensions.adddirectorybrowser

 FileExtensionContentTypeProvider

// using Microsoft.AspNetCore.StaticFiles;
// using Microsoft.Extensions.FileProviders;
// using System.IO;

// Set up custom content types - associating file extension to MIME type
var provider = new FileExtensionContentTypeProvider();
// Add new mappings
provider.Mappings[".myapp"] = "application/x-msdownload";
provider.Mappings[".htm3"] = "text/html";
provider.Mappings[".image"] = "image/png";
// Replace an existing mapping
provider.Mappings[".rtf"] = "application/x-msdownload";
// Remove MP4 videos.
provider.Mappings.Remove(".mp4");

app.UseStaticFiles(new StaticFileOptions
{
 FileProvider = new PhysicalFileProvider(
 Path.Combine(env.WebRootPath, "images")),
 RequestPath = "/MyImages",
 ContentTypeProvider = provider
});

app.UseDirectoryBrowser(new DirectoryBrowserOptions
{
 FileProvider = new PhysicalFileProvider(
 Path.Combine(env.WebRootPath, "images")),
 RequestPath = "/MyImages"
});

UseDefaultFiles and UseDirectoryBrowser perform a client-side redirect from the target URI without a trailing

/ to the target URI with a trailing / . For example, from https://<hostname>/StaticFiles to

https://<hostname>/StaticFiles/ . Relative URLs within the StaticFiles directory are invalid without a trailing

slash (/).

The FileExtensionContentTypeProvider class contains a Mappings property that serves as a mapping of file

extensions to MIME content types. In the following sample, several file extensions are mapped to known MIME

types. The .rtf extension is replaced, and .mp4 is removed:

The following code shows Startup.Configure with the preceding code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.directorybrowserextensions.usedirectorybrowser
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.staticfiles.fileextensioncontenttypeprovider

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 // using Microsoft.AspNetCore.StaticFiles;
 // using Microsoft.Extensions.FileProviders;
 // using System.IO;

 // Set up custom content types - associating file extension to MIME type
 var provider = new FileExtensionContentTypeProvider();
 // Add new mappings
 provider.Mappings[".myapp"] = "application/x-msdownload";
 provider.Mappings[".htm3"] = "text/html";
 provider.Mappings[".image"] = "image/png";
 // Replace an existing mapping
 provider.Mappings[".rtf"] = "application/x-msdownload";
 // Remove MP4 videos.
 provider.Mappings.Remove(".mp4");

 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(env.WebRootPath, "images")),
 RequestPath = "/MyImages",
 ContentTypeProvider = provider
 });

 app.UseDirectoryBrowser(new DirectoryBrowserOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(env.WebRootPath, "images")),
 RequestPath = "/MyImages"
 });

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

Non-standard content types

See MIME content types.

The Static File Middleware understands almost 400 known file content types. If the user requests a file with an

unknown file type, the Static File Middleware passes the request to the next middleware in the pipeline. If no

middleware handles the request, a 404 Not Found response is returned. If directory browsing is enabled, a

link to the file is displayed in a directory listing.

The following code enables serving unknown types and renders the unknown file as an image:

https://www.iana.org/assignments/media-types/media-types.xhtml

app.UseStaticFiles(new StaticFileOptions
{
 ServeUnknownFileTypes = true,
 DefaultContentType = "image/png"
});

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();

 app.UseStaticFiles(new StaticFileOptions
 {
 ServeUnknownFileTypes = true,
 DefaultContentType = "image/png"
 });

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapDefaultControllerRoute();
 });
}

WARNINGWARNING

Serve files from multiple locations

Security considerations for static filesSecurity considerations for static files

The following code shows Startup.Configure with the preceding code:

With the preceding code, a request for a file with an unknown content type is returned as an image.

Enabling ServeUnknownFileTypes is a security risk. It's disabled by default, and its use is discouraged.

FileExtensionContentTypeProvider provides a safer alternative to serving files with non-standard extensions.

UseStaticFiles and UseFileServer default to the file provider pointing at wwwroot . Additional instances of

UseStaticFiles and UseFileServer can be provided with other file providers to serve files from other

locations. For more information, see this GitHub issue.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions.serveunknownfiletypes#microsoft_aspnetcore_builder_staticfileoptions_serveunknownfiletypes
https://github.com/dotnet/AspNetCore.Docs/issues/15578

WARNINGWARNING

WARNINGWARNING

Additional resources

Serve static files

UseDirectoryBrowser and UseStaticFiles can leak secrets. Disabling directory browsing in production is highly

recommended. Carefully review which directories are enabled via UseStaticFiles or UseDirectoryBrowser . The

entire directory and its sub-directories become publicly accessible. Store files suitable for serving to the public in a

dedicated directory, such as <content_root>/wwwroot . Separate these files from MVC views, Razor Pages,

configuration files, etc.

The URLs for content exposed with UseDirectoryBrowser and UseStaticFiles are subject to the case

sensitivity and character restrictions of the underlying file system. For example, Windows is case

insensitive, but macOS and Linux aren't.

ASP.NET Core apps hosted in IIS use the ASP.NET Core Module to forward all requests to the app,

including static file requests. The IIS static file handler isn't used and has no chance to handle requests.

Complete the following steps in IIS Manager to remove the IIS static file handler at the server or

website level:

1. Navigate to the ModulesModules feature.

2. Select StaticFileModuleStaticFileModule in the list.

3. Click RemoveRemove in the ActionsActions sidebar.

If the IIS static file handler is enabled andand the ASP.NET Core Module is configured incorrectly, static files are served. This

happens, for example, if the web.config file isn't deployed.

Place code files, including .cs and .cshtml, outside of the app project's web root. A logical separation is

therefore created between the app's client-side content and server-based code. This prevents server-side

code from being leaked.

Middleware

Introduction to ASP.NET Core

By Rick Anderson and Scott Addie

Static files, such as HTML, CSS, images, and JavaScript, are assets an ASP.NET Core app serves directly to

clients. Some configuration is required to enable serving of these files.

View or download sample code (how to download)

Static files are stored within the project's web root directory. The default directory is {content root}/wwwroot,

but it can be changed via the UseWebRoot method. See Content root and Web root for more information.

The app's web host must be made aware of the content root directory.

The WebHost.CreateDefaultBuilder method sets the content root to the current directory:

https://twitter.com/RickAndMSFT
https://twitter.com/Scott_Addie
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/static-files/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.usewebroot

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
}

Serve files inside of web rootServe files inside of web root

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles();
}

Serve files outside of web rootServe files outside of web root

Static files are accessible via a path relative to the web root. For example, the Web ApplicationWeb Application project

template contains several folders within the wwwroot folder :

wwwroot

css

images

js

The URI format to access a file in the images subfolder is

http://<server_address>/images/<image_file_name>. For example,

http://localhost:9189/images/banner3.svg.

If targeting .NET Framework, add the Microsoft.AspNetCore.StaticFiles package to the project. If targeting .NET

Core, the Microsoft.AspNetCore.App metapackage includes this package.

Configure the middleware, which enables the serving of static files.

Invoke the UseStaticFiles method within Startup.Configure :

The parameterless UseStaticFiles method overload marks the files in web root as servable. The following

markup references wwwroot/images/banner1.svg:

In the preceding code, the tilde character ~/ points to the web root.

Consider a directory hierarchy in which the static files to be served reside outside of the web root:

wwwroot

MyStaticFiles

css

images

js

images

banner1.svg

https://www.nuget.org/packages/Microsoft.AspNetCore.StaticFiles/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(); // For the wwwroot folder

 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "MyStaticFiles")),
 RequestPath = "/StaticFiles"
 });
}

Set HTTP response headersSet HTTP response headers

public void Configure(IApplicationBuilder app)
{
 var cachePeriod = "604800";
 app.UseStaticFiles(new StaticFileOptions
 {
 OnPrepareResponse = ctx =>
 {
 // Requires the following import:
 // using Microsoft.AspNetCore.Http;
 ctx.Context.Response.Headers.Append("Cache-Control", $"public, max-age={cachePeriod}");
 }
 });
}

Static file authorization

A request can access the banner1.svg file by configuring the Static File Middleware as follows:

In the preceding code, the MyStaticFiles directory hierarchy is exposed publicly via the StaticFiles URI

segment. A request to http://<server_address>/StaticFiles/images/banner1.svg serves the banner1.svg file.

The following markup references MyStaticFiles/images/banner1.svg:

A StaticFileOptions object can be used to set HTTP response headers. In addition to configuring static file

serving from the web root, the following code sets the Cache-Control header :

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

The HeaderDictionaryExtensions.Append method exists in the Microsoft.AspNetCore.Http package.

The files have been made publicly cacheable for 10 minutes (600 seconds) in the Development environment:

The Static File Middleware doesn't provide authorization checks. Any files served by it, including those under

wwwroot, are publicly accessible. To serve files based on authorization:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions
https://github.com/MicrosoftDocs/feedback/issues/2515
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.headerdictionaryextensions.append
https://www.nuget.org/packages/Microsoft.AspNetCore.Http/

 Enable directory browsing

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(); // For the wwwroot folder

 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages"
 });

 app.UseDirectoryBrowser(new DirectoryBrowserOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages"
 });
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddDirectoryBrowser();
}

[Authorize]
public IActionResult BannerImage()
{
 var file = Path.Combine(Directory.GetCurrentDirectory(),
 "MyStaticFiles", "images", "banner1.svg");

 return PhysicalFile(file, "image/svg+xml");
}

Store them outside of wwwroot and any directory accessible to the Static File Middleware.

Serve them via an action method to which authorization is applied. Return a FileResult object:

Directory browsing allows users of your web app to see a directory listing and files within a specified

directory. Directory browsing is disabled by default for security reasons (see Considerations). Enable directory

browsing by invoking the UseDirectoryBrowser method in Startup.Configure :

Add required services by invoking the AddDirectoryBrowser method from Startup.ConfigureServices :

The preceding code allows directory browsing of the wwwroot/images folder using the URL

http://<server_address>/MyImages, with links to each file and folder :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fileresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.directorybrowserextensions.usedirectorybrowser
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.directorybrowserserviceextensions.adddirectorybrowser

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(); // For the wwwroot folder

 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages"
 });

 app.UseDirectoryBrowser(new DirectoryBrowserOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages"
 });
}

Serve a default document

public void Configure(IApplicationBuilder app)
{
 app.UseDefaultFiles();
 app.UseStaticFiles();
}

IMPORTANTIMPORTANT

See Considerations on the security risks when enabling browsing.

Note the two UseStaticFiles calls in the following example. The first call enables the serving of static files in

the wwwroot folder. The second call enables directory browsing of the wwwroot/images folder using the URL

http://<server_address>/MyImages:

Setting a default home page provides visitors a logical starting point when visiting your site. To serve a

default page without the user fully qualifying the URI, call the UseDefaultFiles method from

Startup.Configure :

UseDefaultFiles must be called before UseStaticFiles to serve the default file. UseDefaultFiles is a URL

rewriter that doesn't actually serve the file. Enable Static File Middleware via UseStaticFiles to serve the file.

With UseDefaultFiles , requests to a folder search for :

default.htm

default.html

index.htm

index.html

The first file found from the list is served as though the request were the fully qualified URI. The browser URL

continues to reflect the URI requested.

The following code changes the default file name to mydefault.html:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles

public void Configure(IApplicationBuilder app)
{
 // Serve my app-specific default file, if present.
 DefaultFilesOptions options = new DefaultFilesOptions();
 options.DefaultFileNames.Clear();
 options.DefaultFileNames.Add("mydefault.html");
 app.UseDefaultFiles(options);
 app.UseStaticFiles();
}

UseFileServer

app.UseFileServer();

app.UseFileServer(enableDirectoryBrowsing: true);

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(); // For the wwwroot folder

 app.UseFileServer(new FileServerOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "MyStaticFiles")),
 RequestPath = "/StaticFiles",
 EnableDirectoryBrowsing = true
 });
}

UseFileServer combines the functionality of UseStaticFiles , UseDefaultFiles , and optionally

UseDirectoryBrowser .

The following code enables the serving of static files and the default file. Directory browsing isn't enabled.

The following code builds upon the parameterless overload by enabling directory browsing:

Consider the following directory hierarchy:

wwwrootwwwroot

MyStaticFilesMyStaticFiles

csscss

imagesimages

jsjs

imagesimages

default.html

banner1.svg

The following code enables static files, default files, and directory browsing of MyStaticFiles :

AddDirectoryBrowser must be called when the EnableDirectoryBrowsing property value is true :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.fileserverextensions.usefileserver

public void ConfigureServices(IServiceCollection services)
{
 services.AddDirectoryBrowser();
}

URIURI RESP O N SERESP O N SE

http://<server_address>/StaticFiles/images/banner1.svg MyStaticFiles/images/banner1.svg

http://<server_address>/StaticFiles MyStaticFiles/default.html

NOTENOTE

FileExtensionContentTypeProvider

Using the file hierarchy and preceding code, URLs resolve as follows:

If no default-named file exists in the MyStaticFiles directory, http://<server_address>/StaticFiles returns the

directory listing with clickable links:

UseDefaultFiles and UseDirectoryBrowser perform a client-side redirect from http://{SERVER ADDRESS}/StaticFiles

(without a trailing slash) to http://{SERVER ADDRESS}/StaticFiles/ (with a trailing slash). Relative URLs within the

StaticFiles directory are invalid without a trailing slash.

The FileExtensionContentTypeProvider class contains a Mappings property serving as a mapping of file

extensions to MIME content types. In the following sample, several file extensions are registered to known

MIME types. The .rtf extension is replaced, and .mp4 is removed.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.directorybrowserextensions.usedirectorybrowser
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.staticfiles.fileextensioncontenttypeprovider

public void Configure(IApplicationBuilder app)
{
 // Set up custom content types - associating file extension to MIME type
 var provider = new FileExtensionContentTypeProvider();
 // Add new mappings
 provider.Mappings[".myapp"] = "application/x-msdownload";
 provider.Mappings[".htm3"] = "text/html";
 provider.Mappings[".image"] = "image/png";
 // Replace an existing mapping
 provider.Mappings[".rtf"] = "application/x-msdownload";
 // Remove MP4 videos.
 provider.Mappings.Remove(".mp4");

 app.UseStaticFiles(new StaticFileOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages",
 ContentTypeProvider = provider
 });

 app.UseDirectoryBrowser(new DirectoryBrowserOptions
 {
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "images")),
 RequestPath = "/MyImages"
 });
}

Non-standard content types

public void Configure(IApplicationBuilder app)
{
 app.UseStaticFiles(new StaticFileOptions
 {
 ServeUnknownFileTypes = true,
 DefaultContentType = "image/png"
 });
}

WARNINGWARNING

See MIME content types.

For information on using a custom FileExtensionContentTypeProvider or to configure other StaticFileOptions

in Blazor Server apps, see ASP.NET Core Blazor hosting model configuration.

Static File Middleware understands almost 400 known file content types. If the user requests a file with an

unknown file type, Static File Middleware passes the request to the next middleware in the pipeline. If no

middleware handles the request, a 404 Not Found response is returned. If directory browsing is enabled, a

link to the file is displayed in a directory listing.

The following code enables serving unknown types and renders the unknown file as an image:

With the preceding code, a request for a file with an unknown content type is returned as an image.

Enabling ServeUnknownFileTypes is a security risk. It's disabled by default, and its use is discouraged.

FileExtensionContentTypeProvider provides a safer alternative to serving files with non-standard extensions.

https://www.iana.org/assignments/media-types/media-types.xhtml
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.staticfiles.fileextensioncontenttypeprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions.serveunknownfiletypes#microsoft_aspnetcore_builder_staticfileoptions_serveunknownfiletypes

Serve files from multiple locations

ConsiderationsConsiderations

WARNINGWARNING

WARNINGWARNING

Additional resources

UseStaticFiles and UseFileServer defaults to the file provider pointing at wwwroot. You can provide

additional instances of UseStaticFiles and UseFileServer with other file providers to serve files from other

locations. For more information, see this GitHub issue.

UseDirectoryBrowser and UseStaticFiles can leak secrets. Disabling directory browsing in production is highly

recommended. Carefully review which directories are enabled via UseStaticFiles or UseDirectoryBrowser . The

entire directory and its sub-directories become publicly accessible. Store files suitable for serving to the public in a

dedicated directory, such as <content_root>/wwwroot. Separate these files from MVC views, Razor Pages (2.x only),

configuration files, etc.

The URLs for content exposed with UseDirectoryBrowser and UseStaticFiles are subject to the case

sensitivity and character restrictions of the underlying file system. For example, Windows is case

insensitive—macOS and Linux aren't.

ASP.NET Core apps hosted in IIS use the ASP.NET Core Module to forward all requests to the app,

including static file requests. The IIS static file handler isn't used. It has no chance to handle requests

before they're handled by the module.

Complete the following steps in IIS Manager to remove the IIS static file handler at the server or

website level:

1. Navigate to the ModulesModules feature.

2. Select StaticFileModuleStaticFileModule in the list.

3. Click RemoveRemove in the ActionsActions sidebar.

If the IIS static file handler is enabled andand the ASP.NET Core Module is configured incorrectly, static files are served. This

happens, for example, if the web.config file isn't deployed.

Place code files (including .cs and .cshtml) outside of the app project's web root. A logical separation is

therefore created between the app's client-side content and server-based code. This prevents server-side

code from being leaked.

Middleware

Introduction to ASP.NET Core

https://github.com/dotnet/AspNetCore.Docs/issues/15578

Introduction to Razor Pages in ASP.NET Core
9/22/2020 • 43 minutes to read • Edit Online

Prerequisites

Create a Razor Pages project

Razor Pages

By Rick Anderson and Ryan Nowak

Razor Pages can make coding page-focused scenarios easier and more productive than using controllers

and views.

If you're looking for a tutorial that uses the Model-View-Controller approach, see Get started with ASP.NET

Core MVC.

This document provides an introduction to Razor Pages. It's not a step by step tutorial. If you find some of

the sections too advanced, see Get started with Razor Pages. For an overview of ASP.NET Core, see the

Introduction to ASP.NET Core.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.0 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

See Get started with Razor Pages for detailed instructions on how to create a Razor Pages project.

Razor Pages is enabled in Startup.cs:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/razor-pages/index.md
https://twitter.com/RickAndMSFT
https://github.com/rynowak
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.0

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();
 }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();
 });
 }
}

@page

<h1>Hello, world!</h1>
<h2>The time on the server is @DateTime.Now</h2>

 Consider a basic page:

The preceding code looks a lot like a Razor view file used in an ASP.NET Core app with controllers and

views. What makes it different is the @page directive. @page makes the file into an MVC action - which

means that it handles requests directly, without going through a controller. @page must be the first Razor

directive on a page. @page affects the behavior of other Razor constructs. Razor Pages file names have a

.cshtml suffix.

A similar page, using a PageModel class, is shown in the following two files. The Pages/Index2.cshtml file:

@page
@using RazorPagesIntro.Pages
@model Index2Model

<h2>Separate page model</h2>
<p>
 @Model.Message
</p>

using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.Extensions.Logging;
using System;

namespace RazorPagesIntro.Pages
{
 public class Index2Model : PageModel
 {
 public string Message { get; private set; } = "PageModel in C#";

 public void OnGet()
 {
 Message += $" Server time is { DateTime.Now }";
 }
 }
}

F IL E N A M E A N D PAT HF IL E N A M E A N D PAT H M ATC H IN G URLM ATC H IN G URL

/Pages/Index.cshtml / or /Index

/Pages/Contact.cshtml /Contact

/Pages/Store/Contact.cshtml /Store/Contact

/Pages/Store/Index.cshtml /Store or /Store/Index

Write a basic form

The Pages/Index2.cshtml.cs page model:

By convention, the PageModel class file has the same name as the Razor Page file with .cs appended. For

example, the previous Razor Page is Pages/Index2.cshtml. The file containing the PageModel class is

named Pages/Index2.cshtml.cs.

The associations of URL paths to pages are determined by the page's location in the file system. The

following table shows a Razor Page path and the matching URL:

Notes:

The runtime looks for Razor Pages files in the Pages folder by default.

Index is the default page when a URL doesn't include a page.

Razor Pages is designed to make common patterns used with web browsers easy to implement when

building an app. Model binding, Tag Helpers, and HTML helpers all just work with the properties defined in

a Razor Page class. Consider a page that implements a basic "contact us" form for the Contact model:

For the samples in this document, the DbContext is initialized in the Startup.cs file.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/razor-pages/index/3.0sample/RazorPagesContacts/Startup.cs#L23-L24

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<CustomerDbContext>(options =>
 options.UseInMemoryDatabase("name"));
 services.AddRazorPages();
}

using System.ComponentModel.DataAnnotations;

namespace RazorPagesContacts.Models
{
 public class Customer
 {
 public int Id { get; set; }

 [Required, StringLength(10)]
 public string Name { get; set; }
 }
}

using Microsoft.EntityFrameworkCore;
using RazorPagesContacts.Models;

namespace RazorPagesContacts.Data
{
 public class CustomerDbContext : DbContext
 {
 public CustomerDbContext(DbContextOptions options)
 : base(options)
 {
 }

 public DbSet<Customer> Customers { get; set; }
 }
}

@page
@model RazorPagesContacts.Pages.Customers.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<p>Enter a customer name:</p>

<form method="post">
 Name:
 <input asp-for="Customer.Name" />
 <input type="submit" />
</form>

The in memory database requires the Microsoft.EntityFrameworkCore.InMemory NuGet package.

The data model:

The db context:

The Pages/Create.cshtml view file:

The Pages/Create.cshtml.cs page model:

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;
using RazorPagesContacts.Models;
using System.Threading.Tasks;

namespace RazorPagesContacts.Pages.Customers
{
 public class CreateModel : PageModel
 {
 private readonly CustomerDbContext _context;

 public CreateModel(CustomerDbContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Customers.Add(Customer);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

By convention, the PageModel class is called <PageName>Model and is in the same namespace as the page.

The PageModel class allows separation of the logic of a page from its presentation. It defines page

handlers for requests sent to the page and the data used to render the page. This separation allows:

Managing of page dependencies through dependency injection.

Unit testing

The page has an OnPostAsync handler method, which runs on POST requests (when a user posts the

form). Handler methods for any HTTP verb can be added. The most common handlers are:

OnGet to initialize state needed for the page. In the preceding code, the OnGet method displays the

CreateModel.cshtml Razor Page.

OnPost to handle form submissions.

The Async naming suffix is optional but is often used by convention for asynchronous functions. The

preceding code is typical for Razor Pages.

If you're familiar with ASP.NET apps using controllers and views:

The OnPostAsync code in the preceding example looks similar to typical controller code.

Most of the MVC primitives like model binding, validation, and action results work the same with

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Customers.Add(Customer);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

@page
@model RazorPagesContacts.Pages.Customers.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<p>Enter a customer name:</p>

<form method="post">
 Name:
 <input asp-for="Customer.Name" />
 <input type="submit" />
</form>

<p>Enter a customer name:</p>

<form method="post">
 Name:
 <input type="text" data-val="true"
 data-val-length="The field Name must be a string with a maximum length of 10."
 data-val-length-max="10" data-val-required="The Name field is required."
 id="Customer_Name" maxlength="10" name="Customer.Name" value="" />
 <input type="submit" />
 <input name="__RequestVerificationToken" type="hidden"
 value="<Antiforgery token here>" />
</form>

Controllers and Razor Pages.

The previous OnPostAsync method:

The basic flow of OnPostAsync :

Check for validation errors.

If there are no errors, save the data and redirect.

If there are errors, show the page again with validation messages. In many cases, validation errors

would be detected on the client, and never submitted to the server.

The Pages/Create.cshtml view file:

The rendered HTML from Pages/Create.cshtml:

In the previous code, posting the form:

With valid data:

The OnPostAsync handler method calls the RedirectToPage helper method. RedirectToPage

returns an instance of RedirectToPageResult. RedirectToPage :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.redirecttopage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.redirecttopageresult

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Customers.Add(Customer);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

Is an action result.

Is similar to RedirectToAction or RedirectToRoute (used in controllers and views).

Is customized for pages. In the preceding sample, it redirects to the root Index page (

/Index). RedirectToPage is detailed in the URL generation for Pages section.

With validation errors that are passed to the server :

The OnPostAsync handler method calls the Page helper method. Page returns an instance of

PageResult. Returning Page is similar to how actions in controllers return View . PageResult is

the default return type for a handler method. A handler method that returns void renders the

page.

In the preceding example, posting the form with no value results in ModelState.IsValid returning

false. In this sample, no validation errors are displayed on the client. Validation error handing is

covered later in this document.

With validation errors detected by client side validation:

Data is notnot posted to the server.

Client-side validation is explained later in this document.

The Customer property uses [BindProperty] attribute to opt in to model binding:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagebase.page
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pageresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.isvalid#microsoft_aspnetcore_mvc_modelbinding_modelstatedictionary_isvalid
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute

public class CreateModel : PageModel
{
 private readonly CustomerDbContext _context;

 public CreateModel(CustomerDbContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Customers.Add(Customer);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
}

WARNINGWARNING

[BindProperty(SupportsGet = true)]

[BindProperty] should notnot be used on models containing properties that should not be changed by the

client. For more information, see Overposting.

Razor Pages, by default, bind properties only with non- GET verbs. Binding to properties removes the

need to writing code to convert HTTP data to the model type. Binding reduces code by using the same

property to render form fields (<input asp-for="Customer.Name">) and accept the input.

For security reasons, you must opt in to binding GET request data to page model properties. Verify user input

before mapping it to properties. Opting into GET binding is useful when addressing scenarios that rely on query

string or route values.

To bind a property on GET requests, set the [BindProperty] attribute's SupportsGet property to true :

For more information, see ASP.NET Core Community Standup: Bind on GET discussion (YouTube).

Reviewing the Pages/Create.cshtml view file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute
https://www.youtube.com/watch?v=p7iHB9V-KVU&feature=youtu.be&t=54m27s

@page
@model RazorPagesContacts.Pages.Customers.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<p>Enter a customer name:</p>

<form method="post">
 Name:
 <input asp-for="Customer.Name" />
 <input type="submit" />
</form>

The home pageThe home page

@page
@model RazorPagesContacts.Pages.Customers.IndexModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<h1>Contacts home page</h1>
<form method="post">
 <table class="table">
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var contact in Model.Customer)
 {
 <tr>
 <td> @contact.Id </td>
 <td>@contact.Name</td>
 <td>
 <a asp-page="./Edit" asp-route-id="@contact.Id">Edit |
 <button type="submit" asp-page-handler="delete"
 asp-route-id="@contact.Id">delete
 </button>
 </td>
 </tr>
 }
 </tbody>
 </table>
 <a asp-page="Create">Create New
</form>

In the preceding code, the input tag helper <input asp-for="Customer.Name" /> binds the HTML

<input> element to the Customer.Name model expression.

@addTagHelper makes Tag Helpers available.

Index.cshtml is the home page:

The associated PageModel class (Index.cshtml.cs):

public class IndexModel : PageModel
{
 private readonly CustomerDbContext _context;

 public IndexModel(CustomerDbContext context)
 {
 _context = context;
 }

 public IList<Customer> Customer { get; set; }

 public async Task OnGetAsync()
 {
 Customer = await _context.Customers.ToListAsync();
 }

 public async Task<IActionResult> OnPostDeleteAsync(int id)
 {
 var contact = await _context.Customers.FindAsync(id);

 if (contact != null)
 {
 _context.Customers.Remove(contact);
 await _context.SaveChangesAsync();
 }

 return RedirectToPage();
 }
}

<a asp-page="./Edit" asp-route-id="@contact.Id">Edit |

<button type="submit" asp-page-handler="delete"
 asp-route-id="@contact.Id">delete

<button type="submit" formaction="/Customers?id=1&handler=delete">delete</button>

The Index.cshtml file contains the following markup:

The <a /a> Anchor Tag Helper used the asp-route-{value} attribute to generate a link to the Edit page.

The link contains route data with the contact ID. For example, https://localhost:5001/Edit/1 . Tag Helpers

enable server-side code to participate in creating and rendering HTML elements in Razor files.

The Index.cshtml file contains markup to create a delete button for each customer contact:

The rendered HTML:

When the delete button is rendered in HTML, its formaction includes parameters for :

The customer contact ID, specified by the asp-route-id attribute.

The handler , specified by the asp-page-handler attribute.

When the button is selected, a form POST request is sent to the server. By convention, the name of the

handler method is selected based on the value of the handler parameter according to the scheme

OnPost[handler]Async .

Because the handler is delete in this example, the OnPostDeleteAsync handler method is used to

process the POST request. If the asp-page-handler is set to a different value, such as remove , a handler

https://developer.mozilla.org/docs/Web/HTML/Element/button#attr-formaction

public async Task<IActionResult> OnPostDeleteAsync(int id)
{
 var contact = await _context.Customers.FindAsync(id);

 if (contact != null)
 {
 _context.Customers.Remove(contact);
 await _context.SaveChangesAsync();
 }

 return RedirectToPage();
}

The Edit.cshtml fileThe Edit.cshtml file

@page "{id:int}"
@model RazorPagesContacts.Pages.Customers.EditModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<h1>Edit Customer - @Model.Customer.Id</h1>
<form method="post">
 <div asp-validation-summary="All"></div>
 <input asp-for="Customer.Id" type="hidden" />
 <div>
 <label asp-for="Customer.Name"></label>
 <div>
 <input asp-for="Customer.Name" />

 </div>
 </div>

 <div>
 <button type="submit">Save</button>
 </div>
</form>

@page "{id:int?}"

method with the name OnPostRemoveAsync is selected.

The OnPostDeleteAsync method:

Gets the id from the query string.

Queries the database for the customer contact with FindAsync .

If the customer contact is found, it's removed and the database is updated.

Calls RedirectToPage to redirect to the root Index page (/Index).

The first line contains the @page "{id:int}" directive. The routing constraint "{id:int}" tells the page to

accept requests to the page that contain int route data. If a request to the page doesn't contain route

data that can be converted to an int , the runtime returns an HTTP 404 (not found) error. To make the ID

optional, append ? to the route constraint:

The Edit.cshtml.cs file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.redirecttopage

public class EditModel : PageModel
{
 private readonly CustomerDbContext _context;

 public EditModel(CustomerDbContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Customer = await _context.Customers.FindAsync(id);

 if (Customer == null)
 {
 return RedirectToPage("./Index");
 }

 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Customer).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 throw new Exception($"Customer {Customer.Id} not found!");
 }

 return RedirectToPage("./Index");
 }

}

Validation
Validation rules:

Are declaratively specified in the model class.

Are enforced everywhere in the app.

The System.ComponentModel.DataAnnotations namespace provides a set of built-in validation attributes

that are applied declaratively to a class or property. DataAnnotations also contains formatting attributes

like [DataType] that help with formatting and don't provide any validation.

Consider the Customer model:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatypeattribute

using System.ComponentModel.DataAnnotations;

namespace RazorPagesContacts.Models
{
 public class Customer
 {
 public int Id { get; set; }

 [Required, StringLength(10)]
 public string Name { get; set; }
 }
}

@page
@model RazorPagesContacts.Pages.Customers.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<p>Validation: customer name:</p>

<form method="post">
 <div asp-validation-summary="ModelOnly"></div>

 Name:
 <input asp-for="Customer.Name" />
 <input type="submit" />
</form>

<script src="~/lib/jquery/dist/jquery.js"></script>
<script src="~/lib/jquery-validation/dist/jquery.validate.js"></script>
<script src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>

Using the following Create.cshtml view file:

The preceding code:

<p>Enter a customer name:</p>

<form method="post">
 Name:
 <input type="text" data-val="true"
 data-val-length="The field Name must be a string with a maximum length of 10."
 data-val-length-max="10" data-val-required="The Name field is required."
 id="Customer_Name" maxlength="10" name="Customer.Name" value="" />
 <input type="submit" />
 <input name="__RequestVerificationToken" type="hidden"
 value="<Antiforgery token here>" />
</form>

<script src="/lib/jquery/dist/jquery.js"></script>
<script src="/lib/jquery-validation/dist/jquery.validate.js"></script>
<script src="/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>

Includes jQuery and jQuery validation scripts.

Uses the <div /> and Tag Helpers to enable:

Client-side validation.

Validation error rendering.

Generates the following HTML:

Posting the Create form without a name value displays the error message "The Name field is required." on

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

the form. If JavaScript is enabled on the client, the browser displays the error without posting to the

server.

The [StringLength(10)] attribute generates data-val-length-max="10" on the rendered HTML.

data-val-length-max prevents browsers from entering more than the maximum length specified. If a tool

such as Fiddler is used to edit and replay the post:

With the name longer than 10.

The error message "The field Name must be a string with a maximum length of 10." is returned.

Consider the following Movie model:

The validation attributes specify behavior to enforce on the model properties they're applied to:

The Required and MinimumLength attributes indicate that a property must have a value, but

nothing prevents a user from entering white space to satisfy this validation.

The RegularExpression attribute is used to limit what characters can be input. In the preceding

code, "Genre":

Must only use letters.

The first letter is required to be uppercase. White space, numbers, and special characters are not

allowed.

The RegularExpression "Rating":

Requires that the first character be an uppercase letter.

Allows special characters and numbers in subsequent spaces. "PG-13" is valid for a rating, but

fails for a "Genre".

The Range attribute constrains a value to within a specified range.

The StringLength attribute sets the maximum length of a string property, and optionally its

minimum length.

https://www.telerik.com/fiddler

Handle HEAD requests with an OnGet handler fallback

public void OnHead()
{
 HttpContext.Response.Headers.Add("Head Test", "Handled by OnHead!");
}

Value types (such as decimal , int , float , DateTime) are inherently required and don't need the

[Required] attribute.

The Create page for the Movie model shows displays errors with invalid values:

For more information, see:

Add validation to the Movie app

Model validation in ASP.NET Core.

HEAD requests allow retrieving the headers for a specific resource. Unlike GET requests, HEAD requests

don't return a response body.

Ordinarily, an OnHead handler is created and called for HEAD requests:

XSRF/CSRF and Razor Pages

Using Layouts, partials, templates, and Tag Helpers with Razor
Pages

<!DOCTYPE html>
<html>
<head>
 <title>RP Sample</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 <a asp-page="/Index">Home
 <a asp-page="/Customers/Create">Create
 <a asp-page="/Customers/Index">Customers

 @RenderBody()
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/jquery-validation/dist/jquery.validate.js"></script>
 <script src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>
</body>
</html>

@{
 Layout = "_Layout";
}

Razor Pages falls back to calling the OnGet handler if no OnHead handler is defined.

Razor Pages are protected by Antiforgery validation. The FormTagHelper injects antiforgery tokens into

HTML form elements.

Pages work with all the capabilities of the Razor view engine. Layouts, partials, templates, Tag Helpers,

_ViewStart.cshtml, and _ViewImports.cshtml work in the same way they do for conventional Razor views.

Let's declutter this page by taking advantage of some of those capabilities.

Add a layout page to Pages/Shared/_Layout.cshtml:

The Layout:

Controls the layout of each page (unless the page opts out of layout).

Imports HTML structures such as JavaScript and stylesheets.

The contents of the Razor page are rendered where @RenderBody() is called.

For more information, see layout page.

The Layout property is set in Pages/_ViewStart.cshtml:

The layout is in the Pages/Shared folder. Pages look for other views (layouts, templates, partials)

hierarchically, starting in the same folder as the current page. A layout in the Pages/Shared folder can be

used from any Razor page under the Pages folder.

The layout file should go in the Pages/Shared folder.

We recommend you notnot put the layout file in the Views/Shared folder. Views/Shared is an MVC views

pattern. Razor Pages are meant to rely on folder hierarchy, not path conventions.

View search from a Razor Page includes the Pages folder. The layouts, templates, and partials used with

@namespace RazorPagesContacts.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@page
@namespace RazorPagesIntro.Pages.Customers

@model NameSpaceModel

<h2>Name space</h2>
<p>
 @Model.Message
</p>

namespace RazorPagesContacts.Pages
{
 public class EditModel : PageModel
 {
 private readonly AppDbContext _db;

 public EditModel(AppDbContext db)
 {
 _db = db;
 }

 // Code removed for brevity.

@namespace RazorPagesContacts.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

MVC controllers and conventional Razor views just work.

Add a Pages/_ViewImports.cshtml file:

@namespace is explained later in the tutorial. The @addTagHelper directive brings in the built-in Tag Helpers

to all the pages in the Pages folder.

 The @namespace directive set on a page:

The @namespace directive sets the namespace for the page. The @model directive doesn't need to include

the namespace.

When the @namespace directive is contained in _ViewImports.cshtml, the specified namespace supplies the

prefix for the generated namespace in the Page that imports the @namespace directive. The rest of the

generated namespace (the suffix portion) is the dot-separated relative path between the folder containing

_ViewImports.cshtml and the folder containing the page.

For example, the PageModel class Pages/Customers/Edit.cshtml.cs explicitly sets the namespace:

The Pages/_ViewImports.cshtml file sets the following namespace:

The generated namespace for the Pages/Customers/Edit.cshtml Razor Page is the same as the PageModel

class.

@namespace also works with conventional Razor views.

Consider the Pages/Create.cshtml view file:

@page
@model RazorPagesContacts.Pages.Customers.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<p>Validation: customer name:</p>

<form method="post">
 <div asp-validation-summary="ModelOnly"></div>

 Name:
 <input asp-for="Customer.Name" />
 <input type="submit" />
</form>

<script src="~/lib/jquery/dist/jquery.js"></script>
<script src="~/lib/jquery-validation/dist/jquery.validate.js"></script>
<script src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>

@page
@model CreateModel

<p>Enter a customer name:</p>

<form method="post">
 Name:
 <input asp-for="Customer.Name" />
 <input type="submit" />
</form>

URL generation for Pages

The updated Pages/Create.cshtml view file with _ViewImports.cshtml and the preceding layout file:

In the preceding code, the _ViewImports.cshtml imported the namespace and Tag Helpers. The layout file

imported the JavaScript files.

The Razor Pages starter project contains the Pages/_ValidationScriptsPartial.cshtml, which hooks up client-

side validation.

For more information on partial views, see Partial views in ASP.NET Core.

The Create page, shown previously, uses RedirectToPage :

public class CreateModel : PageModel
{
 private readonly CustomerDbContext _context;

 public CreateModel(CustomerDbContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Customers.Add(Customer);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
}

The app has the following file/folder structure:

/Pages

Index.cshtml

Privacy.cshtml

/Customers

Create.cshtml

Edit.cshtml

Index.cshtml

The Pages/Customers/Create.cshtml and Pages/Customers/Edit.cshtml pages redirect to

Pages/Customers/Index.cshtml after success. The string ./Index is a relative page name used to access

the preceding page. It is used to generate URLs to the Pages/Customers/Index.cshtml page. For example:

Url.Page("./Index", ...)

<a asp-page="./Index">Customers Index Page

RedirectToPage("./Index")

The absolute page name /Index is used to generate URLs to the Pages/Index.cshtml page. For example:

Url.Page("/Index", ...)

<a asp-page="/Index">Home Index Page

RedirectToPage("/Index")

The page name is the path to the page from the root /Pages folder including a leading / (for example,

/Index). The preceding URL generation samples offer enhanced options and functional capabilities over

REDIREC T TO PA GE(X)REDIREC T TO PA GE(X) PA GEPA GE

RedirectToPage("/Index") Pages/Index

RedirectToPage("./Index"); Pages/Customers/Index

RedirectToPage("../Index") Pages/Index

RedirectToPage("Index") Pages/Customers/Index

RedirectToPage("/Index", new { area = "Services" });

ViewData attribute

public class AboutModel : PageModel
{
 [ViewData]
 public string Title { get; } = "About";

 public void OnGet()
 {
 }
}

<h1>@Model.Title</h1>

hard-coding a URL. URL generation uses routing and can generate and encode parameters according to

how the route is defined in the destination path.

URL generation for pages supports relative names. The following table shows which Index page is

selected using different RedirectToPage parameters in Pages/Customers/Create.cshtml.

RedirectToPage("Index") , RedirectToPage("./Index") , and RedirectToPage("../Index") are relative names.

The RedirectToPage parameter is combined with the path of the current page to compute the name of the

destination page.

Relative name linking is useful when building sites with a complex structure. When relative names are

used to link between pages in a folder :

Renaming a folder doesn't break the relative links.

Links are not broken because they don't include the folder name.

To redirect to a page in a different Area, specify the area:

For more information, see Areas in ASP.NET Core and Razor Pages route and app conventions in ASP.NET

Core.

Data can be passed to a page with ViewDataAttribute. Properties with the [ViewData] attribute have their

values stored and loaded from the ViewDataDictionary.

In the following example, the AboutModel applies the [ViewData] attribute to the Title property:

In the About page, access the Title property as a model property:

In the layout, the title is read from the ViewData dictionary:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewdataattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary

<!DOCTYPE html>
<html lang="en">
<head>
 <title>@ViewData["Title"] - WebApplication</title>
 ...

TempData

public class CreateDotModel : PageModel
{
 private readonly AppDbContext _db;

 public CreateDotModel(AppDbContext db)
 {
 _db = db;
 }

 [TempData]
 public string Message { get; set; }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 Message = $"Customer {Customer.Name} added";
 return RedirectToPage("./Index");
 }
}

<h3>Msg: @Model.Message</h3>

[TempData]
public string Message { get; set; }

Multiple handlers per page

ASP.NET Core exposes the TempData. This property stores data until it's read. The Keep and Peek methods

can be used to examine the data without deletion. TempData is useful for redirection, when data is needed

for more than a single request.

The following code sets the value of Message using TempData :

The following markup in the Pages/Customers/Index.cshtml file displays the value of Message using

TempData .

The Pages/Customers/Index.cshtml.cs page model applies the [TempData] attribute to the Message

property.

For more information, see TempData.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.tempdata#microsoft_aspnetcore_mvc_controller_tempdata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.tempdatadictionary.keep
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.tempdatadictionary.peek

@page
@model CreateFATHModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" asp-page-handler="JoinList" value="Join" />
 <input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />
 </form>
</body>
</html>

The following page generates markup for two handlers using the asp-page-handler Tag Helper :

The form in the preceding example has two submit buttons, each using the FormActionTagHelper to

submit to a different URL. The asp-page-handler attribute is a companion to asp-page . asp-page-handler

generates URLs that submit to each of the handler methods defined by a page. asp-page isn't specified

because the sample is linking to the current page.

The page model:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;

namespace RazorPagesContacts.Pages.Customers
{
 public class CreateFATHModel : PageModel
 {
 private readonly AppDbContext _db;

 public CreateFATHModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostJoinListAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
 }

 public async Task<IActionResult> OnPostJoinListUCAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }
 Customer.Name = Customer.Name?.ToUpperInvariant();
 return await OnPostJoinListAsync();
 }
 }
}

<input type="submit" asp-page-handler="JoinList" value="Join" />
<input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />

Custom routes

The preceding code uses named handler methods. Named handler methods are created by taking the text

in the name after On<HTTP Verb> and before Async (if present). In the preceding example, the page

methods are OnPostJoinListJoinListAsync and OnPostJoinListUCJoinListUCAsync. With OnPost and Async removed, the

handler names are JoinList and JoinListUC .

Using the preceding code, the URL path that submits to OnPostJoinListAsync is

https://localhost:5001/Customers/CreateFATH?handler=JoinList . The URL path that submits to

OnPostJoinListUCAsync is https://localhost:5001/Customers/CreateFATH?handler=JoinListUC .

Use the @page directive to:

Specify a custom route to a page. For example, the route to the About page can be set to

/Some/Other/Path with @page "/Some/Other/Path" .

@page "{handler?}"
@model CreateRouteModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" asp-page-handler="JoinList" value="Join" />
 <input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />
 </form>
</body>
</html>

Advanced configuration and settings

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages(options =>
 {
 options.RootDirectory = "/MyPages";
 options.Conventions.AuthorizeFolder("/MyPages/Admin");
 });
}

Specify that Razor Pages are at the content rootSpecify that Razor Pages are at the content root

Append segments to a page's default route. For example, an "item" segment can be added to a page's

default route with @page "item" .

Append parameters to a page's default route. For example, an ID parameter, id , can be required for a

page with @page "{id}" .

A root-relative path designated by a tilde (~) at the beginning of the path is supported. For example,

@page "~/Some/Other/Path" is the same as @page "/Some/Other/Path" .

If you don't like the query string ?handler=JoinList in the URL, change the route to put the handler name

in the path portion of the URL. The route can be customized by adding a route template enclosed in

double quotes after the @page directive.

Using the preceding code, the URL path that submits to OnPostJoinListAsync is

https://localhost:5001/Customers/CreateFATH/JoinList . The URL path that submits to

OnPostJoinListUCAsync is https://localhost:5001/Customers/CreateFATH/JoinListUC .

The ? following handler means the route parameter is optional.

The configuration and settings in following sections is not required by most apps.

To configure advanced options, use the AddRazorPages overload that configures RazorPagesOptions:

Use the RazorPagesOptions to set the root directory for pages, or add application model conventions for

pages. For more information on conventions, see Razor Pages authorization conventions.

To precompile views, see Razor view compilation.

By default, Razor Pages are rooted in the /Pages directory. Add WithRazorPagesAtContentRoot to specify

that your Razor Pages are at the content root (ContentRootPath) of the app:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addrazorpages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.withrazorpagesatcontentroot
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.contentrootpath#microsoft_aspnetcore_hosting_ihostingenvironment_contentrootpath

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages(options =>
 {
 options.Conventions.AuthorizeFolder("/MyPages/Admin");
 })
 .WithRazorPagesAtContentRoot();
}

Specify that Razor Pages are at a custom root directorySpecify that Razor Pages are at a custom root directory

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages(options =>
 {
 options.Conventions.AuthorizeFolder("/MyPages/Admin");
 })
 .WithRazorPagesRoot("/path/to/razor/pages");
}

Additional resources

Prerequisites

Add WithRazorPagesRoot to specify that Razor Pages are at a custom root directory in the app (provide a

relative path):

See Get started with Razor Pages, which builds on this introduction.

Authorize attribute and Razor Pages

Download or view sample code

Introduction to ASP.NET Core

razor syntax reference for ASP.NET Core

Areas in ASP.NET Core

Tutorial: Get started with Razor Pages in ASP.NET Core

Razor Pages authorization conventions in ASP.NET Core

Razor Pages route and app conventions in ASP.NET Core

Razor Pages unit tests in ASP.NET Core

Partial views in ASP.NET Core

Integrate ASP.NET Core Razor components into Razor Pages and MVC apps

By Rick Anderson and Ryan Nowak

Razor Pages is a new aspect of ASP.NET Core MVC that makes coding page-focused scenarios easier and

more productive.

If you're looking for a tutorial that uses the Model-View-Controller approach, see Get started with ASP.NET

Core MVC.

This document provides an introduction to Razor Pages. It's not a step by step tutorial. If you find some of

the sections too advanced, see Get started with Razor Pages. For an overview of ASP.NET Core, see the

Introduction to ASP.NET Core.

Visual Studio

Visual Studio Code

Visual Studio for Mac

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvccorebuilderextensions.withrazorpagesroot
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/index/3.0sample
https://twitter.com/RickAndMSFT
https://github.com/rynowak

WARNINGWARNING

Create a Razor Pages project

Razor Pages

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 // Includes support for Razor Pages and controllers.
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
}

@page

<h1>Hello, world!</h1>
<h2>The time on the server is @DateTime.Now</h2>

@page
@using RazorPagesIntro.Pages
@model IndexModel2

<h2>Separate page model</h2>
<p>
 @Model.Message
</p>

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't

work with Visual Studio.

Visual Studio

Visual Studio for Mac

Visual Studio Code

See Get started with Razor Pages for detailed instructions on how to create a Razor Pages project.

Razor Pages is enabled in Startup.cs:

 Consider a basic page:

The preceding code looks a lot like a Razor view file used in an ASP.NET Core app with controllers and

views. What makes it different is the @page directive. @page makes the file into an MVC action - which

means that it handles requests directly, without going through a controller. @page must be the first Razor

directive on a page. @page affects the behavior of other Razor constructs.

A similar page, using a PageModel class, is shown in the following two files. The Pages/Index2.cshtml file:

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124

using Microsoft.AspNetCore.Mvc.RazorPages;
using System;

namespace RazorPagesIntro.Pages
{
 public class IndexModel2 : PageModel
 {
 public string Message { get; private set; } = "PageModel in C#";

 public void OnGet()
 {
 Message += $" Server time is { DateTime.Now }";
 }
 }
}

F IL E N A M E A N D PAT HF IL E N A M E A N D PAT H M ATC H IN G URLM ATC H IN G URL

/Pages/Index.cshtml / or /Index

/Pages/Contact.cshtml /Contact

/Pages/Store/Contact.cshtml /Store/Contact

/Pages/Store/Index.cshtml /Store or /Store/Index

Write a basic form

The Pages/Index2.cshtml.cs page model:

By convention, the PageModel class file has the same name as the Razor Page file with .cs appended. For

example, the previous Razor Page is Pages/Index2.cshtml. The file containing the PageModel class is

named Pages/Index2.cshtml.cs.

The associations of URL paths to pages are determined by the page's location in the file system. The

following table shows a Razor Page path and the matching URL:

Notes:

The runtime looks for Razor Pages files in the Pages folder by default.

Index is the default page when a URL doesn't include a page.

Razor Pages is designed to make common patterns used with web browsers easy to implement when

building an app. Model binding, Tag Helpers, and HTML helpers all just work with the properties defined in

a Razor Page class. Consider a page that implements a basic "contact us" form for the Contact model:

For the samples in this document, the DbContext is initialized in the Startup.cs file.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/razor-pages/index/sample/RazorPagesContacts/Startup.cs#L15-L16

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using RazorPagesContacts.Data;

namespace RazorPagesContacts
{
 public class Startup
 {
 public IHostingEnvironment HostingEnvironment { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddDbContext<AppDbContext>(options =>
 options.UseInMemoryDatabase("name"));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

using System.ComponentModel.DataAnnotations;

namespace RazorPagesContacts.Data
{
 public class Customer
 {
 public int Id { get; set; }

 [Required, StringLength(100)]
 public string Name { get; set; }
 }
}

using Microsoft.EntityFrameworkCore;

namespace RazorPagesContacts.Data
{
 public class AppDbContext : DbContext
 {
 public AppDbContext(DbContextOptions options)
 : base(options)
 {
 }

 public DbSet<Customer> Customers { get; set; }
 }
}

The data model:

The db context:

The Pages/Create.cshtml view file:

@page
@model RazorPagesContacts.Pages.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" />
 </form>
</body>
</html>

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;

namespace RazorPagesContacts.Pages
{
 public class CreateModel : PageModel
 {
 private readonly AppDbContext _db;

 public CreateModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
 }
 }
}

The Pages/Create.cshtml.cs page model:

By convention, the PageModel class is called <PageName>Model and is in the same namespace as the page.

The PageModel class allows separation of the logic of a page from its presentation. It defines page

handlers for requests sent to the page and the data used to render the page. This separation allows:

Managing of page dependencies through dependency injection.

Unit testing the pages.

The page has an OnPostAsync handler method, which runs on POST requests (when a user posts the

form). You can add handler methods for any HTTP verb. The most common handlers are:

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
}

OnGet to initialize state needed for the page. OnGet sample.

OnPost to handle form submissions.

The Async naming suffix is optional but is often used by convention for asynchronous functions. The

preceding code is typical for Razor Pages.

If you're familiar with ASP.NET apps using controllers and views:

The OnPostAsync code in the preceding example looks similar to typical controller code.

Most of the MVC primitives like model binding, validation, Validation, and action results are shared.

The previous OnPostAsync method:

The basic flow of OnPostAsync :

Check for validation errors.

If there are no errors, save the data and redirect.

If there are errors, show the page again with validation messages. Client-side validation is identical to

traditional ASP.NET Core MVC applications. In many cases, validation errors would be detected on the

client, and never submitted to the server.

When the data is entered successfully, the OnPostAsync handler method calls the RedirectToPage helper

method to return an instance of RedirectToPageResult . RedirectToPage is a new action result, similar to

RedirectToAction or RedirectToRoute , but customized for pages. In the preceding sample, it redirects to

the root Index page (/Index). RedirectToPage is detailed in the URL generation for Pages section.

When the submitted form has validation errors (that are passed to the server), the OnPostAsync handler

method calls the Page helper method. Page returns an instance of PageResult . Returning Page is

similar to how actions in controllers return View . PageResult is the default return type for a handler

method. A handler method that returns void renders the page.

The Customer property uses [BindProperty] attribute to opt in to model binding.

public class CreateModel : PageModel
{
 private readonly AppDbContext _db;

 public CreateModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
 }
}

WARNINGWARNING

[BindProperty(SupportsGet = true)]

Razor Pages, by default, bind properties only with non- GET verbs. Binding to properties can reduce the

amount of code you have to write. Binding reduces code by using the same property to render form fields

(<input asp-for="Customer.Name">) and accept the input.

For security reasons, you must opt in to binding GET request data to page model properties. Verify user input

before mapping it to properties. Opting into GET binding is useful when addressing scenarios that rely on query

string or route values.

To bind a property on GET requests, set the [BindProperty] attribute's SupportsGet property to true :

For more information, see ASP.NET Core Community Standup: Bind on GET discussion (YouTube).

The home page (Index.cshtml):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute
https://www.youtube.com/watch?v=p7iHB9V-KVU&feature=youtu.be&t=54m27s

@page
@model RazorPagesContacts.Pages.IndexModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<h1>Contacts</h1>
<form method="post">
 <table class="table">
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var contact in Model.Customers)
 {
 <tr>
 <td>@contact.Id</td>
 <td>@contact.Name</td>
 <td>
 <a asp-page="./Edit" asp-route-id="@contact.Id">edit
 <button type="submit" asp-page-handler="delete"
 asp-route-id="@contact.Id">delete</button>
 </td>
 </tr>
 }
 </tbody>
 </table>

 <a asp-page="./Create">Create
</form>

The associated PageModel class (Index.cshtml.cs):

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;
using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;

namespace RazorPagesContacts.Pages
{
 public class IndexModel : PageModel
 {
 private readonly AppDbContext _db;

 public IndexModel(AppDbContext db)
 {
 _db = db;
 }

 public IList<Customer> Customers { get; private set; }

 public async Task OnGetAsync()
 {
 Customers = await _db.Customers.AsNoTracking().ToListAsync();
 }

 public async Task<IActionResult> OnPostDeleteAsync(int id)
 {
 var contact = await _db.Customers.FindAsync(id);

 if (contact != null)
 {
 _db.Customers.Remove(contact);
 await _db.SaveChangesAsync();
 }

 return RedirectToPage();
 }
 }
}

<a asp-page="./Edit" asp-route-id="@contact.Id">edit

The Index.cshtml file contains the following markup to create an edit link for each contact:

The <a asp-page="./Edit" asp-route-id="@contact.Id">Edit Anchor Tag Helper used the

asp-route-{value} attribute to generate a link to the Edit page. The link contains route data with the

contact ID. For example, https://localhost:5001/Edit/1 . Tag Helpers enable server-side code to participate

in creating and rendering HTML elements in Razor files. Tag Helpers are enabled by

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The Pages/Edit.cshtml file:

@page "{id:int}"
@model RazorPagesContacts.Pages.EditModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@{
 ViewData["Title"] = "Edit Customer";
}

<h1>Edit Customer - @Model.Customer.Id</h1>
<form method="post">
 <div asp-validation-summary="All"></div>
 <input asp-for="Customer.Id" type="hidden" />
 <div>
 <label asp-for="Customer.Name"></label>
 <div>
 <input asp-for="Customer.Name" />

 </div>
 </div>

 <div>
 <button type="submit">Save</button>
 </div>
</form>

@page "{id:int?}"

The first line contains the @page "{id:int}" directive. The routing constraint "{id:int}" tells the page to

accept requests to the page that contain int route data. If a request to the page doesn't contain route

data that can be converted to an int , the runtime returns an HTTP 404 (not found) error. To make the ID

optional, append ? to the route constraint:

The Pages/Edit.cshtml.cs file:

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesContacts.Data;

namespace RazorPagesContacts.Pages
{
 public class EditModel : PageModel
 {
 private readonly AppDbContext _db;

 public EditModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnGetAsync(int id)
 {
 Customer = await _db.Customers.FindAsync(id);

 if (Customer == null)
 {
 return RedirectToPage("/Index");
 }

 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Attach(Customer).State = EntityState.Modified;

 try
 {
 await _db.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 throw new Exception($"Customer {Customer.Id} not found!");
 }

 return RedirectToPage("/Index");
 }
 }
}

<button type="submit" asp-page-handler="delete"
 asp-route-id="@contact.Id">delete</button>

The Index.cshtml file also contains markup to create a delete button for each customer contact:

When the delete button is rendered in HTML, its formaction includes parameters for :

The customer contact ID specified by the asp-route-id attribute.

<button type="submit" formaction="/?id=1&handler=delete">delete</button>

public async Task<IActionResult> OnPostDeleteAsync(int id)
{
 var contact = await _db.Customers.FindAsync(id);

 if (contact != null)
 {
 _db.Customers.Remove(contact);
 await _db.SaveChangesAsync();
 }

 return RedirectToPage();
}

Mark page properties as required

The handler specified by the asp-page-handler attribute.

Here is an example of a rendered delete button with a customer contact ID of 1 :

When the button is selected, a form POST request is sent to the server. By convention, the name of the

handler method is selected based on the value of the handler parameter according to the scheme

OnPost[handler]Async .

Because the handler is delete in this example, the OnPostDeleteAsync handler method is used to

process the POST request. If the asp-page-handler is set to a different value, such as remove , a handler

method with the name OnPostRemoveAsync is selected. The following code shows the OnPostDeleteAsync

handler :

The OnPostDeleteAsync method:

Accepts the id from the query string. If the Index.cshtml page directive contained routing constraint

"{id:int?}" , id would come from route data. The route data for id is specified in the URI such as

https://localhost:5001/Customers/2 .

Queries the database for the customer contact with FindAsync .

If the customer contact is found, they're removed from the list of customer contacts. The database is

updated.

Calls RedirectToPage to redirect to the root Index page (/Index).

Properties on a PageModel can be marked with the Required attribute:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.requiredattribute

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using System.ComponentModel.DataAnnotations;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 [Required(ErrorMessage = "Color is required")]
 public string Color { get; set; }

 public IActionResult OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 // Process color.

 return RedirectToPage("./Index");
 }
 }
}

Handle HEAD requests with an OnGet handler fallback

public void OnHead()
{
 HttpContext.Response.Headers.Add("HandledBy", "Handled by OnHead!");
}

services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

For more information, see Model validation.

HEAD requests allow you to retrieve the headers for a specific resource. Unlike GET requests, HEAD

requests don't return a response body.

Ordinarily, an OnHead handler is created and called for HEAD requests:

In ASP.NET Core 2.1 or later, Razor Pages falls back to calling the OnGet handler if no OnHead handler is

defined. This behavior is enabled by the call to SetCompatibilityVersion in Startup.ConfigureServices :

The default templates generate the SetCompatibilityVersion call in ASP.NET Core 2.1 and 2.2.

SetCompatibilityVersion effectively sets the Razor Pages option AllowMappingHeadRequestsToGetHandler to

true .

Rather than opting in to all behaviors with SetCompatibilityVersion , you can explicitly opt in to specific

behaviors. The following code opts in to allowing HEAD requests to be mapped to the OnGet handler :

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.AllowMappingHeadRequestsToGetHandler = true;
 });

XSRF/CSRF and Razor Pages

Using Layouts, partials, templates, and Tag Helpers with Razor
Pages

<!DOCTYPE html>
<html>
<head>
 <title>Razor Pages Sample</title>
</head>
<body>
 <a asp-page="/Index">Home
 @RenderBody()
 <a asp-page="/Customers/Create">Create

</body>
</html>

@{
 Layout = "_Layout";
}

You don't have to write any code for antiforgery validation. Antiforgery token generation and validation

are automatically included in Razor Pages.

Pages work with all the capabilities of the Razor view engine. Layouts, partials, templates, Tag Helpers,

_ViewStart.cshtml, _ViewImports.cshtml work in the same way they do for conventional Razor views.

Let's declutter this page by taking advantage of some of those capabilities.

Add a layout page to Pages/Shared/_Layout.cshtml:

The Layout:

Controls the layout of each page (unless the page opts out of layout).

Imports HTML structures such as JavaScript and stylesheets.

See layout page for more information.

The Layout property is set in Pages/_ViewStart.cshtml:

The layout is in the Pages/Shared folder. Pages look for other views (layouts, templates, partials)

hierarchically, starting in the same folder as the current page. A layout in the Pages/Shared folder can be

used from any Razor page under the Pages folder.

The layout file should go in the Pages/Shared folder.

We recommend you notnot put the layout file in the Views/Shared folder. Views/Shared is an MVC views

pattern. Razor Pages are meant to rely on folder hierarchy, not path conventions.

View search from a Razor Page includes the Pages folder. The layouts, templates, and partials you're using

with MVC controllers and conventional Razor views just work.

@namespace RazorPagesContacts.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@page
@namespace RazorPagesIntro.Pages.Customers

@model NameSpaceModel

<h2>Name space</h2>
<p>
 @Model.Message
</p>

namespace RazorPagesContacts.Pages
{
 public class EditModel : PageModel
 {
 private readonly AppDbContext _db;

 public EditModel(AppDbContext db)
 {
 _db = db;
 }

 // Code removed for brevity.

@namespace RazorPagesContacts.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Add a Pages/_ViewImports.cshtml file:

@namespace is explained later in the tutorial. The @addTagHelper directive brings in the built-in Tag Helpers

to all the pages in the Pages folder.

 When the @namespace directive is used explicitly on a page:

The directive sets the namespace for the page. The @model directive doesn't need to include the

namespace.

When the @namespace directive is contained in _ViewImports.cshtml, the specified namespace supplies the

prefix for the generated namespace in the Page that imports the @namespace directive. The rest of the

generated namespace (the suffix portion) is the dot-separated relative path between the folder containing

_ViewImports.cshtml and the folder containing the page.

For example, the PageModel class Pages/Customers/Edit.cshtml.cs explicitly sets the namespace:

The Pages/_ViewImports.cshtml file sets the following namespace:

The generated namespace for the Pages/Customers/Edit.cshtml Razor Page is the same as the PageModel

class.

@namespace also works with conventional Razor views.

The original Pages/Create.cshtml view file:

@page
@model RazorPagesContacts.Pages.CreateModel
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" />
 </form>
</body>
</html>

@page
@model CreateModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" />
 </form>
</body>
</html>

URL generation for Pages

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
}

The updated Pages/Create.cshtml view file:

The Razor Pages starter project contains the Pages/_ValidationScriptsPartial.cshtml, which hooks up client-

side validation.

For more information on partial views, see Partial views in ASP.NET Core.

The Create page, shown previously, uses RedirectToPage :

The app has the following file/folder structure:

/Pages

Index.cshtml

REDIREC T TO PA GE(X)REDIREC T TO PA GE(X) PA GEPA GE

RedirectToPage("/Index") Pages/Index

RedirectToPage("./Index"); Pages/Customers/Index

RedirectToPage("../Index") Pages/Index

RedirectToPage("Index") Pages/Customers/Index

RedirectToPage("/Index", new { area = "Services" });

ViewData attribute

/Customers

Create.cshtml

Edit.cshtml

Index.cshtml

The Pages/Customers/Create.cshtml and Pages/Customers/Edit.cshtml pages redirect to

Pages/Index.cshtml after success. The string /Index is part of the URI to access the preceding page. The

string /Index can be used to generate URIs to the Pages/Index.cshtml page. For example:

Url.Page("/Index", ...)

<a asp-page="/Index">My Index Page

RedirectToPage("/Index")

The page name is the path to the page from the root /Pages folder including a leading / (for example,

/Index). The preceding URL generation samples offer enhanced options and functional capabilities over

hardcoding a URL. URL generation uses routing and can generate and encode parameters according to

how the route is defined in the destination path.

URL generation for pages supports relative names. The following table shows which Index page is

selected with different RedirectToPage parameters from Pages/Customers/Create.cshtml:

RedirectToPage("Index") , RedirectToPage("./Index") , and RedirectToPage("../Index") are relative names.

The RedirectToPage parameter is combined with the path of the current page to compute the name of the

destination page.

Relative name linking is useful when building sites with a complex structure. If you use relative names to

link between pages in a folder, you can rename that folder. All the links still work (because they didn't

include the folder name).

To redirect to a page in a different Area, specify the area:

For more information, see Areas in ASP.NET Core.

Data can be passed to a page with ViewDataAttribute. Properties on controllers or Razor Page models

with the [ViewData] attribute have their values stored and loaded from the ViewDataDictionary.

In the following example, the AboutModel contains a Title property marked with [ViewData] . The

Title property is set to the title of the About page:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewdataattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary

public class AboutModel : PageModel
{
 [ViewData]
 public string Title { get; } = "About";

 public void OnGet()
 {
 }
}

<h1>@Model.Title</h1>

<!DOCTYPE html>
<html lang="en">
<head>
 <title>@ViewData["Title"] - WebApplication</title>
 ...

TempData

public class CreateDotModel : PageModel
{
 private readonly AppDbContext _db;

 public CreateDotModel(AppDbContext db)
 {
 _db = db;
 }

 [TempData]
 public string Message { get; set; }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 Message = $"Customer {Customer.Name} added";
 return RedirectToPage("./Index");
 }
}

In the About page, access the Title property as a model property:

In the layout, the title is read from the ViewData dictionary:

ASP.NET Core exposes the TempData property on a controller. This property stores data until it's read. The

Keep and Peek methods can be used to examine the data without deletion. TempData is useful for

redirection, when data is needed for more than a single request.

The following code sets the value of Message using TempData :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.tempdata?view=aspnetcore-2.0#microsoft_aspnetcore_mvc_controller_tempdata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller

<h3>Msg: @Model.Message</h3>

[TempData]
public string Message { get; set; }

Multiple handlers per page

@page
@model CreateFATHModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" asp-page-handler="JoinList" value="Join" />
 <input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />
 </form>
</body>
</html>

The following markup in the Pages/Customers/Index.cshtml file displays the value of Message using

TempData .

The Pages/Customers/Index.cshtml.cs page model applies the [TempData] attribute to the Message

property.

For more information, see TempData .

The following page generates markup for two handlers using the asp-page-handler Tag Helper :

The form in the preceding example has two submit buttons, each using the FormActionTagHelper to

submit to a different URL. The asp-page-handler attribute is a companion to asp-page . asp-page-handler

generates URLs that submit to each of the handler methods defined by a page. asp-page isn't specified

because the sample is linking to the current page.

The page model:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesContacts.Data;

namespace RazorPagesContacts.Pages.Customers
{
 public class CreateFATHModel : PageModel
 {
 private readonly AppDbContext _db;

 public CreateFATHModel(AppDbContext db)
 {
 _db = db;
 }

 [BindProperty]
 public Customer Customer { get; set; }

 public async Task<IActionResult> OnPostJoinListAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _db.Customers.Add(Customer);
 await _db.SaveChangesAsync();
 return RedirectToPage("/Index");
 }

 public async Task<IActionResult> OnPostJoinListUCAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }
 Customer.Name = Customer.Name?.ToUpperInvariant();
 return await OnPostJoinListAsync();
 }
 }
}

<input type="submit" asp-page-handler="JoinList" value="Join" />
<input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />

Custom routes

The preceding code uses named handler methods. Named handler methods are created by taking the text

in the name after On<HTTP Verb> and before Async (if present). In the preceding example, the page

methods are OnPostJoinListJoinListAsync and OnPostJoinListUCJoinListUCAsync. With OnPost and Async removed, the

handler names are JoinList and JoinListUC .

Using the preceding code, the URL path that submits to OnPostJoinListAsync is

https://localhost:5001/Customers/CreateFATH?handler=JoinList . The URL path that submits to

OnPostJoinListUCAsync is https://localhost:5001/Customers/CreateFATH?handler=JoinListUC .

Use the @page directive to:

Specify a custom route to a page. For example, the route to the About page can be set to

/Some/Other/Path with @page "/Some/Other/Path" .

@page "{handler?}"
@model CreateRouteModel

<html>
<body>
 <p>
 Enter your name.
 </p>
 <div asp-validation-summary="All"></div>
 <form method="POST">
 <div>Name: <input asp-for="Customer.Name" /></div>
 <input type="submit" asp-page-handler="JoinList" value="Join" />
 <input type="submit" asp-page-handler="JoinListUC" value="JOIN UC" />
 </form>
</body>
</html>

Configuration and settings

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.RootDirectory = "/MyPages";
 options.Conventions.AuthorizeFolder("/MyPages/Admin");
 });
}

Specify that Razor Pages are at the content rootSpecify that Razor Pages are at the content root

Append segments to a page's default route. For example, an "item" segment can be added to a page's

default route with @page "item" .

Append parameters to a page's default route. For example, an ID parameter, id , can be required for a

page with @page "{id}" .

A root-relative path designated by a tilde (~) at the beginning of the path is supported. For example,

@page "~/Some/Other/Path" is the same as @page "/Some/Other/Path" .

If you don't like the query string ?handler=JoinList in the URL, change the route to put the handler name

in the path portion of the URL. The route can be customized by adding a route template enclosed in

double quotes after the @page directive.

Using the preceding code, the URL path that submits to OnPostJoinListAsync is

https://localhost:5001/Customers/CreateFATH/JoinList . The URL path that submits to

OnPostJoinListUCAsync is https://localhost:5001/Customers/CreateFATH/JoinListUC .

The ? following handler means the route parameter is optional.

To configure advanced options, use the extension method AddRazorPagesOptions on the MVC builder :

Currently you can use the RazorPagesOptions to set the root directory for pages, or add application model

conventions for pages. We'll enable more extensibility this way in the future.

To precompile views, see Razor view compilation .

Download or view sample code.

See Get started with Razor Pages, which builds on this introduction.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/index/sample

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 ...
 })
 .WithRazorPagesAtContentRoot();

Specify that Razor Pages are at a custom root directorySpecify that Razor Pages are at a custom root directory

services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 ...
 })
 .WithRazorPagesRoot("/path/to/razor/pages");

Additional resources

By default, Razor Pages are rooted in the /Pages directory. Add WithRazorPagesAtContentRoot to AddMvc

to specify that your Razor Pages are at the content root (ContentRootPath) of the app:

Add WithRazorPagesRoot to AddMvc to specify that your Razor Pages are at a custom root directory in

the app (provide a relative path):

Authorize attribute and Razor Pages

Introduction to ASP.NET Core

razor syntax reference for ASP.NET Core

Areas in ASP.NET Core

Tutorial: Get started with Razor Pages in ASP.NET Core

Razor Pages authorization conventions in ASP.NET Core

Razor Pages route and app conventions in ASP.NET Core

Razor Pages unit tests in ASP.NET Core

Partial views in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.withrazorpagesatcontentroot
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc#microsoft_extensions_dependencyinjection_mvcservicecollectionextensions_addmvc_microsoft_extensions_dependencyinjection_iservicecollection_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.contentrootpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvccorebuilderextensions.withrazorpagesroot
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc#microsoft_extensions_dependencyinjection_mvcservicecollectionextensions_addmvc_microsoft_extensions_dependencyinjection_iservicecollection_

Tutorial: Create a Razor Pages web app with ASP.NET
Core
9/22/2020 • 2 minutes to read • Edit Online

This series of tutorials explains the basics of building a Razor Pages web app.

For a more advanced introduction aimed at developers who are familiar with controllers and views, see

Introduction to Razor Pages.

This series includes the following tutorials:

1. Create a Razor Pages web app

2. Add a model to a Razor Pages app

3. Scaffold (generate) Razor pages

4. Work with a database

5. Update Razor pages

6. Add search

7. Add a new field

8. Add validation

At the end, you'll have an app that can display and manage a database of movies.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/index.md

Tutorial: Get started with Razor Pages in ASP.NET
Core
9/22/2020 • 10 minutes to read • Edit Online

Prerequisites

By Rick Anderson

This is the first tutorial of a series that teaches the basics of building an ASP.NET Core Razor Pages web app.

For a more advanced introduction aimed at developers who are familiar with controllers and views, see

Introduction to Razor Pages.

At the end of the series, you'll have an app that manages a database of movies.

View or download sample code (how to download).

View or download sample code (how to download).

In this tutorial, you:

Create a Razor Pages web app.

Run the app.

Examine the project files.

At the end of this tutorial, you'll have a working Razor Pages web app that you'll build on in later tutorials.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1

 Create a Razor Pages web app
Visual Studio

Visual Studio Code

Visual Studio for Mac

From the Visual Studio FileFile menu, select NewNew > ProjectProject.

Create a new ASP.NET Core Web Application and select NextNext.

Name the project RazorPagesMovieRazorPagesMovie. It's important to name the project RazorPagesMovie so the

namespaces will match when you copy and paste code.

Select ASP.NET Core 3.1ASP.NET Core 3.1 in the dropdown, Web ApplicationWeb Application, and then select CreateCreate.

Run the app

The following starter project is created:

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run without the debugger.

Visual Studio displays the following dialog:

Examine the project files

Pages folderPages folder

wwwroot folderwwwroot folder

Select YesYes if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes if you agree to trust the development certificate.

Visual Studio starts IIS Express and runs the app. The address bar shows localhost:port# and not

something like example.com . That's because localhost is the standard hostname for the local

computer. Localhost only serves web requests from the local computer. When Visual Studio creates a

web project, a random port is used for the web server.

Here's an overview of the main project folders and files that you'll work with in later tutorials.

Contains Razor pages and supporting files. Each Razor page is a pair of files:

A .cshtml file that contains HTML markup with C# code using Razor syntax.

A .cshtml.cs file that contains C# code that handles page events.

Supporting files have names that begin with an underscore. For example, the _Layout.cshtml file configures

UI elements common to all pages. This file sets up the navigation menu at the top of the page and the

copyright notice at the bottom of the page. For more information, see Layout in ASP.NET Core.

Contains static files, such as HTML files, JavaScript files, and CSS files. For more information, see Static files

in ASP.NET Core.

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

appSettings.jsonappSettings.json

Program.csProgram.cs

Startup.csStartup.cs

Next steps

Contains configuration data, such as connection strings. For more information, see Configuration in

ASP.NET Core.

Contains the entry point for the program. For more information, see .NET Generic Host.

Contains code that configures app behavior. For more information, see App startup in ASP.NET Core.

Advance to the next tutorial in the series:

A D D AA D D A

M O D E LM O D E L

This is the first tutorial of a series. The series teaches the basics of building an ASP.NET Core Razor Pages

web app.

For a more advanced introduction aimed at developers who are familiar with controllers and views, see

Introduction to Razor Pages.

At the end of the series, you'll have an app that manages a database of movies.

View or download sample code (how to download).

View or download sample code (how to download).

In this tutorial, you:

Create a Razor Pages web app.

Run the app.

Examine the project files.

At the end of this tutorial, you'll have a working Razor Pages web app that you'll build on in later tutorials.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start

Prerequisites

WARNINGWARNING

Create a Razor Pages web app

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't

work with Visual Studio.

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the Visual Studio FileFile menu, select NewNew > ProjectProject.

Create a new ASP.NET Core Web Application and select NextNext.

Name the project RazorPagesMovieRazorPagesMovie. It's important to name the project RazorPagesMovie so the

namespaces will match when you copy and paste code.

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124

Select ASP.NET Core 2.2ASP.NET Core 2.2 in the dropdown, Web ApplicationWeb Application, and then select CreateCreate.

The following starter project is created:

Run the app
Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run without the debugger.

Visual Studio displays the following dialog:

Select YesYes if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes if you agree to trust the development certificate.

Visual Studio starts IIS Express and runs the app. The address bar shows localhost:port# and not

something like example.com . That's because localhost is the standard hostname for the local

computer. Localhost only serves web requests from the local computer. When Visual Studio creates a

web project, a random port is used for the web server.

On the app's home page, select AcceptAccept to consent to tracking.

This app doesn't track personal information, but the project template includes the consent feature in

case you need it to comply with the European Union's General Data Protection Regulation (GDPR).

The following image shows the app after you give consent to tracking:

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

Examine the project files

Pages folderPages folder

wwwroot folderwwwroot folder

appSettings.jsonappSettings.json

Program.csProgram.cs

Startup.csStartup.cs

Additional resources

Next steps

Here's an overview of the main project folders and files that you'll work with in later tutorials.

Contains Razor pages and supporting files. Each Razor page is a pair of files:

A .cshtml file that contains HTML markup with C# code using Razor syntax.

A .cshtml.cs file that contains C# code that handles page events.

Supporting files have names that begin with an underscore. For example, the _Layout.cshtml file configures

UI elements common to all pages. This file sets up the navigation menu at the top of the page and the

copyright notice at the bottom of the page. For more information, see Layout in ASP.NET Core.

Contains static files, such as HTML files, JavaScript files, and CSS files. For more information, see Static files

in ASP.NET Core.

Contains configuration data, such as connection strings. For more information, see Configuration in

ASP.NET Core.

Contains the entry point for the program. For more information, see .NET Generic Host.

Contains code that configures app behavior, such as whether it requires consent for cookies. For more

information, see App startup in ASP.NET Core.

Youtube version of this tutorial

Advance to the next tutorial in the series:

https://www.youtube.com/watch?v=F0SP7Ry4flQ&feature=youtu.be

A D D AA D D A

M O D E LM O D E L

Part 2, add a model to a Razor Pages app in
ASP.NET Core
9/22/2020 • 22 minutes to read • Edit Online

Add a data model

using System;
using System.ComponentModel.DataAnnotations;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

By Rick Anderson

In this section, classes are added for managing movies. The app's model classes use Entity Framework Core (EF

Core) to work with the database. EF Core is an object-relational mapper (O/RM) that simplifies data access.

The model classes are known as POCO classes (from "plain-old CLR objects") because they don't have any

dependency on EF Core. They define the properties of the data that are stored in the database.

View or download sample code (how to download).

View or download sample code (how to download).

Visual Studio

Visual Studio Code

Visual Studio for Mac

Right-click the RazorPagesMovieRazorPagesMovie project > AddAdd > New FolderNew Folder . Name the folder Models.

Right click the Models folder. Select AddAdd > ClassClass . Name the class MovieMovie.

Add the following properties to the Movie class:

The Movie class contains:

The ID field is required by the database for the primary key.

[DataType(DataType.Date)] : The DataType attribute specifies the type of the data (Date). With this

attribute:

The user is not required to enter time information in the date field.

Only the date is displayed, not time information.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/model.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/ef/core
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatypeattribute

 Scaffold the movie model

DataAnnotations are covered in a later tutorial.

Build the project to verify there are no compilation errors.

In this section, the movie model is scaffolded. That is, the scaffolding tool produces pages for Create, Read,

Update, and Delete (CRUD) operations for the movie model.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Create a Pages/Movies folder :

Right click on the Pages folder > AddAdd > New FolderNew Folder .

Name the folder Movies

Right click on the Pages/Movies folder > AddAdd > New Scaffolded ItemNew Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select Razor Pages using Entity Framework (CRUD)Razor Pages using Entity Framework (CRUD) > AddAdd.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations

Files createdFiles created

Complete the Add Razor Pages using Entity Framework (CRUD)Add Razor Pages using Entity Framework (CRUD) dialog:

In the Model classModel class drop down, select Movie (RazorPagesMovie.Models)Movie (RazorPagesMovie.Models) .

In the Data context classData context class row, select the ++ (plus) sign and change the generated name from

RazorPagesMovie.ModelsModels .RazorPagesMovieContext to RazorPagesMovie.DataData.RazorPagesMovieContext.

This change is not required. It creates the database context class with the correct namespace.

Select AddAdd.

The appsettings.json file is updated with the connection string used to connect to a local database.

Visual Studio

Visual Studio for Mac

Visual Studio Code

The scaffold process creates and updates the following files:

https://developercommunity.visualstudio.com/content/problem/652166/aspnet-core-ef-scaffolder-uses-incorrect-namespace.html

UpdatedUpdated

Initial migration

Add-Migration InitialCreate
Update-Database

Pages/Movies: Create, Delete, Details, Edit, and Index.

Data/RazorPagesMovieContext.cs

Startup.cs

The created and updated files are explained in the next section.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In this section, the Package Manager Console (PMC) is used to:

Add an initial migration.

Update the database with the initial migration.

From the ToolsTools menu, select NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console.

In the PMC, enter the following commands:

The preceding commands generate the following warning: "No type was specified for the decimal column

'Price' on entity type 'Movie'. This will cause values to be silently truncated if they do not fit in the default

precision and scale. Explicitly specify the SQL server column type that can accommodate all the values using

'HasColumnType()'."

You can ignore that warning, it will be fixed in a later tutorial.

The migrations command generates code to create the initial database schema. The schema is based on the

model specified in DbContext . The InitialCreate argument is used to name the migrations. Any name can be

used, but by convention a name is selected that describes the migration.

The update command runs the Up method in migrations that have not been applied. In this case, update runs

Examine the context registered with dependency injectionExamine the context registered with dependency injection

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();

 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("RazorPagesMovieContext")));
}

using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie.Models
{
 public class RazorPagesMovieContext : DbContext
 {
 public RazorPagesMovieContext (DbContextOptions<RazorPagesMovieContext> options)
 : base(options)
 {
 }

 public DbSet<RazorPagesMovie.Models.Movie> Movie { get; set; }
 }
}

Test the appTest the app

the Up method in Migrations/<time-stamp>_InitialCreate.cs file, which creates the database.

Visual Studio

Visual Studio Code

Visual Studio for Mac

ASP.NET Core is built with dependency injection. Services (such as the EF Core DB context) are registered with

dependency injection during application startup. Components that require these services (such as Razor Pages)

are provided these services via constructor parameters. The constructor code that gets a DB context instance is

shown later in the tutorial.

The scaffolding tool automatically created a DB context and registered it with the dependency injection

container.

Examine the Startup.ConfigureServices method. The highlighted line was added by the scaffolder :

The RazorPagesMovieContext coordinates EF Core functionality (Create, Read, Update, Delete, etc.) for the Movie

model. The data context (RazorPagesMovieContext) is derived from Microsoft.EntityFrameworkCore.DbContext.

The data context specifies which entities are included in the data model.

The preceding code creates a DbSet<Movie> property for the entity set. In Entity Framework terminology, an

entity set typically corresponds to a database table. An entity corresponds to a row in the table.

The name of the connection string is passed in to the context by calling a method on a DbContextOptions

object. For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Run the app and append /Movies to the URL in the browser (http://localhost:port/movies).

If you get the error :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions

SqlException: Cannot open database "RazorPagesMovieContext-GUID" requested by the login. The login failed.
Login failed for user 'User-name'.

Additional resources

You missed the migrations step.

NOTENOTE

Test the CreateCreate link.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English

locales that use a comma (",") for a decimal point and for non US-English date formats, the app must be

globalized. For globalization instructions, see this GitHub issue.

Test the EditEdit, DetailsDetails , and DeleteDelete links.

The next tutorial explains the files created by scaffolding.

 P R E V I O U S : G E TP R E V I O U S : G E T

S TA R T E DS TA R T E D

N E X T : S C A F F O L D E D R A Z O RN E X T : S C A F F O L D E D R A Z O R

P A G E SP A G E S

In this section, classes are added for managing movies in a cross-platform SQLite database. Apps created from

an ASP.NET Core template use a SQLite database. The app's model classes are used with Entity Framework Core

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://www.sqlite.org/index.html

Add a data model

using System;
using System.ComponentModel.DataAnnotations;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Scaffold the movie model

(EF Core) (SQLite EF Core Database Provider) to work with the database. EF Core is an object-relational

mapping (ORM) framework that simplifies data access.

The model classes are known as POCO classes (from "plain-old CLR objects") because they don't have any

dependency on EF Core. They define the properties of the data that are stored in the database.

View or download sample code (how to download).

View or download sample code (how to download).

Visual Studio

Visual Studio Code

Visual Studio for Mac

Right-click the RazorPagesMovieRazorPagesMovie project > AddAdd > New FolderNew Folder . Name the folder Models.

Right click the Models folder. Select AddAdd > ClassClass . Name the class MovieMovie.

Add the following properties to the Movie class:

The Movie class contains:

The ID field is required by the database for the primary key.

[DataType(DataType.Date)] : The DataType attribute specifies the type of the data (Date). With this

attribute:

The user is not required to enter time information in the date field.

Only the date is displayed, not time information.

DataAnnotations are covered in a later tutorial.

Build the project to verify there are no compilation errors.

In this section, the movie model is scaffolded. That is, the scaffolding tool produces pages for Create, Read,

Update, and Delete (CRUD) operations for the movie model.

Visual Studio

Visual Studio Code

https://docs.microsoft.com/en-us/ef/core
https://docs.microsoft.com/en-us/ef/core/providers/sqlite
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatypeattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations

Visual Studio for Mac

Create a Pages/Movies folder :

Right click on the Pages folder > AddAdd > New FolderNew Folder .

Name the folder Movies

Right click on the Pages/Movies folder > AddAdd > New Scaffolded ItemNew Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select Razor Pages using Entity Framework (CRUD)Razor Pages using Entity Framework (CRUD) > AddAdd.

Files createdFiles created

File updatedFile updated

Complete the Add Razor Pages using Entity Framework (CRUD)Add Razor Pages using Entity Framework (CRUD) dialog:

In the Model classModel class drop down, select Movie (RazorPagesMovie.Models)Movie (RazorPagesMovie.Models) .

In the Data context classData context class row, select the ++ (plus) sign and accept the generated name

RazorPagesMovie.Models.RazorPagesMovieContextRazorPagesMovie.Models.RazorPagesMovieContext.

Select AddAdd.

The appsettings.json file is updated with the connection string used to connect to a local database.

The scaffold process creates and updates the following files:

Pages/Movies: Create, Delete, Details, Edit, and Index.

Data/RazorPagesMovieContext.cs

Startup.cs

The created and updated files are explained in the next section.

Initial migration

Add-Migration Initial
Update-Database

NOTENOTE

Visual Studio

Visual Studio Code

Visual Studio for Mac

In this section, the Package Manager Console (PMC) is used to:

Add an initial migration.

Update the database with the initial migration.

From the ToolsTools menu, select NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console.

In the PMC, enter the following commands:

The Add-Migration command generates code to create the initial database schema. The schema is based on the

model specified in the DbContext (In the RazorPagesMovieContext.cs file). The InitialCreate argument is used

to name the migration. Any name can be used, but by convention a name that describes the migration is used.

For more information, see Tutorial: Using the migrations feature - ASP.NET MVC with EF Core.

The Update-Database command runs the Up method in the Migrations/<time-stamp>_InitialCreate.cs file. The

Up method creates the database.

The preceding commands generate the following warning: "No type was specified for the decimal column 'Price' on entity

type 'Movie'. This will cause values to be silently truncated if they do not fit in the default precision and scale. Explicitly

specify the SQL server column type that can accommodate all the values using 'HasColumnType()'." You can ignore that

warning, it will be fixed in a later tutorial.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Examine the context registered with dependency injectionExamine the context registered with dependency injection

// This method gets called by the runtime.
// Use this method to add services to the container.
public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies is
 // needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("RazorPagesMovieContext")));
}

using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie.Models
{
 public class RazorPagesMovieContext : DbContext
 {
 public RazorPagesMovieContext (DbContextOptions<RazorPagesMovieContext> options)
 : base(options)
 {
 }

 public DbSet<RazorPagesMovie.Models.Movie> Movie { get; set; }
 }
}

Test the appTest the app

ASP.NET Core is built with dependency injection. Services (such as the EF Core DB context) are registered with

dependency injection during application startup. Components that require these services (such as Razor Pages)

are provided these services via constructor parameters. The constructor code that gets a DB context instance is

shown later in the tutorial.

The scaffolding tool automatically created a DB context and registered it with the dependency injection

container.

Examine the Startup.ConfigureServices method. The highlighted line was added by the scaffolder :

The RazorPagesMovieContext coordinates EF Core functionality (Create, Read, Update, Delete, etc.) for the Movie

model. The data context (RazorPagesMovieContext) is derived from Microsoft.EntityFrameworkCore.DbContext.

The data context specifies which entities are included in the data model.

The preceding code creates a DbSet<Movie> property for the entity set. In Entity Framework terminology, an

entity set typically corresponds to a database table. An entity corresponds to a row in the table.

The name of the connection string is passed in to the context by calling a method on a DbContextOptions

object. For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Run the app and append /Movies to the URL in the browser (http://localhost:port/movies).

If you get the error :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions

SqlException: Cannot open database "RazorPagesMovieContext-GUID" requested by the login. The login failed.
Login failed for user 'User-name'.

Additional resources

You missed the migrations step.

NOTENOTE

Test the CreateCreate link.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English

locales that use a comma (",") for a decimal point and for non US-English date formats, the app must be

globalized. For globalization instructions, see this GitHub issue.

Test the EditEdit, DetailsDetails , and DeleteDelete links.

The next tutorial explains the files created by scaffolding.

 P R E V I O U S : G E TP R E V I O U S : G E T

S TA R T E DS TA R T E D

N E X T : S C A F F O L D E D R A Z O RN E X T : S C A F F O L D E D R A Z O R

P A G E SP A G E S

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420

Part 3, scaffolded Razor Pages in ASP.NET Core
9/22/2020 • 16 minutes to read • Edit Online

The Create, Delete, Details, and Edit pages

// Unused usings removed.
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesMovie.Models;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Data.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Data.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get;set; }

 public async Task OnGetAsync()
 {
 Movie = await _context.Movie.ToListAsync();
 }
 }
}

By Rick Anderson

This tutorial examines the Razor Pages created by scaffolding in the previous tutorial.

View or download sample code (how to download).

View or download sample code (how to download).

Examine the Pages/Movies/Index.cshtml.cs Page Model:

Razor Pages are derived from PageModel . By convention, the PageModel -derived class is called <PageName>Model .

The constructor uses dependency injection to add the RazorPagesMovieContext to the page. All the scaffolded

pages follow this pattern. See Asynchronous code for more information on asynchronous programming with

Entity Framework.

When a request is made for the page, the OnGetAsync method returns a list of movies to the Razor Page.

OnGetAsync or OnGet is called to initialize the state of the page. In this case, OnGetAsync gets a list of movies and

displays them.

When OnGet returns void or OnGetAsync returns Task , no return statement is used. When the return type is

IActionResult or Task<IActionResult> , a return statement must be provided. For example, the

Pages/Movies/Create.cshtml.cs OnPostAsync method:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/page.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
}

 Examine the Pages/Movies/Index.cshtml Razor Page:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

The @page directiveThe @page directive

Razor can transition from HTML into C# or into Razor-specific markup. When an @ symbol is followed by a

Razor reserved keyword, it transitions into Razor-specific markup, otherwise it transitions into C#.

The @page Razor directive makes the file an MVC action, which means that it can handle requests. @page must

be the first Razor directive on a page. @page is an example of transitioning into Razor-specific markup. See

Razor syntax for more information.

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.Movie[0].Title)

The @model directiveThe @model directive

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

The layout pageThe layout page

ViewData and layoutViewData and layout

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

The DisplayNameFor HTML Helper inspects the Title property referenced in the lambda expression to

determine the display name. The lambda expression is inspected rather than evaluated. That means there is no

access violation when model , model.Movie , or model.Movie[0] is null or empty. When the lambda expression

is evaluated (for example, with @Html.DisplayFor(modelItem => item.Title)), the model's property values are

evaluated.

The @model directive specifies the type of the model passed to the Razor Page. In the preceding example, the

@model line makes the PageModel -derived class available to the Razor Page. The model is used in the

@Html.DisplayNameFor and @Html.DisplayFor HTML Helpers on the page.

Select the menu links (RazorPagesMovieRazorPagesMovie, HomeHome, and Pr ivacyPrivacy). Each page shows the same menu layout. The

menu layout is implemented in the Pages/Shared/_Layout.cshtml file. Open the Pages/Shared/_Layout.cshtml

file.

Layout templates allow the HTML container layout to be:

Specified in one place.

Applied in multiple pages in the site.

Find the @RenderBody() line. RenderBody is a placeholder where all the page-specific views show up, wrapped in

the layout page. For example, select the Pr ivacyPrivacy link and the Pages/Privacy.cshtml view is rendered inside the

RenderBody method.

Consider the following markup from the Pages/Movies/Index.cshtml file:

The preceding highlighted markup is an example of Razor transitioning into C#. The { and } characters

enclose a block of C# code.

The PageModel base class contains a ViewData dictionary property that can be used to pass data to a View.

Objects are added to the ViewData dictionary using a key/value pattern. In the preceding sample, the "Title"

property is added to the ViewData dictionary.

The "Title" property is used in the Pages/Shared/_Layout.cshtml file. The following markup shows the first few

lines of the _Layout.cshtml file.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/views/creating-custom-html-helpers-cs#understanding-html-helpers

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - RazorPagesMovie</title>

 @*Markup removed for brevity.*@

Update the layoutUpdate the layout

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie</title>

RazorPagesMovie

RpMovie

NOTENOTE

@{
 Layout = "_Layout";
}

The line @*Markup removed for brevity.*@ is a Razor comment. Unlike HTML comments (<!-- -->), Razor

comments are not sent to the client.

Change the <title> element in the Pages/Shared/_Layout.cshtml file to display MovieMovie rather than

RazorPagesMovieRazorPagesMovie.

Find the following anchor element in the Pages/Shared/_Layout.cshtml file.

Replace the preceding element with the following markup:

The preceding anchor element is a Tag Helper. In this case, it's the Anchor Tag Helper. The

asp-page="/Movies/Index" Tag Helper attribute and value creates a link to the /Movies/Index Razor Page. The

asp-area attribute value is empty, so the area isn't used in the link. See Areas for more information.

Save your changes, and test the app by clicking on the RpMovieRpMovie link. See the _Layout.cshtml file in GitHub if you

have any problems.

Test the other links (HomeHome, RpMovieRpMovie, CreateCreate, EditEdit, and DeleteDelete). Each page sets the title, which you can see in

the browser tab. When you bookmark a page, the title is used for the bookmark.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English locales

that use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app.

See this GitHub issue 4076 for instructions on adding decimal comma.

The Layout property is set in the Pages/_ViewStart.cshtml file:

The preceding markup sets the layout file to Pages/Shared/_Layout.cshtml for all Razor files under the Pages

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30/Pages/Shared/_Layout.cshtml
https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420

The Create page modelThe Create page model

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesMovie.Models;
using System;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 private readonly RazorPagesMovie.Data.RazorPagesMovieContext _context;

 public CreateModel(RazorPagesMovie.Data.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

folder. See Layout for more information.

Examine the Pages/Movies/Create.cshtml.cs page model:

The OnGet method initializes any state needed for the page. The Create page doesn't have any state to initialize,

so Page is returned. Later in the tutorial, an example of OnGet initializing state is shown. The Page method

creates a PageResult object that renders the Create.cshtml page.

The Movie property uses the [BindProperty] attribute to opt-in to model binding. When the Create form posts

the form values, the ASP.NET Core runtime binds the posted values to the Movie model.

The OnPostAsync method is run when the page posts form data:

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

The Create Razor PageThe Create Razor Page

If there are any model errors, the form is redisplayed, along with any form data posted. Most model errors can

be caught on the client-side before the form is posted. An example of a model error is posting a value for the

date field that cannot be converted to a date. Client-side validation and model validation are discussed later in

the tutorial.

If there are no model errors, the data is saved, and the browser is redirected to the Index page.

Examine the Pages/Movies/Create.cshtml Razor Page file:

@page
@model RazorPagesMovie.Pages.Movies.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h1>Create</h1>

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.ReleaseDate" class="control-label"></label>
 <input asp-for="Movie.ReleaseDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Genre" class="control-label"></label>
 <input asp-for="Movie.Genre" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Price" class="control-label"></label>
 <input asp-for="Movie.Price" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio displays the following tags in a distinctive bold font used for Tag Helpers:

<form method="post">

<div asp-validation-summary="ModelOnly" class="text-danger"></div>

<label asp-for="Movie.Title" class="control-label"></label>

<input asp-for="Movie.Title" class="form-control" />

<div asp-validation-summary="ModelOnly" class="text-danger"></div>
<div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

</div>

Additional resources

The <form method="post"> element is a Form Tag Helper. The Form Tag Helper automatically includes an

antiforgery token.

The scaffolding engine creates Razor markup for each field in the model (except the ID) similar to the following:

The Validation Tag Helpers (<div asp-validation-summary and <span asp-validation-for) display validation

errors. Validation is covered in more detail later in this series.

The Label Tag Helper (<label asp-for="Movie.Title" class="control-label"></label>) generates the label caption

and for attribute for the Title property.

The Input Tag Helper (<input asp-for="Movie.Title" class="form-control">) uses the DataAnnotations attributes

and produces HTML attributes needed for jQuery Validation on the client-side.

For more information on Tag Helpers such as <form method="post"> , see Tag Helpers in ASP.NET Core.

 P R E V I O U S : A D D I N G AP R E V I O U S : A D D I N G A

M O D E LM O D E L

N E X T :N E X T :

D A TA B A S ED A TA B A S E

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

The Create, Delete, Details, and Edit pages

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using RazorPagesMovie.Models;

namespace RazorPagesMovie.Pages.Movies
{
 public class IndexModel : PageModel
 {
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get;set; }

 public async Task OnGetAsync()
 {
 Movie = await _context.Movie.ToListAsync();
 }
 }
}

By Rick Anderson

This tutorial examines the Razor Pages created by scaffolding in the previous tutorial.

View or download sample.

Examine the Pages/Movies/Index.cshtml.cs Page Model:

Razor Pages are derived from PageModel . By convention, the PageModel -derived class is called <PageName>Model .

The constructor uses dependency injection to add the RazorPagesMovieContext to the page. All the scaffolded

pages follow this pattern. See Asynchronous code for more information on asynchronous programming with

Entity Framework.

When a request is made for the page, the OnGetAsync method returns a list of movies to the Razor Page.

OnGetAsync or OnGet is called on a Razor Page to initialize the state for the page. In this case, OnGetAsync gets a

list of movies and displays them.

When OnGet returns void or OnGetAsync returns Task , no return method is used. When the return type is

IActionResult or Task<IActionResult> , a return statement must be provided. For example, the

Pages/Movies/Create.cshtml.cs OnPostAsync method:

https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie22

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

 Examine the Pages/Movies/Index.cshtml Razor Page:

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Razor can transition from HTML into C# or into Razor-specific markup. When an @ symbol is followed by a

Razor reserved keyword, it transitions into Razor-specific markup, otherwise it transitions into C#.

The @page Razor directive makes the file into an MVC action, which means that it can handle requests. @page

must be the first Razor directive on a page. @page is an example of transitioning into Razor-specific markup. See

Razor syntax for more information.

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.Movie[0].Title)

The @model directiveThe @model directive

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

The layout pageThe layout page

ViewData and layoutViewData and layout

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

The DisplayNameFor HTML Helper inspects the Title property referenced in the lambda expression to

determine the display name. The lambda expression is inspected rather than evaluated. That means there is no

access violation when model , model.Movie , or model.Movie[0] are null or empty. When the lambda expression

is evaluated (for example, with @Html.DisplayFor(modelItem => item.Title)), the model's property values are

evaluated.

The @model directive specifies the type of the model passed to the Razor Page. In the preceding example, the

@model line makes the PageModel -derived class available to the Razor Page. The model is used in the

@Html.DisplayNameFor and @Html.DisplayFor HTML Helpers on the page.

Select the menu links (RazorPagesMovieRazorPagesMovie, HomeHome, and Pr ivacyPrivacy). Each page shows the same menu layout. The

menu layout is implemented in the Pages/Shared/_Layout.cshtml file. Open the Pages/Shared/_Layout.cshtml

file.

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it

across multiple pages in your site. Find the @RenderBody() line. RenderBody is a placeholder where all the page-

specific views you create show up, wrapped in the layout page. For example, if you select the Pr ivacyPrivacy link, the

Pages/Privacy.cshtmlPages/Privacy.cshtml view is rendered inside the RenderBody method.

Consider the following code from the Pages/Movies/Index.cshtml file:

The preceding highlighted code is an example of Razor transitioning into C#. The { and } characters enclose a

block of C# code.

The PageModel base class has a ViewData dictionary property that can be used to add data that you want to pass

to a View. You add objects into the ViewData dictionary using a key/value pattern. In the preceding sample, the

"Title" property is added to the ViewData dictionary.

The "Title" property is used in the Pages/Shared/_Layout.cshtml file. The following markup shows the first few

lines of the _Layout.cshtml file.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/views/creating-custom-html-helpers-cs#understanding-html-helpers

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - RazorPagesMovie</title>

 @*Markup removed for brevity.*@

Update the layoutUpdate the layout

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie</title>

RazorPagesMovie

RpMovie

NOTENOTE

@{
 Layout = "_Layout";
}

The line @*Markup removed for brevity.*@ is a Razor comment which doesn't appear in your layout file. Unlike

HTML comments (<!-- -->), Razor comments are not sent to the client.

Change the <title> element in the Pages/Shared/_Layout.cshtml file to display MovieMovie rather than

RazorPagesMovieRazorPagesMovie.

Find the following anchor element in the Pages/Shared/_Layout.cshtml file.

Replace the preceding element with the following markup.

The preceding anchor element is a Tag Helper. In this case, it's the Anchor Tag Helper. The

asp-page="/Movies/Index" Tag Helper attribute and value creates a link to the /Movies/Index Razor Page. The

asp-area attribute value is empty, so the area isn't used in the link. See Areas for more information.

Save your changes, and test the app by clicking on the RpMovieRpMovie link. See the _Layout.cshtml file in GitHub if you

have any problems.

Test the other links (HomeHome, RpMovieRpMovie, CreateCreate, EditEdit, and DeleteDelete). Each page sets the title, which you can see in

the browser tab. When you bookmark a page, the title is used for the bookmark.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English locales

that use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app.

This GitHub issue 4076 for instructions on adding decimal comma.

The Layout property is set in the Pages/_ViewStart.cshtml file:

The preceding markup sets the layout file to Pages/Shared/_Layout.cshtml for all Razor files under the Pages

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie22/Pages/Shared/_Layout.cshtml
https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420

The Create page modelThe Create page model

// Unused usings removed.
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesMovie.Models;
using System;
using System.Threading.Tasks;

namespace RazorPagesMovie.Pages.Movies
{
 public class CreateModel : PageModel
 {
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public CreateModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IActionResult OnGet()
 {
 return Page();
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
 }
 }
}

folder. See Layout for more information.

Examine the Pages/Movies/Create.cshtml.cs page model:

The OnGet method initializes any state needed for the page. The Create page doesn't have any state to initialize,

so Page is returned. Later in the tutorial you see OnGet method initialize state. The Page method creates a

PageResult object that renders the Create.cshtml page.

The Movie property uses the [BindProperty] attribute to opt-in to model binding. When the Create form posts

the form values, the ASP.NET Core runtime binds the posted values to the Movie model.

The OnPostAsync method is run when the page posts form data:

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Movie.Add(Movie);
 await _context.SaveChangesAsync();

 return RedirectToPage("./Index");
}

The Create Razor PageThe Create Razor Page

If there are any model errors, the form is redisplayed, along with any form data posted. Most model errors can

be caught on the client-side before the form is posted. An example of a model error is posting a value for the

date field that cannot be converted to a date. Client-side validation and model validation are discussed later in

the tutorial.

If there are no model errors, the data is saved, and the browser is redirected to the Index page.

Examine the Pages/Movies/Create.cshtml Razor Page file:

@page
@model RazorPagesMovie.Pages.Movies.CreateModel

@{
 ViewData["Title"] = "Create";
}

<h1>Create</h1>

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.ReleaseDate" class="control-label"></label>
 <input asp-for="Movie.ReleaseDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Genre" class="control-label"></label>
 <input asp-for="Movie.Genre" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Movie.Price" class="control-label"></label>
 <input asp-for="Movie.Price" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-page="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio displays the <form method="post"> tag in a distinctive bold font used for Tag Helpers:

<div asp-validation-summary="ModelOnly" class="text-danger"></div>
<div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

</div>

Additional resources

The <form method="post"> element is a Form Tag Helper. The Form Tag Helper automatically includes an

antiforgery token.

The scaffolding engine creates Razor markup for each field in the model (except the ID) similar to the following:

The Validation Tag Helpers (<div asp-validation-summary and <span asp-validation-for) display validation

errors. Validation is covered in more detail later in this series.

The Label Tag Helper (<label asp-for="Movie.Title" class="control-label"></label>) generates the label caption

and for attribute for the Title property.

The Input Tag Helper (<input asp-for="Movie.Title" class="form-control">) uses the DataAnnotations attributes

and produces HTML attributes needed for jQuery Validation on the client-side.

YouTube version of this tutorial

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://youtu.be/zxgKjPYnOMM

 P R E V I O U S : A D D I N G AP R E V I O U S : A D D I N G A

M O D E LM O D E L

N E X T :N E X T :

D A TA B A S ED A TA B A S E

Part 4, with a database and ASP.NET Core
9/22/2020 • 12 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();

 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("RazorPagesMovieContext")));
}

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "RazorPagesMovieContext": "Server=(localdb)\\mssqllocaldb;Database=RazorPagesMovieContext-
bc;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

By Rick Anderson and Joe Audette

View or download sample code (how to download).

View or download sample code (how to download).

The RazorPagesMovieContext object handles the task of connecting to the database and mapping Movie objects

to database records. The database context is registered with the Dependency Injection container in the

ConfigureServices method in Startup.cs:

Visual Studio

Visual Studio Code / Visual Studio for Mac

The ASP.NET Core Configuration system reads the ConnectionString . For local development, it gets the

connection string from the appsettings.json file.

Visual Studio

Visual Studio Code / Visual Studio for Mac

The name value for the database (Database={Database name}) will be different for your generated code. The name

value is arbitrary.

When the app is deployed to a test or production server, an environment variable can be used to set the

connection string to a real database server. See Configuration for more information.

Visual Studio

Visual Studio Code / Visual Studio for Mac

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/sql.md
https://twitter.com/RickAndMSFT
https://twitter.com/joeaudette
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start

SQL Server Express LocalDB
LocalDB is a lightweight version of the SQL Server Express database engine that's targeted for program

development. LocalDB starts on demand and runs in user mode, so there's no complex configuration. By default,

LocalDB database creates *.mdf files in the C:\Users\<user>\ directory.

 From the ViewView menu, open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX).

Right click on the Movie table and select View DesignerView Designer :

Seed the database

Note the key icon next to ID . By default, EF creates a property named ID for the primary key.

Right click on the Movie table and select View DataView Data:

Create a new class named SeedData in the Models folder with the following code:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using RazorPagesMovie.Data;
using System;
using System.Linq;

namespace RazorPagesMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new RazorPagesMovieContext(
 serviceProvider.GetRequiredService<
 DbContextOptions<RazorPagesMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns and no movies are added.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using RazorPagesMovie.Models;
using System;

namespace RazorPagesMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();

 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

In Program.cs, modify the Main method to do the following:

Get a DB context instance from the dependency injection container.

Call the seed method, passing to it the context.

Dispose the context when the seed method completes.

The following code shows the updated Program.cs file.

The following exception occurs when Update-Database has not been run:

SqlException: Cannot open database "RazorPagesMovieContext-" requested by the login. The login failed.

Login failed for user 'user name'.

Test the appTest the app

Additional resources

Visual Studio

Visual Studio Code / Visual Studio for Mac

Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX

Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force

initialization, IIS Express must be stopped and restarted. You can do this with any of the following

approaches:

Right click the IIS Express system tray icon in the notification area and tap ExitExit or Stop S iteStop S ite:

If you were running VS in non-debug mode, press F5 to run in debug mode.

If you were running VS in debug mode, stop the debugger and press F5.

The next tutorial will improve the presentation of the data.

 P R E V I O U S : S C A F F O L D E D R A Z O RP R E V I O U S : S C A F F O L D E D R A Z O R

P A G E SP A G E S

N E X T : U P D A T I N G T H EN E X T : U P D A T I N G T H E

P A G E SP A G E S

View or download sample code (how to download).

View or download sample code (how to download).

The RazorPagesMovieContext object handles the task of connecting to the database and mapping Movie objects

to database records. The database context is registered with the Dependency Injection container in the

ConfigureServices method in Startup.cs:

Visual Studio

Visual Studio Code / Visual Studio for Mac

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start

// This method gets called by the runtime.
// Use this method to add services to the container.
public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies is
 // needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<RazorPagesMovieContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("RazorPagesMovieContext")));
}

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "RazorPagesMovieContext": "Server=(localdb)\\mssqllocaldb;Database=RazorPagesMovieContext-
1234;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

SQL Server Express LocalDB

For more information on the methods used in ConfigureServices , see:

EU General Data Protection Regulation (GDPR) support in ASP.NET Core for CookiePolicyOptions .

SetCompatibilityVersion

The ASP.NET Core Configuration system reads the ConnectionString . For local development, it gets the

connection string from the appsettings.json file.

Visual Studio

Visual Studio Code

Visual Studio for Mac

The name value for the database (Database={Database name}) will be different for your generated code. The name

value is arbitrary.

When the app is deployed to a test or production server, an environment variable can be used to set the

connection string to a real database server. See Configuration for more information.

Visual Studio

Visual Studio Code

Visual Studio for Mac

LocalDB is a lightweight version of the SQL Server Express database engine that's targeted for program

development. LocalDB starts on demand and runs in user mode, so there's no complex configuration. By default,

LocalDB database creates *.mdf files in the C:/Users/<user/> directory.

 From the ViewView menu, open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX).

Right click on the Movie table and select View DesignerView Designer :

Seed the database

Note the key icon next to ID . By default, EF creates a property named ID for the primary key.

Right click on the Movie table and select View DataView Data:

Create a new class named SeedData in the Models folder with the following code:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace RazorPagesMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new RazorPagesMovieContext(
 serviceProvider.GetRequiredService<
 DbContextOptions<RazorPagesMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns and no movies are added.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using RazorPagesMovie.Models;
using System;
using Microsoft.EntityFrameworkCore;

namespace RazorPagesMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context=services.
 GetRequiredService<RazorPagesMovieContext>();
 context.Database.Migrate();
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

In Program.cs, modify the Main method to do the following:

Get a DB context instance from the dependency injection container.

Call the seed method, passing to it the context.

Dispose the context when the seed method completes.

The following code shows the updated Program.cs file.

A production app would not call Database.Migrate . It's added to the preceding code to prevent the following

exception when Update-Database has not been run:

SqlException: Cannot open database "RazorPagesMovieContext-21" requested by the login. The login failed.

Login failed for user 'user name'.

Test the appTest the app

Additional resources

Visual Studio

Visual Studio Code

Visual Studio for Mac

Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX

Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force

initialization, IIS Express must be stopped and restarted. You can do this with any of the following

approaches:

Right-click the IIS Express system tray icon in the notification area and tap ExitExit or Stop S iteStop S ite:

If you were running VS in non-debug mode, press F5 to run in debug mode.

If you were running VS in debug mode, stop the debugger and press F5.

The app shows the seeded data:

The next tutorial will clean up the presentation of the data.

YouTube version of this tutorial

 P R E V I O U S : S C A F F O L D E D R A Z O RP R E V I O U S : S C A F F O L D E D R A Z O R

P A G E SP A G E S

N E X T : U P D A T I N G T H EN E X T : U P D A T I N G T H E

P A G E SP A G E S

https://youtu.be/A_5ff11sDHY

Part 5, update the generated pages in an ASP.NET
Core app
9/22/2020 • 9 minutes to read • Edit Online

Update the generated code

By Rick Anderson

The scaffolded movie app has a good start, but the presentation isn't ideal. ReleaseDateReleaseDate should be ReleaseRelease

DateDate (two words).

Open the Models/Movie.cs file and add the highlighted lines shown in the following code:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/da1.md
https://twitter.com/RickAndMSFT

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

The [Column(TypeName = "decimal(18, 2)")] data annotation enables Entity Framework Core to correctly map

Price to currency in the database. For more information, see Data Types.

DataAnnotations is covered in the next tutorial. The Display attribute specifies what to display for the name of a

field (in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data

(Date), so the time information stored in the field isn't displayed.

Browse to Pages/Movies and hover over an EditEdit link to see the target URL.

The EditEdit, DetailsDetails , and DeleteDelete links are generated by the Anchor Tag Helper in the Pages/Movies/Index.cshtml

file.

https://docs.microsoft.com/en-us/ef/core/modeling/relational/data-types
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter

@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

<td>
 Edit |
 Details |
 Delete
</td>

Add route templateAdd route template

<td>
 Edit |
 Details |
 Delete
</td>

@page "{id:int?}"

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the

preceding code, the AnchorTagHelper dynamically generates the HTML href attribute value from the Razor Page

(the route is relative), the asp-page , and the route id (asp-route-id). See URL generation for Pages for more

information.

Use View SourceView Source from your favorite browser to examine the generated markup. A portion of the generated

HTML is shown below:

The dynamically-generated links pass the movie ID with a query string (for example, the ?id=1 in

https://localhost:5001/Movies/Details?id=1).

Update the Edit, Details, and Delete Razor Pages to use the "{id:int}" route template. Change the page directive for

each of these pages from @page to @page "{id:int}" . Run the app and then view source. The generated HTML

adds the ID to the path portion of the URL:

A request to the page with the "{id:int}" route template that does notnot include the integer will return an HTTP 404

(not found) error. For example, http://localhost:5000/Movies/Details will return a 404 error. To make the ID

optional, append ? to the route constraint:

Review concurrency exception handlingReview concurrency exception handling

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
}

private bool MovieExists(int id)
{
 return _context.Movie.Any(e => e.ID == id);
}

Posting and binding reviewPosting and binding review

To test the behavior of @page "{id:int?}" :

Set the page directive in Pages/Movies/Details.cshtml to @page "{id:int?}" .

Set a break point in public async Task<IActionResult> OnGetAsync(int? id) (in

Pages/Movies/Details.cshtml.cs).

Navigate to https://localhost:5001/Movies/Details/ .

With the @page "{id:int}" directive, the break point is never hit. The routing engine returns HTTP 404. Using

@page "{id:int?}" , the OnGetAsync method returns NotFound (HTTP 404).

Review the OnPostAsync method in the Pages/Movies/Edit.cshtml.cs file:

The previous code detects concurrency exceptions when the one client deletes the movie and the other client

posts changes to the movie.

To test the catch block:

Set a breakpoint on catch (DbUpdateConcurrencyException)

Select EditEdit for a movie, make changes, but don't enter SaveSave.

In another browser window, select the DeleteDelete link for the same movie, and then delete the movie.

In the previous browser window, post changes to the movie.

Production code may want to detect concurrency conflicts. See Handle concurrency conflicts for more

information.

Examine the Pages/Movies/Edit.cshtml.cs file:

public class EditModel : PageModel
{
 private readonly RazorPagesMovie.Data.RazorPagesMovieContext _context;

 public EditModel(RazorPagesMovie.Data.RazorPagesMovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Movie = await _context.Movie.FirstOrDefaultAsync(m => m.ID == id);

 if (Movie == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
 }

 private bool MovieExists(int id)
 {
 return _context.Movie.Any(e => e.ID == id);
 }

When an HTTP GET request is made to the Movies/Edit page (for example, http://localhost:5000/Movies/Edit/2):

The OnGetAsync method fetches the movie from the database and returns the Page method.

The Page method renders the Pages/Movies/Edit.cshtml Razor Page. The Pages/Movies/Edit.cshtml file

Additional resources

Update the generated code

contains the model directive (@model RazorPagesMovie.Pages.Movies.EditModel), which makes the movie model

available on the page.

The Edit form is displayed with the values from the movie.

When the Movies/Edit page is posted:

[BindProperty]
public Movie Movie { get; set; }

The form values on the page are bound to the Movie property. The [BindProperty] attribute enables

Model binding.

If there are errors in the model state (for example, ReleaseDate cannot be converted to a date), the form

is redisplayed with the submitted values.

If there are no model errors, the movie is saved.

The HTTP GET methods in the Index, Create, and Delete Razor pages follow a similar pattern. The HTTP POST

OnPostAsync method in the Create Razor Page follows a similar pattern to the OnPostAsync method in the Edit

Razor Page.

 P R E V I O U S : W O R K I N G W I T H AP R E V I O U S : W O R K I N G W I T H A

D A TA B A S ED A TA B A S E

N E X T : A D DN E X T : A D D

S E A R C HS E A R C H

The scaffolded movie app has a good start, but the presentation isn't ideal. ReleaseDateReleaseDate should be ReleaseRelease

DateDate (two words).

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace RazorPagesMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

Open the Models/Movie.cs file and add the highlighted lines shown in the following code:

The [Column(TypeName = "decimal(18, 2)")] data annotation enables Entity Framework Core to correctly map

Price to currency in the database. For more information, see Data Types.

DataAnnotations is covered in the next tutorial. The Display attribute specifies what to display for the name of a

field (in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data

(Date), so the time information stored in the field isn't displayed.

Browse to Pages/Movies and hover over an EditEdit link to see the target URL.

The EditEdit, DetailsDetails , and DeleteDelete links are generated by the Anchor Tag Helper in the Pages/Movies/Index.cshtml

file.

https://docs.microsoft.com/en-us/ef/core/modeling/relational/data-types
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter

@foreach (var item in Model.Movie) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

<td>
 Edit |
 Details |
 Delete
</td>

<td>
 Edit |
 Details |
 Delete
</td>

@page "{id:int?}"

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the

preceding code, the AnchorTagHelper dynamically generates the HTML href attribute value from the Razor Page

(the route is relative), the asp-page , and the route id (asp-route-id). See URL generation for Pages for more

information.

Use View SourceView Source from your favorite browser to examine the generated markup. A portion of the generated

HTML is shown below:

The dynamically-generated links pass the movie ID with a query string (for example, the ?id=1 in

https://localhost:5001/Movies/Details?id=1).

Update the Edit, Details, and Delete Razor Pages to use the "{id:int}" route template. Change the page directive for

each of these pages from @page to @page "{id:int}" . Run the app and then view source. The generated HTML

adds the ID to the path portion of the URL:

A request to the page with the "{id:int}" route template that does notnot include the integer will return an HTTP 404

(not found) error. For example, http://localhost:5000/Movies/Details will return a 404 error. To make the ID

optional, append ? to the route constraint:

To test the behavior of @page "{id:int?}" :

Review concurrency exception handlingReview concurrency exception handling

public async Task<IActionResult> OnPostAsync()
{
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
}

private bool MovieExists(int id)
{
 return _context.Movie.Any(e => e.ID == id);
}

Posting and binding reviewPosting and binding review

Set the page directive in Pages/Movies/Details.cshtml to @page "{id:int?}" .

Set a break point in public async Task<IActionResult> OnGetAsync(int? id) (in

Pages/Movies/Details.cshtml.cs).

Navigate to https://localhost:5001/Movies/Details/ .

With the @page "{id:int}" directive, the break point is never hit. The routing engine returns HTTP 404. Using

@page "{id:int?}" , the OnGetAsync method returns NotFound (HTTP 404).

Review the OnPostAsync method in the Pages/Movies/Edit.cshtml.cs file:

The previous code detects concurrency exceptions when the one client deletes the movie and the other client

posts changes to the movie.

To test the catch block:

Set a breakpoint on catch (DbUpdateConcurrencyException)

Select EditEdit for a movie, make changes, but don't enter SaveSave.

In another browser window, select the DeleteDelete link for the same movie, and then delete the movie.

In the previous browser window, post changes to the movie.

Production code may want to detect concurrency conflicts. See Handle concurrency conflicts for more

information.

Examine the Pages/Movies/Edit.cshtml.cs file:

public class EditModel : PageModel
{
 private readonly RazorPagesMovieContext _context;

 public EditModel(RazorPagesMovieContext context)
 {
 _context = context;
 }

 [BindProperty]
 public Movie Movie { get; set; }

 public async Task<IActionResult> OnGetAsync(int? id)
 {
 if (id == null)
 {
 return NotFound();
 }

 Movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);

 if (Movie == null)
 {
 return NotFound();
 }
 return Page();
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (!ModelState.IsValid)
 {
 return Page();
 }

 _context.Attach(Movie).State = EntityState.Modified;

 try
 {
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!_context.Movie.Any(e => e.ID == Movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }

 return RedirectToPage("./Index");
 }
}

When an HTTP GET request is made to the Movies/Edit page (for example, http://localhost:5000/Movies/Edit/2):

The OnGetAsync method fetches the movie from the database and returns the Page method.

The Page method renders the Pages/Movies/Edit.cshtml Razor Page. The Pages/Movies/Edit.cshtml file

contains the model directive (@model RazorPagesMovie.Pages.Movies.EditModel), which makes the movie model

available on the page.

The Edit form is displayed with the values from the movie.

Additional resources

When the Movies/Edit page is posted:

[BindProperty]
public Movie Movie { get; set; }

The form values on the page are bound to the Movie property. The [BindProperty] attribute enables

Model binding.

If there are errors in the model state (for example, ReleaseDate cannot be converted to a date), the form

is displayed with the submitted values.

If there are no model errors, the movie is saved.

The HTTP GET methods in the Index, Create, and Delete Razor pages follow a similar pattern. The HTTP POST

OnPostAsync method in the Create Razor Page follows a similar pattern to the OnPostAsync method in the Edit

Razor Page.

Search is added in the next tutorial.

YouTube version of this tutorial

 P R E V I O U S : W O R K I N G W I T H AP R E V I O U S : W O R K I N G W I T H A

D A TA B A S ED A TA B A S E

N E X T : A D DN E X T : A D D

S E A R C HS E A R C H

https://youtu.be/yLnnleREMtQ

Part 6, add search to ASP.NET Core Razor Pages
9/22/2020 • 9 minutes to read • Edit Online

public class IndexModel : PageModel
{
 private readonly RazorPagesMovie.Data.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Data.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }
 [BindProperty(SupportsGet = true)]
 public string SearchString { get; set; }
 // Requires using Microsoft.AspNetCore.Mvc.Rendering;
 public SelectList Genres { get; set; }
 [BindProperty(SupportsGet = true)]
 public string MovieGenre { get; set; }

WARNINGWARNING

[BindProperty(SupportsGet = true)]

By Rick Anderson

View or download sample code (how to download).

View or download sample code (how to download).

In the following sections, searching movies by genre or name is added.

Add the following highlighted properties to Pages/Movies/Index.cshtml.cs:

SearchString : contains the text users enter in the search text box. SearchString has the [BindProperty]

attribute. [BindProperty] binds form values and query strings with the same name as the property.

(SupportsGet = true) is required for binding on GET requests.

Genres : contains the list of genres. Genres allows the user to select a genre from the list. SelectList

requires using Microsoft.AspNetCore.Mvc.Rendering;

MovieGenre : contains the specific genre the user selects (for example, "Western").

Genres and MovieGenre are used later in this tutorial.

For security reasons, you must opt in to binding GET request data to page model properties. Verify user input before

mapping it to properties. Opting into GET binding is useful when addressing scenarios that rely on query string or route

values.

To bind a property on GET requests, set the [BindProperty] attribute's SupportsGet property to true :

For more information, see ASP.NET Core Community Standup: Bind on GET discussion (YouTube).

Update the Index page's OnGetAsync method with the following code:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/search.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute
https://www.youtube.com/watch?v=p7iHB9V-KVU&feature=youtu.be&t=54m27s

public async Task OnGetAsync()
{
 var movies = from m in _context.Movie
 select m;
 if (!string.IsNullOrEmpty(SearchString))
 {
 movies = movies.Where(s => s.Title.Contains(SearchString));
 }

 Movie = await movies.ToListAsync();
}

// using System.Linq;
var movies = from m in _context.Movie
 select m;

if (!string.IsNullOrEmpty(SearchString))
{
 movies = movies.Where(s => s.Title.Contains(SearchString));
}

NOTENOTE

The first line of the OnGetAsync method creates a LINQ query to select the movies:

The query is only defined at this point, it has notnot been run against the database.

If the SearchString property is not null or empty, the movies query is modified to filter on the search string:

The s => s.Title.Contains() code is a Lambda Expression. Lambdas are used in method-based LINQ queries as

arguments to standard query operator methods such as the Where method or Contains (used in the preceding

code). LINQ queries are not executed when they're defined or when they're modified by calling a method (such

as Where , Contains or OrderBy). Rather, query execution is deferred. That means the evaluation of an

expression is delayed until its realized value is iterated over or the ToListAsync method is called. See Query

Execution for more information.

The Contains method is run on the database, not in the C# code. The case sensitivity on the query depends on the

database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case insensitive. In SQLite, with the

default collation, it's case sensitive.

Navigate to the Movies page and append a query string such as ?searchString=Ghost to the URL (for example,

https://localhost:5001/Movies?searchString=Ghost). The filtered movies are displayed.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/query-syntax-and-method-syntax-in-linq
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/en-us/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/like-transact-sql

@page "{searchString?}"

If the following route template is added to the Index page, the search string can be passed as a URL segment (for

example, https://localhost:5001/Movies/Ghost).

The preceding route constraint allows searching the title as route data (a URL segment) instead of as a query

string value. The ? in "{searchString?}" means this is an optional route parameter.

The ASP.NET Core runtime uses model binding to set the value of the SearchString property from the query

string (?searchString=Ghost) or route data (https://localhost:5001/Movies/Ghost). Model binding is not case

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 @*Markup removed for brevity.*@

sensitive.

However, you can't expect users to modify the URL to search for a movie. In this step, UI is added to filter movies.

If you added the route constraint "{searchString?}" , remove it.

Open the Pages/Movies/Index.cshtml file, and add the <form> markup highlighted in the following code:

The HTML <form> tag uses the following Tag Helpers:

Form Tag Helper. When the form is submitted, the filter string is sent to the Pages/Movies/Index page via

query string.

Input Tag Helper

Save the changes and test the filter.

Search by genre

public async Task OnGetAsync()
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!string.IsNullOrEmpty(SearchString))
 {
 movies = movies.Where(s => s.Title.Contains(SearchString));
 }

 if (!string.IsNullOrEmpty(MovieGenre))
 {
 movies = movies.Where(x => x.Genre == MovieGenre);
 }
 Genres = new SelectList(await genreQuery.Distinct().ToListAsync());
 Movie = await movies.ToListAsync();
}

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

Update the OnGetAsync method with the following code:

The following code is a LINQ query that retrieves all the genres from the database.

The SelectList of genres is created by projecting the distinct genres.

Genres = new SelectList(await genreQuery.Distinct().ToListAsync());

Add search by genre to the Razor PageAdd search by genre to the Razor Page

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 @*Markup removed for brevity.*@

Additional resources

Update Index.cshtml as follows:

Test the app by searching by genre, by movie title, and by both.

YouTube version of this tutorial

 P R E V I O U S : U P D A T I N G T H EP R E V I O U S : U P D A T I N G T H E

P A G E SP A G E S

N E X T : A D D I N G A N E WN E X T : A D D I N G A N E W

F I E L DF I E L D

View or download sample code (how to download).

View or download sample code (how to download).

In the following sections, searching movies by genre or name is added.

Add the following highlighted properties to Pages/Movies/Index.cshtml.cs:

https://youtu.be/4B6pHtdyo08
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start

public class IndexModel : PageModel
{
 private readonly RazorPagesMovie.Models.RazorPagesMovieContext _context;

 public IndexModel(RazorPagesMovie.Models.RazorPagesMovieContext context)
 {
 _context = context;
 }

 public IList<Movie> Movie { get; set; }
 [BindProperty(SupportsGet = true)]
 public string SearchString { get; set; }
 // Requires using Microsoft.AspNetCore.Mvc.Rendering;
 public SelectList Genres { get; set; }
 [BindProperty(SupportsGet = true)]
 public string MovieGenre { get; set; }

WARNINGWARNING

[BindProperty(SupportsGet = true)]

public async Task OnGetAsync()
{
 var movies = from m in _context.Movie
 select m;
 if (!string.IsNullOrEmpty(SearchString))
 {
 movies = movies.Where(s => s.Title.Contains(SearchString));
 }

 Movie = await movies.ToListAsync();
}

// using System.Linq;
var movies = from m in _context.Movie
 select m;

SearchString : contains the text users enter in the search text box. SearchString has the [BindProperty]

attribute. [BindProperty] binds form values and query strings with the same name as the property.

(SupportsGet = true) is required for binding on GET requests.

Genres : contains the list of genres. Genres allows the user to select a genre from the list. SelectList

requires using Microsoft.AspNetCore.Mvc.Rendering;

MovieGenre : contains the specific genre the user selects (for example, "Western").

Genres and MovieGenre are used later in this tutorial.

For security reasons, you must opt in to binding GET request data to page model properties. Verify user input before

mapping it to properties. Opting into GET binding is useful when addressing scenarios that rely on query string or route

values.

To bind a property on GET requests, set the [BindProperty] attribute's SupportsGet property to true :

For more information, see ASP.NET Core Community Standup: Bind on GET discussion (YouTube).

Update the Index page's OnGetAsync method with the following code:

The first line of the OnGetAsync method creates a LINQ query to select the movies:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindpropertyattribute
https://www.youtube.com/watch?v=p7iHB9V-KVU&feature=youtu.be&t=54m27s
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

if (!string.IsNullOrEmpty(SearchString))
{
 movies = movies.Where(s => s.Title.Contains(SearchString));
}

@page "{searchString?}"

The query is only defined at this point, it has notnot been run against the database.

If the SearchString property is not null or empty, the movies query is modified to filter on the search string:

The s => s.Title.Contains() code is a Lambda Expression. Lambdas are used in method-based LINQ queries as

arguments to standard query operator methods such as the Where method or Contains (used in the preceding

code). LINQ queries are not executed when they're defined or when they're modified by calling a method (such

as Where , Contains or OrderBy). Rather, query execution is deferred. That means the evaluation of an

expression is delayed until its realized value is iterated over or the ToListAsync method is called. See Query

Execution for more information.

Note:Note: The Contains method is run on the database, not in the C# code. The case sensitivity on the query depends

on the database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case insensitive. In

SQLite, with the default collation, it's case sensitive.

Navigate to the Movies page and append a query string such as ?searchString=Ghost to the URL (for example,

https://localhost:5001/Movies?searchString=Ghost). The filtered movies are displayed.

If the following route template is added to the Index page, the search string can be passed as a URL segment (for

example, https://localhost:5001/Movies/Ghost).

The preceding route constraint allows searching the title as route data (a URL segment) instead of as a query

string value. The ? in "{searchString?}" means this is an optional route parameter.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/query-syntax-and-method-syntax-in-linq
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/en-us/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/like-transact-sql

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 @*Markup removed for brevity.*@

The ASP.NET Core runtime uses model binding to set the value of the SearchString property from the query

string (?searchString=Ghost) or route data (https://localhost:5001/Movies/Ghost). Model binding is not case

sensitive.

However, you can't expect users to modify the URL to search for a movie. In this step, UI is added to filter movies.

If you added the route constraint "{searchString?}" , remove it.

Open the Pages/Movies/Index.cshtml file, and add the <form> markup highlighted in the following code:

The HTML <form> tag uses the following Tag Helpers:

Form Tag Helper. When the form is submitted, the filter string is sent to the Pages/Movies/Index page via

query string.

Input Tag Helper

Search by genre

public async Task OnGetAsync()
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!string.IsNullOrEmpty(SearchString))
 {
 movies = movies.Where(s => s.Title.Contains(SearchString));
 }

 if (!string.IsNullOrEmpty(MovieGenre))
 {
 movies = movies.Where(x => x.Genre == MovieGenre);
 }
 Genres = new SelectList(await genreQuery.Distinct().ToListAsync());
 Movie = await movies.ToListAsync();
}

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

Save the changes and test the filter.

Update the OnGetAsync method with the following code:

The following code is a LINQ query that retrieves all the genres from the database.

Genres = new SelectList(await genreQuery.Distinct().ToListAsync());

Add search by genre to the Razor PageAdd search by genre to the Razor Page

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 @*Markup removed for brevity.*@

Additional resources

The SelectList of genres is created by projecting the distinct genres.

Update Index.cshtml as follows:

Test the app by searching by genre, by movie title, and by both. The preceding code uses the Select Tag Helper

and Option Tag Helper.

YouTube version of this tutorial

 P R E V I O U S : U P D A T I N G T H EP R E V I O U S : U P D A T I N G T H E

P A G E SP A G E S

N E X T : A D D I N G A N E WN E X T : A D D I N G A N E W

F I E L DF I E L D

https://youtu.be/4B6pHtdyo08

Part 7, add a new field to a Razor Page in ASP.NET
Core
9/22/2020 • 10 minutes to read • Edit Online

Adding a Rating Property to the Movie Model

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>

By Rick Anderson

View or download sample code (how to download).

View or download sample code (how to download).

In this section Entity Framework Code First Migrations is used to:

Add a new field to the model.

Migrate the new field schema change to the database.

When using EF Code First to automatically create a database, Code First:

Adds an __EFMigrationsHistory table to the database to track whether the schema of the database is in sync

with the model classes it was generated from.

If the model classes aren't in sync with the DB, EF throws an exception.

Automatic verification of schema/model in sync makes it easier to find inconsistent database/code issues.

Open the Models/Movie.cs file and add a Rating property:

Build the app.

Edit Pages/Movies/Index.cshtml, and add a Rating field:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/new-field.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/new-db

 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">

 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Rating)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Movie)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Rating)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Update the following pages:

Add the Rating field to the Delete and Details pages.

context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M,
 Rating = "R"
 },

Add a migration for the rating fieldAdd a migration for the rating field

Add-Migration Rating
Update-Database

Update Create.cshtml with a Rating field.

Add the Rating field to the Edit Page.

The app won't work until the DB is updated to include the new field. Running the app without updating the

database throws a SqlException :

SqlException: Invalid column name 'Rating'.

The SqlException exception is caused by the updated Movie model class being different than the schema of the

Movie table of the database. (There's no Rating column in the database table.)

There are a few approaches to resolving the error :

1. Have the Entity Framework automatically drop and re-create the database using the new model class

schema. This approach is convenient early in the development cycle; it allows you to quickly evolve the

model and database schema together. The downside is that you lose existing data in the database. Don't

use this approach on a production database! Dropping the DB on schema changes and using an initializer

to automatically seed the database with test data is often a productive way to develop an app.

2. Explicitly modify the schema of the existing database so that it matches the model classes. The advantage

of this approach is that you keep your data. You can make this change either manually or by creating a

database change script.

3. Use Code First Migrations to update the database schema.

For this tutorial, use Code First Migrations.

Update the SeedData class so that it provides a value for the new column. A sample change is shown below, but

you'll want to make this change for each new Movie block.

See the completed SeedData.cs file.

Build the solution.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From the ToolsTools menu, select NuGet Package Manager > Package Manager ConsoleNuGet Package Manager > Package Manager Console. In the PMC, enter the

following commands:

The Add-Migration command tells the framework to:

Compare the Movie model with the Movie DB schema.

Create code to migrate the DB schema to the new model.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30/Pages/Movies/Create.cshtml
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30/Models/SeedDataRating.cs

Additional resources

Adding a Rating Property to the Movie Model

The name "Rating" is arbitrary and is used to name the migration file. It's helpful to use a meaningful name for

the migration file.

The Update-Database command tells the framework to apply the schema changes to the database and to

preserve existing data.

 If you delete all the records in the DB, the initializer will seed the DB and include the Rating field. You can do this

with the delete links in the browser or from Sql Server Object Explorer (SSOX).

Another option is to delete the database and use migrations to re-create the database. To delete the database in

SSOX:

Update-Database

Select the database in SSOX.

Right click on the database, and select Delete.

Check Close existing connectionsClose existing connections .

Select OKOK.

In the PMC, update the database:

Run the app and verify you can create/edit/display movies with a Rating field. If the database isn't seeded, set a

break point in the SeedData.Initialize method.

YouTube version of this tutorial

 P R E V I O U S : A D D I N GP R E V I O U S : A D D I N G

S E A R C HS E A R C H

N E X T : A D D I N GN E X T : A D D I N G

V A L I D A T I O NV A L I D A T I O N

View or download sample code (how to download).

View or download sample code (how to download).

In this section Entity Framework Code First Migrations is used to:

Add a new field to the model.

Migrate the new field schema change to the database.

When using EF Code First to automatically create a database, Code First:

Adds a table to the database to track whether the schema of the database is in sync with the model classes it

was generated from.

If the model classes aren't in sync with the DB, EF throws an exception.

Automatic verification of schema/model in sync makes it easier to find inconsistent database/code issues.

Open the Models/Movie.cs file and add a Rating property:

https://youtu.be/3i7uMxiGGR8
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie30
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/new-db

public class Movie
{
 public int ID { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

@page
@model RazorPagesMovie.Pages.Movies.IndexModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-page="Create">Create New
</p>

<form>
 <p>
 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>
 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">

 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movie[0].Rating)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Movie)

Build the app.

Edit Pages/Movies/Index.cshtml, and add a Rating field:

 {
 <tr><td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Rating)
 </td>
 <td>
 <a asp-page="./Edit" asp-route-id="@item.ID">Edit |
 <a asp-page="./Details" asp-route-id="@item.ID">Details |
 <a asp-page="./Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Update the following pages:

Add the Rating field to the Delete and Details pages.

Update Create.cshtml with a Rating field.

Add the Rating field to the Edit Page.

The app won't work until the DB is updated to include the new field. If run now, the app throws a SqlException :

SqlException: Invalid column name 'Rating'.

This error is caused by the updated Movie model class being different than the schema of the Movie table of the

database. (There's no Rating column in the database table.)

There are a few approaches to resolving the error :

1. Have the Entity Framework automatically drop and re-create the database using the new model class

schema. This approach is convenient early in the development cycle; it allows you to quickly evolve the

model and database schema together. The downside is that you lose existing data in the database. Don't

use this approach on a production database! Dropping the DB on schema changes and using an initializer

to automatically seed the database with test data is often a productive way to develop an app.

2. Explicitly modify the schema of the existing database so that it matches the model classes. The advantage

of this approach is that you keep your data. You can make this change either manually or by creating a

database change script.

3. Use Code First Migrations to update the database schema.

For this tutorial, use Code First Migrations.

Update the SeedData class so that it provides a value for the new column. A sample change is shown below, but

you'll want to make this change for each new Movie block.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie22/Pages/Movies/Create.cshtml

context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M,
 Rating = "R"
 },

Add a migration for the rating fieldAdd a migration for the rating field

Add-Migration Rating
Update-Database

Additional resources

See the completed SeedData.cs file.

Build the solution.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From the ToolsTools menu, select NuGet Package Manager > Package Manager ConsoleNuGet Package Manager > Package Manager Console. In the PMC, enter the

following commands:

The Add-Migration command tells the framework to:

Compare the Movie model with the Movie DB schema.

Create code to migrate the DB schema to the new model.

The name "Rating" is arbitrary and is used to name the migration file. It's helpful to use a meaningful name for

the migration file.

The Update-Database command tells the framework to apply the schema changes to the database.

 If you delete all the records in the DB, the initializer will seed the DB and include the Rating field. You can do this

with the delete links in the browser or from Sql Server Object Explorer (SSOX).

Another option is to delete the database and use migrations to re-create the database. To delete the database in

SSOX:

Update-Database

Select the database in SSOX.

Right click on the database, and select Delete.

Check Close existing connectionsClose existing connections .

Select OKOK.

In the PMC, update the database:

Run the app and verify you can create/edit/display movies with a Rating field. If the database isn't seeded, set a

break point in the SeedData.Initialize method.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/razor-pages-start/sample/RazorPagesMovie22/Models/SeedDataRating.cs

YouTube version of this tutorial

 P R E V I O U S : A D D I N GP R E V I O U S : A D D I N G

S E A R C HS E A R C H

N E X T : A D D I N GN E X T : A D D I N G

V A L I D A T I O NV A L I D A T I O N

https://youtu.be/3i7uMxiGGR8

Part 8, add validation to an ASP.NET Core Razor
Page
9/22/2020 • 9 minutes to read • Edit Online

Validation

Add validation rules to the movie model

By Rick Anderson

In this section, validation logic is added to the Movie model. The validation rules are enforced any time a user

creates or edits a movie.

A key tenet of software development is called DRY ("DDon't RRepeat YYourself"). Razor Pages encourages

development where functionality is specified once, and it's reflected throughout the app. DRY can help:

Reduce the amount of code in an app.

Make the code less error prone, and easier to test and maintain.

The validation support provided by Razor Pages and Entity Framework is a good example of the DRY principle.

Validation rules are declaratively specified in one place (in the model class), and the rules are enforced

everywhere in the app.

The DataAnnotations namespace provides a set of built-in validation attributes that are applied declaratively to a

class or property. DataAnnotations also contains formatting attributes like DataType that help with formatting

and don't provide any validation.

Update the Movie class to take advantage of the built-in Required , StringLength , RegularExpression , and

Range validation attributes.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/razor-pages/validation.md
https://twitter.com/RickAndMSFT
https://wikipedia.org/wiki/Don%27t_repeat_yourself

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

Validation Error UI in Razor PagesValidation Error UI in Razor Pages

The validation attributes specify behavior that you want to enforce on the model properties they're applied to:

The Required and MinimumLength attributes indicate that a property must have a value; but nothing

prevents a user from entering white space to satisfy this validation.

The RegularExpression attribute is used to limit what characters can be input. In the preceding code,

"Genre":

Must only use letters.

The first letter is required to be uppercase. White space, numbers, and special characters are not

allowed.

The RegularExpression "Rating":

Requires that the first character be an uppercase letter.

Allows special characters and numbers in subsequent spaces. "PG-13" is valid for a rating, but fails for a

"Genre".

The Range attribute constrains a value to within a specified range.

The StringLength attribute lets you set the maximum length of a string property, and optionally its

minimum length.

Value types (such as decimal , int , float , DateTime) are inherently required and don't need the

[Required] attribute.

Having validation rules automatically enforced by ASP.NET Core helps make your app more robust. It also

ensures that you can't forget to validate something and inadvertently let bad data into the database.

Run the app and navigate to Pages/Movies.

Select the Create NewCreate New link. Complete the form with some invalid values. When jQuery client-side validation

detects the error, it displays an error message.

NOTENOTE
You may not be able to enter decimal commas in decimal fields. To support jQuery validation for non-English locales that

use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. See this

GitHub issue 4076 for instructions on adding decimal comma.

Notice how the form has automatically rendered a validation error message in each field containing an invalid

value. The errors are enforced both client-side (using JavaScript and jQuery) and server-side (when a user has

JavaScript disabled).

A significant benefit is that nono code changes were necessary in the Create or Edit pages. Once DataAnnotations

were applied to the model, the validation UI was enabled. The Razor Pages created in this tutorial automatically

picked up the validation rules (using validation attributes on the properties of the Movie model class). Test

validation using the Edit page, the same validation is applied.

The form data isn't posted to the server until there are no client-side validation errors. Verify form data isn't

posted by one or more of the following approaches:

Put a break point in the OnPostAsync method. Submit the form (select CreateCreate or SaveSave). The break point is

never hit.

Use the Fiddler tool.

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://www.telerik.com/fiddler

Server-side validationServer-side validation

<form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Movie.Title" class="control-label"></label>
 <input asp-for="Movie.Title" class="form-control" />

 </div>

Using DataType Attributes

Use the browser developer tools to monitor network traffic.

When JavaScript is disabled in the browser, submitting the form with errors will post to the server.

Optional, test server-side validation:

if (!ModelState.IsValid)
{
 return Page();
}

Disable JavaScript in the browser. You can disable JavaScript using browser's developer tools. If you can't

disable JavaScript in the browser, try another browser.

Set a break point in the OnPostAsync method of the Create or Edit page.

Submit a form with invalid data.

Verify the model state is invalid:

Alternatively, you can Disable client-side validation on the server.

The following code shows a portion of the Create.cshtml page scaffolded earlier in the tutorial. It's used by the

Create and Edit pages to display the initial form and to redisplay the form in the event of an error.

The Input Tag Helper uses the DataAnnotations attributes and produces HTML attributes needed for jQuery

Validation on the client-side. The Validation Tag Helper displays validation errors. See Validation for more

information.

The Create and Edit pages have no validation rules in them. The validation rules and the error strings are

specified only in the Movie class. These validation rules are automatically applied to Razor Pages that edit the

Movie model.

When validation logic needs to change, it's done only in the model. Validation is applied consistently throughout

the application (validation logic is defined in one place). Validation in one place helps keep the code clean, and

makes it easier to maintain and update.

Examine the Movie class. The System.ComponentModel.DataAnnotations namespace provides formatting attributes

in addition to the built-in set of validation attributes. The DataType attribute is applied to the ReleaseDate and

Price properties.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

[Display(Name = "Release Date")]
[DataType(DataType.Date)]
public DateTime ReleaseDate { get; set; }

[Range(1, 100)]
[DataType(DataType.Currency)]
public decimal Price { get; set; }

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
public DateTime ReleaseDate { get; set; }

[Range(typeof(DateTime), "1/1/1966", "1/1/2020")]

The DataType attributes only provide hints for the view engine to format the data (and supplies attributes such

as <a> for URL's and for email). Use the RegularExpression attribute to

validate the format of the data. The DataType attribute is used to specify a data type that's more specific than the

database intrinsic type. DataType attributes are not validation attributes. In the sample application, only the date

is displayed, without time.

The DataType Enumeration provides for many data types, such as Date, Time, PhoneNumber, Currency,

EmailAddress, and more. The DataType attribute can also enable the application to automatically provide type-

specific features. For example, a mailto: link can be created for DataType.EmailAddress . A date selector can be

provided for DataType.Date in browsers that support HTML5. The DataType attributes emit HTML 5 data-

(pronounced data dash) attributes that HTML 5 browsers consume. The DataType attributes do notnot provide any

validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the data field is displayed

according to the default formats based on the server's CultureInfo .

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly

map Price to currency in the database. For more information, see Data Types.

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should be applied when the value is displayed for

editing. You might not want that behavior for some fields. For example, in currency values, you probably don't

want the currency symbol in the edit UI.

The DisplayFormat attribute can be used by itself, but it's generally a good idea to use the DataType attribute.

The DataType attribute conveys the semantics of the data as opposed to how to render it on a screen, and

provides the following benefits that you don't get with DisplayFormat:

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate

currency symbol, email links, etc.)

By default, the browser will render data using the correct format based on your locale.

The DataType attribute can enable the ASP.NET Core framework to choose the right field template to render

the data. The DisplayFormat , if used by itself, uses the string template.

Note:Note: jQuery validation doesn't work with the Range attribute and DateTime . For example, the following code

will always display a client-side validation error, even when the date is in the specified range:

It's generally not a good practice to compile hard dates in your models, so using the Range attribute and

DateTime is discouraged.

https://docs.microsoft.com/en-us/ef/core/modeling/relational/data-types

public class Movie
{
 public int ID { get; set; }

 [StringLength(60, MinimumLength = 3)]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), StringLength(5)]
 public string Rating { get; set; }
}

Apply migrationsApply migrations

[StringLength(60, MinimumLength = 3)]
[Required]
public string Title { get; set; }

CREATE TABLE [dbo].[Movie] (
 [ID] INT IDENTITY (1, 1) NOT NULL,
 [Title] NVARCHAR (MAX) NULL,
 [ReleaseDate] DATETIME2 (7) NOT NULL,
 [Genre] NVARCHAR (MAX) NULL,
 [Price] DECIMAL (18, 2) NOT NULL,
 [Rating] NVARCHAR (MAX) NULL,
 CONSTRAINT [PK_Movie] PRIMARY KEY CLUSTERED ([ID] ASC)
);

The following code shows combining attributes on one line:

Get started with Razor Pages and EF Core shows advanced EF Core operations with Razor Pages.

The DataAnnotations applied to the class changes the schema. For example, the DataAnnotations applied to the

Title field:

Limits the characters to 60.

Doesn't allow a null value.

Visual Studio

Visual Studio Code / Visual Studio for Mac

The Movie table currently has the following schema:

The preceding schema changes don't cause EF to throw an exception. However, create a migration so the schema

is consistent with the model.

From the ToolsTools menu, select NuGet Package Manager > Package Manager ConsoleNuGet Package Manager > Package Manager Console. In the PMC, enter the

following commands:

Add-Migration New_DataAnnotations
Update-Database

public partial class New_DataAnnotations : Migration
{
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.AlterColumn<string>(
 name: "Title",
 table: "Movie",
 maxLength: 60,
 nullable: false,
 oldClrType: typeof(string),
 oldNullable: true);

 migrationBuilder.AlterColumn<string>(
 name: "Rating",
 table: "Movie",
 maxLength: 5,
 nullable: false,
 oldClrType: typeof(string),
 oldNullable: true);

 migrationBuilder.AlterColumn<string>(
 name: "Genre",
 table: "Movie",
 maxLength: 30,
 nullable: false,
 oldClrType: typeof(string),
 oldNullable: true);
 }

CREATE TABLE [dbo].[Movie] (
 [ID] INT IDENTITY (1, 1) NOT NULL,
 [Title] NVARCHAR (60) NOT NULL,
 [ReleaseDate] DATETIME2 (7) NOT NULL,
 [Genre] NVARCHAR (30) NOT NULL,
 [Price] DECIMAL (18, 2) NOT NULL,
 [Rating] NVARCHAR (5) NOT NULL,
 CONSTRAINT [PK_Movie] PRIMARY KEY CLUSTERED ([ID] ASC)
);

Publish to AzurePublish to Azure

Additional resources

Update-Database runs the Up methods of the New_DataAnnotations class. Examine the Up method:

The updated Movie table has the following schema:

For information on deploying to Azure, see Tutorial: Build an ASP.NET Core app in Azure with SQL Database.

Thanks for completing this introduction to Razor Pages. Get started with Razor Pages and EF Core is an excellent

follow up to this tutorial.

Tag Helpers in forms in ASP.NET Core

Globalization and localization in ASP.NET Core

Tag Helpers in ASP.NET Core

Author Tag Helpers in ASP.NET Core

YouTube version of this tutorial

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-dotnetcore-sqldb
https://youtu.be/b63m66eu7us

P R E V I O U S : A D D I N G A N E WP R E V I O U S : A D D I N G A N E W

F I E L DF I E L D

Filter methods for Razor Pages in ASP.NET Core
9/22/2020 • 8 minutes to read • Edit Online

Implement Razor Page filters globally

By Rick Anderson

Razor Page filters IPageFilter and IAsyncPageFilter allow Razor Pages to run code before and after a Razor Page

handler is run. Razor Page filters are similar to ASP.NET Core MVC action filters, except they can't be applied to

individual page handler methods.

Razor Page filters:

Run code after a handler method has been selected, but before model binding occurs.

Run code before the handler method executes, after model binding is complete.

Run code after the handler method executes.

Can be implemented on a page or globally.

Cannot be applied to specific page handler methods.

Can have constructor dependencies populated by Dependency Injection (DI). For more information, see

ServiceFilterAttribute and TypeFilterAttribute.

While page constructors and middleware enable executing custom code before a handler method executes, only

Razor Page filters enable access to HttpContext and the page. Middleware has access to the HttpContext , but not

to the "page context". Filters have a FilterContext derived parameter, which provides access to HttpContext . Here's

a sample for a page filter : Implement a filter attribute that adds a header to the response, something that can't be

done with constructors or middleware. Access to the page context, which includes access to the instances of the

page and it's model, are only available when executing filters, handlers, or the body of a Razor Page.

View or download sample code (how to download)

Razor Page filters provide the following methods, which can be applied globally or at the page level:

Synchronous methods:

OnPageHandlerSelected : Called after a handler method has been selected, but before model binding

occurs.

OnPageHandlerExecuting : Called before the handler method executes, after model binding is complete.

OnPageHandlerExecuted : Called after the handler method executes, before the action result.

Asynchronous methods:

OnPageHandlerSelectionAsync : Called asynchronously after the handler method has been selected, but

before model binding occurs.

OnPageHandlerExecutionAsync : Called asynchronously before the handler method is invoked, after

model binding is complete.

Implement eithereither the synchronous or the async version of a filter interface, notnot both. The framework checks first

to see if the filter implements the async interface, and if so, it calls that. If not, it calls the synchronous interface's

method(s). If both interfaces are implemented, only the async methods are called. The same rule applies to

overrides in pages, implement the synchronous or the async version of the override, not both.

The following code implements IAsyncPageFilter :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/razor-pages/filter.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.httpcontext#microsoft_aspnetcore_mvc_razorpages_pagemodel_httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.filtercontext
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/filter/3.1sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter.onpagehandlerselected?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter.onpagehandlerexecuting?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter.onpagehandlerexecuted?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter.onpagehandlerselectionasync?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter.onpagehandlerexecutionasync?view=aspnetcore-2.0

public class SampleAsyncPageFilter : IAsyncPageFilter
{
 private readonly IConfiguration _config;

 public SampleAsyncPageFilter(IConfiguration config)
 {
 _config = config;
 }

 public Task OnPageHandlerSelectionAsync(PageHandlerSelectedContext context)
 {
 var key = _config["UserAgentID"];
 context.HttpContext.Request.Headers.TryGetValue("user-agent",
 out StringValues value);
 ProcessUserAgent.Write(context.ActionDescriptor.DisplayName,
 "SampleAsyncPageFilter.OnPageHandlerSelectionAsync",
 value, key.ToString());

 return Task.CompletedTask;
 }

 public async Task OnPageHandlerExecutionAsync(PageHandlerExecutingContext context,
 PageHandlerExecutionDelegate next)
 {
 // Do post work.
 await next.Invoke();
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages()
 .AddMvcOptions(options =>
 {
 options.Filters.Add(new SampleAsyncPageFilter(Configuration));
 });
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages(options =>
 {
 options.Conventions.AddFolderApplicationModelConvention(
 "/Movies",
 model => model.Filters.Add(new SampleAsyncPageFilter(Configuration)));
 });
}

In the preceding code, ProcessUserAgent.Write is user supplied code that works with the user agent string.

The following code enables the SampleAsyncPageFilter in the Startup class:

The following code calls AddFolderApplicationModelConvention to apply the SampleAsyncPageFilter to only pages

in /Movies:

The following code implements the synchronous IPageFilter :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderapplicationmodelconvention

public class SamplePageFilter : IPageFilter
{
 private readonly IConfiguration _config;

 public SamplePageFilter(IConfiguration config)
 {
 _config = config;
 }

 public void OnPageHandlerSelected(PageHandlerSelectedContext context)
 {
 var key = _config["UserAgentID"];
 context.HttpContext.Request.Headers.TryGetValue("user-agent", out StringValues value);
 ProcessUserAgent.Write(context.ActionDescriptor.DisplayName,
 "SamplePageFilter.OnPageHandlerSelected",
 value, key.ToString());
 }

 public void OnPageHandlerExecuting(PageHandlerExecutingContext context)
 {
 Debug.WriteLine("Global sync OnPageHandlerExecuting called.");
 }

 public void OnPageHandlerExecuted(PageHandlerExecutedContext context)
 {
 Debug.WriteLine("Global sync OnPageHandlerExecuted called.");
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages()
 .AddMvcOptions(options =>
 {
 options.Filters.Add(new SamplePageFilter(Configuration));
 });
}

Implement Razor Page filters by overriding filter methods

The following code enables the SamplePageFilter :

The following code overrides the asynchronous Razor Page filters:

public class IndexModel : PageModel
{
 private readonly IConfiguration _config;

 public IndexModel(IConfiguration config)
 {
 _config = config;
 }

 public override Task OnPageHandlerSelectionAsync(PageHandlerSelectedContext context)
 {
 Debug.WriteLine("/IndexModel OnPageHandlerSelectionAsync");
 return Task.CompletedTask;
 }

 public async override Task OnPageHandlerExecutionAsync(PageHandlerExecutingContext context,
 PageHandlerExecutionDelegate next)
 {
 var key = _config["UserAgentID"];
 context.HttpContext.Request.Headers.TryGetValue("user-agent", out StringValues value);
 ProcessUserAgent.Write(context.ActionDescriptor.DisplayName,
 "/IndexModel-OnPageHandlerExecutionAsync",
 value, key.ToString());

 await next.Invoke();
 }
}

Implement a filter attribute

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Filters;

namespace PageFilter.Filters
{
 public class AddHeaderAttribute : ResultFilterAttribute
 {
 private readonly string _name;
 private readonly string _value;

 public AddHeaderAttribute (string name, string value)
 {
 _name = name;
 _value = value;
 }

 public override void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(_name, new string[] { _value });
 }
 }
}

The built-in attribute-based filter OnResultExecutionAsync filter can be subclassed. The following filter adds a

header to the response:

The following code applies the AddHeader attribute:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncresultfilter.onresultexecutionasync

using Microsoft.AspNetCore.Mvc.RazorPages;
using PageFilter.Filters;

namespace PageFilter.Movies
{
 [AddHeader("Author", "Rick")]
 public class TestModel : PageModel
 {
 public void OnGet()
 {

 }
 }
}

Authorize filter attribute

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace PageFilter.Pages
{
 [Authorize]
 public class ModelWithAuthFilterModel : PageModel
 {
 public IActionResult OnGet() => Page();
 }
}

Use a tool such as the browser developer tools to examine the headers. Under Response HeadersResponse Headers , author: Rick

is displayed.

See Overriding the default order for instructions on overriding the order.

See Cancellation and short circuiting for instructions to short-circuit the filter pipeline from a filter.

The Authorize attribute can be applied to a PageModel :

By Rick Anderson

Razor Page filters IPageFilter and IAsyncPageFilter allow Razor Pages to run code before and after a Razor Page

handler is run. Razor Page filters are similar to ASP.NET Core MVC action filters, except they can't be applied to

individual page handler methods.

Razor Page filters:

Run code after a handler method has been selected, but before model binding occurs.

Run code before the handler method executes, after model binding is complete.

Run code after the handler method executes.

Can be implemented on a page or globally.

Cannot be applied to specific page handler methods.

Code can be run before a handler method executes using the page constructor or middleware, but only Razor

Page filters have access to HttpContext. Filters have a FilterContext derived parameter, which provides access to

HttpContext . For example, the Implement a filter attribute sample adds a header to the response, something that

can't be done with constructors or middleware.

View or download sample code (how to download)

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute?view=aspnetcore-2.0
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.httpcontext?view=aspnetcore-2.0#microsoft_aspnetcore_mvc_razorpages_pagemodel_httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.filtercontext?view=aspnetcore-2.0
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/filter/sample/PageFilter

NOTENOTE

Implement Razor Page filters globally

using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.Extensions.Logging;
using System.Threading.Tasks;

namespace PageFilter.Filters
{
 public class SampleAsyncPageFilter : IAsyncPageFilter
 {
 private readonly ILogger _logger;

 public SampleAsyncPageFilter(ILogger logger)
 {
 _logger = logger;
 }

 public async Task OnPageHandlerSelectionAsync(
 PageHandlerSelectedContext context)
 {
 _logger.LogDebug("Global OnPageHandlerSelectionAsync called.");
 await Task.CompletedTask;
 }

 public async Task OnPageHandlerExecutionAsync(
 PageHandlerExecutingContext context,
 PageHandlerExecutionDelegate next)
 {
 _logger.LogDebug("Global OnPageHandlerExecutionAsync called.");
 await next.Invoke();
 }
 }
}

Razor Page filters provide the following methods, which can be applied globally or at the page level:

Synchronous methods:

OnPageHandlerSelected : Called after a handler method has been selected, but before model binding

occurs.

OnPageHandlerExecuting : Called before the handler method executes, after model binding is complete.

OnPageHandlerExecuted : Called after the handler method executes, before the action result.

Asynchronous methods:

OnPageHandlerSelectionAsync : Called asynchronously after the handler method has been selected, but

before model binding occurs.

OnPageHandlerExecutionAsync : Called asynchronously before the handler method is invoked, after

model binding is complete.

Implement eithereither the synchronous or the async version of a filter interface, not both. The framework checks first to see if

the filter implements the async interface, and if so, it calls that. If not, it calls the synchronous interface's method(s). If both

interfaces are implemented, only the async methods are called. The same rule applies to overrides in pages, implement the

synchronous or the async version of the override, not both.

The following code implements IAsyncPageFilter :

In the preceding code, ILogger is not required. It's used in the sample to provide trace information for the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter.onpagehandlerselected?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter.onpagehandlerexecuting?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter.onpagehandlerexecuted?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter.onpagehandlerselectionasync?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter.onpagehandlerexecutionasync?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger?view=aspnetcore-2.0

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.Filters.Add(new SampleAsyncPageFilter(_logger));
 });
}

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using PageFilter.Filters;

namespace PageFilter
{
 public class Startup
 {
 ILogger _logger;
 public Startup(ILoggerFactory loggerFactory, IConfiguration configuration)
 {
 _logger = loggerFactory.CreateLogger<GlobalFiltersLogger>();
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc(options =>
 {
 options.Filters.Add(new SampleAsyncPageFilter(_logger));
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseCookiePolicy();

 app.UseMvc();
 }
 }
}

application.

The following code enables the SampleAsyncPageFilter in the Startup class:

The following code shows the complete Startup class:

The following code calls AddFolderApplicationModelConvention to apply the SampleAsyncPageFilter to only pages in

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AddFolderApplicationModelConvention(
 "/subFolder",
 model => model.Filters.Add(new SampleAsyncPageFilter(_logger)));
 });
}

using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.Extensions.Logging;

namespace PageFilter.Filters
{
 public class SamplePageFilter : IPageFilter
 {
 private readonly ILogger _logger;

 public SamplePageFilter(ILogger logger)
 {
 _logger = logger;
 }

 public void OnPageHandlerSelected(PageHandlerSelectedContext context)
 {
 _logger.LogDebug("Global sync OnPageHandlerSelected called.");
 }

 public void OnPageHandlerExecuting(PageHandlerExecutingContext context)
 {
 _logger.LogDebug("Global sync PageHandlerExecutingContext called.");
 }

 public void OnPageHandlerExecuted(PageHandlerExecutedContext context)
 {
 _logger.LogDebug("Global sync OnPageHandlerExecuted called.");
 }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.Filters.Add(new SamplePageFilter(_logger));
 });
}

Implement Razor Page filters by overriding filter methods

/subFolder:

The following code implements the synchronous IPageFilter :

The following code enables the SamplePageFilter :

The following code overrides the synchronous Razor Page filters:

using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.Extensions.Logging;

namespace PageFilter.Pages
{
 public class IndexModel : PageModel
 {
 private readonly ILogger _logger;

 public IndexModel(ILogger<IndexModel> logger)
 {
 _logger = logger;
 }
 public string Message { get; set; }

 public void OnGet()
 {
 _logger.LogDebug("IndexModel/OnGet");
 }

 public override void OnPageHandlerSelected(
 PageHandlerSelectedContext context)
 {
 _logger.LogDebug("IndexModel/OnPageHandlerSelected");
 }

 public override void OnPageHandlerExecuting(
 PageHandlerExecutingContext context)
 {
 Message = "Message set in handler executing";
 _logger.LogDebug("IndexModel/OnPageHandlerExecuting");
 }

 public override void OnPageHandlerExecuted(
 PageHandlerExecutedContext context)
 {
 _logger.LogDebug("IndexModel/OnPageHandlerExecuted");
 }
 }
}

Implement a filter attribute

The built-in attribute-based filter OnResultExecutionAsync filter can be subclassed. The following filter adds a

header to the response:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncresultfilter.onresultexecutionasync?view=aspnetcore-2.0#microsoft_aspnetcore_mvc_filters_iasyncresultfilter_onresultexecutionasync_microsoft_aspnetcore_mvc_filters_resultexecutingcontext_microsoft_aspnetcore_mvc_filters_resultexecutiondelegate_

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Filters;

namespace PageFilter.Filters
{
 public class AddHeaderAttribute : ResultFilterAttribute
 {
 private readonly string _name;
 private readonly string _value;

 public AddHeaderAttribute (string name, string value)
 {
 _name = name;
 _value = value;
 }

 public override void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(_name, new string[] { _value });
 }
 }
}

[AddHeader("Author", "Rick")]
public class ContactModel : PageModel
{
 private readonly ILogger _logger;

 public ContactModel(ILogger<ContactModel> logger)
 {
 _logger = logger;
 }
 public string Message { get; set; }

 public async Task OnGetAsync()
 {
 Message = "Your contact page.";
 _logger.LogDebug("Contact/OnGet");
 await Task.CompletedTask;
 }
}

Authorize filter attribute

The following code applies the AddHeader attribute:

See Overriding the default order for instructions on overriding the order.

See Cancellation and short circuiting for instructions to short-circuit the filter pipeline from a filter.

The Authorize attribute can be applied to a PageModel :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute?view=aspnetcore-2.0

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace PageFilter.Pages
{
 [Authorize]
 public class ModelWithAuthFilterModel : PageModel
 {
 public IActionResult OnGet() => Page();
 }
}

Razor Pages route and app conventions in ASP.NET
Core
9/22/2020 • 35 minutes to read • Edit Online

SC EN A RIOSC EN A RIO T H E SA M P L E DEM O N ST RAT ES . . .T H E SA M P L E DEM O N ST RAT ES . . .

Model conventions

Conventions.Add

Add a route template and header to an app's pages.

Page route action conventions Add a route template to pages in a folder and to a single
page.

Page model action conventions Add a header to pages in a folder, add a header to a single
page, and configure a filter factory to add a header to an
app's pages.

Learn how to use page route and app model provider conventions to control page routing, discovery, and

processing in Razor Pages apps.

When you need to configure custom page routes for individual pages, configure routing to pages with the

AddPageRoute convention described later in this topic.

To specify a page route, add route segments, or add parameters to a route, use the page's @page directive. For

more information, see Custom routes.

There are reserved words that can't be used as route segments or parameter names. For more information, see

Routing: Reserved routing names.

View or download sample code (how to download)

IPageRouteModelConvention

IPageApplicationModelConvention

IPageHandlerModelConvention

AddFolderRouteModelConvention

AddPageRouteModelConvention

AddPageRoute

AddFolderApplicationModelConvention

AddPageApplicationModelConvention

ConfigureFilter (filter class, lambda expression, or
filter factory)

Razor Pages conventions are configured using an AddRazorPages overload that configures RazorPagesOptions

in Startup.ConfigureServices . The following convention examples are explained later in this topic:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/razor-pages/razor-pages-conventions.md
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/razor-pages-conventions/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addrazorpages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages(options =>
 {
 options.Conventions.Add(...);
 options.Conventions.AddFolderRouteModelConvention(
 "/OtherPages", model => { ... });
 options.Conventions.AddPageRouteModelConvention(
 "/About", model => { ... });
 options.Conventions.AddPageRoute(
 "/Contact", "TheContactPage/{text?}");
 options.Conventions.AddFolderApplicationModelConvention(
 "/OtherPages", model => { ... });
 options.Conventions.AddPageApplicationModelConvention(
 "/About", model => { ... });
 options.Conventions.ConfigureFilter(model => { ... });
 options.Conventions.ConfigureFilter(...);
 });
}

Route order

O RDERO RDER B EH AVIO RB EH AVIO R

-1 The route is processed before other routes are processed.

0 Order isn't specified (default value). Not assigning Order (

Order = null) defaults the route Order to 0 (zero) for

processing.

1, 2, … n Specifies the route processing order.

Model conventions

Add a route model convention to all pagesAdd a route model convention to all pages

Routes specify an Order for processing (route matching).

Route processing is established by convention:

Routes are processed in sequential order (-1, 0, 1, 2, … n).

When routes have the same Order , the most specific route is matched first followed by less specific routes.

When routes with the same Order and the same number of parameters match a request URL, routes are

processed in the order that they're added to the PageConventionCollection.

If possible, avoid depending on an established route processing order. Generally, routing selects the correct

route with URL matching. If you must set route Order properties to route requests correctly, the app's routing

scheme is probably confusing to clients and fragile to maintain. Seek to simplify the app's routing scheme. The

sample app requires an explicit route processing order to demonstrate several routing scenarios using a single

app. However, you should attempt to avoid the practice of setting route Order in production apps.

Razor Pages routing and MVC controller routing share an implementation. Information on route order in the

MVC topics is available at Routing to controller actions: Ordering attribute routes.

Add a delegate for IPageConvention to add model conventions that apply to Razor Pages.

Use Conventions to create and add an IPageRouteModelConvention to the collection of IPageConvention

instances that are applied during page route model construction.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention

public class GlobalTemplatePageRouteModelConvention
 : IPageRouteModelConvention
{
 public void Apply(PageRouteModel model)
 {
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 1,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{globalTemplate?}"),
 }
 });
 }
 }
}

options.Conventions.Add(new GlobalTemplatePageRouteModelConvention());

The sample app adds a {globalTemplate?} route template to all of the pages in the app:

The Order property for the AttributeRouteModel is set to 1 . This ensures the following route matching

behavior in the sample app:

A route template for TheContactPage/{text?} is added later in the topic. The Contact Page route has a default

order of null (Order = 0), so it matches before the {globalTemplate?} route template.

An {aboutTemplate?} route template is added later in the topic. The {aboutTemplate?} template is given an

Order of 2 . When the About page is requested at /About/RouteDataValue , "RouteDataValue" is loaded into

RouteData.Values["globalTemplate"] (Order = 1) and not RouteData.Values["aboutTemplate"] (Order = 2)

due to setting the Order property.

An {otherPagesTemplate?} route template is added later in the topic. The {otherPagesTemplate?} template is

given an Order of 2 . When any page in the Pages/OtherPages folder is requested with a route parameter

(for example, /OtherPages/Page1/RouteDataValue), "RouteDataValue" is loaded into

RouteData.Values["globalTemplate"] (Order = 1) and not RouteData.Values["otherPagesTemplate"] (

Order = 2) due to setting the Order property.

Wherever possible, don't set the Order , which results in Order = 0 . Rely on routing to select the correct route.

Razor Pages options, such as adding Conventions, are added when Razor Pages is added to the service

collection in Startup.ConfigureServices . For an example, see the sample app.

Request the sample's About page at localhost:5000/About/GlobalRouteValue and inspect the result:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/razor-pages-conventions/samples/

Add an app model convention to all pagesAdd an app model convention to all pages

public class GlobalHeaderPageApplicationModelConvention
 : IPageApplicationModelConvention
{
 public void Apply(PageApplicationModel model)
 {
 model.Filters.Add(new AddHeaderAttribute(
 "GlobalHeader", new string[] { "Global Header Value" }));
 }
}

options.Conventions.Add(new GlobalHeaderPageApplicationModelConvention());

Add a handler model convention to all pagesAdd a handler model convention to all pages

Use Conventions to create and add an IPageApplicationModelConvention to the collection of IPageConvention

instances that are applied during page app model construction.

To demonstrate this and other conventions later in the topic, the sample app includes an AddHeaderAttribute

class. The class constructor accepts a name string and a values string array. These values are used in its

OnResultExecuting method to set a response header. The full class is shown in the Page model action

conventions section later in the topic.

The sample app uses the AddHeaderAttribute class to add a header, GlobalHeader , to all of the pages in the app:

Startup.cs:

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

Use Conventions to create and add an IPageHandlerModelConvention to the collection of IPageConvention

instances that are applied during page handler model construction.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipagehandlermodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention

public class GlobalPageHandlerModelConvention
 : IPageHandlerModelConvention
{
 public void Apply(PageHandlerModel model)
 {
 // Access the PageHandlerModel
 }
}

options.Conventions.Add(new GlobalPageHandlerModelConvention());

Page route action conventions

Folder route model conventionFolder route model convention

options.Conventions.AddFolderRouteModelConvention("/OtherPages", model =>
{
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 2,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{otherPagesTemplate?}"),
 }
 });
 }
});

Startup.cs:

The default route model provider that derives from IPageRouteModelProvider invokes conventions which are

designed to provide extensibility points for configuring page routes.

Use AddFolderRouteModelConvention to create and add an IPageRouteModelConvention that invokes an action

on the PageRouteModel for all of the pages under the specified folder.

The sample app uses AddFolderRouteModelConvention to add an {otherPagesTemplate?} route template to the

pages in the OtherPages folder :

The Order property for the AttributeRouteModel is set to 2 . This ensures that the template for

{globalTemplate?} (set earlier in the topic to 1) is given priority for the first route data value position when a

single route value is provided. If a page in the Pages/OtherPages folder is requested with a route parameter

value (for example, /OtherPages/Page1/RouteDataValue), "RouteDataValue" is loaded into

RouteData.Values["globalTemplate"] (Order = 1) and not RouteData.Values["otherPagesTemplate"] (Order = 2)

due to setting the Order property.

Wherever possible, don't set the Order , which results in Order = 0 . Rely on routing to select the correct route.

Request the sample's Page1 page at localhost:5000/OtherPages/Page1/GlobalRouteValue/OtherPagesRouteValue

and inspect the result:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageroutemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel

Page route model conventionPage route model convention

options.Conventions.AddPageRouteModelConvention("/About", model =>
{
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 2,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{aboutTemplate?}"),
 }
 });
 }
});

Use AddPageRouteModelConvention to create and add an IPageRouteModelConvention that invokes an action

on the PageRouteModel for the page with the specified name.

The sample app uses AddPageRouteModelConvention to add an {aboutTemplate?} route template to the About

page:

The Order property for the AttributeRouteModel is set to 2 . This ensures that the template for

{globalTemplate?} (set earlier in the topic to 1) is given priority for the first route data value position when a

single route value is provided. If the About page is requested with a route parameter value at

/About/RouteDataValue , "RouteDataValue" is loaded into RouteData.Values["globalTemplate"] (Order = 1) and

not RouteData.Values["aboutTemplate"] (Order = 2) due to setting the Order property.

Wherever possible, don't set the Order , which results in Order = 0 . Rely on routing to select the correct route.

Request the sample's About page at localhost:5000/About/GlobalRouteValue/AboutRouteValue and inspect the

result:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addpageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageroutemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel

 Use a parameter transformer to customize page routes

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages(options =>
 {
 options.Conventions.Add(
 new PageRouteTransformerConvention(
 new SlugifyParameterTransformer()));
 });
}

Page routes generated by ASP.NET Core can be customized using a parameter transformer. A parameter

transformer implements IOutboundParameterTransformer and transforms the value of parameters. For example,

a custom SlugifyParameterTransformer parameter transformer changes the SubscriptionManagement route value

to subscription-management .

The PageRouteTransformerConvention page route model convention applies a parameter transformer to the

folder and file name segments of automatically generated page routes in an app. For example, the Razor Pages

file at /Pages/SubscriptionManagement/ViewAll.cshtml would have its route rewritten from

/SubscriptionManagement/ViewAll to /subscription-management/view-all .

PageRouteTransformerConvention only transforms the automatically generated segments of a page route that

come from the Razor Pages folder and file name. It doesn't transform route segments added with the @page

directive. The convention also doesn't transform routes added by AddPageRoute.

The PageRouteTransformerConvention is registered as an option in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.addpageroute

public class SlugifyParameterTransformer : IOutboundParameterTransformer
{
 public string TransformOutbound(object value)
 {
 if (value == null) { return null; }

 return Regex.Replace(value.ToString(),
 "([a-z])([A-Z])",
 "$1-$2",
 RegexOptions.CultureInvariant,
 TimeSpan.FromMilliseconds(100)).ToLowerInvariant();
 }
}

WARNINGWARNING

Configure a page route

options.Conventions.AddPageRoute("/Contact", "TheContactPage/{text?}");

@page "{text?}"
@model ContactModel
@{
 ViewData["Title"] = "Contact";
}

<h1>@ViewData["Title"]</h1>
<h2>@Model.Message</h2>

<address>
 One Microsoft Way

 Redmond, WA 98052-6399

 <abbr title="Phone">P:</abbr>
 425.555.0100
</address>

<address>
 Support: Support@example.com

 Marketing: Marketing@example.com
</address>

<p>@Model.RouteDataTextTemplateValue</p>

When using System.Text.RegularExpressions to process untrusted input, pass a timeout. A malicious user can provide

input to RegularExpressions causing a Denial-of-Service attack. ASP.NET Core framework APIs that use

RegularExpressions pass a timeout.

Use AddPageRoute to configure a route to a page at the specified page path. Generated links to the page use

your specified route. AddPageRoute uses AddPageRouteModelConvention to establish the route.

The sample app creates a route to /TheContactPage for Contact.cshtml:

The Contact page can also be reached at /Contact via its default route.

The sample app's custom route to the Contact page allows for an optional text route segment ({text?}). The

page also includes this optional segment in its @page directive in case the visitor accesses the page at its

/Contact route:

https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions
https://www.us-cert.gov/ncas/tips/ST04-015
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.addpageroute

 Page model action conventions

Note that the URL generated for the ContactContact link in the rendered page reflects the updated route:

Visit the Contact page at either its ordinary route, /Contact , or the custom route, /TheContactPage . If you

supply an additional text route segment, the page shows the HTML-encoded segment that you provide:

The default page model provider that implements IPageApplicationModelProvider invokes conventions which

are designed to provide extensibility points for configuring page models. These conventions are useful when

building and modifying page discovery and processing scenarios.

For the examples in this section, the sample app uses an AddHeaderAttribute class, which is a

ResultFilterAttribute, that applies a response header :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultfilterattribute

public class AddHeaderAttribute : ResultFilterAttribute
{
 private readonly string _name;
 private readonly string[] _values;

 public AddHeaderAttribute(string name, string[] values)
 {
 _name = name;
 _values = values;
 }

 public override void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(_name, _values);
 base.OnResultExecuting(context);
 }
}

options.Conventions.AddFolderApplicationModelConvention("/OtherPages", model =>
{
 model.Filters.Add(new AddHeaderAttribute(
 "OtherPagesHeader", new string[] { "OtherPages Header Value" }));
});

Using conventions, the sample demonstrates how to apply the attribute to all of the pages in a folder and to a

single page.

Folder app model conventionFolder app model convention

Use AddFolderApplicationModelConvention to create and add an IPageApplicationModelConvention that

invokes an action on PageApplicationModel instances for all pages under the specified folder.

The sample demonstrates the use of AddFolderApplicationModelConvention by adding a header,

OtherPagesHeader , to the pages inside the OtherPages folder of the app:

Request the sample's Page1 page at localhost:5000/OtherPages/Page1 and inspect the headers to view the result:

Page app model conventionPage app model convention

Use AddPageApplicationModelConvention to create and add an IPageApplicationModelConvention that invokes

an action on the PageApplicationModel for the page with the specified name.

The sample demonstrates the use of AddPageApplicationModelConvention by adding a header, AboutHeader , to

the About page:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageapplicationmodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addpageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageapplicationmodel

options.Conventions.AddPageApplicationModelConvention("/About", model =>
{
 model.Filters.Add(new AddHeaderAttribute(
 "AboutHeader", new string[] { "About Header Value" }));
});

options.Conventions.ConfigureFilter(model =>
{
 if (model.RelativePath.Contains("OtherPages/Page2"))
 {
 return new AddHeaderAttribute(
 "OtherPagesPage2Header",
 new string[] { "OtherPages/Page2 Header Value" });
 }
 return new EmptyFilter();
});

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

Configure a filterConfigure a filter

ConfigureFilter configures the specified filter to apply. You can implement a filter class, but the sample app

shows how to implement a filter in a lambda expression, which is implemented behind-the-scenes as a factory

that returns a filter :

The page app model is used to check the relative path for segments that lead to the Page2 page in the

OtherPages folder. If the condition passes, a header is added. If not, the EmptyFilter is applied.

EmptyFilter is an Action filter. Since Action filters are ignored by Razor Pages, the EmptyFilter has no effect as

intended if the path doesn't contain OtherPages/Page2 .

Request the sample's Page2 page at localhost:5000/OtherPages/Page2 and inspect the headers to view the result:

Configure a filter factor yConfigure a filter factor y

ConfigureFilter configures the specified factory to apply filters to all Razor Pages.

The sample app provides an example of using a filter factory by adding a header, FilterFactoryHeader , with two

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.configurefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.configurefilter

options.Conventions.ConfigureFilter(new AddHeaderWithFactory());

public class AddHeaderWithFactory : IFilterFactory
{
 // Implement IFilterFactory
 public IFilterMetadata CreateInstance(IServiceProvider serviceProvider)
 {
 return new AddHeaderFilter();
 }

 private class AddHeaderFilter : IResultFilter
 {
 public void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(
 "FilterFactoryHeader",
 new string[]
 {
 "Filter Factory Header Value 1",
 "Filter Factory Header Value 2"
 });
 }

 public void OnResultExecuted(ResultExecutedContext context)
 {
 }
 }

 public bool IsReusable
 {
 get
 {
 return false;
 }
 }
}

MVC Filters and the Page filter (IPageFilter)

values to the app's pages:

AddHeaderWithFactory.cs:

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

MVC Action filters are ignored by Razor Pages, since Razor Pages use handler methods. Other types of MVC

filters are available for you to use: Authorization, Exception, Resource, and Result. For more information, see the

Filters topic.

The Page filter (IPageFilter) is a filter that applies to Razor Pages. For more information, see Filter methods for

Razor Pages.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter

Additional resources

SC EN A RIOSC EN A RIO T H E SA M P L E DEM O N ST RAT ES . . .T H E SA M P L E DEM O N ST RAT ES . . .

Model conventions

Conventions.Add

Add a route template and header to an app's pages.

Page route action conventions Add a route template to pages in a folder and to a single
page.

Page model action conventions Add a header to pages in a folder, add a header to a single
page, and configure a filter factory to add a header to an
app's pages.

Razor Pages authorization conventions in ASP.NET Core

Areas in ASP.NET Core

Learn how to use page route and app model provider conventions to control page routing, discovery, and

processing in Razor Pages apps.

When you need to configure custom page routes for individual pages, configure routing to pages with the

AddPageRoute convention described later in this topic.

To specify a page route, add route segments, or add parameters to a route, use the page's @page directive. For

more information, see Custom routes.

There are reserved words that can't be used as route segments or parameter names. For more information, see

Routing: Reserved routing names.

View or download sample code (how to download)

IPageRouteModelConvention

IPageApplicationModelConvention

IPageHandlerModelConvention

AddFolderRouteModelConvention

AddPageRouteModelConvention

AddPageRoute

AddFolderApplicationModelConvention

AddPageApplicationModelConvention

ConfigureFilter (filter class, lambda expression, or
filter factory)

Razor Pages conventions are added and configured using the AddRazorPagesOptions extension method to

AddMvc on the service collection in the Startup class. The following convention examples are explained later in

this topic:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/razor-pages-conventions/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.Add(...);
 options.Conventions.AddFolderRouteModelConvention(
 "/OtherPages", model => { ... });
 options.Conventions.AddPageRouteModelConvention(
 "/About", model => { ... });
 options.Conventions.AddPageRoute(
 "/Contact", "TheContactPage/{text?}");
 options.Conventions.AddFolderApplicationModelConvention(
 "/OtherPages", model => { ... });
 options.Conventions.AddPageApplicationModelConvention(
 "/About", model => { ... });
 options.Conventions.ConfigureFilter(model => { ... });
 options.Conventions.ConfigureFilter(...);
 });
}

Route order

O RDERO RDER B EH AVIO RB EH AVIO R

-1 The route is processed before other routes are processed.

0 Order isn't specified (default value). Not assigning Order (

Order = null) defaults the route Order to 0 (zero) for

processing.

1, 2, … n Specifies the route processing order.

Model conventions

Add a route model convention to all pagesAdd a route model convention to all pages

Routes specify an Order for processing (route matching).

Route processing is established by convention:

Routes are processed in sequential order (-1, 0, 1, 2, … n).

When routes have the same Order , the most specific route is matched first followed by less specific routes.

When routes with the same Order and the same number of parameters match a request URL, routes are

processed in the order that they're added to the PageConventionCollection.

If possible, avoid depending on an established route processing order. Generally, routing selects the correct

route with URL matching. If you must set route Order properties to route requests correctly, the app's routing

scheme is probably confusing to clients and fragile to maintain. Seek to simplify the app's routing scheme. The

sample app requires an explicit route processing order to demonstrate several routing scenarios using a single

app. However, you should attempt to avoid the practice of setting route Order in production apps.

Razor Pages routing and MVC controller routing share an implementation. Information on route order in the

MVC topics is available at Routing to controller actions: Ordering attribute routes.

Add a delegate for IPageConvention to add model conventions that apply to Razor Pages.

Use Conventions to create and add an IPageRouteModelConvention to the collection of IPageConvention

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention

public class GlobalTemplatePageRouteModelConvention
 : IPageRouteModelConvention
{
 public void Apply(PageRouteModel model)
 {
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 1,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{globalTemplate?}"),
 }
 });
 }
 }
}

options.Conventions.Add(new GlobalTemplatePageRouteModelConvention());

instances that are applied during page route model construction.

The sample app adds a {globalTemplate?} route template to all of the pages in the app:

The Order property for the AttributeRouteModel is set to 1 . This ensures the following route matching

behavior in the sample app:

A route template for TheContactPage/{text?} is added later in the topic. The Contact Page route has a default

order of null (Order = 0), so it matches before the {globalTemplate?} route template.

An {aboutTemplate?} route template is added later in the topic. The {aboutTemplate?} template is given an

Order of 2 . When the About page is requested at /About/RouteDataValue , "RouteDataValue" is loaded into

RouteData.Values["globalTemplate"] (Order = 1) and not RouteData.Values["aboutTemplate"] (Order = 2)

due to setting the Order property.

An {otherPagesTemplate?} route template is added later in the topic. The {otherPagesTemplate?} template is

given an Order of 2 . When any page in the Pages/OtherPages folder is requested with a route parameter

(for example, /OtherPages/Page1/RouteDataValue), "RouteDataValue" is loaded into

RouteData.Values["globalTemplate"] (Order = 1) and not RouteData.Values["otherPagesTemplate"] (

Order = 2) due to setting the Order property.

Wherever possible, don't set the Order , which results in Order = 0 . Rely on routing to select the correct route.

Razor Pages options, such as adding Conventions, are added when MVC is added to the service collection in

Startup.ConfigureServices . For an example, see the sample app.

Request the sample's About page at localhost:5000/About/GlobalRouteValue and inspect the result:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/razor-pages-conventions/samples/

Add an app model convention to all pagesAdd an app model convention to all pages

public class GlobalHeaderPageApplicationModelConvention
 : IPageApplicationModelConvention
{
 public void Apply(PageApplicationModel model)
 {
 model.Filters.Add(new AddHeaderAttribute(
 "GlobalHeader", new string[] { "Global Header Value" }));
 }
}

options.Conventions.Add(new GlobalHeaderPageApplicationModelConvention());

Add a handler model convention to all pagesAdd a handler model convention to all pages

Use Conventions to create and add an IPageApplicationModelConvention to the collection of IPageConvention

instances that are applied during page app model construction.

To demonstrate this and other conventions later in the topic, the sample app includes an AddHeaderAttribute

class. The class constructor accepts a name string and a values string array. These values are used in its

OnResultExecuting method to set a response header. The full class is shown in the Page model action

conventions section later in the topic.

The sample app uses the AddHeaderAttribute class to add a header, GlobalHeader , to all of the pages in the app:

Startup.cs:

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

Use Conventions to create and add an IPageHandlerModelConvention to the collection of IPageConvention

instances that are applied during page handler model construction.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipagehandlermodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention

public class GlobalPageHandlerModelConvention
 : IPageHandlerModelConvention
{
 public void Apply(PageHandlerModel model)
 {
 // Access the PageHandlerModel
 }
}

options.Conventions.Add(new GlobalPageHandlerModelConvention());

Page route action conventions

Folder route model conventionFolder route model convention

options.Conventions.AddFolderRouteModelConvention("/OtherPages", model =>
{
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 2,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{otherPagesTemplate?}"),
 }
 });
 }
});

Startup.cs:

The default route model provider that derives from IPageRouteModelProvider invokes conventions which are

designed to provide extensibility points for configuring page routes.

Use AddFolderRouteModelConvention to create and add an IPageRouteModelConvention that invokes an action

on the PageRouteModel for all of the pages under the specified folder.

The sample app uses AddFolderRouteModelConvention to add an {otherPagesTemplate?} route template to the

pages in the OtherPages folder :

The Order property for the AttributeRouteModel is set to 2 . This ensures that the template for

{globalTemplate?} (set earlier in the topic to 1) is given priority for the first route data value position when a

single route value is provided. If a page in the Pages/OtherPages folder is requested with a route parameter

value (for example, /OtherPages/Page1/RouteDataValue), "RouteDataValue" is loaded into

RouteData.Values["globalTemplate"] (Order = 1) and not RouteData.Values["otherPagesTemplate"] (Order = 2)

due to setting the Order property.

Wherever possible, don't set the Order , which results in Order = 0 . Rely on routing to select the correct route.

Request the sample's Page1 page at localhost:5000/OtherPages/Page1/GlobalRouteValue/OtherPagesRouteValue

and inspect the result:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageroutemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel

Page route model conventionPage route model convention

options.Conventions.AddPageRouteModelConvention("/About", model =>
{
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 2,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{aboutTemplate?}"),
 }
 });
 }
});

Use AddPageRouteModelConvention to create and add an IPageRouteModelConvention that invokes an action

on the PageRouteModel for the page with the specified name.

The sample app uses AddPageRouteModelConvention to add an {aboutTemplate?} route template to the About

page:

The Order property for the AttributeRouteModel is set to 2 . This ensures that the template for

{globalTemplate?} (set earlier in the topic to 1) is given priority for the first route data value position when a

single route value is provided. If the About page is requested with a route parameter value at

/About/RouteDataValue , "RouteDataValue" is loaded into RouteData.Values["globalTemplate"] (Order = 1) and

not RouteData.Values["aboutTemplate"] (Order = 2) due to setting the Order property.

Wherever possible, don't set the Order , which results in Order = 0 . Rely on routing to select the correct route.

Request the sample's About page at localhost:5000/About/GlobalRouteValue/AboutRouteValue and inspect the

result:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addpageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageroutemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel

Use a parameter transformer to customize page routes

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.Add(
 new PageRouteTransformerConvention(
 new SlugifyParameterTransformer()));
 });
}

public class SlugifyParameterTransformer : IOutboundParameterTransformer
{
 public string TransformOutbound(object value)
 {
 if (value == null) { return null; }

 // Slugify value
 return Regex.Replace(value.ToString(), "([a-z])([A-Z])", "$1-$2").ToLower();
 }
}

Page routes generated by ASP.NET Core can be customized using a parameter transformer. A parameter

transformer implements IOutboundParameterTransformer and transforms the value of parameters. For example,

a custom SlugifyParameterTransformer parameter transformer changes the SubscriptionManagement route value

to subscription-management .

The PageRouteTransformerConvention page route model convention applies a parameter transformer to the

folder and file name segments of automatically generated page routes in an app. For example, the Razor Pages

file at /Pages/SubscriptionManagement/ViewAll.cshtml would have its route rewritten from

/SubscriptionManagement/ViewAll to /subscription-management/view-all .

PageRouteTransformerConvention only transforms the automatically generated segments of a page route that

come from the Razor Pages folder and file name. It doesn't transform route segments added with the @page

directive. The convention also doesn't transform routes added by AddPageRoute.

The PageRouteTransformerConvention is registered as an option in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.addpageroute

Configure a page route

options.Conventions.AddPageRoute("/Contact", "TheContactPage/{text?}");

@page "{text?}"
@model ContactModel
@{
 ViewData["Title"] = "Contact";
}

<h1>@ViewData["Title"]</h1>
<h2>@Model.Message</h2>

<address>
 One Microsoft Way

 Redmond, WA 98052-6399

 <abbr title="Phone">P:</abbr>
 425.555.0100
</address>

<address>
 Support: Support@example.com

 Marketing: Marketing@example.com
</address>

<p>@Model.RouteDataTextTemplateValue</p>

Use AddPageRoute to configure a route to a page at the specified page path. Generated links to the page use

your specified route. AddPageRoute uses AddPageRouteModelConvention to establish the route.

The sample app creates a route to /TheContactPage for Contact.cshtml:

The Contact page can also be reached at /Contact via its default route.

The sample app's custom route to the Contact page allows for an optional text route segment ({text?}). The

page also includes this optional segment in its @page directive in case the visitor accesses the page at its

/Contact route:

Note that the URL generated for the ContactContact link in the rendered page reflects the updated route:

Visit the Contact page at either its ordinary route, /Contact , or the custom route, /TheContactPage . If you

supply an additional text route segment, the page shows the HTML-encoded segment that you provide:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.addpageroute

Page model action conventions

public class AddHeaderAttribute : ResultFilterAttribute
{
 private readonly string _name;
 private readonly string[] _values;

 public AddHeaderAttribute(string name, string[] values)
 {
 _name = name;
 _values = values;
 }

 public override void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(_name, _values);
 base.OnResultExecuting(context);
 }
}

The default page model provider that implements IPageApplicationModelProvider invokes conventions which

are designed to provide extensibility points for configuring page models. These conventions are useful when

building and modifying page discovery and processing scenarios.

For the examples in this section, the sample app uses an AddHeaderAttribute class, which is a

ResultFilterAttribute, that applies a response header :

Using conventions, the sample demonstrates how to apply the attribute to all of the pages in a folder and to a

single page.

Folder app model conventionFolder app model convention

Use AddFolderApplicationModelConvention to create and add an IPageApplicationModelConvention that

invokes an action on PageApplicationModel instances for all pages under the specified folder.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageapplicationmodel

options.Conventions.AddFolderApplicationModelConvention("/OtherPages", model =>
{
 model.Filters.Add(new AddHeaderAttribute(
 "OtherPagesHeader", new string[] { "OtherPages Header Value" }));
});

options.Conventions.AddPageApplicationModelConvention("/About", model =>
{
 model.Filters.Add(new AddHeaderAttribute(
 "AboutHeader", new string[] { "About Header Value" }));
});

The sample demonstrates the use of AddFolderApplicationModelConvention by adding a header,

OtherPagesHeader , to the pages inside the OtherPages folder of the app:

Request the sample's Page1 page at localhost:5000/OtherPages/Page1 and inspect the headers to view the result:

Page app model conventionPage app model convention

Use AddPageApplicationModelConvention to create and add an IPageApplicationModelConvention that invokes

an action on the PageApplicationModel for the page with the specified name.

The sample demonstrates the use of AddPageApplicationModelConvention by adding a header, AboutHeader , to

the About page:

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

Configure a filterConfigure a filter

ConfigureFilter configures the specified filter to apply. You can implement a filter class, but the sample app

shows how to implement a filter in a lambda expression, which is implemented behind-the-scenes as a factory

that returns a filter :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addpageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageapplicationmodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.configurefilter

options.Conventions.ConfigureFilter(model =>
{
 if (model.RelativePath.Contains("OtherPages/Page2"))
 {
 return new AddHeaderAttribute(
 "OtherPagesPage2Header",
 new string[] { "OtherPages/Page2 Header Value" });
 }
 return new EmptyFilter();
});

options.Conventions.ConfigureFilter(new AddHeaderWithFactory());

The page app model is used to check the relative path for segments that lead to the Page2 page in the

OtherPages folder. If the condition passes, a header is added. If not, the EmptyFilter is applied.

EmptyFilter is an Action filter. Since Action filters are ignored by Razor Pages, the EmptyFilter has no effect as

intended if the path doesn't contain OtherPages/Page2 .

Request the sample's Page2 page at localhost:5000/OtherPages/Page2 and inspect the headers to view the result:

Configure a filter factor yConfigure a filter factor y

ConfigureFilter configures the specified factory to apply filters to all Razor Pages.

The sample app provides an example of using a filter factory by adding a header, FilterFactoryHeader , with two

values to the app's pages:

AddHeaderWithFactory.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.configurefilter

public class AddHeaderWithFactory : IFilterFactory
{
 // Implement IFilterFactory
 public IFilterMetadata CreateInstance(IServiceProvider serviceProvider)
 {
 return new AddHeaderFilter();
 }

 private class AddHeaderFilter : IResultFilter
 {
 public void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(
 "FilterFactoryHeader",
 new string[]
 {
 "Filter Factory Header Value 1",
 "Filter Factory Header Value 2"
 });
 }

 public void OnResultExecuted(ResultExecutedContext context)
 {
 }
 }

 public bool IsReusable
 {
 get
 {
 return false;
 }
 }
}

MVC Filters and the Page filter (IPageFilter)

Additional resources

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

MVC Action filters are ignored by Razor Pages, since Razor Pages use handler methods. Other types of MVC

filters are available for you to use: Authorization, Exception, Resource, and Result. For more information, see the

Filters topic.

The Page filter (IPageFilter) is a filter that applies to Razor Pages. For more information, see Filter methods for

Razor Pages.

Razor Pages authorization conventions in ASP.NET Core

Areas in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter

SC EN A RIOSC EN A RIO T H E SA M P L E DEM O N ST RAT ES . . .T H E SA M P L E DEM O N ST RAT ES . . .

Model conventions

Conventions.Add

Add a route template and header to an app's pages.

Page route action conventions Add a route template to pages in a folder and to a single
page.

Page model action conventions Add a header to pages in a folder, add a header to a single
page, and configure a filter factory to add a header to an
app's pages.

Learn how to use page route and app model provider conventions to control page routing, discovery, and

processing in Razor Pages apps.

When you need to configure custom page routes for individual pages, configure routing to pages with the

AddPageRoute convention described later in this topic.

To specify a page route, add route segments, or add parameters to a route, use the page's @page directive. For

more information, see Custom routes.

There are reserved words that can't be used as route segments or parameter names. For more information, see

Routing: Reserved routing names.

View or download sample code (how to download)

IPageRouteModelConvention

IPageApplicationModelConvention

IPageHandlerModelConvention

AddFolderRouteModelConvention

AddPageRouteModelConvention

AddPageRoute

AddFolderApplicationModelConvention

AddPageApplicationModelConvention

ConfigureFilter (filter class, lambda expression, or
filter factory)

Razor Pages conventions are added and configured using the AddRazorPagesOptions extension method to

AddMvc on the service collection in the Startup class. The following convention examples are explained later in

this topic:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/razor-pages-conventions/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.Add(...);
 options.Conventions.AddFolderRouteModelConvention(
 "/OtherPages", model => { ... });
 options.Conventions.AddPageRouteModelConvention(
 "/About", model => { ... });
 options.Conventions.AddPageRoute(
 "/Contact", "TheContactPage/{text?}");
 options.Conventions.AddFolderApplicationModelConvention(
 "/OtherPages", model => { ... });
 options.Conventions.AddPageApplicationModelConvention(
 "/About", model => { ... });
 options.Conventions.ConfigureFilter(model => { ... });
 options.Conventions.ConfigureFilter(...);
 });
}

Route order

O RDERO RDER B EH AVIO RB EH AVIO R

-1 The route is processed before other routes are processed.

0 Order isn't specified (default value). Not assigning Order (

Order = null) defaults the route Order to 0 (zero) for

processing.

1, 2, … n Specifies the route processing order.

Model conventions

Add a route model convention to all pagesAdd a route model convention to all pages

Routes specify an Order for processing (route matching).

Route processing is established by convention:

Routes are processed in sequential order (-1, 0, 1, 2, … n).

When routes have the same Order , the most specific route is matched first followed by less specific routes.

When routes with the same Order and the same number of parameters match a request URL, routes are

processed in the order that they're added to the PageConventionCollection.

If possible, avoid depending on an established route processing order. Generally, routing selects the correct

route with URL matching. If you must set route Order properties to route requests correctly, the app's routing

scheme is probably confusing to clients and fragile to maintain. Seek to simplify the app's routing scheme. The

sample app requires an explicit route processing order to demonstrate several routing scenarios using a single

app. However, you should attempt to avoid the practice of setting route Order in production apps.

Razor Pages routing and MVC controller routing share an implementation. Information on route order in the

MVC topics is available at Routing to controller actions: Ordering attribute routes.

Add a delegate for IPageConvention to add model conventions that apply to Razor Pages.

Use Conventions to create and add an IPageRouteModelConvention to the collection of IPageConvention

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention

public class GlobalTemplatePageRouteModelConvention
 : IPageRouteModelConvention
{
 public void Apply(PageRouteModel model)
 {
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 1,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{globalTemplate?}"),
 }
 });
 }
 }
}

options.Conventions.Add(new GlobalTemplatePageRouteModelConvention());

instances that are applied during page route model construction.

The sample app adds a {globalTemplate?} route template to all of the pages in the app:

The Order property for the AttributeRouteModel is set to 1 . This ensures the following route matching

behavior in the sample app:

A route template for TheContactPage/{text?} is added later in the topic. The Contact Page route has a default

order of null (Order = 0), so it matches before the {globalTemplate?} route template.

An {aboutTemplate?} route template is added later in the topic. The {aboutTemplate?} template is given an

Order of 2 . When the About page is requested at /About/RouteDataValue , "RouteDataValue" is loaded into

RouteData.Values["globalTemplate"] (Order = 1) and not RouteData.Values["aboutTemplate"] (Order = 2)

due to setting the Order property.

An {otherPagesTemplate?} route template is added later in the topic. The {otherPagesTemplate?} template is

given an Order of 2 . When any page in the Pages/OtherPages folder is requested with a route parameter

(for example, /OtherPages/Page1/RouteDataValue), "RouteDataValue" is loaded into

RouteData.Values["globalTemplate"] (Order = 1) and not RouteData.Values["otherPagesTemplate"] (

Order = 2) due to setting the Order property.

Wherever possible, don't set the Order , which results in Order = 0 . Rely on routing to select the correct route.

Razor Pages options, such as adding Conventions, are added when MVC is added to the service collection in

Startup.ConfigureServices . For an example, see the sample app.

Request the sample's About page at localhost:5000/About/GlobalRouteValue and inspect the result:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/razor-pages-conventions/samples/

Add an app model convention to all pagesAdd an app model convention to all pages

public class GlobalHeaderPageApplicationModelConvention
 : IPageApplicationModelConvention
{
 public void Apply(PageApplicationModel model)
 {
 model.Filters.Add(new AddHeaderAttribute(
 "GlobalHeader", new string[] { "Global Header Value" }));
 }
}

options.Conventions.Add(new GlobalHeaderPageApplicationModelConvention());

Add a handler model convention to all pagesAdd a handler model convention to all pages

Use Conventions to create and add an IPageApplicationModelConvention to the collection of IPageConvention

instances that are applied during page app model construction.

To demonstrate this and other conventions later in the topic, the sample app includes an AddHeaderAttribute

class. The class constructor accepts a name string and a values string array. These values are used in its

OnResultExecuting method to set a response header. The full class is shown in the Page model action

conventions section later in the topic.

The sample app uses the AddHeaderAttribute class to add a header, GlobalHeader , to all of the pages in the app:

Startup.cs:

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

Use Conventions to create and add an IPageHandlerModelConvention to the collection of IPageConvention

instances that are applied during page handler model construction.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.conventions#microsoft_aspnetcore_mvc_razorpages_razorpagesoptions_conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipagehandlermodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageconvention

public class GlobalPageHandlerModelConvention
 : IPageHandlerModelConvention
{
 public void Apply(PageHandlerModel model)
 {
 // Access the PageHandlerModel
 }
}

options.Conventions.Add(new GlobalPageHandlerModelConvention());

Page route action conventions

Folder route model conventionFolder route model convention

options.Conventions.AddFolderRouteModelConvention("/OtherPages", model =>
{
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 2,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{otherPagesTemplate?}"),
 }
 });
 }
});

Startup.cs:

The default route model provider that derives from IPageRouteModelProvider invokes conventions which are

designed to provide extensibility points for configuring page routes.

Use AddFolderRouteModelConvention to create and add an IPageRouteModelConvention that invokes an action

on the PageRouteModel for all of the pages under the specified folder.

The sample app uses AddFolderRouteModelConvention to add an {otherPagesTemplate?} route template to the

pages in the OtherPages folder :

The Order property for the AttributeRouteModel is set to 2 . This ensures that the template for

{globalTemplate?} (set earlier in the topic to 1) is given priority for the first route data value position when a

single route value is provided. If a page in the Pages/OtherPages folder is requested with a route parameter

value (for example, /OtherPages/Page1/RouteDataValue), "RouteDataValue" is loaded into

RouteData.Values["globalTemplate"] (Order = 1) and not RouteData.Values["otherPagesTemplate"] (Order = 2)

due to setting the Order property.

Wherever possible, don't set the Order , which results in Order = 0 . Rely on routing to select the correct route.

Request the sample's Page1 page at localhost:5000/OtherPages/Page1/GlobalRouteValue/OtherPagesRouteValue

and inspect the result:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageroutemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel

Page route model conventionPage route model convention

options.Conventions.AddPageRouteModelConvention("/About", model =>
{
 var selectorCount = model.Selectors.Count;
 for (var i = 0; i < selectorCount; i++)
 {
 var selector = model.Selectors[i];
 model.Selectors.Add(new SelectorModel
 {
 AttributeRouteModel = new AttributeRouteModel
 {
 Order = 2,
 Template = AttributeRouteModel.CombineTemplates(
 selector.AttributeRouteModel.Template,
 "{aboutTemplate?}"),
 }
 });
 }
});

Use AddPageRouteModelConvention to create and add an IPageRouteModelConvention that invokes an action

on the PageRouteModel for the page with the specified name.

The sample app uses AddPageRouteModelConvention to add an {aboutTemplate?} route template to the About

page:

The Order property for the AttributeRouteModel is set to 2 . This ensures that the template for

{globalTemplate?} (set earlier in the topic to 1) is given priority for the first route data value position when a

single route value is provided. If the About page is requested with a route parameter value at

/About/RouteDataValue , "RouteDataValue" is loaded into RouteData.Values["globalTemplate"] (Order = 1) and

not RouteData.Values["aboutTemplate"] (Order = 2) due to setting the Order property.

Wherever possible, don't set the Order , which results in Order = 0 . Rely on routing to select the correct route.

Request the sample's About page at localhost:5000/About/GlobalRouteValue/AboutRouteValue and inspect the

result:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addpageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageroutemodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageroutemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.attributeroutemodel

Configure a page route

options.Conventions.AddPageRoute("/Contact", "TheContactPage/{text?}");

@page "{text?}"
@model ContactModel
@{
 ViewData["Title"] = "Contact";
}

<h1>@ViewData["Title"]</h1>
<h2>@Model.Message</h2>

<address>
 One Microsoft Way

 Redmond, WA 98052-6399

 <abbr title="Phone">P:</abbr>
 425.555.0100
</address>

<address>
 Support: Support@example.com

 Marketing: Marketing@example.com
</address>

<p>@Model.RouteDataTextTemplateValue</p>

Use AddPageRoute to configure a route to a page at the specified page path. Generated links to the page use

your specified route. AddPageRoute uses AddPageRouteModelConvention to establish the route.

The sample app creates a route to /TheContactPage for Contact.cshtml:

The Contact page can also be reached at /Contact via its default route.

The sample app's custom route to the Contact page allows for an optional text route segment ({text?}). The

page also includes this optional segment in its @page directive in case the visitor accesses the page at its

/Contact route:

Note that the URL generated for the ContactContact link in the rendered page reflects the updated route:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.addpageroute

Page model action conventions

Visit the Contact page at either its ordinary route, /Contact , or the custom route, /TheContactPage . If you

supply an additional text route segment, the page shows the HTML-encoded segment that you provide:

The default page model provider that implements IPageApplicationModelProvider invokes conventions which

are designed to provide extensibility points for configuring page models. These conventions are useful when

building and modifying page discovery and processing scenarios.

For the examples in this section, the sample app uses an AddHeaderAttribute class, which is a

ResultFilterAttribute, that applies a response header :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultfilterattribute

public class AddHeaderAttribute : ResultFilterAttribute
{
 private readonly string _name;
 private readonly string[] _values;

 public AddHeaderAttribute(string name, string[] values)
 {
 _name = name;
 _values = values;
 }

 public override void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(_name, _values);
 base.OnResultExecuting(context);
 }
}

options.Conventions.AddFolderApplicationModelConvention("/OtherPages", model =>
{
 model.Filters.Add(new AddHeaderAttribute(
 "OtherPagesHeader", new string[] { "OtherPages Header Value" }));
});

Using conventions, the sample demonstrates how to apply the attribute to all of the pages in a folder and to a

single page.

Folder app model conventionFolder app model convention

Use AddFolderApplicationModelConvention to create and add an IPageApplicationModelConvention that

invokes an action on PageApplicationModel instances for all pages under the specified folder.

The sample demonstrates the use of AddFolderApplicationModelConvention by adding a header,

OtherPagesHeader , to the pages inside the OtherPages folder of the app:

Request the sample's Page1 page at localhost:5000/OtherPages/Page1 and inspect the headers to view the result:

Page app model conventionPage app model convention

Use AddPageApplicationModelConvention to create and add an IPageApplicationModelConvention that invokes

an action on the PageApplicationModel for the page with the specified name.

The sample demonstrates the use of AddPageApplicationModelConvention by adding a header, AboutHeader , to

the About page:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addfolderapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageapplicationmodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection.addpageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.ipageapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageapplicationmodel

options.Conventions.AddPageApplicationModelConvention("/About", model =>
{
 model.Filters.Add(new AddHeaderAttribute(
 "AboutHeader", new string[] { "About Header Value" }));
});

options.Conventions.ConfigureFilter(model =>
{
 if (model.RelativePath.Contains("OtherPages/Page2"))
 {
 return new AddHeaderAttribute(
 "OtherPagesPage2Header",
 new string[] { "OtherPages/Page2 Header Value" });
 }
 return new EmptyFilter();
});

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

Configure a filterConfigure a filter

ConfigureFilter configures the specified filter to apply. You can implement a filter class, but the sample app

shows how to implement a filter in a lambda expression, which is implemented behind-the-scenes as a factory

that returns a filter :

The page app model is used to check the relative path for segments that lead to the Page2 page in the

OtherPages folder. If the condition passes, a header is added. If not, the EmptyFilter is applied.

EmptyFilter is an Action filter. Since Action filters are ignored by Razor Pages, the EmptyFilter has no effect as

intended if the path doesn't contain OtherPages/Page2 .

Request the sample's Page2 page at localhost:5000/OtherPages/Page2 and inspect the headers to view the result:

Configure a filter factor yConfigure a filter factor y

ConfigureFilter configures the specified factory to apply filters to all Razor Pages.

The sample app provides an example of using a filter factory by adding a header, FilterFactoryHeader , with two

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.configurefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.configurefilter

options.Conventions.ConfigureFilter(new AddHeaderWithFactory());

public class AddHeaderWithFactory : IFilterFactory
{
 // Implement IFilterFactory
 public IFilterMetadata CreateInstance(IServiceProvider serviceProvider)
 {
 return new AddHeaderFilter();
 }

 private class AddHeaderFilter : IResultFilter
 {
 public void OnResultExecuting(ResultExecutingContext context)
 {
 context.HttpContext.Response.Headers.Add(
 "FilterFactoryHeader",
 new string[]
 {
 "Filter Factory Header Value 1",
 "Filter Factory Header Value 2"
 });
 }

 public void OnResultExecuted(ResultExecutedContext context)
 {
 }
 }

 public bool IsReusable
 {
 get
 {
 return false;
 }
 }
}

MVC Filters and the Page filter (IPageFilter)

values to the app's pages:

AddHeaderWithFactory.cs:

Request the sample's About page at localhost:5000/About and inspect the headers to view the result:

MVC Action filters are ignored by Razor Pages, since Razor Pages use handler methods. Other types of MVC

filters are available for you to use: Authorization, Exception, Resource, and Result. For more information, see the

Filters topic.

The Page filter (IPageFilter) is a filter that applies to Razor Pages. For more information, see Filter methods for

Razor Pages.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter

Additional resources
Razor Pages authorization conventions in ASP.NET Core

Areas in ASP.NET Core

Overview of ASP.NET Core MVC
9/22/2020 • 9 minutes to read • Edit Online

What is the MVC pattern?

NOTENOTE

Model ResponsibilitiesModel Responsibilities

By Steve Smith

ASP.NET Core MVC is a rich framework for building web apps and APIs using the Model-View-Controller design

pattern.

The Model-View-Controller (MVC) architectural pattern separates an application into three main groups of

components: Models, Views, and Controllers. This pattern helps to achieve separation of concerns. Using this

pattern, user requests are routed to a Controller which is responsible for working with the Model to perform

user actions and/or retrieve results of queries. The Controller chooses the View to display to the user, and

provides it with any Model data it requires.

The following diagram shows the three main components and which ones reference the others:

This delineation of responsibilities helps you scale the application in terms of complexity because it's easier to

code, debug, and test something (model, view, or controller) that has a single job. It's more difficult to update,

test, and debug code that has dependencies spread across two or more of these three areas. For example, user

interface logic tends to change more frequently than business logic. If presentation code and business logic are

combined in a single object, an object containing business logic must be modified every time the user interface

is changed. This often introduces errors and requires the retesting of business logic after every minimal user

interface change.

Both the view and the controller depend on the model. However, the model depends on neither the view nor the

controller. This is one of the key benefits of the separation. This separation allows the model to be built and tested

independent of the visual presentation.

The Model in an MVC application represents the state of the application and any business logic or operations

that should be performed by it. Business logic should be encapsulated in the model, along with any

implementation logic for persisting the state of the application. Strongly-typed views typically use ViewModel

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/overview.md
https://ardalis.com/
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#separation-of-concerns

View ResponsibilitiesView Responsibilities

Controller ResponsibilitiesController Responsibilities

NOTENOTE

TIPTIP

What is ASP.NET Core MVC

Features

types designed to contain the data to display on that view. The controller creates and populates these

ViewModel instances from the model.

Views are responsible for presenting content through the user interface. They use the Razor view engine to

embed .NET code in HTML markup. There should be minimal logic within views, and any logic in them should

relate to presenting content. If you find the need to perform a great deal of logic in view files in order to display

data from a complex model, consider using a View Component, ViewModel, or view template to simplify the

view.

Controllers are the components that handle user interaction, work with the model, and ultimately select a view

to render. In an MVC application, the view only displays information; the controller handles and responds to user

input and interaction. In the MVC pattern, the controller is the initial entry point, and is responsible for selecting

which model types to work with and which view to render (hence its name - it controls how the app responds to

a given request).

Controllers shouldn't be overly complicated by too many responsibilities. To keep controller logic from becoming overly

complex, push business logic out of the controller and into the domain model.

If you find that your controller actions frequently perform the same kinds of actions, move these common actions into

filters.

The ASP.NET Core MVC framework is a lightweight, open source, highly testable presentation framework

optimized for use with ASP.NET Core.

ASP.NET Core MVC provides a patterns-based way to build dynamic websites that enables a clean separation of

concerns. It gives you full control over markup, supports TDD-friendly development and uses the latest web

standards.

ASP.NET Core MVC includes the following:

Routing

Model binding

Model validation

Dependency injection

Filters

Areas

Web APIs

Testability

Razor view engine

Strongly typed views

Tag Helpers

RoutingRouting

routes.MapRoute(name: "Default", template: "{controller=Home}/{action=Index}/{id?}");

[Route("api/[controller]")]
public class ProductsController : Controller
{
 [HttpGet("{id}")]
 public IActionResult GetProduct(int id)
 {
 ...
 }
}

Model bindingModel binding

public async Task<IActionResult> Login(LoginViewModel model, string returnUrl = null) { ... }

Model validationModel validation

View Components

ASP.NET Core MVC is built on top of ASP.NET Core's routing, a powerful URL-mapping component that lets you

build applications that have comprehensible and searchable URLs. This enables you to define your application's

URL naming patterns that work well for search engine optimization (SEO) and for link generation, without

regard for how the files on your web server are organized. You can define your routes using a convenient route

template syntax that supports route value constraints, defaults and optional values.

Convention-based routing enables you to globally define the URL formats that your application accepts and how

each of those formats maps to a specific action method on given controller. When an incoming request is

received, the routing engine parses the URL and matches it to one of the defined URL formats, and then calls the

associated controller's action method.

Attribute routing enables you to specify routing information by decorating your controllers and actions with

attributes that define your application's routes. This means that your route definitions are placed next to the

controller and action with which they're associated.

ASP.NET Core MVC model binding converts client request data (form values, route data, query string

parameters, HTTP headers) into objects that the controller can handle. As a result, your controller logic doesn't

have to do the work of figuring out the incoming request data; it simply has the data as parameters to its action

methods.

ASP.NET Core MVC supports validation by decorating your model object with data annotation validation

attributes. The validation attributes are checked on the client side before values are posted to the server, as well

as on the server before the controller action is called.

using System.ComponentModel.DataAnnotations;
public class LoginViewModel
{
 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }

 [Display(Name = "Remember me?")]
 public bool RememberMe { get; set; }
}

public async Task<IActionResult> Login(LoginViewModel model, string returnUrl = null)
{
 if (ModelState.IsValid)
 {
 // work with the model
 }
 // At this point, something failed, redisplay form
 return View(model);
}

Dependency injectionDependency injection

@inject SomeService ServiceName

<!DOCTYPE html>
<html lang="en">
<head>
 <title>@ServiceName.GetTitle</title>
</head>
<body>
 <h1>@ServiceName.GetTitle</h1>
</body>
</html>

FiltersFilters

A controller action:

The framework handles validating request data both on the client and on the server. Validation logic specified on

model types is added to the rendered views as unobtrusive annotations and is enforced in the browser with

jQuery Validation.

ASP.NET Core has built-in support for dependency injection (DI). In ASP.NET Core MVC, controllers can request

needed services through their constructors, allowing them to follow the Explicit Dependencies Principle.

Your app can also use dependency injection in view files, using the @inject directive:

Filters help developers encapsulate cross-cutting concerns, like exception handling or authorization. Filters

enable running custom pre- and post-processing logic for action methods, and can be configured to run at

certain points within the execution pipeline for a given request. Filters can be applied to controllers or actions as

attributes (or can be run globally). Several filters (such as Authorize) are included in the framework.

[Authorize] is the attribute that is used to create MVC authorization filters.

https://jqueryvalidation.org/
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies

[Authorize]
public class AccountController : Controller

AreasAreas

Web APIsWeb APIs

TestabilityTestability

Razor view engineRazor view engine

 @for (int i = 0; i < 5; i++) {
 List item @i
 }

Strongly typed viewsStrongly typed views

@model IEnumerable<Product>

 @foreach (Product p in Model)
 {
 @p.Name
 }

Tag HelpersTag Helpers

Areas provide a way to partition a large ASP.NET Core MVC Web app into smaller functional groupings. An area

is an MVC structure inside an application. In an MVC project, logical components like Model, Controller, and

View are kept in different folders, and MVC uses naming conventions to create the relationship between these

components. For a large app, it may be advantageous to partition the app into separate high level areas of

functionality. For instance, an e-commerce app with multiple business units, such as checkout, billing, and search

etc. Each of these units have their own logical component views, controllers, and models.

In addition to being a great platform for building web sites, ASP.NET Core MVC has great support for building

Web APIs. You can build services that reach a broad range of clients including browsers and mobile devices.

The framework includes support for HTTP content-negotiation with built-in support to format data as JSON or

XML. Write custom formatters to add support for your own formats.

Use link generation to enable support for hypermedia. Easily enable support for cross-origin resource sharing

(CORS) so that your Web APIs can be shared across multiple Web applications.

The framework's use of interfaces and dependency injection make it well-suited to unit testing, and the

framework includes features (like a TestHost and InMemory provider for Entity Framework) that make

integration tests quick and easy as well. Learn more about how to test controller logic.

ASP.NET Core MVC views use the Razor view engine to render views. Razor is a compact, expressive and fluid

template markup language for defining views using embedded C# code. Razor is used to dynamically generate

web content on the server. You can cleanly mix server code with client side content and code.

Using the Razor view engine you can define layouts, partial views and replaceable sections.

Razor views in MVC can be strongly typed based on your model. Controllers can pass a strongly typed model to

views enabling your views to have type checking and IntelliSense support.

For example, the following view renders a model of type IEnumerable<Product> :

Tag Helpers enable server side code to participate in creating and rendering HTML elements in Razor files. You

https://www.w3.org/TR/cors/

<p>
 Thank you for confirming your email.
 Please <a asp-controller="Account" asp-action="Login">Click here to Log in.
</p>

<environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
</environment>
<environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.1.4.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery">
 </script>
</environment>

View ComponentsView Components

Compatibility version

Additional resources

can use tag helpers to define custom tags (for example, <environment>) or to modify the behavior of existing

tags (for example, <label>). Tag Helpers bind to specific elements based on the element name and its attributes.

They provide the benefits of server-side rendering while still preserving an HTML editing experience.

There are many built-in Tag Helpers for common tasks - such as creating forms, links, loading assets and more -

and even more available in public GitHub repositories and as NuGet packages. Tag Helpers are authored in C#,

and they target HTML elements based on element name, attribute name, or parent tag. For example, the built-in

LinkTagHelper can be used to create a link to the Login action of the AccountsController :

The EnvironmentTagHelper can be used to include different scripts in your views (for example, raw or minified)

based on the runtime environment, such as Development, Staging, or Production:

Tag Helpers provide an HTML-friendly development experience and a rich IntelliSense environment for creating

HTML and Razor markup. Most of the built-in Tag Helpers target existing HTML elements and provide server-

side attributes for the element.

View Components allow you to package rendering logic and reuse it throughout the application. They're similar

to partial views, but with associated logic.

The SetCompatibilityVersion method allows an app to opt-in or opt-out of potentially breaking behavior changes

introduced in ASP.NET Core MVC 2.1 or later.

For more information, see Compatibility version for ASP.NET Core MVC.

MyTested.AspNetCore.Mvc - Fluent Testing Library for ASP.NET Core MVC: Strongly-typed unit testing library,

providing a fluent interface for testing MVC and web API apps. (Not maintained or supported by Microsoft.)

Integrate ASP.NET Core Razor components into Razor Pages and MVC apps

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccoremvcbuilderextensions.setcompatibilityversion
https://github.com/ivaylokenov/MyTested.AspNetCore.Mvc

Create a web app with ASP.NET Core MVC
9/22/2020 • 2 minutes to read • Edit Online

This tutorial teaches ASP.NET Core MVC web development with controllers and views. If you're new to ASP.NET

Core web development, consider the Razor Pages version of this tutorial, which provides an easier starting point.

The tutorial series includes the following:

1. Get started

2. Add a controller

3. Add a view

4. Add a model

5. Work with SQL Server LocalDB

6. Controller methods and views

7. Add search

8. Add a new field

9. Add validation

10. Examine the Details and Delete methods

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/index.md

Get started with ASP.NET Core MVC
9/22/2020 • 10 minutes to read • Edit Online

Prerequisites

Create a web app

By Rick Anderson

This tutorial teaches ASP.NET Core MVC web development with controllers and views. If you're new to ASP.NET

Core web development, consider the Razor Pages version of this tutorial, which provides an easier starting point.

This tutorial teaches the basics of building an ASP.NET Core MVC web app.

The app manages a database of movie titles. You learn how to:

Create a web app.

Add and scaffold a model.

Work with a database.

Add search and validation.

At the end, you have an app that can manage and display movie data.

View or download sample code (how to download).

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the Visual Studio select Create a new projectCreate a new project.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application and then select NextNext.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/start-mvc.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/first-mvc-app/start-mvc/sample
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1

Name the project MvcMovieMvcMovie and select CreateCreate. It's important to name the project MvcMovieMvcMovie so when

you copy code, the namespace will match.

Select Web Application(Model-View-Controller)Web Application(Model-View-Controller) , and then select CreateCreate.

Run the appRun the app

Visual Studio used the default template for the MVC project you just created. You have a working app right now

by entering a project name and selecting a few options. This is a basic starter project.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Select Ctr l-F5Ctr l-F5 to run the app in non-debug mode.

Visual Studio displays the following dialog:

Select YesYes if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes if you agree to trust the development certificate.

Visual Studio starts IIS Express and runs the app. Notice that the address bar shows localhost:port# and

not something like example.com . That's because localhost is the standard hostname for your local

computer. When Visual Studio creates a web project, a random port is used for the web server.

Launching the app with Ctrl+F5 (non-debug mode) allows you to make code changes, save the file,

refresh the browser, and see the code changes. Many developers prefer to use non-debug mode to

quickly launch the app and view changes.

You can launch the app in debug or non-debug mode from the DebugDebug menu item:

You can debug the app by selecting the IIS ExpressIIS Express button

The following image shows the app:

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

Visual Studio help

Visual Studio

Visual Studio Code

Visual Studio for Mac

Learn to debug C# code using Visual Studio

Introduction to the Visual Studio IDE

In the next part of this tutorial, you learn about MVC and start writing some code.

N E X TN E X T

This tutorial teaches ASP.NET Core MVC web development with controllers and views. If you're new to ASP.NET

Core web development, consider the Razor Pages version of this tutorial, which provides an easier starting point.

This tutorial teaches the basics of building an ASP.NET Core MVC web app.

The app manages a database of movie titles. You learn how to:

Create a web app.

Add and scaffold a model.

Work with a database.

Add search and validation.

At the end, you have an app that can manage and display movie data.

View or download sample code (how to download).

https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/ide/visual-studio-ide?view=vs-2017
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/first-mvc-app/start-mvc/sample

Prerequisites

WARNINGWARNING

Create a web app

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't work

with Visual Studio.

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the Visual Studio select Create a new projectCreate a new project.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application and then select NextNext.

Name the project MvcMovieMvcMovie and select CreateCreate. It's important to name the project MvcMovieMvcMovie so when

you copy code, the namespace will match.

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124

Run the appRun the app

Select Web Application(Model-View-Controller)Web Application(Model-View-Controller) , and then select CreateCreate.

Visual Studio used the default template for the MVC project you just created. You have a working app right now

by entering a project name and selecting a few options. This is a basic starter project, and it's a good place to

start.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Select Ctr l-F5Ctr l-F5 to run the app in non-debug mode.

Visual Studio displays the following dialog:

Select YesYes if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes if you agree to trust the development certificate.

Visual Studio starts IIS Express and runs the app. Notice that the address bar shows localhost:port# and

not something like example.com . That's because localhost is the standard hostname for your local

computer. When Visual Studio creates a web project, a random port is used for the web server.

Launching the app with Ctrl+F5 (non-debug mode) allows you to make code changes, save the file,

refresh the browser, and see the code changes. Many developers prefer to use non-debug mode to

quickly launch the app and view changes.

You can launch the app in debug or non-debug mode from the DebugDebug menu item:

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview

You can debug the app by selecting the IIS ExpressIIS Express button

Select AcceptAccept to consent to tracking. This app doesn't track personal information. The template generated

code includes assets to help meet General Data Protection Regulation (GDPR).

The following image shows the app after accepting tracking:

Visual Studio help

Visual Studio

Visual Studio Code

Visual Studio for Mac

Learn to debug C# code using Visual Studio

Introduction to the Visual Studio IDE

In the next part of this tutorial, you learn about MVC and start writing some code.

N E X TN E X T

https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/ide/visual-studio-ide?view=vs-2017

Part 2, add a controller to an ASP.NET Core MVC
app
9/22/2020 • 12 minutes to read • Edit Online

Add a controller

By Rick Anderson

The Model-View-Controller (MVC) architectural pattern separates an app into three main components: MModel,

VView, and CController. The MVC pattern helps you create apps that are more testable and easier to update than

traditional monolithic apps. MVC-based apps contain:

MModels: Classes that represent the data of the app. The model classes use validation logic to enforce

business rules for that data. Typically, model objects retrieve and store model state in a database. In this

tutorial, a Movie model retrieves movie data from a database, provides it to the view or updates it.

Updated data is written to a database.

VViews: Views are the components that display the app's user interface (UI). Generally, this UI displays the

model data.

CControllers: Classes that handle browser requests. They retrieve model data and call view templates that

return a response. In an MVC app, the view only displays information; the controller handles and responds

to user input and interaction. For example, the controller handles route data and query-string values, and

passes these values to the model. The model might use these values to query the database. For example,

https://localhost:5001/Home/Privacy has route data of Home (the controller) and Privacy (the action

method to call on the home controller). https://localhost:5001/Movies/Edit/5 is a request to edit the

movie with ID=5 using the movie controller. Route data is explained later in the tutorial.

The MVC pattern helps you create apps that separate the different aspects of the app (input logic, business logic,

and UI logic), while providing a loose coupling between these elements. The pattern specifies where each kind of

logic should be located in the app. The UI logic belongs in the view. Input logic belongs in the controller. Business

logic belongs in the model. This separation helps you manage complexity when you build an app, because it

enables you to work on one aspect of the implementation at a time without impacting the code of another. For

example, you can work on the view code without depending on the business logic code.

We cover these concepts in this tutorial series and show you how to use them to build a movie app. The MVC

project contains folders for the Controllers and Views.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click Controllers > Add > ControllerControllers > Add > Controller

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/adding-controller.md
https://twitter.com/RickAndMSFT

In the Add ScaffoldAdd Scaffold dialog box, select Controller Class - EmptyController Class - Empty

In the Add Empty MVC Controller dialogAdd Empty MVC Controller dialog, enter HelloWorldControllerHelloWorldController and select ADDADD.

Replace the contents of Controllers/HelloWorldController.cs with the following:

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 //
 // GET: /HelloWorld/

 public string Index()
 {
 return "This is my default action...";
 }

 //
 // GET: /HelloWorld/Welcome/

 public string Welcome()
 {
 return "This is the Welcome action method...";
 }
 }
}

Every public method in a controller is callable as an HTTP endpoint. In the sample above, both methods return

a string. Note the comments preceding each method.

An HTTP endpoint is a targetable URL in the web application, such as https://localhost:5001/HelloWorld , and

combines the protocol used: HTTPS , the network location of the web server (including the TCP port):

localhost:5001 and the target URI HelloWorld .

The first comment states this is an HTTP GET method that's invoked by appending /HelloWorld/ to the base URL.

The second comment specifies an HTTP GET method that's invoked by appending /HelloWorld/Welcome/ to the

URL. Later on in the tutorial the scaffolding engine is used to generate HTTP POST methods which update data.

Run the app in non-debug mode and append "HelloWorld" to the path in the address bar. The Index method

returns a string.

https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

MVC invokes controller classes (and the action methods within them) depending on the incoming URL. The

default URL routing logic used by MVC uses a format like this to determine what code to invoke:

/[Controller]/[ActionName]/[Parameters]

The routing format is set in the Configure method in Startup.cs file.

When you browse to the app and don't supply any URL segments, it defaults to the "Home" controller and the

"Index" method specified in the template line highlighted above.

The first URL segment determines the controller class to run. So localhost:{PORT}/HelloWorld maps to the

HelloWorldHelloWorldController class. The second part of the URL segment determines the action method on the class. So

localhost:{PORT}/HelloWorld/Index would cause the Index method of the HelloWorldController class to run.

Notice that you only had to browse to localhost:{PORT}/HelloWorld and the Index method was called by

default. That's because Index is the default method that will be called on a controller if a method name isn't

explicitly specified. The third part of the URL segment (id) is for route data. Route data is explained later in the

tutorial.

Browse to https://localhost:{PORT}/HelloWorld/Welcome . The Welcome method runs and returns the string

This is the Welcome action method... . For this URL, the controller is HelloWorld and Welcome is the action

method. You haven't used the [Parameters] part of the URL yet.

Modify the code to pass some parameter information from the URL to the controller. For example,

/HelloWorld/Welcome?name=Rick&numtimes=4 . Change the Welcome method to include two parameters as shown in

the following code.

// GET: /HelloWorld/Welcome/
// Requires using System.Text.Encodings.Web;
public string Welcome(string name, int numTimes = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, NumTimes is: {numTimes}");
}

public string Welcome(string name, int ID = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, ID: {ID}");
}

The preceding code:

Uses the C# optional-parameter feature to indicate that the numTimes parameter defaults to 1 if no value is

passed for that parameter.

Uses HtmlEncoder.Default.Encode to protect the app from malicious input (namely JavaScript).

Uses Interpolated Strings in $"Hello {name}, NumTimes is: {numTimes}" .

Run the app and browse to:

https://localhost:{PORT}/HelloWorld/Welcome?name=Rick&numtimes=4

(Replace {PORT} with your port number.) You can try different values for name and numtimes in the URL. The

MVC model binding system automatically maps the named parameters from the query string in the address bar

to parameters in your method. See Model Binding for more information.

In the image above, the URL segment (Parameters) isn't used, the name and numTimes parameters are passed in

the query string. The ? (question mark) in the above URL is a separator, and the query string follows. The &

character separates field-value pairs.

Replace the Welcome method with the following code:

Run the app and enter the following URL: https://localhost:{PORT}/HelloWorld/Welcome/3?name=Rick

This time the third URL segment matched the route parameter id . The Welcome method contains a parameter

id that matched the URL template in the MapControllerRoute method. The trailing ? (in id?) indicates the

id parameter is optional.

https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/interpolated-strings
https://wikipedia.org/wiki/Query_string

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

Add a controller

In these examples the controller has been doing the "VC" portion of MVC - that is, the VView and the CController

work. The controller is returning HTML directly. Generally you don't want controllers returning HTML directly,

since that becomes very cumbersome to code and maintain. Instead you typically use a separate Razor view

template file to generate the HTML response. You do that in the next tutorial.

 P R E V I O U SP R E V I O U S N E X TN E X T

The Model-View-Controller (MVC) architectural pattern separates an app into three main components: MModel,

VView, and CController. The MVC pattern helps you create apps that are more testable and easier to update than

traditional monolithic apps. MVC-based apps contain:

MModels: Classes that represent the data of the app. The model classes use validation logic to enforce

business rules for that data. Typically, model objects retrieve and store model state in a database. In this

tutorial, a Movie model retrieves movie data from a database, provides it to the view or updates it.

Updated data is written to a database.

VViews: Views are the components that display the app's user interface (UI). Generally, this UI displays the

model data.

CControllers: Classes that handle browser requests. They retrieve model data and call view templates that

return a response. In an MVC app, the view only displays information; the controller handles and responds

to user input and interaction. For example, the controller handles route data and query-string values, and

passes these values to the model. The model might use these values to query the database. For example,

https://localhost:5001/Home/About has route data of Home (the controller) and About (the action method

to call on the home controller). https://localhost:5001/Movies/Edit/5 is a request to edit the movie with

ID=5 using the movie controller. Route data is explained later in the tutorial.

The MVC pattern helps you create apps that separate the different aspects of the app (input logic, business logic,

and UI logic), while providing a loose coupling between these elements. The pattern specifies where each kind of

logic should be located in the app. The UI logic belongs in the view. Input logic belongs in the controller. Business

logic belongs in the model. This separation helps you manage complexity when you build an app, because it

enables you to work on one aspect of the implementation at a time without impacting the code of another. For

example, you can work on the view code without depending on the business logic code.

We cover these concepts in this tutorial series and show you how to use them to build a movie app. The MVC

project contains folders for the Controllers and Views.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click Controllers > Add > ControllerControllers > Add > Controller

In the Add ScaffoldAdd Scaffold dialog box, select MVC Controller - EmptyMVC Controller - Empty

In the Add Empty MVC Controller dialogAdd Empty MVC Controller dialog, enter HelloWorldControllerHelloWorldController and select ADDADD.

Replace the contents of Controllers/HelloWorldController.cs with the following:

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 //
 // GET: /HelloWorld/

 public string Index()
 {
 return "This is my default action...";
 }

 //
 // GET: /HelloWorld/Welcome/

 public string Welcome()
 {
 return "This is the Welcome action method...";
 }
 }
}

Every public method in a controller is callable as an HTTP endpoint. In the sample above, both methods return

a string. Note the comments preceding each method.

An HTTP endpoint is a targetable URL in the web application, such as https://localhost:5001/HelloWorld , and

combines the protocol used: HTTPS , the network location of the web server (including the TCP port):

localhost:5001 and the target URI HelloWorld .

The first comment states this is an HTTP GET method that's invoked by appending /HelloWorld/ to the base URL.

The second comment specifies an HTTP GET method that's invoked by appending /HelloWorld/Welcome/ to the

URL. Later on in the tutorial the scaffolding engine is used to generate HTTP POST methods which update data.

Run the app in non-debug mode and append "HelloWorld" to the path in the address bar. The Index method

returns a string.

https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

MVC invokes controller classes (and the action methods within them) depending on the incoming URL. The

default URL routing logic used by MVC uses a format like this to determine what code to invoke:

/[Controller]/[ActionName]/[Parameters]

The routing format is set in the Configure method in Startup.cs file.

When you browse to the app and don't supply any URL segments, it defaults to the "Home" controller and the

"Index" method specified in the template line highlighted above.

The first URL segment determines the controller class to run. So localhost:{PORT}/HelloWorld maps to the

HelloWorldController class. The second part of the URL segment determines the action method on the class. So

localhost:{PORT}/HelloWorld/Index would cause the Index method of the HelloWorldController class to run.

Notice that you only had to browse to localhost:{PORT}/HelloWorld and the Index method was called by

default. This is because Index is the default method that will be called on a controller if a method name isn't

explicitly specified. The third part of the URL segment (id) is for route data. Route data is explained later in the

tutorial.

Browse to https://localhost:{PORT}/HelloWorld/Welcome . The Welcome method runs and returns the string

This is the Welcome action method... . For this URL, the controller is HelloWorld and Welcome is the action

method. You haven't used the [Parameters] part of the URL yet.

Modify the code to pass some parameter information from the URL to the controller. For example,

/HelloWorld/Welcome?name=Rick&numtimes=4 . Change the Welcome method to include two parameters as shown in

the following code.

// GET: /HelloWorld/Welcome/
// Requires using System.Text.Encodings.Web;
public string Welcome(string name, int numTimes = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, NumTimes is: {numTimes}");
}

public string Welcome(string name, int ID = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, ID: {ID}");
}

The preceding code:

Uses the C# optional-parameter feature to indicate that the numTimes parameter defaults to 1 if no value is

passed for that parameter.

Uses HtmlEncoder.Default.Encode to protect the app from malicious input (namely JavaScript).

Uses Interpolated Strings in $"Hello {name}, NumTimes is: {numTimes}" .

Run the app and browse to:

https://localhost:{PORT}/HelloWorld/Welcome?name=Rick&numtimes=4

(Replace {PORT} with your port number.) You can try different values for name and numtimes in the URL. The

MVC model binding system automatically maps the named parameters from the query string in the address bar

to parameters in your method. See Model Binding for more information.

In the image above, the URL segment (Parameters) isn't used, the name and numTimes parameters are passed in

the query string. The ? (question mark) in the above URL is a separator, and the query string follows. The &

character separates field-value pairs.

Replace the Welcome method with the following code:

Run the app and enter the following URL: https://localhost:{PORT}/HelloWorld/Welcome/3?name=Rick

This time the third URL segment matched the route parameter id . The Welcome method contains a parameter

id that matched the URL template in the MapRoute method. The trailing ? (in id?) indicates the id

parameter is optional.

https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/interpolated-strings
https://wikipedia.org/wiki/Query_string

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

In these examples the controller has been doing the "VC" portion of MVC - that is, the view and controller work.

The controller is returning HTML directly. Generally you don't want controllers returning HTML directly, since that

becomes very cumbersome to code and maintain. Instead you typically use a separate Razor view template file

to help generate the HTML response. You do that in the next tutorial.

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 3, add a view to an ASP.NET Core MVC app
9/22/2020 • 16 minutes to read • Edit Online

public IActionResult Index()
{
 return View();
}

Add a view

By Rick Anderson

In this section you modify the HelloWorldController class to use Razor view files to cleanly encapsulate the

process of generating HTML responses to a client.

You create a view template file using Razor. Razor-based view templates have a .cshtml file extension. They

provide an elegant way to create HTML output with C#.

Currently the Index method returns a string with a message that's hard-coded in the controller class. In the

HelloWorldController class, replace the Index method with the following code:

The preceding code calls the controller's View method. It uses a view template to generate an HTML response.

Controller methods (also known as action methods), such as the Index method above, generally return an

IActionResult (or a class derived from ActionResult), not a type like string .

Visual Studio

Visual Studio Code

Visual Studio for Mac

Right click on the Views folder, and then Add > New FolderAdd > New Folder and name the folder HelloWorld.

Right click on the Views/HelloWorld folder, and then Add > New ItemAdd > New Item.

In the Add New Item - MvcMovieAdd New Item - MvcMovie dialog

In the search box in the upper-right, enter view

Select Razor ViewRazor View

Keep the NameName box value, Index.cshtml.

Select AddAdd

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/adding-view.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.view
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>Hello from our View Template!</p>

Replace the contents of the Views/HelloWorld/Index.cshtml Razor view file with the following:

Navigate to https://localhost:{PORT}/HelloWorld . The Index method in the HelloWorldController didn't do

much; it ran the statement return View(); , which specified that the method should use a view template file to

render a response to the browser. Because a view template file name wasn't specified, MVC defaulted to using

the default view file. The default view file has the same name as the method (Index), so the view template in

/Views/HelloWorld/Index.cshtml is used. The image below shows the string "Hello from our View Template!"

hard-coded in the view.

Change views and layout pages

Change the title, footer, and menu link in the layout file

Select the menu links (MvcMovieMvcMovie, HomeHome, and Pr ivacyPrivacy). Each page shows the same menu layout. The menu

layout is implemented in the Views/Shared/_Layout.cshtml file. Open the Views/Shared/_Layout.cshtml file.

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it

across multiple pages in your site. Find the @RenderBody() line. RenderBody is a placeholder where all the view-

specific pages you create show up, wrapped in the layout page. For example, if you select the Pr ivacyPrivacy link, the

Views/Home/Privacy.cshtmlViews/Home/Privacy.cshtml view is rendered inside the RenderBody method.

Replace the content of the Views/Shared/_Layout.cshtml file with the following markup. The changes are

highlighted:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-
shadow mb-3">
 <div class="container">
 Movie App
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-
collapse" aria-controls="navbarSupportedContent"
 aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Privacy">Privacy

 </div>
 </div>
 </nav>
 </header>
 <div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>

 <footer class="border-top footer text-muted">
 <div class="container">
 © 2020 - Movie App - <a asp-area="" asp-controller="Home" asp-action="Privacy">Privacy
 </div>
 </footer>
 <script src="~/lib/jquery/dist/jquery.min.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 @RenderSection("Scripts", required: false)
</body>
</html>

The preceding markup made the following changes:

3 occurrences of MvcMovie to Movie App .

The anchor element

MvcMovie to

Movie App .

In the preceding markup, the asp-area="" anchor Tag Helper attribute and attribute value was omitted because

this app is not using Areas.

NoteNote: The Movies controller has not been implemented. At this point, the Movie App link is not functional.

@{
 Layout = "_Layout";
}

@{
 ViewData["Title"] = "Movie List";
}

<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

<title>@ViewData["Title"] - Movie App</title>

Save your changes and select the Pr ivacyPrivacy link. Notice how the title on the browser tab displays Pr ivacy PolicyPrivacy Policy

- Movie App- Movie App instead of Pr ivacy Policy - Mvc MoviePrivacy Policy - Mvc Movie:

Select the HomeHome link and notice that the title and anchor text also display Movie AppMovie App. We were able to make

the change once in the layout template and have all pages on the site reflect the new link text and new title.

Examine the Views/_ViewStart.cshtml file:

The Views/_ViewStart.cshtml file brings in the Views/Shared/_Layout.cshtml file to each view. The Layout

property can be used to set a different layout view, or set it to null so no layout file will be used.

Change the title and <h2> element of the Views/HelloWorld/Index.cshtml view file:

The title and <h2> element are slightly different so you can see which bit of code changes the display.

ViewData["Title"] = "Movie List"; in the code above sets the Title property of the ViewData dictionary to

"Movie List". The Title property is used in the <title> HTML element in the layout page:

Save the change and navigate to https://localhost:{PORT}/HelloWorld . Notice that the browser title, the primary

Passing Data from the Controller to the View

heading, and the secondary headings have changed. (If you don't see changes in the browser, you might be

viewing cached content. Press Ctrl+F5 in your browser to force the response from the server to be loaded.) The

browser title is created with ViewData["Title"] we set in the Index.cshtml view template and the additional "-

Movie App" added in the layout file.

The content in the Index.cshtml view template is merged with the Views/Shared/_Layout.cshtml view template. A

single HTML response is sent to the browser. Layout templates make it easy to make changes that apply across

all of the pages in an app. To learn more, see Layout.

Our little bit of "data" (in this case the "Hello from our View Template!" message) is hard-coded, though. The

MVC application has a "V" (view) and you've got a "C" (controller), but no "M" (model) yet.

Controller actions are invoked in response to an incoming URL request. A controller class is where the code is

written that handles the incoming browser requests. The controller retrieves data from a data source and

decides what type of response to send back to the browser. View templates can be used from a controller to

generate and format an HTML response to the browser.

Controllers are responsible for providing the data required in order for a view template to render a response. A

best practice: View templates should notnot perform business logic or interact with a database directly. Rather, a

view template should work only with the data that's provided to it by the controller. Maintaining this "separation

of concerns" helps keep the code clean, testable, and maintainable.

Currently, the Welcome method in the HelloWorldController class takes a name and a ID parameter and then

outputs the values directly to the browser. Rather than have the controller render this response as a string,

change the controller to use a view template instead. The view template generates a dynamic response, which

means that appropriate bits of data must be passed from the controller to the view in order to generate the

response. Do this by having the controller put the dynamic data (parameters) that the view template needs in a

ViewData dictionary that the view template can then access.

In HelloWorldController.cs, change the Welcome method to add a Message and NumTimes value to the ViewData

dictionary. The ViewData dictionary is a dynamic object, which means any type can be used; the ViewData

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Welcome(string name, int numTimes = 1)
 {
 ViewData["Message"] = "Hello " + name;
 ViewData["NumTimes"] = numTimes;

 return View();
 }
 }
}

@{
 ViewData["Title"] = "Welcome";
}

<h2>Welcome</h2>

 @for (int i = 0; i < (int)ViewData["NumTimes"]; i++)
 {
 @ViewData["Message"]
 }

object has no defined properties until you put something inside it. The MVC model binding system

automatically maps the named parameters (name and numTimes) from the query string in the address bar to

parameters in your method. The complete HelloWorldController.cs file looks like this:

The ViewData dictionary object contains data that will be passed to the view.

Create a Welcome view template named Views/HelloWorld/Welcome.cshtml.

You'll create a loop in the Welcome.cshtml view template that displays "Hello" NumTimes . Replace the contents of

Views/HelloWorld/Welcome.cshtml with the following:

Save your changes and browse to the following URL:

https://localhost:{PORT}/HelloWorld/Welcome?name=Rick&numtimes=4

Data is taken from the URL and passed to the controller using the MVC model binder . The controller packages

the data into a ViewData dictionary and passes that object to the view. The view then renders the data as HTML

to the browser.

public IActionResult Index()
{
 return View();
}

Add a view

In the sample above, the ViewData dictionary was used to pass data from the controller to a view. Later in the

tutorial, a view model is used to pass data from a controller to a view. The view model approach to passing data

is generally much preferred over the ViewData dictionary approach. See When to use ViewBag, ViewData, or

TempData for more information.

In the next tutorial, a database of movies is created.

 P R E V I O U SP R E V I O U S N E X TN E X T

In this section you modify the HelloWorldController class to use Razor view files to cleanly encapsulate the

process of generating HTML responses to a client.

You create a view template file using Razor. Razor-based view templates have a .cshtml file extension. They

provide an elegant way to create HTML output with C#.

Currently the Index method returns a string with a message that's hard-coded in the controller class. In the

HelloWorldController class, replace the Index method with the following code:

The preceding code calls the controller's View method. It uses a view template to generate an HTML response.

Controller methods (also known as action methods), such as the Index method above, generally return an

IActionResult (or a class derived from ActionResult), not a type like string .

Visual Studio

Visual Studio Code

https://www.rachelappel.com/when-to-use-viewbag-viewdata-or-tempdata-in-asp-net-mvc-3-applications/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.view
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>Hello from our View Template!</p>

Visual Studio for Mac

Right click on the Views folder, and then Add > New FolderAdd > New Folder and name the folder HelloWorld.

Right click on the Views/HelloWorld folder, and then Add > New ItemAdd > New Item.

In the Add New Item - MvcMovieAdd New Item - MvcMovie dialog

In the search box in the upper-right, enter view

Select Razor ViewRazor View

Keep the NameName box value, Index.cshtml.

Select AddAdd

Replace the contents of the Views/HelloWorld/Index.cshtml Razor view file with the following:

Navigate to https://localhost:{PORT}/HelloWorld . The Index method in the HelloWorldController didn't do

much; it ran the statement return View(); , which specified that the method should use a view template file to

render a response to the browser. Because a view template file name wasn't specified, MVC defaulted to using

the default view file. The default view file has the same name as the method (Index), so in the

/Views/HelloWorld/Index.cshtml is used. The image below shows the string "Hello from our View Template!"

hard-coded in the view.

Change views and layout pages

Change the title, footer, and menu link in the layout file

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App</title>

 <environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.1.3/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute"
 crossorigin="anonymous"

Select the menu links (MvcMovieMvcMovie, HomeHome, and Pr ivacyPrivacy). Each page shows the same menu layout. The menu

layout is implemented in the Views/Shared/_Layout.cshtml file. Open the Views/Shared/_Layout.cshtml file.

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it

across multiple pages in your site. Find the @RenderBody() line. RenderBody is a placeholder where all the view-

specific pages you create show up, wrapped in the layout page. For example, if you select the Pr ivacyPrivacy link, the

Views/Home/Privacy.cshtmlViews/Home/Privacy.cshtml view is rendered inside the RenderBody method.

In the title and footer elements, change MvcMovie to Movie App .

Change the anchor element

MvcMovie to

Movie App .

The following markup shows the highlighted changes:

 crossorigin="anonymous"
 integrity="sha256-eSi1q2PG6J7g7ib17yAaWMcrr5GrtohYChqibrV7PBE="/>
 </environment>
 <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-
shadow mb-3">
 <div class="container">
 Movie App
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-
collapse" aria-controls="navbarSupportedContent"
 aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Privacy">Privacy

 </div>
 </div>
 </nav>
 </header>
 <div class="container">
 <partial name="_CookieConsentPartial" />
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>

 <footer class="border-top footer text-muted">
 <div class="container">
 © 2019 - Movie App - <a asp-area="" asp-controller="Home" asp-action="Privacy">Privacy
 </div>
 </footer>

 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js"></script>
 </environment>
 <environment exclude="Development">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=">
 </script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.1.3/js/bootstrap.bundle.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha256-E/V4cWE4qvAeO5MOhjtGtqDzPndRO1LBk8lJ/PR7CA4=">
 </script>
 </environment>
 <script src="~/js/site.js" asp-append-version="true"></script>

 @RenderSection("Scripts", required: false)
</body>
</html>

@{
 Layout = "_Layout";
}

@{
 ViewData["Title"] = "Movie List";
}

<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

In the preceding markup, the asp-area anchor Tag Helper attribute was omitted because this app is not using

Areas.

NoteNote: The Movies controller has not been implemented. At this point, the Movie App link is not functional.

Save your changes and select the Pr ivacyPrivacy link. Notice how the title on the browser tab displays Pr ivacy PolicyPrivacy Policy

- Movie App- Movie App instead of Pr ivacy Policy - Mvc MoviePrivacy Policy - Mvc Movie:

Select the HomeHome link and notice that the title and anchor text also display Movie AppMovie App. We were able to make

the change once in the layout template and have all pages on the site reflect the new link text and new title.

Examine the Views/_ViewStart.cshtml file:

The Views/_ViewStart.cshtml file brings in the Views/Shared/_Layout.cshtml file to each view. The Layout

property can be used to set a different layout view, or set it to null so no layout file will be used.

Change the title and <h2> element of the Views/HelloWorld/Index.cshtml view file:

The title and <h2> element are slightly different so you can see which bit of code changes the display.

ViewData["Title"] = "Movie List"; in the code above sets the Title property of the ViewData dictionary to

"Movie List". The Title property is used in the <title> HTML element in the layout page:

<title>@ViewData["Title"] - Movie App</title>

Passing Data from the Controller to the View

Save the change and navigate to https://localhost:{PORT}/HelloWorld . Notice that the browser title, the primary

heading, and the secondary headings have changed. (If you don't see changes in the browser, you might be

viewing cached content. Press Ctrl+F5 in your browser to force the response from the server to be loaded.) The

browser title is created with ViewData["Title"] we set in the Index.cshtml view template and the additional "-

Movie App" added in the layout file.

Also notice how the content in the Index.cshtml view template was merged with the

Views/Shared/_Layout.cshtml view template and a single HTML response was sent to the browser. Layout

templates make it really easy to make changes that apply across all of the pages in your application. To learn

more see Layout.

Our little bit of "data" (in this case the "Hello from our View Template!" message) is hard-coded, though. The

MVC application has a "V" (view) and you've got a "C" (controller), but no "M" (model) yet.

Controller actions are invoked in response to an incoming URL request. A controller class is where the code is

written that handles the incoming browser requests. The controller retrieves data from a data source and

decides what type of response to send back to the browser. View templates can be used from a controller to

generate and format an HTML response to the browser.

Controllers are responsible for providing the data required in order for a view template to render a response. A

best practice: View templates should notnot perform business logic or interact with a database directly. Rather, a

view template should work only with the data that's provided to it by the controller. Maintaining this "separation

of concerns" helps keep the code clean, testable, and maintainable.

Currently, the Welcome method in the HelloWorldController class takes a name and a ID parameter and then

outputs the values directly to the browser. Rather than have the controller render this response as a string,

change the controller to use a view template instead. The view template generates a dynamic response, which

means that appropriate bits of data must be passed from the controller to the view in order to generate the

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Welcome(string name, int numTimes = 1)
 {
 ViewData["Message"] = "Hello " + name;
 ViewData["NumTimes"] = numTimes;

 return View();
 }
 }
}

@{
 ViewData["Title"] = "Welcome";
}

<h2>Welcome</h2>

 @for (int i = 0; i < (int)ViewData["NumTimes"]; i++)
 {
 @ViewData["Message"]
 }

response. Do this by having the controller put the dynamic data (parameters) that the view template needs in a

ViewData dictionary that the view template can then access.

In HelloWorldController.cs, change the Welcome method to add a Message and NumTimes value to the ViewData

dictionary. The ViewData dictionary is a dynamic object, which means any type can be used; the ViewData

object has no defined properties until you put something inside it. The MVC model binding system

automatically maps the named parameters (name and numTimes) from the query string in the address bar to

parameters in your method. The complete HelloWorldController.cs file looks like this:

The ViewData dictionary object contains data that will be passed to the view.

Create a Welcome view template named Views/HelloWorld/Welcome.cshtml.

You'll create a loop in the Welcome.cshtml view template that displays "Hello" NumTimes . Replace the contents of

Views/HelloWorld/Welcome.cshtml with the following:

Save your changes and browse to the following URL:

https://localhost:{PORT}/HelloWorld/Welcome?name=Rick&numtimes=4

Data is taken from the URL and passed to the controller using the MVC model binder . The controller packages

the data into a ViewData dictionary and passes that object to the view. The view then renders the data as HTML

to the browser.

In the sample above, the ViewData dictionary was used to pass data from the controller to a view. Later in the

tutorial, a view model is used to pass data from a controller to a view. The view model approach to passing data

is generally much preferred over the ViewData dictionary approach. See When to use ViewBag, ViewData, or

TempData for more information.

In the next tutorial, a database of movies is created.

 P R E V I O U SP R E V I O U S N E X TN E X T

https://www.rachelappel.com/when-to-use-viewbag-viewdata-or-tempdata-in-asp-net-mvc-3-applications/

Part 4, add a model to an ASP.NET Core MVC app
9/22/2020 • 28 minutes to read • Edit Online

Add a data model class

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int Id { get; set; }
 public string Title { get; set; }

 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Add NuGet packages

By Rick Anderson and Tom Dykstra

In this section, you add classes for managing movies in a database. These classes will be the "MModel" part of the

MMVC app.

You use these classes with Entity Framework Core (EF Core) to work with a database. EF Core is an object-

relational mapping (ORM) framework that simplifies the data access code that you have to write.

The model classes you create are known as POCO classes (from PPlain OOld CCLR OObjects) because they don't have

any dependency on EF Core. They just define the properties of the data that will be stored in the database.

In this tutorial, you write the model classes first, and EF Core creates the database.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Right-click the Models folder > AddAdd > ClassClass . Name the file Movie.cs.

Update the Movie.cs file with the following code:

The Movie class contains an Id field, which is required by the database for the primary key.

The DataType attribute on ReleaseDate specifies the type of the data (Date). With this attribute:

The user is not required to enter time information in the date field.

Only the date is displayed, not time information.

DataAnnotations are covered in a later tutorial.

Visual Studio

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/adding-model.md
https://twitter.com/RickAndMSFT
https://github.com/tdykstra
https://docs.microsoft.com/en-us/ef/core
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatype
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations

Install-Package Microsoft.EntityFrameworkCore.SqlServer

Create a database context class

using Microsoft.EntityFrameworkCore;
using MvcMovie.Models;

namespace MvcMovie.Data
{
 public class MvcMovieContext : DbContext
 {
 public MvcMovieContext (DbContextOptions<MvcMovieContext> options)
 : base(options)
 {
 }

 public DbSet<Movie> Movie { get; set; }
 }
}

Visual Studio Code

Visual Studio for Mac

From the ToolsTools menu, select NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console (PMC).

In the PMC, run the following command:

The preceding command adds the EF Core SQL Server provider. The provider package installs the EF Core

package as a dependency. Additional packages are installed automatically in the scaffolding step later in the

tutorial.

A database context class is needed to coordinate EF Core functionality (Create, Read, Update, Delete) for the

Movie model. The database context is derived from Microsoft.EntityFrameworkCore.DbContext and specifies the

entities to include in the data model.

Create a Data folder.

Add a Data/MvcMovieContext.cs file with the following code:

The preceding code creates a DbSet<Movie> property for the entity set. In Entity Framework terminology, an

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1

Register the database context

using MvcMovie.Data;
using Microsoft.EntityFrameworkCore;

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews();

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

Add a database connection string

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "MvcMovieContext": "Server=(localdb)\\mssqllocaldb;Database=MvcMovieContext-
1;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

Scaffold movie pages

entity set typically corresponds to a database table. An entity corresponds to a row in the table.

ASP.NET Core is built with dependency injection (DI). Services (such as the EF Core DB context) must be

registered with DI during application startup. Components that require these services (such as Razor Pages) are

provided these services via constructor parameters. The constructor code that gets a DB context instance is

shown later in the tutorial. In this section, you register the database context with the DI container.

Add the following using statements at the top of Startup.cs:

Add the following highlighted code in Startup.ConfigureServices :

Visual Studio

Visual Studio Code / Visual Studio for Mac

The name of the connection string is passed in to the context by calling a method on a DbContextOptions object.

For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Add a connection string to the appsettings.json file:

Visual Studio

Visual Studio Code / Visual Studio for Mac

Build the project as a check for compiler errors.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions

Use the scaffolding tool to produce Create, Read, Update, and Delete (CRUD) pages for the movie model.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the Controllers folder > Add > New Scaffolded Item> Add > New Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select MVC Controller with views, using Entity Framework > AddMVC Controller with views, using Entity Framework > Add.

Complete the Add ControllerAdd Controller dialog:

Model class:Model class: Movie (MvcMovie.Models)

Data context class:Data context class: MvcMovieContext (MvcMovie.Data)

Initial migration

Add-Migration InitialCreate
Update-Database

Views:Views: Keep the default of each option checked

Controller name:Controller name: Keep the default MoviesController

Select AddAdd

Visual Studio creates:

A movies controller (Controllers/MoviesController.cs)

Razor view files for Create, Delete, Details, Edit, and Index pages (Views/Movies/*.cshtml)

The automatic creation of these files is known as scaffolding.

You can't use the scaffolded pages yet because the database doesn't exist. If you run the app and click on the

Movie AppMovie App link, you get a Cannot open database or no such table: Movie error message.

Use the EF Core Migrations feature to create the database. Migrations is a set of tools that let you create and

update a database to match your data model.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From the ToolsTools menu, select NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console (PMC).

In the PMC, enter the following commands:

Add-Migration InitialCreate : Generates a Migrations/{timestamp}_InitialCreate.cs migration file. The

InitialCreate argument is the migration name. Any name can be used, but by convention, a name is

selected that describes the migration. Because this is the first migration, the generated class contains code

to create the database schema. The database schema is based on the model specified in the

MvcMovieContext class.

The InitialCreate classThe InitialCreate class

public partial class Initial : Migration
{
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name: "Movie",
 columns: table => new
 {
 Id = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 Title = table.Column<string>(nullable: true),
 ReleaseDate = table.Column<DateTime>(nullable: false),
 Genre = table.Column<string>(nullable: true),
 Price = table.Column<decimal>(nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Movie", x => x.Id);
 });
 }

 protected override void Down(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.DropTable(
 name: "Movie");
 }
}

Test the app

SqlException: Cannot open database "MvcMovieContext-1" requested by the login. The login failed.

Update-Database : Updates the database to the latest migration, which the previous command created.

This command runs the Up method in the Migrations/{time-stamp}_InitialCreate.cs file, which creates the

database.

The database update command generates the following warning:

No type was specified for the decimal column 'Price' on entity type 'Movie'. This will cause values to

be silently truncated if they do not fit in the default precision and scale. Explicitly specify the SQL

server column type that can accommodate all the values using 'HasColumnType()'.

You can ignore that warning, it will be fixed in a later tutorial.

For more information on the PMC tools for EF Core, see EF Core tools reference - PMC in Visual Studio.

Examine the Migrations/{timestamp}_InitialCreate.cs migration file:

The Up method creates the Movie table and configures Id as the primary key. The Down method reverts the

schema changes made by the Up migration.

Run the app and click the Movie AppMovie App link.

If you get an exception similar to one of the following:

Visual Studio

Visual Studio Code / Visual Studio for Mac

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell

Dependency injection in the controller

public class MoviesController : Controller
{
 private readonly MvcMovieContext _context;

 public MoviesController(MvcMovieContext context)
 {
 _context = context;
 }

Strongly typed models and the @model keyword

You probably missed the migrations step.

NOTENOTE

Test the CreateCreate page. Enter and submit data.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English

locales that use a comma (",") for a decimal point and for non US-English date formats, the app must be

globalized. For globalization instructions, see this GitHub issue.

Test the EditEdit, DetailsDetails , and DeleteDelete pages.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Open the Controllers/MoviesController.cs file and examine the constructor :

The constructor uses Dependency Injection to inject the database context (MvcMovieContext) into the controller.

The database context is used in each of the CRUD methods in the controller.

Earlier in this tutorial, you saw how a controller can pass data or objects to a view using the ViewData dictionary.

The ViewData dictionary is a dynamic object that provides a convenient late-bound way to pass information to a

view.

MVC also provides the ability to pass strongly typed model objects to a view. This strongly typed approach

enables compile time code checking. The scaffolding mechanism used this approach (that is, passing a strongly

typed model) with the MoviesController class and views.

Examine the generated Details method in the Controllers/MoviesController.cs file:

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://wikipedia.org/wiki/Create,_read,_update_and_delete

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);

return View(movie);

The id parameter is generally passed as route data. For example https://localhost:5001/movies/details/1 sets:

The controller to the movies controller (the first URL segment).

The action to details (the second URL segment).

The id to 1 (the last URL segment).

You can also pass in the id with a query string as follows:

https://localhost:5001/movies/details?id=1

The id parameter is defined as a nullable type (int?) in case an ID value isn't provided.

A lambda expression is passed in to FirstOrDefaultAsync to select movie entities that match the route data or

query string value.

If a movie is found, an instance of the Movie model is passed to the Details view:

Examine the contents of the Views/Movies/Details.cshtml file:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/statements-expressions-operators/lambda-expressions

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Details";
}

<h1>Details</h1>

<div>
 <h4>Movie</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Title)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Title)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.ReleaseDate)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Genre)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Genre)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Price)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Price)
 </dd>
 </dl>
</div>
<div>
 <a asp-action="Edit" asp-route-id="@Model.Id">Edit |
 <a asp-action="Index">Back to List
</div>

@model MvcMovie.Models.Movie

The @model statement at the top of the view file specifies the type of object that the view expects. When the

movie controller was created, the following @model statement was included:

This @model directive allows access to the movie that the controller passed to the view. The Model object is

strongly typed. For example, in the Details.cshtml view, the code passes each movie field to the DisplayNameFor

and DisplayFor HTML Helpers with the strongly typed Model object. The Create and Edit methods and views

also pass a Movie model object.

Examine the Index.cshtml view and the Index method in the Movies controller. Notice how the code creates a

List object when it calls the View method. The code passes this Movies list from the Index action method to

the view:

// GET: Movies
public async Task<IActionResult> Index()
{
 return View(await _context.Movie.ToListAsync());
}

@model IEnumerable<MvcMovie.Models.Movie>

When the movies controller was created, scaffolding included the following @model statement at the top of the

Index.cshtml file:

The @model directive allows you to access the list of movies that the controller passed to the view by using a

Model object that's strongly typed. For example, in the Index.cshtml view, the code loops through the movies

with a foreach statement over the strongly typed Model object:

@model IEnumerable<MvcMovie.Models.Movie>

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.Id">Edit |
 <a asp-action="Details" asp-route-id="@item.Id">Details |
 <a asp-action="Delete" asp-route-id="@item.Id">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Additional resources

Because the Model object is strongly typed (as an IEnumerable<Movie> object), each item in the loop is typed as

Movie . Among other benefits, this means that you get compile time checking of the code.

Tag Helpers

Globalization and localization

Add a data model class

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int Id { get; set; }
 public string Title { get; set; }

 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Scaffold the movie model

 P R E V I O U S A D D I N G AP R E V I O U S A D D I N G A

V I E WV I E W

N E X T W O R K I N G W I T HN E X T W O R K I N G W I T H

S Q LS Q L

Visual Studio

Visual Studio Code / Visual Studio for Mac

Right-click the Models folder > AddAdd > ClassClass . Name the class MovieMovie.

Add the following properties to the Movie class:

The Movie class contains:

The Id field which is required by the database for the primary key.

[DataType(DataType.Date)] : The DataType attribute specifies the type of the data (Date). With this

attribute:

The user is not required to enter time information in the date field.

Only the date is displayed, not time information.

DataAnnotations are covered in a later tutorial.

In this section, the movie model is scaffolded. That is, the scaffolding tool produces pages for Create, Read,

Update, and Delete (CRUD) operations for the movie model.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the Controllers folder > Add > New Scaffolded Item> Add > New Scaffolded Item.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations

In the Add ScaffoldAdd Scaffold dialog, select MVC Controller with views, using Entity Framework > AddMVC Controller with views, using Entity Framework > Add.

Complete the Add ControllerAdd Controller dialog:

Model class:Model class: Movie (MvcMovie.Models)

Data context class:Data context class: Select the ++ icon and add the default MvcMovie.Models.MvcMovieContextMvcMovie.Models.MvcMovieContext

Views:Views: Keep the default of each option checked

Controller name:Controller name: Keep the default MoviesController

Select AddAdd

Visual Studio creates:

An Entity Framework Core database context class (Data/MvcMovieContext.cs)

A movies controller (Controllers/MoviesController.cs)

Razor view files for Create, Delete, Details, Edit, and Index pages (Views/Movies/*.cshtml)

The automatic creation of the database context and CRUD (create, read, update, and delete) action methods and

views is known as scaffolding.

If you run the app and click on the Mvc MovieMvc Movie link, you get an error similar to the following:

Visual Studio

Visual Studio Code / Visual Studio for Mac

https://wikipedia.org/wiki/Create,_read,_update_and_delete

An unhandled exception occurred while processing the request.

SqlException: Cannot open database "MvcMovieContext-<GUID removed>" requested by the login. The login
failed.
Login failed for user 'Rick'.

System.Data.SqlClient.SqlInternalConnectionTds..ctor(DbConnectionPoolIdentity identity, SqlConnectionString

Initial migration

You need to create the database, and you use the EF Core Migrations feature to do that. Migrations lets you

create a database that matches your data model and update the database schema when your data model

changes.

In this section, the following tasks are completed:

Add an initial migration.

Update the database with the initial migration.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Add-Migration Initial
Update-Database

1. From the ToolsTools menu, select NuGet Package ManagerNuGet Package Manager > Package Manager ConsolePackage Manager Console (PMC).

2. In the PMC, enter the following commands:

The Add-Migration command generates code to create the initial database schema.

The database schema is based on the model specified in the MvcMovieContext class. The Initial

argument is the migration name. Any name can be used, but by convention, a name that describes the

migration is used. For more information, see Tutorial: Using the migrations feature - ASP.NET MVC with EF

Core.

The Update-Database command runs the Up method in the Migrations/{time-stamp}_InitialCreate.cs file,

which creates the database.

Examine the context registered with dependency injection

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies
 // is needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

// Unused usings removed.
using Microsoft.EntityFrameworkCore;
using MvcMovie.Models; // Enables public DbSet<Movie> Movie

namespace MvcMovie.Data
{
 public class MvcMovieContext : DbContext
 {
 public MvcMovieContext (DbContextOptions<MvcMovieContext> options)
 : base(options)
 {
 }

 public DbSet<Movie> Movie { get; set; }
 }
}

Test the appTest the app

ASP.NET Core is built with dependency injection (DI). Services (such as the EF Core DB context) are registered

with DI during application startup. Components that require these services (such as Razor Pages) are provided

these services via constructor parameters. The constructor code that gets a DB context instance is shown later in

the tutorial.

Visual Studio

Visual Studio Code / Visual Studio for Mac

The scaffolding tool automatically created a DB context and registered it with the DI container.

Examine the following Startup.ConfigureServices method. The highlighted line was added by the scaffolder :

The MvcMovieContext coordinates EF Core functionality (Create, Read, Update, Delete, etc.) for the Movie model.

The data context (MvcMovieContext) is derived from Microsoft.EntityFrameworkCore.DbContext. The data context

specifies which entities are included in the data model:

The preceding code creates a DbSet<Movie> property for the entity set. In Entity Framework terminology, an

entity set typically corresponds to a database table. An entity corresponds to a row in the table.

The name of the connection string is passed in to the context by calling a method on a DbContextOptions object.

For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions

SqlException: Cannot open database "MvcMovieContext-GUID" requested by the login. The login failed.
Login failed for user 'User-name'.

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies
 // is needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

public class MoviesController : Controller
{
 private readonly MvcMovieContext _context;

 public MoviesController(MvcMovieContext context)
 {
 _context = context;
 }

Run the app and append /Movies to the URL in the browser (http://localhost:port/movies).

If you get a database exception similar to the following:

You missed the migrations step.

NOTENOTE

Test the CreateCreate link. Enter and submit data.

You may not be able to enter decimal commas in the Price field. To support jQuery validation for non-English

locales that use a comma (",") for a decimal point and for non US-English date formats, the app must be

globalized. For globalization instructions, see this GitHub issue.

Test the EditEdit, DetailsDetails , and DeleteDelete links.

Examine the Startup class:

The preceding highlighted code shows the movie database context being added to the Dependency Injection

container :

services.AddDbContext<MvcMovieContext>(options => specifies the database to use and the connection string.

=> is a lambda operator

Open the Controllers/MoviesController.cs file and examine the constructor :

The constructor uses Dependency Injection to inject the database context (MvcMovieContext) into the controller.

The database context is used in each of the CRUD methods in the controller.

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/operators/lambda-operator
https://wikipedia.org/wiki/Create,_read,_update_and_delete

Strongly typed models and the @model keyword

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);

return View(movie);

Earlier in this tutorial, you saw how a controller can pass data or objects to a view using the ViewData dictionary.

The ViewData dictionary is a dynamic object that provides a convenient late-bound way to pass information to a

view.

MVC also provides the ability to pass strongly typed model objects to a view. This strongly typed approach

enables better compile time checking of your code. The scaffolding mechanism used this approach (that is,

passing a strongly typed model) with the MoviesController class and views when it created the methods and

views.

Examine the generated Details method in the Controllers/MoviesController.cs file:

The id parameter is generally passed as route data. For example https://localhost:5001/movies/details/1 sets:

The controller to the movies controller (the first URL segment).

The action to details (the second URL segment).

The id to 1 (the last URL segment).

You can also pass in the id with a query string as follows:

https://localhost:5001/movies/details?id=1

The id parameter is defined as a nullable type (int?) in case an ID value isn't provided.

A lambda expression is passed in to FirstOrDefaultAsync to select movie entities that match the route data or

query string value.

If a movie is found, an instance of the Movie model is passed to the Details view:

Examine the contents of the Views/Movies/Details.cshtml file:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/statements-expressions-operators/lambda-expressions

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Details";
}

<h1>Details</h1>

<div>
 <h4>Movie</h4>
 <hr />
 <dl class="row">
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Title)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Title)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.ReleaseDate)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Genre)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Genre)
 </dd>
 <dt class="col-sm-2">
 @Html.DisplayNameFor(model => model.Price)
 </dt>
 <dd class="col-sm-10">
 @Html.DisplayFor(model => model.Price)
 </dd>
 </dl>
</div>
<div>
 <a asp-action="Edit" asp-route-id="@Model.Id">Edit |
 <a asp-action="Index">Back to List
</div>

@model MvcMovie.Models.Movie

By including a @model statement at the top of the view file, you can specify the type of object that the view

expects. When you created the movie controller, the following @model statement was automatically included at

the top of the Details.cshtml file:

This @model directive allows you to access the movie that the controller passed to the view by using a Model

object that's strongly typed. For example, in the Details.cshtml view, the code passes each movie field to the

DisplayNameFor and DisplayFor HTML Helpers with the strongly typed Model object. The Create and Edit

methods and views also pass a Movie model object.

Examine the Index.cshtml view and the Index method in the Movies controller. Notice how the code creates a

List object when it calls the View method. The code passes this Movies list from the Index action method to

the view:

// GET: Movies
public async Task<IActionResult> Index()
{
 return View(await _context.Movie.ToListAsync());
}

@model IEnumerable<MvcMovie.Models.Movie>

When you created the movies controller, scaffolding automatically included the following @model statement at

the top of the Index.cshtml file:

The @model directive allows you to access the list of movies that the controller passed to the view by using a

Model object that's strongly typed. For example, in the Index.cshtml view, the code loops through the movies

with a foreach statement over the strongly typed Model object:

@model IEnumerable<MvcMovie.Models.Movie>

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.Id">Edit |
 <a asp-action="Details" asp-route-id="@item.Id">Details |
 <a asp-action="Delete" asp-route-id="@item.Id">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Additional resources

Because the Model object is strongly typed (as an IEnumerable<Movie> object), each item in the loop is typed as

Movie . Among other benefits, this means that you get compile time checking of the code:

Tag Helpers

Globalization and localization

 P R E V I O U S A D D I N G AP R E V I O U S A D D I N G A

V I E WV I E W

N E X T W O R K I N G W I T H AN E X T W O R K I N G W I T H A

D A TA B A S ED A TA B A S E

Part 5, work with a database in an ASP.NET Core
MVC app
9/22/2020 • 9 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews();

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

"ConnectionStrings": {
 "MvcMovieContext": "Server=(localdb)\\mssqllocaldb;Database=MvcMovieContext-
2;Trusted_Connection=True;MultipleActiveResultSets=true"
}

SQL Server Express LocalDB

By Rick Anderson

The MvcMovieContext object handles the task of connecting to the database and mapping Movie objects to

database records. The database context is registered with the Dependency Injection container in the

ConfigureServices method in the Startup.cs file:

Visual Studio

Visual Studio Code / Visual Studio for Mac

The ASP.NET Core Configuration system reads the ConnectionString . For local development, it gets the

connection string from the appsettings.json file:

When the app is deployed to a test or production server, an environment variable can be used to set the

connection string to a production SQL Server. See Configuration for more information.

Visual Studio

Visual Studio Code / Visual Studio for Mac

LocalDB is a lightweight version of the SQL Server Express Database Engine that's targeted for program

development. LocalDB starts on demand and runs in user mode, so there's no complex configuration. By default,

LocalDB database creates .mdf files in the C:/Users/{user} directory.

From the ViewView menu, open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX).

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/working-with-sql.md
https://twitter.com/RickAndMSFT

Right click on the Movie table > View Designer> View Designer

Note the key icon next to ID . By default, EF will make a property named ID the primary key.

Right click on the Movie table > View Data> View Data

Seed the database
Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using MvcMovie.Data;
using System;
using System.Linq;

namespace MvcMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new MvcMovieContext(
 serviceProvider.GetRequiredService<
 DbContextOptions<MvcMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns and no movies are added.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using MvcMovie.Data;
using MvcMovie.Models;
using System;

namespace MvcMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();

 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

Replace the contents of Program.cs with the following code:

Test the app

Visual Studio

Visual Studio Code / Visual Studio for Mac

Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX.

Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force

initialization, IIS Express must be stopped and restarted. You can do this with any of the following

approaches:

Right click the IIS Express system tray icon in the notification area and tap ExitExit or Stop S iteStop S ite

If you were running VS in non-debug mode, press F5 to run in debug mode

If you were running VS in debug mode, stop the debugger and press F5

The app shows the seeded data.

 P R E V I O U SP R E V I O U S N E X TN E X T

By Rick Anderson

The MvcMovieContext object handles the task of connecting to the database and mapping Movie objects to

https://twitter.com/RickAndMSFT

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 // This lambda determines whether user consent for non-essential cookies
 // is needed for a given request.
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

 services.AddDbContext<MvcMovieContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("MvcMovieContext")));
}

"ConnectionStrings": {
 "MvcMovieContext": "Server=(localdb)\\mssqllocaldb;Database=MvcMovieContext-
2;Trusted_Connection=True;MultipleActiveResultSets=true"
}

SQL Server Express LocalDB

database records. The database context is registered with the Dependency Injection container in the

ConfigureServices method in the Startup.cs file:

Visual Studio

Visual Studio Code / Visual Studio for Mac

The ASP.NET Core Configuration system reads the ConnectionString . For local development, it gets the

connection string from the appsettings.json file:

When you deploy the app to a test or production server, you can use an environment variable or another

approach to set the connection string to a real SQL Server. See Configuration for more information.

Visual Studio

Visual Studio Code / Visual Studio for Mac

LocalDB is a lightweight version of the SQL Server Express Database Engine that's targeted for program

development. LocalDB starts on demand and runs in user mode, so there's no complex configuration. By default,

LocalDB database creates .mdf files in the C:/Users/{user} directory.

From the ViewView menu, open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer (SSOX).

Right click on the Movie table > View Designer> View Designer

Note the key icon next to ID . By default, EF will make a property named ID the primary key.

Right click on the Movie table > View Data> View Data

Seed the database
Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;

namespace MvcMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new MvcMovieContext(
 serviceProvider.GetRequiredService<
 DbContextOptions<MvcMovieContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-2-12"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

If there are any movies in the DB, the seed initializer returns and no movies are added.

if (context.Movie.Any())
{
 return; // DB has been seeded.
}

Add the seed initializerAdd the seed initializer

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using System;
using Microsoft.EntityFrameworkCore;
using MvcMovie.Models;
using MvcMovie;

namespace MvcMovie
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateWebHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;

 try
 {
 var context = services.GetRequiredService<MvcMovieContext>();
 context.Database.Migrate();
 SeedData.Initialize(services);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred seeding the DB.");
 }
 }

 host.Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

Replace the contents of Program.cs with the following code:

Test the app

Visual Studio

Visual Studio Code / Visual Studio for Mac

Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX.

Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force

initialization, IIS Express must be stopped and restarted. You can do this with any of the following

approaches:

Right click the IIS Express system tray icon in the notification area and tap ExitExit or Stop S iteStop S ite

If you were running VS in non-debug mode, press F5 to run in debug mode

If you were running VS in debug mode, stop the debugger and press F5

The app shows the seeded data.

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 6, controller methods and views in ASP.NET
Core
9/22/2020 • 9 minutes to read • Edit Online

By Rick Anderson

We have a good start to the movie app, but the presentation isn't ideal, for example, ReleaseDateReleaseDate should be two

words.

Open the Models/Movie.cs file and add the highlighted lines shown below:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/controller-methods-views.md
https://twitter.com/RickAndMSFT

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int Id { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 }
}

We cover DataAnnotations in the next tutorial. The Display attribute specifies what to display for the name of a

field (in this case "Release Date" instead of "ReleaseDate"). The DataType attribute specifies the type of the data

(Date), so the time information stored in the field isn't displayed.

The [Column(TypeName = "decimal(18, 2)")] data annotation is required so Entity Framework Core can correctly

map Price to currency in the database. For more information, see Data Types.

Browse to the Movies controller and hold the mouse pointer over an EditEdit link to see the target URL.

The EditEdit, DetailsDetails , and DeleteDelete links are generated by the Core MVC Anchor Tag Helper in the

Views/Movies/Index.cshtml file.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.displaymetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.internal.datatypeattributeadapter
https://docs.microsoft.com/en-us/ef/core/modeling/relational/data-types

 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
</tr>

 <td>
 Edit |
 Details |
 Delete
</td>

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.FindAsync(id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. In the

code above, the AnchorTagHelper dynamically generates the HTML href attribute value from the controller

action method and route id. You use View SourceView Source from your favorite browser or use the developer tools to

examine the generated markup. A portion of the generated HTML is shown below:

Recall the format for routing set in the Startup.cs file:

ASP.NET Core translates https://localhost:5001/Movies/Edit/4 into a request to the Edit action method of the

Movies controller with the parameter Id of 4. (Controller methods are also known as action methods.)

Tag Helpers are one of the most popular new features in ASP.NET Core. For more information, see Additional

resources.

 Open the Movies controller and examine the two Edit action methods. The following code shows the

HTTP GET Edit method, which fetches the movie and populates the edit form generated by the Edit.cshtml Razor

file.

The following code shows the HTTP POST Edit method, which processes the posted movie values:

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

The following code shows the HTTP POST Edit method, which processes the posted movie values:

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

The [Bind] attribute is one way to protect against over-posting. You should only include properties in the

[Bind] attribute that you want to change. For more information, see Protect your controller from over-posting.

ViewModels provide an alternative approach to prevent over-posting.

Notice the second Edit action method is preceded by the [HttpPost] attribute.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application#overpost
https://docs.microsoft.com/en-us/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application
https://rachelappel.com/use-viewmodels-to-manage-data-amp-organize-code-in-asp-net-mvc-applications/

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 return View(movie);
}

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

<form asp-action="Edit">

The HttpPost attribute specifies that this Edit method can be invoked only for POST requests. You could apply

the [HttpGet] attribute to the first edit method, but that's not necessary because [HttpGet] is the default.

The ValidateAntiForgeryToken attribute is used to prevent forgery of a request and is paired up with an anti-

forgery token generated in the edit view file (Views/Movies/Edit.cshtml). The edit view file generates the anti-

forgery token with the Form Tag Helper.

The Form Tag Helper generates a hidden anti-forgery token that must match the [ValidateAntiForgeryToken]

generated anti-forgery token in the Edit method of the Movies controller. For more information, see Prevent

Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core.

The HttpGet Edit method takes the movie ID parameter, looks up the movie using the Entity Framework

FindAsync method, and returns the selected movie to the Edit view. If a movie cannot be found, NotFound (HTTP

404) is returned.

// GET: Movies/Edit/5
public async Task<IActionResult> Edit(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.FindAsync(id);
 if (movie == null)
 {
 return NotFound();
 }
 return View(movie);
}

When the scaffolding system created the Edit view, it examined the Movie class and created code to render

<label> and <input> elements for each property of the class. The following example shows the Edit view that

was generated by the Visual Studio scaffolding system:

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Edit";
}

<h1>Edit</h1>

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form asp-action="Edit">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <input type="hidden" asp-for="Id" />
 <div class="form-group">
 <label asp-for="Title" class="control-label"></label>
 <input asp-for="Title" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="ReleaseDate" class="control-label"></label>
 <input asp-for="ReleaseDate" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Genre" class="control-label"></label>
 <input asp-for="Genre" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Price" class="control-label"></label>
 <input asp-for="Price" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Notice how the view template has a @model MvcMovie.Models.Movie statement at the top of the file.

@model MvcMovie.Models.Movie specifies that the view expects the model for the view template to be of type

Movie .

The scaffolded code uses several Tag Helper methods to streamline the HTML markup. The Label Tag Helper

displays the name of the field ("Title", "ReleaseDate", "Genre", or "Price"). The Input Tag Helper renders an HTML

<input> element. The Validation Tag Helper displays any validation messages associated with that property.

Run the application and navigate to the /Movies URL. Click an EditEdit link. In the browser, view the source for the

page. The generated HTML for the <form> element is shown below.

<form action="/Movies/Edit/7" method="post">
 <div class="form-horizontal">
 <h4>Movie</h4>
 <hr />
 <div class="text-danger" />
 <input type="hidden" data-val="true" data-val-required="The ID field is required." id="ID" name="ID"
value="7" />
 <div class="form-group">
 <label class="control-label col-md-2" for="Genre" />
 <div class="col-md-10">
 <input class="form-control" type="text" id="Genre" name="Genre" value="Western" />
 <span class="text-danger field-validation-valid" data-valmsg-for="Genre" data-valmsg-
replace="true">
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-2" for="Price" />
 <div class="col-md-10">
 <input class="form-control" type="text" data-val="true" data-val-number="The field Price
must be a number." data-val-required="The Price field is required." id="Price" name="Price" value="3.99" />
 <span class="text-danger field-validation-valid" data-valmsg-for="Price" data-valmsg-
replace="true">
 </div>
 </div>
 <!-- Markup removed for brevity -->
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </div>
 </div>
 <input name="__RequestVerificationToken" type="hidden"
value="CfDJ8Inyxgp63fRFqUePGvuI5jGZsloJu1L7X9le1gy7NCIlSduCRx9jDQClrV9pOTTmqUyXnJBXhmrjcUVDJyDUMm7-
MF_9rK8aAZdRdlOri7FmKVkRe_2v5LIHGKFcTjPrWPYnc9AdSbomkiOSaTEg7RU" />
</form>

Processing the POST Request

The <input> elements are in an HTML <form> element whose action attribute is set to post to the

/Movies/Edit/id URL. The form data will be posted to the server when the Save button is clicked. The last line

before the closing </form> element shows the hidden XSRF token generated by the Form Tag Helper.

The following listing shows the [HttpPost] version of the Edit action method.

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 return View(movie);
}

// POST: Movies/Edit/5
// To protect from overposting attacks, please enable the specific properties you want to bind to, for
// more details see http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id, [Bind("ID,Title,ReleaseDate,Genre,Price")] Movie movie)
{
 if (id != movie.ID)
 {
 return NotFound();
 }

 if (ModelState.IsValid)
 {
 try
 {
 _context.Update(movie);
 await _context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 if (!MovieExists(movie.ID))
 {
 return NotFound();
 }
 else
 {
 throw;
 }
 }
 return RedirectToAction("Index");
 }
 return View(movie);
}

The [ValidateAntiForgeryToken] attribute validates the hidden XSRF token generated by the anti-forgery token

generator in the Form Tag Helper

The model binding system takes the posted form values and creates a Movie object that's passed as the movie

parameter. The ModelState.IsValid method verifies that the data submitted in the form can be used to modify

(edit or update) a Movie object. If the data is valid, it's saved. The updated (edited) movie data is saved to the

database by calling the SaveChangesAsync method of database context. After saving the data, the code redirects

the user to the Index action method of the MoviesController class, which displays the movie collection,

including the changes just made.

Before the form is posted to the server, client-side validation checks any validation rules on the fields. If there are

any validation errors, an error message is displayed and the form isn't posted. If JavaScript is disabled, you won't

have client-side validation but the server will detect the posted values that are not valid, and the form values will

be redisplayed with error messages. Later in the tutorial we examine Model Validation in more detail. The

Validation Tag Helper in the Views/Movies/Edit.cshtml view template takes care of displaying appropriate error

messages.

 Additional resources

All the HttpGet methods in the movie controller follow a similar pattern. They get a movie object (or list of

objects, in the case of Index), and pass the object (model) to the view. The Create method passes an empty

movie object to the Create view. All the methods that create, edit, delete, or otherwise modify data do so in the

[HttpPost] overload of the method. Modifying data in an HTTP GET method is a security risk. Modifying data in

an HTTP GET method also violates HTTP best practices and the architectural REST pattern, which specifies that

GET requests shouldn't change the state of your application. In other words, performing a GET operation should

be a safe operation that has no side effects and doesn't modify your persisted data.

Globalization and localization

Introduction to Tag Helpers

Author Tag Helpers

Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core

Protect your controller from over-posting

http://rest.elkstein.org/
https://docs.microsoft.com/en-us/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-application

ViewModels

Form Tag Helper

Input Tag Helper

Label Tag Helper

Select Tag Helper

Validation Tag Helper

 P R E V I O U SP R E V I O U S N E X TN E X T

https://rachelappel.com/use-viewmodels-to-manage-data-amp-organize-code-in-asp-net-mvc-applications/

Part 7, add search to an ASP.NET Core MVC app
9/22/2020 • 7 minutes to read • Edit Online

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

var movies = from m in _context.Movie
 select m;

if (!String.IsNullOrEmpty(searchString))
{
 movies = movies.Where(s => s.Title.Contains(searchString));
}

By Rick Anderson

In this section, you add search capability to the Index action method that lets you search movies by genre or

name.

Update the Index method found inside Controllers/MoviesController.cs with the following code:

The first line of the Index action method creates a LINQ query to select the movies:

The query is only defined at this point, it has notnot been run against the database.

If the searchString parameter contains a string, the movies query is modified to filter on the value of the search

string:

The s => s.Title.Contains() code above is a Lambda Expression. Lambdas are used in method-based LINQ

queries as arguments to standard query operator methods such as the Where method or Contains (used in the

code above). LINQ queries are not executed when they're defined or when they're modified by calling a method

such as Where , Contains , or OrderBy . Rather, query execution is deferred. That means that the evaluation of an

expression is delayed until its realized value is actually iterated over or the ToListAsync method is called. For

more information about deferred query execution, see Query Execution.

Note: The Contains method is run on the database, not in the c# code shown above. The case sensitivity on the

query depends on the database and the collation. On SQL Server, Contains maps to SQL LIKE, which is case

insensitive. In SQLite, with the default collation, it's case sensitive.

Navigate to /Movies/Index . Append a query string such as ?searchString=Ghost to the URL. The filtered movies

are displayed.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/search.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/standard/using-linq
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/standard/using-linq
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.where
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/language-reference/query-execution
https://docs.microsoft.com/en-us/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/en-us/dotnet/api/system.data.objects.dataclasses.entitycollection-1.contains
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/like-transact-sql

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

If you change the signature of the Index method to have a parameter named id , the id parameter will match

the optional {id} placeholder for the default routes set in Startup.cs.

Change the parameter to id and all occurrences of searchString change to id .

The previous Index method:

The updated Index method with id parameter :

public async Task<IActionResult> Index(string id)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(id))
 {
 movies = movies.Where(s => s.Title.Contains(id));
 }

 return View(await movies.ToListAsync());
}

public async Task<IActionResult> Index(string searchString)
{
 var movies = from m in _context.Movie
 select m;

 if (!String.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 return View(await movies.ToListAsync());
}

You can now pass the search title as route data (a URL segment) instead of as a query string value.

However, you can't expect users to modify the URL every time they want to search for a movie. So now you'll add

UI elements to help them filter movies. If you changed the signature of the Index method to test how to pass the

route-bound ID parameter, change it back so that it takes a parameter named searchString :

Open the Views/Movies/Index.cshtml file, and add the <form> markup highlighted below:

 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>

<form asp-controller="Movies" asp-action="Index">
 <p>
 Title: <input type="text" name="SearchString">
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>

[HttpPost]
public string Index(string searchString, bool notUsed)
{
 return "From [HttpPost]Index: filter on " + searchString;
}

The HTML <form> tag uses the Form Tag Helper, so when you submit the form, the filter string is posted to the

Index action of the movies controller. Save your changes and then test the filter.

There's no [HttpPost] overload of the Index method as you might expect. You don't need it, because the method

isn't changing the state of the app, just filtering data.

You could add the following [HttpPost] Index method.

The notUsed parameter is used to create an overload for the Index method. We'll talk about that later in the

tutorial.

If you add this method, the action invoker would match the [HttpPost] Index method, and the [HttpPost] Index

method would run as shown in the image below.

However, even if you add this [HttpPost] version of the Index method, there's a limitation in how this has all

been implemented. Imagine that you want to bookmark a particular search or you want to send a link to friends

that they can click in order to see the same filtered list of movies. Notice that the URL for the HTTP POST request

is the same as the URL for the GET request (localhost:{PORT}/Movies/Index) -- there's no search information in the

URL. The search string information is sent to the server as a form field value. You can verify that with the browser

Developer tools or the excellent Fiddler tool. The image below shows the Chrome browser Developer tools:

https://developer.mozilla.org/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data
https://www.telerik.com/fiddler

You can see the search parameter and XSRF token in the request body. Note, as mentioned in the previous

tutorial, the Form Tag Helper generates an XSRF anti-forgery token. We're not modifying data, so we don't need to

validate the token in the controller method.

Because the search parameter is in the request body and not the URL, you can't capture that search information to

bookmark or share with others. Fix this by specifying the request should be HTTP GET found in the

Views/Movies/Index.cshtml file.

@model IEnumerable<MvcMovie.Models.Movie>

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-action="Create">Create New
</p>
<form asp-controller="Movies" asp-action="Index" method="get">
 <p>
 Title: <input type="text" name="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Title)

<form asp-controller="Movies" asp-action="Index" method="get">

Add Search by genre

Now when you submit a search, the URL contains the search query string. Searching will also go to the

HttpGet Index action method, even if you have a HttpPost Index method.

The following markup shows the change to the form tag:

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace MvcMovie.Models
{
 public class MovieGenreViewModel
 {
 public List<Movie> Movies { get; set; }
 public SelectList Genres { get; set; }
 public string MovieGenre { get; set; }
 public string SearchString { get; set; }
 }
}

// GET: Movies
public async Task<IActionResult> Index(string movieGenre, string searchString)
{
 // Use LINQ to get list of genres.
 IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

 var movies = from m in _context.Movie
 select m;

 if (!string.IsNullOrEmpty(searchString))
 {
 movies = movies.Where(s => s.Title.Contains(searchString));
 }

 if (!string.IsNullOrEmpty(movieGenre))
 {
 movies = movies.Where(x => x.Genre == movieGenre);
 }

 var movieGenreVM = new MovieGenreViewModel
 {
 Genres = new SelectList(await genreQuery.Distinct().ToListAsync()),
 Movies = await movies.ToListAsync()
 };

 return View(movieGenreVM);
}

// Use LINQ to get list of genres.
IQueryable<string> genreQuery = from m in _context.Movie
 orderby m.Genre
 select m.Genre;

Add the following MovieGenreViewModel class to the Models folder :

The movie-genre view model will contain:

A list of movies.

A SelectList containing the list of genres. This allows the user to select a genre from the list.

MovieGenre , which contains the selected genre.

SearchString , which contains the text users enter in the search text box.

Replace the Index method in MoviesController.cs with the following code:

The following code is a LINQ query that retrieves all the genres from the database.

Add search by genre to the Index view

The SelectList of genres is created by projecting the distinct genres (we don't want our select list to have

duplicate genres).

When the user searches for the item, the search value is retained in the search box.

Update Index.cshtml found in Views/Movies/ as follows:

@model MvcMovie.Models.MovieGenreViewModel

@{
 ViewData["Title"] = "Index";
}

<h1>Index</h1>

<p>
 <a asp-action="Create">Create New
</p>
<form asp-controller="Movies" asp-action="Index" method="get">
 <p>

 <select asp-for="MovieGenre" asp-items="Model.Genres">
 <option value="">All</option>
 </select>

 Title: <input type="text" asp-for="SearchString" />
 <input type="submit" value="Filter" />
 </p>
</form>

<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Price)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Movies)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.Id">Edit |
 <a asp-action="Details" asp-route-id="@item.Id">Details |
 <a asp-action="Delete" asp-route-id="@item.Id">Delete
 </td>
 </tr>
 }
 </tbody>
</table>

Examine the lambda expression used in the following HTML Helper :

@Html.DisplayNameFor(model => model.Movies[0].Title)

In the preceding code, the DisplayNameFor HTML Helper inspects the Title property referenced in the lambda

expression to determine the display name. Since the lambda expression is inspected rather than evaluated, you

don't receive an access violation when model , model.Movies , or model.Movies[0] are null or empty. When the

lambda expression is evaluated (for example, @Html.DisplayFor(modelItem => item.Title)), the model's property

values are evaluated.

Test the app by searching by genre, by movie title, and by both:

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 8, add a new field to an ASP.NET Core MVC
app
9/22/2020 • 4 minutes to read • Edit Online

Add a Rating Property to the Movie Model

public class Movie
{
 public int Id { get; set; }
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }

 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }
 public string Rating { get; set; }
}

[Bind("Id,Title,ReleaseDate,Genre,Price,Rating")]

By Rick Anderson

In this section Entity Framework Code First Migrations is used to:

Add a new field to the model.

Migrate the new field to the database.

When EF Code First is used to automatically create a database, Code First:

Adds a table to the database to track the schema of the database.

Verifies the database is in sync with the model classes it was generated from. If they aren't in sync, EF throws

an exception. This makes it easier to find inconsistent database/code issues.

Add a Rating property to Models/Movie.cs:

Build the app

Visual Studio

Visual Studio Code

Visual Studio for Mac

Ctrl+Shift+B

Because you've added a new field to the Movie class, you need to update the binding white list so this new

property will be included. In MoviesController.cs, update the [Bind] attribute for both the Create and Edit

action methods to include the Rating property:

Update the view templates in order to display, create, and edit the new Rating property in the browser view.

Edit the /Views/Movies/Index.cshtml file and add a Rating field:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/new-field.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/new-db

<thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Title)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Movies[0].Rating)
 </th>
 <th></th>
 </tr>
</thead>
<tbody>
 @foreach (var item in Model.Movies)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Rating)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.Id">Edit |

Update the /Views/Movies/Create.cshtml with a Rating field.

Visual Studio / Visual Studio for Mac

Visual Studio Code

You can copy/paste the previous "form group" and let intelliSense help you update the fields. IntelliSense works

with Tag Helpers.

new Movie
{
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-1-11"),
 Genre = "Romantic Comedy",
 Rating = "R",
 Price = 7.99M
},

Update the remaining templates.

Update the SeedData class so that it provides a value for the new column. A sample change is shown below, but

you'll want to make this change for each new Movie .

The app won't work until the DB is updated to include the new field. If it's run now, the following SqlException is

thrown:

SqlException: Invalid column name 'Rating'.

This error occurs because the updated Movie model class is different than the schema of the Movie table of the

existing database. (There's no Rating column in the database table.)

There are a few approaches to resolving the error :

1. Have the Entity Framework automatically drop and re-create the database based on the new model class

schema. This approach is very convenient early in the development cycle when you're doing active

development on a test database; it allows you to quickly evolve the model and database schema together.

The downside, though, is that you lose existing data in the database — so you don't want to use this

approach on a production database! Using an initializer to automatically seed a database with test data is

often a productive way to develop an application. This is a good approach for early development and when

using SQLite.

2. Explicitly modify the schema of the existing database so that it matches the model classes. The advantage

of this approach is that you keep your data. You can make this change either manually or by creating a

database change script.

3. Use Code First Migrations to update the database schema.

For this tutorial, Code First Migrations is used.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Add-Migration Rating
Update-Database

From the ToolsTools menu, select NuGet Package Manager > Package Manager ConsoleNuGet Package Manager > Package Manager Console.

In the PMC, enter the following commands:

The Add-Migration command tells the migration framework to examine the current Movie model with the

current Movie DB schema and create the necessary code to migrate the DB to the new model.

The name "Rating" is arbitrary and is used to name the migration file. It's helpful to use a meaningful name for

the migration file.

If all the records in the DB are deleted, the initialize method will seed the DB and include the Rating field.

Run the app and verify you can create, edit, and display movies with a Rating field.

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 9, add validation to an ASP.NET Core MVC app
9/22/2020 • 9 minutes to read • Edit Online

Keeping things DRY

Add validation rules to the movie model

public class Movie
{
 public int Id { get; set; }

 [StringLength(60, MinimumLength = 3)]
 [Required]
 public string Title { get; set; }

 [Display(Name = "Release Date")]
 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [Range(1, 100)]
 [DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]
 [Required]
 [StringLength(30)]
 public string Genre { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$")]
 [StringLength(5)]
 [Required]
 public string Rating { get; set; }
}

By Rick Anderson

In this section:

Validation logic is added to the Movie model.

You ensure that the validation rules are enforced any time a user creates or edits a movie.

One of the design tenets of MVC is DRY ("Don't Repeat Yourself"). ASP.NET Core MVC encourages you to specify

functionality or behavior only once, and then have it be reflected everywhere in an app. This reduces the amount

of code you need to write and makes the code you do write less error prone, easier to test, and easier to maintain.

The validation support provided by MVC and Entity Framework Core Code First is a good example of the DRY

principle in action. You can declaratively specify validation rules in one place (in the model class) and the rules are

enforced everywhere in the app.

The DataAnnotations namespace provides a set of built-in validation attributes that are applied declaratively to a

class or property. DataAnnotations also contains formatting attributes like DataType that help with formatting

and don't provide any validation.

Update the Movie class to take advantage of the built-in Required , StringLength , RegularExpression , and Range

validation attributes.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/validation.md
https://twitter.com/RickAndMSFT
https://wikipedia.org/wiki/Don%27t_repeat_yourself

Validation Error UI

The validation attributes specify behavior that you want to enforce on the model properties they're applied to:

The Required and MinimumLength attributes indicate that a property must have a value; but nothing

prevents a user from entering white space to satisfy this validation.

The RegularExpression attribute is used to limit what characters can be input. In the preceding code,

"Genre":

Must only use letters.

The first letter is required to be uppercase. White space, numbers, and special characters are not

allowed.

The RegularExpression "Rating":

Requires that the first character be an uppercase letter.

Allows special characters and numbers in subsequent spaces. "PG-13" is valid for a rating, but fails for a

"Genre".

The Range attribute constrains a value to within a specified range.

The StringLength attribute lets you set the maximum length of a string property, and optionally its

minimum length.

Value types (such as decimal , int , float , DateTime) are inherently required and don't need the

[Required] attribute.

Having validation rules automatically enforced by ASP.NET Core helps make your app more robust. It also ensures

that you can't forget to validate something and inadvertently let bad data into the database.

Run the app and navigate to the Movies controller.

Tap the Create NewCreate New link to add a new movie. Fill out the form with some invalid values. As soon as jQuery client

side validation detects the error, it displays an error message.

NOTENOTE
You may not be able to enter decimal commas in decimal fields. To support jQuery validation for non-English locales that

use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. See this

GitHub issue 4076 for instructions on adding decimal comma.

Notice how the form has automatically rendered an appropriate validation error message in each field containing

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420

How validation works

// GET: Movies/Create
public IActionResult Create()
{
 return View();
}

// POST: Movies/Create
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
 [Bind("ID,Title,ReleaseDate,Genre,Price, Rating")] Movie movie)
{
 if (ModelState.IsValid)
 {
 _context.Add(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction("Index");
 }
 return View(movie);
}

an invalid value. The errors are enforced both client-side (using JavaScript and jQuery) and server-side (in case a

user has JavaScript disabled).

A significant benefit is that you didn't need to change a single line of code in the MoviesController class or in the

Create.cshtml view in order to enable this validation UI. The controller and views you created earlier in this

tutorial automatically picked up the validation rules that you specified by using validation attributes on the

properties of the Movie model class. Test validation using the Edit action method, and the same validation is

applied.

The form data isn't sent to the server until there are no client side validation errors. You can verify this by putting

a break point in the HTTP Post method, by using the Fiddler tool , or the F12 Developer tools.

You might wonder how the validation UI was generated without any updates to the code in the controller or

views. The following code shows the two Create methods.

The first (HTTP GET) Create action method displays the initial Create form. The second ([HttpPost]) version

handles the form post. The second Create method (The [HttpPost] version) calls ModelState.IsValid to check

whether the movie has any validation errors. Calling this method evaluates any validation attributes that have

been applied to the object. If the object has validation errors, the Create method re-displays the form. If there are

no errors, the method saves the new movie in the database. In our movie example, the form isn't posted to the

server when there are validation errors detected on the client side; the second Create method is never called

when there are client side validation errors. If you disable JavaScript in your browser, client validation is disabled

and you can test the HTTP POST Create method ModelState.IsValid detecting any validation errors.

You can set a break point in the [HttpPost] Create method and verify the method is never called, client side

validation won't submit the form data when validation errors are detected. If you disable JavaScript in your

browser, then submit the form with errors, the break point will be hit. You still get full validation without

JavaScript.

The following image shows how to disable JavaScript in the Firefox browser.

https://www.telerik.com/fiddler
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide

The following image shows how to disable JavaScript in the Chrome browser.

After you disable JavaScript, post invalid data and step through the debugger.

<h4>Movie</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form asp-action="Create">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Title" class="control-label"></label>
 <input asp-for="Title" class="form-control" />

 </div>

 @*Markup removed for brevity.*@

Using DataType Attributes

The portion of the Create.cshtml view template is shown in the following markup:

The preceding markup is used by the action methods to display the initial form and to redisplay it in the event of

an error.

The Input Tag Helper uses the DataAnnotations attributes and produces HTML attributes needed for jQuery

Validation on the client side. The Validation Tag Helper displays validation errors. See Validation for more

information.

What's really nice about this approach is that neither the controller nor the Create view template knows

anything about the actual validation rules being enforced or about the specific error messages displayed. The

validation rules and the error strings are specified only in the Movie class. These same validation rules are

automatically applied to the Edit view and any other views templates you might create that edit your model.

When you need to change validation logic, you can do so in exactly one place by adding validation attributes to

the model (in this example, the Movie class). You won't have to worry about different parts of the application

being inconsistent with how the rules are enforced — all validation logic will be defined in one place and used

everywhere. This keeps the code very clean, and makes it easy to maintain and evolve. And it means that you'll be

fully honoring the DRY principle.

Open the Movie.cs file and examine the Movie class. The System.ComponentModel.DataAnnotations namespace

provides formatting attributes in addition to the built-in set of validation attributes. We've already applied a

DataType enumeration value to the release date and to the price fields. The following code shows the

ReleaseDate and Price properties with the appropriate DataType attribute.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6

[Display(Name = "Release Date")]
[DataType(DataType.Date)]
public DateTime ReleaseDate { get; set; }

[Range(1, 100)]
[DataType(DataType.Currency)]
public decimal Price { get; set; }

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
public DateTime ReleaseDate { get; set; }

NOTENOTE

The DataType attributes only provide hints for the view engine to format the data (and supplies

elements/attributes such as <a> for URL's and for email. You can use the

RegularExpression attribute to validate the format of the data. The DataType attribute is used to specify a data

type that's more specific than the database intrinsic type, they're not validation attributes. In this case we only

want to keep track of the date, not the time. The DataType Enumeration provides for many data types, such as

Date, Time, PhoneNumber, Currency, EmailAddress and more. The DataType attribute can also enable the

application to automatically provide type-specific features. For example, a mailto: link can be created for

DataType.EmailAddress , and a date selector can be provided for DataType.Date in browsers that support HTML5.

The DataType attributes emit HTML 5 data- (pronounced data dash) attributes that HTML 5 browsers can

understand. The DataType attributes do notnot provide any validation.

DataType.Date doesn't specify the format of the date that's displayed. By default, the data field is displayed

according to the default formats based on the server's CultureInfo .

The DisplayFormat attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode setting specifies that the formatting should also be applied when the value is

displayed in a text box for editing. (You might not want that for some fields — for example, for currency values,

you probably don't want the currency symbol in the text box for editing.)

You can use the DisplayFormat attribute by itself, but it's generally a good idea to use the DataType attribute. The

DataType attribute conveys the semantics of the data as opposed to how to render it on a screen, and provides

the following benefits that you don't get with DisplayFormat:

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate

currency symbol, email links, etc.)

By default, the browser will render data using the correct format based on your locale.

The DataType attribute can enable MVC to choose the right field template to render the data (the

DisplayFormat if used by itself uses the string template).

jQuery validation doesn't work with the Range attribute and DateTime . For example, the following code will always

display a client side validation error, even when the date is in the specified range:

[Range(typeof(DateTime), "1/1/1966", "1/1/2020")]

You will need to disable jQuery date validation to use the Range attribute with DateTime . It's generally not a good

practice to compile hard dates in your models, so using the Range attribute and DateTime is discouraged.

The following code shows combining attributes on one line:

public class Movie
{
 public int Id { get; set; }

 [StringLength(60, MinimumLength = 3)]
 public string Title { get; set; }

 [Display(Name = "Release Date"), DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z]*$"), Required, StringLength(30)]
 public string Genre { get; set; }

 [Range(1, 100), DataType(DataType.Currency)]
 [Column(TypeName = "decimal(18, 2)")]
 public decimal Price { get; set; }

 [RegularExpression(@"^[A-Z]+[a-zA-Z0-9""'\s-]*$"), StringLength(5)]
 public string Rating { get; set; }
}

Additional resources

In the next part of the series, we review the app and make some improvements to the automatically generated

Details and Delete methods.

Working with Forms

Globalization and localization

Introduction to Tag Helpers

Author Tag Helpers

 P R E V I O U SP R E V I O U S N E X TN E X T

Part 10, examine the Details and Delete methods of
an ASP.NET Core app
9/22/2020 • 3 minutes to read • Edit Online

// GET: Movies/Details/5
public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

By Rick Anderson

Open the Movie controller and examine the Details method:

The MVC scaffolding engine that created this action method adds a comment showing an HTTP request that

invokes the method. In this case it's a GET request with three URL segments, the Movies controller, the Details

method, and an id value. Recall these segments are defined in Startup.cs.

EF makes it easy to search for data using the FirstOrDefaultAsync method. An important security feature built

into the method is that the code verifies that the search method has found a movie before it tries to do anything

with it. For example, a hacker could introduce errors into the site by changing the URL created by the links from

http://localhost:{PORT}/Movies/Details/1 to something like http://localhost:{PORT}/Movies/Details/12345 (or

some other value that doesn't represent an actual movie). If you didn't check for a null movie, the app would

throw an exception.

Examine the Delete and DeleteConfirmed methods.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mvc-app/details.md
https://twitter.com/RickAndMSFT

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie
 .FirstOrDefaultAsync(m => m.Id == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
 var movie = await _context.Movie.FindAsync(id);
 _context.Movie.Remove(movie);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
}

// GET: Movies/Delete/5
public async Task<IActionResult> Delete(int? id)
{

// POST: Movies/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{

Note that the HTTP GET Delete method doesn't delete the specified movie, it returns a view of the movie where

you can submit (HttpPost) the deletion. Performing a delete operation in response to a GET request (or for that

matter, performing an edit operation, create operation, or any other operation that changes data) opens up a

security hole.

The [HttpPost] method that deletes the data is named DeleteConfirmed to give the HTTP POST method a unique

signature or name. The two method signatures are shown below:

The common language runtime (CLR) requires overloaded methods to have a unique parameter signature (same

method name but different list of parameters). However, here you need two Delete methods -- one for GET and

one for POST -- that both have the same parameter signature. (They both need to accept a single integer as a

parameter.)

There are two approaches to this problem, one is to give the methods different names. That's what the scaffolding

mechanism did in the preceding example. However, this introduces a small problem: ASP.NET maps segments of a

URL to action methods by name, and if you rename a method, routing normally wouldn't be able to find that

method. The solution is what you see in the example, which is to add the ActionName("Delete") attribute to the

DeleteConfirmed method. That attribute performs mapping for the routing system so that a URL that includes

/Delete/ for a POST request will find the DeleteConfirmed method.

// POST: Movies/Delete/6
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Delete(int id, bool notUsed)

Publish to AzurePublish to Azure

Another common work around for methods that have identical names and signatures is to artificially change the

signature of the POST method to include an extra (unused) parameter. That's what we did in a previous post when

we added the notUsed parameter. You could do the same thing here for the [HttpPost] Delete method:

For information on deploying to Azure, see Tutorial: Build an ASP.NET Core and SQL Database app in Azure App

Service.

P R E V I O U SP R E V I O U S

https://docs.microsoft.com/en-us/azure/app-service/tutorial-dotnetcore-sqldb-app

Views in ASP.NET Core MVC
9/22/2020 • 13 minutes to read • Edit Online

Benefits of using views

By Steve Smith

This document explains views used in ASP.NET Core MVC applications. For information on Razor Pages, see

Introduction to Razor Pages.

In the Model-View-Controller (MVC) pattern, the view handles the app's data presentation and user interaction.

A view is an HTML template with embedded Razor markup. Razor markup is code that interacts with HTML

markup to produce a webpage that's sent to the client.

In ASP.NET Core MVC, views are .cshtml files that use the C# programming language in Razor markup. Usually,

view files are grouped into folders named for each of the app's controllers. The folders are stored in a Views

folder at the root of the app:

The Home controller is represented by a Home folder inside the Views folder. The Home folder contains the

views for the About, Contact, and Index (homepage) webpages. When a user requests one of these three

webpages, controller actions in the Home controller determine which of the three views is used to build and

return a webpage to the user.

Use layouts to provide consistent webpage sections and reduce code repetition. Layouts often contain the

header, navigation and menu elements, and the footer. The header and footer usually contain boilerplate markup

for many metadata elements and links to script and style assets. Layouts help you avoid this boilerplate markup

in your views.

Partial views reduce code duplication by managing reusable parts of views. For example, a partial view is useful

for an author biography on a blog website that appears in several views. An author biography is ordinary view

content and doesn't require code to execute in order to produce the content for the webpage. Author biography

content is available to the view by model binding alone, so using a partial view for this type of content is ideal.

View components are similar to partial views in that they allow you to reduce repetitive code, but they're

appropriate for view content that requires code to run on the server in order to render the webpage. View

components are useful when the rendered content requires database interaction, such as for a website shopping

cart. View components aren't limited to model binding in order to produce webpage output.

Views help to establish separation of concerns within an MVC app by separating the user interface markup from

other parts of the app. Following SoC design makes your app modular, which provides several benefits:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/overview.md
https://ardalis.com/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#separation-of-concerns

Creating a view

@{
 ViewData["Title"] = "About";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p>Use this area to provide additional information.</p>

How controllers specify views

public IActionResult About()
{
 ViewData["Message"] = "Your application description page.";

 return View();
}

The app is easier to maintain because it's better organized. Views are generally grouped by app feature. This

makes it easier to find related views when working on a feature.

The parts of the app are loosely coupled. You can build and update the app's views separately from the

business logic and data access components. You can modify the views of the app without necessarily having

to update other parts of the app.

It's easier to test the user interface parts of the app because the views are separate units.

Due to better organization, it's less likely that you'll accidentally repeat sections of the user interface.

Views that are specific to a controller are created in the Views/[ControllerName] folder. Views that are shared

among controllers are placed in the Views/Shared folder. To create a view, add a new file and give it the same

name as its associated controller action with the .cshtml file extension. To create a view that corresponds with the

About action in the Home controller, create an About.cshtml file in the Views/Home folder :

Razor markup starts with the @ symbol. Run C# statements by placing C# code within Razor code blocks set off

by curly braces ({ ... }). For example, see the assignment of "About" to ViewData["Title"] shown above. You

can display values within HTML by simply referencing the value with the @ symbol. See the contents of the

<h2> and <h3> elements above.

The view content shown above is only part of the entire webpage that's rendered to the user. The rest of the

page's layout and other common aspects of the view are specified in other view files. To learn more, see the

Layout topic.

Views are typically returned from actions as a ViewResult, which is a type of ActionResult. Your action method

can create and return a ViewResult directly, but that isn't commonly done. Since most controllers inherit from

Controller, you simply use the View helper method to return the ViewResult :

HomeController.cs

When this action returns, the About.cshtml view shown in the last section is rendered as the following webpage:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller

 View discoveryView discovery

return View("Views/Home/About.cshtml");

The View helper method has several overloads. You can optionally specify:

return View("Orders");

return View(Orders);

return View("Orders", Orders);

An explicit view to return:

A model to pass to the view:

Both a view and a model:

When an action returns a view, a process called view discovery takes place. This process determines which view

file is used based on the view name.

The default behavior of the View method (return View();) is to return a view with the same name as the action

method from which it's called. For example, the About ActionResult method name of the controller is used to

search for a view file named About.cshtml. First, the runtime looks in the Views/[ControllerName] folder for the

view. If it doesn't find a matching view there, it searches the Shared folder for the view.

It doesn't matter if you implicitly return the ViewResult with return View(); or explicitly pass the view name to

the View method with return View("<ViewName>"); . In both cases, view discovery searches for a matching view

file in this order :

1. Views/[ControllerName]/[ViewName].cshtml

2. Views/Shared/[ViewName].cshtml

A view file path can be provided instead of a view name. If using an absolute path starting at the app root

(optionally starting with "/" or "~/"), the .cshtml extension must be specified:

You can also use a relative path to specify views in different directories without the .cshtml extension. Inside the

HomeController , you can return the Index view of your Manage views with a relative path:

return View("../Manage/Index");

return View("./About");

Passing data to views

Strongly typed data (viewmodel)Strongly typed data (viewmodel)

@model WebApplication1.ViewModels.Address

<h2>Contact</h2>
<address>
 @Model.Street

 @Model.City, @Model.State @Model.PostalCode

 <abbr title="Phone">P:</abbr> 425.555.0100
</address>

Similarly, you can indicate the current controller-specific directory with the "./" prefix:

Partial views and view components use similar (but not identical) discovery mechanisms.

You can customize the default convention for how views are located within the app by using a custom

IViewLocationExpander.

View discovery relies on finding view files by file name. If the underlying file system is case sensitive, view

names are probably case sensitive. For compatibility across operating systems, match case between controller

and action names and associated view folders and file names. If you encounter an error that a view file can't be

found while working with a case-sensitive file system, confirm that the casing matches between the requested

view file and the actual view file name.

Follow the best practice of organizing the file structure for your views to reflect the relationships among

controllers, actions, and views for maintainability and clarity.

Pass data to views using several approaches:

Strongly typed data: viewmodel

Weakly typed data

ViewData (ViewDataAttribute)

ViewBag

The most robust approach is to specify a model type in the view. This model is commonly referred to as a

viewmodel. You pass an instance of the viewmodel type to the view from the action.

Using a viewmodel to pass data to a view allows the view to take advantage of strong type checking. Strong

typing (or strongly typed) means that every variable and constant has an explicitly defined type (for example,

string , int , or DateTime). The validity of types used in a view is checked at compile time.

Visual Studio and Visual Studio Code list strongly typed class members using a feature called IntelliSense. When

you want to see the properties of a viewmodel, type the variable name for the viewmodel followed by a period (

.). This helps you write code faster with fewer errors.

Specify a model using the @model directive. Use the model with @Model :

To provide the model to the view, the controller passes it as a parameter :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razor.iviewlocationexpander
https://visualstudio.microsoft.com
https://code.visualstudio.com/
https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense

public IActionResult Contact()
{
 ViewData["Message"] = "Your contact page.";

 var viewModel = new Address()
 {
 Name = "Microsoft",
 Street = "One Microsoft Way",
 City = "Redmond",
 State = "WA",
 PostalCode = "98052-6399"
 };

 return View(viewModel);
}

namespace WebApplication1.ViewModels
{
 public class Address
 {
 public string Name { get; set; }
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string PostalCode { get; set; }
 }
}

Weakly typed data (ViewData, ViewData attribute, and ViewBag)Weakly typed data (ViewData, ViewData attribute, and ViewBag)

PA SSIN G DATA B ET W EEN A . . .PA SSIN G DATA B ET W EEN A . . . EXA M P L EEXA M P L E

Controller and a view Populating a dropdown list with data.

View and a layout view Setting the <title><title> element content in the layout view from
a view file.

Partial view and a view A widget that displays data based on the webpage that the
user requested.

There are no restrictions on the model types that you can provide to a view. We recommend using Plain Old CLR

Object (POCO) viewmodels with little or no behavior (methods) defined. Usually, viewmodel classes are either

stored in the Models folder or a separate ViewModels folder at the root of the app. The Address viewmodel used

in the example above is a POCO viewmodel stored in a file named Address.cs:

Nothing prevents you from using the same classes for both your viewmodel types and your business model

types. However, using separate models allows your views to vary independently from the business logic and

data access parts of your app. Separation of models and viewmodels also offers security benefits when models

use model binding and validation for data sent to the app by the user.

ViewBag isn't available in Razor Pages.

In addition to strongly typed views, views have access to a weakly typed (also called loosely typed) collection of

data. Unlike strong types, weak types (or loose types) means that you don't explicitly declare the type of data

you're using. You can use the collection of weakly typed data for passing small amounts of data in and out of

controllers and views.

This collection can be referenced through either the ViewData or ViewBag properties on controllers and views.

The ViewData property is a dictionary of weakly typed objects. The ViewBag property is a wrapper around

public IActionResult SomeAction()
{
 ViewData["Greeting"] = "Hello";
 ViewData["Address"] = new Address()
 {
 Name = "Steve",
 Street = "123 Main St",
 City = "Hudson",
 State = "OH",
 PostalCode = "44236"
 };

 return View();
}

@{
 // Since Address isn't a string, it requires a cast.
 var address = ViewData["Address"] as Address;
}

@ViewData["Greeting"] World!

<address>
 @address.Name

 @address.Street

 @address.City, @address.State @address.PostalCode
</address>

ViewData that provides dynamic properties for the underlying ViewData collection. Note: Key lookups are case-

insensitive for both ViewData and ViewBag .

ViewData and ViewBag are dynamically resolved at runtime. Since they don't offer compile-time type checking,

both are generally more error-prone than using a viewmodel. For that reason, some developers prefer to

minimally or never use ViewData and ViewBag .

 ViewDataViewData

ViewData is a ViewDataDictionary object accessed through string keys. String data can be stored and used

directly without the need for a cast, but you must cast other ViewData object values to specific types when you

extract them. You can use ViewData to pass data from controllers to views and within views, including partial

views and layouts.

The following is an example that sets values for a greeting and an address using ViewData in an action:

Work with the data in a view:

ViewData attr ibuteViewData attr ibute

Another approach that uses the ViewDataDictionary is ViewDataAttribute. Properties on controllers or Razor

Page models marked with the [ViewData] attribute have their values stored and loaded from the dictionary.

In the following example, the Home controller contains a Title property marked with [ViewData] . The About

method sets the title for the About view:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewdataattribute

public class HomeController : Controller
{
 [ViewData]
 public string Title { get; set; }

 public IActionResult About()
 {
 Title = "About Us";
 ViewData["Message"] = "Your application description page.";

 return View();
 }
}

<!DOCTYPE html>
<html lang="en">
<head>
 <title>@ViewData["Title"] - WebApplication</title>
 ...

public IActionResult SomeAction()
{
 ViewBag.Greeting = "Hello";
 ViewBag.Address = new Address()
 {
 Name = "Steve",
 Street = "123 Main St",
 City = "Hudson",
 State = "OH",
 PostalCode = "44236"
 };

 return View();
}

@ViewBag.Greeting World!

<address>
 @ViewBag.Address.Name

 @ViewBag.Address.Street

 @ViewBag.Address.City, @ViewBag.Address.State @ViewBag.Address.PostalCode
</address>

In the layout, the title is read from the ViewData dictionary:

ViewBagViewBag

ViewBag isn't available in Razor Pages.

ViewBag is a DynamicViewData object that provides dynamic access to the objects stored in ViewData . ViewBag

can be more convenient to work with, since it doesn't require casting. The following example shows how to use

ViewBag with the same result as using ViewData above:

Using ViewData and ViewBag simultaneouslyUsing ViewData and ViewBag simultaneously

ViewBag isn't available in Razor Pages.

Since ViewData and ViewBag refer to the same underlying ViewData collection, you can use both ViewData and

ViewBag and mix and match between them when reading and writing values.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.internal.dynamicviewdata

@{
 Layout = "/Views/Shared/_Layout.cshtml";
 ViewBag.Title = "About Contoso";
 ViewData["Description"] = "Let us tell you about Contoso's philosophy and mission.";
}

<!DOCTYPE html>
<html lang="en">
<head>
 <title>@ViewData["Title"]</title>
 <meta name="description" content="@ViewBag.Description">
 ...

<!DOCTYPE html>
<html lang="en">
<head>
 <title>About Contoso</title>
 <meta name="description" content="Let us tell you about Contoso's philosophy and mission.">
 ...

Dynamic viewsDynamic views

Set the title using ViewBag and the description using ViewData at the top of an About.cshtml view:

Read the properties but reverse the use of ViewData and ViewBag . In the _Layout.cshtml file, obtain the title

using ViewData and obtain the description using ViewBag :

Remember that strings don't require a cast for ViewData . You can use @ViewData["Title"] without casting.

Using both ViewData and ViewBag at the same time works, as does mixing and matching reading and writing

the properties. The following markup is rendered:

Summar y of the differences between ViewData and ViewBagSummar y of the differences between ViewData and ViewBag

ViewBag isn't available in the Razor Pages.

ViewData

ViewBag

Derives from ViewDataDictionary, so it has dictionary properties that can be useful, such as

ContainsKey , Add , Remove , and Clear .

Keys in the dictionary are strings, so whitespace is allowed. Example:

ViewData["Some Key With Whitespace"]

Any type other than a string must be cast in the view to use ViewData .

Derives from DynamicViewData, so it allows the creation of dynamic properties using dot notation (

@ViewBag.SomeKey = <value or object>), and no casting is required. The syntax of ViewBag makes it

quicker to add to controllers and views.

Simpler to check for null values. Example: @ViewBag.Person?.Name

When to use ViewData or ViewBagWhen to use ViewData or ViewBag

Both ViewData and ViewBag are equally valid approaches for passing small amounts of data among controllers

and views. The choice of which one to use is based on preference. You can mix and match ViewData and

ViewBag objects, however, the code is easier to read and maintain with one approach used consistently. Both

approaches are dynamically resolved at runtime and thus prone to causing runtime errors. Some development

teams avoid them.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.internal.dynamicviewdata

<address>
 @Model.Street

 @Model.City, @Model.State @Model.PostalCode

 <abbr title="Phone">P:</abbr> 425.555.0100
</address>

More view features

Views that don't declare a model type using @model but that have a model instance passed to them (for

example, return View(Address);) can reference the instance's properties dynamically:

This feature offers flexibility but doesn't offer compilation protection or IntelliSense. If the property doesn't exist,

webpage generation fails at runtime.

Tag Helpers make it easy to add server-side behavior to existing HTML tags. Using Tag Helpers avoids the need

to write custom code or helpers within your views. Tag helpers are applied as attributes to HTML elements and

are ignored by editors that can't process them. This allows you to edit and render view markup in a variety of

tools.

Generating custom HTML markup can be achieved with many built-in HTML Helpers. More complex user

interface logic can be handled by View Components. View components provide the same SoC that controllers

and views offer. They can eliminate the need for actions and views that deal with data used by common user

interface elements.

Like many other aspects of ASP.NET Core, views support dependency injection, allowing services to be injected

into views.

Partial views in ASP.NET Core
9/22/2020 • 8 minutes to read • Edit Online

When to use partial views

Declare partial views

By Steve Smith, Maher JENDOUBI, Rick Anderson, and Scott Sauber

A partial view is a Razor markup file (.cshtml) that renders HTML output within another markup file's rendered

output.

The term partial view is used when developing either an MVC app, where markup files are called views, or a

Razor Pages app, where markup files are called pages. This topic generically refers to MVC views and Razor

Pages pages as markup files.

View or download sample code (how to download)

Partial views are an effective way to:

Break up large markup files into smaller components.

In a large, complex markup file composed of several logical pieces, there's an advantage to working with

each piece isolated into a partial view. The code in the markup file is manageable because the markup

only contains the overall page structure and references to partial views.

Reduce the duplication of common markup content across markup files.

When the same markup elements are used across markup files, a partial view removes the duplication of

markup content into one partial view file. When the markup is changed in the partial view, it updates the

rendered output of the markup files that use the partial view.

Partial views shouldn't be used to maintain common layout elements. Common layout elements should be

specified in _Layout.cshtml files.

Don't use a partial view where complex rendering logic or code execution is required to render the markup.

Instead of a partial view, use a view component.

A partial view is a .cshtml markup file maintained within the Views folder (MVC) or Pages folder (Razor Pages).

In ASP.NET Core MVC, a controller's ViewResult is capable of returning either a view or a partial view. In Razor

Pages, a PageModel can return a partial view represented as a PartialViewResult object. Referencing and

rendering partial views is described in the Reference a partial view section.

Unlike MVC view or page rendering, a partial view doesn't run _ViewStart.cshtml. For more information on

_ViewStart.cshtml, see Layout in ASP.NET Core.

Partial view file names often begin with an underscore (_). This naming convention isn't required, but it helps

to visually differentiate partial views from views and pages.

A partial view is a .cshtml markup file maintained within the Views folder.

A controller's ViewResult is capable of returning either a view or a partial view. Referencing and rendering

partial views is described in the Reference a partial view section.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/partial.md
https://ardalis.com/
https://twitter.com/maherjend
https://twitter.com/RickAndMSFT
https://twitter.com/scottsauber
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/partial/sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.partialviewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult

Reference a partial view
Use a partial view in a Razor Pages PageModelUse a partial view in a Razor Pages PageModel

public IActionResult OnGetPartial() =>
 new PartialViewResult
 {
 ViewName = "_AuthorPartialRP",
 ViewData = ViewData,
 };

public IActionResult OnGetPartial() =>
 Partial("_AuthorPartialRP");

Use a partial view in a markup fileUse a partial view in a markup file

Partial Tag HelperPartial Tag Helper

<partial name="_PartialName" />

<partial name="_PartialName.cshtml" />

Unlike MVC view rendering, a partial view doesn't run _ViewStart.cshtml. For more information on

_ViewStart.cshtml, see Layout in ASP.NET Core.

Partial view file names often begin with an underscore (_). This naming convention isn't required, but it helps

to visually differentiate partial views from views.

In ASP.NET Core 2.0 or 2.1, the following handler method renders the _AuthorPartialRP.cshtml partial view to the

response:

In ASP.NET Core 2.2 or later, a handler method can alternatively call the Partial method to produce a

PartialViewResult object:

Within a markup file, there are several ways to reference a partial view. We recommend that apps use one of

the following asynchronous rendering approaches:

Partial Tag Helper

Asynchronous HTML Helper

Within a markup file, there are two ways to reference a partial view:

Asynchronous HTML Helper

Synchronous HTML Helper

We recommend that apps use the Asynchronous HTML Helper.

The Partial Tag Helper requires ASP.NET Core 2.1 or later.

The Partial Tag Helper renders content asynchronously and uses an HTML-like syntax:

When a file extension is present, the Tag Helper references a partial view that must be in the same folder as the

markup file calling the partial view:

The following example references a partial view from the app root. Paths that start with a tilde-slash (~/) or a

slash (/) refer to the app root:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagebase.partial

<partial name="~/Pages/Folder/_PartialName.cshtml" />
<partial name="/Pages/Folder/_PartialName.cshtml" />

<partial name="~/Views/Folder/_PartialName.cshtml" />
<partial name="/Views/Folder/_PartialName.cshtml" />

<partial name="../Account/_PartialName.cshtml" />

Asynchronous HTML HelperAsynchronous HTML Helper

@await Html.PartialAsync("_PartialName")

@await Html.PartialAsync("_PartialName.cshtml")

@await Html.PartialAsync("~/Pages/Folder/_PartialName.cshtml")
@await Html.PartialAsync("/Pages/Folder/_PartialName.cshtml")

@await Html.PartialAsync("~/Views/Folder/_PartialName.cshtml")
@await Html.PartialAsync("/Views/Folder/_PartialName.cshtml")

@await Html.PartialAsync("../Account/_LoginPartial.cshtml")

Razor PagesRazor Pages

MVCMVC

The following example references a partial view with a relative path:

For more information, see Partial Tag Helper in ASP.NET Core.

When using an HTML Helper, the best practice is to use PartialAsync. PartialAsync returns an IHtmlContent

type wrapped in a Task<TResult>. The method is referenced by prefixing the awaited call with an @ character :

When the file extension is present, the HTML Helper references a partial view that must be in the same folder as

the markup file calling the partial view:

The following example references a partial view from the app root. Paths that start with a tilde-slash (~/) or a

slash (/) refer to the app root:

Razor PagesRazor Pages

MVCMVC

The following example references a partial view with a relative path:

Alternatively, you can render a partial view with RenderPartialAsync. This method doesn't return an

IHtmlContent. It streams the rendered output directly to the response. Because the method doesn't return a

result, it must be called within a Razor code block:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.partialasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.html.ihtmlcontent
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.renderpartialasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.html.ihtmlcontent

@{
 await Html.RenderPartialAsync("_AuthorPartial");
}

Synchronous HTML HelperSynchronous HTML Helper

IMPORTANTIMPORTANT

Partial view discovery

Since RenderPartialAsync streams rendered content, it provides better performance in some scenarios. In

performance-critical situations, benchmark the page using both approaches and use the approach that

generates a faster response.

Partial and RenderPartial are the synchronous equivalents of PartialAsync and RenderPartialAsync ,

respectively. The synchronous equivalents aren't recommended because there are scenarios in which they

deadlock. The synchronous methods are targeted for removal in a future release.

If you need to execute code, use a view component instead of a partial view.

Calling Partial or RenderPartial results in a Visual Studio analyzer warning. For example, the presence of

Partial yields the following warning message:

Use of IHtmlHelper.Partial may result in application deadlocks. Consider using <partial> Tag Helper or

IHtmlHelper.PartialAsync.

Replace calls to @Html.Partial with @await Html.PartialAsync or the Partial Tag Helper. For more information

on Partial Tag Helper migration, see Migrate from an HTML Helper.

When a partial view is referenced by name without a file extension, the following locations are searched in the

stated order :

Razor PagesRazor Pages

1. Currently executing page's folder

2. Directory graph above the page's folder

3. /Shared

4. /Pages/Shared

5. /Views/Shared

MVCMVC

1. /Areas/<Area-Name>/Views/<Controller-Name>

2. /Areas/<Area-Name>/Views/Shared

3. /Views/Shared

4. /Pages/Shared

1. /Areas/<Area-Name>/Views/<Controller-Name>

2. /Areas/<Area-Name>/Views/Shared

3. /Views/Shared

The following conventions apply to partial view discovery:

Different partial views with the same file name are allowed when the partial views are in different folders.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.partial
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.renderpartial

NOTENOTE

Access data from partial views

@await Html.PartialAsync("_PartialName", customViewData)

@await Html.PartialAsync("_PartialName", model)

When referencing a partial view by name without a file extension and the partial view is present in both the

caller's folder and the Shared folder, the partial view in the caller's folder supplies the partial view. If the

partial view isn't present in the caller's folder, the partial view is provided from the Shared folder. Partial

views in the Shared folder are called shared partial views or default partial views.

Partial views can be chained—a partial view can call another partial view if a circular reference isn't formed

by the calls. Relative paths are always relative to the current file, not to the root or parent of the file.

A Razor section defined in a partial view is invisible to parent markup files. The section is only visible to the partial

view in which it's defined.

When a partial view is instantiated, it receives a copy of the parent's ViewData dictionary. Updates made to the

data within the partial view aren't persisted to the parent view. ViewData changes in a partial view are lost

when the partial view returns.

The following example demonstrates how to pass an instance of ViewDataDictionary to a partial view:

You can pass a model into a partial view. The model can be a custom object. You can pass a model with

PartialAsync (renders a block of content to the caller) or RenderPartialAsync (streams the content to the

output):

Razor PagesRazor Pages

The following markup in the sample app is from the Pages/ArticlesRP/ReadRP.cshtml page. The page contains

two partial views. The second partial view passes in a model and ViewData to the partial view. The

ViewDataDictionary constructor overload is used to pass a new ViewData dictionary while retaining the existing

ViewData dictionary.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary

@model ReadRPModel

<h2>@Model.Article.Title</h2>
@* Pass the author's name to Pages\Shared_AuthorPartialRP.cshtml *@
@await Html.PartialAsync("../Shared/_AuthorPartialRP", Model.Article.AuthorName)
@Model.Article.PublicationDate

@* Loop over the Sections and pass in a section and additional ViewData to
 the strongly typed Pages\ArticlesRP_ArticleSectionRP.cshtml partial view. *@
@{
 var index = 0;

 foreach (var section in Model.Article.Sections)
 {
 await Html.PartialAsync("_ArticleSectionRP",
 section,
 new ViewDataDictionary(ViewData)
 {
 { "index", index }
 });

 index++;
 }
}

@model string
<div>
 <h3>@Model</h3>
 This partial view from /Pages/Shared/_AuthorPartialRP.cshtml.
</div>

@using PartialViewsSample.ViewModels
@model ArticleSection

<h3>@Model.Title Index: @ViewData["index"]</h3>
<div>
 @Model.Content
</div>

Pages/Shared/_AuthorPartialRP.cshtml is the first partial view referenced by the ReadRP.cshtml markup file:

Pages/ArticlesRP/_ArticleSectionRP.cshtml is the second partial view referenced by the ReadRP.cshtml markup

file:

MVCMVC

The following markup in the sample app shows the Views/Articles/Read.cshtml view. The view contains two

partial views. The second partial view passes in a model and ViewData to the partial view. The

ViewDataDictionary constructor overload is used to pass a new ViewData dictionary while retaining the existing

ViewData dictionary.

@model PartialViewsSample.ViewModels.Article

<h2>@Model.Title</h2>
@* Pass the author's name to Views\Shared_AuthorPartial.cshtml *@
@await Html.PartialAsync("_AuthorPartial", Model.AuthorName)
@Model.PublicationDate

@* Loop over the Sections and pass in a section and additional ViewData to
 the strongly typed Views\Articles_ArticleSection.cshtml partial view. *@
@{
 var index = 0;

 foreach (var section in Model.Sections)
 {
 await Html.PartialAsync("_ArticleSection",
 section,
 new ViewDataDictionary(ViewData)
 {
 { "index", index }
 });

 index++;
 }
}

@model string
<div>
 <h3>@Model</h3>
 This partial view from /Views/Shared/_AuthorPartial.cshtml.
</div>

@using PartialViewsSample.ViewModels
@model ArticleSection

<h3>@Model.Title Index: @ViewData["index"]</h3>
<div>
 @Model.Content
</div>

Views/Shared/_AuthorPartial.cshtml is the first partial view referenced by the Read.cshtml markup file:

Views/Articles/_ArticleSection.cshtml is the second partial view referenced by the Read.cshtml markup file:

At runtime, the partials are rendered into the parent markup file's rendered output, which itself is rendered

within the shared _Layout.cshtml. The first partial view renders the article author's name and publication date:

Abraham Lincoln

This partial view from <shared partial view file path>. 11/19/1863 12:00:00 AM

The second partial view renders the article's sections:

Section One Index: 0

Four score and seven years ago ...

Section Two Index: 1

Now we are engaged in a great civil war, testing ...

Section Three Index: 2

Additional resources

But, in a larger sense, we can not dedicate ...

razor syntax reference for ASP.NET Core

Tag Helpers in ASP.NET Core

Partial Tag Helper in ASP.NET Core

View components in ASP.NET Core

Areas in ASP.NET Core

razor syntax reference for ASP.NET Core

View components in ASP.NET Core

Areas in ASP.NET Core

Handle requests with controllers in ASP.NET Core
MVC
9/22/2020 • 4 minutes to read • Edit Online

What is a Controller?

Defining Actions

By Steve Smith and Scott Addie

Controllers, actions, and action results are a fundamental part of how developers build apps using ASP.NET Core

MVC.

A controller is used to define and group a set of actions. An action (or action method) is a method on a controller

which handles requests. Controllers logically group similar actions together. This aggregation of actions allows

common sets of rules, such as routing, caching, and authorization, to be applied collectively. Requests are mapped

to actions through routing.

By convention, controller classes:

Reside in the project's root-level Controllers folder.

Inherit from Microsoft.AspNetCore.Mvc.Controller .

A controller is an instantiable class in which at least one of the following conditions is true:

The class name is suffixed with Controller .

The class inherits from a class whose name is suffixed with Controller .

The [Controller] attribute is applied to the class.

A controller class must not have an associated [NonController] attribute.

Controllers should follow the Explicit Dependencies Principle. There are a couple of approaches to implementing

this principle. If multiple controller actions require the same service, consider using constructor injection to

request those dependencies. If the service is needed by only a single action method, consider using Action

Injection to request the dependency.

Within the MModel-VView-CController pattern, a controller is responsible for the initial processing of the request and

instantiation of the model. Generally, business decisions should be performed within the model.

The controller takes the result of the model's processing (if any) and returns either the proper view and its

associated view data or the result of the API call. Learn more at Overview of ASP.NET Core MVC and Get started

with ASP.NET Core MVC and Visual Studio.

The controller is a UI-level abstraction. Its responsibilities are to ensure request data is valid and to choose which

view (or result for an API) should be returned. In well-factored apps, it doesn't directly include data access or

business logic. Instead, the controller delegates to services handling these responsibilities.

Public methods on a controller, except those with the [NonAction] attribute, are actions. Parameters on actions

are bound to request data and are validated using model binding. Model validation occurs for everything that's

model-bound. The ModelState.IsValid property value indicates whether model binding and validation

succeeded.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/actions.md
https://ardalis.com/
https://github.com/scottaddie
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies

Controller Helper MethodsController Helper Methods

1. Methods resulting in an empty response body1. Methods resulting in an empty response body

2. Methods resulting in a non-empty response body with a predefined content type2. Methods resulting in a non-empty response body with a predefined content type

3. Methods resulting in a non-empty response body formatted in a content type negotiated with the client3. Methods resulting in a non-empty response body formatted in a content type negotiated with the client

Action methods should contain logic for mapping a request to a business concern. Business concerns should

typically be represented as services that the controller accesses through dependency injection. Actions then map

the result of the business action to an application state.

Actions can return anything, but frequently return an instance of IActionResult (or Task<IActionResult> for

async methods) that produces a response. The action method is responsible for choosing what kind of response.

The action result does the responding.

Controllers usually inherit from Controller, although this isn't required. Deriving from Controller provides

access to three categories of helper methods:

No Content-Type HTTP response header is included, since the response body lacks content to describe.

There are two result types within this category: Redirect and HTTP Status Code.

HTTP Status CodeHTTP Status Code

This type returns an HTTP status code. A couple of helper methods of this type are BadRequest , NotFound ,

and Ok . For example, return BadRequest(); produces a 400 status code when executed. When methods

such as BadRequest , NotFound , and Ok are overloaded, they no longer qualify as HTTP Status Code

responders, since content negotiation is taking place.

RedirectRedirect

This type returns a redirect to an action or destination (using Redirect , LocalRedirect , RedirectToAction ,

or RedirectToRoute). For example, return RedirectToAction("Complete", new {id = 123}); redirects to

Complete , passing an anonymous object.

The Redirect result type differs from the HTTP Status Code type primarily in the addition of a Location

HTTP response header.

Most helper methods in this category include a ContentType property, allowing you to set the Content-Type

response header to describe the response body.

There are two result types within this category: View and Formatted Response.

ViewView

This type returns a view which uses a model to render HTML. For example, return View(customer); passes

a model to the view for data-binding.

Formatted ResponseFormatted Response

This type returns JSON or a similar data exchange format to represent an object in a specific manner. For

example, return Json(customer); serializes the provided object into JSON format.

Other common methods of this type include File and PhysicalFile . For example,

return PhysicalFile(customerFilePath, "text/xml"); returns PhysicalFileResult.

This category is better known as Content NegotiationContent Negotiation. Content negotiation applies whenever an action returns

an ObjectResult type or something other than an IActionResult implementation. An action that returns a non-

IActionResult implementation (for example, object) also returns a Formatted Response.

Some helper methods of this type include BadRequest , CreatedAtRoute , and Ok . Examples of these methods

include return BadRequest(modelState); , return CreatedAtRoute("routename", values, newobject); , and

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.physicalfileresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.objectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult

Cross-Cutting ConcernsCross-Cutting Concerns

return Ok(value); , respectively. Note that BadRequest and Ok perform content negotiation only when passed a

value; without being passed a value, they instead serve as HTTP Status Code result types. The CreatedAtRoute

method, on the other hand, always performs content negotiation since its overloads all require that a value be

passed.

Applications typically share parts of their workflow. Examples include an app that requires authentication to

access the shopping cart, or an app that caches data on some pages. To perform logic before or after an action

method, use a filter. Using Filters on cross-cutting concerns can reduce duplication.

Most filter attributes, such as [Authorize] , can be applied at the controller or action level depending upon the

desired level of granularity.

Error handling and response caching are often cross-cutting concerns:

Handle errors

Response Caching

Many cross-cutting concerns can be handled using filters or custom middleware.

Routing to controller actions in ASP.NET Core
9/22/2020 • 68 minutes to read • Edit Online

Set up conventional route

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

By Ryan Nowak, Kirk Larkin, and Rick Anderson

ASP.NET Core controllers use the Routing middleware to match the URLs of incoming requests and map them

to actions. Routes templates:

Are defined in startup code or attributes.

Describe how URL paths are matched to actions.

Are used to generate URLs for links. The generated links are typically returned in responses.

Actions are either conventionally-routed or attribute-routed. Placing a route on the controller or action makes

it attribute-routed. See Mixed routing for more information.

This document:

Explains the interactions between MVC and routing:

Refers to the default routing system added in ASP.NET Core 3.0, called endpoint routing. It's possible to

use controllers with the previous version of routing for compatibility purposes. See the 2.2-3.0 migration

guide for instructions. Refer to the 2.2 version of this document for reference material on the legacy

routing system.

How typical MVC apps make use of routing features.

Covers both:

See Routing for advanced routing details.

Conventionally routing typically used with controllers and views.

Attribute routing used with REST APIs. If you're primarily interested in routing for REST APIs,

jump to the Attribute routing for REST APIs section.

Startup.Configure typically has code similar to the following when using conventional routing:

Inside the call to UseEndpoints, MapControllerRoute is used to create a single route. The single route is

named default route. Most apps with controllers and views use a route template similar to the default

route. REST APIs should use attribute routing.

The route template "{controller=Home}/{action=Index}/{id?}" :

Matches a URL path like /Products/Details/5

Extracts the route values { controller = Products, action = Details, id = 5 } by tokenizing the path.

The extraction of route values results in a match if the app has a controller named ProductsController

and a Details action:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/routing.md
https://github.com/rynowak
https://twitter.com/serpent5
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollerroute

public class HomeController : Controller
{
 public IActionResult Index() { ... }
}

endpoints.MapDefaultControllerRoute();

endpoints.MapControllerRoute("default", "{controller=Home}/{action=Index}/{id?}");

public class ProductsController : Controller
{
 public IActionResult Details(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

MyDisplayRouteInfo is provided by the Rick.Docs.Samples.RouteInfo NuGet package and displays

route information.

/Products/Details/5 model binds the value of id = 5 to set the id parameter to 5 . See Model

Binding for more details.

{controller=Home} defines Home as the default controller .

{action=Index} defines Index as the default action .

The ? character in {id?} defines id as optional.

Default and optional route parameters don't need to be present in the URL path for a match. See Route

Template Reference for a detailed description of route template syntax.

Matches the URL path / .

Produces the route values { controller = Home, action = Index } .

The values for controller and action make use of the default values. id doesn't produce a value since

there's no corresponding segment in the URL path. / only matches if there exists a HomeController and

Index action:

Using the preceding controller definition and route template, the HomeController.Index action is run for the

following URL paths:

/Home/Index/17

/Home/Index

/Home

/

The URL path / uses the route template default Home controllers and Index action. The URL path /Home

uses the route template default Index action.

The convenience method MapDefaultControllerRoute:

Replaces:

https://github.com/Rick-Anderson/RouteInfo/blob/master/Microsoft.Docs.Samples.RouteInfo/ControllerContextExtensions.cs
https://www.nuget.org/packages/Rick.Docs.Samples.RouteInfo
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapdefaultcontrollerroute

IMPORTANTIMPORTANT

Conventional routing

endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");

WARNINGWARNING

Routing is configured using the UseRouting and UseEndpoints middleware. To use controllers:

Call MapControllers inside UseEndpoints to map attribute routed controllers.

Call MapControllerRoute or MapAreaControllerRoute, to map both conventionally routed controllers and attribute

routed controllers.

Conventional routing is used with controllers and views. The default route:

is an example of a conventional routing. It's called conventional routing because it establishes a convention

for URL paths:

The first path segment, {controller=Home} , maps to the controller name.

The second segment, {action=Index} , maps to the action name.

The third segment, {id?} is used for an optional id . The ? in {id?} makes it optional. id is used to

map to a model entity.

Using this default route, the URL path:

/Products/List maps to the ProductsController.List action.

/Blog/Article/17 maps to BlogController.Article and typically model binds the id parameter to 17.

This mapping:

Is based on the controller and action names onlyonly .

Isn't based on namespaces, source file locations, or method parameters.

Using conventional routing with the default route allows creating the app without having to come up with a

new URL pattern for each action. For an app with CRUD style actions, having consistency for the URLs across

controllers:

Helps simplify the code.

Makes the UI more predictable.

The id in the preceding code is defined as optional by the route template. Actions can execute without the optional

ID provided as part of the URL. Generally, when id is omitted from the URL:

id is set to 0 by model binding.

No entity is found in the database matching id == 0 .

Attribute routing provides fine-grained control to make the ID required for some actions and not for others. By

convention, the documentation includes optional parameters like id when they're likely to appear in correct usage.

Most apps should choose a basic and descriptive routing scheme so that URLs are readable and meaningful.

The default conventional route {controller=Home}/{action=Index}/{id?} :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.userouting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollerroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapareacontrollerroute
https://wikipedia.org/wiki/Create,_read,_update_and_delete

Multiple conventional routesMultiple conventional routes

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(name: "blog",
 pattern: "blog/{*article}",
 defaults: new { controller = "Blog", action = "Article" });
 endpoints.MapControllerRoute(name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

Supports a basic and descriptive routing scheme.

Is a useful starting point for UI-based apps.

Is the only route template needed for many web UI apps. For larger web UI apps, another route using

Areas is frequently all that's needed.

MapControllerRoute and MapAreaRoute :

Automatically assign an orderorder value to their endpoints based on the order they are invoked.

Endpoint routing in ASP.NET Core 3.0 and later :

Doesn't have a concept of routes.

Doesn't provide ordering guarantees for the execution of extensibility, all endpoints are processed at once.

Enable Logging to see how the built-in routing implementations, such as Route, match requests.

Attribute routing is explained later in this document.

Multiple conventional routes can be added inside UseEndpoints by adding more calls to MapControllerRoute

and MapAreaControllerRoute. Doing so allows defining multiple conventions, or to adding conventional

routes that are dedicated to a specific action, such as:

 The blog route in the preceding code is a dedicated conventional routededicated conventional route. It's called a dedicated

conventional route because:

It uses conventional routing.

It's dedicated to a specific action.

Because controller and action don't appear in the route template "blog/{*article}" as parameters:

They can only have the default values { controller = "Blog", action = "Article" } .

This route always maps to the action BlogController.Article .

/Blog , /Blog/Article , and /Blog/{any-string} are the only URL paths that match the blog route.

The preceding example:

blog route has a higher priority for matches than the default route because it is added first.

Is an example of Slug style routing where it's typical to have an article name as part of the URL.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollerroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mvcarearoutebuilderextensions.maparearoute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.route
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollerroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapareacontrollerroute
https://developer.mozilla.org/docs/Glossary/Slug

WARNINGWARNING

Conventional routing orderConventional routing order

WARNINGWARNING

public static void Main(string[] args)
{
 AppContext.SetSwitch("Microsoft.AspNetCore.Routing.UseCorrectCatchAllBehavior",
 true);
 CreateHostBuilder(args).Build().Run();
}
// Remaining code removed for brevity.

Resolving ambiguous actionsResolving ambiguous actions

In ASP.NET Core 3.0 and later, routing doesn't:

Define a concept called a route. UseRouting adds route matching to the middleware pipeline. The UseRouting

middleware looks at the set of endpoints defined in the app, and selects the best endpoint match based on the

request.

Provide guarantees about the execution order of extensibility like IRouteConstraint or IActionConstraint.

See Routing for reference material on routing.

Conventional routing only matches a combination of action and controller that are defined by the app. This is

intended to simplify cases where conventional routes overlap. Adding routes using MapControllerRoute,

MapDefaultControllerRoute, and MapAreaControllerRoute automatically assign an order value to their

endpoints based on the order they are invoked. Matches from a route that appears earlier have a higher

priority. Conventional routing is order-dependent. In general, routes with areas should be placed earlier as

they're more specific than routes without an area. Dedicated conventional routes with catch-all route

parameters like {*article} can make a route too greedy, meaning that it matches URLs that you intended to

be matched by other routes. Put the greedy routes later in the route table to prevent greedy matches.

A catch-allcatch-all parameter may match routes incorrectly due to a bug in routing. Apps impacted by this bug have the

following characteristics:

A catch-all route, for example, {**slug}"

The catch-all route fails to match requests it should match.

Removing other routes makes catch-all route start working.

See GitHub bugs 18677 and 16579 for example cases that hit this bug.

An opt-in fix for this bug is contained in .NET Core 3.1.301 SDK and later. The following code sets an internal switch

that fixes this bug:

When two endpoints match through routing, routing must do one of the following:

Choose the best candidate.

Throw an exception.

For example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.irouteconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionconstraints.iactionconstraint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollerroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapdefaultcontrollerroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapareacontrollerroute
https://github.com/dotnet/aspnetcore/issues/18677
https://github.com/dotnet/aspnetcore/issues/18677
https://github.com/dotnet/aspnetcore/issues/16579
https://dotnet.microsoft.com/download/dotnet-core/3.1

 public class Products33Controller : Controller
 {
 public IActionResult Edit(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }

 [HttpPost]
 public IActionResult Edit(int id, Product product)
 {
 return ControllerContext.MyDisplayRouteInfo(id, product.name);
 }
 }
}

Conventional route namesConventional route names

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(name: "blog",
 pattern: "blog/{*article}",
 defaults: new { controller = "Blog", action = "Article" });
 endpoints.MapControllerRoute(name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

The preceding controller defines two actions that match:

The URL path /Products33/Edit/17

Route data { controller = Products33, action = Edit, id = 17 } .

This is a typical pattern for MVC controllers:

Edit(int) displays a form to edit a product.

Edit(int, Product) processes the posted form.

To resolve the correct route:

Edit(int, Product) is selected when the request is an HTTP POST .

Edit(int) is selected when the HTTP verb is anything else. Edit(int) is generally called via GET .

The HttpPostAttribute, [HttpPost] , is provided to routing so that it can choose based on the HTTP method of

the request. The HttpPostAttribute makes Edit(int, Product) a better match than Edit(int) .

It's important to understand the role of attributes like HttpPostAttribute . Similar attributes are defined for

other HTTP verbs. In conventional routing, it's common for actions to use the same action name when they're

part of a show form, submit form workflow. For example, see Examine the two Edit action methods.

If routing can't choose a best candidate, an AmbiguousMatchException is thrown, listing the multiple matched

endpoints.

The strings "blog" and "default" in the following examples are conventional route names:

The route names give the route a logical name. The named route can be used for URL generation. Using a

named route simplifies URL creation when the ordering of routes could make URL generation complicated.

Route names must be unique application wide.

Route names:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.ambiguousmatchexception

Attribute routing for REST APIs

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllers();
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseHttpsRedirection();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
}

Have no impact on URL matching or handling of requests.

Are used only for URL generation.

The route name concept is represented in routing as IEndpointNameMetadata. The terms route nameroute name and

endpoint nameendpoint name:

Are interchangeable.

Which one is used in documentation and code depends on the API being described.

REST APIs should use attribute routing to model the app's functionality as a set of resources where

operations are represented by HTTP verbs.

Attribute routing uses a set of attributes to map actions directly to route templates. The following

StartUp.Configure code is typical for a REST API and is used in the next sample:

In the preceding code, MapControllers is called inside UseEndpoints to map attribute routed controllers.

In the following example:

The preceding Configure method is used.

HomeController matches a set of URLs similar to what the default conventional route

{controller=Home}/{action=Index}/{id?} matches.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.iendpointnamemetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollers

public class HomeController : Controller
{
 [Route("")]
 [Route("Home")]
 [Route("Home/Index")]
 [Route("Home/Index/{id?}")]
 public IActionResult Index(int? id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }

 [Route("Home/About")]
 [Route("Home/About/{id?}")]
 public IActionResult About(int? id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

public class MyDemoController : Controller
{
 [Route("")]
 [Route("Home")]
 [Route("Home/Index")]
 [Route("Home/Index/{id?}")]
 public IActionResult MyIndex(int? id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }

 [Route("Home/About")]
 [Route("Home/About/{id?}")]
 public IActionResult MyAbout(int? id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

The HomeController.Index action is run for any of the URL paths / , /Home , /Home/Index , or /Home/Index/3 .

This example highlights a key programming difference between attribute routing and conventional routing.

Attribute routing requires more input to specify a route. The conventional default route handles routes more

succinctly. However, attribute routing allows and requires precise control of which route templates apply to

each action.

With attribute routing, the controller and action names play no part in which action is matched, unless token

replacement is used. The following example matches the same URLs as the previous example:

The following code uses token replacement for action and controller :

public class HomeController : Controller
{
 [Route("")]
 [Route("Home")]
 [Route("[controller]/[action]")]
 public IActionResult Index()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

 [Route("[controller]/[action]")]
 public IActionResult About()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }
}

[Route("[controller]/[action]")]
public class HomeController : Controller
{
 [Route("~/")]
 [Route("/Home")]
 [Route("~/Home/Index")]
 public IActionResult Index()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

 public IActionResult About()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }
}

Reserved routing names

The following code applies [Route("[controller]/[action]")] to the controller :

In the preceding code, the Index method templates must prepend / or ~/ to the route templates. Route

templates applied to an action that begin with / or ~/ don't get combined with route templates applied to

the controller.

See Route template precedence for information on route template selection.

The following keywords are reserved route parameter names when using Controllers or Razor Pages:

action

area

controller

handler

page

Using page as a route parameter with attribute routing is a common error. Doing that results in inconsistent

and confusing behavior with URL generation.

public class MyDemo2Controller : Controller
{
 [Route("/articles/{page}")]
 public IActionResult ListArticles(int page)
 {
 return ControllerContext.MyDisplayRouteInfo(page);
 }
}

HTTP verb templates

Route templatesRoute templates

Attribute routing with Http verb attributesAttribute routing with Http verb attributes

The special parameter names are used by the URL generation to determine if a URL generation operation

refers to a Razor Page or to a Controller.

ASP.NET Core has the following HTTP verb templates:

[HttpGet]

[HttpPost]

[HttpPut]

[HttpDelete]

[HttpHead]

[HttpPatch]

ASP.NET Core has the following route templates:

All the HTTP verb templates are route templates.

[Route]

Consider the following controller :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpgetattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpputattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpdeleteattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpheadattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppatchattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routeattribute

[Route("api/[controller]")]
[ApiController]
public class Test2Controller : ControllerBase
{
 [HttpGet] // GET /api/test2
 public IActionResult ListProducts()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

 [HttpGet("{id}")] // GET /api/test2/xyz
 public IActionResult GetProduct(string id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }

 [HttpGet("int/{id:int}")] // GET /api/test2/int/3
 public IActionResult GetIntProduct(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }

 [HttpGet("int2/{id}")] // GET /api/test2/int2/3
 public IActionResult GetInt2Product(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

In the preceding code:

Each action contains the [HttpGet] attribute, which constrains matching to HTTP GET requests only.

The GetProduct action includes the "{id}" template, therefore id is appended to the

"api/[controller]" template on the controller. The methods template is "api/[controller]/"{id}"" .

Therefore this action only matches GET requests of for the form /api/test2/xyz , /api/test2/123 ,

/api/test2/{any string} , etc.

[HttpGet("{id}")] // GET /api/test2/xyz
public IActionResult GetProduct(string id)
{
 return ControllerContext.MyDisplayRouteInfo(id);
}

The GetIntProduct action contains the "int/{id:int}") template. The :int portion of the template

constrains the id route values to strings that can be converted to an integer. A GET request to

/api/test2/int/abc :

The GetInt2Product action contains {id} in the template, but doesn't constrain id to values that can be

converted to an integer. A GET request to /api/test2/int2/abc :

Doesn't match this action.

Returns a 404 Not Found error.

[HttpGet("int/{id:int}")] // GET /api/test2/int/3
public IActionResult GetIntProduct(int id)
{
 return ControllerContext.MyDisplayRouteInfo(id);
}

Matches this route.

https://developer.mozilla.org/docs/Web/HTTP/Status/404

[ApiController]
public class MyProductsController : ControllerBase
{
 [HttpGet("/products3")]
 public IActionResult ListProducts()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

 [HttpPost("/products3")]
 public IActionResult CreateProduct(MyProduct myProduct)
 {
 return ControllerContext.MyDisplayRouteInfo(myProduct.Name);
 }
}

[ApiController]
public class Products2ApiController : ControllerBase
{
 [HttpGet("/products2/{id}", Name = "Products_List")]
 public IActionResult GetProduct(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

Model binding fails to convert abc to an integer. The id parameter of the method is integer.

Returns a 400 Bad Request because model binding failed to convert abc to an integer.

[HttpGet("int2/{id}")] // GET /api/test2/int2/3
public IActionResult GetInt2Product(int id)
{
 return ControllerContext.MyDisplayRouteInfo(id);
}

Attribute routing can use HttpMethodAttribute attributes such as HttpPostAttribute, HttpPutAttribute, and

HttpDeleteAttribute. All of the HTTP verb attributes accept a route template. The following example shows

two actions that match the same route template:

Using the URL path /products3 :

The MyProductsController.ListProducts action runs when the HTTP verb is GET .

The MyProductsController.CreateProduct action runs when the HTTP verb is POST .

When building a REST API, it's rare that you'll need to use [Route(...)] on an action method because the

action accepts all HTTP methods. It's better to use the more specific HTTP verb attribute to be precise about

what your API supports. Clients of REST APIs are expected to know what paths and HTTP verbs map to

specific logical operations.

REST APIs should use attribute routing to model the app's functionality as a set of resources where

operations are represented by HTTP verbs. This means that many operations, for example, GET and POST on

the same logical resource use the same URL. Attribute routing provides a level of control that's needed to

carefully design an API's public endpoint layout.

Since an attribute route applies to a specific action, it's easy to make parameters required as part of the route

template definition. In the following example, id is required as part of the URL path:

The Products2ApiController.GetProduct(int) action:

https://developer.mozilla.org/docs/Web/HTTP/Status/400
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routing.httpmethodattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpputattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpdeleteattribute

Route name

[ApiController]
public class Products2ApiController : ControllerBase
{
 [HttpGet("/products2/{id}", Name = "Products_List")]
 public IActionResult GetProduct(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

Combining attribute routes

[ApiController]
[Route("products")]
public class ProductsApiController : ControllerBase
{
 [HttpGet]
 public IActionResult ListProducts()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

 [HttpGet("{id}")]
 public IActionResult GetProduct(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

Is run with URL path like /products2/3

Isn't run with the URL path /products2 .

The [Consumes] attribute allows an action to limit the supported request content types. For more

information, see Define supported request content types with the Consumes attribute.

See Routing for a full description of route templates and related options.

For more information on [ApiController] , see ApiController attribute.

The following code defines a route name of Products_List :

Route names can be used to generate a URL based on a specific route. Route names:

Have no impact on the URL matching behavior of routing.

Are only used for URL generation.

Route names must be unique application-wide.

Contrast the preceding code with the conventional default route, which defines the id parameter as optional

({id?}). The ability to precisely specify APIs has advantages, such as allowing /products and /products/5

to be dispatched to different actions.

To make attribute routing less repetitive, route attributes on the controller are combined with route attributes

on the individual actions. Any route templates defined on the controller are prepended to route templates on

the actions. Placing a route attribute on the controller makes allall actions in the controller use attribute routing.

In the preceding example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.consumesattribute

[Route("Home")]
public class HomeController : Controller
{
 [Route("")]
 [Route("Index")]
 [Route("/")]
 public IActionResult Index()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

 [Route("About")]
 public IActionResult About()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }
}

AT T RIB UT EAT T RIB UT E C O M B IN ES W IT H C O M B IN ES W IT H [ROUTE("HOME")] DEF IN ES RO UT E T EM P L AT EDEF IN ES RO UT E T EM P L AT E

[Route("")] Yes "Home"

[Route("Index")] Yes "Home/Index"

[Route("/")] NoNo ""

[Route("About")] Yes "Home/About"

Attribute route orderAttribute route order

The URL path /products can match ProductsApi.ListProducts

The URL path /products/5 can match ProductsApi.GetProduct(int) .

Both of these actions only match HTTP GET because they're marked with the [HttpGet] attribute.

Route templates applied to an action that begin with / or ~/ don't get combined with route templates

applied to the controller. The following example matches a set of URL paths similar to the default route.

The following table explains the [Route] attributes in the preceding code:

Routing builds a tree and matches all endpoints simultaneously:

The route entries behave as if placed in an ideal ordering.

The most specific routes have a chance to execute before the more general routes.

For example, an attribute route like blog/search/{topic} is more specific than an attribute route like

blog/{*article} . The blog/search/{topic} route has higher priority, by default, because it's more specific.

Using conventional routing, the developer is responsible for placing routes in the desired order.

Attribute routes can configure an order using the Order property. All of the framework provided route

attributes include Order . Routes are processed according to an ascending sort of the Order property. The

default order is 0 . Setting a route using Order = -1 runs before routes that don't set an order. Setting a

route using Order = 1 runs after default route ordering.

AvoidAvoid depending on Order . If an app's URL-space requires explicit order values to route correctly, then it's

likely confusing to clients as well. In general, attribute routing selects the correct route with URL matching. If

the default order used for URL generation isn't working, using a route name as an override is usually simpler

than applying the Order property.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routeattribute.order#microsoft_aspnetcore_mvc_routeattribute_order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routeattribute

public class HomeController : Controller
{
 [Route("")]
 [Route("Home")]
 [Route("Home/Index")]
 [Route("Home/Index/{id?}")]
 public IActionResult Index(int? id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }

 [Route("Home/About")]
 [Route("Home/About/{id?}")]
 public IActionResult About(int? id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

public class MyDemoController : Controller
{
 [Route("")]
 [Route("Home")]
 [Route("Home/Index")]
 [Route("Home/Index/{id?}")]
 public IActionResult MyIndex(int? id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }

 [Route("Home/About")]
 [Route("Home/About/{id?}")]
 public IActionResult MyAbout(int? id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

AmbiguousMatchException: The request matched multiple endpoints. Matches:

 WebMvcRouting.Controllers.HomeController.Index
 WebMvcRouting.Controllers.MyDemoController.MyIndex

[Route("")]
[Route("Home", Order = 2)]
[Route("Home/MyIndex")]
public IActionResult MyIndex()
{
 return ControllerContext.MyDisplayRouteInfo();
}

Consider the following two controllers which both define the route matching /home :

Requesting /home with the preceding code throws an exception similar to the following:

Adding Order to one of the route attributes resolves the ambiguity:

With the preceding code, /home runs the HomeController.Index endpoint. To get to the

MyDemoController.MyIndex , request /home/MyIndex . NoteNote:

Token replacement in route templates [controller], [action], [area]

[Route("[controller]/[action]")]
public class Products0Controller : Controller
{
 [HttpGet]
 public IActionResult List()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

 [HttpGet("{id}")]
 public IActionResult Edit(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

[HttpGet]
public IActionResult List()
{
 return ControllerContext.MyDisplayRouteInfo();
}

[HttpGet("{id}")]
public IActionResult Edit(int id)
{
 return ControllerContext.MyDisplayRouteInfo(id);
}

The preceding code is an example or poor routing design. It was used to illustrate the Order property.

The Order property only resolves the ambiguity, that template cannot be matched. It would be better to

remove the [Route("Home")] template.

See Razor Pages route and app conventions: Route order for information on route order with Razor Pages.

In some cases, an HTTP 500 error is returned with ambiguous routes. Use logging to see which endpoints

caused the AmbiguousMatchException .

For convenience, attribute routes support token replacement for reserved route parameters by enclosing a

token in one of the following:

Square brackets: []

Curly braces: {}

The tokens [action] , [area] , and [controller] are replaced with the values of the action name, area name,

and controller name from the action where the route is defined:

In the preceding code:

Matches /Products0/List

Matches /Products0/Edit/{id}

Token replacement occurs as the last step of building the attribute routes. The preceding example behaves the

same as the following code:

public class Products20Controller : Controller
{
 [HttpGet("[controller]/[action]")] // Matches '/Products20/List'
 public IActionResult List()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

 [HttpGet("[controller]/[action]/{id}")] // Matches '/Products20/Edit/{id}'
 public IActionResult Edit(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

[ApiController]
[Route("api/[controller]/[action]", Name = "[controller]_[action]")]
public abstract class MyBase2Controller : ControllerBase
{
}

public class Products11Controller : MyBase2Controller
{
 [HttpGet] // /api/products11/
 public IActionResult List()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

 [HttpGet("{id}")] // /api/products11/edit/3
 public IActionResult Edit(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

Use a parameter transformer to customize token replacementUse a parameter transformer to customize token replacement

If you are reading this in a language other than English, let us know in this GitHub discussion issue if you'd

like to see the code comments in your native language.

Attribute routes can also be combined with inheritance. This is powerful combined with token replacement.

Token replacement also applies to route names defined by attribute routes.

[Route("[controller]/[action]", Name="[controller]_[action]")] generates a unique route name for each

action:

Token replacement also applies to route names defined by attribute routes.

[Route("[controller]/[action]", Name="[controller]_[action]")] generates a unique route name for each

action.

To match the literal token replacement delimiter [or] , escape it by repeating the character ([[or]]).

Token replacement can be customized using a parameter transformer. A parameter transformer implements

IOutboundParameterTransformer and transforms the value of parameters. For example, a custom

SlugifyParameterTransformer parameter transformer changes the SubscriptionManagement route value to

subscription-management :

https://github.com/aspnet/AspNetCore.Docs/issues/16455
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.ioutboundparametertransformer

public class SlugifyParameterTransformer : IOutboundParameterTransformer
{
 public string TransformOutbound(object value)
 {
 if (value == null) { return null; }

 return Regex.Replace(value.ToString(),
 "([a-z])([A-Z])",
 "$1-$2",
 RegexOptions.CultureInvariant,
 TimeSpan.FromMilliseconds(100)).ToLowerInvariant();
 }
}

public class SubscriptionManagementController : Controller
{
 [HttpGet("[controller]/[action]")]
 public IActionResult ListAll()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews(options =>
 {
 options.Conventions.Add(new RouteTokenTransformerConvention(
 new SlugifyParameterTransformer()));
 });
}

WARNINGWARNING

Multiple attribute routesMultiple attribute routes

The RouteTokenTransformerConvention is an application model convention that:

Applies a parameter transformer to all attribute routes in an application.

Customizes the attribute route token values as they are replaced.

The preceding ListAll method matches /subscription-management/list-all .

The RouteTokenTransformerConvention is registered as an option in ConfigureServices .

See MDN web docs on Slug for the definition of Slug.

When using System.Text.RegularExpressions to process untrusted input, pass a timeout. A malicious user can provide

input to RegularExpressions causing a Denial-of-Service attack. ASP.NET Core framework APIs that use

RegularExpressions pass a timeout.

Attribute routing supports defining multiple routes that reach the same action. The most common usage of

this is to mimic the behavior of the default conventional route as shown in the following example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.routetokentransformerconvention
https://developer.mozilla.org/docs/Glossary/Slug
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions
https://www.us-cert.gov/ncas/tips/ST04-015

[Route("[controller]")]
public class Products13Controller : Controller
{
 [Route("")] // Matches 'Products13'
 [Route("Index")] // Matches 'Products13/Index'
 public IActionResult Index()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

[Route("Store")]
[Route("[controller]")]
public class Products6Controller : Controller
{
 [HttpPost("Buy")] // Matches 'Products6/Buy' and 'Store/Buy'
 [HttpPost("Checkout")] // Matches 'Products6/Checkout' and 'Store/Checkout'
 public IActionResult Buy()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }
}

[Route("api/[controller]")]
public class Products7Controller : ControllerBase
{
 [HttpPut("Buy")] // Matches PUT 'api/Products7/Buy'
 [HttpPost("Checkout")] // Matches POST 'api/Products7/Checkout'
 public IActionResult Buy()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }
}

Specifying attribute route optional parameters, default values, and constraintsSpecifying attribute route optional parameters, default values, and constraints

public class Products14Controller : Controller
{
 [HttpPost("product14/{id:int}")]
 public IActionResult ShowProduct(int id)
 {
 return ControllerContext.MyDisplayRouteInfo(id);
 }
}

Putting multiple route attributes on the controller means that each one combines with each of the route

attributes on the action methods:

All the HTTP verb route constraints implement IActionConstraint .

When multiple route attributes that implement IActionConstraint are placed on an action:

Each action constraint combines with the route template applied to the controller.

Using multiple routes on actions might seem useful and powerful, it's better to keep your app's URL space

basic and well defined. Use multiple routes on actions onlyonly where needed, for example, to support existing

clients.

Attribute routes support the same inline syntax as conventional routes to specify optional parameters, default

values, and constraints.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionconstraints.iactionconstraint

Custom route attributes using IRouteTemplateProviderCustom route attributes using IRouteTemplateProvider

public class MyApiControllerAttribute : Attribute, IRouteTemplateProvider
{
 public string Template => "api/[controller]";
 public int? Order => 2;
 public string Name { get; set; }
}

[MyApiController]
[ApiController]
public class MyTestApiController : ControllerBase
{
 // GET /api/MyTestApi
 [HttpGet]
 public IActionResult Get()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }
}

Use application model to customize attribute routesUse application model to customize attribute routes

In the preceding code, [HttpPost("product/{id:int}")] applies a route constraint. The

ProductsController.ShowProduct action is matched only by URL paths like /product/3 . The route template

portion {id:int} constrains that segment to only integers.

See Route Template Reference for a detailed description of route template syntax.

All of the route attributes implement IRouteTemplateProvider. The ASP.NET Core runtime:

Looks for attributes on controller classes and action methods when the app starts.

Uses the attributes that implement IRouteTemplateProvider to build the initial set of routes.

Implement IRouteTemplateProvider to define custom route attributes. Each IRouteTemplateProvider allows

you to define a single route with a custom route template, order, and name:

The preceding Get method returns Order = 2, Template = api/MyTestApi .

The application model:

Is an object model created at startup.

Contains all of the metadata used by ASP.NET Core to route and execute the actions in an app.

The application model includes all of the data gathered from route attributes. The data from route attributes

is provided by the IRouteTemplateProvider implementation. Conventions:

Can be written to modify the application model to customize how routing behaves.

Are read at app startup.

This section shows a basic example of customizing routing using application model. The following code

makes routes roughly line up with the folder structure of the project.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routing.iroutetemplateprovider

public class NamespaceRoutingConvention : Attribute, IControllerModelConvention
{
 private readonly string _baseNamespace;

 public NamespaceRoutingConvention(string baseNamespace)
 {
 _baseNamespace = baseNamespace;
 }

 public void Apply(ControllerModel controller)
 {
 var hasRouteAttributes = controller.Selectors.Any(selector =>
 selector.AttributeRouteModel != null);
 if (hasRouteAttributes)
 {
 return;
 }

 var namespc = controller.ControllerType.Namespace;
 if (namespc == null)
 return;
 var template = new StringBuilder();
 template.Append(namespc, _baseNamespace.Length + 1,
 namespc.Length - _baseNamespace.Length - 1);
 template.Replace('.', '/');
 template.Append("/[controller]/[action]/{id?}");

 foreach (var selector in controller.Selectors)
 {
 selector.AttributeRouteModel = new AttributeRouteModel()
 {
 Template = template.ToString()
 };
 }
 }
}

public void Apply(ControllerModel controller)
{
 var hasRouteAttributes = controller.Selectors.Any(selector =>
 selector.AttributeRouteModel != null);
 if (hasRouteAttributes)
 {
 return;
 }

The following code prevents the namespace convention from being applied to controllers that are attribute

routed:

For example, the following controller doesn't use NamespaceRoutingConvention :

[Route("[controller]/[action]/{id?}")]
public class ManagersController : Controller
{
 // /managers/index
 public IActionResult Index()
 {
 var template = ControllerContext.ActionDescriptor.AttributeRouteInfo?.Template;
 return Content($"Index- template:{template}");
 }

 public IActionResult List(int? id)
 {
 var path = Request.Path.Value;
 return Content($"List- Path:{path}");
 }
}

namespace My.Application
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddControllersWithViews(options =>
 {
 options.Conventions.Add(
 new NamespaceRoutingConvention(typeof(Startup).Namespace));
 });
 }
 // Remaining code ommitted for brevity.

The NamespaceRoutingConvention.Apply method:

Does nothing if the controller is attribute routed.

Sets the controllers template based on the namespace , with the base namespace removed.

The NamespaceRoutingConvention can be applied in Startup.ConfigureServices :

For example, consider the following controller :

using Microsoft.AspNetCore.Mvc;

namespace My.Application.Admin.Controllers
{
 public class UsersController : Controller
 {
 // GET /admin/controllers/users/index
 public IActionResult Index()
 {
 var fullname = typeof(UsersController).FullName;
 var template =
 ControllerContext.ActionDescriptor.AttributeRouteInfo?.Template;
 var path = Request.Path.Value;

 return Content($"Path: {path} fullname: {fullname} template:{template}");
 }

 public IActionResult List(int? id)
 {
 var path = Request.Path.Value;
 return Content($"Path: {path} ID:{id}");
 }
 }
}

[NamespaceRoutingConvention("My.Application")]
public class TestController : Controller
{
 // /admin/controllers/test/index
 public IActionResult Index()
 {
 var template = ControllerContext.ActionDescriptor.AttributeRouteInfo?.Template;
 var actionname = ControllerContext.ActionDescriptor.ActionName;
 return Content($"Action- {actionname} template:{template}");
 }

 public IActionResult List(int? id)
 {
 var path = Request.Path.Value;
 return Content($"List- Path:{path}");
 }
}

Mixed routing: Attribute routing vs conventional routing

In the preceding code:

The base namespace is My.Application .

The full name of the preceding controller is My.Application.Admin.Controllers.UsersController .

The NamespaceRoutingConvention sets the controllers template to Admin/Controllers/Users/[action]/{id? .

The NamespaceRoutingConvention can also be applied as an attribute on a controller :

ASP.NET Core apps can mix the use of conventional routing and attribute routing. It's typical to use

conventional routes for controllers serving HTML pages for browsers, and attribute routing for controllers

serving REST APIs.

Actions are either conventionally routed or attribute routed. Placing a route on the controller or the action

makes it attribute routed. Actions that define attribute routes cannot be reached through the conventional

routes and vice-versa. AnyAny route attribute on the controller makes allall actions in the controller attribute

routed.

URL Generation and ambient values

public class UrlGenerationController : Controller
{
 public IActionResult Source()
 {
 // Generates /UrlGeneration/Destination
 var url = Url.Action("Destination");
 return ControllerContext.MyDisplayRouteInfo("", $" URL = {url}");
 }

 public IActionResult Destination()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }
}

ambient values: { controller = "UrlGeneration", action = "Source" }
values passed to Url.Action: { controller = "UrlGeneration", action = "Destination" }
route template: {controller}/{action}/{id?}

result: /UrlGeneration/Destination

Attribute routing and conventional routing use the same routing engine.

Apps can use routing URL generation features to generate URL links to actions. Generating URLs eliminates

hardcoding URLs, making code more robust and maintainable. This section focuses on the URL generation

features provided by MVC and only cover basics of how URL generation works. See Routing for a detailed

description of URL generation.

The IUrlHelper interface is the underlying element of infrastructure between MVC and routing for URL

generation. An instance of IUrlHelper is available through the Url property in controllers, views, and view

components.

In the following example, the IUrlHelper interface is used through the Controller.Url property to generate

a URL to another action.

If the app is using the default conventional route, the value of the url variable is the URL path string

/UrlGeneration/Destination . This URL path is created by routing by combining:

The route values from the current request, which are called ambient valuesambient values .

The values passed to Url.Action and substituting those values into the route template:

Each route parameter in the route template has its value substituted by matching names with the values and

ambient values. A route parameter that doesn't have a value can:

Use a default value if it has one.

Be skipped if it's optional. For example, the id from the route template {controller}/{action}/{id?} .

URL generation fails if any required route parameter doesn't have a corresponding value. If URL generation

fails for a route, the next route is tried until all routes have been tried or a match is found.

The preceding example of Url.Action assumes conventional routing. URL generation works similarly with

attribute routing, though the concepts are different. With conventional routing:

The route values are used to expand a template.

The route values for controller and action usually appear in that template. This works because the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper

public class UrlGenerationAttrController : Controller
{
 [HttpGet("custom")]
 public IActionResult Source()
 {
 var url = Url.Action("Destination");
 return ControllerContext.MyDisplayRouteInfo("", $" URL = {url}");
 }

 [HttpGet("custom/url/to/destination")]
 public IActionResult Destination()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }
}

Generating URLs by action nameGenerating URLs by action name

URLs matched by routing adhere to a convention.

The following example uses attribute routing:

The Source action in the preceding code generates custom/url/to/destination .

LinkGenerator was added in ASP.NET Core 3.0 as an alternative to IUrlHelper . LinkGenerator offers similar

but more flexible functionality. Each method on IUrlHelper has a corresponding family of methods on

LinkGenerator as well.

Url.Action, LinkGenerator.GetPathByAction, and all related overloads all are designed to generate the target

endpoint by specifying a controller name and action name.

When using Url.Action , the current route values for controller and action are provided by the runtime:

The value of controller and action are part of both ambient values and values. The method

Url.Action always uses the current values of action and controller and generates a URL path that

routes to the current action.

Routing attempts to use the values in ambient values to fill in information that wasn't provided when

generating a URL. Consider a route like {a}/{b}/{c}/{d} with ambient values

{ a = Alice, b = Bob, c = Carol, d = David } :

Routing has enough information to generate a URL without any additional values.

Routing has enough information because all route parameters have a value.

If the value { d = Donovan } is added:

The value { d = David } is ignored.

The generated URL path is Alice/Bob/Carol/Donovan .

WarningWarning: URL paths are hierarchical. In the preceding example, if the value { c = Cheryl } is added:

Both of the values { c = Carol, d = David } are ignored.

There is no longer a value for d and URL generation fails.

The desired values of c and d must be specified to generate a URL.

You might expect to hit this problem with the default route {controller}/{action}/{id?} . This problem is rare

in practice because Url.Action always explicitly specifies a controller and action value.

Several overloads of Url.Action take a route values object to provide values for route parameters other than

controller and action . The route values object is frequently used with id . For example,

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkgenerator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.controllerlinkgeneratorextensions.getpathbyaction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper.action

public IActionResult Index()
{
 var url = Url.Action("Buy", "Products", new { id = 17, color = "red" });
 return Content(url);
}

public IActionResult Index2()
{
 var url = Url.Action("Buy", "Products", new { id = 17 }, protocol: Request.Scheme);
 // Returns https://localhost:5001/Products/Buy/17
 return Content(url);
}

Generate URLs by routeGenerate URLs by route

public class UrlGeneration2Controller : Controller
{
 [HttpGet("")]
 public IActionResult Source()
 {
 var url = Url.RouteUrl("Destination_Route");
 return ControllerContext.MyDisplayRouteInfo("", $" URL = {url}");
 }

 [HttpGet("custom/url/to/destination2", Name = "Destination_Route")]
 public IActionResult Destination()
 {
 return ControllerContext.MyDisplayRouteInfo();
 }

Url.Action("Buy", "Products", new { id = 17 }) . The route values object:

By convention is usually an object of anonymous type.

Can be an IDictionary<> or a POCO).

Any additional route values that don't match route parameters are put in the query string.

The preceding code generates /Products/Buy/17?color=red .

The following code generates an absolute URL:

To create an absolute URL, use one of the following:

An overload that accepts a protocol . For example, the preceding code.

LinkGenerator.GetUriByAction, which generates absolute URIs by default.

The preceding code demonstrated generating a URL by passing in the controller and action name.

IUrlHelper also provides the Url.RouteUrl family of methods. These methods are similar to Url.Action, but

they don't copy the current values of action and controller to the route values. The most common usage

of Url.RouteUrl :

Specifies a route name to generate the URL.

Generally doesn't specify a controller or action name.

The following Razor file generates an HTML link to the Destination_Route :

https://wikipedia.org/wiki/Plain_old_CLR_object
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.controllerlinkgeneratorextensions.geturibyaction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper.routeurl
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper.action

<h1>Test Links</h1>

 Test Destination_Route

Generate URLs in HTML and RazorGenerate URLs in HTML and Razor

URL generation in Action ResultsURL generation in Action Results

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Edit(int id, Customer customer)
{
 if (ModelState.IsValid)
 {
 // Update DB with new details.
 ViewData["Message"] = $"Successful edit of customer {id}";
 return RedirectToAction("Index");
 }
 return View(customer);
}

Special case for dedicated conventional routesSpecial case for dedicated conventional routes

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(name: "blog",
 pattern: "blog/{*article}",
 defaults: new { controller = "Blog", action = "Article" });
 endpoints.MapControllerRoute(name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

IHtmlHelper provides the HtmlHelper methods Html.BeginForm and Html.ActionLink to generate <form> and

<a> elements respectively. These methods use the Url.Action method to generate a URL and they accept

similar arguments. The Url.RouteUrl companions for HtmlHelper are Html.BeginRouteForm and

Html.RouteLink which have similar functionality.

TagHelpers generate URLs through the form TagHelper and the <a> TagHelper. Both of these use

IUrlHelper for their implementation. See Tag Helpers in forms for more information.

Inside views, the IUrlHelper is available through the Url property for any ad-hoc URL generation not

covered by the above.

The preceding examples showed using IUrlHelper in a controller. The most common usage in a controller is

to generate a URL as part of an action result.

The ControllerBase and Controller base classes provide convenience methods for action results that reference

another action. One typical usage is to redirect after accepting user input:

The action results factory methods such as RedirectToAction and CreatedAtAction follow a similar pattern to

the methods on IUrlHelper .

Conventional routing can use a special kind of route definition called a dedicated conventional route. In the

following example, the route named blog is a dedicated conventional route:

Using the preceding route definitions, Url.Action("Index", "Home") generates the URL path / using the

default route, but why? You might guess the route values { controller = Home, action = Index } would be

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.ihtmlhelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.htmlhelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.ihtmlhelper.beginform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.ihtmlhelper.actionlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.redirecttoaction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction

 Areas

app.UseEndpoints(endpoints =>
{
 endpoints.MapAreaControllerRoute("blog_route", "Blog",
 "Manage/{controller}/{action}/{id?}");
 endpoints.MapControllerRoute("default_route", "{controller}/{action}/{id?}");
});

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute("blog_route", "Manage/{controller}/{action}/{id?}",
 defaults: new { area = "Blog" }, constraints: new { area = "Blog" });
 endpoints.MapControllerRoute("default_route", "{controller}/{action}/{id?}");
});

enough to generate a URL using blog , and the result would be /blog?action=Index&controller=Home .

Dedicated conventional routes rely on a special behavior of default values that don't have a corresponding

route parameter that prevents the route from being too greedy with URL generation. In this case the default

values are { controller = Blog, action = Article } , and neither controller nor action appears as a route

parameter. When routing performs URL generation, the values provided must match the default values. URL

generation using blog fails because the values { controller = Home, action = Index } don't match

{ controller = Blog, action = Article } . Routing then falls back to try default , which succeeds.

Areas are an MVC feature used to organize related functionality into a group as a separate:

Routing namespace for controller actions.

Folder structure for views.

Using areas allows an app to have multiple controllers with the same name, as long as they have different

areas. Using areas creates a hierarchy for the purpose of routing by adding another route parameter, area to

controller and action . This section discusses how routing interacts with areas. See Areas for details about

how areas are used with views.

The following example configures MVC to use the default conventional route and an area route for an area

named Blog :

In the preceding code, MapAreaControllerRoute is called to create the "blog_route" . The second parameter,

"Blog" , is the area name.

When matching a URL path like /Manage/Users/AddUser , the "blog_route" route generates the route values

{ area = Blog, controller = Users, action = AddUser } . The area route value is produced by a default value

for area . The route created by MapAreaControllerRoute is equivalent to the following:

MapAreaControllerRoute creates a route using both a default value and constraint for area using the

provided area name, in this case Blog . The default value ensures that the route always produces

{ area = Blog, ... } , the constraint requires the value { area = Blog, ... } for URL generation.

Conventional routing is order-dependent. In general, routes with areas should be placed earlier as they're

more specific than routes without an area.

Using the preceding example, the route values { area = Blog, controller = Users, action = AddUser } match

the following action:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapareacontrollerroute

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace1
{
 [Area("Blog")]
 public class UsersController : Controller
 {
 // GET /manage/users/adduser
 public IActionResult AddUser()
 {
 var area = ControllerContext.ActionDescriptor.RouteValues["area"];
 var actionName = ControllerContext.ActionDescriptor.ActionName;
 var controllerName = ControllerContext.ActionDescriptor.ControllerName;

 return Content($"area name:{area}" +
 $" controller:{controllerName} action name: {actionName}");
 }
 }
}

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace1
{
 [Area("Blog")]
 public class UsersController : Controller
 {
 // GET /manage/users/adduser
 public IActionResult AddUser()
 {
 var area = ControllerContext.ActionDescriptor.RouteValues["area"];
 var actionName = ControllerContext.ActionDescriptor.ActionName;
 var controllerName = ControllerContext.ActionDescriptor.ControllerName;

 return Content($"area name:{area}" +
 $" controller:{controllerName} action name: {actionName}");
 }
 }
}

The [Area] attribute is what denotes a controller as part of an area. This controller is in the Blog area.

Controllers without an [Area] attribute are not members of any area, and do notnot match when the area

route value is provided by routing. In the following example, only the first controller listed can match the

route values { area = Blog, controller = Users, action = AddUser } .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.areaattribute

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace2
{
 // Matches { area = Zebra, controller = Users, action = AddUser }
 [Area("Zebra")]
 public class UsersController : Controller
 {
 // GET /zebra/users/adduser
 public IActionResult AddUser()
 {
 var area = ControllerContext.ActionDescriptor.RouteValues["area"];
 var actionName = ControllerContext.ActionDescriptor.ActionName;
 var controllerName = ControllerContext.ActionDescriptor.ControllerName;

 return Content($"area name:{area}" +
 $" controller:{controllerName} action name: {actionName}");
 }
 }
}

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace3
{
 // Matches { area = string.Empty, controller = Users, action = AddUser }
 // Matches { area = null, controller = Users, action = AddUser }
 // Matches { controller = Users, action = AddUser }
 public class UsersController : Controller
 {
 // GET /users/adduser
 public IActionResult AddUser()
 {
 var area = ControllerContext.ActionDescriptor.RouteValues["area"];
 var actionName = ControllerContext.ActionDescriptor.ActionName;
 var controllerName = ControllerContext.ActionDescriptor.ControllerName;

 return Content($"area name:{area}" +
 $" controller:{controllerName} action name: {actionName}");
 }
 }
}

The namespace of each controller is shown here for completeness. If the preceding controllers uses the same

namespace, a compiler error would be generated. Class namespaces have no effect on MVC's routing.

The first two controllers are members of areas, and only match when their respective area name is provided

by the area route value. The third controller isn't a member of any area, and can only match when no value

for area is provided by routing.

 In terms of matching no value, the absence of the area value is the same as if the value for area were null

or the empty string.

When executing an action inside an area, the route value for area is available as an ambient value for

routing to use for URL generation. This means that by default areas act sticky for URL generation as

demonstrated by the following sample.

app.UseEndpoints(endpoints =>
{
 endpoints.MapAreaControllerRoute(name: "duck_route",
 areaName: "Duck",
 pattern: "Manage/{controller}/{action}/{id?}");
 endpoints.MapControllerRoute(name: "default",
 pattern: "Manage/{controller=Home}/{action=Index}/{id?}");
});

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace4
{
 [Area("Duck")]
 public class UsersController : Controller
 {
 // GET /Manage/users/GenerateURLInArea
 public IActionResult GenerateURLInArea()
 {
 // Uses the 'ambient' value of area.
 var url = Url.Action("Index", "Home");
 // Returns /Manage/Home/Index
 return Content(url);
 }

 // GET /Manage/users/GenerateURLOutsideOfArea
 public IActionResult GenerateURLOutsideOfArea()
 {
 // Uses the empty value for area.
 var url = Url.Action("Index", "Home", new { area = "" });
 // Returns /Manage
 return Content(url);
 }
 }
}

public class HomeController : Controller
{
 public IActionResult About()
 {
 var url = Url.Action("AddUser", "Users", new { Area = "Zebra" });
 return Content($"URL: {url}");
 }

Action definition

Sample code

Debug diagnostics

The following code generates a URL to /Zebra/Users/AddUser :

Public methods on a controller, except those with the NonAction attribute, are actions.

The MyDisplayRouteInfo method is included in the sample download and is used to display routing

information.

View or download sample code (how to download)

For detailed routing diagnostic output, set Logging:LogLevel:Microsoft to Debug . In the development

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.nonactionattribute
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/routing/samples/3.x/main/Extensions/ControllerContextExtensions.cs
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/routing/samples/3.x
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/routing/samples/3.x

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Debug",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 }
}

Setting up Routing Middleware

app.UseMvc(routes =>
{
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

public class ProductsController : Controller
{
 public IActionResult Details(int id) { ... }
}

routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");

environment, set the log level in appsettings.Development.json:

ASP.NET Core MVC uses the Routing middleware to match the URLs of incoming requests and map them to

actions. Routes are defined in startup code or attributes. Routes describe how URL paths should be matched

to actions. Routes are also used to generate URLs (for links) sent out in responses.

Actions are either conventionally routed or attribute routed. Placing a route on the controller or the action

makes it attribute routed. See Mixed routing for more information.

This document will explain the interactions between MVC and routing, and how typical MVC apps make use

of routing features. See Routing for details on advanced routing.

In your Configure method you may see code similar to:

Inside the call to UseMvc , MapRoute is used to create a single route, which we'll refer to as the default route.

Most MVC apps will use a route with a template similar to the default route.

The route template "{controller=Home}/{action=Index}/{id?}" can match a URL path like

/Products/Details/5 and will extract the route values { controller = Products, action = Details, id = 5 }

by tokenizing the path. MVC will attempt to locate a controller named ProductsController and run the action

Details :

Note that in this example, model binding would use the value of id = 5 to set the id parameter to 5

when invoking this action. See the Model Binding for more details.

Using the default route:

The route template:

{controller=Home} defines Home as the default controller

{action=Index} defines Index as the default action

public class HomeController : Controller
{
 public IActionResult Index() { ... }
}

app.UseMvcWithDefaultRoute();

app.UseMvc(routes =>
{
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

var routes = new RouteBuilder(app);

// Add connection to MVC, will be hooked up by calls to MapRoute.
routes.DefaultHandler = new MvcRouteHandler(...);

// Execute callback to register routes.
// routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");

// Create route collection and add the middleware.
app.UseRouter(routes.Build());

{id?} defines id as optional

Default and optional route parameters don't need to be present in the URL path for a match. See Route

Template Reference for a detailed description of route template syntax.

"{controller=Home}/{action=Index}/{id?}" can match the URL path / and will produce the route values

{ controller = Home, action = Index } . The values for controller and action make use of the default

values, id doesn't produce a value since there's no corresponding segment in the URL path. MVC would use

these route values to select the HomeController and Index action:

Using this controller definition and route template, the HomeController.Index action would be executed for

any of the following URL paths:

/Home/Index/17

/Home/Index

/Home

/

The convenience method UseMvcWithDefaultRoute :

Can be used to replace:

UseMvc and UseMvcWithDefaultRoute add an instance of RouterMiddleware to the middleware pipeline. MVC

doesn't interact directly with middleware, and uses routing to handle requests. MVC is connected to the

routes through an instance of MvcRouteHandler . The code inside of UseMvc is similar to the following:

UseMvc doesn't directly define any routes, it adds a placeholder to the route collection for the attribute

route. The overload UseMvc(Action<IRouteBuilder>) lets you add your own routes and also supports attribute

routing. UseMvc and all of its variations add a placeholder for the attribute route - attribute routing is always

available regardless of how you configure UseMvc . UseMvcWithDefaultRoute defines a default route and

Conventional routing

routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");

TIPTIP

WARNINGWARNING

Multiple routes

app.UseMvc(routes =>
{
 routes.MapRoute("blog", "blog/{*article}",
 defaults: new { controller = "Blog", action = "Article" });
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

supports attribute routing. The Attribute Routing section includes more details on attribute routing.

The default route:

The preceding code is an example of a conventional routing. This style is called conventional routing because

it establishes a convention for URL paths:

The first path segment maps to the controller name.

The second maps to the action name.

The third segment is used for an optional id . id maps to a model entity.

Using this default route, the URL path /Products/List maps to the ProductsController.List action, and

/Blog/Article/17 maps to BlogController.Article . This mapping is based on the controller and action

names onlyonly and isn't based on namespaces, source file locations, or method parameters.

Using conventional routing with the default route allows you to build the application quickly without having to come

up with a new URL pattern for each action you define. For an application with CRUD style actions, having consistency

for the URLs across your controllers can help simplify your code and make your UI more predictable.

The id is defined as optional by the route template, meaning that your actions can execute without the ID provided

as part of the URL. Usually what will happen if id is omitted from the URL is that it will be set to 0 by model

binding, and as a result no entity will be found in the database matching id == 0 . Attribute routing can give you

fine-grained control to make the ID required for some actions and not for others. By convention the documentation

will include optional parameters like id when they're likely to appear in correct usage.

You can add multiple routes inside UseMvc by adding more calls to MapRoute . Doing so allows you to define

multiple conventions, or to add conventional routes that are dedicated to a specific action, such as:

The blog route here is a dedicated conventional route, meaning that it uses the conventional routing system,

but is dedicated to a specific action. Since controller and action don't appear in the route template as

parameters, they can only have the default values, and thus this route will always map to the action

BlogController.Article .

Routes in the route collection are ordered, and will be processed in the order they're added. So in this

example, the blog route will be tried before the default route.

NOTENOTE

FallbackFallback

Disambiguating actionsDisambiguating actions

public class ProductsController : Controller
{
 public IActionResult Edit(int id) { ... }

 [HttpPost]
 public IActionResult Edit(int id, Product product) { ... }
}

Route namesRoute names

app.UseMvc(routes =>
{
 routes.MapRoute("blog", "blog/{*article}",
 defaults: new { controller = "Blog", action = "Article" });
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

Dedicated conventional routes often use catch-allcatch-all route parameters like {*article} to capture the remaining

portion of the URL path. This can make a route 'too greedy' meaning that it matches URLs that you intended to be

matched by other routes. Put the 'greedy' routes later in the route table to solve this.

As part of request processing, MVC will verify that the route values can be used to find a controller and action

in your application. If the route values don't match an action then the route isn't considered a match, and the

next route will be tried. This is called fallback, and it's intended to simplify cases where conventional routes

overlap.

When two actions match through routing, MVC must disambiguate to choose the 'best' candidate or else

throw an exception. For example:

This controller defines two actions that would match the URL path /Products/Edit/17 and route data

{ controller = Products, action = Edit, id = 17 } . This is a typical pattern for MVC controllers where

Edit(int) shows a form to edit a product, and Edit(int, Product) processes the posted form. To make this

possible MVC would need to choose Edit(int, Product) when the request is an HTTP POST and Edit(int)

when the HTTP verb is anything else.

The HttpPostAttribute ([HttpPost]) is an implementation of IActionConstraint that will only allow the

action to be selected when the HTTP verb is POST . The presence of an IActionConstraint makes the

Edit(int, Product) a 'better' match than Edit(int) , so Edit(int, Product) will be tried first.

You will only need to write custom IActionConstraint implementations in specialized scenarios, but it's

important to understand the role of attributes like HttpPostAttribute - similar attributes are defined for

other HTTP verbs. In conventional routing it's common for actions to use the same action name when they're

part of a show form -> submit form workflow. The convenience of this pattern will become more apparent

after reviewing the Understanding IActionConstraint section.

If multiple routes match, and MVC can't find a 'best' route, it will throw an AmbiguousActionException .

The strings "blog" and "default" in the following examples are route names:

The route names give the route a logical name so that the named route can be used for URL generation. This

greatly simplifies URL creation when the ordering of routes could make URL generation complicated. Route

 Attribute routing

public class HomeController : Controller
{
 [Route("")]
 [Route("Home")]
 [Route("Home/Index")]
 public IActionResult Index()
 {
 return View();
 }
 [Route("Home/About")]
 public IActionResult About()
 {
 return View();
 }
 [Route("Home/Contact")]
 public IActionResult Contact()
 {
 return View();
 }
}

NOTENOTE

names must be unique application-wide.

Route names have no impact on URL matching or handling of requests; they're used only for URL generation.

Routing has more detailed information on URL generation including URL generation in MVC-specific helpers.

Attribute routing uses a set of attributes to map actions directly to route templates. In the following example,

app.UseMvc(); is used in the Configure method and no route is passed. The HomeController will match a set

of URLs similar to what the default route {controller=Home}/{action=Index}/{id?} would match:

The HomeController.Index() action will be executed for any of the URL paths / , /Home , or /Home/Index .

This example highlights a key programming difference between attribute routing and conventional routing. Attribute

routing requires more input to specify a route; the conventional default route handles routes more succinctly.

However, attribute routing allows (and requires) precise control of which route templates apply to each action.

With attribute routing the controller name and action names play nono role in which action is selected. This

example will match the same URLs as the previous example.

public class MyDemoController : Controller
{
 [Route("")]
 [Route("Home")]
 [Route("Home/Index")]
 public IActionResult MyIndex()
 {
 return View("Index");
 }
 [Route("Home/About")]
 public IActionResult MyAbout()
 {
 return View("About");
 }
 [Route("Home/Contact")]
 public IActionResult MyContact()
 {
 return View("Contact");
 }
}

NOTENOTE

Attribute routing with Http[Verb] attributes

[HttpGet("/products")]
public IActionResult ListProducts()
{
 // ...
}

[HttpPost("/products")]
public IActionResult CreateProduct(...)
{
 // ...
}

TIPTIP

The route templates above don't define route parameters for action , area , and controller . In fact, these route

parameters are not allowed in attribute routes. Since the route template is already associated with an action, it

wouldn't make sense to parse the action name from the URL.

Attribute routing can also make use of the Http[Verb] attributes such as HttpPostAttribute . All of these

attributes can accept a route template. This example shows two actions that match the same route template:

For a URL path like /products the ProductsApi.ListProducts action will be executed when the HTTP verb is

GET and ProductsApi.CreateProduct will be executed when the HTTP verb is POST . Attribute routing first

matches the URL against the set of route templates defined by route attributes. Once a route template

matches, IActionConstraint constraints are applied to determine which actions can be executed.

When building a REST API, it's rare that you will want to use [Route(...)] on an action method as the action will

accept all HTTP methods. It's better to use the more specific Http*Verb*Attributes to be precise about what your

API supports. Clients of REST APIs are expected to know what paths and HTTP verbs map to specific logical operations.

Since an attribute route applies to a specific action, it's easy to make parameters required as part of the route

template definition. In this example, id is required as part of the URL path.

public class ProductsApiController : Controller
{
 [HttpGet("/products/{id}", Name = "Products_List")]
 public IActionResult GetProduct(int id) { ... }
}

Route Name

public class ProductsApiController : Controller
{
 [HttpGet("/products/{id}", Name = "Products_List")]
 public IActionResult GetProduct(int id) { ... }
}

NOTENOTE

Combining routesCombining routes

[Route("products")]
public class ProductsApiController : Controller
{
 [HttpGet]
 public IActionResult ListProducts() { ... }

 [HttpGet("{id}")]
 public ActionResult GetProduct(int id) { ... }
}

The ProductsApi.GetProduct(int) action will be executed for a URL path like /products/3 but not for a URL

path like /products . See Routing for a full description of route templates and related options.

The following code defines a route name of Products_List :

Route names can be used to generate a URL based on a specific route. Route names have no impact on the

URL matching behavior of routing and are only used for URL generation. Route names must be unique

application-wide.

Contrast this with the conventional default route, which defines the id parameter as optional ({id?}). This ability

to precisely specify APIs has advantages, such as allowing /products and /products/5 to be dispatched to

different actions.

To make attribute routing less repetitive, route attributes on the controller are combined with route attributes

on the individual actions. Any route templates defined on the controller are prepended to route templates on

the actions. Placing a route attribute on the controller makes allall actions in the controller use attribute routing.

In this example the URL path /products can match ProductsApi.ListProducts , and the URL path

/products/5 can match ProductsApi.GetProduct(int) . Both of these actions only match HTTP GET because

they're marked with the HttpGetAttribute .

Route templates applied to an action that begin with / or ~/ don't get combined with route templates

applied to the controller. This example matches a set of URL paths similar to the default route.

[Route("Home")]
public class HomeController : Controller
{
 [Route("")] // Combines to define the route template "Home"
 [Route("Index")] // Combines to define the route template "Home/Index"
 [Route("/")] // Doesn't combine, defines the route template ""
 public IActionResult Index()
 {
 ViewData["Message"] = "Home index";
 var url = Url.Action("Index", "Home");
 ViewData["Message"] = "Home index" + "var url = Url.Action; = " + url;
 return View();
 }

 [Route("About")] // Combines to define the route template "Home/About"
 public IActionResult About()
 {
 return View();
 }
}

Ordering attribute routesOrdering attribute routes

TIPTIP

Token replacement in route templates ([controller], [action], [area])

In contrast to conventional routes, which execute in a defined order, attribute routing builds a tree and

matches all routes simultaneously. This behaves as-if the route entries were placed in an ideal ordering; the

most specific routes have a chance to execute before the more general routes.

For example, a route like blog/search/{topic} is more specific than a route like blog/{*article} . Logically

speaking the blog/search/{topic} route 'runs' first, by default, because that's the only sensible ordering.

Using conventional routing, the developer is responsible for placing routes in the desired order.

Attribute routes can configure an order, using the Order property of all of the framework provided route

attributes. Routes are processed according to an ascending sort of the Order property. The default order is

0 . Setting a route using Order = -1 will run before routes that don't set an order. Setting a route using

Order = 1 will run after default route ordering.

Avoid depending on Order . If your URL-space requires explicit order values to route correctly, then it's likely

confusing to clients as well. In general attribute routing will select the correct route with URL matching. If the default

order used for URL generation isn't working, using route name as an override is usually simpler than applying the

Order property.

Razor Pages routing and MVC controller routing share an implementation. Information on route order in the

Razor Pages topics is available at Razor Pages route and app conventions: Route order.

For convenience, attribute routes support token replacement by enclosing a token in square-brackets ([,]

). The tokens [action] , [area] , and [controller] are replaced with the values of the action name, area

name, and controller name from the action where the route is defined. In the following example, the actions

match URL paths as described in the comments:

[Route("[controller]/[action]")]
public class ProductsController : Controller
{
 [HttpGet] // Matches '/Products/List'
 public IActionResult List() {
 // ...
 }

 [HttpGet("{id}")] // Matches '/Products/Edit/{id}'
 public IActionResult Edit(int id) {
 // ...
 }
}

public class ProductsController : Controller
{
 [HttpGet("[controller]/[action]")] // Matches '/Products/List'
 public IActionResult List() {
 // ...
 }

 [HttpGet("[controller]/[action]/{id}")] // Matches '/Products/Edit/{id}'
 public IActionResult Edit(int id) {
 // ...
 }
}

[Route("api/[controller]")]
public abstract class MyBaseController : Controller { ... }

public class ProductsController : MyBaseController
{
 [HttpGet] // Matches '/api/Products'
 public IActionResult List() { ... }

 [HttpPut("{id}")] // Matches '/api/Products/{id}'
 public IActionResult Edit(int id) { ... }
}

Use a parameter transformer to customize token replacementUse a parameter transformer to customize token replacement

Token replacement occurs as the last step of building the attribute routes. The above example will behave the

same as the following code:

Attribute routes can also be combined with inheritance. This is particularly powerful combined with token

replacement.

Token replacement also applies to route names defined by attribute routes.

[Route("[controller]/[action]", Name="[controller]_[action]")] generates a unique route name for each

action.

To match the literal token replacement delimiter [or] , escape it by repeating the character ([[or]]).

Token replacement can be customized using a parameter transformer. A parameter transformer implements

IOutboundParameterTransformer and transforms the value of parameters. For example, a custom

SlugifyParameterTransformer parameter transformer changes the SubscriptionManagement route value to

subscription-management .

The RouteTokenTransformerConvention is an application model convention that:

public class SubscriptionManagementController : Controller
{
 [HttpGet("[controller]/[action]")] // Matches '/subscription-management/list-all'
 public IActionResult ListAll() { ... }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>
 {
 options.Conventions.Add(new RouteTokenTransformerConvention(
 new SlugifyParameterTransformer()));
 });
}

public class SlugifyParameterTransformer : IOutboundParameterTransformer
{
 public string TransformOutbound(object value)
 {
 if (value == null) { return null; }

 // Slugify value
 return Regex.Replace(value.ToString(), "([a-z])([A-Z])", "$1-$2").ToLower();
 }
}

Multiple RoutesMultiple Routes

[Route("[controller]")]
public class ProductsController : Controller
{
 [Route("")] // Matches 'Products'
 [Route("Index")] // Matches 'Products/Index'
 public IActionResult Index()
}

[Route("Store")]
[Route("[controller]")]
public class ProductsController : Controller
{
 [HttpPost("Buy")] // Matches 'Products/Buy' and 'Store/Buy'
 [HttpPost("Checkout")] // Matches 'Products/Checkout' and 'Store/Checkout'
 public IActionResult Buy()
}

Applies a parameter transformer to all attribute routes in an application.

Customizes the attribute route token values as they are replaced.

The RouteTokenTransformerConvention is registered as an option in ConfigureServices .

Attribute routing supports defining multiple routes that reach the same action. The most common usage of

this is to mimic the behavior of the default conventional route as shown in the following example:

Putting multiple route attributes on the controller means that each one will combine with each of the route

attributes on the action methods.

When multiple route attributes (that implement IActionConstraint) are placed on an action, then each action

constraint combines with the route template from the attribute that defined it.

[Route("api/[controller]")]
public class ProductsController : Controller
{
 [HttpPut("Buy")] // Matches PUT 'api/Products/Buy'
 [HttpPost("Checkout")] // Matches POST 'api/Products/Checkout'
 public IActionResult Buy()
}

TIPTIP

Specifying attribute route optional parameters, default values, and constraintsSpecifying attribute route optional parameters, default values, and constraints

[HttpPost("product/{id:int}")]
public IActionResult ShowProduct(int id)
{
 // ...
}

Custom route attributes using Custom route attributes using IRouteTemplateProvider

public class MyApiControllerAttribute : Attribute, IRouteTemplateProvider
{
 public string Template => "api/[controller]";

 public int? Order { get; set; }

 public string Name { get; set; }
}

Using Application Model to customize attribute routesUsing Application Model to customize attribute routes

While using multiple routes on actions can seem powerful, it's better to keep your application's URL space simple and

well-defined. Use multiple routes on actions only where needed, for example to support existing clients.

Attribute routes support the same inline syntax as conventional routes to specify optional parameters, default

values, and constraints.

See Route Template Reference for a detailed description of route template syntax.

All of the route attributes provided in the framework ([Route(...)] , [HttpGet(...)] , etc.) implement the

IRouteTemplateProvider interface. MVC looks for attributes on controller classes and action methods when

the app starts and uses the ones that implement IRouteTemplateProvider to build the initial set of routes.

You can implement IRouteTemplateProvider to define your own route attributes. Each

IRouteTemplateProvider allows you to define a single route with a custom route template, order, and name:

The attribute from the above example automatically sets the Template to "api/[controller]" when

[MyApiController] is applied.

The application model is an object model created at startup with all of the metadata used by MVC to route

and execute your actions. The application model includes all of the data gathered from route attributes

(through IRouteTemplateProvider). You can write conventions to modify the application model at startup time

to customize how routing behaves. This section shows a simple example of customizing routing using

application model.

using Microsoft.AspNetCore.Mvc.ApplicationModels;
using System.Linq;
using System.Text;
public class NamespaceRoutingConvention : IControllerModelConvention
{
 private readonly string _baseNamespace;

 public NamespaceRoutingConvention(string baseNamespace)
 {
 _baseNamespace = baseNamespace;
 }

 public void Apply(ControllerModel controller)
 {
 var hasRouteAttributes = controller.Selectors.Any(selector =>
 selector.AttributeRouteModel != null);
 if (hasRouteAttributes)
 {
 // This controller manually defined some routes, so treat this
 // as an override and not apply the convention here.
 return;
 }

 // Use the namespace and controller name to infer a route for the controller.
 //
 // Example:
 //
 // controller.ControllerTypeInfo -> "My.Application.Admin.UsersController"
 // baseNamespace -> "My.Application"
 //
 // template => "Admin/[controller]"
 //
 // This makes your routes roughly line up with the folder structure of your project.
 //
 var namespc = controller.ControllerType.Namespace;
 if (namespc == null)
 return;
 var template = new StringBuilder();
 template.Append(namespc, _baseNamespace.Length + 1,
 namespc.Length - _baseNamespace.Length - 1);
 template.Replace('.', '/');
 template.Append("/[controller]");

 foreach (var selector in controller.Selectors)
 {
 selector.AttributeRouteModel = new AttributeRouteModel()
 {
 Template = template.ToString()
 };
 }
 }
}

Mixed routing: Attribute routing vs conventional routing

MVC applications can mix the use of conventional routing and attribute routing. It's typical to use

conventional routes for controllers serving HTML pages for browsers, and attribute routing for controllers

serving REST APIs.

Actions are either conventionally routed or attribute routed. Placing a route on the controller or the action

makes it attribute routed. Actions that define attribute routes cannot be reached through the conventional

routes and vice-versa. AnyAny route attribute on the controller makes all actions in the controller attribute

routed.

NOTENOTE

Complex segments

URL Generation

using Microsoft.AspNetCore.Mvc;

public class UrlGenerationController : Controller
{
 public IActionResult Source()
 {
 // Generates /UrlGeneration/Destination
 var url = Url.Action("Destination");
 return Content($"Go check out {url}, it's really great.");
 }

 public IActionResult Destination()
 {
 return View();
 }
}

ambient values: { controller = "UrlGeneration", action = "Source" }
values passed to Url.Action: { controller = "UrlGeneration", action = "Destination" }
route template: {controller}/{action}/{id?}

result: /UrlGeneration/Destination

What distinguishes the two types of routing systems is the process applied after a URL matches a route template. In

conventional routing, the route values from the match are used to choose the action and controller from a lookup

table of all conventional routed actions. In attribute routing, each template is already associated with an action, and no

further lookup is needed.

Complex segments (for example, [Route("/dog{token}cat")]), are processed by matching up literals from

right to left in a non-greedy way. See the source code for a description. For more information, see this issue.

MVC applications can use routing's URL generation features to generate URL links to actions. Generating

URLs eliminates hardcoding URLs, making your code more robust and maintainable. This section focuses on

the URL generation features provided by MVC and will only cover basics of how URL generation works. See

Routing for a detailed description of URL generation.

The IUrlHelper interface is the underlying piece of infrastructure between MVC and routing for URL

generation. You'll find an instance of IUrlHelper available through the Url property in controllers, views,

and view components.

In this example, the IUrlHelper interface is used through the Controller.Url property to generate a URL to

another action.

If the application is using the default conventional route, the value of the url variable will be the URL path

string /UrlGeneration/Destination . This URL path is created by routing by combining the route values from

the current request (ambient values), with the values passed to Url.Action and substituting those values into

the route template:

Each route parameter in the route template has its value substituted by matching names with the values and

ambient values. A route parameter that doesn't have a value can use a default value if it has one, or be

https://github.com/aspnet/Routing/blob/9cea167cfac36cf034dbb780e3f783114ef94780/src/Microsoft.AspNetCore.Routing/Patterns/RoutePatternMatcher.cs#L296
https://github.com/dotnet/AspNetCore.Docs/issues/8197

// In Startup class
public void Configure(IApplicationBuilder app)
{
 app.UseMvc();
}

using Microsoft.AspNetCore.Mvc;

public class UrlGenerationController : Controller
{
 [HttpGet("")]
 public IActionResult Source()
 {
 var url = Url.Action("Destination"); // Generates /custom/url/to/destination
 return Content($"Go check out {url}, it's really great.");
 }

 [HttpGet("custom/url/to/destination")]
 public IActionResult Destination() {
 return View();
 }
}

Generating URLs by action nameGenerating URLs by action name

NOTENOTE

skipped if it's optional (as in the case of id in this example). URL generation will fail if any required route

parameter doesn't have a corresponding value. If URL generation fails for a route, the next route is tried until

all routes have been tried or a match is found.

The example of Url.Action above assumes conventional routing, but URL generation works similarly with

attribute routing, though the concepts are different. With conventional routing, the route values are used to

expand a template, and the route values for controller and action usually appear in that template - this

works because the URLs matched by routing adhere to a convention. In attribute routing, the route values for

controller and action are not allowed to appear in the template - they're instead used to look up which

template to use.

This example uses attribute routing:

MVC builds a lookup table of all attribute routed actions and will match the controller and action values

to select the route template to use for URL generation. In the sample above, custom/url/to/destination is

generated.

Url.Action (IUrlHelper . Action) and all related overloads all are based on that idea that you want to

specify what you're linking to by specifying a controller name and action name.

When using Url.Action , the current route values for controller and action are specified for you - the value of

controller and action are part of both ambient values andand values. The method Url.Action , always uses the

current values of action and controller and will generate a URL path that routes to the current action.

Routing attempts to use the values in ambient values to fill in information that you didn't provide when

generating a URL. Using a route like {a}/{b}/{c}/{d} and ambient values

{ a = Alice, b = Bob, c = Carol, d = David } , routing has enough information to generate a URL without

any additional values - since all route parameters have a value. If you added the value { d = Donovan } , the

value { d = David } would be ignored, and the generated URL path would be Alice/Bob/Carol/Donovan .

WARNINGWARNING

using Microsoft.AspNetCore.Mvc;

public class TestController : Controller
{
 public IActionResult Index()
 {
 // Generates /Products/Buy/17?color=red
 var url = Url.Action("Buy", "Products", new { id = 17, color = "red" });
 return Content(url);
 }
}

TIPTIP

Generating URLs by routeGenerating URLs by route

using Microsoft.AspNetCore.Mvc;

public class UrlGenerationController : Controller
{
 [HttpGet("")]
 public IActionResult Source()
 {
 var url = Url.RouteUrl("Destination_Route"); // Generates /custom/url/to/destination
 return Content($"See {url}, it's really great.");
 }

 [HttpGet("custom/url/to/destination", Name = "Destination_Route")]
 public IActionResult Destination() {
 return View();
 }
}

Generating URLs in HTMLGenerating URLs in HTML

URL paths are hierarchical. In the example above, if you added the value { c = Cheryl } , both of the values

{ c = Carol, d = David } would be ignored. In this case we no longer have a value for d and URL generation will

fail. You would need to specify the desired value of c and d . You might expect to hit this problem with the default

route ({controller}/{action}/{id?}) - but you will rarely encounter this behavior in practice as Url.Action will

always explicitly specify a controller and action value.

Longer overloads of Url.Action also take an additional route values object to provide values for route

parameters other than controller and action . You will most commonly see this used with id like

Url.Action("Buy", "Products", new { id = 17 }) . By convention the route values object is usually an object of

anonymous type, but it can also be an IDictionary<> or a plain old .NET object. Any additional route values

that don't match route parameters are put in the query string.

To create an absolute URL, use an overload that accepts a protocol :

Url.Action("Buy", "Products", new { id = 17 }, protocol: Request.Scheme)

The code above demonstrated generating a URL by passing in the controller and action name. IUrlHelper

also provides the Url.RouteUrl family of methods. These methods are similar to Url.Action , but they don't

copy the current values of action and controller to the route values. The most common usage is to specify

a route name to use a specific route to generate the URL, generally without specifying a controller or action

name.

Generating URLS in Action ResultsGenerating URLS in Action Results

public IActionResult Edit(int id, Customer customer)
{
 if (ModelState.IsValid)
 {
 // Update DB with new details.
 return RedirectToAction("Index");
 }
 return View(customer);
}

Special case for dedicated conventional routesSpecial case for dedicated conventional routes

app.UseMvc(routes =>
{
 routes.MapRoute("blog", "blog/{*article}",
 defaults: new { controller = "Blog", action = "Article" });
 routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
});

Areas

IHtmlHelper provides the HtmlHelper methods Html.BeginForm and Html.ActionLink to generate <form>

and <a> elements respectively. These methods use the Url.Action method to generate a URL and they

accept similar arguments. The Url.RouteUrl companions for HtmlHelper are Html.BeginRouteForm and

Html.RouteLink which have similar functionality.

TagHelpers generate URLs through the form TagHelper and the <a> TagHelper. Both of these use

IUrlHelper for their implementation. See Working with Forms for more information.

Inside views, the IUrlHelper is available through the Url property for any ad-hoc URL generation not

covered by the above.

The examples above have shown using IUrlHelper in a controller, while the most common usage in a

controller is to generate a URL as part of an action result.

The ControllerBase and Controller base classes provide convenience methods for action results that

reference another action. One typical usage is to redirect after accepting user input.

The action results factory methods follow a similar pattern to the methods on IUrlHelper .

Conventional routing can use a special kind of route definition called a dedicated conventional route. In the

example below, the route named blog is a dedicated conventional route.

Using these route definitions, Url.Action("Index", "Home") will generate the URL path / with the default

route, but why? You might guess the route values { controller = Home, action = Index } would be enough

to generate a URL using blog , and the result would be /blog?action=Index&controller=Home .

Dedicated conventional routes rely on a special behavior of default values that don't have a corresponding

route parameter that prevents the route from being "too greedy" with URL generation. In this case the default

values are { controller = Blog, action = Article } , and neither controller nor action appears as a route

parameter. When routing performs URL generation, the values provided must match the default values. URL

generation using blog will fail because the values { controller = Home, action = Index } don't match

{ controller = Blog, action = Article } . Routing then falls back to try default , which succeeds.

Areas are an MVC feature used to organize related functionality into a group as a separate routing-

namespace (for controller actions) and folder structure (for views). Using areas allows an application to have

app.UseEndpoints(endpoints =>
{
 endpoints.MapAreaControllerRoute("blog_route", "Blog",
 "Manage/{controller}/{action}/{id?}");
 endpoints.MapControllerRoute("default_route", "{controller}/{action}/{id?}");
});

TIPTIP

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace1
{
 [Area("Blog")]
 public class UsersController : Controller
 {
 // GET /manage/users/adduser
 public IActionResult AddUser()
 {
 var area = ControllerContext.ActionDescriptor.RouteValues["area"];
 var actionName = ControllerContext.ActionDescriptor.ActionName;
 var controllerName = ControllerContext.ActionDescriptor.ControllerName;

 return Content($"area name:{area}" +
 $" controller:{controllerName} action name: {actionName}");
 }
 }
}

multiple controllers with the same name - as long as they have different areas. Using areas creates a

hierarchy for the purpose of routing by adding another route parameter, area to controller and action .

This section will discuss how routing interacts with areas - see Areas for details about how areas are used

with views.

The following example configures MVC to use the default conventional route and an area route for an area

named Blog :

When matching a URL path like /Manage/Users/AddUser , the first route will produce the route values

{ area = Blog, controller = Users, action = AddUser } . The area route value is produced by a default value

for area , in fact the route created by MapAreaRoute is equivalent to the following:

MapAreaRoute creates a route using both a default value and constraint for area using the provided area

name, in this case Blog . The default value ensures that the route always produces { area = Blog, ... } , the

constraint requires the value { area = Blog, ... } for URL generation.

Conventional routing is order-dependent. In general, routes with areas should be placed earlier in the route table as

they're more specific than routes without an area.

Using the above example, the route values would match the following action:

The AreaAttribute is what denotes a controller as part of an area, we say that this controller is in the Blog

area. Controllers without an [Area] attribute are not members of any area, and will notnot match when the

area route value is provided by routing. In the following example, only the first controller listed can match

the route values { area = Blog, controller = Users, action = AddUser } .

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace1
{
 [Area("Blog")]
 public class UsersController : Controller
 {
 // GET /manage/users/adduser
 public IActionResult AddUser()
 {
 var area = ControllerContext.ActionDescriptor.RouteValues["area"];
 var actionName = ControllerContext.ActionDescriptor.ActionName;
 var controllerName = ControllerContext.ActionDescriptor.ControllerName;

 return Content($"area name:{area}" +
 $" controller:{controllerName} action name: {actionName}");
 }
 }
}

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace2
{
 // Matches { area = Zebra, controller = Users, action = AddUser }
 [Area("Zebra")]
 public class UsersController : Controller
 {
 // GET /zebra/users/adduser
 public IActionResult AddUser()
 {
 var area = ControllerContext.ActionDescriptor.RouteValues["area"];
 var actionName = ControllerContext.ActionDescriptor.ActionName;
 var controllerName = ControllerContext.ActionDescriptor.ControllerName;

 return Content($"area name:{area}" +
 $" controller:{controllerName} action name: {actionName}");
 }
 }
}

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace3
{
 // Matches { area = string.Empty, controller = Users, action = AddUser }
 // Matches { area = null, controller = Users, action = AddUser }
 // Matches { controller = Users, action = AddUser }
 public class UsersController : Controller
 {
 // GET /users/adduser
 public IActionResult AddUser()
 {
 var area = ControllerContext.ActionDescriptor.RouteValues["area"];
 var actionName = ControllerContext.ActionDescriptor.ActionName;
 var controllerName = ControllerContext.ActionDescriptor.ControllerName;

 return Content($"area name:{area}" +
 $" controller:{controllerName} action name: {actionName}");
 }
 }
}

NOTENOTE

NOTENOTE

using Microsoft.AspNetCore.Mvc;

namespace MyApp.Namespace4
{
 [Area("Duck")]
 public class UsersController : Controller
 {
 // GET /Manage/users/GenerateURLInArea
 public IActionResult GenerateURLInArea()
 {
 // Uses the 'ambient' value of area.
 var url = Url.Action("Index", "Home");
 // Returns /Manage/Home/Index
 return Content(url);
 }

 // GET /Manage/users/GenerateURLOutsideOfArea
 public IActionResult GenerateURLOutsideOfArea()
 {
 // Uses the empty value for area.
 var url = Url.Action("Index", "Home", new { area = "" });
 // Returns /Manage
 return Content(url);
 }
 }
}

Understanding IActionConstraint

NOTENOTE

The namespace of each controller is shown here for completeness - otherwise the controllers would have a naming

conflict and generate a compiler error. Class namespaces have no effect on MVC's routing.

The first two controllers are members of areas, and only match when their respective area name is provided

by the area route value. The third controller isn't a member of any area, and can only match when no value

for area is provided by routing.

In terms of matching no value, the absence of the area value is the same as if the value for area were null or the

empty string.

When executing an action inside an area, the route value for area will be available as an ambient value for

routing to use for URL generation. This means that by default areas act sticky for URL generation as

demonstrated by the following sample.

This section is a deep-dive on framework internals and how MVC chooses an action to execute. A typical application

won't need a custom IActionConstraint

You have likely already used IActionConstraint even if you're not familiar with the interface. The [HttpGet]

Attribute and similar [Http-VERB] attributes implement IActionConstraint in order to limit the execution of

public class ProductsController : Controller
{
 [HttpGet]
 public IActionResult Edit() { }

 public IActionResult Edit(...) { }
}

Implementing IActionConstraintImplementing IActionConstraint

public class CountrySpecificAttribute : Attribute, IActionConstraint
{
 private readonly string _countryCode;

 public CountrySpecificAttribute(string countryCode)
 {
 _countryCode = countryCode;
 }

 public int Order
 {
 get
 {
 return 0;
 }
 }

 public bool Accept(ActionConstraintContext context)
 {
 return string.Equals(
 context.RouteContext.RouteData.Values["country"].ToString(),
 _countryCode,
 StringComparison.OrdinalIgnoreCase);
 }
}

an action method.

Assuming the default conventional route, the URL path /Products/Edit would produce the values

{ controller = Products, action = Edit } , which would match bothboth of the actions shown here. In

IActionConstraint terminology we would say that both of these actions are considered candidates - as they

both match the route data.

When the HttpGetAttribute executes, it will say that Edit() is a match for GET and isn't a match for any other

HTTP verb. The Edit(...) action doesn't have any constraints defined, and so will match any HTTP verb. So

assuming a POST - only Edit(...) matches. But, for a GET both actions can still match - however, an action

with an IActionConstraint is always considered better than an action without. So because Edit() has

[HttpGet] it's considered more specific, and will be selected if both actions can match.

Conceptually, IActionConstraint is a form of overloading, but instead of overloading methods with the same

name, it's overloading between actions that match the same URL. Attribute routing also uses

IActionConstraint and can result in actions from different controllers both being considered candidates.

The simplest way to implement an IActionConstraint is to create a class derived from System.Attribute and

place it on your actions and controllers. MVC will automatically discover any IActionConstraint that are

applied as attributes. You can use the application model to apply constraints, and this is probably the most

flexible approach as it allows you to metaprogram how they're applied.

In the following example, a constraint chooses an action based on a country code from the route data. The

full sample on GitHub.

https://github.com/aspnet/Entropy/blob/master/samples/Mvc.ActionConstraintSample.Web/CountrySpecificAttribute.cs

TIPTIP

You are responsible for implementing the Accept method and choosing an 'Order' for the constraint to

execute. In this case, the Accept method returns true to denote the action is a match when the country

route value matches. This is different from a RouteValueAttribute in that it allows fallback to a non-attributed

action. The sample shows that if you define an en-US action then a country code like fr-FR will fall back to a

more generic controller that doesn't have [CountrySpecific(...)] applied.

The Order property decides which stage the constraint is part of. Action constraints run in groups based on

the Order . For example, all of the framework provided HTTP method attributes use the same Order value so

that they run in the same stage. You can have as many stages as you need to implement your desired policies.

To decide on a value for Order think about whether or not your constraint should be applied before HTTP methods.

Lower numbers run first.

Dependency injection into controllers in ASP.NET
Core
9/22/2020 • 4 minutes to read • Edit Online

Constructor Injection

public interface IDateTime
{
 DateTime Now { get; }
}

public class SystemDateTime : IDateTime
{
 public DateTime Now
 {
 get { return DateTime.Now; }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddSingleton<IDateTime, SystemDateTime>();

 services.AddControllersWithViews();
}

By Shadi Namrouti, Rick Anderson, and Steve Smith

ASP.NET Core MVC controllers request dependencies explicitly via constructors. ASP.NET Core has built-in support

for dependency injection (DI). DI makes apps easier to test and maintain.

View or download sample code (how to download)

Services are added as a constructor parameter, and the runtime resolves the service from the service container.

Services are typically defined using interfaces. For example, consider an app that requires the current time. The

following interface exposes the IDateTime service:

The following code implements the IDateTime interface:

Add the service to the service container :

For more information on AddSingleton, see DI service lifetimes.

The following code displays a greeting to the user based on the time of day:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/dependency-injection.md
https://github.com/shadinamrouti
https://twitter.com/RickAndMSFT
https://github.com/ardalis
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/dependency-injection/sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addsingleton

public class HomeController : Controller
{
 private readonly IDateTime _dateTime;

 public HomeController(IDateTime dateTime)
 {
 _dateTime = dateTime;
 }

 public IActionResult Index()
 {
 var serverTime = _dateTime.Now;
 if (serverTime.Hour < 12)
 {
 ViewData["Message"] = "It's morning here - Good Morning!";
 }
 else if (serverTime.Hour < 17)
 {
 ViewData["Message"] = "It's afternoon here - Good Afternoon!";
 }
 else
 {
 ViewData["Message"] = "It's evening here - Good Evening!";
 }
 return View();
 }

Action injection with FromServices

public IActionResult About([FromServices] IDateTime dateTime)
{
 return Content($"Current server time: {dateTime.Now}");
}

Access settings from a controller

public class SampleWebSettings
{
 public string Title { get; set; }
 public int Updates { get; set; }
}

Run the app and a message is displayed based on the time.

The FromServicesAttribute enables injecting a service directly into an action method without using constructor

injection:

Accessing app or configuration settings from within a controller is a common pattern. The options pattern

described in Options pattern in ASP.NET Core is the preferred approach to manage settings. Generally, don't

directly inject IConfiguration into a controller.

Create a class that represents the options. For example:

Add the configuration class to the services collection:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromservicesattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration

public void ConfigureServices(IServiceCollection services)
{
 services.AddSingleton<IDateTime, SystemDateTime>();
 services.Configure<SampleWebSettings>(Configuration);

 services.AddControllersWithViews();
}

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddJsonFile("samplewebsettings.json",
 optional: false,
 reloadOnChange: true);
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

public class SettingsController : Controller
{
 private readonly SampleWebSettings _settings;

 public SettingsController(IOptions<SampleWebSettings> settingsOptions)
 {
 _settings = settingsOptions.Value;
 }

 public IActionResult Index()
 {
 ViewData["Title"] = _settings.Title;
 ViewData["Updates"] = _settings.Updates;
 return View();
 }
}

Additional resources

Configure the app to read the settings from a JSON-formatted file:

The following code requests the IOptions<SampleWebSettings> settings from the service container and uses them

in the Index method:

See Test controller logic in ASP.NET Core to learn how to make code easier to test by explicitly requesting

dependencies in controllers.

Replace the default dependency injection container with a third party implementation.

By Shadi Namrouti, Rick Anderson, and Steve Smith

ASP.NET Core MVC controllers request dependencies explicitly via constructors. ASP.NET Core has built-in support

https://github.com/shadinamrouti
https://twitter.com/RickAndMSFT
https://github.com/ardalis

Constructor Injection

public interface IDateTime
{
 DateTime Now { get; }
}

public class SystemDateTime : IDateTime
{
 public DateTime Now
 {
 get { return DateTime.Now; }
 }
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddSingleton<IDateTime, SystemDateTime>();

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

for dependency injection (DI). DI makes apps easier to test and maintain.

View or download sample code (how to download)

Services are added as a constructor parameter, and the runtime resolves the service from the service container.

Services are typically defined using interfaces. For example, consider an app that requires the current time. The

following interface exposes the IDateTime service:

The following code implements the IDateTime interface:

Add the service to the service container :

For more information on AddSingleton, see DI service lifetimes.

The following code displays a greeting to the user based on the time of day:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/dependency-injection/sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addsingleton

public class HomeController : Controller
{
 private readonly IDateTime _dateTime;

 public HomeController(IDateTime dateTime)
 {
 _dateTime = dateTime;
 }

 public IActionResult Index()
 {
 var serverTime = _dateTime.Now;
 if (serverTime.Hour < 12)
 {
 ViewData["Message"] = "It's morning here - Good Morning!";
 }
 else if (serverTime.Hour < 17)
 {
 ViewData["Message"] = "It's afternoon here - Good Afternoon!";
 }
 else
 {
 ViewData["Message"] = "It's evening here - Good Evening!";
 }
 return View();
 }

Action injection with FromServices

public IActionResult About([FromServices] IDateTime dateTime)
{
 ViewData["Message"] = $"Current server time: {dateTime.Now}";

 return View();
}

Access settings from a controller

public class SampleWebSettings
{
 public string Title { get; set; }
 public int Updates { get; set; }
}

Run the app and a message is displayed based on the time.

The FromServicesAttribute enables injecting a service directly into an action method without using constructor

injection:

Accessing app or configuration settings from within a controller is a common pattern. The options pattern

described in Options pattern in ASP.NET Core is the preferred approach to manage settings. Generally, don't

directly inject IConfiguration into a controller.

Create a class that represents the options. For example:

Add the configuration class to the services collection:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromservicesattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration

public void ConfigureServices(IServiceCollection services)
{
 services.AddSingleton<IDateTime, SystemDateTime>();
 services.Configure<SampleWebSettings>(Configuration);

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((hostingContext, config) =>
 {
 config.AddJsonFile("samplewebsettings.json",
 optional: false, // File is not optional.
 reloadOnChange: false);
 })
 .UseStartup<Startup>();
}

public class SettingsController : Controller
{
 private readonly SampleWebSettings _settings;

 public SettingsController(IOptions<SampleWebSettings> settingsOptions)
 {
 _settings = settingsOptions.Value;
 }

 public IActionResult Index()
 {
 ViewData["Title"] = _settings.Title;
 ViewData["Updates"] = _settings.Updates;
 return View();
 }
}

Additional resources

Configure the app to read the settings from a JSON-formatted file:

The following code requests the IOptions<SampleWebSettings> settings from the service container and uses them

in the Index method:

See Test controller logic in ASP.NET Core to learn how to make code easier to test by explicitly requesting

dependencies in controllers.

Replace the default dependency injection container with a third party implementation.

Dependency injection into views in ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

Configuration injection

{
 "root": {
 "parent": {
 "child": "myvalue"
 }
 }
}

@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration
@{
 string myValue = Configuration["root:parent:child"];
 ...
}

Service injection

By Steve Smith

ASP.NET Core supports dependency injection into views. This can be useful for view-specific services, such as

localization or data required only for populating view elements. You should try to maintain separation of

concerns between your controllers and views. Most of the data your views display should be passed in from the

controller.

View or download sample code (how to download)

appsettings.json values can be injected directly into a view.

Example of an appsettings.json file:

The syntax for @inject : @inject <type> <name>

An example using @inject :

A service can be injected into a view using the @inject directive. You can think of @inject as adding a property

to the view, and populating the property using DI.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/dependency-injection.md
https://ardalis.com/
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#separation-of-concerns
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/dependency-injection/sample

@using System.Threading.Tasks
@using ViewInjectSample.Model
@using ViewInjectSample.Model.Services
@model IEnumerable<ToDoItem>
@inject StatisticsService StatsService
<!DOCTYPE html>
<html>
<head>
 <title>To Do Items</title>
</head>
<body>
 <div>
 <h1>To Do Items</h1>

 Total Items: @StatsService.GetCount()
 Completed: @StatsService.GetCompletedCount()
 Avg. Priority: @StatsService.GetAveragePriority()

 <table>
 <tr>
 <th>Name</th>
 <th>Priority</th>
 <th>Is Done?</th>
 </tr>
 @foreach (var item in Model)
 {
 <tr>
 <td>@item.Name</td>
 <td>@item.Priority</td>
 <td>@item.IsDone</td>
 </tr>
 }
 </table>
 </div>
</body>
</html>

// For more information on how to configure your application, visit http://go.microsoft.com/fwlink/?
LinkID=398940
public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddTransient<IToDoItemRepository, ToDoItemRepository>();
 services.AddTransient<StatisticsService>();
 services.AddTransient<ProfileOptionsService>();

This view displays a list of ToDoItem instances, along with a summary showing overall statistics. The summary is

populated from the injected StatisticsService . This service is registered for dependency injection in

ConfigureServices in Startup.cs:

The StatisticsService performs some calculations on the set of ToDoItem instances, which it accesses via a

repository:

using System.Linq;
using ViewInjectSample.Interfaces;

namespace ViewInjectSample.Model.Services
{
 public class StatisticsService
 {
 private readonly IToDoItemRepository _toDoItemRepository;

 public StatisticsService(IToDoItemRepository toDoItemRepository)
 {
 _toDoItemRepository = toDoItemRepository;
 }

 public int GetCount()
 {
 return _toDoItemRepository.List().Count();
 }

 public int GetCompletedCount()
 {
 return _toDoItemRepository.List().Count(x => x.IsDone);
 }

 public double GetAveragePriority()
 {
 if (_toDoItemRepository.List().Count() == 0)
 {
 return 0.0;
 }

 return _toDoItemRepository.List().Average(x => x.Priority);
 }
 }
}

Populating Lookup Data

The sample repository uses an in-memory collection. The implementation shown above (which operates on all of

the data in memory) isn't recommended for large, remotely accessed data sets.

The sample displays data from the model bound to the view and the service injected into the view:

View injection can be useful to populate options in UI elements, such as dropdown lists. Consider a user profile

form that includes options for specifying gender, state, and other preferences. Rendering such a form using a

standard MVC approach would require the controller to request data access services for each of these sets of

using Microsoft.AspNetCore.Mvc;
using ViewInjectSample.Model;

namespace ViewInjectSample.Controllers
{
 public class ProfileController : Controller
 {
 [Route("Profile")]
 public IActionResult Index()
 {
 // TODO: look up profile based on logged-in user
 var profile = new Profile()
 {
 Name = "Steve",
 FavColor = "Blue",
 Gender = "Male",
 State = new State("Ohio","OH")
 };
 return View(profile);
 }
 }
}

options, and then populate a model or ViewBag with each set of options to be bound.

An alternative approach injects services directly into the view to obtain the options. This minimizes the amount of

code required by the controller, moving this view element construction logic into the view itself. The controller

action to display a profile editing form only needs to pass the form the profile instance:

The HTML form used to update these preferences includes dropdown lists for three of the properties:

These lists are populated by a service that has been injected into the view:

@using System.Threading.Tasks
@using ViewInjectSample.Model.Services
@model ViewInjectSample.Model.Profile
@inject ProfileOptionsService Options
<!DOCTYPE html>
<html>
<head>
 <title>Update Profile</title>
</head>
<body>
<div>
 <h1>Update Profile</h1>
 Name: @Html.TextBoxFor(m => m.Name)

 Gender: @Html.DropDownList("Gender",
 Options.ListGenders().Select(g =>
 new SelectListItem() { Text = g, Value = g }))

 State: @Html.DropDownListFor(m => m.State.Code,
 Options.ListStates().Select(s =>
 new SelectListItem() { Text = s.Name, Value = s.Code}))

 Fav. Color: @Html.DropDownList("FavColor",
 Options.ListColors().Select(c =>
 new SelectListItem() { Text = c, Value = c }))
 </div>
</body>
</html>

using System.Collections.Generic;

namespace ViewInjectSample.Model.Services
{
 public class ProfileOptionsService
 {
 public List<string> ListGenders()
 {
 // keeping this simple
 return new List<string>() {"Female", "Male"};
 }

 public List<State> ListStates()
 {
 // a few states from USA
 return new List<State>()
 {
 new State("Alabama", "AL"),
 new State("Alaska", "AK"),
 new State("Ohio", "OH")
 };
 }

 public List<string> ListColors()
 {
 return new List<string>() { "Blue","Green","Red","Yellow" };
 }
 }
}

The ProfileOptionsService is a UI-level service designed to provide just the data needed for this form:

IMPORTANTIMPORTANT

Overriding Services

@using System.Threading.Tasks
@using ViewInjectSample.Helpers
@inject MyHtmlHelper Html
<!DOCTYPE html>
<html>
<head>
 <title>My Helper</title>
</head>
<body>
 <div>
 Test: @Html.Value
 </div>
</body>
</html>

See Also

Don't forget to register types you request through dependency injection in Startup.ConfigureServices . An unregistered

type throws an exception at runtime because the service provider is internally queried via GetRequiredService.

In addition to injecting new services, this technique can also be used to override previously injected services on a

page. The figure below shows all of the fields available on the page used in the first example:

As you can see, the default fields include Html , Component , and Url (as well as the StatsService that we

injected). If for instance you wanted to replace the default HTML Helpers with your own, you could easily do so

using @inject :

If you want to extend existing services, you can simply use this technique while inheriting from or wrapping the

existing implementation with your own.

Simon Timms Blog: Getting Lookup Data Into Your View

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.serviceproviderserviceextensions.getrequiredservice
https://blog.simontimms.com/2015/06/09/getting-lookup-data-into-you-view/

Unit test controller logic in ASP.NET Core
9/22/2020 • 25 minutes to read • Edit Online

Unit testing controllers

By Steve Smith

Unit tests involve testing a part of an app in isolation from its infrastructure and dependencies. When unit testing

controller logic, only the contents of a single action are tested, not the behavior of its dependencies or of the

framework itself.

Set up unit tests of controller actions to focus on the controller's behavior. A controller unit test avoids scenarios

such as filters, routing, and model binding. Tests that cover the interactions among components that collectively

respond to a request are handled by integration tests. For more information on integration tests, see Integration

tests in ASP.NET Core.

If you're writing custom filters and routes, unit test them in isolation, not as part of tests on a particular controller

action.

To demonstrate controller unit tests, review the following controller in the sample app.

View or download sample code (how to download)

The Home controller displays a list of brainstorming sessions and allows the creation of new brainstorming

sessions with a POST request:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/testing.md
https://ardalis.com/
https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/testing/samples/

public class HomeController : Controller
{
 private readonly IBrainstormSessionRepository _sessionRepository;

 public HomeController(IBrainstormSessionRepository sessionRepository)
 {
 _sessionRepository = sessionRepository;
 }

 public async Task<IActionResult> Index()
 {
 var sessionList = await _sessionRepository.ListAsync();

 var model = sessionList.Select(session => new StormSessionViewModel()
 {
 Id = session.Id,
 DateCreated = session.DateCreated,
 Name = session.Name,
 IdeaCount = session.Ideas.Count
 });

 return View(model);
 }

 public class NewSessionModel
 {
 [Required]
 public string SessionName { get; set; }
 }

 [HttpPost]
 public async Task<IActionResult> Index(NewSessionModel model)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 else
 {
 await _sessionRepository.AddAsync(new BrainstormSession()
 {
 DateCreated = DateTimeOffset.Now,
 Name = model.SessionName
 });
 }

 return RedirectToAction(actionName: nameof(Index));
 }
}

The preceding controller :

Follows the Explicit Dependencies Principle.

Expects dependency injection (DI) to provide an instance of IBrainstormSessionRepository .

Can be tested with a mocked IBrainstormSessionRepository service using a mock object framework, such as

Moq. A mocked object is a fabricated object with a predetermined set of property and method behaviors used

for testing. For more information, see Introduction to integration tests.

The HTTP GET Index method has no looping or branching and only calls one method. The unit test for this action:

Mocks the IBrainstormSessionRepository service using the GetTestSessions method. GetTestSessions creates

two mock brainstorm sessions with dates and session names.

Executes the Index method.

https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies
https://www.nuget.org/packages/Moq/

[Fact]
public async Task Index_ReturnsAViewResult_WithAListOfBrainstormSessions()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.ListAsync())
 .ReturnsAsync(GetTestSessions());
 var controller = new HomeController(mockRepo.Object);

 // Act
 var result = await controller.Index();

 // Assert
 var viewResult = Assert.IsType<ViewResult>(result);
 var model = Assert.IsAssignableFrom<IEnumerable<StormSessionViewModel>>(
 viewResult.ViewData.Model);
 Assert.Equal(2, model.Count());
}

private List<BrainstormSession> GetTestSessions()
{
 var sessions = new List<BrainstormSession>();
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 2),
 Id = 1,
 Name = "Test One"
 });
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 1),
 Id = 2,
 Name = "Test Two"
 });
 return sessions;
}

Makes assertions on the result returned by the method:

A ViewResult is returned.

The ViewDataDictionary.Model is a StormSessionViewModel .

There are two brainstorming sessions stored in the ViewDataDictionary.Model .

The Home controller's HTTP POST Index method tests verifies that:

When ModelState.IsValid is false , the action method returns a 400 Bad Request ViewResult with the

appropriate data.

When ModelState.IsValid is true :

The Add method on the repository is called.

A RedirectToActionResult is returned with the correct arguments.

An invalid model state is tested by adding errors using AddModelError as shown in the first test below:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary.model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.isvalid
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.redirecttoactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.addmodelerror

[Fact]
public async Task IndexPost_ReturnsBadRequestResult_WhenModelStateIsInvalid()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.ListAsync())
 .ReturnsAsync(GetTestSessions());
 var controller = new HomeController(mockRepo.Object);
 controller.ModelState.AddModelError("SessionName", "Required");
 var newSession = new HomeController.NewSessionModel();

 // Act
 var result = await controller.Index(newSession);

 // Assert
 var badRequestResult = Assert.IsType<BadRequestObjectResult>(result);
 Assert.IsType<SerializableError>(badRequestResult.Value);
}

[Fact]
public async Task IndexPost_ReturnsARedirectAndAddsSession_WhenModelStateIsValid()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.AddAsync(It.IsAny<BrainstormSession>()))
 .Returns(Task.CompletedTask)
 .Verifiable();
 var controller = new HomeController(mockRepo.Object);
 var newSession = new HomeController.NewSessionModel()
 {
 SessionName = "Test Name"
 };

 // Act
 var result = await controller.Index(newSession);

 // Assert
 var redirectToActionResult = Assert.IsType<RedirectToActionResult>(result);
 Assert.Null(redirectToActionResult.ControllerName);
 Assert.Equal("Index", redirectToActionResult.ActionName);
 mockRepo.Verify();
}

NOTENOTE

When ModelState isn't valid, the same ViewResult is returned as for a GET request. The test doesn't attempt to pass

in an invalid model. Passing an invalid model isn't a valid approach, since model binding isn't running (although an

integration test does use model binding). In this case, model binding isn't tested. These unit tests are only testing

the code in the action method.

The second test verifies that when the ModelState is valid:

A new BrainstormSession is added (via the repository).

The method returns a RedirectToActionResult with the expected properties.

Mocked calls that aren't called are normally ignored, but calling Verifiable at the end of the setup call allows mock

validation in the test. This is performed with the call to mockRepo.Verify , which fails the test if the expected method

wasn't called.

The Moq library used in this sample makes it possible to mix verifiable, or "strict", mocks with non-verifiable mocks (also called

"loose" mocks or stubs). Learn more about customizing Mock behavior with Moq.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://github.com/Moq/moq4/wiki/Quickstart#customizing-mock-behavior

public class SessionController : Controller
{
 private readonly IBrainstormSessionRepository _sessionRepository;

 public SessionController(IBrainstormSessionRepository sessionRepository)
 {
 _sessionRepository = sessionRepository;
 }

 public async Task<IActionResult> Index(int? id)
 {
 if (!id.HasValue)
 {
 return RedirectToAction(actionName: nameof(Index),
 controllerName: "Home");
 }

 var session = await _sessionRepository.GetByIdAsync(id.Value);
 if (session == null)
 {
 return Content("Session not found.");
 }

 var viewModel = new StormSessionViewModel()
 {
 DateCreated = session.DateCreated,
 Name = session.Name,
 Id = session.Id
 };

 return View(viewModel);
 }
}

SessionController in the sample app displays information related to a particular brainstorming session. The

controller includes logic to deal with invalid id values (there are two return scenarios in the following example to

cover these scenarios). The final return statement returns a new StormSessionViewModel to the view

(Controllers/SessionController.cs):

The unit tests include one test for each return scenario in the Session controller Index action:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/testing/samples/3.x/TestingControllersSample/src/TestingControllersSample/Controllers/SessionController.cs

[Fact]
public async Task IndexReturnsARedirectToIndexHomeWhenIdIsNull()
{
 // Arrange
 var controller = new SessionController(sessionRepository: null);

 // Act
 var result = await controller.Index(id: null);

 // Assert
 var redirectToActionResult =
 Assert.IsType<RedirectToActionResult>(result);
 Assert.Equal("Home", redirectToActionResult.ControllerName);
 Assert.Equal("Index", redirectToActionResult.ActionName);
}

[Fact]
public async Task IndexReturnsContentWithSessionNotFoundWhenSessionNotFound()
{
 // Arrange
 int testSessionId = 1;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync((BrainstormSession)null);
 var controller = new SessionController(mockRepo.Object);

 // Act
 var result = await controller.Index(testSessionId);

 // Assert
 var contentResult = Assert.IsType<ContentResult>(result);
 Assert.Equal("Session not found.", contentResult.Content);
}

[Fact]
public async Task IndexReturnsViewResultWithStormSessionViewModel()
{
 // Arrange
 int testSessionId = 1;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync(GetTestSessions().FirstOrDefault(
 s => s.Id == testSessionId));
 var controller = new SessionController(mockRepo.Object);

 // Act
 var result = await controller.Index(testSessionId);

 // Assert
 var viewResult = Assert.IsType<ViewResult>(result);
 var model = Assert.IsType<StormSessionViewModel>(
 viewResult.ViewData.Model);
 Assert.Equal("Test One", model.Name);
 Assert.Equal(2, model.DateCreated.Day);
 Assert.Equal(testSessionId, model.Id);
}

Moving to the Ideas controller, the app exposes functionality as a web API on the api/ideas route:

A list of ideas (IdeaDTO) associated with a brainstorming session is returned by the ForSession method.

The Create method adds new ideas to a session.

[HttpGet("forsession/{sessionId}")]
public async Task<IActionResult> ForSession(int sessionId)
{
 var session = await _sessionRepository.GetByIdAsync(sessionId);
 if (session == null)
 {
 return NotFound(sessionId);
 }

 var result = session.Ideas.Select(idea => new IdeaDTO()
 {
 Id = idea.Id,
 Name = idea.Name,
 Description = idea.Description,
 DateCreated = idea.DateCreated
 }).ToList();

 return Ok(result);
}

[HttpPost("create")]
public async Task<IActionResult> Create([FromBody]NewIdeaModel model)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var session = await _sessionRepository.GetByIdAsync(model.SessionId);
 if (session == null)
 {
 return NotFound(model.SessionId);
 }

 var idea = new Idea()
 {
 DateCreated = DateTimeOffset.Now,
 Description = model.Description,
 Name = model.Name
 };
 session.AddIdea(idea);

 await _sessionRepository.UpdateAsync(session);

 return Ok(session);
}

Avoid returning business domain entities directly via API calls. Domain entities:

Often include more data than the client requires.

Unnecessarily couple the app's internal domain model with the publicly exposed API.

Mapping between domain entities and the types returned to the client can be performed:

Manually with a LINQ Select , as the sample app uses. For more information, see LINQ (Language Integrated

Query).

Automatically with a library, such as AutoMapper.

Next, the sample app demonstrates unit tests for the Create and ForSession API methods of the Ideas controller.

The sample app contains two ForSession tests. The first test determines if ForSession returns a

NotFoundObjectResult (HTTP Not Found) for an invalid session:

https://docs.microsoft.com/en-us/dotnet/standard/using-linq
https://github.com/AutoMapper/AutoMapper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.notfoundobjectresult

[Fact]
public async Task ForSession_ReturnsHttpNotFound_ForInvalidSession()
{
 // Arrange
 int testSessionId = 123;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync((BrainstormSession)null);
 var controller = new IdeasController(mockRepo.Object);

 // Act
 var result = await controller.ForSession(testSessionId);

 // Assert
 var notFoundObjectResult = Assert.IsType<NotFoundObjectResult>(result);
 Assert.Equal(testSessionId, notFoundObjectResult.Value);
}

[Fact]
public async Task ForSession_ReturnsIdeasForSession()
{
 // Arrange
 int testSessionId = 123;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync(GetTestSession());
 var controller = new IdeasController(mockRepo.Object);

 // Act
 var result = await controller.ForSession(testSessionId);

 // Assert
 var okResult = Assert.IsType<OkObjectResult>(result);
 var returnValue = Assert.IsType<List<IdeaDTO>>(okResult.Value);
 var idea = returnValue.FirstOrDefault();
 Assert.Equal("One", idea.Name);
}

[Fact]
public async Task Create_ReturnsBadRequest_GivenInvalidModel()
{
 // Arrange & Act
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);
 controller.ModelState.AddModelError("error", "some error");

 // Act
 var result = await controller.Create(model: null);

 // Assert
 Assert.IsType<BadRequestObjectResult>(result);
}

The second ForSession test determines if ForSession returns a list of session ideas (<List<IdeaDTO>>) for a valid

session. The checks also examine the first idea to confirm its Name property is correct:

To test the behavior of the Create method when the ModelState is invalid, the sample app adds a model error to

the controller as part of the test. Don't try to test model validation or model binding in unit tests—just test the

action method's behavior when confronted with an invalid ModelState :

The second test of Create depends on the repository returning null , so the mock repository is configured to

[Fact]
public async Task Create_ReturnsHttpNotFound_ForInvalidSession()
{
 // Arrange
 int testSessionId = 123;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync((BrainstormSession)null);
 var controller = new IdeasController(mockRepo.Object);

 // Act
 var result = await controller.Create(new NewIdeaModel());

 // Assert
 Assert.IsType<NotFoundObjectResult>(result);
}

[Fact]
public async Task Create_ReturnsNewlyCreatedIdeaForSession()
{
 // Arrange
 int testSessionId = 123;
 string testName = "test name";
 string testDescription = "test description";
 var testSession = GetTestSession();
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync(testSession);
 var controller = new IdeasController(mockRepo.Object);

 var newIdea = new NewIdeaModel()
 {
 Description = testDescription,
 Name = testName,
 SessionId = testSessionId
 };
 mockRepo.Setup(repo => repo.UpdateAsync(testSession))
 .Returns(Task.CompletedTask)
 .Verifiable();

 // Act
 var result = await controller.Create(newIdea);

 // Assert
 var okResult = Assert.IsType<OkObjectResult>(result);
 var returnSession = Assert.IsType<BrainstormSession>(okResult.Value);
 mockRepo.Verify();
 Assert.Equal(2, returnSession.Ideas.Count());
 Assert.Equal(testName, returnSession.Ideas.LastOrDefault().Name);
 Assert.Equal(testDescription, returnSession.Ideas.LastOrDefault().Description);
}

Test ActionResult<T>

return null . There's no need to create a test database (in memory or otherwise) and construct a query that returns

this result. The test can be accomplished in a single statement, as the sample code illustrates:

The third Create test, Create_ReturnsNewlyCreatedIdeaForSession , verifies that the repository's UpdateAsync method

is called. The mock is called with Verifiable , and the mocked repository's Verify method is called to confirm the

verifiable method is executed. It's not the unit test's responsibility to ensure that the UpdateAsync method saved the

data—that can be performed with an integration test.

[HttpGet("forsessionactionresult/{sessionId}")]
[ProducesResponseType(200)]
[ProducesResponseType(404)]
public async Task<ActionResult<List<IdeaDTO>>> ForSessionActionResult(int sessionId)
{
 var session = await _sessionRepository.GetByIdAsync(sessionId);

 if (session == null)
 {
 return NotFound(sessionId);
 }

 var result = session.Ideas.Select(idea => new IdeaDTO()
 {
 Id = idea.Id,
 Name = idea.Name,
 Description = idea.Description,
 DateCreated = idea.DateCreated
 }).ToList();

 return result;
}

[Fact]
public async Task ForSessionActionResult_ReturnsNotFoundObjectResultForNonexistentSession()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);
 var nonExistentSessionId = 999;

 // Act
 var result = await controller.ForSessionActionResult(nonExistentSessionId);

 // Assert
 var actionResult = Assert.IsType<ActionResult<List<IdeaDTO>>>(result);
 Assert.IsType<NotFoundObjectResult>(actionResult.Result);
}

In ASP.NET Core 2.1 or later, ActionResult<T> (ActionResult<TValue>) enables you to return a type deriving from

ActionResult or return a specific type.

The sample app includes a method that returns a List<IdeaDTO> for a given session id . If the session id doesn't

exist, the controller returns NotFound:

Two tests of the ForSessionActionResult controller are included in the ApiIdeasControllerTests .

The first test confirms that the controller returns an ActionResult but not a nonexistent list of ideas for a

nonexistent session id :

The ActionResult type is ActionResult<List<IdeaDTO>> .

The Result is a NotFoundObjectResult.

For a valid session id , the second test confirms that the method returns:

An ActionResult with a List<IdeaDTO> type.

The ActionResult<T>.Value is a List<IdeaDTO> type.

The first item in the list is a valid idea matching the idea stored in the mock session (obtained by calling

GetTestSession).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.notfoundobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.value

[Fact]
public async Task ForSessionActionResult_ReturnsIdeasForSession()
{
 // Arrange
 int testSessionId = 123;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync(GetTestSession());
 var controller = new IdeasController(mockRepo.Object);

 // Act
 var result = await controller.ForSessionActionResult(testSessionId);

 // Assert
 var actionResult = Assert.IsType<ActionResult<List<IdeaDTO>>>(result);
 var returnValue = Assert.IsType<List<IdeaDTO>>(actionResult.Value);
 var idea = returnValue.FirstOrDefault();
 Assert.Equal("One", idea.Name);
}

[HttpPost("createactionresult")]
[ProducesResponseType(201)]
[ProducesResponseType(400)]
[ProducesResponseType(404)]
public async Task<ActionResult<BrainstormSession>> CreateActionResult([FromBody]NewIdeaModel model)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var session = await _sessionRepository.GetByIdAsync(model.SessionId);

 if (session == null)
 {
 return NotFound(model.SessionId);
 }

 var idea = new Idea()
 {
 DateCreated = DateTimeOffset.Now,
 Description = model.Description,
 Name = model.Name
 };
 session.AddIdea(idea);

 await _sessionRepository.UpdateAsync(session);

 return CreatedAtAction(nameof(CreateActionResult), new { id = session.Id }, session);
}

The sample app also includes a method to create a new Idea for a given session. The controller returns:

BadRequest for an invalid model.

NotFound if the session doesn't exist.

CreatedAtAction when the session is updated with the new idea.

Three tests of CreateActionResult are included in the ApiIdeasControllerTests .

The first text confirms that a BadRequest is returned for an invalid model.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest

[Fact]
public async Task CreateActionResult_ReturnsBadRequest_GivenInvalidModel()
{
 // Arrange & Act
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);
 controller.ModelState.AddModelError("error", "some error");

 // Act
 var result = await controller.CreateActionResult(model: null);

 // Assert
 var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
 Assert.IsType<BadRequestObjectResult>(actionResult.Result);
}

[Fact]
public async Task CreateActionResult_ReturnsNotFoundObjectResultForNonexistentSession()
{
 // Arrange
 var nonExistentSessionId = 999;
 string testName = "test name";
 string testDescription = "test description";
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);

 var newIdea = new NewIdeaModel()
 {
 Description = testDescription,
 Name = testName,
 SessionId = nonExistentSessionId
 };

 // Act
 var result = await controller.CreateActionResult(newIdea);

 // Assert
 var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
 Assert.IsType<NotFoundObjectResult>(actionResult.Result);
}

The second test checks that a NotFound is returned if the session doesn't exist.

For a valid session id , the final test confirms that:

The method returns an ActionResult with a BrainstormSession type.

The ActionResult<T>.Result is a CreatedAtActionResult. CreatedAtActionResult is analogous to a 201 Created

response with a Location header.

The ActionResult<T>.Value is a BrainstormSession type.

The mock call to update the session, UpdateAsync(testSession) , was invoked. The Verifiable method call is

checked by executing mockRepo.Verify() in the assertions.

Two Idea objects are returned for the session.

The last item (the Idea added by the mock call to UpdateAsync) matches the newIdea added to the session in

the test.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.createdatactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.value

[Fact]
public async Task CreateActionResult_ReturnsNewlyCreatedIdeaForSession()
{
 // Arrange
 int testSessionId = 123;
 string testName = "test name";
 string testDescription = "test description";
 var testSession = GetTestSession();
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync(testSession);
 var controller = new IdeasController(mockRepo.Object);

 var newIdea = new NewIdeaModel()
 {
 Description = testDescription,
 Name = testName,
 SessionId = testSessionId
 };
 mockRepo.Setup(repo => repo.UpdateAsync(testSession))
 .Returns(Task.CompletedTask)
 .Verifiable();

 // Act
 var result = await controller.CreateActionResult(newIdea);

 // Assert
 var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
 var createdAtActionResult = Assert.IsType<CreatedAtActionResult>(actionResult.Result);
 var returnValue = Assert.IsType<BrainstormSession>(createdAtActionResult.Value);
 mockRepo.Verify();
 Assert.Equal(2, returnValue.Ideas.Count());
 Assert.Equal(testName, returnValue.Ideas.LastOrDefault().Name);
 Assert.Equal(testDescription, returnValue.Ideas.LastOrDefault().Description);
}

Unit tests of controller logic

Controllers play a central role in any ASP.NET Core MVC app. As such, you should have confidence that controllers

behave as intended. Automated tests can detect errors before the app is deployed to a production environment.

View or download sample code (how to download)

Unit tests involve testing a part of an app in isolation from its infrastructure and dependencies. When unit testing

controller logic, only the contents of a single action are tested, not the behavior of its dependencies or of the

framework itself.

Set up unit tests of controller actions to focus on the controller's behavior. A controller unit test avoids scenarios

such as filters, routing, and model binding. Tests that cover the interactions among components that collectively

respond to a request are handled by integration tests. For more information on integration tests, see Integration

tests in ASP.NET Core.

If you're writing custom filters and routes, unit test them in isolation, not as part of tests on a particular controller

action.

To demonstrate controller unit tests, review the following controller in the sample app. The Home controller

displays a list of brainstorming sessions and allows the creation of new brainstorming sessions with a POST

request:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/testing/samples/
https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test

public class HomeController : Controller
{
 private readonly IBrainstormSessionRepository _sessionRepository;

 public HomeController(IBrainstormSessionRepository sessionRepository)
 {
 _sessionRepository = sessionRepository;
 }

 public async Task<IActionResult> Index()
 {
 var sessionList = await _sessionRepository.ListAsync();

 var model = sessionList.Select(session => new StormSessionViewModel()
 {
 Id = session.Id,
 DateCreated = session.DateCreated,
 Name = session.Name,
 IdeaCount = session.Ideas.Count
 });

 return View(model);
 }

 public class NewSessionModel
 {
 [Required]
 public string SessionName { get; set; }
 }

 [HttpPost]
 public async Task<IActionResult> Index(NewSessionModel model)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 else
 {
 await _sessionRepository.AddAsync(new BrainstormSession()
 {
 DateCreated = DateTimeOffset.Now,
 Name = model.SessionName
 });
 }

 return RedirectToAction(actionName: nameof(Index));
 }
}

The preceding controller :

Follows the Explicit Dependencies Principle.

Expects dependency injection (DI) to provide an instance of IBrainstormSessionRepository .

Can be tested with a mocked IBrainstormSessionRepository service using a mock object framework, such as

Moq. A mocked object is a fabricated object with a predetermined set of property and method behaviors used

for testing. For more information, see Introduction to integration tests.

The HTTP GET Index method has no looping or branching and only calls one method. The unit test for this action:

Mocks the IBrainstormSessionRepository service using the GetTestSessions method. GetTestSessions creates

two mock brainstorm sessions with dates and session names.

Executes the Index method.

https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies
https://www.nuget.org/packages/Moq/

[Fact]
public async Task Index_ReturnsAViewResult_WithAListOfBrainstormSessions()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.ListAsync())
 .ReturnsAsync(GetTestSessions());
 var controller = new HomeController(mockRepo.Object);

 // Act
 var result = await controller.Index();

 // Assert
 var viewResult = Assert.IsType<ViewResult>(result);
 var model = Assert.IsAssignableFrom<IEnumerable<StormSessionViewModel>>(
 viewResult.ViewData.Model);
 Assert.Equal(2, model.Count());
}

private List<BrainstormSession> GetTestSessions()
{
 var sessions = new List<BrainstormSession>();
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 2),
 Id = 1,
 Name = "Test One"
 });
 sessions.Add(new BrainstormSession()
 {
 DateCreated = new DateTime(2016, 7, 1),
 Id = 2,
 Name = "Test Two"
 });
 return sessions;
}

Makes assertions on the result returned by the method:

A ViewResult is returned.

The ViewDataDictionary.Model is a StormSessionViewModel .

There are two brainstorming sessions stored in the ViewDataDictionary.Model .

The Home controller's HTTP POST Index method tests verifies that:

When ModelState.IsValid is false , the action method returns a 400 Bad Request ViewResult with the

appropriate data.

When ModelState.IsValid is true :

The Add method on the repository is called.

A RedirectToActionResult is returned with the correct arguments.

An invalid model state is tested by adding errors using AddModelError as shown in the first test below:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary.model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.isvalid
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.redirecttoactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.addmodelerror

[Fact]
public async Task IndexPost_ReturnsBadRequestResult_WhenModelStateIsInvalid()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.ListAsync())
 .ReturnsAsync(GetTestSessions());
 var controller = new HomeController(mockRepo.Object);
 controller.ModelState.AddModelError("SessionName", "Required");
 var newSession = new HomeController.NewSessionModel();

 // Act
 var result = await controller.Index(newSession);

 // Assert
 var badRequestResult = Assert.IsType<BadRequestObjectResult>(result);
 Assert.IsType<SerializableError>(badRequestResult.Value);
}

[Fact]
public async Task IndexPost_ReturnsARedirectAndAddsSession_WhenModelStateIsValid()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.AddAsync(It.IsAny<BrainstormSession>()))
 .Returns(Task.CompletedTask)
 .Verifiable();
 var controller = new HomeController(mockRepo.Object);
 var newSession = new HomeController.NewSessionModel()
 {
 SessionName = "Test Name"
 };

 // Act
 var result = await controller.Index(newSession);

 // Assert
 var redirectToActionResult = Assert.IsType<RedirectToActionResult>(result);
 Assert.Null(redirectToActionResult.ControllerName);
 Assert.Equal("Index", redirectToActionResult.ActionName);
 mockRepo.Verify();
}

NOTENOTE

When ModelState isn't valid, the same ViewResult is returned as for a GET request. The test doesn't attempt to pass

in an invalid model. Passing an invalid model isn't a valid approach, since model binding isn't running (although an

integration test does use model binding). In this case, model binding isn't tested. These unit tests are only testing

the code in the action method.

The second test verifies that when the ModelState is valid:

A new BrainstormSession is added (via the repository).

The method returns a RedirectToActionResult with the expected properties.

Mocked calls that aren't called are normally ignored, but calling Verifiable at the end of the setup call allows mock

validation in the test. This is performed with the call to mockRepo.Verify , which fails the test if the expected method

wasn't called.

The Moq library used in this sample makes it possible to mix verifiable, or "strict", mocks with non-verifiable mocks (also called

"loose" mocks or stubs). Learn more about customizing Mock behavior with Moq.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://github.com/Moq/moq4/wiki/Quickstart#customizing-mock-behavior

public class SessionController : Controller
{
 private readonly IBrainstormSessionRepository _sessionRepository;

 public SessionController(IBrainstormSessionRepository sessionRepository)
 {
 _sessionRepository = sessionRepository;
 }

 public async Task<IActionResult> Index(int? id)
 {
 if (!id.HasValue)
 {
 return RedirectToAction(actionName: nameof(Index),
 controllerName: "Home");
 }

 var session = await _sessionRepository.GetByIdAsync(id.Value);
 if (session == null)
 {
 return Content("Session not found.");
 }

 var viewModel = new StormSessionViewModel()
 {
 DateCreated = session.DateCreated,
 Name = session.Name,
 Id = session.Id
 };

 return View(viewModel);
 }
}

SessionController in the sample app displays information related to a particular brainstorming session. The

controller includes logic to deal with invalid id values (there are two return scenarios in the following example to

cover these scenarios). The final return statement returns a new StormSessionViewModel to the view

(Controllers/SessionController.cs):

The unit tests include one test for each return scenario in the Session controller Index action:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/testing/samples/2.x/TestingControllersSample/src/TestingControllersSample/Controllers/SessionController.cs

[Fact]
public async Task IndexReturnsARedirectToIndexHomeWhenIdIsNull()
{
 // Arrange
 var controller = new SessionController(sessionRepository: null);

 // Act
 var result = await controller.Index(id: null);

 // Assert
 var redirectToActionResult =
 Assert.IsType<RedirectToActionResult>(result);
 Assert.Equal("Home", redirectToActionResult.ControllerName);
 Assert.Equal("Index", redirectToActionResult.ActionName);
}

[Fact]
public async Task IndexReturnsContentWithSessionNotFoundWhenSessionNotFound()
{
 // Arrange
 int testSessionId = 1;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync((BrainstormSession)null);
 var controller = new SessionController(mockRepo.Object);

 // Act
 var result = await controller.Index(testSessionId);

 // Assert
 var contentResult = Assert.IsType<ContentResult>(result);
 Assert.Equal("Session not found.", contentResult.Content);
}

[Fact]
public async Task IndexReturnsViewResultWithStormSessionViewModel()
{
 // Arrange
 int testSessionId = 1;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync(GetTestSessions().FirstOrDefault(
 s => s.Id == testSessionId));
 var controller = new SessionController(mockRepo.Object);

 // Act
 var result = await controller.Index(testSessionId);

 // Assert
 var viewResult = Assert.IsType<ViewResult>(result);
 var model = Assert.IsType<StormSessionViewModel>(
 viewResult.ViewData.Model);
 Assert.Equal("Test One", model.Name);
 Assert.Equal(2, model.DateCreated.Day);
 Assert.Equal(testSessionId, model.Id);
}

Moving to the Ideas controller, the app exposes functionality as a web API on the api/ideas route:

A list of ideas (IdeaDTO) associated with a brainstorming session is returned by the ForSession method.

The Create method adds new ideas to a session.

[HttpGet("forsession/{sessionId}")]
public async Task<IActionResult> ForSession(int sessionId)
{
 var session = await _sessionRepository.GetByIdAsync(sessionId);
 if (session == null)
 {
 return NotFound(sessionId);
 }

 var result = session.Ideas.Select(idea => new IdeaDTO()
 {
 Id = idea.Id,
 Name = idea.Name,
 Description = idea.Description,
 DateCreated = idea.DateCreated
 }).ToList();

 return Ok(result);
}

[HttpPost("create")]
public async Task<IActionResult> Create([FromBody]NewIdeaModel model)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var session = await _sessionRepository.GetByIdAsync(model.SessionId);
 if (session == null)
 {
 return NotFound(model.SessionId);
 }

 var idea = new Idea()
 {
 DateCreated = DateTimeOffset.Now,
 Description = model.Description,
 Name = model.Name
 };
 session.AddIdea(idea);

 await _sessionRepository.UpdateAsync(session);

 return Ok(session);
}

Avoid returning business domain entities directly via API calls. Domain entities:

Often include more data than the client requires.

Unnecessarily couple the app's internal domain model with the publicly exposed API.

Mapping between domain entities and the types returned to the client can be performed:

Manually with a LINQ Select , as the sample app uses. For more information, see LINQ (Language Integrated

Query).

Automatically with a library, such as AutoMapper.

Next, the sample app demonstrates unit tests for the Create and ForSession API methods of the Ideas controller.

The sample app contains two ForSession tests. The first test determines if ForSession returns a

NotFoundObjectResult (HTTP Not Found) for an invalid session:

https://docs.microsoft.com/en-us/dotnet/standard/using-linq
https://github.com/AutoMapper/AutoMapper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.notfoundobjectresult

[Fact]
public async Task ForSession_ReturnsHttpNotFound_ForInvalidSession()
{
 // Arrange
 int testSessionId = 123;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync((BrainstormSession)null);
 var controller = new IdeasController(mockRepo.Object);

 // Act
 var result = await controller.ForSession(testSessionId);

 // Assert
 var notFoundObjectResult = Assert.IsType<NotFoundObjectResult>(result);
 Assert.Equal(testSessionId, notFoundObjectResult.Value);
}

[Fact]
public async Task ForSession_ReturnsIdeasForSession()
{
 // Arrange
 int testSessionId = 123;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync(GetTestSession());
 var controller = new IdeasController(mockRepo.Object);

 // Act
 var result = await controller.ForSession(testSessionId);

 // Assert
 var okResult = Assert.IsType<OkObjectResult>(result);
 var returnValue = Assert.IsType<List<IdeaDTO>>(okResult.Value);
 var idea = returnValue.FirstOrDefault();
 Assert.Equal("One", idea.Name);
}

[Fact]
public async Task Create_ReturnsBadRequest_GivenInvalidModel()
{
 // Arrange & Act
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);
 controller.ModelState.AddModelError("error", "some error");

 // Act
 var result = await controller.Create(model: null);

 // Assert
 Assert.IsType<BadRequestObjectResult>(result);
}

The second ForSession test determines if ForSession returns a list of session ideas (<List<IdeaDTO>>) for a valid

session. The checks also examine the first idea to confirm its Name property is correct:

To test the behavior of the Create method when the ModelState is invalid, the sample app adds a model error to

the controller as part of the test. Don't try to test model validation or model binding in unit tests—just test the

action method's behavior when confronted with an invalid ModelState :

The second test of Create depends on the repository returning null , so the mock repository is configured to

[Fact]
public async Task Create_ReturnsHttpNotFound_ForInvalidSession()
{
 // Arrange
 int testSessionId = 123;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync((BrainstormSession)null);
 var controller = new IdeasController(mockRepo.Object);

 // Act
 var result = await controller.Create(new NewIdeaModel());

 // Assert
 Assert.IsType<NotFoundObjectResult>(result);
}

[Fact]
public async Task Create_ReturnsNewlyCreatedIdeaForSession()
{
 // Arrange
 int testSessionId = 123;
 string testName = "test name";
 string testDescription = "test description";
 var testSession = GetTestSession();
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync(testSession);
 var controller = new IdeasController(mockRepo.Object);

 var newIdea = new NewIdeaModel()
 {
 Description = testDescription,
 Name = testName,
 SessionId = testSessionId
 };
 mockRepo.Setup(repo => repo.UpdateAsync(testSession))
 .Returns(Task.CompletedTask)
 .Verifiable();

 // Act
 var result = await controller.Create(newIdea);

 // Assert
 var okResult = Assert.IsType<OkObjectResult>(result);
 var returnSession = Assert.IsType<BrainstormSession>(okResult.Value);
 mockRepo.Verify();
 Assert.Equal(2, returnSession.Ideas.Count());
 Assert.Equal(testName, returnSession.Ideas.LastOrDefault().Name);
 Assert.Equal(testDescription, returnSession.Ideas.LastOrDefault().Description);
}

Test ActionResult<T>

return null . There's no need to create a test database (in memory or otherwise) and construct a query that returns

this result. The test can be accomplished in a single statement, as the sample code illustrates:

The third Create test, Create_ReturnsNewlyCreatedIdeaForSession , verifies that the repository's UpdateAsync method

is called. The mock is called with Verifiable , and the mocked repository's Verify method is called to confirm the

verifiable method is executed. It's not the unit test's responsibility to ensure that the UpdateAsync method saved the

data—that can be performed with an integration test.

[HttpGet("forsessionactionresult/{sessionId}")]
[ProducesResponseType(200)]
[ProducesResponseType(404)]
public async Task<ActionResult<List<IdeaDTO>>> ForSessionActionResult(int sessionId)
{
 var session = await _sessionRepository.GetByIdAsync(sessionId);

 if (session == null)
 {
 return NotFound(sessionId);
 }

 var result = session.Ideas.Select(idea => new IdeaDTO()
 {
 Id = idea.Id,
 Name = idea.Name,
 Description = idea.Description,
 DateCreated = idea.DateCreated
 }).ToList();

 return result;
}

[Fact]
public async Task ForSessionActionResult_ReturnsNotFoundObjectResultForNonexistentSession()
{
 // Arrange
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);
 var nonExistentSessionId = 999;

 // Act
 var result = await controller.ForSessionActionResult(nonExistentSessionId);

 // Assert
 var actionResult = Assert.IsType<ActionResult<List<IdeaDTO>>>(result);
 Assert.IsType<NotFoundObjectResult>(actionResult.Result);
}

In ASP.NET Core 2.1 or later, ActionResult<T> (ActionResult<TValue>) enables you to return a type deriving from

ActionResult or return a specific type.

The sample app includes a method that returns a List<IdeaDTO> for a given session id . If the session id doesn't

exist, the controller returns NotFound:

Two tests of the ForSessionActionResult controller are included in the ApiIdeasControllerTests .

The first test confirms that the controller returns an ActionResult but not a nonexistent list of ideas for a

nonexistent session id :

The ActionResult type is ActionResult<List<IdeaDTO>> .

The Result is a NotFoundObjectResult.

For a valid session id , the second test confirms that the method returns:

An ActionResult with a List<IdeaDTO> type.

The ActionResult<T>.Value is a List<IdeaDTO> type.

The first item in the list is a valid idea matching the idea stored in the mock session (obtained by calling

GetTestSession).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.notfoundobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.value

[Fact]
public async Task ForSessionActionResult_ReturnsIdeasForSession()
{
 // Arrange
 int testSessionId = 123;
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync(GetTestSession());
 var controller = new IdeasController(mockRepo.Object);

 // Act
 var result = await controller.ForSessionActionResult(testSessionId);

 // Assert
 var actionResult = Assert.IsType<ActionResult<List<IdeaDTO>>>(result);
 var returnValue = Assert.IsType<List<IdeaDTO>>(actionResult.Value);
 var idea = returnValue.FirstOrDefault();
 Assert.Equal("One", idea.Name);
}

[HttpPost("createactionresult")]
[ProducesResponseType(201)]
[ProducesResponseType(400)]
[ProducesResponseType(404)]
public async Task<ActionResult<BrainstormSession>> CreateActionResult([FromBody]NewIdeaModel model)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var session = await _sessionRepository.GetByIdAsync(model.SessionId);

 if (session == null)
 {
 return NotFound(model.SessionId);
 }

 var idea = new Idea()
 {
 DateCreated = DateTimeOffset.Now,
 Description = model.Description,
 Name = model.Name
 };
 session.AddIdea(idea);

 await _sessionRepository.UpdateAsync(session);

 return CreatedAtAction(nameof(CreateActionResult), new { id = session.Id }, session);
}

The sample app also includes a method to create a new Idea for a given session. The controller returns:

BadRequest for an invalid model.

NotFound if the session doesn't exist.

CreatedAtAction when the session is updated with the new idea.

Three tests of CreateActionResult are included in the ApiIdeasControllerTests .

The first text confirms that a BadRequest is returned for an invalid model.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest

[Fact]
public async Task CreateActionResult_ReturnsBadRequest_GivenInvalidModel()
{
 // Arrange & Act
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);
 controller.ModelState.AddModelError("error", "some error");

 // Act
 var result = await controller.CreateActionResult(model: null);

 // Assert
 var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
 Assert.IsType<BadRequestObjectResult>(actionResult.Result);
}

[Fact]
public async Task CreateActionResult_ReturnsNotFoundObjectResultForNonexistentSession()
{
 // Arrange
 var nonExistentSessionId = 999;
 string testName = "test name";
 string testDescription = "test description";
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 var controller = new IdeasController(mockRepo.Object);

 var newIdea = new NewIdeaModel()
 {
 Description = testDescription,
 Name = testName,
 SessionId = nonExistentSessionId
 };

 // Act
 var result = await controller.CreateActionResult(newIdea);

 // Assert
 var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
 Assert.IsType<NotFoundObjectResult>(actionResult.Result);
}

The second test checks that a NotFound is returned if the session doesn't exist.

For a valid session id , the final test confirms that:

The method returns an ActionResult with a BrainstormSession type.

The ActionResult<T>.Result is a CreatedAtActionResult. CreatedAtActionResult is analogous to a 201 Created

response with a Location header.

The ActionResult<T>.Value is a BrainstormSession type.

The mock call to update the session, UpdateAsync(testSession) , was invoked. The Verifiable method call is

checked by executing mockRepo.Verify() in the assertions.

Two Idea objects are returned for the session.

The last item (the Idea added by the mock call to UpdateAsync) matches the newIdea added to the session in

the test.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.createdatactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.value

[Fact]
public async Task CreateActionResult_ReturnsNewlyCreatedIdeaForSession()
{
 // Arrange
 int testSessionId = 123;
 string testName = "test name";
 string testDescription = "test description";
 var testSession = GetTestSession();
 var mockRepo = new Mock<IBrainstormSessionRepository>();
 mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
 .ReturnsAsync(testSession);
 var controller = new IdeasController(mockRepo.Object);

 var newIdea = new NewIdeaModel()
 {
 Description = testDescription,
 Name = testName,
 SessionId = testSessionId
 };
 mockRepo.Setup(repo => repo.UpdateAsync(testSession))
 .Returns(Task.CompletedTask)
 .Verifiable();

 // Act
 var result = await controller.CreateActionResult(newIdea);

 // Assert
 var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
 var createdAtActionResult = Assert.IsType<CreatedAtActionResult>(actionResult.Result);
 var returnValue = Assert.IsType<BrainstormSession>(createdAtActionResult.Value);
 mockRepo.Verify();
 Assert.Equal(2, returnValue.Ideas.Count());
 Assert.Equal(testName, returnValue.Ideas.LastOrDefault().Name);
 Assert.Equal(testDescription, returnValue.Ideas.LastOrDefault().Description);
}

Additional resources
Integration tests in ASP.NET Core

Create and run unit tests with Visual Studio

MyTested.AspNetCore.Mvc - Fluent Testing Library for ASP.NET Core MVC: Strongly-typed unit testing library,

providing a fluent interface for testing MVC and web API apps. (Not maintained or supported by Microsoft.)

JustMockLite: A mocking framework for .NET developers. (Not maintained or supported by Microsoft.)

https://docs.microsoft.com/en-us/visualstudio/test/unit-test-your-code
https://github.com/ivaylokenov/MyTested.AspNetCore.Mvc
https://github.com/telerik/JustMockLite

Introduction to ASP.NET Core Blazor
9/22/2020 • 5 minutes to read • Edit Online

Components

By Daniel Roth and Luke Latham

Welcome to Blazor!

Blazor is a framework for building interactive client-side web UI with .NET:

Create rich interactive UIs using C# instead of JavaScript.

Share server-side and client-side app logic written in .NET.

Render the UI as HTML and CSS for wide browser support, including mobile browsers.

Integrate with modern hosting platforms, such as Docker.

Using .NET for client-side web development offers the following advantages:

Write code in C# instead of JavaScript.

Leverage the existing .NET ecosystem of .NET libraries.

Share app logic across server and client.

Benefit from .NET's performance, reliability, and security.

Stay productive with Visual Studio on Windows, Linux, and macOS.

Build on a common set of languages, frameworks, and tools that are stable, feature-rich, and easy to use.

Blazor apps are based on components. A component in Blazor is an element of UI, such as a page, dialog, or

data entry form.

Components are .NET classes built into .NET assemblies that:

Define flexible UI rendering logic.

Handle user events.

Can be nested and reused.

Can be shared and distributed as Razor class libraries or NuGet packages.

The component class is usually written in the form of a Razor markup page with a .razor file extension.

Components in Blazor are formally referred to as Razor components. Razor is a syntax for combining HTML

markup with C# code designed for developer productivity. Razor allows you to switch between HTML markup

and C# in the same file with IntelliSense support. Razor Pages and MVC also use Razor. Unlike Razor Pages and

MVC, which are built around a request/response model, components are used specifically for client-side UI

logic and composition.

The following Razor markup demonstrates a component (Dialog.razor), which can be nested within another

component:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/index.md
https://github.com/danroth27
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/index
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense

<div>
 <h1>@Title</h1>

 @ChildContent

 <button @onclick="OnYes">Yes!</button>
</div>

@code {
 [Parameter]
 public string Title { get; set; }

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 private void OnYes()
 {
 Console.WriteLine("Write to the console in C#! 'Yes' button was selected.");
 }
}

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<Dialog Title="Blazor">
 Do you want to <i>learn more</i> about Blazor?
</Dialog>

The dialog's body content (ChildContent) and title (Title) are provided by the component that uses this

component in its UI. OnYes is a C# method triggered by the button's onclick event.

Blazor uses natural HTML tags for UI composition. HTML elements specify components, and a tag's attributes

pass values to a component's properties.

In the following example, the Index component uses the Dialog component. ChildContent and Title are set

by the attributes and content of the <Dialog> element.

Pages/Index.razor :

The dialog is rendered when the parent (Pages/Index.razor) is accessed in a browser :

When this component is used in the app, IntelliSense in Visual Studio and Visual Studio Code speeds

development with syntax and parameter completion.

https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense
https://code.visualstudio.com/docs/editor/intellisense

 Blazor WebAssembly

Components render into an in-memory representation of the browser's Document Object Model (DOM) called

a render tree, which is used to update the UI in a flexible and efficient way.

Blazor WebAssembly is a single-page app framework for building interactive client-side web apps with .NET.

Blazor WebAssembly uses open web standards without plugins or code transpilation and works in all modern

web browsers, including mobile browsers.

Running .NET code inside web browsers is made possible by WebAssembly (abbreviated wasm). WebAssembly

is a compact bytecode format optimized for fast download and maximum execution speed. WebAssembly is an

open web standard and supported in web browsers without plugins.

WebAssembly code can access the full functionality of the browser via JavaScript, called JavaScript

interoperability (or JavaScript interop). .NET code executed via WebAssembly in the browser runs in the

browser's JavaScript sandbox with the protections that the sandbox provides against malicious actions on the

client machine.

When a Blazor WebAssembly app is built and run in a browser :

C# code files and Razor files are compiled into .NET assemblies.

The assemblies and the .NET runtime are downloaded to the browser.

Blazor WebAssembly bootstraps the .NET runtime and configures the runtime to load the assemblies for the

app. The Blazor WebAssembly runtime uses JavaScript interop to handle DOM manipulation and browser

API calls.

The size of the published app, its payload size, is a critical performance factor for an app's useability. A large app

takes a relatively long time to download to a browser, which diminishes the user experience. Blazor

WebAssembly optimizes payload size to reduce download times:

Unused code is stripped out of the app when it's published by the Intermediate Language (IL) Trimmer.

HTTP responses are compressed.

The .NET runtime and assemblies are cached in the browser.

Unused code is stripped out of the app when it's published by the Intermediate Language (IL) Linker.

HTTP responses are compressed.

The .NET runtime and assemblies are cached in the browser.

https://webassembly.org

Blazor Server

JavaScript interop

Code sharing and .NET Standard

Additional resources

Blazor decouples component rendering logic from how UI updates are applied. Blazor Server provides support

for hosting Razor components on the server in an ASP.NET Core app. UI updates are handled over a SignalR

connection.

The runtime handles sending UI events from the browser to the server and applies UI updates sent by the

server back to the browser after running the components.

The connection used by Blazor Server to communicate with the browser is also used to handle JavaScript

interop calls.

For apps that require third-party JavaScript libraries and access to browser APIs, components interoperate with

JavaScript. Components are capable of using any library or API that JavaScript is able to use. C# code can call

into JavaScript code, and JavaScript code can call into C# code. For more information, see the following articles:

Call JavaScript functions from .NET methods in ASP.NET Core Blazor

Call .NET methods from JavaScript functions in ASP.NET Core Blazor

Blazor implements .NET Standard 2.1, which enables Blazor projects to reference libraries that conform to .NET

Standard 2.1 or earlier specifications. .NET Standard is a formal specification of .NET APIs that are common

across .NET implementations. .NET Standard class libraries can be shared across different .NET platforms, such

as Blazor, .NET Framework, .NET Core, Xamarin, Mono, and Unity.

APIs that aren't applicable inside of a web browser (for example, accessing the file system, opening a socket,

and threading) throw a PlatformNotSupportedException.

WebAssembly

ASP.NET Core Blazor hosting models

Use ASP.NET Core SignalR with Blazor WebAssembly

C# Guide

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/api/system.platformnotsupportedexception
https://webassembly.org/
https://docs.microsoft.com/en-us/dotnet/csharp/

razor syntax reference for ASP.NET Core

HTML

Awesome Blazor community links

https://www.w3.org/html/
https://github.com/AdrienTorris/awesome-blazor

ASP.NET Core Blazor supported platforms
9/22/2020 • 2 minutes to read • Edit Online

Browser requirements
Blazor WebAssemblyBlazor WebAssembly

B RO W SERB RO W SER VERSIO NVERSIO N

Microsoft Edge Current

Mozilla Firefox Current

Google Chrome, including Android Current

Safari, including iOS Current

Microsoft Internet Explorer Not Supported†

Blazor ServerBlazor Server

B RO W SERB RO W SER VERSIO NVERSIO N

Microsoft Edge Current

Mozilla Firefox Current

Google Chrome, including Android Current

Safari, including iOS Current

Microsoft Internet Explorer 11†

Additional resources

By Luke Latham

†Microsoft Internet Explorer doesn't support WebAssembly.

†Additional polyfills are required (for example, promises can be added via a Polyfill.io bundle).

ASP.NET Core Blazor hosting models

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/supported-platforms.md
https://github.com/guardrex
https://webassembly.org
https://polyfill.io/v3/

Tooling for ASP.NET Core Blazor
9/22/2020 • 2 minutes to read • Edit Online

Trust a development certificate

By Daniel Roth and Luke Latham

1. Install the latest version of Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload.

2. Create a new project.

3. Select Blazor AppBlazor App. Select NextNext.

4. Provide a project name in the Project nameProject name field or accept the default project name. Confirm the

LocationLocation entry is correct or provide a location for the project. Select CreateCreate.

5. For a Blazor WebAssembly experience, choose the Blazor WebAssembly AppBlazor WebAssembly App template. For a Blazor

Server experience, choose the Blazor Ser ver AppBlazor Ser ver App template. Select CreateCreate.

For information on the two Blazor hosting models, Blazor WebAssembly and Blazor Server, see ASP.NET

Core Blazor hosting models.

6. Press Ctrl+F5 to run the app.

For more information on trusting the ASP.NET Core HTTPS development certificate, see Enforce HTTPS in ASP.NET

Core.

dotnet --version

dotnet new blazorwasm -o WebApplication1

dotnet new blazorserver -o WebApplication1

1. Install the latest version of the .NET Core 3.1 SDK. If you previously installed the SDK, you can determine

your installed version by executing the following command in a command shell:

2. Install the latest version of Visual Studio Code.

3. Install the latest C# for Visual Studio Code extension.

4. For a Blazor WebAssembly experience, execute the following command in a command shell:

For a Blazor Server experience, execute the following command in a command shell:

For information on the two Blazor hosting models, Blazor WebAssembly and Blazor Server, see ASP.NET

Core Blazor hosting models.

5. Open the WebApplication1 folder in Visual Studio Code.

6. The IDE requests that you add assets to build and debug the project. Select YesYes .

7. Press Ctrl+F5 to run the app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/tooling.md
https://github.com/danroth27
https://github.com/guardrex
https://visualstudio.microsoft.com/downloads/
https://dotnet.microsoft.com/download/dotnet-core/3.1
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp

There's no centralized way to trust a certificate on Linux. Typically, one of the following approaches is adopted:

Exclude the app's URL in browser's exclude list.

Trust all self-signed certificates for localhost .

Add the certificate to the list of trusted certificates in the browser.

For more information, see the guidance provided by your browser and Linux distribution.

1. Install Visual Studio for Mac.

2. Select FileFile > New SolutionNew Solution or create a NewNew project from the Star t WindowStar t Window .

3. In the sidebar, select Web and ConsoleWeb and Console > AppApp.

For a Blazor WebAssembly experience, choose the Blazor WebAssembly AppBlazor WebAssembly App template. For a Blazor

Server experience, choose the Blazor Ser ver AppBlazor Ser ver App template. Select NextNext.

For information on the two Blazor hosting models, Blazor WebAssembly and Blazor Server, see ASP.NET

Core Blazor hosting models.

4. Confirm that AuthenticationAuthentication is set to No AuthenticationNo Authentication. Select NextNext.

5. In the Project NameProject Name field, name the app WebApplication1 . Select CreateCreate.

6. Select RunRun > Star t Without DebuggingStar t Without Debugging to run the app without the debugger. Run the app with RunRun >

Star t DebuggingStar t Debugging or the Run (▶) button to run the app with the debugger.

If a prompt appears to trust the development certificate, trust the certificate and continue. The user and keychain

passwords are required to trust the certificate. For more information on trusting the ASP.NET Core HTTPS

development certificate, see Enforce HTTPS in ASP.NET Core.

https://visualstudio.microsoft.com/vs/mac/

ASP.NET Core Blazor hosting models
9/22/2020 • 9 minutes to read • Edit Online

Blazor WebAssembly

By Daniel Roth

Blazor is a web framework designed to run client-side in the browser on a WebAssembly-based .NET runtime

(Blazor WebAssembly) or server-side in ASP.NET Core (Blazor Server). Regardless of the hosting model, the app

and component models are the same.

The principal hosting model for Blazor is running client-side in the browser on WebAssembly. The Blazor app, its

dependencies, and the .NET runtime are downloaded to the browser. The app is executed directly on the browser

UI thread. UI updates and event handling occur within the same process. The app's assets are deployed as static

files to a web server or service capable of serving static content to clients. Because the app is created for

deployment without a backend ASP.NET Core app, it's called a standalone Blazor WebAssembly app.

To create a Blazor app using the client-side hosting model, use the Blazor WebAssembly AppBlazor WebAssembly App template (

dotnet new blazorwasm).

After selecting the Blazor WebAssembly AppBlazor WebAssembly App template, you have the option of configuring the app to use an

ASP.NET Core backend by selecting the ASP.NET Core hostedASP.NET Core hosted check box (dotnet new blazorwasm --hosted). The

ASP.NET Core app serves the Blazor app to clients. An app with an ASP.NET Core backend is called a hosted Blazor

WebAssembly app. The Blazor WebAssembly app can interact with the server over the network using web API

calls or SignalR (Use ASP.NET Core SignalR with Blazor WebAssembly).

The blazor.webassembly.js script is provided by the framework and handles:

Downloading the .NET runtime, the app, and the app's dependencies.

Initialization of the runtime to run the app.

The Blazor WebAssembly hosting model offers several benefits:

There's no .NET server-side dependency. The app is fully functioning after it's downloaded to the client.

Client resources and capabilities are fully leveraged.

Work is offloaded from the server to the client.

An ASP.NET Core web server isn't required to host the app. Serverless deployment scenarios are possible (for

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/hosting-models.md
https://github.com/danroth27
https://webassembly.org/
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new

 Blazor Server

example, serving the app from a CDN).

There are downsides to Blazor WebAssembly hosting:

The app is restricted to the capabilities of the browser.

Capable client hardware and software (for example, WebAssembly support) is required.

Download size is larger, and apps take longer to load.

.NET runtime and tooling support is less mature. For example, limitations exist in .NET Standard support and

debugging.

The hosted Blazor app model supports Docker containers. Right-click on the Server project in Visual Studio and

select AddAdd > Docker Suppor tDocker Suppor t.

With the Blazor Server hosting model, the app is executed on the server from within an ASP.NET Core app. UI

updates, event handling, and JavaScript calls are handled over a SignalR connection.

To create a Blazor app using the Blazor Server hosting model, use the ASP.NET Core Blazor Ser ver AppBlazor Ser ver App template

(dotnet new blazorserver). The ASP.NET Core app hosts the Blazor Server app and creates the SignalR endpoint

where clients connect.

The ASP.NET Core app references the app's Startup class to add:

Server-side services.

The app to the request handling pipeline.

On the client, the blazor.server.js script establishes the SignalR connection with the server. The script is served

to the client-side app from an embedded resource in the ASP.NET Core shared framework. The client-side app is

responsible for persisting and restoring app state as required.

The Blazor Server hosting model offers several benefits:

Download size is significantly smaller than a Blazor WebAssembly app, and the app loads much faster.

The app takes full advantage of server capabilities, including use of any .NET Core compatible APIs.

.NET Core on the server is used to run the app, so existing .NET tooling, such as debugging, works as expected.

Thin clients are supported. For example, Blazor Server apps work with browsers that don't support

WebAssembly and on resource-constrained devices.

The app's .NET/C# code base, including the app's component code, isn't served to clients.

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/index
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new

IMPORTANTIMPORTANT

Comparison to server-rendered UIComparison to server-rendered UI

A Blazor Server app prerenders in response to the first client request, which sets up the UI state on the server. When the

client attempts to create a SignalR connection, the client must reconnect to the same ser verthe client must reconnect to the same ser ver . Blazor Server apps that

use more than one backend server should implement sticky sessions for SignalR connections. For more information, see the

Connection to the server section.

There are downsides to Blazor Server hosting:

Higher latency usually exists. Every user interaction involves a network hop.

There's no offline support. If the client connection fails, the app stops working.

Scalability is challenging for apps with many users. The server must manage multiple client connections and

handle client state.

An ASP.NET Core server is required to serve the app. Serverless deployment scenarios aren't possible (for

example, serving the app from a CDN).

The Blazor Server app model supports Docker containers. Right-click on the project in Visual Studio and select

AddAdd > Docker Suppor tDocker Suppor t.

One way to understand Blazor Server apps is to understand how it differs from traditional models for rendering

UI in ASP.NET Core apps using Razor views or Razor Pages. Both models use the Razor language to describe

HTML content, but they significantly differ in how markup is rendered.

When a Razor Page or view is rendered, every line of Razor code emits HTML in text form. After rendering, the

server disposes of the page or view instance, including any state that was produced. When another request for

the page occurs, for instance when server validation fails and the validation summary is displayed:

The entire page is rerendered to HTML text again.

The page is sent to the client.

A Blazor app is composed of reusable elements of UI called components. A component contains C# code, markup,

and other components. When a component is rendered, Blazor produces a graph of the included components

similar to an HTML or XML Document Object Model (DOM). This graph includes component state held in

properties and fields. Blazor evaluates the component graph to produce a binary representation of the markup.

The binary format can be:

Turned into HTML text (during prerendering†).

Used to efficiently update the markup during regular rendering.

†Prerendering: The requested Razor component is compiled on the server into static HTML and sent to the client,

where it's rendered to the user. After the connection is made between the client and the server, the component's

static prerendered elements are replaced with interactive elements. Prerendering makes the app feel more

responsive to the user.

A UI update in Blazor is triggered by:

User interaction, such as selecting a button.

App triggers, such as a timer.

The graph is rerendered, and a UI diff (difference) is calculated. This diff is the smallest set of DOM edits required

to update the UI on the client. The diff is sent to the client in a binary format and applied by the browser.

A component is disposed after the user navigates away from it on the client. While a user is interacting with a

component, the component's state (services, resources) must be held in the server's memory. Because the state of

many components might be maintained by the server concurrently, memory exhaustion is a concern that must be

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/index

CircuitsCircuits

UI LatencyUI Latency

Connection to the serverConnection to the server

addressed. For guidance on how to author a Blazor Server app to ensure the best use of server memory, see

Threat mitigation guidance for ASP.NET Core Blazor Server.

A Blazor Server app is built on top of ASP.NET Core SignalR. Each client communicates to the server over one or

more SignalR connections called a circuit. A circuit is Blazor's abstraction over SignalR connections that can

tolerate temporary network interruptions. When a Blazor client sees that the SignalR connection is disconnected,

it attempts to reconnect to the server using a new SignalR connection.

Each browser screen (browser tab or iframe) that is connected to a Blazor Server app uses a SignalR connection.

This is yet another important distinction compared to typical server-rendered apps. In a server-rendered app,

opening the same app in multiple browser screens typically doesn't translate into additional resource demands

on the server. In a Blazor Server app, each browser screen requires a separate circuit and separate instances of

component state to be managed by the server.

Blazor considers closing a browser tab or navigating to an external URL a graceful termination. In the event of a

graceful termination, the circuit and associated resources are immediately released. A client may also disconnect

non-gracefully, for instance due to a network interruption. Blazor Server stores disconnected circuits for a

configurable interval to allow the client to reconnect.

Blazor Server allows code to define a circuit handler, which allows running code on changes to the state of a

user's circuit. For more information, see ASP.NET Core Blazor advanced scenarios.

UI latency is the time it takes from an initiated action to the time the UI is updated. Smaller values for UI latency

are imperative for an app to feel responsive to a user. In a Blazor Server app, each action is sent to the server,

processed, and a UI diff is sent back. Consequently, UI latency is the sum of network latency and the server

latency in processing the action.

For a line of business app that's limited to a private corporate network, the effect on user perceptions of latency

due to network latency are usually imperceptible. For an app deployed over the Internet, latency may become

noticeable to users, particularly if users are widely distributed geographically.

Memory usage can also contribute to app latency. Increased memory usage results in frequent garbage collection

or paging memory to disk, both of which degrade app performance and consequently increase UI latency.

Blazor Server apps should be optimized to minimize UI latency by reducing network latency and memory usage.

For an approach to measuring network latency, see Host and deploy ASP.NET Core Blazor Server. For more

information on SignalR and Blazor, see:

Host and deploy ASP.NET Core Blazor Server

Threat mitigation guidance for ASP.NET Core Blazor Server

Blazor Server apps require an active SignalR connection to the server. If the connection is lost, the app attempts to

reconnect to the server. As long as the client's state is still in memory, the client session resumes without losing

state.

A Blazor Server app prerenders in response to the first client request, which sets up the UI state on the server.

When the client attempts to create a SignalR connection, the client must reconnect to the same server. Blazor

Server apps that use more than one backend server should implement sticky sessions for SignalR connections.

We recommend using the Azure SignalR Service for Blazor Server apps. The service allows for scaling up a Blazor

Server app to a large number of concurrent SignalR connections. Sticky sessions are enabled for the Azure

SignalR Service by setting the service's ServerStickyMode option or configuration value to Required . For more

information, see Host and deploy ASP.NET Core Blazor Server.

https://docs.microsoft.com/en-us/azure/azure-signalr

Additional resources

When using IIS, sticky sessions are enabled with Application Request Routing. For more information, see HTTP

Load Balancing using Application Request Routing.

Introduction to ASP.NET Core SignalR

ASP.NET Core Blazor hosting model configuration

Use ASP.NET Core SignalR with Blazor WebAssembly

https://docs.microsoft.com/en-us/iis/extensions/configuring-application-request-routing-arr/http-load-balancing-using-application-request-routing

Build a Blazor todo list app
9/22/2020 • 4 minutes to read • Edit Online

Prerequisites

Create a todo list Blazor app

By Daniel Roth and Luke Latham

This tutorial shows you how to build and modify a Blazor app. You learn how to:

Create a todo list Blazor app project

Modify Razor components

Use event handling and data binding in components

Use routing in a Blazor app

At the end of this tutorial, you'll have a working todo list app.

.NET Core 3.1 SDK or later

dotnet new blazorserver -o TodoList

cd TodoList

dotnet new razorcomponent -n Todo -o Pages

IMPORTANTIMPORTANT

@page "/todo"

<h3>Todo</h3>

1. Create a new Blazor app named TodoList in a command shell:

The preceding command creates a folder named TodoList to hold the app. The TodoList folder is the root

folder of the project. Change directories to the TodoList folder with the following command:

2. Add a new Todo Razor component to the app in the Pages folder using the following command:

Razor component file names require a capitalized first letter. Open the Pages folder and confirm that the Todo

component file name starts with a capital letter T . The file name should be Todo.razor .

3. In Pages/Todo.razor provide the initial markup for the component:

4. Add the Todo component to the navigation bar.

The NavMenu component (Shared/NavMenu.razor) is used in the app's layout. Layouts are components that

allow you to avoid duplication of content in the app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/build-a-blazor-app.md
https://github.com/danroth27
https://github.com/guardrex
https://dotnet.microsoft.com/download/dotnet-core/3.1

<li class="nav-item px-3">
 <NavLink class="nav-link" href="todo">
 Todo
 </NavLink>

public class TodoItem
{
 public string Title { get; set; }
 public bool IsDone { get; set; }
}

@page "/todo"

<h3>Todo</h3>

 @foreach (var todo in todos)
 {
 @todo.Title
 }

@code {
 private IList<TodoItem> todos = new List<TodoItem>();
}

Add a <NavLink> element for the Todo component by adding the following list item markup below the

existing list items in the Shared/NavMenu.razor file:

5. Build and run the app by executing the dotnet run command in the command shell from the TodoList

folder. Visit the new Todo page to confirm that the link to the Todo component works.

6. Add a TodoItem.cs file to the root of the project (the TodoList folder) to hold a class that represents a todo

item. Use the following C# code for the TodoItem class:

7. Return to the Todo component (Pages/Todo.razor):

Add a field for the todo items in an @code block. The Todo component uses this field to maintain the

state of the todo list.

Add unordered list markup and a foreach loop to render each todo item as a list item ().

8. The app requires UI elements for adding todo items to the list. Add a text input (<input>) and a button (

<button>) below the unordered list (...):

@page "/todo"

<h3>Todo</h3>

 @foreach (var todo in todos)
 {
 @todo.Title
 }

<input placeholder="Something todo" />
<button>Add todo</button>

@code {
 private IList<TodoItem> todos = new List<TodoItem>();
}

<input placeholder="Something todo" />
<button @onclick="AddTodo">Add todo</button>

@code {
 private IList<TodoItem> todos = new List<TodoItem>();

 private void AddTodo()
 {
 // Todo: Add the todo
 }
}

private IList<TodoItem> todos = new List<TodoItem>();
private string newTodo;

<input placeholder="Something todo" @bind="newTodo" />

9. Stop the running app in the command shell. Many command shells accept the keyboard command Ctrl+c
to stop an app. Rebuild and run the app with the dotnet run command. When the Add todo button is

selected, nothing happens because an event handler isn't wired up to the button.

10. Add an AddTodo method to the Todo component and register it for button selections using the @onclick

attribute. The AddTodo C# method is called when the button is selected:

11. To get the title of the new todo item, add a newTodo string field at the top of the @code block and bind it to

the value of the text input using the bind attribute in the <input> element:

12. Update the AddTodo method to add the TodoItem with the specified title to the list. Clear the value of the

text input by setting newTodo to an empty string:

@page "/todo"

<h3>Todo</h3>

 @foreach (var todo in todos)
 {
 @todo.Title
 }

<input placeholder="Something todo" @bind="newTodo" />
<button @onclick="AddTodo">Add todo</button>

@code {
 private IList<TodoItem> todos = new List<TodoItem>();
 private string newTodo;

 private void AddTodo()
 {
 if (!string.IsNullOrWhiteSpace(newTodo))
 {
 todos.Add(new TodoItem { Title = newTodo });
 newTodo = string.Empty;
 }
 }
}

 @foreach (var todo in todos)
 {

 <input type="checkbox" @bind="todo.IsDone" />
 <input @bind="todo.Title" />

 }

<h3>Todo (@todos.Count(todo => !todo.IsDone))</h3>

13. Stop the running app in the command shell. Rebuild and run the app with the dotnet run command. Add

some todo items to the todo list to test the new code.

14. The title text for each todo item can be made editable, and a check box can help the user keep track of

completed items. Add a check box input for each todo item and bind its value to the IsDone property.

Change @todo.Title to an <input> element bound to @todo.Title :

15. To verify that these values are bound, update the <h3> header to show a count of the number of todo items

that aren't complete (IsDone is false).

16. The completed Todo component (Pages/Todo.razor):

Next steps

@page "/todo"

<h3>Todo (@todos.Count(todo => !todo.IsDone))</h3>

 @foreach (var todo in todos)
 {

 <input type="checkbox" @bind="todo.IsDone" />
 <input @bind="todo.Title" />

 }

<input placeholder="Something todo" @bind="newTodo" />
<button @onclick="AddTodo">Add todo</button>

@code {
 private IList<TodoItem> todos = new List<TodoItem>();
 private string newTodo;

 private void AddTodo()
 {
 if (!string.IsNullOrWhiteSpace(newTodo))
 {
 todos.Add(new TodoItem { Title = newTodo });
 newTodo = string.Empty;
 }
 }
}

17. Stop the running app in the command shell. Rebuild and run the app with the dotnet run command. Add

todo items to test the new code.

In this tutorial, you learned how to:

Create a todo list Blazor app project

Modify Razor components

Use event handling and data binding in components

Use routing in a Blazor app

Learn about tooling for ASP.NET Core Blazor :

Tooling for ASP.NET Core Blazor

Use ASP.NET Core SignalR with Blazor WebAssembly
9/22/2020 • 7 minutes to read • Edit Online

Prerequisites

Create a hosted Blazor WebAssembly app project

NOTENOTE

By Daniel Roth and Luke Latham

This tutorial teaches the basics of building a real-time app using SignalR with Blazor WebAssembly. You learn how

to:

Create a Blazor WebAssembly Hosted app project

Add the SignalR client library

Add a SignalR hub

Add SignalR services and an endpoint for the SignalR hub

Add Razor component code for chat

At the end of this tutorial, you'll have a working chat app.

View or download sample code (how to download)

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

Visual Studio 2019 16.6 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Follow the guidance for your choice of tooling:

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

Visual Studio 16.6 or later and .NET Core SDK 3.1.300 or later are required.

1. Create a new project.

2. Select Blazor AppBlazor App and select NextNext.

3. Type BlazorSignalRApp in the Project nameProject name field. Confirm the LocationLocation entry is correct or provide a

location for the project. Select CreateCreate.

4. Choose the Blazor WebAssembly AppBlazor WebAssembly App template.

5. Under AdvancedAdvanced, select the ASP.NET Core hostedASP.NET Core hosted check box.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/signalr-blazor-webassembly.md
https://github.com/danroth27
https://github.com/guardrex
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/signalr-blazor-webassembly/samples/
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1

Add the SignalR client library

Add a SignalR hub

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.SignalR;

namespace BlazorSignalRApp.Server.Hubs
{
 public class ChatHub : Hub
 {
 public async Task SendMessage(string user, string message)
 {
 await Clients.All.SendAsync("ReceiveMessage", user, message);
 }
 }
}

Add services and an endpoint for the SignalR hub

6. Select CreateCreate.

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

1. In Solution ExplorerSolution Explorer , right-click the BlazorSignalRApp.Client project and select Manage NuGetManage NuGet

PackagesPackages .

2. In the Manage NuGet PackagesManage NuGet Packages dialog, confirm that the Package sourcePackage source is set to nuget.org .

3. With BrowseBrowse selected, type Microsoft.AspNetCore.SignalR.Client in the search box.

4. In the search results, select the Microsoft.AspNetCore.SignalR.Client package and select InstallInstall .

5. If the Preview ChangesPreview Changes dialog appears, select OKOK.

6. If the L icense AcceptanceLicense Acceptance dialog appears, select I AcceptI Accept if you agree with the license terms.

In the BlazorSignalRApp.Server project, create a Hubs (plural) folder and add the following ChatHub class (

Hubs/ChatHub.cs):

using BlazorSignalRApp.Server.Hubs;

1. In the BlazorSignalRApp.Server project, open the Startup.cs file.

2. Add the namespace for the ChatHub class to the top of the file:

3. Add SignalR and Response Compression Middleware services to Startup.ConfigureServices :

https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR.Client

Add Razor component code for chat

public void ConfigureServices(IServiceCollection services)
{
 services.AddSignalR();
 services.AddControllersWithViews();
 services.AddResponseCompression(opts =>
 {
 opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.Concat(
 new[] { "application/octet-stream" });
 });
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseResponseCompression();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseWebAssemblyDebugging();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseBlazorFrameworkFiles();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 endpoints.MapHub<ChatHub>("/chathub");
 endpoints.MapFallbackToFile("index.html");
 });
}

4. In Startup.Configure :

Use Response Compression Middleware at the top of the processing pipeline's configuration.

Between the endpoints for controllers and the client-side fallback, add an endpoint for the hub.

1. In the BlazorSignalRApp.Client project, open the Pages/Index.razor file.

2. Replace the markup with the following code:

@page "/"
@using Microsoft.AspNetCore.SignalR.Client
@inject NavigationManager NavigationManager
@implements IDisposable

<div class="form-group">
 <label>
 User:
 <input @bind="userInput" />
 </label>
</div>
<div class="form-group">
 <label>
 Message:
 <input @bind="messageInput" size="50" />
 </label>
</div>
<button @onclick="Send" disabled="@(!IsConnected)">Send</button>

<hr>

<ul id="messagesList">
 @foreach (var message in messages)
 {
 @message
 }

@code {
 private HubConnection hubConnection;
 private List<string> messages = new List<string>();
 private string userInput;
 private string messageInput;

 protected override async Task OnInitializedAsync()
 {
 hubConnection = new HubConnectionBuilder()
 .WithUrl(NavigationManager.ToAbsoluteUri("/chathub"))
 .Build();

 hubConnection.On<string, string>("ReceiveMessage", (user, message) =>
 {
 var encodedMsg = $"{user}: {message}";
 messages.Add(encodedMsg);
 StateHasChanged();
 });

 await hubConnection.StartAsync();
 }

 Task Send() =>
 hubConnection.SendAsync("SendMessage", userInput, messageInput);

 public bool IsConnected =>
 hubConnection.State == HubConnectionState.Connected;

 public void Dispose()
 {
 _ = hubConnection.DisposeAsync();
 }
}

Run the app
1. Follow the guidance for your tooling:

Next steps

Additional resources

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

1. In Solution ExplorerSolution Explorer , select the BlazorSignalRApp.Server project. Press F5 to run the app with debugging

or Ctrl+F5 to run the app without debugging.

2. Copy the URL from the address bar, open another browser instance or tab, and paste the URL in the address

bar.

3. Choose either browser, enter a name and message, and select the button to send the message. The name and

message are displayed on both pages instantly:

Quotes: Star Trek VI: The Undiscovered Country ©1991 Paramount

In this tutorial, you learned how to:

Create a Blazor WebAssembly Hosted app project

Add the SignalR client library

Add a SignalR hub

Add SignalR services and an endpoint for the SignalR hub

Add Razor component code for chat

To learn more about building Blazor apps, see the Blazor documentation:

Introduction to ASP.NET Core Blazor

Introduction to ASP.NET Core SignalR

SignalR cross-origin negotiation for authentication

https://www.paramountmovies.com/movies/star-trek-vi-the-undiscovered-country

ASP.NET Core Blazor templates
9/22/2020 • 3 minutes to read • Edit Online

dotnet new blazorwasm --help
dotnet new blazorserver --help

Blazor project structure

By Daniel Roth and Luke Latham

The Blazor framework provides templates to develop apps for each of the Blazor hosting models:

Blazor WebAssembly (blazorwasm)

Blazor Server (blazorserver)

For more information on Blazor's hosting models, see ASP.NET Core Blazor hosting models.

Template options are available by passing the --help option to the dotnet new CLI command:

The following files and folders make up a Blazor app generated from a Blazor project template:

Program.cs : The app's entry point that sets up the:

ASP.NET Core host (Blazor Server)

WebAssembly host (Blazor WebAssembly): The code in this file is unique to apps created from the Blazor

WebAssembly template (blazorwasm).

The App component is the root component of the app. The App component is specified as the

app DOM element (<app>...</app>) to the root component collection (

builder.RootComponents.Add<App>("app")).

Services are added and configured (for example,

builder.Services.AddSingleton<IMyDependency, MyDependency>()).

Startup.cs (Blazor Server): Contains the app's startup logic. The Startup class defines two methods:

ConfigureServices : Configures the app's dependency injection (DI) services. In Blazor Server apps,

services are added by calling AddServerSideBlazor, and the WeatherForecastService is added to the

service container for use by the example FetchData component.

Configure : Configures the app's request handling pipeline:

MapBlazorHub is called to set up an endpoint for the real-time connection with the browser. The

connection is created with SignalR, which is a framework for adding real-time web functionality to

apps.

MapFallbackToPage("/_Host") is called to set up the root page of the app (Pages/_Host.cshtml) and

enable navigation.

wwwroot/index.html (Blazor WebAssembly): The root page of the app implemented as an HTML page:

When any page of the app is initially requested, this page is rendered and returned in the response.

The page specifies where the root App component is rendered. The component is rendered at the

location of the app DOM element (<app>...</app>).

The _framework/blazor.webassembly.js JavaScript file is loaded, which:

Downloads the .NET runtime, the app, and the app's dependencies.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/templates.md
https://github.com/danroth27
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.componentservicecollectionextensions.addserversideblazor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.componentendpointroutebuilderextensions.mapblazorhub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.mapfallbacktopage

Initializes the runtime to run the app.

App.razor : The root component of the app that sets up client-side routing using the Router component. The

Router component intercepts browser navigation and renders the page that matches the requested address.

Pages folder : Contains the routable components/pages (.razor) that make up the Blazor app and the root

Razor page of a Blazor Server app. The route for each page is specified using the @page directive. The

template includes the following:

_Host.cshtml (Blazor Server): The root page of the app implemented as a Razor Page:

Counter (Pages/Counter.razor): Implements the Counter page.

Error (Error.razor , Blazor Server app only): Rendered when an unhandled exception occurs in the app.

FetchData (Pages/FetchData.razor): Implements the Fetch data page.

Index (Pages/Index.razor): Implements the Home page.

When any page of the app is initially requested, this page is rendered and returned in the response.

The _framework/blazor.server.js JavaScript file is loaded, which sets up the real-time SignalR

connection between the browser and the server.

The Host page specifies where the root App component (App.razor) is rendered.

Properties/launchSettings.json : Holds development environment configuration.

Shared folder : Contains other UI components (.razor) used by the app:

MainLayout (MainLayout.razor): The app's layout component.

NavMenu (NavMenu.razor): Implements sidebar navigation. Includes the NavLink component (NavLink),

which renders navigation links to other Razor components. The NavLink component automatically

indicates a selected state when its component is loaded, which helps the user understand which

component is currently displayed.

_Imports.razor : Includes common Razor directives to include in the app's components (.razor), such as

@using directives for namespaces.

Data folder (Blazor Server): Contains the WeatherForecast class and implementation of the

WeatherForecastService that provide example weather data to the app's FetchData component.

wwwroot : The Web Root folder for the app containing the app's public static assets.

appsettings.json : Holds configuration settings for the app. In a Blazor WebAssembly app, the app settings

file is located in the wwwroot folder. In a Blazor Server app, the app settings file is located at the project root.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink

ASP.NET Core Blazor routing
9/22/2020 • 9 minutes to read • Edit Online

ASP.NET Core endpoint routing integration

app.UseRouting();

app.UseEndpoints(endpoints =>
{
 endpoints.MapBlazorHub();
 endpoints.MapFallbackToPage("/_Host");
});

Route templates

<Router AppAssembly="@typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <p>Sorry, there's nothing at this address.</p>
 </NotFound>
</Router>

By Luke Latham

Learn how to route requests and how to use the NavLink component to create navigation links in Blazor apps.

Blazor Server is integrated into ASP.NET Core Endpoint Routing. An ASP.NET Core app is configured to accept

incoming connections for interactive components with MapBlazorHub in Startup.Configure :

The most typical configuration is to route all requests to a Razor page, which acts as the host for the server-side

part of the Blazor Server app. By convention, the host page is usually named _Host.cshtml . The route specified in

the host file is called a fallback route because it operates with a low priority in route matching. The fallback route is

considered when other routes don't match. This allows the app to use others controllers and pages without

interfering with the Blazor Server app.

For information on configuring MapFallbackToPage for non-root URL server hosting, see Host and deploy ASP.NET

Core Blazor.

The Router component enables routing to each component with a specified route. The Router component appears

in the App.razor file:

When a .razor file with an @page directive is compiled, the generated class is provided a RouteAttribute

specifying the route template.

At runtime, the RouteView component:

Receives the RouteData from the Router along with any desired parameters.

Renders the specified component with its layout (or an optional default layout) using the specified parameters.

You can optionally specify a DefaultLayout parameter with a layout class to use for components that don't specify a

layout. The default Blazor templates specify the MainLayout component. MainLayout.razor is in the template

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/routing.md
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.componentendpointroutebuilderextensions.mapblazorhub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.mapfallbacktopage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routedata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeview.defaultlayout#microsoft_aspnetcore_components_routeview_defaultlayout

@page "/BlazorRoute"
@page "/DifferentBlazorRoute"

<h1>Blazor routing</h1>

IMPORTANTIMPORTANT

Provide custom content when content isn't found

<Router AppAssembly="typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <h1>Sorry</h1>
 <p>Sorry, there's nothing at this address.</p> b
 </NotFound>
</Router>

Route to components from multiple assemblies

<Router
 AppAssembly="@typeof(Program).Assembly"
 AdditionalAssemblies="new[] { typeof(Component1).Assembly }">
 ...
</Router>

Route parameters

project's Shared folder. For more information on layouts, see ASP.NET Core Blazor layouts.

Multiple route templates can be applied to a component. The following component responds to requests for

/BlazorRoute and /DifferentBlazorRoute :

For URLs to resolve correctly, the app must include a <base> tag in its wwwroot/index.html file (Blazor WebAssembly) or

Pages/_Host.cshtml file (Blazor Server) with the app base path specified in the href attribute (<base href="/">). For

more information, see Host and deploy ASP.NET Core Blazor.

The Router component allows the app to specify custom content if content isn't found for the requested route.

In the App.razor file, set custom content in the NotFound template parameter of the Router component:

The content of <NotFound> tags can include arbitrary items, such as other interactive components. To apply a

default layout to NotFound content, see ASP.NET Core Blazor layouts.

Use the AdditionalAssemblies parameter to specify additional assemblies for the Router component to consider

when searching for routable components. Specified assemblies are considered in addition to the AppAssembly -

specified assembly. In the following example, Component1 is a routable component defined in a referenced class

library. The following AdditionalAssemblies example results in routing support for Component1 :

The router uses route parameters to populate the corresponding component parameters with the same name (case

insensitive):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.additionalassemblies#microsoft_aspnetcore_components_routing_router_additionalassemblies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.additionalassemblies#microsoft_aspnetcore_components_routing_router_additionalassemblies

@page "/RouteParameter"
@page "/RouteParameter/{text}"

<h1>Blazor is @Text!</h1>

@code {
 [Parameter]
 public string Text { get; set; }

 protected override void OnInitialized()
 {
 Text = Text ?? "fantastic";
 }
}

Route constraints

@page "/Users/{Id:int}"

<h1>The user Id is @Id!</h1>

@code {
 [Parameter]
 public int Id { get; set; }
}

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES

IN VA RIA N TIN VA RIA N T
C ULT UREC ULT URE
M ATC H IN GM ATC H IN G

bool {active:bool} true , FALSE No

datetime {dob:datetime} 2016-12-31 ,

2016-12-31 7:32pm

Yes

decimal {price:decimal} 49.99 , -1,000.01 Yes

double {weight:double} 1.234 , -1,001.01e8 Yes

float {weight:float} 1.234 , -1,001.01e8 Yes

Optional parameters aren't supported. Two @page directives are applied in the previous example. The first permits

navigation to the component without a parameter. The second @page directive takes the {text} route parameter

and assigns the value to the Text property.

A route constraint enforces type matching on a route segment to a component.

In the following example, the route to the Users component only matches if:

An Id route segment is present on the request URL.

The Id segment is an integer (int).

The route constraints shown in the following table are available. For the route constraints that match with the

invariant culture, see the warning below the table for more information.

guid {id:guid} CD2C1638-1638-72D5-
1638-DEADBEEF1638

,
{CD2C1638-1638-72D5-
1638-DEADBEEF1638}

No

int {id:int} 123456789 , -123456789 Yes

long {ticks:long} 123456789 , -123456789 Yes

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES

IN VA RIA N TIN VA RIA N T
C ULT UREC ULT URE
M ATC H IN GM ATC H IN G

WARNINGWARNING

Routing with URLs that contain dotsRouting with URLs that contain dots

@page "/example"
@page "/example/{param}"

<p>
 Param: @Param
</p>

@code {
 [Parameter]
 public string Param { get; set; }
}

endpoints.MapFallbackToFile("/example/{param?}", "index.html");

endpoints.MapFallbackToPage("/example/{param?}", "/_Host");

Catch-all route parameters

Route constraints that verify the URL and are converted to a CLR type (such as int or DateTime) always use the invariant

culture. These constraints assume that the URL is non-localizable.

For hosted Blazor WebAssembly and Blazor Server apps, the server-side default route template assumes that if the

last segment of a request URL contains a dot (.) that a file is requested (for example,

https://localhost.com:5001/example/some.thing). Without additional configuration, an app returns a 404 - Not

Found response if this was meant to route to a component. To use a route with one or more parameters that

contains a dot, the app must configure the route with a custom template.

Consider the following Example component that can receive a route parameter from the last segment of the URL:

To permit the Server app of a hosted Blazor WebAssembly solution to route the request with a dot in the param

parameter, add a fallback file route template with the optional parameter in Startup.Configure (Startup.cs):

To configure a Blazor Server app to route the request with a dot in the param parameter, add a fallback page route

template with the optional parameter in Startup.Configure (Startup.cs):

For more information, see Routing in ASP.NET Core.

https://docs.microsoft.com/en-us/dotnet/api/system.datetime

@page "/page/{*pageRoute}"

@code {
 [Parameter]
 public string PageRoute { get; set; }
}

NavLink component

<div class="@NavMenuCssClass" @onclick="@ToggleNavMenu">
 <ul class="nav flex-column">
 <li class="nav-item px-3">
 <NavLink class="nav-link" href="" Match="NavLinkMatch.All">
 Home
 </NavLink>

 <li class="nav-item px-3">
 <NavLink class="nav-link" href="MyComponent" Match="NavLinkMatch.Prefix">
 My Component
 </NavLink>

</div>

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

Catch-all route parameters, which capture paths across multiple folder boundaries, are supported in components.

The catch-all route parameter must be:

Named to match the route segment name. Naming isn't case sensitive.

A string type. The framework doesn't provide automatic casting.

At the end of the URL.

For the URL /page/this/is/a/test with a route template of /page/{*pageRoute} , the value of PageRoute is set to

this/is/a/test .

Slashes and segments of the captured path are decoded. For a route template of /page/{*pageRoute} , the URL

/page/this/is/a%2Ftest%2A yields this/is/a/test* .

Catch-all route parameters are supported in ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.*

Use a NavLink component in place of HTML hyperlink elements (<a>) when creating navigation links. A NavLink

component behaves like an <a> element, except it toggles an active CSS class based on whether its href

matches the current URL. The active class helps a user understand which page is the active page among the

navigation links displayed. Optionally, assign a CSS class name to NavLink.ActiveClass to apply a custom CSS class

to the rendered link when the current route matches the href .

The following NavMenu component creates a Bootstrap navigation bar that demonstrates how to use NavLink

components:

There are two NavLinkMatch options that you can assign to the Match attribute of the <NavLink> element:

NavLinkMatch.All: The NavLink is active when it matches the entire current URL.

NavLinkMatch.Prefix (default): The NavLink is active when it matches any prefix of the current URL.

In the preceding example, the Home NavLink href="" matches the home URL and only receives the active CSS

class at the app's default base path URL (for example, https://localhost:5001/). The second NavLink receives the

active class when the user visits any URL with a MyComponent prefix (for example,

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink.activeclass#microsoft_aspnetcore_components_routing_navlink_activeclass
https://getbootstrap.com/docs/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch#microsoft_aspnetcore_components_routing_navlinkmatch_all
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch#microsoft_aspnetcore_components_routing_navlinkmatch_prefix
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink

<NavLink href="my-page" target="_blank">My page</NavLink>

My page

WARNINGWARNING

@for (int c = 0; c < 10; c++)
{
 var current = c;
 <li ...>
 <NavLink ... href="@c">
 @current
 </NavLink>

}

@foreach(var c in Enumerable.Range(0,10))
{
 <li ...>
 <NavLink ... href="@c">
 @c
 </NavLink>

}

URI and navigation state helpers

M EM B ERM EM B ER DESC RIP T IO NDESC RIP T IO N

Uri Gets the current absolute URI.

BaseUri Gets the base URI (with a trailing slash) that can be prepended
to relative URI paths to produce an absolute URI. Typically,
BaseUri corresponds to the href attribute on the

document's <base> element in wwwroot/index.html (Blazor

WebAssembly) or Pages/_Host.cshtml (Blazor Server).

https://localhost:5001/MyComponent and https://localhost:5001/MyComponent/AnotherSegment).

Additional NavLink component attributes are passed through to the rendered anchor tag. In the following example,

the NavLink component includes the target attribute:

The following HTML markup is rendered:

Due to the way that Blazor renders child content, rendering NavLink components inside a for loop requires a local index

variable if the incrementing loop variable is used in the NavLink (child) component's content:

Using an index variable in this scenario is a requirement for anyany child component that uses a loop variable in its child content,

not just the NavLink component.

Alternatively, use a foreach loop with Enumerable.Range:

Use NavigationManager to work with URIs and navigation in C# code. NavigationManager provides the event and

methods shown in the following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.range
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.uri#microsoft_aspnetcore_components_navigationmanager_uri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri

NavigateTo Navigates to the specified URI. If forceLoad is true :

LocationChanged An event that fires when the navigation location has changed.

ToAbsoluteUri Converts a relative URI into an absolute URI.

ToBaseRelativePath Given a base URI (for example, a URI previously returned by
BaseUri), converts an absolute URI into a URI relative to the
base URI prefix.

M EM B ERM EM B ER DESC RIP T IO NDESC RIP T IO N

@page "/navigate"
@inject NavigationManager NavigationManager

<h1>Navigate in Code Example</h1>

<button class="btn btn-primary" @onclick="NavigateToCounterComponent">
 Navigate to the Counter component
</button>

@code {
 private void NavigateToCounterComponent()
 {
 NavigationManager.NavigateTo("counter");
 }
}

@implements IDisposable
@inject NavigationManager NavigationManager

...

protected override void OnInitialized()
{
 NavigationManager.LocationChanged += HandleLocationChanged;
}

private void HandleLocationChanged(object sender, LocationChangedEventArgs e)
{
 ...
}

public void Dispose()
{
 NavigationManager.LocationChanged -= HandleLocationChanged;
}

Client-side routing is bypassed.

The browser is forced to load the new page from the
server, whether or not the URI is normally handled by
the client-side router.

The following component navigates to the app's Counter component when the button is selected:

The following component handles a location changed event by subscribing to

NavigationManager.LocationChanged. The HandleLocationChanged method is unhooked when Dispose is called by

the framework. Unhooking the method permits garbage collection of the component.

LocationChangedEventArgs provides the following information about the event:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.locationchanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.toabsoluteuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.tobaserelativepath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.locationchanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs

Query string and parse parameters

@inject NavigationManager Navigation

...

var query = new Uri(Navigation.Uri).Query;

@page "/"
@using Microsoft.AspNetCore.WebUtilities
@inject NavigationManager NavigationManager

<h1>Query string parse example</h1>

<p>Value: @queryValue</p>

@code {
 private string queryValue = "Not set";

 protected override void OnInitialized()
 {
 var query = new Uri(NavigationManager.Uri).Query;

 if (QueryHelpers.ParseQuery(query).TryGetValue("{KEY}", out var value))
 {
 queryValue = value;
 }
 }
}

Location: The URL of the new location.

IsNavigationIntercepted: If true , Blazor intercepted the navigation from the browser. If false ,

NavigationManager.NavigateTo caused the navigation to occur.

For more information on component disposal, see ASP.NET Core Blazor lifecycle.

The query string of a request can be obtained from the NavigationManager's Uri property:

To parse a query string's parameters:

Add a package reference for Microsoft.AspNetCore.WebUtilities.

Obtain the value after parsing the query string with QueryHelpers.ParseQuery.

The placeholder {KEY} in the preceding example is the query string parameter key. For example, the URL key-value

pair ?ship=Tardis uses a key of ship .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs.location#microsoft_aspnetcore_components_routing_locationchangedeventargs_location
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs.isnavigationintercepted#microsoft_aspnetcore_components_routing_locationchangedeventargs_isnavigationintercepted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.uri#microsoft_aspnetcore_components_navigationmanager_uri
https://www.nuget.org/packages/Microsoft.AspNetCore.WebUtilities
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webutilities.queryhelpers.parsequery

ASP.NET Core Blazor configuration
9/22/2020 • 3 minutes to read • Edit Online

NOTENOTE

WARNINGWARNING

App settings configuration

{
 "message": "Hello from config!"
}

@page "/"
@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

<h1>Configuration example</h1>

<p>Message: @Configuration["message"]</p>

This topic applies to Blazor WebAssembly. For general guidance on ASP.NET Core app configuration, see Configuration in

ASP.NET Core.

Blazor WebAssembly loads configuration from app settings files by default:

wwwroot/appsettings.json

wwwroot/appsettings.{ENVIRONMENT}.json

Other configuration providers registered by the app can also provide configuration.

Not all providers or provider features are appropriate for Blazor WebAssembly apps:

Azure Key Vault configuration provider: The provider isn't supported for managed identity and application ID

(client ID) with client secret scenarios. Application ID with a client secret isn't recommended for any ASP.NET

Core app, especially Blazor WebAssembly apps because the client secret can't be secured client-side to access to

the service.

Azure App configuration provider: The provider isn't appropriate for Blazor WebAssembly apps because Blazor

WebAssembly apps don't run on a server in Azure.

Configuration in a Blazor WebAssembly app is visible to users. Don't store app secrets or credentials inDon't store app secrets or credentials in

configuration.configuration.

For more information on configuration providers, see Configuration in ASP.NET Core.

wwwroot/appsettings.json :

Inject an IConfiguration instance into a component to access the configuration data:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/configuration.md
https://docs.microsoft.com/en-us/azure/azure-app-configuration/quickstart-aspnet-core-app
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration

Custom configuration provider with EF Core

builder.Configuration.AddEFConfiguration(
 options => options.UseInMemoryDatabase("InMemoryDb"));

@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

 @Configuration["quote1"]
 @Configuration["quote2"]
 @Configuration["quote3"]

Memory Configuration Source

using Microsoft.Extensions.Configuration.Memory;

...

var vehicleData = new Dictionary<string, string>()
{
 { "color", "blue" },
 { "type", "car" },
 { "wheels:count", "3" },
 { "wheels:brand", "Blazin" },
 { "wheels:brand:type", "rally" },
 { "wheels:year", "2008" },
};

var memoryConfig = new MemoryConfigurationSource { InitialData = vehicleData };

...

builder.Configuration.Add(memoryConfig);

The custom configuration provider with EF Core demonstrated in Configuration in ASP.NET Core works with Blazor

WebAssembly apps.

Add the example's configuration provider with the following code in Program.Main (Program.cs):

Inject an IConfiguration instance into a component to access the configuration data:

The following example uses a MemoryConfigurationSource to supply additional configuration:

Program.Main :

Inject an IConfiguration instance into a component to access the configuration data:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.memory.memoryconfigurationsource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration

@page "/"
@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

<h1>Configuration example</h1>

<h2>Wheels</h2>

 Count: @Configuration["wheels:count"]
 Brand: @Configuration["wheels:brand"]
 Type: @Configuration["wheels:brand:type"]
 Year: @Configuration["wheels:year"]

@code {
 protected override void OnInitialized()
 {
 var wheelsSection = Configuration.GetSection("wheels");

 ...
 }
}

{
 "size": "tiny"
}

using Microsoft.Extensions.Configuration;

...

var client = new HttpClient()
{
 BaseAddress = new Uri(builder.HostEnvironment.BaseAddress)
};

builder.Services.AddScoped(sp => client);

using var response = await client.GetAsync("cars.json");
using var stream = await response.Content.ReadAsStreamAsync();

builder.Configuration.AddJsonStream(stream);

Authentication configuration

To read other configuration files from the wwwroot folder into configuration, use an HttpClient to obtain the file's

content. When using this approach, the existing HttpClient service registration can use the local client created to

read the file, as the following example shows:

wwwroot/cars.json :

Program.Main :

wwwroot/appsettings.json :

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

{
 "Local": {
 "Authority": "{AUTHORITY}",
 "ClientId": "{CLIENT ID}"
 }
}

builder.Services.AddOidcAuthentication(options =>
 builder.Configuration.Bind("Local", options.ProviderOptions));

Logging configuration

<PackageReference Include="Microsoft.Extensions.Logging.Configuration" Version="{VERSION}" />

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 }
}

using Microsoft.Extensions.Logging;

...

builder.Logging.AddConfiguration(
 builder.Configuration.GetSection("Logging"));

Host builder configuration

var hostname = builder.Configuration["HostName"];

Cached configuration

Program.Main :

Add a package reference for Microsoft.Extensions.Logging.Configuration :

For the placeholder {VERSION} , the latest stable version of the package that matches the app's shared framework

version can be found in the package's Version Histor yVersion Histor y at NuGet.org.

wwwroot/appsettings.json :

Program.Main :

Program.Main :

Configuration files are cached for offline use. With Progressive Web Applications (PWAs), you can only update

configuration files when creating a new deployment. Editing configuration files between deployments has no effect

because:

https://www.nuget.org/packages/Microsoft.Extensions.Logging.Configuration
https://www.nuget.org/packages/Microsoft.Extensions.Logging.Configuration

Users have cached versions of the files that they continue to use.

The PWA's service-worker.js and service-worker-assets.js files must be rebuilt on compilation, which signal

to the app on the user's next online visit that the app has been redeployed.

For more information on how background updates are handled by PWAs, see Build Progressive Web Applications

with ASP.NET Core Blazor WebAssembly.

ASP.NET Core Blazor dependency injection
9/22/2020 • 11 minutes to read • Edit Online

Default services

SERVIC ESERVIC E L IF ET IM EL IF ET IM E DESC RIP T IO NDESC RIP T IO N

HttpClient Scoped Provides methods for sending HTTP
requests and receiving HTTP responses
from a resource identified by a URI.

The instance of HttpClient in a Blazor
WebAssembly app uses the browser
for handling the HTTP traffic in the
background.

Blazor Server apps don't include an
HttpClient configured as a service by
default. Provide an HttpClient to a
Blazor Server app.

For more information, see Call a web
API from ASP.NET Core Blazor
WebAssembly.

IJSRuntime Singleton (Blazor WebAssembly)
Scoped (Blazor Server)

Represents an instance of a JavaScript
runtime where JavaScript calls are
dispatched. For more information, see
Call JavaScript functions from .NET
methods in ASP.NET Core Blazor.

NavigationManager Singleton (Blazor WebAssembly)
Scoped (Blazor Server)

Contains helpers for working with URIs
and navigation state. For more
information, see URI and navigation
state helpers.

By Rainer Stropek and Mike Rousos

Blazor supports dependency injection (DI). Apps can use built-in services by injecting them into components.

Apps can also define and register custom services and make them available throughout the app via DI.

DI is a technique for accessing services configured in a central location. This can be useful in Blazor apps to:

Share a single instance of a service class across many components, known as a singleton service.

Decouple components from concrete service classes by using reference abstractions. For example, consider an

interface IDataAccess for accessing data in the app. The interface is implemented by a concrete DataAccess

class and registered as a service in the app's service container. When a component uses DI to receive an

IDataAccess implementation, the component isn't coupled to the concrete type. The implementation can be

swapped, perhaps for a mock implementation in unit tests.

Default services are automatically added to the app's service collection.

A custom service provider doesn't automatically provide the default services listed in the table. If you use a

custom service provider and require any of the services shown in the table, add the required services to the new

service provider.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/dependency-injection.md
https://www.timecockpit.com
https://github.com/mjrousos
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager

Add services to an app
Blazor WebAssemblyBlazor WebAssembly

using System;
using System.Net.Http;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Components.WebAssembly.Hosting;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
 public static async Task Main(string[] args)
 {
 var builder = WebAssemblyHostBuilder.CreateDefault(args);
 builder.Services.AddSingleton<IMyDependency, MyDependency>();
 builder.RootComponents.Add<App>("app");

 builder.Services.AddScoped(sp =>
 new HttpClient
 {
 BaseAddress = new Uri(builder.HostEnvironment.BaseAddress)
 });

 await builder.Build().RunAsync();
 }
}

public class Program
{
 public static async Task Main(string[] args)
 {
 var builder = WebAssemblyHostBuilder.CreateDefault(args);
 builder.Services.AddSingleton<WeatherService>();
 builder.RootComponents.Add<App>("app");

 builder.Services.AddScoped(sp =>
 new HttpClient
 {
 BaseAddress = new Uri(builder.HostEnvironment.BaseAddress)
 });

 var host = builder.Build();

 var weatherService = host.Services.GetRequiredService<WeatherService>();
 await weatherService.InitializeWeatherAsync();

 await host.RunAsync();
 }
}

Configure services for the app's service collection in the Main method of Program.cs . In the following example,

the MyDependency implementation is registered for IMyDependency :

Once the host is built, services can be accessed from the root DI scope before any components are rendered. This

can be useful for running initialization logic before rendering content:

The host also provides a central configuration instance for the app. Building on the preceding example, the

weather service's URL is passed from a default configuration source (for example, appsettings.json) to

InitializeWeatherAsync :

public class Program
{
 public static async Task Main(string[] args)
 {
 var builder = WebAssemblyHostBuilder.CreateDefault(args);
 builder.Services.AddSingleton<WeatherService>();
 builder.RootComponents.Add<App>("app");

 builder.Services.AddScoped(sp =>
 new HttpClient
 {
 BaseAddress = new Uri(builder.HostEnvironment.BaseAddress)
 });

 var host = builder.Build();

 var weatherService = host.Services.GetRequiredService<WeatherService>();
 await weatherService.InitializeWeatherAsync(
 host.Configuration["WeatherServiceUrl"]);

 await host.RunAsync();
 }
}

Blazor ServerBlazor Server

using Microsoft.Extensions.DependencyInjection;

...

public void ConfigureServices(IServiceCollection services)
{
 ...
}

public void ConfigureServices(IServiceCollection services)
{
 services.AddSingleton<IDataAccess, DataAccess>();
}

Service lifetimeService lifetime

L IF ET IM EL IF ET IM E DESC RIP T IO NDESC RIP T IO N

After creating a new app, examine the Startup.ConfigureServices method:

The ConfigureServices method is passed an IServiceCollection, which is a list of service descriptor objects

(ServiceDescriptor). Services are added in the ConfigureServices method by providing service descriptors to the

service collection. The following example demonstrates the concept with the IDataAccess interface and its

concrete implementation DataAccess :

Services can be configured with the lifetimes shown in the following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostbuilder.configureservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicecollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor

Scoped Blazor WebAssembly apps don't currently have a concept of
DI scopes. Scoped -registered services behave like

Singleton services. However, the Blazor Server hosting

model supports the Scoped lifetime. In Blazor Server apps,

a scoped service registration is scoped to the connection. For
this reason, using scoped services is preferred for services
that should be scoped to the current user, even if the current
intent is to run client-side in the browser.

Singleton DI creates a single instance of the service. All components
requiring a Singleton service receive an instance of the

same service.

Transient Whenever a component obtains an instance of a Transient

service from the service container, it receives a new instance
of the service.

L IF ET IM EL IF ET IM E DESC RIP T IO NDESC RIP T IO N

Request a service in a component

The DI system is based on the DI system in ASP.NET Core. For more information, see Dependency injection in

ASP.NET Core.

After services are added to the service collection, inject the services into the components using the @inject Razor

directive. @inject has two parameters:

Type: The type of the service to inject.

Property: The name of the property receiving the injected app service. The property doesn't require manual

creation. The compiler creates the property.

For more information, see Dependency injection into views in ASP.NET Core.

Use multiple @inject statements to inject different services.

The following example shows how to use @inject . The service implementing Services.IDataAccess is injected

into the component's property DataRepository . Note how the code is only using the IDataAccess abstraction:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor.scoped
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor.singleton
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor.transient

@page "/customer-list"
@using Services
@inject IDataAccess DataRepository

@if (customers != null)
{

 @foreach (var customer in customers)
 {
 @customer.FirstName @customer.LastName
 }

}

@code {
 private IReadOnlyList<Customer> customers;

 protected override async Task OnInitializedAsync()
 {
 customers = await DataRepository.GetAllCustomersAsync();
 }
}

using Microsoft.AspNetCore.Components;

public class ComponentBase : IComponent
{
 [Inject]
 protected IDataAccess DataRepository { get; set; }

 ...
}

@page "/demo"
@inherits ComponentBase

<h1>Demo Component</h1>

Use DI in services

Internally, the generated property (DataRepository) uses the [Inject] attribute. Typically, this attribute isn't used

directly. If a base class is required for components and injected properties are also required for the base class,

manually add the [Inject] attribute:

In components derived from the base class, the @inject directive isn't required. The InjectAttribute of the base

class is sufficient:

Complex services might require additional services. In the prior example, DataAccess might require the

HttpClient default service. @inject (or the [Inject] attribute) isn't available for use in services. Constructor

injection must be used instead. Required services are added by adding parameters to the service's constructor.

When DI creates the service, it recognizes the services it requires in the constructor and provides them

accordingly. In the following example, the constructor receives an HttpClient via DI. HttpClient is a default service.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.injectattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.injectattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.injectattribute
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.injectattribute
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

public class DataAccess : IDataAccess
{
 public DataAccess(HttpClient client)
 {
 ...
 }
}

Utility base component classes to manage a DI scope

NOTENOTE

Prerequisites for constructor injection:

One constructor must exist whose arguments can all be fulfilled by DI. Additional parameters not covered by

DI are allowed if they specify default values.

The applicable constructor must be public .

One applicable constructor must exist. In case of an ambiguity, DI throws an exception.

In ASP.NET Core apps, scoped services are typically scoped to the current request. After the request completes,

any scoped or transient services are disposed by the DI system. In Blazor Server apps, the request scope lasts for

the duration of the client connection, which can result in transient and scoped services living much longer than

expected. In Blazor WebAssembly apps, services registered with a scoped lifetime are treated as singletons, so

they live longer than scoped services in typical ASP.NET Core apps.

To detect disposable transient services in an app, see the Detect transient disposables section.

An approach that limits a service lifetime in Blazor apps is use of the OwningComponentBase type.

OwningComponentBase is an abstract type derived from ComponentBase that creates a DI scope corresponding

to the lifetime of the component. Using this scope, it's possible to use DI services with a scoped lifetime and have

them live as long as the component. When the component is destroyed, services from the component's scoped

service provider are disposed as well. This can be useful for services that:

Should be reused within a component, as the transient lifetime is inappropriate.

Shouldn't be shared across components, as the singleton lifetime is inappropriate.

Two versions of the OwningComponentBase type are available:

OwningComponentBase is an abstract, disposable child of the ComponentBase type with a protected

ScopedServices property of type IServiceProvider. This provider can be used to resolve services that are

scoped to the lifetime of the component.

DI services injected into the component using @inject or the [Inject] attribute aren't created in the

component's scope. To use the component's scope, services must be resolved using GetRequiredService or

GetService. Any services resolved using the ScopedServices provider have their dependencies provided

from that same scope.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase.scopedservices#microsoft_aspnetcore_components_owningcomponentbase_scopedservices
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.injectattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.serviceproviderserviceextensions.getrequiredservice
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider.getservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase.scopedservices#microsoft_aspnetcore_components_owningcomponentbase_scopedservices

Use of an Entity Framework Core (EF Core) DbContext from DI

Detect transient disposables

Blazor WebAssemblyBlazor WebAssembly

using System;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.DependencyInjection.Extensions;

@page "/preferences"
@using Microsoft.Extensions.DependencyInjection
@inherits OwningComponentBase

<h1>User (@UserService.Name)</h1>

 @foreach (var setting in SettingService.GetSettings())
 {
 @setting.SettingName: @setting.SettingValue
 }

@code {
 private IUserService UserService { get; set; }
 private ISettingService SettingService { get; set; }

 protected override void OnInitialized()
 {
 UserService = ScopedServices.GetRequiredService<IUserService>();
 SettingService = ScopedServices.GetRequiredService<ISettingService>();
 }
}

@page "/users"
@attribute [Authorize]
@inherits OwningComponentBase<AppDbContext>

<h1>Users (@Service.Users.Count())</h1>

 @foreach (var user in Service.Users)
 {
 @user.UserName
 }

OwningComponentBase<TService> derives from OwningComponentBase and adds a Service property

that returns an instance of T from the scoped DI provider. This type is a convenient way to access scoped

services without using an instance of IServiceProvider when there's one primary service the app requires

from the DI container using the component's scope. The ScopedServices property is available, so the app

can get services of other types, if necessary.

For more information, see ASP.NET Core Blazor Server with Entity Framework Core (EFCore).

The following examples show how to detect disposable transient services in an app that should use

OwningComponentBase. For more information, see the Utility base component classes to manage a DI scope

section.

DetectIncorrectUsagesOfTransientDisposables.cs :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase-1.service
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase.scopedservices#microsoft_aspnetcore_components_owningcomponentbase_scopedservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.owningcomponentbase

namespace Microsoft.Extensions.DependencyInjection
{
 using BlazorServerTransientDisposable;
 using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

 public static class WebHostBuilderTransientDisposableExtensions
 {
 public static WebAssemblyHostBuilder DetectIncorrectUsageOfTransients(
 this WebAssemblyHostBuilder builder)
 {
 builder
 .ConfigureContainer(
 new DetectIncorrectUsageOfTransientDisposablesServiceFactory());

 return builder;
 }

 public static WebAssemblyHost EnableTransientDisposableDetection(
 this WebAssemblyHost webAssemblyHost)
 {
 webAssemblyHost.Services
 .GetRequiredService<ThrowOnTransientDisposable>().ShouldThrow = true;
 return webAssemblyHost;
 }
 }
}

namespace BlazorServerTransientDisposable
{
 public class DetectIncorrectUsageOfTransientDisposablesServiceFactory
 : IServiceProviderFactory<IServiceCollection>
 {
 public IServiceCollection CreateBuilder(IServiceCollection services) =>
 services;

 public IServiceProvider CreateServiceProvider(
 IServiceCollection containerBuilder)
 {
 var collection = new ServiceCollection();
 foreach (var descriptor in containerBuilder)
 {
 if (descriptor.Lifetime == ServiceLifetime.Transient &&
 descriptor.ImplementationType != null &&
 typeof(IDisposable).IsAssignableFrom(
 descriptor.ImplementationType))
 {
 collection.Add(CreatePatchedDescriptor(descriptor));
 }
 else if (descriptor.Lifetime == ServiceLifetime.Transient &&
 descriptor.ImplementationFactory != null)
 {
 collection.Add(CreatePatchedFactoryDescriptor(descriptor));
 }
 else
 {
 collection.Add(descriptor);
 }
 }

 collection.AddScoped<ThrowOnTransientDisposable>();

 return collection.BuildServiceProvider();
 }

 private ServiceDescriptor CreatePatchedFactoryDescriptor(
 ServiceDescriptor original)
 {
 var newDescriptor = new ServiceDescriptor(
 original.ServiceType,

 original.ServiceType,
 (sp) =>
 {
 var originalFactory = original.ImplementationFactory;
 var originalResult = originalFactory(sp);

 var throwOnTransientDisposable =
 sp.GetRequiredService<ThrowOnTransientDisposable>();
 if (throwOnTransientDisposable.ShouldThrow &&
 originalResult is IDisposable d)
 {
 throw new InvalidOperationException("Trying to resolve " +
 $"transient disposable service {d.GetType().Name} in " +
 "the wrong scope. Use an 'OwningComponentBase<T>' " +
 "component base class for the service 'T' you are " +
 "trying to resolve.");
 }

 return originalResult;
 },
 original.Lifetime);

 return newDescriptor;
 }

 private ServiceDescriptor CreatePatchedDescriptor(ServiceDescriptor original)
 {
 var newDescriptor = new ServiceDescriptor(
 original.ServiceType,
 (sp) => {
 var throwOnTransientDisposable =
 sp.GetRequiredService<ThrowOnTransientDisposable>();
 if (throwOnTransientDisposable.ShouldThrow)
 {
 throw new InvalidOperationException("Trying to resolve " +
 "transient disposable service " +
 $"{original.ImplementationType.Name} in the wrong " +
 "scope. Use an 'OwningComponentBase<T>' component base " +
 "class for the service 'T' you are trying to resolve.");
 }

 return ActivatorUtilities.CreateInstance(sp,
 original.ImplementationType);
 },
 ServiceLifetime.Transient);
 return newDescriptor;
 }
 }

 internal class ThrowOnTransientDisposable
 {
 public bool ShouldThrow { get; set; }
 }
}

The TransientDisposable in the following example is detected (Program.cs):

public class Program
{
 public static async Task Main(string[] args)
 {
 var builder = WebAssemblyHostBuilder.CreateDefault(args);
 builder.DetectIncorrectUsageOfTransients();
 builder.RootComponents.Add<App>("app");

 builder.Services.AddTransient<TransientDisposable>();
 builder.Services.AddScoped(sp =>
 new HttpClient
 {
 BaseAddress = new Uri(builder.HostEnvironment.BaseAddress)
 });

 var host = builder.Build();
 host.EnableTransientDisposableDetection();
 await host.RunAsync();
 }
}

public class TransientDisposable : IDisposable
{
 public void Dispose() => throw new NotImplementedException();
}

Blazor ServerBlazor Server

using System;
using Microsoft.AspNetCore.Components.Server.Circuits;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.DependencyInjection.Extensions;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;

namespace Microsoft.Extensions.DependencyInjection
{
 using BlazorServerTransientDisposable;

 public static class WebHostBuilderTransientDisposableExtensions
 {
 public static IHostBuilder DetectIncorrectUsageOfTransients(
 this IHostBuilder builder)
 {
 builder
 .UseServiceProviderFactory(
 new DetectIncorrectUsageOfTransientDisposablesServiceFactory())
 .ConfigureServices(
 s => s.TryAddEnumerable(ServiceDescriptor.Scoped<CircuitHandler,
 ThrowOnTransientDisposableHandler>()));

 return builder;
 }
 }
}

namespace BlazorServerTransientDisposable
{
 internal class ThrowOnTransientDisposableHandler : CircuitHandler
 {
 public ThrowOnTransientDisposableHandler(
 ThrowOnTransientDisposable throwOnTransientDisposable)
 {
 throwOnTransientDisposable.ShouldThrow = true;
 }

DetectIncorrectUsagesOfTransientDisposables.cs :

 }
 }

 public class DetectIncorrectUsageOfTransientDisposablesServiceFactory
 : IServiceProviderFactory<IServiceCollection>
 {
 public IServiceCollection CreateBuilder(IServiceCollection services) =>
 services;

 public IServiceProvider CreateServiceProvider(
 IServiceCollection containerBuilder)
 {
 var collection = new ServiceCollection();
 foreach (var descriptor in containerBuilder)
 {
 if (descriptor.Lifetime == ServiceLifetime.Transient &&
 descriptor.ImplementationType != null &&
 typeof(IDisposable).IsAssignableFrom(
 descriptor.ImplementationType))
 {
 collection.Add(CreatePatchedDescriptor(descriptor));
 }
 else if (descriptor.Lifetime == ServiceLifetime.Transient &&
 descriptor.ImplementationFactory != null)
 {
 collection.Add(CreatePatchedFactoryDescriptor(descriptor));
 }
 else
 {
 collection.Add(descriptor);
 }
 }

 collection.AddScoped<ThrowOnTransientDisposable>();

 return collection.BuildServiceProvider();
 }

 private ServiceDescriptor CreatePatchedFactoryDescriptor(
 ServiceDescriptor original)
 {
 var newDescriptor = new ServiceDescriptor(
 original.ServiceType,
 (sp) =>
 {
 var originalFactory = original.ImplementationFactory;
 var originalResult = originalFactory(sp);

 var throwOnTransientDisposable =
 sp.GetRequiredService<ThrowOnTransientDisposable>();
 if (throwOnTransientDisposable.ShouldThrow &&
 originalResult is IDisposable d)
 {
 throw new InvalidOperationException("Trying to resolve " +
 $"transient disposable service {d.GetType().Name} in " +
 "the wrong scope. Use an 'OwningComponentBase<T>' " +
 "component base class for the service 'T' you are " +
 "trying to resolve.");
 }

 return originalResult;
 },
 original.Lifetime);

 return newDescriptor;
 }

 private ServiceDescriptor CreatePatchedDescriptor(
 ServiceDescriptor original)

 {
 var newDescriptor = new ServiceDescriptor(
 original.ServiceType,
 (sp) => {
 var throwOnTransientDisposable =
 sp.GetRequiredService<ThrowOnTransientDisposable>();
 if (throwOnTransientDisposable.ShouldThrow)
 {
 throw new InvalidOperationException("Trying to resolve " +
 "transient disposable service " +
 $"{original.ImplementationType.Name} in the wrong " +
 "scope. Use an 'OwningComponentBase<T>' component " +
 "base class for the service 'T' you are trying to " +
 "resolve.");
 }

 return ActivatorUtilities.CreateInstance(sp,
 original.ImplementationType);
 },
 ServiceLifetime.Transient);
 return newDescriptor;
 }
 }

 internal class ThrowOnTransientDisposable
 {
 public bool ShouldThrow { get; set; }
 }
}

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .DetectIncorrectUsageOfTransients()
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

Program :

The TransientDependency in the following example is detected (Startup.cs):

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();
 services.AddServerSideBlazor();
 services.AddSingleton<WeatherForecastService>();
 services.AddTransient<TransientDependency>();
 services.AddTransient<ITransitiveTransientDisposableDependency,
 TransitiveTransientDisposableDependency>();
}

public class TransitiveTransientDisposableDependency
 : ITransitiveTransientDisposableDependency, IDisposable
{
 public void Dispose() { }
}

public interface ITransitiveTransientDisposableDependency
{
}

public class TransientDependency
{
 private readonly ITransitiveTransientDisposableDependency
 _transitiveTransientDisposableDependency;

 public TransientDependency(ITransitiveTransientDisposableDependency
 transitiveTransientDisposableDependency)
 {
 _transitiveTransientDisposableDependency =
 transitiveTransientDisposableDependency;
 }
}

Additional resources
Dependency injection in ASP.NET Core

IDisposable guidance for Transient and shared instances

Dependency injection into views in ASP.NET Core

ASP.NET Core Blazor environments
9/22/2020 • 2 minutes to read • Edit Online

NOTENOTE

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <system.webServer>

 ...

 <httpProtocol>
 <customHeaders>
 <add name="blazor-environment" value="Staging" />
 </customHeaders>
 </httpProtocol>
 </system.webServer>
</configuration>

NOTENOTE

This topic applies to Blazor WebAssembly. For general guidance on ASP.NET Core app configuration, see Use multiple

environments in ASP.NET Core.

When running an app locally, the environment defaults to Development. When the app is published, the

environment defaults to Production.

A hosted Blazor WebAssembly app picks up the environment from the server via a middleware that communicates

the environment to the browser by adding the blazor-environment header. The value of the header is the

environment. The hosted Blazor app and the server app share the same environment. For more information,

including how to configure the environment, see Use multiple environments in ASP.NET Core.

For a standalone app running locally, the development server adds the blazor-environment header to specify the

Development environment. To specify the environment for other hosting environments, add the

blazor-environment header.

In the following example for IIS, add the custom header to the published web.config file. The web.config file is

located in the bin/Release/{TARGET FRAMEWORK}/publish folder :

To use a custom web.config file for IIS that isn't overwritten when the app is published to the publish folder, see Host

and deploy ASP.NET Core Blazor WebAssembly.

Obtain the app's environment in a component by injecting IWebAssemblyHostEnvironment and reading the

Environment property:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/environments.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment.environment#microsoft_aspnetcore_components_webassembly_hosting_iwebassemblyhostenvironment_environment

@page "/"
@using Microsoft.AspNetCore.Components.WebAssembly.Hosting
@inject IWebAssemblyHostEnvironment HostEnvironment

<h1>Environment example</h1>

<p>Environment: @HostEnvironment.Environment</p>

if (builder.HostEnvironment.Environment == "Custom")
{
 ...
};

if (builder.HostEnvironment.IsStaging())
{
 ...
};

if (builder.HostEnvironment.IsEnvironment("Custom"))
{
 ...
};

Additional resources

During startup, the WebAssemblyHostBuilder exposes the IWebAssemblyHostEnvironment through the

HostEnvironment property, which enables developers to have environment-specific logic in their code:

The following convenience extension methods permit checking the current environment for Development,

Production, Staging, and custom environment names:

IsDevelopment()

IsProduction()

IsStaging()

IsEnvironment("{ENVIRONMENT NAME}")

The IWebAssemblyHostEnvironment.BaseAddress property can be used during startup when the

NavigationManager service isn't available.

Use multiple environments in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.webassemblyhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.webassemblyhostbuilder.hostenvironment#microsoft_aspnetcore_components_webassembly_hosting_webassemblyhostbuilder_hostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment.baseaddress#microsoft_aspnetcore_components_webassembly_hosting_iwebassemblyhostenvironment_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager

ASP.NET Core Blazor logging
9/22/2020 • 2 minutes to read • Edit Online

Blazor WebAssembly

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

...

var builder = WebAssemblyHostBuilder.CreateDefault(args);

builder.Logging.SetMinimumLevel(LogLevel.Debug);
builder.Logging.AddProvider(new CustomLoggingProvider());

Blazor Server

Blazor WebAssembly SignalR .NET client logging

@using Microsoft.Extensions.Logging
@inject ILoggerProvider LoggerProvider

...

var connection = new HubConnectionBuilder()
 .WithUrl(NavigationManager.ToAbsoluteUri("/chathub"))
 .ConfigureLogging(logging => logging.AddProvider(LoggerProvider))
 .Build();

Log in Razor components

Configure logging in Blazor WebAssembly apps with the WebAssemblyHostBuilder.Logging property in

Program.Main :

The Logging property is of type ILoggingBuilder, so all of the extension methods available on ILoggingBuilder are

also available on Logging .

Logging configuration can be loaded from app settings files. For more information, see ASP.NET Core Blazor

configuration.

For general ASP.NET Core logging guidance, see Logging in .NET Core and ASP.NET Core.

Inject an ILoggerProvider to add a WebAssemblyConsoleLogger to the logging providers passed to

HubConnectionBuilder. Unlike a traditional ConsoleLogger, WebAssemblyConsoleLogger is a wrapper around

browser-specific logging APIs (for example, console.log). Use of WebAssemblyConsoleLogger makes logging

possible within Mono inside a browser context.

Loggers respect app startup configuration.

The using directive for Microsoft.Extensions.Logging is required to support Intellisense completions for APIs, such

as LogWarning and LogError.

The following example demonstrates logging with an ILogger in Razor components:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/logging.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggingbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggingbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnectionbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.console.consolelogger
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logwarning
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logerror
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger

@page "/counter"
@using Microsoft.Extensions.Logging;
@inject ILogger<Counter> logger;

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {
 private int currentCount = 0;

 private void IncrementCount()
 {
 logger.LogWarning("Someone has clicked me!");

 currentCount++;
 }
}

@page "/counter"
@using Microsoft.Extensions.Logging;
@inject ILoggerFactory LoggerFactory

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {
 private int currentCount = 0;

 private void IncrementCount()
 {
 var logger = LoggerFactory.CreateLogger<Counter>();
 logger.LogWarning("Someone has clicked me!");

 currentCount++;
 }
}

Additional resources

The following example demonstrates logging with an ILoggerFactory in Razor components:

Logging in .NET Core and ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory

Handle errors in ASP.NET Core Blazor apps
9/22/2020 • 11 minutes to read • Edit Online

Detailed errors during development

<div id="blazor-error-ui">
 An unhandled error has occurred.
 Reload
 �
</div>

<div id="blazor-error-ui">
 <environment include="Staging,Production">
 An error has occurred. This application may no longer respond until reloaded.
 </environment>
 <environment include="Development">
 An unhandled exception has occurred. See browser dev tools for details.
 </environment>
 Reload
 �
</div>

By Steve Sanderson

This article describes how Blazor manages unhandled exceptions and how to develop apps that detect and handle

errors.

When a Blazor app isn't functioning properly during development, receiving detailed error information from the

app assists in troubleshooting and fixing the issue. When an error occurs, Blazor apps display a gold bar at the

bottom of the screen:

During development, the gold bar directs you to the browser console, where you can see the exception.

In production, the gold bar notifies the user that an error has occurred and recommends refreshing the browser.

The UI for this error handling experience is part of the Blazor project templates.

In a Blazor WebAssembly app, customize the experience in the wwwroot/index.html file:

In a Blazor Server app, customize the experience in the Pages/_Host.cshtml file:

The blazor-error-ui element is hidden by the styles included in the Blazor templates (wwwroot/css/app.css or

wwwroot/css/site.css) and then shown when an error occurs:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/handle-errors.md
https://github.com/SteveSandersonMS

#blazor-error-ui {
 background: lightyellow;
 bottom: 0;
 box-shadow: 0 -1px 2px rgba(0, 0, 0, 0.2);
 display: none;
 left: 0;
 padding: 0.6rem 1.25rem 0.7rem 1.25rem;
 position: fixed;
 width: 100%;
 z-index: 1000;
}

#blazor-error-ui .dismiss {
 cursor: pointer;
 position: absolute;
 right: 0.75rem;
 top: 0.5rem;
}

How a Blazor Server app reacts to unhandled exceptions

Manage unhandled exceptions in developer code

Log errors with a persistent provider

Blazor Server is a stateful framework. While users interact with an app, they maintain a connection to the server

known as a circuit. The circuit holds active component instances, plus many other aspects of state, such as:

The most recent rendered output of components.

The current set of event-handling delegates that could be triggered by client-side events.

If a user opens the app in multiple browser tabs, they have multiple independent circuits.

Blazor treats most unhandled exceptions as fatal to the circuit where they occur. If a circuit is terminated due to an

unhandled exception, the user can only continue to interact with the app by reloading the page to create a new

circuit. Circuits outside of the one that's terminated, which are circuits for other users or other browser tabs, aren't

affected. This scenario is similar to a desktop app that crashes. The crashed app must be restarted, but other apps

aren't affected.

A circuit is terminated when an unhandled exception occurs for the following reasons:

An unhandled exception often leaves the circuit in an undefined state.

The app's normal operation can't be guaranteed after an unhandled exception.

Security vulnerabilities may appear in the app if the circuit continues.

For an app to continue after an error, the app must have error handling logic. Later sections of this article describe

potential sources of unhandled exceptions.

In production, don't render framework exception messages or stack traces in the UI. Rendering exception messages

or stack traces could:

Disclose sensitive information to end users.

Help a malicious user discover weaknesses in an app that can compromise the security of the app, server, or

network.

If an unhandled exception occurs, the exception is logged to ILogger instances configured in the service container.

By default, Blazor apps log to console output with the Console Logging Provider. Consider logging to a more

permanent location with a provider that manages log size and log rotation. For more information, see Logging in

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger

Places where errors may occur

Component instantiationComponent instantiation

Lifecycle methodsLifecycle methods

.NET Core and ASP.NET Core.

During development, Blazor usually sends the full details of exceptions to the browser's console to aid in

debugging. In production, detailed errors in the browser's console are disabled by default, which means that errors

aren't sent to clients but the exception's full details are still logged server-side. For more information, see Handle

errors in ASP.NET Core.

You must decide which incidents to log and the level of severity of logged incidents. Hostile users might be able to

trigger errors deliberately. For example, don't log an incident from an error where an unknown ProductId is

supplied in the URL of a component that displays product details. Not all errors should be treated as high-severity

incidents for logging.

For more information, see ASP.NET Core Blazor logging.

Framework and app code may trigger unhandled exceptions in any of the following locations:

Component instantiation

Lifecycle methods

Rendering logic

Event handlers

Component disposal

JavaScript interop

Blazor Server rerendering

The preceding unhandled exceptions are described in the following sections of this article.

When Blazor creates an instance of a component:

The component's constructor is invoked.

The constructors of any non-singleton DI services supplied to the component's constructor via the @inject

directive or the [Inject] attribute are invoked.

A Blazor Server circuit fails when any executed constructor or a setter for any [Inject] property throws an

unhandled exception. The exception is fatal because the framework can't instantiate the component. If constructor

logic may throw exceptions, the app should trap the exceptions using a try-catch statement with error handling

and logging.

During the lifetime of a component, Blazor invokes the following lifecycle methods:

OnInitialized / OnInitializedAsync

OnParametersSet / OnParametersSetAsync

ShouldRender

OnAfterRender / OnAfterRenderAsync

If any lifecycle method throws an exception, synchronously or asynchronously, the exception is fatal to a Blazor

Server circuit. For components to deal with errors in lifecycle methods, add error handling logic.

In the following example where OnParametersSetAsync calls a method to obtain a product:

An exception thrown in the ProductRepository.GetProductByIdAsync method is handled by a try-catch

statement.

When the catch block is executed:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitialized
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onparametersset
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onparameterssetasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onparameterssetasync
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch

@page "/product-details/{ProductId:int}"
@using Microsoft.Extensions.Logging
@inject IProductRepository ProductRepository
@inject ILogger<ProductDetails> Logger

@if (details != null)
{
 <h1>@details.ProductName</h1>
 <p>@details.Description</p>
}
else if (loadFailed)
{
 <h1>Sorry, we could not load this product due to an error.</h1>
}
else
{
 <h1>Loading...</h1>
}

@code {
 private ProductDetails details;
 private bool loadFailed;

 [Parameter]
 public int ProductId { get; set; }

 protected override async Task OnParametersSetAsync()
 {
 try
 {
 loadFailed = false;
 details = await ProductRepository.GetProductByIdAsync(ProductId);
 }
 catch (Exception ex)
 {
 loadFailed = true;
 Logger.LogWarning(ex, "Failed to load product {ProductId}", ProductId);
 }
 }
}

Rendering logicRendering logic

loadFailed is set to true , which is used to display an error message to the user.

The error is logged.

The declarative markup in a .razor component file is compiled into a C# method called BuildRenderTree. When a

component renders, BuildRenderTree executes and builds up a data structure describing the elements, text, and

child components of the rendered component.

Rendering logic can throw an exception. An example of this scenario occurs when @someObject.PropertyName is

evaluated but @someObject is null . An unhandled exception thrown by rendering logic is fatal to a Blazor Server

circuit.

To prevent a null reference exception in rendering logic, check for a null object before accessing its members. In

the following example, person.Address properties aren't accessed if person.Address is null :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.buildrendertree
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.buildrendertree

@if (person.Address != null)
{
 <div>@person.Address.Line1</div>
 <div>@person.Address.Line2</div>
 <div>@person.Address.City</div>
 <div>@person.Address.Country</div>
}

Event handlersEvent handlers

Component disposalComponent disposal

JavaScript interopJavaScript interop

The preceding code assumes that person isn't null . Often, the structure of the code guarantees that an object

exists at the time the component is rendered. In those cases, it isn't necessary to check for null in rendering logic.

In the prior example, person might be guaranteed to exist because person is created when the component is

instantiated.

Client-side code triggers invocations of C# code when event handlers are created using:

@onclick

@onchange

Other @on... attributes

@bind

Event handler code might throw an unhandled exception in these scenarios.

If an event handler throws an unhandled exception (for example, a database query fails), the exception is fatal to a

Blazor Server circuit. If the app calls code that could fail for external reasons, trap exceptions using a try-catch

statement with error handling and logging.

If user code doesn't trap and handle the exception, the framework logs the exception and terminates the circuit.

A component may be removed from the UI, for example, because the user has navigated to another page. When a

component that implements System.IDisposable is removed from the UI, the framework calls the component's

Dispose method.

If the component's Dispose method throws an unhandled exception, the exception is fatal to a Blazor Server circuit.

If disposal logic may throw exceptions, the app should trap the exceptions using a try-catch statement with error

handling and logging.

For more information on component disposal, see ASP.NET Core Blazor lifecycle.

IJSRuntime.InvokeAsync allows .NET code to make asynchronous calls to the JavaScript runtime in the user's

browser.

The following conditions apply to error handling with InvokeAsync:

If a call to InvokeAsync fails synchronously, a .NET exception occurs. A call to InvokeAsync may fail, for example,

because the supplied arguments can't be serialized. Developer code must catch the exception. If app code in an

event handler or component lifecycle method doesn't handle an exception, the resulting exception is fatal to a

Blazor Server circuit.

If a call to InvokeAsync fails asynchronously, the .NET Task fails. A call to InvokeAsync may fail, for example,

because the JavaScript-side code throws an exception or returns a Promise that completed as rejected .

Developer code must catch the exception. If using the await operator, consider wrapping the method call in a

try-catch statement with error handling and logging. Otherwise, the failing code results in an unhandled

exception that's fatal to a Blazor Server circuit.

By default, calls to InvokeAsync must complete within a certain period or else the call times out. The default

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync

 Blazor Server prerenderingBlazor Server prerendering

Advanced scenarios
Recursive renderingRecursive rendering

timeout period is one minute. The timeout protects the code against a loss in network connectivity or JavaScript

code that never sends back a completion message. If the call times out, the resulting System.Threading.Tasks

fails with an OperationCanceledException. Trap and process the exception with logging.

Similarly, JavaScript code may initiate calls to .NET methods indicated by the [JSInvokable] attribute. If these .NET

methods throw an unhandled exception:

The exception isn't treated as fatal to a Blazor Server circuit.

The JavaScript-side Promise is rejected.

You have the option of using error handling code on either the .NET side or the JavaScript side of the method call.

For more information, see the following articles:

Call JavaScript functions from .NET methods in ASP.NET Core Blazor

Call .NET methods from JavaScript functions in ASP.NET Core Blazor

Blazor components can be prerendered using the Component Tag Helper so that their rendered HTML markup is

returned as part of the user's initial HTTP request. This works by:

Creating a new circuit for all of the prerendered components that are part of the same page.

Generating the initial HTML.

Treating the circuit as disconnected until the user's browser establishes a SignalR connection back to the same

server. When the connection is established, interactivity on the circuit is resumed and the components' HTML

markup is updated.

If any component throws an unhandled exception during prerendering, for example, during a lifecycle method or in

rendering logic:

The exception is fatal to the circuit.

The exception is thrown up the call stack from the ComponentTagHelper Tag Helper. Therefore, the entire HTTP

request fails unless the exception is explicitly caught by developer code.

Under normal circumstances when prerendering fails, continuing to build and render the component doesn't make

sense because a working component can't be rendered.

To tolerate errors that may occur during prerendering, error handling logic must be placed inside a component that

may throw exceptions. Use try-catch statements with error handling and logging. Instead of wrapping the

ComponentTagHelper Tag Helper in a try-catch statement, place error handling logic in the component rendered

by the ComponentTagHelper Tag Helper.

Components can be nested recursively. This is useful for representing recursive data structures. For example, a

TreeNode component can render more TreeNode components for each of the node's children.

When rendering recursively, avoid coding patterns that result in infinite recursion:

Don't recursively render a data structure that contains a cycle. For example, don't render a tree node whose

children includes itself.

Don't create a chain of layouts that contain a cycle. For example, don't create a layout whose layout is itself.

Don't allow an end user to violate recursion invariants (rules) through malicious data entry or JavaScript interop

calls.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks
https://docs.microsoft.com/en-us/dotnet/api/system.operationcanceledexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper

Custom render tree logicCustom render tree logic

WARNINGWARNING

Infinite loops during rendering:

Causes the rendering process to continue forever.

Is equivalent to creating an unterminated loop.

In these scenarios, an affected Blazor Server circuit fails, and the thread usually attempts to:

Consume as much CPU time as permitted by the operating system, indefinitely.

Consume an unlimited amount of server memory. Consuming unlimited memory is equivalent to the scenario

where an unterminated loop adds entries to a collection on every iteration.

To avoid infinite recursion patterns, ensure that recursive rendering code contains suitable stopping conditions.

Most Blazor components are implemented as .razor files and are compiled to produce logic that operates on a

RenderTreeBuilder to render their output. A developer may manually implement RenderTreeBuilder logic using

procedural C# code. For more information, see ASP.NET Core Blazor advanced scenarios.

Use of manual render tree builder logic is considered an advanced and unsafe scenario, not recommended for general

component development.

If RenderTreeBuilder code is written, the developer must guarantee the correctness of the code. For example, the

developer must ensure that:

Calls to OpenElement and CloseElement are correctly balanced.

Attributes are only added in the correct places.

Incorrect manual render tree builder logic can cause arbitrary undefined behavior, including crashes, server hangs,

and security vulnerabilities.

Consider manual render tree builder logic on the same level of complexity and with the same level of danger as

writing assembly code or MSIL instructions by hand.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder.openelement
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder.closeelement

ASP.NET Core Blazor hosting model configuration
9/22/2020 • 7 minutes to read • Edit Online

SignalR cross-origin negotiation for authenticationSignalR cross-origin negotiation for authentication

Reflect the connection state in the UI

<div id="components-reconnect-modal">
 ...
</div>

By Daniel Roth, Mackinnon Buck, and Luke Latham

This article covers hosting model configuration.

This section applies to Blazor WebAssembly.

To configure SignalR's underlying client to send credentials, such as cookies or HTTP authentication headers:

public class IncludeRequestCredentialsMessageHandler : DelegatingHandler
{
 protected override Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {
 request.SetBrowserRequestCredentials(BrowserRequestCredentials.Include);
 return base.SendAsync(request, cancellationToken);
 }
}

var connection = new HubConnectionBuilder()
 .WithUrl(new Uri("http://signalr.example.com"), options =>
 {
 options.HttpMessageHandlerFactory = innerHandler =>
 new IncludeRequestCredentialsMessageHandler { InnerHandler = innerHandler };
 }).Build();

Use SetBrowserRequestCredentials to set Include on cross-origin fetch requests:

Assign the HttpMessageHandler to the HttpMessageHandlerFactory option:

For more information, see ASP.NET Core SignalR configuration.

This section applies to Blazor Server.

When the client detects that the connection has been lost, a default UI is displayed to the user while the client

attempts to reconnect. If reconnection fails, the user is provided the option to retry.

To customize the UI, define an element with an id of components-reconnect-modal in the <body> of the

_Host.cshtml Razor page:

Add the following to the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css):

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/additional-scenarios.md
https://github.com/danroth27
https://github.com/MackinnonBuck
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserrequestcredentials
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.browserrequestcredentials#microsoft_aspnetcore_components_webassembly_http_browserrequestcredentials_include
https://developer.mozilla.org/docs/Web/API/Fetch_API/Using_Fetch
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connections.client.httpconnectionoptions.httpmessagehandlerfactory#microsoft_aspnetcore_http_connections_client_httpconnectionoptions_httpmessagehandlerfactory

#components-reconnect-modal {
 display: none;
}

#components-reconnect-modal.components-reconnect-show {
 display: block;
}

C SS C L A SSC SS C L A SS IN DIC AT ES…IN DIC AT ES…

components-reconnect-show A lost connection. The client is attempting to reconnect. Show
the modal.

components-reconnect-hide An active connection is re-established to the server. Hide the
modal.

components-reconnect-failed Reconnection failed, probably due to a network failure. To
attempt reconnection, call window.Blazor.reconnect() .

components-reconnect-rejected Reconnection rejected. The server was reached but refused the
connection, and the user's state on the server is lost. To reload
the app, call location.reload() . This connection state may

result when:

Render mode

<body>
 <app>
 <component type="typeof(App)" render-mode="ServerPrerendered" />
 </app>

 <script src="_framework/blazor.server.js"></script>
</body>

The following table describes the CSS classes applied to the components-reconnect-modal element.

A crash in the server-side circuit occurs.

The client is disconnected long enough for the server
to drop the user's state. Instances of the components
that the user is interacting with are disposed.

The server is restarted, or the app's worker process is
recycled.

This section applies to Blazor Server.

Blazor Server apps are set up by default to prerender the UI on the server before the client connection to the server

is established. This is set up in the _Host.cshtml Razor page:

RenderMode configures whether the component:

Is prerendered into the page.

Is rendered as static HTML on the page or if it includes the necessary information to bootstrap a Blazor app from

the user agent.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper.rendermode#microsoft_aspnetcore_mvc_taghelpers_componenttaghelper_rendermode

REN DER M O DEREN DER M O DE DESC RIP T IO NDESC RIP T IO N

ServerPrerendered Renders the component into static HTML and includes a
marker for a Blazor Server app. When the user-agent starts,
this marker is used to bootstrap a Blazor app.

Server Renders a marker for a Blazor Server app. Output from the
component isn't included. When the user-agent starts, this
marker is used to bootstrap a Blazor app.

Static Renders the component into static HTML.

Initialize the Blazor circuit

Initialize Blazor when the document is readyInitialize Blazor when the document is ready

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 document.addEventListener("DOMContentLoaded", function() {
 Blazor.start();
 });
 </script>
</body>

Chain to the Chain to the Promise that results from a manual start that results from a manual start

Rendering server components from a static HTML page isn't supported.

This section applies to Blazor Server.

Configure the manual start of a Blazor Server app's SignalR circuit in the Pages/_Host.cshtml file:

Add an autostart="false" attribute to the <script> tag for the blazor.server.js script.

Place a script that calls Blazor.start after the blazor.server.js script's tag and inside the closing </body> tag.

When autostart is disabled, any aspect of the app that doesn't depend on the circuit works normally. For example,

client-side routing is operational. However, any aspect that depends on the circuit isn't operational until

Blazor.start is called. App behavior is unpredictable without an established circuit. For example, component

methods fail to execute while the circuit is disconnected.

To initialize the Blazor app when the document is ready:

To perform additional tasks, such as JS interop initialization, use then to chain to the Promise that results from a

manual Blazor app start:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_serverprerendered
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_server
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_static

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start().then(function () {
 ...
 });
 </script>
</body>

Configure the SignalR clientConfigure the SignalR client
LoggingLogging

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 configureSignalR: function (builder) {
 builder.configureLogging("information");
 }
 });
 </script>
</body>

Modify the reconnection handlerModify the reconnection handler

To configure SignalR client logging, pass in a configuration object (configureSignalR) that calls configureLogging

with the log level on the client builder :

In the preceding example, information is equivalent to a log level of LogLevel.Information.

The reconnection handler's circuit connection events can be modified for custom behaviors, such as:

To notify the user if the connection is dropped.

To perform logging (from the client) when a circuit is connected.

To modify the connection events, register callbacks for the following connection changes:

Dropped connections use onConnectionDown .

Established/re-established connections use onConnectionUp .

BothBoth onConnectionDown and onConnectionUp must be specified:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel#microsoft_extensions_logging_loglevel_information

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 reconnectionHandler: {
 onConnectionDown: (options, error) => console.error(error);
 onConnectionUp: () => console.log("Up, up, and away!");
 }
 });
 </script>
</body>

Adjust the reconnection retry count and intervalAdjust the reconnection retry count and interval

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 reconnectionOptions: {
 maxRetries: 3,
 retryIntervalMilliseconds: 2000
 }
 });
 </script>
</body>

Hide or replace the reconnection display

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 window.addEventListener('beforeunload', function () {
 Blazor.defaultReconnectionHandler._reconnectionDisplay = {};
 });

 Blazor.start();
 </script>
</body>

Blazor.defaultReconnectionHandler._reconnectionDisplay =
 document.getElementById("{ELEMENT ID}");

To adjust the reconnection retry count and interval, set the number of retries (maxRetries) and period in

milliseconds permitted for each retry attempt (retryIntervalMilliseconds):

To hide the reconnection display, set the reconnection handler's _reconnectionDisplay to an empty object ({} or

new Object()):

To replace the reconnection display, set _reconnectionDisplay in the preceding example to the element for display:

#components-reconnect-modal {
 transition: visibility 0s linear 1000ms;
}

Influence HTML <head> tag elements

@using Microsoft.AspNetCore.Components.Web.Extensions.Head

<Title Value="{TITLE}" />
<Link href="{URL}" rel="stylesheet" />
<Meta content="{DESCRIPTION}" name="description" />

Static files

The placeholder {ELEMENT ID} is the ID of the HTML element to display.

Customize the delay before the reconnection display appears by setting the transition-delay property in the app's

CSS (wwwroot/css/site.css) for the modal element. The following example sets the transition delay from 500 ms

(default) to 1,000 ms (1 second):

This section applies to the upcoming ASP.NET Core 5.0 release of Blazor WebAssembly and Blazor Server.

When rendered, the Title , Link , and Meta components add or update data in the HTML <head> tag elements:

In the preceding example, placeholders for {TITLE} , {URL} , and {DESCRIPTION} are string values, Razor variables,

or Razor expressions.

The following characteristics apply:

Server-side prerendering is supported.

The Value parameter is the only valid parameter for the Title component.

HTML attributes provided to the Meta and Link components are captured in additional attributes and passed

through to the rendered HTML tag.

For multiple Title components, the title of the page reflects the Value of the last Title component rendered.

If multiple Meta or Link components are included with identical attributes, there's exactly one HTML tag

rendered per Meta or Link component. Two Meta or Link components can't refer to the same rendered

HTML tag.

Changes to the parameters of existing Meta or Link components are reflected in their rendered HTML tags.

When the Link or Meta components are no longer rendered and thus disposed by the framework, their

rendered HTML tags are removed.

When one of the framework components is used in a child component, the rendered HTML tag influences any other

child component of the parent component as long as the child component containing the framework component is

rendered. The distinction between using the one of these framework components in a child component and placing

a an HTML tag in wwwroot/index.html or Pages/_Host.cshtml is that a framework component's rendered HTML tag:

Can be modified by application state. A hard-coded HTML tag can't be modified by application state.

Is removed from the HTML <head> when the parent component is no longer rendered.

This section applies to Blazor Server.

To create additional file mappings with a FileExtensionContentTypeProvider or configure other StaticFileOptions, use

oneone of the following approaches. In the following examples, the {EXTENSION} placeholder is the file extension, and

the {CONTENT TYPE} placeholder is the content type.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.staticfiles.fileextensioncontenttypeprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions

Additional resources

using Microsoft.AspNetCore.StaticFiles;

...

var provider = new FileExtensionContentTypeProvider();
provider.Mappings["{EXTENSION}"] = "{CONTENT TYPE}";

services.Configure<StaticFileOptions>(options =>
{
 options.ContentTypeProvider = provider;
});

using Microsoft.AspNetCore.StaticFiles;

...

var provider = new FileExtensionContentTypeProvider();
provider.Mappings["{EXTENSION}"] = "{CONTENT TYPE}";

app.UseStaticFiles(new StaticFileOptions { ContentTypeProvider = provider });
app.UseStaticFiles();

Configure options through dependency injection (DI) in Startup.ConfigureServices (Startup.cs) using

StaticFileOptions:

Because this approach configures the same file provider used to serve blazor.server.js , make sure that

your custom configuration doesn't interfere with serving blazor.server.js . For example, don't remove the

mapping for JavaScript files by configuring the provider with provider.Mappings.Remove(".js") .

Use two calls to UseStaticFiles in Startup.Configure (Startup.cs):

Configure the custom file provider in the first call with StaticFileOptions.

The second middleware serves blazor.server.js , which uses the default static files configuration

provided by the Blazor framework.

Logging in .NET Core and ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions

Create and use ASP.NET Core Razor components
9/22/2020 • 21 minutes to read • Edit Online

Component classes

Razor syntaxRazor syntax

NamesNames

RoutingRouting

@page "/ParentComponent"

...

MarkupMarkup

By Luke Latham, Daniel Roth, and Tobias Bartsch

View or download sample code (how to download)

Blazor apps are built using components. A component is a self-contained chunk of user interface (UI), such as a

page, dialog, or form. A component includes HTML markup and the processing logic required to inject data or

respond to UI events. Components are flexible and lightweight. They can be nested, reused, and shared among

projects.

Components are implemented in Razor component files (.razor) using a combination of C# and HTML markup.

A component in Blazor is formally referred to as a Razor component.

Razor components in Blazor apps extensively use Razor syntax. If you aren't familiar with the Razor markup

language, we recommend reading razor syntax reference for ASP.NET Core before proceeding.

When accessing the content on Razor syntax, pay special attention to the following sections:

Directives: @ -prefixed reserved keywords that typically change the way component markup is parsed or

function.

Directive attributes: @ -prefixed reserved keywords that typically change the way component elements are

parsed or function.

A component's name must start with an uppercase character. For example, MyCoolComponent.razor is valid, and

myCoolComponent.razor is invalid.

Routing in Blazor is achieved by providing a route template to each accessible component in the app. When a

Razor file with an @page directive is compiled, the generated class is given a RouteAttribute specifying the route

template. At runtime, the router looks for component classes with a RouteAttribute and renders whichever

component has a route template that matches the requested URL. For more information, see ASP.NET Core Blazor

routing.

The UI for a component is defined using HTML. Dynamic rendering logic (for example, loops, conditionals,

expressions) is added using an embedded C# syntax called Razor. When an app is compiled, the HTML markup

and C# rendering logic are converted into a component class. The name of the generated class matches the name

of the file.

Members of the component class are defined in an @code block. In the @code block, component state (properties,

fields) is specified with methods for event handling or for defining other component logic. More than one @code

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/components/index.md
https://github.com/guardrex
https://github.com/danroth27
https://www.aveo-solutions.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routeattribute

<h1 style="font-style:@headingFontStyle">@headingText</h1>

@code {
 private string headingFontStyle = "italic";
 private string headingText = "Put on your new Blazor!";
}

NamespacesNamespaces

@using BlazorSample.Components

<BlazorSample.Components.MyComponent />

block is permissible.

Component members can be used as part of the component's rendering logic using C# expressions that start with

@ . For example, a C# field is rendered by prefixing @ to the field name. The following example evaluates and

renders:

headingFontStyle to the CSS property value for font-style .

headingText to the content of the <h1> element.

After the component is initially rendered, the component regenerates its render tree in response to events. Blazor

then compares the new render tree against the previous one and applies any modifications to the browser's

Document Object Model (DOM).

Components are ordinary C# classes and can be placed anywhere within a project. Components that produce

webpages usually reside in the Pages folder. Non-page components are frequently placed in the Shared folder or

a custom folder added to the project.

Typically, a component's namespace is derived from the app's root namespace and the component's location

(folder) within the app. If the app's root namespace is BlazorSample and the Counter component resides in the

Pages folder :

The Counter component's namespace is BlazorSample.Pages .

The fully qualified type name of the component is BlazorSample.Pages.Counter .

For custom folders that hold components, add a @using directive to the parent component or to the app's

_Imports.razor file. The following example makes components in the Components folder available:

Components can also be referenced using their fully qualified names, which doesn't require the @using directive:

The namespace of a component authored with Razor is based on (in priority order):

@namespace designation in Razor file (.razor) markup (@namespace BlazorSample.MyNamespace).

The project's RootNamespace in the project file (<RootNamespace>BlazorSample</RootNamespace>).

The project name, taken from the project file's file name (.csproj), and the path from the project root to the

component. For example, the framework resolves {PROJECT ROOT}/Pages/Index.razor (BlazorSample.csproj) to

the namespace BlazorSample.Pages . Components follow C# name binding rules. For the Index component in

this example, the components in scope are all of the components:

In the same folder, Pages .

The components in the project's root that don't explicitly specify a different namespace.

NOTENOTE

Partial class supportPartial class support

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {
 private int currentCount = 0;

 void IncrementCount()
 {
 currentCount++;
 }
}

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

The global:: qualification isn't supported.

Importing components with aliased using statements (for example, @using Foo = Bar) isn't supported.

Partially qualified names aren't supported. For example, adding @using BlazorSample and referencing the NavMenu

component (NavMenu.razor) with <Shared.NavMenu></Shared.NavMenu> isn't supported.

Razor components are generated as partial classes. Razor components are authored using either of the following

approaches:

C# code is defined in an @code block with HTML markup and Razor code in a single file. Blazor templates

define their Razor components using this approach.

C# code is placed in a code-behind file defined as a partial class.

The following example shows the default Counter component with an @code block in an app generated from a

Blazor template. HTML markup, Razor code, and C# code are in the same file:

Pages/Counter.razor :

The Counter component can also be created using a code-behind file with a partial class:

Pages/Counter.razor :

Counter.razor.cs :

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement

namespace BlazorSample.Pages
{
 public partial class Counter
 {
 private int currentCount = 0;

 void IncrementCount()
 {
 currentCount++;
 }
 }
}

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Authorization;
using Microsoft.AspNetCore.Components.Forms;
using Microsoft.AspNetCore.Components.Routing;
using Microsoft.AspNetCore.Components.Web;

IMPORTANTIMPORTANT

Specify a base classSpecify a base class

@page "/BlazorRocks"
@inherits BlazorRocksBase

<h1>@BlazorRocksText</h1>

using Microsoft.AspNetCore.Components;

namespace BlazorSample
{
 public class BlazorRocksBase : ComponentBase
 {
 public string BlazorRocksText { get; set; } =
 "Blazor rocks the browser!";
 }
}

Use componentsUse components

Add any required namespaces to the partial class file as needed. Typical namespaces used by Razor components

include:

@using directives in the _Imports.razor file are only applied to Razor files (.razor), not C# files (.cs).

The @inherits directive can be used to specify a base class for a component. The following example shows how a

component can inherit a base class, BlazorRocksBase , to provide the component's properties and methods. The

base class should derive from ComponentBase.

Pages/BlazorRocks.razor :

BlazorRocksBase.cs :

Components can include other components by declaring them using HTML element syntax. The markup for using

a component looks like an HTML tag where the name of the tag is the component type.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase

<HeadingComponent />

@using System.Globalization

<h1 style="font-style:@headingFontStyle">@headingText</h1>

<form>
 <div>
 <label class="form-check-label">
 <input type="checkbox" id="italicsCheck"
 @bind="italicsCheck" />
 Use italics
 </label>
 </div>

 <button type="button" class="btn btn-primary" @onclick="UpdateHeading">
 Update heading
 </button>
</form>

@code {
 private static TextInfo tinfo = CultureInfo.CurrentCulture.TextInfo;
 private string headingText =
 tinfo.ToTitleCase("welcome to blazor!");
 private string headingFontStyle = "normal";
 private bool italicsCheck = false;

 public void UpdateHeading()
 {
 headingFontStyle = italicsCheck ? "italic" : "normal";
 }
}

Parameters
Route parametersRoute parameters

The following markup in Pages/Index.razor renders a HeadingComponent instance:

Components/HeadingComponent.razor :

If a component contains an HTML element with an uppercase first letter that doesn't match a component name, a

warning is emitted indicating that the element has an unexpected name. Adding an @using directive for the

component's namespace makes the component available, which resolves the warning.

Components can receive route parameters from the route template provided in the @page directive. The router

uses route parameters to populate the corresponding component parameters.

Pages/RouteParameter.razor :

@page "/RouteParameter"
@page "/RouteParameter/{text}"

<h1>Blazor is @Text!</h1>

@code {
 [Parameter]
 public string Text { get; set; }

 protected override void OnInitialized()
 {
 Text = Text ?? "fantastic";
 }
}

Component parametersComponent parameters

<div class="panel panel-default">
 <div class="panel-heading">@Title</div>
 <div class="panel-body">@ChildContent</div>

 <button class="btn btn-primary" @onclick="OnClickCallback">
 Trigger a Parent component method
 </button>
</div>

@code {
 [Parameter]
 public string Title { get; set; }

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 [Parameter]
 public EventCallback<MouseEventArgs> OnClickCallback { get; set; }
}

Optional parameters aren't supported, so two @page directives are applied in the preceding example. The first

permits navigation to the component without a parameter. The second @page directive receives the {text} route

parameter and assigns the value to the Text property.

For information on catch-all route parameters ({*pageRoute}), which capture paths across multiple folder

boundaries, see ASP.NET Core Blazor routing.

Components can have component parameters, which are defined using public properties on the component class

with the [Parameter] attribute. Use attributes to specify arguments for a component in markup.

Components/ChildComponent.razor :

In the following example from the sample app, the ParentComponent sets the value of the Title property of the

ChildComponent .

Pages/ParentComponent.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterattribute

@page "/ParentComponent"

<h1>Parent-child example</h1>

<ChildComponent Title="Panel Title from Parent"
 OnClickCallback="@ShowMessage">
 Content of the child component is supplied
 by the parent component.
</ChildComponent>

WARNINGWARNING

Child content

<div class="panel panel-default">
 <div class="panel-heading">@Title</div>
 <div class="panel-body">@ChildContent</div>

 <button class="btn btn-primary" @onclick="OnClickCallback">
 Trigger a Parent component method
 </button>
</div>

@code {
 [Parameter]
 public string Title { get; set; }

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 [Parameter]
 public EventCallback<MouseEventArgs> OnClickCallback { get; set; }
}

NOTENOTE

Don't create components that write to their own component parameters, use a private field instead. For more information,

see the Overwritten parameters section.

Components can set the content of another component. The assigning component provides the content between

the tags that specify the receiving component.

In the following example, the ChildComponent has a ChildContent property that represents a RenderFragment,

which represents a segment of UI to render. The value of ChildContent is positioned in the component's markup

where the content should be rendered. The value of ChildContent is received from the parent component and

rendered inside the Bootstrap panel's panel-body .

Components/ChildComponent.razor :

The property receiving the RenderFragment content must be named ChildContent by convention.

The ParentComponent in the sample app can provide content for rendering the ChildComponent by placing the

content inside the <ChildComponent> tags.

Pages/ParentComponent.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.renderfragment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.renderfragment

@page "/ParentComponent"

<h1>Parent-child example</h1>

<ChildComponent Title="Panel Title from Parent"
 OnClickCallback="@ShowMessage">
 Content of the child component is supplied
 by the parent component.
</ChildComponent>

@for (int c = 0; c < 10; c++)
{
 var current = c;
 <ChildComponent Param1="@c">
 Child Content: Count: @current
 </ChildComponent>
}

@foreach(var c in Enumerable.Range(0,10))
{
 <ChildComponent Param1="@c">
 Child Content: Count: @c
 </ChildComponent>
}

Attribute splatting and arbitrary parameters

Due to the way that Blazor renders child content, rendering components inside a for loop requires a local index

variable if the incrementing loop variable is used in the child component's content:

Alternatively, use a foreach loop with Enumerable.Range:

Components can capture and render additional attributes in addition to the component's declared parameters.

Additional attributes can be captured in a dictionary and then splatted onto an element when the component is

rendered using the @attributes Razor directive. This scenario is useful when defining a component that produces

a markup element that supports a variety of customizations. For example, it can be tedious to define attributes

separately for an <input> that supports many parameters.

In the following example, the first <input> element (id="useIndividualParams") uses individual component

parameters, while the second <input> element (id="useAttributesDict") uses attribute splatting:

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.range

<input id="useIndividualParams"
 maxlength="@maxlength"
 placeholder="@placeholder"
 required="@required"
 size="@size" />

<input id="useAttributesDict"
 @attributes="InputAttributes" />

@code {
 public string maxlength = "10";
 public string placeholder = "Input placeholder text";
 public string required = "required";
 public string size = "50";

 public Dictionary<string, object> InputAttributes { get; set; } =
 new Dictionary<string, object>()
 {
 { "maxlength", "10" },
 { "placeholder", "Input placeholder text" },
 { "required", "required" },
 { "size", "50" }
 };
}

<input id="useIndividualParams"
 maxlength="10"
 placeholder="Input placeholder text"
 required="required"
 size="50">

<input id="useAttributesDict"
 maxlength="10"
 placeholder="Input placeholder text"
 required="required"
 size="50">

@code {
 [Parameter(CaptureUnmatchedValues = true)]
 public Dictionary<string, object> InputAttributes { get; set; }
}

The type of the parameter must implement IEnumerable<KeyValuePair<string, object>> or

IReadOnlyDictionary<string, object> with string keys.

The rendered <input> elements using both approaches is identical:

To accept arbitrary attributes, define a component parameter using the [Parameter] attribute with the

CaptureUnmatchedValues property set to true :

The CaptureUnmatchedValues property on [Parameter] allows the parameter to match all attributes that don't

match any other parameter. A component can only define a single parameter with CaptureUnmatchedValues. The

property type used with CaptureUnmatchedValues must be assignable from Dictionary<string, object> with

string keys. IEnumerable<KeyValuePair<string, object>> or IReadOnlyDictionary<string, object> are also options

in this scenario.

The position of @attributes relative to the position of element attributes is important. When @attributes are

splatted on the element, the attributes are processed from right to left (last to first). Consider the following

example of a component that consumes a Child component:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterattribute.captureunmatchedvalues#microsoft_aspnetcore_components_parameterattribute_captureunmatchedvalues
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterattribute.captureunmatchedvalues#microsoft_aspnetcore_components_parameterattribute_captureunmatchedvalues
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterattribute.captureunmatchedvalues#microsoft_aspnetcore_components_parameterattribute_captureunmatchedvalues
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterattribute.captureunmatchedvalues#microsoft_aspnetcore_components_parameterattribute_captureunmatchedvalues

<ChildComponent extra="10" />

<div @attributes="AdditionalAttributes" extra="5" />

[Parameter(CaptureUnmatchedValues = true)]
public IDictionary<string, object> AdditionalAttributes { get; set; }

<div extra="5" />

<ChildComponent extra="10" />

<div extra="5" @attributes="AdditionalAttributes" />

[Parameter(CaptureUnmatchedValues = true)]
public IDictionary<string, object> AdditionalAttributes { get; set; }

<div extra="10" />

Capture references to components

ParentComponent.razor :

ChildComponent.razor :

The Child component's extra attribute is set to the right of @attributes . The Parent component's rendered

<div> contains extra="5" when passed through the additional attribute because the attributes are processed

right to left (last to first):

In the following example, the order of extra and @attributes is reversed in the Child component's <div> :

ParentComponent.razor :

ChildComponent.razor :

The rendered <div> in the Parent component contains extra="10" when passed through the additional

attribute:

Component references provide a way to reference a component instance so that you can issue commands to that

instance, such as Show or Reset . To capture a component reference:

Add an @ref attribute to the child component.

Define a field with the same type as the child component.

<CustomLoginDialog @ref="loginDialog" ... />

@code {
 private CustomLoginDialog loginDialog;

 private void OnSomething()
 {
 loginDialog.Show();
 }
}

IMPORTANTIMPORTANT

<button type="button"
 @onclick="@(() => loginDialog.DoSomething())">Do Something</button>

<MyLoginDialog @ref="loginDialog" ... />

@code {
 private MyLoginDialog loginDialog;
}

NOTENOTE

Synchronization context

When the component is rendered, the loginDialog field is populated with the MyLoginDialog child component

instance. You can then invoke .NET methods on the component instance.

The loginDialog variable is only populated after the component is rendered and its output includes the MyLoginDialog

element. Until the component is rendered, there's nothing to reference.

To manipulate components references after the component has finished rendering, use the OnAfterRenderAsync or

OnAfterRender methods.

To use a reference variable with an event handler, use a lambda expression or assign the event handler delegate in the

OnAfterRenderAsync or OnAfterRender methods. This ensures that the reference variable is assigned before the event

handler is assigned.

To reference components in a loop, see Capture references to multiple similar child-components

(dotnet/aspnetcore #13358).

While capturing component references use a similar syntax to capturing element references, it isn't a JavaScript

interop feature. Component references aren't passed to JavaScript code. Component references are only used in

.NET code.

Do notnot use component references to mutate the state of child components. Instead, use normal declarative parameters to

pass data to child components. Use of normal declarative parameters result in child components that rerender at the correct

times automatically.

Blazor uses a synchronization context (SynchronizationContext) to enforce a single logical thread of execution. A

component's lifecycle methods and any event callbacks that are raised by Blazor are executed on the

synchronization context.

Blazor Server's synchronization context attempts to emulate a single-threaded environment so that it closely

matches the WebAssembly model in the browser, which is single threaded. At any given point in time, work is

performed on exactly one thread, giving the impression of a single logical thread. No two operations execute

https://github.com/dotnet/aspnetcore/issues/13358
https://docs.microsoft.com/en-us/dotnet/api/system.threading.synchronizationcontext

Avoid thread-blocking callsAvoid thread-blocking calls

Invoke component methods externally to update stateInvoke component methods externally to update state

public class NotifierService
{
 // Can be called from anywhere
 public async Task Update(string key, int value)
 {
 if (Notify != null)
 {
 await Notify.Invoke(key, value);
 }
 }

 public event Func<string, int, Task> Notify;
}

concurrently.

Generally, don't call the following methods. The following methods block the thread and thus block the app from

resuming work until the underlying Task is complete:

Result

Wait

WaitAny

WaitAll

Sleep

GetResult

In the event a component must be updated based on an external event, such as a timer or other notifications, use

the InvokeAsync method, which dispatches to Blazor's synchronization context. For example, consider a notifier

service that can notify any listening component of the updated state:

Register the NotifierService :

builder.Services.AddSingleton<NotifierService>();

services.AddScoped<NotifierService>();

In Blazor WebAssembly, register the service as singleton in Program.Main :

In Blazor Server, register the service as scoped in Startup.ConfigureServices :

Use the NotifierService to update a component:

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1.result
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.wait
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.waitany
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.waitall
https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread.sleep
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.taskawaiter.getresult

@page "/"
@inject NotifierService Notifier
@implements IDisposable

<p>Last update: @lastNotification.key = @lastNotification.value</p>

@code {
 private (string key, int value) lastNotification;

 protected override void OnInitialized()
 {
 Notifier.Notify += OnNotify;
 }

 public async Task OnNotify(string key, int value)
 {
 await InvokeAsync(() =>
 {
 lastNotification = (key, value);
 StateHasChanged();
 });
 }

 public void Dispose()
 {
 Notifier.Notify -= OnNotify;
 }
}

Use @key to control the preservation of elements and components

@foreach (var person in People)
{
 <DetailsEditor Details="@person.Details" />
}

@code {
 [Parameter]
 public IEnumerable<Person> People { get; set; }
}

In the preceding example, NotifierService invokes the component's OnNotify method outside of Blazor's

synchronization context. InvokeAsync is used to switch to the correct context and queue a render.

When rendering a list of elements or components and the elements or components subsequently change, Blazor's

diffing algorithm must decide which of the previous elements or components can be retained and how model

objects should map to them. Normally, this process is automatic and can be ignored, but there are cases where

you may want to control the process.

Consider the following example:

The contents of the People collection may change with inserted, deleted, or re-ordered entries. When the

component rerenders, the <DetailsEditor> component may change to receive different Details parameter

values. This may cause more complex rerendering than expected. In some cases, rerendering can lead to visible

behavior differences, such as lost element focus.

The mapping process can be controlled with the @key directive attribute. @key causes the diffing algorithm to

guarantee preservation of elements or components based on the key's value:

@foreach (var person in People)
{
 <DetailsEditor @key="person" Details="@person.Details" />
}

@code {
 [Parameter]
 public IEnumerable<Person> People { get; set; }
}

IMPORTANTIMPORTANT

When to use @keyWhen to use @key

<div @key="currentPerson">
 ... content that depends on currentPerson ...
</div>

When not to use @keyWhen not to use @key

What values to use for @keyWhat values to use for @key

When the People collection changes, the diffing algorithm retains the association between <DetailsEditor>

instances and person instances:

If a Person is deleted from the People list, only the corresponding <DetailsEditor> instance is removed from

the UI. Other instances are left unchanged.

If a Person is inserted at some position in the list, one new <DetailsEditor> instance is inserted at that

corresponding position. Other instances are left unchanged.

If Person entries are re-ordered, the corresponding <DetailsEditor> instances are preserved and re-ordered

in the UI.

In some scenarios, use of @key minimizes the complexity of rerendering and avoids potential issues with stateful

parts of the DOM changing, such as focus position.

Keys are local to each container element or component. Keys aren't compared globally across the document.

Typically, it makes sense to use @key whenever a list is rendered (for example, in a foreach block) and a suitable

value exists to define the @key .

You can also use @key to prevent Blazor from preserving an element or component subtree when an object

changes:

If @currentPerson changes, the @key attribute directive forces Blazor to discard the entire <div> and its

descendants and rebuild the subtree within the UI with new elements and components. This can be useful if you

need to guarantee that no UI state is preserved when @currentPerson changes.

There's a performance cost when diffing with @key . The performance cost isn't large, but only specify @key if

controlling the element or component preservation rules benefit the app.

Even if @key isn't used, Blazor preserves child element and component instances as much as possible. The only

advantage to using @key is control over how model instances are mapped to the preserved component instances,

instead of the diffing algorithm selecting the mapping.

Generally, it makes sense to supply one of the following kinds of value for @key :

Model object instances (for example, a Person instance as in the earlier example). This ensures preservation

based on object reference equality.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/foreach-in

 Overwritten parameters

<div @onclick="@Toggle" class="card bg-light mb-3" style="width:30rem">
 <div class="card-body">
 <h2 class="card-title">Toggle (<code>Expanded</code> = @Expanded)</h2>

 @if (Expanded)
 {
 <p class="card-text">@ChildContent</p>
 }
 </div>
</div>

@code {
 [Parameter]
 public bool Expanded { get; set; }

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 private void Toggle()
 {
 Expanded = !Expanded;
 }
}

@page "/expander"

<Expander Expanded="true">
 Expander 1 content
</Expander>

<Expander Expanded="true" />

<button @onclick="StateHasChanged">
 Call StateHasChanged
</button>

Unique identifiers (for example, primary key values of type int , string , or Guid).

Ensure that values used for @key don't clash. If clashing values are detected within the same parent element,

Blazor throws an exception because it can't deterministically map old elements or components to new elements or

components. Only use distinct values, such as object instances or primary key values.

New parameter values are supplied, typically overwriting existing ones, when the parent component rerenders.

Consider the following Expander component that:

Renders child content.

Toggles showing child content with a component parameter.

The Expander component is added to a parent component that may call StateHasChanged:

Initially, the Expander components behave independently when their Expanded properties are toggled. The child

components maintain their states as expected. When StateHasChanged is called in the parent, the Expanded

parameter of the first child component is reset back to its initial value (true). The second Expander component's

Expanded value isn't reset because no child content is rendered in the second component.

To maintain state in the preceding scenario, use a private field in the Expander component to maintain its toggled

state.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged

<div @onclick="@Toggle" class="card bg-light mb-3" style="width:30rem">
 <div class="card-body">
 <h2 class="card-title">Toggle (<code>expanded</code> = @expanded)</h2>

 @if (expanded)
 {
 <p class="card-text">@ChildContent</p>
 }
 </div>
</div>

@code {
 private bool expanded;

 [Parameter]
 public bool Expanded { get; set; }

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 protected override void OnInitialized()
 {
 expanded = Expanded;
 }

 private void Toggle()
 {
 expanded = !expanded;
 }
}

Apply an attribute

@page "/"
@attribute [Authorize]

Conditional HTML element attributes

<input type="checkbox" checked="@IsCompleted" />

@code {
 [Parameter]
 public bool IsCompleted { get; set; }
}

The following revised Expander component:

Accepts the Expanded component parameter value from the parent.

Assigns the component parameter value to a private field (expanded) in the OnInitialized event.

Uses the private field to maintain its internal toggle state.

Attributes can be applied to Razor components with the @attribute directive. The following example applies the

[Authorize] attribute to the component class:

HTML element attributes are conditionally rendered based on the .NET value. If the value is false or null , the

attribute isn't rendered. If the value is true , the attribute is rendered minimized.

In the following example, IsCompleted determines if checked is rendered in the element's markup:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute

<input type="checkbox" checked />

<input type="checkbox" />

WARNINGWARNING

Raw HTML

WARNINGWARNING

@((MarkupString)myMarkup)

@code {
 private string myMarkup =
 "<p class='markup'>This is a markup string.</p>";
}

Razor templates

@<{HTML tag}>...</{HTML tag}>

If IsCompleted is true , the check box is rendered as:

If IsCompleted is false , the check box is rendered as:

For more information, see razor syntax reference for ASP.NET Core.

Some HTML attributes, such as aria-pressed , don't function properly when the .NET type is a bool . In those cases, use a

string type instead of a bool .

Strings are normally rendered using DOM text nodes, which means that any markup they may contain is ignored

and treated as literal text. To render raw HTML, wrap the HTML content in a MarkupString value. The value is

parsed as HTML or SVG and inserted into the DOM.

Rendering raw HTML constructed from any untrusted source is a security risksecurity risk and should be avoided!

The following example shows using the MarkupString type to add a block of static HTML content to the rendered

output of a component:

Render fragments can be defined using Razor template syntax. Razor templates are a way to define a UI snippet

and assume the following format:

The following example illustrates how to specify RenderFragment and RenderFragment<TValue> values and

render templates directly in a component. Render fragments can also be passed as arguments to templated

components.

https://developer.mozilla.org/docs/Web/Accessibility/ARIA/Roles/button_role#Toggle_buttons
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.renderfragment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.renderfragment-1

@timeTemplate

@petTemplate(new Pet { Name = "Rex" })

@code {
 private RenderFragment timeTemplate = @<p>The time is @DateTime.Now.</p>;
 private RenderFragment<Pet> petTemplate = (pet) => @<p>Pet: @pet.Name</p>;

 private class Pet
 {
 public string Name { get; set; }
 }
}

<p>The time is 10/04/2018 01:26:52.</p>

<p>Pet: Rex</p>

Static assets

Tag Helpers aren't supported in components

Scalable Vector Graphics (SVG) images

.my-element {
 background-image: url("some-image.svg");
}

Rendered output of the preceding code:

Blazor follows the convention of ASP.NET Core apps placing static assets under the project's web root (wwwroot)

folder.

Use a base-relative path (/) to refer to the web root for a static asset. In the following example, logo.png is

physically located in the {PROJECT ROOT}/wwwroot/images folder :

Razor components do notnot support tilde-slash notation (~/).

For information on setting an app's base path, see Host and deploy ASP.NET Core Blazor.

Tag Helpers aren't supported in Razor components (.razor files). To provide Tag Helper-like functionality in

Blazor, create a component with the same functionality as the Tag Helper and use the component instead.

Since Blazor renders HTML, browser-supported images, including Scalable Vector Graphics (SVG) images (.svg),

are supported via the tag:

Similarly, SVG images are supported in the CSS rules of a stylesheet file (.css):

However, inline SVG markup isn't supported in all scenarios. If you place an <svg> tag directly into a component

file (.razor), basic image rendering is supported but many advanced scenarios aren't yet supported. For example,

Additional resources

<use> tags aren't currently respected, and @bind can't be used with some SVG tags. For more information, see

SVG support in Blazor (dotnet/aspnetcore #18271).

Threat mitigation guidance for ASP.NET Core Blazor Server: Includes guidance on building Blazor Server apps

that must contend with resource exhaustion.

https://github.com/dotnet/aspnetcore/issues/18271

ASP.NET Core Blazor templates
9/22/2020 • 3 minutes to read • Edit Online

dotnet new blazorwasm --help
dotnet new blazorserver --help

Blazor project structure

By Daniel Roth and Luke Latham

The Blazor framework provides templates to develop apps for each of the Blazor hosting models:

Blazor WebAssembly (blazorwasm)

Blazor Server (blazorserver)

For more information on Blazor's hosting models, see ASP.NET Core Blazor hosting models.

Template options are available by passing the --help option to the dotnet new CLI command:

The following files and folders make up a Blazor app generated from a Blazor project template:

Program.cs : The app's entry point that sets up the:

ASP.NET Core host (Blazor Server)

WebAssembly host (Blazor WebAssembly): The code in this file is unique to apps created from the Blazor

WebAssembly template (blazorwasm).

The App component is the root component of the app. The App component is specified as the

app DOM element (<app>...</app>) to the root component collection (

builder.RootComponents.Add<App>("app")).

Services are added and configured (for example,

builder.Services.AddSingleton<IMyDependency, MyDependency>()).

Startup.cs (Blazor Server): Contains the app's startup logic. The Startup class defines two methods:

ConfigureServices : Configures the app's dependency injection (DI) services. In Blazor Server apps,

services are added by calling AddServerSideBlazor, and the WeatherForecastService is added to the

service container for use by the example FetchData component.

Configure : Configures the app's request handling pipeline:

MapBlazorHub is called to set up an endpoint for the real-time connection with the browser. The

connection is created with SignalR, which is a framework for adding real-time web functionality to

apps.

MapFallbackToPage("/_Host") is called to set up the root page of the app (Pages/_Host.cshtml) and

enable navigation.

wwwroot/index.html (Blazor WebAssembly): The root page of the app implemented as an HTML page:

When any page of the app is initially requested, this page is rendered and returned in the response.

The page specifies where the root App component is rendered. The component is rendered at the

location of the app DOM element (<app>...</app>).

The _framework/blazor.webassembly.js JavaScript file is loaded, which:

Downloads the .NET runtime, the app, and the app's dependencies.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/templates.md
https://github.com/danroth27
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.componentservicecollectionextensions.addserversideblazor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.componentendpointroutebuilderextensions.mapblazorhub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.mapfallbacktopage

Initializes the runtime to run the app.

App.razor : The root component of the app that sets up client-side routing using the Router component. The

Router component intercepts browser navigation and renders the page that matches the requested address.

Pages folder : Contains the routable components/pages (.razor) that make up the Blazor app and the root

Razor page of a Blazor Server app. The route for each page is specified using the @page directive. The

template includes the following:

_Host.cshtml (Blazor Server): The root page of the app implemented as a Razor Page:

Counter (Pages/Counter.razor): Implements the Counter page.

Error (Error.razor , Blazor Server app only): Rendered when an unhandled exception occurs in the app.

FetchData (Pages/FetchData.razor): Implements the Fetch data page.

Index (Pages/Index.razor): Implements the Home page.

When any page of the app is initially requested, this page is rendered and returned in the

response.

The _framework/blazor.server.js JavaScript file is loaded, which sets up the real-time SignalR

connection between the browser and the server.

The Host page specifies where the root App component (App.razor) is rendered.

Properties/launchSettings.json : Holds development environment configuration.

Shared folder : Contains other UI components (.razor) used by the app:

MainLayout (MainLayout.razor): The app's layout component.

NavMenu (NavMenu.razor): Implements sidebar navigation. Includes the NavLink component (NavLink),

which renders navigation links to other Razor components. The NavLink component automatically

indicates a selected state when its component is loaded, which helps the user understand which

component is currently displayed.

_Imports.razor : Includes common Razor directives to include in the app's components (.razor), such as

@using directives for namespaces.

Data folder (Blazor Server): Contains the WeatherForecast class and implementation of the

WeatherForecastService that provide example weather data to the app's FetchData component.

wwwroot : The Web Root folder for the app containing the app's public static assets.

appsettings.json : Holds configuration settings for the app. In a Blazor WebAssembly app, the app settings

file is located in the wwwroot folder. In a Blazor Server app, the app settings file is located at the project root.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink

Secure ASP.NET Core Blazor WebAssembly
9/22/2020 • 5 minutes to read • Edit Online

Authentication library

Authentication process with OIDC

By Javier Calvarro Nelson

Blazor WebAssembly apps are secured in the same manner as Single Page Applications (SPAs). There are several

approaches for authenticating users to SPAs, but the most common and comprehensive approach is to use an

implementation based on the OAuth 2.0 protocol, such as OpenID Connect (OIDC).

Blazor WebAssembly supports authenticating and authorizing apps using OIDC via the

Microsoft.AspNetCore.Components.WebAssembly.Authentication library. The library provides a set of primitives for

seamlessly authenticating against ASP.NET Core backends. The library integrates ASP.NET Core Identity with API

authorization support built on top of Identity Server. The library can authenticate against any third-party Identity

Provider (IP) that supports OIDC, which are called OpenID Providers (OP).

The authentication support in Blazor WebAssembly is built on top of the oidc-client.js library, which is used to

handle the underlying authentication protocol details.

Other options for authenticating SPAs exist, such as the use of SameSite cookies. However, the engineering design

of Blazor WebAssembly is settled on OAuth and OIDC as the best option for authentication in Blazor WebAssembly

apps. Token-based authentication based on JSON Web Tokens (JWTs) was chosen over cookie-based authentication

for functional and security reasons:

Using a token-based protocol offers a smaller attack surface area, as the tokens aren't sent in all requests.

Server endpoints don't require protection against Cross-Site Request Forgery (CSRF) because the tokens are

sent explicitly. This allows you to host Blazor WebAssembly apps alongside MVC or Razor pages apps.

Tokens have narrower permissions than cookies. For example, tokens can't be used to manage the user account

or change a user's password unless such functionality is explicitly implemented.

Tokens have a short lifetime, one hour by default, which limits the attack window. Tokens can also be revoked at

any time.

Self-contained JWTs offer guarantees to the client and server about the authentication process. For example, a

client has the means to detect and validate that the tokens it receives are legitimate and were emitted as part of

a given authentication process. If a third party attempts to switch a token in the middle of the authentication

process, the client can detect the switched token and avoid using it.

Tokens with OAuth and OIDC don't rely on the user agent behaving correctly to ensure that the app is secure.

Token-based protocols, such as OAuth and OIDC, allow for authenticating and authorizing hosted and

standalone apps with the same set of security characteristics.

The Microsoft.AspNetCore.Components.WebAssembly.Authentication library offers several primitives to implement

authentication and authorization using OIDC. In broad terms, authentication works as follows:

When an anonymous user selects the login button or requests a page with the [Authorize] attribute applied,

the user is redirected to the app's login page (/authentication/login).

In the login page, the authentication library prepares for a redirect to the authorization endpoint. The

authorization endpoint is outside of the Blazor WebAssembly app and can be hosted at a separate origin. The

endpoint is responsible for determining whether the user is authenticated and for issuing one or more tokens in

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/index.md
https://github.com/javiercn
https://oauth.net/
https://openid.net/connect/
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://identityserver.io/
https://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute

Authentication component

Authorization

Require authorization for the entire app

NOTENOTE

response. The authentication library provides a login callback to receive the authentication response.

When the Blazor WebAssembly app loads the login callback endpoint (/authentication/login-callback), the

authentication response is processed.

If the user isn't authenticated, the user is redirected to the underlying authentication system, which is

usually ASP.NET Core Identity.

If the user was already authenticated, the authorization endpoint generates the appropriate tokens and

redirects the browser back to the login callback endpoint (/authentication/login-callback).

If the authentication process completes successfully, the user is authenticated and optionally sent back to

the original protected URL that the user requested.

If the authentication process fails for any reason, the user is sent to the login failed page (

/authentication/login-failed), and an error is displayed.

The Authentication component (Pages/Authentication.razor) handles remote authentication operations and

permits the app to:

Configure app routes for authentication states.

Set UI content for authentication states.

Manage authentication state.

Authentication actions, such as registering or signing in a user, are passed to the Blazor framework's

RemoteAuthenticatorViewCore<TAuthenticationState> component, which persists and controls state across

authentication operations.

For more information and examples, see ASP.NET Core Blazor WebAssembly additional security scenarios.

In Blazor WebAssembly apps, authorization checks can be bypassed because all client-side code can be modified by

users. The same is true for all client-side app technologies, including JavaScript SPA frameworks or native apps for

any operating system.

Always perform authorization checks on the ser ver within any API endpoints accessed by your client-Always perform authorization checks on the ser ver within any API endpoints accessed by your client-

side app.side app.

Apply the [Authorize] attribute (API documentation) to each Razor component of the app using one of the

following approaches:

@using Microsoft.AspNetCore.Authorization
@attribute [Authorize]

Use the @attribute directive in the _Imports.razor file:

Add the attribute to each Razor component in the Pages folder.

Setting an AuthorizationOptions.FallbackPolicy to a policy with RequireAuthenticatedUser is notnot supported.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorviewcore-1
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationoptions.fallbackpolicy#microsoft_aspnetcore_authorization_authorizationoptions_fallbackpolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationpolicybuilder.requireauthenticateduser

Refresh tokens

Establish claims for users

Implementation guidance

Refresh tokens can't be secured client-side in Blazor WebAssembly apps. Therefore, refresh tokens shouldn't be sent

to the app for direct use.

Refresh tokens can be maintained and used by the server-side app in a Hosted Blazor WebAssembly solution to

access third-party APIs. For more information, see ASP.NET Core Blazor WebAssembly additional security scenarios.

Apps often require claims for users based on a web API call to a server. For example, claims are frequently used to

establish authorization in an app. In these scenarios, the app requests an access token to access the service and uses

the token to obtain the user data for the claims. For examples, see the following resources:

Additional scenarios: Customize the user

ASP.NET Core Blazor WebAssembly with Azure Active Directory groups and roles

Articles under this Overview provide information on authenticating users in Blazor WebAssembly apps against

specific providers.

Standalone Blazor WebAssembly apps:

General guidance for OIDC providers and the WebAssembly Authentication Library

Microsoft Accounts

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Hosted Blazor WebAssembly apps:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

For further guidance on configuration, see ASP.NET Core Blazor WebAssembly additional security scenarios.

ASP.NET Core Blazor authentication and
authorization
9/22/2020 • 10 minutes to read • Edit Online

NOTENOTE

Authentication

Blazor WebAssembly authenticationBlazor WebAssembly authentication

Blazor Server authenticationBlazor Server authentication

By Steve Sanderson and Luke Latham

ASP.NET Core supports the configuration and management of security in Blazor apps.

Security scenarios differ between Blazor Server and Blazor WebAssembly apps. Because Blazor Server apps run on

the server, authorization checks are able to determine:

The UI options presented to a user (for example, which menu entries are available to a user).

Access rules for areas of the app and components.

Blazor WebAssembly apps run on the client. Authorization is only used to determine which UI options to show.

Since client-side checks can be modified or bypassed by a user, a Blazor WebAssembly app can't enforce

authorization access rules.

Razor Pages authorization conventions don't apply to routable Razor components. If a non-routable Razor

component is embedded in a page, the page's authorization conventions indirectly affect the Razor component

along with the rest of the page's content.

SignInManager<TUser> and UserManager<TUser> aren't supported in Razor components.

Blazor uses the existing ASP.NET Core authentication mechanisms to establish the user's identity. The exact

mechanism depends on how the Blazor app is hosted, Blazor WebAssembly or Blazor Server.

In Blazor WebAssembly apps, authentication checks can be bypassed because all client-side code can be modified

by users. The same is true for all client-side app technologies, including JavaScript SPA frameworks or native apps

for any operating system.

Add the following:

A package reference for Microsoft.AspNetCore.Components.Authorization to the app's project file.

The Microsoft.AspNetCore.Components.Authorization namespace to the app's _Imports.razor file.

To handle authentication, use of a built-in or custom AuthenticationStateProvider service is covered in the following

sections.

For more information on creating apps and configuration, see Secure ASP.NET Core Blazor WebAssembly.

Blazor Server apps operate over a real-time connection that's created using SignalR. Authentication in SignalR-

based apps is handled when the connection is established. Authentication can be based on a cookie or some other

bearer token.

The built-in AuthenticationStateProvider service for Blazor Server apps obtains authentication state data from

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/index.md
https://github.com/SteveSandersonMS
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.usermanager-1
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.Authorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider

AuthenticationStateProvider service

ASP.NET Core's HttpContext.User . This is how authentication state integrates with existing ASP.NET Core

authentication mechanisms.

For more information on creating apps and configuration, see Secure ASP.NET Core Blazor Server apps.

AuthenticationStateProvider is the underlying service used by the AuthorizeView component and

CascadingAuthenticationState component to get the authentication state.

You don't typically use AuthenticationStateProvider directly. Use the AuthorizeView component or

Task<AuthenticationState> approaches described later in this article. The main drawback to using

AuthenticationStateProvider directly is that the component isn't notified automatically if the underlying

authentication state data changes.

The AuthenticationStateProvider service can provide the current user's ClaimsPrincipal data, as shown in the

following example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal

@page "/"
@using System.Security.Claims
@using Microsoft.AspNetCore.Components.Authorization
@inject AuthenticationStateProvider AuthenticationStateProvider

<h3>ClaimsPrincipal Data</h3>

<button @onclick="GetClaimsPrincipalData">Get ClaimsPrincipal Data</button>

<p>@_authMessage</p>

@if (_claims.Count() > 0)
{

 @foreach (var claim in _claims)
 {
 @claim.Type: @claim.Value
 }

}

<p>@_surnameMessage</p>

@code {
 private string _authMessage;
 private string _surnameMessage;
 private IEnumerable<Claim> _claims = Enumerable.Empty<Claim>();

 private async Task GetClaimsPrincipalData()
 {
 var authState = await AuthenticationStateProvider.GetAuthenticationStateAsync();
 var user = authState.User;

 if (user.Identity.IsAuthenticated)
 {
 _authMessage = $"{user.Identity.Name} is authenticated.";
 _claims = user.Claims;
 _surnameMessage =
 $"Surname: {user.FindFirst(c => c.Type == ClaimTypes.Surname)?.Value}";
 }
 else
 {
 _authMessage = "The user is NOT authenticated.";
 }
 }
}

Implement a custom AuthenticationStateProvider

If user.Identity.IsAuthenticated is true and because the user is a ClaimsPrincipal, claims can be enumerated and

membership in roles evaluated.

For more information on dependency injection (DI) and services, see ASP.NET Core Blazor dependency injection and

Dependency injection in ASP.NET Core.

If the app requires a custom provider, implement AuthenticationStateProvider and override

GetAuthenticationStateAsync :

https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider

using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Components.Authorization;

public class CustomAuthStateProvider : AuthenticationStateProvider
{
 public override Task<AuthenticationState> GetAuthenticationStateAsync()
 {
 var identity = new ClaimsIdentity(new[]
 {
 new Claim(ClaimTypes.Name, "mrfibuli"),
 }, "Fake authentication type");

 var user = new ClaimsPrincipal(identity);

 return Task.FromResult(new AuthenticationState(user));
 }
}

using Microsoft.AspNetCore.Components.Authorization;

...

builder.Services.AddScoped<AuthenticationStateProvider, CustomAuthStateProvider>();

using Microsoft.AspNetCore.Components.Authorization;

...

services.AddScoped<AuthenticationStateProvider, CustomAuthStateProvider>();

Expose the authentication state as a cascading parameter

In a Blazor WebAssembly app, the CustomAuthStateProvider service is registered in Main of Program.cs :

In a Blazor Server app, the CustomAuthStateProvider service is registered in Startup.ConfigureServices :

Using the CustomAuthStateProvider in the preceding example, all users are authenticated with the username

mrfibuli .

If authentication state data is required for procedural logic, such as when performing an action triggered by the

user, obtain the authentication state data by defining a cascading parameter of type Task< AuthenticationState > :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate

@page "/"

<button @onclick="LogUsername">Log username</button>

<p>@_authMessage</p>

@code {
 [CascadingParameter]
 private Task<AuthenticationState> authenticationStateTask { get; set; }

 private string _authMessage;

 private async Task LogUsername()
 {
 var authState = await authenticationStateTask;
 var user = authState.User;

 if (user.Identity.IsAuthenticated)
 {
 _authMessage = $"{user.Identity.Name} is authenticated.";
 }
 else
 {
 _authMessage = "The user is NOT authenticated.";
 }
 }
}

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

builder.Services.AddOptions();
builder.Services.AddAuthorizationCore();

Authorization

If user.Identity.IsAuthenticated is true , claims can be enumerated and membership in roles evaluated.

Set up the Task< AuthenticationState > cascading parameter using the AuthorizeRouteView and

CascadingAuthenticationState components in the App component (App.razor):

In a Blazor WebAssembly App, add services for options and authorization to Program.Main :

In a Blazor Server app, services for options and authorization are already present, so no further action is required.

After a user is authenticated, authorization rules are applied to control what the user can do.

Access is typically granted or denied based on whether :

A user is authenticated (signed in).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate

AuthorizeView component

<AuthorizeView>
 <h1>Hello, @context.User.Identity.Name!</h1>
 <p>You can only see this content if you're authenticated.</p>
</AuthorizeView>

<AuthorizeView>
 <Authorized>
 <h1>Hello, @context.User.Identity.Name!</h1>
 <p>You can only see this content if you're authenticated.</p>
 </Authorized>
 <NotAuthorized>
 <h1>Authentication Failure!</h1>
 <p>You're not signed in.</p>
 </NotAuthorized>
</AuthorizeView>

Role-based and policy-based authorizationRole-based and policy-based authorization

A user is in a role.

A user has a claim.

A policy is satisfied.

Each of these concepts is the same as in an ASP.NET Core MVC or Razor Pages app. For more information on

ASP.NET Core security, see the articles under ASP.NET Core Security and Identity.

The AuthorizeView component selectively displays UI depending on whether the user is authorized to see it. This

approach is useful when you only need to display data for the user and don't need to use the user's identity in

procedural logic.

The component exposes a context variable of type AuthenticationState, which you can use to access information

about the signed-in user :

You can also supply different content for display if the user isn't authenticated:

The AuthorizeView component can be used in the NavMenu component (Shared/NavMenu.razor) to display a list item

(...) for a NavLink component (NavLink), but note that this approach only removes the list item from

the rendered output. It doesn't prevent the user from navigating to the component.

The content of <Authorized> and <NotAuthorized> tags can include arbitrary items, such as other interactive

components.

Authorization conditions, such as roles or policies that control UI options or access, are covered in the Authorization

section.

If authorization conditions aren't specified, AuthorizeView uses a default policy and treats:

Authenticated (signed-in) users as authorized.

Unauthenticated (signed-out) users as unauthorized.

The AuthorizeView component supports role-based or policy-based authorization.

For role-based authorization, use the Roles parameter :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview.roles#microsoft_aspnetcore_components_authorization_authorizeview_roles

<AuthorizeView Roles="admin, superuser">
 <p>You can only see this if you're an admin or superuser.</p>
</AuthorizeView>

<AuthorizeView Policy="content-editor">
 <p>You can only see this if you satisfy the "content-editor" policy.</p>
</AuthorizeView>

Content displayed during asynchronous authenticationContent displayed during asynchronous authentication

<AuthorizeView>
 <Authorized>
 <h1>Hello, @context.User.Identity.Name!</h1>
 <p>You can only see this content if you're authenticated.</p>
 </Authorized>
 <Authorizing>
 <h1>Authentication in progress</h1>
 <p>You can only see this content while authentication is in progress.</p>
 </Authorizing>
</AuthorizeView>

[Authorize] attribute

@page "/"
@attribute [Authorize]

You can only see this if you're signed in.

IMPORTANTIMPORTANT

For more information, see Role-based authorization in ASP.NET Core.

For policy-based authorization, use the Policy parameter :

Claims-based authorization is a special case of policy-based authorization. For example, you can define a policy that

requires users to have a certain claim. For more information, see Policy-based authorization in ASP.NET Core.

These APIs can be used in either Blazor Server or Blazor WebAssembly apps.

If neither Roles nor Policy is specified, AuthorizeView uses the default policy.

Blazor allows for authentication state to be determined asynchronously. The primary scenario for this approach is in

Blazor WebAssembly apps that make a request to an external endpoint for authentication.

While authentication is in progress, AuthorizeView displays no content by default. To display content while

authentication occurs, use the <Authorizing> tag:

This approach isn't normally applicable to Blazor Server apps. Blazor Server apps know the authentication state as

soon as the state is established. Authorizing content can be provided in a Blazor Server app's AuthorizeView

component, but the content is never displayed.

The [Authorize] attribute can be used in Razor components:

Only use [Authorize] on @page components reached via the Blazor Router. Authorization is only performed as an aspect

of routing and not for child components rendered within a page. To authorize the display of specific parts within a page, use

AuthorizeView instead.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview.policy#microsoft_aspnetcore_components_authorization_authorizeview_policy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview.roles#microsoft_aspnetcore_components_authorization_authorizeview_roles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview.policy#microsoft_aspnetcore_components_authorization_authorizeview_policy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeviewcore.authorizing#microsoft_aspnetcore_components_authorization_authorizeviewcore_authorizing
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview

@page "/"
@attribute [Authorize(Roles = "admin, superuser")]

<p>You can only see this if you're in the 'admin' or 'superuser' role.</p>

@page "/"
@attribute [Authorize(Policy = "content-editor")]

<p>You can only see this if you satisfy the 'content-editor' policy.</p>

Customize unauthorized content with the Router component

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 <h1>Sorry</h1>
 <p>You're not authorized to reach this page.</p>
 <p>You may need to log in as a different user.</p>
 </NotAuthorized>
 <Authorizing>
 <h1>Authentication in progress</h1>
 <p>Only visible while authentication is in progress.</p>
 </Authorizing>
 </AuthorizeRouteView>
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <h1>Sorry</h1>
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

The [Authorize] attribute also supports role-based or policy-based authorization. For role-based authorization, use

the Roles parameter :

For policy-based authorization, use the Policy parameter :

If neither Roles nor Policy is specified, [Authorize] uses the default policy, which by default is to treat:

Authenticated (signed-in) users as authorized.

Unauthenticated (signed-out) users as unauthorized.

The Router component, in conjunction with the AuthorizeRouteView component, allows the app to specify custom

content if:

Content isn't found.

The user fails an [Authorize] condition applied to the component. The [Authorize] attribute is covered in the

[Authorize] attribute section.

Asynchronous authentication is in progress.

In the default Blazor Server project template, the App component (App.razor) demonstrates how to set custom

content:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute.roles#microsoft_aspnetcore_authorization_authorizeattribute_roles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute.policy#microsoft_aspnetcore_authorization_authorizeattribute_policy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute.roles#microsoft_aspnetcore_authorization_authorizeattribute_roles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute.policy#microsoft_aspnetcore_authorization_authorizeattribute_policy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute

Not authorized.

Notification about authentication state changes

Procedural logic

@using Microsoft.AspNetCore.Authorization
@inject IAuthorizationService AuthorizationService

<button @onclick="@DoSomething">Do something important</button>

@code {
 [CascadingParameter]
 private Task<AuthenticationState> authenticationStateTask { get; set; }

 private async Task DoSomething()
 {
 var user = (await authenticationStateTask).User;

 if (user.Identity.IsAuthenticated)
 {
 // Perform an action only available to authenticated (signed-in) users.
 }

 if (user.IsInRole("admin"))
 {
 // Perform an action only available to users in the 'admin' role.
 }

 if ((await AuthorizationService.AuthorizeAsync(user, "content-editor"))
 .Succeeded)
 {
 // Perform an action only available to users satisfying the
 // 'content-editor' policy.
 }
 }
}

The content of <NotFound> , <NotAuthorized> , and <Authorizing> tags can include arbitrary items, such as other

interactive components.

If the <NotAuthorized> tag isn't specified, the AuthorizeRouteView uses the following fallback message:

If the app determines that the underlying authentication state data has changed (for example, because the user

signed out or another user has changed their roles), a custom AuthenticationStateProvider can optionally invoke

the method NotifyAuthenticationStateChanged on the AuthenticationStateProvider base class. This notifies

consumers of the authentication state data (for example, AuthorizeView) to rerender using the new data.

If the app is required to check authorization rules as part of procedural logic, use a cascaded parameter of type

Task< AuthenticationState > to obtain the user's ClaimsPrincipal. Task< AuthenticationState > can be combined

with other services, such as IAuthorizationService , to evaluate policies.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider.notifyauthenticationstatechanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate

NOTENOTE

@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.Authorization

Troubleshoot errors

<CascadingAuthenticationState>
 <Router AppAssembly="typeof(Startup).Assembly">
 ...
 </Router>
</CascadingAuthenticationState>

Additional resources

In a Blazor WebAssembly app component, add the Microsoft.AspNetCore.Authorization and

Microsoft.AspNetCore.Components.Authorization namespaces:

These namespaces can be provided globally by adding them to the app's _Imports.razor file.

Common errors:

Authorization requires a cascading parameter of type Authorization requires a cascading parameter of type Task\<AuthenticationState> . Consider using . Consider using

CascadingAuthenticationState to supply this. to supply this.

null value is received for value is received for authenticationStateTask

It's likely that the project wasn't created using a Blazor Server template with authentication enabled. Wrap a

<CascadingAuthenticationState> around some part of the UI tree, for example in the App component (App.razor)

as follows:

The CascadingAuthenticationState supplies the Task< AuthenticationState > cascading parameter, which in turn it

receives from the underlying AuthenticationStateProvider DI service.

Overview of ASP.NET Core Security

Configure Windows Authentication in ASP.NET Core

Awesome Blazor : Authentication community sample links

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://github.com/AdrienTorris/awesome-blazor#authentication

ASP.NET Core Blazor forms and validation
9/22/2020 • 22 minutes to read • Edit Online

using System.ComponentModel.DataAnnotations;

public class ExampleModel
{
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
}

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <InputText id="name" @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }
}

Built-in forms components

By Daniel Roth, Rémi Bourgarel, and Luke Latham

Forms and validation are supported in Blazor using data annotations.

The following ExampleModel type defines validation logic using data annotations:

A form is defined using the EditForm component. The following form demonstrates typical elements, components,

and Razor code:

In the preceding example:

The form validates user input in the name field using the validation defined in the ExampleModel type. The model

is created in the component's @code block and held in a private field (exampleModel). The field is assigned to the

Model attribute of the <EditForm> element.

The InputText component's @bind-Value binds:

The DataAnnotationsValidator validator component attaches validation support using data annotations.

The ValidationSummary component summarizes validation messages.

HandleValidSubmit is triggered when the form successfully submits (passes validation).

The model property (exampleModel.Name) to the InputText component's Value property. For more

information on property binding, see ASP.NET Core Blazor data binding.

A change event delegate to the InputText component's ValueChanged property.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/forms-validation.md
https://github.com/danroth27
https://remibou.github.io/
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputFile <input type="file">

InputNumber<TValue> <input type="number">

InputRadio <input type="radio">

InputRadioGroup <input type="radio">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputNumber<TValue> <input type="number">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

NOTENOTE

A set of built-in components are available to receive and validate user input. Inputs are validated when they're

changed and when a form is submitted. Available input components are shown in the following table.

The InputRadio and InputRadioGroup components are available in ASP.NET Core 5.0 or later. For more information, select

a 5.0 or later version of this article.

All of the input components, including EditForm, support arbitrary attributes. Any attribute that doesn't match a

component parameter is added to the rendered HTML element.

Input components provide default behavior for validating when a field is changed, including updating the field CSS

class to reflect the field state. Some components include useful parsing logic. For example, InputDate<TValue> and

InputNumber<TValue> handle unparseable values gracefully by registering unparseable values as validation errors.

Types that can accept null values also support nullability of the target field (for example, int?).

The following Starship type defines validation logic using a larger set of properties and data annotations than the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 [Required]
 [StringLength(16, ErrorMessage = "Identifier too long (16 character limit).")]
 public string Identifier { get; set; }

 public string Description { get; set; }

 [Required]
 public string Classification { get; set; }

 [Range(1, 100000, ErrorMessage = "Accommodation invalid (1-100000).")]
 public int MaximumAccommodation { get; set; }

 [Required]
 [Range(typeof(bool), "true", "true",
 ErrorMessage = "This form disallows unapproved ships.")]
 public bool IsValidatedDesign { get; set; }

 [Required]
 public DateTime ProductionDate { get; set; }
}

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>

earlier ExampleModel :

In the preceding example, Description is optional because no data annotations are present.

The following form validates user input using the validation defined in the Starship model:

 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" />
 </label>
 </p>

 <button type="submit">Submit</button>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 ...
 }
}

The EditForm creates an EditContext as a cascading value that tracks metadata about the edit process, including

which fields have been modified and the current validation messages.

Assign eithereither an EditContext oror an EditForm.Model to an EditForm. Assignment of both isn't supported and

generates a runtime errorruntime error .

The EditForm provides convenient events for valid and invalid form submission:

OnValidSubmit

OnInvalidSubmit

Use OnSubmit to use custom code to trigger validation and check field values.

In the following example:

The HandleSubmit method executes when the Submit button is selected.

The form is validated by calling EditContext.Validate.

Additional code is executed depending on the validation result. Place business logic in the method assigned to

OnSubmit.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.oninvalidsubmit#microsoft_aspnetcore_components_forms_editform_oninvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.validate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit

<EditForm EditContext="@editContext" OnSubmit="@HandleSubmit">

 ...

 <button type="submit">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 }

 private async Task HandleSubmit()
 {
 var isValid = editContext.Validate();

 if (isValid)
 {
 ...
 }
 else
 {
 ...
 }
 }
}

NOTENOTE

Display name support

<InputDate @bind-Value="@BirthDate" DisplayName="birthday" />

@code {
 public DateTime BirthDate { get; set; }
}

Framework API doesn't exist to clear validation messages directly from an EditContext. Therefore, we don't generally

recommend adding validation messages to a new ValidationMessageStore in a form. To manage validation messages, use a

validator component with your business logic validation code, as described in this article.

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

The following built-in components support display names with the DisplayName parameter :

InputDate<TValue>

InputNumber<TValue>

InputSelect<TValue>

In the following InputDate component example:

The display name (DisplayName) is set to birthday .

The component is bound to the BirthDate property as a DateTime type.

If the user doesn't provide a date value, the validation error appears as:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1

The birthday must be a date.

Validator components

NOTENOTE

Validator components support form validation by managing a ValidationMessageStore for a form's EditContext.

The Blazor framework provides the DataAnnotationsValidator component to attach validation support to forms

based on validation attributes (data annotations). Create custom validator components to process validation

messages for different forms on the same page or the same form at different steps of form processing, for example

client-side validation followed by server-side validation. The validator component example shown in this section,

CustomValidator , is used in the following sections of this article:

Business logic validation

Server validation

Custom data annotation validation attributes can be used instead of custom validator components in many cases. Custom

attributes applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with

server-side validation, any custom attributes applied to the model must be executable on the server. For more information,

see Model validation in ASP.NET Core MVC.

Create a validator component from ComponentBase:

The form's EditContext is a cascading parameter of the component.

When the validator component is initialized, a new ValidationMessageStore is created to maintain a current list

of form errors.

The message store receives errors when developer code in the form's component calls the DisplayErrors

method. The errors are passed to the DisplayErrors method in a Dictionary<string, List<string>> . In the

dictionary, the key is the name of the form field that has one or more errors. The value is the error list.

Messages are cleared when any of the following have occurred:

Validation is requested on the EditContext when the OnValidationRequested event is raised. All of the

errors are cleared.

A field changes in the form when the OnFieldChanged event is raised. Only the errors for the field are

cleared.

The ClearErrors method is called by developer code. All of the errors are cleared.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onvalidationrequested
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Forms;

namespace BlazorSample.Client
{
 public class CustomValidator : ComponentBase
 {
 private ValidationMessageStore messageStore;

 [CascadingParameter]
 private EditContext CurrentEditContext { get; set; }

 protected override void OnInitialized()
 {
 if (CurrentEditContext == null)
 {
 throw new InvalidOperationException(
 $"{nameof(CustomValidator)} requires a cascading " +
 $"parameter of type {nameof(EditContext)}. " +
 $"For example, you can use {nameof(CustomValidator)} " +
 $"inside an {nameof(EditForm)}.");
 }

 messageStore = new ValidationMessageStore(CurrentEditContext);

 CurrentEditContext.OnValidationRequested += (s, e) =>
 messageStore.Clear();
 CurrentEditContext.OnFieldChanged += (s, e) =>
 messageStore.Clear(e.FieldIdentifier);
 }

 public void DisplayErrors(Dictionary<string, List<string>> errors)
 {
 foreach (var err in errors)
 {
 messageStore.Add(CurrentEditContext.Field(err.Key), err.Value);
 }

 CurrentEditContext.NotifyValidationStateChanged();
 }

 public void ClearErrors()
 {
 messageStore.Clear();
 CurrentEditContext.NotifyValidationStateChanged();
 }
 }
}

Business logic validation
Business logic validation can be accomplished with a validator component that receives form errors in a dictionary.

In the following example:

The CustomValidator component from the Validator components section of this article is used.

The validation requires a value for the ship's description (Description) if the user selects the Defense ship

classification (Classification).

When validation messages are set in the component, they're added to the validator's ValidationMessageStore and

shown in the EditForm:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 ...

</EditForm>

@code {
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 customValidator.ClearErrors();

 var errors = new Dictionary<string, List<string>>();

 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 errors.Add(nameof(starship.Description),
 new List<string>() { "For a 'Defense' ship classification, " +
 "'Description' is required." });
 }

 if (errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else
 {
 // Process the form
 }
 }
}

NOTENOTE

Server validation

As an alternative to using validation components, data annotation validation attributes can be used. Custom attributes

applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side

validation, the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

Server validation can be accomplished with a server validator component:

Process client-side validation in the form with the DataAnnotationsValidator component.

When the form passes client-side validation (OnValidSubmit is called), send the EditContext.Model to a backend

server API for form processing.

Process model validation on the server.

The server API includes both the built-in framework data annotations validation and custom validation logic

supplied by the developer. If validation passes on the server, process the form and send back a success status

code (200 - OK). If validation fails, return a failure status code (400 - Bad Request) and the field validation errors.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.model#microsoft_aspnetcore_components_forms_editcontext_model

<ItemGroup>
 <PackageReference Include="System.ComponentModel.Annotations" Version="{VERSION}" />
</ItemGroup>

Either disable the form on success or display the errors.

The following example is based on:

A hosted Blazor solution created by the Blazor Hosted project template. The example can be used with any of the

secure hosted Blazor solutions described in the Security and Identity documentation.

The Starfleet Starship Database form example in the preceding Built-in forms components section.

The Blazor framework's DataAnnotationsValidator component.

The CustomValidator component shown in the Validator components section.

In the following example, the server API validates that a value is provided for the ship's description (Description) if

the user selects the Defense ship classification (Classification).

Place the Starship model into the solution's Shared project so that both the client and server apps can use the

model. Since the model requires data annotations, add a package reference for System.ComponentModel.Annotations

to the Shared project's project file:

To determine the latest non-preview version of the package, see the package Version Histor yVersion Histor y at NuGet.org.

In the server API project, add a controller to process starship validation requests (

Controllers/StarshipValidation.cs) and return failed validation messages:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/System.ComponentModel.Annotations
https://www.nuget.org/packages/System.ComponentModel.Annotations

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using BlazorSample.Shared;

namespace BlazorSample.Server.Controllers
{
 [Authorize]
 [ApiController]
 [Route("[controller]")]
 public class StarshipValidationController : ControllerBase
 {
 private readonly ILogger<StarshipValidationController> logger;

 public StarshipValidationController(
 ILogger<StarshipValidationController> logger)
 {
 this.logger = logger;
 }

 [HttpPost]
 public async Task<IActionResult> Post(Starship starship)
 {
 try
 {
 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 ModelState.AddModelError(nameof(starship.Description),
 "For a 'Defense' ship " +
 "classification, 'Description' is required.");
 }
 else
 {
 // Process the form asynchronously
 // async ...

 return Ok(ModelState);
 }
 }
 catch (Exception ex)
 {
 logger.LogError("Validation Error: {MESSAGE}", ex.Message);
 }

 return BadRequest(ModelState);
 }
 }
}

When a model binding validation error occurs on the server, an ApiController (ApiControllerAttribute) normally

returns a default bad request response with a ValidationProblemDetails. The response contains more data than just

the validation errors, as shown in the following example when all of the fields of the Starfleet Starship Database

form aren't submitted and the form fails validation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails

{
 "title": "One or more validation errors occurred.",
 "status": 400,
 "errors": {
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
 }
}

{
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
}

using Microsoft.AspNetCore.Mvc;

...

services.AddControllersWithViews()
 .ConfigureApiBehaviorOptions(options =>
 {
 options.InvalidModelStateResponseFactory = context =>
 {
 if (context.HttpContext.Request.Path == "/StarshipValidation")
 {
 return new BadRequestObjectResult(context.ModelState);
 }
 else
 {
 return new BadRequestObjectResult(
 new ValidationProblemDetails(context.ModelState));
 }
 };
 });

@page "/FormValidation"
@using System.Net

If the server API returns the preceding default JSON response, it's possible for the client to parse the response to

obtain the children of the errors node. However, it's inconvenient to parse the file. Parsing the JSON requires

additional code after calling ReadFromJsonAsync in order to produce a Dictionary<string, List<string>> of errors

for forms validation error processing. Ideally, the server API should only return the validation errors:

To modify the server API's response to make it only return the validation errors, change the delegate that's invoked

on actions that are annotated with ApiControllerAttribute in Startup.ConfigureServices . For the API endpoint (

/StarshipValidation), return a BadRequestObjectResult with the ModelStateDictionary. For any other API

endpoints, preserve the default behavior by returning the object result with a new ValidationProblemDetails:

For more information, see Handle errors in ASP.NET Core web APIs.

In the client project, add the validator component shown in the Validator components section.

In the client project, the Starfleet Starship Database form is updated to show server validation errors with help of

the CustomValidator component. When the server API returns validation messages, they're added to the

CustomValidator component's ValidationMessageStore. The errors are available in the form's EditContext for

display by the form's ValidationSummary:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.badrequestobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

@using System.Net
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using Microsoft.Extensions.Logging
@using BlazorSample.Shared
@attribute [Authorize]
@inject HttpClient Http
@inject ILogger<FormValidation> Logger

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification" disabled="@disabled">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" disabled="@disabled" />
 </label>
 </p>

 <button type="submit" disabled="@disabled">Submit</button>

 <p style="@messageStyles">
 @message
 </p>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private bool disabled;
 private string message;
 private string messageStyles = "visibility:hidden";
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private async Task HandleValidSubmit(EditContext editContext)
 {
 customValidator.ClearErrors();

 try
 {
 var response = await Http.PostAsJsonAsync<Starship>(
 "StarshipValidation", (Starship)editContext.Model);

 var errors = await response.Content
 .ReadFromJsonAsync<Dictionary<string, List<string>>>();

 if (response.StatusCode == HttpStatusCode.BadRequest &&
 errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else if (!response.IsSuccessStatusCode)
 {
 throw new HttpRequestException(
 $"Validation failed. Status Code: {response.StatusCode}");
 }
 else
 {
 disabled = true;
 messageStyles = "color:green";
 message = "The form has been processed.";
 }
 }
 catch (AccessTokenNotAvailableException ex)
 {
 ex.Redirect();
 }
 catch (Exception ex)
 {
 Logger.LogError("Form processing error: {MESSAGE}", ex.Message);
 disabled = true;
 messageStyles = "color:red";
 message = "There was an error processing the form.";
 }
 }
}

NOTENOTE
As an alternative to validation components, data annotation validation attributes can be used. Custom attributes applied to

the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side validation,

the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

NOTENOTE

InputText based on the input event

@inherits InputText

<input
 @attributes="AdditionalAttributes"
 class="@CssClass"
 value="@CurrentValue"
 @oninput="EventCallback.Factory.CreateBinder<string>(
 this, __value => CurrentValueAsString = __value,
 CurrentValueAsString)" />

The server-side validation approach in this section is suitable for any of the Blazor WebAssembly hosted solution examples in

this documentation set:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

Use the InputText component to create a custom component that uses the input event instead of the change

event.

In the following example, the CustomInputText component inherits the framework's InputText component and sets

the event binding (CreateBinder) to the oninput event.

Shared/CustomInputText.razor :

The CustomInputText component can be used anywhere InputText is used:

Pages/TestForm.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallbackfactorybinderextensions.createbinder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext

@page "/testform"
@using System.ComponentModel.DataAnnotations;

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <CustomInputText @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

<p>
 CurrentValue: @exampleModel.Name
</p>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }

 public class ExampleModel
 {
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
 }
}

Radio buttons

[Required]
[Range(typeof(Manufacturer), nameof(Manufacturer.SpaceX),
 nameof(Manufacturer.VirginGalactic), ErrorMessage = "Pick a manufacturer.")]
public Manufacturer Manufacturer { get; set; } = Manufacturer.Unknown;

[Required, EnumDataType(typeof(Color))]
public Color? Color { get; set; } = null;

[Required, EnumDataType(typeof(Engine))]
public Engine? Engine { get; set; } = null;

public enum Manufacturer { SpaceX, NASA, ULA, Virgin, Unknown }
public enum Color { ImperialRed, SpacecruiserGreen, StarshipBlue, VoyagerOrange }
public enum Engine { Ion, Plasma, Fusion, Warp }

Use InputRadio components with the InputRadioGroup component to create a radio button group. In the following

example, properties are added to the Starship model described in the Built-in forms components section:

Add the following enums to the app. Create a new file to hold the enums or add the enums to the Starship.cs file.

Make the enums accessible to the Starship model and the Starfleet Starship Database form:

Update the Starfleet Starship Database form described in the Built-in forms components section. Add the

components to produce:

A radio button group for the ship manufacturer.

A nested radio button group for ship color and engine.

<p>
 <InputRadioGroup @bind-Value="starship.Manufacturer">
 Manufacturer:

 @foreach (var manufacturer in (Manufacturer[])Enum
 .GetValues(typeof(Manufacturer)))
 {
 <InputRadio Value="manufacturer" />
 @manufacturer

 }
 </InputRadioGroup>
</p>

<p>
 Pick one color and one engine:
 <InputRadioGroup Name="engine" @bind-Value="starship.Engine">
 <InputRadioGroup Name="color" @bind-Value="starship.Color">
 <InputRadio Name="color" Value="Color.ImperialRed" />Imperial Red

 <InputRadio Name="engine" Value="Engine.Ion" />Ion

 <InputRadio Name="color" Value="Color.SpacecruiserGreen" />
 Spacecruiser Green

 <InputRadio Name="engine" Value="Engine.Plasma" />Plasma

 <InputRadio Name="color" Value="Color.StarshipBlue" />Starship Blue

 <InputRadio Name="engine" Value="Engine.Fusion" />Fusion

 <InputRadio Name="color" Value="Color.VoyagerOrange" />
 Voyager Orange

 <InputRadio Name="engine" Value="Engine.Warp" />Warp

 </InputRadioGroup>
 </InputRadioGroup>
</p>

NOTENOTE
If Name is omitted, InputRadio components are grouped by their most recent ancestor.

When working with radio buttons in a form, data binding is handled differently than other elements because radio

buttons are evaluated as a group. The value of each radio button is fixed, but the value of the radio button group is

the value of the selected radio button. The following example shows how to:

Handle data binding for a radio button group.

Support validation using a custom InputRadio component.

@using System.Globalization
@typeparam TValue
@inherits InputBase<TValue>

<input @attributes="AdditionalAttributes" type="radio" value="@SelectedValue"
 checked="@(SelectedValue.Equals(Value))" @onchange="OnChange" />

@code {
 [Parameter]
 public TValue SelectedValue { get; set; }

 private void OnChange(ChangeEventArgs args)
 {
 CurrentValueAsString = args.Value.ToString();
 }

 protected override bool TryParseValueFromString(string value,
 out TValue result, out string errorMessage)
 {
 var success = BindConverter.TryConvertTo<TValue>(
 value, CultureInfo.CurrentCulture, out var parsedValue);
 if (success)
 {
 result = parsedValue;
 errorMessage = null;

 return true;
 }
 else
 {
 result = default;
 errorMessage = $"{FieldIdentifier.FieldName} field isn't valid.";

 return false;
 }
 }
}

The following EditForm uses the preceding InputRadio component to obtain and validate a rating from the user :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/RadioButtonExample"
@using System.ComponentModel.DataAnnotations

<h1>Radio Button Group Test</h1>

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 @for (int i = 1; i <= 5; i++)
 {
 <label>
 <InputRadio name="rate" SelectedValue="i" @bind-Value="model.Rating" />
 @i
 </label>
 }

 <button type="submit">Submit</button>
</EditForm>

<p>You chose: @model.Rating</p>

@code {
 private Model model = new Model();

 private void HandleValidSubmit()
 {
 ...
 }

 public class Model
 {
 [Range(1, 5)]
 public int Rating { get; set; }
 }
}

Binding <select> element options to C# object null values

Validation support

There's no sensible way to represent a <select> element option value as a C# object null value, because:

HTML attributes can't have null values. The closest equivalent to null in HTML is absence of the HTML value

attribute from the <option> element.

When selecting an <option> with no value attribute, the browser treats the value as the text content of that

<option> 's element.

The Blazor framework doesn't attempt to suppress the default behavior because it would involve:

Creating a chain of special-case workarounds in the framework.

Breaking changes to current framework behavior.

The most plausible null equivalent in HTML is an empty string value . The Blazor framework handles null to

empty string conversions for two-way binding to a <select> 's value.

The Blazor framework doesn't automatically handle null to empty string conversions when attempting two-way

binding to a <select> 's value. For more information, see Fix binding <select> to a null value (dotnet/aspnetcore

#23221).

The DataAnnotationsValidator component attaches validation support using data annotations to the cascaded

https://github.com/dotnet/aspnetcore/pull/23221
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Validation Summary and Validation Message componentsValidation Summary and Validation Message components

<ValidationSummary />

<ValidationSummary Model="@starship" />

<ValidationMessage For="@(() => starship.MaximumAccommodation)" />

.validation-message {
 color: red;
}

Custom validation attributesCustom validation attributes

EditContext. Enabling support for validation using data annotations requires this explicit gesture. To use a different

validation system than data annotations, replace the DataAnnotationsValidator with a custom implementation. The

ASP.NET Core implementation is available for inspection in the reference source: DataAnnotationsValidator /

AddDataAnnotationsValidation . The preceding links to reference source provide code from the repository's master

branch, which represents the product unit's current development for the next release of ASP.NET Core. To select the

branch for a different release, use the GitHub branch selector (for example release/3.1).

Blazor performs two types of validation:

Field validation is performed when the user tabs out of a field. During field validation, the

DataAnnotationsValidator component associates all reported validation results with the field.

Model validation is performed when the user submits the form. During model validation, the

DataAnnotationsValidator component attempts to determine the field based on the member name that the

validation result reports. Validation results that aren't associated with an individual member are associated with

the model rather than a field.

The ValidationSummary component summarizes all validation messages, which is similar to the Validation

Summary Tag Helper:

Output validation messages for a specific model with the Model parameter :

The ValidationMessage<TValue> component displays validation messages for a specific field, which is similar to the

Validation Message Tag Helper. Specify the field for validation with the For attribute and a lambda expression

naming the model property:

The ValidationMessage<TValue> and ValidationSummary components support arbitrary attributes. Any attribute

that doesn't match a component parameter is added to the generated <div> or element.

Control the style of validation messages in the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css). The

default validation-message class sets the text color of validation messages to red:

To ensure that a validation result is correctly associated with a field when using a custom validation attribute, pass

the validation context's MemberName when creating the ValidationResult:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/DataAnnotationsValidator.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/EditContextDataAnnotationsExtensions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.membername#system_componentmodel_dataannotations_validationcontext_membername
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationresult

using System;
using System.ComponentModel.DataAnnotations;

private class CustomValidator : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 ...

 return new ValidationResult("Validation message to user.",
 new[] { validationContext.MemberName });
 }
}

NOTENOTE

Custom validation class attributes

var editContext = new EditContext(model);
editContext.SetFieldCssClassProvider(new MyFieldClassProvider());

...

private class MyFieldClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext,
 in FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext.GetValidationMessages(fieldIdentifier).Any();

 return isValid ? "good field" : "bad field";
 }
}

Blazor data annotations validation packageBlazor data annotations validation package

NOTENOTE

[CompareProperty] attribute[CompareProperty] attribute

ValidationContext.GetService is null . Injecting services for validation in the IsValid method isn't supported.

Custom validation class names are useful when integrating with CSS frameworks, such as Bootstrap. To specify

custom validation class names, create a class derived from FieldCssClassProvider and set the class on the

EditContext instance:

The Microsoft.AspNetCore.Components.DataAnnotations.Validation is a package that fills validation experience gaps

using the DataAnnotationsValidator component. The package is currently experimental.

The Microsoft.AspNetCore.Components.DataAnnotations.Validation package has a latest version of release candidate at

Nuget.org. Continue to use the experimental release candidate package at this time. The package's assembly might be moved

to either the framework or the runtime in a future release. Watch the Announcements GitHub repository, the

dotnet/aspnetcore GitHub repository, or this topic section for further updates.

The CompareAttribute doesn't work well with the DataAnnotationsValidator component because it doesn't associate

the validation result with a specific member. This can result in inconsistent behavior between field-level validation

and when the entire model is validated on a submit. The

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.getservice
https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://github.com/aspnet/Announcements
https://github.com/dotnet/aspnetcore
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Nested models, collection types, and complex typesNested models, collection types, and complex types

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <ObjectGraphDataAnnotationsValidator />
 ...
</EditForm>

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 ...

 [ValidateComplexType]
 public ShipDescription ShipDescription { get; set; } =
 new ShipDescription();

 ...
}

using System;
using System.ComponentModel.DataAnnotations;

public class ShipDescription
{
 [Required]
 [StringLength(40, ErrorMessage = "Description too long (40 char).")]
 public string ShortDescription { get; set; }

 [Required]
 [StringLength(240, ErrorMessage = "Description too long (240 char).")]
 public string LongDescription { get; set; }
}

Enable the submit button based on form validationEnable the submit button based on form validation

Microsoft.AspNetCore.Components.DataAnnotations.Validation experimental package introduces an additional

validation attribute, ComparePropertyAttribute , that works around these limitations. In a Blazor app,

[CompareProperty] is a direct replacement for the [Compare] attribute.

Blazor provides support for validating form input using data annotations with the built-in

DataAnnotationsValidator. However, the DataAnnotationsValidator only validates top-level properties of the model

bound to the form that aren't collection- or complex-type properties.

To validate the bound model's entire object graph, including collection- and complex-type properties, use the

ObjectGraphDataAnnotationsValidator provided by the experimental

Microsoft.AspNetCore.Components.DataAnnotations.Validation package:

Annotate model properties with [ValidateComplexType] . In the following model classes, the ShipDescription class

contains additional data annotations to validate when the model is bound to the form:

Starship.cs :

ShipDescription.cs :

To enable and disable the submit button based on form validation:

Use the form's EditContext to assign the model when the component is initialized.

Validate the form in the context's OnFieldChanged callback to enable and disable the submit button.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

NOTENOTE

@implements IDisposable

<EditForm EditContext="@editContext">
 <DataAnnotationsValidator />
 <ValidationSummary />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private bool formInvalid = true;
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 editContext.OnFieldChanged += HandleFieldChanged;
 }

 private void HandleFieldChanged(object sender, FieldChangedEventArgs e)
 {
 formInvalid = !editContext.Validate();
 StateHasChanged();
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= HandleFieldChanged;
 }
}

Unhook the event handler in the Dispose method. For more information, see ASP.NET Core Blazor lifecycle.

When using an EditContext, don't also assign a Model to the EditForm.

In the preceding example, set formInvalid to false if:

The form is preloaded with valid default values.

You want the submit button enabled when the form loads.

A side effect of the preceding approach is that a ValidationSummary component is populated with invalid fields

after the user interacts with any one field. This scenario can be addressed in either of the following ways:

Don't use a ValidationSummary component on the form.

Make the ValidationSummary component visible when the submit button is selected (for example, in a

HandleValidSubmit method).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

<EditForm EditContext="@editContext" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary style="@displaySummary" />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private string displaySummary = "display:none";

 ...

 private void HandleValidSubmit()
 {
 displaySummary = "display:block";
 }
}

Troubleshoot

private ExampleModel exampleModel = new ExampleModel();

Additional resources

InvalidOperationException: EditForm requires a Model parameter, or an EditContext parameter, but not both.

Confirm that the EditForm has a Model oror EditContext. Don't use both for the same form.

When assigning a Model to the form, confirm that the model type is instantiated, as the following example shows:

ASP.NET Core Blazor file uploads

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model

ASP.NET Core Blazor forms and validation
9/22/2020 • 22 minutes to read • Edit Online

using System.ComponentModel.DataAnnotations;

public class ExampleModel
{
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
}

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <InputText id="name" @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }
}

Built-in forms components

By Daniel Roth, Rémi Bourgarel, and Luke Latham

Forms and validation are supported in Blazor using data annotations.

The following ExampleModel type defines validation logic using data annotations:

A form is defined using the EditForm component. The following form demonstrates typical elements, components,

and Razor code:

In the preceding example:

The form validates user input in the name field using the validation defined in the ExampleModel type. The model

is created in the component's @code block and held in a private field (exampleModel). The field is assigned to the

Model attribute of the <EditForm> element.

The InputText component's @bind-Value binds:

The DataAnnotationsValidator validator component attaches validation support using data annotations.

The ValidationSummary component summarizes validation messages.

HandleValidSubmit is triggered when the form successfully submits (passes validation).

The model property (exampleModel.Name) to the InputText component's Value property. For more

information on property binding, see ASP.NET Core Blazor data binding.

A change event delegate to the InputText component's ValueChanged property.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/forms-validation.md
https://github.com/danroth27
https://remibou.github.io/
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputFile <input type="file">

InputNumber<TValue> <input type="number">

InputRadio <input type="radio">

InputRadioGroup <input type="radio">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputNumber<TValue> <input type="number">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

NOTENOTE

A set of built-in components are available to receive and validate user input. Inputs are validated when they're

changed and when a form is submitted. Available input components are shown in the following table.

The InputRadio and InputRadioGroup components are available in ASP.NET Core 5.0 or later. For more information, select

a 5.0 or later version of this article.

All of the input components, including EditForm, support arbitrary attributes. Any attribute that doesn't match a

component parameter is added to the rendered HTML element.

Input components provide default behavior for validating when a field is changed, including updating the field CSS

class to reflect the field state. Some components include useful parsing logic. For example, InputDate<TValue> and

InputNumber<TValue> handle unparseable values gracefully by registering unparseable values as validation errors.

Types that can accept null values also support nullability of the target field (for example, int?).

The following Starship type defines validation logic using a larger set of properties and data annotations than the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 [Required]
 [StringLength(16, ErrorMessage = "Identifier too long (16 character limit).")]
 public string Identifier { get; set; }

 public string Description { get; set; }

 [Required]
 public string Classification { get; set; }

 [Range(1, 100000, ErrorMessage = "Accommodation invalid (1-100000).")]
 public int MaximumAccommodation { get; set; }

 [Required]
 [Range(typeof(bool), "true", "true",
 ErrorMessage = "This form disallows unapproved ships.")]
 public bool IsValidatedDesign { get; set; }

 [Required]
 public DateTime ProductionDate { get; set; }
}

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>

earlier ExampleModel :

In the preceding example, Description is optional because no data annotations are present.

The following form validates user input using the validation defined in the Starship model:

 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" />
 </label>
 </p>

 <button type="submit">Submit</button>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 ...
 }
}

The EditForm creates an EditContext as a cascading value that tracks metadata about the edit process, including

which fields have been modified and the current validation messages.

Assign eithereither an EditContext oror an EditForm.Model to an EditForm. Assignment of both isn't supported and

generates a runtime errorruntime error .

The EditForm provides convenient events for valid and invalid form submission:

OnValidSubmit

OnInvalidSubmit

Use OnSubmit to use custom code to trigger validation and check field values.

In the following example:

The HandleSubmit method executes when the Submit button is selected.

The form is validated by calling EditContext.Validate.

Additional code is executed depending on the validation result. Place business logic in the method assigned to

OnSubmit.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.oninvalidsubmit#microsoft_aspnetcore_components_forms_editform_oninvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.validate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit

<EditForm EditContext="@editContext" OnSubmit="@HandleSubmit">

 ...

 <button type="submit">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 }

 private async Task HandleSubmit()
 {
 var isValid = editContext.Validate();

 if (isValid)
 {
 ...
 }
 else
 {
 ...
 }
 }
}

NOTENOTE

Display name support

<InputDate @bind-Value="@BirthDate" DisplayName="birthday" />

@code {
 public DateTime BirthDate { get; set; }
}

Framework API doesn't exist to clear validation messages directly from an EditContext. Therefore, we don't generally

recommend adding validation messages to a new ValidationMessageStore in a form. To manage validation messages, use a

validator component with your business logic validation code, as described in this article.

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

The following built-in components support display names with the DisplayName parameter :

InputDate<TValue>

InputNumber<TValue>

InputSelect<TValue>

In the following InputDate component example:

The display name (DisplayName) is set to birthday .

The component is bound to the BirthDate property as a DateTime type.

If the user doesn't provide a date value, the validation error appears as:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1

The birthday must be a date.

Validator components

NOTENOTE

Validator components support form validation by managing a ValidationMessageStore for a form's EditContext.

The Blazor framework provides the DataAnnotationsValidator component to attach validation support to forms

based on validation attributes (data annotations). Create custom validator components to process validation

messages for different forms on the same page or the same form at different steps of form processing, for example

client-side validation followed by server-side validation. The validator component example shown in this section,

CustomValidator , is used in the following sections of this article:

Business logic validation

Server validation

Custom data annotation validation attributes can be used instead of custom validator components in many cases. Custom

attributes applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with

server-side validation, any custom attributes applied to the model must be executable on the server. For more information,

see Model validation in ASP.NET Core MVC.

Create a validator component from ComponentBase:

The form's EditContext is a cascading parameter of the component.

When the validator component is initialized, a new ValidationMessageStore is created to maintain a current list

of form errors.

The message store receives errors when developer code in the form's component calls the DisplayErrors

method. The errors are passed to the DisplayErrors method in a Dictionary<string, List<string>> . In the

dictionary, the key is the name of the form field that has one or more errors. The value is the error list.

Messages are cleared when any of the following have occurred:

Validation is requested on the EditContext when the OnValidationRequested event is raised. All of the

errors are cleared.

A field changes in the form when the OnFieldChanged event is raised. Only the errors for the field are

cleared.

The ClearErrors method is called by developer code. All of the errors are cleared.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onvalidationrequested
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Forms;

namespace BlazorSample.Client
{
 public class CustomValidator : ComponentBase
 {
 private ValidationMessageStore messageStore;

 [CascadingParameter]
 private EditContext CurrentEditContext { get; set; }

 protected override void OnInitialized()
 {
 if (CurrentEditContext == null)
 {
 throw new InvalidOperationException(
 $"{nameof(CustomValidator)} requires a cascading " +
 $"parameter of type {nameof(EditContext)}. " +
 $"For example, you can use {nameof(CustomValidator)} " +
 $"inside an {nameof(EditForm)}.");
 }

 messageStore = new ValidationMessageStore(CurrentEditContext);

 CurrentEditContext.OnValidationRequested += (s, e) =>
 messageStore.Clear();
 CurrentEditContext.OnFieldChanged += (s, e) =>
 messageStore.Clear(e.FieldIdentifier);
 }

 public void DisplayErrors(Dictionary<string, List<string>> errors)
 {
 foreach (var err in errors)
 {
 messageStore.Add(CurrentEditContext.Field(err.Key), err.Value);
 }

 CurrentEditContext.NotifyValidationStateChanged();
 }

 public void ClearErrors()
 {
 messageStore.Clear();
 CurrentEditContext.NotifyValidationStateChanged();
 }
 }
}

Business logic validation
Business logic validation can be accomplished with a validator component that receives form errors in a dictionary.

In the following example:

The CustomValidator component from the Validator components section of this article is used.

The validation requires a value for the ship's description (Description) if the user selects the Defense ship

classification (Classification).

When validation messages are set in the component, they're added to the validator's ValidationMessageStore and

shown in the EditForm:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 ...

</EditForm>

@code {
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 customValidator.ClearErrors();

 var errors = new Dictionary<string, List<string>>();

 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 errors.Add(nameof(starship.Description),
 new List<string>() { "For a 'Defense' ship classification, " +
 "'Description' is required." });
 }

 if (errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else
 {
 // Process the form
 }
 }
}

NOTENOTE

Server validation

As an alternative to using validation components, data annotation validation attributes can be used. Custom attributes

applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side

validation, the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

Server validation can be accomplished with a server validator component:

Process client-side validation in the form with the DataAnnotationsValidator component.

When the form passes client-side validation (OnValidSubmit is called), send the EditContext.Model to a backend

server API for form processing.

Process model validation on the server.

The server API includes both the built-in framework data annotations validation and custom validation logic

supplied by the developer. If validation passes on the server, process the form and send back a success status

code (200 - OK). If validation fails, return a failure status code (400 - Bad Request) and the field validation errors.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.model#microsoft_aspnetcore_components_forms_editcontext_model

<ItemGroup>
 <PackageReference Include="System.ComponentModel.Annotations" Version="{VERSION}" />
</ItemGroup>

Either disable the form on success or display the errors.

The following example is based on:

A hosted Blazor solution created by the Blazor Hosted project template. The example can be used with any of the

secure hosted Blazor solutions described in the Security and Identity documentation.

The Starfleet Starship Database form example in the preceding Built-in forms components section.

The Blazor framework's DataAnnotationsValidator component.

The CustomValidator component shown in the Validator components section.

In the following example, the server API validates that a value is provided for the ship's description (Description) if

the user selects the Defense ship classification (Classification).

Place the Starship model into the solution's Shared project so that both the client and server apps can use the

model. Since the model requires data annotations, add a package reference for System.ComponentModel.Annotations

to the Shared project's project file:

To determine the latest non-preview version of the package, see the package Version Histor yVersion Histor y at NuGet.org.

In the server API project, add a controller to process starship validation requests (

Controllers/StarshipValidation.cs) and return failed validation messages:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/System.ComponentModel.Annotations
https://www.nuget.org/packages/System.ComponentModel.Annotations

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using BlazorSample.Shared;

namespace BlazorSample.Server.Controllers
{
 [Authorize]
 [ApiController]
 [Route("[controller]")]
 public class StarshipValidationController : ControllerBase
 {
 private readonly ILogger<StarshipValidationController> logger;

 public StarshipValidationController(
 ILogger<StarshipValidationController> logger)
 {
 this.logger = logger;
 }

 [HttpPost]
 public async Task<IActionResult> Post(Starship starship)
 {
 try
 {
 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 ModelState.AddModelError(nameof(starship.Description),
 "For a 'Defense' ship " +
 "classification, 'Description' is required.");
 }
 else
 {
 // Process the form asynchronously
 // async ...

 return Ok(ModelState);
 }
 }
 catch (Exception ex)
 {
 logger.LogError("Validation Error: {MESSAGE}", ex.Message);
 }

 return BadRequest(ModelState);
 }
 }
}

When a model binding validation error occurs on the server, an ApiController (ApiControllerAttribute) normally

returns a default bad request response with a ValidationProblemDetails. The response contains more data than just

the validation errors, as shown in the following example when all of the fields of the Starfleet Starship Database

form aren't submitted and the form fails validation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails

{
 "title": "One or more validation errors occurred.",
 "status": 400,
 "errors": {
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
 }
}

{
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
}

using Microsoft.AspNetCore.Mvc;

...

services.AddControllersWithViews()
 .ConfigureApiBehaviorOptions(options =>
 {
 options.InvalidModelStateResponseFactory = context =>
 {
 if (context.HttpContext.Request.Path == "/StarshipValidation")
 {
 return new BadRequestObjectResult(context.ModelState);
 }
 else
 {
 return new BadRequestObjectResult(
 new ValidationProblemDetails(context.ModelState));
 }
 };
 });

@page "/FormValidation"
@using System.Net

If the server API returns the preceding default JSON response, it's possible for the client to parse the response to

obtain the children of the errors node. However, it's inconvenient to parse the file. Parsing the JSON requires

additional code after calling ReadFromJsonAsync in order to produce a Dictionary<string, List<string>> of errors

for forms validation error processing. Ideally, the server API should only return the validation errors:

To modify the server API's response to make it only return the validation errors, change the delegate that's invoked

on actions that are annotated with ApiControllerAttribute in Startup.ConfigureServices . For the API endpoint (

/StarshipValidation), return a BadRequestObjectResult with the ModelStateDictionary. For any other API

endpoints, preserve the default behavior by returning the object result with a new ValidationProblemDetails:

For more information, see Handle errors in ASP.NET Core web APIs.

In the client project, add the validator component shown in the Validator components section.

In the client project, the Starfleet Starship Database form is updated to show server validation errors with help of

the CustomValidator component. When the server API returns validation messages, they're added to the

CustomValidator component's ValidationMessageStore. The errors are available in the form's EditContext for

display by the form's ValidationSummary:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.badrequestobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

@using System.Net
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using Microsoft.Extensions.Logging
@using BlazorSample.Shared
@attribute [Authorize]
@inject HttpClient Http
@inject ILogger<FormValidation> Logger

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification" disabled="@disabled">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" disabled="@disabled" />
 </label>
 </p>

 <button type="submit" disabled="@disabled">Submit</button>

 <p style="@messageStyles">
 @message
 </p>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private bool disabled;
 private string message;
 private string messageStyles = "visibility:hidden";
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private async Task HandleValidSubmit(EditContext editContext)
 {
 customValidator.ClearErrors();

 try
 {
 var response = await Http.PostAsJsonAsync<Starship>(
 "StarshipValidation", (Starship)editContext.Model);

 var errors = await response.Content
 .ReadFromJsonAsync<Dictionary<string, List<string>>>();

 if (response.StatusCode == HttpStatusCode.BadRequest &&
 errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else if (!response.IsSuccessStatusCode)
 {
 throw new HttpRequestException(
 $"Validation failed. Status Code: {response.StatusCode}");
 }
 else
 {
 disabled = true;
 messageStyles = "color:green";
 message = "The form has been processed.";
 }
 }
 catch (AccessTokenNotAvailableException ex)
 {
 ex.Redirect();
 }
 catch (Exception ex)
 {
 Logger.LogError("Form processing error: {MESSAGE}", ex.Message);
 disabled = true;
 messageStyles = "color:red";
 message = "There was an error processing the form.";
 }
 }
}

NOTENOTE
As an alternative to validation components, data annotation validation attributes can be used. Custom attributes applied to

the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side validation,

the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

NOTENOTE

InputText based on the input event

@inherits InputText

<input
 @attributes="AdditionalAttributes"
 class="@CssClass"
 value="@CurrentValue"
 @oninput="EventCallback.Factory.CreateBinder<string>(
 this, __value => CurrentValueAsString = __value,
 CurrentValueAsString)" />

The server-side validation approach in this section is suitable for any of the Blazor WebAssembly hosted solution examples in

this documentation set:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

Use the InputText component to create a custom component that uses the input event instead of the change

event.

In the following example, the CustomInputText component inherits the framework's InputText component and sets

the event binding (CreateBinder) to the oninput event.

Shared/CustomInputText.razor :

The CustomInputText component can be used anywhere InputText is used:

Pages/TestForm.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallbackfactorybinderextensions.createbinder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext

@page "/testform"
@using System.ComponentModel.DataAnnotations;

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <CustomInputText @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

<p>
 CurrentValue: @exampleModel.Name
</p>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }

 public class ExampleModel
 {
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
 }
}

Radio buttons

[Required]
[Range(typeof(Manufacturer), nameof(Manufacturer.SpaceX),
 nameof(Manufacturer.VirginGalactic), ErrorMessage = "Pick a manufacturer.")]
public Manufacturer Manufacturer { get; set; } = Manufacturer.Unknown;

[Required, EnumDataType(typeof(Color))]
public Color? Color { get; set; } = null;

[Required, EnumDataType(typeof(Engine))]
public Engine? Engine { get; set; } = null;

public enum Manufacturer { SpaceX, NASA, ULA, Virgin, Unknown }
public enum Color { ImperialRed, SpacecruiserGreen, StarshipBlue, VoyagerOrange }
public enum Engine { Ion, Plasma, Fusion, Warp }

Use InputRadio components with the InputRadioGroup component to create a radio button group. In the following

example, properties are added to the Starship model described in the Built-in forms components section:

Add the following enums to the app. Create a new file to hold the enums or add the enums to the Starship.cs file.

Make the enums accessible to the Starship model and the Starfleet Starship Database form:

Update the Starfleet Starship Database form described in the Built-in forms components section. Add the

components to produce:

A radio button group for the ship manufacturer.

A nested radio button group for ship color and engine.

<p>
 <InputRadioGroup @bind-Value="starship.Manufacturer">
 Manufacturer:

 @foreach (var manufacturer in (Manufacturer[])Enum
 .GetValues(typeof(Manufacturer)))
 {
 <InputRadio Value="manufacturer" />
 @manufacturer

 }
 </InputRadioGroup>
</p>

<p>
 Pick one color and one engine:
 <InputRadioGroup Name="engine" @bind-Value="starship.Engine">
 <InputRadioGroup Name="color" @bind-Value="starship.Color">
 <InputRadio Name="color" Value="Color.ImperialRed" />Imperial Red

 <InputRadio Name="engine" Value="Engine.Ion" />Ion

 <InputRadio Name="color" Value="Color.SpacecruiserGreen" />
 Spacecruiser Green

 <InputRadio Name="engine" Value="Engine.Plasma" />Plasma

 <InputRadio Name="color" Value="Color.StarshipBlue" />Starship Blue

 <InputRadio Name="engine" Value="Engine.Fusion" />Fusion

 <InputRadio Name="color" Value="Color.VoyagerOrange" />
 Voyager Orange

 <InputRadio Name="engine" Value="Engine.Warp" />Warp

 </InputRadioGroup>
 </InputRadioGroup>
</p>

NOTENOTE
If Name is omitted, InputRadio components are grouped by their most recent ancestor.

When working with radio buttons in a form, data binding is handled differently than other elements because radio

buttons are evaluated as a group. The value of each radio button is fixed, but the value of the radio button group is

the value of the selected radio button. The following example shows how to:

Handle data binding for a radio button group.

Support validation using a custom InputRadio component.

@using System.Globalization
@typeparam TValue
@inherits InputBase<TValue>

<input @attributes="AdditionalAttributes" type="radio" value="@SelectedValue"
 checked="@(SelectedValue.Equals(Value))" @onchange="OnChange" />

@code {
 [Parameter]
 public TValue SelectedValue { get; set; }

 private void OnChange(ChangeEventArgs args)
 {
 CurrentValueAsString = args.Value.ToString();
 }

 protected override bool TryParseValueFromString(string value,
 out TValue result, out string errorMessage)
 {
 var success = BindConverter.TryConvertTo<TValue>(
 value, CultureInfo.CurrentCulture, out var parsedValue);
 if (success)
 {
 result = parsedValue;
 errorMessage = null;

 return true;
 }
 else
 {
 result = default;
 errorMessage = $"{FieldIdentifier.FieldName} field isn't valid.";

 return false;
 }
 }
}

The following EditForm uses the preceding InputRadio component to obtain and validate a rating from the user :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/RadioButtonExample"
@using System.ComponentModel.DataAnnotations

<h1>Radio Button Group Test</h1>

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 @for (int i = 1; i <= 5; i++)
 {
 <label>
 <InputRadio name="rate" SelectedValue="i" @bind-Value="model.Rating" />
 @i
 </label>
 }

 <button type="submit">Submit</button>
</EditForm>

<p>You chose: @model.Rating</p>

@code {
 private Model model = new Model();

 private void HandleValidSubmit()
 {
 ...
 }

 public class Model
 {
 [Range(1, 5)]
 public int Rating { get; set; }
 }
}

Binding <select> element options to C# object null values

Validation support

There's no sensible way to represent a <select> element option value as a C# object null value, because:

HTML attributes can't have null values. The closest equivalent to null in HTML is absence of the HTML value

attribute from the <option> element.

When selecting an <option> with no value attribute, the browser treats the value as the text content of that

<option> 's element.

The Blazor framework doesn't attempt to suppress the default behavior because it would involve:

Creating a chain of special-case workarounds in the framework.

Breaking changes to current framework behavior.

The most plausible null equivalent in HTML is an empty string value . The Blazor framework handles null to

empty string conversions for two-way binding to a <select> 's value.

The Blazor framework doesn't automatically handle null to empty string conversions when attempting two-way

binding to a <select> 's value. For more information, see Fix binding <select> to a null value (dotnet/aspnetcore

#23221).

The DataAnnotationsValidator component attaches validation support using data annotations to the cascaded

https://github.com/dotnet/aspnetcore/pull/23221
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Validation Summary and Validation Message componentsValidation Summary and Validation Message components

<ValidationSummary />

<ValidationSummary Model="@starship" />

<ValidationMessage For="@(() => starship.MaximumAccommodation)" />

.validation-message {
 color: red;
}

Custom validation attributesCustom validation attributes

EditContext. Enabling support for validation using data annotations requires this explicit gesture. To use a different

validation system than data annotations, replace the DataAnnotationsValidator with a custom implementation. The

ASP.NET Core implementation is available for inspection in the reference source: DataAnnotationsValidator /

AddDataAnnotationsValidation . The preceding links to reference source provide code from the repository's master

branch, which represents the product unit's current development for the next release of ASP.NET Core. To select the

branch for a different release, use the GitHub branch selector (for example release/3.1).

Blazor performs two types of validation:

Field validation is performed when the user tabs out of a field. During field validation, the

DataAnnotationsValidator component associates all reported validation results with the field.

Model validation is performed when the user submits the form. During model validation, the

DataAnnotationsValidator component attempts to determine the field based on the member name that the

validation result reports. Validation results that aren't associated with an individual member are associated with

the model rather than a field.

The ValidationSummary component summarizes all validation messages, which is similar to the Validation

Summary Tag Helper:

Output validation messages for a specific model with the Model parameter :

The ValidationMessage<TValue> component displays validation messages for a specific field, which is similar to the

Validation Message Tag Helper. Specify the field for validation with the For attribute and a lambda expression

naming the model property:

The ValidationMessage<TValue> and ValidationSummary components support arbitrary attributes. Any attribute

that doesn't match a component parameter is added to the generated <div> or element.

Control the style of validation messages in the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css). The

default validation-message class sets the text color of validation messages to red:

To ensure that a validation result is correctly associated with a field when using a custom validation attribute, pass

the validation context's MemberName when creating the ValidationResult:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/DataAnnotationsValidator.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/EditContextDataAnnotationsExtensions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.membername#system_componentmodel_dataannotations_validationcontext_membername
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationresult

using System;
using System.ComponentModel.DataAnnotations;

private class CustomValidator : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 ...

 return new ValidationResult("Validation message to user.",
 new[] { validationContext.MemberName });
 }
}

NOTENOTE

Custom validation class attributes

var editContext = new EditContext(model);
editContext.SetFieldCssClassProvider(new MyFieldClassProvider());

...

private class MyFieldClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext,
 in FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext.GetValidationMessages(fieldIdentifier).Any();

 return isValid ? "good field" : "bad field";
 }
}

Blazor data annotations validation packageBlazor data annotations validation package

NOTENOTE

[CompareProperty] attribute[CompareProperty] attribute

ValidationContext.GetService is null . Injecting services for validation in the IsValid method isn't supported.

Custom validation class names are useful when integrating with CSS frameworks, such as Bootstrap. To specify

custom validation class names, create a class derived from FieldCssClassProvider and set the class on the

EditContext instance:

The Microsoft.AspNetCore.Components.DataAnnotations.Validation is a package that fills validation experience gaps

using the DataAnnotationsValidator component. The package is currently experimental.

The Microsoft.AspNetCore.Components.DataAnnotations.Validation package has a latest version of release candidate at

Nuget.org. Continue to use the experimental release candidate package at this time. The package's assembly might be moved

to either the framework or the runtime in a future release. Watch the Announcements GitHub repository, the

dotnet/aspnetcore GitHub repository, or this topic section for further updates.

The CompareAttribute doesn't work well with the DataAnnotationsValidator component because it doesn't associate

the validation result with a specific member. This can result in inconsistent behavior between field-level validation

and when the entire model is validated on a submit. The

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.getservice
https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://github.com/aspnet/Announcements
https://github.com/dotnet/aspnetcore
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Nested models, collection types, and complex typesNested models, collection types, and complex types

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <ObjectGraphDataAnnotationsValidator />
 ...
</EditForm>

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 ...

 [ValidateComplexType]
 public ShipDescription ShipDescription { get; set; } =
 new ShipDescription();

 ...
}

using System;
using System.ComponentModel.DataAnnotations;

public class ShipDescription
{
 [Required]
 [StringLength(40, ErrorMessage = "Description too long (40 char).")]
 public string ShortDescription { get; set; }

 [Required]
 [StringLength(240, ErrorMessage = "Description too long (240 char).")]
 public string LongDescription { get; set; }
}

Enable the submit button based on form validationEnable the submit button based on form validation

Microsoft.AspNetCore.Components.DataAnnotations.Validation experimental package introduces an additional

validation attribute, ComparePropertyAttribute , that works around these limitations. In a Blazor app,

[CompareProperty] is a direct replacement for the [Compare] attribute.

Blazor provides support for validating form input using data annotations with the built-in

DataAnnotationsValidator. However, the DataAnnotationsValidator only validates top-level properties of the model

bound to the form that aren't collection- or complex-type properties.

To validate the bound model's entire object graph, including collection- and complex-type properties, use the

ObjectGraphDataAnnotationsValidator provided by the experimental

Microsoft.AspNetCore.Components.DataAnnotations.Validation package:

Annotate model properties with [ValidateComplexType] . In the following model classes, the ShipDescription class

contains additional data annotations to validate when the model is bound to the form:

Starship.cs :

ShipDescription.cs :

To enable and disable the submit button based on form validation:

Use the form's EditContext to assign the model when the component is initialized.

Validate the form in the context's OnFieldChanged callback to enable and disable the submit button.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

NOTENOTE

@implements IDisposable

<EditForm EditContext="@editContext">
 <DataAnnotationsValidator />
 <ValidationSummary />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private bool formInvalid = true;
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 editContext.OnFieldChanged += HandleFieldChanged;
 }

 private void HandleFieldChanged(object sender, FieldChangedEventArgs e)
 {
 formInvalid = !editContext.Validate();
 StateHasChanged();
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= HandleFieldChanged;
 }
}

Unhook the event handler in the Dispose method. For more information, see ASP.NET Core Blazor lifecycle.

When using an EditContext, don't also assign a Model to the EditForm.

In the preceding example, set formInvalid to false if:

The form is preloaded with valid default values.

You want the submit button enabled when the form loads.

A side effect of the preceding approach is that a ValidationSummary component is populated with invalid fields

after the user interacts with any one field. This scenario can be addressed in either of the following ways:

Don't use a ValidationSummary component on the form.

Make the ValidationSummary component visible when the submit button is selected (for example, in a

HandleValidSubmit method).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

<EditForm EditContext="@editContext" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary style="@displaySummary" />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private string displaySummary = "display:none";

 ...

 private void HandleValidSubmit()
 {
 displaySummary = "display:block";
 }
}

Troubleshoot

private ExampleModel exampleModel = new ExampleModel();

Additional resources

InvalidOperationException: EditForm requires a Model parameter, or an EditContext parameter, but not both.

Confirm that the EditForm has a Model oror EditContext. Don't use both for the same form.

When assigning a Model to the form, confirm that the model type is instantiated, as the following example shows:

ASP.NET Core Blazor file uploads

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model

ASP.NET Core Blazor file uploads
9/22/2020 • 2 minutes to read • Edit Online

<h3>Upload PNG images</h3>

<p>
 <InputFile OnChange="@OnInputFileChange" multiple />
</p>

@if (imageDataUrls.Count > 0)
{
 <h3>Images</h3>

 <div class="card" style="width:30rem;">
 <div class="card-body">
 @foreach (var imageDataUrl in imageDataUrls)
 {

 }
 </div>
 </div>
}

@code {
 IList<string> imageDataUrls = new List<string>();

 private async Task OnInputFileChange(InputFileChangeEventArgs e)
 {
 var imageFiles = e.GetMultipleFiles();
 var format = "image/png";

 foreach (var imageFile in imageFiles)
 {
 var resizedImageFile = await imageFile.RequestImageFileAsync(format,
 100, 100);
 var buffer = new byte[resizedImageFile.Size];
 await resizedImageFile.OpenReadStream().ReadAsync(buffer);
 var imageDataUrl =
 $"data:{format};base64,{Convert.ToBase64String(buffer)}";
 imageDataUrls.Add(imageDataUrl);
 }
 }
}

By Daniel Roth

Use the InputFile component to read browser file data into .NET code, including for file uploads. The InputFile

component renders as an HTML input of type file .

By default, the user selects single files. Add the multiple attribute to permit the user to upload multiple files at

once. When one or more files is selected by the user, the InputFile component fires an OnChange event and passes

in an InputFileChangeEventArgs that provides access to the selected file list and details about each file.

A component that receives an image file can call the RequestImageFileAsync convenience method on the file to

resize the image data within the browser's JavaScript runtime before the image is streamed into the app.

The following example demonstrates multiple image file upload in a component:

To read data from a user-selected file, call OpenReadStream on the file and read from the returned stream. In a Blazor

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/file-uploads.md
https://github.com/danroth27

WebAssembly app, the data is streamed directly into the .NET code within the browser. In a Blazor Server app, the

file data is streamed into .NET code on the server as the file is read from the stream.

ASP.NET Core Blazor forms and validation
9/22/2020 • 22 minutes to read • Edit Online

using System.ComponentModel.DataAnnotations;

public class ExampleModel
{
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
}

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <InputText id="name" @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }
}

Built-in forms components

By Daniel Roth, Rémi Bourgarel, and Luke Latham

Forms and validation are supported in Blazor using data annotations.

The following ExampleModel type defines validation logic using data annotations:

A form is defined using the EditForm component. The following form demonstrates typical elements, components,

and Razor code:

In the preceding example:

The form validates user input in the name field using the validation defined in the ExampleModel type. The model

is created in the component's @code block and held in a private field (exampleModel). The field is assigned to the

Model attribute of the <EditForm> element.

The InputText component's @bind-Value binds:

The DataAnnotationsValidator validator component attaches validation support using data annotations.

The ValidationSummary component summarizes validation messages.

HandleValidSubmit is triggered when the form successfully submits (passes validation).

The model property (exampleModel.Name) to the InputText component's Value property. For more

information on property binding, see ASP.NET Core Blazor data binding.

A change event delegate to the InputText component's ValueChanged property.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/forms-validation.md
https://github.com/danroth27
https://remibou.github.io/
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputFile <input type="file">

InputNumber<TValue> <input type="number">

InputRadio <input type="radio">

InputRadioGroup <input type="radio">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputNumber<TValue> <input type="number">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

NOTENOTE

A set of built-in components are available to receive and validate user input. Inputs are validated when they're

changed and when a form is submitted. Available input components are shown in the following table.

The InputRadio and InputRadioGroup components are available in ASP.NET Core 5.0 or later. For more information, select

a 5.0 or later version of this article.

All of the input components, including EditForm, support arbitrary attributes. Any attribute that doesn't match a

component parameter is added to the rendered HTML element.

Input components provide default behavior for validating when a field is changed, including updating the field CSS

class to reflect the field state. Some components include useful parsing logic. For example, InputDate<TValue> and

InputNumber<TValue> handle unparseable values gracefully by registering unparseable values as validation errors.

Types that can accept null values also support nullability of the target field (for example, int?).

The following Starship type defines validation logic using a larger set of properties and data annotations than the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 [Required]
 [StringLength(16, ErrorMessage = "Identifier too long (16 character limit).")]
 public string Identifier { get; set; }

 public string Description { get; set; }

 [Required]
 public string Classification { get; set; }

 [Range(1, 100000, ErrorMessage = "Accommodation invalid (1-100000).")]
 public int MaximumAccommodation { get; set; }

 [Required]
 [Range(typeof(bool), "true", "true",
 ErrorMessage = "This form disallows unapproved ships.")]
 public bool IsValidatedDesign { get; set; }

 [Required]
 public DateTime ProductionDate { get; set; }
}

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>

earlier ExampleModel :

In the preceding example, Description is optional because no data annotations are present.

The following form validates user input using the validation defined in the Starship model:

 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" />
 </label>
 </p>

 <button type="submit">Submit</button>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 ...
 }
}

The EditForm creates an EditContext as a cascading value that tracks metadata about the edit process, including

which fields have been modified and the current validation messages.

Assign eithereither an EditContext oror an EditForm.Model to an EditForm. Assignment of both isn't supported and

generates a runtime errorruntime error .

The EditForm provides convenient events for valid and invalid form submission:

OnValidSubmit

OnInvalidSubmit

Use OnSubmit to use custom code to trigger validation and check field values.

In the following example:

The HandleSubmit method executes when the Submit button is selected.

The form is validated by calling EditContext.Validate.

Additional code is executed depending on the validation result. Place business logic in the method assigned to

OnSubmit.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.oninvalidsubmit#microsoft_aspnetcore_components_forms_editform_oninvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.validate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit

<EditForm EditContext="@editContext" OnSubmit="@HandleSubmit">

 ...

 <button type="submit">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 }

 private async Task HandleSubmit()
 {
 var isValid = editContext.Validate();

 if (isValid)
 {
 ...
 }
 else
 {
 ...
 }
 }
}

NOTENOTE

Display name support

<InputDate @bind-Value="@BirthDate" DisplayName="birthday" />

@code {
 public DateTime BirthDate { get; set; }
}

Framework API doesn't exist to clear validation messages directly from an EditContext. Therefore, we don't generally

recommend adding validation messages to a new ValidationMessageStore in a form. To manage validation messages, use a

validator component with your business logic validation code, as described in this article.

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

The following built-in components support display names with the DisplayName parameter :

InputDate<TValue>

InputNumber<TValue>

InputSelect<TValue>

In the following InputDate component example:

The display name (DisplayName) is set to birthday .

The component is bound to the BirthDate property as a DateTime type.

If the user doesn't provide a date value, the validation error appears as:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1

The birthday must be a date.

Validator components

NOTENOTE

Validator components support form validation by managing a ValidationMessageStore for a form's EditContext.

The Blazor framework provides the DataAnnotationsValidator component to attach validation support to forms

based on validation attributes (data annotations). Create custom validator components to process validation

messages for different forms on the same page or the same form at different steps of form processing, for example

client-side validation followed by server-side validation. The validator component example shown in this section,

CustomValidator , is used in the following sections of this article:

Business logic validation

Server validation

Custom data annotation validation attributes can be used instead of custom validator components in many cases. Custom

attributes applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with

server-side validation, any custom attributes applied to the model must be executable on the server. For more information,

see Model validation in ASP.NET Core MVC.

Create a validator component from ComponentBase:

The form's EditContext is a cascading parameter of the component.

When the validator component is initialized, a new ValidationMessageStore is created to maintain a current list

of form errors.

The message store receives errors when developer code in the form's component calls the DisplayErrors

method. The errors are passed to the DisplayErrors method in a Dictionary<string, List<string>> . In the

dictionary, the key is the name of the form field that has one or more errors. The value is the error list.

Messages are cleared when any of the following have occurred:

Validation is requested on the EditContext when the OnValidationRequested event is raised. All of the

errors are cleared.

A field changes in the form when the OnFieldChanged event is raised. Only the errors for the field are

cleared.

The ClearErrors method is called by developer code. All of the errors are cleared.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onvalidationrequested
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Forms;

namespace BlazorSample.Client
{
 public class CustomValidator : ComponentBase
 {
 private ValidationMessageStore messageStore;

 [CascadingParameter]
 private EditContext CurrentEditContext { get; set; }

 protected override void OnInitialized()
 {
 if (CurrentEditContext == null)
 {
 throw new InvalidOperationException(
 $"{nameof(CustomValidator)} requires a cascading " +
 $"parameter of type {nameof(EditContext)}. " +
 $"For example, you can use {nameof(CustomValidator)} " +
 $"inside an {nameof(EditForm)}.");
 }

 messageStore = new ValidationMessageStore(CurrentEditContext);

 CurrentEditContext.OnValidationRequested += (s, e) =>
 messageStore.Clear();
 CurrentEditContext.OnFieldChanged += (s, e) =>
 messageStore.Clear(e.FieldIdentifier);
 }

 public void DisplayErrors(Dictionary<string, List<string>> errors)
 {
 foreach (var err in errors)
 {
 messageStore.Add(CurrentEditContext.Field(err.Key), err.Value);
 }

 CurrentEditContext.NotifyValidationStateChanged();
 }

 public void ClearErrors()
 {
 messageStore.Clear();
 CurrentEditContext.NotifyValidationStateChanged();
 }
 }
}

Business logic validation
Business logic validation can be accomplished with a validator component that receives form errors in a dictionary.

In the following example:

The CustomValidator component from the Validator components section of this article is used.

The validation requires a value for the ship's description (Description) if the user selects the Defense ship

classification (Classification).

When validation messages are set in the component, they're added to the validator's ValidationMessageStore and

shown in the EditForm:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 ...

</EditForm>

@code {
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 customValidator.ClearErrors();

 var errors = new Dictionary<string, List<string>>();

 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 errors.Add(nameof(starship.Description),
 new List<string>() { "For a 'Defense' ship classification, " +
 "'Description' is required." });
 }

 if (errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else
 {
 // Process the form
 }
 }
}

NOTENOTE

Server validation

As an alternative to using validation components, data annotation validation attributes can be used. Custom attributes

applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side

validation, the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

Server validation can be accomplished with a server validator component:

Process client-side validation in the form with the DataAnnotationsValidator component.

When the form passes client-side validation (OnValidSubmit is called), send the EditContext.Model to a backend

server API for form processing.

Process model validation on the server.

The server API includes both the built-in framework data annotations validation and custom validation logic

supplied by the developer. If validation passes on the server, process the form and send back a success status

code (200 - OK). If validation fails, return a failure status code (400 - Bad Request) and the field validation errors.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.model#microsoft_aspnetcore_components_forms_editcontext_model

<ItemGroup>
 <PackageReference Include="System.ComponentModel.Annotations" Version="{VERSION}" />
</ItemGroup>

Either disable the form on success or display the errors.

The following example is based on:

A hosted Blazor solution created by the Blazor Hosted project template. The example can be used with any of the

secure hosted Blazor solutions described in the Security and Identity documentation.

The Starfleet Starship Database form example in the preceding Built-in forms components section.

The Blazor framework's DataAnnotationsValidator component.

The CustomValidator component shown in the Validator components section.

In the following example, the server API validates that a value is provided for the ship's description (Description) if

the user selects the Defense ship classification (Classification).

Place the Starship model into the solution's Shared project so that both the client and server apps can use the

model. Since the model requires data annotations, add a package reference for System.ComponentModel.Annotations

to the Shared project's project file:

To determine the latest non-preview version of the package, see the package Version Histor yVersion Histor y at NuGet.org.

In the server API project, add a controller to process starship validation requests (

Controllers/StarshipValidation.cs) and return failed validation messages:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/System.ComponentModel.Annotations
https://www.nuget.org/packages/System.ComponentModel.Annotations

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using BlazorSample.Shared;

namespace BlazorSample.Server.Controllers
{
 [Authorize]
 [ApiController]
 [Route("[controller]")]
 public class StarshipValidationController : ControllerBase
 {
 private readonly ILogger<StarshipValidationController> logger;

 public StarshipValidationController(
 ILogger<StarshipValidationController> logger)
 {
 this.logger = logger;
 }

 [HttpPost]
 public async Task<IActionResult> Post(Starship starship)
 {
 try
 {
 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 ModelState.AddModelError(nameof(starship.Description),
 "For a 'Defense' ship " +
 "classification, 'Description' is required.");
 }
 else
 {
 // Process the form asynchronously
 // async ...

 return Ok(ModelState);
 }
 }
 catch (Exception ex)
 {
 logger.LogError("Validation Error: {MESSAGE}", ex.Message);
 }

 return BadRequest(ModelState);
 }
 }
}

When a model binding validation error occurs on the server, an ApiController (ApiControllerAttribute) normally

returns a default bad request response with a ValidationProblemDetails. The response contains more data than just

the validation errors, as shown in the following example when all of the fields of the Starfleet Starship Database

form aren't submitted and the form fails validation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails

{
 "title": "One or more validation errors occurred.",
 "status": 400,
 "errors": {
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
 }
}

{
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
}

using Microsoft.AspNetCore.Mvc;

...

services.AddControllersWithViews()
 .ConfigureApiBehaviorOptions(options =>
 {
 options.InvalidModelStateResponseFactory = context =>
 {
 if (context.HttpContext.Request.Path == "/StarshipValidation")
 {
 return new BadRequestObjectResult(context.ModelState);
 }
 else
 {
 return new BadRequestObjectResult(
 new ValidationProblemDetails(context.ModelState));
 }
 };
 });

@page "/FormValidation"
@using System.Net

If the server API returns the preceding default JSON response, it's possible for the client to parse the response to

obtain the children of the errors node. However, it's inconvenient to parse the file. Parsing the JSON requires

additional code after calling ReadFromJsonAsync in order to produce a Dictionary<string, List<string>> of errors

for forms validation error processing. Ideally, the server API should only return the validation errors:

To modify the server API's response to make it only return the validation errors, change the delegate that's invoked

on actions that are annotated with ApiControllerAttribute in Startup.ConfigureServices . For the API endpoint (

/StarshipValidation), return a BadRequestObjectResult with the ModelStateDictionary. For any other API

endpoints, preserve the default behavior by returning the object result with a new ValidationProblemDetails:

For more information, see Handle errors in ASP.NET Core web APIs.

In the client project, add the validator component shown in the Validator components section.

In the client project, the Starfleet Starship Database form is updated to show server validation errors with help of

the CustomValidator component. When the server API returns validation messages, they're added to the

CustomValidator component's ValidationMessageStore. The errors are available in the form's EditContext for

display by the form's ValidationSummary:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.badrequestobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

@using System.Net
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using Microsoft.Extensions.Logging
@using BlazorSample.Shared
@attribute [Authorize]
@inject HttpClient Http
@inject ILogger<FormValidation> Logger

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification" disabled="@disabled">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" disabled="@disabled" />
 </label>
 </p>

 <button type="submit" disabled="@disabled">Submit</button>

 <p style="@messageStyles">
 @message
 </p>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private bool disabled;
 private string message;
 private string messageStyles = "visibility:hidden";
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private async Task HandleValidSubmit(EditContext editContext)
 {
 customValidator.ClearErrors();

 try
 {
 var response = await Http.PostAsJsonAsync<Starship>(
 "StarshipValidation", (Starship)editContext.Model);

 var errors = await response.Content
 .ReadFromJsonAsync<Dictionary<string, List<string>>>();

 if (response.StatusCode == HttpStatusCode.BadRequest &&
 errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else if (!response.IsSuccessStatusCode)
 {
 throw new HttpRequestException(
 $"Validation failed. Status Code: {response.StatusCode}");
 }
 else
 {
 disabled = true;
 messageStyles = "color:green";
 message = "The form has been processed.";
 }
 }
 catch (AccessTokenNotAvailableException ex)
 {
 ex.Redirect();
 }
 catch (Exception ex)
 {
 Logger.LogError("Form processing error: {MESSAGE}", ex.Message);
 disabled = true;
 messageStyles = "color:red";
 message = "There was an error processing the form.";
 }
 }
}

NOTENOTE
As an alternative to validation components, data annotation validation attributes can be used. Custom attributes applied to

the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side validation,

the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

NOTENOTE

InputText based on the input event

@inherits InputText

<input
 @attributes="AdditionalAttributes"
 class="@CssClass"
 value="@CurrentValue"
 @oninput="EventCallback.Factory.CreateBinder<string>(
 this, __value => CurrentValueAsString = __value,
 CurrentValueAsString)" />

The server-side validation approach in this section is suitable for any of the Blazor WebAssembly hosted solution examples in

this documentation set:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

Use the InputText component to create a custom component that uses the input event instead of the change

event.

In the following example, the CustomInputText component inherits the framework's InputText component and sets

the event binding (CreateBinder) to the oninput event.

Shared/CustomInputText.razor :

The CustomInputText component can be used anywhere InputText is used:

Pages/TestForm.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallbackfactorybinderextensions.createbinder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext

@page "/testform"
@using System.ComponentModel.DataAnnotations;

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <CustomInputText @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

<p>
 CurrentValue: @exampleModel.Name
</p>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }

 public class ExampleModel
 {
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
 }
}

Radio buttons

[Required]
[Range(typeof(Manufacturer), nameof(Manufacturer.SpaceX),
 nameof(Manufacturer.VirginGalactic), ErrorMessage = "Pick a manufacturer.")]
public Manufacturer Manufacturer { get; set; } = Manufacturer.Unknown;

[Required, EnumDataType(typeof(Color))]
public Color? Color { get; set; } = null;

[Required, EnumDataType(typeof(Engine))]
public Engine? Engine { get; set; } = null;

public enum Manufacturer { SpaceX, NASA, ULA, Virgin, Unknown }
public enum Color { ImperialRed, SpacecruiserGreen, StarshipBlue, VoyagerOrange }
public enum Engine { Ion, Plasma, Fusion, Warp }

Use InputRadio components with the InputRadioGroup component to create a radio button group. In the following

example, properties are added to the Starship model described in the Built-in forms components section:

Add the following enums to the app. Create a new file to hold the enums or add the enums to the Starship.cs file.

Make the enums accessible to the Starship model and the Starfleet Starship Database form:

Update the Starfleet Starship Database form described in the Built-in forms components section. Add the

components to produce:

A radio button group for the ship manufacturer.

A nested radio button group for ship color and engine.

<p>
 <InputRadioGroup @bind-Value="starship.Manufacturer">
 Manufacturer:

 @foreach (var manufacturer in (Manufacturer[])Enum
 .GetValues(typeof(Manufacturer)))
 {
 <InputRadio Value="manufacturer" />
 @manufacturer

 }
 </InputRadioGroup>
</p>

<p>
 Pick one color and one engine:
 <InputRadioGroup Name="engine" @bind-Value="starship.Engine">
 <InputRadioGroup Name="color" @bind-Value="starship.Color">
 <InputRadio Name="color" Value="Color.ImperialRed" />Imperial Red

 <InputRadio Name="engine" Value="Engine.Ion" />Ion

 <InputRadio Name="color" Value="Color.SpacecruiserGreen" />
 Spacecruiser Green

 <InputRadio Name="engine" Value="Engine.Plasma" />Plasma

 <InputRadio Name="color" Value="Color.StarshipBlue" />Starship Blue

 <InputRadio Name="engine" Value="Engine.Fusion" />Fusion

 <InputRadio Name="color" Value="Color.VoyagerOrange" />
 Voyager Orange

 <InputRadio Name="engine" Value="Engine.Warp" />Warp

 </InputRadioGroup>
 </InputRadioGroup>
</p>

NOTENOTE
If Name is omitted, InputRadio components are grouped by their most recent ancestor.

When working with radio buttons in a form, data binding is handled differently than other elements because radio

buttons are evaluated as a group. The value of each radio button is fixed, but the value of the radio button group is

the value of the selected radio button. The following example shows how to:

Handle data binding for a radio button group.

Support validation using a custom InputRadio component.

@using System.Globalization
@typeparam TValue
@inherits InputBase<TValue>

<input @attributes="AdditionalAttributes" type="radio" value="@SelectedValue"
 checked="@(SelectedValue.Equals(Value))" @onchange="OnChange" />

@code {
 [Parameter]
 public TValue SelectedValue { get; set; }

 private void OnChange(ChangeEventArgs args)
 {
 CurrentValueAsString = args.Value.ToString();
 }

 protected override bool TryParseValueFromString(string value,
 out TValue result, out string errorMessage)
 {
 var success = BindConverter.TryConvertTo<TValue>(
 value, CultureInfo.CurrentCulture, out var parsedValue);
 if (success)
 {
 result = parsedValue;
 errorMessage = null;

 return true;
 }
 else
 {
 result = default;
 errorMessage = $"{FieldIdentifier.FieldName} field isn't valid.";

 return false;
 }
 }
}

The following EditForm uses the preceding InputRadio component to obtain and validate a rating from the user :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/RadioButtonExample"
@using System.ComponentModel.DataAnnotations

<h1>Radio Button Group Test</h1>

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 @for (int i = 1; i <= 5; i++)
 {
 <label>
 <InputRadio name="rate" SelectedValue="i" @bind-Value="model.Rating" />
 @i
 </label>
 }

 <button type="submit">Submit</button>
</EditForm>

<p>You chose: @model.Rating</p>

@code {
 private Model model = new Model();

 private void HandleValidSubmit()
 {
 ...
 }

 public class Model
 {
 [Range(1, 5)]
 public int Rating { get; set; }
 }
}

Binding <select> element options to C# object null values

Validation support

There's no sensible way to represent a <select> element option value as a C# object null value, because:

HTML attributes can't have null values. The closest equivalent to null in HTML is absence of the HTML value

attribute from the <option> element.

When selecting an <option> with no value attribute, the browser treats the value as the text content of that

<option> 's element.

The Blazor framework doesn't attempt to suppress the default behavior because it would involve:

Creating a chain of special-case workarounds in the framework.

Breaking changes to current framework behavior.

The most plausible null equivalent in HTML is an empty string value . The Blazor framework handles null to

empty string conversions for two-way binding to a <select> 's value.

The Blazor framework doesn't automatically handle null to empty string conversions when attempting two-way

binding to a <select> 's value. For more information, see Fix binding <select> to a null value (dotnet/aspnetcore

#23221).

The DataAnnotationsValidator component attaches validation support using data annotations to the cascaded

https://github.com/dotnet/aspnetcore/pull/23221
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Validation Summary and Validation Message componentsValidation Summary and Validation Message components

<ValidationSummary />

<ValidationSummary Model="@starship" />

<ValidationMessage For="@(() => starship.MaximumAccommodation)" />

.validation-message {
 color: red;
}

Custom validation attributesCustom validation attributes

EditContext. Enabling support for validation using data annotations requires this explicit gesture. To use a different

validation system than data annotations, replace the DataAnnotationsValidator with a custom implementation. The

ASP.NET Core implementation is available for inspection in the reference source: DataAnnotationsValidator /

AddDataAnnotationsValidation . The preceding links to reference source provide code from the repository's master

branch, which represents the product unit's current development for the next release of ASP.NET Core. To select the

branch for a different release, use the GitHub branch selector (for example release/3.1).

Blazor performs two types of validation:

Field validation is performed when the user tabs out of a field. During field validation, the

DataAnnotationsValidator component associates all reported validation results with the field.

Model validation is performed when the user submits the form. During model validation, the

DataAnnotationsValidator component attempts to determine the field based on the member name that the

validation result reports. Validation results that aren't associated with an individual member are associated with

the model rather than a field.

The ValidationSummary component summarizes all validation messages, which is similar to the Validation

Summary Tag Helper:

Output validation messages for a specific model with the Model parameter :

The ValidationMessage<TValue> component displays validation messages for a specific field, which is similar to the

Validation Message Tag Helper. Specify the field for validation with the For attribute and a lambda expression

naming the model property:

The ValidationMessage<TValue> and ValidationSummary components support arbitrary attributes. Any attribute

that doesn't match a component parameter is added to the generated <div> or element.

Control the style of validation messages in the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css). The

default validation-message class sets the text color of validation messages to red:

To ensure that a validation result is correctly associated with a field when using a custom validation attribute, pass

the validation context's MemberName when creating the ValidationResult:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/DataAnnotationsValidator.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/EditContextDataAnnotationsExtensions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.membername#system_componentmodel_dataannotations_validationcontext_membername
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationresult

using System;
using System.ComponentModel.DataAnnotations;

private class CustomValidator : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 ...

 return new ValidationResult("Validation message to user.",
 new[] { validationContext.MemberName });
 }
}

NOTENOTE

Custom validation class attributes

var editContext = new EditContext(model);
editContext.SetFieldCssClassProvider(new MyFieldClassProvider());

...

private class MyFieldClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext,
 in FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext.GetValidationMessages(fieldIdentifier).Any();

 return isValid ? "good field" : "bad field";
 }
}

Blazor data annotations validation packageBlazor data annotations validation package

NOTENOTE

[CompareProperty] attribute[CompareProperty] attribute

ValidationContext.GetService is null . Injecting services for validation in the IsValid method isn't supported.

Custom validation class names are useful when integrating with CSS frameworks, such as Bootstrap. To specify

custom validation class names, create a class derived from FieldCssClassProvider and set the class on the

EditContext instance:

The Microsoft.AspNetCore.Components.DataAnnotations.Validation is a package that fills validation experience gaps

using the DataAnnotationsValidator component. The package is currently experimental.

The Microsoft.AspNetCore.Components.DataAnnotations.Validation package has a latest version of release candidate at

Nuget.org. Continue to use the experimental release candidate package at this time. The package's assembly might be moved

to either the framework or the runtime in a future release. Watch the Announcements GitHub repository, the

dotnet/aspnetcore GitHub repository, or this topic section for further updates.

The CompareAttribute doesn't work well with the DataAnnotationsValidator component because it doesn't associate

the validation result with a specific member. This can result in inconsistent behavior between field-level validation

and when the entire model is validated on a submit. The

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.getservice
https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://github.com/aspnet/Announcements
https://github.com/dotnet/aspnetcore
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Nested models, collection types, and complex typesNested models, collection types, and complex types

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <ObjectGraphDataAnnotationsValidator />
 ...
</EditForm>

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 ...

 [ValidateComplexType]
 public ShipDescription ShipDescription { get; set; } =
 new ShipDescription();

 ...
}

using System;
using System.ComponentModel.DataAnnotations;

public class ShipDescription
{
 [Required]
 [StringLength(40, ErrorMessage = "Description too long (40 char).")]
 public string ShortDescription { get; set; }

 [Required]
 [StringLength(240, ErrorMessage = "Description too long (240 char).")]
 public string LongDescription { get; set; }
}

Enable the submit button based on form validationEnable the submit button based on form validation

Microsoft.AspNetCore.Components.DataAnnotations.Validation experimental package introduces an additional

validation attribute, ComparePropertyAttribute , that works around these limitations. In a Blazor app,

[CompareProperty] is a direct replacement for the [Compare] attribute.

Blazor provides support for validating form input using data annotations with the built-in

DataAnnotationsValidator. However, the DataAnnotationsValidator only validates top-level properties of the model

bound to the form that aren't collection- or complex-type properties.

To validate the bound model's entire object graph, including collection- and complex-type properties, use the

ObjectGraphDataAnnotationsValidator provided by the experimental

Microsoft.AspNetCore.Components.DataAnnotations.Validation package:

Annotate model properties with [ValidateComplexType] . In the following model classes, the ShipDescription class

contains additional data annotations to validate when the model is bound to the form:

Starship.cs :

ShipDescription.cs :

To enable and disable the submit button based on form validation:

Use the form's EditContext to assign the model when the component is initialized.

Validate the form in the context's OnFieldChanged callback to enable and disable the submit button.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

NOTENOTE

@implements IDisposable

<EditForm EditContext="@editContext">
 <DataAnnotationsValidator />
 <ValidationSummary />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private bool formInvalid = true;
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 editContext.OnFieldChanged += HandleFieldChanged;
 }

 private void HandleFieldChanged(object sender, FieldChangedEventArgs e)
 {
 formInvalid = !editContext.Validate();
 StateHasChanged();
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= HandleFieldChanged;
 }
}

Unhook the event handler in the Dispose method. For more information, see ASP.NET Core Blazor lifecycle.

When using an EditContext, don't also assign a Model to the EditForm.

In the preceding example, set formInvalid to false if:

The form is preloaded with valid default values.

You want the submit button enabled when the form loads.

A side effect of the preceding approach is that a ValidationSummary component is populated with invalid fields

after the user interacts with any one field. This scenario can be addressed in either of the following ways:

Don't use a ValidationSummary component on the form.

Make the ValidationSummary component visible when the submit button is selected (for example, in a

HandleValidSubmit method).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

<EditForm EditContext="@editContext" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary style="@displaySummary" />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private string displaySummary = "display:none";

 ...

 private void HandleValidSubmit()
 {
 displaySummary = "display:block";
 }
}

Troubleshoot

private ExampleModel exampleModel = new ExampleModel();

Additional resources

InvalidOperationException: EditForm requires a Model parameter, or an EditContext parameter, but not both.

Confirm that the EditForm has a Model oror EditContext. Don't use both for the same form.

When assigning a Model to the form, confirm that the model type is instantiated, as the following example shows:

ASP.NET Core Blazor file uploads

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model

ASP.NET Core Blazor forms and validation
9/22/2020 • 22 minutes to read • Edit Online

using System.ComponentModel.DataAnnotations;

public class ExampleModel
{
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
}

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <InputText id="name" @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }
}

Built-in forms components

By Daniel Roth, Rémi Bourgarel, and Luke Latham

Forms and validation are supported in Blazor using data annotations.

The following ExampleModel type defines validation logic using data annotations:

A form is defined using the EditForm component. The following form demonstrates typical elements, components,

and Razor code:

In the preceding example:

The form validates user input in the name field using the validation defined in the ExampleModel type. The model

is created in the component's @code block and held in a private field (exampleModel). The field is assigned to the

Model attribute of the <EditForm> element.

The InputText component's @bind-Value binds:

The DataAnnotationsValidator validator component attaches validation support using data annotations.

The ValidationSummary component summarizes validation messages.

HandleValidSubmit is triggered when the form successfully submits (passes validation).

The model property (exampleModel.Name) to the InputText component's Value property. For more

information on property binding, see ASP.NET Core Blazor data binding.

A change event delegate to the InputText component's ValueChanged property.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/forms-validation.md
https://github.com/danroth27
https://remibou.github.io/
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputFile <input type="file">

InputNumber<TValue> <input type="number">

InputRadio <input type="radio">

InputRadioGroup <input type="radio">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputNumber<TValue> <input type="number">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

NOTENOTE

A set of built-in components are available to receive and validate user input. Inputs are validated when they're

changed and when a form is submitted. Available input components are shown in the following table.

The InputRadio and InputRadioGroup components are available in ASP.NET Core 5.0 or later. For more information, select

a 5.0 or later version of this article.

All of the input components, including EditForm, support arbitrary attributes. Any attribute that doesn't match a

component parameter is added to the rendered HTML element.

Input components provide default behavior for validating when a field is changed, including updating the field CSS

class to reflect the field state. Some components include useful parsing logic. For example, InputDate<TValue> and

InputNumber<TValue> handle unparseable values gracefully by registering unparseable values as validation errors.

Types that can accept null values also support nullability of the target field (for example, int?).

The following Starship type defines validation logic using a larger set of properties and data annotations than the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 [Required]
 [StringLength(16, ErrorMessage = "Identifier too long (16 character limit).")]
 public string Identifier { get; set; }

 public string Description { get; set; }

 [Required]
 public string Classification { get; set; }

 [Range(1, 100000, ErrorMessage = "Accommodation invalid (1-100000).")]
 public int MaximumAccommodation { get; set; }

 [Required]
 [Range(typeof(bool), "true", "true",
 ErrorMessage = "This form disallows unapproved ships.")]
 public bool IsValidatedDesign { get; set; }

 [Required]
 public DateTime ProductionDate { get; set; }
}

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>

earlier ExampleModel :

In the preceding example, Description is optional because no data annotations are present.

The following form validates user input using the validation defined in the Starship model:

 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" />
 </label>
 </p>

 <button type="submit">Submit</button>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 ...
 }
}

The EditForm creates an EditContext as a cascading value that tracks metadata about the edit process, including

which fields have been modified and the current validation messages.

Assign eithereither an EditContext oror an EditForm.Model to an EditForm. Assignment of both isn't supported and

generates a runtime errorruntime error .

The EditForm provides convenient events for valid and invalid form submission:

OnValidSubmit

OnInvalidSubmit

Use OnSubmit to use custom code to trigger validation and check field values.

In the following example:

The HandleSubmit method executes when the Submit button is selected.

The form is validated by calling EditContext.Validate.

Additional code is executed depending on the validation result. Place business logic in the method assigned to

OnSubmit.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.oninvalidsubmit#microsoft_aspnetcore_components_forms_editform_oninvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.validate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit

<EditForm EditContext="@editContext" OnSubmit="@HandleSubmit">

 ...

 <button type="submit">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 }

 private async Task HandleSubmit()
 {
 var isValid = editContext.Validate();

 if (isValid)
 {
 ...
 }
 else
 {
 ...
 }
 }
}

NOTENOTE

Display name support

<InputDate @bind-Value="@BirthDate" DisplayName="birthday" />

@code {
 public DateTime BirthDate { get; set; }
}

Framework API doesn't exist to clear validation messages directly from an EditContext. Therefore, we don't generally

recommend adding validation messages to a new ValidationMessageStore in a form. To manage validation messages, use a

validator component with your business logic validation code, as described in this article.

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

The following built-in components support display names with the DisplayName parameter :

InputDate<TValue>

InputNumber<TValue>

InputSelect<TValue>

In the following InputDate component example:

The display name (DisplayName) is set to birthday .

The component is bound to the BirthDate property as a DateTime type.

If the user doesn't provide a date value, the validation error appears as:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1

The birthday must be a date.

Validator components

NOTENOTE

Validator components support form validation by managing a ValidationMessageStore for a form's EditContext.

The Blazor framework provides the DataAnnotationsValidator component to attach validation support to forms

based on validation attributes (data annotations). Create custom validator components to process validation

messages for different forms on the same page or the same form at different steps of form processing, for example

client-side validation followed by server-side validation. The validator component example shown in this section,

CustomValidator , is used in the following sections of this article:

Business logic validation

Server validation

Custom data annotation validation attributes can be used instead of custom validator components in many cases. Custom

attributes applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with

server-side validation, any custom attributes applied to the model must be executable on the server. For more information,

see Model validation in ASP.NET Core MVC.

Create a validator component from ComponentBase:

The form's EditContext is a cascading parameter of the component.

When the validator component is initialized, a new ValidationMessageStore is created to maintain a current list

of form errors.

The message store receives errors when developer code in the form's component calls the DisplayErrors

method. The errors are passed to the DisplayErrors method in a Dictionary<string, List<string>> . In the

dictionary, the key is the name of the form field that has one or more errors. The value is the error list.

Messages are cleared when any of the following have occurred:

Validation is requested on the EditContext when the OnValidationRequested event is raised. All of the

errors are cleared.

A field changes in the form when the OnFieldChanged event is raised. Only the errors for the field are

cleared.

The ClearErrors method is called by developer code. All of the errors are cleared.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onvalidationrequested
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Forms;

namespace BlazorSample.Client
{
 public class CustomValidator : ComponentBase
 {
 private ValidationMessageStore messageStore;

 [CascadingParameter]
 private EditContext CurrentEditContext { get; set; }

 protected override void OnInitialized()
 {
 if (CurrentEditContext == null)
 {
 throw new InvalidOperationException(
 $"{nameof(CustomValidator)} requires a cascading " +
 $"parameter of type {nameof(EditContext)}. " +
 $"For example, you can use {nameof(CustomValidator)} " +
 $"inside an {nameof(EditForm)}.");
 }

 messageStore = new ValidationMessageStore(CurrentEditContext);

 CurrentEditContext.OnValidationRequested += (s, e) =>
 messageStore.Clear();
 CurrentEditContext.OnFieldChanged += (s, e) =>
 messageStore.Clear(e.FieldIdentifier);
 }

 public void DisplayErrors(Dictionary<string, List<string>> errors)
 {
 foreach (var err in errors)
 {
 messageStore.Add(CurrentEditContext.Field(err.Key), err.Value);
 }

 CurrentEditContext.NotifyValidationStateChanged();
 }

 public void ClearErrors()
 {
 messageStore.Clear();
 CurrentEditContext.NotifyValidationStateChanged();
 }
 }
}

Business logic validation
Business logic validation can be accomplished with a validator component that receives form errors in a dictionary.

In the following example:

The CustomValidator component from the Validator components section of this article is used.

The validation requires a value for the ship's description (Description) if the user selects the Defense ship

classification (Classification).

When validation messages are set in the component, they're added to the validator's ValidationMessageStore and

shown in the EditForm:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 ...

</EditForm>

@code {
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 customValidator.ClearErrors();

 var errors = new Dictionary<string, List<string>>();

 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 errors.Add(nameof(starship.Description),
 new List<string>() { "For a 'Defense' ship classification, " +
 "'Description' is required." });
 }

 if (errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else
 {
 // Process the form
 }
 }
}

NOTENOTE

Server validation

As an alternative to using validation components, data annotation validation attributes can be used. Custom attributes

applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side

validation, the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

Server validation can be accomplished with a server validator component:

Process client-side validation in the form with the DataAnnotationsValidator component.

When the form passes client-side validation (OnValidSubmit is called), send the EditContext.Model to a backend

server API for form processing.

Process model validation on the server.

The server API includes both the built-in framework data annotations validation and custom validation logic

supplied by the developer. If validation passes on the server, process the form and send back a success status

code (200 - OK). If validation fails, return a failure status code (400 - Bad Request) and the field validation errors.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.model#microsoft_aspnetcore_components_forms_editcontext_model

<ItemGroup>
 <PackageReference Include="System.ComponentModel.Annotations" Version="{VERSION}" />
</ItemGroup>

Either disable the form on success or display the errors.

The following example is based on:

A hosted Blazor solution created by the Blazor Hosted project template. The example can be used with any of the

secure hosted Blazor solutions described in the Security and Identity documentation.

The Starfleet Starship Database form example in the preceding Built-in forms components section.

The Blazor framework's DataAnnotationsValidator component.

The CustomValidator component shown in the Validator components section.

In the following example, the server API validates that a value is provided for the ship's description (Description) if

the user selects the Defense ship classification (Classification).

Place the Starship model into the solution's Shared project so that both the client and server apps can use the

model. Since the model requires data annotations, add a package reference for System.ComponentModel.Annotations

to the Shared project's project file:

To determine the latest non-preview version of the package, see the package Version Histor yVersion Histor y at NuGet.org.

In the server API project, add a controller to process starship validation requests (

Controllers/StarshipValidation.cs) and return failed validation messages:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/System.ComponentModel.Annotations
https://www.nuget.org/packages/System.ComponentModel.Annotations

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using BlazorSample.Shared;

namespace BlazorSample.Server.Controllers
{
 [Authorize]
 [ApiController]
 [Route("[controller]")]
 public class StarshipValidationController : ControllerBase
 {
 private readonly ILogger<StarshipValidationController> logger;

 public StarshipValidationController(
 ILogger<StarshipValidationController> logger)
 {
 this.logger = logger;
 }

 [HttpPost]
 public async Task<IActionResult> Post(Starship starship)
 {
 try
 {
 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 ModelState.AddModelError(nameof(starship.Description),
 "For a 'Defense' ship " +
 "classification, 'Description' is required.");
 }
 else
 {
 // Process the form asynchronously
 // async ...

 return Ok(ModelState);
 }
 }
 catch (Exception ex)
 {
 logger.LogError("Validation Error: {MESSAGE}", ex.Message);
 }

 return BadRequest(ModelState);
 }
 }
}

When a model binding validation error occurs on the server, an ApiController (ApiControllerAttribute) normally

returns a default bad request response with a ValidationProblemDetails. The response contains more data than just

the validation errors, as shown in the following example when all of the fields of the Starfleet Starship Database

form aren't submitted and the form fails validation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails

{
 "title": "One or more validation errors occurred.",
 "status": 400,
 "errors": {
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
 }
}

{
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
}

using Microsoft.AspNetCore.Mvc;

...

services.AddControllersWithViews()
 .ConfigureApiBehaviorOptions(options =>
 {
 options.InvalidModelStateResponseFactory = context =>
 {
 if (context.HttpContext.Request.Path == "/StarshipValidation")
 {
 return new BadRequestObjectResult(context.ModelState);
 }
 else
 {
 return new BadRequestObjectResult(
 new ValidationProblemDetails(context.ModelState));
 }
 };
 });

@page "/FormValidation"
@using System.Net

If the server API returns the preceding default JSON response, it's possible for the client to parse the response to

obtain the children of the errors node. However, it's inconvenient to parse the file. Parsing the JSON requires

additional code after calling ReadFromJsonAsync in order to produce a Dictionary<string, List<string>> of errors

for forms validation error processing. Ideally, the server API should only return the validation errors:

To modify the server API's response to make it only return the validation errors, change the delegate that's invoked

on actions that are annotated with ApiControllerAttribute in Startup.ConfigureServices . For the API endpoint (

/StarshipValidation), return a BadRequestObjectResult with the ModelStateDictionary. For any other API

endpoints, preserve the default behavior by returning the object result with a new ValidationProblemDetails:

For more information, see Handle errors in ASP.NET Core web APIs.

In the client project, add the validator component shown in the Validator components section.

In the client project, the Starfleet Starship Database form is updated to show server validation errors with help of

the CustomValidator component. When the server API returns validation messages, they're added to the

CustomValidator component's ValidationMessageStore. The errors are available in the form's EditContext for

display by the form's ValidationSummary:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.badrequestobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

@using System.Net
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using Microsoft.Extensions.Logging
@using BlazorSample.Shared
@attribute [Authorize]
@inject HttpClient Http
@inject ILogger<FormValidation> Logger

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification" disabled="@disabled">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" disabled="@disabled" />
 </label>
 </p>

 <button type="submit" disabled="@disabled">Submit</button>

 <p style="@messageStyles">
 @message
 </p>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private bool disabled;
 private string message;
 private string messageStyles = "visibility:hidden";
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private async Task HandleValidSubmit(EditContext editContext)
 {
 customValidator.ClearErrors();

 try
 {
 var response = await Http.PostAsJsonAsync<Starship>(
 "StarshipValidation", (Starship)editContext.Model);

 var errors = await response.Content
 .ReadFromJsonAsync<Dictionary<string, List<string>>>();

 if (response.StatusCode == HttpStatusCode.BadRequest &&
 errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else if (!response.IsSuccessStatusCode)
 {
 throw new HttpRequestException(
 $"Validation failed. Status Code: {response.StatusCode}");
 }
 else
 {
 disabled = true;
 messageStyles = "color:green";
 message = "The form has been processed.";
 }
 }
 catch (AccessTokenNotAvailableException ex)
 {
 ex.Redirect();
 }
 catch (Exception ex)
 {
 Logger.LogError("Form processing error: {MESSAGE}", ex.Message);
 disabled = true;
 messageStyles = "color:red";
 message = "There was an error processing the form.";
 }
 }
}

NOTENOTE
As an alternative to validation components, data annotation validation attributes can be used. Custom attributes applied to

the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side validation,

the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

NOTENOTE

InputText based on the input event

@inherits InputText

<input
 @attributes="AdditionalAttributes"
 class="@CssClass"
 value="@CurrentValue"
 @oninput="EventCallback.Factory.CreateBinder<string>(
 this, __value => CurrentValueAsString = __value,
 CurrentValueAsString)" />

The server-side validation approach in this section is suitable for any of the Blazor WebAssembly hosted solution examples in

this documentation set:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

Use the InputText component to create a custom component that uses the input event instead of the change

event.

In the following example, the CustomInputText component inherits the framework's InputText component and sets

the event binding (CreateBinder) to the oninput event.

Shared/CustomInputText.razor :

The CustomInputText component can be used anywhere InputText is used:

Pages/TestForm.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallbackfactorybinderextensions.createbinder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext

@page "/testform"
@using System.ComponentModel.DataAnnotations;

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <CustomInputText @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

<p>
 CurrentValue: @exampleModel.Name
</p>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }

 public class ExampleModel
 {
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
 }
}

Radio buttons

[Required]
[Range(typeof(Manufacturer), nameof(Manufacturer.SpaceX),
 nameof(Manufacturer.VirginGalactic), ErrorMessage = "Pick a manufacturer.")]
public Manufacturer Manufacturer { get; set; } = Manufacturer.Unknown;

[Required, EnumDataType(typeof(Color))]
public Color? Color { get; set; } = null;

[Required, EnumDataType(typeof(Engine))]
public Engine? Engine { get; set; } = null;

public enum Manufacturer { SpaceX, NASA, ULA, Virgin, Unknown }
public enum Color { ImperialRed, SpacecruiserGreen, StarshipBlue, VoyagerOrange }
public enum Engine { Ion, Plasma, Fusion, Warp }

Use InputRadio components with the InputRadioGroup component to create a radio button group. In the following

example, properties are added to the Starship model described in the Built-in forms components section:

Add the following enums to the app. Create a new file to hold the enums or add the enums to the Starship.cs file.

Make the enums accessible to the Starship model and the Starfleet Starship Database form:

Update the Starfleet Starship Database form described in the Built-in forms components section. Add the

components to produce:

A radio button group for the ship manufacturer.

A nested radio button group for ship color and engine.

<p>
 <InputRadioGroup @bind-Value="starship.Manufacturer">
 Manufacturer:

 @foreach (var manufacturer in (Manufacturer[])Enum
 .GetValues(typeof(Manufacturer)))
 {
 <InputRadio Value="manufacturer" />
 @manufacturer

 }
 </InputRadioGroup>
</p>

<p>
 Pick one color and one engine:
 <InputRadioGroup Name="engine" @bind-Value="starship.Engine">
 <InputRadioGroup Name="color" @bind-Value="starship.Color">
 <InputRadio Name="color" Value="Color.ImperialRed" />Imperial Red

 <InputRadio Name="engine" Value="Engine.Ion" />Ion

 <InputRadio Name="color" Value="Color.SpacecruiserGreen" />
 Spacecruiser Green

 <InputRadio Name="engine" Value="Engine.Plasma" />Plasma

 <InputRadio Name="color" Value="Color.StarshipBlue" />Starship Blue

 <InputRadio Name="engine" Value="Engine.Fusion" />Fusion

 <InputRadio Name="color" Value="Color.VoyagerOrange" />
 Voyager Orange

 <InputRadio Name="engine" Value="Engine.Warp" />Warp

 </InputRadioGroup>
 </InputRadioGroup>
</p>

NOTENOTE
If Name is omitted, InputRadio components are grouped by their most recent ancestor.

When working with radio buttons in a form, data binding is handled differently than other elements because radio

buttons are evaluated as a group. The value of each radio button is fixed, but the value of the radio button group is

the value of the selected radio button. The following example shows how to:

Handle data binding for a radio button group.

Support validation using a custom InputRadio component.

@using System.Globalization
@typeparam TValue
@inherits InputBase<TValue>

<input @attributes="AdditionalAttributes" type="radio" value="@SelectedValue"
 checked="@(SelectedValue.Equals(Value))" @onchange="OnChange" />

@code {
 [Parameter]
 public TValue SelectedValue { get; set; }

 private void OnChange(ChangeEventArgs args)
 {
 CurrentValueAsString = args.Value.ToString();
 }

 protected override bool TryParseValueFromString(string value,
 out TValue result, out string errorMessage)
 {
 var success = BindConverter.TryConvertTo<TValue>(
 value, CultureInfo.CurrentCulture, out var parsedValue);
 if (success)
 {
 result = parsedValue;
 errorMessage = null;

 return true;
 }
 else
 {
 result = default;
 errorMessage = $"{FieldIdentifier.FieldName} field isn't valid.";

 return false;
 }
 }
}

The following EditForm uses the preceding InputRadio component to obtain and validate a rating from the user :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/RadioButtonExample"
@using System.ComponentModel.DataAnnotations

<h1>Radio Button Group Test</h1>

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 @for (int i = 1; i <= 5; i++)
 {
 <label>
 <InputRadio name="rate" SelectedValue="i" @bind-Value="model.Rating" />
 @i
 </label>
 }

 <button type="submit">Submit</button>
</EditForm>

<p>You chose: @model.Rating</p>

@code {
 private Model model = new Model();

 private void HandleValidSubmit()
 {
 ...
 }

 public class Model
 {
 [Range(1, 5)]
 public int Rating { get; set; }
 }
}

Binding <select> element options to C# object null values

Validation support

There's no sensible way to represent a <select> element option value as a C# object null value, because:

HTML attributes can't have null values. The closest equivalent to null in HTML is absence of the HTML value

attribute from the <option> element.

When selecting an <option> with no value attribute, the browser treats the value as the text content of that

<option> 's element.

The Blazor framework doesn't attempt to suppress the default behavior because it would involve:

Creating a chain of special-case workarounds in the framework.

Breaking changes to current framework behavior.

The most plausible null equivalent in HTML is an empty string value . The Blazor framework handles null to

empty string conversions for two-way binding to a <select> 's value.

The Blazor framework doesn't automatically handle null to empty string conversions when attempting two-way

binding to a <select> 's value. For more information, see Fix binding <select> to a null value (dotnet/aspnetcore

#23221).

The DataAnnotationsValidator component attaches validation support using data annotations to the cascaded

https://github.com/dotnet/aspnetcore/pull/23221
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Validation Summary and Validation Message componentsValidation Summary and Validation Message components

<ValidationSummary />

<ValidationSummary Model="@starship" />

<ValidationMessage For="@(() => starship.MaximumAccommodation)" />

.validation-message {
 color: red;
}

Custom validation attributesCustom validation attributes

EditContext. Enabling support for validation using data annotations requires this explicit gesture. To use a different

validation system than data annotations, replace the DataAnnotationsValidator with a custom implementation. The

ASP.NET Core implementation is available for inspection in the reference source: DataAnnotationsValidator /

AddDataAnnotationsValidation . The preceding links to reference source provide code from the repository's master

branch, which represents the product unit's current development for the next release of ASP.NET Core. To select the

branch for a different release, use the GitHub branch selector (for example release/3.1).

Blazor performs two types of validation:

Field validation is performed when the user tabs out of a field. During field validation, the

DataAnnotationsValidator component associates all reported validation results with the field.

Model validation is performed when the user submits the form. During model validation, the

DataAnnotationsValidator component attempts to determine the field based on the member name that the

validation result reports. Validation results that aren't associated with an individual member are associated with

the model rather than a field.

The ValidationSummary component summarizes all validation messages, which is similar to the Validation

Summary Tag Helper:

Output validation messages for a specific model with the Model parameter :

The ValidationMessage<TValue> component displays validation messages for a specific field, which is similar to the

Validation Message Tag Helper. Specify the field for validation with the For attribute and a lambda expression

naming the model property:

The ValidationMessage<TValue> and ValidationSummary components support arbitrary attributes. Any attribute

that doesn't match a component parameter is added to the generated <div> or element.

Control the style of validation messages in the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css). The

default validation-message class sets the text color of validation messages to red:

To ensure that a validation result is correctly associated with a field when using a custom validation attribute, pass

the validation context's MemberName when creating the ValidationResult:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/DataAnnotationsValidator.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/EditContextDataAnnotationsExtensions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.membername#system_componentmodel_dataannotations_validationcontext_membername
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationresult

using System;
using System.ComponentModel.DataAnnotations;

private class CustomValidator : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 ...

 return new ValidationResult("Validation message to user.",
 new[] { validationContext.MemberName });
 }
}

NOTENOTE

Custom validation class attributes

var editContext = new EditContext(model);
editContext.SetFieldCssClassProvider(new MyFieldClassProvider());

...

private class MyFieldClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext,
 in FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext.GetValidationMessages(fieldIdentifier).Any();

 return isValid ? "good field" : "bad field";
 }
}

Blazor data annotations validation packageBlazor data annotations validation package

NOTENOTE

[CompareProperty] attribute[CompareProperty] attribute

ValidationContext.GetService is null . Injecting services for validation in the IsValid method isn't supported.

Custom validation class names are useful when integrating with CSS frameworks, such as Bootstrap. To specify

custom validation class names, create a class derived from FieldCssClassProvider and set the class on the

EditContext instance:

The Microsoft.AspNetCore.Components.DataAnnotations.Validation is a package that fills validation experience gaps

using the DataAnnotationsValidator component. The package is currently experimental.

The Microsoft.AspNetCore.Components.DataAnnotations.Validation package has a latest version of release candidate at

Nuget.org. Continue to use the experimental release candidate package at this time. The package's assembly might be moved

to either the framework or the runtime in a future release. Watch the Announcements GitHub repository, the

dotnet/aspnetcore GitHub repository, or this topic section for further updates.

The CompareAttribute doesn't work well with the DataAnnotationsValidator component because it doesn't associate

the validation result with a specific member. This can result in inconsistent behavior between field-level validation

and when the entire model is validated on a submit. The

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.getservice
https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://github.com/aspnet/Announcements
https://github.com/dotnet/aspnetcore
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Nested models, collection types, and complex typesNested models, collection types, and complex types

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <ObjectGraphDataAnnotationsValidator />
 ...
</EditForm>

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 ...

 [ValidateComplexType]
 public ShipDescription ShipDescription { get; set; } =
 new ShipDescription();

 ...
}

using System;
using System.ComponentModel.DataAnnotations;

public class ShipDescription
{
 [Required]
 [StringLength(40, ErrorMessage = "Description too long (40 char).")]
 public string ShortDescription { get; set; }

 [Required]
 [StringLength(240, ErrorMessage = "Description too long (240 char).")]
 public string LongDescription { get; set; }
}

Enable the submit button based on form validationEnable the submit button based on form validation

Microsoft.AspNetCore.Components.DataAnnotations.Validation experimental package introduces an additional

validation attribute, ComparePropertyAttribute , that works around these limitations. In a Blazor app,

[CompareProperty] is a direct replacement for the [Compare] attribute.

Blazor provides support for validating form input using data annotations with the built-in

DataAnnotationsValidator. However, the DataAnnotationsValidator only validates top-level properties of the model

bound to the form that aren't collection- or complex-type properties.

To validate the bound model's entire object graph, including collection- and complex-type properties, use the

ObjectGraphDataAnnotationsValidator provided by the experimental

Microsoft.AspNetCore.Components.DataAnnotations.Validation package:

Annotate model properties with [ValidateComplexType] . In the following model classes, the ShipDescription class

contains additional data annotations to validate when the model is bound to the form:

Starship.cs :

ShipDescription.cs :

To enable and disable the submit button based on form validation:

Use the form's EditContext to assign the model when the component is initialized.

Validate the form in the context's OnFieldChanged callback to enable and disable the submit button.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

NOTENOTE

@implements IDisposable

<EditForm EditContext="@editContext">
 <DataAnnotationsValidator />
 <ValidationSummary />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private bool formInvalid = true;
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 editContext.OnFieldChanged += HandleFieldChanged;
 }

 private void HandleFieldChanged(object sender, FieldChangedEventArgs e)
 {
 formInvalid = !editContext.Validate();
 StateHasChanged();
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= HandleFieldChanged;
 }
}

Unhook the event handler in the Dispose method. For more information, see ASP.NET Core Blazor lifecycle.

When using an EditContext, don't also assign a Model to the EditForm.

In the preceding example, set formInvalid to false if:

The form is preloaded with valid default values.

You want the submit button enabled when the form loads.

A side effect of the preceding approach is that a ValidationSummary component is populated with invalid fields

after the user interacts with any one field. This scenario can be addressed in either of the following ways:

Don't use a ValidationSummary component on the form.

Make the ValidationSummary component visible when the submit button is selected (for example, in a

HandleValidSubmit method).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

<EditForm EditContext="@editContext" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary style="@displaySummary" />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private string displaySummary = "display:none";

 ...

 private void HandleValidSubmit()
 {
 displaySummary = "display:block";
 }
}

Troubleshoot

private ExampleModel exampleModel = new ExampleModel();

Additional resources

InvalidOperationException: EditForm requires a Model parameter, or an EditContext parameter, but not both.

Confirm that the EditForm has a Model oror EditContext. Don't use both for the same form.

When assigning a Model to the form, confirm that the model type is instantiated, as the following example shows:

ASP.NET Core Blazor file uploads

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model

ASP.NET Core Blazor forms and validation
9/22/2020 • 22 minutes to read • Edit Online

using System.ComponentModel.DataAnnotations;

public class ExampleModel
{
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
}

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <InputText id="name" @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }
}

Built-in forms components

By Daniel Roth, Rémi Bourgarel, and Luke Latham

Forms and validation are supported in Blazor using data annotations.

The following ExampleModel type defines validation logic using data annotations:

A form is defined using the EditForm component. The following form demonstrates typical elements, components,

and Razor code:

In the preceding example:

The form validates user input in the name field using the validation defined in the ExampleModel type. The model

is created in the component's @code block and held in a private field (exampleModel). The field is assigned to the

Model attribute of the <EditForm> element.

The InputText component's @bind-Value binds:

The DataAnnotationsValidator validator component attaches validation support using data annotations.

The ValidationSummary component summarizes validation messages.

HandleValidSubmit is triggered when the form successfully submits (passes validation).

The model property (exampleModel.Name) to the InputText component's Value property. For more

information on property binding, see ASP.NET Core Blazor data binding.

A change event delegate to the InputText component's ValueChanged property.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/forms-validation.md
https://github.com/danroth27
https://remibou.github.io/
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputFile <input type="file">

InputNumber<TValue> <input type="number">

InputRadio <input type="radio">

InputRadioGroup <input type="radio">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputNumber<TValue> <input type="number">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

NOTENOTE

A set of built-in components are available to receive and validate user input. Inputs are validated when they're

changed and when a form is submitted. Available input components are shown in the following table.

The InputRadio and InputRadioGroup components are available in ASP.NET Core 5.0 or later. For more information, select

a 5.0 or later version of this article.

All of the input components, including EditForm, support arbitrary attributes. Any attribute that doesn't match a

component parameter is added to the rendered HTML element.

Input components provide default behavior for validating when a field is changed, including updating the field CSS

class to reflect the field state. Some components include useful parsing logic. For example, InputDate<TValue> and

InputNumber<TValue> handle unparseable values gracefully by registering unparseable values as validation errors.

Types that can accept null values also support nullability of the target field (for example, int?).

The following Starship type defines validation logic using a larger set of properties and data annotations than the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 [Required]
 [StringLength(16, ErrorMessage = "Identifier too long (16 character limit).")]
 public string Identifier { get; set; }

 public string Description { get; set; }

 [Required]
 public string Classification { get; set; }

 [Range(1, 100000, ErrorMessage = "Accommodation invalid (1-100000).")]
 public int MaximumAccommodation { get; set; }

 [Required]
 [Range(typeof(bool), "true", "true",
 ErrorMessage = "This form disallows unapproved ships.")]
 public bool IsValidatedDesign { get; set; }

 [Required]
 public DateTime ProductionDate { get; set; }
}

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>

earlier ExampleModel :

In the preceding example, Description is optional because no data annotations are present.

The following form validates user input using the validation defined in the Starship model:

 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" />
 </label>
 </p>

 <button type="submit">Submit</button>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 ...
 }
}

The EditForm creates an EditContext as a cascading value that tracks metadata about the edit process, including

which fields have been modified and the current validation messages.

Assign eithereither an EditContext oror an EditForm.Model to an EditForm. Assignment of both isn't supported and

generates a runtime errorruntime error .

The EditForm provides convenient events for valid and invalid form submission:

OnValidSubmit

OnInvalidSubmit

Use OnSubmit to use custom code to trigger validation and check field values.

In the following example:

The HandleSubmit method executes when the Submit button is selected.

The form is validated by calling EditContext.Validate.

Additional code is executed depending on the validation result. Place business logic in the method assigned to

OnSubmit.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.oninvalidsubmit#microsoft_aspnetcore_components_forms_editform_oninvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.validate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit

<EditForm EditContext="@editContext" OnSubmit="@HandleSubmit">

 ...

 <button type="submit">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 }

 private async Task HandleSubmit()
 {
 var isValid = editContext.Validate();

 if (isValid)
 {
 ...
 }
 else
 {
 ...
 }
 }
}

NOTENOTE

Display name support

<InputDate @bind-Value="@BirthDate" DisplayName="birthday" />

@code {
 public DateTime BirthDate { get; set; }
}

Framework API doesn't exist to clear validation messages directly from an EditContext. Therefore, we don't generally

recommend adding validation messages to a new ValidationMessageStore in a form. To manage validation messages, use a

validator component with your business logic validation code, as described in this article.

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

The following built-in components support display names with the DisplayName parameter :

InputDate<TValue>

InputNumber<TValue>

InputSelect<TValue>

In the following InputDate component example:

The display name (DisplayName) is set to birthday .

The component is bound to the BirthDate property as a DateTime type.

If the user doesn't provide a date value, the validation error appears as:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1

The birthday must be a date.

Validator components

NOTENOTE

Validator components support form validation by managing a ValidationMessageStore for a form's EditContext.

The Blazor framework provides the DataAnnotationsValidator component to attach validation support to forms

based on validation attributes (data annotations). Create custom validator components to process validation

messages for different forms on the same page or the same form at different steps of form processing, for example

client-side validation followed by server-side validation. The validator component example shown in this section,

CustomValidator , is used in the following sections of this article:

Business logic validation

Server validation

Custom data annotation validation attributes can be used instead of custom validator components in many cases. Custom

attributes applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with

server-side validation, any custom attributes applied to the model must be executable on the server. For more information,

see Model validation in ASP.NET Core MVC.

Create a validator component from ComponentBase:

The form's EditContext is a cascading parameter of the component.

When the validator component is initialized, a new ValidationMessageStore is created to maintain a current list

of form errors.

The message store receives errors when developer code in the form's component calls the DisplayErrors

method. The errors are passed to the DisplayErrors method in a Dictionary<string, List<string>> . In the

dictionary, the key is the name of the form field that has one or more errors. The value is the error list.

Messages are cleared when any of the following have occurred:

Validation is requested on the EditContext when the OnValidationRequested event is raised. All of the

errors are cleared.

A field changes in the form when the OnFieldChanged event is raised. Only the errors for the field are

cleared.

The ClearErrors method is called by developer code. All of the errors are cleared.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onvalidationrequested
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Forms;

namespace BlazorSample.Client
{
 public class CustomValidator : ComponentBase
 {
 private ValidationMessageStore messageStore;

 [CascadingParameter]
 private EditContext CurrentEditContext { get; set; }

 protected override void OnInitialized()
 {
 if (CurrentEditContext == null)
 {
 throw new InvalidOperationException(
 $"{nameof(CustomValidator)} requires a cascading " +
 $"parameter of type {nameof(EditContext)}. " +
 $"For example, you can use {nameof(CustomValidator)} " +
 $"inside an {nameof(EditForm)}.");
 }

 messageStore = new ValidationMessageStore(CurrentEditContext);

 CurrentEditContext.OnValidationRequested += (s, e) =>
 messageStore.Clear();
 CurrentEditContext.OnFieldChanged += (s, e) =>
 messageStore.Clear(e.FieldIdentifier);
 }

 public void DisplayErrors(Dictionary<string, List<string>> errors)
 {
 foreach (var err in errors)
 {
 messageStore.Add(CurrentEditContext.Field(err.Key), err.Value);
 }

 CurrentEditContext.NotifyValidationStateChanged();
 }

 public void ClearErrors()
 {
 messageStore.Clear();
 CurrentEditContext.NotifyValidationStateChanged();
 }
 }
}

Business logic validation
Business logic validation can be accomplished with a validator component that receives form errors in a dictionary.

In the following example:

The CustomValidator component from the Validator components section of this article is used.

The validation requires a value for the ship's description (Description) if the user selects the Defense ship

classification (Classification).

When validation messages are set in the component, they're added to the validator's ValidationMessageStore and

shown in the EditForm:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 ...

</EditForm>

@code {
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 customValidator.ClearErrors();

 var errors = new Dictionary<string, List<string>>();

 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 errors.Add(nameof(starship.Description),
 new List<string>() { "For a 'Defense' ship classification, " +
 "'Description' is required." });
 }

 if (errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else
 {
 // Process the form
 }
 }
}

NOTENOTE

Server validation

As an alternative to using validation components, data annotation validation attributes can be used. Custom attributes

applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side

validation, the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

Server validation can be accomplished with a server validator component:

Process client-side validation in the form with the DataAnnotationsValidator component.

When the form passes client-side validation (OnValidSubmit is called), send the EditContext.Model to a backend

server API for form processing.

Process model validation on the server.

The server API includes both the built-in framework data annotations validation and custom validation logic

supplied by the developer. If validation passes on the server, process the form and send back a success status

code (200 - OK). If validation fails, return a failure status code (400 - Bad Request) and the field validation errors.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.model#microsoft_aspnetcore_components_forms_editcontext_model

<ItemGroup>
 <PackageReference Include="System.ComponentModel.Annotations" Version="{VERSION}" />
</ItemGroup>

Either disable the form on success or display the errors.

The following example is based on:

A hosted Blazor solution created by the Blazor Hosted project template. The example can be used with any of the

secure hosted Blazor solutions described in the Security and Identity documentation.

The Starfleet Starship Database form example in the preceding Built-in forms components section.

The Blazor framework's DataAnnotationsValidator component.

The CustomValidator component shown in the Validator components section.

In the following example, the server API validates that a value is provided for the ship's description (Description) if

the user selects the Defense ship classification (Classification).

Place the Starship model into the solution's Shared project so that both the client and server apps can use the

model. Since the model requires data annotations, add a package reference for System.ComponentModel.Annotations

to the Shared project's project file:

To determine the latest non-preview version of the package, see the package Version Histor yVersion Histor y at NuGet.org.

In the server API project, add a controller to process starship validation requests (

Controllers/StarshipValidation.cs) and return failed validation messages:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/System.ComponentModel.Annotations
https://www.nuget.org/packages/System.ComponentModel.Annotations

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using BlazorSample.Shared;

namespace BlazorSample.Server.Controllers
{
 [Authorize]
 [ApiController]
 [Route("[controller]")]
 public class StarshipValidationController : ControllerBase
 {
 private readonly ILogger<StarshipValidationController> logger;

 public StarshipValidationController(
 ILogger<StarshipValidationController> logger)
 {
 this.logger = logger;
 }

 [HttpPost]
 public async Task<IActionResult> Post(Starship starship)
 {
 try
 {
 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 ModelState.AddModelError(nameof(starship.Description),
 "For a 'Defense' ship " +
 "classification, 'Description' is required.");
 }
 else
 {
 // Process the form asynchronously
 // async ...

 return Ok(ModelState);
 }
 }
 catch (Exception ex)
 {
 logger.LogError("Validation Error: {MESSAGE}", ex.Message);
 }

 return BadRequest(ModelState);
 }
 }
}

When a model binding validation error occurs on the server, an ApiController (ApiControllerAttribute) normally

returns a default bad request response with a ValidationProblemDetails. The response contains more data than just

the validation errors, as shown in the following example when all of the fields of the Starfleet Starship Database

form aren't submitted and the form fails validation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails

{
 "title": "One or more validation errors occurred.",
 "status": 400,
 "errors": {
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
 }
}

{
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
}

using Microsoft.AspNetCore.Mvc;

...

services.AddControllersWithViews()
 .ConfigureApiBehaviorOptions(options =>
 {
 options.InvalidModelStateResponseFactory = context =>
 {
 if (context.HttpContext.Request.Path == "/StarshipValidation")
 {
 return new BadRequestObjectResult(context.ModelState);
 }
 else
 {
 return new BadRequestObjectResult(
 new ValidationProblemDetails(context.ModelState));
 }
 };
 });

@page "/FormValidation"
@using System.Net

If the server API returns the preceding default JSON response, it's possible for the client to parse the response to

obtain the children of the errors node. However, it's inconvenient to parse the file. Parsing the JSON requires

additional code after calling ReadFromJsonAsync in order to produce a Dictionary<string, List<string>> of errors

for forms validation error processing. Ideally, the server API should only return the validation errors:

To modify the server API's response to make it only return the validation errors, change the delegate that's invoked

on actions that are annotated with ApiControllerAttribute in Startup.ConfigureServices . For the API endpoint (

/StarshipValidation), return a BadRequestObjectResult with the ModelStateDictionary. For any other API

endpoints, preserve the default behavior by returning the object result with a new ValidationProblemDetails:

For more information, see Handle errors in ASP.NET Core web APIs.

In the client project, add the validator component shown in the Validator components section.

In the client project, the Starfleet Starship Database form is updated to show server validation errors with help of

the CustomValidator component. When the server API returns validation messages, they're added to the

CustomValidator component's ValidationMessageStore. The errors are available in the form's EditContext for

display by the form's ValidationSummary:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.badrequestobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

@using System.Net
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using Microsoft.Extensions.Logging
@using BlazorSample.Shared
@attribute [Authorize]
@inject HttpClient Http
@inject ILogger<FormValidation> Logger

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification" disabled="@disabled">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" disabled="@disabled" />
 </label>
 </p>

 <button type="submit" disabled="@disabled">Submit</button>

 <p style="@messageStyles">
 @message
 </p>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private bool disabled;
 private string message;
 private string messageStyles = "visibility:hidden";
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private async Task HandleValidSubmit(EditContext editContext)
 {
 customValidator.ClearErrors();

 try
 {
 var response = await Http.PostAsJsonAsync<Starship>(
 "StarshipValidation", (Starship)editContext.Model);

 var errors = await response.Content
 .ReadFromJsonAsync<Dictionary<string, List<string>>>();

 if (response.StatusCode == HttpStatusCode.BadRequest &&
 errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else if (!response.IsSuccessStatusCode)
 {
 throw new HttpRequestException(
 $"Validation failed. Status Code: {response.StatusCode}");
 }
 else
 {
 disabled = true;
 messageStyles = "color:green";
 message = "The form has been processed.";
 }
 }
 catch (AccessTokenNotAvailableException ex)
 {
 ex.Redirect();
 }
 catch (Exception ex)
 {
 Logger.LogError("Form processing error: {MESSAGE}", ex.Message);
 disabled = true;
 messageStyles = "color:red";
 message = "There was an error processing the form.";
 }
 }
}

NOTENOTE
As an alternative to validation components, data annotation validation attributes can be used. Custom attributes applied to

the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side validation,

the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

NOTENOTE

InputText based on the input event

@inherits InputText

<input
 @attributes="AdditionalAttributes"
 class="@CssClass"
 value="@CurrentValue"
 @oninput="EventCallback.Factory.CreateBinder<string>(
 this, __value => CurrentValueAsString = __value,
 CurrentValueAsString)" />

The server-side validation approach in this section is suitable for any of the Blazor WebAssembly hosted solution examples in

this documentation set:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

Use the InputText component to create a custom component that uses the input event instead of the change

event.

In the following example, the CustomInputText component inherits the framework's InputText component and sets

the event binding (CreateBinder) to the oninput event.

Shared/CustomInputText.razor :

The CustomInputText component can be used anywhere InputText is used:

Pages/TestForm.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallbackfactorybinderextensions.createbinder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext

@page "/testform"
@using System.ComponentModel.DataAnnotations;

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <CustomInputText @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

<p>
 CurrentValue: @exampleModel.Name
</p>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }

 public class ExampleModel
 {
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
 }
}

Radio buttons

[Required]
[Range(typeof(Manufacturer), nameof(Manufacturer.SpaceX),
 nameof(Manufacturer.VirginGalactic), ErrorMessage = "Pick a manufacturer.")]
public Manufacturer Manufacturer { get; set; } = Manufacturer.Unknown;

[Required, EnumDataType(typeof(Color))]
public Color? Color { get; set; } = null;

[Required, EnumDataType(typeof(Engine))]
public Engine? Engine { get; set; } = null;

public enum Manufacturer { SpaceX, NASA, ULA, Virgin, Unknown }
public enum Color { ImperialRed, SpacecruiserGreen, StarshipBlue, VoyagerOrange }
public enum Engine { Ion, Plasma, Fusion, Warp }

Use InputRadio components with the InputRadioGroup component to create a radio button group. In the following

example, properties are added to the Starship model described in the Built-in forms components section:

Add the following enums to the app. Create a new file to hold the enums or add the enums to the Starship.cs file.

Make the enums accessible to the Starship model and the Starfleet Starship Database form:

Update the Starfleet Starship Database form described in the Built-in forms components section. Add the

components to produce:

A radio button group for the ship manufacturer.

A nested radio button group for ship color and engine.

<p>
 <InputRadioGroup @bind-Value="starship.Manufacturer">
 Manufacturer:

 @foreach (var manufacturer in (Manufacturer[])Enum
 .GetValues(typeof(Manufacturer)))
 {
 <InputRadio Value="manufacturer" />
 @manufacturer

 }
 </InputRadioGroup>
</p>

<p>
 Pick one color and one engine:
 <InputRadioGroup Name="engine" @bind-Value="starship.Engine">
 <InputRadioGroup Name="color" @bind-Value="starship.Color">
 <InputRadio Name="color" Value="Color.ImperialRed" />Imperial Red

 <InputRadio Name="engine" Value="Engine.Ion" />Ion

 <InputRadio Name="color" Value="Color.SpacecruiserGreen" />
 Spacecruiser Green

 <InputRadio Name="engine" Value="Engine.Plasma" />Plasma

 <InputRadio Name="color" Value="Color.StarshipBlue" />Starship Blue

 <InputRadio Name="engine" Value="Engine.Fusion" />Fusion

 <InputRadio Name="color" Value="Color.VoyagerOrange" />
 Voyager Orange

 <InputRadio Name="engine" Value="Engine.Warp" />Warp

 </InputRadioGroup>
 </InputRadioGroup>
</p>

NOTENOTE
If Name is omitted, InputRadio components are grouped by their most recent ancestor.

When working with radio buttons in a form, data binding is handled differently than other elements because radio

buttons are evaluated as a group. The value of each radio button is fixed, but the value of the radio button group is

the value of the selected radio button. The following example shows how to:

Handle data binding for a radio button group.

Support validation using a custom InputRadio component.

@using System.Globalization
@typeparam TValue
@inherits InputBase<TValue>

<input @attributes="AdditionalAttributes" type="radio" value="@SelectedValue"
 checked="@(SelectedValue.Equals(Value))" @onchange="OnChange" />

@code {
 [Parameter]
 public TValue SelectedValue { get; set; }

 private void OnChange(ChangeEventArgs args)
 {
 CurrentValueAsString = args.Value.ToString();
 }

 protected override bool TryParseValueFromString(string value,
 out TValue result, out string errorMessage)
 {
 var success = BindConverter.TryConvertTo<TValue>(
 value, CultureInfo.CurrentCulture, out var parsedValue);
 if (success)
 {
 result = parsedValue;
 errorMessage = null;

 return true;
 }
 else
 {
 result = default;
 errorMessage = $"{FieldIdentifier.FieldName} field isn't valid.";

 return false;
 }
 }
}

The following EditForm uses the preceding InputRadio component to obtain and validate a rating from the user :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/RadioButtonExample"
@using System.ComponentModel.DataAnnotations

<h1>Radio Button Group Test</h1>

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 @for (int i = 1; i <= 5; i++)
 {
 <label>
 <InputRadio name="rate" SelectedValue="i" @bind-Value="model.Rating" />
 @i
 </label>
 }

 <button type="submit">Submit</button>
</EditForm>

<p>You chose: @model.Rating</p>

@code {
 private Model model = new Model();

 private void HandleValidSubmit()
 {
 ...
 }

 public class Model
 {
 [Range(1, 5)]
 public int Rating { get; set; }
 }
}

Binding <select> element options to C# object null values

Validation support

There's no sensible way to represent a <select> element option value as a C# object null value, because:

HTML attributes can't have null values. The closest equivalent to null in HTML is absence of the HTML value

attribute from the <option> element.

When selecting an <option> with no value attribute, the browser treats the value as the text content of that

<option> 's element.

The Blazor framework doesn't attempt to suppress the default behavior because it would involve:

Creating a chain of special-case workarounds in the framework.

Breaking changes to current framework behavior.

The most plausible null equivalent in HTML is an empty string value . The Blazor framework handles null to

empty string conversions for two-way binding to a <select> 's value.

The Blazor framework doesn't automatically handle null to empty string conversions when attempting two-way

binding to a <select> 's value. For more information, see Fix binding <select> to a null value (dotnet/aspnetcore

#23221).

The DataAnnotationsValidator component attaches validation support using data annotations to the cascaded

https://github.com/dotnet/aspnetcore/pull/23221
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Validation Summary and Validation Message componentsValidation Summary and Validation Message components

<ValidationSummary />

<ValidationSummary Model="@starship" />

<ValidationMessage For="@(() => starship.MaximumAccommodation)" />

.validation-message {
 color: red;
}

Custom validation attributesCustom validation attributes

EditContext. Enabling support for validation using data annotations requires this explicit gesture. To use a different

validation system than data annotations, replace the DataAnnotationsValidator with a custom implementation. The

ASP.NET Core implementation is available for inspection in the reference source: DataAnnotationsValidator /

AddDataAnnotationsValidation . The preceding links to reference source provide code from the repository's master

branch, which represents the product unit's current development for the next release of ASP.NET Core. To select the

branch for a different release, use the GitHub branch selector (for example release/3.1).

Blazor performs two types of validation:

Field validation is performed when the user tabs out of a field. During field validation, the

DataAnnotationsValidator component associates all reported validation results with the field.

Model validation is performed when the user submits the form. During model validation, the

DataAnnotationsValidator component attempts to determine the field based on the member name that the

validation result reports. Validation results that aren't associated with an individual member are associated with

the model rather than a field.

The ValidationSummary component summarizes all validation messages, which is similar to the Validation

Summary Tag Helper:

Output validation messages for a specific model with the Model parameter :

The ValidationMessage<TValue> component displays validation messages for a specific field, which is similar to the

Validation Message Tag Helper. Specify the field for validation with the For attribute and a lambda expression

naming the model property:

The ValidationMessage<TValue> and ValidationSummary components support arbitrary attributes. Any attribute

that doesn't match a component parameter is added to the generated <div> or element.

Control the style of validation messages in the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css). The

default validation-message class sets the text color of validation messages to red:

To ensure that a validation result is correctly associated with a field when using a custom validation attribute, pass

the validation context's MemberName when creating the ValidationResult:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/DataAnnotationsValidator.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/EditContextDataAnnotationsExtensions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.membername#system_componentmodel_dataannotations_validationcontext_membername
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationresult

using System;
using System.ComponentModel.DataAnnotations;

private class CustomValidator : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 ...

 return new ValidationResult("Validation message to user.",
 new[] { validationContext.MemberName });
 }
}

NOTENOTE

Custom validation class attributes

var editContext = new EditContext(model);
editContext.SetFieldCssClassProvider(new MyFieldClassProvider());

...

private class MyFieldClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext,
 in FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext.GetValidationMessages(fieldIdentifier).Any();

 return isValid ? "good field" : "bad field";
 }
}

Blazor data annotations validation packageBlazor data annotations validation package

NOTENOTE

[CompareProperty] attribute[CompareProperty] attribute

ValidationContext.GetService is null . Injecting services for validation in the IsValid method isn't supported.

Custom validation class names are useful when integrating with CSS frameworks, such as Bootstrap. To specify

custom validation class names, create a class derived from FieldCssClassProvider and set the class on the

EditContext instance:

The Microsoft.AspNetCore.Components.DataAnnotations.Validation is a package that fills validation experience gaps

using the DataAnnotationsValidator component. The package is currently experimental.

The Microsoft.AspNetCore.Components.DataAnnotations.Validation package has a latest version of release candidate at

Nuget.org. Continue to use the experimental release candidate package at this time. The package's assembly might be moved

to either the framework or the runtime in a future release. Watch the Announcements GitHub repository, the

dotnet/aspnetcore GitHub repository, or this topic section for further updates.

The CompareAttribute doesn't work well with the DataAnnotationsValidator component because it doesn't associate

the validation result with a specific member. This can result in inconsistent behavior between field-level validation

and when the entire model is validated on a submit. The

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.getservice
https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://github.com/aspnet/Announcements
https://github.com/dotnet/aspnetcore
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Nested models, collection types, and complex typesNested models, collection types, and complex types

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <ObjectGraphDataAnnotationsValidator />
 ...
</EditForm>

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 ...

 [ValidateComplexType]
 public ShipDescription ShipDescription { get; set; } =
 new ShipDescription();

 ...
}

using System;
using System.ComponentModel.DataAnnotations;

public class ShipDescription
{
 [Required]
 [StringLength(40, ErrorMessage = "Description too long (40 char).")]
 public string ShortDescription { get; set; }

 [Required]
 [StringLength(240, ErrorMessage = "Description too long (240 char).")]
 public string LongDescription { get; set; }
}

Enable the submit button based on form validationEnable the submit button based on form validation

Microsoft.AspNetCore.Components.DataAnnotations.Validation experimental package introduces an additional

validation attribute, ComparePropertyAttribute , that works around these limitations. In a Blazor app,

[CompareProperty] is a direct replacement for the [Compare] attribute.

Blazor provides support for validating form input using data annotations with the built-in

DataAnnotationsValidator. However, the DataAnnotationsValidator only validates top-level properties of the model

bound to the form that aren't collection- or complex-type properties.

To validate the bound model's entire object graph, including collection- and complex-type properties, use the

ObjectGraphDataAnnotationsValidator provided by the experimental

Microsoft.AspNetCore.Components.DataAnnotations.Validation package:

Annotate model properties with [ValidateComplexType] . In the following model classes, the ShipDescription class

contains additional data annotations to validate when the model is bound to the form:

Starship.cs :

ShipDescription.cs :

To enable and disable the submit button based on form validation:

Use the form's EditContext to assign the model when the component is initialized.

Validate the form in the context's OnFieldChanged callback to enable and disable the submit button.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

NOTENOTE

@implements IDisposable

<EditForm EditContext="@editContext">
 <DataAnnotationsValidator />
 <ValidationSummary />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private bool formInvalid = true;
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 editContext.OnFieldChanged += HandleFieldChanged;
 }

 private void HandleFieldChanged(object sender, FieldChangedEventArgs e)
 {
 formInvalid = !editContext.Validate();
 StateHasChanged();
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= HandleFieldChanged;
 }
}

Unhook the event handler in the Dispose method. For more information, see ASP.NET Core Blazor lifecycle.

When using an EditContext, don't also assign a Model to the EditForm.

In the preceding example, set formInvalid to false if:

The form is preloaded with valid default values.

You want the submit button enabled when the form loads.

A side effect of the preceding approach is that a ValidationSummary component is populated with invalid fields

after the user interacts with any one field. This scenario can be addressed in either of the following ways:

Don't use a ValidationSummary component on the form.

Make the ValidationSummary component visible when the submit button is selected (for example, in a

HandleValidSubmit method).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

<EditForm EditContext="@editContext" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary style="@displaySummary" />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private string displaySummary = "display:none";

 ...

 private void HandleValidSubmit()
 {
 displaySummary = "display:block";
 }
}

Troubleshoot

private ExampleModel exampleModel = new ExampleModel();

Additional resources

InvalidOperationException: EditForm requires a Model parameter, or an EditContext parameter, but not both.

Confirm that the EditForm has a Model oror EditContext. Don't use both for the same form.

When assigning a Model to the form, confirm that the model type is instantiated, as the following example shows:

ASP.NET Core Blazor file uploads

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model

ASP.NET Core Blazor forms and validation
9/22/2020 • 22 minutes to read • Edit Online

using System.ComponentModel.DataAnnotations;

public class ExampleModel
{
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
}

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <InputText id="name" @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }
}

Built-in forms components

By Daniel Roth, Rémi Bourgarel, and Luke Latham

Forms and validation are supported in Blazor using data annotations.

The following ExampleModel type defines validation logic using data annotations:

A form is defined using the EditForm component. The following form demonstrates typical elements, components,

and Razor code:

In the preceding example:

The form validates user input in the name field using the validation defined in the ExampleModel type. The model

is created in the component's @code block and held in a private field (exampleModel). The field is assigned to the

Model attribute of the <EditForm> element.

The InputText component's @bind-Value binds:

The DataAnnotationsValidator validator component attaches validation support using data annotations.

The ValidationSummary component summarizes validation messages.

HandleValidSubmit is triggered when the form successfully submits (passes validation).

The model property (exampleModel.Name) to the InputText component's Value property. For more

information on property binding, see ASP.NET Core Blazor data binding.

A change event delegate to the InputText component's ValueChanged property.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/forms-validation.md
https://github.com/danroth27
https://remibou.github.io/
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputFile <input type="file">

InputNumber<TValue> <input type="number">

InputRadio <input type="radio">

InputRadioGroup <input type="radio">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputNumber<TValue> <input type="number">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

NOTENOTE

A set of built-in components are available to receive and validate user input. Inputs are validated when they're

changed and when a form is submitted. Available input components are shown in the following table.

The InputRadio and InputRadioGroup components are available in ASP.NET Core 5.0 or later. For more information, select

a 5.0 or later version of this article.

All of the input components, including EditForm, support arbitrary attributes. Any attribute that doesn't match a

component parameter is added to the rendered HTML element.

Input components provide default behavior for validating when a field is changed, including updating the field CSS

class to reflect the field state. Some components include useful parsing logic. For example, InputDate<TValue> and

InputNumber<TValue> handle unparseable values gracefully by registering unparseable values as validation errors.

Types that can accept null values also support nullability of the target field (for example, int?).

The following Starship type defines validation logic using a larger set of properties and data annotations than the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 [Required]
 [StringLength(16, ErrorMessage = "Identifier too long (16 character limit).")]
 public string Identifier { get; set; }

 public string Description { get; set; }

 [Required]
 public string Classification { get; set; }

 [Range(1, 100000, ErrorMessage = "Accommodation invalid (1-100000).")]
 public int MaximumAccommodation { get; set; }

 [Required]
 [Range(typeof(bool), "true", "true",
 ErrorMessage = "This form disallows unapproved ships.")]
 public bool IsValidatedDesign { get; set; }

 [Required]
 public DateTime ProductionDate { get; set; }
}

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>

earlier ExampleModel :

In the preceding example, Description is optional because no data annotations are present.

The following form validates user input using the validation defined in the Starship model:

 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" />
 </label>
 </p>

 <button type="submit">Submit</button>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 ...
 }
}

The EditForm creates an EditContext as a cascading value that tracks metadata about the edit process, including

which fields have been modified and the current validation messages.

Assign eithereither an EditContext oror an EditForm.Model to an EditForm. Assignment of both isn't supported and

generates a runtime errorruntime error .

The EditForm provides convenient events for valid and invalid form submission:

OnValidSubmit

OnInvalidSubmit

Use OnSubmit to use custom code to trigger validation and check field values.

In the following example:

The HandleSubmit method executes when the Submit button is selected.

The form is validated by calling EditContext.Validate.

Additional code is executed depending on the validation result. Place business logic in the method assigned to

OnSubmit.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.oninvalidsubmit#microsoft_aspnetcore_components_forms_editform_oninvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.validate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit

<EditForm EditContext="@editContext" OnSubmit="@HandleSubmit">

 ...

 <button type="submit">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 }

 private async Task HandleSubmit()
 {
 var isValid = editContext.Validate();

 if (isValid)
 {
 ...
 }
 else
 {
 ...
 }
 }
}

NOTENOTE

Display name support

<InputDate @bind-Value="@BirthDate" DisplayName="birthday" />

@code {
 public DateTime BirthDate { get; set; }
}

Framework API doesn't exist to clear validation messages directly from an EditContext. Therefore, we don't generally

recommend adding validation messages to a new ValidationMessageStore in a form. To manage validation messages, use a

validator component with your business logic validation code, as described in this article.

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

The following built-in components support display names with the DisplayName parameter :

InputDate<TValue>

InputNumber<TValue>

InputSelect<TValue>

In the following InputDate component example:

The display name (DisplayName) is set to birthday .

The component is bound to the BirthDate property as a DateTime type.

If the user doesn't provide a date value, the validation error appears as:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1

The birthday must be a date.

Validator components

NOTENOTE

Validator components support form validation by managing a ValidationMessageStore for a form's EditContext.

The Blazor framework provides the DataAnnotationsValidator component to attach validation support to forms

based on validation attributes (data annotations). Create custom validator components to process validation

messages for different forms on the same page or the same form at different steps of form processing, for example

client-side validation followed by server-side validation. The validator component example shown in this section,

CustomValidator , is used in the following sections of this article:

Business logic validation

Server validation

Custom data annotation validation attributes can be used instead of custom validator components in many cases. Custom

attributes applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with

server-side validation, any custom attributes applied to the model must be executable on the server. For more information,

see Model validation in ASP.NET Core MVC.

Create a validator component from ComponentBase:

The form's EditContext is a cascading parameter of the component.

When the validator component is initialized, a new ValidationMessageStore is created to maintain a current list

of form errors.

The message store receives errors when developer code in the form's component calls the DisplayErrors

method. The errors are passed to the DisplayErrors method in a Dictionary<string, List<string>> . In the

dictionary, the key is the name of the form field that has one or more errors. The value is the error list.

Messages are cleared when any of the following have occurred:

Validation is requested on the EditContext when the OnValidationRequested event is raised. All of the

errors are cleared.

A field changes in the form when the OnFieldChanged event is raised. Only the errors for the field are

cleared.

The ClearErrors method is called by developer code. All of the errors are cleared.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onvalidationrequested
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Forms;

namespace BlazorSample.Client
{
 public class CustomValidator : ComponentBase
 {
 private ValidationMessageStore messageStore;

 [CascadingParameter]
 private EditContext CurrentEditContext { get; set; }

 protected override void OnInitialized()
 {
 if (CurrentEditContext == null)
 {
 throw new InvalidOperationException(
 $"{nameof(CustomValidator)} requires a cascading " +
 $"parameter of type {nameof(EditContext)}. " +
 $"For example, you can use {nameof(CustomValidator)} " +
 $"inside an {nameof(EditForm)}.");
 }

 messageStore = new ValidationMessageStore(CurrentEditContext);

 CurrentEditContext.OnValidationRequested += (s, e) =>
 messageStore.Clear();
 CurrentEditContext.OnFieldChanged += (s, e) =>
 messageStore.Clear(e.FieldIdentifier);
 }

 public void DisplayErrors(Dictionary<string, List<string>> errors)
 {
 foreach (var err in errors)
 {
 messageStore.Add(CurrentEditContext.Field(err.Key), err.Value);
 }

 CurrentEditContext.NotifyValidationStateChanged();
 }

 public void ClearErrors()
 {
 messageStore.Clear();
 CurrentEditContext.NotifyValidationStateChanged();
 }
 }
}

Business logic validation
Business logic validation can be accomplished with a validator component that receives form errors in a dictionary.

In the following example:

The CustomValidator component from the Validator components section of this article is used.

The validation requires a value for the ship's description (Description) if the user selects the Defense ship

classification (Classification).

When validation messages are set in the component, they're added to the validator's ValidationMessageStore and

shown in the EditForm:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 ...

</EditForm>

@code {
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 customValidator.ClearErrors();

 var errors = new Dictionary<string, List<string>>();

 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 errors.Add(nameof(starship.Description),
 new List<string>() { "For a 'Defense' ship classification, " +
 "'Description' is required." });
 }

 if (errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else
 {
 // Process the form
 }
 }
}

NOTENOTE

Server validation

As an alternative to using validation components, data annotation validation attributes can be used. Custom attributes

applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side

validation, the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

Server validation can be accomplished with a server validator component:

Process client-side validation in the form with the DataAnnotationsValidator component.

When the form passes client-side validation (OnValidSubmit is called), send the EditContext.Model to a backend

server API for form processing.

Process model validation on the server.

The server API includes both the built-in framework data annotations validation and custom validation logic

supplied by the developer. If validation passes on the server, process the form and send back a success status

code (200 - OK). If validation fails, return a failure status code (400 - Bad Request) and the field validation errors.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.model#microsoft_aspnetcore_components_forms_editcontext_model

<ItemGroup>
 <PackageReference Include="System.ComponentModel.Annotations" Version="{VERSION}" />
</ItemGroup>

Either disable the form on success or display the errors.

The following example is based on:

A hosted Blazor solution created by the Blazor Hosted project template. The example can be used with any of the

secure hosted Blazor solutions described in the Security and Identity documentation.

The Starfleet Starship Database form example in the preceding Built-in forms components section.

The Blazor framework's DataAnnotationsValidator component.

The CustomValidator component shown in the Validator components section.

In the following example, the server API validates that a value is provided for the ship's description (Description) if

the user selects the Defense ship classification (Classification).

Place the Starship model into the solution's Shared project so that both the client and server apps can use the

model. Since the model requires data annotations, add a package reference for System.ComponentModel.Annotations

to the Shared project's project file:

To determine the latest non-preview version of the package, see the package Version Histor yVersion Histor y at NuGet.org.

In the server API project, add a controller to process starship validation requests (

Controllers/StarshipValidation.cs) and return failed validation messages:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/System.ComponentModel.Annotations
https://www.nuget.org/packages/System.ComponentModel.Annotations

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using BlazorSample.Shared;

namespace BlazorSample.Server.Controllers
{
 [Authorize]
 [ApiController]
 [Route("[controller]")]
 public class StarshipValidationController : ControllerBase
 {
 private readonly ILogger<StarshipValidationController> logger;

 public StarshipValidationController(
 ILogger<StarshipValidationController> logger)
 {
 this.logger = logger;
 }

 [HttpPost]
 public async Task<IActionResult> Post(Starship starship)
 {
 try
 {
 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 ModelState.AddModelError(nameof(starship.Description),
 "For a 'Defense' ship " +
 "classification, 'Description' is required.");
 }
 else
 {
 // Process the form asynchronously
 // async ...

 return Ok(ModelState);
 }
 }
 catch (Exception ex)
 {
 logger.LogError("Validation Error: {MESSAGE}", ex.Message);
 }

 return BadRequest(ModelState);
 }
 }
}

When a model binding validation error occurs on the server, an ApiController (ApiControllerAttribute) normally

returns a default bad request response with a ValidationProblemDetails. The response contains more data than just

the validation errors, as shown in the following example when all of the fields of the Starfleet Starship Database

form aren't submitted and the form fails validation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails

{
 "title": "One or more validation errors occurred.",
 "status": 400,
 "errors": {
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
 }
}

{
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
}

using Microsoft.AspNetCore.Mvc;

...

services.AddControllersWithViews()
 .ConfigureApiBehaviorOptions(options =>
 {
 options.InvalidModelStateResponseFactory = context =>
 {
 if (context.HttpContext.Request.Path == "/StarshipValidation")
 {
 return new BadRequestObjectResult(context.ModelState);
 }
 else
 {
 return new BadRequestObjectResult(
 new ValidationProblemDetails(context.ModelState));
 }
 };
 });

@page "/FormValidation"
@using System.Net

If the server API returns the preceding default JSON response, it's possible for the client to parse the response to

obtain the children of the errors node. However, it's inconvenient to parse the file. Parsing the JSON requires

additional code after calling ReadFromJsonAsync in order to produce a Dictionary<string, List<string>> of errors

for forms validation error processing. Ideally, the server API should only return the validation errors:

To modify the server API's response to make it only return the validation errors, change the delegate that's invoked

on actions that are annotated with ApiControllerAttribute in Startup.ConfigureServices . For the API endpoint (

/StarshipValidation), return a BadRequestObjectResult with the ModelStateDictionary. For any other API

endpoints, preserve the default behavior by returning the object result with a new ValidationProblemDetails:

For more information, see Handle errors in ASP.NET Core web APIs.

In the client project, add the validator component shown in the Validator components section.

In the client project, the Starfleet Starship Database form is updated to show server validation errors with help of

the CustomValidator component. When the server API returns validation messages, they're added to the

CustomValidator component's ValidationMessageStore. The errors are available in the form's EditContext for

display by the form's ValidationSummary:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.badrequestobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

@using System.Net
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using Microsoft.Extensions.Logging
@using BlazorSample.Shared
@attribute [Authorize]
@inject HttpClient Http
@inject ILogger<FormValidation> Logger

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification" disabled="@disabled">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" disabled="@disabled" />
 </label>
 </p>

 <button type="submit" disabled="@disabled">Submit</button>

 <p style="@messageStyles">
 @message
 </p>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private bool disabled;
 private string message;
 private string messageStyles = "visibility:hidden";
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private async Task HandleValidSubmit(EditContext editContext)
 {
 customValidator.ClearErrors();

 try
 {
 var response = await Http.PostAsJsonAsync<Starship>(
 "StarshipValidation", (Starship)editContext.Model);

 var errors = await response.Content
 .ReadFromJsonAsync<Dictionary<string, List<string>>>();

 if (response.StatusCode == HttpStatusCode.BadRequest &&
 errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else if (!response.IsSuccessStatusCode)
 {
 throw new HttpRequestException(
 $"Validation failed. Status Code: {response.StatusCode}");
 }
 else
 {
 disabled = true;
 messageStyles = "color:green";
 message = "The form has been processed.";
 }
 }
 catch (AccessTokenNotAvailableException ex)
 {
 ex.Redirect();
 }
 catch (Exception ex)
 {
 Logger.LogError("Form processing error: {MESSAGE}", ex.Message);
 disabled = true;
 messageStyles = "color:red";
 message = "There was an error processing the form.";
 }
 }
}

NOTENOTE
As an alternative to validation components, data annotation validation attributes can be used. Custom attributes applied to

the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side validation,

the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

NOTENOTE

InputText based on the input event

@inherits InputText

<input
 @attributes="AdditionalAttributes"
 class="@CssClass"
 value="@CurrentValue"
 @oninput="EventCallback.Factory.CreateBinder<string>(
 this, __value => CurrentValueAsString = __value,
 CurrentValueAsString)" />

The server-side validation approach in this section is suitable for any of the Blazor WebAssembly hosted solution examples in

this documentation set:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

Use the InputText component to create a custom component that uses the input event instead of the change

event.

In the following example, the CustomInputText component inherits the framework's InputText component and sets

the event binding (CreateBinder) to the oninput event.

Shared/CustomInputText.razor :

The CustomInputText component can be used anywhere InputText is used:

Pages/TestForm.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallbackfactorybinderextensions.createbinder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext

@page "/testform"
@using System.ComponentModel.DataAnnotations;

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <CustomInputText @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

<p>
 CurrentValue: @exampleModel.Name
</p>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }

 public class ExampleModel
 {
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
 }
}

Radio buttons

[Required]
[Range(typeof(Manufacturer), nameof(Manufacturer.SpaceX),
 nameof(Manufacturer.VirginGalactic), ErrorMessage = "Pick a manufacturer.")]
public Manufacturer Manufacturer { get; set; } = Manufacturer.Unknown;

[Required, EnumDataType(typeof(Color))]
public Color? Color { get; set; } = null;

[Required, EnumDataType(typeof(Engine))]
public Engine? Engine { get; set; } = null;

public enum Manufacturer { SpaceX, NASA, ULA, Virgin, Unknown }
public enum Color { ImperialRed, SpacecruiserGreen, StarshipBlue, VoyagerOrange }
public enum Engine { Ion, Plasma, Fusion, Warp }

Use InputRadio components with the InputRadioGroup component to create a radio button group. In the following

example, properties are added to the Starship model described in the Built-in forms components section:

Add the following enums to the app. Create a new file to hold the enums or add the enums to the Starship.cs file.

Make the enums accessible to the Starship model and the Starfleet Starship Database form:

Update the Starfleet Starship Database form described in the Built-in forms components section. Add the

components to produce:

A radio button group for the ship manufacturer.

A nested radio button group for ship color and engine.

<p>
 <InputRadioGroup @bind-Value="starship.Manufacturer">
 Manufacturer:

 @foreach (var manufacturer in (Manufacturer[])Enum
 .GetValues(typeof(Manufacturer)))
 {
 <InputRadio Value="manufacturer" />
 @manufacturer

 }
 </InputRadioGroup>
</p>

<p>
 Pick one color and one engine:
 <InputRadioGroup Name="engine" @bind-Value="starship.Engine">
 <InputRadioGroup Name="color" @bind-Value="starship.Color">
 <InputRadio Name="color" Value="Color.ImperialRed" />Imperial Red

 <InputRadio Name="engine" Value="Engine.Ion" />Ion

 <InputRadio Name="color" Value="Color.SpacecruiserGreen" />
 Spacecruiser Green

 <InputRadio Name="engine" Value="Engine.Plasma" />Plasma

 <InputRadio Name="color" Value="Color.StarshipBlue" />Starship Blue

 <InputRadio Name="engine" Value="Engine.Fusion" />Fusion

 <InputRadio Name="color" Value="Color.VoyagerOrange" />
 Voyager Orange

 <InputRadio Name="engine" Value="Engine.Warp" />Warp

 </InputRadioGroup>
 </InputRadioGroup>
</p>

NOTENOTE
If Name is omitted, InputRadio components are grouped by their most recent ancestor.

When working with radio buttons in a form, data binding is handled differently than other elements because radio

buttons are evaluated as a group. The value of each radio button is fixed, but the value of the radio button group is

the value of the selected radio button. The following example shows how to:

Handle data binding for a radio button group.

Support validation using a custom InputRadio component.

@using System.Globalization
@typeparam TValue
@inherits InputBase<TValue>

<input @attributes="AdditionalAttributes" type="radio" value="@SelectedValue"
 checked="@(SelectedValue.Equals(Value))" @onchange="OnChange" />

@code {
 [Parameter]
 public TValue SelectedValue { get; set; }

 private void OnChange(ChangeEventArgs args)
 {
 CurrentValueAsString = args.Value.ToString();
 }

 protected override bool TryParseValueFromString(string value,
 out TValue result, out string errorMessage)
 {
 var success = BindConverter.TryConvertTo<TValue>(
 value, CultureInfo.CurrentCulture, out var parsedValue);
 if (success)
 {
 result = parsedValue;
 errorMessage = null;

 return true;
 }
 else
 {
 result = default;
 errorMessage = $"{FieldIdentifier.FieldName} field isn't valid.";

 return false;
 }
 }
}

The following EditForm uses the preceding InputRadio component to obtain and validate a rating from the user :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/RadioButtonExample"
@using System.ComponentModel.DataAnnotations

<h1>Radio Button Group Test</h1>

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 @for (int i = 1; i <= 5; i++)
 {
 <label>
 <InputRadio name="rate" SelectedValue="i" @bind-Value="model.Rating" />
 @i
 </label>
 }

 <button type="submit">Submit</button>
</EditForm>

<p>You chose: @model.Rating</p>

@code {
 private Model model = new Model();

 private void HandleValidSubmit()
 {
 ...
 }

 public class Model
 {
 [Range(1, 5)]
 public int Rating { get; set; }
 }
}

Binding <select> element options to C# object null values

Validation support

There's no sensible way to represent a <select> element option value as a C# object null value, because:

HTML attributes can't have null values. The closest equivalent to null in HTML is absence of the HTML value

attribute from the <option> element.

When selecting an <option> with no value attribute, the browser treats the value as the text content of that

<option> 's element.

The Blazor framework doesn't attempt to suppress the default behavior because it would involve:

Creating a chain of special-case workarounds in the framework.

Breaking changes to current framework behavior.

The most plausible null equivalent in HTML is an empty string value . The Blazor framework handles null to

empty string conversions for two-way binding to a <select> 's value.

The Blazor framework doesn't automatically handle null to empty string conversions when attempting two-way

binding to a <select> 's value. For more information, see Fix binding <select> to a null value (dotnet/aspnetcore

#23221).

The DataAnnotationsValidator component attaches validation support using data annotations to the cascaded

https://github.com/dotnet/aspnetcore/pull/23221
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Validation Summary and Validation Message componentsValidation Summary and Validation Message components

<ValidationSummary />

<ValidationSummary Model="@starship" />

<ValidationMessage For="@(() => starship.MaximumAccommodation)" />

.validation-message {
 color: red;
}

Custom validation attributesCustom validation attributes

EditContext. Enabling support for validation using data annotations requires this explicit gesture. To use a different

validation system than data annotations, replace the DataAnnotationsValidator with a custom implementation. The

ASP.NET Core implementation is available for inspection in the reference source: DataAnnotationsValidator /

AddDataAnnotationsValidation . The preceding links to reference source provide code from the repository's master

branch, which represents the product unit's current development for the next release of ASP.NET Core. To select the

branch for a different release, use the GitHub branch selector (for example release/3.1).

Blazor performs two types of validation:

Field validation is performed when the user tabs out of a field. During field validation, the

DataAnnotationsValidator component associates all reported validation results with the field.

Model validation is performed when the user submits the form. During model validation, the

DataAnnotationsValidator component attempts to determine the field based on the member name that the

validation result reports. Validation results that aren't associated with an individual member are associated with

the model rather than a field.

The ValidationSummary component summarizes all validation messages, which is similar to the Validation

Summary Tag Helper:

Output validation messages for a specific model with the Model parameter :

The ValidationMessage<TValue> component displays validation messages for a specific field, which is similar to the

Validation Message Tag Helper. Specify the field for validation with the For attribute and a lambda expression

naming the model property:

The ValidationMessage<TValue> and ValidationSummary components support arbitrary attributes. Any attribute

that doesn't match a component parameter is added to the generated <div> or element.

Control the style of validation messages in the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css). The

default validation-message class sets the text color of validation messages to red:

To ensure that a validation result is correctly associated with a field when using a custom validation attribute, pass

the validation context's MemberName when creating the ValidationResult:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/DataAnnotationsValidator.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/EditContextDataAnnotationsExtensions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.membername#system_componentmodel_dataannotations_validationcontext_membername
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationresult

using System;
using System.ComponentModel.DataAnnotations;

private class CustomValidator : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 ...

 return new ValidationResult("Validation message to user.",
 new[] { validationContext.MemberName });
 }
}

NOTENOTE

Custom validation class attributes

var editContext = new EditContext(model);
editContext.SetFieldCssClassProvider(new MyFieldClassProvider());

...

private class MyFieldClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext,
 in FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext.GetValidationMessages(fieldIdentifier).Any();

 return isValid ? "good field" : "bad field";
 }
}

Blazor data annotations validation packageBlazor data annotations validation package

NOTENOTE

[CompareProperty] attribute[CompareProperty] attribute

ValidationContext.GetService is null . Injecting services for validation in the IsValid method isn't supported.

Custom validation class names are useful when integrating with CSS frameworks, such as Bootstrap. To specify

custom validation class names, create a class derived from FieldCssClassProvider and set the class on the

EditContext instance:

The Microsoft.AspNetCore.Components.DataAnnotations.Validation is a package that fills validation experience gaps

using the DataAnnotationsValidator component. The package is currently experimental.

The Microsoft.AspNetCore.Components.DataAnnotations.Validation package has a latest version of release candidate at

Nuget.org. Continue to use the experimental release candidate package at this time. The package's assembly might be moved

to either the framework or the runtime in a future release. Watch the Announcements GitHub repository, the

dotnet/aspnetcore GitHub repository, or this topic section for further updates.

The CompareAttribute doesn't work well with the DataAnnotationsValidator component because it doesn't associate

the validation result with a specific member. This can result in inconsistent behavior between field-level validation

and when the entire model is validated on a submit. The

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.getservice
https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://github.com/aspnet/Announcements
https://github.com/dotnet/aspnetcore
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Nested models, collection types, and complex typesNested models, collection types, and complex types

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <ObjectGraphDataAnnotationsValidator />
 ...
</EditForm>

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 ...

 [ValidateComplexType]
 public ShipDescription ShipDescription { get; set; } =
 new ShipDescription();

 ...
}

using System;
using System.ComponentModel.DataAnnotations;

public class ShipDescription
{
 [Required]
 [StringLength(40, ErrorMessage = "Description too long (40 char).")]
 public string ShortDescription { get; set; }

 [Required]
 [StringLength(240, ErrorMessage = "Description too long (240 char).")]
 public string LongDescription { get; set; }
}

Enable the submit button based on form validationEnable the submit button based on form validation

Microsoft.AspNetCore.Components.DataAnnotations.Validation experimental package introduces an additional

validation attribute, ComparePropertyAttribute , that works around these limitations. In a Blazor app,

[CompareProperty] is a direct replacement for the [Compare] attribute.

Blazor provides support for validating form input using data annotations with the built-in

DataAnnotationsValidator. However, the DataAnnotationsValidator only validates top-level properties of the model

bound to the form that aren't collection- or complex-type properties.

To validate the bound model's entire object graph, including collection- and complex-type properties, use the

ObjectGraphDataAnnotationsValidator provided by the experimental

Microsoft.AspNetCore.Components.DataAnnotations.Validation package:

Annotate model properties with [ValidateComplexType] . In the following model classes, the ShipDescription class

contains additional data annotations to validate when the model is bound to the form:

Starship.cs :

ShipDescription.cs :

To enable and disable the submit button based on form validation:

Use the form's EditContext to assign the model when the component is initialized.

Validate the form in the context's OnFieldChanged callback to enable and disable the submit button.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

NOTENOTE

@implements IDisposable

<EditForm EditContext="@editContext">
 <DataAnnotationsValidator />
 <ValidationSummary />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private bool formInvalid = true;
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 editContext.OnFieldChanged += HandleFieldChanged;
 }

 private void HandleFieldChanged(object sender, FieldChangedEventArgs e)
 {
 formInvalid = !editContext.Validate();
 StateHasChanged();
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= HandleFieldChanged;
 }
}

Unhook the event handler in the Dispose method. For more information, see ASP.NET Core Blazor lifecycle.

When using an EditContext, don't also assign a Model to the EditForm.

In the preceding example, set formInvalid to false if:

The form is preloaded with valid default values.

You want the submit button enabled when the form loads.

A side effect of the preceding approach is that a ValidationSummary component is populated with invalid fields

after the user interacts with any one field. This scenario can be addressed in either of the following ways:

Don't use a ValidationSummary component on the form.

Make the ValidationSummary component visible when the submit button is selected (for example, in a

HandleValidSubmit method).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

<EditForm EditContext="@editContext" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary style="@displaySummary" />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private string displaySummary = "display:none";

 ...

 private void HandleValidSubmit()
 {
 displaySummary = "display:block";
 }
}

Troubleshoot

private ExampleModel exampleModel = new ExampleModel();

Additional resources

InvalidOperationException: EditForm requires a Model parameter, or an EditContext parameter, but not both.

Confirm that the EditForm has a Model oror EditContext. Don't use both for the same form.

When assigning a Model to the form, confirm that the model type is instantiated, as the following example shows:

ASP.NET Core Blazor file uploads

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model

ASP.NET Core Blazor forms and validation
9/22/2020 • 22 minutes to read • Edit Online

using System.ComponentModel.DataAnnotations;

public class ExampleModel
{
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
}

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <InputText id="name" @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }
}

Built-in forms components

By Daniel Roth, Rémi Bourgarel, and Luke Latham

Forms and validation are supported in Blazor using data annotations.

The following ExampleModel type defines validation logic using data annotations:

A form is defined using the EditForm component. The following form demonstrates typical elements, components,

and Razor code:

In the preceding example:

The form validates user input in the name field using the validation defined in the ExampleModel type. The model

is created in the component's @code block and held in a private field (exampleModel). The field is assigned to the

Model attribute of the <EditForm> element.

The InputText component's @bind-Value binds:

The DataAnnotationsValidator validator component attaches validation support using data annotations.

The ValidationSummary component summarizes validation messages.

HandleValidSubmit is triggered when the form successfully submits (passes validation).

The model property (exampleModel.Name) to the InputText component's Value property. For more

information on property binding, see ASP.NET Core Blazor data binding.

A change event delegate to the InputText component's ValueChanged property.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/forms-validation.md
https://github.com/danroth27
https://remibou.github.io/
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputFile <input type="file">

InputNumber<TValue> <input type="number">

InputRadio <input type="radio">

InputRadioGroup <input type="radio">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputNumber<TValue> <input type="number">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

NOTENOTE

A set of built-in components are available to receive and validate user input. Inputs are validated when they're

changed and when a form is submitted. Available input components are shown in the following table.

The InputRadio and InputRadioGroup components are available in ASP.NET Core 5.0 or later. For more information, select

a 5.0 or later version of this article.

All of the input components, including EditForm, support arbitrary attributes. Any attribute that doesn't match a

component parameter is added to the rendered HTML element.

Input components provide default behavior for validating when a field is changed, including updating the field CSS

class to reflect the field state. Some components include useful parsing logic. For example, InputDate<TValue> and

InputNumber<TValue> handle unparseable values gracefully by registering unparseable values as validation errors.

Types that can accept null values also support nullability of the target field (for example, int?).

The following Starship type defines validation logic using a larger set of properties and data annotations than the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 [Required]
 [StringLength(16, ErrorMessage = "Identifier too long (16 character limit).")]
 public string Identifier { get; set; }

 public string Description { get; set; }

 [Required]
 public string Classification { get; set; }

 [Range(1, 100000, ErrorMessage = "Accommodation invalid (1-100000).")]
 public int MaximumAccommodation { get; set; }

 [Required]
 [Range(typeof(bool), "true", "true",
 ErrorMessage = "This form disallows unapproved ships.")]
 public bool IsValidatedDesign { get; set; }

 [Required]
 public DateTime ProductionDate { get; set; }
}

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>

earlier ExampleModel :

In the preceding example, Description is optional because no data annotations are present.

The following form validates user input using the validation defined in the Starship model:

 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" />
 </label>
 </p>

 <button type="submit">Submit</button>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 ...
 }
}

The EditForm creates an EditContext as a cascading value that tracks metadata about the edit process, including

which fields have been modified and the current validation messages.

Assign eithereither an EditContext oror an EditForm.Model to an EditForm. Assignment of both isn't supported and

generates a runtime errorruntime error .

The EditForm provides convenient events for valid and invalid form submission:

OnValidSubmit

OnInvalidSubmit

Use OnSubmit to use custom code to trigger validation and check field values.

In the following example:

The HandleSubmit method executes when the Submit button is selected.

The form is validated by calling EditContext.Validate.

Additional code is executed depending on the validation result. Place business logic in the method assigned to

OnSubmit.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.oninvalidsubmit#microsoft_aspnetcore_components_forms_editform_oninvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.validate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit

<EditForm EditContext="@editContext" OnSubmit="@HandleSubmit">

 ...

 <button type="submit">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 }

 private async Task HandleSubmit()
 {
 var isValid = editContext.Validate();

 if (isValid)
 {
 ...
 }
 else
 {
 ...
 }
 }
}

NOTENOTE

Display name support

<InputDate @bind-Value="@BirthDate" DisplayName="birthday" />

@code {
 public DateTime BirthDate { get; set; }
}

Framework API doesn't exist to clear validation messages directly from an EditContext. Therefore, we don't generally

recommend adding validation messages to a new ValidationMessageStore in a form. To manage validation messages, use a

validator component with your business logic validation code, as described in this article.

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

The following built-in components support display names with the DisplayName parameter :

InputDate<TValue>

InputNumber<TValue>

InputSelect<TValue>

In the following InputDate component example:

The display name (DisplayName) is set to birthday .

The component is bound to the BirthDate property as a DateTime type.

If the user doesn't provide a date value, the validation error appears as:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1

The birthday must be a date.

Validator components

NOTENOTE

Validator components support form validation by managing a ValidationMessageStore for a form's EditContext.

The Blazor framework provides the DataAnnotationsValidator component to attach validation support to forms

based on validation attributes (data annotations). Create custom validator components to process validation

messages for different forms on the same page or the same form at different steps of form processing, for example

client-side validation followed by server-side validation. The validator component example shown in this section,

CustomValidator , is used in the following sections of this article:

Business logic validation

Server validation

Custom data annotation validation attributes can be used instead of custom validator components in many cases. Custom

attributes applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with

server-side validation, any custom attributes applied to the model must be executable on the server. For more information,

see Model validation in ASP.NET Core MVC.

Create a validator component from ComponentBase:

The form's EditContext is a cascading parameter of the component.

When the validator component is initialized, a new ValidationMessageStore is created to maintain a current list

of form errors.

The message store receives errors when developer code in the form's component calls the DisplayErrors

method. The errors are passed to the DisplayErrors method in a Dictionary<string, List<string>> . In the

dictionary, the key is the name of the form field that has one or more errors. The value is the error list.

Messages are cleared when any of the following have occurred:

Validation is requested on the EditContext when the OnValidationRequested event is raised. All of the

errors are cleared.

A field changes in the form when the OnFieldChanged event is raised. Only the errors for the field are

cleared.

The ClearErrors method is called by developer code. All of the errors are cleared.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onvalidationrequested
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Forms;

namespace BlazorSample.Client
{
 public class CustomValidator : ComponentBase
 {
 private ValidationMessageStore messageStore;

 [CascadingParameter]
 private EditContext CurrentEditContext { get; set; }

 protected override void OnInitialized()
 {
 if (CurrentEditContext == null)
 {
 throw new InvalidOperationException(
 $"{nameof(CustomValidator)} requires a cascading " +
 $"parameter of type {nameof(EditContext)}. " +
 $"For example, you can use {nameof(CustomValidator)} " +
 $"inside an {nameof(EditForm)}.");
 }

 messageStore = new ValidationMessageStore(CurrentEditContext);

 CurrentEditContext.OnValidationRequested += (s, e) =>
 messageStore.Clear();
 CurrentEditContext.OnFieldChanged += (s, e) =>
 messageStore.Clear(e.FieldIdentifier);
 }

 public void DisplayErrors(Dictionary<string, List<string>> errors)
 {
 foreach (var err in errors)
 {
 messageStore.Add(CurrentEditContext.Field(err.Key), err.Value);
 }

 CurrentEditContext.NotifyValidationStateChanged();
 }

 public void ClearErrors()
 {
 messageStore.Clear();
 CurrentEditContext.NotifyValidationStateChanged();
 }
 }
}

Business logic validation
Business logic validation can be accomplished with a validator component that receives form errors in a dictionary.

In the following example:

The CustomValidator component from the Validator components section of this article is used.

The validation requires a value for the ship's description (Description) if the user selects the Defense ship

classification (Classification).

When validation messages are set in the component, they're added to the validator's ValidationMessageStore and

shown in the EditForm:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 ...

</EditForm>

@code {
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 customValidator.ClearErrors();

 var errors = new Dictionary<string, List<string>>();

 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 errors.Add(nameof(starship.Description),
 new List<string>() { "For a 'Defense' ship classification, " +
 "'Description' is required." });
 }

 if (errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else
 {
 // Process the form
 }
 }
}

NOTENOTE

Server validation

As an alternative to using validation components, data annotation validation attributes can be used. Custom attributes

applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side

validation, the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

Server validation can be accomplished with a server validator component:

Process client-side validation in the form with the DataAnnotationsValidator component.

When the form passes client-side validation (OnValidSubmit is called), send the EditContext.Model to a backend

server API for form processing.

Process model validation on the server.

The server API includes both the built-in framework data annotations validation and custom validation logic

supplied by the developer. If validation passes on the server, process the form and send back a success status

code (200 - OK). If validation fails, return a failure status code (400 - Bad Request) and the field validation errors.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.model#microsoft_aspnetcore_components_forms_editcontext_model

<ItemGroup>
 <PackageReference Include="System.ComponentModel.Annotations" Version="{VERSION}" />
</ItemGroup>

Either disable the form on success or display the errors.

The following example is based on:

A hosted Blazor solution created by the Blazor Hosted project template. The example can be used with any of the

secure hosted Blazor solutions described in the Security and Identity documentation.

The Starfleet Starship Database form example in the preceding Built-in forms components section.

The Blazor framework's DataAnnotationsValidator component.

The CustomValidator component shown in the Validator components section.

In the following example, the server API validates that a value is provided for the ship's description (Description) if

the user selects the Defense ship classification (Classification).

Place the Starship model into the solution's Shared project so that both the client and server apps can use the

model. Since the model requires data annotations, add a package reference for System.ComponentModel.Annotations

to the Shared project's project file:

To determine the latest non-preview version of the package, see the package Version Histor yVersion Histor y at NuGet.org.

In the server API project, add a controller to process starship validation requests (

Controllers/StarshipValidation.cs) and return failed validation messages:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/System.ComponentModel.Annotations
https://www.nuget.org/packages/System.ComponentModel.Annotations

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using BlazorSample.Shared;

namespace BlazorSample.Server.Controllers
{
 [Authorize]
 [ApiController]
 [Route("[controller]")]
 public class StarshipValidationController : ControllerBase
 {
 private readonly ILogger<StarshipValidationController> logger;

 public StarshipValidationController(
 ILogger<StarshipValidationController> logger)
 {
 this.logger = logger;
 }

 [HttpPost]
 public async Task<IActionResult> Post(Starship starship)
 {
 try
 {
 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 ModelState.AddModelError(nameof(starship.Description),
 "For a 'Defense' ship " +
 "classification, 'Description' is required.");
 }
 else
 {
 // Process the form asynchronously
 // async ...

 return Ok(ModelState);
 }
 }
 catch (Exception ex)
 {
 logger.LogError("Validation Error: {MESSAGE}", ex.Message);
 }

 return BadRequest(ModelState);
 }
 }
}

When a model binding validation error occurs on the server, an ApiController (ApiControllerAttribute) normally

returns a default bad request response with a ValidationProblemDetails. The response contains more data than just

the validation errors, as shown in the following example when all of the fields of the Starfleet Starship Database

form aren't submitted and the form fails validation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails

{
 "title": "One or more validation errors occurred.",
 "status": 400,
 "errors": {
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
 }
}

{
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
}

using Microsoft.AspNetCore.Mvc;

...

services.AddControllersWithViews()
 .ConfigureApiBehaviorOptions(options =>
 {
 options.InvalidModelStateResponseFactory = context =>
 {
 if (context.HttpContext.Request.Path == "/StarshipValidation")
 {
 return new BadRequestObjectResult(context.ModelState);
 }
 else
 {
 return new BadRequestObjectResult(
 new ValidationProblemDetails(context.ModelState));
 }
 };
 });

@page "/FormValidation"
@using System.Net

If the server API returns the preceding default JSON response, it's possible for the client to parse the response to

obtain the children of the errors node. However, it's inconvenient to parse the file. Parsing the JSON requires

additional code after calling ReadFromJsonAsync in order to produce a Dictionary<string, List<string>> of errors

for forms validation error processing. Ideally, the server API should only return the validation errors:

To modify the server API's response to make it only return the validation errors, change the delegate that's invoked

on actions that are annotated with ApiControllerAttribute in Startup.ConfigureServices . For the API endpoint (

/StarshipValidation), return a BadRequestObjectResult with the ModelStateDictionary. For any other API

endpoints, preserve the default behavior by returning the object result with a new ValidationProblemDetails:

For more information, see Handle errors in ASP.NET Core web APIs.

In the client project, add the validator component shown in the Validator components section.

In the client project, the Starfleet Starship Database form is updated to show server validation errors with help of

the CustomValidator component. When the server API returns validation messages, they're added to the

CustomValidator component's ValidationMessageStore. The errors are available in the form's EditContext for

display by the form's ValidationSummary:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.badrequestobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

@using System.Net
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using Microsoft.Extensions.Logging
@using BlazorSample.Shared
@attribute [Authorize]
@inject HttpClient Http
@inject ILogger<FormValidation> Logger

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification" disabled="@disabled">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" disabled="@disabled" />
 </label>
 </p>

 <button type="submit" disabled="@disabled">Submit</button>

 <p style="@messageStyles">
 @message
 </p>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private bool disabled;
 private string message;
 private string messageStyles = "visibility:hidden";
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private async Task HandleValidSubmit(EditContext editContext)
 {
 customValidator.ClearErrors();

 try
 {
 var response = await Http.PostAsJsonAsync<Starship>(
 "StarshipValidation", (Starship)editContext.Model);

 var errors = await response.Content
 .ReadFromJsonAsync<Dictionary<string, List<string>>>();

 if (response.StatusCode == HttpStatusCode.BadRequest &&
 errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else if (!response.IsSuccessStatusCode)
 {
 throw new HttpRequestException(
 $"Validation failed. Status Code: {response.StatusCode}");
 }
 else
 {
 disabled = true;
 messageStyles = "color:green";
 message = "The form has been processed.";
 }
 }
 catch (AccessTokenNotAvailableException ex)
 {
 ex.Redirect();
 }
 catch (Exception ex)
 {
 Logger.LogError("Form processing error: {MESSAGE}", ex.Message);
 disabled = true;
 messageStyles = "color:red";
 message = "There was an error processing the form.";
 }
 }
}

NOTENOTE
As an alternative to validation components, data annotation validation attributes can be used. Custom attributes applied to

the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side validation,

the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

NOTENOTE

InputText based on the input event

@inherits InputText

<input
 @attributes="AdditionalAttributes"
 class="@CssClass"
 value="@CurrentValue"
 @oninput="EventCallback.Factory.CreateBinder<string>(
 this, __value => CurrentValueAsString = __value,
 CurrentValueAsString)" />

The server-side validation approach in this section is suitable for any of the Blazor WebAssembly hosted solution examples in

this documentation set:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

Use the InputText component to create a custom component that uses the input event instead of the change

event.

In the following example, the CustomInputText component inherits the framework's InputText component and sets

the event binding (CreateBinder) to the oninput event.

Shared/CustomInputText.razor :

The CustomInputText component can be used anywhere InputText is used:

Pages/TestForm.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallbackfactorybinderextensions.createbinder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext

@page "/testform"
@using System.ComponentModel.DataAnnotations;

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <CustomInputText @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

<p>
 CurrentValue: @exampleModel.Name
</p>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }

 public class ExampleModel
 {
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
 }
}

Radio buttons

[Required]
[Range(typeof(Manufacturer), nameof(Manufacturer.SpaceX),
 nameof(Manufacturer.VirginGalactic), ErrorMessage = "Pick a manufacturer.")]
public Manufacturer Manufacturer { get; set; } = Manufacturer.Unknown;

[Required, EnumDataType(typeof(Color))]
public Color? Color { get; set; } = null;

[Required, EnumDataType(typeof(Engine))]
public Engine? Engine { get; set; } = null;

public enum Manufacturer { SpaceX, NASA, ULA, Virgin, Unknown }
public enum Color { ImperialRed, SpacecruiserGreen, StarshipBlue, VoyagerOrange }
public enum Engine { Ion, Plasma, Fusion, Warp }

Use InputRadio components with the InputRadioGroup component to create a radio button group. In the following

example, properties are added to the Starship model described in the Built-in forms components section:

Add the following enums to the app. Create a new file to hold the enums or add the enums to the Starship.cs file.

Make the enums accessible to the Starship model and the Starfleet Starship Database form:

Update the Starfleet Starship Database form described in the Built-in forms components section. Add the

components to produce:

A radio button group for the ship manufacturer.

A nested radio button group for ship color and engine.

<p>
 <InputRadioGroup @bind-Value="starship.Manufacturer">
 Manufacturer:

 @foreach (var manufacturer in (Manufacturer[])Enum
 .GetValues(typeof(Manufacturer)))
 {
 <InputRadio Value="manufacturer" />
 @manufacturer

 }
 </InputRadioGroup>
</p>

<p>
 Pick one color and one engine:
 <InputRadioGroup Name="engine" @bind-Value="starship.Engine">
 <InputRadioGroup Name="color" @bind-Value="starship.Color">
 <InputRadio Name="color" Value="Color.ImperialRed" />Imperial Red

 <InputRadio Name="engine" Value="Engine.Ion" />Ion

 <InputRadio Name="color" Value="Color.SpacecruiserGreen" />
 Spacecruiser Green

 <InputRadio Name="engine" Value="Engine.Plasma" />Plasma

 <InputRadio Name="color" Value="Color.StarshipBlue" />Starship Blue

 <InputRadio Name="engine" Value="Engine.Fusion" />Fusion

 <InputRadio Name="color" Value="Color.VoyagerOrange" />
 Voyager Orange

 <InputRadio Name="engine" Value="Engine.Warp" />Warp

 </InputRadioGroup>
 </InputRadioGroup>
</p>

NOTENOTE
If Name is omitted, InputRadio components are grouped by their most recent ancestor.

When working with radio buttons in a form, data binding is handled differently than other elements because radio

buttons are evaluated as a group. The value of each radio button is fixed, but the value of the radio button group is

the value of the selected radio button. The following example shows how to:

Handle data binding for a radio button group.

Support validation using a custom InputRadio component.

@using System.Globalization
@typeparam TValue
@inherits InputBase<TValue>

<input @attributes="AdditionalAttributes" type="radio" value="@SelectedValue"
 checked="@(SelectedValue.Equals(Value))" @onchange="OnChange" />

@code {
 [Parameter]
 public TValue SelectedValue { get; set; }

 private void OnChange(ChangeEventArgs args)
 {
 CurrentValueAsString = args.Value.ToString();
 }

 protected override bool TryParseValueFromString(string value,
 out TValue result, out string errorMessage)
 {
 var success = BindConverter.TryConvertTo<TValue>(
 value, CultureInfo.CurrentCulture, out var parsedValue);
 if (success)
 {
 result = parsedValue;
 errorMessage = null;

 return true;
 }
 else
 {
 result = default;
 errorMessage = $"{FieldIdentifier.FieldName} field isn't valid.";

 return false;
 }
 }
}

The following EditForm uses the preceding InputRadio component to obtain and validate a rating from the user :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/RadioButtonExample"
@using System.ComponentModel.DataAnnotations

<h1>Radio Button Group Test</h1>

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 @for (int i = 1; i <= 5; i++)
 {
 <label>
 <InputRadio name="rate" SelectedValue="i" @bind-Value="model.Rating" />
 @i
 </label>
 }

 <button type="submit">Submit</button>
</EditForm>

<p>You chose: @model.Rating</p>

@code {
 private Model model = new Model();

 private void HandleValidSubmit()
 {
 ...
 }

 public class Model
 {
 [Range(1, 5)]
 public int Rating { get; set; }
 }
}

Binding <select> element options to C# object null values

Validation support

There's no sensible way to represent a <select> element option value as a C# object null value, because:

HTML attributes can't have null values. The closest equivalent to null in HTML is absence of the HTML value

attribute from the <option> element.

When selecting an <option> with no value attribute, the browser treats the value as the text content of that

<option> 's element.

The Blazor framework doesn't attempt to suppress the default behavior because it would involve:

Creating a chain of special-case workarounds in the framework.

Breaking changes to current framework behavior.

The most plausible null equivalent in HTML is an empty string value . The Blazor framework handles null to

empty string conversions for two-way binding to a <select> 's value.

The Blazor framework doesn't automatically handle null to empty string conversions when attempting two-way

binding to a <select> 's value. For more information, see Fix binding <select> to a null value (dotnet/aspnetcore

#23221).

The DataAnnotationsValidator component attaches validation support using data annotations to the cascaded

https://github.com/dotnet/aspnetcore/pull/23221
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Validation Summary and Validation Message componentsValidation Summary and Validation Message components

<ValidationSummary />

<ValidationSummary Model="@starship" />

<ValidationMessage For="@(() => starship.MaximumAccommodation)" />

.validation-message {
 color: red;
}

Custom validation attributesCustom validation attributes

EditContext. Enabling support for validation using data annotations requires this explicit gesture. To use a different

validation system than data annotations, replace the DataAnnotationsValidator with a custom implementation. The

ASP.NET Core implementation is available for inspection in the reference source: DataAnnotationsValidator /

AddDataAnnotationsValidation . The preceding links to reference source provide code from the repository's master

branch, which represents the product unit's current development for the next release of ASP.NET Core. To select the

branch for a different release, use the GitHub branch selector (for example release/3.1).

Blazor performs two types of validation:

Field validation is performed when the user tabs out of a field. During field validation, the

DataAnnotationsValidator component associates all reported validation results with the field.

Model validation is performed when the user submits the form. During model validation, the

DataAnnotationsValidator component attempts to determine the field based on the member name that the

validation result reports. Validation results that aren't associated with an individual member are associated with

the model rather than a field.

The ValidationSummary component summarizes all validation messages, which is similar to the Validation

Summary Tag Helper:

Output validation messages for a specific model with the Model parameter :

The ValidationMessage<TValue> component displays validation messages for a specific field, which is similar to the

Validation Message Tag Helper. Specify the field for validation with the For attribute and a lambda expression

naming the model property:

The ValidationMessage<TValue> and ValidationSummary components support arbitrary attributes. Any attribute

that doesn't match a component parameter is added to the generated <div> or element.

Control the style of validation messages in the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css). The

default validation-message class sets the text color of validation messages to red:

To ensure that a validation result is correctly associated with a field when using a custom validation attribute, pass

the validation context's MemberName when creating the ValidationResult:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/DataAnnotationsValidator.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/EditContextDataAnnotationsExtensions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.membername#system_componentmodel_dataannotations_validationcontext_membername
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationresult

using System;
using System.ComponentModel.DataAnnotations;

private class CustomValidator : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 ...

 return new ValidationResult("Validation message to user.",
 new[] { validationContext.MemberName });
 }
}

NOTENOTE

Custom validation class attributes

var editContext = new EditContext(model);
editContext.SetFieldCssClassProvider(new MyFieldClassProvider());

...

private class MyFieldClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext,
 in FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext.GetValidationMessages(fieldIdentifier).Any();

 return isValid ? "good field" : "bad field";
 }
}

Blazor data annotations validation packageBlazor data annotations validation package

NOTENOTE

[CompareProperty] attribute[CompareProperty] attribute

ValidationContext.GetService is null . Injecting services for validation in the IsValid method isn't supported.

Custom validation class names are useful when integrating with CSS frameworks, such as Bootstrap. To specify

custom validation class names, create a class derived from FieldCssClassProvider and set the class on the

EditContext instance:

The Microsoft.AspNetCore.Components.DataAnnotations.Validation is a package that fills validation experience gaps

using the DataAnnotationsValidator component. The package is currently experimental.

The Microsoft.AspNetCore.Components.DataAnnotations.Validation package has a latest version of release candidate at

Nuget.org. Continue to use the experimental release candidate package at this time. The package's assembly might be moved

to either the framework or the runtime in a future release. Watch the Announcements GitHub repository, the

dotnet/aspnetcore GitHub repository, or this topic section for further updates.

The CompareAttribute doesn't work well with the DataAnnotationsValidator component because it doesn't associate

the validation result with a specific member. This can result in inconsistent behavior between field-level validation

and when the entire model is validated on a submit. The

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.getservice
https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://github.com/aspnet/Announcements
https://github.com/dotnet/aspnetcore
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Nested models, collection types, and complex typesNested models, collection types, and complex types

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <ObjectGraphDataAnnotationsValidator />
 ...
</EditForm>

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 ...

 [ValidateComplexType]
 public ShipDescription ShipDescription { get; set; } =
 new ShipDescription();

 ...
}

using System;
using System.ComponentModel.DataAnnotations;

public class ShipDescription
{
 [Required]
 [StringLength(40, ErrorMessage = "Description too long (40 char).")]
 public string ShortDescription { get; set; }

 [Required]
 [StringLength(240, ErrorMessage = "Description too long (240 char).")]
 public string LongDescription { get; set; }
}

Enable the submit button based on form validationEnable the submit button based on form validation

Microsoft.AspNetCore.Components.DataAnnotations.Validation experimental package introduces an additional

validation attribute, ComparePropertyAttribute , that works around these limitations. In a Blazor app,

[CompareProperty] is a direct replacement for the [Compare] attribute.

Blazor provides support for validating form input using data annotations with the built-in

DataAnnotationsValidator. However, the DataAnnotationsValidator only validates top-level properties of the model

bound to the form that aren't collection- or complex-type properties.

To validate the bound model's entire object graph, including collection- and complex-type properties, use the

ObjectGraphDataAnnotationsValidator provided by the experimental

Microsoft.AspNetCore.Components.DataAnnotations.Validation package:

Annotate model properties with [ValidateComplexType] . In the following model classes, the ShipDescription class

contains additional data annotations to validate when the model is bound to the form:

Starship.cs :

ShipDescription.cs :

To enable and disable the submit button based on form validation:

Use the form's EditContext to assign the model when the component is initialized.

Validate the form in the context's OnFieldChanged callback to enable and disable the submit button.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

NOTENOTE

@implements IDisposable

<EditForm EditContext="@editContext">
 <DataAnnotationsValidator />
 <ValidationSummary />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private bool formInvalid = true;
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 editContext.OnFieldChanged += HandleFieldChanged;
 }

 private void HandleFieldChanged(object sender, FieldChangedEventArgs e)
 {
 formInvalid = !editContext.Validate();
 StateHasChanged();
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= HandleFieldChanged;
 }
}

Unhook the event handler in the Dispose method. For more information, see ASP.NET Core Blazor lifecycle.

When using an EditContext, don't also assign a Model to the EditForm.

In the preceding example, set formInvalid to false if:

The form is preloaded with valid default values.

You want the submit button enabled when the form loads.

A side effect of the preceding approach is that a ValidationSummary component is populated with invalid fields

after the user interacts with any one field. This scenario can be addressed in either of the following ways:

Don't use a ValidationSummary component on the form.

Make the ValidationSummary component visible when the submit button is selected (for example, in a

HandleValidSubmit method).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

<EditForm EditContext="@editContext" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary style="@displaySummary" />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private string displaySummary = "display:none";

 ...

 private void HandleValidSubmit()
 {
 displaySummary = "display:block";
 }
}

Troubleshoot

private ExampleModel exampleModel = new ExampleModel();

Additional resources

InvalidOperationException: EditForm requires a Model parameter, or an EditContext parameter, but not both.

Confirm that the EditForm has a Model oror EditContext. Don't use both for the same form.

When assigning a Model to the form, confirm that the model type is instantiated, as the following example shows:

ASP.NET Core Blazor file uploads

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model

ASP.NET Core Blazor forms and validation
9/22/2020 • 22 minutes to read • Edit Online

using System.ComponentModel.DataAnnotations;

public class ExampleModel
{
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
}

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <InputText id="name" @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }
}

Built-in forms components

By Daniel Roth, Rémi Bourgarel, and Luke Latham

Forms and validation are supported in Blazor using data annotations.

The following ExampleModel type defines validation logic using data annotations:

A form is defined using the EditForm component. The following form demonstrates typical elements, components,

and Razor code:

In the preceding example:

The form validates user input in the name field using the validation defined in the ExampleModel type. The model

is created in the component's @code block and held in a private field (exampleModel). The field is assigned to the

Model attribute of the <EditForm> element.

The InputText component's @bind-Value binds:

The DataAnnotationsValidator validator component attaches validation support using data annotations.

The ValidationSummary component summarizes validation messages.

HandleValidSubmit is triggered when the form successfully submits (passes validation).

The model property (exampleModel.Name) to the InputText component's Value property. For more

information on property binding, see ASP.NET Core Blazor data binding.

A change event delegate to the InputText component's ValueChanged property.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/forms-validation.md
https://github.com/danroth27
https://remibou.github.io/
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputFile <input type="file">

InputNumber<TValue> <input type="number">

InputRadio <input type="radio">

InputRadioGroup <input type="radio">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputNumber<TValue> <input type="number">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

NOTENOTE

A set of built-in components are available to receive and validate user input. Inputs are validated when they're

changed and when a form is submitted. Available input components are shown in the following table.

The InputRadio and InputRadioGroup components are available in ASP.NET Core 5.0 or later. For more information, select

a 5.0 or later version of this article.

All of the input components, including EditForm, support arbitrary attributes. Any attribute that doesn't match a

component parameter is added to the rendered HTML element.

Input components provide default behavior for validating when a field is changed, including updating the field CSS

class to reflect the field state. Some components include useful parsing logic. For example, InputDate<TValue> and

InputNumber<TValue> handle unparseable values gracefully by registering unparseable values as validation errors.

Types that can accept null values also support nullability of the target field (for example, int?).

The following Starship type defines validation logic using a larger set of properties and data annotations than the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 [Required]
 [StringLength(16, ErrorMessage = "Identifier too long (16 character limit).")]
 public string Identifier { get; set; }

 public string Description { get; set; }

 [Required]
 public string Classification { get; set; }

 [Range(1, 100000, ErrorMessage = "Accommodation invalid (1-100000).")]
 public int MaximumAccommodation { get; set; }

 [Required]
 [Range(typeof(bool), "true", "true",
 ErrorMessage = "This form disallows unapproved ships.")]
 public bool IsValidatedDesign { get; set; }

 [Required]
 public DateTime ProductionDate { get; set; }
}

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>

earlier ExampleModel :

In the preceding example, Description is optional because no data annotations are present.

The following form validates user input using the validation defined in the Starship model:

 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" />
 </label>
 </p>

 <button type="submit">Submit</button>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 ...
 }
}

The EditForm creates an EditContext as a cascading value that tracks metadata about the edit process, including

which fields have been modified and the current validation messages.

Assign eithereither an EditContext oror an EditForm.Model to an EditForm. Assignment of both isn't supported and

generates a runtime errorruntime error .

The EditForm provides convenient events for valid and invalid form submission:

OnValidSubmit

OnInvalidSubmit

Use OnSubmit to use custom code to trigger validation and check field values.

In the following example:

The HandleSubmit method executes when the Submit button is selected.

The form is validated by calling EditContext.Validate.

Additional code is executed depending on the validation result. Place business logic in the method assigned to

OnSubmit.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.oninvalidsubmit#microsoft_aspnetcore_components_forms_editform_oninvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.validate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit

<EditForm EditContext="@editContext" OnSubmit="@HandleSubmit">

 ...

 <button type="submit">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 }

 private async Task HandleSubmit()
 {
 var isValid = editContext.Validate();

 if (isValid)
 {
 ...
 }
 else
 {
 ...
 }
 }
}

NOTENOTE

Display name support

<InputDate @bind-Value="@BirthDate" DisplayName="birthday" />

@code {
 public DateTime BirthDate { get; set; }
}

Framework API doesn't exist to clear validation messages directly from an EditContext. Therefore, we don't generally

recommend adding validation messages to a new ValidationMessageStore in a form. To manage validation messages, use a

validator component with your business logic validation code, as described in this article.

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

The following built-in components support display names with the DisplayName parameter :

InputDate<TValue>

InputNumber<TValue>

InputSelect<TValue>

In the following InputDate component example:

The display name (DisplayName) is set to birthday .

The component is bound to the BirthDate property as a DateTime type.

If the user doesn't provide a date value, the validation error appears as:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1

The birthday must be a date.

Validator components

NOTENOTE

Validator components support form validation by managing a ValidationMessageStore for a form's EditContext.

The Blazor framework provides the DataAnnotationsValidator component to attach validation support to forms

based on validation attributes (data annotations). Create custom validator components to process validation

messages for different forms on the same page or the same form at different steps of form processing, for example

client-side validation followed by server-side validation. The validator component example shown in this section,

CustomValidator , is used in the following sections of this article:

Business logic validation

Server validation

Custom data annotation validation attributes can be used instead of custom validator components in many cases. Custom

attributes applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with

server-side validation, any custom attributes applied to the model must be executable on the server. For more information,

see Model validation in ASP.NET Core MVC.

Create a validator component from ComponentBase:

The form's EditContext is a cascading parameter of the component.

When the validator component is initialized, a new ValidationMessageStore is created to maintain a current list

of form errors.

The message store receives errors when developer code in the form's component calls the DisplayErrors

method. The errors are passed to the DisplayErrors method in a Dictionary<string, List<string>> . In the

dictionary, the key is the name of the form field that has one or more errors. The value is the error list.

Messages are cleared when any of the following have occurred:

Validation is requested on the EditContext when the OnValidationRequested event is raised. All of the

errors are cleared.

A field changes in the form when the OnFieldChanged event is raised. Only the errors for the field are

cleared.

The ClearErrors method is called by developer code. All of the errors are cleared.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onvalidationrequested
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Forms;

namespace BlazorSample.Client
{
 public class CustomValidator : ComponentBase
 {
 private ValidationMessageStore messageStore;

 [CascadingParameter]
 private EditContext CurrentEditContext { get; set; }

 protected override void OnInitialized()
 {
 if (CurrentEditContext == null)
 {
 throw new InvalidOperationException(
 $"{nameof(CustomValidator)} requires a cascading " +
 $"parameter of type {nameof(EditContext)}. " +
 $"For example, you can use {nameof(CustomValidator)} " +
 $"inside an {nameof(EditForm)}.");
 }

 messageStore = new ValidationMessageStore(CurrentEditContext);

 CurrentEditContext.OnValidationRequested += (s, e) =>
 messageStore.Clear();
 CurrentEditContext.OnFieldChanged += (s, e) =>
 messageStore.Clear(e.FieldIdentifier);
 }

 public void DisplayErrors(Dictionary<string, List<string>> errors)
 {
 foreach (var err in errors)
 {
 messageStore.Add(CurrentEditContext.Field(err.Key), err.Value);
 }

 CurrentEditContext.NotifyValidationStateChanged();
 }

 public void ClearErrors()
 {
 messageStore.Clear();
 CurrentEditContext.NotifyValidationStateChanged();
 }
 }
}

Business logic validation
Business logic validation can be accomplished with a validator component that receives form errors in a dictionary.

In the following example:

The CustomValidator component from the Validator components section of this article is used.

The validation requires a value for the ship's description (Description) if the user selects the Defense ship

classification (Classification).

When validation messages are set in the component, they're added to the validator's ValidationMessageStore and

shown in the EditForm:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 ...

</EditForm>

@code {
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 customValidator.ClearErrors();

 var errors = new Dictionary<string, List<string>>();

 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 errors.Add(nameof(starship.Description),
 new List<string>() { "For a 'Defense' ship classification, " +
 "'Description' is required." });
 }

 if (errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else
 {
 // Process the form
 }
 }
}

NOTENOTE

Server validation

As an alternative to using validation components, data annotation validation attributes can be used. Custom attributes

applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side

validation, the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

Server validation can be accomplished with a server validator component:

Process client-side validation in the form with the DataAnnotationsValidator component.

When the form passes client-side validation (OnValidSubmit is called), send the EditContext.Model to a backend

server API for form processing.

Process model validation on the server.

The server API includes both the built-in framework data annotations validation and custom validation logic

supplied by the developer. If validation passes on the server, process the form and send back a success status

code (200 - OK). If validation fails, return a failure status code (400 - Bad Request) and the field validation errors.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.model#microsoft_aspnetcore_components_forms_editcontext_model

<ItemGroup>
 <PackageReference Include="System.ComponentModel.Annotations" Version="{VERSION}" />
</ItemGroup>

Either disable the form on success or display the errors.

The following example is based on:

A hosted Blazor solution created by the Blazor Hosted project template. The example can be used with any of the

secure hosted Blazor solutions described in the Security and Identity documentation.

The Starfleet Starship Database form example in the preceding Built-in forms components section.

The Blazor framework's DataAnnotationsValidator component.

The CustomValidator component shown in the Validator components section.

In the following example, the server API validates that a value is provided for the ship's description (Description) if

the user selects the Defense ship classification (Classification).

Place the Starship model into the solution's Shared project so that both the client and server apps can use the

model. Since the model requires data annotations, add a package reference for System.ComponentModel.Annotations

to the Shared project's project file:

To determine the latest non-preview version of the package, see the package Version Histor yVersion Histor y at NuGet.org.

In the server API project, add a controller to process starship validation requests (

Controllers/StarshipValidation.cs) and return failed validation messages:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/System.ComponentModel.Annotations
https://www.nuget.org/packages/System.ComponentModel.Annotations

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using BlazorSample.Shared;

namespace BlazorSample.Server.Controllers
{
 [Authorize]
 [ApiController]
 [Route("[controller]")]
 public class StarshipValidationController : ControllerBase
 {
 private readonly ILogger<StarshipValidationController> logger;

 public StarshipValidationController(
 ILogger<StarshipValidationController> logger)
 {
 this.logger = logger;
 }

 [HttpPost]
 public async Task<IActionResult> Post(Starship starship)
 {
 try
 {
 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 ModelState.AddModelError(nameof(starship.Description),
 "For a 'Defense' ship " +
 "classification, 'Description' is required.");
 }
 else
 {
 // Process the form asynchronously
 // async ...

 return Ok(ModelState);
 }
 }
 catch (Exception ex)
 {
 logger.LogError("Validation Error: {MESSAGE}", ex.Message);
 }

 return BadRequest(ModelState);
 }
 }
}

When a model binding validation error occurs on the server, an ApiController (ApiControllerAttribute) normally

returns a default bad request response with a ValidationProblemDetails. The response contains more data than just

the validation errors, as shown in the following example when all of the fields of the Starfleet Starship Database

form aren't submitted and the form fails validation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails

{
 "title": "One or more validation errors occurred.",
 "status": 400,
 "errors": {
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
 }
}

{
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
}

using Microsoft.AspNetCore.Mvc;

...

services.AddControllersWithViews()
 .ConfigureApiBehaviorOptions(options =>
 {
 options.InvalidModelStateResponseFactory = context =>
 {
 if (context.HttpContext.Request.Path == "/StarshipValidation")
 {
 return new BadRequestObjectResult(context.ModelState);
 }
 else
 {
 return new BadRequestObjectResult(
 new ValidationProblemDetails(context.ModelState));
 }
 };
 });

@page "/FormValidation"
@using System.Net

If the server API returns the preceding default JSON response, it's possible for the client to parse the response to

obtain the children of the errors node. However, it's inconvenient to parse the file. Parsing the JSON requires

additional code after calling ReadFromJsonAsync in order to produce a Dictionary<string, List<string>> of errors

for forms validation error processing. Ideally, the server API should only return the validation errors:

To modify the server API's response to make it only return the validation errors, change the delegate that's invoked

on actions that are annotated with ApiControllerAttribute in Startup.ConfigureServices . For the API endpoint (

/StarshipValidation), return a BadRequestObjectResult with the ModelStateDictionary. For any other API

endpoints, preserve the default behavior by returning the object result with a new ValidationProblemDetails:

For more information, see Handle errors in ASP.NET Core web APIs.

In the client project, add the validator component shown in the Validator components section.

In the client project, the Starfleet Starship Database form is updated to show server validation errors with help of

the CustomValidator component. When the server API returns validation messages, they're added to the

CustomValidator component's ValidationMessageStore. The errors are available in the form's EditContext for

display by the form's ValidationSummary:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.badrequestobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

@using System.Net
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using Microsoft.Extensions.Logging
@using BlazorSample.Shared
@attribute [Authorize]
@inject HttpClient Http
@inject ILogger<FormValidation> Logger

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification" disabled="@disabled">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" disabled="@disabled" />
 </label>
 </p>

 <button type="submit" disabled="@disabled">Submit</button>

 <p style="@messageStyles">
 @message
 </p>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private bool disabled;
 private string message;
 private string messageStyles = "visibility:hidden";
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private async Task HandleValidSubmit(EditContext editContext)
 {
 customValidator.ClearErrors();

 try
 {
 var response = await Http.PostAsJsonAsync<Starship>(
 "StarshipValidation", (Starship)editContext.Model);

 var errors = await response.Content
 .ReadFromJsonAsync<Dictionary<string, List<string>>>();

 if (response.StatusCode == HttpStatusCode.BadRequest &&
 errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else if (!response.IsSuccessStatusCode)
 {
 throw new HttpRequestException(
 $"Validation failed. Status Code: {response.StatusCode}");
 }
 else
 {
 disabled = true;
 messageStyles = "color:green";
 message = "The form has been processed.";
 }
 }
 catch (AccessTokenNotAvailableException ex)
 {
 ex.Redirect();
 }
 catch (Exception ex)
 {
 Logger.LogError("Form processing error: {MESSAGE}", ex.Message);
 disabled = true;
 messageStyles = "color:red";
 message = "There was an error processing the form.";
 }
 }
}

NOTENOTE
As an alternative to validation components, data annotation validation attributes can be used. Custom attributes applied to

the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side validation,

the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

NOTENOTE

InputText based on the input event

@inherits InputText

<input
 @attributes="AdditionalAttributes"
 class="@CssClass"
 value="@CurrentValue"
 @oninput="EventCallback.Factory.CreateBinder<string>(
 this, __value => CurrentValueAsString = __value,
 CurrentValueAsString)" />

The server-side validation approach in this section is suitable for any of the Blazor WebAssembly hosted solution examples in

this documentation set:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

Use the InputText component to create a custom component that uses the input event instead of the change

event.

In the following example, the CustomInputText component inherits the framework's InputText component and sets

the event binding (CreateBinder) to the oninput event.

Shared/CustomInputText.razor :

The CustomInputText component can be used anywhere InputText is used:

Pages/TestForm.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallbackfactorybinderextensions.createbinder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext

@page "/testform"
@using System.ComponentModel.DataAnnotations;

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <CustomInputText @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

<p>
 CurrentValue: @exampleModel.Name
</p>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }

 public class ExampleModel
 {
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
 }
}

Radio buttons

[Required]
[Range(typeof(Manufacturer), nameof(Manufacturer.SpaceX),
 nameof(Manufacturer.VirginGalactic), ErrorMessage = "Pick a manufacturer.")]
public Manufacturer Manufacturer { get; set; } = Manufacturer.Unknown;

[Required, EnumDataType(typeof(Color))]
public Color? Color { get; set; } = null;

[Required, EnumDataType(typeof(Engine))]
public Engine? Engine { get; set; } = null;

public enum Manufacturer { SpaceX, NASA, ULA, Virgin, Unknown }
public enum Color { ImperialRed, SpacecruiserGreen, StarshipBlue, VoyagerOrange }
public enum Engine { Ion, Plasma, Fusion, Warp }

Use InputRadio components with the InputRadioGroup component to create a radio button group. In the following

example, properties are added to the Starship model described in the Built-in forms components section:

Add the following enums to the app. Create a new file to hold the enums or add the enums to the Starship.cs file.

Make the enums accessible to the Starship model and the Starfleet Starship Database form:

Update the Starfleet Starship Database form described in the Built-in forms components section. Add the

components to produce:

A radio button group for the ship manufacturer.

A nested radio button group for ship color and engine.

<p>
 <InputRadioGroup @bind-Value="starship.Manufacturer">
 Manufacturer:

 @foreach (var manufacturer in (Manufacturer[])Enum
 .GetValues(typeof(Manufacturer)))
 {
 <InputRadio Value="manufacturer" />
 @manufacturer

 }
 </InputRadioGroup>
</p>

<p>
 Pick one color and one engine:
 <InputRadioGroup Name="engine" @bind-Value="starship.Engine">
 <InputRadioGroup Name="color" @bind-Value="starship.Color">
 <InputRadio Name="color" Value="Color.ImperialRed" />Imperial Red

 <InputRadio Name="engine" Value="Engine.Ion" />Ion

 <InputRadio Name="color" Value="Color.SpacecruiserGreen" />
 Spacecruiser Green

 <InputRadio Name="engine" Value="Engine.Plasma" />Plasma

 <InputRadio Name="color" Value="Color.StarshipBlue" />Starship Blue

 <InputRadio Name="engine" Value="Engine.Fusion" />Fusion

 <InputRadio Name="color" Value="Color.VoyagerOrange" />
 Voyager Orange

 <InputRadio Name="engine" Value="Engine.Warp" />Warp

 </InputRadioGroup>
 </InputRadioGroup>
</p>

NOTENOTE
If Name is omitted, InputRadio components are grouped by their most recent ancestor.

When working with radio buttons in a form, data binding is handled differently than other elements because radio

buttons are evaluated as a group. The value of each radio button is fixed, but the value of the radio button group is

the value of the selected radio button. The following example shows how to:

Handle data binding for a radio button group.

Support validation using a custom InputRadio component.

@using System.Globalization
@typeparam TValue
@inherits InputBase<TValue>

<input @attributes="AdditionalAttributes" type="radio" value="@SelectedValue"
 checked="@(SelectedValue.Equals(Value))" @onchange="OnChange" />

@code {
 [Parameter]
 public TValue SelectedValue { get; set; }

 private void OnChange(ChangeEventArgs args)
 {
 CurrentValueAsString = args.Value.ToString();
 }

 protected override bool TryParseValueFromString(string value,
 out TValue result, out string errorMessage)
 {
 var success = BindConverter.TryConvertTo<TValue>(
 value, CultureInfo.CurrentCulture, out var parsedValue);
 if (success)
 {
 result = parsedValue;
 errorMessage = null;

 return true;
 }
 else
 {
 result = default;
 errorMessage = $"{FieldIdentifier.FieldName} field isn't valid.";

 return false;
 }
 }
}

The following EditForm uses the preceding InputRadio component to obtain and validate a rating from the user :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/RadioButtonExample"
@using System.ComponentModel.DataAnnotations

<h1>Radio Button Group Test</h1>

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 @for (int i = 1; i <= 5; i++)
 {
 <label>
 <InputRadio name="rate" SelectedValue="i" @bind-Value="model.Rating" />
 @i
 </label>
 }

 <button type="submit">Submit</button>
</EditForm>

<p>You chose: @model.Rating</p>

@code {
 private Model model = new Model();

 private void HandleValidSubmit()
 {
 ...
 }

 public class Model
 {
 [Range(1, 5)]
 public int Rating { get; set; }
 }
}

Binding <select> element options to C# object null values

Validation support

There's no sensible way to represent a <select> element option value as a C# object null value, because:

HTML attributes can't have null values. The closest equivalent to null in HTML is absence of the HTML value

attribute from the <option> element.

When selecting an <option> with no value attribute, the browser treats the value as the text content of that

<option> 's element.

The Blazor framework doesn't attempt to suppress the default behavior because it would involve:

Creating a chain of special-case workarounds in the framework.

Breaking changes to current framework behavior.

The most plausible null equivalent in HTML is an empty string value . The Blazor framework handles null to

empty string conversions for two-way binding to a <select> 's value.

The Blazor framework doesn't automatically handle null to empty string conversions when attempting two-way

binding to a <select> 's value. For more information, see Fix binding <select> to a null value (dotnet/aspnetcore

#23221).

The DataAnnotationsValidator component attaches validation support using data annotations to the cascaded

https://github.com/dotnet/aspnetcore/pull/23221
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Validation Summary and Validation Message componentsValidation Summary and Validation Message components

<ValidationSummary />

<ValidationSummary Model="@starship" />

<ValidationMessage For="@(() => starship.MaximumAccommodation)" />

.validation-message {
 color: red;
}

Custom validation attributesCustom validation attributes

EditContext. Enabling support for validation using data annotations requires this explicit gesture. To use a different

validation system than data annotations, replace the DataAnnotationsValidator with a custom implementation. The

ASP.NET Core implementation is available for inspection in the reference source: DataAnnotationsValidator /

AddDataAnnotationsValidation . The preceding links to reference source provide code from the repository's master

branch, which represents the product unit's current development for the next release of ASP.NET Core. To select the

branch for a different release, use the GitHub branch selector (for example release/3.1).

Blazor performs two types of validation:

Field validation is performed when the user tabs out of a field. During field validation, the

DataAnnotationsValidator component associates all reported validation results with the field.

Model validation is performed when the user submits the form. During model validation, the

DataAnnotationsValidator component attempts to determine the field based on the member name that the

validation result reports. Validation results that aren't associated with an individual member are associated with

the model rather than a field.

The ValidationSummary component summarizes all validation messages, which is similar to the Validation

Summary Tag Helper:

Output validation messages for a specific model with the Model parameter :

The ValidationMessage<TValue> component displays validation messages for a specific field, which is similar to the

Validation Message Tag Helper. Specify the field for validation with the For attribute and a lambda expression

naming the model property:

The ValidationMessage<TValue> and ValidationSummary components support arbitrary attributes. Any attribute

that doesn't match a component parameter is added to the generated <div> or element.

Control the style of validation messages in the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css). The

default validation-message class sets the text color of validation messages to red:

To ensure that a validation result is correctly associated with a field when using a custom validation attribute, pass

the validation context's MemberName when creating the ValidationResult:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/DataAnnotationsValidator.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/EditContextDataAnnotationsExtensions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.membername#system_componentmodel_dataannotations_validationcontext_membername
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationresult

using System;
using System.ComponentModel.DataAnnotations;

private class CustomValidator : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 ...

 return new ValidationResult("Validation message to user.",
 new[] { validationContext.MemberName });
 }
}

NOTENOTE

Custom validation class attributes

var editContext = new EditContext(model);
editContext.SetFieldCssClassProvider(new MyFieldClassProvider());

...

private class MyFieldClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext,
 in FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext.GetValidationMessages(fieldIdentifier).Any();

 return isValid ? "good field" : "bad field";
 }
}

Blazor data annotations validation packageBlazor data annotations validation package

NOTENOTE

[CompareProperty] attribute[CompareProperty] attribute

ValidationContext.GetService is null . Injecting services for validation in the IsValid method isn't supported.

Custom validation class names are useful when integrating with CSS frameworks, such as Bootstrap. To specify

custom validation class names, create a class derived from FieldCssClassProvider and set the class on the

EditContext instance:

The Microsoft.AspNetCore.Components.DataAnnotations.Validation is a package that fills validation experience gaps

using the DataAnnotationsValidator component. The package is currently experimental.

The Microsoft.AspNetCore.Components.DataAnnotations.Validation package has a latest version of release candidate at

Nuget.org. Continue to use the experimental release candidate package at this time. The package's assembly might be moved

to either the framework or the runtime in a future release. Watch the Announcements GitHub repository, the

dotnet/aspnetcore GitHub repository, or this topic section for further updates.

The CompareAttribute doesn't work well with the DataAnnotationsValidator component because it doesn't associate

the validation result with a specific member. This can result in inconsistent behavior between field-level validation

and when the entire model is validated on a submit. The

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.getservice
https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://github.com/aspnet/Announcements
https://github.com/dotnet/aspnetcore
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Nested models, collection types, and complex typesNested models, collection types, and complex types

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <ObjectGraphDataAnnotationsValidator />
 ...
</EditForm>

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 ...

 [ValidateComplexType]
 public ShipDescription ShipDescription { get; set; } =
 new ShipDescription();

 ...
}

using System;
using System.ComponentModel.DataAnnotations;

public class ShipDescription
{
 [Required]
 [StringLength(40, ErrorMessage = "Description too long (40 char).")]
 public string ShortDescription { get; set; }

 [Required]
 [StringLength(240, ErrorMessage = "Description too long (240 char).")]
 public string LongDescription { get; set; }
}

Enable the submit button based on form validationEnable the submit button based on form validation

Microsoft.AspNetCore.Components.DataAnnotations.Validation experimental package introduces an additional

validation attribute, ComparePropertyAttribute , that works around these limitations. In a Blazor app,

[CompareProperty] is a direct replacement for the [Compare] attribute.

Blazor provides support for validating form input using data annotations with the built-in

DataAnnotationsValidator. However, the DataAnnotationsValidator only validates top-level properties of the model

bound to the form that aren't collection- or complex-type properties.

To validate the bound model's entire object graph, including collection- and complex-type properties, use the

ObjectGraphDataAnnotationsValidator provided by the experimental

Microsoft.AspNetCore.Components.DataAnnotations.Validation package:

Annotate model properties with [ValidateComplexType] . In the following model classes, the ShipDescription class

contains additional data annotations to validate when the model is bound to the form:

Starship.cs :

ShipDescription.cs :

To enable and disable the submit button based on form validation:

Use the form's EditContext to assign the model when the component is initialized.

Validate the form in the context's OnFieldChanged callback to enable and disable the submit button.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

NOTENOTE

@implements IDisposable

<EditForm EditContext="@editContext">
 <DataAnnotationsValidator />
 <ValidationSummary />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private bool formInvalid = true;
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 editContext.OnFieldChanged += HandleFieldChanged;
 }

 private void HandleFieldChanged(object sender, FieldChangedEventArgs e)
 {
 formInvalid = !editContext.Validate();
 StateHasChanged();
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= HandleFieldChanged;
 }
}

Unhook the event handler in the Dispose method. For more information, see ASP.NET Core Blazor lifecycle.

When using an EditContext, don't also assign a Model to the EditForm.

In the preceding example, set formInvalid to false if:

The form is preloaded with valid default values.

You want the submit button enabled when the form loads.

A side effect of the preceding approach is that a ValidationSummary component is populated with invalid fields

after the user interacts with any one field. This scenario can be addressed in either of the following ways:

Don't use a ValidationSummary component on the form.

Make the ValidationSummary component visible when the submit button is selected (for example, in a

HandleValidSubmit method).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

<EditForm EditContext="@editContext" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary style="@displaySummary" />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private string displaySummary = "display:none";

 ...

 private void HandleValidSubmit()
 {
 displaySummary = "display:block";
 }
}

Troubleshoot

private ExampleModel exampleModel = new ExampleModel();

Additional resources

InvalidOperationException: EditForm requires a Model parameter, or an EditContext parameter, but not both.

Confirm that the EditForm has a Model oror EditContext. Don't use both for the same form.

When assigning a Model to the form, confirm that the model type is instantiated, as the following example shows:

ASP.NET Core Blazor file uploads

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model

ASP.NET Core Blazor hosting model configuration
9/22/2020 • 7 minutes to read • Edit Online

SignalR cross-origin negotiation for authenticationSignalR cross-origin negotiation for authentication

Reflect the connection state in the UI

<div id="components-reconnect-modal">
 ...
</div>

By Daniel Roth, Mackinnon Buck, and Luke Latham

This article covers hosting model configuration.

This section applies to Blazor WebAssembly.

To configure SignalR's underlying client to send credentials, such as cookies or HTTP authentication headers:

public class IncludeRequestCredentialsMessageHandler : DelegatingHandler
{
 protected override Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {
 request.SetBrowserRequestCredentials(BrowserRequestCredentials.Include);
 return base.SendAsync(request, cancellationToken);
 }
}

var connection = new HubConnectionBuilder()
 .WithUrl(new Uri("http://signalr.example.com"), options =>
 {
 options.HttpMessageHandlerFactory = innerHandler =>
 new IncludeRequestCredentialsMessageHandler { InnerHandler = innerHandler };
 }).Build();

Use SetBrowserRequestCredentials to set Include on cross-origin fetch requests:

Assign the HttpMessageHandler to the HttpMessageHandlerFactory option:

For more information, see ASP.NET Core SignalR configuration.

This section applies to Blazor Server.

When the client detects that the connection has been lost, a default UI is displayed to the user while the client

attempts to reconnect. If reconnection fails, the user is provided the option to retry.

To customize the UI, define an element with an id of components-reconnect-modal in the <body> of the

_Host.cshtml Razor page:

Add the following to the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css):

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/additional-scenarios.md
https://github.com/danroth27
https://github.com/MackinnonBuck
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserrequestcredentials
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.browserrequestcredentials#microsoft_aspnetcore_components_webassembly_http_browserrequestcredentials_include
https://developer.mozilla.org/docs/Web/API/Fetch_API/Using_Fetch
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connections.client.httpconnectionoptions.httpmessagehandlerfactory#microsoft_aspnetcore_http_connections_client_httpconnectionoptions_httpmessagehandlerfactory

#components-reconnect-modal {
 display: none;
}

#components-reconnect-modal.components-reconnect-show {
 display: block;
}

C SS C L A SSC SS C L A SS IN DIC AT ES…IN DIC AT ES…

components-reconnect-show A lost connection. The client is attempting to reconnect. Show
the modal.

components-reconnect-hide An active connection is re-established to the server. Hide the
modal.

components-reconnect-failed Reconnection failed, probably due to a network failure. To
attempt reconnection, call window.Blazor.reconnect() .

components-reconnect-rejected Reconnection rejected. The server was reached but refused the
connection, and the user's state on the server is lost. To reload
the app, call location.reload() . This connection state may

result when:

Render mode

<body>
 <app>
 <component type="typeof(App)" render-mode="ServerPrerendered" />
 </app>

 <script src="_framework/blazor.server.js"></script>
</body>

The following table describes the CSS classes applied to the components-reconnect-modal element.

A crash in the server-side circuit occurs.

The client is disconnected long enough for the server
to drop the user's state. Instances of the components
that the user is interacting with are disposed.

The server is restarted, or the app's worker process is
recycled.

This section applies to Blazor Server.

Blazor Server apps are set up by default to prerender the UI on the server before the client connection to the server

is established. This is set up in the _Host.cshtml Razor page:

RenderMode configures whether the component:

Is prerendered into the page.

Is rendered as static HTML on the page or if it includes the necessary information to bootstrap a Blazor app from

the user agent.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper.rendermode#microsoft_aspnetcore_mvc_taghelpers_componenttaghelper_rendermode

REN DER M O DEREN DER M O DE DESC RIP T IO NDESC RIP T IO N

ServerPrerendered Renders the component into static HTML and includes a
marker for a Blazor Server app. When the user-agent starts,
this marker is used to bootstrap a Blazor app.

Server Renders a marker for a Blazor Server app. Output from the
component isn't included. When the user-agent starts, this
marker is used to bootstrap a Blazor app.

Static Renders the component into static HTML.

Initialize the Blazor circuit

Initialize Blazor when the document is readyInitialize Blazor when the document is ready

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 document.addEventListener("DOMContentLoaded", function() {
 Blazor.start();
 });
 </script>
</body>

Chain to the Chain to the Promise that results from a manual start that results from a manual start

Rendering server components from a static HTML page isn't supported.

This section applies to Blazor Server.

Configure the manual start of a Blazor Server app's SignalR circuit in the Pages/_Host.cshtml file:

Add an autostart="false" attribute to the <script> tag for the blazor.server.js script.

Place a script that calls Blazor.start after the blazor.server.js script's tag and inside the closing </body> tag.

When autostart is disabled, any aspect of the app that doesn't depend on the circuit works normally. For example,

client-side routing is operational. However, any aspect that depends on the circuit isn't operational until

Blazor.start is called. App behavior is unpredictable without an established circuit. For example, component

methods fail to execute while the circuit is disconnected.

To initialize the Blazor app when the document is ready:

To perform additional tasks, such as JS interop initialization, use then to chain to the Promise that results from a

manual Blazor app start:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_serverprerendered
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_server
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_static

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start().then(function () {
 ...
 });
 </script>
</body>

Configure the SignalR clientConfigure the SignalR client
LoggingLogging

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 configureSignalR: function (builder) {
 builder.configureLogging("information");
 }
 });
 </script>
</body>

Modify the reconnection handlerModify the reconnection handler

To configure SignalR client logging, pass in a configuration object (configureSignalR) that calls configureLogging

with the log level on the client builder :

In the preceding example, information is equivalent to a log level of LogLevel.Information.

The reconnection handler's circuit connection events can be modified for custom behaviors, such as:

To notify the user if the connection is dropped.

To perform logging (from the client) when a circuit is connected.

To modify the connection events, register callbacks for the following connection changes:

Dropped connections use onConnectionDown .

Established/re-established connections use onConnectionUp .

BothBoth onConnectionDown and onConnectionUp must be specified:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel#microsoft_extensions_logging_loglevel_information

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 reconnectionHandler: {
 onConnectionDown: (options, error) => console.error(error);
 onConnectionUp: () => console.log("Up, up, and away!");
 }
 });
 </script>
</body>

Adjust the reconnection retry count and intervalAdjust the reconnection retry count and interval

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 reconnectionOptions: {
 maxRetries: 3,
 retryIntervalMilliseconds: 2000
 }
 });
 </script>
</body>

Hide or replace the reconnection display

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 window.addEventListener('beforeunload', function () {
 Blazor.defaultReconnectionHandler._reconnectionDisplay = {};
 });

 Blazor.start();
 </script>
</body>

Blazor.defaultReconnectionHandler._reconnectionDisplay =
 document.getElementById("{ELEMENT ID}");

To adjust the reconnection retry count and interval, set the number of retries (maxRetries) and period in

milliseconds permitted for each retry attempt (retryIntervalMilliseconds):

To hide the reconnection display, set the reconnection handler's _reconnectionDisplay to an empty object ({} or

new Object()):

To replace the reconnection display, set _reconnectionDisplay in the preceding example to the element for display:

#components-reconnect-modal {
 transition: visibility 0s linear 1000ms;
}

Influence HTML <head> tag elements

@using Microsoft.AspNetCore.Components.Web.Extensions.Head

<Title Value="{TITLE}" />
<Link href="{URL}" rel="stylesheet" />
<Meta content="{DESCRIPTION}" name="description" />

Static files

The placeholder {ELEMENT ID} is the ID of the HTML element to display.

Customize the delay before the reconnection display appears by setting the transition-delay property in the app's

CSS (wwwroot/css/site.css) for the modal element. The following example sets the transition delay from 500 ms

(default) to 1,000 ms (1 second):

This section applies to the upcoming ASP.NET Core 5.0 release of Blazor WebAssembly and Blazor Server.

When rendered, the Title , Link , and Meta components add or update data in the HTML <head> tag elements:

In the preceding example, placeholders for {TITLE} , {URL} , and {DESCRIPTION} are string values, Razor variables,

or Razor expressions.

The following characteristics apply:

Server-side prerendering is supported.

The Value parameter is the only valid parameter for the Title component.

HTML attributes provided to the Meta and Link components are captured in additional attributes and passed

through to the rendered HTML tag.

For multiple Title components, the title of the page reflects the Value of the last Title component rendered.

If multiple Meta or Link components are included with identical attributes, there's exactly one HTML tag

rendered per Meta or Link component. Two Meta or Link components can't refer to the same rendered

HTML tag.

Changes to the parameters of existing Meta or Link components are reflected in their rendered HTML tags.

When the Link or Meta components are no longer rendered and thus disposed by the framework, their

rendered HTML tags are removed.

When one of the framework components is used in a child component, the rendered HTML tag influences any other

child component of the parent component as long as the child component containing the framework component is

rendered. The distinction between using the one of these framework components in a child component and placing

a an HTML tag in wwwroot/index.html or Pages/_Host.cshtml is that a framework component's rendered HTML tag:

Can be modified by application state. A hard-coded HTML tag can't be modified by application state.

Is removed from the HTML <head> when the parent component is no longer rendered.

This section applies to Blazor Server.

To create additional file mappings with a FileExtensionContentTypeProvider or configure other StaticFileOptions, use

oneone of the following approaches. In the following examples, the {EXTENSION} placeholder is the file extension, and

the {CONTENT TYPE} placeholder is the content type.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.staticfiles.fileextensioncontenttypeprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions

Additional resources

using Microsoft.AspNetCore.StaticFiles;

...

var provider = new FileExtensionContentTypeProvider();
provider.Mappings["{EXTENSION}"] = "{CONTENT TYPE}";

services.Configure<StaticFileOptions>(options =>
{
 options.ContentTypeProvider = provider;
});

using Microsoft.AspNetCore.StaticFiles;

...

var provider = new FileExtensionContentTypeProvider();
provider.Mappings["{EXTENSION}"] = "{CONTENT TYPE}";

app.UseStaticFiles(new StaticFileOptions { ContentTypeProvider = provider });
app.UseStaticFiles();

Configure options through dependency injection (DI) in Startup.ConfigureServices (Startup.cs) using

StaticFileOptions:

Because this approach configures the same file provider used to serve blazor.server.js , make sure that

your custom configuration doesn't interfere with serving blazor.server.js . For example, don't remove the

mapping for JavaScript files by configuring the provider with provider.Mappings.Remove(".js") .

Use two calls to UseStaticFiles in Startup.Configure (Startup.cs):

Configure the custom file provider in the first call with StaticFileOptions.

The second middleware serves blazor.server.js , which uses the default static files configuration

provided by the Blazor framework.

Logging in .NET Core and ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions

ASP.NET Core Blazor layouts
9/22/2020 • 4 minutes to read • Edit Online

@inherits LayoutComponentBase

<header>
 <h1>Doctor Who™ Episode Database</h1>
</header>

<nav>
 Master Episode List
 Search
 Add Episode
</nav>

@Body

<footer>
 @TrademarkMessage
</footer>

@code {
 public string TrademarkMessage { get; set; } =
 "Doctor Who is a registered trademark of the BBC. " +
 "https://www.doctorwho.tv/";
}

MainLayout component

By Rainer Stropek and Luke Latham

Some app elements, such as menus, copyright messages, and company logos, are usually part of app's overall

layout and used by every component in the app. Copying the code of these elements into all of the components of

an app isn't an efficient approach. Every time one of the elements requires an update, every component must be

updated. Such duplication is difficult to maintain and can lead to inconsistent content over time. Layouts solve this

problem.

Technically, a layout is just another component. A layout is defined in a Razor template or in C# code and can use

data binding, dependency injection, and other component scenarios.

To turn a component into a layout, the component:

Inherits from LayoutComponentBase, which defines a Body property for the rendered content inside the layout.

Uses the Razor syntax @Body to specify the location in the layout markup where the content is rendered.

The following code sample shows the Razor template of a layout component, MainLayout.razor . The layout inherits

LayoutComponentBase and sets the @Body between the navigation bar and the footer :

In an app based on one of the Blazor project templates, the MainLayout component (MainLayout.razor) is in the

app's Shared folder :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/layouts.md
https://www.timecockpit.com
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.layoutcomponentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.layoutcomponentbase.body#microsoft_aspnetcore_components_layoutcomponentbase_body
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.layoutcomponentbase

@inherits LayoutComponentBase

<div class="sidebar">
 <NavMenu />
</div>

<div class="main">
 <div class="content px-4">
 @Body
 </div>
</div>

Default layout

<Router AppAssembly="@typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <p>Sorry, there's nothing at this address.</p>
 </NotFound>
</Router>

<Router AppAssembly="@typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <h1>Page not found</h1>
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
</Router>

Specify a layout in a component

Specify the default app layout in the Router component in the app's App.razor file. The following Router

component, which is provided by the default Blazor templates, sets the default layout to the MainLayout

component:

To supply a default layout for NotFound content, specify a LayoutView for NotFound content:

For more information on the Router component, see ASP.NET Core Blazor routing.

Specifying the layout as a default layout in the router is a useful practice because it can be overridden on a per-

component or per-folder basis. Prefer using the router to set the app's default layout because it's the most general

technique.

Use the Razor directive @layout to apply a layout to a component. The compiler converts @layout into a

LayoutAttribute, which is applied to the component class.

The content of the following MasterList component is inserted into the MasterLayout at the position of @Body :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.layoutview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.layoutattribute

@layout MasterLayout
@page "/masterlist"

<h1>Master Episode List</h1>

Centralized layout selection

@layout MyCoolLayout
@using Microsoft.AspNetCore.Components
@using BlazorApp1.Data

WARNINGWARNING

Nested layouts

@layout MasterListLayout
@page "/masterlist/episodes"

<h1>Episodes</h1>

Specifying the layout directly in a component overrides a default layout set in the router or an @layout directive

imported from _Imports.razor .

Every folder of an app can optionally contain a template file named _Imports.razor . The compiler includes the

directives specified in the imports file in all of the Razor templates in the same folder and recursively in all of its

subfolders. Therefore, an _Imports.razor file containing @layout MyCoolLayout ensures that all of the components

in a folder use MyCoolLayout . There's no need to repeatedly add @layout MyCoolLayout to all of the .razor files

within the folder and subfolders. @using directives are also applied to components in the same way.

The following _Imports.razor file imports:

MyCoolLayout .

All Razor components in the same folder and any subfolders.

The BlazorApp1.Data namespace.

The _Imports.razor file is similar to the _ViewImports.cshtml file for Razor views and pages but applied specifically

to Razor component files.

Specifying a layout in _Imports.razor overrides a layout specified as the router's default layout.

Do notnot add a Razor @layout directive to the root _Imports.razor file, which results in an infinite loop of layouts in the

app. To control the default app layout, specify the layout in the Router component. For more information, see the Default

layout section.

Apps can consist of nested layouts. A component can reference a layout which in turn references another layout. For

example, nesting layouts are used to create a multi-level menu structure.

The following example shows how to use nested layouts. The EpisodesComponent.razor file is the component to

display. The component references the MasterListLayout :

The MasterListLayout.razor file provides the MasterListLayout . The layout references another layout,

MasterLayout , where it's rendered. EpisodesComponent is rendered where @Body appears:

@layout MasterLayout
@inherits LayoutComponentBase

<nav>
 <!-- Menu structure of master list -->
 ...
</nav>

@Body

@inherits LayoutComponentBase

<header>...</header>
<nav>...</nav>

@Body

<footer>
 @TrademarkMessage
</footer>

@code {
 public string TrademarkMessage { get; set; } =
 "Doctor Who is a registered trademark of the BBC. " +
 "https://www.doctorwho.tv/";
}

Share a Razor Pages layout with integrated components

Additional resources

Finally, MasterLayout in MasterLayout.razor contains the top-level layout elements, such as the header, main menu,

and footer. MasterListLayout with the EpisodesComponent is rendered where @Body appears:

When routable components are integrated into a Razor Pages app, the app's shared layout can be used with the

components. For more information, see Integrate ASP.NET Core Razor components into Razor Pages and MVC apps.

Layout in ASP.NET Core

ASP.NET Core Blazor hosting model configuration
9/22/2020 • 7 minutes to read • Edit Online

SignalR cross-origin negotiation for authenticationSignalR cross-origin negotiation for authentication

Reflect the connection state in the UI

<div id="components-reconnect-modal">
 ...
</div>

By Daniel Roth, Mackinnon Buck, and Luke Latham

This article covers hosting model configuration.

This section applies to Blazor WebAssembly.

To configure SignalR's underlying client to send credentials, such as cookies or HTTP authentication headers:

public class IncludeRequestCredentialsMessageHandler : DelegatingHandler
{
 protected override Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {
 request.SetBrowserRequestCredentials(BrowserRequestCredentials.Include);
 return base.SendAsync(request, cancellationToken);
 }
}

var connection = new HubConnectionBuilder()
 .WithUrl(new Uri("http://signalr.example.com"), options =>
 {
 options.HttpMessageHandlerFactory = innerHandler =>
 new IncludeRequestCredentialsMessageHandler { InnerHandler = innerHandler };
 }).Build();

Use SetBrowserRequestCredentials to set Include on cross-origin fetch requests:

Assign the HttpMessageHandler to the HttpMessageHandlerFactory option:

For more information, see ASP.NET Core SignalR configuration.

This section applies to Blazor Server.

When the client detects that the connection has been lost, a default UI is displayed to the user while the client

attempts to reconnect. If reconnection fails, the user is provided the option to retry.

To customize the UI, define an element with an id of components-reconnect-modal in the <body> of the

_Host.cshtml Razor page:

Add the following to the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css):

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/additional-scenarios.md
https://github.com/danroth27
https://github.com/MackinnonBuck
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserrequestcredentials
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.browserrequestcredentials#microsoft_aspnetcore_components_webassembly_http_browserrequestcredentials_include
https://developer.mozilla.org/docs/Web/API/Fetch_API/Using_Fetch
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connections.client.httpconnectionoptions.httpmessagehandlerfactory#microsoft_aspnetcore_http_connections_client_httpconnectionoptions_httpmessagehandlerfactory

#components-reconnect-modal {
 display: none;
}

#components-reconnect-modal.components-reconnect-show {
 display: block;
}

C SS C L A SSC SS C L A SS IN DIC AT ES…IN DIC AT ES…

components-reconnect-show A lost connection. The client is attempting to reconnect. Show
the modal.

components-reconnect-hide An active connection is re-established to the server. Hide the
modal.

components-reconnect-failed Reconnection failed, probably due to a network failure. To
attempt reconnection, call window.Blazor.reconnect() .

components-reconnect-rejected Reconnection rejected. The server was reached but refused the
connection, and the user's state on the server is lost. To reload
the app, call location.reload() . This connection state may

result when:

Render mode

<body>
 <app>
 <component type="typeof(App)" render-mode="ServerPrerendered" />
 </app>

 <script src="_framework/blazor.server.js"></script>
</body>

The following table describes the CSS classes applied to the components-reconnect-modal element.

A crash in the server-side circuit occurs.

The client is disconnected long enough for the server
to drop the user's state. Instances of the components
that the user is interacting with are disposed.

The server is restarted, or the app's worker process is
recycled.

This section applies to Blazor Server.

Blazor Server apps are set up by default to prerender the UI on the server before the client connection to the server

is established. This is set up in the _Host.cshtml Razor page:

RenderMode configures whether the component:

Is prerendered into the page.

Is rendered as static HTML on the page or if it includes the necessary information to bootstrap a Blazor app from

the user agent.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper.rendermode#microsoft_aspnetcore_mvc_taghelpers_componenttaghelper_rendermode

REN DER M O DEREN DER M O DE DESC RIP T IO NDESC RIP T IO N

ServerPrerendered Renders the component into static HTML and includes a
marker for a Blazor Server app. When the user-agent starts,
this marker is used to bootstrap a Blazor app.

Server Renders a marker for a Blazor Server app. Output from the
component isn't included. When the user-agent starts, this
marker is used to bootstrap a Blazor app.

Static Renders the component into static HTML.

Initialize the Blazor circuit

Initialize Blazor when the document is readyInitialize Blazor when the document is ready

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 document.addEventListener("DOMContentLoaded", function() {
 Blazor.start();
 });
 </script>
</body>

Chain to the Chain to the Promise that results from a manual start that results from a manual start

Rendering server components from a static HTML page isn't supported.

This section applies to Blazor Server.

Configure the manual start of a Blazor Server app's SignalR circuit in the Pages/_Host.cshtml file:

Add an autostart="false" attribute to the <script> tag for the blazor.server.js script.

Place a script that calls Blazor.start after the blazor.server.js script's tag and inside the closing </body> tag.

When autostart is disabled, any aspect of the app that doesn't depend on the circuit works normally. For example,

client-side routing is operational. However, any aspect that depends on the circuit isn't operational until

Blazor.start is called. App behavior is unpredictable without an established circuit. For example, component

methods fail to execute while the circuit is disconnected.

To initialize the Blazor app when the document is ready:

To perform additional tasks, such as JS interop initialization, use then to chain to the Promise that results from a

manual Blazor app start:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_serverprerendered
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_server
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_static

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start().then(function () {
 ...
 });
 </script>
</body>

Configure the SignalR clientConfigure the SignalR client
LoggingLogging

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 configureSignalR: function (builder) {
 builder.configureLogging("information");
 }
 });
 </script>
</body>

Modify the reconnection handlerModify the reconnection handler

To configure SignalR client logging, pass in a configuration object (configureSignalR) that calls configureLogging

with the log level on the client builder :

In the preceding example, information is equivalent to a log level of LogLevel.Information.

The reconnection handler's circuit connection events can be modified for custom behaviors, such as:

To notify the user if the connection is dropped.

To perform logging (from the client) when a circuit is connected.

To modify the connection events, register callbacks for the following connection changes:

Dropped connections use onConnectionDown .

Established/re-established connections use onConnectionUp .

BothBoth onConnectionDown and onConnectionUp must be specified:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel#microsoft_extensions_logging_loglevel_information

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 reconnectionHandler: {
 onConnectionDown: (options, error) => console.error(error);
 onConnectionUp: () => console.log("Up, up, and away!");
 }
 });
 </script>
</body>

Adjust the reconnection retry count and intervalAdjust the reconnection retry count and interval

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 reconnectionOptions: {
 maxRetries: 3,
 retryIntervalMilliseconds: 2000
 }
 });
 </script>
</body>

Hide or replace the reconnection display

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 window.addEventListener('beforeunload', function () {
 Blazor.defaultReconnectionHandler._reconnectionDisplay = {};
 });

 Blazor.start();
 </script>
</body>

Blazor.defaultReconnectionHandler._reconnectionDisplay =
 document.getElementById("{ELEMENT ID}");

To adjust the reconnection retry count and interval, set the number of retries (maxRetries) and period in

milliseconds permitted for each retry attempt (retryIntervalMilliseconds):

To hide the reconnection display, set the reconnection handler's _reconnectionDisplay to an empty object ({} or

new Object()):

To replace the reconnection display, set _reconnectionDisplay in the preceding example to the element for display:

#components-reconnect-modal {
 transition: visibility 0s linear 1000ms;
}

Influence HTML <head> tag elements

@using Microsoft.AspNetCore.Components.Web.Extensions.Head

<Title Value="{TITLE}" />
<Link href="{URL}" rel="stylesheet" />
<Meta content="{DESCRIPTION}" name="description" />

Static files

The placeholder {ELEMENT ID} is the ID of the HTML element to display.

Customize the delay before the reconnection display appears by setting the transition-delay property in the app's

CSS (wwwroot/css/site.css) for the modal element. The following example sets the transition delay from 500 ms

(default) to 1,000 ms (1 second):

This section applies to the upcoming ASP.NET Core 5.0 release of Blazor WebAssembly and Blazor Server.

When rendered, the Title , Link , and Meta components add or update data in the HTML <head> tag elements:

In the preceding example, placeholders for {TITLE} , {URL} , and {DESCRIPTION} are string values, Razor variables,

or Razor expressions.

The following characteristics apply:

Server-side prerendering is supported.

The Value parameter is the only valid parameter for the Title component.

HTML attributes provided to the Meta and Link components are captured in additional attributes and passed

through to the rendered HTML tag.

For multiple Title components, the title of the page reflects the Value of the last Title component rendered.

If multiple Meta or Link components are included with identical attributes, there's exactly one HTML tag

rendered per Meta or Link component. Two Meta or Link components can't refer to the same rendered

HTML tag.

Changes to the parameters of existing Meta or Link components are reflected in their rendered HTML tags.

When the Link or Meta components are no longer rendered and thus disposed by the framework, their

rendered HTML tags are removed.

When one of the framework components is used in a child component, the rendered HTML tag influences any other

child component of the parent component as long as the child component containing the framework component is

rendered. The distinction between using the one of these framework components in a child component and placing

a an HTML tag in wwwroot/index.html or Pages/_Host.cshtml is that a framework component's rendered HTML tag:

Can be modified by application state. A hard-coded HTML tag can't be modified by application state.

Is removed from the HTML <head> when the parent component is no longer rendered.

This section applies to Blazor Server.

To create additional file mappings with a FileExtensionContentTypeProvider or configure other StaticFileOptions, use

oneone of the following approaches. In the following examples, the {EXTENSION} placeholder is the file extension, and

the {CONTENT TYPE} placeholder is the content type.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.staticfiles.fileextensioncontenttypeprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions

Additional resources

using Microsoft.AspNetCore.StaticFiles;

...

var provider = new FileExtensionContentTypeProvider();
provider.Mappings["{EXTENSION}"] = "{CONTENT TYPE}";

services.Configure<StaticFileOptions>(options =>
{
 options.ContentTypeProvider = provider;
});

using Microsoft.AspNetCore.StaticFiles;

...

var provider = new FileExtensionContentTypeProvider();
provider.Mappings["{EXTENSION}"] = "{CONTENT TYPE}";

app.UseStaticFiles(new StaticFileOptions { ContentTypeProvider = provider });
app.UseStaticFiles();

Configure options through dependency injection (DI) in Startup.ConfigureServices (Startup.cs) using

StaticFileOptions:

Because this approach configures the same file provider used to serve blazor.server.js , make sure that

your custom configuration doesn't interfere with serving blazor.server.js . For example, don't remove the

mapping for JavaScript files by configuring the provider with provider.Mappings.Remove(".js") .

Use two calls to UseStaticFiles in Startup.Configure (Startup.cs):

Configure the custom file provider in the first call with StaticFileOptions.

The second middleware serves blazor.server.js , which uses the default static files configuration

provided by the Blazor framework.

Logging in .NET Core and ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions

ASP.NET Core Blazor routing
9/22/2020 • 9 minutes to read • Edit Online

ASP.NET Core endpoint routing integration

app.UseRouting();

app.UseEndpoints(endpoints =>
{
 endpoints.MapBlazorHub();
 endpoints.MapFallbackToPage("/_Host");
});

Route templates

<Router AppAssembly="@typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <p>Sorry, there's nothing at this address.</p>
 </NotFound>
</Router>

By Luke Latham

Learn how to route requests and how to use the NavLink component to create navigation links in Blazor apps.

Blazor Server is integrated into ASP.NET Core Endpoint Routing. An ASP.NET Core app is configured to accept

incoming connections for interactive components with MapBlazorHub in Startup.Configure :

The most typical configuration is to route all requests to a Razor page, which acts as the host for the server-side

part of the Blazor Server app. By convention, the host page is usually named _Host.cshtml . The route specified in

the host file is called a fallback route because it operates with a low priority in route matching. The fallback route is

considered when other routes don't match. This allows the app to use others controllers and pages without

interfering with the Blazor Server app.

For information on configuring MapFallbackToPage for non-root URL server hosting, see Host and deploy ASP.NET

Core Blazor.

The Router component enables routing to each component with a specified route. The Router component appears

in the App.razor file:

When a .razor file with an @page directive is compiled, the generated class is provided a RouteAttribute

specifying the route template.

At runtime, the RouteView component:

Receives the RouteData from the Router along with any desired parameters.

Renders the specified component with its layout (or an optional default layout) using the specified parameters.

You can optionally specify a DefaultLayout parameter with a layout class to use for components that don't specify a

layout. The default Blazor templates specify the MainLayout component. MainLayout.razor is in the template

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/routing.md
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.componentendpointroutebuilderextensions.mapblazorhub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.mapfallbacktopage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routedata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeview.defaultlayout#microsoft_aspnetcore_components_routeview_defaultlayout

@page "/BlazorRoute"
@page "/DifferentBlazorRoute"

<h1>Blazor routing</h1>

IMPORTANTIMPORTANT

Provide custom content when content isn't found

<Router AppAssembly="typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <h1>Sorry</h1>
 <p>Sorry, there's nothing at this address.</p> b
 </NotFound>
</Router>

Route to components from multiple assemblies

<Router
 AppAssembly="@typeof(Program).Assembly"
 AdditionalAssemblies="new[] { typeof(Component1).Assembly }">
 ...
</Router>

Route parameters

project's Shared folder. For more information on layouts, see ASP.NET Core Blazor layouts.

Multiple route templates can be applied to a component. The following component responds to requests for

/BlazorRoute and /DifferentBlazorRoute :

For URLs to resolve correctly, the app must include a <base> tag in its wwwroot/index.html file (Blazor WebAssembly) or

Pages/_Host.cshtml file (Blazor Server) with the app base path specified in the href attribute (<base href="/">). For

more information, see Host and deploy ASP.NET Core Blazor.

The Router component allows the app to specify custom content if content isn't found for the requested route.

In the App.razor file, set custom content in the NotFound template parameter of the Router component:

The content of <NotFound> tags can include arbitrary items, such as other interactive components. To apply a

default layout to NotFound content, see ASP.NET Core Blazor layouts.

Use the AdditionalAssemblies parameter to specify additional assemblies for the Router component to consider

when searching for routable components. Specified assemblies are considered in addition to the AppAssembly -

specified assembly. In the following example, Component1 is a routable component defined in a referenced class

library. The following AdditionalAssemblies example results in routing support for Component1 :

The router uses route parameters to populate the corresponding component parameters with the same name (case

insensitive):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.additionalassemblies#microsoft_aspnetcore_components_routing_router_additionalassemblies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.additionalassemblies#microsoft_aspnetcore_components_routing_router_additionalassemblies

@page "/RouteParameter"
@page "/RouteParameter/{text}"

<h1>Blazor is @Text!</h1>

@code {
 [Parameter]
 public string Text { get; set; }

 protected override void OnInitialized()
 {
 Text = Text ?? "fantastic";
 }
}

Route constraints

@page "/Users/{Id:int}"

<h1>The user Id is @Id!</h1>

@code {
 [Parameter]
 public int Id { get; set; }
}

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES

IN VA RIA N TIN VA RIA N T
C ULT UREC ULT URE
M ATC H IN GM ATC H IN G

bool {active:bool} true , FALSE No

datetime {dob:datetime} 2016-12-31 ,

2016-12-31 7:32pm

Yes

decimal {price:decimal} 49.99 , -1,000.01 Yes

double {weight:double} 1.234 , -1,001.01e8 Yes

float {weight:float} 1.234 , -1,001.01e8 Yes

Optional parameters aren't supported. Two @page directives are applied in the previous example. The first permits

navigation to the component without a parameter. The second @page directive takes the {text} route parameter

and assigns the value to the Text property.

A route constraint enforces type matching on a route segment to a component.

In the following example, the route to the Users component only matches if:

An Id route segment is present on the request URL.

The Id segment is an integer (int).

The route constraints shown in the following table are available. For the route constraints that match with the

invariant culture, see the warning below the table for more information.

guid {id:guid} CD2C1638-1638-72D5-
1638-DEADBEEF1638

,
{CD2C1638-1638-72D5-
1638-DEADBEEF1638}

No

int {id:int} 123456789 , -123456789 Yes

long {ticks:long} 123456789 , -123456789 Yes

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES

IN VA RIA N TIN VA RIA N T
C ULT UREC ULT URE
M ATC H IN GM ATC H IN G

WARNINGWARNING

Routing with URLs that contain dotsRouting with URLs that contain dots

@page "/example"
@page "/example/{param}"

<p>
 Param: @Param
</p>

@code {
 [Parameter]
 public string Param { get; set; }
}

endpoints.MapFallbackToFile("/example/{param?}", "index.html");

endpoints.MapFallbackToPage("/example/{param?}", "/_Host");

Catch-all route parameters

Route constraints that verify the URL and are converted to a CLR type (such as int or DateTime) always use the invariant

culture. These constraints assume that the URL is non-localizable.

For hosted Blazor WebAssembly and Blazor Server apps, the server-side default route template assumes that if the

last segment of a request URL contains a dot (.) that a file is requested (for example,

https://localhost.com:5001/example/some.thing). Without additional configuration, an app returns a 404 - Not

Found response if this was meant to route to a component. To use a route with one or more parameters that

contains a dot, the app must configure the route with a custom template.

Consider the following Example component that can receive a route parameter from the last segment of the URL:

To permit the Server app of a hosted Blazor WebAssembly solution to route the request with a dot in the param

parameter, add a fallback file route template with the optional parameter in Startup.Configure (Startup.cs):

To configure a Blazor Server app to route the request with a dot in the param parameter, add a fallback page route

template with the optional parameter in Startup.Configure (Startup.cs):

For more information, see Routing in ASP.NET Core.

https://docs.microsoft.com/en-us/dotnet/api/system.datetime

@page "/page/{*pageRoute}"

@code {
 [Parameter]
 public string PageRoute { get; set; }
}

NavLink component

<div class="@NavMenuCssClass" @onclick="@ToggleNavMenu">
 <ul class="nav flex-column">
 <li class="nav-item px-3">
 <NavLink class="nav-link" href="" Match="NavLinkMatch.All">
 Home
 </NavLink>

 <li class="nav-item px-3">
 <NavLink class="nav-link" href="MyComponent" Match="NavLinkMatch.Prefix">
 My Component
 </NavLink>

</div>

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

Catch-all route parameters, which capture paths across multiple folder boundaries, are supported in components.

The catch-all route parameter must be:

Named to match the route segment name. Naming isn't case sensitive.

A string type. The framework doesn't provide automatic casting.

At the end of the URL.

For the URL /page/this/is/a/test with a route template of /page/{*pageRoute} , the value of PageRoute is set to

this/is/a/test .

Slashes and segments of the captured path are decoded. For a route template of /page/{*pageRoute} , the URL

/page/this/is/a%2Ftest%2A yields this/is/a/test* .

Catch-all route parameters are supported in ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.*

Use a NavLink component in place of HTML hyperlink elements (<a>) when creating navigation links. A NavLink

component behaves like an <a> element, except it toggles an active CSS class based on whether its href

matches the current URL. The active class helps a user understand which page is the active page among the

navigation links displayed. Optionally, assign a CSS class name to NavLink.ActiveClass to apply a custom CSS class

to the rendered link when the current route matches the href .

The following NavMenu component creates a Bootstrap navigation bar that demonstrates how to use NavLink

components:

There are two NavLinkMatch options that you can assign to the Match attribute of the <NavLink> element:

NavLinkMatch.All: The NavLink is active when it matches the entire current URL.

NavLinkMatch.Prefix (default): The NavLink is active when it matches any prefix of the current URL.

In the preceding example, the Home NavLink href="" matches the home URL and only receives the active CSS

class at the app's default base path URL (for example, https://localhost:5001/). The second NavLink receives the

active class when the user visits any URL with a MyComponent prefix (for example,

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink.activeclass#microsoft_aspnetcore_components_routing_navlink_activeclass
https://getbootstrap.com/docs/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch#microsoft_aspnetcore_components_routing_navlinkmatch_all
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch#microsoft_aspnetcore_components_routing_navlinkmatch_prefix
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink

<NavLink href="my-page" target="_blank">My page</NavLink>

My page

WARNINGWARNING

@for (int c = 0; c < 10; c++)
{
 var current = c;
 <li ...>
 <NavLink ... href="@c">
 @current
 </NavLink>

}

@foreach(var c in Enumerable.Range(0,10))
{
 <li ...>
 <NavLink ... href="@c">
 @c
 </NavLink>

}

URI and navigation state helpers

M EM B ERM EM B ER DESC RIP T IO NDESC RIP T IO N

Uri Gets the current absolute URI.

BaseUri Gets the base URI (with a trailing slash) that can be prepended
to relative URI paths to produce an absolute URI. Typically,
BaseUri corresponds to the href attribute on the

document's <base> element in wwwroot/index.html (Blazor

WebAssembly) or Pages/_Host.cshtml (Blazor Server).

https://localhost:5001/MyComponent and https://localhost:5001/MyComponent/AnotherSegment).

Additional NavLink component attributes are passed through to the rendered anchor tag. In the following example,

the NavLink component includes the target attribute:

The following HTML markup is rendered:

Due to the way that Blazor renders child content, rendering NavLink components inside a for loop requires a local index

variable if the incrementing loop variable is used in the NavLink (child) component's content:

Using an index variable in this scenario is a requirement for anyany child component that uses a loop variable in its child content,

not just the NavLink component.

Alternatively, use a foreach loop with Enumerable.Range:

Use NavigationManager to work with URIs and navigation in C# code. NavigationManager provides the event and

methods shown in the following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.range
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.uri#microsoft_aspnetcore_components_navigationmanager_uri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri

NavigateTo Navigates to the specified URI. If forceLoad is true :

LocationChanged An event that fires when the navigation location has changed.

ToAbsoluteUri Converts a relative URI into an absolute URI.

ToBaseRelativePath Given a base URI (for example, a URI previously returned by
BaseUri), converts an absolute URI into a URI relative to the
base URI prefix.

M EM B ERM EM B ER DESC RIP T IO NDESC RIP T IO N

@page "/navigate"
@inject NavigationManager NavigationManager

<h1>Navigate in Code Example</h1>

<button class="btn btn-primary" @onclick="NavigateToCounterComponent">
 Navigate to the Counter component
</button>

@code {
 private void NavigateToCounterComponent()
 {
 NavigationManager.NavigateTo("counter");
 }
}

@implements IDisposable
@inject NavigationManager NavigationManager

...

protected override void OnInitialized()
{
 NavigationManager.LocationChanged += HandleLocationChanged;
}

private void HandleLocationChanged(object sender, LocationChangedEventArgs e)
{
 ...
}

public void Dispose()
{
 NavigationManager.LocationChanged -= HandleLocationChanged;
}

Client-side routing is bypassed.

The browser is forced to load the new page from the
server, whether or not the URI is normally handled by
the client-side router.

The following component navigates to the app's Counter component when the button is selected:

The following component handles a location changed event by subscribing to

NavigationManager.LocationChanged. The HandleLocationChanged method is unhooked when Dispose is called by

the framework. Unhooking the method permits garbage collection of the component.

LocationChangedEventArgs provides the following information about the event:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.locationchanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.toabsoluteuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.tobaserelativepath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.locationchanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs

Query string and parse parameters

@inject NavigationManager Navigation

...

var query = new Uri(Navigation.Uri).Query;

@page "/"
@using Microsoft.AspNetCore.WebUtilities
@inject NavigationManager NavigationManager

<h1>Query string parse example</h1>

<p>Value: @queryValue</p>

@code {
 private string queryValue = "Not set";

 protected override void OnInitialized()
 {
 var query = new Uri(NavigationManager.Uri).Query;

 if (QueryHelpers.ParseQuery(query).TryGetValue("{KEY}", out var value))
 {
 queryValue = value;
 }
 }
}

Location: The URL of the new location.

IsNavigationIntercepted: If true , Blazor intercepted the navigation from the browser. If false ,

NavigationManager.NavigateTo caused the navigation to occur.

For more information on component disposal, see ASP.NET Core Blazor lifecycle.

The query string of a request can be obtained from the NavigationManager's Uri property:

To parse a query string's parameters:

Add a package reference for Microsoft.AspNetCore.WebUtilities.

Obtain the value after parsing the query string with QueryHelpers.ParseQuery.

The placeholder {KEY} in the preceding example is the query string parameter key. For example, the URL key-value

pair ?ship=Tardis uses a key of ship .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs.location#microsoft_aspnetcore_components_routing_locationchangedeventargs_location
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs.isnavigationintercepted#microsoft_aspnetcore_components_routing_locationchangedeventargs_isnavigationintercepted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.uri#microsoft_aspnetcore_components_navigationmanager_uri
https://www.nuget.org/packages/Microsoft.AspNetCore.WebUtilities
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webutilities.queryhelpers.parsequery

ASP.NET Core Blazor routing
9/22/2020 • 9 minutes to read • Edit Online

ASP.NET Core endpoint routing integration

app.UseRouting();

app.UseEndpoints(endpoints =>
{
 endpoints.MapBlazorHub();
 endpoints.MapFallbackToPage("/_Host");
});

Route templates

<Router AppAssembly="@typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <p>Sorry, there's nothing at this address.</p>
 </NotFound>
</Router>

By Luke Latham

Learn how to route requests and how to use the NavLink component to create navigation links in Blazor apps.

Blazor Server is integrated into ASP.NET Core Endpoint Routing. An ASP.NET Core app is configured to accept

incoming connections for interactive components with MapBlazorHub in Startup.Configure :

The most typical configuration is to route all requests to a Razor page, which acts as the host for the server-side

part of the Blazor Server app. By convention, the host page is usually named _Host.cshtml . The route specified in

the host file is called a fallback route because it operates with a low priority in route matching. The fallback route is

considered when other routes don't match. This allows the app to use others controllers and pages without

interfering with the Blazor Server app.

For information on configuring MapFallbackToPage for non-root URL server hosting, see Host and deploy ASP.NET

Core Blazor.

The Router component enables routing to each component with a specified route. The Router component appears

in the App.razor file:

When a .razor file with an @page directive is compiled, the generated class is provided a RouteAttribute

specifying the route template.

At runtime, the RouteView component:

Receives the RouteData from the Router along with any desired parameters.

Renders the specified component with its layout (or an optional default layout) using the specified parameters.

You can optionally specify a DefaultLayout parameter with a layout class to use for components that don't specify a

layout. The default Blazor templates specify the MainLayout component. MainLayout.razor is in the template

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/routing.md
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.componentendpointroutebuilderextensions.mapblazorhub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.mapfallbacktopage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routedata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeview.defaultlayout#microsoft_aspnetcore_components_routeview_defaultlayout

@page "/BlazorRoute"
@page "/DifferentBlazorRoute"

<h1>Blazor routing</h1>

IMPORTANTIMPORTANT

Provide custom content when content isn't found

<Router AppAssembly="typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <h1>Sorry</h1>
 <p>Sorry, there's nothing at this address.</p> b
 </NotFound>
</Router>

Route to components from multiple assemblies

<Router
 AppAssembly="@typeof(Program).Assembly"
 AdditionalAssemblies="new[] { typeof(Component1).Assembly }">
 ...
</Router>

Route parameters

project's Shared folder. For more information on layouts, see ASP.NET Core Blazor layouts.

Multiple route templates can be applied to a component. The following component responds to requests for

/BlazorRoute and /DifferentBlazorRoute :

For URLs to resolve correctly, the app must include a <base> tag in its wwwroot/index.html file (Blazor WebAssembly) or

Pages/_Host.cshtml file (Blazor Server) with the app base path specified in the href attribute (<base href="/">). For

more information, see Host and deploy ASP.NET Core Blazor.

The Router component allows the app to specify custom content if content isn't found for the requested route.

In the App.razor file, set custom content in the NotFound template parameter of the Router component:

The content of <NotFound> tags can include arbitrary items, such as other interactive components. To apply a

default layout to NotFound content, see ASP.NET Core Blazor layouts.

Use the AdditionalAssemblies parameter to specify additional assemblies for the Router component to consider

when searching for routable components. Specified assemblies are considered in addition to the AppAssembly -

specified assembly. In the following example, Component1 is a routable component defined in a referenced class

library. The following AdditionalAssemblies example results in routing support for Component1 :

The router uses route parameters to populate the corresponding component parameters with the same name (case

insensitive):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.additionalassemblies#microsoft_aspnetcore_components_routing_router_additionalassemblies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.additionalassemblies#microsoft_aspnetcore_components_routing_router_additionalassemblies

@page "/RouteParameter"
@page "/RouteParameter/{text}"

<h1>Blazor is @Text!</h1>

@code {
 [Parameter]
 public string Text { get; set; }

 protected override void OnInitialized()
 {
 Text = Text ?? "fantastic";
 }
}

Route constraints

@page "/Users/{Id:int}"

<h1>The user Id is @Id!</h1>

@code {
 [Parameter]
 public int Id { get; set; }
}

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES

IN VA RIA N TIN VA RIA N T
C ULT UREC ULT URE
M ATC H IN GM ATC H IN G

bool {active:bool} true , FALSE No

datetime {dob:datetime} 2016-12-31 ,

2016-12-31 7:32pm

Yes

decimal {price:decimal} 49.99 , -1,000.01 Yes

double {weight:double} 1.234 , -1,001.01e8 Yes

float {weight:float} 1.234 , -1,001.01e8 Yes

Optional parameters aren't supported. Two @page directives are applied in the previous example. The first permits

navigation to the component without a parameter. The second @page directive takes the {text} route parameter

and assigns the value to the Text property.

A route constraint enforces type matching on a route segment to a component.

In the following example, the route to the Users component only matches if:

An Id route segment is present on the request URL.

The Id segment is an integer (int).

The route constraints shown in the following table are available. For the route constraints that match with the

invariant culture, see the warning below the table for more information.

guid {id:guid} CD2C1638-1638-72D5-
1638-DEADBEEF1638

,
{CD2C1638-1638-72D5-
1638-DEADBEEF1638}

No

int {id:int} 123456789 , -123456789 Yes

long {ticks:long} 123456789 , -123456789 Yes

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES

IN VA RIA N TIN VA RIA N T
C ULT UREC ULT URE
M ATC H IN GM ATC H IN G

WARNINGWARNING

Routing with URLs that contain dotsRouting with URLs that contain dots

@page "/example"
@page "/example/{param}"

<p>
 Param: @Param
</p>

@code {
 [Parameter]
 public string Param { get; set; }
}

endpoints.MapFallbackToFile("/example/{param?}", "index.html");

endpoints.MapFallbackToPage("/example/{param?}", "/_Host");

Catch-all route parameters

Route constraints that verify the URL and are converted to a CLR type (such as int or DateTime) always use the invariant

culture. These constraints assume that the URL is non-localizable.

For hosted Blazor WebAssembly and Blazor Server apps, the server-side default route template assumes that if the

last segment of a request URL contains a dot (.) that a file is requested (for example,

https://localhost.com:5001/example/some.thing). Without additional configuration, an app returns a 404 - Not

Found response if this was meant to route to a component. To use a route with one or more parameters that

contains a dot, the app must configure the route with a custom template.

Consider the following Example component that can receive a route parameter from the last segment of the URL:

To permit the Server app of a hosted Blazor WebAssembly solution to route the request with a dot in the param

parameter, add a fallback file route template with the optional parameter in Startup.Configure (Startup.cs):

To configure a Blazor Server app to route the request with a dot in the param parameter, add a fallback page route

template with the optional parameter in Startup.Configure (Startup.cs):

For more information, see Routing in ASP.NET Core.

https://docs.microsoft.com/en-us/dotnet/api/system.datetime

@page "/page/{*pageRoute}"

@code {
 [Parameter]
 public string PageRoute { get; set; }
}

NavLink component

<div class="@NavMenuCssClass" @onclick="@ToggleNavMenu">
 <ul class="nav flex-column">
 <li class="nav-item px-3">
 <NavLink class="nav-link" href="" Match="NavLinkMatch.All">
 Home
 </NavLink>

 <li class="nav-item px-3">
 <NavLink class="nav-link" href="MyComponent" Match="NavLinkMatch.Prefix">
 My Component
 </NavLink>

</div>

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

Catch-all route parameters, which capture paths across multiple folder boundaries, are supported in components.

The catch-all route parameter must be:

Named to match the route segment name. Naming isn't case sensitive.

A string type. The framework doesn't provide automatic casting.

At the end of the URL.

For the URL /page/this/is/a/test with a route template of /page/{*pageRoute} , the value of PageRoute is set to

this/is/a/test .

Slashes and segments of the captured path are decoded. For a route template of /page/{*pageRoute} , the URL

/page/this/is/a%2Ftest%2A yields this/is/a/test* .

Catch-all route parameters are supported in ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.*

Use a NavLink component in place of HTML hyperlink elements (<a>) when creating navigation links. A NavLink

component behaves like an <a> element, except it toggles an active CSS class based on whether its href

matches the current URL. The active class helps a user understand which page is the active page among the

navigation links displayed. Optionally, assign a CSS class name to NavLink.ActiveClass to apply a custom CSS class

to the rendered link when the current route matches the href .

The following NavMenu component creates a Bootstrap navigation bar that demonstrates how to use NavLink

components:

There are two NavLinkMatch options that you can assign to the Match attribute of the <NavLink> element:

NavLinkMatch.All: The NavLink is active when it matches the entire current URL.

NavLinkMatch.Prefix (default): The NavLink is active when it matches any prefix of the current URL.

In the preceding example, the Home NavLink href="" matches the home URL and only receives the active CSS

class at the app's default base path URL (for example, https://localhost:5001/). The second NavLink receives the

active class when the user visits any URL with a MyComponent prefix (for example,

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink.activeclass#microsoft_aspnetcore_components_routing_navlink_activeclass
https://getbootstrap.com/docs/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch#microsoft_aspnetcore_components_routing_navlinkmatch_all
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch#microsoft_aspnetcore_components_routing_navlinkmatch_prefix
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink

<NavLink href="my-page" target="_blank">My page</NavLink>

My page

WARNINGWARNING

@for (int c = 0; c < 10; c++)
{
 var current = c;
 <li ...>
 <NavLink ... href="@c">
 @current
 </NavLink>

}

@foreach(var c in Enumerable.Range(0,10))
{
 <li ...>
 <NavLink ... href="@c">
 @c
 </NavLink>

}

URI and navigation state helpers

M EM B ERM EM B ER DESC RIP T IO NDESC RIP T IO N

Uri Gets the current absolute URI.

BaseUri Gets the base URI (with a trailing slash) that can be prepended
to relative URI paths to produce an absolute URI. Typically,
BaseUri corresponds to the href attribute on the

document's <base> element in wwwroot/index.html (Blazor

WebAssembly) or Pages/_Host.cshtml (Blazor Server).

https://localhost:5001/MyComponent and https://localhost:5001/MyComponent/AnotherSegment).

Additional NavLink component attributes are passed through to the rendered anchor tag. In the following example,

the NavLink component includes the target attribute:

The following HTML markup is rendered:

Due to the way that Blazor renders child content, rendering NavLink components inside a for loop requires a local index

variable if the incrementing loop variable is used in the NavLink (child) component's content:

Using an index variable in this scenario is a requirement for anyany child component that uses a loop variable in its child content,

not just the NavLink component.

Alternatively, use a foreach loop with Enumerable.Range:

Use NavigationManager to work with URIs and navigation in C# code. NavigationManager provides the event and

methods shown in the following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.range
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.uri#microsoft_aspnetcore_components_navigationmanager_uri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri

NavigateTo Navigates to the specified URI. If forceLoad is true :

LocationChanged An event that fires when the navigation location has changed.

ToAbsoluteUri Converts a relative URI into an absolute URI.

ToBaseRelativePath Given a base URI (for example, a URI previously returned by
BaseUri), converts an absolute URI into a URI relative to the
base URI prefix.

M EM B ERM EM B ER DESC RIP T IO NDESC RIP T IO N

@page "/navigate"
@inject NavigationManager NavigationManager

<h1>Navigate in Code Example</h1>

<button class="btn btn-primary" @onclick="NavigateToCounterComponent">
 Navigate to the Counter component
</button>

@code {
 private void NavigateToCounterComponent()
 {
 NavigationManager.NavigateTo("counter");
 }
}

@implements IDisposable
@inject NavigationManager NavigationManager

...

protected override void OnInitialized()
{
 NavigationManager.LocationChanged += HandleLocationChanged;
}

private void HandleLocationChanged(object sender, LocationChangedEventArgs e)
{
 ...
}

public void Dispose()
{
 NavigationManager.LocationChanged -= HandleLocationChanged;
}

Client-side routing is bypassed.

The browser is forced to load the new page from the
server, whether or not the URI is normally handled by
the client-side router.

The following component navigates to the app's Counter component when the button is selected:

The following component handles a location changed event by subscribing to

NavigationManager.LocationChanged. The HandleLocationChanged method is unhooked when Dispose is called by

the framework. Unhooking the method permits garbage collection of the component.

LocationChangedEventArgs provides the following information about the event:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.locationchanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.toabsoluteuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.tobaserelativepath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.locationchanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs

Query string and parse parameters

@inject NavigationManager Navigation

...

var query = new Uri(Navigation.Uri).Query;

@page "/"
@using Microsoft.AspNetCore.WebUtilities
@inject NavigationManager NavigationManager

<h1>Query string parse example</h1>

<p>Value: @queryValue</p>

@code {
 private string queryValue = "Not set";

 protected override void OnInitialized()
 {
 var query = new Uri(NavigationManager.Uri).Query;

 if (QueryHelpers.ParseQuery(query).TryGetValue("{KEY}", out var value))
 {
 queryValue = value;
 }
 }
}

Location: The URL of the new location.

IsNavigationIntercepted: If true , Blazor intercepted the navigation from the browser. If false ,

NavigationManager.NavigateTo caused the navigation to occur.

For more information on component disposal, see ASP.NET Core Blazor lifecycle.

The query string of a request can be obtained from the NavigationManager's Uri property:

To parse a query string's parameters:

Add a package reference for Microsoft.AspNetCore.WebUtilities.

Obtain the value after parsing the query string with QueryHelpers.ParseQuery.

The placeholder {KEY} in the preceding example is the query string parameter key. For example, the URL key-value

pair ?ship=Tardis uses a key of ship .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs.location#microsoft_aspnetcore_components_routing_locationchangedeventargs_location
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs.isnavigationintercepted#microsoft_aspnetcore_components_routing_locationchangedeventargs_isnavigationintercepted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.uri#microsoft_aspnetcore_components_navigationmanager_uri
https://www.nuget.org/packages/Microsoft.AspNetCore.WebUtilities
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webutilities.queryhelpers.parsequery

ASP.NET Core Blazor routing
9/22/2020 • 9 minutes to read • Edit Online

ASP.NET Core endpoint routing integration

app.UseRouting();

app.UseEndpoints(endpoints =>
{
 endpoints.MapBlazorHub();
 endpoints.MapFallbackToPage("/_Host");
});

Route templates

<Router AppAssembly="@typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <p>Sorry, there's nothing at this address.</p>
 </NotFound>
</Router>

By Luke Latham

Learn how to route requests and how to use the NavLink component to create navigation links in Blazor apps.

Blazor Server is integrated into ASP.NET Core Endpoint Routing. An ASP.NET Core app is configured to accept

incoming connections for interactive components with MapBlazorHub in Startup.Configure :

The most typical configuration is to route all requests to a Razor page, which acts as the host for the server-side

part of the Blazor Server app. By convention, the host page is usually named _Host.cshtml . The route specified in

the host file is called a fallback route because it operates with a low priority in route matching. The fallback route is

considered when other routes don't match. This allows the app to use others controllers and pages without

interfering with the Blazor Server app.

For information on configuring MapFallbackToPage for non-root URL server hosting, see Host and deploy ASP.NET

Core Blazor.

The Router component enables routing to each component with a specified route. The Router component appears

in the App.razor file:

When a .razor file with an @page directive is compiled, the generated class is provided a RouteAttribute

specifying the route template.

At runtime, the RouteView component:

Receives the RouteData from the Router along with any desired parameters.

Renders the specified component with its layout (or an optional default layout) using the specified parameters.

You can optionally specify a DefaultLayout parameter with a layout class to use for components that don't specify

a layout. The default Blazor templates specify the MainLayout component. MainLayout.razor is in the template

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/routing.md
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.componentendpointroutebuilderextensions.mapblazorhub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.mapfallbacktopage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routedata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routeview.defaultlayout#microsoft_aspnetcore_components_routeview_defaultlayout

@page "/BlazorRoute"
@page "/DifferentBlazorRoute"

<h1>Blazor routing</h1>

IMPORTANTIMPORTANT

Provide custom content when content isn't found

<Router AppAssembly="typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <h1>Sorry</h1>
 <p>Sorry, there's nothing at this address.</p> b
 </NotFound>
</Router>

Route to components from multiple assemblies

<Router
 AppAssembly="@typeof(Program).Assembly"
 AdditionalAssemblies="new[] { typeof(Component1).Assembly }">
 ...
</Router>

Route parameters

project's Shared folder. For more information on layouts, see ASP.NET Core Blazor layouts.

Multiple route templates can be applied to a component. The following component responds to requests for

/BlazorRoute and /DifferentBlazorRoute :

For URLs to resolve correctly, the app must include a <base> tag in its wwwroot/index.html file (Blazor WebAssembly) or

Pages/_Host.cshtml file (Blazor Server) with the app base path specified in the href attribute (<base href="/">). For

more information, see Host and deploy ASP.NET Core Blazor.

The Router component allows the app to specify custom content if content isn't found for the requested route.

In the App.razor file, set custom content in the NotFound template parameter of the Router component:

The content of <NotFound> tags can include arbitrary items, such as other interactive components. To apply a

default layout to NotFound content, see ASP.NET Core Blazor layouts.

Use the AdditionalAssemblies parameter to specify additional assemblies for the Router component to consider

when searching for routable components. Specified assemblies are considered in addition to the AppAssembly -

specified assembly. In the following example, Component1 is a routable component defined in a referenced class

library. The following AdditionalAssemblies example results in routing support for Component1 :

The router uses route parameters to populate the corresponding component parameters with the same name

(case insensitive):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.additionalassemblies#microsoft_aspnetcore_components_routing_router_additionalassemblies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.additionalassemblies#microsoft_aspnetcore_components_routing_router_additionalassemblies

@page "/RouteParameter"
@page "/RouteParameter/{text}"

<h1>Blazor is @Text!</h1>

@code {
 [Parameter]
 public string Text { get; set; }

 protected override void OnInitialized()
 {
 Text = Text ?? "fantastic";
 }
}

Route constraints

@page "/Users/{Id:int}"

<h1>The user Id is @Id!</h1>

@code {
 [Parameter]
 public int Id { get; set; }
}

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES

IN VA RIA N TIN VA RIA N T
C ULT UREC ULT URE
M ATC H IN GM ATC H IN G

bool {active:bool} true , FALSE No

datetime {dob:datetime} 2016-12-31 ,

2016-12-31 7:32pm

Yes

decimal {price:decimal} 49.99 , -1,000.01 Yes

double {weight:double} 1.234 , -1,001.01e8 Yes

float {weight:float} 1.234 , -1,001.01e8 Yes

Optional parameters aren't supported. Two @page directives are applied in the previous example. The first permits

navigation to the component without a parameter. The second @page directive takes the {text} route parameter

and assigns the value to the Text property.

A route constraint enforces type matching on a route segment to a component.

In the following example, the route to the Users component only matches if:

An Id route segment is present on the request URL.

The Id segment is an integer (int).

The route constraints shown in the following table are available. For the route constraints that match with the

invariant culture, see the warning below the table for more information.

guid {id:guid} CD2C1638-1638-72D5-
1638-DEADBEEF1638

,
{CD2C1638-1638-72D5-
1638-DEADBEEF1638}

No

int {id:int} 123456789 , -123456789 Yes

long {ticks:long} 123456789 , -123456789 Yes

C O N ST RA IN TC O N ST RA IN T EXA M P L EEXA M P L E EXA M P L E M ATC H ESEXA M P L E M ATC H ES

IN VA RIA N TIN VA RIA N T
C ULT UREC ULT URE
M ATC H IN GM ATC H IN G

WARNINGWARNING

Routing with URLs that contain dotsRouting with URLs that contain dots

@page "/example"
@page "/example/{param}"

<p>
 Param: @Param
</p>

@code {
 [Parameter]
 public string Param { get; set; }
}

endpoints.MapFallbackToFile("/example/{param?}", "index.html");

endpoints.MapFallbackToPage("/example/{param?}", "/_Host");

Catch-all route parameters

Route constraints that verify the URL and are converted to a CLR type (such as int or DateTime) always use the invariant

culture. These constraints assume that the URL is non-localizable.

For hosted Blazor WebAssembly and Blazor Server apps, the server-side default route template assumes that if the

last segment of a request URL contains a dot (.) that a file is requested (for example,

https://localhost.com:5001/example/some.thing). Without additional configuration, an app returns a 404 - Not

Found response if this was meant to route to a component. To use a route with one or more parameters that

contains a dot, the app must configure the route with a custom template.

Consider the following Example component that can receive a route parameter from the last segment of the URL:

To permit the Server app of a hosted Blazor WebAssembly solution to route the request with a dot in the param

parameter, add a fallback file route template with the optional parameter in Startup.Configure (Startup.cs):

To configure a Blazor Server app to route the request with a dot in the param parameter, add a fallback page route

template with the optional parameter in Startup.Configure (Startup.cs):

For more information, see Routing in ASP.NET Core.

https://docs.microsoft.com/en-us/dotnet/api/system.datetime

@page "/page/{*pageRoute}"

@code {
 [Parameter]
 public string PageRoute { get; set; }
}

NavLink component

<div class="@NavMenuCssClass" @onclick="@ToggleNavMenu">
 <ul class="nav flex-column">
 <li class="nav-item px-3">
 <NavLink class="nav-link" href="" Match="NavLinkMatch.All">
 Home
 </NavLink>

 <li class="nav-item px-3">
 <NavLink class="nav-link" href="MyComponent" Match="NavLinkMatch.Prefix">
 My Component
 </NavLink>

</div>

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

Catch-all route parameters, which capture paths across multiple folder boundaries, are supported in components.

The catch-all route parameter must be:

Named to match the route segment name. Naming isn't case sensitive.

A string type. The framework doesn't provide automatic casting.

At the end of the URL.

For the URL /page/this/is/a/test with a route template of /page/{*pageRoute} , the value of PageRoute is set to

this/is/a/test .

Slashes and segments of the captured path are decoded. For a route template of /page/{*pageRoute} , the URL

/page/this/is/a%2Ftest%2A yields this/is/a/test* .

Catch-all route parameters are supported in ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.*

Use a NavLink component in place of HTML hyperlink elements (<a>) when creating navigation links. A NavLink

component behaves like an <a> element, except it toggles an active CSS class based on whether its href

matches the current URL. The active class helps a user understand which page is the active page among the

navigation links displayed. Optionally, assign a CSS class name to NavLink.ActiveClass to apply a custom CSS class

to the rendered link when the current route matches the href .

The following NavMenu component creates a Bootstrap navigation bar that demonstrates how to use NavLink

components:

There are two NavLinkMatch options that you can assign to the Match attribute of the <NavLink> element:

NavLinkMatch.All: The NavLink is active when it matches the entire current URL.

NavLinkMatch.Prefix (default): The NavLink is active when it matches any prefix of the current URL.

In the preceding example, the Home NavLink href="" matches the home URL and only receives the active CSS

class at the app's default base path URL (for example, https://localhost:5001/). The second NavLink receives the

active class when the user visits any URL with a MyComponent prefix (for example,

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink.activeclass#microsoft_aspnetcore_components_routing_navlink_activeclass
https://getbootstrap.com/docs/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch#microsoft_aspnetcore_components_routing_navlinkmatch_all
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlinkmatch#microsoft_aspnetcore_components_routing_navlinkmatch_prefix
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink

<NavLink href="my-page" target="_blank">My page</NavLink>

My page

WARNINGWARNING

@for (int c = 0; c < 10; c++)
{
 var current = c;
 <li ...>
 <NavLink ... href="@c">
 @current
 </NavLink>

}

@foreach(var c in Enumerable.Range(0,10))
{
 <li ...>
 <NavLink ... href="@c">
 @c
 </NavLink>

}

URI and navigation state helpers

M EM B ERM EM B ER DESC RIP T IO NDESC RIP T IO N

Uri Gets the current absolute URI.

BaseUri Gets the base URI (with a trailing slash) that can be
prepended to relative URI paths to produce an absolute URI.
Typically, BaseUri corresponds to the href attribute on the

document's <base> element in wwwroot/index.html

(Blazor WebAssembly) or Pages/_Host.cshtml (Blazor

Server).

https://localhost:5001/MyComponent and https://localhost:5001/MyComponent/AnotherSegment).

Additional NavLink component attributes are passed through to the rendered anchor tag. In the following

example, the NavLink component includes the target attribute:

The following HTML markup is rendered:

Due to the way that Blazor renders child content, rendering NavLink components inside a for loop requires a local index

variable if the incrementing loop variable is used in the NavLink (child) component's content:

Using an index variable in this scenario is a requirement for anyany child component that uses a loop variable in its child

content, not just the NavLink component.

Alternatively, use a foreach loop with Enumerable.Range:

Use NavigationManager to work with URIs and navigation in C# code. NavigationManager provides the event and

methods shown in the following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.range
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.uri#microsoft_aspnetcore_components_navigationmanager_uri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri

NavigateTo Navigates to the specified URI. If forceLoad is true :

LocationChanged An event that fires when the navigation location has changed.

ToAbsoluteUri Converts a relative URI into an absolute URI.

ToBaseRelativePath Given a base URI (for example, a URI previously returned by
BaseUri), converts an absolute URI into a URI relative to the
base URI prefix.

M EM B ERM EM B ER DESC RIP T IO NDESC RIP T IO N

@page "/navigate"
@inject NavigationManager NavigationManager

<h1>Navigate in Code Example</h1>

<button class="btn btn-primary" @onclick="NavigateToCounterComponent">
 Navigate to the Counter component
</button>

@code {
 private void NavigateToCounterComponent()
 {
 NavigationManager.NavigateTo("counter");
 }
}

@implements IDisposable
@inject NavigationManager NavigationManager

...

protected override void OnInitialized()
{
 NavigationManager.LocationChanged += HandleLocationChanged;
}

private void HandleLocationChanged(object sender, LocationChangedEventArgs e)
{
 ...
}

public void Dispose()
{
 NavigationManager.LocationChanged -= HandleLocationChanged;
}

Client-side routing is bypassed.

The browser is forced to load the new page from the
server, whether or not the URI is normally handled by
the client-side router.

The following component navigates to the app's Counter component when the button is selected:

The following component handles a location changed event by subscribing to

NavigationManager.LocationChanged. The HandleLocationChanged method is unhooked when Dispose is called by

the framework. Unhooking the method permits garbage collection of the component.

LocationChangedEventArgs provides the following information about the event:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.locationchanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.toabsoluteuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.tobaserelativepath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.baseuri#microsoft_aspnetcore_components_navigationmanager_baseuri
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.locationchanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs

Query string and parse parameters

@inject NavigationManager Navigation

...

var query = new Uri(Navigation.Uri).Query;

@page "/"
@using Microsoft.AspNetCore.WebUtilities
@inject NavigationManager NavigationManager

<h1>Query string parse example</h1>

<p>Value: @queryValue</p>

@code {
 private string queryValue = "Not set";

 protected override void OnInitialized()
 {
 var query = new Uri(NavigationManager.Uri).Query;

 if (QueryHelpers.ParseQuery(query).TryGetValue("{KEY}", out var value))
 {
 queryValue = value;
 }
 }
}

Location: The URL of the new location.

IsNavigationIntercepted: If true , Blazor intercepted the navigation from the browser. If false ,

NavigationManager.NavigateTo caused the navigation to occur.

For more information on component disposal, see ASP.NET Core Blazor lifecycle.

The query string of a request can be obtained from the NavigationManager's Uri property:

To parse a query string's parameters:

Add a package reference for Microsoft.AspNetCore.WebUtilities.

Obtain the value after parsing the query string with QueryHelpers.ParseQuery.

The placeholder {KEY} in the preceding example is the query string parameter key. For example, the URL key-

value pair ?ship=Tardis uses a key of ship .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs.location#microsoft_aspnetcore_components_routing_locationchangedeventargs_location
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.locationchangedeventargs.isnavigationintercepted#microsoft_aspnetcore_components_routing_locationchangedeventargs_isnavigationintercepted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.uri#microsoft_aspnetcore_components_navigationmanager_uri
https://www.nuget.org/packages/Microsoft.AspNetCore.WebUtilities
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webutilities.queryhelpers.parsequery

ASP.NET Core Blazor hosting model configuration
9/22/2020 • 7 minutes to read • Edit Online

SignalR cross-origin negotiation for authenticationSignalR cross-origin negotiation for authentication

Reflect the connection state in the UI

<div id="components-reconnect-modal">
 ...
</div>

By Daniel Roth, Mackinnon Buck, and Luke Latham

This article covers hosting model configuration.

This section applies to Blazor WebAssembly.

To configure SignalR's underlying client to send credentials, such as cookies or HTTP authentication headers:

public class IncludeRequestCredentialsMessageHandler : DelegatingHandler
{
 protected override Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {
 request.SetBrowserRequestCredentials(BrowserRequestCredentials.Include);
 return base.SendAsync(request, cancellationToken);
 }
}

var connection = new HubConnectionBuilder()
 .WithUrl(new Uri("http://signalr.example.com"), options =>
 {
 options.HttpMessageHandlerFactory = innerHandler =>
 new IncludeRequestCredentialsMessageHandler { InnerHandler = innerHandler };
 }).Build();

Use SetBrowserRequestCredentials to set Include on cross-origin fetch requests:

Assign the HttpMessageHandler to the HttpMessageHandlerFactory option:

For more information, see ASP.NET Core SignalR configuration.

This section applies to Blazor Server.

When the client detects that the connection has been lost, a default UI is displayed to the user while the client

attempts to reconnect. If reconnection fails, the user is provided the option to retry.

To customize the UI, define an element with an id of components-reconnect-modal in the <body> of the

_Host.cshtml Razor page:

Add the following to the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css):

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/fundamentals/additional-scenarios.md
https://github.com/danroth27
https://github.com/MackinnonBuck
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserrequestcredentials
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.browserrequestcredentials#microsoft_aspnetcore_components_webassembly_http_browserrequestcredentials_include
https://developer.mozilla.org/docs/Web/API/Fetch_API/Using_Fetch
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connections.client.httpconnectionoptions.httpmessagehandlerfactory#microsoft_aspnetcore_http_connections_client_httpconnectionoptions_httpmessagehandlerfactory

#components-reconnect-modal {
 display: none;
}

#components-reconnect-modal.components-reconnect-show {
 display: block;
}

C SS C L A SSC SS C L A SS IN DIC AT ES…IN DIC AT ES…

components-reconnect-show A lost connection. The client is attempting to reconnect. Show
the modal.

components-reconnect-hide An active connection is re-established to the server. Hide the
modal.

components-reconnect-failed Reconnection failed, probably due to a network failure. To
attempt reconnection, call window.Blazor.reconnect() .

components-reconnect-rejected Reconnection rejected. The server was reached but refused the
connection, and the user's state on the server is lost. To reload
the app, call location.reload() . This connection state may

result when:

Render mode

<body>
 <app>
 <component type="typeof(App)" render-mode="ServerPrerendered" />
 </app>

 <script src="_framework/blazor.server.js"></script>
</body>

The following table describes the CSS classes applied to the components-reconnect-modal element.

A crash in the server-side circuit occurs.

The client is disconnected long enough for the server
to drop the user's state. Instances of the components
that the user is interacting with are disposed.

The server is restarted, or the app's worker process is
recycled.

This section applies to Blazor Server.

Blazor Server apps are set up by default to prerender the UI on the server before the client connection to the server

is established. This is set up in the _Host.cshtml Razor page:

RenderMode configures whether the component:

Is prerendered into the page.

Is rendered as static HTML on the page or if it includes the necessary information to bootstrap a Blazor app

from the user agent.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper.rendermode#microsoft_aspnetcore_mvc_taghelpers_componenttaghelper_rendermode

REN DER M O DEREN DER M O DE DESC RIP T IO NDESC RIP T IO N

ServerPrerendered Renders the component into static HTML and includes a
marker for a Blazor Server app. When the user-agent starts,
this marker is used to bootstrap a Blazor app.

Server Renders a marker for a Blazor Server app. Output from the
component isn't included. When the user-agent starts, this
marker is used to bootstrap a Blazor app.

Static Renders the component into static HTML.

Initialize the Blazor circuit

Initialize Blazor when the document is readyInitialize Blazor when the document is ready

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 document.addEventListener("DOMContentLoaded", function() {
 Blazor.start();
 });
 </script>
</body>

Chain to the Chain to the Promise that results from a manual start that results from a manual start

Rendering server components from a static HTML page isn't supported.

This section applies to Blazor Server.

Configure the manual start of a Blazor Server app's SignalR circuit in the Pages/_Host.cshtml file:

Add an autostart="false" attribute to the <script> tag for the blazor.server.js script.

Place a script that calls Blazor.start after the blazor.server.js script's tag and inside the closing </body> tag.

When autostart is disabled, any aspect of the app that doesn't depend on the circuit works normally. For example,

client-side routing is operational. However, any aspect that depends on the circuit isn't operational until

Blazor.start is called. App behavior is unpredictable without an established circuit. For example, component

methods fail to execute while the circuit is disconnected.

To initialize the Blazor app when the document is ready:

To perform additional tasks, such as JS interop initialization, use then to chain to the Promise that results from a

manual Blazor app start:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_serverprerendered
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_server
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_static

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start().then(function () {
 ...
 });
 </script>
</body>

Configure the SignalR clientConfigure the SignalR client
LoggingLogging

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 configureSignalR: function (builder) {
 builder.configureLogging("information");
 }
 });
 </script>
</body>

Modify the reconnection handlerModify the reconnection handler

To configure SignalR client logging, pass in a configuration object (configureSignalR) that calls configureLogging

with the log level on the client builder :

In the preceding example, information is equivalent to a log level of LogLevel.Information.

The reconnection handler's circuit connection events can be modified for custom behaviors, such as:

To notify the user if the connection is dropped.

To perform logging (from the client) when a circuit is connected.

To modify the connection events, register callbacks for the following connection changes:

Dropped connections use onConnectionDown .

Established/re-established connections use onConnectionUp .

BothBoth onConnectionDown and onConnectionUp must be specified:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel#microsoft_extensions_logging_loglevel_information

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 reconnectionHandler: {
 onConnectionDown: (options, error) => console.error(error);
 onConnectionUp: () => console.log("Up, up, and away!");
 }
 });
 </script>
</body>

Adjust the reconnection retry count and intervalAdjust the reconnection retry count and interval

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 Blazor.start({
 reconnectionOptions: {
 maxRetries: 3,
 retryIntervalMilliseconds: 2000
 }
 });
 </script>
</body>

Hide or replace the reconnection display

<body>

 ...

 <script autostart="false" src="_framework/blazor.server.js"></script>
 <script>
 window.addEventListener('beforeunload', function () {
 Blazor.defaultReconnectionHandler._reconnectionDisplay = {};
 });

 Blazor.start();
 </script>
</body>

Blazor.defaultReconnectionHandler._reconnectionDisplay =
 document.getElementById("{ELEMENT ID}");

To adjust the reconnection retry count and interval, set the number of retries (maxRetries) and period in

milliseconds permitted for each retry attempt (retryIntervalMilliseconds):

To hide the reconnection display, set the reconnection handler's _reconnectionDisplay to an empty object ({} or

new Object()):

To replace the reconnection display, set _reconnectionDisplay in the preceding example to the element for display:

#components-reconnect-modal {
 transition: visibility 0s linear 1000ms;
}

Influence HTML <head> tag elements

@using Microsoft.AspNetCore.Components.Web.Extensions.Head

<Title Value="{TITLE}" />
<Link href="{URL}" rel="stylesheet" />
<Meta content="{DESCRIPTION}" name="description" />

Static files

The placeholder {ELEMENT ID} is the ID of the HTML element to display.

Customize the delay before the reconnection display appears by setting the transition-delay property in the app's

CSS (wwwroot/css/site.css) for the modal element. The following example sets the transition delay from 500 ms

(default) to 1,000 ms (1 second):

This section applies to the upcoming ASP.NET Core 5.0 release of Blazor WebAssembly and Blazor Server.

When rendered, the Title , Link , and Meta components add or update data in the HTML <head> tag elements:

In the preceding example, placeholders for {TITLE} , {URL} , and {DESCRIPTION} are string values, Razor variables,

or Razor expressions.

The following characteristics apply:

Server-side prerendering is supported.

The Value parameter is the only valid parameter for the Title component.

HTML attributes provided to the Meta and Link components are captured in additional attributes and passed

through to the rendered HTML tag.

For multiple Title components, the title of the page reflects the Value of the last Title component rendered.

If multiple Meta or Link components are included with identical attributes, there's exactly one HTML tag

rendered per Meta or Link component. Two Meta or Link components can't refer to the same rendered

HTML tag.

Changes to the parameters of existing Meta or Link components are reflected in their rendered HTML tags.

When the Link or Meta components are no longer rendered and thus disposed by the framework, their

rendered HTML tags are removed.

When one of the framework components is used in a child component, the rendered HTML tag influences any

other child component of the parent component as long as the child component containing the framework

component is rendered. The distinction between using the one of these framework components in a child

component and placing a an HTML tag in wwwroot/index.html or Pages/_Host.cshtml is that a framework

component's rendered HTML tag:

Can be modified by application state. A hard-coded HTML tag can't be modified by application state.

Is removed from the HTML <head> when the parent component is no longer rendered.

This section applies to Blazor Server.

To create additional file mappings with a FileExtensionContentTypeProvider or configure other StaticFileOptions,

use oneone of the following approaches. In the following examples, the {EXTENSION} placeholder is the file extension,

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.staticfiles.fileextensioncontenttypeprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions

Additional resources

and the {CONTENT TYPE} placeholder is the content type.

using Microsoft.AspNetCore.StaticFiles;

...

var provider = new FileExtensionContentTypeProvider();
provider.Mappings["{EXTENSION}"] = "{CONTENT TYPE}";

services.Configure<StaticFileOptions>(options =>
{
 options.ContentTypeProvider = provider;
});

using Microsoft.AspNetCore.StaticFiles;

...

var provider = new FileExtensionContentTypeProvider();
provider.Mappings["{EXTENSION}"] = "{CONTENT TYPE}";

app.UseStaticFiles(new StaticFileOptions { ContentTypeProvider = provider });
app.UseStaticFiles();

Configure options through dependency injection (DI) in Startup.ConfigureServices (Startup.cs) using

StaticFileOptions:

Because this approach configures the same file provider used to serve blazor.server.js , make sure that

your custom configuration doesn't interfere with serving blazor.server.js . For example, don't remove the

mapping for JavaScript files by configuring the provider with provider.Mappings.Remove(".js") .

Use two calls to UseStaticFiles in Startup.Configure (Startup.cs):

Configure the custom file provider in the first call with StaticFileOptions.

The second middleware serves blazor.server.js , which uses the default static files configuration

provided by the Blazor framework.

Logging in .NET Core and ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileoptions

ASP.NET Core Blazor component virtualization
9/22/2020 • 3 minutes to read • Edit Online

<table>
 @foreach (var employee in employees)
 {
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
 }
</table>

<table>
 <Virtualize Context="employee" Items="@employees">
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
 </Virtualize>
</table>

<table>
 <Virtualize Items="@employees">
 <tr>
 <td>@context.FirstName</td>
 <td>@context.LastName</td>
 <td>@context.JobTitle</td>
 </tr>
 </Virtualize>
</table>

By Daniel Roth

Improve the perceived performance of component rendering using the Blazor framework's built-in virtualization

support. Virtualization is a technique for limiting UI rendering to just the parts that are currently visible. For

example, virtualization is helpful when the app must render a long list or a table with many rows and only a subset

of items is required to be visible at any given time. Blazor provides the Virtualize component that can be used to

add virtualization to an app's components.

Without virtualization, a typical list or table-based component might use a C# foreach loop to render each item in

the list or each row in the table:

If the list contains thousands of items, then rendering the list may take a long time. The user may experience a

noticeable UI lag.

Instead of rendering each item in the list all at one time, replace the foreach loop with the Virtualize component

and specify a fixed item source with Items . Only the items that are currently visible are rendered:

If not specifying a context to the component with Context , use the context value (@context.{PROPERTY}) in the

item content template:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/components/virtualization.md
https://github.com/danroth27
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/foreach-in
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/foreach-in

Item provider delegate

<table>
 <Virtualize Context="employee" ItemsProvider="@LoadEmployees">
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
 </Virtualize>
</table>

private async ValueTask<ItemsProviderResult<Employee>> LoadEmployees(
 ItemsProviderRequest request)
{
 var numEmployees = Math.Min(request.Count, totalEmployees - request.StartIndex);
 var employees = await EmployeesService.GetEmployeesAsync(request.StartIndex,
 numEmployees, request.CancellationToken);

 return new ItemsProviderResult<Employee>(employees, totalEmployees);
}

Placeholder

<table>
 <Virtualize Context="employee" ItemsProvider="@LoadEmployees">
 <ItemContent>
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
 </ItemContent>
 <Placeholder>
 <tr>
 <td>Loading...</td>
 </tr>
 </Placeholder>
 </Virtualize>
</table>

The Virtualize component calculates how many items to render based on the height of the container and the size

of the rendered items.

If you don't want to load all of the items into memory, you can specify an items provider delegate method to the

component's ItemsProvider parameter that asynchronously retrieves the requested items on demand:

The items provider receives an ItemsProviderRequest , which specifies the required number of items starting at a

specific start index. The items provider then retrieves the requested items from a database or other service and

returns them as an ItemsProviderResult<TItem> along with a count of the total items. The items provider can choose

to retrieve the items with each request or cache them so that they're readily available. Don't attempt to use an items

provider and assign a collection to Items for the same Virtualize component.

The following example loads employees from an EmployeeService :

Because requesting items from a remote data source might take some time, you have the option to render a

placeholder (<Placeholder>...</Placeholder>) until the item data is available:

Item size

<table>
 <Virtualize Context="employee" Items="@employees" ItemSize="25">
 ...
 </Virtualize>
</table>

Overscan count

<table>
 <Virtualize Context="employee" Items="@employees" OverscanCount="4">
 ...
 </Virtualize>
</table>

State changes

The size of each item in pixels can be set with ItemSize (default: 50px):

OverscanCount determines how many additional items are rendered before and after the visible region. This setting

helps to reduce the frequency of rendering during scrolling. However, higher values result in more elements

rendered in the page (default: 3):

For example, a grid or list that renders hundreds of rows containing components is processor intensive to render.

Consider virtualizing a grid or list layout so that only a subset of the components is rendered at any given time. For

an example of component subset rendering, see the following components in the Virtualization sample app

(aspnet/samples GitHub repository):

Virtualize component (Shared/Virtualize.razor): A component written in C# that implements

ComponentBase to render a set of weather data rows based on user scrolling.

FetchData component (Pages/FetchData.razor): Uses the Virtualize component to display 25 rows of weather

data at a time.

When making changes to items rendered by the Virtualize component, call StateHasChanged to force re-

evaluation and rerendering of the component.

https://github.com/aspnet/samples/tree/master/samples/aspnetcore/blazor/Virtualization
https://github.com/aspnet/samples/blob/master/samples/aspnetcore/blazor/Virtualization/Shared/Virtualize.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://github.com/aspnet/samples/blob/master/samples/aspnetcore/blazor/Virtualization/Pages/FetchData.razor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged

ASP.NET Core Blazor cascading values and
parameters
9/22/2020 • 4 minutes to read • Edit Online

Theme exampleTheme example

public class ThemeInfo
{
 public string ButtonClass { get; set; }
}

By Luke Latham and Daniel Roth

View or download sample code (how to download)

In some scenarios, it's inconvenient to flow data from an ancestor component to a descendent component

using component parameters, especially when there are several component layers. Cascading values and

parameters solve this problem by providing a convenient way for an ancestor component to provide a value to

all of its descendent components. Cascading values and parameters also provide an approach for components

to coordinate.

In the following example from the sample app, the ThemeInfo class specifies the theme information to flow

down the component hierarchy so that all of the buttons within a given part of the app share the same style.

UIThemeClasses/ThemeInfo.cs :

An ancestor component can provide a cascading value using the Cascading Value component. The

CascadingValue<TValue> component wraps a subtree of the component hierarchy and supplies a single value

to all components within that subtree.

For example, the sample app specifies theme information (ThemeInfo) in one of the app's layouts as a

cascading parameter for all components that make up the layout body of the @Body property. ButtonClass is

assigned a value of btn-success in the layout component. Any descendent component can consume this

property through the ThemeInfo cascading object.

CascadingValuesParametersLayout component:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/components/cascading-values-and-parameters.md
https://github.com/guardrex
https://github.com/danroth27
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.cascadingvalue-1

@inherits LayoutComponentBase
@using BlazorSample.UIThemeClasses

<div class="container-fluid">
 <div class="row">
 <div class="col-sm-3">
 <NavMenu />
 </div>
 <div class="col-sm-9">
 <CascadingValue Value="theme">
 <div class="content px-4">
 @Body
 </div>
 </CascadingValue>
 </div>
 </div>
</div>

@code {
 private ThemeInfo theme = new ThemeInfo { ButtonClass = "btn-success" };
}

@page "/cascadingvaluesparameterstheme"
@layout CascadingValuesParametersLayout
@using BlazorSample.UIThemeClasses

<h1>Cascading Values & Parameters</h1>

<p>Current count: @currentCount</p>

<p>
 <button class="btn" @onclick="IncrementCount">
 Increment Counter (Unthemed)
 </button>
</p>

<p>
 <button class="btn @ThemeInfo.ButtonClass" @onclick="IncrementCount">
 Increment Counter (Themed)
 </button>
</p>

@code {
 private int currentCount = 0;

 [CascadingParameter]
 protected ThemeInfo ThemeInfo { get; set; }

 private void IncrementCount()
 {
 currentCount++;
 }
}

To make use of cascading values, components declare cascading parameters using the [CascadingParameter]

attribute. Cascading values are bound to cascading parameters by type.

In the sample app, the CascadingValuesParametersTheme component binds the ThemeInfo cascading value to a

cascading parameter. The parameter is used to set the CSS class for one of the buttons displayed by the

component.

CascadingValuesParametersTheme component:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.cascadingparameterattribute

<CascadingValue Value="@parentCascadeParameter1" Name="CascadeParam1">
 <CascadingValue Value="@ParentCascadeParameter2" Name="CascadeParam2">
 ...
 </CascadingValue>
</CascadingValue>

@code {
 private MyCascadingType parentCascadeParameter1;

 [Parameter]
 public MyCascadingType ParentCascadeParameter2 { get; set; }

 ...
}

...

@code {
 [CascadingParameter(Name = "CascadeParam1")]
 protected MyCascadingType ChildCascadeParameter1 { get; set; }

 [CascadingParameter(Name = "CascadeParam2")]
 protected MyCascadingType ChildCascadeParameter2 { get; set; }
}

TabSet exampleTabSet example

using Microsoft.AspNetCore.Components;

namespace BlazorSample.UIInterfaces
{
 public interface ITab
 {
 RenderFragment ChildContent { get; }
 }
}

To cascade multiple values of the same type within the same subtree, provide a unique Name string to each

CascadingValue<TValue> component and its corresponding [CascadingParameter] attribute. In the following

example, two CascadingValue<TValue> components cascade different instances of MyCascadingType by name:

In a descendant component, the cascaded parameters receive their values from the corresponding cascaded

values in the ancestor component by name:

Cascading parameters also enable components to collaborate across the component hierarchy. For example,

consider the following TabSet example in the sample app.

The sample app has an ITab interface that tabs implement:

The CascadingValuesParametersTabSet component uses the TabSet component, which contains several Tab

components:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.cascadingvalue-1.name
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.cascadingvalue-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.cascadingparameterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.cascadingvalue-1

@page "/CascadingValuesParametersTabSet"

<TabSet>
 <Tab Title="First tab">
 <h4>Greetings from the first tab!</h4>

 <label>
 <input type="checkbox" @bind="showThirdTab" />
 Toggle third tab
 </label>
 </Tab>
 <Tab Title="Second tab">
 <h4>The second tab says Hello World!</h4>
 </Tab>

 @if (showThirdTab)
 {
 <Tab Title="Third tab">
 <h4>Welcome to the disappearing third tab!</h4>
 <p>Toggle this tab from the first tab.</p>
 </Tab>
 }
</TabSet>

@code {
 private bool showThirdTab;
}

The child Tab components aren't explicitly passed as parameters to the TabSet . Instead, the child Tab

components are part of the child content of the TabSet . However, the TabSet still needs to know about each

Tab component so that it can render the headers and the active tab. To enable this coordination without

requiring additional code, the TabSet component can provide itself as a cascading value that is then picked up

by the descendent Tab components.

TabSet component:

@using BlazorSample.UIInterfaces

<!-- Display the tab headers -->
<CascadingValue Value=this>
 <ul class="nav nav-tabs">
 @ChildContent

</CascadingValue>

<!-- Display body for only the active tab -->
<div class="nav-tabs-body p-4">
 @ActiveTab?.ChildContent
</div>

@code {
 [Parameter]
 public RenderFragment ChildContent { get; set; }

 public ITab ActiveTab { get; private set; }

 public void AddTab(ITab tab)
 {
 if (ActiveTab == null)
 {
 SetActiveTab(tab);
 }
 }

 public void SetActiveTab(ITab tab)
 {
 if (ActiveTab != tab)
 {
 ActiveTab = tab;
 StateHasChanged();
 }
 }
}

The descendent Tab components capture the containing TabSet as a cascading parameter, so the Tab

components add themselves to the TabSet and coordinate on which tab is active.

Tab component:

@using BlazorSample.UIInterfaces
@implements ITab

 <a @onclick="ActivateTab" class="nav-link @TitleCssClass" role="button">
 @Title

@code {
 [CascadingParameter]
 public TabSet ContainerTabSet { get; set; }

 [Parameter]
 public string Title { get; set; }

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 private string TitleCssClass => ContainerTabSet.ActiveTab == this ? "active" : null;

 protected override void OnInitialized()
 {
 ContainerTabSet.AddTab(this);
 }

 private void ActivateTab()
 {
 ContainerTabSet.SetActiveTab(this);
 }
}

ASP.NET Core Blazor data binding
9/22/2020 • 6 minutes to read • Edit Online

<p>
 <input @bind="currentValue" /> Current value: @currentValue
</p>

<p>
 <input @bind="CurrentValue" /> Current value: @CurrentValue
</p>

@code {
 private string currentValue;

 private string CurrentValue { get; set; }
}

<input value="@CurrentValue"
 @onchange="@((ChangeEventArgs __e) => CurrentValue =
 __e.Value.ToString())" />

@code {
 private string CurrentValue { get; set; }
}

By Luke Latham and Daniel Roth

Razor components provide data binding features via an HTML element attribute named @bind with a field,

property, or Razor expression value.

The following example binds an <input> element to the currentValue field and an <input> element to the

CurrentValue property:

When one of the elements looses focus, its bound field or property is updated.

The text box is updated in the UI only when the component is rendered, not in response to changing the field's or

property's value. Since components render themselves after event handler code executes, field and property

updates are usually reflected in the UI immediately after an event handler is triggered.

Using @bind with the CurrentValue property (<input @bind="CurrentValue" />) is essentially equivalent to the

following:

When the component is rendered, the value of the input element comes from the CurrentValue property. When

the user types in the text box and changes element focus, the onchange event is fired and the CurrentValue

property is set to the changed value. In reality, the code generation is more complex than that because @bind

handles cases where type conversions are performed. In principle, @bind associates the current value of an

expression with a value attribute and handles changes using the registered handler.

Bind a property or field on other events by also including an @bind:event attribute with an event parameter. The

following example binds the CurrentValue property on the oninput event:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/components/data-binding.md
https://github.com/guardrex
https://github.com/danroth27

<input @bind="CurrentValue" @bind:event="oninput" />

@code {
 private string CurrentValue { get; set; }
}

Unparsable values

Format strings

Unlike onchange , which fires when the element loses focus, oninput fires when the value of the text box changes.

Attribute binding is case sensitive:

@bind is valid.

@Bind and @BIND are invalid.

When a user provides an unparsable value to a databound element, the unparsable value is automatically reverted

to its previous value when the bind event is triggered.

Consider the following scenario:

<input @bind="inputValue" />

@code {
 private int inputValue = 123;
}

An <input> element is bound to an int type with an initial value of 123 :

The user updates the value of the element to 123.45 in the page and changes the element focus.

In the preceding scenario, the element's value is reverted to 123 . When the value 123.45 is rejected in favor of

the original value of 123 , the user understands that their value wasn't accepted.

By default, binding applies to the element's onchange event (@bind="{PROPERTY OR FIELD}"). Use

@bind="{PROPERTY OR FIELD}" @bind:event={EVENT} to trigger binding on a different event. For the oninput event (

@bind:event="oninput"), the reversion occurs after any keystroke that introduces an unparsable value. When

targeting the oninput event with an int -bound type, a user is prevented from typing a . character. A .

character is immediately removed, so the user receives immediate feedback that only whole numbers are

permitted. There are scenarios where reverting the value on the oninput event isn't ideal, such as when the user

should be allowed to clear an unparsable <input> value. Alternatives include:

Don't use the oninput event. Use the default onchange event (only specify @bind="{PROPERTY OR FIELD}"),

where an invalid value isn't reverted until the element loses focus.

Bind to a nullable type, such as int? or string and provide custom logic to handle invalid entries.

Use a form validation component, such as InputNumber<TValue> or InputDate<TValue>. Form validation

components have built-in support to manage invalid inputs. For more information, see ASP.NET Core Blazor

forms and validation. Form validation components:

Permit the user to provide invalid input and receive validation errors on the associated EditContext.

Display validation errors in the UI without interfering with the user entering additional webform data.

Data binding works with DateTime format strings using @bind:format . Other format expressions, such as currency

or number formats, aren't available at this time.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/system.datetime

<input @bind="startDate" @bind:format="yyyy-MM-dd" />

@code {
 private DateTime startDate = new DateTime(2020, 1, 1);
}

<input type="date" @bind="startDate" @bind:format="yyyy-MM-dd">

Parent-to-child binding with component parameters

<div class="card bg-light mt-3" style="width:18rem ">
 <div class="card-body">
 <h3 class="card-title">Child Component</h3>
 <p class="card-text">Child <code>Year</code>: @Year</p>
 </div>
</div>

@code {
 [Parameter]
 public int Year { get; set; }

 [Parameter]
 public EventCallback<int> YearChanged { get; set; }
}

In the preceding code, the <input> element's field type (type) defaults to text . @bind:format is supported for

binding the following .NET types:

System.DateTime

System.DateTime?

System.DateTimeOffset

System.DateTimeOffset?

The @bind:format attribute specifies the date format to apply to the value of the <input> element. The format is

also used to parse the value when an onchange event occurs.

Specifying a format for the date field type isn't recommended because Blazor has built-in support to format

dates. In spite of the recommendation, only use the yyyy-MM-dd date format for binding to function correctly if a

format is supplied with the date field type:

Component parameters permit binding properties and fields of a parent component with

@bind-{PROPERTY OR FIELD} syntax.

The following Child component (Shared/Child.razor) has a Year component parameter and YearChanged

callback:

The callback (EventCallback<TValue>) must be named as the component parameter name followed by the "

Changed " suffix ({PARAMETER NAME}Changed). In the preceding example, the callback is named YearChanged . For

more information on EventCallback<TValue>, see ASP.NET Core Blazor event handling.

In the following Parent component (Parent.razor), the year field is bound to the Year parameter of the child

component:

https://docs.microsoft.com/en-us/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/en-us/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback-1

@page "/Parent"

<h1>Parent Component</h1>

<p>Parent <code>year</code>: @year</p>

<button @onclick="UpdateYear">Update Parent <code>year</code></button>

<Child @bind-Year="year" />

@code {
 private Random r = new Random();
 private int year = 1979;

 private void UpdateYear()
 {
 year = r.Next(1950, 2021);
 }
}

<Child @bind-Year="year" @bind-Year:event="YearChanged" />

Child-to-parent binding with chained bind

The Year parameter is bindable because it has a companion YearChanged event that matches the type of the

Year parameter.

By convention, a property can be bound to a corresponding event handler by including an @bind-{PROPERTY}:event

attribute assigned to the handler. <Child @bind-Year="year" /> is equivalent to writing:

A common scenario is chaining a data-bound parameter to a page element in the component's output. This

scenario is called a chained bind because multiple levels of binding occur simultaneously.

A chained bind can't be implemented with @bind syntax in the child component. The event handler and value must

be specified separately. A parent component, however, can use @bind syntax with the child component's

parameter.

The following PasswordField component (PasswordField.razor):

Sets an <input> element's value to a password field.

Exposes changes of a Password property to a parent component with an EventCallback that passes in the

current value of the child's password field as its argument.

Uses the onclick event to trigger the ToggleShowPassword method. For more information, see ASP.NET Core

Blazor event handling.

<h1>Provide your password</h1>

Password:

<input @oninput="OnPasswordChanged"
 required
 type="@(showPassword ? "text" : "password")"
 value="@password" />

<button class="btn btn-primary" @onclick="ToggleShowPassword">
 Show password
</button>

@code {
 private bool showPassword;
 private string password;

 [Parameter]
 public string Password { get; set; }

 [Parameter]
 public EventCallback<string> PasswordChanged { get; set; }

 private Task OnPasswordChanged(ChangeEventArgs e)
 {
 password = e.Value.ToString();

 return PasswordChanged.InvokeAsync(password);
 }

 private void ToggleShowPassword()
 {
 showPassword = !showPassword;
 }
}

@page "/Parent"

<h1>Parent Component</h1>

<PasswordField @bind-Password="password" />

@code {
 private string password;
}

The PasswordField component is used in another component:

Perform checks or trap errors in the method that invokes the binding's delegate. The following example provides

immediate feedback to the user if a space is used in the password's value:

<h1>Child Component</h1>

Password:

<input @oninput="OnPasswordChanged"
 required
 type="@(showPassword ? "text" : "password")"
 value="@password" />

<button class="btn btn-primary" @onclick="ToggleShowPassword">
 Show password
</button>

@validationMessage

@code {
 private bool showPassword;
 private string password;
 private string validationMessage;

 [Parameter]
 public string Password { get; set; }

 [Parameter]
 public EventCallback<string> PasswordChanged { get; set; }

 private Task OnPasswordChanged(ChangeEventArgs e)
 {
 if (password.Contains(' '))
 {
 validationMessage = "Spaces not allowed!";

 return Task.CompletedTask;
 }
 else
 {
 validationMessage = string.Empty;

 return PasswordChanged.InvokeAsync(password);
 }
 }

 private void ToggleShowPassword()
 {
 showPassword = !showPassword;
 }
}

Additional resources
Binding to radio buttons in a form

Binding <select> element options to C# object null values in a form

ASP.NET Core Blazor event handling
9/22/2020 • 6 minutes to read • Edit Online

<button class="btn btn-primary" @onclick="UpdateHeading">
 Update heading
</button>

@code {
 private void UpdateHeading(MouseEventArgs e)
 {
 ...
 }
}

<input type="checkbox" class="form-check-input" @onchange="CheckChanged" />

@code {
 private void CheckChanged()
 {
 ...
 }
}

<button class="btn btn-primary" @onclick="UpdateHeading">
 Update heading
</button>

@code {
 private async Task UpdateHeading(MouseEventArgs e)
 {
 ...
 }
}

Event argument types

By Luke Latham and Daniel Roth

Razor components provide event handling features. For an HTML element attribute named @on{EVENT} (for

example, @onclick) with a delegate-typed value, a Razor component treats the attribute's value as an event

handler.

The following code calls the UpdateHeading method when the button is selected in the UI:

The following code calls the CheckChanged method when the check box is changed in the UI:

Event handlers can also be asynchronous and return a Task. There's no need to manually call StateHasChanged.

Exceptions are logged when they occur.

In the following example, UpdateHeading is called asynchronously when the button is selected:

For some events, event argument types are permitted. Specifying an event parameter in an event method

definition is optional and only necessary if the event type is used in the method. In the following example, the

MouseEventArgs event argument is used in the ShowMessage method to set message text:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/components/event-handling.md
https://github.com/guardrex
https://github.com/danroth27
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task

private void ShowMessage(MouseEventArgs e)
{
 messageText = $"The mouse is at coordinates: {e.ScreenX}:{e.ScreenY}";
}

EVEN TEVEN T C L A SSC L A SS DO M EVEN T S A N D N OT ESDO M EVEN T S A N D N OT ES

Clipboard ClipboardEventArgs oncut , oncopy , onpaste

Drag DragEventArgs ondrag , ondragstart ,

ondragenter , ondragleave ,

ondragover , ondrop , ondragend

DataTransfer and DataTransferItem hold
dragged item data.

Error ErrorEventArgs onerror

Event EventArgs General
onactivate , onbeforeactivate ,

onbeforedeactivate , ondeactivate ,

onfullscreenchange ,

onfullscreenerror , onloadeddata ,

onloadedmetadata ,

onpointerlockchange ,

onpointerlockerror ,

onreadystatechange , onscroll

Clipboard
onbeforecut , onbeforecopy ,

onbeforepaste

Input
oninvalid , onreset , onselect ,

onselectionchange , onselectstart ,

onsubmit

Media
oncanplay , oncanplaythrough ,

oncuechange , ondurationchange ,

onemptied , onended , onpause ,

onplay , onplaying , onratechange ,

onseeked , onseeking , onstalled ,

onstop , onsuspend , ontimeupdate ,

ontoggle , onvolumechange ,

onwaiting

EventHandlers holds attributes to
configure the mappings between event
names and event argument types.

Supported EventArgs are shown in the following table.

https://docs.microsoft.com/en-us/dotnet/api/system.eventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.clipboardeventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.drageventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.datatransfer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.datatransferitem
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.erroreventargs
https://docs.microsoft.com/en-us/dotnet/api/system.eventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.eventhandlers

Focus FocusEventArgs onfocus , onblur , onfocusin ,

onfocusout

Doesn't include support for
relatedTarget .

Input ChangeEventArgs onchange , oninput

Keyboard KeyboardEventArgs onkeydown , onkeypress , onkeyup

Mouse MouseEventArgs onclick , oncontextmenu ,

ondblclick , onmousedown ,

onmouseup , onmouseover ,

onmousemove , onmouseout

Mouse pointer PointerEventArgs onpointerdown , onpointerup ,

onpointercancel , onpointermove ,

onpointerover , onpointerout ,

onpointerenter , onpointerleave ,

ongotpointercapture ,

onlostpointercapture

Mouse wheel WheelEventArgs onwheel , onmousewheel

Progress ProgressEventArgs onabort , onload , onloadend ,

onloadstart , onprogress ,

ontimeout

Touch TouchEventArgs ontouchstart , ontouchend ,

ontouchmove , ontouchenter ,

ontouchleave , ontouchcancel

TouchPoint represents a single contact
point on a touch-sensitive device.

EVEN TEVEN T C L A SSC L A SS DO M EVEN T S A N D N OT ESDO M EVEN T S A N D N OT ES

EVEN TEVEN T C L A SSC L A SS DO M EVEN T S A N D N OT ESDO M EVEN T S A N D N OT ES

Clipboard ClipboardEventArgs oncut , oncopy , onpaste

Drag DragEventArgs ondrag , ondragstart ,

ondragenter , ondragleave ,

ondragover , ondrop , ondragend

DataTransfer and DataTransferItem hold
dragged item data.

Error ErrorEventArgs onerror

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.focuseventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.changeeventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.keyboardeventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.pointereventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.wheeleventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.progresseventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.toucheventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.touchpoint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.clipboardeventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.drageventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.datatransfer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.datatransferitem
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.erroreventargs

Event EventArgs General
onactivate , onbeforeactivate ,

onbeforedeactivate , ondeactivate ,

onfullscreenchange ,

onfullscreenerror , onloadeddata ,

onloadedmetadata ,

onpointerlockchange ,

onpointerlockerror ,

onreadystatechange , onscroll

Clipboard
onbeforecut , onbeforecopy ,

onbeforepaste

Input
oninvalid , onreset , onselect ,

onselectionchange , onselectstart ,

onsubmit

Media
oncanplay , oncanplaythrough ,

oncuechange , ondurationchange ,

onemptied , onended , onpause ,

onplay , onplaying , onratechange ,

onseeked , onseeking , onstalled ,

onstop , onsuspend , ontimeupdate ,

onvolumechange , onwaiting

EventHandlers holds attributes to
configure the mappings between event
names and event argument types.

Focus FocusEventArgs onfocus , onblur , onfocusin ,

onfocusout

Doesn't include support for
relatedTarget .

Input ChangeEventArgs onchange , oninput

Keyboard KeyboardEventArgs onkeydown , onkeypress , onkeyup

Mouse MouseEventArgs onclick , oncontextmenu ,

ondblclick , onmousedown ,

onmouseup , onmouseover ,

onmousemove , onmouseout

Mouse pointer PointerEventArgs onpointerdown , onpointerup ,

onpointercancel , onpointermove ,

onpointerover , onpointerout ,

onpointerenter , onpointerleave ,

ongotpointercapture ,

onlostpointercapture

Mouse wheel WheelEventArgs onwheel , onmousewheel

EVEN TEVEN T C L A SSC L A SS DO M EVEN T S A N D N OT ESDO M EVEN T S A N D N OT ES

https://docs.microsoft.com/en-us/dotnet/api/system.eventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.eventhandlers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.focuseventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.changeeventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.keyboardeventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.pointereventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.wheeleventargs

Progress ProgressEventArgs onabort , onload , onloadend ,

onloadstart , onprogress ,

ontimeout

Touch TouchEventArgs ontouchstart , ontouchend ,

ontouchmove , ontouchenter ,

ontouchleave , ontouchcancel

TouchPoint represents a single contact
point on a touch-sensitive device.

EVEN TEVEN T C L A SSC L A SS DO M EVEN T S A N D N OT ESDO M EVEN T S A N D N OT ES

Lambda expressions

<button @onclick="@(e => Console.WriteLine("Hello, world!"))">Say hello</button>

<h2>@message</h2>

@for (var i = 1; i < 4; i++)
{
 var buttonNumber = i;

 <button class="btn btn-primary"
 @onclick="@(e => UpdateHeading(e, buttonNumber))">
 Button #@i
 </button>
}

@code {
 private string message = "Select a button to learn its position.";

 private void UpdateHeading(MouseEventArgs e, int buttonNumber)
 {
 message = $"You selected Button #{buttonNumber} at " +
 $"mouse position: {e.ClientX} X {e.ClientY}.";
 }
}

For more information, see the following resources:

EventArgs classes in the ASP.NET Core reference source (dotnet/aspnetcore master branch). The master

branch represents API under development for the next ASP.NET Core release. For the current release, select the

appropriate GitHub repository branch (for example, release/3.1).

MDN web docs: GlobalEventHandlers: Includes information on which HTML elements support each DOM event.

Lambda expressions can also be used:

It's often convenient to close over additional values, such as when iterating over a set of elements. The following

example creates three buttons, each of which calls UpdateHeading passing an event argument (MouseEventArgs)

and its button number (buttonNumber) when selected in the UI:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.progresseventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.toucheventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.touchpoint
https://github.com/dotnet/aspnetcore/tree/master/src/Components/Web/src/Web
https://developer.mozilla.org/docs/Web/API/GlobalEventHandlers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.mouseeventargs

NOTENOTE

EventCallback

<div class="panel panel-default">
 <div class="panel-heading">@Title</div>
 <div class="panel-body">@ChildContent</div>

 <button class="btn btn-primary" @onclick="OnClickCallback">
 Trigger a Parent component method
 </button>
</div>

@code {
 [Parameter]
 public string Title { get; set; }

 [Parameter]
 public RenderFragment ChildContent { get; set; }

 [Parameter]
 public EventCallback<MouseEventArgs> OnClickCallback { get; set; }
}

Do notnot use a loop variable directly in a lambda expression, such as i in the preceding for loop example. Otherwise, the

same variable is used by all lambda expressions, which results in use of the same value in all lambdas. Always capture the

variable's value in a local variable and then use it. In the preceding example, the loop variable i is assigned to

buttonNumber .

A common scenario with nested components is the desire to run a parent component's method when a child

component event occurs. An onclick event occurring in the child component is a common use case. To expose

events across components, use an EventCallback. A parent component can assign a callback method to a child

component's EventCallback.

The ChildComponent in the sample app (Components/ChildComponent.razor) demonstrates how a button's onclick

handler is set up to receive an EventCallback delegate from the sample's ParentComponent . The EventCallback is

typed with MouseEventArgs , which is appropriate for an onclick event from a peripheral device:

The ParentComponent sets the child's EventCallback<TValue> (OnClickCallback) to its ShowMessage method.

Pages/ParentComponent.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback-1

@page "/ParentComponent"

<h1>Parent-child example</h1>

<ChildComponent Title="Panel Title from Parent"
 OnClickCallback="@ShowMessage">
 Content of the child component is supplied
 by the parent component.
</ChildComponent>

<p>@messageText</p>

@code {
 private string messageText;

 private void ShowMessage(MouseEventArgs e)
 {
 messageText = $"Blaze a new trail with Blazor! ({e.ScreenX}, {e.ScreenY})";
 }
}

<ChildComponent
 OnClickCallback="@(async () => { await Task.Yield(); messageText = "Blaze It!"; })" />

await OnClickCallback.InvokeAsync(arg);

Prevent default actions

When the button is selected in the ChildComponent :

The ParentComponent 's ShowMessage method is called. messageText is updated and displayed in the

ParentComponent .

A call to StateHasChanged isn't required in the callback's method (ShowMessage). StateHasChanged is called

automatically to rerender the ParentComponent , just as child events trigger component rerendering in event

handlers that execute within the child.

EventCallback and EventCallback<TValue> permit asynchronous delegates. EventCallback is weakly typed and

allows passing any type argument in InvokeAsync(Object) . EventCallback<TValue> is strongly typed and requires

passing a T argument in InvokeAsync(T) that's assignable to TValue .

Invoke an EventCallback or EventCallback<TValue> with InvokeAsync and await the Task:

Use EventCallback and EventCallback<TValue> for event handling and binding component parameters.

Prefer the strongly typed EventCallback<TValue> over EventCallback. EventCallback<TValue> provides better error

feedback to users of the component. Similar to other UI event handlers, specifying the event parameter is optional.

Use EventCallback when there's no value passed to the callback.

Use the @on{EVENT}:preventDefault directive attribute to prevent the default action for an event.

When a key is selected on an input device and the element focus is on a text box, a browser normally displays the

key's character in the text box. In the following example, the default behavior is prevented by specifying the

@onkeypress:preventDefault directive attribute. The counter increments, and the ++ key isn't captured into the

<input> element's value:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback

<input value="@count" @onkeypress="KeyHandler" @onkeypress:preventDefault />

@code {
 private int count = 0;

 private void KeyHandler(KeyboardEventArgs e)
 {
 if (e.Key == "+")
 {
 count++;
 }
 }
}

<input @onkeypress:preventDefault="shouldPreventDefault" />

Stop event propagation

<label>
 <input @bind="stopPropagation" type="checkbox" />
 Stop Propagation
</label>

<div @onclick="OnSelectParentDiv">
 <h3>Parent div</h3>

 <div @onclick="OnSelectChildDiv">
 Child div that doesn't stop propagation when selected.
 </div>

 <div @onclick="OnSelectChildDiv" @onclick:stopPropagation="stopPropagation">
 Child div that stops propagation when selected.
 </div>
</div>

@code {
 private bool stopPropagation = false;

 private void OnSelectParentDiv() =>
 Console.WriteLine($"The parent div was selected. {DateTime.Now}");
 private void OnSelectChildDiv() =>
 Console.WriteLine($"A child div was selected. {DateTime.Now}");
}

Specifying the @on{EVENT}:preventDefault attribute without a value is equivalent to

@on{EVENT}:preventDefault="true" .

The value of the attribute can also be an expression. In the following example, shouldPreventDefault is a bool field

set to either true or false :

Use the @on{EVENT}:stopPropagation directive attribute to stop event propagation.

In the following example, selecting the check box prevents click events from the second child <div> from

propagating to the parent <div> :

ASP.NET Core Blazor lifecycle
9/22/2020 • 11 minutes to read • Edit Online

Lifecycle methods
Before parameters are setBefore parameters are set

public override async Task SetParametersAsync(ParameterView parameters)
{
 await ...

 await base.SetParametersAsync(parameters);
}

Component initialization methodsComponent initialization methods

protected override void OnInitialized()
{
 ...
}

protected override async Task OnInitializedAsync()
{
 await ...
}

By Luke Latham and Daniel Roth

The Blazor framework includes synchronous and asynchronous lifecycle methods. Override lifecycle methods to

perform additional operations on components during component initialization and rendering.

SetParametersAsync sets parameters supplied by the component's parent in the render tree:

ParameterView contains the set of parameter values for the component each time SetParametersAsync is called.

The default implementation of SetParametersAsync sets the value of each property with the [Parameter] or

[CascadingParameter] attribute that has a corresponding value in the ParameterView. Parameters that don't have a

corresponding value in ParameterView are left unchanged.

If base.SetParametersAync isn't invoked, the custom code can interpret the incoming parameters value in any way

required. For example, there's no requirement to assign the incoming parameters to the properties on the class.

If any event handlers are set up, unhook them on disposal. For more information, see the Component disposal

with IDisposable section.

OnInitializedAsync and OnInitialized are invoked when the component is initialized after having received its initial

parameters from its parent component in SetParametersAsync.

Use OnInitializedAsync when the component performs an asynchronous operation and should refresh when the

operation is completed.

For a synchronous operation, override OnInitialized:

To perform an asynchronous operation, override OnInitializedAsync and use the await operator on the operation:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/components/lifecycle.md
https://github.com/guardrex
https://github.com/danroth27
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.setparametersasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.setparametersasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.setparametersasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.cascadingparameterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.parameterview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.setparametersasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitialized
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.setparametersasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitialized
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/await

After parameters are setAfter parameters are set

protected override async Task OnParametersSetAsync()
{
 await ...
}

NOTENOTE

protected override void OnParametersSet()
{
 ...
}

After component renderAfter component render

Blazor Server apps that prerender their content call OnInitializedAsync twicetwice:

Once when the component is initially rendered statically as part of the page.

A second time when the browser establishes a connection back to the server.

To prevent developer code in OnInitializedAsync from running twice, see the Stateful reconnection after

prerendering section.

While a Blazor Server app is prerendering, certain actions, such as calling into JavaScript, aren't possible because a

connection with the browser hasn't been established. Components may need to render differently when

prerendered. For more information, see the Detect when the app is prerendering section.

If any event handlers are set up, unhook them on disposal. For more information, see the Component disposal

with IDisposable section.

OnParametersSetAsync or OnParametersSet are called:

After the component is initialized in OnInitialized or OnInitializedAsync.

When the parent component re-renders and supplies:

Only known primitive immutable types of which at least one parameter has changed.

Any complex-typed parameters. The framework can't know whether the values of a complex-typed

parameter have mutated internally, so it treats the parameter set as changed.

Asynchronous work when applying parameters and property values must occur during the OnParametersSetAsync lifecycle

event.

If any event handlers are set up, unhook them on disposal. For more information, see the Component disposal

with IDisposable section.

OnAfterRenderAsync and OnAfterRender are called after a component has finished rendering. Element and

component references are populated at this point. Use this stage to perform additional initialization steps using

the rendered content, such as activating third-party JavaScript libraries that operate on the rendered DOM

elements.

The firstRender parameter for OnAfterRenderAsync and OnAfterRender:

Is set to true the first time that the component instance is rendered.

Can be used to ensure that initialization work is only performed once.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onparameterssetasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onparametersset
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitialized
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onparameterssetasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrender

protected override async Task OnAfterRenderAsync(bool firstRender)
{
 if (firstRender)
 {
 await ...
 }
}

NOTENOTE

protected override void OnAfterRender(bool firstRender)
{
 if (firstRender)
 {
 ...
 }
}

Suppress UI refreshingSuppress UI refreshing

protected override bool ShouldRender()
{
 var renderUI = true;

 return renderUI;
}

State changes

Asynchronous work immediately after rendering must occur during the OnAfterRenderAsync lifecycle event.

Even if you return a Task from OnAfterRenderAsync, the framework doesn't schedule a further render cycle for your

component once that task completes. This is to avoid an infinite render loop. It's different from the other lifecycle methods,

which schedule a further render cycle once the returned task completes.

OnAfterRender and OnAfterRenderAsync aren't called during the prerendering process on the server. The

methods are called when the component is rendered interactively after prerendering is finished. When the app

prerenders:

1. The component executes on the server to produce some static HTML markup in the HTTP response. During this

phase, OnAfterRender and OnAfterRenderAsync aren't called.

2. When blazor.server.js or blazor.webassembly.js start up in the browser, the component is restarted in an

interactive rendering mode. After a component is restarted, OnAfterRender and OnAfterRenderAsync areare

called because the app isn't inside the prerendering phase any longer.

If any event handlers are set up, unhook them on disposal. For more information, see the Component disposal

with IDisposable section.

Override ShouldRender to suppress UI refreshing. If the implementation returns true , the UI is refreshed:

ShouldRender is called each time the component is rendered.

Even if ShouldRender is overridden, the component is always initially rendered.

For more information, see ASP.NET Core Blazor WebAssembly performance best practices.

StateHasChanged notifies the component that its state has changed. When applicable, calling StateHasChanged

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged

Handle incomplete async actions at render

@page "/fetchdata"
@using MyBlazorApp.Data
@inject WeatherForecastService ForecastService

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from a service.</p>

@if (forecasts == null)
{
 <p>Loading...</p>
}
else
{
 <table class="table">
 <!-- forecast data in table element content -->
 </table>
}

@code {
 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()
 {
 forecasts = await ForecastService.GetForecastAsync(DateTime.Now);
 }
}

Handle errors

Stateful reconnection after prerendering

causes the component to be rerendered.

StateHasChanged is called automatically for EventCallback methods. For more information, see ASP.NET Core

Blazor event handling.

Asynchronous actions performed in lifecycle events might not have completed before the component is rendered.

Objects might be null or incompletely populated with data while the lifecycle method is executing. Provide

rendering logic to confirm that objects are initialized. Render placeholder UI elements (for example, a loading

message) while objects are null .

In the FetchData component of the Blazor templates, OnInitializedAsync is overridden to asychronously receive

forecast data (forecasts). When forecasts is null , a loading message is displayed to the user. After the Task

returned by OnInitializedAsync completes, the component is rerendered with the updated state.

Pages/FetchData.razor in the Blazor Server template:

For information on handling errors during lifecycle method execution, see Handle errors in ASP.NET Core Blazor

apps.

In a Blazor Server app when RenderMode is ServerPrerendered, the component is initially rendered statically as

part of the page. Once the browser establishes a connection back to the server, the component is rendered again,

and the component is now interactive. If the OnInitialized{Async} lifecycle method for initializing the component

is present, the method is executed twice:

When the component is prerendered statically.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper.rendermode#microsoft_aspnetcore_mvc_taghelpers_componenttaghelper_rendermode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_serverprerendered

public class WeatherForecastService
{
 private static readonly string[] summaries = new[]
 {
 "Freezing", "Bracing", "Chilly", "Cool", "Mild",
 "Warm", "Balmy", "Hot", "Sweltering", "Scorching"
 };

 public WeatherForecastService(IMemoryCache memoryCache)
 {
 MemoryCache = memoryCache;
 }

 public IMemoryCache MemoryCache { get; }

 public Task<WeatherForecast[]> GetForecastAsync(DateTime startDate)
 {
 return MemoryCache.GetOrCreateAsync(startDate, async e =>
 {
 e.SetOptions(new MemoryCacheEntryOptions
 {
 AbsoluteExpirationRelativeToNow =
 TimeSpan.FromSeconds(30)
 });

 var rng = new Random();

 await Task.Delay(TimeSpan.FromSeconds(10));

 return Enumerable.Range(1, 5).Select(index => new WeatherForecast
 {
 Date = startDate.AddDays(index),
 TemperatureC = rng.Next(-20, 55),
 Summary = summaries[rng.Next(summaries.Length)]
 }).ToArray();
 });
 }
}

Detect when the app is prerendering

After the server connection has been established.

This can result in a noticeable change in the data displayed in the UI when the component is finally rendered.

To avoid the double-rendering scenario in a Blazor Server app:

Pass in an identifier that can be used to cache the state during prerendering and to retrieve the state after the

app restarts.

Use the identifier during prerendering to save component state.

Use the identifier after prerendering to retrieve the cached state.

The following code demonstrates an updated WeatherForecastService in a template-based Blazor Server app that

avoids the double rendering:

For more information on the RenderMode, see ASP.NET Core Blazor hosting model configuration.

While a Blazor Server app is prerendering, certain actions, such as calling into JavaScript, aren't possible because a

connection with the browser hasn't been established. Components may need to render differently when

prerendered.

To delay JavaScript interop calls until after the connection with the browser is established, you can use the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper.rendermode#microsoft_aspnetcore_mvc_taghelpers_componenttaghelper_rendermode

@using Microsoft.JSInterop
@inject IJSRuntime JSRuntime

<div @ref="divElement">Text during render</div>

@code {
 private ElementReference divElement;

 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender)
 {
 await JSRuntime.InvokeVoidAsync(
 "setElementText", divElement, "Text after render");
 }
 }
}

<script>
 window.setElementText = (element, text) => element.innerText = text;
</script>

WARNINGWARNING

OnAfterRenderAsync component lifecycle event. This event is only called after the app is fully rendered and the

client connection is established.

For the preceding example code, provide a setElementText JavaScript function inside the <head> element of

wwwroot/index.html (Blazor WebAssembly) or Pages/_Host.cshtml (Blazor Server). The function is called with

JSRuntimeExtensions.InvokeVoidAsync and doesn't return a value:

The preceding example modifies the Document Object Model (DOM) directly for demonstration purposes only. Directly

modifying the DOM with JavaScript isn't recommended in most scenarios because JavaScript can interfere with Blazor's

change tracking.

The following component demonstrates how to use JavaScript interop as part of a component's initialization logic

in a way that's compatible with prerendering. The component shows that it's possible to trigger a rendering

update from inside OnAfterRenderAsync. The developer must avoid creating an infinite loop in this scenario.

Where JSRuntime.InvokeAsync is called, ElementRef is only used in OnAfterRenderAsync and not in any earlier

lifecycle method because there's no JavaScript element until after the component is rendered.

StateHasChanged is called to rerender the component with the new state obtained from the JavaScript interop

call. The code doesn't create an infinite loop because StateHasChanged is only called when infoFromJs is null .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.jsruntimeextensions.invokevoidasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.jsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync

@page "/prerendered-interop"
@using Microsoft.AspNetCore.Components
@using Microsoft.JSInterop
@inject IJSRuntime JSRuntime

<p>
 Get value via JS interop call:
 <strong id="val-get-by-interop">@(infoFromJs ?? "No value yet")
</p>

Set value via JS interop call:
<div id="val-set-by-interop" @ref="divElement"></div>

@code {
 private string infoFromJs;
 private ElementReference divElement;

 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender && infoFromJs == null)
 {
 infoFromJs = await JSRuntime.InvokeAsync<string>(
 "setElementText", divElement, "Hello from interop call!");

 StateHasChanged();
 }
 }
}

<script>
 window.setElementText = (element, text) => {
 element.innerText = text;
 return text;
 };
</script>

WARNINGWARNING

Component disposal with IDisposable

For the preceding example code, provide a setElementText JavaScript function inside the <head> element of

wwwroot/index.html (Blazor WebAssembly) or Pages/_Host.cshtml (Blazor Server). The function is called

withIJSRuntime.InvokeAsync and returns a value:

The preceding example modifies the Document Object Model (DOM) directly for demonstration purposes only. Directly

modifying the DOM with JavaScript isn't recommended in most scenarios because JavaScript can interfere with Blazor's

change tracking.

If a component implements IDisposable, the Dispose method is called when the component is removed from the

UI. Disposal can occur at any time, including during component initialization. The following component uses

@implements IDisposable and the Dispose method:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/implementing-dispose

@using System
@implements IDisposable

...

@code {
 public void Dispose()
 {
 ...
 }
}

NOTENOTE
Calling StateHasChanged in Dispose isn't supported. StateHasChanged might be invoked as part of tearing down the

renderer, so requesting UI updates at that point isn't supported.

Unsubscribe event handlers from .NET events. The following Blazor form examples show how to unhook an event

handler in the Dispose method:

@implements IDisposable

<EditForm EditContext="@editContext">

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 ...
 private EventHandler<FieldChangedEventArgs> fieldChanged;

 protected override void OnInitialized()
 {
 editContext = new EditContext(...);

 fieldChanged = (_, __) =>
 {
 ...
 };

 editContext.OnFieldChanged += fieldChanged;
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= fieldChanged;
 }
}

Private field and lambda approach

Private method approach

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged

Cancelable background work

@implements IDisposable

<EditForm EditContext="@editContext">

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 ...

 protected override void OnInitialized()
 {
 editContext = new EditContext(...);
 editContext.OnFieldChanged += HandleFieldChanged;
 }

 private void HandleFieldChanged(object sender, FieldChangedEventArgs e)
 {
 ...
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= HandleFieldChanged;
 }
}

Components often perform long-running background work, such as making network calls (HttpClient) and

interacting with databases. It's desirable to stop the background work to conserve system resources in several

situations. For example, background asynchronous operations don't automatically stop when a user navigates

away from a component.

Other reasons why background work items might require cancellation include:

An executing background task was started with faulty input data or processing parameters.

The current set of executing background work items must be replaced with a new set of work items.

The priority of currently executing tasks must be changed.

The app has to be shut down in order to redeploy it to the server.

Server resources become limited, necessitating the rescheduling of background work items.

To implement a cancelable background work pattern in a component:

Use a CancellationTokenSource and CancellationToken.

On disposal of the component and at any point cancellation is desired by manually cancelling the token, call

CancellationTokenSource.Cancel to signal that the background work should be cancelled.

After the asynchronous call returns, call ThrowIfCancellationRequested on the token.

In the following example:

await Task.Delay(5000, cts.Token); represents long-running asynchronous background work.

BackgroundResourceMethod represents a long-running background method that shouldn't start if the Resource

is disposed before the method is called.

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource
https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken
https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource.cancel
https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken.throwifcancellationrequested

@implements IDisposable
@using System.Threading

<button @onclick="LongRunningWork">Trigger long running work</button>

@code {
 private Resource resource = new Resource();
 private CancellationTokenSource cts = new CancellationTokenSource();

 protected async Task LongRunningWork()
 {
 await Task.Delay(5000, cts.Token);

 cts.Token.ThrowIfCancellationRequested();
 resource.BackgroundResourceMethod();
 }

 public void Dispose()
 {
 cts.Cancel();
 cts.Dispose();
 resource.Dispose();
 }

 private class Resource : IDisposable
 {
 private bool disposed;

 public void BackgroundResourceMethod()
 {
 if (disposed)
 {
 throw new ObjectDisposedException(nameof(Resource));
 }

 ...
 }

 public void Dispose()
 {
 disposed = true;
 }
 }
}

ASP.NET Core Blazor component virtualization
9/22/2020 • 3 minutes to read • Edit Online

<table>
 @foreach (var employee in employees)
 {
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
 }
</table>

<table>
 <Virtualize Context="employee" Items="@employees">
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
 </Virtualize>
</table>

<table>
 <Virtualize Items="@employees">
 <tr>
 <td>@context.FirstName</td>
 <td>@context.LastName</td>
 <td>@context.JobTitle</td>
 </tr>
 </Virtualize>
</table>

By Daniel Roth

Improve the perceived performance of component rendering using the Blazor framework's built-in virtualization

support. Virtualization is a technique for limiting UI rendering to just the parts that are currently visible. For

example, virtualization is helpful when the app must render a long list or a table with many rows and only a subset

of items is required to be visible at any given time. Blazor provides the Virtualize component that can be used to

add virtualization to an app's components.

Without virtualization, a typical list or table-based component might use a C# foreach loop to render each item in

the list or each row in the table:

If the list contains thousands of items, then rendering the list may take a long time. The user may experience a

noticeable UI lag.

Instead of rendering each item in the list all at one time, replace the foreach loop with the Virtualize component

and specify a fixed item source with Items . Only the items that are currently visible are rendered:

If not specifying a context to the component with Context , use the context value (@context.{PROPERTY}) in the

item content template:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/components/virtualization.md
https://github.com/danroth27
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/foreach-in
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/foreach-in

Item provider delegate

<table>
 <Virtualize Context="employee" ItemsProvider="@LoadEmployees">
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
 </Virtualize>
</table>

private async ValueTask<ItemsProviderResult<Employee>> LoadEmployees(
 ItemsProviderRequest request)
{
 var numEmployees = Math.Min(request.Count, totalEmployees - request.StartIndex);
 var employees = await EmployeesService.GetEmployeesAsync(request.StartIndex,
 numEmployees, request.CancellationToken);

 return new ItemsProviderResult<Employee>(employees, totalEmployees);
}

Placeholder

<table>
 <Virtualize Context="employee" ItemsProvider="@LoadEmployees">
 <ItemContent>
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
 </ItemContent>
 <Placeholder>
 <tr>
 <td>Loading...</td>
 </tr>
 </Placeholder>
 </Virtualize>
</table>

The Virtualize component calculates how many items to render based on the height of the container and the size

of the rendered items.

If you don't want to load all of the items into memory, you can specify an items provider delegate method to the

component's ItemsProvider parameter that asynchronously retrieves the requested items on demand:

The items provider receives an ItemsProviderRequest , which specifies the required number of items starting at a

specific start index. The items provider then retrieves the requested items from a database or other service and

returns them as an ItemsProviderResult<TItem> along with a count of the total items. The items provider can

choose to retrieve the items with each request or cache them so that they're readily available. Don't attempt to use

an items provider and assign a collection to Items for the same Virtualize component.

The following example loads employees from an EmployeeService :

Because requesting items from a remote data source might take some time, you have the option to render a

placeholder (<Placeholder>...</Placeholder>) until the item data is available:

Item size

<table>
 <Virtualize Context="employee" Items="@employees" ItemSize="25">
 ...
 </Virtualize>
</table>

Overscan count

<table>
 <Virtualize Context="employee" Items="@employees" OverscanCount="4">
 ...
 </Virtualize>
</table>

State changes

The size of each item in pixels can be set with ItemSize (default: 50px):

OverscanCount determines how many additional items are rendered before and after the visible region. This setting

helps to reduce the frequency of rendering during scrolling. However, higher values result in more elements

rendered in the page (default: 3):

For example, a grid or list that renders hundreds of rows containing components is processor intensive to render.

Consider virtualizing a grid or list layout so that only a subset of the components is rendered at any given time. For

an example of component subset rendering, see the following components in the Virtualization sample app

(aspnet/samples GitHub repository):

Virtualize component (Shared/Virtualize.razor): A component written in C# that implements

ComponentBase to render a set of weather data rows based on user scrolling.

FetchData component (Pages/FetchData.razor): Uses the Virtualize component to display 25 rows of

weather data at a time.

When making changes to items rendered by the Virtualize component, call StateHasChanged to force re-

evaluation and rerendering of the component.

https://github.com/aspnet/samples/tree/master/samples/aspnetcore/blazor/Virtualization
https://github.com/aspnet/samples/blob/master/samples/aspnetcore/blazor/Virtualization/Shared/Virtualize.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://github.com/aspnet/samples/blob/master/samples/aspnetcore/blazor/Virtualization/Pages/FetchData.razor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged

ASP.NET Core Blazor templated components
9/22/2020 • 2 minutes to read • Edit Online

Template parameters

@typeparam TItem

<table class="table">
 <thead>
 <tr>@TableHeader</tr>
 </thead>
 <tbody>
 @foreach (var item in Items)
 {
 <tr>@RowTemplate(item)</tr>
 }
 </tbody>
</table>

@code {
 [Parameter]
 public RenderFragment TableHeader { get; set; }

 [Parameter]
 public RenderFragment<TItem> RowTemplate { get; set; }

 [Parameter]
 public IReadOnlyList<TItem> Items { get; set; }
}

By Luke Latham and Daniel Roth

Templated components are components that accept one or more UI templates as parameters, which can then be

used as part of the component's rendering logic. Templated components allow you to author higher-level

components that are more reusable than regular components. A couple of examples include:

A table component that allows a user to specify templates for the table's header, rows, and footer.

A list component that allows a user to specify a template for rendering items in a list.

A templated component is defined by specifying one or more component parameters of type RenderFragment or

RenderFragment<TValue>. A render fragment represents a segment of UI to render. RenderFragment<TValue>

takes a type parameter that can be specified when the render fragment is invoked.

TableTemplate component:

When using a templated component, the template parameters can be specified using child elements that match the

names of the parameters (TableHeader and RowTemplate in the following example):

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/components/templated-components.md
https://github.com/guardrex
https://github.com/danroth27
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.renderfragment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.renderfragment-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.renderfragment-1

<TableTemplate Items="pets">
 <TableHeader>
 <th>ID</th>
 <th>Name</th>
 </TableHeader>
 <RowTemplate>
 <td>@context.PetId</td>
 <td>@context.Name</td>
 </RowTemplate>
</TableTemplate>

NOTENOTE

Template context parameters

<TableTemplate Items="pets">
 <TableHeader>
 <th>ID</th>
 <th>Name</th>
 </TableHeader>
 <RowTemplate Context="pet">
 <td>@pet.PetId</td>
 <td>@pet.Name</td>
 </RowTemplate>
</TableTemplate>

<TableTemplate Items="pets" Context="pet">
 <TableHeader>
 <th>ID</th>
 <th>Name</th>
 </TableHeader>
 <RowTemplate>
 <td>@pet.PetId</td>
 <td>@pet.Name</td>
 </RowTemplate>
</TableTemplate>

Generic-typed components

Generic type constraints will be supported in a future release. For more information, see Allow generic type constraints

(dotnet/aspnetcore #8433).

Component arguments of type RenderFragment<TValue> passed as elements have an implicit parameter named

context (for example from the preceding code sample, @context.PetId), but you can change the parameter name

using the Context attribute on the child element. In the following example, the RowTemplate element's Context

attribute specifies the pet parameter :

Alternatively, you can specify the Context attribute on the component element. The specified Context attribute

applies to all specified template parameters. This can be useful when you want to specify the content parameter

name for implicit child content (without any wrapping child element). In the following example, the Context

attribute appears on the TableTemplate element and applies to all template parameters:

Templated components are often generically typed. For example, a generic ListViewTemplate component can be

used to render IEnumerable<T> values. To define a generic component, use the @typeparam directive to specify type

parameters:

https://github.com/dotnet/aspnetcore/issues/8433
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.renderfragment-1

@typeparam TItem

 @foreach (var item in Items)
 {
 @ItemTemplate(item)
 }

@code {
 [Parameter]
 public RenderFragment<TItem> ItemTemplate { get; set; }

 [Parameter]
 public IReadOnlyList<TItem> Items { get; set; }
}

<ListViewTemplate Items="pets">
 <ItemTemplate Context="pet">
 @pet.Name
 </ItemTemplate>
</ListViewTemplate>

<ListViewTemplate Items="pets" TItem="Pet">
 <ItemTemplate Context="pet">
 @pet.Name
 </ItemTemplate>
</ListViewTemplate>

When using generic-typed components, the type parameter is inferred if possible:

Otherwise, the type parameter must be explicitly specified using an attribute that matches the name of the type

parameter. In the following example, TItem="Pet" specifies the type:

Integrate ASP.NET Core Razor components into
Razor Pages and MVC apps
9/22/2020 • 5 minutes to read • Edit Online

Prepare the app

By Luke Latham and Daniel Roth

Razor components can be integrated into Razor Pages and MVC apps. When the page or view is rendered,

components can be prerendered at the same time.

After preparing the app, use the guidance in the following sections depending on the app's requirements:

Routable components: For components that are directly routable from user requests. Follow this guidance

when visitors should be able to make an HTTP request in their browser for a component with an @page

directive.

Render components from a page or view: For components that aren't directly routable from user requests.

Follow this guidance when the app embeds components into existing pages and views with the Component

Tag Helper.

Use routable components in a Razor Pages app

Use routable components in an MVC app

An existing Razor Pages or MVC app can integrate Razor components into pages and views:

1. In the app's layout file (_Layout.cshtml):

<base href="~/" />

<script src="_framework/blazor.server.js"></script>

Add the following <base> tag to the <head> element:

The href value (the app base path) in the preceding example assumes that the app resides at the

root URL path (/). If the app is a sub-application, follow the guidance in the App base path section

of the Host and deploy ASP.NET Core Blazor article.

The _Layout.cshtml file is located in the Pages/Shared folder in a Razor Pages app or Views/Shared

folder in an MVC app.

Add a <script> tag for the blazor.server.js script immediately before the closing </body> tag:

The framework adds the blazor.server.js script to the app. There's no need to manually add the script

to the app.

2. Add an _Imports.razor file to the root folder of the project with the following content (change the last

namespace, MyAppNamespace , to the namespace of the app):

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/components/integrate-components.md
https://github.com/guardrex
https://github.com/danroth27

 Use routable components in a Razor Pages app

@using System.Net.Http
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.JSInterop
@using MyAppNamespace

services.AddServerSideBlazor();

endpoints.MapBlazorHub();

3. In Startup.ConfigureServices , register the Blazor Server service:

4. In Startup.Configure , add the Blazor Hub endpoint to app.UseEndpoints :

5. Integrate components into any page or view. For more information, see the Render components from a

page or view section.

This section pertains to adding components that are directly routable from user requests.

To support routable Razor components in Razor Pages apps:

@using Microsoft.AspNetCore.Components.Routing

<Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="routeData" />
 </Found>
 <NotFound>
 <h1>Page not found</h1>
 <p>Sorry, but there's nothing here!</p>
 </NotFound>
</Router>

@page "/blazor"
@{
 Layout = "_Layout";
}

<app>
 <component type="typeof(App)" render-mode="ServerPrerendered" />
</app>

1. Follow the guidance in the Prepare the app section.

2. Add an App.razor file to the project root with the following content:

3. Add a _Host.cshtml file to the Pages folder with the following content:

Components use the shared _Layout.cshtml file for their layout.

RenderMode configures whether the App component:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode

 Use routable components in an MVC app

REN DER M O DEREN DER M O DE DESC RIP T IO NDESC RIP T IO N

ServerPrerendered Renders the App component into static HTML and

includes a marker for a Blazor Server app. When the user-
agent starts, this marker is used to bootstrap a Blazor
app.

Server Renders a marker for a Blazor Server app. Output from
the App component isn't included. When the user-agent

starts, this marker is used to bootstrap a Blazor app.

Static Renders the App component into static HTML.

app.UseEndpoints(endpoints =>
{
 ...

 endpoints.MapFallbackToPage("/_Host");
});

@page "/counter"

<h1>Counter</h1>

...

Is prerendered into the page.

Is rendered as static HTML on the page or if it includes the necessary information to bootstrap a Blazor

app from the user agent.

For more information on the Component Tag Helper, see Component Tag Helper in ASP.NET Core.

4. Add a low-priority route for the _Host.cshtml page to endpoint configuration in Startup.Configure :

5. Add routable components to the app. For example:

For more information on namespaces, see the Component namespaces section.

This section pertains to adding components that are directly routable from user requests.

To support routable Razor components in MVC apps:

1. Follow the guidance in the Prepare the app section.

2. Add an App.razor file to the root of the project with the following content:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_serverprerendered
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_server
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_static

@using Microsoft.AspNetCore.Components.Routing

<Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="routeData" />
 </Found>
 <NotFound>
 <h1>Page not found</h1>
 <p>Sorry, but there's nothing here!</p>
 </NotFound>
</Router>

@{
 Layout = "_Layout";
}

<app>
 <component type="typeof(App)" render-mode="ServerPrerendered" />
</app>

REN DER M O DEREN DER M O DE DESC RIP T IO NDESC RIP T IO N

ServerPrerendered Renders the App component into static HTML and

includes a marker for a Blazor Server app. When the user-
agent starts, this marker is used to bootstrap a Blazor
app.

Server Renders a marker for a Blazor Server app. Output from
the App component isn't included. When the user-agent

starts, this marker is used to bootstrap a Blazor app.

Static Renders the App component into static HTML.

public IActionResult Blazor()
{
 return View("_Host");
}

3. Add a _Host.cshtml file to the Views/Home folder with the following content:

Components use the shared _Layout.cshtml file for their layout.

RenderMode configures whether the App component:

Is prerendered into the page.

Is rendered as static HTML on the page or if it includes the necessary information to bootstrap a Blazor

app from the user agent.

For more information on the Component Tag Helper, see Component Tag Helper in ASP.NET Core.

4. Add an action to the Home controller :

5. Add a low-priority route for the controller action that returns the _Host.cshtml view to the endpoint

configuration in Startup.Configure :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_serverprerendered
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_server
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_static

 Render components from a page or view

Render stateful interactive componentsRender stateful interactive components

<h1>My Razor Page</h1>

<component type="typeof(Counter)" render-mode="ServerPrerendered"
 param-InitialValue="InitialValue" />

@functions {
 [BindProperty(SupportsGet=true)]
 public int InitialValue { get; set; }
}

Render noninteractive componentsRender noninteractive components

app.UseEndpoints(endpoints =>
{
 ...

 endpoints.MapFallbackToController("Blazor", "Home");
});

@page "/counter"

<h1>Counter</h1>

...

6. Create a Pages folder and add routable components to the app. For example:

For more information on namespaces, see the Component namespaces section.

This section pertains to adding components to pages or views, where the components aren't directly routable

from user requests.

To render a component from a page or view, use the Component Tag Helper.

Stateful interactive components can be added to a Razor page or view.

When the page or view renders:

The component is prerendered with the page or view.

The initial component state used for prerendering is lost.

New component state is created when the SignalR connection is established.

The following Razor page renders a Counter component:

For more information, see Component Tag Helper in ASP.NET Core.

In the following Razor page, the Counter component is statically rendered with an initial value that's specified

using a form. Since the component is statically rendered, the component isn't interactive:

<h1>My Razor Page</h1>

<form>
 <input type="number" asp-for="InitialValue" />
 <button type="submit">Set initial value</button>
</form>

<component type="typeof(Counter)" render-mode="Static"
 param-InitialValue="InitialValue" />

@functions {
 [BindProperty(SupportsGet=true)]
 public int InitialValue { get; set; }
}

Component namespaces

@using MyAppNamespace.Components

For more information, see Component Tag Helper in ASP.NET Core.

When using a custom folder to hold the app's components, add the namespace representing the folder to either

the page/view or to the _ViewImports.cshtml file. In the following example:

Change MyAppNamespace to the app's namespace.

If a folder named Components isn't used to hold the components, change Components to the folder where the

components reside.

The _ViewImports.cshtml file is located in the Pages folder of a Razor Pages app or the Views folder of an MVC

app.

For more information, see Create and use ASP.NET Core Razor components.

ASP.NET Core Razor components class libraries
9/22/2020 • 5 minutes to read • Edit Online

Create an RCL

NOTENOTE

@using Microsoft.AspNetCore.Components.Web

Consume a library component

By Simon Timms

Components can be shared in a Razor class library (RCL) across projects. A Razor components class library can be

included from:

Another project in the solution.

A NuGet package.

A referenced .NET library.

Just as components are regular .NET types, components provided by an RCL are normal .NET assemblies.

Visual Studio

.NET Core CLI

1. Create a new project.

2. Select Razor Class L ibrar yRazor Class L ibrar y . Select NextNext.

3. In the Create a new Razor class librar yCreate a new Razor class librar y dialog, select CreateCreate.

4. Provide a project name in the Project nameProject name field or accept the default project name. The examples in this

topic use the project name ComponentLibrary . Select CreateCreate.

5. Add the RCL to a solution:

6. Add a reference the RCL from the app:

a. Right-click the solution. Select AddAdd > Existing ProjectExisting Project.

b. Navigate to the RCL's project file.

c. Select the RCL's project file (.csproj).

a. Right-click the app project. Select AddAdd > ReferenceReference.

b. Select the RCL project. Select OKOK.

If the Suppor t pages and viewsSuppor t pages and views check box is selected when generating the RCL from the template, then also add an

_Imports.razor file to root of the generated project with the following contents to enable Razor component authoring:

Manually add the file the root of the generated project.

In order to consume components defined in a library in another project, use either of the following approaches:

Use the full type name with the namespace.

Use Razor's @using directive. Individual components can be added by name.

In the following examples, ComponentLibrary is a component library containing the Component1 component (

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/components/class-libraries.md
https://github.com/stimms

<h1>Hello, world!</h1>

Welcome to your new app.

<ComponentLibrary.Component1 />

@using ComponentLibrary

<h1>Hello, world!</h1>

Welcome to your new app.

<Component1 />

<div class="my-component">
 <Link href="_content/ComponentLibrary/styles.css" rel="stylesheet" />

 <p>
 This Blazor component is defined in the ComponentLibrary package.
 </p>
</div>

<head>
 ...
 <link href="_content/ComponentLibrary/styles.css" rel="stylesheet" />
</head>

Component1.razor). The Component1 component is an example component automatically added by the RCL project

template when the library is created.

Reference the Component1 component using its namespace:

Alternatively, bring the library into scope with an @using directive and use the component without its namespace:

Optionally, include the @using ComponentLibrary directive in the top-level _Import.razor file to make the library's

components available to an entire project. Add the directive to an _Import.razor file at any level to apply the

namespace to a single component or set of components within a folder.

To provide Component1 's my-component CSS class to the component, link to the library's stylesheet using the

framework's Link component in Component1.razor :

To provide the stylesheet across the app, you can alternatively link to the library's stylesheet in the app's

wwwroot/index.html file (Blazor WebAssembly) or Pages/_Host.cshtml file (Blazor Server):

When the Link component is used in a child component, the linked asset is also available to any other child

component of the parent component as long as the child with the Link component is rendered. The distinction

between using the Link component in a child component and placing a <link> HTML tag in wwwroot/index.html

or Pages/_Host.cshtml is that a framework component's rendered HTML tag:

Can be modified by application state. A hard-coded <link> HTML tag can't be modified by application state.

Is removed from the HTML <head> when the parent component is no longer rendered.

To provide Component1 's my-component CSS class, link to the library's stylesheet in the app's wwwroot/index.html

file (Blazor WebAssembly) or Pages/_Host.cshtml file (Blazor Server):

<head>
 ...
 <link href="_content/ComponentLibrary/styles.css" rel="stylesheet" />
</head>

Create a Razor components class library with static assets

Supply components and static assets to multiple hosted Blazor apps

Browser compatibility analyzer for Blazor WebAssembly

<ItemGroup>
 <SupportedPlatform Include="browser" />
</ItemGroup>

[UnsupportedOSPlatform("browser")]
private static string GetLoggingDirectory()
{
 ...
}

Blazor JavaScript isolation and object references

An RCL can include static assets. The static assets are available to any app that consumes the library. For more

information, see Reusable Razor UI in class libraries with ASP.NET Core.

For more information, see Host and deploy ASP.NET Core Blazor WebAssembly.

Blazor WebAssembly apps target the full .NET API surface area, but not all .NET APIs are supported on

WebAssembly due to browser sandbox constraints. Unsupported APIs throw PlatformNotSupportedException

when running on WebAssembly. A platform compatibility analyzer warns the developer when the app uses APIs

that aren't supported by the app's target platforms. For Blazor WebAssembly apps, this means checking that APIs

are supported in browsers. Annotating .NET framework APIs for the compatibility analyzer is an on-going process,

so not all .NET framework API is currently annotated.

Blazor WebAssembly and Razor class library projects automatically enable browser compatibilty checks by adding

browser as a supported platform with the SupportedPlatform MSBuild item. Library developers can manually add

the SupportedPlatform item to a library's project file to enable the feature:

When authoring a library, indicate that a particular API isn't supported in browsers by specifying browser to

UnsupportedOSPlatformAttribute:

For more information, see Annotating APIs as unsupported on specific platforms (dotnet/designs GitHub

repository.

Blazor enables JavaScript isolation in standard JavaScript modules. JavaScript isolation provides the following

benefits:

Imported JavaScript no longer pollutes the global namespace.

Consumers of the library and components aren't required to manually import the related JavaScript.

For more information, see Call JavaScript functions from .NET methods in ASP.NET Core Blazor.

https://docs.microsoft.com/en-us/dotnet/api/system.platformnotsupportedexception
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.versioning.unsupportedosplatformattribute
https://github.com/dotnet/designs/blob/main/accepted/2020/platform-exclusion/platform-exclusion.md#build-configuration-for-platforms
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules

Build, pack, and ship to NuGet

dotnet pack

Additional resources

Because component libraries are standard .NET libraries, packaging and shipping them to NuGet is no different

from packaging and shipping any library to NuGet. Packaging is performed using the dotnet pack command in a

command shell:

Upload the package to NuGet using the dotnet nuget push command in a command shell.

Reusable Razor UI in class libraries with ASP.NET Core

Add an XML Intermediate Language (IL) Trimmer configuration file to a library

Reusable Razor UI in class libraries with ASP.NET Core

Add an XML Intermediate Language (IL) Linker configuration file to a library

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-pack
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-push

ASP.NET Core Blazor globalization and localization
9/22/2020 • 4 minutes to read • Edit Online

Globalization

Localization
Blazor WebAssemblyBlazor WebAssembly

By Luke Latham and Daniel Roth

Razor components can be made accessible to users in multiple cultures and languages. The following .NET

globalization and localization scenarios are available:

.NET's resources system

Culture-specific number and date formatting

A limited set of ASP.NET Core's localization scenarios are currently supported:

IStringLocalizer and IStringLocalizer<T> are supported in Blazor apps.

IHtmlLocalizer, IViewLocalizer, and Data Annotations localization are ASP.NET Core MVC scenarios and notnot

suppor tedsuppor ted in Blazor apps.

For more information, see Globalization and localization in ASP.NET Core.

Blazor's @bind functionality performs formats and parses values for display based on the user's current culture.

The current culture can be accessed from the System.Globalization.CultureInfo.CurrentCulture property.

CultureInfo.InvariantCulture is used for the following field types (<input type="{TYPE}" />):

date

number

The preceding field types:

Are displayed using their appropriate browser-based formatting rules.

Can't contain free-form text.

Provide user interaction characteristics based on the browser's implementation.

The following field types have specific formatting requirements and aren't currently supported by Blazor because

they aren't supported by all major browsers:

datetime-local

month

week

@bind supports the @bind:culture parameter to provide a System.Globalization.CultureInfo for parsing and

formatting a value. Specifying a culture isn't recommended when using the date and number field types. date

and number have built-in Blazor support that provides the required culture.

Blazor WebAssembly apps set the culture using the user's language preference.

To explicitly configure the culture, set CultureInfo.DefaultThreadCurrentCulture and

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/globalization-localization.md
https://github.com/guardrex
https://github.com/danroth27
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.localization.ihtmllocalizer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.localization.iviewlocalizer
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.currentculture#system_globalization_cultureinfo_currentculture
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.invariantculture#system_globalization_cultureinfo_invariantculture
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo
https://developer.mozilla.org/docs/Web/API/NavigatorLanguage/languages
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.defaultthreadcurrentculture#system_globalization_cultureinfo_defaultthreadcurrentculture

<PropertyGroup>
 <InvariantGlobalization>true</InvariantGlobalization>
</PropertyGroup>

Blazor ServerBlazor Server

CookiesCookies

CultureInfo.DefaultThreadCurrentUICulture in Program.Main .

By default, Blazor WebAssembly carries globalization resources required to display values, such as dates and

currency, in the user's culture. If the app doesn't require localization, you may configure the app to support the

invariant culture, which is based on the en-US culture:

By default, the Intermediate Language (IL) Linker configuration for Blazor WebAssembly apps strips out

internationalization information except for locales explicitly requested. For more information, see Configure the

Linker for ASP.NET Core Blazor.

While the culture that Blazor selects by default might be sufficient for most users, consider offering a way for users

to specify their preferred locale. For a Blazor WebAssembly sample app with a culture picker, see the LocSample

localization sample app.

Blazor Server apps are localized using Localization Middleware. The middleware selects the appropriate culture for

users requesting resources from the app.

The culture can be set using one of the following approaches:

Cookies

Provide UI to choose the culture

For more information and examples, see Globalization and localization in ASP.NET Core.

A localization culture cookie can persist the user's culture. The Localization Middleware reads the cookie on

subsequent requests to set the user's culture.

Use of a cookie ensures that the WebSocket connection can correctly propagate the culture. If localization schemes

are based on the URL path or query string, the scheme might not be able to work with WebSockets, thus fail to

persist the culture. Therefore, use of a localization culture cookie is the recommended approach.

Any technique can be used to assign a culture if the culture is persisted in a localization cookie. If the app already

has an established localization scheme for server-side ASP.NET Core, continue to use the app's existing localization

infrastructure and set the localization culture cookie within the app's scheme.

The following example shows how to set the current culture in a cookie that can be read by the Localization

Middleware. Create a Razor expression in the Pages/_Host.cshtml file immediately inside the opening <body> tag:

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.defaultthreadcurrentuiculture#system_globalization_cultureinfo_defaultthreadcurrentuiculture
https://github.com/pranavkm/LocSample

@using System.Globalization
@using Microsoft.AspNetCore.Localization

...

<body>
 @{
 this.HttpContext.Response.Cookies.Append(
 CookieRequestCultureProvider.DefaultCookieName,
 CookieRequestCultureProvider.MakeCookieValue(
 new RequestCulture(
 CultureInfo.CurrentCulture,
 CultureInfo.CurrentUICulture)));
 }

 ...
</body>

Provide UI to choose the cultureProvide UI to choose the culture

[Route("[controller]/[action]")]
public class CultureController : Controller
{
 public IActionResult SetCulture(string culture, string redirectUri)
 {
 if (culture != null)
 {
 HttpContext.Response.Cookies.Append(
 CookieRequestCultureProvider.DefaultCookieName,
 CookieRequestCultureProvider.MakeCookieValue(
 new RequestCulture(culture)));
 }

 return LocalRedirect(redirectUri);
 }
}

Localization is handled by the app in the following sequence of events:

1. The browser sends an initial HTTP request to the app.

2. The culture is assigned by the Localization Middleware.

3. The Razor expression in the _Host page (_Host.cshtml) persists the culture in a cookie as part of the response.

4. The browser opens a WebSocket connection to create an interactive Blazor Server session.

5. The Localization Middleware reads the cookie and assigns the culture.

6. The Blazor Server session begins with the correct culture.

To provide UI to allow a user to select a culture, a redirect-based approach is recommended. The process is similar

to what happens in a web app when a user attempts to access a secure resource. The user is redirected to a sign-in

page and then redirected back to the original resource.

The app persists the user's selected culture via a redirect to a controller. The controller sets the user's selected

culture into a cookie and redirects the user back to the original URI.

Establish an HTTP endpoint on the server to set the user's selected culture in a cookie and perform the redirect back

to the original URI:

WARNINGWARNING

@inject NavigationManager NavigationManager

<h3>Select your language</h3>

<select @onchange="OnSelected">
 <option>Select...</option>
 <option value="en-US">English</option>
 <option value="fr-FR">Français</option>
</select>

@code {
 private void OnSelected(ChangeEventArgs e)
 {
 var culture = (string)e.Value;
 var uri = new Uri(NavigationManager.Uri)
 .GetComponents(UriComponents.PathAndQuery, UriFormat.Unescaped);
 var query = $"?culture={Uri.EscapeDataString(culture)}&" +
 $"redirectUri={Uri.EscapeDataString(uri)}";

 NavigationManager.NavigateTo("/Culture/SetCulture" + query, forceLoad: true);
 }
}

Additional resources

Use the LocalRedirect action result to prevent open redirect attacks. For more information, see Prevent open redirect attacks

in ASP.NET Core.

If the app isn't configured to process controller actions:

services.AddControllers();

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllers();
 endpoints.MapBlazorHub();
 endpoints.MapFallbackToPage("/_Host");
});

Add MVC services to the service collection in Startup.ConfigureServices :

Add controller endpoint routing in Startup.Configure :

The following component shows an example of how to perform the initial redirection when the user selects a

culture:

Globalization and localization in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.localredirect

ASP.NET Core Blazor layouts
9/22/2020 • 4 minutes to read • Edit Online

@inherits LayoutComponentBase

<header>
 <h1>Doctor Who™ Episode Database</h1>
</header>

<nav>
 Master Episode List
 Search
 Add Episode
</nav>

@Body

<footer>
 @TrademarkMessage
</footer>

@code {
 public string TrademarkMessage { get; set; } =
 "Doctor Who is a registered trademark of the BBC. " +
 "https://www.doctorwho.tv/";
}

MainLayout component

By Rainer Stropek and Luke Latham

Some app elements, such as menus, copyright messages, and company logos, are usually part of app's overall

layout and used by every component in the app. Copying the code of these elements into all of the components

of an app isn't an efficient approach. Every time one of the elements requires an update, every component must

be updated. Such duplication is difficult to maintain and can lead to inconsistent content over time. Layouts solve

this problem.

Technically, a layout is just another component. A layout is defined in a Razor template or in C# code and can use

data binding, dependency injection, and other component scenarios.

To turn a component into a layout, the component:

Inherits from LayoutComponentBase, which defines a Body property for the rendered content inside the

layout.

Uses the Razor syntax @Body to specify the location in the layout markup where the content is rendered.

The following code sample shows the Razor template of a layout component, MainLayout.razor . The layout

inherits LayoutComponentBase and sets the @Body between the navigation bar and the footer :

In an app based on one of the Blazor project templates, the MainLayout component (MainLayout.razor) is in the

app's Shared folder :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/layouts.md
https://www.timecockpit.com
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.layoutcomponentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.layoutcomponentbase.body#microsoft_aspnetcore_components_layoutcomponentbase_body
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.layoutcomponentbase

@inherits LayoutComponentBase

<div class="sidebar">
 <NavMenu />
</div>

<div class="main">
 <div class="content px-4">
 @Body
 </div>
</div>

Default layout

<Router AppAssembly="@typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <p>Sorry, there's nothing at this address.</p>
 </NotFound>
</Router>

<Router AppAssembly="@typeof(Startup).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <h1>Page not found</h1>
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
</Router>

Specify a layout in a component

Specify the default app layout in the Router component in the app's App.razor file. The following Router

component, which is provided by the default Blazor templates, sets the default layout to the MainLayout

component:

To supply a default layout for NotFound content, specify a LayoutView for NotFound content:

For more information on the Router component, see ASP.NET Core Blazor routing.

Specifying the layout as a default layout in the router is a useful practice because it can be overridden on a per-

component or per-folder basis. Prefer using the router to set the app's default layout because it's the most

general technique.

Use the Razor directive @layout to apply a layout to a component. The compiler converts @layout into a

LayoutAttribute, which is applied to the component class.

The content of the following MasterList component is inserted into the MasterLayout at the position of @Body :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.layoutview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.notfound#microsoft_aspnetcore_components_routing_router_notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.layoutattribute

@layout MasterLayout
@page "/masterlist"

<h1>Master Episode List</h1>

Centralized layout selection

@layout MyCoolLayout
@using Microsoft.AspNetCore.Components
@using BlazorApp1.Data

WARNINGWARNING

Nested layouts

@layout MasterListLayout
@page "/masterlist/episodes"

<h1>Episodes</h1>

Specifying the layout directly in a component overrides a default layout set in the router or an @layout directive

imported from _Imports.razor .

Every folder of an app can optionally contain a template file named _Imports.razor . The compiler includes the

directives specified in the imports file in all of the Razor templates in the same folder and recursively in all of its

subfolders. Therefore, an _Imports.razor file containing @layout MyCoolLayout ensures that all of the

components in a folder use MyCoolLayout . There's no need to repeatedly add @layout MyCoolLayout to all of the

.razor files within the folder and subfolders. @using directives are also applied to components in the same

way.

The following _Imports.razor file imports:

MyCoolLayout .

All Razor components in the same folder and any subfolders.

The BlazorApp1.Data namespace.

The _Imports.razor file is similar to the _ViewImports.cshtml file for Razor views and pages but applied

specifically to Razor component files.

Specifying a layout in _Imports.razor overrides a layout specified as the router's default layout.

Do notnot add a Razor @layout directive to the root _Imports.razor file, which results in an infinite loop of layouts in the

app. To control the default app layout, specify the layout in the Router component. For more information, see the

Default layout section.

Apps can consist of nested layouts. A component can reference a layout which in turn references another layout.

For example, nesting layouts are used to create a multi-level menu structure.

The following example shows how to use nested layouts. The EpisodesComponent.razor file is the component to

display. The component references the MasterListLayout :

The MasterListLayout.razor file provides the MasterListLayout . The layout references another layout,

MasterLayout , where it's rendered. EpisodesComponent is rendered where @Body appears:

@layout MasterLayout
@inherits LayoutComponentBase

<nav>
 <!-- Menu structure of master list -->
 ...
</nav>

@Body

@inherits LayoutComponentBase

<header>...</header>
<nav>...</nav>

@Body

<footer>
 @TrademarkMessage
</footer>

@code {
 public string TrademarkMessage { get; set; } =
 "Doctor Who is a registered trademark of the BBC. " +
 "https://www.doctorwho.tv/";
}

Share a Razor Pages layout with integrated components

Additional resources

Finally, MasterLayout in MasterLayout.razor contains the top-level layout elements, such as the header, main

menu, and footer. MasterListLayout with the EpisodesComponent is rendered where @Body appears:

When routable components are integrated into a Razor Pages app, the app's shared layout can be used with the

components. For more information, see Integrate ASP.NET Core Razor components into Razor Pages and MVC

apps.

Layout in ASP.NET Core

ASP.NET Core Blazor forms and validation
9/22/2020 • 22 minutes to read • Edit Online

using System.ComponentModel.DataAnnotations;

public class ExampleModel
{
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
}

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <InputText id="name" @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }
}

Built-in forms components

By Daniel Roth, Rémi Bourgarel, and Luke Latham

Forms and validation are supported in Blazor using data annotations.

The following ExampleModel type defines validation logic using data annotations:

A form is defined using the EditForm component. The following form demonstrates typical elements, components,

and Razor code:

In the preceding example:

The form validates user input in the name field using the validation defined in the ExampleModel type. The

model is created in the component's @code block and held in a private field (exampleModel). The field is

assigned to the Model attribute of the <EditForm> element.

The InputText component's @bind-Value binds:

The DataAnnotationsValidator validator component attaches validation support using data annotations.

The ValidationSummary component summarizes validation messages.

HandleValidSubmit is triggered when the form successfully submits (passes validation).

The model property (exampleModel.Name) to the InputText component's Value property. For more

information on property binding, see ASP.NET Core Blazor data binding.

A change event delegate to the InputText component's ValueChanged property.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/forms-validation.md
https://github.com/danroth27
https://remibou.github.io/
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputFile <input type="file">

InputNumber<TValue> <input type="number">

InputRadio <input type="radio">

InputRadioGroup <input type="radio">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

IN P UT C O M P O N EN TIN P UT C O M P O N EN T REN DERED A S…REN DERED A S…

InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputNumber<TValue> <input type="number">

InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

NOTENOTE

A set of built-in components are available to receive and validate user input. Inputs are validated when they're

changed and when a form is submitted. Available input components are shown in the following table.

The InputRadio and InputRadioGroup components are available in ASP.NET Core 5.0 or later. For more information,

select a 5.0 or later version of this article.

All of the input components, including EditForm, support arbitrary attributes. Any attribute that doesn't match a

component parameter is added to the rendered HTML element.

Input components provide default behavior for validating when a field is changed, including updating the field CSS

class to reflect the field state. Some components include useful parsing logic. For example, InputDate<TValue> and

InputNumber<TValue> handle unparseable values gracefully by registering unparseable values as validation

errors. Types that can accept null values also support nullability of the target field (for example, int?).

The following Starship type defines validation logic using a larger set of properties and data annotations than the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputcheckbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtextarea
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 [Required]
 [StringLength(16, ErrorMessage = "Identifier too long (16 character limit).")]
 public string Identifier { get; set; }

 public string Description { get; set; }

 [Required]
 public string Classification { get; set; }

 [Range(1, 100000, ErrorMessage = "Accommodation invalid (1-100000).")]
 public int MaximumAccommodation { get; set; }

 [Required]
 [Range(typeof(bool), "true", "true",
 ErrorMessage = "This form disallows unapproved ships.")]
 public bool IsValidatedDesign { get; set; }

 [Required]
 public DateTime ProductionDate { get; set; }
}

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>

earlier ExampleModel :

In the preceding example, Description is optional because no data annotations are present.

The following form validates user input using the validation defined in the Starship model:

 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" />
 </label>
 </p>

 <button type="submit">Submit</button>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 ...
 }
}

The EditForm creates an EditContext as a cascading value that tracks metadata about the edit process, including

which fields have been modified and the current validation messages.

Assign eithereither an EditContext oror an EditForm.Model to an EditForm. Assignment of both isn't supported and

generates a runtime errorruntime error .

The EditForm provides convenient events for valid and invalid form submission:

OnValidSubmit

OnInvalidSubmit

Use OnSubmit to use custom code to trigger validation and check field values.

In the following example:

The HandleSubmit method executes when the Submit button is selected.

The form is validated by calling EditContext.Validate.

Additional code is executed depending on the validation result. Place business logic in the method assigned to

OnSubmit.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.oninvalidsubmit#microsoft_aspnetcore_components_forms_editform_oninvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.validate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onsubmit#microsoft_aspnetcore_components_forms_editform_onsubmit

<EditForm EditContext="@editContext" OnSubmit="@HandleSubmit">

 ...

 <button type="submit">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 }

 private async Task HandleSubmit()
 {
 var isValid = editContext.Validate();

 if (isValid)
 {
 ...
 }
 else
 {
 ...
 }
 }
}

NOTENOTE

Display name support

<InputDate @bind-Value="@BirthDate" DisplayName="birthday" />

@code {
 public DateTime BirthDate { get; set; }
}

Framework API doesn't exist to clear validation messages directly from an EditContext. Therefore, we don't generally

recommend adding validation messages to a new ValidationMessageStore in a form. To manage validation messages, use a

validator component with your business logic validation code, as described in this article.

This section applies to ASP.NET Core in .NET 5 Release Candidate 1 (RC1) or later.

The following built-in components support display names with the DisplayName parameter :

InputDate<TValue>

InputNumber<TValue>

InputSelect<TValue>

In the following InputDate component example:

The display name (DisplayName) is set to birthday .

The component is bound to the BirthDate property as a DateTime type.

If the user doesn't provide a date value, the validation error appears as:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputdate-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputnumber-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputselect-1

The birthday must be a date.

Validator components

NOTENOTE

Validator components support form validation by managing a ValidationMessageStore for a form's EditContext.

The Blazor framework provides the DataAnnotationsValidator component to attach validation support to forms

based on validation attributes (data annotations). Create custom validator components to process validation

messages for different forms on the same page or the same form at different steps of form processing, for

example client-side validation followed by server-side validation. The validator component example shown in this

section, CustomValidator , is used in the following sections of this article:

Business logic validation

Server validation

Custom data annotation validation attributes can be used instead of custom validator components in many cases. Custom

attributes applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with

server-side validation, any custom attributes applied to the model must be executable on the server. For more information,

see Model validation in ASP.NET Core MVC.

Create a validator component from ComponentBase:

The form's EditContext is a cascading parameter of the component.

When the validator component is initialized, a new ValidationMessageStore is created to maintain a current list

of form errors.

The message store receives errors when developer code in the form's component calls the DisplayErrors

method. The errors are passed to the DisplayErrors method in a Dictionary<string, List<string>> . In the

dictionary, the key is the name of the form field that has one or more errors. The value is the error list.

Messages are cleared when any of the following have occurred:

Validation is requested on the EditContext when the OnValidationRequested event is raised. All of the

errors are cleared.

A field changes in the form when the OnFieldChanged event is raised. Only the errors for the field are

cleared.

The ClearErrors method is called by developer code. All of the errors are cleared.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onvalidationrequested
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Forms;

namespace BlazorSample.Client
{
 public class CustomValidator : ComponentBase
 {
 private ValidationMessageStore messageStore;

 [CascadingParameter]
 private EditContext CurrentEditContext { get; set; }

 protected override void OnInitialized()
 {
 if (CurrentEditContext == null)
 {
 throw new InvalidOperationException(
 $"{nameof(CustomValidator)} requires a cascading " +
 $"parameter of type {nameof(EditContext)}. " +
 $"For example, you can use {nameof(CustomValidator)} " +
 $"inside an {nameof(EditForm)}.");
 }

 messageStore = new ValidationMessageStore(CurrentEditContext);

 CurrentEditContext.OnValidationRequested += (s, e) =>
 messageStore.Clear();
 CurrentEditContext.OnFieldChanged += (s, e) =>
 messageStore.Clear(e.FieldIdentifier);
 }

 public void DisplayErrors(Dictionary<string, List<string>> errors)
 {
 foreach (var err in errors)
 {
 messageStore.Add(CurrentEditContext.Field(err.Key), err.Value);
 }

 CurrentEditContext.NotifyValidationStateChanged();
 }

 public void ClearErrors()
 {
 messageStore.Clear();
 CurrentEditContext.NotifyValidationStateChanged();
 }
 }
}

Business logic validation
Business logic validation can be accomplished with a validator component that receives form errors in a dictionary.

In the following example:

The CustomValidator component from the Validator components section of this article is used.

The validation requires a value for the ship's description (Description) if the user selects the Defense ship

classification (Classification).

When validation messages are set in the component, they're added to the validator's ValidationMessageStore and

shown in the EditForm:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/FormsValidation"

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 ...

</EditForm>

@code {
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private void HandleValidSubmit()
 {
 customValidator.ClearErrors();

 var errors = new Dictionary<string, List<string>>();

 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 errors.Add(nameof(starship.Description),
 new List<string>() { "For a 'Defense' ship classification, " +
 "'Description' is required." });
 }

 if (errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else
 {
 // Process the form
 }
 }
}

NOTENOTE

Server validation

As an alternative to using validation components, data annotation validation attributes can be used. Custom attributes

applied to the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side

validation, the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core

MVC.

Server validation can be accomplished with a server validator component:

Process client-side validation in the form with the DataAnnotationsValidator component.

When the form passes client-side validation (OnValidSubmit is called), send the EditContext.Model to a backend

server API for form processing.

Process model validation on the server.

The server API includes both the built-in framework data annotations validation and custom validation logic

supplied by the developer. If validation passes on the server, process the form and send back a success status

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.onvalidsubmit#microsoft_aspnetcore_components_forms_editform_onvalidsubmit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.model#microsoft_aspnetcore_components_forms_editcontext_model

<ItemGroup>
 <PackageReference Include="System.ComponentModel.Annotations" Version="{VERSION}" />
</ItemGroup>

code (200 - OK). If validation fails, return a failure status code (400 - Bad Request) and the field validation

errors.

Either disable the form on success or display the errors.

The following example is based on:

A hosted Blazor solution created by the Blazor Hosted project template. The example can be used with any of

the secure hosted Blazor solutions described in the Security and Identity documentation.

The Starfleet Starship Database form example in the preceding Built-in forms components section.

The Blazor framework's DataAnnotationsValidator component.

The CustomValidator component shown in the Validator components section.

In the following example, the server API validates that a value is provided for the ship's description (Description)

if the user selects the Defense ship classification (Classification).

Place the Starship model into the solution's Shared project so that both the client and server apps can use the

model. Since the model requires data annotations, add a package reference for System.ComponentModel.Annotations

to the Shared project's project file:

To determine the latest non-preview version of the package, see the package Version Histor yVersion Histor y at NuGet.org.

In the server API project, add a controller to process starship validation requests (

Controllers/StarshipValidation.cs) and return failed validation messages:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/System.ComponentModel.Annotations
https://www.nuget.org/packages/System.ComponentModel.Annotations

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using BlazorSample.Shared;

namespace BlazorSample.Server.Controllers
{
 [Authorize]
 [ApiController]
 [Route("[controller]")]
 public class StarshipValidationController : ControllerBase
 {
 private readonly ILogger<StarshipValidationController> logger;

 public StarshipValidationController(
 ILogger<StarshipValidationController> logger)
 {
 this.logger = logger;
 }

 [HttpPost]
 public async Task<IActionResult> Post(Starship starship)
 {
 try
 {
 if (starship.Classification == "Defense" &&
 string.IsNullOrEmpty(starship.Description))
 {
 ModelState.AddModelError(nameof(starship.Description),
 "For a 'Defense' ship " +
 "classification, 'Description' is required.");
 }
 else
 {
 // Process the form asynchronously
 // async ...

 return Ok(ModelState);
 }
 }
 catch (Exception ex)
 {
 logger.LogError("Validation Error: {MESSAGE}", ex.Message);
 }

 return BadRequest(ModelState);
 }
 }
}

When a model binding validation error occurs on the server, an ApiController (ApiControllerAttribute) normally

returns a default bad request response with a ValidationProblemDetails. The response contains more data than

just the validation errors, as shown in the following example when all of the fields of the Starfleet Starship

Database form aren't submitted and the form fails validation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails

{
 "title": "One or more validation errors occurred.",
 "status": 400,
 "errors": {
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
 }
}

{
 "Identifier": ["The Identifier field is required."],
 "Classification": ["The Classification field is required."],
 "IsValidatedDesign": ["This form disallows unapproved ships."],
 "MaximumAccommodation": ["Accommodation invalid (1-100000)."]
}

using Microsoft.AspNetCore.Mvc;

...

services.AddControllersWithViews()
 .ConfigureApiBehaviorOptions(options =>
 {
 options.InvalidModelStateResponseFactory = context =>
 {
 if (context.HttpContext.Request.Path == "/StarshipValidation")
 {
 return new BadRequestObjectResult(context.ModelState);
 }
 else
 {
 return new BadRequestObjectResult(
 new ValidationProblemDetails(context.ModelState));
 }
 };
 });

@page "/FormValidation"
@using System.Net

If the server API returns the preceding default JSON response, it's possible for the client to parse the response to

obtain the children of the errors node. However, it's inconvenient to parse the file. Parsing the JSON requires

additional code after calling ReadFromJsonAsync in order to produce a Dictionary<string, List<string>> of

errors for forms validation error processing. Ideally, the server API should only return the validation errors:

To modify the server API's response to make it only return the validation errors, change the delegate that's invoked

on actions that are annotated with ApiControllerAttribute in Startup.ConfigureServices . For the API endpoint (

/StarshipValidation), return a BadRequestObjectResult with the ModelStateDictionary. For any other API

endpoints, preserve the default behavior by returning the object result with a new ValidationProblemDetails:

For more information, see Handle errors in ASP.NET Core web APIs.

In the client project, add the validator component shown in the Validator components section.

In the client project, the Starfleet Starship Database form is updated to show server validation errors with help of

the CustomValidator component. When the server API returns validation messages, they're added to the

CustomValidator component's ValidationMessageStore. The errors are available in the form's EditContext for

display by the form's ValidationSummary:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.badrequestobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessagestore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

@using System.Net
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using Microsoft.Extensions.Logging
@using BlazorSample.Shared
@attribute [Authorize]
@inject HttpClient Http
@inject ILogger<FormValidation> Logger

<h1>Starfleet Starship Database</h1>

<h2>New Ship Entry Form</h2>

<EditForm Model="@starship" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <CustomValidator @ref="customValidator" />
 <ValidationSummary />

 <p>
 <label>
 Identifier:
 <InputText @bind-Value="starship.Identifier" disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Description (optional):
 <InputTextArea @bind-Value="starship.Description"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Primary Classification:
 <InputSelect @bind-Value="starship.Classification" disabled="@disabled">
 <option value="">Select classification ...</option>
 <option value="Exploration">Exploration</option>
 <option value="Diplomacy">Diplomacy</option>
 <option value="Defense">Defense</option>
 </InputSelect>
 </label>
 </p>
 <p>
 <label>
 Maximum Accommodation:
 <InputNumber @bind-Value="starship.MaximumAccommodation"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Engineering Approval:
 <InputCheckbox @bind-Value="starship.IsValidatedDesign"
 disabled="@disabled" />
 </label>
 </p>
 <p>
 <label>
 Production Date:
 <InputDate @bind-Value="starship.ProductionDate" disabled="@disabled" />
 </label>
 </p>

 <button type="submit" disabled="@disabled">Submit</button>

 <p style="@messageStyles">
 @message
 </p>

 <p>
 Star Trek,
 ©1966-2019 CBS Studios, Inc. and
 Paramount Pictures
 </p>
</EditForm>

@code {
 private bool disabled;
 private string message;
 private string messageStyles = "visibility:hidden";
 private CustomValidator customValidator;
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };

 private async Task HandleValidSubmit(EditContext editContext)
 {
 customValidator.ClearErrors();

 try
 {
 var response = await Http.PostAsJsonAsync<Starship>(
 "StarshipValidation", (Starship)editContext.Model);

 var errors = await response.Content
 .ReadFromJsonAsync<Dictionary<string, List<string>>>();

 if (response.StatusCode == HttpStatusCode.BadRequest &&
 errors.Count() > 0)
 {
 customValidator.DisplayErrors(errors);
 }
 else if (!response.IsSuccessStatusCode)
 {
 throw new HttpRequestException(
 $"Validation failed. Status Code: {response.StatusCode}");
 }
 else
 {
 disabled = true;
 messageStyles = "color:green";
 message = "The form has been processed.";
 }
 }
 catch (AccessTokenNotAvailableException ex)
 {
 ex.Redirect();
 }
 catch (Exception ex)
 {
 Logger.LogError("Form processing error: {MESSAGE}", ex.Message);
 disabled = true;
 messageStyles = "color:red";
 message = "There was an error processing the form.";
 }
 }
}

NOTENOTE
As an alternative to validation components, data annotation validation attributes can be used. Custom attributes applied to

the form's model activate with the use of the DataAnnotationsValidator component. When used with server-side validation,

the attributes must be executable on the server. For more information, see Model validation in ASP.NET Core MVC.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

NOTENOTE

InputText based on the input event

@inherits InputText

<input
 @attributes="AdditionalAttributes"
 class="@CssClass"
 value="@CurrentValue"
 @oninput="EventCallback.Factory.CreateBinder<string>(
 this, __value => CurrentValueAsString = __value,
 CurrentValueAsString)" />

The server-side validation approach in this section is suitable for any of the Blazor WebAssembly hosted solution examples in

this documentation set:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

Use the InputText component to create a custom component that uses the input event instead of the change

event.

In the following example, the CustomInputText component inherits the framework's InputText component and

sets the event binding (CreateBinder) to the oninput event.

Shared/CustomInputText.razor :

The CustomInputText component can be used anywhere InputText is used:

Pages/TestForm.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallbackfactorybinderextensions.createbinder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.inputtext

@page "/testform"
@using System.ComponentModel.DataAnnotations;

<EditForm Model="@exampleModel" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <CustomInputText @bind-Value="exampleModel.Name" />

 <button type="submit">Submit</button>
</EditForm>

<p>
 CurrentValue: @exampleModel.Name
</p>

@code {
 private ExampleModel exampleModel = new ExampleModel();

 private void HandleValidSubmit()
 {
 ...
 }

 public class ExampleModel
 {
 [Required]
 [StringLength(10, ErrorMessage = "Name is too long.")]
 public string Name { get; set; }
 }
}

Radio buttons

[Required]
[Range(typeof(Manufacturer), nameof(Manufacturer.SpaceX),
 nameof(Manufacturer.VirginGalactic), ErrorMessage = "Pick a manufacturer.")]
public Manufacturer Manufacturer { get; set; } = Manufacturer.Unknown;

[Required, EnumDataType(typeof(Color))]
public Color? Color { get; set; } = null;

[Required, EnumDataType(typeof(Engine))]
public Engine? Engine { get; set; } = null;

public enum Manufacturer { SpaceX, NASA, ULA, Virgin, Unknown }
public enum Color { ImperialRed, SpacecruiserGreen, StarshipBlue, VoyagerOrange }
public enum Engine { Ion, Plasma, Fusion, Warp }

Use InputRadio components with the InputRadioGroup component to create a radio button group. In the

following example, properties are added to the Starship model described in the Built-in forms components

section:

Add the following enums to the app. Create a new file to hold the enums or add the enums to the Starship.cs file.

Make the enums accessible to the Starship model and the Starfleet Starship Database form:

Update the Starfleet Starship Database form described in the Built-in forms components section. Add the

components to produce:

A radio button group for the ship manufacturer.

<p>
 <InputRadioGroup @bind-Value="starship.Manufacturer">
 Manufacturer:

 @foreach (var manufacturer in (Manufacturer[])Enum
 .GetValues(typeof(Manufacturer)))
 {
 <InputRadio Value="manufacturer" />
 @manufacturer

 }
 </InputRadioGroup>
</p>

<p>
 Pick one color and one engine:
 <InputRadioGroup Name="engine" @bind-Value="starship.Engine">
 <InputRadioGroup Name="color" @bind-Value="starship.Color">
 <InputRadio Name="color" Value="Color.ImperialRed" />Imperial Red

 <InputRadio Name="engine" Value="Engine.Ion" />Ion

 <InputRadio Name="color" Value="Color.SpacecruiserGreen" />
 Spacecruiser Green

 <InputRadio Name="engine" Value="Engine.Plasma" />Plasma

 <InputRadio Name="color" Value="Color.StarshipBlue" />Starship Blue

 <InputRadio Name="engine" Value="Engine.Fusion" />Fusion

 <InputRadio Name="color" Value="Color.VoyagerOrange" />
 Voyager Orange

 <InputRadio Name="engine" Value="Engine.Warp" />Warp

 </InputRadioGroup>
 </InputRadioGroup>
</p>

NOTENOTE

A nested radio button group for ship color and engine.

If Name is omitted, InputRadio components are grouped by their most recent ancestor.

When working with radio buttons in a form, data binding is handled differently than other elements because radio

buttons are evaluated as a group. The value of each radio button is fixed, but the value of the radio button group is

the value of the selected radio button. The following example shows how to:

Handle data binding for a radio button group.

Support validation using a custom InputRadio component.

@using System.Globalization
@typeparam TValue
@inherits InputBase<TValue>

<input @attributes="AdditionalAttributes" type="radio" value="@SelectedValue"
 checked="@(SelectedValue.Equals(Value))" @onchange="OnChange" />

@code {
 [Parameter]
 public TValue SelectedValue { get; set; }

 private void OnChange(ChangeEventArgs args)
 {
 CurrentValueAsString = args.Value.ToString();
 }

 protected override bool TryParseValueFromString(string value,
 out TValue result, out string errorMessage)
 {
 var success = BindConverter.TryConvertTo<TValue>(
 value, CultureInfo.CurrentCulture, out var parsedValue);
 if (success)
 {
 result = parsedValue;
 errorMessage = null;

 return true;
 }
 else
 {
 result = default;
 errorMessage = $"{FieldIdentifier.FieldName} field isn't valid.";

 return false;
 }
 }
}

The following EditForm uses the preceding InputRadio component to obtain and validate a rating from the user :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform

@page "/RadioButtonExample"
@using System.ComponentModel.DataAnnotations

<h1>Radio Button Group Test</h1>

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 @for (int i = 1; i <= 5; i++)
 {
 <label>
 <InputRadio name="rate" SelectedValue="i" @bind-Value="model.Rating" />
 @i
 </label>
 }

 <button type="submit">Submit</button>
</EditForm>

<p>You chose: @model.Rating</p>

@code {
 private Model model = new Model();

 private void HandleValidSubmit()
 {
 ...
 }

 public class Model
 {
 [Range(1, 5)]
 public int Rating { get; set; }
 }
}

Binding <select> element options to C# object null values

Validation support

There's no sensible way to represent a <select> element option value as a C# object null value, because:

HTML attributes can't have null values. The closest equivalent to null in HTML is absence of the HTML

value attribute from the <option> element.

When selecting an <option> with no value attribute, the browser treats the value as the text content of that

<option> 's element.

The Blazor framework doesn't attempt to suppress the default behavior because it would involve:

Creating a chain of special-case workarounds in the framework.

Breaking changes to current framework behavior.

The most plausible null equivalent in HTML is an empty string value . The Blazor framework handles null to

empty string conversions for two-way binding to a <select> 's value.

The Blazor framework doesn't automatically handle null to empty string conversions when attempting two-way

binding to a <select> 's value. For more information, see Fix binding <select> to a null value (dotnet/aspnetcore

#23221).

The DataAnnotationsValidator component attaches validation support using data annotations to the cascaded

https://github.com/dotnet/aspnetcore/pull/23221
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Validation Summary and Validation Message componentsValidation Summary and Validation Message components

<ValidationSummary />

<ValidationSummary Model="@starship" />

<ValidationMessage For="@(() => starship.MaximumAccommodation)" />

.validation-message {
 color: red;
}

Custom validation attributesCustom validation attributes

EditContext. Enabling support for validation using data annotations requires this explicit gesture. To use a different

validation system than data annotations, replace the DataAnnotationsValidator with a custom implementation. The

ASP.NET Core implementation is available for inspection in the reference source: DataAnnotationsValidator /

AddDataAnnotationsValidation . The preceding links to reference source provide code from the repository's master

branch, which represents the product unit's current development for the next release of ASP.NET Core. To select the

branch for a different release, use the GitHub branch selector (for example release/3.1).

Blazor performs two types of validation:

Field validation is performed when the user tabs out of a field. During field validation, the

DataAnnotationsValidator component associates all reported validation results with the field.

Model validation is performed when the user submits the form. During model validation, the

DataAnnotationsValidator component attempts to determine the field based on the member name that the

validation result reports. Validation results that aren't associated with an individual member are associated with

the model rather than a field.

The ValidationSummary component summarizes all validation messages, which is similar to the Validation

Summary Tag Helper:

Output validation messages for a specific model with the Model parameter :

The ValidationMessage<TValue> component displays validation messages for a specific field, which is similar to

the Validation Message Tag Helper. Specify the field for validation with the For attribute and a lambda expression

naming the model property:

The ValidationMessage<TValue> and ValidationSummary components support arbitrary attributes. Any attribute

that doesn't match a component parameter is added to the generated <div> or element.

Control the style of validation messages in the app's stylesheet (wwwroot/css/app.css or wwwroot/css/site.css).

The default validation-message class sets the text color of validation messages to red:

To ensure that a validation result is correctly associated with a field when using a custom validation attribute, pass

the validation context's MemberName when creating the ValidationResult:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/DataAnnotationsValidator.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Components/Forms/src/EditContextDataAnnotationsExtensions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationmessage-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.membername#system_componentmodel_dataannotations_validationcontext_membername
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationresult

using System;
using System.ComponentModel.DataAnnotations;

private class CustomValidator : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 ...

 return new ValidationResult("Validation message to user.",
 new[] { validationContext.MemberName });
 }
}

NOTENOTE

Custom validation class attributes

var editContext = new EditContext(model);
editContext.SetFieldCssClassProvider(new MyFieldClassProvider());

...

private class MyFieldClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext,
 in FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext.GetValidationMessages(fieldIdentifier).Any();

 return isValid ? "good field" : "bad field";
 }
}

Blazor data annotations validation packageBlazor data annotations validation package

NOTENOTE

[CompareProperty] attribute[CompareProperty] attribute

ValidationContext.GetService is null . Injecting services for validation in the IsValid method isn't supported.

Custom validation class names are useful when integrating with CSS frameworks, such as Bootstrap. To specify

custom validation class names, create a class derived from FieldCssClassProvider and set the class on the

EditContext instance:

The Microsoft.AspNetCore.Components.DataAnnotations.Validation is a package that fills validation experience gaps

using the DataAnnotationsValidator component. The package is currently experimental.

The Microsoft.AspNetCore.Components.DataAnnotations.Validation package has a latest version of release candidate at

Nuget.org. Continue to use the experimental release candidate package at this time. The package's assembly might be

moved to either the framework or the runtime in a future release. Watch the Announcements GitHub repository, the

dotnet/aspnetcore GitHub repository, or this topic section for further updates.

The CompareAttribute doesn't work well with the DataAnnotationsValidator component because it doesn't

associate the validation result with a specific member. This can result in inconsistent behavior between field-level

validation and when the entire model is validated on a submit. The

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationcontext.getservice
https://getbootstrap.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://github.com/aspnet/Announcements
https://github.com/dotnet/aspnetcore
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator

Nested models, collection types, and complex typesNested models, collection types, and complex types

<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <ObjectGraphDataAnnotationsValidator />
 ...
</EditForm>

using System;
using System.ComponentModel.DataAnnotations;

public class Starship
{
 ...

 [ValidateComplexType]
 public ShipDescription ShipDescription { get; set; } =
 new ShipDescription();

 ...
}

using System;
using System.ComponentModel.DataAnnotations;

public class ShipDescription
{
 [Required]
 [StringLength(40, ErrorMessage = "Description too long (40 char).")]
 public string ShortDescription { get; set; }

 [Required]
 [StringLength(240, ErrorMessage = "Description too long (240 char).")]
 public string LongDescription { get; set; }
}

Enable the submit button based on form validationEnable the submit button based on form validation

Microsoft.AspNetCore.Components.DataAnnotations.Validation experimental package introduces an additional

validation attribute, ComparePropertyAttribute , that works around these limitations. In a Blazor app,

[CompareProperty] is a direct replacement for the [Compare] attribute.

Blazor provides support for validating form input using data annotations with the built-in

DataAnnotationsValidator. However, the DataAnnotationsValidator only validates top-level properties of the model

bound to the form that aren't collection- or complex-type properties.

To validate the bound model's entire object graph, including collection- and complex-type properties, use the

ObjectGraphDataAnnotationsValidator provided by the experimental

Microsoft.AspNetCore.Components.DataAnnotations.Validation package:

Annotate model properties with [ValidateComplexType] . In the following model classes, the ShipDescription class

contains additional data annotations to validate when the model is bound to the form:

Starship.cs :

ShipDescription.cs :

To enable and disable the submit button based on form validation:

Use the form's EditContext to assign the model when the component is initialized.

Validate the form in the context's OnFieldChanged callback to enable and disable the submit button.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.compareattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.dataannotationsvalidator
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.DataAnnotations.Validation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext.onfieldchanged

NOTENOTE

@implements IDisposable

<EditForm EditContext="@editContext">
 <DataAnnotationsValidator />
 <ValidationSummary />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private Starship starship = new Starship() { ProductionDate = DateTime.UtcNow };
 private bool formInvalid = true;
 private EditContext editContext;

 protected override void OnInitialized()
 {
 editContext = new EditContext(starship);
 editContext.OnFieldChanged += HandleFieldChanged;
 }

 private void HandleFieldChanged(object sender, FieldChangedEventArgs e)
 {
 formInvalid = !editContext.Validate();
 StateHasChanged();
 }

 public void Dispose()
 {
 editContext.OnFieldChanged -= HandleFieldChanged;
 }
}

Unhook the event handler in the Dispose method. For more information, see ASP.NET Core Blazor lifecycle.

When using an EditContext, don't also assign a Model to the EditForm.

In the preceding example, set formInvalid to false if:

The form is preloaded with valid default values.

You want the submit button enabled when the form loads.

A side effect of the preceding approach is that a ValidationSummary component is populated with invalid fields

after the user interacts with any one field. This scenario can be addressed in either of the following ways:

Don't use a ValidationSummary component on the form.

Make the ValidationSummary component visible when the submit button is selected (for example, in a

HandleValidSubmit method).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.validationsummary

<EditForm EditContext="@editContext" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary style="@displaySummary" />

 ...

 <button type="submit" disabled="@formInvalid">Submit</button>
</EditForm>

@code {
 private string displaySummary = "display:none";

 ...

 private void HandleValidSubmit()
 {
 displaySummary = "display:block";
 }
}

Troubleshoot

private ExampleModel exampleModel = new ExampleModel();

Additional resources

InvalidOperationException: EditForm requires a Model parameter, or an EditContext parameter, but not both.

Confirm that the EditForm has a Model oror EditContext. Don't use both for the same form.

When assigning a Model to the form, confirm that the model type is instantiated, as the following example shows:

ASP.NET Core Blazor file uploads

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms.editform.model#microsoft_aspnetcore_components_forms_editform_model

ASP.NET Core Blazor file uploads
9/22/2020 • 2 minutes to read • Edit Online

<h3>Upload PNG images</h3>

<p>
 <InputFile OnChange="@OnInputFileChange" multiple />
</p>

@if (imageDataUrls.Count > 0)
{
 <h3>Images</h3>

 <div class="card" style="width:30rem;">
 <div class="card-body">
 @foreach (var imageDataUrl in imageDataUrls)
 {

 }
 </div>
 </div>
}

@code {
 IList<string> imageDataUrls = new List<string>();

 private async Task OnInputFileChange(InputFileChangeEventArgs e)
 {
 var imageFiles = e.GetMultipleFiles();
 var format = "image/png";

 foreach (var imageFile in imageFiles)
 {
 var resizedImageFile = await imageFile.RequestImageFileAsync(format,
 100, 100);
 var buffer = new byte[resizedImageFile.Size];
 await resizedImageFile.OpenReadStream().ReadAsync(buffer);
 var imageDataUrl =
 $"data:{format};base64,{Convert.ToBase64String(buffer)}";
 imageDataUrls.Add(imageDataUrl);
 }
 }
}

By Daniel Roth

Use the InputFile component to read browser file data into .NET code, including for file uploads. The

InputFile component renders as an HTML input of type file .

By default, the user selects single files. Add the multiple attribute to permit the user to upload multiple files

at once. When one or more files is selected by the user, the InputFile component fires an OnChange event

and passes in an InputFileChangeEventArgs that provides access to the selected file list and details about each

file.

A component that receives an image file can call the RequestImageFileAsync convenience method on the file to

resize the image data within the browser's JavaScript runtime before the image is streamed into the app.

The following example demonstrates multiple image file upload in a component:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/file-uploads.md
https://github.com/danroth27

To read data from a user-selected file, call OpenReadStream on the file and read from the returned stream. In a

Blazor WebAssembly app, the data is streamed directly into the .NET code within the browser. In a Blazor

Server app, the file data is streamed into .NET code on the server as the file is read from the stream.

Call JavaScript functions from .NET methods in
ASP.NET Core Blazor
9/22/2020 • 16 minutes to read • Edit Online

<script>
 window.convertArray = (win1251Array) => {
 var win1251decoder = new TextDecoder('windows-1251');
 var bytes = new Uint8Array(win1251Array);
 var decodedArray = win1251decoder.decode(bytes);
 console.log(decodedArray);
 return decodedArray;
 };
</script>

<script src="exampleJsInterop.js"></script>

By Javier Calvarro Nelson, Daniel Roth, and Luke Latham

A Blazor app can invoke JavaScript functions from .NET methods and .NET methods from JavaScript functions.

These scenarios are called JavaScript interoperability (JS interop).

This article covers invoking JavaScript functions from .NET. For information on how to call .NET methods from

JavaScript, see Call .NET methods from JavaScript functions in ASP.NET Core Blazor.

View or download sample code (how to download)

To call into JavaScript from .NET, use the IJSRuntime abstraction. To issue JS interop calls, inject the IJSRuntime

abstraction in your component. InvokeAsync takes an identifier for the JavaScript function that you wish to invoke

along with any number of JSON-serializable arguments. The function identifier is relative to the global scope (

window). If you wish to call window.someScope.someFunction , the identifier is someScope.someFunction . There's no

need to register the function before it's called. The return type T must also be JSON serializable. T should

match the .NET type that best maps to the JSON type returned.

For Blazor Server apps with prerendering enabled, calling into JavaScript isn't possible during the initial

prerendering. JavaScript interop calls must be deferred until after the connection with the browser is established.

For more information, see the Detect when a Blazor Server app is prerendering section.

The following example is based on TextDecoder , a JavaScript-based decoder. The example demonstrates how to

invoke a JavaScript function from a C# method that offloads a requirement from developer code to an existing

JavaScript API. The JavaScript function accepts a byte array from a C# method, decodes the array, and returns the

text to the component for display.

Inside the <head> element of wwwroot/index.html (Blazor WebAssembly) or Pages/_Host.cshtml (Blazor Server),

provide a JavaScript function that uses TextDecoder to decode a passed array and return the decoded value:

JavaScript code, such as the code shown in the preceding example, can also be loaded from a JavaScript file (.js

) with a reference to the script file:

The following component:

Invokes the convertArray JavaScript function using JSRuntime when a component button (Convert Array) is

selected.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/call-javascript-from-dotnet.md
https://github.com/javiercn
https://github.com/danroth27
https://github.com/guardrex
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync
https://developer.mozilla.org/docs/Web/API/TextDecoder

@page "/call-js-example"
@inject IJSRuntime JSRuntime;

<h1>Call JavaScript Function Example</h1>

<button type="button" class="btn btn-primary" @onclick="ConvertArray">
 Convert Array
</button>

<p class="mt-2" style="font-size:1.6em">

 @convertedText

</p>

@code {
 // Quote (c)2005 Universal Pictures: Serenity
 // https://www.uphe.com/movies/serenity
 // David Krumholtz on IMDB: https://www.imdb.com/name/nm0472710/

 private MarkupString convertedText =
 new MarkupString("Select the Convert Array button.");

 private uint[] quoteArray = new uint[]
 {
 60, 101, 109, 62, 67, 97, 110, 39, 116, 32, 115, 116, 111, 112, 32,
 116, 104, 101, 32, 115, 105, 103, 110, 97, 108, 44, 32, 77, 97,
 108, 46, 60, 47, 101, 109, 62, 32, 45, 32, 77, 114, 46, 32, 85, 110,
 105, 118, 101, 114, 115, 101, 10, 10,
 };

 private async Task ConvertArray()
 {
 var text =
 await JSRuntime.InvokeAsync<string>("convertArray", quoteArray);

 convertedText = new MarkupString(text);
 }
}

IJSRuntime

After the JavaScript function is called, the passed array is converted into a string. The string is returned to the

component for display.

To use the IJSRuntime abstraction, adopt any of the following approaches:

@inject IJSRuntime JSRuntime

@code {
 protected override void OnInitialized()
 {
 StocksService.OnStockTickerUpdated += stockUpdate =>
 {
 JSRuntime.InvokeVoidAsync("handleTickerChanged",
 stockUpdate.symbol, stockUpdate.price);
 };
 }
}

Inject the IJSRuntime abstraction into the Razor component (.razor):

Inside the <head> element of wwwroot/index.html (Blazor WebAssembly) or Pages/_Host.cshtml (Blazor

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime

<script>
 window.handleTickerChanged = (symbol, price) => {
 // ... client-side processing/display code ...
 };
</script>

public class JsInteropClasses
{
 private readonly IJSRuntime jsRuntime;

 public JsInteropClasses(IJSRuntime jsRuntime)
 {
 this.jsRuntime = jsRuntime;
 }

 public ValueTask<string> TickerChanged(string data)
 {
 return jsRuntime.InvokeAsync<string>(
 "handleTickerChanged",
 stockUpdate.symbol,
 stockUpdate.price);
 }
}

<script>
 window.handleTickerChanged = (symbol, price) => {
 // ... client-side processing/display code ...
 return 'Done!';
 };
</script>

[Inject]
IJSRuntime JSRuntime { get; set; }

Server), provide a handleTickerChanged JavaScript function. The function is called with

JSRuntimeExtensions.InvokeVoidAsync and doesn't return a value:

Inject the IJSRuntime abstraction into a class (.cs):

Inside the <head> element of wwwroot/index.html (Blazor WebAssembly) or Pages/_Host.cshtml (Blazor

Server), provide a handleTickerChanged JavaScript function. The function is called with

JSRuntime.InvokeAsync and returns a value:

For dynamic content generation with BuildRenderTree, use the [Inject] attribute:

In the client-side sample app that accompanies this topic, two JavaScript functions are available to the app that

interact with the DOM to receive user input and display a welcome message:

showPrompt : Produces a prompt to accept user input (the user's name) and returns the name to the caller.

displayWelcome : Assigns a welcome message from the caller to a DOM object with an id of welcome .

wwwroot/exampleJsInterop.js :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.jsruntimeextensions.invokevoidasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime

window.exampleJsFunctions = {
 showPrompt: function (text) {
 return prompt(text, 'Type your name here');
 },
 displayWelcome: function (welcomeMessage) {
 document.getElementById('welcome').innerText = welcomeMessage;
 },
 returnArrayAsyncJs: function () {
 DotNet.invokeMethodAsync('BlazorSample', 'ReturnArrayAsync')
 .then(data => {
 data.push(4);
 console.log(data);
 });
 },
 sayHello: function (dotnetHelper) {
 return dotnetHelper.invokeMethodAsync('SayHello')
 .then(r => console.log(r));
 }
};

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-
scalable=no" />
 <title>Blazor WebAssembly Sample</title>
 <base href="/" />
 <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />
 <link href="css/app.css" rel="stylesheet" />
</head>

<body>
 <app>Loading...</app>

 <div id="blazor-error-ui">
 An unhandled error has occurred.
 Reload
 �
 </div>
 <script src="_framework/blazor.webassembly.js"></script>
 <script src="exampleJsInterop.js"></script>
</body>

</html>

Place the <script> tag that references the JavaScript file in the wwwroot/index.html file (Blazor WebAssembly) or

Pages/_Host.cshtml file (Blazor Server).

wwwroot/index.html (Blazor WebAssembly):

Pages/_Host.cshtml (Blazor Server):

@page "/"
@namespace BlazorSample.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@{
 Layout = null;
}

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Blazor Server Sample</title>
 <base href="~/" />
 <link rel="stylesheet" href="css/bootstrap/bootstrap.min.css" />
 <link href="css/site.css" rel="stylesheet" />
</head>
<body>
 <app>
 <component type="typeof(App)" render-mode="ServerPrerendered" />
 </app>

 <div id="blazor-error-ui">
 <environment include="Staging,Production">
 An error has occurred. This application may no longer respond until reloaded.
 </environment>
 <environment include="Development">
 An unhandled exception has occurred. See browser dev tools for details.
 </environment>
 Reload
 �
 </div>

 <script src="_framework/blazor.server.js"></script>
 <script src="exampleJsInterop.js"></script>
</body>
</html>

NOTENOTE

Don't place a <script> tag in a component file because the <script> tag can't be updated dynamically.

.NET methods interop with the JavaScript functions in the exampleJsInterop.js file by calling

IJSRuntime.InvokeAsync.

The IJSRuntime abstraction is asynchronous to allow for Blazor Server scenarios. If the app is a Blazor

WebAssembly app and you want to invoke a JavaScript function synchronously, downcast to IJSInProcessRuntime

and call Invoke instead. We recommend that most JS interop libraries use the async APIs to ensure that the

libraries are available in all scenarios.

To enable JavaScript isolation in standard JavaScript modules, see the Blazor JavaScript isolation and object references

section.

The sample app includes a component to demonstrate JS interop. The component:

Receives user input via a JavaScript prompt.

Returns the text to the component for processing.

Calls a second JavaScript function that interacts with the DOM to display a welcome message.

Pages/JsInterop.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsinprocessruntime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsinprocessruntime.invoke
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules

@page "/JSInterop"
@using {APP ASSEMBLY}.JsInteropClasses
@inject IJSRuntime JSRuntime

<h1>JavaScript Interop</h1>

<h2>Invoke JavaScript functions from .NET methods</h2>

<button type="button" class="btn btn-primary" @onclick="TriggerJsPrompt">
 Trigger JavaScript Prompt
</button>

<h3 id="welcome" style="color:green;font-style:italic"></h3>

@code {
 public async Task TriggerJsPrompt()
 {
 var name = await JSRuntime.InvokeAsync<string>(
 "exampleJsFunctions.showPrompt",
 "What's your name?");

 await JSRuntime.InvokeVoidAsync(
 "exampleJsFunctions.displayWelcome",
 $"Hello {name}! Welcome to Blazor!");
 }
}

Call a void JavaScript function

Detect when a Blazor Server app is prerendering

The placeholder {APP ASSEMBLY} is the app's app assembly name (for example, BlazorSample).

1. When TriggerJsPrompt is executed by selecting the component's Trigger JavaScript Prompt button, the

JavaScript showPrompt function provided in the wwwroot/exampleJsInterop.js file is called.

2. The showPrompt function accepts user input (the user's name), which is HTML-encoded and returned to the

component. The component stores the user's name in a local variable, name .

3. The string stored in name is incorporated into a welcome message, which is passed to a JavaScript function,

displayWelcome , which renders the welcome message into a heading tag.

JavaScript functions that return void(0)/void 0 or undefined are called with

JSRuntimeExtensions.InvokeVoidAsync.

While a Blazor Server app is prerendering, certain actions, such as calling into JavaScript, aren't possible because

a connection with the browser hasn't been established. Components may need to render differently when

prerendered.

To delay JavaScript interop calls until after the connection with the browser is established, you can use the

OnAfterRenderAsync component lifecycle event. This event is only called after the app is fully rendered and the

client connection is established.

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/void
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.jsruntimeextensions.invokevoidasync

@using Microsoft.JSInterop
@inject IJSRuntime JSRuntime

<div @ref="divElement">Text during render</div>

@code {
 private ElementReference divElement;

 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender)
 {
 await JSRuntime.InvokeVoidAsync(
 "setElementText", divElement, "Text after render");
 }
 }
}

<script>
 window.setElementText = (element, text) => element.innerText = text;
</script>

WARNINGWARNING

For the preceding example code, provide a setElementText JavaScript function inside the <head> element of

wwwroot/index.html (Blazor WebAssembly) or Pages/_Host.cshtml (Blazor Server). The function is called with

JSRuntimeExtensions.InvokeVoidAsync and doesn't return a value:

The preceding example modifies the Document Object Model (DOM) directly for demonstration purposes only. Directly

modifying the DOM with JavaScript isn't recommended in most scenarios because JavaScript can interfere with Blazor's

change tracking.

The following component demonstrates how to use JavaScript interop as part of a component's initialization logic

in a way that's compatible with prerendering. The component shows that it's possible to trigger a rendering

update from inside OnAfterRenderAsync. The developer must avoid creating an infinite loop in this scenario.

Where JSRuntime.InvokeAsync is called, ElementRef is only used in OnAfterRenderAsync and not in any earlier

lifecycle method because there's no JavaScript element until after the component is rendered.

StateHasChanged is called to rerender the component with the new state obtained from the JavaScript interop

call. The code doesn't create an infinite loop because StateHasChanged is only called when infoFromJs is null .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.jsruntimeextensions.invokevoidasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.jsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrenderasync

@page "/prerendered-interop"
@using Microsoft.AspNetCore.Components
@using Microsoft.JSInterop
@inject IJSRuntime JSRuntime

<p>
 Get value via JS interop call:
 <strong id="val-get-by-interop">@(infoFromJs ?? "No value yet")
</p>

Set value via JS interop call:
<div id="val-set-by-interop" @ref="divElement"></div>

@code {
 private string infoFromJs;
 private ElementReference divElement;

 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender && infoFromJs == null)
 {
 infoFromJs = await JSRuntime.InvokeAsync<string>(
 "setElementText", divElement, "Hello from interop call!");

 StateHasChanged();
 }
 }
}

<script>
 window.setElementText = (element, text) => {
 element.innerText = text;
 return text;
 };
</script>

WARNINGWARNING

Capture references to elements

For the preceding example code, provide a setElementText JavaScript function inside the <head> element of

wwwroot/index.html (Blazor WebAssembly) or Pages/_Host.cshtml (Blazor Server). The function is called

withIJSRuntime.InvokeAsync and returns a value:

The preceding example modifies the Document Object Model (DOM) directly for demonstration purposes only. Directly

modifying the DOM with JavaScript isn't recommended in most scenarios because JavaScript can interfere with Blazor's

change tracking.

Some JS interop scenarios require references to HTML elements. For example, a UI library may require an

element reference for initialization, or you might need to call command-like APIs on an element, such as focus or

play .

Capture references to HTML elements in a component using the following approach:

Add an @ref attribute to the HTML element.

Define a field of type ElementReference whose name matches the value of the @ref attribute.

The following example shows capturing a reference to the username <input> element:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.elementreference

<input @ref="username" ... />

@code {
 ElementReference username;
}

WARNINGWARNING

<ul ref="MyList">
 @foreach (var item in Todos)
 {
 @item.Text
 }

window.exampleJsFunctions = {
 focusElement : function (element) {
 element.focus();
 }
}

@inject IJSRuntime JSRuntime

<input @ref="username" />
<button @onclick="SetFocus">Set focus on username</button>

@code {
 private ElementReference username;

 public async Task SetFocus()
 {
 await JSRuntime.InvokeVoidAsync(
 "exampleJsFunctions.focusElement", username);
 }
}

Only use an element reference to mutate the contents of an empty element that doesn't interact with Blazor. This scenario

is useful when a third-party API supplies content to the element. Because Blazor doesn't interact with the element, there's

no possibility of a conflict between Blazor's representation of the element and the DOM.

In the following example, it's dangerous to mutate the contents of the unordered list (ul) because Blazor interacts with

the DOM to populate this element's list items ():

If JS interop mutates the contents of element MyList and Blazor attempts to apply diffs to the element, the diffs won't

match the DOM.

As far as .NET code is concerned, an ElementReference is an opaque handle. The only thing you can do with

ElementReference is pass it through to JavaScript code via JS interop. When you do so, the JavaScript-side code

receives an HTMLElement instance, which it can use with normal DOM APIs.

For example, the following code defines a .NET extension method that enables setting the focus on an element:

exampleJsInterop.js :

To call a JavaScript function that doesn't return a value, use JSRuntimeExtensions.InvokeVoidAsync. The following

code sets the focus on the username input by calling the preceding JavaScript function with the captured

ElementReference:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.elementreference
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.elementreference
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.jsruntimeextensions.invokevoidasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.elementreference

public static async Task Focus(this ElementReference elementRef, IJSRuntime jsRuntime)
{
 await jsRuntime.InvokeVoidAsync(
 "exampleJsFunctions.focusElement", elementRef);
}

@inject IJSRuntime JSRuntime
@using JsInteropClasses

<input @ref="username" />
<button @onclick="SetFocus">Set focus on username</button>

@code {
 private ElementReference username;

 public async Task SetFocus()
 {
 await username.Focus(JSRuntime);
 }
}

IMPORTANTIMPORTANT

public static ValueTask<T> GenericMethod<T>(this ElementReference elementRef,
 IJSRuntime jsRuntime)
{
 return jsRuntime.InvokeAsync<T>(
 "exampleJsFunctions.doSomethingGeneric", elementRef);
}

To use an extension method, create a static extension method that receives the IJSRuntime instance:

The Focus method is called directly on the object. The following example assumes that the Focus method is

available from the JsInteropClasses namespace:

The username variable is only populated after the component is rendered. If an unpopulated ElementReference is passed

to JavaScript code, the JavaScript code receives a value of null . To manipulate element references after the component

has finished rendering (to set the initial focus on an element) use the OnAfterRenderAsync or OnAfterRender

component lifecycle methods.

When working with generic types and returning a value, use ValueTask<TResult>:

GenericMethod is called directly on the object with a type. The following example assumes that the GenericMethod

is available from the JsInteropClasses namespace:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.elementreference
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1

@inject IJSRuntime JSRuntime
@using JsInteropClasses

<input @ref="username" />
<button @onclick="OnClickMethod">Do something generic</button>

<p>
 returnValue: @returnValue
</p>

@code {
 private ElementReference username;
 private string returnValue;

 private async Task OnClickMethod()
 {
 returnValue = await username.GenericMethod<string>(JSRuntime);
 }
}

Reference elements across components

<style>
 .red { color: red }
</style>

<script>
 function setElementClass(element, className) {
 /** @type {HTMLElement} **/
 var myElement = element;
 myElement.classList.add(className);
 }
</script>

@page "/"

<h1 @ref="title">Hello, world!</h1>

Welcome to your new app.

<SurveyPrompt Parent="this" Title="How is Blazor working for you?" />

An ElementReference is only guaranteed valid in a component's OnAfterRender method (and an element

reference is a struct), so an element reference can't be passed between components.

For a parent component to make an element reference available to other components, the parent component can:

Allow child components to register callbacks.

Invoke the registered callbacks during the OnAfterRender event with the passed element reference. Indirectly,

this approach allows child components to interact with the parent's element reference.

The following Blazor WebAssembly example illustrates the approach.

In the <head> of wwwroot/index.html :

In the <body> of wwwroot/index.html :

Pages/Index.razor (parent component):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.elementreference
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrender

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Components;

namespace {APP ASSEMBLY}.Pages
{
 public partial class Index :
 ComponentBase, IObservable<ElementReference>, IDisposable
 {
 private bool disposing;
 private IList<IObserver<ElementReference>> subscriptions =
 new List<IObserver<ElementReference>>();
 private ElementReference title;

 protected override void OnAfterRender(bool firstRender)
 {
 base.OnAfterRender(firstRender);

 foreach (var subscription in subscriptions)
 {
 try
 {
 subscription.OnNext(title);
 }
 catch (Exception)
 {
 throw;
 }
 }
 }

 public void Dispose()
 {
 disposing = true;

 foreach (var subscription in subscriptions)
 {
 try
 {
 subscription.OnCompleted();
 }
 catch (Exception)
 {
 }
 }

 subscriptions.Clear();
 }

 public IDisposable Subscribe(IObserver<ElementReference> observer)
 {
 if (disposing)
 {
 throw new InvalidOperationException("Parent being disposed");
 }

 subscriptions.Add(observer);

 return new Subscription(observer, this);
 }

 private class Subscription : IDisposable
 {
 public Subscription(IObserver<ElementReference> observer, Index self)
 {
 Observer = observer;

Pages/Index.razor.cs :

 Observer = observer;
 Self = self;
 }

 public IObserver<ElementReference> Observer { get; }
 public Index Self { get; }

 public void Dispose()
 {
 Self.subscriptions.Remove(Observer);
 }
 }
 }
}

@inject IJSRuntime JS

<div class="alert alert-secondary mt-4" role="alert">

 @Title

 Please take our
 <a target="_blank" class="font-weight-bold"
 href="https://go.microsoft.com/fwlink/?linkid=2109206">brief survey

 and tell us what you think.
</div>

@code {
 [Parameter]
 public string Title { get; set; }
}

The placeholder {APP ASSEMBLY} is the app's app assembly name (for example, BlazorSample).

Shared/SurveyPrompt.razor (child component):

Shared/SurveyPrompt.razor.cs :

using System;
using Microsoft.AspNetCore.Components;

namespace {APP ASSEMBLY}.Shared
{
 public partial class SurveyPrompt :
 ComponentBase, IObserver<ElementReference>, IDisposable
 {
 private IDisposable subscription = null;

 [Parameter]
 public IObservable<ElementReference> Parent { get; set; }

 protected override void OnParametersSet()
 {
 base.OnParametersSet();

 if (subscription != null)
 {
 subscription.Dispose();
 }

 subscription = Parent.Subscribe(this);
 }

 public void OnCompleted()
 {
 subscription = null;
 }

 public void OnError(Exception error)
 {
 subscription = null;
 }

 public void OnNext(ElementReference value)
 {
 JS.InvokeAsync<object>(
 "setElementClass", new object[] { value, "red" });
 }

 public void Dispose()
 {
 subscription?.Dispose();
 }
 }
}

Harden JS interop calls

The placeholder {APP ASSEMBLY} is the app's app assembly name (for example, BlazorSample).

JS interop may fail due to networking errors and should be treated as unreliable. By default, a Blazor Server app

times out JS interop calls on the server after one minute. If an app can tolerate a more aggressive timeout, set the

timeout using one of the following approaches:

services.AddServerSideBlazor(
 options => options.JSInteropDefaultCallTimeout = TimeSpan.FromSeconds({SECONDS}));

Globally in Startup.ConfigureServices , specify the timeout:

Per-invocation in component code, a single call can specify the timeout:

Share interop code in a class library

Avoid circular object references

Blazor JavaScript isolation and object references

export function showPrompt(message) {
 return prompt(message, 'Type anything here');
}

var module = await jsRuntime.InvokeAsync<JSObjectReference>(
 "import", "./_content/MyComponents/exampleJsInterop.js");

var result = await JSRuntime.InvokeAsync<string>("MyJSOperation",
 TimeSpan.FromSeconds({SECONDS}), new[] { "Arg1" });

For more information on resource exhaustion, see Threat mitigation guidance for ASP.NET Core Blazor Server.

JS interop code can be included in a class library, which allows you to share the code in a NuGet package.

The class library handles embedding JavaScript resources in the built assembly. The JavaScript files are placed in

the wwwroot folder. The tooling takes care of embedding the resources when the library is built.

The built NuGet package is referenced in the app's project file the same way that any NuGet package is

referenced. After the package is restored, app code can call into JavaScript as if it were C#.

For more information, see ASP.NET Core Razor components class libraries.

Objects that contain circular references can't be serialized on the client for either :

.NET method calls.

JavaScript method calls from C# when the return type has circular references.

For more information, see the following issues:

Circular references are not supported, take two (dotnet/aspnetcore #20525)

Proposal: Add mechanism to handle circular references when serializing (dotnet/runtime #30820)

Blazor enables JavaScript isolation in standard JavaScript modules. JavaScript isolation provides the following

benefits:

Imported JavaScript no longer pollutes the global namespace.

Consumers of a library and components aren't required to import the related JavaScript.

For example, the following JavaScript module exports a JavaScript function for showing a browser prompt:

Add the preceding JavaScript module to a .NET library as a static web asset (wwwroot/exampleJsInterop.js) and

then import the module into the .NET code using the IJSRuntime service. The service is injected as jsRuntime (not

shown) for the following example:

The import identifier in the preceding example is a special identifier used specifically for importing a JavaScript

module. Specify the module using its stable static web asset path: _content/{LIBRARY NAME}/{PATH UNDER WWWROOT} .

The placeholder {LIBRARY NAME} is the library name. The placeholder {PATH UNDER WWWROOT} is the path to the

script under wwwroot .

https://github.com/dotnet/aspnetcore/issues/20525
https://github.com/dotnet/runtime/issues/30820
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime

public async ValueTask<string> Prompt(string message)
{
 return await module.InvokeAsync<string>("showPrompt", message);
}

Additional resources

IJSRuntime imports the module as a JSObjectReference , which represents a reference to a JavaScript object from

.NET code. Use the JSObjectReference to invoke exported JavaScript functions from the module:

Call .NET methods from JavaScript functions in ASP.NET Core Blazor

InteropComponent.razor example (dotnet/AspNetCore GitHub repository, 3.1 release branch)

Perform large data transfers in Blazor Server apps

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime
https://github.com/dotnet/AspNetCore/blob/release/3.1/src/Components/test/testassets/BasicTestApp/InteropComponent.razor

Call .NET methods from JavaScript functions in
ASP.NET Core Blazor
9/22/2020 • 8 minutes to read • Edit Online

Static .NET method call

<button type="button" class="btn btn-primary"
 onclick="exampleJsFunctions.returnArrayAsyncJs()">
 Trigger .NET static method ReturnArrayAsync
</button>

@code {
 [JSInvokable]
 public static Task<int[]> ReturnArrayAsync()
 {
 return Task.FromResult(new int[] { 1, 2, 3 });
 }
}

By Javier Calvarro Nelson, Daniel Roth, Shashikant Rudrawadi, and Luke Latham

A Blazor app can invoke JavaScript functions from .NET methods and .NET methods from JavaScript functions.

These scenarios are called JavaScript interoperability (JS interop).

This article covers invoking .NET methods from JavaScript. For information on how to call JavaScript functions

from .NET, see Call JavaScript functions from .NET methods in ASP.NET Core Blazor.

View or download sample code (how to download)

To invoke a static .NET method from JavaScript, use the DotNet.invokeMethod or DotNet.invokeMethodAsync

functions. Pass in the identifier of the static method you wish to call, the name of the assembly containing the

function, and any arguments. The asynchronous version is preferred to support Blazor Server scenarios. The .NET

method must be public, static, and have the [JSInvokable] attribute. Calling open generic methods isn't currently

supported.

The sample app includes a C# method to return an int array. The [JSInvokable] attribute is applied to the

method.

Pages/JsInterop.razor :

JavaScript served to the client invokes the C# .NET method.

wwwroot/exampleJsInterop.js :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/call-dotnet-from-javascript.md
https://github.com/javiercn
https://github.com/danroth27
http://wisne.co
https://github.com/guardrex
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.jsinvokableattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.jsinvokableattribute

window.exampleJsFunctions = {
 showPrompt: function (text) {
 return prompt(text, 'Type your name here');
 },
 displayWelcome: function (welcomeMessage) {
 document.getElementById('welcome').innerText = welcomeMessage;
 },
 returnArrayAsyncJs: function () {
 DotNet.invokeMethodAsync('BlazorSample', 'ReturnArrayAsync')
 .then(data => {
 data.push(4);
 console.log(data);
 });
 },
 sayHello: function (dotnetHelper) {
 return dotnetHelper.invokeMethodAsync('SayHello')
 .then(r => console.log(r));
 }
};

Array(4) [1, 2, 3, 4]

@code {
 [JSInvokable("DifferentMethodName")]
 public static Task<int[]> ReturnArrayAsync()
 {
 return Task.FromResult(new int[] { 1, 2, 3 });
 }
}

returnArrayAsyncJs: function () {
 DotNet.invokeMethodAsync('{APP ASSEMBLY}', 'DifferentMethodName')
 .then(data => {
 data.push(4);
 console.log(data);
 });
}

Instance method call

When the Trigger .NET static method ReturnArrayAsync button is selected, examine the console output in the

browser's web developer tools.

The console output is:

The fourth array value is pushed to the array (data.push(4);) returned by ReturnArrayAsync .

By default, the method identifier is the method name, but you can specify a different identifier using the

[JSInvokable] attribute constructor :

In the client-side JavaScript file:

The placeholder {APP ASSEMBLY} is the app's app assembly name (for example, BlazorSample).

You can also call .NET instance methods from JavaScript. To invoke a .NET instance method from JavaScript:

Pass the .NET instance by reference to JavaScript:

Make a static call to DotNetObjectReference.Create.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.jsinvokableattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.dotnetobjectreference.create

NOTENOTE

<button type="button" class="btn btn-primary" @onclick="TriggerNetInstanceMethod">
 Trigger .NET instance method HelloHelper.SayHello
</button>

@code {
 public async Task TriggerNetInstanceMethod()
 {
 var exampleJsInterop = new ExampleJsInterop(JSRuntime);
 await exampleJsInterop.CallHelloHelperSayHello("Blazor");
 }
}

public class ExampleJsInterop : IDisposable
{
 private readonly IJSRuntime jsRuntime;
 private DotNetObjectReference<HelloHelper> objRef;

 public ExampleJsInterop(IJSRuntime jsRuntime)
 {
 this.jsRuntime = jsRuntime;
 }

 public ValueTask<string> CallHelloHelperSayHello(string name)
 {
 objRef = DotNetObjectReference.Create(new HelloHelper(name));

 return jsRuntime.InvokeAsync<string>(
 "exampleJsFunctions.sayHello",
 objRef);
 }

 public void Dispose()
 {
 objRef?.Dispose();
 }
}

Invoke .NET instance methods on the instance using the invokeMethod or invokeMethodAsync functions. The

.NET instance can also be passed as an argument when invoking other .NET methods from JavaScript.

Wrap the instance in a DotNetObjectReference instance and call Create on the DotNetObjectReference

instance. Dispose of DotNetObjectReference objects (an example appears later in this section).

The sample app logs messages to the client-side console. For the following examples demonstrated by the sample app,

examine the browser's console output in the browser's developer tools.

When the Trigger .NET instance method HelloHelper.SayHello button is selected,

ExampleJsInterop.CallHelloHelperSayHello is called and passes a name, Blazor , to the method.

Pages/JsInterop.razor :

CallHelloHelperSayHello invokes the JavaScript function sayHello with a new instance of HelloHelper .

JsInteropClasses/ExampleJsInterop.cs :

wwwroot/exampleJsInterop.js :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.dotnetobjectreference
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.dotnetobjectreference.create
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.dotnetobjectreference
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.dotnetobjectreference

window.exampleJsFunctions = {
 showPrompt: function (text) {
 return prompt(text, 'Type your name here');
 },
 displayWelcome: function (welcomeMessage) {
 document.getElementById('welcome').innerText = welcomeMessage;
 },
 returnArrayAsyncJs: function () {
 DotNet.invokeMethodAsync('BlazorSample', 'ReturnArrayAsync')
 .then(data => {
 data.push(4);
 console.log(data);
 });
 },
 sayHello: function (dotnetHelper) {
 return dotnetHelper.invokeMethodAsync('SayHello')
 .then(r => console.log(r));
 }
};

public class HelloHelper
{
 public HelloHelper(string name)
 {
 Name = name;
 }

 public string Name { get; set; }

 [JSInvokable]
 public string SayHello() => $"Hello, {Name}!";
}

Hello, Blazor!

The name is passed to HelloHelper 's constructor, which sets the HelloHelper.Name property. When the JavaScript

function sayHello is executed, HelloHelper.SayHello returns the Hello, {Name}! message, which is written to the

console by the JavaScript function.

JsInteropClasses/HelloHelper.cs :

Console output in the browser's web developer tools:

To avoid a memory leak and allow garbage collection on a component that creates a DotNetObjectReference,

adopt one of the following approaches:

Dispose of the object in the class that created the DotNetObjectReference instance:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.dotnetobjectreference
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.dotnetobjectreference

public class ExampleJsInterop : IDisposable
{
 private readonly IJSRuntime jsRuntime;
 private DotNetObjectReference<HelloHelper> objRef;

 public ExampleJsInterop(IJSRuntime jsRuntime)
 {
 this.jsRuntime = jsRuntime;
 }

 public ValueTask<string> CallHelloHelperSayHello(string name)
 {
 objRef = DotNetObjectReference.Create(new HelloHelper(name));

 return jsRuntime.InvokeAsync<string>(
 "exampleJsFunctions.sayHello",
 objRef);
 }

 public void Dispose()
 {
 objRef?.Dispose();
 }
}

@page "/JSInteropComponent"
@using {APP ASSEMBLY}.JsInteropClasses
@implements IDisposable
@inject IJSRuntime JSRuntime

<h1>JavaScript Interop</h1>

<button type="button" class="btn btn-primary" @onclick="TriggerNetInstanceMethod">
 Trigger .NET instance method HelloHelper.SayHello
</button>

@code {
 private DotNetObjectReference<HelloHelper> objRef;

 public async Task TriggerNetInstanceMethod()
 {
 objRef = DotNetObjectReference.Create(new HelloHelper("Blazor"));

 await JSRuntime.InvokeAsync<string>(
 "exampleJsFunctions.sayHello",
 objRef);
 }

 public void Dispose()
 {
 objRef?.Dispose();
 }
}

The preceding pattern shown in the ExampleJsInterop class can also be implemented in a component:

The placeholder {APP ASSEMBLY} is the app's app assembly name (for example, BlazorSample).

When the component or class doesn't dispose of the DotNetObjectReference, dispose of the object on the

client by calling .dispose() :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.dotnetobjectreference

Component instance method call

NOTENOTE

function updateMessageCallerJS() {
 DotNet.invokeMethodAsync('{APP ASSEMBLY}', 'UpdateMessageCaller');
}

window.myFunction = (dotnetHelper) => {
 dotnetHelper.invokeMethodAsync('{APP ASSEMBLY}', 'MyMethod');
 dotnetHelper.dispose();
}

To invoke a component's .NET methods:

Use the invokeMethod or invokeMethodAsync function to make a static method call to the component.

The component's static method wraps the call to its instance method as an invoked Action.

For Blazor Server apps, where several users might be concurrently using the same component, use a helper class to invoke

instance methods.

For more information, see the Component instance method helper class section.

In the client-side JavaScript:

The placeholder {APP ASSEMBLY} is the app's app assembly name (for example, BlazorSample).

Pages/JSInteropComponent.razor :

https://docs.microsoft.com/en-us/dotnet/api/system.action

@page "/JSInteropComponent"

<p>
 Message: @message
</p>

<p>
 <button onclick="updateMessageCallerJS()">Call JS Method</button>
</p>

@code {
 private static Action action;
 private string message = "Select the button.";

 protected override void OnInitialized()
 {
 action = UpdateMessage;
 }

 private void UpdateMessage()
 {
 message = "UpdateMessage Called!";
 StateHasChanged();
 }

 [JSInvokable]
 public static void UpdateMessageCaller()
 {
 action.Invoke();
 }
}

To pass arguments to the instance method:

function updateMessageCallerJS(name) {
 DotNet.invokeMethodAsync('{APP ASSEMBLY}', 'UpdateMessageCaller', name);
}

Add parameters to the JS method invocation. In the following example, a name is passed to the method.

Additional parameters can be added to the list as needed.

The placeholder {APP ASSEMBLY} is the app's app assembly name (for example, BlazorSample).

Provide the correct types to the Action for the parameters. Provide the parameter list to the C# methods.

Invoke the Action (UpdateMessage) with the parameters (action.Invoke(name)).

Pages/JSInteropComponent.razor :

https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/system.action

 Component instance method helper class

@page "/JSInteropComponent"

<p>
 Message: @message
</p>

<p>
 <button onclick="updateMessageCallerJS('Sarah Jane')">
 Call JS Method
 </button>
</p>

@code {
 private static Action<string> action;
 private string message = "Select the button.";

 protected override void OnInitialized()
 {
 action = UpdateMessage;
 }

 private void UpdateMessage(string name)
 {
 message = $"{name}, UpdateMessage Called!";
 StateHasChanged();
 }

 [JSInvokable]
 public static void UpdateMessageCaller(string name)
 {
 action.Invoke(name);
 }
}

Sarah Jane, UpdateMessage Called!

Output message when the Call JS MethodCall JS Method button is selected:

The helper class is used to invoke an instance method as an Action. Helper classes are useful when:

Several components of the same type are rendered on the same page.

A Blazor Server app is used, where multiple users might be using a component concurrently.

In the following example:

The JSInteropExample component contains several ListItem components.

Each ListItem component is composed of a message and a button.

When a ListItem component button is selected, that ListItem 's UpdateMessage method changes the list item

text and hides the button.

MessageUpdateInvokeHelper.cs :

https://docs.microsoft.com/en-us/dotnet/api/system.action

using System;
using Microsoft.JSInterop;

public class MessageUpdateInvokeHelper
{
 private Action action;

 public MessageUpdateInvokeHelper(Action action)
 {
 this.action = action;
 }

 [JSInvokable("{APP ASSEMBLY}")]
 public void UpdateMessageCaller()
 {
 action.Invoke();
 }
}

window.updateMessageCallerJS = (dotnetHelper) => {
 dotnetHelper.invokeMethodAsync('{APP ASSEMBLY}', 'UpdateMessageCaller');
 dotnetHelper.dispose();
}

@inject IJSRuntime JsRuntime

 @message
 <button @onclick="InteropCall" style="display:@display">InteropCall</button>

@code {
 private string message = "Select one of these list item buttons.";
 private string display = "inline-block";
 private MessageUpdateInvokeHelper messageUpdateInvokeHelper;

 protected override void OnInitialized()
 {
 messageUpdateInvokeHelper = new MessageUpdateInvokeHelper(UpdateMessage);
 }

 protected async Task InteropCall()
 {
 await JsRuntime.InvokeVoidAsync("updateMessageCallerJS",
 DotNetObjectReference.Create(messageUpdateInvokeHelper));
 }

 private void UpdateMessage()
 {
 message = "UpdateMessage Called!";
 display = "none";
 StateHasChanged();
 }
}

The placeholder {APP ASSEMBLY} is the app's app assembly name (for example, BlazorSample).

In the client-side JavaScript:

The placeholder {APP ASSEMBLY} is the app's app assembly name (for example, BlazorSample).

Shared/ListItem.razor :

@page "/JSInteropExample"

<h1>List of components</h1>

 <ListItem />
 <ListItem />
 <ListItem />
 <ListItem />

Share interop code in a class library

Avoid circular object references

Additional resources

Pages/JSInteropExample.razor :

JS interop code can be included in a class library, which allows you to share the code in a NuGet package.

The class library handles embedding JavaScript resources in the built assembly. The JavaScript files are placed in

the wwwroot folder. The tooling takes care of embedding the resources when the library is built.

The built NuGet package is referenced in the app's project file the same way that any NuGet package is referenced.

After the package is restored, app code can call into JavaScript as if it were C#.

For more information, see ASP.NET Core Razor components class libraries.

Objects that contain circular references can't be serialized on the client for either :

.NET method calls.

JavaScript method calls from C# when the return type has circular references.

For more information, see the following issues:

Circular references are not supported, take two (dotnet/aspnetcore #20525)

Proposal: Add mechanism to handle circular references when serializing (dotnet/runtime #30820)

Call JavaScript functions from .NET methods in ASP.NET Core Blazor

InteropComponent.razor example (dotnet/AspNetCore GitHub repository, 3.1 release branch)

Perform large data transfers in Blazor Server apps

https://github.com/dotnet/aspnetcore/issues/20525
https://github.com/dotnet/runtime/issues/30820
https://github.com/dotnet/AspNetCore/blob/release/3.1/src/Components/test/testassets/BasicTestApp/InteropComponent.razor

Call a web API from ASP.NET Core Blazor
9/22/2020 • 8 minutes to read • Edit Online

NOTENOTE

Packages

Add the HttpClient service

builder.Services.AddScoped(sp =>
 new HttpClient
 {
 BaseAddress = new Uri(builder.HostEnvironment.BaseAddress)
 });

HttpClient and JSON helpers

By Luke Latham, Daniel Roth, and Juan De la Cruz

This topic applies to Blazor WebAssembly. Blazor Server apps call web APIs using HttpClient instances, typically created using

IHttpClientFactory. For guidance that applies to Blazor Server, see Make HTTP requests using IHttpClientFactory in ASP.NET

Core.

Blazor WebAssembly apps call web APIs using a preconfigured HttpClient service. Compose requests, which can

include JavaScript Fetch API options, using Blazor JSON helpers or with HttpRequestMessage. The HttpClient

service in Blazor WebAssembly apps is focused on making requests back to the server of origin. The guidance in

this topic only pertains to Blazor WebAssembly apps.

View or download sample code (how to download): Select the BlazorWebAssemblySample app.

See the following components in the BlazorWebAssemblySample sample app:

Call Web API (Pages/CallWebAPI.razor)

HTTP Request Tester (Components/HTTPRequestTester.razor)

Reference the System.Net.Http.Json NuGet package in the project file.

In Program.Main , add an HttpClient service if it doesn't already exist:

In a Blazor WebAssembly app, HttpClient is available as a preconfigured service for making requests back to the

origin server.

A Blazor Server app doesn't include an HttpClient service by default. Provide an HttpClient to the app using the

HttpClient factory infrastructure.

HttpClient and JSON helpers are also used to call third-party web API endpoints. HttpClient is implemented using

the browser Fetch API and is subject to its limitations, including enforcement of the same origin policy.

The client's base address is set to the originating server's address. Inject an HttpClient instance using the @inject

directive:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/call-web-api.md
https://github.com/guardrex
https://github.com/danroth27
https://github.com/juandelacruz23
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestmessage
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/
https://www.nuget.org/packages/System.Net.Http.Json
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

@using System.Net.Http
@inject HttpClient Http

private class TodoItem
{
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
}

In the following examples, a Todo web API processes create, read, update, and delete (CRUD) operations. The

examples are based on a TodoItem class that stores the:

ID (Id , long): Unique ID of the item.

Name (Name , string): Name of the item.

Status (IsComplete , bool): Indication if the Todo item is finished.

JSON helper methods send requests to a URI (a web API in the following examples) and process the response:

@using System.Net.Http
@inject HttpClient Http

@code {
 private TodoItem[] todoItems;

 protected override async Task OnInitializedAsync() =>
 todoItems = await Http.GetFromJsonAsync<TodoItem[]>("api/TodoItems");
}

@using System.Net.Http
@inject HttpClient Http

<input @bind="newItemName" placeholder="New Todo Item" />
<button @onclick="@AddItem">Add</button>

@code {
 private string newItemName;

 private async Task AddItem()
 {
 var addItem = new TodoItem { Name = newItemName, IsComplete = false };
 await Http.PostAsJsonAsync("api/TodoItems", addItem);
 }
}

GetFromJsonAsync: Sends an HTTP GET request and parses the JSON response body to create an object.

In the following code, the todoItems are displayed by the component. The GetTodoItems method is

triggered when the component is finished rendering (OnInitializedAsync). See the sample app for a

complete example.

PostAsJsonAsync: Sends an HTTP POST request, including JSON-encoded content, and parses the JSON

response body to create an object.

In the following code, newItemName is provided by a bound element of the component. The AddItem method

is triggered by selecting a <button> element. See the sample app for a complete example.

Calls to PostAsJsonAsync return an HttpResponseMessage. To deserialize the JSON content from the

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpclientjsonextensions.getfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpclientjsonextensions.postasjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpclientjsonextensions.postasjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpresponsemessage

@using System.Net.Http
@inject HttpClient Http

<input @bind="id" />
<button @onclick="@DeleteItem">Delete</button>

@code {
 private long id;

 private async Task DeleteItem() =>
 await Http.DeleteAsync($"api/TodoItems/{id}");
}

Named HttpClient with IHttpClientFactory

var content = response.Content.ReadFromJsonAsync<WeatherForecast>();

@using System.Net.Http
@inject HttpClient Http

<input type="checkbox" @bind="editItem.IsComplete" />
<input @bind="editItem.Name" />
<button @onclick="@SaveItem">Save</button>

@code {
 private TodoItem editItem = new TodoItem();

 private void EditItem(long id)
 {
 editItem = todoItems.Single(i => i.Id == id);
 }

 private async Task SaveItem() =>
 await Http.PutAsJsonAsync($"api/TodoItems/{editItem.Id}, editItem);
}

var content = response.Content.ReadFromJsonAsync<WeatherForecast>();

response message, use the ReadFromJsonAsync<T> extension method:

PutAsJsonAsync: Sends an HTTP PUT request, including JSON-encoded content.

In the following code, editItem values for Name and IsCompleted are provided by bound elements of the

component. The item's Id is set when the item is selected in another part of the UI and EditItem is called.

The SaveItem method is triggered by selecting the Save <button> element. See the sample app for a

complete example.

Calls to PutAsJsonAsync return an HttpResponseMessage. To deserialize the JSON content from the

response message, use the ReadFromJsonAsync extension method:

System.Net.Http includes additional extension methods for sending HTTP requests and receiving HTTP responses.

HttpClient.DeleteAsync is used to send an HTTP DELETE request to a web API.

In the following code, the Delete <button> element calls the DeleteItem method. The bound <input> element

supplies the id of the item to delete. See the sample app for a complete example.

IHttpClientFactory services and the configuration of a named HttpClient are supported.

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpclientjsonextensions.putasjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpclientjsonextensions.putasjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpresponsemessage
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.net.http
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.deleteasync
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

builder.Services.AddHttpClient("ServerAPI", client =>
 client.BaseAddress = new Uri(builder.HostEnvironment.BaseAddress));

@inject IHttpClientFactory ClientFactory

...

@code {
 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()
 {
 var client = ClientFactory.CreateClient("ServerAPI");

 forecasts = await client.GetFromJsonAsync<WeatherForecast[]>(
 "WeatherForecast");
 }
}

Typed HttpClient

Reference the Microsoft.Extensions.Http NuGet package in the project file.

Program.Main (Program.cs):

FetchData component (Pages/FetchData.razor):

Typed HttpClient uses one or more of the app's HttpClient instances, default or named, to return data from one or

more web API endpoints.

WeatherForecastClient.cs :

https://www.nuget.org/packages/Microsoft.Extensions.Http
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

using System.Net.Http;
using System.Net.Http.Json;
using System.Threading.Tasks;

public class WeatherForecastClient
{
 private readonly HttpClient client;

 public WeatherForecastClient(HttpClient client)
 {
 this.client = client;
 }

 public async Task<WeatherForecast[]> GetForecastAsync()
 {
 var forecasts = new WeatherForecast[0];

 try
 {
 forecasts = await client.GetFromJsonAsync<WeatherForecast[]>(
 "WeatherForecast");
 }
 catch
 {
 ...
 }

 return forecasts;
 }
}

builder.Services.AddHttpClient<WeatherForecastClient>(client =>
 client.BaseAddress = new Uri(builder.HostEnvironment.BaseAddress));

@inject WeatherForecastClient Client

...

@code {
 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()
 {
 forecasts = await Client.GetForecastAsync();
 }
}

HttpClient and HttpRequestMessage with Fetch API request options

Program.Main (Program.cs):

Components inject the typed HttpClient to call the web API.

FetchData component (Pages/FetchData.razor):

When running on WebAssembly in a Blazor WebAssembly app, HttpClient (API documentation) and

HttpRequestMessage can be used to customize requests. For example, you can specify the HTTP method and

request headers. The following component makes a POST request to a To Do List API endpoint on the server and

shows the response body:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestmessage

@page "/todorequest"
@using System.Net.Http
@using System.Net.Http.Headers
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@inject HttpClient Http
@inject IAccessTokenProvider TokenProvider

<h1>ToDo Request</h1>

<button @onclick="PostRequest">Submit POST request</button>

<p>Response body returned by the server:</p>

<p>@responseBody</p>

@code {
 private string responseBody;

 private async Task PostRequest()
 {
 var requestMessage = new HttpRequestMessage()
 {
 Method = new HttpMethod("POST"),
 RequestUri = new Uri("https://localhost:10000/api/TodoItems"),
 Content =
 JsonContent.Create(new TodoItem
 {
 Name = "My New Todo Item",
 IsComplete = false
 })
 };

 var tokenResult = await TokenProvider.RequestAccessToken();

 if (tokenResult.TryGetToken(out var token))
 {
 requestMessage.Headers.Authorization =
 new AuthenticationHeaderValue("Bearer", token.Value);

 requestMessage.Content.Headers.TryAddWithoutValidation(
 "x-custom-header", "value");

 var response = await Http.SendAsync(requestMessage);
 var responseStatusCode = response.StatusCode;

 responseBody = await response.Content.ReadAsStringAsync();
 }
 }

 public class TodoItem
 {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 }
}

.NET WebAssembly's implementation of HttpClient uses WindowOrWorkerGlobalScope.fetch(). Fetch allows

configuring several request-specific options.

HTTP fetch request options can be configured with HttpRequestMessage extension methods shown in the

following table.

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://developer.mozilla.org/docs/Web/API/WindowOrWorkerGlobalScope/fetch
https://developer.mozilla.org/docs/Web/API/WindowOrWorkerGlobalScope/fetch#Parameters
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestmessage

EXT EN SIO N M ET H O DEXT EN SIO N M ET H O D F ETC H REQ UEST P RO P ERT YF ETC H REQ UEST P RO P ERT Y

SetBrowserRequestCredentials credentials

SetBrowserRequestCache cache

SetBrowserRequestMode mode

SetBrowserRequestIntegrity integrity

requestMessage.SetBrowserRequestCredentials(BrowserRequestCredentials.Include);

Handle errors

protected override async Task OnInitializedAsync()
{
 try
 {
 forecasts = await Http.GetFromJsonAsync<WeatherForecast[]>(
 "WeatherForcast");
 }
 catch (NotSupportedException exception)
 {
 ...
 }
}

You can set additional options using the more generic SetBrowserRequestOption extension method.

The HTTP response is typically buffered in a Blazor WebAssembly app to enable support for sync reads on the

response content. To enable support for response streaming, use the SetBrowserResponseStreamingEnabled

extension method on the request.

To include credentials in a cross-origin request, use the SetBrowserRequestCredentials extension method:

For more information on Fetch API options, see MDN web docs: WindowOrWorkerGlobalScope.fetch():Parameters.

When errors occur while interacting with a web API, they can be handled by developer code. For example,

GetFromJsonAsync expects a JSON response from the server API with a Content-Type of application/json . If the

response isn't in JSON format, content validation throws a NotSupportedException.

In the following example, the URI endpoint for the weather forecast data request is misspelled. The URI should be

to WeatherForecast but appears in the call as WeatherForcast (missing "e").

The GetFromJsonAsync call expects JSON to be returned, but the server returns HTML for an unhandled exception

on the server with a Content-Type of text/html . The unhandled exception occurs on the server because the path

isn't found and middleware can't serve a page or view for the request.

In OnInitializedAsync on the client, NotSupportedException is thrown when the response content is validated as

non-JSON. The exception is caught in the catch block, where custom logic could log the error or present a

friendly error message to the user :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserrequestcredentials
https://developer.mozilla.org/docs/Web/API/Request/credentials
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserrequestcache
https://developer.mozilla.org/docs/Web/API/Request/cache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserrequestmode
https://developer.mozilla.org/docs/Web/API/Request/mode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserrequestintegrity
https://developer.mozilla.org/docs/Web/API/Request/integrity
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserrequestoption
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserresponsestreamingenabled
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.http.webassemblyhttprequestmessageextensions.setbrowserrequestcredentials
https://developer.mozilla.org/docs/Web/API/WindowOrWorkerGlobalScope/fetch#Parameters
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpclientjsonextensions.getfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/system.notsupportedexception
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpclientjsonextensions.getfromjsonasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/system.notsupportedexception

NOTENOTE

Cross-origin resource sharing (CORS)

Additional resources

The preceding example is for demonstration purposes. A web API server app can be configured to return JSON even when

an endpoint doesn't exist or an unhandled exception on the server occurs.

For more information, see Handle errors in ASP.NET Core Blazor apps.

Browser security prevents a webpage from making requests to a different domain than the one that served the

webpage. This restriction is called the same-origin policy. The same-origin policy prevents a malicious site from

reading sensitive data from another site. To make requests from the browser to an endpoint with a different origin,

the endpoint must enable cross-origin resource sharing (CORS).

The Blazor WebAssembly sample app (BlazorWebAssemblySample) demonstrates the use of CORS in the Call Web

API component (Pages/CallWebAPI.razor).

For more information on CORS with secure requests in Blazor apps, see ASP.NET Core Blazor WebAssembly

additional security scenarios.

For general information on CORS with ASP.NET Core apps, see Enable Cross-Origin Requests (CORS) in ASP.NET

Core.

ASP.NET Core Blazor WebAssembly additional security scenarios: Includes coverage on using HttpClient to

make secure web API requests.

Make HTTP requests using IHttpClientFactory in ASP.NET Core

Enforce HTTPS in ASP.NET Core

Kestrel HTTPS endpoint configuration

Cross Origin Resource Sharing (CORS) at W3C

https://www.w3.org/TR/cors/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://www.w3.org/TR/cors/

ASP.NET Core Blazor authentication and
authorization
9/22/2020 • 10 minutes to read • Edit Online

NOTENOTE

Authentication

Blazor WebAssembly authenticationBlazor WebAssembly authentication

Blazor Server authenticationBlazor Server authentication

By Steve Sanderson and Luke Latham

ASP.NET Core supports the configuration and management of security in Blazor apps.

Security scenarios differ between Blazor Server and Blazor WebAssembly apps. Because Blazor Server apps run on

the server, authorization checks are able to determine:

The UI options presented to a user (for example, which menu entries are available to a user).

Access rules for areas of the app and components.

Blazor WebAssembly apps run on the client. Authorization is only used to determine which UI options to show.

Since client-side checks can be modified or bypassed by a user, a Blazor WebAssembly app can't enforce

authorization access rules.

Razor Pages authorization conventions don't apply to routable Razor components. If a non-routable Razor

component is embedded in a page, the page's authorization conventions indirectly affect the Razor component

along with the rest of the page's content.

SignInManager<TUser> and UserManager<TUser> aren't supported in Razor components.

Blazor uses the existing ASP.NET Core authentication mechanisms to establish the user's identity. The exact

mechanism depends on how the Blazor app is hosted, Blazor WebAssembly or Blazor Server.

In Blazor WebAssembly apps, authentication checks can be bypassed because all client-side code can be modified

by users. The same is true for all client-side app technologies, including JavaScript SPA frameworks or native apps

for any operating system.

Add the following:

A package reference for Microsoft.AspNetCore.Components.Authorization to the app's project file.

The Microsoft.AspNetCore.Components.Authorization namespace to the app's _Imports.razor file.

To handle authentication, use of a built-in or custom AuthenticationStateProvider service is covered in the following

sections.

For more information on creating apps and configuration, see Secure ASP.NET Core Blazor WebAssembly.

Blazor Server apps operate over a real-time connection that's created using SignalR. Authentication in SignalR-

based apps is handled when the connection is established. Authentication can be based on a cookie or some other

bearer token.

The built-in AuthenticationStateProvider service for Blazor Server apps obtains authentication state data from

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/index.md
https://github.com/SteveSandersonMS
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.usermanager-1
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.Authorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider

AuthenticationStateProvider service

ASP.NET Core's HttpContext.User . This is how authentication state integrates with existing ASP.NET Core

authentication mechanisms.

For more information on creating apps and configuration, see Secure ASP.NET Core Blazor Server apps.

AuthenticationStateProvider is the underlying service used by the AuthorizeView component and

CascadingAuthenticationState component to get the authentication state.

You don't typically use AuthenticationStateProvider directly. Use the AuthorizeView component or

Task<AuthenticationState> approaches described later in this article. The main drawback to using

AuthenticationStateProvider directly is that the component isn't notified automatically if the underlying

authentication state data changes.

The AuthenticationStateProvider service can provide the current user's ClaimsPrincipal data, as shown in the

following example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal

@page "/"
@using System.Security.Claims
@using Microsoft.AspNetCore.Components.Authorization
@inject AuthenticationStateProvider AuthenticationStateProvider

<h3>ClaimsPrincipal Data</h3>

<button @onclick="GetClaimsPrincipalData">Get ClaimsPrincipal Data</button>

<p>@_authMessage</p>

@if (_claims.Count() > 0)
{

 @foreach (var claim in _claims)
 {
 @claim.Type: @claim.Value
 }

}

<p>@_surnameMessage</p>

@code {
 private string _authMessage;
 private string _surnameMessage;
 private IEnumerable<Claim> _claims = Enumerable.Empty<Claim>();

 private async Task GetClaimsPrincipalData()
 {
 var authState = await AuthenticationStateProvider.GetAuthenticationStateAsync();
 var user = authState.User;

 if (user.Identity.IsAuthenticated)
 {
 _authMessage = $"{user.Identity.Name} is authenticated.";
 _claims = user.Claims;
 _surnameMessage =
 $"Surname: {user.FindFirst(c => c.Type == ClaimTypes.Surname)?.Value}";
 }
 else
 {
 _authMessage = "The user is NOT authenticated.";
 }
 }
}

Implement a custom AuthenticationStateProvider

If user.Identity.IsAuthenticated is true and because the user is a ClaimsPrincipal, claims can be enumerated and

membership in roles evaluated.

For more information on dependency injection (DI) and services, see ASP.NET Core Blazor dependency injection

and Dependency injection in ASP.NET Core.

If the app requires a custom provider, implement AuthenticationStateProvider and override

GetAuthenticationStateAsync :

https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider

using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Components.Authorization;

public class CustomAuthStateProvider : AuthenticationStateProvider
{
 public override Task<AuthenticationState> GetAuthenticationStateAsync()
 {
 var identity = new ClaimsIdentity(new[]
 {
 new Claim(ClaimTypes.Name, "mrfibuli"),
 }, "Fake authentication type");

 var user = new ClaimsPrincipal(identity);

 return Task.FromResult(new AuthenticationState(user));
 }
}

using Microsoft.AspNetCore.Components.Authorization;

...

builder.Services.AddScoped<AuthenticationStateProvider, CustomAuthStateProvider>();

using Microsoft.AspNetCore.Components.Authorization;

...

services.AddScoped<AuthenticationStateProvider, CustomAuthStateProvider>();

Expose the authentication state as a cascading parameter

In a Blazor WebAssembly app, the CustomAuthStateProvider service is registered in Main of Program.cs :

In a Blazor Server app, the CustomAuthStateProvider service is registered in Startup.ConfigureServices :

Using the CustomAuthStateProvider in the preceding example, all users are authenticated with the username

mrfibuli .

If authentication state data is required for procedural logic, such as when performing an action triggered by the

user, obtain the authentication state data by defining a cascading parameter of type Task< AuthenticationState > :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate

@page "/"

<button @onclick="LogUsername">Log username</button>

<p>@_authMessage</p>

@code {
 [CascadingParameter]
 private Task<AuthenticationState> authenticationStateTask { get; set; }

 private string _authMessage;

 private async Task LogUsername()
 {
 var authState = await authenticationStateTask;
 var user = authState.User;

 if (user.Identity.IsAuthenticated)
 {
 _authMessage = $"{user.Identity.Name} is authenticated.";
 }
 else
 {
 _authMessage = "The user is NOT authenticated.";
 }
 }
}

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

builder.Services.AddOptions();
builder.Services.AddAuthorizationCore();

Authorization

If user.Identity.IsAuthenticated is true , claims can be enumerated and membership in roles evaluated.

Set up the Task< AuthenticationState > cascading parameter using the AuthorizeRouteView and

CascadingAuthenticationState components in the App component (App.razor):

In a Blazor WebAssembly App, add services for options and authorization to Program.Main :

In a Blazor Server app, services for options and authorization are already present, so no further action is required.

After a user is authenticated, authorization rules are applied to control what the user can do.

Access is typically granted or denied based on whether :

A user is authenticated (signed in).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate

 AuthorizeView component

<AuthorizeView>
 <h1>Hello, @context.User.Identity.Name!</h1>
 <p>You can only see this content if you're authenticated.</p>
</AuthorizeView>

<AuthorizeView>
 <Authorized>
 <h1>Hello, @context.User.Identity.Name!</h1>
 <p>You can only see this content if you're authenticated.</p>
 </Authorized>
 <NotAuthorized>
 <h1>Authentication Failure!</h1>
 <p>You're not signed in.</p>
 </NotAuthorized>
</AuthorizeView>

Role-based and policy-based authorizationRole-based and policy-based authorization

A user is in a role.

A user has a claim.

A policy is satisfied.

Each of these concepts is the same as in an ASP.NET Core MVC or Razor Pages app. For more information on

ASP.NET Core security, see the articles under ASP.NET Core Security and Identity.

The AuthorizeView component selectively displays UI depending on whether the user is authorized to see it. This

approach is useful when you only need to display data for the user and don't need to use the user's identity in

procedural logic.

The component exposes a context variable of type AuthenticationState, which you can use to access information

about the signed-in user :

You can also supply different content for display if the user isn't authenticated:

The AuthorizeView component can be used in the NavMenu component (Shared/NavMenu.razor) to display a list

item (...) for a NavLink component (NavLink), but note that this approach only removes the list item

from the rendered output. It doesn't prevent the user from navigating to the component.

The content of <Authorized> and <NotAuthorized> tags can include arbitrary items, such as other interactive

components.

Authorization conditions, such as roles or policies that control UI options or access, are covered in the Authorization

section.

If authorization conditions aren't specified, AuthorizeView uses a default policy and treats:

Authenticated (signed-in) users as authorized.

Unauthenticated (signed-out) users as unauthorized.

The AuthorizeView component supports role-based or policy-based authorization.

For role-based authorization, use the Roles parameter :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.navlink
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview.roles#microsoft_aspnetcore_components_authorization_authorizeview_roles

<AuthorizeView Roles="admin, superuser">
 <p>You can only see this if you're an admin or superuser.</p>
</AuthorizeView>

<AuthorizeView Policy="content-editor">
 <p>You can only see this if you satisfy the "content-editor" policy.</p>
</AuthorizeView>

Content displayed during asynchronous authenticationContent displayed during asynchronous authentication

<AuthorizeView>
 <Authorized>
 <h1>Hello, @context.User.Identity.Name!</h1>
 <p>You can only see this content if you're authenticated.</p>
 </Authorized>
 <Authorizing>
 <h1>Authentication in progress</h1>
 <p>You can only see this content while authentication is in progress.</p>
 </Authorizing>
</AuthorizeView>

[Authorize] attribute

@page "/"
@attribute [Authorize]

You can only see this if you're signed in.

IMPORTANTIMPORTANT

For more information, see Role-based authorization in ASP.NET Core.

For policy-based authorization, use the Policy parameter :

Claims-based authorization is a special case of policy-based authorization. For example, you can define a policy that

requires users to have a certain claim. For more information, see Policy-based authorization in ASP.NET Core.

These APIs can be used in either Blazor Server or Blazor WebAssembly apps.

If neither Roles nor Policy is specified, AuthorizeView uses the default policy.

Blazor allows for authentication state to be determined asynchronously. The primary scenario for this approach is

in Blazor WebAssembly apps that make a request to an external endpoint for authentication.

While authentication is in progress, AuthorizeView displays no content by default. To display content while

authentication occurs, use the <Authorizing> tag:

This approach isn't normally applicable to Blazor Server apps. Blazor Server apps know the authentication state as

soon as the state is established. Authorizing content can be provided in a Blazor Server app's AuthorizeView

component, but the content is never displayed.

The [Authorize] attribute can be used in Razor components:

Only use [Authorize] on @page components reached via the Blazor Router. Authorization is only performed as an aspect

of routing and not for child components rendered within a page. To authorize the display of specific parts within a page, use

AuthorizeView instead.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview.policy#microsoft_aspnetcore_components_authorization_authorizeview_policy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview.roles#microsoft_aspnetcore_components_authorization_authorizeview_roles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview.policy#microsoft_aspnetcore_components_authorization_authorizeview_policy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeviewcore.authorizing#microsoft_aspnetcore_components_authorization_authorizeviewcore_authorizing
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview

@page "/"
@attribute [Authorize(Roles = "admin, superuser")]

<p>You can only see this if you're in the 'admin' or 'superuser' role.</p>

@page "/"
@attribute [Authorize(Policy = "content-editor")]

<p>You can only see this if you satisfy the 'content-editor' policy.</p>

Customize unauthorized content with the Router component

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 <h1>Sorry</h1>
 <p>You're not authorized to reach this page.</p>
 <p>You may need to log in as a different user.</p>
 </NotAuthorized>
 <Authorizing>
 <h1>Authentication in progress</h1>
 <p>Only visible while authentication is in progress.</p>
 </Authorizing>
 </AuthorizeRouteView>
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <h1>Sorry</h1>
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

The [Authorize] attribute also supports role-based or policy-based authorization. For role-based authorization,

use the Roles parameter :

For policy-based authorization, use the Policy parameter :

If neither Roles nor Policy is specified, [Authorize] uses the default policy, which by default is to treat:

Authenticated (signed-in) users as authorized.

Unauthenticated (signed-out) users as unauthorized.

The Router component, in conjunction with the AuthorizeRouteView component, allows the app to specify custom

content if:

Content isn't found.

The user fails an [Authorize] condition applied to the component. The [Authorize] attribute is covered in the

[Authorize] attribute section.

Asynchronous authentication is in progress.

In the default Blazor Server project template, the App component (App.razor) demonstrates how to set custom

content:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute.roles#microsoft_aspnetcore_authorization_authorizeattribute_roles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute.policy#microsoft_aspnetcore_authorization_authorizeattribute_policy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute.roles#microsoft_aspnetcore_authorization_authorizeattribute_roles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute.policy#microsoft_aspnetcore_authorization_authorizeattribute_policy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute

Not authorized.

Notification about authentication state changes

Procedural logic

@using Microsoft.AspNetCore.Authorization
@inject IAuthorizationService AuthorizationService

<button @onclick="@DoSomething">Do something important</button>

@code {
 [CascadingParameter]
 private Task<AuthenticationState> authenticationStateTask { get; set; }

 private async Task DoSomething()
 {
 var user = (await authenticationStateTask).User;

 if (user.Identity.IsAuthenticated)
 {
 // Perform an action only available to authenticated (signed-in) users.
 }

 if (user.IsInRole("admin"))
 {
 // Perform an action only available to users in the 'admin' role.
 }

 if ((await AuthorizationService.AuthorizeAsync(user, "content-editor"))
 .Succeeded)
 {
 // Perform an action only available to users satisfying the
 // 'content-editor' policy.
 }
 }
}

The content of <NotFound> , <NotAuthorized> , and <Authorizing> tags can include arbitrary items, such as other

interactive components.

If the <NotAuthorized> tag isn't specified, the AuthorizeRouteView uses the following fallback message:

If the app determines that the underlying authentication state data has changed (for example, because the user

signed out or another user has changed their roles), a custom AuthenticationStateProvider can optionally invoke

the method NotifyAuthenticationStateChanged on the AuthenticationStateProvider base class. This notifies

consumers of the authentication state data (for example, AuthorizeView) to rerender using the new data.

If the app is required to check authorization rules as part of procedural logic, use a cascaded parameter of type

Task< AuthenticationState > to obtain the user's ClaimsPrincipal. Task< AuthenticationState > can be combined

with other services, such as IAuthorizationService , to evaluate policies.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider.notifyauthenticationstatechanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizeview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate

NOTENOTE

@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.Authorization

Troubleshoot errors

<CascadingAuthenticationState>
 <Router AppAssembly="typeof(Startup).Assembly">
 ...
 </Router>
</CascadingAuthenticationState>

Additional resources

In a Blazor WebAssembly app component, add the Microsoft.AspNetCore.Authorization and

Microsoft.AspNetCore.Components.Authorization namespaces:

These namespaces can be provided globally by adding them to the app's _Imports.razor file.

Common errors:

Authorization requires a cascading parameter of type Authorization requires a cascading parameter of type Task\<AuthenticationState> . Consider using. Consider using

CascadingAuthenticationState to supply this. to supply this.

null value is received for value is received for authenticationStateTask

It's likely that the project wasn't created using a Blazor Server template with authentication enabled. Wrap a

<CascadingAuthenticationState> around some part of the UI tree, for example in the App component (App.razor)

as follows:

The CascadingAuthenticationState supplies the Task< AuthenticationState > cascading parameter, which in turn it

receives from the underlying AuthenticationStateProvider DI service.

Overview of ASP.NET Core Security

Configure Windows Authentication in ASP.NET Core

Awesome Blazor : Authentication community sample links

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstateprovider
https://github.com/AdrienTorris/awesome-blazor#authentication

Secure ASP.NET Core Blazor WebAssembly
9/22/2020 • 5 minutes to read • Edit Online

Authentication library

Authentication process with OIDC

By Javier Calvarro Nelson

Blazor WebAssembly apps are secured in the same manner as Single Page Applications (SPAs). There are several

approaches for authenticating users to SPAs, but the most common and comprehensive approach is to use an

implementation based on the OAuth 2.0 protocol, such as OpenID Connect (OIDC).

Blazor WebAssembly supports authenticating and authorizing apps using OIDC via the

Microsoft.AspNetCore.Components.WebAssembly.Authentication library. The library provides a set of primitives for

seamlessly authenticating against ASP.NET Core backends. The library integrates ASP.NET Core Identity with API

authorization support built on top of Identity Server. The library can authenticate against any third-party Identity

Provider (IP) that supports OIDC, which are called OpenID Providers (OP).

The authentication support in Blazor WebAssembly is built on top of the oidc-client.js library, which is used to

handle the underlying authentication protocol details.

Other options for authenticating SPAs exist, such as the use of SameSite cookies. However, the engineering design

of Blazor WebAssembly is settled on OAuth and OIDC as the best option for authentication in Blazor

WebAssembly apps. Token-based authentication based on JSON Web Tokens (JWTs) was chosen over cookie-

based authentication for functional and security reasons:

Using a token-based protocol offers a smaller attack surface area, as the tokens aren't sent in all requests.

Server endpoints don't require protection against Cross-Site Request Forgery (CSRF) because the tokens are

sent explicitly. This allows you to host Blazor WebAssembly apps alongside MVC or Razor pages apps.

Tokens have narrower permissions than cookies. For example, tokens can't be used to manage the user account

or change a user's password unless such functionality is explicitly implemented.

Tokens have a short lifetime, one hour by default, which limits the attack window. Tokens can also be revoked at

any time.

Self-contained JWTs offer guarantees to the client and server about the authentication process. For example, a

client has the means to detect and validate that the tokens it receives are legitimate and were emitted as part of

a given authentication process. If a third party attempts to switch a token in the middle of the authentication

process, the client can detect the switched token and avoid using it.

Tokens with OAuth and OIDC don't rely on the user agent behaving correctly to ensure that the app is secure.

Token-based protocols, such as OAuth and OIDC, allow for authenticating and authorizing hosted and

standalone apps with the same set of security characteristics.

The Microsoft.AspNetCore.Components.WebAssembly.Authentication library offers several primitives to implement

authentication and authorization using OIDC. In broad terms, authentication works as follows:

When an anonymous user selects the login button or requests a page with the [Authorize] attribute applied,

the user is redirected to the app's login page (/authentication/login).

In the login page, the authentication library prepares for a redirect to the authorization endpoint. The

authorization endpoint is outside of the Blazor WebAssembly app and can be hosted at a separate origin. The

endpoint is responsible for determining whether the user is authenticated and for issuing one or more tokens

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/index.md
https://github.com/javiercn
https://oauth.net/
https://openid.net/connect/
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://identityserver.io/
https://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute

 Authentication component

Authorization

Require authorization for the entire app

NOTENOTE

in response. The authentication library provides a login callback to receive the authentication response.

When the Blazor WebAssembly app loads the login callback endpoint (/authentication/login-callback), the

authentication response is processed.

If the user isn't authenticated, the user is redirected to the underlying authentication system, which is

usually ASP.NET Core Identity.

If the user was already authenticated, the authorization endpoint generates the appropriate tokens and

redirects the browser back to the login callback endpoint (/authentication/login-callback).

If the authentication process completes successfully, the user is authenticated and optionally sent back to

the original protected URL that the user requested.

If the authentication process fails for any reason, the user is sent to the login failed page (

/authentication/login-failed), and an error is displayed.

The Authentication component (Pages/Authentication.razor) handles remote authentication operations and

permits the app to:

Configure app routes for authentication states.

Set UI content for authentication states.

Manage authentication state.

Authentication actions, such as registering or signing in a user, are passed to the Blazor framework's

RemoteAuthenticatorViewCore<TAuthenticationState> component, which persists and controls state across

authentication operations.

For more information and examples, see ASP.NET Core Blazor WebAssembly additional security scenarios.

In Blazor WebAssembly apps, authorization checks can be bypassed because all client-side code can be modified

by users. The same is true for all client-side app technologies, including JavaScript SPA frameworks or native apps

for any operating system.

Always perform authorization checks on the ser ver within any API endpoints accessed by yourAlways perform authorization checks on the ser ver within any API endpoints accessed by your

client-side app.client-side app.

Apply the [Authorize] attribute (API documentation) to each Razor component of the app using one of the

following approaches:

@using Microsoft.AspNetCore.Authorization
@attribute [Authorize]

Use the @attribute directive in the _Imports.razor file:

Add the attribute to each Razor component in the Pages folder.

Setting an AuthorizationOptions.FallbackPolicy to a policy with RequireAuthenticatedUser is notnot supported.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorviewcore-1
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationoptions.fallbackpolicy#microsoft_aspnetcore_authorization_authorizationoptions_fallbackpolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationpolicybuilder.requireauthenticateduser

Refresh tokens

Establish claims for users

Implementation guidance

Refresh tokens can't be secured client-side in Blazor WebAssembly apps. Therefore, refresh tokens shouldn't be

sent to the app for direct use.

Refresh tokens can be maintained and used by the server-side app in a Hosted Blazor WebAssembly solution to

access third-party APIs. For more information, see ASP.NET Core Blazor WebAssembly additional security

scenarios.

Apps often require claims for users based on a web API call to a server. For example, claims are frequently used to

establish authorization in an app. In these scenarios, the app requests an access token to access the service and

uses the token to obtain the user data for the claims. For examples, see the following resources:

Additional scenarios: Customize the user

ASP.NET Core Blazor WebAssembly with Azure Active Directory groups and roles

Articles under this Overview provide information on authenticating users in Blazor WebAssembly apps against

specific providers.

Standalone Blazor WebAssembly apps:

General guidance for OIDC providers and the WebAssembly Authentication Library

Microsoft Accounts

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Hosted Blazor WebAssembly apps:

Azure Active Directory (AAD)

Azure Active Directory (AAD) B2C

Identity Server

For further guidance on configuration, see ASP.NET Core Blazor WebAssembly additional security scenarios.

Secure an ASP.NET Core Blazor WebAssembly
standalone app with the Authentication library
9/22/2020 • 7 minutes to read • Edit Online

Authentication package

<PackageReference
 Include="Microsoft.AspNetCore.Components.WebAssembly.Authentication"
 Version="{VERSION}" />

Authentication service support

builder.Services.AddOidcAuthentication(options =>
{
 builder.Configuration.Bind("Local", options.ProviderOptions);
});

By Javier Calvarro Nelson and Luke Latham

For Azure Active Directory (AAD) and Azure Active Directory B2C (AAD B2C), don't follow the guidance in this

topic. See the AAD and AAD B2C topics in this table of contents node.

To create a standalone Blazor WebAssembly app that uses

Microsoft.AspNetCore.Components.WebAssembly.Authentication library, follow the guidance for your choice of tooling.

Visual Studio

Visual Studio Code / .NET Core CLI

Visual Studio for Mac

To create a new Blazor WebAssembly project with an authentication mechanism:

1. After choosing the Blazor WebAssembly AppBlazor WebAssembly App template in the Create a new ASP.NET Core WebCreate a new ASP.NET Core Web

ApplicationApplication dialog, select ChangeChange under AuthenticationAuthentication.

2. Select Individual User AccountsIndividual User Accounts with the Store user accounts in-appStore user accounts in-app option to store users within the

app using ASP.NET Core's Identity system.

When an app is created to use Individual User Accounts, the app automatically receives a package reference for the

Microsoft.AspNetCore.Components.WebAssembly.Authentication package in the app's project file. The package

provides a set of primitives that help the app authenticate users and obtain tokens to call protected APIs.

If adding authentication to an app, manually add the package to the app's project file:

For the placeholder {VERSION} , the latest stable version of the package that matches the app's shared framework

version can be found in the package's Version Histor yVersion Histor y at NuGet.org.

Support for authenticating users is registered in the service container with the AddOidcAuthentication extension

method provided by the Microsoft.AspNetCore.Components.WebAssembly.Authentication package. This method sets

up the services required for the app to interact with the Identity Provider (IP).

Program.cs :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/standalone-with-authentication-library.md
https://github.com/javiercn
https://github.com/guardrex
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.webassemblyauthenticationservicecollectionextensions.addoidcauthentication
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication

{
 "Local": {
 "Authority": "{AUTHORITY}",
 "ClientId": "{CLIENT ID}"
 }
}

Access token scopes

builder.Services.AddOidcAuthentication(options =>
{
 ...
 options.ProviderOptions.DefaultScopes.Add("{SCOPE URI}");
});

NOTENOTE

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}");

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "41451fa7-82d9-4673-8fa5-69eff5a761fd/API.Access");

Imports file

Configuration is supplied by the wwwroot/appsettings.json file:

Authentication support for standalone apps is offered using OpenID Connect (OIDC). The AddOidcAuthentication

method accepts a callback to configure the parameters required to authenticate an app using OIDC. The values

required for configuring the app can be obtained from the OIDC-compliant IP. Obtain the values when you register

the app, which typically occurs in their online portal.

The Blazor WebAssembly template doesn't automatically configure the app to request an access token for a secure

API. To provision an access token as part of the sign-in flow, add the scope to the default token scopes of the

OidcProviderOptions:

If the Azure portal provides the scope URI for the app and the app throws an unhandled exception when it receives a 401

Unauthorized response from the API, try using a scope URI that doesn't include the scheme and host. For example, the

Azure portal may provide one of the following scope URI formats:

https://{TENANT}.onmicrosoft.com/{API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

api://{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

Try supplying the scope URI without the scheme and host:

For example:

For more information, see the following sections of the Additional scenarios article:

Request additional access tokens

Attach tokens to outgoing requests

The Microsoft.AspNetCore.Components.Authorization namespace is made available throughout the app via the

_Imports.razor file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.webassemblyauthenticationservicecollectionextensions.addoidcauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.oidcprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization

@using System.Net.Http
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.AspNetCore.Components.WebAssembly.Http
@using Microsoft.JSInterop
@using {APPLICATION ASSEMBLY}
@using {APPLICATION ASSEMBLY}.Shared

Index page

<script src="_content/Microsoft.AspNetCore.Components.WebAssembly.Authentication/
 AuthenticationService.js"></script>

App component

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 @if (!context.User.Identity.IsAuthenticated)
 {
 <RedirectToLogin />
 }
 else
 {
 <p>
 You are not authorized to access
 this resource.
 </p>
 }
 </NotAuthorized>
 </AuthorizeRouteView>
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

The Index page (wwwroot/index.html) page includes a script that defines the AuthenticationService in JavaScript.

AuthenticationService handles the low-level details of the OIDC protocol. The app internally calls methods defined

in the script to perform the authentication operations.

The App component (App.razor) is similar to the App component found in Blazor Server apps:

The CascadingAuthenticationState component manages exposing the AuthenticationState to the rest of the app.

The AuthorizeRouteView component makes sure that the current user is authorized to access a given page or

otherwise renders the RedirectToLogin component.

The RedirectToLogin component manages redirecting unauthorized users to the login page.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview

RedirectToLogin component

@inject NavigationManager Navigation
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@code {
 protected override void OnInitialized()
 {
 Navigation.NavigateTo($"authentication/login?returnUrl=" +
 Uri.EscapeDataString(Navigation.Uri));
 }
}

LoginDisplay component

@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@inject NavigationManager Navigation
@inject SignOutSessionStateManager SignOutManager

<AuthorizeView>
 <Authorized>
 Hello, @context.User.Identity.Name!
 <button class="nav-link btn btn-link" @onclick="BeginSignOut">
 Log out
 </button>
 </Authorized>
 <NotAuthorized>
 Log in
 </NotAuthorized>
</AuthorizeView>

@code {
 private async Task BeginSignOut(MouseEventArgs args)
 {
 await SignOutManager.SetSignOutState();
 Navigation.NavigateTo("authentication/logout");
 }
}

Authentication component

The RedirectToLogin component (Shared/RedirectToLogin.razor):

Manages redirecting unauthorized users to the login page.

Preserves the current URL that the user is attempting to access so that they can be returned to that page if

authentication is successful.

The LoginDisplay component (Shared/LoginDisplay.razor) is rendered in the MainLayout component (

Shared/MainLayout.razor) and manages the following behaviors:

For authenticated users:

For anonymous users, offers the option to log in.

Displays the current username.

Offers a button to log out of the app.

The page produced by the Authentication component (Pages/Authentication.razor) defines the routes required

for handling different authentication stages.

The RemoteAuthenticatorView component:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview

@page "/authentication/{action}"
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action" />

@code {
 [Parameter]
 public string Action { get; set; }
}

Troubleshoot
Cookies and site dataCookies and site data

Is provided by the Microsoft.AspNetCore.Components.WebAssembly.Authentication package.

Manages performing the appropriate actions at each stage of authentication.

Cookies and site data can persist across app updates and interfere with testing and troubleshooting. Clear the

following when making app code changes, user account changes with the provider, or provider app configuration

changes:

User sign-in cookies

App cookies

Cached and stored site data

One approach to prevent lingering cookies and site data from interfering with testing and troubleshooting is to:

Configure a browser

Use a custom command to open a browser in incognito or private mode in Visual Studio:

Use a browser for testing that you can configure to delete all cookie and site data each time the browser

is closed.

Make sure that the browser is closed manually or by the IDE between any change to the app, test user, or

provider configuration.

Open Browse WithBrowse With dialog box from Visual Studio's RunRun button.

Select the AddAdd button.

Provide the path to your browser in the ProgramProgram field. The following executable paths are typical

installation locations for Windows 10. If your browser is installed in a different location or you aren't

using Windows 10, provide the path to the browser's executable.

In the ArgumentsArguments field, provide the command-line option that the browser uses to open in incognito or

private mode. Some browsers require the URL of the app.

Provide a name in the Fr iendly nameFriendly name field. For example, Firefox Auth Testing .

Select the OKOK button.

To avoid having to select the browser profile for each iteration of testing with an app, set the profile as

the default with the Set as DefaultSet as Default button.

Make sure that the browser is closed by the IDE between any change to the app, test user, or provider

configuration.

Microsoft Edge: C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe

Google Chrome: C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

Mozilla Firefox: C:\Program Files\Mozilla Firefox\firefox.exe

Microsoft Edge: -inprivate

Google Chrome: --incognito --new-window https://localhost:5001

Mozilla Firefox: -private -url https://localhost:5001

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication/

Run the Server appRun the Server app

Inspect the content of a JSON Web Token (JWT)Inspect the content of a JSON Web Token (JWT)

Additional resources

When testing and troubleshooting a hosted Blazor app, make sure that you're running the app from the Server

project. For example in Visual Studio, confirm that the Server project is highlighted in Solution ExplorerSolution Explorer before

you start the app with any of the following approaches:

Select the RunRun button.

Use DebugDebug > Star t DebuggingStar t Debugging from the menu.

Press F5.

To decode a JSON Web Token (JWT), use Microsoft's jwt.ms tool. Values in the UI never leave your browser.

ASP.NET Core Blazor WebAssembly additional security scenarios

Unauthenticated or unauthorized web API requests in an app with a secure default client

https://jwt.ms/

Secure an ASP.NET Core Blazor WebAssembly
standalone app with Microsoft Accounts
9/22/2020 • 8 minutes to read • Edit Online

dotnet new blazorwasm -au SingleOrg --client-id "{CLIENT ID}" --tenant-id "common" -o {APP NAME}

P L A C EH O L DERP L A C EH O L DER A Z URE P O RTA L N A M EA Z URE P O RTA L N A M E EXA M P L EEXA M P L E

{APP NAME} — BlazorSample

{CLIENT ID} Application (client) ID 41451fa7-82d9-4673-8fa5-
69eff5a761fd

By Javier Calvarro Nelson and Luke Latham

To create a standalone Blazor WebAssembly app that uses Microsoft Accounts with Azure Active Directory (AAD)

for authentication:

Create an AAD tenant and web application

Register a AAD app in the Azure Active Director yAzure Active Director y > App registrationsApp registrations area of the Azure portal:

1. Provide a NameName for the app (for example, Blazor Standalone AAD Microsoft AccountsBlazor Standalone AAD Microsoft Accounts).

2. In Suppor ted account typesSuppor ted account types , select Accounts in any organizational director yAccounts in any organizational director y .

3. Leave the Redirect URIRedirect URI drop down set to WebWeb and provide the following redirect URI:

https://localhost:{PORT}/authentication/login-callback . The default port for an app running on Kestrel is

5001. If the app is run on a different Kestrel port, use the app's port. For IIS Express, the randomly generated

port for the app can be found in the app's properties in the DebugDebug panel. Since the app doesn't exist at this

point and the IIS Express port isn't known, return to this step after the app is created and update the redirect

URI. A remark appears later in this topic to remind IIS Express users to update the redirect URI.

4. Disable the PermissionsPermissions > Grant admin consent to openid and offline_access permissionsGrant admin consent to openid and offline_access permissions check box.

5. Select RegisterRegister .

Record the Application (client) ID (for example, 41451fa7-82d9-4673-8fa5-69eff5a761fd).

In AuthenticationAuthentication > Platform configurationsPlatform configurations > WebWeb:

1. Confirm the Redirect URIRedirect URI of https://localhost:{PORT}/authentication/login-callback is present.

2. For Implicit grantImplicit grant, select the check boxes for Access tokensAccess tokens and ID tokensID tokens .

3. The remaining defaults for the app are acceptable for this experience.

4. Select the SaveSave button.

Create the app. Replace the placeholders in the following command with the information recorded earlier and

execute the following command in a command shell:

The output location specified with the -o|--output option creates a project folder if it doesn't exist and becomes

part of the app's name.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/standalone-with-microsoft-accounts.md
https://github.com/javiercn
https://github.com/guardrex
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app#register-a-new-application-using-the-azure-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-overview

NOTENOTE

Authentication package

<PackageReference Include="Microsoft.Authentication.WebAssembly.Msal"
 Version="{VERSION}" />

Authentication service support

builder.Services.AddMsalAuthentication(options =>
{
 builder.Configuration.Bind("AzureAd", options.ProviderOptions.Authentication);
});

In the Azure portal, the app's AuthenticationAuthentication > Platform configurationsPlatform configurations > WebWeb > Redirect URIRedirect URI is configured for port

5001 for apps that run on the Kestrel server with default settings.

If the app is run on a random IIS Express port, the port for the app can be found in the app's properties in the DebugDebug

panel.

If the port wasn't configured earlier with the app's known port, return to the app's registration in the Azure portal and

update the redirect URI with the correct port.

After creating the app, you should be able to:

Log into the app using a Microsoft account.

Request access tokens for Microsoft APIs. For more information, see:

Access token scopes

Quickstart: Configure an application to expose web APIs.

When an app is created to use Work or School Accounts (SingleOrg), the app automatically receives a package

reference for the Microsoft Authentication Library (Microsoft.Authentication.WebAssembly.Msal). The package

provides a set of primitives that help the app authenticate users and obtain tokens to call protected APIs.

If adding authentication to an app, manually add the package to the app's project file:

For the placeholder {VERSION} , the latest stable version of the package that matches the app's shared framework

version can be found in the package's Version Histor yVersion Histor y at NuGet.org.

The Microsoft.Authentication.WebAssembly.Msal package transitively adds the

Microsoft.AspNetCore.Components.WebAssembly.Authentication package to the app.

Support for authenticating users is registered in the service container with the AddMsalAuthentication extension

method provided by the Microsoft.Authentication.WebAssembly.Msal package. This method sets up all of the

services required for the app to interact with the Identity Provider (IP).

Program.cs :

The AddMsalAuthentication method accepts a callback to configure the parameters required to authenticate an

app. The values required for configuring the app can be obtained from the AAD configuration when you register

the app.

Configuration is supplied by the wwwroot/appsettings.json file:

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-configure-app-expose-web-apis
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication

{
 "AzureAd": {
 "Authority": "https://login.microsoftonline.com/common",
 "ClientId": "{CLIENT ID}",
 "ValidateAuthority": true
 }
}

{
 "AzureAd": {
 "Authority": "https://login.microsoftonline.com/common",
 "ClientId": "41451fa7-82d9-4673-8fa5-69eff5a761fd",
 "ValidateAuthority": true
 }
}

Access token scopes

builder.Services.AddMsalAuthentication(options =>
{
 ...
 options.ProviderOptions.DefaultAccessTokenScopes.Add("{SCOPE URI}");
});

NOTENOTE

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}");

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "41451fa7-82d9-4673-8fa5-69eff5a761fd/API.Access");

Login mode

Example:

The Blazor WebAssembly template doesn't automatically configure the app to request an access token for a secure

API. To provision an access token as part of the sign-in flow, add the scope to the default access token scopes of the

MsalProviderOptions:

If the Azure portal provides the scope URI for the app and the app throws an unhandled exception when it receives a 401

Unauthorized response from the API, try using a scope URI that doesn't include the scheme and host. For example, the

Azure portal may provide one of the following scope URI formats:

https://{TENANT}.onmicrosoft.com/{API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

api://{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

Try supplying the scope URI without the scheme and host:

For example:

For more information, see the following sections of the Additional scenarios article:

Request additional access tokens

Attach tokens to outgoing requests

https://docs.microsoft.com/en-us/dotnet/api/microsoft.authentication.webassembly.msal.models.msalprovideroptions

Login mode

builder.Services.AddMsalAuthentication(options =>
{
 ...
 options.ProviderOptions.LoginMode = "redirect";
});

Imports file

@using System.Net.Http
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.AspNetCore.Components.WebAssembly.Http
@using Microsoft.JSInterop
@using {APPLICATION ASSEMBLY}
@using {APPLICATION ASSEMBLY}.Shared

Index page

<script src="_content/Microsoft.Authentication.WebAssembly.Msal/
 AuthenticationService.js"></script>

App component

The framework defaults to pop-up login mode and falls back to redirect login mode if a pop-up can't be opened.

Configure MSAL to use redirect login mode by setting the LoginMode property of MsalProviderOptions to

redirect :

The default setting is popup , and the string value isn't case sensitive.

The Microsoft.AspNetCore.Components.Authorization namespace is made available throughout the app via the

_Imports.razor file:

The Index page (wwwroot/index.html) page includes a script that defines the AuthenticationService in JavaScript.

AuthenticationService handles the low-level details of the OIDC protocol. The app internally calls methods defined

in the script to perform the authentication operations.

The App component (App.razor) is similar to the App component found in Blazor Server apps:

The CascadingAuthenticationState component manages exposing the AuthenticationState to the rest of the app.

The AuthorizeRouteView component makes sure that the current user is authorized to access a given page or

otherwise renders the RedirectToLogin component.

The RedirectToLogin component manages redirecting unauthorized users to the login page.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.authentication.webassembly.msal.models.msalprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 @if (!context.User.Identity.IsAuthenticated)
 {
 <RedirectToLogin />
 }
 else
 {
 <p>
 You are not authorized to access
 this resource.
 </p>
 }
 </NotAuthorized>
 </AuthorizeRouteView>
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

RedirectToLogin component

@inject NavigationManager Navigation
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@code {
 protected override void OnInitialized()
 {
 Navigation.NavigateTo($"authentication/login?returnUrl=" +
 Uri.EscapeDataString(Navigation.Uri));
 }
}

LoginDisplay component

The RedirectToLogin component (Shared/RedirectToLogin.razor):

Manages redirecting unauthorized users to the login page.

Preserves the current URL that the user is attempting to access so that they can be returned to that page if

authentication is successful.

The LoginDisplay component (Shared/LoginDisplay.razor) is rendered in the MainLayout component (

Shared/MainLayout.razor) and manages the following behaviors:

For authenticated users:

For anonymous users, offers the option to log in.

Displays the current username.

Offers a button to log out of the app.

@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@inject NavigationManager Navigation
@inject SignOutSessionStateManager SignOutManager

<AuthorizeView>
 <Authorized>
 Hello, @context.User.Identity.Name!
 <button class="nav-link btn btn-link" @onclick="BeginLogout">
 Log out
 </button>
 </Authorized>
 <NotAuthorized>
 Log in
 </NotAuthorized>
</AuthorizeView>

@code {
 private async Task BeginLogout(MouseEventArgs args)
 {
 await SignOutManager.SetSignOutState();
 Navigation.NavigateTo("authentication/logout");
 }
}

Authentication component

@page "/authentication/{action}"
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action" />

@code {
 [Parameter]
 public string Action { get; set; }
}

Troubleshoot
Cookies and site dataCookies and site data

The page produced by the Authentication component (Pages/Authentication.razor) defines the routes required

for handling different authentication stages.

The RemoteAuthenticatorView component:

Is provided by the Microsoft.AspNetCore.Components.WebAssembly.Authentication package.

Manages performing the appropriate actions at each stage of authentication.

Cookies and site data can persist across app updates and interfere with testing and troubleshooting. Clear the

following when making app code changes, user account changes with the provider, or provider app configuration

changes:

User sign-in cookies

App cookies

Cached and stored site data

One approach to prevent lingering cookies and site data from interfering with testing and troubleshooting is to:

Configure a browser

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication/

Run the Server appRun the Server app

Inspect the content of a JSON Web Token (JWT)Inspect the content of a JSON Web Token (JWT)

Additional resources

Use a custom command to open a browser in incognito or private mode in Visual Studio:

Use a browser for testing that you can configure to delete all cookie and site data each time the browser

is closed.

Make sure that the browser is closed manually or by the IDE between any change to the app, test user, or

provider configuration.

Open Browse WithBrowse With dialog box from Visual Studio's RunRun button.

Select the AddAdd button.

Provide the path to your browser in the ProgramProgram field. The following executable paths are typical

installation locations for Windows 10. If your browser is installed in a different location or you aren't

using Windows 10, provide the path to the browser's executable.

In the ArgumentsArguments field, provide the command-line option that the browser uses to open in incognito or

private mode. Some browsers require the URL of the app.

Provide a name in the Fr iendly nameFriendly name field. For example, Firefox Auth Testing .

Select the OKOK button.

To avoid having to select the browser profile for each iteration of testing with an app, set the profile as

the default with the Set as DefaultSet as Default button.

Make sure that the browser is closed by the IDE between any change to the app, test user, or provider

configuration.

Microsoft Edge: C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe

Google Chrome: C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

Mozilla Firefox: C:\Program Files\Mozilla Firefox\firefox.exe

Microsoft Edge: -inprivate

Google Chrome: --incognito --new-window https://localhost:5001

Mozilla Firefox: -private -url https://localhost:5001

When testing and troubleshooting a hosted Blazor app, make sure that you're running the app from the Server

project. For example in Visual Studio, confirm that the Server project is highlighted in Solution ExplorerSolution Explorer before

you start the app with any of the following approaches:

Select the RunRun button.

Use DebugDebug > Star t DebuggingStar t Debugging from the menu.

Press F5.

To decode a JSON Web Token (JWT), use Microsoft's jwt.ms tool. Values in the UI never leave your browser.

ASP.NET Core Blazor WebAssembly additional security scenarios

Unauthenticated or unauthorized web API requests in an app with a secure default client

ASP.NET Core Blazor WebAssembly with Azure Active Directory groups and roles

Quickstart: Register an application with the Microsoft identity platform

Quickstart: Configure an application to expose web APIs

https://jwt.ms/
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app#register-a-new-application-using-the-azure-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-configure-app-expose-web-apis

Secure an ASP.NET Core Blazor WebAssembly
standalone app with Azure Active Directory
9/22/2020 • 8 minutes to read • Edit Online

dotnet new blazorwasm -au SingleOrg --client-id "{CLIENT ID}" -o {APP NAME} --tenant-id "{TENANT ID}"

P L A C EH O L DERP L A C EH O L DER A Z URE P O RTA L N A M EA Z URE P O RTA L N A M E EXA M P L EEXA M P L E

{APP NAME} — BlazorSample

{CLIENT ID} Application (client) ID 41451fa7-82d9-4673-8fa5-
69eff5a761fd

{TENANT ID} Directory (tenant) ID e86c78e2-8bb4-4c41-aefd-
918e0565a45e

By Javier Calvarro Nelson and Luke Latham

To create a standalone Blazor WebAssembly app that uses Azure Active Directory (AAD) for authentication:

Create an AAD tenant and web application:

Register a AAD app in the Azure Active Director yAzure Active Director y > App registrationsApp registrations area of the Azure portal:

1. Provide a NameName for the app (for example, Blazor Standalone AADBlazor Standalone AAD).

2. Choose a Suppor ted account typesSuppor ted account types . You may select Accounts in this organizational director y onlyAccounts in this organizational director y only for

this experience.

3. Leave the Redirect URIRedirect URI drop down set to WebWeb and provide the following redirect URI:

https://localhost:{PORT}/authentication/login-callback . The default port for an app running on Kestrel is

5001. If the app is run on a different Kestrel port, use the app's port. For IIS Express, the randomly generated

port for the app can be found in the app's properties in the DebugDebug panel. Since the app doesn't exist at this

point and the IIS Express port isn't known, return to this step after the app is created and update the redirect

URI. A remark appears later in this topic to remind IIS Express users to update the redirect URI.

4. Disable the PermissionsPermissions > Grant admin consent to openid and offline_access permissionsGrant admin consent to openid and offline_access permissions check box.

5. Select RegisterRegister .

Record the following information:

Application (client) ID (for example, 41451fa7-82d9-4673-8fa5-69eff5a761fd)

Directory (tenant) ID (for example, e86c78e2-8bb4-4c41-aefd-918e0565a45e)

In AuthenticationAuthentication > Platform configurationsPlatform configurations > WebWeb:

1. Confirm the Redirect URIRedirect URI of https://localhost:{PORT}/authentication/login-callback is present.

2. For Implicit grantImplicit grant, select the check boxes for Access tokensAccess tokens and ID tokensID tokens .

3. The remaining defaults for the app are acceptable for this experience.

4. Select the SaveSave button.

Create the app in an empty folder. Replace the placeholders in the following command with the information

recorded earlier and execute the command in a command shell:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/standalone-with-azure-active-directory.md
https://github.com/javiercn
https://github.com/guardrex
https://azure.microsoft.com/services/active-directory/
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-overview

NOTENOTE

Authentication package

<PackageReference Include="Microsoft.Authentication.WebAssembly.Msal"
 Version="{VERSION}" />

Authentication service support

builder.Services.AddMsalAuthentication(options =>
{
 builder.Configuration.Bind("AzureAd", options.ProviderOptions.Authentication);
});

The output location specified with the -o|--output option creates a project folder if it doesn't exist and becomes

part of the app's name.

In the Azure portal, the app's AuthenticationAuthentication > Platform configurationsPlatform configurations > WebWeb > Redirect URIRedirect URI is configured for port

5001 for apps that run on the Kestrel server with default settings.

If the app is run on a random IIS Express port, the port for the app can be found in the app's properties in the DebugDebug

panel.

If the port wasn't configured earlier with the app's known port, return to the app's registration in the Azure portal and

update the redirect URI with the correct port.

After creating the app, you should be able to:

Log into the app using an AAD user account.

Request access tokens for Microsoft APIs. For more information, see:

Access token scopes

Quickstart: Configure an application to expose web APIs.

When an app is created to use Work or School Accounts (SingleOrg), the app automatically receives a package

reference for the Microsoft Authentication Library (Microsoft.Authentication.WebAssembly.Msal). The package

provides a set of primitives that help the app authenticate users and obtain tokens to call protected APIs.

If adding authentication to an app, manually add the package to the app's project file:

For the placeholder {VERSION} , the latest stable version of the package that matches the app's shared framework

version can be found in the package's Version Histor yVersion Histor y at NuGet.org.

The Microsoft.Authentication.WebAssembly.Msal package transitively adds the

Microsoft.AspNetCore.Components.WebAssembly.Authentication package to the app.

Support for authenticating users is registered in the service container with the AddMsalAuthentication extension

method provided by the Microsoft.Authentication.WebAssembly.Msal package. This method sets up the services

required for the app to interact with the Identity Provider (IP).

Program.cs :

The AddMsalAuthentication method accepts a callback to configure the parameters required to authenticate an

app. The values required for configuring the app can be obtained from the AAD configuration when you register

the app.

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-configure-app-expose-web-apis
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication

{
 "AzureAd": {
 "Authority": "https://login.microsoftonline.com/{TENANT ID}",
 "ClientId": "{CLIENT ID}",
 "ValidateAuthority": true
 }
}

{
 "AzureAd": {
 "Authority": "https://login.microsoftonline.com/e86c78e2-...-918e0565a45e",
 "ClientId": "41451fa7-82d9-4673-8fa5-69eff5a761fd",
 "ValidateAuthority": true
 }
}

Access token scopes

builder.Services.AddMsalAuthentication(options =>
{
 ...
 options.ProviderOptions.DefaultAccessTokenScopes.Add("{SCOPE URI}");
});

NOTENOTE

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}");

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "41451fa7-82d9-4673-8fa5-69eff5a761fd/API.Access");

Login mode

Configuration is supplied by the wwwroot/appsettings.json file:

Example:

The Blazor WebAssembly template doesn't automatically configure the app to request an access token for a secure

API. To provision an access token as part of the sign-in flow, add the scope to the default access token scopes of the

MsalProviderOptions:

If the Azure portal provides the scope URI for the app and the app throws an unhandled exception when it receives a 401

Unauthorized response from the API, try using a scope URI that doesn't include the scheme and host. For example, the

Azure portal may provide one of the following scope URI formats:

https://{TENANT}.onmicrosoft.com/{API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

api://{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

Try supplying the scope URI without the scheme and host:

For example:

For more information, see the following sections of the Additional scenarios article:

Request additional access tokens

Attach tokens to outgoing requests

https://docs.microsoft.com/en-us/dotnet/api/microsoft.authentication.webassembly.msal.models.msalprovideroptions

Login mode

builder.Services.AddMsalAuthentication(options =>
{
 ...
 options.ProviderOptions.LoginMode = "redirect";
});

Imports file

@using System.Net.Http
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.AspNetCore.Components.WebAssembly.Http
@using Microsoft.JSInterop
@using {APPLICATION ASSEMBLY}
@using {APPLICATION ASSEMBLY}.Shared

Index page

<script src="_content/Microsoft.Authentication.WebAssembly.Msal/
 AuthenticationService.js"></script>

App component

The framework defaults to pop-up login mode and falls back to redirect login mode if a pop-up can't be opened.

Configure MSAL to use redirect login mode by setting the LoginMode property of MsalProviderOptions to

redirect :

The default setting is popup , and the string value isn't case sensitive.

The Microsoft.AspNetCore.Components.Authorization namespace is made available throughout the app via the

_Imports.razor file:

The Index page (wwwroot/index.html) page includes a script that defines the AuthenticationService in JavaScript.

AuthenticationService handles the low-level details of the OIDC protocol. The app internally calls methods defined

in the script to perform the authentication operations.

The App component (App.razor) is similar to the App component found in Blazor Server apps:

The CascadingAuthenticationState component manages exposing the AuthenticationState to the rest of the app.

The AuthorizeRouteView component makes sure that the current user is authorized to access a given page or

otherwise renders the RedirectToLogin component.

The RedirectToLogin component manages redirecting unauthorized users to the login page.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.authentication.webassembly.msal.models.msalprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 @if (!context.User.Identity.IsAuthenticated)
 {
 <RedirectToLogin />
 }
 else
 {
 <p>
 You are not authorized to access
 this resource.
 </p>
 }
 </NotAuthorized>
 </AuthorizeRouteView>
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

RedirectToLogin component

@inject NavigationManager Navigation
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@code {
 protected override void OnInitialized()
 {
 Navigation.NavigateTo($"authentication/login?returnUrl=" +
 Uri.EscapeDataString(Navigation.Uri));
 }
}

LoginDisplay component

The RedirectToLogin component (Shared/RedirectToLogin.razor):

Manages redirecting unauthorized users to the login page.

Preserves the current URL that the user is attempting to access so that they can be returned to that page if

authentication is successful.

The LoginDisplay component (Shared/LoginDisplay.razor) is rendered in the MainLayout component (

Shared/MainLayout.razor) and manages the following behaviors:

For authenticated users:

For anonymous users, offers the option to log in.

Displays the current username.

Offers a button to log out of the app.

@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@inject NavigationManager Navigation
@inject SignOutSessionStateManager SignOutManager

<AuthorizeView>
 <Authorized>
 Hello, @context.User.Identity.Name!
 <button class="nav-link btn btn-link" @onclick="BeginLogout">
 Log out
 </button>
 </Authorized>
 <NotAuthorized>
 Log in
 </NotAuthorized>
</AuthorizeView>

@code {
 private async Task BeginLogout(MouseEventArgs args)
 {
 await SignOutManager.SetSignOutState();
 Navigation.NavigateTo("authentication/logout");
 }
}

Authentication component

@page "/authentication/{action}"
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action" />

@code {
 [Parameter]
 public string Action { get; set; }
}

Troubleshoot
Cookies and site dataCookies and site data

The page produced by the Authentication component (Pages/Authentication.razor) defines the routes required

for handling different authentication stages.

The RemoteAuthenticatorView component:

Is provided by the Microsoft.AspNetCore.Components.WebAssembly.Authentication package.

Manages performing the appropriate actions at each stage of authentication.

Cookies and site data can persist across app updates and interfere with testing and troubleshooting. Clear the

following when making app code changes, user account changes with the provider, or provider app configuration

changes:

User sign-in cookies

App cookies

Cached and stored site data

One approach to prevent lingering cookies and site data from interfering with testing and troubleshooting is to:

Configure a browser

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication/

Run the Server appRun the Server app

Inspect the content of a JSON Web Token (JWT)Inspect the content of a JSON Web Token (JWT)

Additional resources

Use a custom command to open a browser in incognito or private mode in Visual Studio:

Use a browser for testing that you can configure to delete all cookie and site data each time the browser

is closed.

Make sure that the browser is closed manually or by the IDE between any change to the app, test user, or

provider configuration.

Open Browse WithBrowse With dialog box from Visual Studio's RunRun button.

Select the AddAdd button.

Provide the path to your browser in the ProgramProgram field. The following executable paths are typical

installation locations for Windows 10. If your browser is installed in a different location or you aren't

using Windows 10, provide the path to the browser's executable.

In the ArgumentsArguments field, provide the command-line option that the browser uses to open in incognito or

private mode. Some browsers require the URL of the app.

Provide a name in the Fr iendly nameFriendly name field. For example, Firefox Auth Testing .

Select the OKOK button.

To avoid having to select the browser profile for each iteration of testing with an app, set the profile as

the default with the Set as DefaultSet as Default button.

Make sure that the browser is closed by the IDE between any change to the app, test user, or provider

configuration.

Microsoft Edge: C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe

Google Chrome: C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

Mozilla Firefox: C:\Program Files\Mozilla Firefox\firefox.exe

Microsoft Edge: -inprivate

Google Chrome: --incognito --new-window https://localhost:5001

Mozilla Firefox: -private -url https://localhost:5001

When testing and troubleshooting a hosted Blazor app, make sure that you're running the app from the Server

project. For example in Visual Studio, confirm that the Server project is highlighted in Solution ExplorerSolution Explorer before

you start the app with any of the following approaches:

Select the RunRun button.

Use DebugDebug > Star t DebuggingStar t Debugging from the menu.

Press F5.

To decode a JSON Web Token (JWT), use Microsoft's jwt.ms tool. Values in the UI never leave your browser.

ASP.NET Core Blazor WebAssembly additional security scenarios

Unauthenticated or unauthorized web API requests in an app with a secure default client

ASP.NET Core Blazor WebAssembly with Azure Active Directory groups and roles

Microsoft identity platform and Azure Active Directory with ASP.NET Core

Microsoft identity platform documentation

https://jwt.ms/
https://docs.microsoft.com/en-us/azure/active-directory/develop/

Secure an ASP.NET Core Blazor WebAssembly
standalone app with Azure Active Directory B2C
9/22/2020 • 9 minutes to read • Edit Online

By Javier Calvarro Nelson and Luke Latham

To create a standalone Blazor WebAssembly app that uses Azure Active Directory (AAD) B2C for authentication:

Follow the guidance in the following topics to create a tenant and register a web app in the Azure Portal:

Create an AAD B2C tenant

Record the following information:

AAD B2C instance (for example, https://contoso.b2clogin.com/ , which includes the trailing slash): The instance

is the scheme and host of an Azure B2C app registration, which can be found by opening the EndpointsEndpoints

window from the App registrationsApp registrations page in the Azure portal.

AAD B2C Primary/Publisher/Tenant domain (for example, contoso.onmicrosoft.com): The domain is available as

the Publisher domainPublisher domain in the BrandingBranding blade of the Azure portal for the registered app.

Follow the guidance in Tutorial: Register an application in Azure Active Directory B2C again to register an AAD app

for the Client app and then do the following:

1. In Azure Active Director yAzure Active Director y > App registrationsApp registrations , select New registrationNew registration.

2. Provide a NameName for the app (for example, Blazor Standalone AAD B2CBlazor Standalone AAD B2C).

3. For Suppor ted account typesSuppor ted account types , select the multi-tenant option: Accounts in any organizational director yAccounts in any organizational director y

or any identity provider. For authenticating users with Azure AD B2C.or any identity provider. For authenticating users with Azure AD B2C.

4. Leave the Redirect URIRedirect URI drop down set to WebWeb and provide the following redirect URI:

https://localhost:{PORT}/authentication/login-callback . The default port for an app running on Kestrel is

5001. If the app is run on a different Kestrel port, use the app's port. For IIS Express, the randomly generated

port for the app can be found in the app's properties in the DebugDebug panel. Since the app doesn't exist at this

point and the IIS Express port isn't known, return to this step after the app is created and update the redirect

URI. A remark appears later in this topic to remind IIS Express users to update the redirect URI.

5. Confirm that PermissionsPermissions > Grant admin consent to openid and offline_access permissionsGrant admin consent to openid and offline_access permissions is

enabled.

6. Select RegisterRegister .

Record the Application (client) ID (for example, 41451fa7-82d9-4673-8fa5-69eff5a761fd).

In AuthenticationAuthentication > Platform configurationsPlatform configurations > WebWeb:

1. Confirm the Redirect URIRedirect URI of https://localhost:{PORT}/authentication/login-callback is present.

2. For Implicit grantImplicit grant, select the check boxes for Access tokensAccess tokens and ID tokensID tokens .

3. The remaining defaults for the app are acceptable for this experience.

4. Select the SaveSave button.

In HomeHome > Azure AD B2CAzure AD B2C > User flowsUser flows :

Create a sign-up and sign-in user flow

At a minimum, select the Application claimsApplication claims > Display NameDisplay Name user attribute to populate the

context.User.Identity.Name in the LoginDisplay component (Shared/LoginDisplay.razor).

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/standalone-with-azure-active-directory-b2c.md
https://github.com/javiercn
https://github.com/guardrex
https://docs.microsoft.com/en-us/azure/active-directory-b2c/overview
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-tenant
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-register-applications
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-user-flows

dotnet new blazorwasm -au IndividualB2C --aad-b2c-instance "{AAD B2C INSTANCE}" --client-id "{CLIENT ID}" --
domain "{TENANT DOMAIN}" -o {APP NAME} -ssp "{SIGN UP OR SIGN IN POLICY}"

P L A C EH O L DERP L A C EH O L DER A Z URE P O RTA L N A M EA Z URE P O RTA L N A M E EXA M P L EEXA M P L E

{AAD B2C INSTANCE} Instance https://contoso.b2clogin.com/

{APP NAME} — BlazorSample

{CLIENT ID} Application (client) ID 41451fa7-82d9-4673-8fa5-
69eff5a761fd

{SIGN UP OR SIGN IN POLICY} Sign-up/sign-in user flow B2C_1_signupsignin1

{TENANT DOMAIN} Primary/Publisher/Tenant domain contoso.onmicrosoft.com

NOTENOTE

Authentication package

<PackageReference Include="Microsoft.Authentication.WebAssembly.Msal"
 Version="{VERSION}" />

Record the sign-up and sign-in user flow name created for the app (for example, B2C_1_signupsignin).

In an empty folder, replace the placeholders in the following command with the information recorded earlier and

execute the command in a command shell:

The output location specified with the -o|--output option creates a project folder if it doesn't exist and becomes

part of the app's name.

In the Azure portal, the app's AuthenticationAuthentication > Platform configurationsPlatform configurations > WebWeb > Redirect URIRedirect URI is configured for port

5001 for apps that run on the Kestrel server with default settings.

If the app is run on a random IIS Express port, the port for the app can be found in the app's properties in the DebugDebug panel.

If the port wasn't configured earlier with the app's known port, return to the app's registration in the Azure portal and

update the redirect URI with the correct port.

After creating the app, you should be able to:

Log into the app using an AAD user account.

Request access tokens for Microsoft APIs. For more information, see:

Access token scopes

Quickstart: Configure an application to expose web APIs.

When an app is created to use an Individual B2C Account (IndividualB2C), the app automatically receives a

package reference for the Microsoft Authentication Library (Microsoft.Authentication.WebAssembly.Msal). The

package provides a set of primitives that help the app authenticate users and obtain tokens to call protected APIs.

If adding authentication to an app, manually add the package to the app's project file:

For the placeholder {VERSION} , the latest stable version of the package that matches the app's shared framework

version can be found in the package's Version Histor yVersion Histor y at NuGet.org.

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-configure-app-expose-web-apis
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal

Authentication service support

builder.Services.AddMsalAuthentication(options =>
{
 builder.Configuration.Bind("AzureAdB2C", options.ProviderOptions.Authentication);
});

{
 "AzureAdB2C": {
 "Authority": "{AAD B2C INSTANCE}{DOMAIN}/{SIGN UP OR SIGN IN POLICY}",
 "ClientId": "{CLIENT ID}",
 "ValidateAuthority": false
 }
}

{
 "AzureAdB2C": {
 "Authority": "https://contoso.b2clogin.com/contoso.onmicrosoft.com/B2C_1_signupsignin1",
 "ClientId": "41451fa7-82d9-4673-8fa5-69eff5a761fd",
 "ValidateAuthority": false
 }
}

Access token scopes

builder.Services.AddMsalAuthentication(options =>
{
 ...
 options.ProviderOptions.DefaultAccessTokenScopes.Add("{SCOPE URI}");
});

The Microsoft.Authentication.WebAssembly.Msal package transitively adds the

Microsoft.AspNetCore.Components.WebAssembly.Authentication package to the app.

Support for authenticating users is registered in the service container with the AddMsalAuthentication extension

method provided by the Microsoft.Authentication.WebAssembly.Msal package. This method sets up all of the

services required for the app to interact with the Identity Provider (IP).

Program.cs :

The AddMsalAuthentication method accepts a callback to configure the parameters required to authenticate an

app. The values required for configuring the app can be obtained from the AAD configuration when you register

the app.

Configuration is supplied by the wwwroot/appsettings.json file:

Example:

The Blazor WebAssembly template doesn't automatically configure the app to request an access token for a secure

API. To provision an access token as part of the sign-in flow, add the scope to the default access token scopes of the

MsalProviderOptions:

https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.authentication.webassembly.msal.models.msalprovideroptions

NOTENOTE

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}");

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "41451fa7-82d9-4673-8fa5-69eff5a761fd/API.Access");

Login mode

builder.Services.AddMsalAuthentication(options =>
{
 ...
 options.ProviderOptions.LoginMode = "redirect";
});

Imports file

@using System.Net.Http
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.AspNetCore.Components.WebAssembly.Http
@using Microsoft.JSInterop
@using {APPLICATION ASSEMBLY}
@using {APPLICATION ASSEMBLY}.Shared

Index page

If the Azure portal provides the scope URI for the app and the app throws an unhandled exception when it receives a 401

Unauthorized response from the API, try using a scope URI that doesn't include the scheme and host. For example, the

Azure portal may provide one of the following scope URI formats:

https://{TENANT}.onmicrosoft.com/{API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

api://{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

Try supplying the scope URI without the scheme and host:

For example:

For more information, see the following sections of the Additional scenarios article:

Request additional access tokens

Attach tokens to outgoing requests

The framework defaults to pop-up login mode and falls back to redirect login mode if a pop-up can't be opened.

Configure MSAL to use redirect login mode by setting the LoginMode property of MsalProviderOptions to

redirect :

The default setting is popup , and the string value isn't case sensitive.

The Microsoft.AspNetCore.Components.Authorization namespace is made available throughout the app via the

_Imports.razor file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.authentication.webassembly.msal.models.msalprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization

<script src="_content/Microsoft.Authentication.WebAssembly.Msal/
 AuthenticationService.js"></script>

App component

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 @if (!context.User.Identity.IsAuthenticated)
 {
 <RedirectToLogin />
 }
 else
 {
 <p>
 You are not authorized to access
 this resource.
 </p>
 }
 </NotAuthorized>
 </AuthorizeRouteView>
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

RedirectToLogin component

The Index page (wwwroot/index.html) page includes a script that defines the AuthenticationService in JavaScript.

AuthenticationService handles the low-level details of the OIDC protocol. The app internally calls methods defined

in the script to perform the authentication operations.

The App component (App.razor) is similar to the App component found in Blazor Server apps:

The CascadingAuthenticationState component manages exposing the AuthenticationState to the rest of the app.

The AuthorizeRouteView component makes sure that the current user is authorized to access a given page or

otherwise renders the RedirectToLogin component.

The RedirectToLogin component manages redirecting unauthorized users to the login page.

The RedirectToLogin component (Shared/RedirectToLogin.razor):

Manages redirecting unauthorized users to the login page.

Preserves the current URL that the user is attempting to access so that they can be returned to that page if

authentication is successful.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview

@inject NavigationManager Navigation
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@code {
 protected override void OnInitialized()
 {
 Navigation.NavigateTo($"authentication/login?returnUrl=" +
 Uri.EscapeDataString(Navigation.Uri));
 }
}

LoginDisplay component

@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@inject NavigationManager Navigation
@inject SignOutSessionStateManager SignOutManager

<AuthorizeView>
 <Authorized>
 Hello, @context.User.Identity.Name!
 <button class="nav-link btn btn-link" @onclick="BeginLogout">
 Log out
 </button>
 </Authorized>
 <NotAuthorized>
 Log in
 </NotAuthorized>
</AuthorizeView>

@code {
 private async Task BeginLogout(MouseEventArgs args)
 {
 await SignOutManager.SetSignOutState();
 Navigation.NavigateTo("authentication/logout");
 }
}

Authentication component

The LoginDisplay component (Shared/LoginDisplay.razor) is rendered in the MainLayout component (

Shared/MainLayout.razor) and manages the following behaviors:

For authenticated users:

For anonymous users, offers the option to log in.

Displays the current username.

Offers a button to log out of the app.

The page produced by the Authentication component (Pages/Authentication.razor) defines the routes required

for handling different authentication stages.

The RemoteAuthenticatorView component:

Is provided by the Microsoft.AspNetCore.Components.WebAssembly.Authentication package.

Manages performing the appropriate actions at each stage of authentication.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication/

@page "/authentication/{action}"
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action" />

@code {
 [Parameter]
 public string Action { get; set; }
}

Custom user flows

Troubleshoot
Cookies and site dataCookies and site data

The Microsoft Authentication Library (Microsoft.Authentication.WebAssembly.Msal, NuGet package) doesn't

support AAD B2C user flows by default. Create custom user flows in developer code.

For more information on how to build a challenge for a custom user flow, see User flows in Azure Active Directory

B2C.

Cookies and site data can persist across app updates and interfere with testing and troubleshooting. Clear the

following when making app code changes, user account changes with the provider, or provider app configuration

changes:

User sign-in cookies

App cookies

Cached and stored site data

One approach to prevent lingering cookies and site data from interfering with testing and troubleshooting is to:

Configure a browser

Use a custom command to open a browser in incognito or private mode in Visual Studio:

Use a browser for testing that you can configure to delete all cookie and site data each time the browser

is closed.

Make sure that the browser is closed manually or by the IDE between any change to the app, test user, or

provider configuration.

Open Browse WithBrowse With dialog box from Visual Studio's RunRun button.

Select the AddAdd button.

Provide the path to your browser in the ProgramProgram field. The following executable paths are typical

installation locations for Windows 10. If your browser is installed in a different location or you aren't

using Windows 10, provide the path to the browser's executable.

In the ArgumentsArguments field, provide the command-line option that the browser uses to open in incognito or

private mode. Some browsers require the URL of the app.

Provide a name in the Fr iendly nameFriendly name field. For example, Firefox Auth Testing .

Select the OKOK button.

Microsoft Edge: C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe

Google Chrome: C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

Mozilla Firefox: C:\Program Files\Mozilla Firefox\firefox.exe

Microsoft Edge: -inprivate

Google Chrome: --incognito --new-window https://localhost:5001

Mozilla Firefox: -private -url https://localhost:5001

https://docs.microsoft.com/en-us/dotnet/api/microsoft.authentication.webassembly.msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/user-flow-overview
https://docs.microsoft.com/en-us/azure/active-directory-b2c/user-flow-overview

Run the Server appRun the Server app

Inspect the content of a JSON Web Token (JWT)Inspect the content of a JSON Web Token (JWT)

Additional resources

To avoid having to select the browser profile for each iteration of testing with an app, set the profile as

the default with the Set as DefaultSet as Default button.

Make sure that the browser is closed by the IDE between any change to the app, test user, or provider

configuration.

When testing and troubleshooting a hosted Blazor app, make sure that you're running the app from the Server

project. For example in Visual Studio, confirm that the Server project is highlighted in Solution ExplorerSolution Explorer before

you start the app with any of the following approaches:

Select the RunRun button.

Use DebugDebug > Star t DebuggingStar t Debugging from the menu.

Press F5.

To decode a JSON Web Token (JWT), use Microsoft's jwt.ms tool. Values in the UI never leave your browser.

ASP.NET Core Blazor WebAssembly additional security scenarios

Unauthenticated or unauthorized web API requests in an app with a secure default client

Cloud authentication with Azure Active Directory B2C in ASP.NET Core

Tutorial: Create an Azure Active Directory B2C tenant

Microsoft identity platform documentation

https://jwt.ms/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-tenant
https://docs.microsoft.com/en-us/azure/active-directory/develop/

Secure an ASP.NET Core Blazor WebAssembly
hosted app with Azure Active Directory
9/22/2020 • 14 minutes to read • Edit Online

Register apps in AAD and create solution
Create a tenantCreate a tenant

Register a server API appRegister a server API app

By Javier Calvarro Nelson and Luke Latham

This article describes how to create a hosted Blazor WebAssembly app that uses Azure Active Directory (AAD)

for authentication.

Follow the guidance in Quickstart: Set up a tenant to create a tenant in AAD.

Follow the guidance in Quickstart: Register an application with the Microsoft identity platform and subsequent

Azure AAD topics to register an AAD app for the Server API app and then do the following:

1. In Azure Active Director yAzure Active Director y > App registrationsApp registrations , select New registrationNew registration.

2. Provide a NameName for the app (for example, Blazor Ser ver AADBlazor Ser ver AAD).

3. Choose a Suppor ted account typesSuppor ted account types . You may select Accounts in this organizational director y onlyAccounts in this organizational director y only

(single tenant) for this experience.

4. The Server API app doesn't require a Redirect URIRedirect URI in this scenario, so leave the drop down set to WebWeb and

don't enter a redirect URI.

5. Disable the PermissionsPermissions > Grant admin consent to openid and offline_access permissionsGrant admin consent to openid and offline_access permissions check

box.

6. Select RegisterRegister .

Record the following information:

Server API app Application (client) ID (for example, 41451fa7-82d9-4673-8fa5-69eff5a761fd)

Directory (tenant) ID (for example, e86c78e2-8bb4-4c41-aefd-918e0565a45e)

AAD Primary/Publisher/Tenant domain (for example, contoso.onmicrosoft.com): The domain is available as

the Publisher domainPublisher domain in the BrandingBranding blade of the Azure portal for the registered app.

In API permissionsAPI permissions , remove the Microsoft GraphMicrosoft Graph > User.ReadUser.Read permission, as the app doesn't require sign in

or user profile access.

In Expose an APIExpose an API:

1. Select Add a scopeAdd a scope.

2. Select Save and continueSave and continue.

3. Provide a Scope nameScope name (for example, API.Access).

4. Provide an Admin consent display nameAdmin consent display name (for example, Access API).

5. Provide an Admin consent descr iptionAdmin consent descr iption (for example, Allows the app to access server app API endpoints.

).

6. Confirm that the StateState is set to EnabledEnabled.

7. Select Add scopeAdd scope.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/hosted-with-azure-active-directory.md
https://github.com/javiercn
https://github.com/guardrex
https://azure.microsoft.com/services/active-directory/
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-create-new-tenant
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app

Register a client appRegister a client app

Create the appCreate the app

Record the following information:

App ID URI (for example, https://contoso.onmicrosoft.com/41451fa7-82d9-4673-8fa5-69eff5a761fd ,

api://41451fa7-82d9-4673-8fa5-69eff5a761fd , or the custom value that you provided)

Scope name (for example, API.Access)

The App ID URI might require a special configuration in the client app, which is described in the Access token

scopes section later in this topic.

Follow the guidance in Quickstart: Register an application with the Microsoft identity platform and subsequent

Azure AAD topics to register a AAD app for the Client app and then do the following:

1. In Azure Active Director yAzure Active Director y > App registrationsApp registrations , select New registrationNew registration.

2. Provide a NameName for the app (for example, Blazor Client AADBlazor Client AAD).

3. Choose a Suppor ted account typesSuppor ted account types . You may select Accounts in this organizational director y onlyAccounts in this organizational director y only

(single tenant) for this experience.

4. Leave the Redirect URIRedirect URI drop down set to WebWeb and provide the following redirect URI:

https://localhost:{PORT}/authentication/login-callback . The default port for an app running on Kestrel is

5001. If the app is run on a different Kestrel port, use the app's port. For IIS Express, the randomly generated

port for the app can be found in the Server app's properties in the DebugDebug panel. Since the app doesn't exist

at this point and the IIS Express port isn't known, return to this step after the app is created and update the

redirect URI. A remark appears in the Create the app section to remind IIS Express users to update the

redirect URI.

5. Disable the PermissionsPermissions > Grant admin consent to openid and offline_access permissionsGrant admin consent to openid and offline_access permissions check

box.

6. Select RegisterRegister .

Record the Client app Application (client) ID (for example, 4369008b-21fa-427c-abaa-9b53bf58e538).

In AuthenticationAuthentication > Platform configurationsPlatform configurations > WebWeb:

1. Confirm the Redirect URIRedirect URI of https://localhost:{PORT}/authentication/login-callback is present.

2. For Implicit grantImplicit grant, select the check boxes for Access tokensAccess tokens and ID tokensID tokens .

3. The remaining defaults for the app are acceptable for this experience.

4. Select the SaveSave button.

In API permissionsAPI permissions :

1. Confirm that the app has Microsoft GraphMicrosoft Graph > User.ReadUser.Read permission.

2. Select Add a permissionAdd a permission followed by My APIsMy APIs .

3. Select the Server API app from the NameName column (for example, Blazor Ser ver AADBlazor Ser ver AAD).

4. Open the APIAPI list.

5. Enable access to the API (for example, API.Access).

6. Select Add permissionsAdd permissions .

7. Select the Grant admin consent for {TENANT NAME}Grant admin consent for {TENANT NAME} button. Select YesYes to confirm.

In an empty folder, replace the placeholders in the following command with the information recorded earlier and

execute the command in a command shell:

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app

dotnet new blazorwasm -au SingleOrg --api-client-id "{SERVER API APP CLIENT ID}" --app-id-uri "{SERVER API
APP ID URI}" --client-id "{CLIENT APP CLIENT ID}" --default-scope "{DEFAULT SCOPE}" --domain "{TENANT
DOMAIN}" -ho -o {APP NAME} --tenant-id "{TENANT ID}"

P L A C EH O L DERP L A C EH O L DER A Z URE P O RTA L N A M EA Z URE P O RTA L N A M E EXA M P L EEXA M P L E

{APP NAME} — BlazorSample

{CLIENT APP CLIENT ID} Application (client) ID for the Client
app

4369008b-21fa-427c-abaa-
9b53bf58e538

{DEFAULT SCOPE} Scope name API.Access

{SERVER API APP CLIENT ID} Application (client) ID for the Server
API app

41451fa7-82d9-4673-8fa5-
69eff5a761fd

{SERVER API APP ID URI} Application ID URI (see note) 41451fa7-82d9-4673-8fa5-
69eff5a761fd

{TENANT DOMAIN} Primary/Publisher/Tenant domain contoso.onmicrosoft.com

{TENANT ID} Directory (tenant) ID e86c78e2-8bb4-4c41-aefd-
918e0565a45e

NOTENOTE

NOTENOTE

Server app configuration

Authentication packageAuthentication package

The output location specified with the -o|--output option creates a project folder if it doesn't exist and becomes

part of the app's name.

Pass the App ID URI to the app-id-uri option, but note a configuration change might be required in the client app,

which is described in the Access token scopes section.

In the Azure portal, the Client app's AuthenticationAuthentication > Platform configurationsPlatform configurations > WebWeb > Redirect URIRedirect URI is configured

for port 5001 for apps that run on the Kestrel server with default settings.

If the Client app is run on a random IIS Express port, the port for the app can be found in the Server API app's properties

in the DebugDebug panel.

If the port wasn't configured earlier with the Client app's known port, return to the Client app's registration in the Azure

portal and update the redirect URI with the correct port.

This section pertains to the solution's Server app.

The support for authenticating and authorizing calls to ASP.NET Core Web APIs is provided by the

Microsoft.AspNetCore.Authentication.AzureAD.UI package:

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.AzureAD.UI

<PackageReference Include="Microsoft.AspNetCore.Authentication.AzureAD.UI"
 Version="{VERSION}" />

Authentication service supportAuthentication service support

services.AddAuthentication(AzureADDefaults.BearerAuthenticationScheme)
 .AddAzureADBearer(options => Configuration.Bind("AzureAd", options));

app.UseAuthentication();
app.UseAuthorization();

User.Identity.NameUser.Identity.Name

using Microsoft.AspNetCore.Authentication.JwtBearer;

...

services.Configure<JwtBearerOptions>(
 AzureADDefaults.JwtBearerAuthenticationScheme, options =>
 {
 options.TokenValidationParameters.NameClaimType = "name";
 });

App settingsApp settings

{
 "AzureAd": {
 "Instance": "https://login.microsoftonline.com/",
 "Domain": "{DOMAIN}",
 "TenantId": "{TENANT ID}",
 "ClientId": "{SERVER API APP CLIENT ID}",
 }
}

For the placeholder {VERSION} , the latest stable version of the package that matches the app's shared

framework version can be found in the package's Version Histor yVersion Histor y at NuGet.org.

The AddAuthentication method sets up authentication services within the app and configures the JWT Bearer

handler as the default authentication method. The AddAzureADBearer method sets up the specific parameters in

the JWT Bearer handler required to validate tokens emitted by the Azure Active Directory:

UseAuthentication and UseAuthorization ensure that:

The app attempts to parse and validate tokens on incoming requests.

Any request attempting to access a protected resource without proper credentials fails.

By default, the Server app API populates User.Identity.Name with the value from the

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name claim type (for example,

2d64b3da-d9d5-42c6-9352-53d8df33d770@contoso.onmicrosoft.com).

To configure the app to receive the value from the name claim type, configure the

TokenValidationParameters.NameClaimType of the JwtBearerOptions in Startup.ConfigureServices :

The appsettings.json file contains the options to configure the JWT bearer handler used to validate access

tokens:

Example:

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.AzureAD.UI
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.azureadauthenticationbuilderextensions.addazureadbearer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authorizationappbuilderextensions.useauthorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.identitymodel.tokens.tokenvalidationparameters.nameclaimtype#microsoft_identitymodel_tokens_tokenvalidationparameters_nameclaimtype
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.jwtbearer.jwtbeareroptions

{
 "AzureAd": {
 "Instance": "https://login.microsoftonline.com/",
 "Domain": "contoso.onmicrosoft.com",
 "TenantId": "e86c78e2-8bb4-4c41-aefd-918e0565a45e",
 "ClientId": "41451fa7-82d9-4673-8fa5-69eff5a761fd",
 }
}

WeatherForecast controllerWeatherForecast controller

[Authorize]
[ApiController]
[Route("[controller]")]
public class WeatherForecastController : ControllerBase
{
 [HttpGet]
 public IEnumerable<WeatherForecast> Get()
 {
 ...
 }
}

Client app configuration

Authentication packageAuthentication package

<PackageReference Include="Microsoft.Authentication.WebAssembly.Msal"
 Version="{VERSION}" />

Authentication service supportAuthentication service support

The WeatherForecast controller (Controllers/WeatherForecastController.cs) exposes a protected API with the

[Authorize] attribute applied to the controller. It's impor tantimpor tant to understand that:

The [Authorize] attribute in this API controller is the only thing that protect this API from unauthorized

access.

The [Authorize] attribute used in the Blazor WebAssembly app only serves as a hint to the app that the user

should be authorized for the app to work correctly.

This section pertains to the solution's Client app.

When an app is created to use Work or School Accounts (SingleOrg), the app automatically receives a package

reference for the Microsoft Authentication Library (Microsoft.Authentication.WebAssembly.Msal). The package

provides a set of primitives that help the app authenticate users and obtain tokens to call protected APIs.

If adding authentication to an app, manually add the package to the app's project file:

For the placeholder {VERSION} , the latest stable version of the package that matches the app's shared

framework version can be found in the package's Version Histor yVersion Histor y at NuGet.org.

The Microsoft.Authentication.WebAssembly.Msal package transitively adds the

Microsoft.AspNetCore.Components.WebAssembly.Authentication package to the app.

Support for HttpClient instances is added that include access tokens when making requests to the server project.

Program.cs :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

builder.Services.AddHttpClient("{APP ASSEMBLY}.ServerAPI", client =>
 client.BaseAddress = new Uri(builder.HostEnvironment.BaseAddress))
 .AddHttpMessageHandler<BaseAddressAuthorizationMessageHandler>();

builder.Services.AddScoped(sp => sp.GetRequiredService<IHttpClientFactory>()
 .CreateClient("{APP ASSEMBLY}.ServerAPI"));

builder.Services.AddMsalAuthentication(options =>
{
 builder.Configuration.Bind("AzureAd", options.ProviderOptions.Authentication);
 options.ProviderOptions.DefaultAccessTokenScopes.Add("{SCOPE URI}");
});

{
 "AzureAd": {
 "Authority": "https://login.microsoftonline.com/{TENANT ID}",
 "ClientId": "{CLIENT APP CLIENT ID}",
 "ValidateAuthority": true
 }
}

{
 "AzureAd": {
 "Authority": "https://login.microsoftonline.com/e86c78e2-...-918e0565a45e",
 "ClientId": "4369008b-21fa-427c-abaa-9b53bf58e538",
 "ValidateAuthority": true
 }
}

Access token scopesAccess token scopes

The placeholder {APP ASSEMBLY} is the app's assembly name (for example, BlazorSample.ServerAPI).

Support for authenticating users is registered in the service container with the AddMsalAuthentication extension

method provided by the Microsoft.Authentication.WebAssembly.Msal package. This method sets up the services

required for the app to interact with the Identity Provider (IP).

Program.cs :

The AddMsalAuthentication method accepts a callback to configure the parameters required to authenticate an

app. The values required for configuring the app can be obtained from the Azure Portal AAD configuration when

you register the app.

Configuration is supplied by the wwwroot/appsettings.json file:

Example:

The default access token scopes represent the list of access token scopes that are:

Included by default in the sign in request.

Used to provision an access token immediately after authentication.

All scopes must belong to the same app per Azure Active Directory rules. Additional scopes can be added for

additional API apps as needed:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication

builder.Services.AddMsalAuthentication(options =>
{
 ...
 options.ProviderOptions.DefaultAccessTokenScopes.Add("{SCOPE URI}");
});

NOTENOTE

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}");

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "41451fa7-82d9-4673-8fa5-69eff5a761fd/API.Access");

Login modeLogin mode

builder.Services.AddMsalAuthentication(options =>
{
 ...
 options.ProviderOptions.LoginMode = "redirect";
});

Imports fileImports file

If the Azure portal provides the scope URI for the app and the app throws an unhandled exception when it receives a 401

Unauthorized response from the API, try using a scope URI that doesn't include the scheme and host. For example, the

Azure portal may provide one of the following scope URI formats:

https://{TENANT}.onmicrosoft.com/{API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

api://{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

Try supplying the scope URI without the scheme and host:

For example:

For more information, see the following sections of the Additional scenarios article:

Request additional access tokens

Attach tokens to outgoing requests

The framework defaults to pop-up login mode and falls back to redirect login mode if a pop-up can't be opened.

Configure MSAL to use redirect login mode by setting the LoginMode property of MsalProviderOptions to

redirect :

The default setting is popup , and the string value isn't case sensitive.

The Microsoft.AspNetCore.Components.Authorization namespace is made available throughout the app via the

_Imports.razor file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.authentication.webassembly.msal.models.msalprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization

@using System.Net.Http
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.AspNetCore.Components.WebAssembly.Http
@using Microsoft.JSInterop
@using {APPLICATION ASSEMBLY}.Client
@using {APPLICATION ASSEMBLY}.Client.Shared

Index pageIndex page

<script src="_content/Microsoft.Authentication.WebAssembly.Msal/
 AuthenticationService.js"></script>

App componentApp component

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 @if (!context.User.Identity.IsAuthenticated)
 {
 <RedirectToLogin />
 }
 else
 {
 <p>
 You are not authorized to access
 this resource.
 </p>
 }
 </NotAuthorized>
 </AuthorizeRouteView>
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

RedirectToLogin componentRedirectToLogin component

The Index page (wwwroot/index.html) page includes a script that defines the AuthenticationService in

JavaScript. AuthenticationService handles the low-level details of the OIDC protocol. The app internally calls

methods defined in the script to perform the authentication operations.

The App component (App.razor) is similar to the App component found in Blazor Server apps:

The CascadingAuthenticationState component manages exposing the AuthenticationState to the rest of the

app.

The AuthorizeRouteView component makes sure that the current user is authorized to access a given page or

otherwise renders the RedirectToLogin component.

The RedirectToLogin component manages redirecting unauthorized users to the login page.

The RedirectToLogin component (Shared/RedirectToLogin.razor):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview

@inject NavigationManager Navigation
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@code {
 protected override void OnInitialized()
 {
 Navigation.NavigateTo($"authentication/login?returnUrl=" +
 Uri.EscapeDataString(Navigation.Uri));
 }
}

LoginDisplay componentLoginDisplay component

@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@inject NavigationManager Navigation
@inject SignOutSessionStateManager SignOutManager

<AuthorizeView>
 <Authorized>
 Hello, @context.User.Identity.Name!
 <button class="nav-link btn btn-link" @onclick="BeginLogout">
 Log out
 </button>
 </Authorized>
 <NotAuthorized>
 Log in
 </NotAuthorized>
</AuthorizeView>

@code {
 private async Task BeginLogout(MouseEventArgs args)
 {
 await SignOutManager.SetSignOutState();
 Navigation.NavigateTo("authentication/logout");
 }
}

Authentication componentAuthentication component

Manages redirecting unauthorized users to the login page.

Preserves the current URL that the user is attempting to access so that they can be returned to that page if

authentication is successful.

The LoginDisplay component (Shared/LoginDisplay.razor) is rendered in the MainLayout component (

Shared/MainLayout.razor) and manages the following behaviors:

For authenticated users:

For anonymous users, offers the option to log in.

Displays the current username.

Offers a button to log out of the app.

The page produced by the Authentication component (Pages/Authentication.razor) defines the routes required

for handling different authentication stages.

The RemoteAuthenticatorView component:

Is provided by the Microsoft.AspNetCore.Components.WebAssembly.Authentication package.

Manages performing the appropriate actions at each stage of authentication.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication/

@page "/authentication/{action}"
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action" />

@code {
 [Parameter]
 public string Action { get; set; }
}

FetchData componentFetchData component
The FetchData component shows how to:

Provision an access token.

Use the access token to call a protected resource API in the Server app.

The @attribute [Authorize] directive indicates to the Blazor WebAssembly authorization system that the user

must be authorized in order to visit this component. The presence of the attribute in the Client app doesn't

prevent the API on the server from being called without proper credentials. The Server app also must use

[Authorize] on the appropriate endpoints to correctly protect them.

IAccessTokenProvider.RequestAccessToken takes care of requesting an access token that can be added to the

request to call the API. If the token is cached or the service is able to provision a new access token without user

interaction, the token request succeeds. Otherwise, the token request fails with an

AccessTokenNotAvailableException, which is caught in a try-catch statement.

In order to obtain the actual token to include in the request, the app must check that the request succeeded by

calling tokenResult.TryGetToken(out var token) .

If the request was successful, the token variable is populated with the access token. The AccessToken.Value

property of the token exposes the literal string to include in the Authorization request header.

If the request failed because the token couldn't be provisioned without user interaction, the token result contains

a redirect URL. Navigating to this URL takes the user to the login page and back to the current page after a

successful authentication.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.iaccesstokenprovider.requestaccesstoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstokennotavailableexception
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstokenresult.trygettoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstoken.value#microsoft_aspnetcore_components_webassembly_authentication_accesstoken_value

@page "/fetchdata"
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using {APP NAMESPACE}.Shared
@attribute [Authorize]
@inject HttpClient Http

...

@code {
 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()
 {
 try
 {
 forecasts = await Http.GetFromJsonAsync<WeatherForecast[]>("WeatherForecast");
 }
 catch (AccessTokenNotAvailableException exception)
 {
 exception.Redirect();
 }
 }
}

Run the app

Troubleshoot
Cookies and site dataCookies and site data

Run the app from the Server project. When using Visual Studio, either :

Set the Star tup ProjectsStar tup Projects drop down list in the toolbar to the Server API app and select the RunRun button.

Select the Server project in Solution ExplorerSolution Explorer and select the RunRun button in the toolbar or start the app

from the DebugDebug menu.

Cookies and site data can persist across app updates and interfere with testing and troubleshooting. Clear the

following when making app code changes, user account changes with the provider, or provider app

configuration changes:

User sign-in cookies

App cookies

Cached and stored site data

One approach to prevent lingering cookies and site data from interfering with testing and troubleshooting is to:

Configure a browser

Use a custom command to open a browser in incognito or private mode in Visual Studio:

Use a browser for testing that you can configure to delete all cookie and site data each time the

browser is closed.

Make sure that the browser is closed manually or by the IDE between any change to the app, test user,

or provider configuration.

Open Browse WithBrowse With dialog box from Visual Studio's RunRun button.

Select the AddAdd button.

Provide the path to your browser in the ProgramProgram field. The following executable paths are typical

installation locations for Windows 10. If your browser is installed in a different location or you aren't

using Windows 10, provide the path to the browser's executable.

Run the Server appRun the Server app

Inspect the content of a JSON Web Token (JWT)Inspect the content of a JSON Web Token (JWT)

Additional resources

In the ArgumentsArguments field, provide the command-line option that the browser uses to open in incognito

or private mode. Some browsers require the URL of the app.

Provide a name in the Fr iendly nameFriendly name field. For example, Firefox Auth Testing .

Select the OKOK button.

To avoid having to select the browser profile for each iteration of testing with an app, set the profile as

the default with the Set as DefaultSet as Default button.

Make sure that the browser is closed by the IDE between any change to the app, test user, or provider

configuration.

Microsoft Edge: C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe

Google Chrome: C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

Mozilla Firefox: C:\Program Files\Mozilla Firefox\firefox.exe

Microsoft Edge: -inprivate

Google Chrome: --incognito --new-window https://localhost:5001

Mozilla Firefox: -private -url https://localhost:5001

When testing and troubleshooting a hosted Blazor app, make sure that you're running the app from the Server

project. For example in Visual Studio, confirm that the Server project is highlighted in Solution ExplorerSolution Explorer before

you start the app with any of the following approaches:

Select the RunRun button.

Use DebugDebug > Star t DebuggingStar t Debugging from the menu.

Press F5.

To decode a JSON Web Token (JWT), use Microsoft's jwt.ms tool. Values in the UI never leave your browser.

ASP.NET Core Blazor WebAssembly additional security scenarios

Unauthenticated or unauthorized web API requests in an app with a secure default client

ASP.NET Core Blazor WebAssembly with Azure Active Directory groups and roles

Microsoft identity platform and Azure Active Directory with ASP.NET Core

Microsoft identity platform documentation

https://jwt.ms/
https://docs.microsoft.com/en-us/azure/active-directory/develop/

Secure an ASP.NET Core Blazor WebAssembly
hosted app with Azure Active Directory B2C
9/22/2020 • 15 minutes to read • Edit Online

Register apps in AAD B2C and create solution
Create a tenantCreate a tenant

Register a server API appRegister a server API app

By Javier Calvarro Nelson and Luke Latham

This article describes how to create a hosted Blazor WebAssembly app that uses Azure Active Directory (AAD)

B2C for authentication.

Follow the guidance in Tutorial: Create an Azure Active Directory B2C tenant to create an AAD B2C tenant.

Record the AAD B2C instance (for example, https://contoso.b2clogin.com/ , which includes the trailing slash).

The instance is the scheme and host of an Azure B2C app registration, which can be found by opening the

EndpointsEndpoints window from the App registrationsApp registrations page in the Azure portal.

Follow the guidance in Tutorial: Register an application in Azure Active Directory B2C to register an AAD app for

the Server API app and then do the following:

1. In Azure Active Director yAzure Active Director y > App registrationsApp registrations , select New registrationNew registration.

2. Provide a NameName for the app (for example, Blazor Ser ver AAD B2CBlazor Ser ver AAD B2C).

3. For Suppor ted account typesSuppor ted account types , select the multi-tenant option: Accounts in any organizationalAccounts in any organizational

director y or any identity provider. For authenticating users with Azure AD B2C.director y or any identity provider. For authenticating users with Azure AD B2C.

4. The Server API app doesn't require a Redirect URIRedirect URI in this scenario, so leave the drop down set to WebWeb and

don't enter a redirect URI.

5. Confirm that PermissionsPermissions > Grant admin consent to openid and offline_access permissionsGrant admin consent to openid and offline_access permissions is

enabled.

6. Select RegisterRegister .

Record the following information:

Server API app Application (client) ID (for example, 41451fa7-82d9-4673-8fa5-69eff5a761fd)

AAD Primary/Publisher/Tenant domain (for example, contoso.onmicrosoft.com): The domain is available as

the Publisher domainPublisher domain in the BrandingBranding blade of the Azure portal for the registered app.

In Expose an APIExpose an API:

1. Select Add a scopeAdd a scope.

2. Select Save and continueSave and continue.

3. Provide a Scope nameScope name (for example, API.Access).

4. Provide an Admin consent display nameAdmin consent display name (for example, Access API).

5. Provide an Admin consent descr iptionAdmin consent descr iption (for example, Allows the app to access server app API endpoints.

).

6. Confirm that the StateState is set to EnabledEnabled.

7. Select Add scopeAdd scope.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/hosted-with-azure-active-directory-b2c.md
https://github.com/javiercn
https://github.com/guardrex
https://docs.microsoft.com/en-us/azure/active-directory-b2c/overview
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-tenant
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-register-applications

Register a client appRegister a client app

Create the appCreate the app

Record the following information:

App ID URI (for example, https://contoso.onmicrosoft.com/41451fa7-82d9-4673-8fa5-69eff5a761fd ,

api://41451fa7-82d9-4673-8fa5-69eff5a761fd , or the custom value that you provided)

Scope name (for example, API.Access)

The App ID URI might require a special configuration in the client app, which is described in the Access token

scopes section later in this topic.

Follow the guidance in Tutorial: Register an application in Azure Active Directory B2C again to register an AAD

app for the Client app and then do the following:

1. In Azure Active Director yAzure Active Director y > App registrationsApp registrations , select New registrationNew registration.

2. Provide a NameName for the app (for example, Blazor Client AAD B2CBlazor Client AAD B2C).

3. For Suppor ted account typesSuppor ted account types , select the multi-tenant option: Accounts in any organizationalAccounts in any organizational

director y or any identity provider. For authenticating users with Azure AD B2C.director y or any identity provider. For authenticating users with Azure AD B2C.

4. Leave the Redirect URIRedirect URI drop down set to WebWeb and provide the following redirect URI:

https://localhost:{PORT}/authentication/login-callback . The default port for an app running on Kestrel is

5001. If the app is run on a different Kestrel port, use the app's port. For IIS Express, the randomly generated

port for the app can be found in the Server app's properties in the DebugDebug panel. Since the app doesn't exist

at this point and the IIS Express port isn't known, return to this step after the app is created and update the

redirect URI. A remark appears in the Create the app section to remind IIS Express users to update the

redirect URI.

5. Confirm that PermissionsPermissions > Grant admin consent to openid and offline_access permissionsGrant admin consent to openid and offline_access permissions is

enabled.

6. Select RegisterRegister .

Record the Application (client) ID (for example, 4369008b-21fa-427c-abaa-9b53bf58e538).

In AuthenticationAuthentication > Platform configurationsPlatform configurations > WebWeb:

1. Confirm the Redirect URIRedirect URI of https://localhost:{PORT}/authentication/login-callback is present.

2. For Implicit grantImplicit grant, select the check boxes for Access tokensAccess tokens and ID tokensID tokens .

3. The remaining defaults for the app are acceptable for this experience.

4. Select the SaveSave button.

In API permissionsAPI permissions :

1. Select Add a permissionAdd a permission followed by My APIsMy APIs .

2. Select the Server API app from the NameName column (for example, Blazor Ser ver AAD B2CBlazor Ser ver AAD B2C).

3. Open the APIAPI list.

4. Enable access to the API (for example, API.Access).

5. Select Add permissionsAdd permissions .

6. Select the Grant admin consent for {TENANT NAME}Grant admin consent for {TENANT NAME} button. Select YesYes to confirm.

In HomeHome > Azure AD B2CAzure AD B2C > User flowsUser flows :

Create a sign-up and sign-in user flow

At a minimum, select the Application claimsApplication claims > Display NameDisplay Name user attribute to populate the

context.User.Identity.Name in the LoginDisplay component (Shared/LoginDisplay.razor).

Record the sign-up and sign-in user flow name created for the app (for example, B2C_1_signupsignin).

https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-register-applications
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-user-flows

dotnet new blazorwasm -au IndividualB2C --aad-b2c-instance "{AAD B2C INSTANCE}" --api-client-id "{SERVER API
APP CLIENT ID}" --app-id-uri "{SERVER API APP ID URI}" --client-id "{CLIENT APP CLIENT ID}" --default-scope
"{DEFAULT SCOPE}" --domain "{TENANT DOMAIN}" -ho -o {APP NAME} -ssp "{SIGN UP OR SIGN IN POLICY}"

P L A C EH O L DERP L A C EH O L DER A Z URE P O RTA L N A M EA Z URE P O RTA L N A M E EXA M P L EEXA M P L E

{AAD B2C INSTANCE} Instance https://contoso.b2clogin.com/

{APP NAME} — BlazorSample

{CLIENT APP CLIENT ID} Application (client) ID for the Client
app

4369008b-21fa-427c-abaa-
9b53bf58e538

{DEFAULT SCOPE} Scope name API.Access

{SERVER API APP CLIENT ID} Application (client) ID for the Server
API app

41451fa7-82d9-4673-8fa5-
69eff5a761fd

{SERVER API APP ID URI} Application ID URI (see note) 41451fa7-82d9-4673-8fa5-
69eff5a761fd

{SIGN UP OR SIGN IN POLICY} Sign-up/sign-in user flow B2C_1_signupsignin1

{TENANT DOMAIN} Primary/Publisher/Tenant domain contoso.onmicrosoft.com

NOTENOTE

NOTENOTE

Server app configuration

Replace the placeholders in the following command with the information recorded earlier and execute the

command in a command shell:

The output location specified with the -o|--output option creates a project folder if it doesn't exist and becomes

part of the app's name.

Pass the App ID URI to the app-id-uri option, but note a configuration change might be required in the client app,

which is described in the Access token scopes section.

Additionally, the scope set up by the Hosted Blazor template might have the App ID URI host repeated. Confirm that the

scope configured for the DefaultAccessTokenScopes collection is correct in Program.Main (Program.cs) of the Client

app.

In the Azure portal, the Client app's AuthenticationAuthentication > Platform configurationsPlatform configurations > WebWeb > Redirect URIRedirect URI is configured

for port 5001 for apps that run on the Kestrel server with default settings.

If the Client app is run on a random IIS Express port, the port for the app can be found in the Server API app's properties

in the DebugDebug panel.

If the port wasn't configured earlier with the Client app's known port, return to the Client app's registration in the Azure

portal and update the redirect URI with the correct port.

This section pertains to the solution's Server app.

Authentication packageAuthentication package

<PackageReference Include="Microsoft.AspNetCore.Authentication.AzureADB2C.UI"
 Version="{VERSION}" />

Authentication service supportAuthentication service support

services.AddAuthentication(AzureADB2CDefaults.BearerAuthenticationScheme)
 .AddAzureADB2CBearer(options => Configuration.Bind("AzureAdB2C", options));

app.UseAuthentication();
app.UseAuthorization();

User.Identity.NameUser.Identity.Name

using Microsoft.AspNetCore.Authentication.JwtBearer;

...

services.Configure<JwtBearerOptions>(
 AzureADB2CDefaults.JwtBearerAuthenticationScheme, options =>
 {
 options.TokenValidationParameters.NameClaimType = "name";
 });

App settingsApp settings

{
 "AzureAdB2C": {
 "Instance": "https://{TENANT}.b2clogin.com/",
 "ClientId": "{SERVER API APP CLIENT ID}",
 "Domain": "{TENANT DOMAIN}",
 "SignUpSignInPolicyId": "{SIGN UP OR SIGN IN POLICY}"
 }
}

The support for authenticating and authorizing calls to ASP.NET Core Web APIs is provided by the

Microsoft.AspNetCore.Authentication.AzureADB2C.UI package:

For the placeholder {VERSION} , the latest stable version of the package that matches the app's shared

framework version can be found in the package's Version Histor yVersion Histor y at NuGet.org.

The AddAuthentication method sets up authentication services within the app and configures the JWT Bearer

handler as the default authentication method. The AddAzureADB2CBearer method sets up the specific

parameters in the JWT Bearer handler required to validate tokens emitted by the Azure Active Directory B2C:

UseAuthentication and UseAuthorization ensure that:

The app attempts to parse and validate tokens on incoming requests.

Any request attempting to access a protected resource without proper credentials fails.

By default, the User.Identity.Name isn't populated.

To configure the app to receive the value from the name claim type, configure the

TokenValidationParameters.NameClaimType of the JwtBearerOptions in Startup.ConfigureServices :

The appsettings.json file contains the options to configure the JWT bearer handler used to validate access

tokens.

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.AzureADB2C.UI
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.AzureAD.UI
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.azureadb2cauthenticationbuilderextensions.addazureadb2cbearer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authorizationappbuilderextensions.useauthorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.identitymodel.tokens.tokenvalidationparameters.nameclaimtype#microsoft_identitymodel_tokens_tokenvalidationparameters_nameclaimtype
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.jwtbearer.jwtbeareroptions

{
 "AzureAdB2C": {
 "Instance": "https://contoso.b2clogin.com/",
 "ClientId": "41451fa7-82d9-4673-8fa5-69eff5a761fd",
 "Domain": "contoso.onmicrosoft.com",
 "SignUpSignInPolicyId": "B2C_1_signupsignin1",
 }
}

WeatherForecast controllerWeatherForecast controller

[Authorize]
[ApiController]
[Route("[controller]")]
public class WeatherForecastController : ControllerBase
{
 [HttpGet]
 public IEnumerable<WeatherForecast> Get()
 {
 ...
 }
}

Client app configuration

Authentication packageAuthentication package

<PackageReference Include="Microsoft.Authentication.WebAssembly.Msal"
 Version="{VERSION}" />

Authentication service supportAuthentication service support

Example:

The WeatherForecast controller (Controllers/WeatherForecastController.cs) exposes a protected API with the

[Authorize] attribute applied to the controller. It's impor tantimpor tant to understand that:

The [Authorize] attribute in this API controller is the only thing that protect this API from unauthorized

access.

The [Authorize] attribute used in the Blazor WebAssembly app only serves as a hint to the app that the user

should be authorized for the app to work correctly.

This section pertains to the solution's Client app.

When an app is created to use an Individual B2C Account (IndividualB2C), the app automatically receives a

package reference for the Microsoft Authentication Library (Microsoft.Authentication.WebAssembly.Msal). The

package provides a set of primitives that help the app authenticate users and obtain tokens to call protected

APIs.

If adding authentication to an app, manually add the package to the app's project file:

For the placeholder {VERSION} , the latest stable version of the package that matches the app's shared

framework version can be found in the package's Version Histor yVersion Histor y at NuGet.org.

The Microsoft.Authentication.WebAssembly.Msal package transitively adds the

Microsoft.AspNetCore.Components.WebAssembly.Authentication package to the app.

Support for HttpClient instances is added that include access tokens when making requests to the server project.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

builder.Services.AddHttpClient("{APP ASSEMBLY}.ServerAPI", client =>
 client.BaseAddress = new Uri(builder.HostEnvironment.BaseAddress))
 .AddHttpMessageHandler<BaseAddressAuthorizationMessageHandler>();

builder.Services.AddScoped(sp => sp.GetRequiredService<IHttpClientFactory>()
 .CreateClient("{APP ASSEMBLY}.ServerAPI"));

builder.Services.AddMsalAuthentication(options =>
{
 builder.Configuration.Bind("AzureAdB2C", options.ProviderOptions.Authentication);
 options.ProviderOptions.DefaultAccessTokenScopes.Add("{SCOPE URI}");
});

{
 "AzureAdB2C": {
 "Authority": "{AAD B2C INSTANCE}{TENANT DOMAIN}/{SIGN UP OR SIGN IN POLICY}",
 "ClientId": "{CLIENT APP CLIENT ID}",
 "ValidateAuthority": false
 }
}

{
 "AzureAdB2C": {
 "Authority": "https://contoso.b2clogin.com/contoso.onmicrosoft.com/B2C_1_signupsignin1",
 "ClientId": "4369008b-21fa-427c-abaa-9b53bf58e538",
 "ValidateAuthority": false
 }
}

Access token scopesAccess token scopes

Program.cs :

The placeholder {APP ASSEMBLY} is the app's assembly name (for example, BlazorSample.ServerAPI).

Support for authenticating users is registered in the service container with the AddMsalAuthentication extension

method provided by the Microsoft.Authentication.WebAssembly.Msal package. This method sets up the services

required for the app to interact with the Identity Provider (IP).

Program.cs :

The AddMsalAuthentication method accepts a callback to configure the parameters required to authenticate an

app. The values required for configuring the app can be obtained from the Azure Portal AAD configuration when

you register the app.

Configuration is supplied by the wwwroot/appsettings.json file:

Example:

The default access token scopes represent the list of access token scopes that are:

Included by default in the sign in request.

Used to provision an access token immediately after authentication.

All scopes must belong to the same app per Azure Active Directory rules. Additional scopes can be added for

additional API apps as needed:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication

builder.Services.AddMsalAuthentication(options =>
{
 ...
 options.ProviderOptions.DefaultAccessTokenScopes.Add("{SCOPE URI}");
});

NOTENOTE

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}");

options.ProviderOptions.DefaultAccessTokenScopes.Add(
 "41451fa7-82d9-4673-8fa5-69eff5a761fd/API.Access");

Login modeLogin mode

builder.Services.AddMsalAuthentication(options =>
{
 ...
 options.ProviderOptions.LoginMode = "redirect";
});

Imports fileImports file

If the Azure portal provides the scope URI for the app and the app throws an unhandled exception when it receives a 401

Unauthorized response from the API, try using a scope URI that doesn't include the scheme and host. For example, the

Azure portal may provide one of the following scope URI formats:

https://{TENANT}.onmicrosoft.com/{API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

api://{SERVER API CLIENT ID OR CUSTOM VALUE}/{SCOPE NAME}

Try supplying the scope URI without the scheme and host:

For example:

For more information, see the following sections of the Additional scenarios article:

Request additional access tokens

Attach tokens to outgoing requests

The framework defaults to pop-up login mode and falls back to redirect login mode if a pop-up can't be opened.

Configure MSAL to use redirect login mode by setting the LoginMode property of MsalProviderOptions to

redirect :

The default setting is popup , and the string value isn't case sensitive.

The Microsoft.AspNetCore.Components.Authorization namespace is made available throughout the app via the

_Imports.razor file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.authentication.webassembly.msal.models.msalprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization

@using System.Net.Http
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.AspNetCore.Components.WebAssembly.Http
@using Microsoft.JSInterop
@using {APPLICATION ASSEMBLY}.Client
@using {APPLICATION ASSEMBLY}.Client.Shared

Index pageIndex page

<script src="_content/Microsoft.Authentication.WebAssembly.Msal/
 AuthenticationService.js"></script>

App componentApp component

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 @if (!context.User.Identity.IsAuthenticated)
 {
 <RedirectToLogin />
 }
 else
 {
 <p>
 You are not authorized to access
 this resource.
 </p>
 }
 </NotAuthorized>
 </AuthorizeRouteView>
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

RedirectToLogin componentRedirectToLogin component

The Index page (wwwroot/index.html) page includes a script that defines the AuthenticationService in JavaScript.

AuthenticationService handles the low-level details of the OIDC protocol. The app internally calls methods

defined in the script to perform the authentication operations.

The App component (App.razor) is similar to the App component found in Blazor Server apps:

The CascadingAuthenticationState component manages exposing the AuthenticationState to the rest of the

app.

The AuthorizeRouteView component makes sure that the current user is authorized to access a given page or

otherwise renders the RedirectToLogin component.

The RedirectToLogin component manages redirecting unauthorized users to the login page.

The RedirectToLogin component (Shared/RedirectToLogin.razor):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview

@inject NavigationManager Navigation
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@code {
 protected override void OnInitialized()
 {
 Navigation.NavigateTo($"authentication/login?returnUrl=" +
 Uri.EscapeDataString(Navigation.Uri));
 }
}

LoginDisplay componentLoginDisplay component

@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@inject NavigationManager Navigation
@inject SignOutSessionStateManager SignOutManager

<AuthorizeView>
 <Authorized>
 Hello, @context.User.Identity.Name!
 <button class="nav-link btn btn-link" @onclick="BeginLogout">
 Log out
 </button>
 </Authorized>
 <NotAuthorized>
 Log in
 </NotAuthorized>
</AuthorizeView>

@code {
 private async Task BeginLogout(MouseEventArgs args)
 {
 await SignOutManager.SetSignOutState();
 Navigation.NavigateTo("authentication/logout");
 }
}

Authentication componentAuthentication component

Manages redirecting unauthorized users to the login page.

Preserves the current URL that the user is attempting to access so that they can be returned to that page if

authentication is successful.

The LoginDisplay component (Shared/LoginDisplay.razor) is rendered in the MainLayout component (

Shared/MainLayout.razor) and manages the following behaviors:

For authenticated users:

For anonymous users, offers the option to log in.

Displays the current username.

Offers a button to log out of the app.

The page produced by the Authentication component (Pages/Authentication.razor) defines the routes required

for handling different authentication stages.

The RemoteAuthenticatorView component:

Is provided by the Microsoft.AspNetCore.Components.WebAssembly.Authentication package.

Manages performing the appropriate actions at each stage of authentication.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication/

@page "/authentication/{action}"
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action" />

@code {
 [Parameter]
 public string Action { get; set; }
}

FetchData componentFetchData component
The FetchData component shows how to:

Provision an access token.

Use the access token to call a protected resource API in the Server app.

The @attribute [Authorize] directive indicates to the Blazor WebAssembly authorization system that the user

must be authorized in order to visit this component. The presence of the attribute in the Client app doesn't

prevent the API on the server from being called without proper credentials. The Server app also must use

[Authorize] on the appropriate endpoints to correctly protect them.

IAccessTokenProvider.RequestAccessToken takes care of requesting an access token that can be added to the

request to call the API. If the token is cached or the service is able to provision a new access token without user

interaction, the token request succeeds. Otherwise, the token request fails with an

AccessTokenNotAvailableException, which is caught in a try-catch statement.

In order to obtain the actual token to include in the request, the app must check that the request succeeded by

calling tokenResult.TryGetToken(out var token) .

If the request was successful, the token variable is populated with the access token. The AccessToken.Value

property of the token exposes the literal string to include in the Authorization request header.

If the request failed because the token couldn't be provisioned without user interaction, the token result contains

a redirect URL. Navigating to this URL takes the user to the login page and back to the current page after a

successful authentication.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.iaccesstokenprovider.requestaccesstoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstokennotavailableexception
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstokenresult.trygettoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstoken.value#microsoft_aspnetcore_components_webassembly_authentication_accesstoken_value

@page "/fetchdata"
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using {APP NAMESPACE}.Shared
@attribute [Authorize]
@inject HttpClient Http

...

@code {
 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()
 {
 try
 {
 forecasts = await Http.GetFromJsonAsync<WeatherForecast[]>("WeatherForecast");
 }
 catch (AccessTokenNotAvailableException exception)
 {
 exception.Redirect();
 }
 }
}

Run the app

Custom user flows

Troubleshoot
Cookies and site dataCookies and site data

Run the app from the Server project. When using Visual Studio, either :

Set the Star tup ProjectsStar tup Projects drop down list in the toolbar to the Server API app and select the RunRun button.

Select the Server project in Solution ExplorerSolution Explorer and select the RunRun button in the toolbar or start the app

from the DebugDebug menu.

The Microsoft Authentication Library (Microsoft.Authentication.WebAssembly.Msal, NuGet package) doesn't

support AAD B2C user flows by default. Create custom user flows in developer code.

For more information on how to build a challenge for a custom user flow, see User flows in Azure Active

Directory B2C.

Cookies and site data can persist across app updates and interfere with testing and troubleshooting. Clear the

following when making app code changes, user account changes with the provider, or provider app

configuration changes:

User sign-in cookies

App cookies

Cached and stored site data

One approach to prevent lingering cookies and site data from interfering with testing and troubleshooting is to:

Configure a browser

Use a browser for testing that you can configure to delete all cookie and site data each time the

browser is closed.

Make sure that the browser is closed manually or by the IDE between any change to the app, test user,

https://docs.microsoft.com/en-us/dotnet/api/microsoft.authentication.webassembly.msal
https://www.nuget.org/packages/Microsoft.Authentication.WebAssembly.Msal/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/user-flow-overview
https://docs.microsoft.com/en-us/azure/active-directory-b2c/user-flow-overview

Run the Server appRun the Server app

Inspect the content of a JSON Web Token (JWT)Inspect the content of a JSON Web Token (JWT)

Additional resources

Use a custom command to open a browser in incognito or private mode in Visual Studio:

or provider configuration.

Open Browse WithBrowse With dialog box from Visual Studio's RunRun button.

Select the AddAdd button.

Provide the path to your browser in the ProgramProgram field. The following executable paths are typical

installation locations for Windows 10. If your browser is installed in a different location or you aren't

using Windows 10, provide the path to the browser's executable.

In the ArgumentsArguments field, provide the command-line option that the browser uses to open in incognito

or private mode. Some browsers require the URL of the app.

Provide a name in the Fr iendly nameFriendly name field. For example, Firefox Auth Testing .

Select the OKOK button.

To avoid having to select the browser profile for each iteration of testing with an app, set the profile as

the default with the Set as DefaultSet as Default button.

Make sure that the browser is closed by the IDE between any change to the app, test user, or provider

configuration.

Microsoft Edge: C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe

Google Chrome: C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

Mozilla Firefox: C:\Program Files\Mozilla Firefox\firefox.exe

Microsoft Edge: -inprivate

Google Chrome: --incognito --new-window https://localhost:5001

Mozilla Firefox: -private -url https://localhost:5001

When testing and troubleshooting a hosted Blazor app, make sure that you're running the app from the Server

project. For example in Visual Studio, confirm that the Server project is highlighted in Solution ExplorerSolution Explorer before

you start the app with any of the following approaches:

Select the RunRun button.

Use DebugDebug > Star t DebuggingStar t Debugging from the menu.

Press F5.

To decode a JSON Web Token (JWT), use Microsoft's jwt.ms tool. Values in the UI never leave your browser.

ASP.NET Core Blazor WebAssembly additional security scenarios

Unauthenticated or unauthorized web API requests in an app with a secure default client

Cloud authentication with Azure Active Directory B2C in ASP.NET Core

Tutorial: Create an Azure Active Directory B2C tenant

Microsoft identity platform documentation

https://jwt.ms/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-tenant
https://docs.microsoft.com/en-us/azure/active-directory/develop/

Secure an ASP.NET Core Blazor WebAssembly
hosted app with Identity Server
9/22/2020 • 13 minutes to read • Edit Online

NOTENOTE

Server app configuration

Startup classStartup class

By Javier Calvarro Nelson and Luke Latham

This article explains how to create a hosted Blazor WebAssembly app that uses IdentityServer to authenticate

users and API calls.

To configure a standalone or hosted Blazor WebAssembly app to use an existing, external Identity Server instance, follow

the guidance in Secure an ASP.NET Core Blazor WebAssembly standalone app with the Authentication library.

Visual Studio

Visual Studio Code / .NET Core CLI

Visual Studio for Mac

To create a new Blazor WebAssembly project with an authentication mechanism:

1. After choosing the Blazor WebAssembly AppBlazor WebAssembly App template in the Create a new ASP.NET Core WebCreate a new ASP.NET Core Web

ApplicationApplication dialog, select ChangeChange under AuthenticationAuthentication.

2. Select Individual User AccountsIndividual User Accounts with the Store user accounts in-appStore user accounts in-app option to store users within

the app using ASP.NET Core's Identity system.

3. Select the ASP.NET Core hostedASP.NET Core hosted check box in the AdvancedAdvanced section.

The following sections describe additions to the project when authentication support is included.

The Startup class has the following additions.

In Startup.ConfigureServices :

services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlite(
 Configuration.GetConnectionString("DefaultConnection")));

services.AddDefaultIdentity<ApplicationUser>(options =>
 options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<ApplicationDbContext>();

ASP.NET Core Identity:

IdentityServer with an additional AddApiAuthorization helper method that sets up default ASP.NET

Core conventions on top of IdentityServer :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/hosted-with-identity-server.md
https://github.com/javiercn
https://github.com/guardrex
https://identityserver.io/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityserverbuilderconfigurationextensions.addapiauthorization

AddApiAuthorizationAddApiAuthorization

AddIdentityServerJwtAddIdentityServerJwt

WeatherForecastControllerWeatherForecastController

ApplicationDbContextApplicationDbContext

services.AddIdentityServer()
 .AddApiAuthorization<ApplicationUser, ApplicationDbContext>();

services.AddAuthentication()
 .AddIdentityServerJwt();

Authentication with an additional AddIdentityServerJwt helper method that configures the app to

validate JWT tokens produced by IdentityServer :

In Startup.Configure :

app.UseIdentityServer();

app.UseAuthentication();

app.UseAuthentication();
app.UseAuthorization();

The IdentityServer middleware exposes the OpenID Connect (OIDC) endpoints:

The Authentication middleware is responsible for validating request credentials and setting the

user on the request context:

Authorization Middleware enables authorization capabilities:

The AddApiAuthorization helper method configures IdentityServer for ASP.NET Core scenarios. IdentityServer is

a powerful and extensible framework for handling app security concerns. IdentityServer exposes unnecessary

complexity for the most common scenarios. Consequently, a set of conventions and configuration options is

provided that we consider a good starting point. Once your authentication needs change, the full power of

IdentityServer is available to customize authentication to suit an app's requirements.

The AddIdentityServerJwt helper method configures a policy scheme for the app as the default authentication

handler. The policy is configured to allow Identity to handle all requests routed to any subpath in the Identity

URL space /Identity . The JwtBearerHandler handles all other requests. Additionally, this method:

Registers an {APPLICATION NAME}API API resource with IdentityServer with a default scope of

{APPLICATION NAME}API .

Configures the JWT Bearer Token Middleware to validate tokens issued by IdentityServer for the app.

In the WeatherForecastController (Controllers/WeatherForecastController.cs), the [Authorize] attribute is

applied to the class. The attribute indicates that the user must be authorized based on the default policy to access

the resource. The default authorization policy is configured to use the default authentication scheme, which is set

up by AddIdentityServerJwt. The helper method configures JwtBearerHandler as the default handler for requests

to the app.

In the ApplicationDbContext (Data/ApplicationDbContext.cs), DbContext extends

ApiAuthorizationDbContext<TUser> to include the schema for IdentityServer.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilderextensions.addidentityserverjwt
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityserverbuilderconfigurationextensions.addapiauthorization
https://identityserver.io/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilderextensions.addidentityserverjwt
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.jwtbearer.jwtbearerhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilderextensions.addidentityserverjwt
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.jwtbearer.jwtbearerhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.apiauthorization.identityserver.apiauthorizationdbcontext-1

OidcConfigurationControllerOidcConfigurationController

App settingsApp settings

"IdentityServer": {
 "Clients": {
 "{APP ASSEMBLY}.Client": {
 "Profile": "IdentityServerSPA"
 }
 }
}

Client app configuration
Authentication packageAuthentication package

<PackageReference
 Include="Microsoft.AspNetCore.Components.WebAssembly.Authentication"
 Version="{VERSION}" />

HttpClient configuration configuration

builder.Services.AddHttpClient("HostIS.ServerAPI",
 client => client.BaseAddress = new Uri(builder.HostEnvironment.BaseAddress))
 .AddHttpMessageHandler<BaseAddressAuthorizationMessageHandler>();

builder.Services.AddScoped(sp => sp.GetRequiredService<IHttpClientFactory>()
 .CreateClient("HostIS.ServerAPI"));

ApiAuthorizationDbContext<TUser> is derived from IdentityDbContext.

To gain full control of the database schema, inherit from one of the available Identity DbContext classes and

configure the context to include the Identity schema by calling

builder.ConfigurePersistedGrantContext(_operationalStoreOptions.Value) in the OnModelCreating method.

In the OidcConfigurationController (Controllers/OidcConfigurationController.cs), the client endpoint is

provisioned to serve OIDC parameters.

In the app settings file (appsettings.json) at the project root, the IdentityServer section describes the list of

configured clients. In the following example, there's a single client. The client name corresponds to the app name

and is mapped by convention to the OAuth ClientId parameter. The profile indicates the app type being

configured. The profile is used internally to drive conventions that simplify the configuration process for the

server.

The placeholder {APP ASSEMBLY} is the app's assembly name (for example, BlazorSample.Client).

When an app is created to use Individual User Accounts (Individual), the app automatically receives a package

reference for the Microsoft.AspNetCore.Components.WebAssembly.Authentication package in the app's project file.

The package provides a set of primitives that help the app authenticate users and obtain tokens to call protected

APIs.

If adding authentication to an app, manually add the package to the app's project file:

For the placeholder {VERSION} , the latest stable version of the package that matches the app's shared

framework version can be found in the package's Version Histor yVersion Histor y at NuGet.org.

In Program.Main (Program.cs), a named HttpClient (HostIS.ServerAPI) is configured to supply HttpClient

instances that include access tokens when making requests to the server API:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.apiauthorization.identityserver.apiauthorizationdbcontext-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identitydbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.onmodelcreating
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

NOTENOTE

API authorization supportAPI authorization support

builder.Services.AddApiAuthorization();

Imports fileImports file

@using System.Net.Http
@using System.Net.Http.Json
@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.AspNetCore.Components.WebAssembly.Http
@using Microsoft.JSInterop
@using {APPLICATION ASSEMBLY}.Client
@using {APPLICATION ASSEMBLY}.Client.Shared

Index pageIndex page

<script src="_content/Microsoft.AspNetCore.Components.WebAssembly.Authentication/
 AuthenticationService.js"></script>

App componentApp component

If you're configuring a Blazor WebAssembly app to use an existing Identity Server instance that isn't part of a hosted

Blazor solution, change the HttpClient base address registration from IWebAssemblyHostEnvironment.BaseAddress (

builder.HostEnvironment.BaseAddress) to the server app's API authorization endpoint URL.

The support for authenticating users is plugged into the service container by the extension method provided

inside the Microsoft.AspNetCore.Components.WebAssembly.Authentication package. This method sets up the

services required by the app to interact with the existing authorization system.

By default, configuration for the app is loaded by convention from _configuration/{client-id} . By convention,

the client ID is set to the app's assembly name. This URL can be changed to point to a separate endpoint by

calling the overload with options.

The Microsoft.AspNetCore.Components.Authorization namespace is made available throughout the app via the

_Imports.razor file:

The Index page (wwwroot/index.html) page includes a script that defines the AuthenticationService in JavaScript.

AuthenticationService handles the low-level details of the OIDC protocol. The app internally calls methods

defined in the script to perform the authentication operations.

The App component (App.razor) is similar to the App component found in Blazor Server apps:

The CascadingAuthenticationState component manages exposing the AuthenticationState to the rest of the

app.

The AuthorizeRouteView component makes sure that the current user is authorized to access a given page or

otherwise renders the RedirectToLogin component.

The RedirectToLogin component manages redirecting unauthorized users to the login page.

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment.baseaddress#microsoft_aspnetcore_components_webassembly_hosting_iwebassemblyhostenvironment_baseaddress
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.cascadingauthenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authenticationstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.authorization.authorizerouteview

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 @if (!context.User.Identity.IsAuthenticated)
 {
 <RedirectToLogin />
 }
 else
 {
 <p>
 You are not authorized to access
 this resource.
 </p>
 }
 </NotAuthorized>
 </AuthorizeRouteView>
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

RedirectToLogin componentRedirectToLogin component

@inject NavigationManager Navigation
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@code {
 protected override void OnInitialized()
 {
 Navigation.NavigateTo($"authentication/login?returnUrl=" +
 Uri.EscapeDataString(Navigation.Uri));
 }
}

LoginDisplay componentLoginDisplay component

The RedirectToLogin component (Shared/RedirectToLogin.razor):

Manages redirecting unauthorized users to the login page.

Preserves the current URL that the user is attempting to access so that they can be returned to that page if

authentication is successful.

The LoginDisplay component (Shared/LoginDisplay.razor) is rendered in the MainLayout component (

Shared/MainLayout.razor) and manages the following behaviors:

For authenticated users:

For anonymous users:

Displays the current user name.

Offers a link to the user profile page in ASP.NET Core Identity.

Offers a button to log out of the app.

Offers the option to register.

Offers the option to log in.

@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@inject NavigationManager Navigation
@inject SignOutSessionStateManager SignOutManager

<AuthorizeView>
 <Authorized>
 Hello, @context.User.Identity.Name!
 <button class="nav-link btn btn-link" @onclick="BeginSignOut">
 Log out
 </button>
 </Authorized>
 <NotAuthorized>
 Register
 Log in
 </NotAuthorized>
</AuthorizeView>

@code {
 private async Task BeginSignOut(MouseEventArgs args)
 {
 await SignOutManager.SetSignOutState();
 Navigation.NavigateTo("authentication/logout");
 }
}

Authentication componentAuthentication component

@page "/authentication/{action}"
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action" />

@code {
 [Parameter]
 public string Action { get; set; }
}

FetchData componentFetchData component

The page produced by the Authentication component (Pages/Authentication.razor) defines the routes required

for handling different authentication stages.

The RemoteAuthenticatorView component:

Is provided by the Microsoft.AspNetCore.Components.WebAssembly.Authentication package.

Manages performing the appropriate actions at each stage of authentication.

The FetchData component shows how to:

Provision an access token.

Use the access token to call a protected resource API in the Server app.

The @attribute [Authorize] directive indicates to the Blazor WebAssembly authorization system that the user

must be authorized in order to visit this component. The presence of the attribute in the Client app doesn't

prevent the API on the server from being called without proper credentials. The Server app also must use

[Authorize] on the appropriate endpoints to correctly protect them.

IAccessTokenProvider.RequestAccessToken takes care of requesting an access token that can be added to the

request to call the API. If the token is cached or the service is able to provision a new access token without user

interaction, the token request succeeds. Otherwise, the token request fails with an

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.iaccesstokenprovider.requestaccesstoken

@page "/fetchdata"
@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using {APP NAMESPACE}.Shared
@attribute [Authorize]
@inject HttpClient Http

...

@code {
 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()
 {
 try
 {
 forecasts = await Http.GetFromJsonAsync<WeatherForecast[]>("WeatherForecast");
 }
 catch (AccessTokenNotAvailableException exception)
 {
 exception.Redirect();
 }
 }
}

Run the app

Name and role claim with API authorization
Custom user factoryCustom user factory

AccessTokenNotAvailableException, which is caught in a try-catch statement.

In order to obtain the actual token to include in the request, the app must check that the request succeeded by

calling tokenResult.TryGetToken(out var token) .

If the request was successful, the token variable is populated with the access token. The AccessToken.Value

property of the token exposes the literal string to include in the Authorization request header.

If the request failed because the token couldn't be provisioned without user interaction, the token result contains

a redirect URL. Navigating to this URL takes the user to the login page and back to the current page after a

successful authentication.

Run the app from the Server project. When using Visual Studio, either :

Set the Star tup ProjectsStar tup Projects drop down list in the toolbar to the Server API app and select the RunRun button.

Select the Server project in Solution ExplorerSolution Explorer and select the RunRun button in the toolbar or start the app

from the DebugDebug menu.

In the Client app, create a custom user factory. Identity Server sends multiple roles as a JSON array in a single

role claim. A single role is sent as a string value in the claim. The factory creates an individual role claim for

each of the user's roles.

CustomUserFactory.cs :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstokennotavailableexception
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstokenresult.trygettoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstoken.value#microsoft_aspnetcore_components_webassembly_authentication_accesstoken_value

using System.Linq;
using System.Security.Claims;
using System.Text.Json;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication.Internal;

public class CustomUserFactory
 : AccountClaimsPrincipalFactory<RemoteUserAccount>
{
 public CustomUserFactory(IAccessTokenProviderAccessor accessor)
 : base(accessor)
 {
 }

 public async override ValueTask<ClaimsPrincipal> CreateUserAsync(
 RemoteUserAccount account,
 RemoteAuthenticationUserOptions options)
 {
 var user = await base.CreateUserAsync(account, options);

 if (user.Identity.IsAuthenticated)
 {
 var identity = (ClaimsIdentity)user.Identity;
 var roleClaims = identity.FindAll(identity.RoleClaimType);

 if (roleClaims != null && roleClaims.Any())
 {
 foreach (var existingClaim in roleClaims)
 {
 identity.RemoveClaim(existingClaim);
 }

 var rolesElem = account.AdditionalProperties[identity.RoleClaimType];

 if (rolesElem is JsonElement roles)
 {
 if (roles.ValueKind == JsonValueKind.Array)
 {
 foreach (var role in roles.EnumerateArray())
 {
 identity.AddClaim(new Claim(options.RoleClaim, role.GetString()));
 }
 }
 else
 {
 identity.AddClaim(new Claim(options.RoleClaim, roles.GetString()));
 }
 }
 }
 }

 return user;
 }
}

builder.Services.AddApiAuthorization()
 .AddAccountClaimsPrincipalFactory<CustomUserFactory>();

In the Client app, register the factory in Program.Main (Program.cs):

In the Server app, call AddRoles on the Identity builder, which adds role-related services:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilder.addroles

using Microsoft.AspNetCore.Identity;

...

services.AddDefaultIdentity<ApplicationUser>(options =>
 options.SignIn.RequireConfirmedAccount = true)
 .AddRoles<IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>();

Configure Identity ServerConfigure Identity Server

API authorization optionsAPI authorization options

using System.IdentityModel.Tokens.Jwt;
using System.Linq;

...

services.AddIdentityServer()
 .AddApiAuthorization<ApplicationUser, ApplicationDbContext>(options => {
 options.IdentityResources["openid"].UserClaims.Add("name");
 options.ApiResources.Single().UserClaims.Add("name");
 options.IdentityResources["openid"].UserClaims.Add("role");
 options.ApiResources.Single().UserClaims.Add("role");
 });

JwtSecurityTokenHandler.DefaultInboundClaimTypeMap.Remove("role");

Profile ServiceProfile Service

Use oneone of the following approaches:

API authorization options

Profile Service

In the Server app:

Configure Identity Server to put the name and role claims into the ID token and access token.

Prevent the default mapping for roles in the JWT token handler.

In the Server app, create a ProfileService implementation.

ProfileService.cs :

using IdentityModel;
using IdentityServer4.Models;
using IdentityServer4.Services;
using System.Threading.Tasks;

public class ProfileService : IProfileService
{
 public ProfileService()
 {
 }

 public Task GetProfileDataAsync(ProfileDataRequestContext context)
 {
 var nameClaim = context.Subject.FindAll(JwtClaimTypes.Name);
 context.IssuedClaims.AddRange(nameClaim);

 var roleClaims = context.Subject.FindAll(JwtClaimTypes.Role);
 context.IssuedClaims.AddRange(roleClaims);

 return Task.CompletedTask;
 }

 public Task IsActiveAsync(IsActiveContext context)
 {
 return Task.CompletedTask;
 }
}

using IdentityServer4.Services;

...

services.AddTransient<IProfileService, ProfileService>();

Use authorization mechanismsUse authorization mechanisms

UserManager and SignInManager

In the Server app, register the Profile Service in Startup.ConfigureServices :

In the Client app, component authorization approaches are functional at this point. Any of the authorization

mechanisms in components can use a role to authorize the user :

if (user.IsInRole("admin") && user.IsInRole("developer"))
{
 ...
}

AuthorizeView component (Example: <AuthorizeView Roles="admin">)

[Authorize] attribute directive (AuthorizeAttribute) (Example: @attribute [Authorize(Roles = "admin")])

Procedural logic (Example: if (user.IsInRole("admin")) { ... })

Multiple role tests are supported:

User.Identity.Name is populated in the Client app with the user's user name, which is usually their sign-in email

address.

Set the user identifier claim type when a Server app requires:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute

using System.Security.Claims;

...

services.Configure<IdentityOptions>(options =>
 options.ClaimsIdentity.UserIdClaimType = ClaimTypes.NameIdentifier);

UserManager<TUser> or SignInManager<TUser> in an API endpoint.

IdentityUser details, such as the user's name, email address, or lockout end time.

In Startup.ConfigureServices :

The following WeatherForecastController logs the UserName when the Get method is called:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.usermanager-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityuser
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityuser-1.username#microsoft_aspnetcore_identity_identityuser_1_username

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Identity;
using Microsoft.Extensions.Logging;
using {APP NAMESPACE}.Server.Models;
using {APP NAMESPACE}.Shared;

namespace {APP NAMESPACE}.Server.Controllers
{
 [Authorize]
 [ApiController]
 [Route("[controller]")]
 public class WeatherForecastController : ControllerBase
 {
 private readonly UserManager<ApplicationUser> userManager;

 private static readonly string[] Summaries = new[]
 {
 "Freezing", "Bracing", "Chilly", "Cool", "Mild", "Warm",
 "Balmy", "Hot", "Sweltering", "Scorching"
 };

 private readonly ILogger<WeatherForecastController> logger;

 public WeatherForecastController(ILogger<WeatherForecastController> logger,
 UserManager<ApplicationUser> userManager)
 {
 this.logger = logger;
 this.userManager = userManager;
 }

 [HttpGet]
 public async Task<IEnumerable<WeatherForecast>> Get()
 {
 var rng = new Random();

 var user = await userManager.GetUserAsync(User);

 if (user != null)
 {
 logger.LogInformation($"User.Identity.Name: {user.UserName}");
 }

 return Enumerable.Range(1, 5).Select(index => new WeatherForecast
 {
 Date = DateTime.Now.AddDays(index),
 TemperatureC = rng.Next(-20, 55),
 Summary = Summaries[rng.Next(Summaries.Length)]
 })
 .ToArray();
 }
 }
}

Troubleshoot
Cookies and site dataCookies and site data
Cookies and site data can persist across app updates and interfere with testing and troubleshooting. Clear the

following when making app code changes, user account changes with the provider, or provider app

configuration changes:

Run the Server appRun the Server app

Inspect the content of a JSON Web Token (JWT)Inspect the content of a JSON Web Token (JWT)

Additional resources

User sign-in cookies

App cookies

Cached and stored site data

One approach to prevent lingering cookies and site data from interfering with testing and troubleshooting is to:

Configure a browser

Use a custom command to open a browser in incognito or private mode in Visual Studio:

Use a browser for testing that you can configure to delete all cookie and site data each time the

browser is closed.

Make sure that the browser is closed manually or by the IDE between any change to the app, test user,

or provider configuration.

Open Browse WithBrowse With dialog box from Visual Studio's RunRun button.

Select the AddAdd button.

Provide the path to your browser in the ProgramProgram field. The following executable paths are typical

installation locations for Windows 10. If your browser is installed in a different location or you aren't

using Windows 10, provide the path to the browser's executable.

In the ArgumentsArguments field, provide the command-line option that the browser uses to open in incognito

or private mode. Some browsers require the URL of the app.

Provide a name in the Fr iendly nameFriendly name field. For example, Firefox Auth Testing .

Select the OKOK button.

To avoid having to select the browser profile for each iteration of testing with an app, set the profile as

the default with the Set as DefaultSet as Default button.

Make sure that the browser is closed by the IDE between any change to the app, test user, or provider

configuration.

Microsoft Edge: C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe

Google Chrome: C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

Mozilla Firefox: C:\Program Files\Mozilla Firefox\firefox.exe

Microsoft Edge: -inprivate

Google Chrome: --incognito --new-window https://localhost:5001

Mozilla Firefox: -private -url https://localhost:5001

When testing and troubleshooting a hosted Blazor app, make sure that you're running the app from the Server

project. For example in Visual Studio, confirm that the Server project is highlighted in Solution ExplorerSolution Explorer before

you start the app with any of the following approaches:

Select the RunRun button.

Use DebugDebug > Star t DebuggingStar t Debugging from the menu.

Press F5.

To decode a JSON Web Token (JWT), use Microsoft's jwt.ms tool. Values in the UI never leave your browser.

Deployment to Azure App Service

Import a certificate from Key Vault (Azure documentation)

ASP.NET Core Blazor WebAssembly additional security scenarios

Unauthenticated or unauthorized web API requests in an app with a secure default client

https://jwt.ms/
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate#import-a-certificate-from-key-vault

ASP.NET Core Blazor WebAssembly additional
security scenarios
9/22/2020 • 24 minutes to read • Edit Online

Attach tokens to outgoing requests

NOTENOTE

using System.Net.Http;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

...

builder.Services.AddHttpClient("ServerAPI",
 client => client.BaseAddress = new Uri("https://www.example.com/base"))
 .AddHttpMessageHandler<BaseAddressAuthorizationMessageHandler>();

builder.Services.AddScoped(sp => sp.GetRequiredService<IHttpClientFactory>()
 .CreateClient("ServerAPI"));

By Javier Calvarro Nelson and Luke Latham

AuthorizationMessageHandler is a DelegatingHandler used to attach access tokens to outgoing

HttpResponseMessage instances. Tokens are acquired using the IAccessTokenProvider service, which is

registered by the framework. If a token can't be acquired, an AccessTokenNotAvailableException is thrown.

AccessTokenNotAvailableException has a Redirect method that can be used to navigate the user to the identity

provider to acquire a new token.

For convenience, the framework provides the BaseAddressAuthorizationMessageHandler preconfigured with

the app's base address as an authorized URL. Access tokens are only added when the request URI isAccess tokens are only added when the request URI is

within the app's base URI.within the app's base URI. When outgoing request URIs aren't within the app's base URI, use a custom

AuthorizationMessageHandler class (recommended) or configure the AuthorizationMessageHandler .

In addition to the client app configuration for server API access, the server API must also allow cross-origin requests

(CORS) when the client and the server don't reside at the same base address. For more information on server-side CORS

configuration, see the Cross-origin resource sharing (CORS) section later in this article.

In the following example:

AddHttpClient adds IHttpClientFactory and related services to the service collection and configures a named

HttpClient (ServerAPI). HttpClient.BaseAddress is the base address of the resource URI when sending

requests. IHttpClientFactory is provided by the Microsoft.Extensions.Http NuGet package.

BaseAddressAuthorizationMessageHandler is the DelegatingHandler used to attach access tokens to

outgoing HttpResponseMessage instances. Access tokens are only added when the request URI is within the

app's base URI.

IHttpClientFactory.CreateClient creates and configures an HttpClient instance for outgoing requests using the

configuration that corresponds to the named HttpClient (ServerAPI).

For a Blazor app based on the Blazor WebAssembly Hosted project template, request URIs are within the app's

base URI by default. Therefore, IWebAssemblyHostEnvironment.BaseAddress (

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/additional-scenarios.md
https://github.com/javiercn
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.delegatinghandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpresponsemessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.iaccesstokenprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstokennotavailableexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstokennotavailableexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstokennotavailableexception.redirect
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.baseaddressauthorizationmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientfactoryservicecollectionextensions.addhttpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory
https://www.nuget.org/packages/Microsoft.Extensions.Http
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.baseaddressauthorizationmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.delegatinghandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpresponsemessage
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory.createclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment.baseaddress#microsoft_aspnetcore_components_webassembly_hosting_iwebassemblyhostenvironment_baseaddress

@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@inject HttpClient Client

...

protected override async Task OnInitializedAsync()
{
 private ExampleType[] examples;

 try
 {
 examples =
 await Client.GetFromJsonAsync<ExampleType[]>("ExampleAPIMethod");

 ...
 }
 catch (AccessTokenNotAvailableException exception)
 {
 exception.Redirect();
 }
}

Custom Custom AuthorizationMessageHandler class class

using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

public class CustomAuthorizationMessageHandler : AuthorizationMessageHandler
{
 public CustomAuthorizationMessageHandler(IAccessTokenProvider provider,
 NavigationManager navigationManager)
 : base(provider, navigationManager)
 {
 ConfigureHandler(
 authorizedUrls: new[] { "https://www.example.com/base" },
 scopes: new[] { "example.read", "example.write" });
 }
}

new Uri(builder.HostEnvironment.BaseAddress)) is assigned to the HttpClient.BaseAddress in an app generated

from the project template.

The configured HttpClient is used to make authorized requests using the try-catch pattern:

This guidance in this section is recommended for client apps that make outgoing requests to URIs that aren't

within the app's base URI.

In the following example, a custom class extends AuthorizationMessageHandler for use as the

DelegatingHandler for an HttpClient. ConfigureHandler configures this handler to authorize outbound HTTP

requests using an access token. The access token is only attached if at least one of the authorized URLs is a base

of the request URI (HttpRequestMessage.RequestUri).

In Program.Main (Program.cs), CustomAuthorizationMessageHandler is registered as a scoped service and is

configured as the DelegatingHandler for outgoing HttpResponseMessage instances made by a named

HttpClient:

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.delegatinghandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler.configurehandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestmessage.requesturi#system_net_http_httprequestmessage_requesturi
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.delegatinghandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpresponsemessage
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

builder.Services.AddScoped<CustomAuthorizationMessageHandler>();

builder.Services.AddHttpClient("ServerAPI",
 client => client.BaseAddress = new Uri("https://www.example.com/base"))
 .AddHttpMessageHandler<CustomAuthorizationMessageHandler>();

@inject IHttpClientFactory ClientFactory

...

@code {
 private ExampleType[] examples;

 protected override async Task OnInitializedAsync()
 {
 try
 {
 var client = ClientFactory.CreateClient("ServerAPI");

 examples =
 await client.GetFromJsonAsync<ExampleType[]>("ExampleAPIMethod");
 }
 catch (AccessTokenNotAvailableException exception)
 {
 exception.Redirect();
 }
 }
}

Configure Configure AuthorizationMessageHandler

For a Blazor app based on the Blazor WebAssembly Hosted project template,

IWebAssemblyHostEnvironment.BaseAddress (new Uri(builder.HostEnvironment.BaseAddress)) is assigned to the

HttpClient.BaseAddress by default.

The configured HttpClient is used to make authorized requests using the try-catch pattern. Where the client is

created with CreateClient (Microsoft.Extensions.Http package), the HttpClient is supplied instances that include

access tokens when making requests to the server API. If the request URI is a relative URI, as it is in the following

example (ExampleAPIMethod), it's combined with the BaseAddress when the client app makes the request:

AuthorizationMessageHandler can be configured with authorized URLs, scopes, and a return URL using the

ConfigureHandler method. ConfigureHandler configures the handler to authorize outbound HTTP requests

using an access token. The access token is only attached if at least one of the authorized URLs is a base of the

request URI (HttpRequestMessage.RequestUri). If the request URI is a relative URI, it's combined with the

BaseAddress.

In the following example, AuthorizationMessageHandler configures an HttpClient in Program.Main (Program.cs):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment.baseaddress#microsoft_aspnetcore_components_webassembly_hosting_iwebassemblyhostenvironment_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory.createclient
https://www.nuget.org/packages/Microsoft.Extensions.Http
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler.configurehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler.configurehandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestmessage.requesturi#system_net_http_httprequestmessage_requesturi
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

using System.Net.Http;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

...

builder.Services.AddScoped(sp => new HttpClient(
 sp.GetRequiredService<AuthorizationMessageHandler>()
 .ConfigureHandler(
 authorizedUrls: new[] { "https://www.example.com/base" },
 scopes: new[] { "example.read", "example.write" }))
 {
 BaseAddress = new Uri("https://www.example.com/base")
 });

Graph API exampleGraph API example

NOTENOTE

public class GraphAPIAuthorizationMessageHandler : AuthorizationMessageHandler
{
 public GraphAPIAuthorizationMessageHandler(IAccessTokenProvider provider,
 NavigationManager navigationManager)
 : base(provider, navigationManager)
 {
 ConfigureHandler(
 authorizedUrls: new[] { "https://graph.microsoft.com" },
 scopes: new[] { "https://graph.microsoft.com/User.Read" });
 }
}

builder.Services.AddScoped<GraphAPIAuthorizationMessageHandler>();

builder.Services.AddHttpClient("GraphAPI",
 client => client.BaseAddress = new Uri("https://graph.microsoft.com"))
 .AddHttpMessageHandler<GraphAPIAuthorizationMessageHandler>();

@page "/CallUser"

For a Blazor app based on the Blazor WebAssembly Hosted project template,

IWebAssemblyHostEnvironment.BaseAddress is assigned to the following by default:

The HttpClient.BaseAddress (new Uri(builder.HostEnvironment.BaseAddress)).

A URL of the authorizedUrls array.

In the following example, a named HttpClient for Graph API is used to obtain a user's mobile phone number to

process a call. After adding the Microsoft Graph API User.Read permission in the AAD area of the Azure portal,

the scope is configured for the named client in the standalone app or Client app of a hosted Blazor solution.

The example in this section obtains Graph API data for the user in component code. To create user claims from Graph API,

see the following resources:

Customize the user section

ASP.NET Core Blazor WebAssembly with Azure Active Directory groups and roles

GraphAuthorizationMessageHandler.cs :

In Program.Main (Program.cs):

In a Razor component (Pages/CallUser.razor):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment.baseaddress#microsoft_aspnetcore_components_webassembly_hosting_iwebassemblyhostenvironment_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

@page "/CallUser"
@using System.ComponentModel.DataAnnotations
@using System.Text.Json.Serialization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@using Microsoft.Extensions.Logging
@inject IAccessTokenProvider TokenProvider
@inject IHttpClientFactory ClientFactory
@inject ILogger<CallUser> Logger
@inject ICallProcessor CallProcessor

<h3>Call User</h3>

<EditForm Model="@callInfo" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <p>
 <label>
 Message:
 <InputTextArea @bind-Value="callInfo.Message" />
 </label>
 </p>

 <button type="submit">Place call</button>

 <p>
 @formStatus
 </p>
</EditForm>

@code {
 private string formStatus;
 private CallInfo callInfo = new CallInfo();

 private async Task HandleValidSubmit()
 {
 var tokenResult = await TokenProvider.RequestAccessToken(
 new AccessTokenRequestOptions
 {
 Scopes = new[] { "https://graph.microsoft.com/User.Read" }
 });

 if (tokenResult.TryGetToken(out var token))
 {
 var client = ClientFactory.CreateClient("GraphAPI");

 var userInfo = await client.GetFromJsonAsync<UserInfo>("v1.0/me");

 if (userInfo != null)
 {
 CallProcessor.Send(userInfo.MobilePhone, callInfo.Message);

 formStatus = "Form successfully processed.";
 Logger.LogInformation(
 $"Form successfully processed at {DateTime.UtcNow}. " +
 $"Mobile Phone: {userInfo.MobilePhone}");
 }
 }
 else
 {
 formStatus = "There was a problem processing the form.";
 Logger.LogError("Token failure");
 }
 }

 private class CallInfo
 {
 [Required]
 [StringLength(1000, ErrorMessage = "Message too long (1,000 char limit)")]
 public string Message { get; set; }

 public string Message { get; set; }
 }

 private class UserInfo
 {
 [JsonPropertyName("mobilePhone")]
 public string MobilePhone { get; set; }
 }
}

NOTENOTE

Typed HttpClient

using System.Net.Http;
using System.Net.Http.Json;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;
using static {APP ASSEMBLY}.Data;

public class WeatherForecastClient
{
 private readonly HttpClient client;

 public WeatherForecastClient(HttpClient client)
 {
 this.client = client;
 }

 public async Task<WeatherForecast[]> GetForecastAsync()
 {
 var forecasts = new WeatherForecast[0];

 try
 {
 forecasts = await client.GetFromJsonAsync<WeatherForecast[]>(
 "WeatherForecast");
 }
 catch (AccessTokenNotAvailableException exception)
 {
 exception.Redirect();
 }

 return forecasts;
 }
}

In the preceding example, the developer implements the custom ICallProcessor (CallProcessor) to queue and then

place automated calls.

A typed client can be defined that handles all of the HTTP and token acquisition concerns within a single class.

WeatherForecastClient.cs :

The placeholder {APP ASSEMBLY} is the app's assembly name (for example, using static BlazorSample.Data;).

Program.Main (Program.cs):

using System.Net.Http;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

...

builder.Services.AddHttpClient<WeatherForecastClient>(
 client => client.BaseAddress = new Uri("https://www.example.com/base"))
 .AddHttpMessageHandler<BaseAddressAuthorizationMessageHandler>();

@inject WeatherForecastClient Client

...

protected override async Task OnInitializedAsync()
{
 forecasts = await Client.GetForecastAsync();
}

Configure the HttpClient handler

builder.Services.AddHttpClient<WeatherForecastClient>(
 client => client.BaseAddress = new Uri("https://www.example.com/base"))
 .AddHttpMessageHandler(sp => sp.GetRequiredService<AuthorizationMessageHandler>()
 .ConfigureHandler(
 authorizedUrls: new [] { "https://www.example.com/base" },
 scopes: new[] { "example.read", "example.write" }));

Unauthenticated or unauthorized web API requests in an app with a
secure default client

builder.Services.AddHttpClient("ServerAPI.NoAuthenticationClient",
 client => client.BaseAddress = new Uri("https://www.example.com/base"));

For a Blazor app based on the Blazor WebAssembly Hosted project template,

IWebAssemblyHostEnvironment.BaseAddress (new Uri(builder.HostEnvironment.BaseAddress)) is assigned to the

HttpClient.BaseAddress by default.

FetchData component (Pages/FetchData.razor):

The handler can be further configured with ConfigureHandler for outbound HTTP requests.

Program.Main (Program.cs):

For a Blazor app based on the Blazor WebAssembly Hosted project template,

IWebAssemblyHostEnvironment.BaseAddress is assigned to the following by default:

The HttpClient.BaseAddress (new Uri(builder.HostEnvironment.BaseAddress)).

A URL of the authorizedUrls array.

If the Blazor WebAssembly app ordinarily uses a secure default HttpClient, the app can also make

unauthenticated or unauthorized web API requests by configuring a named HttpClient:

Program.Main (Program.cs):

For a Blazor app based on the Blazor WebAssembly Hosted project template,

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment.baseaddress#microsoft_aspnetcore_components_webassembly_hosting_iwebassemblyhostenvironment_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler.configurehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment.baseaddress#microsoft_aspnetcore_components_webassembly_hosting_iwebassemblyhostenvironment_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

@inject IHttpClientFactory ClientFactory

...

@code {
 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()
 {
 var client = ClientFactory.CreateClient("ServerAPI.NoAuthenticationClient");

 forecasts = await client.GetFromJsonAsync<WeatherForecast[]>(
 "WeatherForecastNoAuthentication");
 }
}

NOTENOTE

Request additional access tokens

builder.Services.AddMsalAuthentication(options =>
{
 ...

 options.ProviderOptions.AdditionalScopesToConsent.Add("{CUSTOM SCOPE 1}");
 options.ProviderOptions.AdditionalScopesToConsent.Add("{CUSTOM SCOPE 2}");
}

IWebAssemblyHostEnvironment.BaseAddress (new Uri(builder.HostEnvironment.BaseAddress)) is assigned to the

HttpClient.BaseAddress by default.

The preceding registration is in addition to the existing secure default HttpClient registration.

A component creates the HttpClient from the IHttpClientFactory (Microsoft.Extensions.Http package) to make

unauthenticated or unauthorized requests:

The controller in the server API, WeatherForecastNoAuthenticationController for the preceding example, isn't marked

with the [Authorize] attribute.

The decision whether to use a secure client or an insecure client as the default HttpClient instance is up to the

developer. One way to make this decision is to consider the number of authenticated versus unauthenticated

endpoints that the app contacts. If the majority of the app's requests are to secure API endpoints, use the

authenticated HttpClient instance as the default. Otherwise, register the unauthenticated HttpClient instance as

the default.

An alternative approach to using the IHttpClientFactory is to create a typed client for unauthenticated access to

anonymous endpoints.

Access tokens can be manually obtained by calling IAccessTokenProvider.RequestAccessToken . In the following

example, an additional scope is required by an app for the default HttpClient. The Microsoft Authentication

Library (MSAL) example configures the scope with MsalProviderOptions :

Program.Main (Program.cs):

The {CUSTOM SCOPE 1} and {CUSTOM SCOPE 2} placeholders in the preceding example are custom scopes.

The IAccessTokenProvider.RequestToken method provides an overload that allows an app to provision an access

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.hosting.iwebassemblyhostenvironment.baseaddress#microsoft_aspnetcore_components_webassembly_hosting_iwebassemblyhostenvironment_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory
https://www.nuget.org/packages/Microsoft.Extensions.Http
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

@using Microsoft.AspNetCore.Components.WebAssembly.Authentication
@inject IAccessTokenProvider TokenProvider

...

var tokenResult = await TokenProvider.RequestAccessToken(
 new AccessTokenRequestOptions
 {
 Scopes = new[] { "{CUSTOM SCOPE 1}", "{CUSTOM SCOPE 2}" }
 });

if (tokenResult.TryGetToken(out var token))
{
 ...
}

Cross-origin resource sharing (CORS)

app.UseCors(policy =>
 policy.WithOrigins("http://localhost:5000", "https://localhost:5001")
 .AllowAnyMethod()
 .WithHeaders(HeaderNames.ContentType, HeaderNames.Authorization, "x-custom-header")
 .AllowCredentials());

Handle token request errors

token with a given set of scopes.

In a Razor component:

The {CUSTOM SCOPE 1} and {CUSTOM SCOPE 2} placeholders in the preceding example are custom scopes.

AccessTokenResult.TryGetToken returns:

true with the token for use.

false if the token isn't retrieved.

When sending credentials (authorization cookies/headers) on CORS requests, the Authorization header must

be allowed by the CORS policy.

The following policy includes configuration for :

Request origins (http://localhost:5000 , https://localhost:5001).

Any method (verb).

Content-Type and Authorization headers. To allow a custom header (for example, x-custom-header), list the

header when calling WithHeaders.

Credentials set by client-side JavaScript code (credentials property set to include).

A hosted Blazor solution based on the Blazor Hosted project template uses the same base address for the client

and server apps. The client app's HttpClient.BaseAddress is set to a URI of builder.HostEnvironment.BaseAddress

by default. CORS configuration is notnot required in the default configuration of a hosted app created from the

Blazor Hosted project template. Additional client apps that aren't hosted by the server project and don't share

the server app's base address dodo require CORS configuration in the server project.

For more information, see Enable Cross-Origin Requests (CORS) in ASP.NET Core and the sample app's HTTP

Request Tester component (Components/HTTPRequestTester.razor).

When a Single Page Application (SPA) authenticates a user using OpenID Connect (OIDC), the authentication

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accesstokenresult.trygettoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.withheaders
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system_net_http_httpclient_baseaddress

state is maintained locally within the SPA and in the Identity Provider (IP) in the form of a session cookie that's

set as a result of the user providing their credentials.

The tokens that the IP emits for the user typically are valid for short periods of time, about one hour normally, so

the client app must regularly fetch new tokens. Otherwise, the user would be logged-out after the granted

tokens expire. In most cases, OIDC clients are able to provision new tokens without requiring the user to

authenticate again thanks to the authentication state or "session" that is kept within the IP.

There are some cases in which the client can't get a token without user interaction, for example, when for some

reason the user explicitly logs out from the IP. This scenario occurs if a user visits

https://login.microsoftonline.com and logs out. In these scenarios, the app doesn't know immediately that the

user has logged out. Any token that the client holds might no longer be valid. Also, the client isn't able to

provision a new token without user interaction after the current token expires.

These scenarios aren't specific to token-based authentication. They are part of the nature of SPAs. An SPA using

cookies also fails to call a server API if the authentication cookie is removed.

When an app performs API calls to protected resources, you must be aware of the following:

To provision a new access token to call the API, the user might be required to authenticate again.

Even if the client has a token that seems to be valid, the call to the server might fail because the token was

revoked by the user.

When the app requests a token, there are two possible outcomes:

The request succeeds, and the app has a valid token.

The request fails, and the app must authenticate the user again to obtain a new token.

When a token request fails, you need to decide whether you want to save any current state before you perform

a redirection. Several approaches exist with increasing levels of complexity:

Store the current page state in session storage. During the OnInitializedAsync lifecycle event

(OnInitializedAsync), check if state can be restored before continuing.

Add a query string parameter and use that as a way to signal the app that it needs to re-hydrate the

previously saved state.

Add a query string parameter with a unique identifier to store data in session storage without risking

collisions with other items.

The following example shows how to:

Preserve state before redirecting to the login page.

Recover the previous state afterward authentication using the query string parameter.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync

<EditForm Model="User" @onsubmit="OnSaveAsync">
 <label>User
 <InputText @bind-Value="User.Name" />
 </label>
 <label>Last name
 <InputText @bind-Value="User.LastName" />
 </label>
</EditForm>

@code {
 public class Profile
 {
 public string Name { get; set; }
 public string LastName { get; set; }
 }

 public Profile User { get; set; } = new Profile();

 protected async override Task OnInitializedAsync()
 {
 var currentQuery = new Uri(Navigation.Uri).Query;

 if (currentQuery.Contains("state=resumeSavingProfile"))
 {
 User = await JS.InvokeAsync<Profile>("sessionStorage.getState",
 "resumeSavingProfile");
 }
 }

 public async Task OnSaveAsync()
 {
 var httpClient = new HttpClient();
 httpClient.BaseAddress = new Uri(Navigation.BaseUri);

 var resumeUri = Navigation.Uri + $"?state=resumeSavingProfile";

 var tokenResult = await AuthenticationService.RequestAccessToken(
 new AccessTokenRequestOptions
 {
 ReturnUrl = resumeUri
 });

 if (tokenResult.TryGetToken(out var token))
 {
 httpClient.DefaultRequestHeaders.Add("Authorization",
 $"Bearer {token.Value}");
 await httpClient.PostAsJsonAsync("Save", User);
 }
 else
 {
 await JS.InvokeVoidAsync("sessionStorage.setState",
 "resumeSavingProfile", User);
 Navigation.NavigateTo(tokenResult.RedirectUrl);
 }
 }
}

Save app state before an authentication operation
During an authentication operation, there are cases where you want to save the app state before the browser is

redirected to the IP. This can be the case when you're using a state container and want to restore the state after

the authentication succeeds. You can use a custom authentication state object to preserve app-specific state or a

reference to it and restore that state after the authentication operation successfully completes. The following

example demonstrates the approach.

using System.Text.Json;

public class StateContainer
{
 public int CounterValue { get; set; }

 public string GetStateForLocalStorage()
 {
 return JsonSerializer.Serialize(this);
 }

 public void SetStateFromLocalStorage(string locallyStoredState)
 {
 var deserializedState =
 JsonSerializer.Deserialize<StateContainer>(locallyStoredState);

 CounterValue = deserializedState.CounterValue;
 }
}

@page "/counter"
@inject StateContainer State

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {
 private int currentCount = 0;

 protected override void OnInitialized()
 {
 if (State.CounterValue > 0)
 {
 currentCount = State.CounterValue;
 }
 }

 private void IncrementCount()
 {
 currentCount++;
 State.CounterValue = currentCount;
 }
}

A state container class is created in the app with properties to hold the app's state values. In the following

example, the container is used to maintain the counter value of the default project template's Counter

component (Pages/Counter.razor). Methods for serializing and deserializing the container are based on

System.Text.Json.

The Counter component uses the state container to maintain the currentCount value outside of the component:

Create an ApplicationAuthenticationState from RemoteAuthenticationState. Provide an Id property, which

serves as an identifier for the locally-stored state.

ApplicationAuthenticationState.cs :

https://docs.microsoft.com/en-us/dotnet/api/system.text.json
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticationstate

using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

public class ApplicationAuthenticationState : RemoteAuthenticationState
{
 public string Id { get; set; }
}

@page "/authentication/{action}"
@inject IJSRuntime JS
@inject StateContainer State
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorViewCore Action="@Action"
 TAuthenticationState="ApplicationAuthenticationState"
 AuthenticationState="AuthenticationState"
 OnLogInSucceeded="RestoreState"
 OnLogOutSucceeded="RestoreState" />

@code {
 [Parameter]
 public string Action { get; set; }

 public ApplicationAuthenticationState AuthenticationState { get; set; } =
 new ApplicationAuthenticationState();

 protected async override Task OnInitializedAsync()
 {
 if (RemoteAuthenticationActions.IsAction(RemoteAuthenticationActions.LogIn,
 Action) ||
 RemoteAuthenticationActions.IsAction(RemoteAuthenticationActions.LogOut,
 Action))
 {
 AuthenticationState.Id = Guid.NewGuid().ToString();

 await JS.InvokeVoidAsync("sessionStorage.setItem",
 AuthenticationState.Id, State.GetStateForLocalStorage());
 }
 }

 private async Task RestoreState(ApplicationAuthenticationState state)
 {
 if (state.Id != null)
 {
 var locallyStoredState = await JS.InvokeAsync<string>(
 "sessionStorage.getItem", state.Id);

 if (locallyStoredState != null)
 {
 State.SetStateFromLocalStorage(locallyStoredState);
 await JS.InvokeVoidAsync("sessionStorage.removeItem", state.Id);
 }
 }
 }
}

The Authentication component (Pages/Authentication.razor) saves and restores the app's state using local

session storage with the StateContainer serialization and deserialization methods, GetStateForLocalStorage

and SetStateFromLocalStorage :

This example uses Azure Active Directory (AAD) for authentication. In Program.Main (Program.cs):

The ApplicationAuthenticationState is configured as the Microsoft Autentication Library (MSAL)

RemoteAuthenticationState type.

builder.Services.AddMsalAuthentication<ApplicationAuthenticationState>(options =>
{
 builder.Configuration.Bind("AzureAd", options.ProviderOptions.Authentication);
});

builder.Services.AddSingleton<StateContainer>();

Customize app routes

RO UT ERO UT E P URP O SEP URP O SE

authentication/login Triggers a sign-in operation.

authentication/login-callback Handles the result of any sign-in operation.

authentication/login-failed Displays error messages when the sign-in operation fails for
some reason.

authentication/logout Triggers a sign-out operation.

authentication/logout-callback Handles the result of a sign-out operation.

authentication/logout-failed Displays error messages when the sign-out operation fails
for some reason.

authentication/logged-out Indicates that the user has successfully logout.

authentication/profile Triggers an operation to edit the user profile.

authentication/register Triggers an operation to register a new user.

@page "/security/{action}"
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action" />

@code{
 [Parameter]
 public string Action { get; set; }
}

The state container is registered in the service container.

By default, the Microsoft.AspNetCore.Components.WebAssembly.Authentication library uses the routes shown in the

following table for representing different authentication states.

The routes shown in the preceding table are configurable via

RemoteAuthenticationOptions<TRemoteAuthenticationProviderOptions>.AuthenticationPaths. When setting

options to provide custom routes, confirm that the app has a route that handles each path.

In the following example, all the paths are prefixed with /security .

Authentication component (Pages/Authentication.razor):

Program.Main (Program.cs):

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Authentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticationoptions-1.authenticationpaths

builder.Services.AddApiAuthorization(options => {
 options.AuthenticationPaths.LogInPath = "security/login";
 options.AuthenticationPaths.LogInCallbackPath = "security/login-callback";
 options.AuthenticationPaths.LogInFailedPath = "security/login-failed";
 options.AuthenticationPaths.LogOutPath = "security/logout";
 options.AuthenticationPaths.LogOutCallbackPath = "security/logout-callback";
 options.AuthenticationPaths.LogOutFailedPath = "security/logout-failed";
 options.AuthenticationPaths.LogOutSucceededPath = "security/logged-out";
 options.AuthenticationPaths.ProfilePath = "security/profile";
 options.AuthenticationPaths.RegisterPath = "security/register";
});

@page "/register"

<RemoteAuthenticatorView Action="@RemoteAuthenticationActions.Register" />

Customize the authentication user interface

@page "/security/{action}"
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action">
 <LoggingIn>
 You are about to be redirected to https://login.microsoftonline.com.
 </LoggingIn>
</RemoteAuthenticatorView>

@code{
 [Parameter]
 public string Action { get; set; }
}

RO UT ERO UT E F RA GM EN TF RA GM EN T

authentication/login <LoggingIn>

authentication/login-callback <CompletingLoggingIn>

authentication/login-failed <LogInFailed>

authentication/logout <LogOut>

If the requirement calls for completely different paths, set the routes as described previously and render the

RemoteAuthenticatorView with an explicit action parameter :

You're allowed to break the UI into different pages if you choose to do so.

RemoteAuthenticatorView includes a default set of UI pieces for each authentication state. Each state can be

customized by passing in a custom RenderFragment. To customize the displayed text during the initial login

process, can change the RemoteAuthenticatorView as follows.

Authentication component (Pages/Authentication.razor):

The RemoteAuthenticatorView has one fragment that can be used per authentication route shown in the

following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.renderfragment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteauthenticatorview

authentication/logout-callback <CompletingLogOut>

authentication/logout-failed <LogOutFailed>

authentication/logged-out <LogOutSucceeded>

authentication/profile <UserProfile>

authentication/register <Registering>

RO UT ERO UT E F RA GM EN TF RA GM EN T

Customize the user

Customize the user with a payload claimCustomize the user with a payload claim

using System.Text.Json.Serialization;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

public class CustomUserAccount : RemoteUserAccount
{
 [JsonPropertyName("amr")]
 public string[] AuthenticationMethod { get; set; }
}

Users bound to the app can be customized.

In the following example, the app's authenticated users receive an amr claim for each of the user's

authentication methods. The amr claim identifies how the subject of the token was authenticated in Microsoft

Identity Platform v1.0 payload claims. The example uses a custom user account class based on

RemoteUserAccount.

Create a class that extends the RemoteUserAccount class. The following example sets the AuthenticationMethod

property to the user's array of amr JSON property values. AuthenticationMethod is populated automatically by

the framework when the user is authenticated.

Create a factory that extends AccountClaimsPrincipalFactory<TAccount> to create claims from the user's

authentication methods stored in CustomUserAccount.AuthenticationMethod :

https://docs.microsoft.com/en-us/azure/active-directory/develop/access-tokens#the-amr-claim
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteuseraccount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteuseraccount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accountclaimsprincipalfactory-1

using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication.Internal;

public class CustomAccountFactory
 : AccountClaimsPrincipalFactory<CustomUserAccount>
{
 public CustomAccountFactory(NavigationManager navigationManager,
 IAccessTokenProviderAccessor accessor) : base(accessor)
 {
 }

 public async override ValueTask<ClaimsPrincipal> CreateUserAsync(
 CustomUserAccount account, RemoteAuthenticationUserOptions options)
 {
 var initialUser = await base.CreateUserAsync(account, options);

 if (initialUser.Identity.IsAuthenticated)
 {
 foreach (var value in account.AuthenticationMethod)
 {
 ((ClaimsIdentity)initialUser.Identity)
 .AddClaim(new Claim("amr", value));
 }
 }

 return initialUser;
 }
}

Register the CustomAccountFactory for the authentication provider in use. Any of the following registrations are

valid:

using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

...

builder.Services.AddOidcAuthentication<RemoteAuthenticationState,
 CustomUserAccount>(options =>
 {
 ...
 })
 .AddAccountClaimsPrincipalFactory<RemoteAuthenticationState,
 CustomUserAccount, CustomAccountFactory>();

using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

...

builder.Services.AddMsalAuthentication<RemoteAuthenticationState,
 CustomUserAccount>(options =>
 {
 ...
 })
 .AddAccountClaimsPrincipalFactory<RemoteAuthenticationState,
 CustomUserAccount, CustomAccountFactory>();

AddOidcAuthentication:

AddMsalAuthentication:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.webassemblyauthenticationservicecollectionextensions.addoidcauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msalwebassemblyservicecollectionextensions.addmsalauthentication

Customize the user with Graph API claimsCustomize the user with Graph API claims

using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

public class GraphAPIAuthorizationMessageHandler : AuthorizationMessageHandler
{
 public GraphAPIAuthorizationMessageHandler(IAccessTokenProvider provider,
 NavigationManager navigationManager)
 : base(provider, navigationManager)
 {
 ConfigureHandler(
 authorizedUrls: new[] { "https://graph.microsoft.com" },
 scopes: new[] { "https://graph.microsoft.com/User.Read" });
 }
}

using System;

...

builder.Services.AddScoped<GraphAPIAuthorizationMessageHandler>();

builder.Services.AddHttpClient("GraphAPI",
 client => client.BaseAddress = new Uri("https://graph.microsoft.com"))
 .AddHttpMessageHandler<GraphAPIAuthorizationMessageHandler>();

using System.Text.Json.Serialization;

public class UserInfo
{
 [JsonPropertyName("mobilePhone")]
 public string MobilePhone { get; set; }
}

using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

...

builder.Services.AddApiAuthorization<RemoteAuthenticationState,
 CustomUserAccount>(options =>
 {
 ...
 })
 .AddAccountClaimsPrincipalFactory<RemoteAuthenticationState,
 CustomUserAccount, CustomAccountFactory>();

AddApiAuthorization:

In the following example, the app creates a mobile phone number claim for the user from Graph API using the

RemoteUserAccount. The app must have the User.Read Graph API permission (scope) configured in AAD.

GraphAuthorizationMessageHandler.cs :

A named HttpClient for Graph API is created in Program.Main (Program.cs) using the

GraphAPIAuthorizationMessageHandler :

Models/UserInfo.cs :

In the following CustomAccountFactory (CustomAccountFactory.cs), the framework's RemoteUserAccount

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.webassemblyauthenticationservicecollectionextensions.addapiauthorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteuseraccount
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteuseraccount

using System.Net.Http;
using System.Net.Http.Json;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication.Internal;
using Microsoft.Extensions.Logging;

public class CustomAccountFactory
 : AccountClaimsPrincipalFactory<RemoteUserAccount>
{
 private readonly ILogger<CustomAccountFactory> logger;
 private readonly IHttpClientFactory clientFactory;

 public CustomAccountFactory(IAccessTokenProviderAccessor accessor,
 IHttpClientFactory clientFactory,
 ILogger<CustomAccountFactory> logger)
 : base(accessor)
 {
 this.clientFactory = clientFactory;
 this.logger = logger;
 }

 public async override ValueTask<ClaimsPrincipal> CreateUserAsync(
 RemoteUserAccount account,
 RemoteAuthenticationUserOptions options)
 {
 var initialUser = await base.CreateUserAsync(account, options);

 if (initialUser.Identity.IsAuthenticated)
 {
 var userIdentity = (ClaimsIdentity)initialUser.Identity;

 try
 {
 var client = clientFactory.CreateClient("GraphAPI");

 var userInfo = await client.GetFromJsonAsync<UserInfo>("v1.0/me");

 if (userInfo != null)
 {
 userIdentity.AddClaim(new Claim("mobilephone", userInfo.MobilePhone));
 }
 }
 catch (AccessTokenNotAvailableException exception)
 {
 logger.LogError("Graph API access token failure: {MESSAGE}",
 exception.Message);
 }
 }

 return initialUser;
 }
}

represents the user's account. If the app requires a custom user account class that extends RemoteUserAccount,

swap the custom user account class for RemoteUserAccount in the following code:

In Program.Main (Program.cs), configure the app to use the custom factory. If the app uses a custom user

account class that extends RemoteUserAccount, swap the custom user account class for RemoteUserAccount in

the following code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteuseraccount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteuseraccount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteuseraccount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteuseraccount

using Microsoft.Extensions.Configuration;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

...

builder.Services.AddMsalAuthentication<RemoteAuthenticationState,
 RemoteUserAccount>(options =>
 {
 builder.Configuration.Bind("AzureAd",
 options.ProviderOptions.Authentication);
 })
 .AddAccountClaimsPrincipalFactory<RemoteAuthenticationState, RemoteUserAccount,
 CustomAccountFactory>();

AAD security groups and roles with a custom user account classAAD security groups and roles with a custom user account class

Support prerendering with authentication

public class Program
{
 public static async Task Main(string[] args)
 {
 var builder = WebAssemblyHostBuilder.CreateDefault(args);
 builder.RootComponents.Add<App>("app");

 builder.Services.AddScoped(sp =>
 new HttpClient
 {
 BaseAddress = new Uri(builder.HostEnvironment.BaseAddress)
 });

 services.Add...;

 ConfigureCommonServices(builder.Services);

 await builder.Build().RunAsync();
 }

 public static void ConfigureCommonServices(IServiceCollection services)
 {
 // Common service registrations
 }
}

The preceding example is for an app that uses AAD authentication with MSAL. Similar patterns exist for OIDC

and API authentication. For more information, see the examples at the end of the Customize the user with a

payload claim section.

For an additional example that works with AAD security groups and AAD Administrator Roles and a custom user

account class, see ASP.NET Core Blazor WebAssembly with Azure Active Directory groups and roles.

After following the guidance in one of the hosted Blazor WebAssembly app topics, use the following instructions

to create an app that:

Prerenders paths for which authorization isn't required.

Doesn't prerender paths for which authorization is required.

In the Client app's Program class (Program.cs), factor common service registrations into a separate method (for

example, ConfigureCommonServices):

In the server app's Startup.ConfigureServices , register the following additional services:

using Microsoft.AspNetCore.Components.Authorization;
using Microsoft.AspNetCore.Components.Server;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

public void ConfigureServices(IServiceCollection services)
{
 ...

 services.AddRazorPages();
 services.AddScoped<AuthenticationStateProvider,
 ServerAuthenticationStateProvider>();
 services.AddScoped<SignOutSessionStateManager>();

 Client.Program.ConfigureCommonServices(services);
}

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllers();
 endpoints.MapFallbackToPage("/_Host");
});

Options for hosted apps and third-party login providers

Authenticate users to only call protected third party APIsAuthenticate users to only call protected third party APIs

builder.services.AddOidcAuthentication(options => { ... });

In the server app's Startup.Configure method, replace endpoints.MapFallbackToFile("index.html") with

endpoints.MapFallbackToPage("/_Host") :

In the server app, create a Pages folder if it doesn't exist. Create a _Host.cshtml page inside the server app's

Pages folder. Paste the contents from the Client app's wwwroot/index.html file into the Pages/_Host.cshtml file.

Update the file's contents:

<app>
 @if (!HttpContext.Request.Path.StartsWithSegments("/authentication"))
 {
 <component type="typeof(Wasm.Authentication.Client.App)"
 render-mode="Static" />
 }
 else
 {
 <text>Loading...</text>
 }
</app>

Add @page "_Host" to the top of the file.

Replace the <app>Loading...</app> tag with the following:

When authenticating and authorizing a hosted Blazor WebAssembly app with a third-party provider, there are

several options available for authenticating the user. Which one you choose depends on your scenario.

For more information, see Persist additional claims and tokens from external providers in ASP.NET Core.

Authenticate the user with a client-side OAuth flow against the third-party API provider :

In this scenario:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfilesendpointroutebuilderextensions.mapfallbacktofile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.mapfallbacktopage

 Authenticate users with a third-party provider and call protected APIs on the host server and the third partyAuthenticate users with a third-party provider and call protected APIs on the host server and the third party

Use a server access token to retrieve the third-party access tokenUse a server access token to retrieve the third-party access token

Make API calls from the client to the server API in order to call third-party APIsMake API calls from the client to the server API in order to call third-party APIs

Use OpenID Connect (OIDC) v2.0 endpoints

builder.Services.Configure<JwtBearerOptions>(
 AzureADDefaults.JwtBearerAuthenticationScheme,
 options =>
 {
 options.Authority += "/v2.0";
 });

The server hosting the app doesn't play a role.

APIs on the server can't be protected.

The app can only call protected third-party APIs.

Configure Identity with a third-party login provider. Obtain the tokens required for third-party API access and

store them.

When a user logs in, Identity collects access and refresh tokens as part of the authentication process. At that

point, there are a couple of approaches available for making API calls to third-party APIs.

Use the access token generated on the server to retrieve the third-party access token from a server API

endpoint. From there, use the third-party access token to call third-party API resources directly from Identity on

the client.

We don't recommend this approach. This approach requires treating the third-party access token as if it were

generated for a public client. In OAuth terms, the public app doesn't have a client secret because it can't be

trusted to store secrets safely, and the access token is produced for a confidential client. A confidential client is a

client that has a client secret and is assumed to be able to safely store secrets.

The third-party access token might be granted additional scopes to perform sensitive operations based on

the fact that the third-party emitted the token for a more trusted client.

Similarly, refresh tokens shouldn't be issued to a client that isn't trusted, as doing so gives the client unlimited

access unless other restrictions are put into place.

Make an API call from the client to the server API. From the server, retrieve the access token for the third-party

API resource and issue whatever call is necessary.

While this approach requires an extra network hop through the server to call a third-party API, it ultimately

results in a safer experience:

The server can store refresh tokens and ensure that the app doesn't lose access to third-party resources.

The app can't leak access tokens from the server that might contain more sensitive permissions.

The authentication library and Blazor project templates use OpenID Connect (OIDC) v1.0 endpoints. To use a

v2.0 endpoint, configure the JWT Bearer JwtBearerOptions.Authority option. In the following example, AAD is

configured for v2.0 by appending a v2.0 segment to the Authority property:

Alternatively, the setting can be made in the app settings (appsettings.json) file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.jwtbeareroptions.authority#microsoft_aspnetcore_builder_jwtbeareroptions_authority
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.jwtbeareroptions.authority#microsoft_aspnetcore_builder_jwtbeareroptions_authority

{
 "Local": {
 "Authority": "https://login.microsoftonline.com/common/oauth2/v2.0/",
 ...
 }
}

Configure and use gRPC in components

using System.Net.Http;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;
using Grpc.Net.Client;
using Grpc.Net.Client.Web;
using {APP ASSEMBLY}.Shared;

...

builder.Services.AddScoped(sp =>
{
 var baseAddressMessageHandler =
 sp.GetRequiredService<BaseAddressAuthorizationMessageHandler>();
 baseAddressMessageHandler.InnerHandler = new HttpClientHandler();
 var grpcWebHandler =
 new GrpcWebHandler(GrpcWebMode.GrpcWeb, baseAddressMessageHandler);
 var channel = GrpcChannel.ForAddress(builder.HostEnvironment.BaseAddress,
 new GrpcChannelOptions { HttpHandler = grpcWebHandler });

 return new Greeter.GreeterClient(channel);
});

If tacking on a segment to the authority isn't appropriate for the app's OIDC provider, such as with non-AAD

providers, set the Authority property directly. Either set the property in JwtBearerOptions or in the app settings

file (appsettings.json) with the Authority key.

The list of claims in the ID token changes for v2.0 endpoints. For more information, see Why update to Microsoft

identity platform (v2.0)?.

To configure a Blazor WebAssembly app to use the ASP.NET Core gRPC framework:

Enable gRPC-Web on the server. For more information, see Use gRPC in browser apps.

Register gRPC services for the app's message handler. The following example configures the app's

authorization message handler to use the GreeterClient service from the gRPC tutorial (Program.Main):

The placeholder {APP ASSEMBLY} is the app's assembly name (for example, BlazorSample). Place the .proto file

in the Shared project of the hosted Blazor solution.

A component in the client app can make gRPC calls using the gRPC client (Pages/Grpc.razor):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions.authority#microsoft_aspnetcore_builder_openidconnectoptions_authority
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.jwtbeareroptions
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/azure-ad-endpoint-comparison

@page "/grpc"
@attribute [Authorize]
@using Microsoft.AspNetCore.Authorization
@using {APP ASSEMBLY}.Shared
@inject Greeter.GreeterClient GreeterClient

<h1>Invoke gRPC service</h1>

<p>
 <input @bind="name" placeholder="Type your name" />
 <button @onclick="GetGreeting" class="btn btn-primary">Call gRPC service</button>
</p>

Server response: @serverResponse

@code {
 private string name = "Bert";
 private string serverResponse;

 private async Task GetGreeting()
 {
 try
 {
 var request = new HelloRequest { Name = name };
 var reply = await GreeterClient.SayHelloAsync(request);
 serverResponse = reply.Message;
 }
 catch (Grpc.Core.RpcException ex)
 when (ex.Status.DebugException is
 AccessTokenNotAvailableException tokenEx)
 {
 tokenEx.Redirect();
 }
 }
}

Additional resources

The placeholder {APP ASSEMBLY} is the app's assembly name (for example, BlazorSample). To use the

Status.DebugException property, use Grpc.Net.Client version 2.30.0 or later.

For more information, see Use gRPC in browser apps.

HttpClient and HttpRequestMessage with Fetch API request options

https://www.nuget.org/packages/Grpc.Net.Client

Azure AD Groups, Administrative Roles, and user-
defined roles
9/22/2020 • 8 minutes to read • Edit Online

Microsoft Graph API permission

User-defined groups and built-in Administrative Roles

By Luke Latham and Javier Calvarro Nelson

Azure Active Directory (AAD) provides several authorization approaches that can be combined with ASP.NET Core

Identity:

User-defined groups

Roles

Security

Microsoft 365

Distribution

Built-in Administrative Roles

User-defined roles

The guidance in this article applies to the Blazor WebAssembly AAD deployment scenarios described in the

following topics:

Standalone with Microsoft Accounts

Standalone with AAD

Hosted with AAD

A Microsoft Graph API call is required for any app user with more than five built-in AAD Administrator role and

security group memberships.

To permit Graph API calls, give the standalone or client app of a hosted Blazor solution any of the following Graph

API permissions in the Azure portal:

Directory.Read.All

Directory.ReadWrite.All

Directory.AccessAsUser.All

Directory.Read.All is the least-privileged permission and is the permission used for the example described in

this article.

To configure the app in the Azure portal to provide a groups membership claim, see the following Azure articles.

Assign users to user-defined AAD groups and built-in Administrative Roles.

Roles using Azure AD security groups

groupMembershipClaims attribute

The following examples assume that a user is assigned to the AAD built-in Billing Administrator role.

The single groups claim sent by AAD presents the user's groups and roles as Object IDs (GUIDs) in a JSON array.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/webassembly/azure-active-directory-groups-and-roles.md
https://github.com/guardrex
https://github.com/javiercn
https://docs.microsoft.com/en-us/graph/use-the-api
https://docs.microsoft.com/en-us/graph/permissions-reference
https://docs.microsoft.com/en-us/azure/architecture/multitenant-identity/app-roles#roles-using-azure-ad-security-groups
https://docs.microsoft.com/en-us/azure/active-directory/develop/reference-app-manifest#groupmembershipclaims-attribute

using System.Text.Json.Serialization;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

public class CustomUserAccount : RemoteUserAccount
{
 [JsonPropertyName("groups")]
 public string[] Groups { get; set; } = new string[] { };

 [JsonPropertyName("roles")]
 public string[] Roles { get; set; } = new string[] { };
}

using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;

public class GraphAPIAuthorizationMessageHandler : AuthorizationMessageHandler
{
 public GraphAPIAuthorizationMessageHandler(IAccessTokenProvider provider,
 NavigationManager navigationManager)
 : base(provider, navigationManager)
 {
 ConfigureHandler(
 authorizedUrls: new[] { "https://graph.microsoft.com" },
 scopes: new[] { "https://graph.microsoft.com/Directory.Read.All" });
 }
}

builder.Services.AddScoped<GraphAPIAuthorizationMessageHandler>();

builder.Services.AddHttpClient("GraphAPI",
 client => client.BaseAddress = new Uri("https://graph.microsoft.com"))
 .AddHttpMessageHandler<GraphAPIAuthorizationMessageHandler>();

The app must convert the JSON array of groups and roles into individual group claims that the app can build

policies against.

When the number of assigned built-in Azure Administrative Roles and user-defined groups exceeds five, AAD

sends a hasgroups claim with a true value instead of sending a groups claim. Any app that may have more

than five roles and groups assigned to its users must make a separate Graph API call to obtain a user's roles and

groups. The example implementation provided in this article addresses this scenario. For more information, see

the groups and hasgroups claims information in Microsoft identity platform access tokens: Payload claims

article.

Extend RemoteUserAccount to include array properties for groups and roles. Assign an empty array to each

property so that checking for null isn't required when these properties are used in foreach loops later.

CustomUserAccount.cs :

In the standalone app or the client app of a hosted Blazor solution, create a custom AuthorizationMessageHandler

class. Use the correct scope (permission) for Graph API calls that obtain role and group information.

GraphAPIAuthorizationMessageHandler.cs :

In Program.Main (Program.cs), add the AuthorizationMessageHandler implementation service and add a named

HttpClient for making Graph API requests. The following example names the client GraphAPI :

Create AAD directory objects classes to receive the Open Data Protocol (OData) roles and groups from a Graph

API call. The OData arrives in JSON format, and a call to ReadFromJsonAsync populates an instance of the

DirectoryObjects class.

https://docs.microsoft.com/en-us/azure/active-directory/develop/access-tokens#payload-claims
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.remoteuseraccount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json.httpcontentjsonextensions.readfromjsonasync

using System.Collections.Generic;
using System.Text.Json.Serialization;

public class DirectoryObjects
{
 [JsonPropertyName("@odata.context")]
 public string Context { get; set; }

 [JsonPropertyName("value")]
 public List<Value> Values { get; set; }
}

public class Value
{
 [JsonPropertyName("@odata.type")]
 public string Type { get; set; }

 [JsonPropertyName("id")]
 public string Id { get; set; }
}

using System.Linq;
using System.Net.Http;
using System.Net.Http.Json;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication;
using Microsoft.AspNetCore.Components.WebAssembly.Authentication.Internal;
using Microsoft.Extensions.Logging;

public class CustomUserFactory
 : AccountClaimsPrincipalFactory<CustomUserAccount>
{
 private readonly ILogger<CustomUserFactory> logger;
 private readonly IHttpClientFactory clientFactory;

 public CustomUserFactory(IAccessTokenProviderAccessor accessor,
 IHttpClientFactory clientFactory,
 ILogger<CustomUserFactory> logger)
 : base(accessor)
 {
 this.clientFactory = clientFactory;
 this.logger = logger;
 }

 public async override ValueTask<ClaimsPrincipal> CreateUserAsync(
 CustomUserAccount account,
 RemoteAuthenticationUserOptions options)
 {
 var initialUser = await base.CreateUserAsync(account, options);

 if (initialUser.Identity.IsAuthenticated)
 {

DirectoryObjects.cs :

Create a custom user factory to process roles and groups claims. The following example implementation also

handles the roles claim array, which is covered in the User-defined roles section. If the hasgroups claim is

present, the named HttpClient is used to make an authorized request to Graph API to obtain the user's roles and

groups. This implementation uses the Microsoft Identity Platform v1.0 endpoint

https://graph.microsoft.com/v1.0/me/memberOf (API documentation). The guidance in this topic will be updated for

Identity v2.0 when the MSAL packages are upgraded for v2.0.

CustomAccountFactory.cs :

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/graph/api/user-list-memberof

 var userIdentity = (ClaimsIdentity)initialUser.Identity;

 foreach (var role in account.Roles)
 {
 userIdentity.AddClaim(new Claim("role", role));
 }

 if (userIdentity.HasClaim(c => c.Type == "hasgroups"))
 {
 try
 {
 var client = clientFactory.CreateClient("GraphAPI");

 var response = await client.GetAsync("v1.0/me/memberOf");

 if (response.IsSuccessStatusCode)
 {
 var userObjects = await response.Content
 .ReadFromJsonAsync<DirectoryObjects>();

 foreach (var obj in userObjects?.Values)
 {
 userIdentity.AddClaim(new Claim("group", obj.Id));
 }

 var claim = userIdentity.Claims.FirstOrDefault(
 c => c.Type == "hasgroups");

 userIdentity.RemoveClaim(claim);
 }
 else
 {
 logger.LogError("Graph API request failure: {REASON}",
 response.ReasonPhrase);
 }
 }
 catch (AccessTokenNotAvailableException exception)
 {
 logger.LogError("Graph API access token failure: {MESSAGE}",
 exception.Message);
 }
 }
 else
 {
 foreach (var group in account.Groups)
 {
 userIdentity.AddClaim(new Claim("group", group));
 }
 }
 }

 return initialUser;
 }
}

There's no need to provide code to remove the original groups claim, if present, because it's automatically

removed by the framework.

NOTENOTE

builder.Services.AddMsalAuthentication<RemoteAuthenticationState,
 CustomUserAccount>(options =>
{
 builder.Configuration.Bind("AzureAd",
 options.ProviderOptions.Authentication);
 options.ProviderOptions.DefaultAccessTokenScopes.Add("...");

 options.ProviderOptions.AdditionalScopesToConsent.Add(
 "https://graph.microsoft.com/Directory.Read.All");
})
.AddAccountClaimsPrincipalFactory<RemoteAuthenticationState, CustomUserAccount,
 CustomUserFactory>();

builder.Services.AddAuthorizationCore(options =>
{
 options.AddPolicy("BillingAdministrator", policy =>
 policy.RequireClaim("group", "69ff516a-b57d-4697-a429-9de4af7b5609"));
});

<AuthorizeView Policy="BillingAdministrator">
 <Authorized>
 <p>
 The user is in the 'Billing Administrator' AAD Administrative Role
 and can see this content.
 </p>
 </Authorized>
 <NotAuthorized>
 <p>
 The user is NOT in the 'Billing Administrator' role and sees this
 content.
 </p>
 </NotAuthorized>
</AuthorizeView>

The approach in this example:

Adds a custom AuthorizationMessageHandler class to attach access tokens to outgoing requests.

Adds a named HttpClient for making web API requests to a secure, external web API endpoint.

Uses the named HttpClient to make authorized requests.

General coverage for this approach is found in the ASP.NET Core Blazor WebAssembly additional security scenarios article.

Register the factory in Program.Main (Program.cs) of the standalone app or client app of a hosted Blazor solution.

Consent to the Directory.Read.All permission scope as an additional scope for the app:

Create a policy for each group or role in Program.Main . The following example creates a policy for the AAD built-

in Billing Administrator role:

For the complete list of AAD role Object IDs, see the AAD Adminstrative Role Group IDs section.

In the following examples, the app uses the preceding policy to authorize the user.

The AuthorizeView component works with the policy:

Access to an entire component can be based on the policy using [Authorize] attribute directive

(AuthorizeAttribute):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.authorizationmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute

@page "/"
@using Microsoft.AspNetCore.Authorization
@attribute [Authorize(Policy = "BillingAdministrator")]

@page "/checkpolicy"
@using Microsoft.AspNetCore.Authorization
@inject IAuthorizationService AuthorizationService

<h1>Check Policy</h1>

<p>This component checks a policy in code.</p>

<button @onclick="CheckPolicy">Check 'BillingAdministrator' policy</button>

<p>Policy Message: @policyMessage</p>

@code {
 private string policyMessage = "Check hasn't been made yet.";

 [CascadingParameter]
 private Task<AuthenticationState> authenticationStateTask { get; set; }

 private async void CheckPolicy()
 {
 var user = (await authenticationStateTask).User;

 if ((await AuthorizationService.AuthorizeAsync(user,
 "BillingAdministrator")).Succeeded)
 {
 policyMessage = "Yes! The 'BillingAdministrator' policy is met.";
 }
 else
 {
 policyMessage = "No! 'BillingAdministrator' policy is NOT met.";
 }
 }
}

User-defined roles

If the user isn't logged in, they're redirected to the AAD sign-in page and then back to the component after they

sign in.

A policy check can also be performed in code with procedural logic:

An AAD-registered app can also be configured to use user-defined roles.

To configure the app in the Azure portal to provide a roles membership claim, see How to: Add app roles in

your application and receive them in the token in the Azure documentation.

The following example assumes that an app is configured with two roles:

admin

developer

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-add-app-roles-in-azure-ad-apps

NOTENOTE

builder.Services.AddMsalAuthentication(options =>
{
 ...

 options.UserOptions.RoleClaim = "role";
});

AAD Adminstrative Role Group IDs

A A D A DM IN IST RAT IVE RO L EA A D A DM IN IST RAT IVE RO L E O B JEC T IDO B JEC T ID

Application administrator fa11557b-4f15-4ddd-85d5-313c7cd74047

Application developer 68adcbb8-9504-44f6-89f2-5cd48dc74a2c

Although you can't assign roles to security groups without an Azure AD Premium account, you can assign users to roles

and receive a roles claim for users with a standard Azure account. The guidance in this section doesn't require an Azure

AD Premium account.

Multiple roles are assigned in the Azure portal by re-adding a userre-adding a user for each additional role assignment.

The single roles claim sent by AAD presents the user-defined roles as the appRoles 's value s in a JSON array.

The app must convert the JSON array of roles into individual role claims.

The CustomUserFactory shown in the User-defined groups and AAD built-in Administrative Roles section is set up

to act on a roles claim with a JSON array value. Add and register the CustomUserFactory in the standalone app

or client app of a hosted Blazor solution as shown in the User-defined groups and AAD built-in Administrative

Roles section. There's no need to provide code to remove the original roles claim because it's automatically

removed by the framework.

In Program.Main of the standalone app or client app of a hosted Blazor solution, specify the claim named " role "

as the role claim:

Component authorization approaches are functional at this point. Any of the authorization mechanisms in

components can use the admin role to authorize the user :

if (user.IsInRole("admin") && user.IsInRole("developer"))
{
 ...
}

AuthorizeView component (Example: <AuthorizeView Roles="admin">)

[Authorize] attribute directive (AuthorizeAttribute) (Example: @attribute [Authorize(Roles = "admin")])

Procedural logic (Example: if (user.IsInRole("admin")) { ... })

Multiple role tests are supported:

The Object IDs presented in the following table are used to create policies for group claims. Policies permit an

app to authorize users for various activities in an app. For more information, see the User-defined groups and

AAD built-in Administrative Roles section.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute

Authentication administrator 02d110a1-96b1-419e-af87-746461b60ed7

Azure DevOps administrator a5311ace-ca41-44cd-b833-8d22caa0b34f

Azure Information Protection administrator 18632dce-f9b5-4f01-abb5-37051f06860e

B2C IEF Keyset administrator 0c2e87e5-94f9-4adb-ae8c-bcafe11bd368

B2C IEF Policy administrator bfcab36c-10c6-4b13-b63c-4d8b62c0c44e

B2C user flow administrator baa531b7-8cf0-44ad-8f98-eded88dae827

B2C user flow attribute administrator dd0baca0-a535-48c1-b871-8431abe16452

Billing administrator 69ff516a-b57d-4697-a429-9de4af7b5609

Cloud application administrator 250b5fe3-b553-458d-9a53-b782c13c34bf

Cloud device administrator 26cd4b44-2636-4ddb-bdfa-27feae66f86d

Compliance administrator 9d6e1dd0-c9f8-45f8-b558-b134f700116c

Compliance data administrator 4c0ca3a2-231e-416c-9411-4abe57d5cb9d

Conditional Access administrator 8f71a611-137d-49af-87ad-e97f1fd5da76

Customer LockBox access approver c18d54a8-b13e-4954-a1a4-7deaf2e4f184

Desktop Analytics administrator c62c4ac5-e4c6-4096-8a2f-1ee3cbaaae15

Directory readers e1fc84a6-7762-4b9b-8e29-518b4adbc23b

Dynamics 365 administrator f20a9cfa-9fdf-49a8-a977-1afe446a1d6e

Exchange administrator b2ec2cc0-d5c9-4864-ad9b-38dd9dba2652

External Identity Provider administrator febfaeb4-e478-407a-b4b3-f4d9716618a2

Global administrator a45ba61b-44db-462c-924b-3b2719152588

Global reader f6903b21-6aba-4124-b44c-76671796b9d5

Groups administrator 158b3e5a-d89d-460b-92b5-3b34985f0197

Guest inviter 4c730a1d-cc22-44af-8f9f-4eec635c7502

Helpdesk administrator 108678c8-6628-44e1-8d01-caf598a6a5f5

Intune administrator 79950741-23fa-4189-b2cb-46640601c497

A A D A DM IN IST RAT IVE RO L EA A D A DM IN IST RAT IVE RO L E O B JEC T IDO B JEC T ID

Kaizala administrator d6322af2-48e7-42e0-8c68-0bbe31af3412

License administrator 3355458a-e423-44bf-8b98-4ac5e572cea5

Message center privacy reader 6395db95-9fb8-42b9-b1ed-30a2405eee6f

Message center reader fd5d37b8-4e24-434b-9e63-70ed3b759a16

Office apps administrator 5f3870cd-b042-4f93-86d7-c9d77c664dc7

Password administrator 466e48b7-5d66-4ae5-8911-1a118de74941

Power BI administrator 984e83b8-8337-4255-91a1-acb663175ab4

Power platform administrator 76d6f95e-9a15-4d7d-8d21-00de00faf9fd

Privileged authentication administrator 0829f731-b46d-419f-9742-aeb122367d11

Privileged role administrator f20a725a-d1c8-4107-83ea-1171c97d00c7

Reports reader 54635450-e8ed-4f2d-9632-07db2517b4de

Search administrator c770a2f1-c9ba-4e60-9176-9f52b1eb1a31

Search editor 6a6858c6-5f0d-44ac-87c7-0190fbedd271

Security administrator 20fa50e3-6531-44d8-bd39-b251420568ad

Security operator 43aae017-8e51-4188-91ab-e6debd572800

Security reader 45035cd3-fd97-4250-8197-3a53d3562d9b

Service support administrator 2c92cf45-c914-48f8-9bf9-fc14b28818ab

SharePoint administrator e1c32229-875e-461d-ae24-3cb99116e86c

Skype for Business administrator 0a8cee12-e21d-43ef-abd9-f1ea85710e30

Teams Communications Administrator 2393e455-6e13-4743-9f52-63fcec2b6a9c

Teams Communications Support Engineer 802dd94e-d717-46f6-af98-b9167071e9fc

Teams Communications Specialist ef547281-cf46-4cc6-bcaa-f5eac3f030c9

Teams Service Administrator 8846a0be-197b-443a-b13c-11192691fa24

User administrator 1f6eed58-7dd3-460b-a298-666f975427a1

A A D A DM IN IST RAT IVE RO L EA A D A DM IN IST RAT IVE RO L E O B JEC T IDO B JEC T ID

Additional resources

Claims-based authorization in ASP.NET Core

ASP.NET Core Blazor authentication and authorization

Secure ASP.NET Core Blazor Server apps
9/22/2020 • 2 minutes to read • Edit Online

Blazor Server project template

Scaffold Identity

By Luke Latham

Blazor Server apps are configured for security in the same manner as ASP.NET Core apps. For more information,

see the articles under Overview of ASP.NET Core Security. Topics under this overview apply specifically to Blazor

Server.

The Blazor Server project template can be configured for authentication when the project is created.

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

Follow the Visual Studio guidance in Tooling for ASP.NET Core Blazor to create a new Blazor Server project with an

authentication mechanism.

After choosing the Blazor Ser ver AppBlazor Ser ver App template in the Create a new ASP.NET Core Web ApplicationCreate a new ASP.NET Core Web Application dialog,

select ChangeChange under AuthenticationAuthentication.

A dialog opens to offer the same set of authentication mechanisms available for other ASP.NET Core projects:

No AuthenticationNo Authentication

Individual User AccountsIndividual User Accounts : User accounts can be stored:

Work or School AccountsWork or School Accounts

Windows AuthenticationWindows Authentication

Within the app using ASP.NET Core's Identity system.

With Azure AD B2C.

Scaffold Identity into a Blazor Server project:

Without existing authorization.

With authorization.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/server/index.md
https://github.com/guardrex

Threat mitigation guidance for ASP.NET Core Blazor
Server
9/22/2020 • 22 minutes to read • Edit Online

Blazor and shared state

WARNINGWARNING

By Javier Calvarro Nelson

Blazor Server apps adopt a stateful data processing model, where the server and client maintain a long-lived

relationship. The persistent state is maintained by a circuit, which can span connections that are also potentially

long-lived.

When a user visits a Blazor Server site, the server creates a circuit in the server's memory. The circuit indicates to

the browser what content to render and responds to events, such as when the user selects a button in the UI. To

perform these actions, a circuit invokes JavaScript functions in the user's browser and .NET methods on the server.

This two-way JavaScript-based interaction is referred to as JavaScript interop (JS interop).

Because JS interop occurs over the Internet and the client uses a remote browser, Blazor Server apps share most

web app security concerns. This topic describes common threats to Blazor Server apps and provides threat

mitigation guidance focused on Internet-facing apps.

In constrained environments, such as inside corporate networks or intranets, some of the mitigation guidance

either :

Doesn't apply in the constrained environment.

Isn't worth the cost to implement because the security risk is low in a constrained environment.

Blazor server apps live in server memory. That means that there are multiple apps hosted within the same

process. For each app session, Blazor starts a circuit with its own DI container scope. That means that scoped

services are unique per Blazor session.

We don't recommend apps on the same server share state using singleton services unless extreme care is taken, as this can

introduce security vulnerabilities, such as leaking user state across circuits.

You can use stateful singleton services in Blazor apps if they are specifically designed for it. For example, it's ok to

use a memory cache as a singleton because it requires a key to access a given entry, assuming users don't have

control of what cache keys are used.

Additionally, again for security reasons, you must not use Additionally, again for security reasons, you must not use IHttpContextAccessorIHttpContextAccessor within Blazor apps. within Blazor apps.

Blazor apps run outside of the context of the ASP.NET Core pipeline. The HttpContext isn't guaranteed to be

available within the IHttpContextAccessor, nor is it guaranteed to be holding the context that started the Blazor

app.

The recommended way to pass request state to the Blazor app is through parameters to the root component in

the initial rendering of the app:

Define a class with all the data you want to pass to the Blazor app.

Populate that data from the Razor page using the HttpContext available at that time.

Pass the data to the Blazor app as a parameter to the root component (App).

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/server/threat-mitigation.md
https://github.com/javiercn
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext

Resource exhaustion

CPUCPU

MemoryMemory

Define a parameter in the root component to hold the data being passed to the app.

Use the user-specific data within the app; or alternatively, copy that data into a scoped service within

OnInitializedAsync so that it can be used across the app.

For more information and example code, see ASP.NET Core Blazor Server additional security scenarios.

Resource exhaustion can occur when a client interacts with the server and causes the server to consume excessive

resources. Excessive resource consumption primarily affects:

CPU

Memory

Client connections

Denial of service (DoS) attacks usually seek to exhaust an app or server's resources. However, resource exhaustion

isn't necessarily the result of an attack on the system. For example, finite resources can be exhausted due to high

user demand. DoS is covered further in the Denial of service (DoS) attacks section.

Resources external to the Blazor framework, such as databases and file handles (used to read and write files), may

also experience resource exhaustion. For more information, see ASP.NET Core Performance Best Practices.

CPU exhaustion can occur when one or more clients force the server to perform intensive CPU work.

For example, consider a Blazor Server app that calculates a Fibonnacci number. A Fibonnacci number is produced

from a Fibonnacci sequence, where each number in the sequence is the sum of the two preceding numbers. The

amount of work required to reach the answer depends on the length of the sequence and the size of the initial

value. If the app doesn't place limits on a client's request, the CPU-intensive calculations may dominate the CPU's

time and diminish the performance of other tasks. Excessive resource consumption is a security concern

impacting availability.

CPU exhaustion is a concern for all public-facing apps. In regular web apps, requests and connections time out as

a safeguard, but Blazor Server apps don't provide the same safeguards. Blazor Server apps must include

appropriate checks and limits before performing potentially CPU-intensive work.

Memory exhaustion can occur when one or more clients force the server to consume a large amount of memory.

For example, consider a Blazor-server side app with a component that accepts and displays a list of items. If the

Blazor app doesn't place limits on the number of items allowed or the number of items rendered back to the

client, the memory-intensive processing and rendering may dominate the server's memory to the point where

performance of the server suffers. The server may crash or slow to the point that it appears to have crashed.

Consider the following scenario for maintaining and displaying a list of items that pertain to a potential memory

exhaustion scenario on the server :

The items in a List<MyItem> property or field use the server's memory. If the app allows the list of items to

grow unbounded, there's a risk of the server running out of memory. Running out of memory causes the

current session to end (crash) and all of the concurrent sessions in that server instance receive an out-of-

memory exception. To prevent this scenario from occurring, the app must use a data structure that imposes an

item limit on concurrent users.

If a paging scheme isn't used for rendering, the server uses additional memory for objects that aren't visible in

the UI. Without a limit on the number of items, memory demands may exhaust the available server memory.

To prevent this scenario, use one of the following approaches:

Use paginated lists when rendering.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync

NOTENOTE

Client connectionsClient connections

Only display the first 100 to 1,000 items and require the user to enter search criteria to find items

beyond the items displayed.

For a more advanced rendering scenario, implement lists or grids that support virtualization. Using

virtualization, lists only render a subset of items currently visible to the user. When the user interacts

with the scrollbar in the UI, the component renders only those items required for display. The items that

aren't currently required for display can be held in secondary storage, which is the ideal approach.

Undisplayed items can also be held in memory, which is less ideal.

Blazor Server apps offer a similar programming model to other UI frameworks for stateful apps, such as WPF,

Windows Forms, or Blazor WebAssembly. The main difference is that in several of the UI frameworks the memory

consumed by the app belongs to the client and only affects that individual client. For example, a Blazor

WebAssembly app runs entirely on the client and only uses client memory resources. In the Blazor Server

scenario, the memory consumed by the app belongs to the server and is shared among clients on the server

instance.

Server-side memory demands are a consideration for all Blazor Server apps. However, most web apps are

stateless, and the memory used while processing a request is released when the response is returned. As a

general recommendation, don't permit clients to allocate an unbound amount of memory as in any other server-

side app that persists client connections. The memory consumed by a Blazor Server app persists for a longer time

than a single request.

During development, a profiler can be used or a trace captured to assess memory demands of clients. A profiler or trace

won't capture the memory allocated to a specific client. To capture the memory use of a specific client during development,

capture a dump and examine the memory demand of all the objects rooted at a user's circuit.

Connection exhaustion can occur when one or more clients open too many concurrent connections to the server,

preventing other clients from establishing new connections.

Blazor clients establish a single connection per session and keep the connection open for as long as the browser

window is open. The demands on the server of maintaining all of the connections isn't specific to Blazor apps.

Given the persistent nature of the connections and the stateful nature of Blazor Server apps, connection

exhaustion is a greater risk to availability of the app.

By default, there's no limit on the number of connections per user for a Blazor Server app. If the app requires a

connection limit, take one or more of the following approaches:

Require authentication, which naturally limits the ability of unauthorized users to connect to the app. For this

scenario to be effective, users must be prevented from provisioning new users at will.

Limit the number of connections per user. Limiting connections can be accomplished via the following

approaches. Exercise care to allow legitimate users to access the app (for example, when a connection limit is

established based on the client's IP address).

At the app level:

At the server level: Use a proxy/gateway in front of the app. For example, Azure Front Door enables you

Endpoint routing extensibility.

Require authentication to connect to the app and keep track of the active sessions per user.

Reject new sessions upon reaching a limit.

Proxy WebSocket connections to an app through the use of a proxy, such as the Azure SignalR

Service that multiplexes connections from clients to an app. This provides an app with greater

connection capacity than a single client can establish, preventing a client from exhausting the

connections to the server.

https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://docs.microsoft.com/en-us/azure/frontdoor/front-door-overview

 Denial of service (DoS) attacks

B L A Z O R SERVER A P P L IM ITB L A Z O R SERVER A P P L IM IT DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

DisconnectedCircuitMaxRetained Maximum number of disconnected
circuits that a given server holds in
memory at a time.

100

DisconnectedCircuitRetentionPeriod Maximum amount of time a
disconnected circuit is held in memory
before being torn down.

3 minutes

JSInteropDefaultCallTimeout Maximum amount of time the server
waits before timing out an
asynchronous JavaScript function
invocation.

1 minute

MaxBufferedUnacknowledgedRenderBa
tches

Maximum number of unacknowledged
render batches the server keeps in
memory per circuit at a given time to
support robust reconnection. After
reaching the limit, the server stops
producing new render batches until
one or more batches have been
acknowledged by the client.

10

SIGN A L R A N D A SP. N ET C O RE L IM ITSIGN A L R A N D A SP. N ET C O RE L IM IT DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

HubConnectionContextOptions.Maxim
umReceiveMessageSize

Message size for an individual message. 32 KB

Interactions with the browser (client)

JavaScript functions invoked from .NETJavaScript functions invoked from .NET

to define, manage, and monitor the global routing of web traffic to an app.

Denial of service (DoS) attacks involve a client causing the server to exhaust one or more of its resources making

the app unavailable. Blazor Server apps include some default limits and rely on other ASP.NET Core and SignalR

limits to protect against DoS attacks that are set on CircuitOptions.

Set the maximum message size of a single incoming hub message with HubConnectionContextOptions.

A client interacts with the server through JS interop event dispatching and render completion. JS interop

communication goes both ways between JavaScript and .NET:

Browser events are dispatched from the client to the server in an asynchronous fashion.

The server responds asynchronously rerendering the UI as necessary.

For calls from .NET methods to JavaScript:

All invocations have a configurable timeout after which they fail, returning a OperationCanceledException to

the caller.

There's a default timeout for the calls (CircuitOptions.JSInteropDefaultCallTimeout) of one minute. To

configure this limit, see Call JavaScript functions from .NET methods in ASP.NET Core Blazor.

A cancellation token can be provided to control the cancellation on a per-call basis. Rely on the default

call timeout where possible and time-bound any call to the client if a cancellation token is provided.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.server.circuitoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.server.circuitoptions.disconnectedcircuitmaxretained#microsoft_aspnetcore_components_server_circuitoptions_disconnectedcircuitmaxretained
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.server.circuitoptions.disconnectedcircuitretentionperiod#microsoft_aspnetcore_components_server_circuitoptions_disconnectedcircuitretentionperiod
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.server.circuitoptions.jsinteropdefaultcalltimeout#microsoft_aspnetcore_components_server_circuitoptions_jsinteropdefaultcalltimeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.server.circuitoptions.maxbufferedunacknowledgedrenderbatches#microsoft_aspnetcore_components_server_circuitoptions_maxbufferedunacknowledgedrenderbatches
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hubconnectioncontextoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hubconnectioncontextoptions.maximumreceivemessagesize#microsoft_aspnetcore_signalr_hubconnectioncontextoptions_maximumreceivemessagesize
https://docs.microsoft.com/en-us/dotnet/api/system.operationcanceledexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.server.circuitoptions.jsinteropdefaultcalltimeout#microsoft_aspnetcore_components_server_circuitoptions_jsinteropdefaultcalltimeout

.NET methods invoked from the browser.NET methods invoked from the browser

EventsEvents

The result of a JavaScript call can't be trusted. The Blazor app client running in the browser searches for the

JavaScript function to invoke. The function is invoked, and either the result or an error is produced. A malicious

client can attempt to:

Cause an issue in the app by returning an error from the JavaScript function.

Induce an unintended behavior on the server by returning an unexpected result from the JavaScript

function.

Take the following precautions to guard against the preceding scenarios:

Wrap JS interop calls within try-catch statements to account for errors that might occur during the

invocations. For more information, see Handle errors in ASP.NET Core Blazor apps.

Validate data returned from JS interop invocations, including error messages, before taking any action.

Don't trust calls from JavaScript to .NET methods. When a .NET method is exposed to JavaScript, consider how the

.NET method is invoked:

Treat any .NET method exposed to JavaScript as you would a public endpoint to the app.

Avoid implementing custom dispatching of .NET invocations on top of the framework's dispatching

implementation. Exposing .NET methods to the browser is an advanced scenario, not recommended for

general Blazor development.

Validate input.

Don't allocate an excessive quantity of resources as part of the .NET method invocation. For example,

perform checks and place limits on CPU and memory use.

Take into account that static and instance methods can be exposed to JavaScript clients. Avoid sharing

state across sessions unless the design calls for sharing state with appropriate constraints.

Avoid passing user-supplied data in parameters to JavaScript calls. If passing data in parameters is

absolutely required, ensure that the JavaScript code handles passing the data without introducing

Cross-site scripting (XSS) vulnerabilities. For example, don't write user-supplied data to the Document

Object Model (DOM) by setting the innerHTML property of an element. Consider using Content Security

Policy (CSP) to disable eval and other unsafe JavaScript primitives.

Ensure that values are within expected ranges.

Ensure that the user has permission to perform the action requested.

For instance methods exposed through DotNetReference objects that are originally created

through dependency injection (DI), the objects should be registered as scoped objects. This

applies to any DI service that the Blazor Server app uses.

For static methods, avoid establishing state that can't be scoped to the client unless the app is

explicitly sharing state by-design across all users on a server instance.

Events provide an entry point to a Blazor Server app. The same rules for safeguarding endpoints in web apps

apply to event handling in Blazor Server apps. A malicious client can send any data it wishes to send as the

payload for an event.

For example:

A change event for a <select> could send a value that isn't within the options that the app presented to the

client.

An <input> could send any text data to the server, bypassing client-side validation.

The app must validate the data for any event that the app handles. The Blazor framework forms components

perform basic validations. If the app uses custom forms components, custom code must be written to validate

event data as appropriate.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://developer.mozilla.org/docs/Web/HTTP/CSP

<p>Count: @count<p>

@if (count < 3)
{
 <button @onclick="IncrementCount" value="Increment count" />
}

@code
{
 private int count = 0;

 private void IncrementCount()
 {
 count++;
 }
}

<p>Count: @count<p>

@if (count < 3)
{
 <button @onclick="IncrementCount" value="Increment count" />
}

@code
{
 private int count = 0;

 private void IncrementCount()
 {
 if (count < 3)
 {
 count++;
 }
 }
}

Guard against multiple dispatchesGuard against multiple dispatches

Blazor Server events are asynchronous, so multiple events can be dispatched to the server before the app has

time to react by producing a new render. This has some security implications to consider. Limiting client actions in

the app must be performed inside event handlers and not depend on the current rendered view state.

Consider a counter component that should allow a user to increment a counter a maximum of three times. The

button to increment the counter is conditionally based on the value of count :

A client can dispatch one or more increment events before the framework produces a new render of this

component. The result is that the count can be incremented over three times by the user because the button isn't

removed by the UI quickly enough. The correct way to achieve the limit of three count increments is shown in the

following example:

By adding the if (count < 3) { ... } check inside the handler, the decision to increment count is based on the

current app state. The decision isn't based on the state of the UI as it was in the previous example, which might be

temporarily stale.

If an event callback invokes a long running operation asynchronously, such as fetching data from an external

service or database, consider using a guard. The guard can prevent the user from queueing up multiple

operations while the operation is in progress with visual feedback. The following component code sets isLoading

to true while GetForecastAsync obtains data from the server. While isLoading is true , the button is disabled in

the UI:

@page "/fetchdata"
@using BlazorServerSample.Data
@inject WeatherForecastService ForecastService

<button disabled="@isLoading" @onclick="UpdateForecasts">Update</button>

@code {
 private bool isLoading;
 private WeatherForecast[] forecasts;

 private async Task UpdateForecasts()
 {
 if (!isLoading)
 {
 isLoading = true;
 forecasts = await ForecastService.GetForecastAsync(DateTime.Now);
 isLoading = false;
 }
 }
}

Cancel early and avoid use-after-disposeCancel early and avoid use-after-dispose

@implements IDisposable

...

@code {
 private readonly CancellationTokenSource TokenSource =
 new CancellationTokenSource();

 private async Task UpdateForecasts()
 {
 ...

 forecasts = await ForecastService.GetForecastAsync(DateTime.Now,
 TokenSource.Token);

 if (TokenSource.Token.IsCancellationRequested)
 {
 return;
 }

 ...
 }

 public void Dispose()
 {
 TokenSource.Cancel();
 }
}

Avoid events that produce large amounts of dataAvoid events that produce large amounts of data

The guard pattern demonstrated in the preceding example works if the background operation is executed

asynchronously with the async - await pattern.

In addition to using a guard as described in the Guard against multiple dispatches section, consider using a

CancellationToken to cancel long-running operations when the component is disposed. This approach has the

added benefit of avoiding use-after-dispose in components:

Some DOM events, such as oninput or onscroll , can produce a large amount of data. Avoid using these events

in Blazor server apps.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken

Additional security guidance

Logging and sensitive dataLogging and sensitive data

WARNINGWARNING

Protect information in transit with HTTPSProtect information in transit with HTTPS

Cross-site scripting (XSS)Cross-site scripting (XSS)

The guidance for securing ASP.NET Core apps apply to Blazor Server apps and are covered in the following

sections:

Logging and sensitive data

Protect information in transit with HTTPS

Cross-site scripting (XSS)

Cross-origin protection

Click-jacking

Open redirects

JS interop interactions between the client and server are recorded in the server's logs with ILogger instances.

Blazor avoids logging sensitive information, such as actual events or JS interop inputs and outputs.

When an error occurs on the server, the framework notifies the client and tears down the session. By default, the

client receives a generic error message that can be seen in the browser's developer tools.

The client-side error doesn't include the callstack and doesn't provide detail on the cause of the error, but server

logs do contain such information. For development purposes, sensitive error information can be made available to

the client by enabling detailed errors.

Enable detailed errors in JavaScript with:

CircuitOptions.DetailedErrors.

The DetailedErrors configuration key set to true , which can be set in the app settings file (appsettings.json

). The key can also be set using the ASPNETCORE_DETAILEDERRORS environment variable with a value of true .

Exposing error information to clients on the Internet is a security risk that should always be avoided.

Blazor Server uses SignalR for communication between the client and the server. Blazor Server normally uses the

transport that SignalR negotiates, which is typically WebSockets.

Blazor Server doesn't ensure the integrity and confidentiality of the data sent between the server and the client.

Always use HTTPS.

Cross-site scripting (XSS) allows an unauthorized party to execute arbitrary logic in the context of the browser. A

compromised app could potentially run arbitrary code on the client. The vulnerability could be used to potentially

perform a number of malicious actions against the server :

Dispatch fake/invalid events to the server.

Dispatch fail/invalid render completions.

Avoid dispatching render completions.

Dispatch interop calls from JavaScript to .NET.

Modify the response of interop calls from .NET to JavaScript.

Avoid dispatching .NET to JS interop results.

The Blazor Server framework takes steps to protect against some of the preceding threats:

Stops producing new UI updates if the client isn't acknowledging render batches. Configured with

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.server.circuitoptions.detailederrors#microsoft_aspnetcore_components_server_circuitoptions_detailederrors

 Cross-origin protectionCross-origin protection

CircuitOptions.MaxBufferedUnacknowledgedRenderBatches.

Times out any .NET to JavaScript call after one minute without receiving a response from the client. Configured

with CircuitOptions.JSInteropDefaultCallTimeout.

Performs basic validation on all input coming from the browser during JS interop:

Performs basic validation in all input coming from the browser from dispatched events:

.NET references are valid and of the type expected by the .NET method.

The data isn't malformed.

The correct number of arguments for the method are present in the payload.

The arguments or result can be deserialized correctly before invoking the method.

The event has a valid type.

The data for the event can be deserialized.

There's an event handler associated with the event.

In addition to the safeguards that the framework implements, the app must be coded by the developer to

safeguard against threats and take appropriate actions:

Always validate data when handling events.

Take appropriate action upon receiving invalid data:

Don't trust the error message provided by render batch completions included in the logs. The error is provided

by the client and can't generally be trusted, as the client might be compromised.

Don't trust the input on JS interop calls in either direction between JavaScript and .NET methods.

The app is responsible for validating that the content of arguments and results are valid, even if the arguments

or results are correctly deserialized.

Ignore the data and return. This allows the app to continue processing requests.

If the app determines that the input is illegitimate and couldn't be produced by legitimate client, throw

an exception. Throwing an exception tears down the circuit and ends the session.

For a XSS vulnerability to exist, the app must incorporate user input in the rendered page. Blazor Server

components execute a compile-time step where the markup in a .razor file is transformed into procedural C#

logic. At runtime, the C# logic builds a render tree describing the elements, text, and child components. This is

applied to the browser's DOM via a sequence of JavaScript instructions (or is serialized to HTML in the case of

prerendering):

User input rendered via normal Razor syntax (for example, @someStringValue) doesn't expose a XSS

vulnerability because the Razor syntax is added to the DOM via commands that can only write text. Even if the

value includes HTML markup, the value is displayed as static text. When prerendering, the output is HTML-

encoded, which also displays the content as static text.

Script tags aren't allowed and shouldn't be included in the app's component render tree. If a script tag is

included in a component's markup, a compile-time error is generated.

Component authors can author components in C# without using Razor. The component author is responsible

for using the correct APIs when emitting output. For example, use

builder.AddContent(0, someUserSuppliedString) and not builder.AddMarkupContent(0, someUserSuppliedString) ,

as the latter could create a XSS vulnerability.

As part of protecting against XSS attacks, consider implementing XSS mitigations, such as Content Security Policy

(CSP).

For more information, see Prevent Cross-Site Scripting (XSS) in ASP.NET Core.

Cross-origin attacks involve a client from a different origin performing an action against the server. The malicious

action is typically a GET request or a form POST (Cross-Site Request Forgery, CSRF), but opening a malicious

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.server.circuitoptions.maxbufferedunacknowledgedrenderbatches#microsoft_aspnetcore_components_server_circuitoptions_maxbufferedunacknowledgedrenderbatches
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.server.circuitoptions.jsinteropdefaultcalltimeout#microsoft_aspnetcore_components_server_circuitoptions_jsinteropdefaultcalltimeout
https://developer.mozilla.org/docs/Web/HTTP/CSP

Click-jackingClick-jacking

Open redirectsOpen redirects

Security checklist

WebSocket is also possible. Blazor Server apps offer the same guarantees that any other SignalR app using the

hub protocol offer:

Blazor Server apps can be accessed cross-origin unless additional measures are taken to prevent it. To disable

cross-origin access, either disable CORS in the endpoint by adding the CORS middleware to the pipeline and

adding the DisableCorsAttribute to the Blazor endpoint metadata or limit the set of allowed origins by

configuring SignalR for cross-origin resource sharing.

If CORS is enabled, extra steps might be required to protect the app depending on the CORS configuration. If

CORS is globally enabled, CORS can be disabled for the Blazor Server hub by adding the DisableCorsAttribute

metadata to the endpoint metadata after calling MapBlazorHub on the endpoint route builder.

For more information, see Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core.

Click-jacking involves rendering a site as an <iframe> inside a site from a different origin in order to trick the user

into performing actions on the site under attack.

To protect an app from rendering inside of an <iframe> , use Content Security Policy (CSP) and the

X-Frame-Options header. For more information, see MDN web docs: X-Frame-Options.

When a Blazor Server app session starts, the server performs basic validation of the URLs sent as part of starting

the session. The framework checks that the base URL is a parent of the current URL before establishing the circuit.

No additional checks are performed by the framework.

When a user selects a link on the client, the URL for the link is sent to the server, which determines what action to

take. For example, the app may perform a client-side navigation or indicate to the browser to go to the new

location.

Components can also trigger navigation requests programatically through the use of NavigationManager. In such

scenarios, the app might perform a client-side navigation or indicate to the browser to go to the new location.

Components must:

Avoid using user input as part of the navigation call arguments.

Validate arguments to ensure that the target is allowed by the app.

Otherwise, a malicious user can force the browser to go to an attacker-controlled site. In this scenario, the attacker

tricks the app into using some user input as part of the invocation of the NavigationManager.NavigateTo method.

This advice also applies when rendering links as part of the app:

If possible, use relative links.

Validate that absolute link destinations are valid before including them in a page.

For more information, see Prevent open redirect attacks in ASP.NET Core.

The following list of security considerations isn't comprehensive:

Validate arguments from events.

Validate inputs and results from JS interop calls.

Avoid using (or validate beforehand) user input for .NET to JS interop calls.

Prevent the client from allocating an unbound amount of memory.

Data within the component.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.disablecorsattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.disablecorsattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.componentendpointroutebuilderextensions.mapblazorhub
https://developer.mozilla.org/docs/Web/HTTP/CSP
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Frame-Options
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto

Guard against multiple dispatches.

Cancel long-running operations when the component is disposed.

Avoid events that produce large amounts of data.

Avoid using user input as part of calls to NavigationManager.NavigateTo and validate user input for URLs

against a set of allowed origins first if unavoidable.

Don't make authorization decisions based on the state of the UI but only from component state.

Consider using Content Security Policy (CSP) to protect against XSS attacks.

Consider using CSP and X-Frame-Options to protect against click-jacking.

Ensure CORS settings are appropriate when enabling CORS or explicitly disable CORS for Blazor apps.

Test to ensure that the server-side limits for the Blazor app provide an acceptable user experience without

unacceptable levels of risk.

DotNetObject references returned to the client.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto
https://developer.mozilla.org/docs/Web/HTTP/CSP
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Frame-Options

ASP.NET Core Blazor Server additional security
scenarios
9/22/2020 • 3 minutes to read • Edit Online

Pass tokens to a Blazor Server app

using Microsoft.AspNetCore.Authentication.OpenIdConnect;

...

services.Configure<OpenIdConnectOptions>(AzureADDefaults.OpenIdScheme, options =>
{
 options.ResponseType = "code";
 options.SaveTokens = true;

 options.Scope.Add("offline_access");
 options.Scope.Add("{SCOPE}");
 options.Resource = "{RESOURCE}";
});

public class InitialApplicationState
{
 public string AccessToken { get; set; }
 public string RefreshToken { get; set; }
}

public class TokenProvider
{
 public string AccessToken { get; set; }
 public string RefreshToken { get; set; }
}

By Javier Calvarro Nelson

Tokens available outside of the Razor components in a Blazor Server app can be passed to components with the

approach described in this section. For sample code, including a complete Startup.ConfigureServices example, see

the Passing tokens to a server-side Blazor application.

Authenticate the Blazor Server app as you would with a regular Razor Pages or MVC app. Provision and save the

tokens to the authentication cookie. For example:

Define a class to pass in the initial app state with the access and refresh tokens:

Define a scopedscoped token provider service that can be used within the Blazor app to resolve the tokens from

dependency injection (DI):

In Startup.ConfigureServices , add services for :

IHttpClientFactory

TokenProvider

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/server/additional-scenarios.md
https://github.com/javiercn
https://github.com/javiercn/blazor-server-aad-sample

services.AddHttpClient();
services.AddScoped<TokenProvider>();

@using Microsoft.AspNetCore.Authentication

...

@{
 var tokens = new InitialApplicationState
 {
 AccessToken = await HttpContext.GetTokenAsync("access_token"),
 RefreshToken = await HttpContext.GetTokenAsync("refresh_token")
 };
}

<app>
 <component type="typeof(App)" param-InitialState="tokens"
 render-mode="ServerPrerendered" />
</app>

@inject TokenProvider TokenProvider

...

@code {
 [Parameter]
 public InitialApplicationState InitialState { get; set; }

 protected override Task OnInitializedAsync()
 {
 TokenProvider.AccessToken = InitialState.AccessToken;
 TokenProvider.RefreshToken = InitialState.RefreshToken;

 return base.OnInitializedAsync();
 }
}

In the _Host.cshtml file, create and instance of InitialApplicationState and pass it as a parameter to the app:

In the App component (App.razor), resolve the service and initialize it with the data from the parameter :

Add a package reference to the app for the Microsoft.AspNet.WebApi.Client NuGet package.

In the service that makes a secure API request, inject the token provider and retrieve the token to call the API:

https://www.nuget.org/packages/Microsoft.AspNet.WebApi.Client

using System;
using System.Net.Http;
using System.Threading.Tasks;

public class WeatherForecastService
{
 private readonly TokenProvider store;

 public WeatherForecastService(IHttpClientFactory clientFactory,
 TokenProvider tokenProvider)
 {
 Client = clientFactory.CreateClient();
 store = tokenProvider;
 }

 public HttpClient Client { get; }

 public async Task<WeatherForecast[]> GetForecastAsync(DateTime startDate)
 {
 var token = store.AccessToken;
 var request = new HttpRequestMessage(HttpMethod.Get,
 "https://localhost:5003/WeatherForecast");
 request.Headers.Add("Authorization", $"Bearer {token}");
 var response = await Client.SendAsync(request);
 response.EnsureSuccessStatusCode();

 return await response.Content.ReadAsAsync<WeatherForecast[]>();
 }
}

Set the authentication scheme

endpoints.MapBlazorHub().RequireAuthorization(
 new AuthorizeAttribute
 {
 AuthenticationSchemes = AzureADDefaults.AuthenticationScheme
 });

Use OpenID Connect (OIDC) v2.0 endpoints

services.Configure<OpenIdConnectOptions>(AzureADDefaults.OpenIdScheme,
 options =>
 {
 options.Authority += "/v2.0";
 }

For an app that uses more than one Authentication Middleware and thus has more than one authentication

scheme, the scheme that Blazor uses can be explicitly set in the endpoint configuration of Startup.Configure . The

following example sets the Azure Active Directory scheme:

The authentication library and Blazor templates use OpenID Connect (OIDC) v1.0 endpoints. To use a v2.0 endpoint,

configure the OpenIdConnectOptions.Authority option in the OpenIdConnectOptions:

Alternatively, the setting can be made in the app settings (appsettings.json) file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions.authority#microsoft_aspnetcore_builder_openidconnectoptions_authority
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions

{
 "AzureAd": {
 "Authority": "https://login.microsoftonline.com/common/oauth2/v2.0/",
 ...
 }
}

Code changesCode changes

App ID URIApp ID URI

{
 "AzureAd": {
 ...
 "ClientId": "https://{TENANT}.onmicrosoft.com/{APP NAME}"
 ...
 }
}

If tacking on a segment to the authority isn't appropriate for the app's OIDC provider, such as with non-AAD

providers, set the Authority property directly. Either set the property in OpenIdConnectOptions or in the app

settings file with the Authority key.

services.Configure<OpenIdConnectOptions>(AzureADDefaults.OpenIdScheme, options =>
 {
 ...
 options.Resource = "..."; // REMOVE THIS LINE
 ...
 }
    ```

For more information, see [Scopes, not resources](/azure/active-directory/azuread-dev/azure-ad-endpoint-
comparison#scopes-not-resources) in the Azure documentation.

The list of claims in the ID token changes for v2.0 endpoints. For more information, see Why update to

Microsoft identity platform (v2.0)? in the Azure documentation.

Since resources are specified in scope URIs for v2.0 endpoints, remove the OpenIdConnectOptions.Resource

property setting in OpenIdConnectOptions:

When using v2.0 endpoints, APIs define an App ID URI , which is meant to represent a unique identifier for the

API.

All scopes include the App ID URI as a prefix, and v2.0 endpoints emit access tokens with the App ID URI as the

audience.

When using V2.0 endpoints, the client ID configured in the Server API changes from the API Application ID

(Client ID) to the App ID URI.

appsettings.json :

You can find the App ID URI to use in the OIDC provider app registration description.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions.authority#microsoft_aspnetcore_builder_openidconnectoptions_authority
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions.authority#microsoft_aspnetcore_builder_openidconnectoptions_authority
https://docs.microsoft.com/en-us/azure/active-directory/azuread-dev/azure-ad-endpoint-comparison
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions.resource#microsoft_aspnetcore_builder_openidconnectoptions_resource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions


  

Enforce a Content Security Policy for ASP.NET Core
Blazor
9/22/2020 • 5 minutes to read • Edit Online

Policy directives

By Javier Calvarro Nelson and Luke Latham

Cross-Site Scripting (XSS) is a security vulnerability where an attacker places one or more malicious client-side

scripts into an app's rendered content. A Content Security Policy (CSP) helps protect against XSS attacks by

informing the browser of valid:

Sources for loaded content, including scripts, stylesheets, and images.

Actions taken by a page, specifying permitted URL targets of forms.

Plugins that can be loaded.

To apply a CSP to an app, the developer specifies several CSP content security directives in one or more 

Content-Security-Policy  headers or <meta>  tags.

Policies are evaluated by the browser while a page is loading. The browser inspects the page's sources and

determines if they meet the requirements of the content security directives. When policy directives aren't met for a

resource, the browser doesn't load the resource. For example, consider a policy that doesn't allow third-party

scripts. When a page contains a <script>  tag with a third-party origin in the src  attribute, the browser prevents

the script from loading.

CSP is supported in most modern desktop and mobile browsers, including Chrome, Edge, Firefox, Opera, and

Safari. CSP is recommended for Blazor apps.

Minimally, specify the following directives and sources for Blazor apps. Add additional directives and sources as

needed. The following directives are used in the Apply the policy section of this article, where example security

policies for Blazor WebAssembly and Blazor Server are provided:

base-uri: Restricts the URLs for a page's <base>  tag. Specify self  to indicate that the app's origin, including the

scheme and port number, is a valid source.

block-all-mixed-content: Prevents loading mixed HTTP and HTTPS content.

default-src: Indicates a fallback for source directives that aren't explicitly specified by the policy. Specify self  to

indicate that the app's origin, including the scheme and port number, is a valid source.

img-src: Indicates valid sources for images.

object-src: Indicates valid sources for the <object> , <embed> , and <applet>  tags. Specify none  to prevent all

URL sources.

script-src: Indicates valid sources for scripts.

Specify data:  to permit loading images from data:  URLs.

Specify https:  to permit loading images from HTTPS endpoints.

Specify the https://stackpath.bootstrapcdn.com/  host source for Bootstrap scripts.

Specify self  to indicate that the app's origin, including the scheme and port number, is a valid source.

In a Blazor WebAssembly app:

Specify the following hashes to permit the required Blazor WebAssembly inline scripts to load:

sha256-v8ZC9OgMhcnEQ/Me77/R9TlJfzOBqrMTW8e1KuqLaqc=

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/security/content-security-policy.md
https://github.com/javiercn
https://github.com/guardrex
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/base-uri
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/block-all-mixed-content
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/img-src
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/object-src
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/script-src


  Apply the policy

Blazor WebAssemblyBlazor WebAssembly

style-src: Indicates valid sources for stylesheets.

upgrade-insecure-requests: Indicates that content URLs from insecure (HTTP) sources should be acquired

securely over HTTPS.

In a Blazor Server app, specify the sha256-34WLX60Tw3aG6hylk0plKbZZFXCuepeQ6Hu7OqRf8PI=  hash for the

inline script that performs fallback detection for stylesheets.

Specify unsafe-eval  to use eval()  and methods for creating code from strings.

sha256-If//FtbPc03afjLezvWHnC3Nbu4fDM04IIzkPaf3pH0=

sha256-v8v3RKRPmN4odZ1CWM5gw80QKPCCWMcpNeOmimNL2AA=

Specify the https://stackpath.bootstrapcdn.com/  host source for Bootstrap stylesheets.

Specify self  to indicate that the app's origin, including the scheme and port number, is a valid source.

Specify unsafe-inline  to allow the use of inline styles. The inline declaration is required for the UI in

Blazor Server apps for reconnecting the client and server after the initial request. In a future release,

inline styling might be removed so that unsafe-inline  is no longer required.

The preceding directives are supported by all browsers except Microsoft Internet Explorer.

To obtain SHA hashes for additional inline scripts:

Apply the CSP shown in the Apply the policy section.

Access the browser's developer tools console while running the app locally. The browser calculates and displays

hashes for blocked scripts when a CSP header or meta  tag is present.

Copy the hashes provided by the browser to the script-src  sources. Use single quotes around each hash.

For a Content Security Policy Level 2 browser support matrix, see Can I use: Content Security Policy Level 2.

Use a <meta>  tag to apply the policy:

Set the value of the http-equiv  attribute to Content-Security-Policy .

Place the directives in the content  attribute value. Separate directives with a semicolon ( ; ).

Always place the meta  tag in the <head>  content.

The following sections show example policies for Blazor WebAssembly and Blazor Server. These examples are

versioned with this article for each release of Blazor. To use a version appropriate for your release, select the

document version with the VersionVersion drop down selector on this webpage.

In the <head>  content of the wwwroot/index.html  host page, apply the directives described in the Policy directives

section:

https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/style-src
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/upgrade-insecure-requests
https://www.caniuse.com/#feat=contentsecuritypolicy2


<meta http-equiv="Content-Security-Policy" 
      content="base-uri 'self';
               block-all-mixed-content;
               default-src 'self';
               img-src data: https:;
               object-src 'none';
               script-src https://stackpath.bootstrapcdn.com/ 
                          'self' 
                          'sha256-v8ZC9OgMhcnEQ/Me77/R9TlJfzOBqrMTW8e1KuqLaqc=' 
                          'sha256-If//FtbPc03afjLezvWHnC3Nbu4fDM04IIzkPaf3pH0=' 
                          'sha256-v8v3RKRPmN4odZ1CWM5gw80QKPCCWMcpNeOmimNL2AA=' 
                          'unsafe-eval';
               style-src https://stackpath.bootstrapcdn.com/
                         'self'
                         'unsafe-inline';
               upgrade-insecure-requests;">

Blazor ServerBlazor Server

<meta http-equiv="Content-Security-Policy" 
      content="base-uri 'self';
               block-all-mixed-content;
               default-src 'self';
               img-src data: https:;
               object-src 'none';
               script-src https://stackpath.bootstrapcdn.com/ 
                          'self' 
                          'sha256-34WLX60Tw3aG6hylk0plKbZZFXCuepeQ6Hu7OqRf8PI=';
               style-src https://stackpath.bootstrapcdn.com/
                         'self' 
                         'unsafe-inline';
               upgrade-insecure-requests;">

Meta tag limitations

Test a policy and receive violation reports

In the <head>  content of the Pages/_Host.cshtml  host page, apply the directives described in the Policy directives

section:

A <meta>  tag policy doesn't support the following directives:

frame-ancestors

report-to

report-uri

sandbox

To support the preceding directives, use a header named Content-Security-Policy . The directive string is the

header's value.

Testing helps confirm that third-party scripts aren't inadvertently blocked when building an initial policy.

To test a policy over a period of time without enforcing the policy directives, set the <meta>  tag's http-equiv

attribute or header name of a header-based policy to Content-Security-Policy-Report-Only . Failure reports are sent

as JSON documents to a specified URL. For more information, see MDN web docs: Content-Security-Policy-Report-

Only.

For reporting on violations while a policy is active, see the following articles:

https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/report-to
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/report-uri
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/sandbox
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy-Report-Only


Troubleshoot

Additional resources

report-to

report-uri

Although report-uri  is no longer recommended for use, both directives should be used until report-to  is

supported by all of the major browsers. Don't exclusively use report-uri  because support for report-uri  is

subject to being dropped at any time from browsers. Remove support for report-uri  in your policies when 

report-to  is fully supported. To track adoption of report-to , see Can I use: report-to.

Test and update an app's policy every release.

Errors appear in the browser's developer tools console. Browsers provide information about:

A policy is only completely effective when the client's browser supports all of the included directives. For a

current browser support matrix, see Can I use: Content-Security-Policy.

Elements that don't comply with the policy.

How to modify the policy to allow for a blocked item.

MDN web docs: Content-Security-Policy

Content Security Policy Level 2

Google CSP Evaluator

https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/report-to
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/report-uri
https://caniuse.com/#feat=mdn-http_headers_csp_content-security-policy_report-to
https://caniuse.com/#search=Content-Security-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy
https://www.w3.org/TR/CSP2/
https://csp-evaluator.withgoogle.com/


    

ASP.NET Core Blazor state management
9/22/2020 • 20 minutes to read • Edit Online

Persist state across browser sessions

Where to persist state

Server-side storageServer-side storage

By Steve Sanderson and Luke Latham

User state created in a Blazor WebAssembly app is held in the browser's memory.

Examples of user state held in browser memory include:

The hierarchy of component instances and their most recent render output in the rendered UI.

The values of fields and properties in component instances.

Data held in dependency injection (DI) service instances.

Values set through JavaScript interop calls.

When a user closes and re-opens their browser or reloads the page, user state held in the browser's memory is

lost.

Generally, maintain state across browser sessions where users are actively creating data, not simply reading data

that already exists.

To preserve state across browser sessions, the app must persist the data to some other storage location than the

browser's memory. State persistence isn't automatic. You must take steps when developing the app to implement

stateful data persistence.

Data persistence is typically only required for high-value state that users expended effort to create. In the following

examples, persisting state either saves time or aids in commercial activities:

Multi-step web forms: It's time-consuming for a user to re-enter data for several completed steps of a multi-

step web form if their state is lost. A user loses state in this scenario if they navigate away from the form and

return later.

Shopping carts: Any commercially important component of an app that represents potential revenue can be

maintained. A user who loses their state, and thus their shopping cart, may purchase fewer products or services

when they return to the site later.

An app can only persist app state. UIs can't be persisted, such as component instances and their render trees.

Components and render trees aren't generally serializable. To persist UI state, such as the expanded nodes of a tree

view control, the app must use custom code to model the behavior of the UI state as serializable app state.

Three common locations exist for persisting state:

Server-side storage

URL

Browser storage

For permanent data persistence that spans multiple users and devices, the app can use independent server-side

storage accessed via a web API. Options include:

Blob storage

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/state-management.md
https://github.com/SteveSandersonMS
https://github.com/guardrex


    

    

URLURL

Browser storageBrowser storage

NOTENOTE

Key-value storage

Relational database

Table storage

After data is saved, the user's state is retained and available in any new browser session.

Because Blazor WebAssembly apps run entirely in the user's browser, they require additional measures to access

secure external systems, such as storage services and databases. Blazor WebAssembly apps are secured in the

same manner as Single Page Applications (SPAs). Typically, an app authenticates a user via OAuth/OpenID Connect

(OIDC) and then interacts with storage services and databases through web API calls to a server-side app. The

server-side app mediates the transfer of data between the Blazor WebAssembly app and the storage service or

database. The Blazor WebAssembly app maintains an ephemeral connection to the server-side app, while the

server-side app has a persistent connection to storage.

For more information, see the following resources:

Call a web API from ASP.NET Core Blazor WebAssembly

Secure ASP.NET Core Blazor WebAssembly

Blazor Security and Identity articles

For more information on Azure data storage options, see the following:

Azure Databases

Azure Storage Documentation

For transient data representing navigation state, model the data as a part of the URL. Examples of user state

modeled in the URL include:

The ID of a viewed entity.

The current page number in a paged grid.

The contents of the browser's address bar are retained if the user manually reloads the page.

For information on defining URL patterns with the @page  directive, see ASP.NET Core Blazor routing.

For transient data that the user is actively creating, a commonly used storage location is the browser's 

localStorage  and sessionStorage  collections:

localStorage  is scoped to the browser's window. If the user reloads the page or closes and re-opens the

browser, the state persists. If the user opens multiple browser tabs, the state is shared across the tabs. Data

persists in localStorage  until explicitly cleared.

sessionStorage  is scoped to the browser tab. If the user reloads the tab, the state persists. If the user closes the

tab or the browser, the state is lost. If the user opens multiple browser tabs, each tab has its own independent

version of the data.

localStorage  and sessionStorage  can be used in Blazor WebAssembly apps but only by writing custom code or using a

third-party package.

Generally, sessionStorage  is safer to use. sessionStorage  avoids the risk that a user opens multiple tabs and

encounters the following:

Bugs in state storage across tabs.

https://oauth.net
https://openid.net/connect/
https://azure.microsoft.com/product-categories/databases/
https://docs.microsoft.com/en-us/azure/storage/
https://developer.mozilla.org/docs/Web/API/Window/localStorage
https://developer.mozilla.org/docs/Web/API/Window/sessionStorage


WARNINGWARNING

Additional resources

Persist state across circuits

Confusing behavior when a tab overwrites the state of other tabs.

localStorage  is the better choice if the app must persist state across closing and re-opening the browser.

Users may view or tamper with the data stored in localStorage  and sessionStorage .

Save app state before an authentication operation

Call a web API from ASP.NET Core Blazor WebAssembly

Secure ASP.NET Core Blazor WebAssembly

Blazor Server is a stateful app framework. Most of the time, the app maintains a connection to the server. The

user's state is held in the server's memory in a circuit.

Examples of user state held in a circuit include:

The hierarchy of component instances and their most recent render output in the rendered UI.

The values of fields and properties in component instances.

Data held in dependency injection (DI) service instances that are scoped to the circuit.

User state might also be found in JavaScript variables in the browser's memory set via JavaScript interop calls.

If a user experiences a temporary network connection loss, Blazor attempts to reconnect the user to their original

circuit with their original state. However, reconnecting a user to their original circuit in the server's memory isn't

always possible:

The server can't retain a disconnected circuit forever. The server must release a disconnected circuit after a

timeout or when the server is under memory pressure.

In multi-server, load-balanced deployment environments, individual servers may fail or be automatically

removed when no longer required to handle the overall volume of requests. The original server processing

requests for a user may become unavailable when the user attempts to reconnect.

The user might close and re-open their browser or reload the page, which removes any state held in the

browser's memory. For example, JavaScript variable values set through JavaScript interop calls are lost.

When a user can't be reconnected to their original circuit, the user receives a new circuit with an empty state. This is

equivalent to closing and re-opening a desktop app.

Generally, maintain state across circuits where users are actively creating data, not simply reading data that already

exists.

To preserve state across circuits, the app must persist the data to some other storage location than the server's

memory. State persistence isn't automatic. You must take steps when developing the app to implement stateful

data persistence.

Data persistence is typically only required for high-value state that users expended effort to create. In the following

examples, persisting state either saves time or aids in commercial activities:

Multi-step web forms: It's time-consuming for a user to re-enter data for several completed steps of a multi-

step web form if their state is lost. A user loses state in this scenario if they navigate away from the form and

return later.



Where to persist state

Server-side storageServer-side storage

URLURL

Browser storageBrowser storage

Shopping carts: Any commercially important component of an app that represents potential revenue can be

maintained. A user who loses their state, and thus their shopping cart, may purchase fewer products or services

when they return to the site later.

An app can only persist app state. UIs can't be persisted, such as component instances and their render trees.

Components and render trees aren't generally serializable. To persist UI state, such as the expanded nodes of a tree

view control, the app must use custom code to model the behavior of the UI state as serializable app state.

Three common locations exist for persisting state:

Server-side storage

URL

Browser storage

For permanent data persistence that spans multiple users and devices, the app can use server-side storage. Options

include:

Blob storage

Key-value storage

Relational database

Table storage

After data is saved, the user's state is retained and available in any new circuit.

For more information on Azure data storage options, see the following:

Azure Databases

Azure Storage Documentation

For transient data representing navigation state, model the data as a part of the URL. Examples of user state

modeled in the URL include:

The ID of a viewed entity.

The current page number in a paged grid.

The contents of the browser's address bar are retained:

If the user manually reloads the page.

If the web server becomes unavailable, and the user is forced to reload the page in order to connect to a

different server.

For information on defining URL patterns with the @page  directive, see ASP.NET Core Blazor routing.

For transient data that the user is actively creating, a commonly used storage location is the browser's 

localStorage  and sessionStorage  collections:

localStorage  is scoped to the browser's window. If the user reloads the page or closes and re-opens the

browser, the state persists. If the user opens multiple browser tabs, the state is shared across the tabs. Data

persists in localStorage  until explicitly cleared.

sessionStorage  is scoped to the browser tab. If the user reloads the tab, the state persists. If the user closes the

tab or the browser, the state is lost. If the user opens multiple browser tabs, each tab has its own independent

https://azure.microsoft.com/product-categories/databases/
https://docs.microsoft.com/en-us/azure/storage/
https://developer.mozilla.org/docs/Web/API/Window/localStorage
https://developer.mozilla.org/docs/Web/API/Window/sessionStorage


 ASP.NET Core Protected Browser Storage

NOTENOTE

ConfigurationConfiguration

Save and load data within a componentSave and load data within a component

version of the data.

Generally, sessionStorage  is safer to use. sessionStorage  avoids the risk that a user opens multiple tabs and

encounters the following:

Bugs in state storage across tabs.

Confusing behavior when a tab overwrites the state of other tabs.

localStorage  is the better choice if the app must persist state across closing and re-opening the browser.

Caveats for using browser storage:

Similar to the use of a server-side database, loading and saving data are asynchronous.

Unlike a server-side database, storage isn't available during prerendering because the requested page doesn't

exist in the browser during the prerendering stage.

Storage of a few kilobytes of data is reasonable to persist for Blazor Server apps. Beyond a few kilobytes, you

must consider the performance implications because the data is loaded and saved across the network.

Users may view or tamper with the data. ASP.NET Core Data Protection can mitigate the risk. For example,

ASP.NET Core Protected Browser Storage uses ASP.NET Core Data Protection.

Third-party NuGet packages provide APIs for working with localStorage  and sessionStorage . It's worth

considering choosing a package that transparently uses ASP.NET Core Data Protection. Data Protection encrypts

stored data and reduces the potential risk of tampering with stored data. If JSON-serialized data is stored in plain

text, users can see the data using browser developer tools and also modify the stored data. Securing data isn't

always a problem because the data might be trivial in nature. For example, reading or modifying the stored color of

a UI element isn't a significant security risk to the user or the organization. Avoid allowing users to inspect or

tamper with sensitive data.

ASP.NET Core Protected Browser Storage leverages ASP.NET Core Data Protection for localStorage  and 

sessionStorage .

Protected Browser Storage relies on ASP.NET Core Data Protection and is only supported for Blazor Server apps.

services.AddProtectedBrowserStorage();

1. Add a package reference to Microsoft.AspNetCore.Components.Web.Extensions .

2. In Startup.ConfigureServices , call AddProtectedBrowserStorage  to add localStorage  and sessionStorage

services to the service collection:

In any component that requires loading or saving data to browser storage, use the @inject  directive to inject an

instance of either of the following:

ProtectedLocalStorage

ProtectedSessionStorage

The choice depends on which browser storage location you wish to use. In the following example, sessionStorage

is used:

https://developer.mozilla.org/docs/Web/API/Window/localStorage
https://developer.mozilla.org/docs/Web/API/Window/sessionStorage
https://www.nuget.org/packages/Microsoft.AspNetCore.Http.Extensions


@using Microsoft.AspNetCore.Components.Web.Extensions
@inject ProtectedSessionStorage ProtectedSessionStore

private async Task IncrementCount()
{
    currentCount++;
    await ProtectedSessionStore.SetAsync("count", currentCount);
}

protected override async Task OnInitializedAsync()
{
    var result = await ProtectedSessionStore.GetAsync<int>("count");
    currentCount = result.Success ? result.Value : 0;
}

WARNINGWARNING

Handle the loading stateHandle the loading state

The @using  directive can be placed in the app's _Imports.razor  file instead of in the component. Use of the 

_Imports.razor  file makes the namespace available to larger segments of the app or the whole app.

To persist the currentCount  value in the Counter  component of an app based on the Blazor Server project

template, modify the IncrementCount  method to use ProtectedSessionStore.SetAsync :

In larger, more realistic apps, storage of individual fields is an unlikely scenario. Apps are more likely to store entire

model objects that include complex state. ProtectedSessionStore  automatically serializes and deserializes JSON

data to store complex state objects.

In the preceding code example, the currentCount  data is stored as sessionStorage['count']  in the user's browser.

The data isn't stored in plain text but rather is protected using ASP.NET Core Data Protection. The encrypted data

can be inspected if sessionStorage['count']  is evaluated in the browser's developer console.

To recover the currentCount  data if the user returns to the Counter  component later, including if the user is on a

new circuit, use ProtectedSessionStore.GetAsync :

If the component's parameters include navigation state, call ProtectedSessionStore.GetAsync  and assign a non-

null  result in OnParametersSetAsync, not OnInitializedAsync. OnInitializedAsync is only called once when the

component is first instantiated. OnInitializedAsync isn't called again later if the user navigates to a different URL

while remaining on the same page. For more information, see ASP.NET Core Blazor lifecycle.

The examples in this section only work if the server doesn't have prerendering enabled. With prerendering enabled, an error

is generated explaining that JavaScript interop calls cannot be issued because the component is being prerendered.

Either disable prerendering or add additional code to work with prerendering. To learn more about writing code that works

with prerendering, see the Handle prerendering section.

Since browser storage is accessed asynchronously over a network connection, there's always a period of time

before the data is loaded and available to a component. For the best results, render a loading-state message while

loading is in progress instead of displaying blank or default data.

One approach is to track whether the data is null , which means that the data is still loading. In the default 

Counter  component, the count is held in an int . Make currentCount  nullable by adding a question mark ( ? ) to

the type ( int ):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onparameterssetasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/nullable-value-types


        

private int? currentCount;

@if (currentCount.HasValue)
{
    <p>Current count: <strong>@currentCount</strong></p>
    <button @onclick="IncrementCount">Increment</button>
}
else
{
    <p>Loading...</p>
}

Handle prerenderingHandle prerendering

<component type="typeof(App)" render-mode="Server" />

Instead of unconditionally displaying the count and Increment  button, display these elements only if the data is

loaded by checking HasValue:

During prerendering:

An interactive connection to the user's browser doesn't exist.

The browser doesn't yet have a page in which it can run JavaScript code.

localStorage  or sessionStorage  aren't available during prerendering. If the component attempts to interact with

storage, an error is generated explaining that JavaScript interop calls cannot be issued because the component is

being prerendered.

One way to resolve the error is to disable prerendering. This is usually the best choice if the app makes heavy use

of browser-based storage. Prerendering adds complexity and doesn't benefit the app because the app can't

prerender any useful content until localStorage  or sessionStorage  are available.

To disable prerendering, open the Pages/_Host.cshtml  file and change the render-mode  attribute of the Component

Tag Helper to Server:

Prerendering might be useful for other pages that don't use localStorage  or sessionStorage . To retain

prerendering, defer the loading operation until the browser is connected to the circuit. The following is an example

for storing a counter value:

https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1.hasvalue
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_server


@using Microsoft.AspNetCore.Components.Web.Extensions
@inject ProtectedLocalStorage ProtectedLocalStore

@if (isConnected)
{
    <p>Current count: <strong>@currentCount</strong></p>
    <button @onclick="IncrementCount">Increment</button>
}
else
{
    <p>Loading...</p>
}

@code {
    private int currentCount;
    private bool isConnected;

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        if (firstRender)
        {
            isConnected = true;
            await LoadStateAsync();
            StateHasChanged();
        }
    }

    private async Task LoadStateAsync()
    {
        var result = await ProtectedLocalStore.GetAsync<int>("count");
        currentCount = result.Success ? result.Value : 0;
    }

    private async Task IncrementCount()
    {
        currentCount++;
        await ProtectedLocalStore.SetAsync("count", currentCount);
    }
}

Factor out the state preservation to a common locationFactor out the state preservation to a common location
If many components rely on browser-based storage, re-implementing state provider code many times creates code

duplication. One option for avoiding code duplication is to create a state provider parent component that

encapsulates the state provider logic. Child components can work with persisted data without regard to the state

persistence mechanism.

In the following example of a CounterStateProvider  component, counter data is persisted to sessionStorage :



@using Microsoft.AspNetCore.Components.Web.Extensions
@inject ProtectedSessionStorage ProtectedSessionStore

@if (isLoaded)
{
    <CascadingValue Value="@this">
        @ChildContent
    </CascadingValue>
}
else
{
    <p>Loading...</p>
}

@code {
    private bool isLoaded;

    [Parameter]
    public RenderFragment ChildContent { get; set; }

    public int CurrentCount { get; set; }

    protected override async Task OnInitializedAsync()
    {
        var result = await ProtectedSessionStore.GetAsync<int>("count");
        currentCount = result.Success ? result.Value : 0;
        isLoaded = true;
    }

    public async Task SaveChangesAsync()
    {
        await ProtectedSessionStore.SetAsync("count", CurrentCount);
    }
}

<CounterStateProvider>
    <Router AppAssembly="typeof(Startup).Assembly">
        ...
    </Router>
</CounterStateProvider>

The CounterStateProvider  component handles the loading phase by not rendering its child content until loading is

complete.

To use the CounterStateProvider  component, wrap an instance of the component around any other component

that requires access to the counter state. To make the state accessible to all components in an app, wrap the 

CounterStateProvider  component around the Router in the App  component ( App.razor ):

Wrapped components receive and can modify the persisted counter state. The following Counter  component

implements the pattern:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router


@page "/counter"

<p>Current count: <strong>@CounterStateProvider.CurrentCount</strong></p>
<button @onclick="IncrementCount">Increment</button>

@code {
    [CascadingParameter]
    private CounterStateProvider CounterStateProvider { get; set; }

    private async Task IncrementCount()
    {
        CounterStateProvider.CurrentCount++;
        await CounterStateProvider.SaveChangesAsync();
    }
}

Protected Browser Storage experimental NuGet package

WARNINGWARNING

ConfigurationConfiguration

Save and load data within a componentSave and load data within a component

The preceding component isn't required to interact with ProtectedBrowserStorage , nor does it deal with a "loading"

phase.

To deal with prerendering as described earlier, CounterStateProvider  can be amended so that all of the components

that consume the counter data automatically work with prerendering. For more information, see the Handle

prerendering section.

In general, the state provider parent component pattern is recommended:

To consume state across many components.

If there's just one top-level state object to persist.

To persist many different state objects and consume different subsets of objects in different places, it's better to

avoid persisting state globally.

ASP.NET Core Protected Browser Storage leverages ASP.NET Core Data Protection for localStorage  and 

sessionStorage .

Microsoft.AspNetCore.ProtectedBrowserStorage  is an unsupported, experimental package unsuitable for production use.

The package is only available for use in ASP.NET Core 3.1 Blazor Server apps.

<script src="_content/Microsoft.AspNetCore.ProtectedBrowserStorage/protectedBrowserStorage.js"></script>

services.AddProtectedBrowserStorage();

1. Add a package reference to Microsoft.AspNetCore.ProtectedBrowserStorage .

2. In the Pages/_Host.cshtml  file, add the following script inside the closing </body>  tag:

3. In Startup.ConfigureServices , call AddProtectedBrowserStorage  to add localStorage  and sessionStorage

services to the service collection:

https://developer.mozilla.org/docs/Web/API/Window/localStorage
https://developer.mozilla.org/docs/Web/API/Window/sessionStorage
https://www.nuget.org/packages/Microsoft.AspNetCore.ProtectedBrowserStorage


@using Microsoft.AspNetCore.ProtectedBrowserStorage
@inject ProtectedSessionStorage ProtectedSessionStore

private async Task IncrementCount()
{
    currentCount++;
    await ProtectedSessionStore.SetAsync("count", currentCount);
}

protected override async Task OnInitializedAsync()
{
    currentCount = await ProtectedSessionStore.GetAsync<int>("count");
}

WARNINGWARNING

Handle the loading stateHandle the loading state

In any component that requires loading or saving data to browser storage, use the @inject  directive to inject an

instance of either of the following:

ProtectedLocalStorage

ProtectedSessionStorage

The choice depends on which browser storage location you wish to use. In the following example, sessionStorage

is used:

The @using  statement can be placed into an _Imports.razor  file instead of in the component. Use of the 

_Imports.razor  file makes the namespace available to larger segments of the app or the whole app.

To persist the currentCount  value in the Counter  component of an app based on the Blazor Server project

template, modify the IncrementCount  method to use ProtectedSessionStore.SetAsync :

In larger, more realistic apps, storage of individual fields is an unlikely scenario. Apps are more likely to store entire

model objects that include complex state. ProtectedSessionStore  automatically serializes and deserializes JSON

data.

In the preceding code example, the currentCount  data is stored as sessionStorage['count']  in the user's browser.

The data isn't stored in plain text but rather is protected using ASP.NET Core Data Protection. The encrypted data

can be inspected if sessionStorage['count']  is evaluated in the browser's developer console.

To recover the currentCount  data if the user returns to the Counter  component later, including if they're on an

entirely new circuit, use ProtectedSessionStore.GetAsync :

If the component's parameters include navigation state, call ProtectedSessionStore.GetAsync  and assign the result

in OnParametersSetAsync, not OnInitializedAsync. OnInitializedAsync is only called once when the component is

first instantiated. OnInitializedAsync isn't called again later if the user navigates to a different URL while remaining

on the same page. For more information, see ASP.NET Core Blazor lifecycle.

The examples in this section only work if the server doesn't have prerendering enabled. With prerendering enabled, an error

is generated explaining that JavaScript interop calls cannot be issued because the component is being prerendered.

Either disable prerendering or add additional code to work with prerendering. To learn more about writing code that works

with prerendering, see the Handle prerendering section.

Since browser storage is accessed asynchronously over a network connection, there's always a period of time

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onparameterssetasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync


private int? currentCount;

@if (currentCount.HasValue)
{
    <p>Current count: <strong>@currentCount</strong></p>
    <button @onclick="IncrementCount">Increment</button>
}
else
{
    <p>Loading...</p>
}

Handle prerenderingHandle prerendering

<component type="typeof(App)" render-mode="Server" />

before the data is loaded and available to a component. For the best results, render a loading-state message while

loading is in progress instead of displaying blank or default data.

One approach is to track whether the data is null , which means that the data is still loading. In the default 

Counter  component, the count is held in an int . Make currentCount  nullable by adding a question mark ( ? ) to

the type ( int ):

Instead of unconditionally displaying the count and Increment  button, choose to display these elements only if the

data is loaded:

During prerendering:

An interactive connection to the user's browser doesn't exist.

The browser doesn't yet have a page in which it can run JavaScript code.

localStorage  or sessionStorage  aren't available during prerendering. If the component attempts to interact with

storage, an error is generated explaining that JavaScript interop calls cannot be issued because the component is

being prerendered.

One way to resolve the error is to disable prerendering. This is usually the best choice if the app makes heavy use

of browser-based storage. Prerendering adds complexity and doesn't benefit the app because the app can't

prerender any useful content until localStorage  or sessionStorage  are available.

To disable prerendering, open the Pages/_Host.cshtml  file and change the render-mode  attribute of the Component

Tag Helper to Server:

Prerendering might be useful for other pages that don't use localStorage  or sessionStorage . To retain

prerendering, defer the loading operation until the browser is connected to the circuit. The following is an example

for storing a counter value:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/nullable-value-types
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_server


@using Microsoft.AspNetCore.ProtectedBrowserStorage
@inject ProtectedLocalStorage ProtectedLocalStore

@if (isConnected)
{
    <p>Current count: <strong>@currentCount</strong></p>
    <button @onclick="IncrementCount">Increment</button>
}
else
{
    <p>Loading...</p>
}

@code {
    private int? currentCount;
    private bool isConnected = false;

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        if (firstRender)
        {
            isConnected = true;
            await LoadStateAsync();
            StateHasChanged();
        }
    }

    private async Task LoadStateAsync()
    {
        currentCount = await ProtectedLocalStore.GetAsync<int>("count");
    }

    private async Task IncrementCount()
    {
        currentCount++;
        await ProtectedLocalStore.SetAsync("count", currentCount);
    }
}

Factor out the state preservation to a common locationFactor out the state preservation to a common location
If many components rely on browser-based storage, re-implementing state provider code many times creates code

duplication. One option for avoiding code duplication is to create a state provider parent component that

encapsulates the state provider logic. Child components can work with persisted data without regard to the state

persistence mechanism.

In the following example of a CounterStateProvider  component, counter data is persisted to sessionStorage :



@using Microsoft.AspNetCore.ProtectedBrowserStorage
@inject ProtectedSessionStorage ProtectedSessionStore

@if (isLoaded)
{
    <CascadingValue Value="@this">
        @ChildContent
    </CascadingValue>
}
else
{
    <p>Loading...</p>
}

@code {
    private bool isLoaded;

    [Parameter]
    public RenderFragment ChildContent { get; set; }

    public int CurrentCount { get; set; }

    protected override async Task OnInitializedAsync()
    {
        CurrentCount = await ProtectedSessionStore.GetAsync<int>("count");
        isLoaded = true;
    }

    public async Task SaveChangesAsync()
    {
        await ProtectedSessionStore.SetAsync("count", CurrentCount);
    }
}

<CounterStateProvider>
    <Router AppAssembly="typeof(Startup).Assembly">
        ...
    </Router>
</CounterStateProvider>

The CounterStateProvider  component handles the loading phase by not rendering its child content until loading is

complete.

To use the CounterStateProvider  component, wrap an instance of the component around any other component

that requires access to the counter state. To make the state accessible to all components in an app, wrap the 

CounterStateProvider  component around the Router in the App  component ( App.razor ):

Wrapped components receive and can modify the persisted counter state. The following Counter  component

implements the pattern:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router


@page "/counter"

<p>Current count: <strong>@CounterStateProvider.CurrentCount</strong></p>
<button @onclick="IncrementCount">Increment</button>

@code {
    [CascadingParameter]
    private CounterStateProvider CounterStateProvider { get; set; }

    private async Task IncrementCount()
    {
        CounterStateProvider.CurrentCount++;
        await CounterStateProvider.SaveChangesAsync();
    }
}

The preceding component isn't required to interact with ProtectedBrowserStorage , nor does it deal with a "loading"

phase.

To deal with prerendering as described earlier, CounterStateProvider  can be amended so that all of the components

that consume the counter data automatically work with prerendering. For more information, see the Handle

prerendering section.

In general, state provider parent component pattern is recommended:

To consume state across many components.

If there's just one top-level state object to persist.

To persist many different state objects and consume different subsets of objects in different places, it's better to

avoid persisting state globally.



Debug ASP.NET Core Blazor WebAssembly
9/22/2020 • 10 minutes to read • Edit Online

Prerequisites

NOTENOTE

Enable debugging

Daniel Roth

Blazor WebAssembly apps can be debugged using the browser dev tools in Chromium-based browsers

(Edge/Chrome). You can also debug your app using the following integrated development environments (IDEs):

Visual Studio

Visual Studio for Mac

Visual Studio Code

Available scenarios include:

Set and remove breakpoints.

Run the app with debugging support in IDEs.

Single-step through the code.

Resume code execution with a keyboard shortcut in IDEs.

In the Locals window, observe the values of local variables.

See the call stack, including call chains between JavaScript and .NET.

For now, you can't:

Break on unhandled exceptions.

Hit breakpoints during app startup before the debug proxy is running. This includes breakpoints in 

Program.Main  ( Program.cs ) and breakpoints in the OnInitialized{Async}  methods of components that are

loaded by the first page requested from the app.

Debugging requires either of the following browsers:

Google Chrome (version 70 or later) (default)

Microsoft Edge (version 80 or later)

Visual Studio for Mac requires version 8.8 (build 1532) or later :

1. Install the latest release of Visual Studio for Mac by selecting the Download Visual Studio for MacDownload Visual Studio for Mac button at

Microsoft: Visual Studio for Mac.

2. Select the Preview channel from within Visual Studio. For more information, see Install a preview version of

Visual Studio for Mac.

Apple Safari on macOS isn't currently supported.

To enable debugging for an existing Blazor WebAssembly app, update the launchSettings.json  file in the startup

project to include the following inspectUri  property in each launch profile:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/debug.md
https://github.com/danroth27
https://visualstudio.microsoft.com/vs/mac/
https://docs.microsoft.com/en-us/visualstudio/mac/install-preview


"inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_framework/debug/ws-proxy?browser={browserInspectUri}"

{
  "iisSettings": {
    "windowsAuthentication": false,
    "anonymousAuthentication": true,
    "iisExpress": {
      "applicationUrl": "http://localhost:50454",
      "sslPort": 44399
    }
  },
  "profiles": {
    "IIS Express": {
      "commandName": "IISExpress",
      "launchBrowser": true,
      "inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_framework/debug/ws-proxy?browser=
{browserInspectUri}",
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      }
    },
    "BlazorApp1.Server": {
      "commandName": "Project",
      "launchBrowser": true,
      "inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_framework/debug/ws-proxy?browser=
{browserInspectUri}",
      "applicationUrl": "https://localhost:5001;http://localhost:5000",
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      }
    }
  }
}

Once updated, the launchSettings.json  file should look similar to the following example:

The inspectUri  property:

Enables the IDE to detect that the app is a Blazor WebAssembly app.

Instructs the script debugging infrastructure to connect to the browser through Blazor's debugging proxy.

The placeholder values for the WebSockets protocol ( wsProtocol ), host ( url.hostname ), port ( url.port ), and

inspector URI on the launched browser ( browserInspectUri ) are provided by the framework.

Visual Studio

Visual Studio Code

Visual Studio for Mac

To debug a Blazor WebAssembly app in Visual Studio:

NOTENOTE

1. Create a new ASP.NET Core hosted Blazor WebAssembly app.

2. Press F5 to run the app in the debugger.

Star t Without DebuggingStar t Without Debugging (Ctrl+F5) isn't supported. When the app is run in Debug configuration, debugging

overhead always results in a small performance reduction.

3. In the Client app, set a breakpoint on the currentCount++;  line in Pages/Counter.razor .



NOTENOTE

Debug in the browser

Browser source maps

4. In the browser, navigate to Counter  page and select the Click meClick me button to hit the breakpoint.

5. In Visual Studio, inspect the value of the currentCount  field in the LocalsLocals  window.

6. Press F5 to continue execution.

While debugging a Blazor WebAssembly app, you can also debug server code:

1. Set a breakpoint in the Pages/FetchData.razor  page in OnInitializedAsync.

2. Set a breakpoint in the WeatherForecastController  in the Get  action method.

3. Browse to the Fetch Data  page to hit the first breakpoint in the FetchData  component just before it issues an

HTTP request to the server.

4. Press F5 to continue execution and then hit the breakpoint on the server in the WeatherForecastController .

5. Press F5 again to let execution continue and see the weather forecast table rendered in the browser.

Breakpoints are notnot  hit during app startup before the debug proxy is running. This includes breakpoints in Program.Main  (

Program.cs ) and breakpoints in the OnInitialized{Async}  methods of components that are loaded by the first page

requested from the app.

The guidance in this section applies to Google Chrome and Microsoft Edge running on Windows.

1. Run a Debug build of the app in the Development environment.

2. Launch a browser and navigate to the app's URL (for example, https://localhost:5001 ).

3. In the browser, attempt to commence remote debugging by pressing Shift+Alt+d.

The browser must be running with remote debugging enabled, which isn't the default. If remote debugging

is disabled, an Unable to find debuggable browser tabUnable to find debuggable browser tab error page is rendered with instructions for

launching the browser with the debugging port open. Follow the instructions for your browser, which opens

a new browser window. Close the previous browser window.

1. Once the browser is running with remote debugging enabled, the debugging keyboard shortcut in the

previous step opens a new debugger tab.

2. After a moment, the SourcesSources  tab shows a list of the app's .NET assemblies within the file://  node.

3. In component code ( .razor  files) and C# code files ( .cs ), breakpoints that you set are hit when code

executes. After a breakpoint is hit, single-step (F10) through the code or resume (F8) code execution

normally.

Blazor provides a debugging proxy that implements the Chrome DevTools Protocol and augments the protocol with

.NET-specific information. When debugging keyboard shortcut is pressed, Blazor points the Chrome DevTools at the

proxy. The proxy connects to the browser window you're seeking to debug (hence the need to enable remote

debugging).

Browser source maps allow the browser to map compiled files back to their original source files and are commonly

used for client-side debugging. However, Blazor doesn't currently map C# directly to JavaScript/WASM. Instead,

Blazor does IL interpretation within the browser, so source maps aren't relevant.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync
https://chromedevtools.github.io/devtools-protocol/


Troubleshoot

Breakpoints in Breakpoints in OnInitialized{Async}  not hit not hit

protected override void OnInitialized()
{
#if DEBUG
    Thread.Sleep(10000)
#endif

    ...
}

protected override async Task OnInitializedAsync()
{
#if DEBUG
    await Task.Delay(10000)
#endif

    ...
}

Visual Studio (Windows) timeoutVisual Studio (Windows) timeout

VsRegEdit.exe set "<VSInstallFolder>" HKCU JSDebugger\Options\Debugging "BlazorTimeoutInMilliseconds" dword 
{TIMEOUT}

If you're running into errors, the following tips may help:

In the DebuggerDebugger  tab, open the developer tools in your browser. In the console, execute localStorage.clear()  to

remove any breakpoints.

Confirm that you've installed and trusted the ASP.NET Core HTTPS development certificate. For more

information, see Enforce HTTPS in ASP.NET Core.

Visual Studio requires the Enable JavaScr ipt debugging for ASP.NET (Chrome, Edge and IE)Enable JavaScr ipt debugging for ASP.NET (Chrome, Edge and IE)  option in

ToolsTools  > OptionsOptions  > DebuggingDebugging > GeneralGeneral . This is the default setting for Visual Studio. If debugging isn't

working, confirm that the option is selected.

The Blazor framework's debugging proxy takes a short time to launch, so breakpoints in the OnInitialized{Async}

lifecycle method might not be hit. We recommend adding a delay at the start of the method body to give the debug

proxy some time to launch before the breakpoint is hit. You can include the delay based on an if  compiler

directive to ensure that the delay isn't present for a release build of the app.

OnInitialized:

OnInitializedAsync:

If Visual Studio throws an exception that the debug adapter failed to launch mentioning that the timeout was

reached, you can adjust the timeout with a Registry setting:

The {TIMEOUT}  placeholder in the preceding command is in milliseconds. For example, one minute is assigned as 

60000 .

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitialized
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync


Lazy load assemblies in ASP.NET Core Blazor
WebAssembly
9/22/2020 • 5 minutes to read • Edit Online

NOTENOTE

Project file

<ItemGroup>
  <BlazorWebAssemblyLazyLoad Include="GrantImaharaRobotControls.dll" />
</ItemGroup>

Router  component

By Safia Abdalla and Luke Latham

Blazor WebAssembly app startup performance can be improved by deferring the loading of some application

assemblies until they are required, which is called lazy loading. For example, assemblies that are only used to

render a single component can be set up to load only if the user navigates to that component. After loading, the

assemblies are cached client-side and are available for all future navigations.

Blazor's lazy loading feature allows you to mark app assemblies for lazy loading, which loads the assemblies during

runtime when the user navigates to a particular route. The feature consists of changes to the project file and

changes to the application's router.

Assembly lazy loading doesn't benefit Blazor Server apps because assemblies aren't downloaded to the client in a Blazor

Server app.

Mark assemblies for lazy loading in the app's project file ( .csproj ) using the BlazorWebAssemblyLazyLoad  item. Use

the assembly name without the .dll  extension. The Blazor framework prevents the assemblies specified by this

item group from loading at app launch. The following example marks a large custom assembly (

GrantImaharaRobotControls.dll ) for lazy loading. If an assembly that's marked for lazy loading has dependencies,

they must also be marked for lazy loading in the project file.

Blazor's Router  component designates which assemblies Blazor searches for routable components. The Router

component is also responsible for rendering the component for the route where the user navigates. The Router

component supports an OnNavigateAsync  feature that can be used in conjunction with lazy loading.

In the app's Router  component ( App.razor ):

Add an OnNavigateAsync  callback. The OnNavigateAsync  handler is invoked when the user :

If lazy-loaded assemblies contain routable components, add a List<Assembly> (for example, named 

lazyLoadedAssemblies ) to the component. The assemblies are passed back to the AdditionalAssemblies

collection in case the assemblies contain routable components. The framework searches the assemblies for

routes and updates the route collection if any new routes are found.

Visits a route for the first time by navigating to it directly from their browser.

Navigates to a new route using a link or a NavigationManager.NavigateTo invocation.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/webassembly-lazy-load-assemblies.md
https://safia.rocks
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.navigationmanager.navigateto
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing.router.additionalassemblies#microsoft_aspnetcore_components_routing_router_additionalassemblies


@using System.Reflection

<Router AppAssembly="@typeof(Program).Assembly" 
    AdditionalAssemblies="@lazyLoadedAssemblies" OnNavigateAsync="@OnNavigateAsync">
    ...
</Router>

@code {
    private List<Assembly> lazyLoadedAssemblies = new List<Assembly>();

    private async Task OnNavigateAsync(NavigationContext args)
    {
    }
}

Assembly load logic in Assembly load logic in OnNavigateAsync

...
@using Microsoft.AspNetCore.Components.WebAssembly.Services
@inject LazyAssemblyLoader assemblyLoader

...

services.AddSingleton<LazyAssemblyLoader>();

User interaction with User interaction with <Navigating>  content content

If the OnNavigateAsync  callback throws an unhandled exception, the Blazor error UI is invoked.

OnNavigateAsync  has a NavigationContext  parameter that provides information about the current asynchronous

navigation event, including the target path ( Path ) and the cancellation token ( CancellationToken ):

The Path  property is the user's destination path relative to the app's base path, such as /robot .

The CancellationToken  can be used to observe the cancellation of the asynchronous task. OnNavigateAsync

automatically cancels the currently running navigation task when the user navigates to a different page.

Inside OnNavigateAsync , implement logic to determine the assemblies to load. Options include:

Conditional checks inside the OnNavigateAsync  method.

A lookup table that maps routes to assembly names, either injected into the component or implemented within

the @code  block.

LazyAssemblyLoader  is a framework-provided singleton service for loading assemblies. Inject LazyAssemblyLoader

into the Router  component:

The LazyAssemblyLoader  provides the LoadAssembliesAsync  method that:

Uses JS interop to fetch assemblies via a network call.

Loads assemblies into the runtime executing on WebAssembly in the browser.

The framework's lazy loading implementation supports lazy loading with prerendering in a hosted Blazor solution.

During prerendering, all assemblies, including those marked for lazy loading, are assumed to be loaded. Manually

register LazyAssemblyLoader  in the Server project's Startup.ConfigureServices  method ( Startup.cs ):

While loading assemblies, which can take several seconds, the Router  component can indicate to the user that a

page transition is occurring:

Add an @using  directive for the Microsoft.AspNetCore.Components.Routing namespace.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.routing


  

...
@using Microsoft.AspNetCore.Components.Routing
...

<Router ...>
    <Navigating>
        <div style="...">
            <p>Loading the requested page&hellip;</p>
        </div>
    </Navigating>
</Router>

...

Handle cancellations in Handle cancellations in OnNavigateAsync

@inject HttpClient Http
@inject ProductCatalog Products

<Router AppAssembly="@typeof(Program).Assembly" 
    OnNavigateAsync="@OnNavigateAsync">
    ...
</Router>

@code {
    private async Task OnNavigateAsync(NavigationContext context)
    {
        if (context.Path == "/about") 
        {
            var stats = new Stats = { Page = "/about" };
            await Http.PostAsJsonAsync("api/visited", stats, context.CancellationToken);
        }
        else if (context.Path == "/store")
        {
            var productIds = [345, 789, 135, 689];

            foreach (var productId in productIds) 
            {
                context.CancellationToken.ThrowIfCancellationRequested();
                Products.Prefetch(productId);
            }
        }
    }
}

NOTENOTE

OnNavigateAsync  events and renamed assembly files events and renamed assembly files

Add a <Navigating>  tag to the component with markup to display during page transition events.

The NavigationContext  object passed to the OnNavigateAsync  callback contains a CancellationToken  that's set

when a new navigation event occurs. The OnNavigateAsync  callback must throw when this cancellation token is set

to avoid continuing to run the OnNavigateAsync  callback on a outdated navigation.

If a user navigates to Route A and then immediately to Route B, the app shouldn't continue running the 

OnNavigateAsync  callback for Route A:

Not throwing if the cancellation token in NavigationContext  is canceled can result in unintended behavior, such as

rendering a component from a previous navigation.



Complete exampleComplete example

@using System.Reflection
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.WebAssembly.Services
@inject LazyAssemblyLoader assemblyLoader

<Router AppAssembly="@typeof(Program).Assembly" 
    AdditionalAssemblies="@lazyLoadedAssemblies" OnNavigateAsync="@OnNavigateAsync">
    <Navigating>
        <div style="padding:20px;background-color:blue;color:white">
            <p>Loading the requested page&hellip;</p>
        </div>
    </Navigating>
    <Found Context="routeData">
        <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
    </Found>
    <NotFound>
        <LayoutView Layout="@typeof(MainLayout)">
            <p>Sorry, there's nothing at this address.</p>
        </LayoutView>
    </NotFound>
</Router>

@code {
    private List<Assembly> lazyLoadedAssemblies = new List<Assembly>();

    private async Task OnNavigateAsync(NavigationContext args)
    {
        try
        {
            if (args.Path.EndsWith("/robot"))
            {
                var assemblies = await assemblyLoader.LoadAssembliesAsync(
                    new List<string>() { "GrantImaharaRobotControls.dll" });
                lazyLoadedAssemblies.AddRange(assemblies);
            }
        }
        catch (Exception ex)
        {
            ...
        }
    }
}

Troubleshoot

The resource loader relies on the assembly names that are defined in the blazor.boot.json  file. If assemblies are

renamed, the assembly names used in OnNavigateAsync  methods and the assembly names in the blazor.boot.json

file are out of sync.

To rectify this:

Check to see if the app is running in the Production environment when determining which assembly names to

use.

Store the renamed assembly names in a separate file and read from that file to determine what assembly name

to use in the LazyLoadAssemblyService  and OnNavigateAsync  methods.

The following complete Router  component demonstrates loading the GrantImaharaRobotControls.dll  assembly

when the user navigates to /robot . During page transitions, a styled message is displayed to the user.

If unexpected rendering occurs (for example, a component from a previous navigation is rendered), confirm that

the code throws if the cancellation token is set.



Additional resources

If assemblies are still loaded at application start, check that the assembly is marked as lazy loaded in the project

file.

ASP.NET Core Blazor WebAssembly performance best practices



  

ASP.NET Core Blazor WebAssembly performance
best practices
9/22/2020 • 5 minutes to read • Edit Online

Avoid unnecessary component renders

@code {
    protected override bool ShouldRender() => false;
}

By Pranav Krishnamoorthy

This article provides guidelines for ASP.NET Core Blazor WebAssembly performance best practices.

Blazor's diffing algorithm avoids rerendering a component when the algorithm perceives that the component

hasn't changed. Override ComponentBase.ShouldRender for fine-grained control over component rendering.

If authoring a UI-only component that never changes after the initial render, configure ShouldRender to return 

false :

Most apps don't require fine-grained control, but ShouldRender can be used to selectively render a component

responding to a UI event. Using ShouldRender might also be important in scenarios where a large number of

components are rendered. Consider a grid, where use of EventCallback in one component in one cell of the grid

calls StateHasChanged on the grid. Calling StateHasChanged causes a re-render of every child component. If only a

small number of cells require rerendering, use ShouldRender to avoid the performance penalty of unnecessary

renders.

In the following example:

ShouldRender is overridden and set to the value of the ShouldRender field, which is initially false  when the

component loads.

When the button is selected, ShouldRender is set to true , which forces the component to rerender with the

updated currentCount .

Immediately after rerendering, OnAfterRender sets the value of ShouldRender back to false  to prevent further

rerendering until the next time the button is selected.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/webassembly-performance-best-practices.md
https://github.com/pranavkm
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.eventcallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.statehaschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.onafterrender
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.shouldrender


<p>Current count: @currentCount</p>

<button @onclick="IncrementCount">Click me</button>

@code {
    private int currentCount = 0;
    private bool shouldRender;

    protected override bool ShouldRender() => shouldRender;

    protected override void OnAfterRender(bool first)
    {
        shouldRender = false;
    }

    private void IncrementCount()
    {
        currentCount++;
        shouldRender = true;
    }
}

Virtualize re-usable fragments

Avoid JavaScript interop to marshal data

Use System.Text.Json

Use synchronous and unmarshalled JS interop APIs where appropriate

For more information, see ASP.NET Core Blazor lifecycle.

Components offer a convenient approach to produce re-usable fragments of code and markup. In general, we

recommend authoring individual components that best align with the app's requirements. One caveat is that each

additional child component contributes to the total time it takes to render a parent component. For most apps, the

additional overhead is negligible. Apps that produce a large number of components should consider using

strategies to reduce processing overhead, such as limiting the number of rendered components.

For more information, see ASP.NET Core Blazor component virtualization.

In Blazor WebAssembly, a JavaScript (JS) interop call must traverse the WebAssembly-JS boundary. Serializing and

deserializing content across the two contexts creates processing overhead for the app. Frequent JS interop calls

often adversely affects performance. To reduce the marshalling of data across the boundary, determine if the app

can consolidate many small payloads into a single large payload to avoid the high volume of context switching

between WebAssembly and JS.

Blazor's JS interop implementation relies on System.Text.Json, which is a high-performance JSON serialization

library with low memory allocation. Using System.Text.Json doesn't result in additional app payload size over

adding one or more alternate JSON libraries.

For migration guidance, see How to migrate from Newtonsoft.Json  to System.Text.Json .

Blazor WebAssembly offers two additional versions of IJSRuntime over the single version available to Blazor

Server apps:

IJSInProcessRuntime allows invoking JS interop calls synchronously, which has less overhead than the

asynchronous versions:

https://docs.microsoft.com/en-us/dotnet/api/system.text.json
https://docs.microsoft.com/en-us/dotnet/api/system.text.json
https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-migrate-from-newtonsoft-how-to
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsinprocessruntime


  

  

Reduce app size
Intermediate Language (IL) trimmingIntermediate Language (IL) trimming

Intermediate Language (IL) linkingIntermediate Language (IL) linking

dotnet publish -c Release

Lazy load assembliesLazy load assemblies

CompressionCompression

@inject IJSRuntime JS

@code {
    protected override void OnInitialized()
    {
        var jsInProcess = (IJSInProcessRuntime)JS;

        var value = jsInProcess.Invoke<string>("jsInteropCall");
    }
}

function jsInteropCall() {
  return BINDING.js_to_mono_obj("Hello world");
}

@inject IJSRuntime JS

@code {
    protected override void OnInitialized()
    {
        var jsInProcess = (WebAssemblyJSRuntime)JS;

        var value = jsInProcess.InvokeUnmarshalled<string>("jsInteropCall");
    }
}

WARNINGWARNING

WebAssemblyJSRuntime permits unmarshalled JS interop calls:

While using WebAssemblyJSRuntime has the least overhead of the JS interop approaches, the JavaScript APIs

required to interact with these APIs are currently undocumented and subject to breaking changes in future releases.

Trimming unused assemblies from a Blazor WebAssembly app reduces the app's size by removing unused code in

the app's binaries. By default, the Trimmer is executed when publishing an application. To benefit from trimming,

publish the app for deployment using the dotnet publish  command with the -c|--configuration option set to 

Release :

Linking a Blazor WebAssembly app reduces the app's size by trimming unused code in the app's binaries. By

default, the Intermediate Language (IL) Linker is only enabled when building in Release  configuration. To benefit

from this, publish the app for deployment using the dotnet publish  command with the -c|--configuration option

set to Release :

Load assemblies at runtime when the assemblies are required by a route. For more information, see Lazy load

assemblies in ASP.NET Core Blazor WebAssembly.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.webassembly.webassemblyjsruntime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.webassembly.webassemblyjsruntime
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish#options
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish#options


Disable unused featuresDisable unused features

When a Blazor WebAssembly app is published, the output is statically compressed during publish to reduce the

app's size and remove the overhead for runtime compression. Blazor relies on the server to perform content

negotation and serve statically-compressed files.

After an app is deployed, verify that the app serves compressed files. Inspect the Network tab in a browser's

Developer Tools and verify that the files are served with Content-Encoding: br  or Content-Encoding: gz . If the host

isn't serving compressed files, follow the instructions in Host and deploy ASP.NET Core Blazor WebAssembly.

Blazor WebAssembly's runtime includes the following .NET features that can be disabled if the app doesn't require

them for a smaller payload size:

<PropertyGroup>
  <BlazorEnableTimeZoneSupport>false</BlazorEnableTimeZoneSupport>
</PropertyGroup>

A data file is included to make timezone information correct. If the app doesn't require this feature, consider

disabling it by setting the BlazorEnableTimeZoneSupport  MSBuild property in the app's project file to false :

<PropertyGroup>
  <InvariantGlobalization>true</InvariantGlobalization>
</PropertyGroup>

By default, Blazor WebAssembly carries globalization resources required to display values, such as dates and

currency, in the user's culture. If the app doesn't require localization, you may configure the app to support

the invariant culture, which is based on the en-US  culture:

<PropertyGroup>
  <BlazorWebAssemblyPreserveCollationData>false</BlazorWebAssemblyPreserveCollationData>
</PropertyGroup>

Collation information is included to make APIs such as StringComparison.InvariantCultureIgnoreCase work

correctly. If you're certain that the app doesn't require the collation data, consider disabling it by setting the 

BlazorWebAssemblyPreserveCollationData  MSBuild property in the app's project file to false :

https://docs.microsoft.com/en-us/dotnet/api/system.stringcomparison#system_stringcomparison_invariantcultureignorecase


Test components in ASP.NET Core Blazor
9/22/2020 • 5 minutes to read • Edit Online

Test approaches

C A PA B IL IT YC A PA B IL IT Y UN IT  T EST IN GUN IT  T EST IN G E2E T EST IN GE2E T EST IN G

Egil Hansen

Testing is an important aspect of building stable and maintainable software.

To test a Blazor component, the Component Under Test (CUT) is:

Rendered with relevant input for the test.

Depending on the type of test performed, possibly subject to interaction or modification. For example, event

handlers can be triggered, such as an onclick  event for a button.

Inspected for expected values.

Two common approaches for testing Blazor components are end-to-end (E2E) testing and unit testing:

Unit testingUnit testing: Unit tests are written with a unit testing library that provides:

Component rendering.

Inspection of component output and state.

Triggering of event handlers and life cycle methods.

Assertions that component behavior is correct.

bUnit is an example of a library that enables Razor component unit testing.

E2E testingE2E testing: A test runner runs a Blazor app containing the CUT and automates a browser instance. The

testing tool inspects and interacts with the CUT through the browser. Selenium is an example of an E2E

testing framework that can be used with Blazor apps.

In unit testing, only the Blazor component (Razor/C#) is involved. External dependencies, such as services and JS

interop, must be mocked. In E2E testing, the Blazor component and all of it's auxiliary infrastructure are part of the

test, including CSS, JS, and the DOM and browser APIs.

Test scope describes how extensive the tests are. Test scope typically has an influence on the speed of the tests. Unit

tests run on a subset of the app's subsystems and usually execute in milliseconds. E2E tests, which test a broad

group of the app's subsystems, can take several seconds to complete.

Unit testing also provides access to the instance of the CUT, allowing for inspection and verification of the

component's internal state. This normally isn't possible in E2E testing.

With regard to the component's environment, E2E tests must make sure that the expected environmental state has

been reached before verification starts. Otherwise, the result is unpredictable. In unit testing, the rendering of the

CUT and the life cycle of the test are more integrated, which improves test stability.

E2E testing involves launching multiple processes, network and disk I/O, and other subsystem activity that often

lead to poor test reliability. Unit tests are typically insulated from these sorts of issues.

The following table summarizes the difference between the two testing approaches.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/test.md
https://egilhansen.com/
https://docs.microsoft.com/en-us/dotnet/core/testing/
https://github.com/egil/bUnit
https://github.com/SeleniumHQ/selenium


Test scope Blazor component (Razor/C#) only Blazor component (Razor/C#) with
CSS/JS

Test execution time Milliseconds Seconds

Access to the component instance Yes No

Sensitive to the environment No Yes

Reliability More reliable Less reliable

C A PA B IL IT YC A PA B IL IT Y UN IT  T EST IN GUN IT  T EST IN G E2E T EST IN GE2E T EST IN G

Choose the most appropriate test approach

SC EN A RIOSC EN A RIO SUGGEST ED A P P RO A C HSUGGEST ED A P P RO A C H REM A RKSREM A RKS

Component without JS interop logic Unit testing When there's no dependency on JS
interop in a Blazor component, the
component can be tested without
access to JS or the DOM API. In this
scenario, there are no disadvantages to
choosing unit testing.

Component with simple JS interop logic Unit testing It's common for components to query
the DOM or trigger animations through
JS interop. Unit testing is usually
preferred in this scenario, since it's
straightforward to mock the JS
interaction through the IJSRuntime
interface.

Component that depends on complex
JS code

Unit testing and separate JS testing If a component uses JS interop to call a
large or complex JS library but the
interaction between the Blazor
component and JS library is simple,
then the best approach is likely to treat
the component and JS library or code
as two separate parts and test each
individually. Test the Blazor component
with a unit testing library, and test the
JS with a JS testing library.

Component with logic that depends on
JS manipulation of the browser DOM

E2E testing When a component's functionality is
dependent on JS and its manipulation
of the DOM, verify both the JS and
Blazor code together in an E2E test. This
is the approach that the Blazor
framework developers have taken with
Blazor's browser rendering logic, which
has tightly-coupled C# and JS code. The
C# and JS code must work together to
correctly render Blazor components in a
browser.

Consider the scenario when choosing the type of testing to perform. Some considerations are described in the

following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.jsinterop.ijsruntime


Component that depends on 3rd party
component library with hard-to-mock
dependencies

E2E testing When a component's functionality is
dependent on a 3rd party component
library that has hard-to-mock
dependencies, such as JS interop, E2E
testing might be the only option to test
the component.

SC EN A RIOSC EN A RIO SUGGEST ED A P P RO A C HSUGGEST ED A P P RO A C H REM A RKSREM A RKS

Test components with bUnit

NOTENOTE

NOTENOTE

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {
    private int currentCount = 0;

    private void IncrementCount()
    {
        currentCount++;
    }
}

There's no official Microsoft testing framework for Blazor, but the community-driven project bUnit provides a

convenient way to unit test Blazor components.

bUnit is a third-party testing library and isn't supported or maintained by Microsoft.

bUnit works with general-purpose testing frameworks, such as MSTest, NUnit, and xUnit. These testing frameworks

make bUnit tests look and feel like regular unit tests. bUnit tests integrated with a general-purpose testing

framework are ordinarily executed with:

Visual Studio's Test Explorer.

dotnet test  CLI command in a command shell.

An automated DevOps testing pipeline.

Test concepts and test implementations across different test frameworks are similar but not identical. Refer to the test

framework's documentation for guidance.

The following demonstrates the structure of a bUnit test on the Counter  component in an app based on a Blazor

project template. The Counter  component displays and increments a counter based on the user selecting a button

in the page:

The following bUnit test verifies that the CUT's counter is incremented correctly when the button is selected:

https://github.com/egil/bUnit
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-with-mstest
https://nunit.org/
https://xunit.github.io/
https://docs.microsoft.com/en-us/visualstudio/test/run-unit-tests-with-test-explorer
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-test


[Fact]
public void CounterShouldIncrementWhenSelected()
{
    // Arrange
    using var ctx = new TestContext();
    var cut = ctx.RenderComponent<Counter>();
    var paraElm = cut.Find("p");

    // Act
    cut.Find("button").Click();
    var paraElmText = paraElm.TextContent;

    // Assert
    paraElmText.MarkupMatches("Current count: 1");
}

NOTENOTE

Additional resources

The following actions take place at each step of the test:

Arrange: The Counter  component is rendered using bUnit's TestContext . The CUT's paragraph element (

<p> ) is found and assigned to paraElm .

Act: The button's element ( <button> ) is located and then selected by calling Click , which should increment

the counter and update the content of the paragraph tag ( <p> ). The paragraph element text content is

obtained by calling TextContent .

Assert: MarkupMatches  is called on the text content to verify that it matches the expected string, which is 

Current count: 1 .

The MarkupMatches  assert method differs from a regular string comparison assertion (for example, 

Assert.Equal("Current count: 1", paraElmText); ) MarkupMatches  performs a semantic comparison of the input and

expected HTML markup. A semantic comparison is aware of HTML semantics, meaning things like insignificant whitespace is

ignored. This results in more stable tests. For more information, see Customizing the Semantic HTML Comparison.

Getting Started with bUnit: bUnit instructions include guidance on creating a test project, referencing testing

framework packages, and building and running tests.

https://bunit.egilhansen.com/docs/verification/semantic-html-comparison
https://bunit.egilhansen.com/docs/getting-started/


Build Progressive Web Applications with ASP.NET
Core Blazor WebAssembly
9/22/2020 • 16 minutes to read • Edit Online

Create a project from the PWA template

By Steve Sanderson

A Progressive Web Application (PWA) is usually a Single Page Application (SPA) that uses modern browser APIs

and capabilities to behave like a desktop app. Blazor WebAssembly is a standards-based client-side web app

platform, so it can use any browser API, including PWA APIs required for the following capabilities:

Working offline and loading instantly, independent of network speed.

Running in its own app window, not just a browser window.

Being launched from the host's operating system start menu, dock, or home screen.

Receiving push notifications from a backend server, even while the user isn't using the app.

Automatically updating in the background.

The word progressive is used to describe such apps because:

A user might first discover and use the app within their web browser like any other SPA.

Later, the user progresses to installing it in their OS and enabling push notifications.

Visual Studio

Visual Studio Code / .NET Core CLI

When creating a new Blazor WebAssembly AppBlazor WebAssembly App in the Create a New ProjectCreate a New Project dialog, select the ProgressiveProgressive

Web ApplicationWeb Application check box:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/progressive-web-app.md
https://github.com/SteveSandersonMS


Installation and app manifest

Optionally, PWA can be configured for an app created from the ASP.NET Core Hosted template. The PWA scenario is

independent of the hosting model.

When visiting an app created using the PWA template, users have the option of installing the app into their OS's

start menu, dock, or home screen. The way this option is presented depends on the user's browser. When using

desktop Chromium-based browsers, such as Edge or Chrome, an AddAdd button appears within the URL bar. After the

user selects the AddAdd button, they receive a confirmation dialog:

On iOS, visitors can install the PWA using Safari's ShareShare button and its Add to HomescreenAdd to Homescreen option. On Chrome

for Android, users should select the MenuMenu button in the upper-right corner, followed by Add to Home screenAdd to Home screen.

Once installed, the app appears in its own window without an address bar :



Offline support

IMPORTANTIMPORTANT

WARNINGWARNING

To customize the window's title, color scheme, icon, or other details, see the manifest.json  file in the project's 

wwwroot  directory. The schema of this file is defined by web standards. For more information, see MDN web docs:

Web App Manifest.

By default, apps created using the PWA template option have support for running offline. A user must first visit the

app while they're online. The browser automatically downloads and caches all of the resources required to operate

offline.

Development support would interfere with the usual development cycle of making changes and testing them. Therefore,

offline support is only enabled for published apps.

If you intend to distribute an offline-enabled PWA, there are several important warnings and caveats. These scenarios are

inherent to offline PWAs and not specific to Blazor. Be sure to read and understand these caveats before making assumptions

about how your offline-enabled app will work.

To see how offline support works:

1. Publish the app. For more information, see Host and deploy ASP.NET Core Blazor.

2. Deploy the app to a server that supports HTTPS, and access the app in a browser at its secure HTTPS

address.

3. Open the browser's dev tools and verify that a Service Worker is registered for the host on the ApplicationApplication

tab:

https://developer.mozilla.org/docs/Web/Manifest


4. Reload the page and examine the NetworkNetwork tab. Ser vice WorkerSer vice Worker  or memor y cachememor y cache are listed as the

sources for all of the page's assets:

5. To verify that the browser isn't dependent on network access to load the app, either :

Shut down the web server and see how the app continues to function normally, which includes page

reloads. Likewise, the app continues to function normally when there's a slow network connection.

Instruct the browser to simulate offline mode in the NetworkNetwork tab:



  

        

Cache-first fetch strategyCache-first fetch strategy

Background updatesBackground updates

Offline support using a service worker is a web standard, not specific to Blazor. For more information on service

workers, see MDN web docs: Service Worker API. To learn more about common usage patterns for service workers,

see Google Web: The Service Worker Lifecycle.

Blazor's PWA template produces two service worker files:

wwwroot/service-worker.js , which is used during development.

wwwroot/service-worker.published.js , which is used after the app is published.

To share logic between the two service worker files, consider the following approach:

Add a third JavaScript file to hold the common logic.

Use self.importScripts  to load the common logic into both service worker files.

The built-in service-worker.published.js  service worker resolves requests using a cache-first strategy. This means

that the service worker prefers to return cached content, regardless of whether the user has network access or

newer content is available on the server.

The cache-first strategy is valuable because:

It ensures reliability.It ensures reliability. Network access isn't a boolean state. A user isn't simply online or offline:

The user's device may assume it's online, but the network might be so slow as to be impractical to wait

for.

The network might return invalid results for certain URLs, such as when there's a captive WIFI portal

that's currently blocking or redirecting certain requests.

This is why the browser's navigator.onLine  API isn't reliable and shouldn't be depended upon.

It ensures correctness.It ensures correctness. When building a cache of offline resources, the service worker uses content

hashing to guarantee it has fetched a complete and self-consistent snapshot of resources at a single instant

in time. This cache is then used as an atomic unit. There's no point asking the network for newer resources,

since the only versions required are the ones already cached. Anything else risks inconsistency and

incompatibility (for example, trying to use versions of .NET assemblies that weren't compiled together).

As a mental model, you can think of an offline-first PWA as behaving like a mobile app that can be installed. The

app starts up immediately regardless of network connectivity, but the installed app logic comes from a point-in-

time snapshot that might not be the latest version.

The Blazor PWA template produces apps that automatically try to update themselves in the background whenever

the user visits and has a working network connection. The way this works is as follows:

During compilation, the project generates a service worker assets manifest. By default, this is called 

service-worker-assets.js . The manifest lists all the static resources that the app requires to function offline,

such as .NET assemblies, JavaScript files, and CSS, including their content hashes. The resource list is loaded by

the service worker so that it knows which resources to cache.

Each time the user visits the app, the browser re-requests service-worker.js  and service-worker-assets.js  in

the background. The files are compared byte-for-byte with the existing installed service worker. If the server

returns changed content for either of these files, the service worker attempts to install a new version of itself.

When installing a new version of itself, the service worker creates a new, separate cache for offline resources

and starts populating the cache with resources listed in service-worker-assets.js . This logic is implemented in

the onInstall  function inside service-worker.published.js .

The process completes successfully when all of the resources are loaded without error and all content hashes

match. If successful, the new service worker enters a waiting for activation state. As soon as the user closes the

https://developer.mozilla.org/docs/Web/API/Service_Worker_API
https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle
https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope/importScripts


  

  

How requests are resolvedHow requests are resolved

Support server-rendered pagesSupport server-rendered pages

const shouldServeIndexHtml = event.request.mode === 'navigate';

const shouldServeIndexHtml = event.request.mode === 'navigate'
    && !event.request.url.includes('/Identity/');

Control asset cachingControl asset caching

app (no remaining app tabs or windows), the new service worker becomes active and is used for subsequent

app visits. The old service worker and its cache are deleted.

If the process doesn't complete successfully, the new service worker instance is discarded. The update process is

attempted again on the user's next visit, when hopefully the client has a better network connection that can

complete the requests.

Customize this process by editing the service worker logic. None of the preceding behavior is specific to Blazor but

is merely the default experience provided by the PWA template option. For more information, see MDN web docs:

Service Worker API.

As described in the Cache-first fetch strategy section, the default service worker uses a cache-first strategy,

meaning that it tries to serve cached content when available. If there is no content cached for a certain URL, for

example when requesting data from a backend API, the service worker falls back on a regular network request. The

network request succeeds if the server is reachable. This logic is implemented inside onFetch  function within 

service-worker.published.js .

If the app's Razor components rely on requesting data from backend APIs and you want to provide a friendly user

experience for failed requests due to network unavailability, implement logic within the app's components. For

example, use try/catch  around HttpClient requests.

Consider what happens when the user first navigates to a URL such as /counter  or any other deep link in the app.

In these cases, you don't want to return content cached as /counter , but instead need the browser to load the

content cached as /index.html  to start up your Blazor WebAssembly app. These initial requests are known as

navigation requests, as opposed to:

subresource  requests for images, stylesheets, or other files.

fetch/XHR  requests for API data.

The default service worker contains special-case logic for navigation requests. The service worker resolves the

requests by returning the cached content for /index.html , regardless of the requested URL. This logic is

implemented in the onFetch  function inside service-worker.published.js .

If your app has certain URLs that must return server-rendered HTML, and not serve /index.html  from the cache,

then you need to edit the logic in your service worker. If all URLs containing /Identity/  need to be handled as

regular online-only requests to the server, then modify service-worker.published.js  onFetch  logic. Locate the

following code:

Change the code to the following:

If you don't do this, then regardless of network connectivity, the service worker intercepts requests for such URLs

and resolves them using /index.html .

If your project defines the ServiceWorkerAssetsManifest  MSBuild property, Blazor's build tooling generates a

service worker assets manifest with the specified name. The default PWA template produces a project file

containing the following property:

https://developer.mozilla.org/docs/Web/API/Service_Worker_API
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient


 

<ServiceWorkerAssetsManifest>service-worker-assets.js</ServiceWorkerAssetsManifest>

<ItemGroup>
  <ServiceWorkerAssetsManifestItem Include="MyDirectory\AnotherFile.json"
    RelativePath="MyDirectory\AnotherFile.json" AssetUrl="files/AnotherFile.json" />
</ItemGroup>

IMPORTANTIMPORTANT

Push notifications

Caveats for offline PWAs

The file is placed in the wwwroot  output directory, so the browser can retrieve this file by requesting 

/service-worker-assets.js . To see the contents of this file, open 

/bin/Debug/{TARGET FRAMEWORK}/wwwroot/service-worker-assets.js  in a text editor. However, don't edit the file, as it's

regenerated on each build.

By default, this manifest lists:

Any Blazor-managed resources, such as .NET assemblies and the .NET WebAssembly runtime files required to

function offline.

All resources for publishing to the app's wwwroot  directory, such as images, stylesheets, and JavaScript files,

including static web assets supplied by external projects and NuGet packages.

You can control which of these resources are fetched and cached by the service worker by editing the logic in 

onInstall  in service-worker.published.js . By default, the service worker fetches and caches files matching typical

web filename extensions such as .html , .css , .js , and .wasm , plus file types specific to Blazor WebAssembly (

.dll , .pdb ).

To include additional resources that aren't present in the app's wwwroot  directory, define extra MSBuild ItemGroup

entries, as shown in the following example:

The AssetUrl  metadata specifies the base-relative URL that the browser should use when fetching the resource to

cache. This can be independent of its original source file name on disk.

Adding a ServiceWorkerAssetsManifestItem  doesn't cause the file to be published in the app's wwwroot  directory. The

publish output must be controlled separately. The ServiceWorkerAssetsManifestItem  only causes an additional entry to

appear in the service worker assets manifest.

Like any other PWA, a Blazor WebAssembly PWA can receive push notifications from a backend server. The server

can send push notifications at any time, even when the user isn't actively using the app. For example, push

notifications can be sent when a different user performs a relevant action.

The mechanism for sending a push notification is entirely independent of Blazor WebAssembly, since it's

implemented by the backend server which can use any technology. If you want to send push notifications from an

ASP.NET Core server, consider using a technique similar to the approach taken in the Blazing Pizza workshop.

The mechanism for receiving and displaying a push notification on the client is also independent of Blazor

WebAssembly, since it's implemented in the service worker JavaScript file. For an example, see the approach used

in the Blazing Pizza workshop.

Not all apps should attempt to support offline use. Offline support adds significant complexity, while not always

https://github.com/dotnet-presentations/blazor-workshop/blob/master/docs/09-progressive-web-app.md#sending-push-notifications
https://github.com/dotnet-presentations/blazor-workshop/blob/master/docs/09-progressive-web-app.md#displaying-notifications


Offline support only when publishedOffline support only when published

Update completion after user navigation away from appUpdate completion after user navigation away from app

being relevant for the use cases required.

Offline support is usually relevant only:

If the primary data store is local to the browser. For example, the approach is relevant in an app with a UI for an

IoT device that stores data in localStorage  or IndexedDB.

If the app performs a significant amount of work to fetch and cache the backend API data relevant to each user

so that they can navigate through the data offline. If the app must support editing, a system for tracking

changes and synchronizing data with the backend must be built.

If the goal is to guarantee that the app loads immediately regardless of network conditions. Implement a

suitable user experience around backend API requests to show the progress of requests and behave gracefully

when requests fail due to network unavailability.

Additionally, offline-capable PWAs must deal with a range of additional complications. Developers should carefully

familiarize themselves with the caveats in the following sections.

During development you typically want to see each change reflected immediately in the browser without going

through a background update process. Therefore, Blazor's PWA template enables offline support only when

published.

When building an offline-capable app, it's not enough to test the app in the Development environment. You must

test the app in its published state to understand how it responds to different network conditions.

Updates don't complete until the user has navigated away from the app in all tabs. As explained in the Background

updates section, after you deploy an update to the app, the browser fetches the updated service worker files to

begin the update process.

What surprises many developers is that, even when this update completes, it does notnot take effect until the user has

navigated away in all tabs. It is notnot sufficient to refresh the tab displaying the app, even if it's the only tab

displaying the app. Until your app is completely closed, the new service worker remains in the waiting to activate

status. This is not specific to Blazor, but rather is a standard web platform behavior.This is not specific to Blazor, but rather is a standard web platform behavior.

This commonly troubles developers who are trying to test updates to their service worker or offline cached

resources. If you check in the browser's developer tools, you may see something like the following:

https://en.wikipedia.org/wiki/Internet_of_things
https://developer.mozilla.org/docs/Web/API/IndexedDB_API


Users may run any historical version of the appUsers may run any historical version of the app

Interference with server-rendered pagesInterference with server-rendered pages

All service worker asset manifest contents are cached by defaultAll service worker asset manifest contents are cached by default

Interaction with authenticationInteraction with authentication

For as long as the list of "clients," which are tabs or windows displaying your app, is nonempty, the worker

continues waiting. The reason service workers do this is to guarantee consistency. Consistency means that all

resources are fetched from the same atomic cache.

When testing changes, you may find it convenient to click the "skipWaiting" link as shown in the preceding

screenshot, then reload the page. You can automate this for all users by coding your service worker to skip the

"waiting" phase and immediately activate on update. If you skip the waiting phase, you're giving up the guarantee

that resources are always fetched consistently from the same cache instance.

Web developers habitually expect that users only run the latest deployed version of their web app, since that's

normal within the traditional web distribution model. However, an offline-first PWA is more akin to a native mobile

app, where users aren't necessarily running the latest version.

As explained in the Background updates section, after you deploy an update to your app, each existing usereach existing user

continues to use a previous version for at least one fur ther visitcontinues to use a previous version for at least one fur ther visit because the update occurs in the

background and isn't activated until the user thereafter navigates away. Plus, the previous version being used isn't

necessarily the previous one you deployed. The previous version can be any historical version, depending on when

the user last completed an update.

This can be an issue if the frontend and backend parts of your app require agreement about the schema for API

requests. You must not deploy backward-incompatible API schema changes until you can be sure that all users

have upgraded. Alternatively, block users from using incompatible older versions of the app. This scenario

requirement is the same as for native mobile apps. If you deploy a breaking change in server APIs, the client app is

broken for users who haven't yet updated.

If possible, don't deploy breaking changes to your backend APIs. If you must do so, consider using standard Service

Worker APIs such as ServiceWorkerRegistration to determine whether the app is up-to-date, and if not, to prevent

usage.

As described in the Support server-rendered pages section, if you want to bypass the service worker's behavior of

returning /index.html  contents for all navigation requests, edit the logic in your service worker.

As described in the Control asset caching section, the file service-worker-assets.js  is generated during build and

lists all assets the service worker should fetch and cache.

Since this list by default includes everything emitted to wwwroot , including content supplied by external packages

and projects, you must be careful not to put too much content there. If the wwwroot  directory contains millions of

images, the service worker tries to fetch and cache them all, consuming excessive bandwidth and most likely not

completing successfully.

Implement arbitrary logic to control which subset of the manifest's contents should be fetched and cached by

editing the onInstall  function in service-worker.published.js .

The PWA template can be used in conjunction with authentication. An offline-capable PWA can also support

authentication when the user has initial network connectivity.

When a user doesn't have network connectivity, they can't authenticate or obtain access tokens. By default,

attempting to visit the login page without network access results in a "network error" message. You must design a

UI flow that allows the user perform useful tasks while offline without attempting to authenticate the user or obtain

access tokens. Alternatively, you can design the app to gracefully fail when the network isn't available. If the app

can't be designed to handle these scenarios, you might not want to enable offline support.

https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle#skip_the_waiting_phase
https://developer.mozilla.org/docs/Web/API/ServiceWorkerRegistration


Additional resources

When an app that's designed for online and offline use is online again:

The app might need to provision a new access token.

The app must detect if a different user is signed into the service so that it can apply operations to the user's

account that were made while they were offline.

To create an offline PWA app that interacts with authentication:

Replace the AccountClaimsPrincipalFactory<TAccount> with a factory that stores the last signed-in user and

uses the stored user when the app is offline.

Queue operations while the app is offline and apply them when the app returns online.

During sign out, clear the stored user.

The CarChecker  sample app demonstrates the preceding approaches. See the following parts of the app:

OfflineAccountClaimsPrincipalFactory  ( Client/Data/OfflineAccountClaimsPrincipalFactory.cs )

LocalVehiclesStore  ( Client/Data/LocalVehiclesStore.cs )

LoginStatus  component ( Client/Shared/LoginStatus.razor )

SignalR cross-origin negotiation for authentication

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.webassembly.authentication.accountclaimsprincipalfactory-1
https://github.com/SteveSandersonMS/CarChecker


  

                      

Host and deploy ASP.NET Core Blazor
9/22/2020 • 4 minutes to read • Edit Online

Publish the app

App base path

By Luke Latham, Rainer Stropek, and Daniel Roth

Apps are published for deployment in Release configuration.

Visual Studio

Visual Studio for Mac

.NET Core CLI

1. Select BuildBuild > Publish {APPLICATION}Publish {APPLICATION} from the navigation bar.

2. Select the publish target. To publish locally, select FolderFolder .

3. Accept the default location in the Choose a folderChoose a folder  field or specify a different location. Select the Publish

button.

Publishing the app triggers a restore of the project's dependencies and builds the project before creating the assets

for deployment. As part of the build process, unused methods and assemblies are removed to reduce app

download size and load times.

Publish locations:

Blazor WebAssembly

Blazor Server : The app is published into the /bin/Release/{TARGET FRAMEWORK}/publish  folder. Deploy the

contents of the publish  folder to the host.

Standalone: The app is published into the /bin/Release/{TARGET FRAMEWORK}/publish/wwwroot  folder. To

deploy the app as a static site, copy the contents of the wwwroot  folder to the static site host.

Hosted: The client Blazor WebAssembly app is published into the 

/bin/Release/{TARGET FRAMEWORK}/publish/wwwroot  folder of the server app, along with any other static

web assets of the server app. Deploy the contents of the publish  folder to the host.

The assets in the folder are deployed to the web server. Deployment might be a manual or automated process

depending on the development tools in use.

The app base path is the app's root URL path. Consider the following ASP.NET Core app and Blazor sub-app:

The ASP.NET Core app is named MyApp :

A Blazor app named CoolApp  is a sub-app of MyApp :

The app physically resides at d:/MyApp .

Requests are received at https://www.contoso.com/{MYAPP RESOURCE} .

The sub-app physically resides at d:/MyApp/CoolApp .

Requests are received at https://www.contoso.com/CoolApp/{COOLAPP RESOURCE} .

Without specifying additional configuration for CoolApp , the sub-app in this scenario has no knowledge of where it

resides on the server. For example, the app can't construct correct relative URLs to its resources without knowing

that it resides at the relative URL path /CoolApp/ .

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/host-and-deploy/index.md
https://github.com/guardrex
https://www.timecockpit.com
https://github.com/danroth27
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-build


<base href="/CoolApp/">

app.UsePathBase("/CoolApp");

dotnet run --pathbase=/{RELATIVE URL PATH (no trailing slash)}

dotnet run --pathbase=/CoolApp

endpoints.MapFallbackToPage("/{RELATIVE PATH}/{**path:nonfile}");

endpoints.MapFallbackToPage("/CoolApp/{**path:nonfile}");

To provide configuration for the Blazor app's base path of https://www.contoso.com/CoolApp/ , the <base>  tag's 

href  attribute is set to the relative root path in the Pages/_Host.cshtml  file (Blazor Server) or wwwroot/index.html

file (Blazor WebAssembly):

Blazor Server apps additionally set the server-side base path by calling UsePathBase in the app's request pipeline of

Startup.Configure :

By providing the relative URL path, a component that isn't in the root directory can construct URLs relative to the

app's root path. Components at different levels of the directory structure can build links to other resources at

locations throughout the app. The app base path is also used to intercept selected hyperlinks where the href

target of the link is within the app base path URI space. The Blazor router handles the internal navigation.

In many hosting scenarios, the relative URL path to the app is the root of the app. In these cases, the app's relative

URL base path is a forward slash ( <base href="/" /> ), which is the default configuration for a Blazor app. In other

hosting scenarios, such as GitHub Pages and IIS sub-apps, the app base path must be set to the server's relative

URL path of the app.

To set the app's base path, update the <base>  tag within the <head>  tag elements of the Pages/_Host.cshtml  file

(Blazor Server) or wwwroot/index.html  file (Blazor WebAssembly). Set the href  attribute value to 

/{RELATIVE URL PATH}/  (the trailing slash is required), where {RELATIVE URL PATH}  is the app's full relative URL path.

For an Blazor WebAssembly app with a non-root relative URL path (for example, <base href="/CoolApp/"> ), the app

fails to find its resources when run locally. To overcome this problem during local development and testing, you can

supply a path base argument that matches the href  value of the <base>  tag at runtime. Don't include a trailing

slash. To pass the path base argument when running the app locally, execute the dotnet run  command from the

app's directory with the --pathbase  option:

For a Blazor WebAssembly app with a relative URL path of /CoolApp/  ( <base href="/CoolApp/"> ), the command is:

The Blazor WebAssembly app responds locally at http://localhost:port/CoolApp .

Blazor Ser ver Blazor Ser ver MapFallbackToPage  configuration configuration

Pass the following path to MapFallbackToPage in Startup.Configure :

The placeholder {RELATIVE PATH}  is the non-root path on the server. For example, CoolApp  is the placeholder

segment if the non-root URL to the app is https://{HOST}:{PORT}/CoolApp/ ):

Host multiple Blazor WebAssembly appsHost multiple Blazor WebAssembly apps

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usepathbaseextensions.usepathbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.mapfallbacktopage


Deployment

For more information on hosting multiple Blazor WebAssembly apps in a hosted Blazor solution, see Host and

deploy ASP.NET Core Blazor WebAssembly.

For deployment guidance, see the following topics:

Host and deploy ASP.NET Core Blazor WebAssembly

Host and deploy ASP.NET Core Blazor Server



  

Host and deploy ASP.NET Core Blazor WebAssembly
9/22/2020 • 21 minutes to read • Edit Online

Compression

By Luke Latham, Rainer Stropek, Daniel Roth, Ben Adams, and Safia Abdalla

With the Blazor WebAssembly hosting model:

The Blazor app, its dependencies, and the .NET runtime are downloaded to the browser in parallel.

The app is executed directly on the browser UI thread.

The following deployment strategies are supported:

The Blazor app is served by an ASP.NET Core app. This strategy is covered in the Hosted deployment with

ASP.NET Core section.

The Blazor app is placed on a static hosting web server or service, where .NET isn't used to serve the Blazor app.

This strategy is covered in the Standalone deployment section, which includes information on hosting a Blazor

WebAssembly app as an IIS sub-app.

When a Blazor WebAssembly app is published, the output is statically compressed during publish to reduce the

app's size and remove the overhead for runtime compression. The following compression algorithms are used:

Brotli (highest level)

Gzip

Blazor relies on the host to the serve the appropriate compressed files. When using an ASP.NET Core hosted

project, the host project is capable of performing content negotiation and serving the statically-compressed files.

When hosting a Blazor WebAssembly standalone app, additional work might be required to ensure that statically-

compressed files are served:

For IIS web.config  compression configuration, see the IIS: Brotli and Gzip compression section.

When hosting on static hosting solutions that don't support statically-compressed file content negotiation,

such as GitHub Pages, consider configuring the app to fetch and decode Brotli compressed files:

Obtain the JavaScript Brotli decoder from the google/brotli GitHub repository. As of July 2020, the

decoder file is named decode.min.js  and found in the repository's js  folder.

Update the app to use the decoder. Change the markup inside the closing <body>  tag in 

wwwroot/index.html  to the following:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/host-and-deploy/webassembly.md
https://github.com/guardrex
https://www.timecockpit.com
https://github.com/danroth27
https://twitter.com/ben_a_adams
https://safia.rocks
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc1952
https://github.com/google/brotli
https://github.com/google/brotli/tree/master/js


<PropertyGroup>
  <BlazorEnableCompression>false</BlazorEnableCompression>
</PropertyGroup>

dotnet publish -p:BlazorEnableCompression=false

Rewrite URLs for correct routing

<script src="decode.min.js"></script>
<script src="_framework/blazor.webassembly.js" autostart="false"></script>
<script>
  Blazor.start({
    loadBootResource: function (type, name, defaultUri, integrity) {
      if (type !== 'dotnetjs' && location.hostname !== 'localhost') {
        return (async function () {
          const response = await fetch(defaultUri + '.br', { cache: 'no-cache' });
          if (!response.ok) {
            throw new Error(response.statusText);
          }
          const originalResponseBuffer = await response.arrayBuffer();
          const originalResponseArray = new Int8Array(originalResponseBuffer);
          const decompressedResponseArray = BrotliDecode(originalResponseArray);
          const contentType = type === 
            'dotnetwasm' ? 'application/wasm' : 'application/octet-stream';
          return new Response(decompressedResponseArray, 
            { headers: { 'content-type': contentType } });
        })();
      }
    }
  });
</script>

To disable compression, add the BlazorEnableCompression  MSBuild property to the app's project file and set the

value to false :

The BlazorEnableCompression  property can be passed to the dotnet publish  command with the following syntax in

a command shell:

Routing requests for page components in a Blazor WebAssembly app isn't as straightforward as routing requests

in a Blazor Server, hosted app. Consider a Blazor WebAssembly app with two components:

Main.razor : Loads at the root of the app and contains a link to the About  component ( href="About" ).

About.razor : About  component.

When the app's default document is requested using the browser's address bar (for example, 

https://www.contoso.com/ ):

1. The browser makes a request.

2. The default page is returned, which is usually index.html .

3. index.html  bootstraps the app.

4. Blazor's router loads, and the Razor Main  component is rendered.

In the Main page, selecting the link to the About  component works on the client because the Blazor router stops

the browser from making a request on the Internet to www.contoso.com  for About  and serves the rendered About

component itself. All of the requests for internal endpoints within the Blazor WebAssembly app work the same way:

Requests don't trigger browser-based requests to server-hosted resources on the Internet. The router handles the

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish


 

  

Hosted deployment with ASP.NET Core

Hosted deployment with multiple Blazor WebAssembly apps
App configurationApp configuration

requests internally.

If a request is made using the browser's address bar for www.contoso.com/About , the request fails. No such resource

exists on the app's Internet host, so a 404 - Not Found response is returned.

Because browsers make requests to Internet-based hosts for client-side pages, web servers and hosting services

must rewrite all requests for resources not physically on the server to the index.html  page. When index.html  is

returned, the app's Blazor router takes over and responds with the correct resource.

When deploying to an IIS server, you can use the URL Rewrite Module with the app's published web.config  file. For

more information, see the IIS section.

A hosted deployment serves the Blazor WebAssembly app to browsers from an ASP.NET Core app that runs on a

web server.

The client Blazor WebAssembly app is published into the /bin/Release/{TARGET FRAMEWORK}/publish/wwwroot  folder

of the server app, along with any other static web assets of the server app. The two apps are deployed together. A

web server that is capable of hosting an ASP.NET Core app is required. For a hosted deployment, Visual Studio

includes the Blazor WebAssembly AppBlazor WebAssembly App project template ( blazorwasm  template when using the dotnet new

command) with the Hosted  option selected ( -ho|--hosted  when using the dotnet new  command).

For more information on ASP.NET Core app hosting and deployment, see Host and deploy ASP.NET Core.

For information on deploying to Azure App Service, see Publish an ASP.NET Core app to Azure with Visual Studio.

To configure a hosted Blazor solution to serve multiple Blazor WebAssembly apps:

<PropertyGroup>
  ...
  <StaticWebAssetBasePath>FirstApp</StaticWebAssetBasePath>
</PropertyGroup>

Use an existing hosted Blazor solution or create a new solution from the Blazor Hosted project template.

In the client app's project file, add a <StaticWebAssetBasePath>  property to the <PropertyGroup>  with a value

of FirstApp  to set the base path for the project's static assets:

Add a second client app to the solution:

Add a folder named SecondClient  to the solution's folder.

Create a Blazor WebAssembly app named SecondBlazorApp.Client  in the SecondClient  folder from

the Blazor WebAssembly project template.

In the app's project file:

<PropertyGroup>
  ...
  <StaticWebAssetBasePath>SecondApp</StaticWebAssetBasePath>
</PropertyGroup>

Add a <StaticWebAssetBasePath>  property to the <PropertyGroup>  with a value of SecondApp :

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new


<ItemGroup>
  ...
  <ProjectReference Include="..\SecondClient\SecondBlazorApp.Client.csproj" />
</ItemGroup>

"applicationUrl": "https://localhost:5001;https://localhost:5002",

app.UseBlazorFrameworkFiles();
app.UseStaticFiles();

app.UseRouting();

app.UseEndpoints(endpoints =>
{
    endpoints.MapRazorPages();
    endpoints.MapControllers();
    endpoints.MapFallbackToFile("index.html");
});

<ItemGroup>
  <ProjectReference Include="..\Shared\{SOLUTION NAME}.Shared.csproj" />
</ItemGroup>

Add a project reference to the Shared  project:

The placeholder {SOLUTION NAME}  is the solution's name.

In the server app's project file, create a project reference for the added client app:

In the server app's Properties/launchSettings.json  file, configure the applicationUrl  of the Kestrel profile (

{SOLUTION NAME}.Server ) to access the client apps at ports 5001 and 5002:

In the server app's Startup.Configure  method ( Startup.cs ), remove the following lines, which appear after

the call to UseHttpsRedirection:

Add middleware that maps requests to the client apps. The following example configures the middleware to

run when:

NOTENOTE

The request port is either 5001 for the original client app or 5002 for the added client app.

The request host is either firstapp.com  for the original client app or secondapp.com  for the added

client app.

The example shown in this section requires additional configuration for:

Accessing the apps at the example host domains, firstapp.com  and secondapp.com .

Certificates for the client apps to enable TLS security (HTTPS).

The required configuration is beyond the scope of this article and depends on how the solution is hosted. For

more information see the Host and deploy articles.

Place the following code where the lines were removed earlier :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpspolicybuilderextensions.usehttpsredirection


    Static assets and class librariesStatic assets and class libraries

app.MapWhen(ctx => ctx.Request.Host.Port == 5001 || 
    ctx.Request.Host.Equals("firstapp.com"), first =>
{
    first.Use((ctx, nxt) =>
    {
        ctx.Request.Path = "/FirstApp" + ctx.Request.Path;
        return nxt();
    });

    first.UseBlazorFrameworkFiles("/FirstApp");
    first.UseStaticFiles();
    first.UseStaticFiles("/FirstApp");
    first.UseRouting();

    first.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
        endpoints.MapFallbackToFile("/FirstApp/{*path:nonfile}", 
            "FirstApp/index.html");
    });
});

app.MapWhen(ctx => ctx.Request.Host.Port == 5002 || 
    ctx.Request.Host.Equals("secondapp.com"), second =>
{
    second.Use((ctx, nxt) =>
    {
        ctx.Request.Path = "/SecondApp" + ctx.Request.Path;
        return nxt();
    });

    second.UseBlazorFrameworkFiles("/SecondApp");
    second.UseStaticFiles();
    second.UseStaticFiles("/SecondApp");
    second.UseRouting();

    second.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
        endpoints.MapFallbackToFile("/SecondApp/{*path:nonfile}", 
            "SecondApp/index.html");
    });
});

[Route("FirstApp/[controller]")]
[Route("SecondApp/[controller]")]

In the server app's weather forecast controller ( Controllers/WeatherForecastController.cs ), replace the

existing route ( [Route("[controller]")] ) to WeatherForecastController  with the following routes:

The middleware added to the server app's Startup.Configure  method earlier modifies incoming requests to

/WeatherForecast  to either /FirstApp/WeatherForecast  or /SecondApp/WeatherForecast  depending on the

port (5001/5002) or domain ( firstapp.com / secondapp.com ). The preceding controller routes are required in

order to return weather data from the server app to the client apps.

Use the following approaches for static assets:

When the asset is in the client app's wwwroot  folder, provide their paths normally:



@page "/Jeep"

<h1>1979 Jeep CJ-5&trade;</h1>

<p>
    <img alt="1979 Jeep CJ-5&trade;" src="/jeep-cj.png" />
</p>

<h1>1991 Jeep YJ&trade;</h1>

<p>
    <img alt="1991 Jeep YJ&trade;" src="_content/JeepImage/jeep-yj.png" />
</p>

<p>
    <em>Jeep CJ-5</em> and <em>Jeep YJ</em> are a trademarks of 
    <a href="https://www.fcagroup.com">Fiat Chrysler Automobiles</a>.
</p>

<JeepImage.Component1 />

WARNINGWARNING

<img alt="..." src="/{ASSET FILE NAME}" />

<img alt="..." src="_content/{LIBRARY NAME}/{ASSET FILE NAME}" />

When the asset is in the wwwroot  folder of a Razor Class Library (RCL), reference the static asset in the client

app per the guidance in the RCL article:

Components provided to a client app by a class library are referenced normally. If any components require

stylesheets or JavaScript files, use either of the following approaches to obtain the static assets:

The client app's wwwroot/index.html  file can link ( <link> ) to the static assets.

The component can use the framework's Link  component to obtain the static assets.

The preceding approaches are demonstrated in the following examples.

Components provided to a client app by a class library are referenced normally. If any components require

stylesheets or JavaScript files, the client app's wwwroot/index.html  file must include the correct static asset links.

These approaches are demonstrated in the following examples.

Add the following Jeep  component to one of the client apps. The Jeep  component uses:

An image from the client app's wwwroot  folder ( jeep-cj.png ).

An image from an added Razor component library ( JeepImage ) wwwroot  folder ( jeep-yj.png ).

The example component ( Component1 ) is created automatically by the RCL project template when the 

JeepImage  library is added to the solution.

Do notnot  publish images of vehicles publicly unless you own the images. Otherwise, you risk copyright infringement.

The library's jeep-yj.png  image can also be added to the library's Component1  component ( Component1.razor ). To

provide the my-component  CSS class to the client app's page, link to the library's stylesheet using the framework's 

Link  component:



 

<div class="my-component">
    <Link href="_content/JeepImage/styles.css" rel="stylesheet" />

    <h1>JeepImage.Component1</h1>

    <p>
        This Blazor component is defined in the <strong>JeepImage</strong> package.
    </p>

    <p>
        <img alt="1991 Jeep YJ&trade;" src="_content/JeepImage/jeep-yj.png" />
    </p>
</div>

<head>
    ...
    <link href="_content/JeepImage/styles.css" rel="stylesheet" />
</head>

<div class="my-component">
    <h1>JeepImage.Component1</h1>

    <p>
        This Blazor component is defined in the <strong>JeepImage</strong> package.
    </p>

    <p>
        <img alt="1991 Jeep YJ&trade;" src="_content/JeepImage/jeep-yj.png" />
    </p>
</div>

<head>
    ...
    <link href="_content/JeepImage/styles.css" rel="stylesheet" />
</head>

<li class="nav-item px-3">
    <NavLink class="nav-link" href="Jeep">
        <span class="oi oi-list-rich" aria-hidden="true"></span> Jeep
    </NavLink>
</li>

Standalone deployment

An alternative to using the Link  component is to load the stylesheet from the client app's wwwroot/index.html  file.

This approach makes the stylesheet available to all of the components in the client app:

The library's jeep-yj.png  image can also be added to the library's Component1  component ( Component1.razor ):

The client app's wwwroot/index.html  file requests the library's stylesheet with the following added <link>  tag:

Add navigation to the Jeep  component in the client app's NavMenu  component ( Shared/NavMenu.razor ):

For more information on RCLs, see:

ASP.NET Core Razor components class libraries

Reusable Razor UI in class libraries with ASP.NET Core



    

    

Azure App ServiceAzure App Service

IISIIS

web.configweb.config

Use a custom web.configUse a custom web.config

Install the URL Rewrite ModuleInstall the URL Rewrite Module

Configure the websiteConfigure the website

A standalone deployment serves the Blazor WebAssembly app as a set of static files that are requested directly by

clients. Any static file server is able to serve the Blazor app.

Standalone deployment assets are published into the /bin/Release/{TARGET FRAMEWORK}/publish/wwwroot  folder.

Blazor WebAssembly apps can be deployed to Azure App Services on Windows, which hosts the app on IIS.

Deploying a standalone Blazor WebAssembly app to Azure App Service for Linux isn't currently supported. A Linux

server image to host the app isn't available at this time. Work is in progress to enable this scenario.

IIS is a capable static file server for Blazor apps. To configure IIS to host Blazor, see Build a Static Website on IIS.

Published assets are created in the /bin/Release/{TARGET FRAMEWORK}/publish  folder. Host the contents of the 

publish  folder on the web server or hosting service.

When a Blazor project is published, a web.config  file is created with the following IIS configuration:

MIME types are set for the following file extensions:

HTTP compression is enabled for the following MIME types:

URL Rewrite Module rules are established:

.dll : application/octet-stream

.json : application/json

.wasm : application/wasm

.woff : application/font-woff

.woff2 : application/font-woff

application/octet-stream

application/wasm

Serve the sub-directory where the app's static assets reside ( wwwroot/{PATH REQUESTED} ).

Create SPA fallback routing so that requests for non-file assets are redirected to the app's default

document in its static assets folder ( wwwroot/index.html ).

To use a custom web.config  file, place the custom web.config  file at the root of the project folder and publish the

project.

The URL Rewrite Module is required to rewrite URLs. The module isn't installed by default, and it isn't available for

install as a Web Server (IIS) role service feature. The module must be downloaded from the IIS website. Use the

Web Platform Installer to install the module:

1. Locally, navigate to the URL Rewrite Module downloads page. For the English version, select WebPIWebPI to

download the WebPI installer. For other languages, select the appropriate architecture for the server (x86/x64)

to download the installer.

2. Copy the installer to the server. Run the installer. Select the InstallInstall  button and accept the license terms. A server

restart isn't required after the install completes.

Set the website's Physical pathPhysical path to the app's folder. The folder contains:

The web.config  file that IIS uses to configure the website, including the required redirect rules and file content

types.

The app's static asset folder.

https://docs.microsoft.com/en-us/iis/manage/creating-websites/scenario-build-a-static-website-on-iis
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite#additionalDownloads


  

Host as an IIS sub-appHost as an IIS sub-app

Brotli and Gzip compressionBrotli and Gzip compression

TroubleshootingTroubleshooting

Azure StorageAzure Storage

If a standalone app is hosted as an IIS sub-app, perform either of the following:

<handlers>
  <remove name="aspNetCore" />
</handlers>

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <handlers>
        <add name="aspNetCore" ... />
      </handlers>
      <aspNetCore ... />
    </system.webServer>
  </location>
</configuration>

Disable the inherited ASP.NET Core Module handler.

Remove the handler in the Blazor app's published web.config  file by adding a <handlers>  section to the file:

Disable inheritance of the root (parent) app's <system.webServer>  section using a <location>  element with 

inheritInChildApplications  set to false :

Removing the handler or disabling inheritance is performed in addition to configuring the app's base path. Set the

app base path in the app's index.html  file to the IIS alias used when configuring the sub-app in IIS.

IIS can be configured via web.config  to serve Brotli or Gzip compressed Blazor assets. For an example

configuration, see web.config .

If a 500 - Internal Server Error is received and IIS Manager throws errors when attempting to access the website's

configuration, confirm that the URL Rewrite Module is installed. When the module isn't installed, the web.config

file can't be parsed by IIS. This prevents the IIS Manager from loading the website's configuration and the website

from serving Blazor's static files.

For more information on troubleshooting deployments to IIS, see Troubleshoot ASP.NET Core on Azure App Service

and IIS.

Azure Storage static file hosting allows serverless Blazor app hosting. Custom domain names, the Azure Content

Delivery Network (CDN), and HTTPS are supported.

When the blob service is enabled for static website hosting on a storage account:

Set the Index document nameIndex document name to index.html .

Set the Error document pathError document path to index.html . Razor components and other non-file endpoints don't reside at

physical paths in the static content stored by the blob service. When a request for one of these resources is

received that the Blazor router should handle, the 404 - Not Found error generated by the blob service routes

the request to the Error document pathError document path. The index.html  blob is returned, and the Blazor router loads and

processes the path.

If files aren't loaded at runtime due to inappropriate MIME types in the files' Content-Type  headers, take either of

the following actions:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/host-and-deploy/webassembly/_samples/web.config?raw=true
https://docs.microsoft.com/en-us/azure/storage/


  NginxNginx

events { }
http {
    server {
        listen 80;

        location / {
            root      /usr/share/nginx/html;
            try_files $uri $uri/ /index.html =404;
        }
    }
}

http {
    server {
        ...

        location / {
            ...

            limit_req zone=one burst=60 nodelay;
        }
    }
}

Nginx in DockerNginx in Docker

FROM nginx:alpine
COPY ./bin/Release/netstandard2.0/publish /usr/share/nginx/html/
COPY nginx.conf /etc/nginx/nginx.conf

Configure your tooling to set the correct MIME types ( Content-Type  headers) when the files are deployed.

Change the MIME types ( Content-Type  headers) for the files after the app is deployed.

In Storage Explorer (Azure portal) for each file:

1. Right-click the file and select Proper tiesProper ties .

2. Set the ContentTypeContentType and select the SaveSave button.

For more information, see Static website hosting in Azure Storage.

The following nginx.conf  file is simplified to show how to configure Nginx to send the index.html  file whenever it

can't find a corresponding file on disk.

When setting the NGINX burst rate limit with limit_req , Blazor WebAssembly apps may require a large burst

parameter value to accommodate the relatively large number of requests made by an app. Initially, set the value to

at least 60:

Increase the value if browser developer tools or a network traffic tool indicates that requests are receiving a 503 -

Service Unavailable status code.

For more information on production Nginx web server configuration, see Creating NGINX Plus and NGINX

Configuration Files.

To host Blazor in Docker using Nginx, setup the Dockerfile to use the Alpine-based Nginx image. Update the

Dockerfile to copy the nginx.config  file into the container.

Add one line to the Dockerfile, as shown in the following example:

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-static-website
https://www.nginx.com/blog/rate-limiting-nginx/#bursts
https://nginx.org/docs/http/ngx_http_limit_req_module.html#limit_req
https://docs.nginx.com/nginx/admin-guide/basic-functionality/managing-configuration-files/


ApacheApache

GitHub PagesGitHub Pages

To deploy a Blazor WebAssembly app to CentOS 7 or later :

<VirtualHost *:80>
    ServerName www.example.com
    ServerAlias *.example.com

    DocumentRoot "/var/www/blazorapp"
    ErrorDocument 404 /index.html

    AddType application/wasm .wasm
    AddType application/octet-stream .dll

    <Directory "/var/www/blazorapp">
        Options -Indexes
        AllowOverride None
    </Directory>

    <IfModule mod_deflate.c>
        AddOutputFilterByType DEFLATE text/css
        AddOutputFilterByType DEFLATE application/javascript
        AddOutputFilterByType DEFLATE text/html
        AddOutputFilterByType DEFLATE application/octet-stream
        AddOutputFilterByType DEFLATE application/wasm
        <IfModule mod_setenvif.c>
        BrowserMatch ^Mozilla/4 gzip-only-text/html
        BrowserMatch ^Mozilla/4.0[678] no-gzip
        BrowserMatch bMSIE !no-gzip !gzip-only-text/html
    </IfModule>
    </IfModule>

    ErrorLog /var/log/httpd/blazorapp-error.log
    CustomLog /var/log/httpd/blazorapp-access.log common
</VirtualHost>

1. Create the Apache configuration file. The following example is a simplified configuration file (

blazorapp.config ):

2. Place the Apache configuration file into the /etc/httpd/conf.d/  directory, which is the default Apache

configuration directory in CentOS 7.

3. Place the app's files into the /var/www/blazorapp  directory (the location specified to DocumentRoot  in the

configuration file).

4. Restart the Apache service.

For more information, see mod_mime  and mod_deflate .

To handle URL rewrites, add a wwwroot/404.html  file with a script that handles redirecting the request to the 

index.html  page. For an example, see the SteveSandersonMS/BlazorOnGitHubPages GitHub repository:

wwwroot/404.html

Live site)

When using a project site instead of an organization site, update the <base>  tag in wwwroot/index.html . Set the 

href  attribute value to the GitHub repository name with a trailing slash (for example, /my-repository/ ). In the

SteveSandersonMS/BlazorOnGitHubPages GitHub repository, the base href  is updated at publish by the 

.github/workflows/main.yml  configuration file.

https://httpd.apache.org/docs/2.4/mod/mod_mime.html
https://httpd.apache.org/docs/current/mod/mod_deflate.html
https://github.com/SteveSandersonMS/BlazorOnGitHubPages
https://github.com/SteveSandersonMS/BlazorOnGitHubPages/blob/master/wwwroot/404.html
https://stevesandersonms.github.io/BlazorOnGitHubPages/
https://github.com/SteveSandersonMS/BlazorOnGitHubPages
https://github.com/SteveSandersonMS/BlazorOnGitHubPages/blob/master/.github/workflows/main.yml


NOTENOTE

Host configuration values

Content rootContent root

Path basePath base

IMPORTANTIMPORTANT

The SteveSandersonMS/BlazorOnGitHubPages GitHub repository isn't owned, maintained, or supported by the .NET

Foundation or Microsoft.

Blazor WebAssembly apps can accept the following host configuration values as command-line arguments at

runtime in the development environment.

The --contentroot  argument sets the absolute path to the directory that contains the app's content files (content

root). In the following examples, /content-root-path  is the app's content root path.

dotnet run --contentroot=/content-root-path

"commandLineArgs": "--contentroot=/content-root-path"

--contentroot=/content-root-path

Pass the argument when running the app locally at a command prompt. From the app's directory, execute:

Add an entry to the app's launchSettings.json  file in the IIS  ExpressIIS  Express  profile. This setting is used when the

app is run with the Visual Studio Debugger and from a command prompt with dotnet run .

In Visual Studio, specify the argument in Proper tiesProper ties  > DebugDebug > Application argumentsApplication arguments . Setting the

argument in the Visual Studio property page adds the argument to the launchSettings.json  file.

The --pathbase  argument sets the app base path for an app run locally with a non-root relative URL path (the 

<base>  tag href  is set to a path other than /  for staging and production). In the following examples, 

/relative-URL-path  is the app's path base. For more information, see App base path.

Unlike the path provided to href  of the <base>  tag, don't include a trailing slash ( / ) when passing the --pathbase

argument value. If the app base path is provided in the <base>  tag as <base href="/CoolApp/">  (includes a trailing

slash), pass the command-line argument value as --pathbase=/CoolApp  (no trailing slash).

dotnet run --pathbase=/relative-URL-path

"commandLineArgs": "--pathbase=/relative-URL-path"

Pass the argument when running the app locally at a command prompt. From the app's directory, execute:

Add an entry to the app's launchSettings.json  file in the IIS  ExpressIIS  Express  profile. This setting is used when

running the app with the Visual Studio Debugger and from a command prompt with dotnet run .

In Visual Studio, specify the argument in Proper tiesProper ties  > DebugDebug > Application argumentsApplication arguments . Setting the

https://github.com/SteveSandersonMS/BlazorOnGitHubPages


URLsURLs

Configure the Trimmer

Configure the Linker

Custom boot resource loading

PA RA M ET ERPA RA M ET ER DESC RIP T IO NDESC RIP T IO N

type The type of the resource. Permissable types: assembly , pdb ,

dotnetjs , dotnetwasm , timezonedata

name The name of the resource.

--pathbase=/relative-URL-path

argument in the Visual Studio property page adds the argument to the launchSettings.json  file.

The --urls  argument sets the IP addresses or host addresses with ports and protocols to listen on for requests.

dotnet run --urls=http://127.0.0.1:0

"commandLineArgs": "--urls=http://127.0.0.1:0"

--urls=http://127.0.0.1:0

Pass the argument when running the app locally at a command prompt. From the app's directory, execute:

Add an entry to the app's launchSettings.json  file in the IIS  ExpressIIS  Express  profile. This setting is used when

running the app with the Visual Studio Debugger and from a command prompt with dotnet run .

In Visual Studio, specify the argument in Proper tiesProper ties  > DebugDebug > Application argumentsApplication arguments . Setting the

argument in the Visual Studio property page adds the argument to the launchSettings.json  file.

Blazor performs Intermediate Language (IL) trimming on each Release build to remove unnecessary IL from the

output assemblies. For more information, see Configure the Trimmer for ASP.NET Core Blazor.

Blazor performs Intermediate Language (IL) linking on each Release build to remove unnecessary IL from the

output assemblies. For more information, see Configure the Linker for ASP.NET Core Blazor.

A Blazor WebAssembly app can be initialized with the loadBootResource  function to override the built-in boot

resource loading mechanism. Use loadBootResource  for the following scenarios:

Allow users to load static resources, such as timezone data or dotnet.wasm  from a CDN.

Load compressed assemblies using an HTTP request and decompress them on the client for hosts that don't

support fetching compressed contents from the server.

Alias resources to a different name by redirecting each fetch  request to a new name.

loadBootResource  parameters appear in the following table.



defaultUri The relative or absolute URI of the resource.

integrity The integrity string representing the expected content in the
response.

PA RA M ET ERPA RA M ET ER DESC RIP T IO NDESC RIP T IO N

loadBootResource  returns any of the following to override the loading process:

...

<script src="_framework/blazor.webassembly.js" autostart="false"></script>
<script>
  Blazor.start({
    loadBootResource: function (type, name, defaultUri, integrity) {
      console.log(`Loading: '${type}', '${name}', '${defaultUri}', '${integrity}'`);
      switch (type) {
        case 'dotnetjs':
        case 'dotnetwasm':
        case 'timezonedata':
          return `https://my-awesome-cdn.com/blazorwebassembly/3.2.0/${name}`;
      }
    }
  });
</script>

<script src="_framework/blazor.webassembly.js" autostart="false"></script>
<script>
  Blazor.start({
    loadBootResource: function (type, name, defaultUri, integrity) {
      return fetch(defaultUri, { 
        cache: 'no-cache',
        integrity: integrity,
        headers: { 'MyCustomHeader': 'My custom value' }
      });
    }
  });
</script>

URI string. In the following example ( wwwroot/index.html ), the following files are served from a CDN at 

https://my-awesome-cdn.com/ :

dotnet.*.js

dotnet.wasm

Timezone data

Promise<Response> . Pass the integrity  parameter in a header to retain the default integrity-checking

behavior.

The following example ( wwwroot/index.html ) adds a custom HTTP header to the outbound requests and

passes the integrity  parameter through to the fetch  call:

null / undefined , which results in the default loading behavior.

External sources must return the required CORS headers for browsers to allow the cross-origin resource loading.

CDNs usually provide the required headers by default.

You only need to specify types for custom behaviors. Types not specified to loadBootResource  are loaded by the

framework per their default loading behaviors.



  Change the filename extension of DLL files

dir .\_framework\_bin | rename-item -NewName { $_.name -replace ".dll\b",".bin" }
((Get-Content .\_framework\blazor.boot.json -Raw) -replace '.dll"','.bin"') | Set-Content 
.\_framework\blazor.boot.json

((Get-Content .\service-worker-assets.js -Raw) -replace '.dll"','.bin"') | Set-Content .\service-worker-
assets.js

for f in _framework/_bin/*; do mv "$f" "`echo $f | sed -e 's/\.dll\b/.bin/g'`"; done
sed -i 's/\.dll"/.bin"/g' _framework/blazor.boot.json

sed -i 's/\.dll"/.bin"/g' service-worker-assets.js

param([string]$filepath,[string]$tfm)
dir $filepath\bin\Release\$tfm\wwwroot\_framework\_bin | rename-item -NewName { $_.name -replace 
".dll\b",".bin" }
((Get-Content $filepath\bin\Release\$tfm\wwwroot\_framework\blazor.boot.json -Raw) -replace '.dll"','.bin"') | 
Set-Content $filepath\bin\Release\$tfm\wwwroot\_framework\blazor.boot.json
Remove-Item $filepath\bin\Release\$tfm\wwwroot\_framework\blazor.boot.json.gz

In case you have a need to change the filename extensions of the app's published .dll  files, follow the guidance in

this section.

After publishing the app, use a shell script or DevOps build pipeline to rename .dll  files to use a different file

extension. Target the .dll  files in the wwwroot  directory of the app's published output (for example, 

{CONTENT ROOT}/bin/Release/netstandard2.1/publish/wwwroot ).

In the following examples, .dll  files are renamed to use the .bin  file extension.

On Windows:

If service worker assets are also in use, add the following command:

On Linux or macOS:

If service worker assets are also in use, add the following command:

To use a different file extension than .bin , replace .bin  in the preceding commands.

To address the compressed blazor.boot.json.gz  and blazor.boot.json.br  files, adopt either of the following

approaches:

Remove the compressed blazor.boot.json.gz  and blazor.boot.json.br  files. Compression is disabled with this

approach.

Recompress the updated blazor.boot.json  file.

The preceding guidance also applies when service worker assets are in use. Remove or recompress 

wwwroot/service-worker-assets.js.br  and wwwroot/service-worker-assets.js.gz . Otherwise, file integrity checks fail

in the browser.

The following Windows example uses a PowerShell script placed at the root of the project.

ChangeDLLExtensions.ps1: :



((Get-Content $filepath\bin\Release\$tfm\wwwroot\service-worker-assets.js -Raw) -replace '.dll"','.bin"') | 
Set-Content $filepath\bin\Release\$tfm\wwwroot\service-worker-assets.js

<Target Name="ChangeDLLFileExtensions" AfterTargets="Publish" Condition="'$(Configuration)'=='Release'">
  <Exec Command="powershell.exe -command &quot;&amp; { .\ChangeDLLExtensions.ps1 '$(SolutionDir)' 
'$(TargetFramework)'}&quot;" />
</Target>

NOTENOTE

If service worker assets are also in use, add the following command:

In the project file, the script is run after publishing the app:

When renaming and lazy loading the same assemblies, see the guidance in Lazy load assemblies in ASP.NET Core Blazor

WebAssembly.

To provide feedback, visit aspnetcore/issues #5477.

https://github.com/dotnet/aspnetcore/issues/5477


    

Host and deploy Blazor Server
9/22/2020 • 5 minutes to read • Edit Online

Host configuration values

Deployment

Scalability

Deployment serverDeployment server

SignalR configurationSignalR configuration

Azure SignalR ServiceAzure SignalR Service

By Luke Latham, Rainer Stropek, and Daniel Roth

Blazor Server apps can accept Generic Host configuration values.

Using the Blazor Server hosting model, Blazor is executed on the server from within an ASP.NET Core app. UI

updates, event handling, and JavaScript calls are handled over a SignalR connection.

A web server capable of hosting an ASP.NET Core app is required. Visual Studio includes the Blazor Ser ver AppBlazor Ser ver App

project template ( blazorserverside  template when using the dotnet new  command).

Plan a deployment to make the best use of the available infrastructure for a Blazor Server app. See the following

resources to address Blazor Server app scalability:

Fundamentals of Blazor Server apps

Threat mitigation guidance for ASP.NET Core Blazor Server

When considering the scalability of a single server (scale up), the memory available to an app is likely the first

resource that the app will exhaust as user demands increase. The available memory on the server affects the:

Number of active circuits that a server can support.

UI latency on the client.

For guidance on building secure and scalable Blazor server apps, see Threat mitigation guidance for ASP.NET Core

Blazor Server.

Each circuit uses approximately 250 KB of memory for a minimal Hello World-style app. The size of a circuit

depends on the app's code and the state maintenance requirements associated with each component. We

recommend that you measure resource demands during development for your app and infrastructure, but the

following baseline can be a starting point in planning your deployment target: If you expect your app to support

5,000 concurrent users, consider budgeting at least 1.3 GB of server memory to the app (or ~273 KB per user).

Blazor Server apps use ASP.NET Core SignalR to communicate with the browser. SignalR's hosting and scaling

conditions apply to Blazor Server apps.

Blazor works best when using WebSockets as the SignalR transport due to lower latency, reliability, and security.

Long Polling is used by SignalR when WebSockets isn't available or when the app is explicitly configured to use

Long Polling. When deploying to Azure App Service, configure the app to use WebSockets in the Azure portal

settings for the service. For details on configuring the app for Azure App Service, see the SignalR publishing

guidelines.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/host-and-deploy/server.md
https://github.com/guardrex
https://www.timecockpit.com
https://github.com/danroth27
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new


IMPORTANTIMPORTANT

IISIIS

KubernetesKubernetes

We recommend using the Azure SignalR Service for Blazor Server apps. The service allows for scaling up a Blazor

Server app to a large number of concurrent SignalR connections. In addition, the SignalR service's global reach and

high-performance data centers significantly aid in reducing latency due to geography.

When WebSockets are disabled, Azure App Service simulates a real-time connection using HTTP long-polling. HTTP long-

polling is noticeably slower than running with WebSockets enabled, which doesn't use polling to simulate a client-server

connection.

We recommend using WebSockets for Blazor Server apps deployed to Azure App Service. The Azure SignalR Service uses

WebSockets by default. If the app doesn't use the Azure SignalR Service, see Publish an ASP.NET Core SignalR app to Azure

App Service.

For more information, see:

What is Azure SignalR Service?

Performance guide for Azure SignalR Service

To configure an app (and optionally provision) the Azure SignalR Service:

1. Enable the service to support sticky sessions, where clients are redirected back to the same server when

prerendering. Set the ServerStickyMode  option or configuration value to Required . Typically, an app creates

the configuration using oneone of the following approaches:

services.AddSignalR().AddAzureSignalR(options =>
{
    options.ServerStickyMode = 
        Microsoft.Azure.SignalR.ServerStickyMode.Required;
});

Startup.ConfigureServices :

Configuration (use oneone of the following approaches):

"Azure:SignalR:ServerStickyMode": "Required"

appsettings.json :

The app service's ConfigurationConfiguration > Application settingsApplication settings  in the Azure portal (NameName: 

Azure:SignalR:ServerStickyMode , ValueValue: Required ).

2. Create an Azure Apps publish profile in Visual Studio for the Blazor Server app.

3. Add the Azure S ignalR Ser viceAzure S ignalR Ser vice dependency to the profile. If the Azure subscription doesn't have a pre-

existing Azure SignalR Service instance to assign to the app, select Create a new Azure S ignalR Ser viceCreate a new Azure S ignalR Ser vice

instanceinstance to provision a new service instance.

4. Publish the app to Azure.

When using IIS, enable:

WebSockets on IIS.

Sticky sessions with Application Request Routing.

Create an ingress definition with the following Kubernetes annotations for sticky sessions:

https://wikipedia.org/wiki/WebSocket
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://docs.microsoft.com/en-us/azure-signalr/signalr-concept-performance#performance-factors
https://docs.microsoft.com/en-us/iis/extensions/configuring-application-request-routing-arr/http-load-balancing-using-application-request-routing
https://kubernetes.github.io/ingress-nginx/examples/affinity/cookie/


  

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: <ingress-name>
  annotations:
    nginx.ingress.kubernetes.io/affinity: "cookie"
    nginx.ingress.kubernetes.io/session-cookie-name: "affinity"
    nginx.ingress.kubernetes.io/session-cookie-expires: "14400"
    nginx.ingress.kubernetes.io/session-cookie-max-age: "14400"

Linux with NginxLinux with Nginx

http {
    map $http_upgrade $connection_upgrade {
        default Upgrade;
        ''      close;
    }

    server {
        listen      80;
        server_name example.com *.example.com
        location / {
            proxy_pass         http://localhost:5000;
            proxy_http_version 1.1;
            proxy_set_header   Upgrade $http_upgrade;
            proxy_set_header   Connection $connection_upgrade;
            proxy_set_header   Host $host;
            proxy_cache_bypass $http_upgrade;
            proxy_set_header   X-Forwarded-For $proxy_add_x_forwarded_for;
            proxy_set_header   X-Forwarded-Proto $scheme;
        }
    }
}

Linux with Apache

For SignalR WebSockets to function properly, confirm that the proxy's Upgrade  and Connection  headers are set to

the following values and that $connection_upgrade  is mapped to either :

The Upgrade header value by default.

close  when the Upgrade header is missing or empty.

For more information, see the following articles:

NGINX as a WebSocket Proxy

WebSocket proxying

Host ASP.NET Core on Linux with Nginx

To host a Blazor app behind Apache on Linux, configure ProxyPass  for HTTP and WebSockets traffic.

In the following example:

Kestrel server is running on the host machine.

The app listens for traffic on port 5000.

https://www.nginx.com/blog/websocket-nginx/
http://nginx.org/docs/http/websocket.html


    

ProxyRequests       On
ProxyPreserveHost   On
ProxyPassMatch      ^/_blazor/(.*) http://localhost:5000/_blazor/$1
ProxyPass           /_blazor ws://localhost:5000/_blazor
ProxyPass           / http://localhost:5000/
ProxyPassReverse    / http://localhost:5000/

a2enmod   proxy
a2enmod   proxy_wstunnel

Measure network latencyMeasure network latency

@inject IJSRuntime JS

@if (latency is null)
{
    <span>Calculating...</span>
}
else
{
    <span>@(latency.Value.TotalMilliseconds)ms</span>
}

@code {
    private DateTime startTime;
    private TimeSpan? latency;

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        if (firstRender)
        {
            startTime = DateTime.UtcNow;
            var _ = await JS.InvokeAsync<string>("toString");
            latency = DateTime.UtcNow - startTime;
            StateHasChanged();
        }
    }
}

Enable the following modules:

Check the browser console for WebSockets errors. Example errors:

Firefox can't establish a connection to the server at ws://the-domain-name.tld/_blazor?id=XXX.

Error : Failed to start the transport 'WebSockets': Error : There was an error with the transport.

Error : Failed to start the transport 'LongPolling': TypeError : this.transport is undefined

Error : Unable to connect to the server with any of the available transports. WebSockets failed

Error : Cannot send data if the connection is not in the 'Connected' State.

For more information, see the Apache documentation.

JS interop can be used to measure network latency, as the following example demonstrates:

For a reasonable UI experience, we recommend a sustained UI latency of 250ms or less.

https://httpd.apache.org/docs/current/mod/mod_proxy.html


 

 

Configure the Linker for ASP.NET Core Blazor
9/22/2020 • 2 minutes to read • Edit Online

Control linking with an MSBuild property

<PropertyGroup>
  <BlazorWebAssemblyEnableLinking>false</BlazorWebAssemblyEnableLinking>
</PropertyGroup>

Control linking with a configuration file

<ItemGroup>
  <BlazorLinkerDescriptor Include="LinkerConfig.xml" />
</ItemGroup>

By Luke Latham

Blazor WebAssembly performs Intermediate Language (IL) linking during a build to trim unnecessary IL from the

app's output assemblies. The linker is disabled when building in Debug configuration. Apps must build in Release

configuration to enable the linker. We recommend building in Release when deploying your Blazor WebAssembly

apps.

Linking an app optimizes for size but may have detrimental effects. Apps that use reflection or related dynamic

features may break when trimmed because the linker doesn't know about this dynamic behavior and can't

determine in general which types are required for reflection at runtime. To trim such apps, the linker must be

informed about any types required by reflection in the code and in packages or frameworks that the app depends

on.

To ensure the trimmed app works correctly once deployed, it's important to test Release builds of the app

frequently while developing.

Linking for Blazor apps can be configured using these MSBuild features:

Configure linking globally with a MSBuild property.

Control linking on a per-assembly basis with a configuration file.

Linking is enabled when an app is built in Release  configuration. To change this, configure the 

BlazorWebAssemblyEnableLinking  MSBuild property in the project file:

Control linking on a per-assembly basis by providing an XML configuration file and specifying the file as a MSBuild

item in the project file:

LinkerConfig.xml :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/host-and-deploy/configure-linker.md
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/standard/managed-code#intermediate-language--execution


  

    

<?xml version="1.0" encoding="UTF-8" ?>
<!--
  This file specifies which parts of the BCL or Blazor packages must not be
  stripped by the IL Linker even if they aren't referenced by user code.
-->
<linker>
  <assembly fullname="mscorlib">
    <!--
      Preserve the methods in WasmRuntime because its methods are called by 
      JavaScript client-side code to implement timers.
      Fixes: https://github.com/dotnet/blazor/issues/239
    -->
    <type fullname="System.Threading.WasmRuntime" />
  </assembly>
  <assembly fullname="System.Core">
    <!--
      System.Linq.Expressions* is required by Json.NET and any 
      expression.Compile caller. The assembly isn't stripped.
    -->
    <type fullname="System.Linq.Expressions*" />
  </assembly>
  <!--
    In this example, the app's entry point assembly is listed. The assembly
    isn't stripped by the IL Linker.
  -->
  <assembly fullname="MyCoolBlazorApp" />
</linker>

Add an XML linker configuration file to a library

<ItemGroup>
  <EmbeddedResource Include="LinkerConfig.xml">
    <LogicalName>$(MSBuildProjectName).xml</LogicalName>
  </EmbeddedResource>
</ItemGroup>

Configure the linker for internationalizationConfigure the linker for internationalization

<PropertyGroup>
  <BlazorWebAssemblyI18NAssemblies>{all|none|REGION1,REGION2,...}</BlazorWebAssemblyI18NAssemblies>
</PropertyGroup>

REGIO N  VA L UEREGIO N  VA L UE M O N O  REGIO N  A SSEM B LYM O N O  REGIO N  A SSEM B LY

all All assemblies included

For more information and examples, see Data Formats (mono/linker GitHub repository).

To configure the linker for a specific library, add an XML linker configuration file into the library as an embedded

resource. The embedded resource must have the same name as the assembly.

In the following example, the LinkerConfig.xml  file is specified as an embedded resource that has the same name

as the library's assembly:

By default, Blazor's linker configuration for Blazor WebAssembly apps strips out internationalization information

except for locales explicitly requested. Removing these assemblies minimizes the app's size.

To control which I18N assemblies are retained, set the <BlazorWebAssemblyI18NAssemblies>  MSBuild property in the

project file:

https://github.com/mono/linker/blob/master/docs/data-formats.md


cjk I18N.CJK.dll

mideast I18N.MidEast.dll

none  (default) None

other I18N.Other.dll

rare I18N.Rare.dll

west I18N.West.dll

REGIO N  VA L UEREGIO N  VA L UE M O N O  REGIO N  A SSEM B LYM O N O  REGIO N  A SSEM B LY

Additional resources

Use a comma to separate multiple values (for example, mideast,west ).

For more information, see I18N: Pnetlib Internationalization Framework Library (mono/mono GitHub repository).

ASP.NET Core Blazor WebAssembly performance best practices

https://github.com/mono/mono/tree/master/mcs/class/I18N


Configure the Trimmer for ASP.NET Core Blazor
9/22/2020 • 2 minutes to read • Edit Online

<PropertyGroup>
  <PublishTrimmed>false</PublishTrimmed>
</PropertyGroup>

Additional resources

By Pranav Krishnamoorthy

Blazor WebAssembly performs Intermediate Language (IL) trimming to reduce the size of the published output.

Trimming an app optimizes for size but may have detrimental effects. Apps that use reflection or related dynamic

features may break when trimmed because the trimmer doesn't know about dynamic behavior and can't

determine in general which types are required for reflection at runtime. To trim such apps, the trimmer must be

informed about any types required by reflection in the code and in packages or frameworks that the app depends

on.

To ensure the trimmed app works correctly once deployed, it's important to test published output frequently while

developing.

Trimming for .NET apps can be disabled by setting the PublishTrimmed  MSBuild property to false  in the app's

project file:

Additional options to configure the trimmer can be found at Trimming options.

Trim self-contained deployments and executables

ASP.NET Core Blazor WebAssembly performance best practices

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/host-and-deploy/configure-trimmer.md
https://github.com/pranavkm
https://docs.microsoft.com/en-us/dotnet/standard/managed-code#intermediate-language--execution
https://docs.microsoft.com/en-us/dotnet/core/deploying/trimming-options
https://docs.microsoft.com/en-us/dotnet/core/deploying/trim-self-contained


ASP.NET Core Blazor Server with Entity Framework
Core (EFCore)
9/22/2020 • 8 minutes to read • Edit Online

NOTENOTE

Sample app

{
  "DetailedErrors": true,
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Information",
      "Microsoft.EntityFrameworkCore.Database.Command": "Information"
    }
  }
}

NOTENOTE

Database access

By: Jeremy Likness

Blazor Server is a stateful app framework. The app maintains an ongoing connection to the server, and the user's

state is held in the server's memory in a circuit. One example of user state is data held in dependency injection (DI)

service instances that are scoped to the circuit. The unique application model that Blazor Server provides requires a

special approach to use Entity Framework Core.

This article addresses EF Core in Blazor Server apps. Blazor WebAssembly apps run in a WebAssembly sandbox that prevents

most direct database connections. Running EF Core in Blazor WebAssembly is beyond the scope of this article.

The sample app was built as a reference for Blazor Server apps that use EF Core. The sample app includes a grid

with sorting and filtering, delete, add, and update operations. The sample demonstrates use of EF Core to handle

optimistic concurrency.

View or download sample code (how to download)

The sample uses a local SQLite database so that it can be used on any platform. The sample also configures

database logging to show the SQL queries that are generated. This is configured in appsettings.Development.json :

The grid, add, and view components use the "context-per-operation" pattern, where a context is created for each

operation. The edit component uses the "context-per-component" pattern, where a context is created for each

component.

Some of the code examples in this topic require namespaces and services that aren't shown. To inspect the fully working

code, including the required @using  and @inject  directives for Razor examples, see the sample app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/blazor-server-ef-core.md
https://github.com/JeremyLikness
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/5.x/BlazorServerEFCoreSample
https://www.sqlite.org/index.html
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/5.x/BlazorServerEFCoreSample


New DbContext instancesNew DbContext instances

EF Core relies on a DbContext as the means to configure database access and act as a unit of work. EF Core

provides the AddDbContext extension for ASP.NET Core apps that registers the context as a scoped service by

default. In Blazor Server apps, scoped service registrations can be problematic because the instance is shared

across components within the user's circuit. DbContext isn't thread safe and isn't designed for concurrent use. The

existing lifetimes are inappropriate for these reasons:

S ingletonSingleton shares state across all users of the app and leads to inappropriate concurrent use.

ScopedScoped (the default) poses a similar issue between components for the same user.

TransientTransient results in a new instance per request; but as components can be long-lived, this results in a longer-

lived context than may be intended.

The following recommendations are designed to provide a consistent approach to using EF Core in Blazor Server

apps.

var using context = new MyContext();

return await context.MyEntities.ToListAsync();

if (Loading)
{
    return;
}

try
{
    Loading = true;

    ...
}
finally
{
    Loading = false;
}

By default, consider using one context per operation. The context is designed for fast, low overhead

instantiation:

Use a flag to prevent multiple concurrent operations:

Place operations after the Loading = true;  line in the try  block.

For longer-lived operations that take advantage of EF Core's change tracking or concurrency control, scope

the context to the lifetime of the component.

The fastest way to create a new DbContext instance is by using new  to create a new instance. However, there are

several scenarios that may require resolving additional dependencies. For example, you may wish to use 

DbContextOptions  to configure the context.

The recommended solution to create a new DbContext with dependencies is to use a factory. EF Core 5.0 or later

provides a built-in factory for creating new contexts.

The following example configures SQLite and enables data logging. The code uses an extension method to

configure the database factory for DI and provide default options:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/ef/core/miscellaneous/configuring-dbcontext
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/ef/core/querying/tracking
https://docs.microsoft.com/en-us/ef/core/saving/concurrency
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/ef/core/miscellaneous/configuring-dbcontext#configuring-dbcontextoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://www.sqlite.org/index.html


  

services.AddDbContextFactory<ContactContext>(opt =>
    opt.UseSqlite($"Data Source={nameof(ContactContext.ContactsDb)}.db")
    .EnableSensitiveDataLogging());

private async Task DeleteContactAsync()
{
    using var context = DbFactory.CreateDbContext();

    Filters.Loading = true;

    var contact = await context.Contacts.FirstAsync(
        c => c.Id == Wrapper.DeleteRequestId);

    if (contact != null)
    {
        context.Contacts.Remove(contact);
        await context.SaveChangesAsync();
    }

    Filters.Loading = false;

    await ReloadAsync();
}

NOTENOTE

Scope to the component lifetimeScope to the component lifetime

@implements IDisposable
@inject IDbContextFactory<ContactContext> DbFactory

public void Dispose()
{
    Context.Dispose();
}

The factory is injected into components and used to create new instances. For example, in Pages/Index.razor :

Wrapper  is a component reference to the GridWrapper  component. See the Index  component ( Pages/Index.razor ) in

the sample app.

You may wish to create a DbContext that exists for the lifetime of a component. This allows you to use it as a unit of

work and take advantage of built-in features, such as change tracking and concurrency resolution. You can use the

factory to create a context and track it for the lifetime of the component. First, implement IDisposable and inject the

factory as shown in Pages/EditContact.razor :

The sample app ensures the context is disposed when the component is disposed:

Finally, OnInitializedAsync  is overridden to create a new context. In the sample app, OnInitializedAsync  loads the

contact in the same method:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/common/samples/5.x/BlazorServerEFCoreSample/BlazorServerDbContextExample/Pages/Index.razor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable


protected override async Task OnInitializedAsync()
{
    Busy = true;

    try
    {
        Context = DbFactory.CreateDbContext();
        Contact = await Context.Contacts
            .SingleOrDefaultAsync(c => c.Id == ContactId);
    }
    finally
    {
        Busy = false;
    }

    await base.OnInitializedAsync();
}

NOTENOTE

Sample app

{
  "DetailedErrors": true,
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Information",
      "Microsoft.EntityFrameworkCore.Database.Command": "Information"
    }
  }
}

Blazor Server is a stateful app framework. The app maintains an ongoing connection to the server, and the user's

state is held in the server's memory in a circuit. One example of user state is data held in dependency injection (DI)

service instances that are scoped to the circuit. The unique application model that Blazor Server provides requires a

special approach to use Entity Framework Core.

This article addresses EF Core in Blazor Server apps. Blazor WebAssembly apps run in a WebAssembly sandbox that prevents

most direct database connections. Running EF Core in Blazor WebAssembly is beyond the scope of this article.

The sample app was built as a reference for Blazor Server apps that use EF Core. The sample app includes a grid

with sorting and filtering, delete, add, and update operations. The sample demonstrates use of EF Core to handle

optimistic concurrency.

View or download sample code (how to download)

The sample uses a local SQLite database so that it can be used on any platform. The sample also configures

database logging to show the SQL queries that are generated. This is configured in appsettings.Development.json :

The grid, add, and view components use the "context-per-operation" pattern, where a context is created for each

operation. The edit component uses the "context-per-component" pattern, where a context is created for each

component.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerEFCoreSample
https://www.sqlite.org/index.html


NOTENOTE

Database access

New DbContext instancesNew DbContext instances

Some of the code examples in this topic require namespaces and services that aren't shown. To inspect the fully working

code, including the required @using  and @inject  directives for Razor examples, see the sample app.

EF Core relies on a DbContext as the means to configure database access and act as a unit of work. EF Core

provides the AddDbContext extension for ASP.NET Core apps that registers the context as a scoped service by

default. In Blazor Server apps, this can be problematic because the instance is shared across components within the

user's circuit. DbContext isn't thread safe and isn't designed for concurrent use. The existing lifetimes are

inappropriate for these reasons:

S ingletonSingleton shares state across all users of the app and leads to inappropriate concurrent use.

ScopedScoped (the default) poses a similar issue between components for the same user.

TransientTransient results in a new instance per request; but as components can be long-lived, this results in a longer-

lived context than may be intended.

The following recommendations are designed to provide a consistent approach to using EF Core in Blazor Server

apps.

var using context = new MyContext();

return await context.MyEntities.ToListAsync();

if (Loading)
{
    return;
}

try
{
    Loading = true;

    ...
}
finally
{
    Loading = false;
}

By default, consider using one context per operation. The context is designed for fast, low overhead

instantiation:

Use a flag to prevent multiple concurrent operations:

Place operations after the Loading = true;  line in the try  block.

For longer-lived operations that take advantage of EF Core's change tracking or concurrency control, scope

the context to the lifetime of the component.

The fastest way to create a new DbContext instance is by using new  to create a new instance. However, there are

several scenarios that may require resolving additional dependencies. For example, you may wish to use 

DbContextOptions  to configure the context.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerEFCoreSample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/ef/core/miscellaneous/configuring-dbcontext
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/ef/core/querying/tracking
https://docs.microsoft.com/en-us/ef/core/saving/concurrency
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/ef/core/miscellaneous/configuring-dbcontext#configuring-dbcontextoptions


using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;

namespace BlazorServerDbContextExample.Data
{
    public class DbContextFactory<TContext> 
        : IDbContextFactory<TContext> where TContext : DbContext
    {
        private readonly IServiceProvider provider;

        public DbContextFactory(IServiceProvider provider)
        {
            this.provider = provider;
        }

        public TContext CreateDbContext()
        {
            if (provider == null)
            {
                throw new InvalidOperationException(
                    $"You must configure an instance of IServiceProvider");
            }

            return ActivatorUtilities.CreateInstance<TContext>(provider);
        }
    }
}

services.AddDbContextFactory<ContactContext>(opt =>
    opt.UseSqlite($"Data Source={nameof(ContactContext.ContactsDb)}.db")
    .EnableSensitiveDataLogging());

private async Task DeleteContactAsync()
{
    using var context = DbFactory.CreateDbContext();

    Filters.Loading = true;

    var contact = await context.Contacts.FirstAsync(
        c => c.Id == Wrapper.DeleteRequestId);

    if (contact != null)
    {
        context.Contacts.Remove(contact);
        await context.SaveChangesAsync();
    }

    Filters.Loading = false;

    await ReloadAsync();
}

The recommended solution to create a new DbContext with dependencies is to use a factory. The sample app

implements its own factory in Data/DbContextFactory.cs .

In the preceding factory, ActivatorUtilities.CreateInstance satisfies any dependencies via the service provider.

The following example configures SQLite and enables data logging. The code uses an extension method to

configure the database factory for DI and provide default options:

The factory is injected into components and used to create new instances. For example, in Pages/Index.razor :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.activatorutilities.createinstance
https://www.sqlite.org/index.html


  

NOTENOTE

Scope to the component lifetimeScope to the component lifetime

@implements IDisposable
@inject IDbContextFactory<ContactContext> DbFactory

public void Dispose()
{
    Context.Dispose();
}

protected override async Task OnInitializedAsync()
{
    Busy = true;

    try
    {
        Context = DbFactory.CreateDbContext();
        Contact = await Context.Contacts
            .SingleOrDefaultAsync(c => c.Id == ContactId);
    }
    finally
    {
        Busy = false;
    }

    await base.OnInitializedAsync();
}

Additional resources

Wrapper  is a component reference to the GridWrapper  component. See the Index  component ( Pages/Index.razor ) in

the sample app.

You may wish to create a DbContext that exists for the lifetime of a component. This allows you to use it as a unit of

work and take advantage of built-in features, such as change tracking and concurrency resolution. You can use the

factory to create a context and track it for the lifetime of the component. First, implement IDisposable and inject the

factory as shown in Pages/EditContact.razor :

The sample app ensures the context is disposed when the component is disposed:

Finally, OnInitializedAsync  is overridden to create a new context. In the sample app, OnInitializedAsync  loads the

contact in the same method:

In the preceding example:

When Busy  is set to true , asynchronous operations may begin. When Busy  is set back to false ,

asynchronous operations should be finished.

Place additional error handling logic in a catch  block.

EF Core documentation

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/common/samples/3.x/BlazorServerEFCoreSample/BlazorServerDbContextExample/Pages/Index.razor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/ef/


  

ASP.NET Core Blazor advanced scenarios
9/22/2020 • 10 minutes to read • Edit Online

Blazor Server circuit handler

using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Components.Server.Circuits;

public class TrackingCircuitHandler : CircuitHandler
{
    private HashSet<Circuit> circuits = new HashSet<Circuit>();

    public override Task OnConnectionUpAsync(Circuit circuit, 
        CancellationToken cancellationToken)
    {
        circuits.Add(circuit);

        return Task.CompletedTask;
    }

    public override Task OnConnectionDownAsync(Circuit circuit, 
        CancellationToken cancellationToken)
    {
        circuits.Remove(circuit);

        return Task.CompletedTask;
    }

    public int ConnectedCircuits => circuits.Count;
}

public void ConfigureServices(IServiceCollection services)
{
    ...
    services.AddSingleton<CircuitHandler, TrackingCircuitHandler>();
}

By Luke Latham and Daniel Roth

Blazor Server allows code to define a circuit handler, which allows running code on changes to the state of a user's

circuit. A circuit handler is implemented by deriving from CircuitHandler  and registering the class in the app's

service container. The following example of a circuit handler tracks open SignalR connections:

Circuit handlers are registered using DI. Scoped instances are created per instance of a circuit. Using the 

TrackingCircuitHandler  in the preceding example, a singleton service is created because the state of all circuits

must be tracked:

If a custom circuit handler's methods throw an unhandled exception, the exception is fatal to the Blazor Server

circuit. To tolerate exceptions in a handler's code or called methods, wrap the code in one or more try-catch

statements with error handling and logging.

When a circuit ends because a user has disconnected and the framework is cleaning up the circuit state, the

framework disposes of the circuit's DI scope. Disposing the scope disposes any circuit-scoped DI services that

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/blazor/advanced-scenarios.md
https://github.com/guardrex
https://github.com/danroth27
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch


    Manual RenderTreeBuilder logic

NOTENOTE

<h2>Pet Details Component</h2>

<p>@PetDetailsQuote</p>

@code
{
    [Parameter]
    public string PetDetailsQuote { get; set; }
}

implement System.IDisposable. If any DI service throws an unhandled exception during disposal, the framework

logs the exception.

RenderTreeBuilder provides methods for manipulating components and elements, including building components

manually in C# code.

Use of RenderTreeBuilder to create components is an advanced scenario. A malformed component (for example, an unclosed

markup tag) can result in undefined behavior.

Consider the following PetDetails  component, which can be manually built into another component:

In the following example, the loop in the CreateComponent  method generates three PetDetails  components. In

RenderTreeBuilder methods with a sequence number, sequence numbers are source code line numbers. The Blazor

difference algorithm relies on the sequence numbers corresponding to distinct lines of code, not distinct call

invocations. When creating a component with RenderTreeBuilder methods, hardcode the arguments for sequence

numbers. Using a calculation or counter to generate the sequence number can lead to poorUsing a calculation or counter to generate the sequence number can lead to poor

performance.performance. For more information, see the Sequence numbers relate to code line numbers and not execution

order section.

BuiltContent  component:

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder


  

@page "/BuiltContent"

<h1>Build a component</h1>

@CustomRender

<button type="button" @onclick="RenderComponent">
    Create three Pet Details components
</button>

@code {
    private RenderFragment CustomRender { get; set; }
    
    private RenderFragment CreateComponent() => builder =>
    {
        for (var i = 0; i < 3; i++) 
        {
            builder.OpenComponent(0, typeof(PetDetails));
            builder.AddAttribute(1, "PetDetailsQuote", "Someone's best friend!");
            builder.CloseComponent();
        }
    };    
    
    private void RenderComponent()
    {
        CustomRender = CreateComponent();
    }
}

WARNINGWARNING

Sequence numbers relate to code line numbers and not execution orderSequence numbers relate to code line numbers and not execution order

@if (someFlag)
{
    <text>First</text>
}

Second

The types in Microsoft.AspNetCore.Components.RenderTree allow processing of the results of rendering operations. These are

internal details of the Blazor framework implementation. These types should be considered unstable and subject to change in

future releases.

Razor component files ( .razor ) are always compiled. Compilation is a potential advantage over interpreting code

because the compile step can be used to inject information that improves app performance at runtime.

A key example of these improvements involves sequence numbers. Sequence numbers indicate to the runtime

which outputs came from which distinct and ordered lines of code. The runtime uses this information to generate

efficient tree diffs in linear time, which is far faster than is normally possible for a general tree diff algorithm.

Consider the following Razor component ( .razor ) file:

The preceding code compiles to something like the following:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendertree


if (someFlag)
{
    builder.AddContent(0, "First");
}

builder.AddContent(1, "Second");

SEQ UEN C ESEQ UEN C E T Y P ET Y P E DATADATA

0 Text node First

1 Text node Second

SEQ UEN C ESEQ UEN C E T Y P ET Y P E DATADATA

1 Text node Second

The problem with generating sequence numbers programmaticallyThe problem with generating sequence numbers programmatically

var seq = 0;

if (someFlag)
{
    builder.AddContent(seq++, "First");
}

builder.AddContent(seq++, "Second");

SEQ UEN C ESEQ UEN C E T Y P ET Y P E DATADATA

0 Text node First

1 Text node Second

SEQ UEN C ESEQ UEN C E T Y P ET Y P E DATADATA

0 Text node Second

When the code executes for the first time, if someFlag  is true , the builder receives:

Imagine that someFlag  becomes false , and the markup is rendered again. This time, the builder receives:

When the runtime performs a diff, it sees that the item at sequence 0  was removed, so it generates the following

trivial edit script:

Remove the first text node.

Imagine instead that you wrote the following render tree builder logic:

Now, the first output is:

This outcome is identical to the prior case, so no negative issues exist. someFlag  is false  on the second rendering,

and the output is:

This time, the diff algorithm sees that two changes have occurred, and the algorithm generates the following edit

script:



    

Guidance and conclusionsGuidance and conclusions

Perform large data transfers in Blazor Server apps

Change the value of the first text node to Second .

Remove the second text node.

Generating the sequence numbers has lost all the useful information about where the if/else  branches and loops

were present in the original code. This results in a diff twice as longtwice as long as before.

This is a trivial example. In more realistic cases with complex and deeply nested structures, and especially with

loops, the performance cost is usually higher. Instead of immediately identifying which loop blocks or branches

have been inserted or removed, the diff algorithm has to recurse deeply into the render trees. This usually results in

having to build longer edit scripts because the diff algorithm is misinformed about how the old and new structures

relate to each other.

App performance suffers if sequence numbers are generated dynamically.

The framework can't create its own sequence numbers automatically at runtime because the necessary

information doesn't exist unless it's captured at compile time.

Don't write long blocks of manually-implemented RenderTreeBuilder logic. Prefer .razor  files and allow the

compiler to deal with the sequence numbers. If you're unable to avoid manual RenderTreeBuilder logic, split long

blocks of code into smaller pieces wrapped in OpenRegion/CloseRegion calls. Each region has its own separate

space of sequence numbers, so you can restart from zero (or any other arbitrary number) inside each region.

If sequence numbers are hardcoded, the diff algorithm only requires that sequence numbers increase in value.

The initial value and gaps are irrelevant. One legitimate option is to use the code line number as the sequence

number, or start from zero and increase by ones or hundreds (or any preferred interval).

Blazor uses sequence numbers, while other tree-diffing UI frameworks don't use them. Diffing is far faster when

sequence numbers are used, and Blazor has the advantage of a compile step that deals with sequence numbers

automatically for developers authoring .razor  files.

In some scenarios, large amounts of data must be transferred between JavaScript and Blazor. Typically, large data

transfers occur when:

Browser file system APIs are used to upload or download a file.

Interop with a third party library is required.

In Blazor Server, a limitation is in place to prevent passing single large messages that may result in performance

issues.

Consider the following guidance when developing code that transfers data between JavaScript and Blazor :

Slice the data into smaller pieces, and send the data segments sequentially until all of the data is received by the

server.

Don't allocate large objects in JavaScript and C# code.

Don't block the main UI thread for long periods when sending or receiving data.

Free any memory consumed when the process is completed or cancelled.

Enforce the following additional requirements for security purposes:

After the data is received by the server, the data can be:

Declare the maximum file or data size that can be passed.

Declare the minimum upload rate from the client to the server.

Temporarily stored in a memory buffer until all of the segments are collected.

Consumed immediately. For example, the data can be stored immediately in a database or written to disk

as each segment is received.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder.openregion
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder.closeregion


using System;
using System.Buffers;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
using Microsoft.JSInterop;

public class FileUploader : IDisposable
{
    private readonly IJSRuntime jsRuntime;
    private readonly int segmentSize = 6144;
    private readonly int maxBase64SegmentSize = 8192;
    private readonly DotNetObjectReference<FileUploader> thisReference;
    private List<IMemoryOwner<byte>> uploadedSegments = 
        new List<IMemoryOwner<byte>>();

    public FileUploader(IJSRuntime jsRuntime)
    {
        this.jsRuntime = jsRuntime;
    }

    public async Task<Stream> ReceiveFile(string selector, int maxSize)
    {
        var fileSize = 
            await jsRuntime.InvokeAsync<int>("getFileSize", selector);

        if (fileSize > maxSize)
        {
            return null;
        }

        var numberOfSegments = Math.Floor(fileSize / (double)segmentSize) + 1;
        var lastSegmentBytes = 0;
        string base64EncodedSegment;

        for (var i = 0; i < numberOfSegments; i++)
        {
            try
            {
                base64EncodedSegment = 
                    await jsRuntime.InvokeAsync<string>(
                        "receiveSegment", i, selector);

                if (base64EncodedSegment.Length < maxBase64SegmentSize && 
                    i < numberOfSegments - 1)
                {
                    return null;
                }
            }
            catch
            {
                return null;
            }

          var current = MemoryPool<byte>.Shared.Rent(segmentSize);

          if (!Convert.TryFromBase64String(base64EncodedSegment, 
              current.Memory.Slice(0, segmentSize).Span, out lastSegmentBytes))
          {
              return null;
          }

The following file uploader class handles JS interop with the client. The uploader class uses JS interop to:

Poll the client to send a data segment.

Abort the transaction if polling times out.



          uploadedSegments.Add(current);
        }

        var segments = uploadedSegments;
        uploadedSegments = null;

        return new SegmentedStream(segments, segmentSize, lastSegmentBytes);
    }

    public void Dispose()
    {
        if (uploadedSegments != null)
        {
            foreach (var segment in uploadedSegments)
            {
                segment.Dispose();
            }
        }
    }
}

using System;
using System.Buffers;
using System.Collections.Generic;
using System.IO;

public class SegmentedStream : Stream
{
    private readonly ReadOnlySequence<byte> sequence;
    private long currentPosition = 0;

    public SegmentedStream(IList<IMemoryOwner<byte>> segments, int segmentSize, 
        int lastSegmentSize)
    {
        if (segments.Count == 1)
        {
            sequence = new ReadOnlySequence<byte>(
                segments[0].Memory.Slice(0, lastSegmentSize));
            return;
        }

        var sequenceSegment = new BufferSegment<byte>(
            segments[0].Memory.Slice(0, segmentSize));
        var lastSegment = sequenceSegment;

In the preceding example:

The maxBase64SegmentSize  is set to 8192 , which is calculated from maxBase64SegmentSize = segmentSize * 4 / 3 .

Low-level .NET Core memory management APIs are used to store the memory segments on the server in 

uploadedSegments .

A ReceiveFile  method is used to handle the upload through JS interop:

The file size is determined in bytes through JS interop with 

jsRuntime.InvokeAsync<FileInfo>('getFileSize', selector) .

The number of segments to receive are calculated and stored in numberOfSegments .

The segments are requested in a for  loop through JS interop with 

jsRuntime.InvokeAsync<string>('receiveSegment', i, selector) . All segments but the last must be 8,192

bytes before decoding. The client is forced to send the data in an efficient manner.

For each segment received, checks are performed before decoding with TryFromBase64String.

A stream with the data is returned as a new Stream ( SegmentedStream ) after the upload is complete.

The segmented stream class exposes the list of segments as a readonly non-seekable Stream:

https://docs.microsoft.com/en-us/dotnet/api/system.convert.tryfrombase64string
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream


        for (int i = 1; i < segments.Count; i++)
        {
            var isLastSegment = i + 1 == segments.Count;
            lastSegment = lastSegment.Append(segments[i].Memory.Slice(
                0, isLastSegment ? lastSegmentSize : segmentSize));
        }

        sequence = new ReadOnlySequence<byte>(
            sequenceSegment, 0, lastSegment, lastSegmentSize);
    }

    public override long Position
    {
        get => throw new NotImplementedException();
        set => throw new NotImplementedException();
    }

    public override int Read(byte[] buffer, int offset, int count)
    {
        var bytesToWrite = (int)(currentPosition + count < sequence.Length ? 
            count : sequence.Length - currentPosition);
        var data = sequence.Slice(currentPosition, bytesToWrite);
        data.CopyTo(buffer.AsSpan(offset, bytesToWrite));
        currentPosition += bytesToWrite;

        return bytesToWrite;
    }

    private class BufferSegment<T> : ReadOnlySequenceSegment<T>
    {
        public BufferSegment(ReadOnlyMemory<T> memory)
        {
            Memory = memory;
        }

        public BufferSegment<T> Append(ReadOnlyMemory<T> memory)
        {
            var segment = new BufferSegment<T>(memory)
            {
                RunningIndex = RunningIndex + Memory.Length
            };

            Next = segment;

            return segment;
        }
    }

    public override bool CanRead => true;

    public override bool CanSeek => false;

    public override bool CanWrite => false;

    public override long Length => throw new NotImplementedException();

    public override void Flush() => throw new NotImplementedException();

    public override long Seek(long offset, SeekOrigin origin) => 
        throw new NotImplementedException();

    public override void SetLength(long value) => 
        throw new NotImplementedException();

    public override void Write(byte[] buffer, int offset, int count) => 
        throw new NotImplementedException();
}



function getFileSize(selector) {
  const file = getFile(selector);
  return file.size;
}

async function receiveSegment(segmentNumber, selector) {
  const file = getFile(selector);
  var segments = getFileSegments(file);
  var index = segmentNumber * 6144;
  return await getNextChunk(file, index);
}

function getFile(selector) {
  const element = document.querySelector(selector);
  if (!element) {
    throw new Error('Invalid selector');
  }
  const files = element.files;
  if (!files || files.length === 0) {
    throw new Error(`Element ${elementId} doesn't contain any files.`);
  }
  const file = files[0];
  return file;
}

function getFileSegments(file) {
  const segments = Math.floor(size % 6144 === 0 ? size / 6144 : 1 + size / 6144);
  return segments;
}

async function getNextChunk(file, index) {
  const length = file.size - index <= 6144 ? file.size - index : 6144;
  const chunk = file.slice(index, index + length);
  index += length;
  const base64Chunk = await this.base64EncodeAsync(chunk);
  return { base64Chunk, index };
}

async function base64EncodeAsync(chunk) {
  const reader = new FileReader();
  const result = new Promise((resolve, reject) => {
    reader.addEventListener('load',
      () => {
        const base64Chunk = reader.result;
        const cleanChunk = 
          base64Chunk.replace('data:application/octet-stream;base64,', '');
        resolve(cleanChunk);
      },
      false);
    reader.addEventListener('error', reject);
  });
  reader.readAsDataURL(chunk);
  return result;
}

The following code implements JavaScript functions to receive the data:



Use the Angular project template with ASP.NET Core
9/22/2020 • 6 minutes to read • Edit Online

Create a new app

dotnet new angular -o my-new-app
cd my-new-app

Add pages, images, styles, modules, etc.

Run ng commands

cd ClientApp

The updated Angular project template provides a convenient starting point for ASP.NET Core apps using Angular

and the Angular CLI to implement a rich, client-side user interface (UI).

The template is equivalent to creating an ASP.NET Core project to act as an API backend and an Angular CLI project

to act as a UI. The template offers the convenience of hosting both project types in a single app project.

Consequently, the app project can be built and published as a single unit.

If you have ASP.NET Core 2.1 installed, there's no need to install the Angular project template.

Create a new project from a command prompt using the command dotnet new angular  in an empty directory. For

example, the following commands create the app in a my-new-app directory and switch to that directory:

Run the app from either Visual Studio or the .NET Core CLI:

Visual Studio

.NET Core CLI

Open the generated .csproj file, and run the app as normal from there.

The build process restores npm dependencies on the first run, which can take several minutes. Subsequent builds

are much faster.

The project template creates an ASP.NET Core app and an Angular app. The ASP.NET Core app is intended to be

used for data access, authorization, and other server-side concerns. The Angular app, residing in the ClientApp

subdirectory, is intended to be used for all UI concerns.

The ClientApp directory contains a standard Angular CLI app. See the official Angular documentation for more

information.

There are slight differences between the Angular app created by this template and the one created by Angular CLI

itself (via ng new ); however, the app's capabilities are unchanged. The app created by the template contains a

Bootstrap-based layout and a basic routing example.

In a command prompt, switch to the ClientApp subdirectory:

If you have the ng  tool installed globally, you can run any of its commands. For example, you can run ng lint , 

ng test , or any of the other Angular CLI commands. There's no need to run ng serve  though, because your

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/client-side/spa/angular.md
https://angular.io
https://getbootstrap.com/
https://angular.io/cli


Install npm packages

cd ClientApp
npm install --save <package_name>

Publish and deploy

Run "ng serve" independently

ASP.NET Core app deals with serving both server-side and client-side parts of your app. Internally, it uses 

ng serve  in development.

If you don't have the ng  tool installed, run npm run ng  instead. For example, you can run npm run ng lint  or 

npm run ng test .

To install third-party npm packages, use a command prompt in the ClientApp subdirectory. For example:

In development, the app runs in a mode optimized for developer convenience. For example, JavaScript bundles

include source maps (so that when debugging, you can see your original TypeScript code). The app watches for

TypeScript, HTML, and CSS file changes on disk and automatically recompiles and reloads when it sees those files

change.

In production, serve a version of your app that's optimized for performance. This is configured to happen

automatically. When you publish, the build configuration emits a minified, ahead-of-time (AoT) compiled build of

your client-side code. Unlike the development build, the production build doesn't require Node.js to be installed on

the server (unless you have enabled server-side rendering (SSR)).

You can use standard ASP.NET Core hosting and deployment methods.

The project is configured to start its own instance of the Angular CLI server in the background when the ASP.NET

Core app starts in development mode. This is convenient because you don't have to run a separate server

manually.

There's a drawback to this default setup. Each time you modify your C# code and your ASP.NET Core app needs to

restart, the Angular CLI server restarts. Around 10 seconds is required to start back up. If you're making frequent

C# code edits and don't want to wait for Angular CLI to restart, run the Angular CLI server externally,

independently of the ASP.NET Core process. To do so:

cd ClientApp
npm start

IMPORTANTIMPORTANT

1. In a command prompt, switch to the ClientApp subdirectory, and launch the Angular CLI development

server :

Use npm start  to launch the Angular CLI development server, not ng serve , so that the configuration in

package.json is respected. To pass additional parameters to the Angular CLI server, add them to the relevant 

scripts  line in your package.json file.

2. Modify your ASP.NET Core app to use the external Angular CLI instance instead of launching one of its own.

In your Startup class, replace the spa.UseAngularCliServer  invocation with the following:



Pass data from .NET code into TypeScript codePass data from .NET code into TypeScript code

options.SupplyData = (context, data) =>
{
    // Creates a new value called isHttpsRequest that's passed to TypeScript code
    data["isHttpsRequest"] = context.Request.IsHttps;
};

Drawbacks of SSRDrawbacks of SSR

Additional resources

spa.UseProxyToSpaDevelopmentServer("http://localhost:4200");

When you start your ASP.NET Core app, it won't launch an Angular CLI server. The instance you started manually is

used instead. This enables it to start and restart faster. It's no longer waiting for Angular CLI to rebuild your client

app each time.

During SSR, you might want to pass per-request data from your ASP.NET Core app into your Angular app. For

example, you could pass cookie information or something read from a database. To do this, edit your Startup class.

In the callback for UseSpaPrerendering , set a value for options.SupplyData  such as the following:

The SupplyData  callback lets you pass arbitrary, per-request, JSON-serializable data (for example, strings,

booleans, or numbers). Your main.server.ts code receives this as params.data . For example, the preceding code

sample passes a boolean value as params.data.isHttpsRequest  into the createServerRenderer  callback. You can

pass this to other parts of your app in any way supported by Angular. For example, see how main.server.ts passes

the BASE_URL  value to any component whose constructor is declared to receive it.

Not all apps benefit from SSR. The primary benefit is perceived performance. Visitors reaching your app over a

slow network connection or on slow mobile devices see the initial UI quickly, even if it takes a while to fetch or

parse the JavaScript bundles. However, many SPAs are mainly used over fast, internal company networks on fast

computers where the app appears almost instantly.

At the same time, there are significant drawbacks to enabling SSR. It adds complexity to your development

process. Your code must run in two different environments: client-side and server-side (in a Node.js environment

invoked from ASP.NET Core). Here are some things to bear in mind:

if (typeof window !== 'undefined') {
    // Call browser-specific APIs here
}

SSR requires a Node.js installation on your production servers. This is automatically the case for some

deployment scenarios, such as Azure App Services, but not for others, such as Azure Service Fabric.

Enabling the BuildServerSideRenderer  build flag causes your node_modules directory to publish. This

folder contains 20,000+ files, which increases deployment time.

To run your code in a Node.js environment, it can't rely on the existence of browser-specific JavaScript APIs

such as window  or localStorage . If your code (or some third-party library you reference) tries to use these

APIs, you'll get an error during SSR. For example, don't use jQuery because it references browser-specific

APIs in many places. To prevent errors, you must either avoid SSR or avoid browser-specific APIs or

libraries. You can wrap any calls to such APIs in checks to ensure they aren't invoked during SSR. For

example, use a check such as the following in JavaScript or TypeScript code:

Introduction to authentication for Single Page Apps on ASP.NET Core





Use the React project template with ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

Create a new app

dotnet new react -o my-new-app
cd my-new-app

Add pages, images, styles, modules, etc.

Install npm packages

cd ClientApp
npm install --save <package_name>

The updated React project template provides a convenient starting point for ASP.NET Core apps using React and

create-react-app (CRA) conventions to implement a rich, client-side user interface (UI).

The template is equivalent to creating both an ASP.NET Core project to act as an API backend, and a standard CRA

React project to act as a UI, but with the convenience of hosting both in a single app project that can be built and

published as a single unit.

The React project template isn't meant for server-side rendering (SSR). For SSR with React and Node.js, consider

Next.js or Razzle.

If you have ASP.NET Core 2.1 installed, there's no need to install the React project template.

Create a new project from a command prompt using the command dotnet new react  in an empty directory. For

example, the following commands create the app in a my-new-app directory and switch to that directory:

Run the app from either Visual Studio or the .NET Core CLI:

Visual Studio

.NET Core CLI

Open the generated .csproj file, and run the app as normal from there.

The build process restores npm dependencies on the first run, which can take several minutes. Subsequent builds

are much faster.

The project template creates an ASP.NET Core app and a React app. The ASP.NET Core app is intended to be used

for data access, authorization, and other server-side concerns. The React app, residing in the ClientApp

subdirectory, is intended to be used for all UI concerns.

The ClientApp directory is a standard CRA React app. See the official CRA documentation for more information.

There are slight differences between the React app created by this template and the one created by CRA itself;

however, the app's capabilities are unchanged. The app created by the template contains a Bootstrap-based layout

and a basic routing example.

To install third-party npm packages, use a command prompt in the ClientApp subdirectory. For example:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/client-side/spa/react.md
https://github.com/facebookincubator/create-react-app
https://github.com/zeit/next.js/
https://github.com/jaredpalmer/razzle
https://create-react-app.dev/docs/getting-started/
https://getbootstrap.com/


Publish and deploy

Run the CRA server independently

IMPORTANTIMPORTANT

Additional resources

In development, the app runs in a mode optimized for developer convenience. For example, JavaScript bundles

include source maps (so that when debugging, you can see your original source code). The app watches

JavaScript, HTML, and CSS file changes on disk and automatically recompiles and reloads when it sees those files

change.

In production, serve a version of your app that's optimized for performance. This is configured to happen

automatically. When you publish, the build configuration emits a minified, transpiled build of your client-side code.

Unlike the development build, the production build doesn't require Node.js to be installed on the server.

You can use standard ASP.NET Core hosting and deployment methods.

The project is configured to start its own instance of the CRA development server in the background when the

ASP.NET Core app starts in development mode. This is convenient because it means you don't have to run a

separate server manually.

There's a drawback to this default setup. Each time you modify your C# code and your ASP.NET Core app needs to

restart, the CRA server restarts. A few seconds are required to start back up. If you're making frequent C# code

edits and don't want to wait for the CRA server to restart, run the CRA server externally, independently of the

ASP.NET Core process. To do so:

BROWSER=none

cd ClientApp
npm start

spa.UseProxyToSpaDevelopmentServer("http://localhost:3000");

1. Add a .env file to the ClientApp subdirectory with the following setting:

This will prevent your web browser from opening when starting the CRA server externally.

2. In a command prompt, switch to the ClientApp subdirectory, and launch the CRA development server :

3. Modify your ASP.NET Core app to use the external CRA server instance instead of launching one of its own.

In your Startup class, replace the spa.UseReactDevelopmentServer  invocation with the following:

When you start your ASP.NET Core app, it won't launch a CRA server. The instance you started manually is used

instead. This enables it to start and restart faster. It's no longer waiting for your React app to rebuild each time.

"Server-side rendering" is not a supported feature of this template. Our goal with this template is to meet parity with

"create-react-app". As such, scenarios and features not included in a "create-react-app" project (such as SSR) are not

supported and are left as an exercise for the user.

Introduction to authentication for Single Page Apps on ASP.NET Core



Use the React-with-Redux project template with
ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

The updated React-with-Redux project template provides a convenient starting point for ASP.NET Core apps using

React, Redux, and create-react-app (CRA) conventions to implement a rich, client-side user interface (UI).

With the exception of the project creation command, all information about the React-with-Redux template is the

same as the React template. To create this project type, run dotnet new reactredux  instead of dotnet new react . For

more information about the functionality common to both React-based templates, see React template

documentation.

For information on configuring a React-with-Redux sub-application in IIS, see ReactRedux Template 2.1: Unable to

use SPA on IIS (aspnet/Templating #555).

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/client-side/spa/react-with-redux.md
https://github.com/facebookincubator/create-react-app
https://github.com/aspnet/Templating/issues/555


Use JavaScript Services to Create Single Page
Applications in ASP.NET Core
9/22/2020 • 11 minutes to read • Edit Online

WARNINGWARNING

What is JavaScript Services

What is SpaServices

By Scott Addie and Fiyaz Hasan

A Single Page Application (SPA) is a popular type of web application due to its inherent rich user experience.

Integrating client-side SPA frameworks or libraries, such as Angular or React, with server-side frameworks such as

ASP.NET Core can be difficult. JavaScript Services was developed to reduce friction in the integration process. It

enables seamless operation between the different client and server technology stacks.

The features described in this article are obsolete as of ASP.NET Core 3.0. A simpler SPA frameworks integration mechanism is

available in the Microsoft.AspNetCore.SpaServices.Extensions NuGet package. For more information, see [Announcement]

Obsoleting Microsoft.AspNetCore.SpaServices and Microsoft.AspNetCore.NodeServices.

JavaScript Services is a collection of client-side technologies for ASP.NET Core. Its goal is to position ASP.NET Core

as developers' preferred server-side platform for building SPAs.

JavaScript Services consists of two distinct NuGet packages:

Microsoft.AspNetCore.NodeServices (NodeServices)

Microsoft.AspNetCore.SpaServices (SpaServices)

These packages are useful in the following scenarios:

Run JavaScript on the server

Use a SPA framework or library

Build client-side assets with Webpack

Much of the focus in this article is placed on using the SpaServices package.

SpaServices was created to position ASP.NET Core as developers' preferred server-side platform for building SPAs.

SpaServices isn't required to develop SPAs with ASP.NET Core, and it doesn't lock developers into a particular client

framework.

SpaServices provides useful infrastructure such as:

Server-side prerendering

Webpack Dev Middleware

Hot Module Replacement

Routing helpers

Collectively, these infrastructure components enhance both the development workflow and the runtime experience.

The components can be adopted individually.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/client-side/spa-services.md
https://github.com/scottaddie
https://fiyazhasan.me/
https://angular.io/
https://facebook.github.io/react/
https://www.nuget.org/packages/Microsoft.AspNetCore.SpaServices.Extensions
https://github.com/dotnet/AspNetCore/issues/12890
https://www.nuget.org/packages/Microsoft.AspNetCore.NodeServices/
https://www.nuget.org/packages/Microsoft.AspNetCore.SpaServices/


 

Prerequisites for using SpaServices

Server-side prerendering

Server-side prerendering prerequisitesServer-side prerendering prerequisites

npm i -S aspnet-prerendering

Server-side prerendering configurationServer-side prerendering configuration

@using SpaServicesSampleApp
@addTagHelper "*, Microsoft.AspNetCore.Mvc.TagHelpers"
@addTagHelper "*, Microsoft.AspNetCore.SpaServices"

<app asp-prerender-module="ClientApp/dist/main-server">Loading...</app>

asp-prerender-module Tag Helperasp-prerender-module Tag Helper

To work with SpaServices, install the following:

Node.js (version 6 or later) with npm

node -v && npm -v

To verify these components are installed and can be found, run the following from the command line:

If deploying to an Azure web site, no action is required—Node.js is installed and available in the

server environments.

.NET Core SDK 2.0 or later

On Windows using Visual Studio 2017, the SDK is installed by selecting the .NET Core cross-platform.NET Core cross-platform

developmentdevelopment workload.

Microsoft.AspNetCore.SpaServices NuGet package

A universal (also known as isomorphic) application is a JavaScript application capable of running both on the

server and the client. Angular, React, and other popular frameworks provide a universal platform for this

application development style. The idea is to first render the framework components on the server via Node.js, and

then delegate further execution to the client.

ASP.NET Core Tag Helpers provided by SpaServices simplify the implementation of server-side prerendering by

invoking the JavaScript functions on the server.

Install the aspnet-prerendering npm package:

The Tag Helpers are made discoverable via namespace registration in the project's _ViewImports.cshtml file:

These Tag Helpers abstract away the intricacies of communicating directly with low-level APIs by leveraging an

HTML-like syntax inside the Razor view:

The asp-prerender-module  Tag Helper, used in the preceding code example, executes ClientApp/dist/main-server.js

on the server via Node.js. For clarity's sake, main-server.js file is an artifact of the TypeScript-to-JavaScript

transpilation task in the Webpack build process. Webpack defines an entry point alias of main-server ; and,

traversal of the dependency graph for this alias begins at the ClientApp/boot-server.ts file:

https://nodejs.org/
https://dotnet.microsoft.com/download
https://www.nuget.org/packages/Microsoft.AspNetCore.SpaServices/
https://www.npmjs.com/package/aspnet-prerendering
https://webpack.github.io/


entry: { 'main-server': './ClientApp/boot-server.ts' },

import { createServerRenderer, RenderResult } from 'aspnet-prerendering';

export default createServerRenderer(params => {
    const providers = [
        { provide: INITIAL_CONFIG, useValue: { document: '<app></app>', url: params.url } },
        { provide: 'ORIGIN_URL', useValue: params.origin }
    ];

    return platformDynamicServer(providers).bootstrapModule(AppModule).then(moduleRef => {
        const appRef = moduleRef.injector.get(ApplicationRef);
        const state = moduleRef.injector.get(PlatformState);
        const zone = moduleRef.injector.get(NgZone);
        
        return new Promise<RenderResult>((resolve, reject) => {
            zone.onError.subscribe(errorInfo => reject(errorInfo));
            appRef.isStable.first(isStable => isStable).subscribe(() => {
                // Because 'onStable' fires before 'onError', we have to delay slightly before
                // completing the request in case there's an error to report
                setImmediate(() => {
                    resolve({
                        html: state.renderToString()
                    });
                    moduleRef.destroy();
                });
            });
        });
    });
});

asp-prerender-data Tag Helperasp-prerender-data Tag Helper

<app asp-prerender-module="ClientApp/dist/main-server"
        asp-prerender-data='new {
            UserName = "John Doe"
        }'>Loading...</app>

In the following Angular example, the ClientApp/boot-server.ts file utilizes the createServerRenderer  function and 

RenderResult  type of the aspnet-prerendering  npm package to configure server rendering via Node.js. The HTML

markup destined for server-side rendering is passed to a resolve function call, which is wrapped in a strongly-

typed JavaScript Promise  object. The Promise  object's significance is that it asynchronously supplies the HTML

markup to the page for injection in the DOM's placeholder element.

When coupled with the asp-prerender-module  Tag Helper, the asp-prerender-data  Tag Helper can be used to pass

contextual information from the Razor view to the server-side JavaScript. For example, the following markup

passes user data to the main-server  module:

The received UserName  argument is serialized using the built-in JSON serializer and is stored in the params.data

object. In the following Angular example, the data is used to construct a personalized greeting within an h1

element:



import { createServerRenderer, RenderResult } from 'aspnet-prerendering';

export default createServerRenderer(params => {
    const providers = [
        { provide: INITIAL_CONFIG, useValue: { document: '<app></app>', url: params.url } },
        { provide: 'ORIGIN_URL', useValue: params.origin }
    ];

    return platformDynamicServer(providers).bootstrapModule(AppModule).then(moduleRef => {
        const appRef = moduleRef.injector.get(ApplicationRef);
        const state = moduleRef.injector.get(PlatformState);
        const zone = moduleRef.injector.get(NgZone);
        
        return new Promise<RenderResult>((resolve, reject) => {
            const result = `<h1>Hello, ${params.data.userName}</h1>`;

            zone.onError.subscribe(errorInfo => reject(errorInfo));
            appRef.isStable.first(isStable => isStable).subscribe(() => {
                // Because 'onStable' fires before 'onError', we have to delay slightly before
                // completing the request in case there's an error to report
                setImmediate(() => {
                    resolve({
                        html: result
                    });
                    moduleRef.destroy();
                });
            });
        });
    });
});

Property names passed in Tag Helpers are represented with PascalCasePascalCase notation. Contrast that to JavaScript,

where the same property names are represented with camelCasecamelCase. The default JSON serialization configuration is

responsible for this difference.

To expand upon the preceding code example, data can be passed from the server to the view by hydrating the 

globals  property provided to the resolve  function:



    

import { createServerRenderer, RenderResult } from 'aspnet-prerendering';

export default createServerRenderer(params => {
    const providers = [
        { provide: INITIAL_CONFIG, useValue: { document: '<app></app>', url: params.url } },
        { provide: 'ORIGIN_URL', useValue: params.origin }
    ];

    return platformDynamicServer(providers).bootstrapModule(AppModule).then(moduleRef => {
        const appRef = moduleRef.injector.get(ApplicationRef);
        const state = moduleRef.injector.get(PlatformState);
        const zone = moduleRef.injector.get(NgZone);
        
        return new Promise<RenderResult>((resolve, reject) => {
            const result = `<h1>Hello, ${params.data.userName}</h1>`;

            zone.onError.subscribe(errorInfo => reject(errorInfo));
            appRef.isStable.first(isStable => isStable).subscribe(() => {
                // Because 'onStable' fires before 'onError', we have to delay slightly before
                // completing the request in case there's an error to report
                setImmediate(() => {
                    resolve({
                        html: result,
                        globals: {
                            postList: [
                                'Introduction to ASP.NET Core',
                                'Making apps with Angular and ASP.NET Core'
                            ]
                        }
                    });
                    moduleRef.destroy();
                });
            });
        });
    });
});

Webpack Dev Middleware

The postList  array defined inside the globals  object is attached to the browser's global window  object. This

variable hoisting to global scope eliminates duplication of effort, particularly as it pertains to loading the same data

once on the server and again on the client.

Webpack Dev Middleware introduces a streamlined development workflow whereby Webpack builds resources on

demand. The middleware automatically compiles and serves client-side resources when a page is reloaded in the

browser. The alternate approach is to manually invoke Webpack via the project's npm build script when a third-

https://webpack.js.org/guides/development/#using-webpack-dev-middleware


 

"build": "npm run build:vendor && npm run build:custom",

Webpack Dev Middleware prerequisitesWebpack Dev Middleware prerequisites

npm i -D aspnet-webpack

Webpack Dev Middleware configurationWebpack Dev Middleware configuration

if (env.IsDevelopment())
{
    app.UseDeveloperExceptionPage();
    app.UseWebpackDevMiddleware();
}
else
{
    app.UseExceptionHandler("/Home/Error");
}

// Call UseWebpackDevMiddleware before UseStaticFiles
app.UseStaticFiles();

module.exports = (env) => {
        output: {
            filename: '[name].js',
            publicPath: '/dist/' // Webpack dev middleware, if enabled, handles requests for this URL prefix
        },

Hot Module Replacement

Hot Module Replacement prerequisitesHot Module Replacement prerequisites

npm i -D webpack-hot-middleware

Hot Module Replacement configurationHot Module Replacement configuration

party dependency or the custom code changes. An npm build script in the package.json file is shown in the

following example:

Install the aspnet-webpack npm package:

Webpack Dev Middleware is registered into the HTTP request pipeline via the following code in the Startup.cs file's 

Configure  method:

The UseWebpackDevMiddleware  extension method must be called before registering static file hosting via the 

UseStaticFiles  extension method. For security reasons, register the middleware only when the app runs in

development mode.

The webpack.config.js file's output.publicPath  property tells the middleware to watch the dist  folder for changes:

Think of Webpack's Hot Module Replacement (HMR) feature as an evolution of Webpack Dev Middleware. HMR

introduces all the same benefits, but it further streamlines the development workflow by automatically updating

page content after compiling the changes. Don't confuse this with a refresh of the browser, which would interfere

with the current in-memory state and debugging session of the SPA. There's a live link between the Webpack Dev

Middleware service and the browser, which means changes are pushed to the browser.

Install the webpack-hot-middleware npm package:

https://www.npmjs.com/package/aspnet-webpack
https://webpack.js.org/concepts/hot-module-replacement/
https://www.npmjs.com/package/webpack-hot-middleware


 

app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
    HotModuleReplacement = true
});

module.exports = (env) => {
        plugins: [new CheckerPlugin()]

Routing helpers

Routing helpers prerequisitesRouting helpers prerequisites

npm i -S @angular/router

Routing helpers configurationRouting helpers configuration

The HMR component must be registered into MVC's HTTP request pipeline in the Configure  method:

As was true with Webpack Dev Middleware, the UseWebpackDevMiddleware  extension method must be called before

the UseStaticFiles  extension method. For security reasons, register the middleware only when the app runs in

development mode.

The webpack.config.js file must define a plugins  array, even if it's left empty:

After loading the app in the browser, the developer tools' Console tab provides confirmation of HMR activation:

In most ASP.NET Core-based SPAs, client-side routing is often desired in addition to server-side routing. The SPA

and MVC routing systems can work independently without interference. There's, however, one edge case posing

challenges: identifying 404 HTTP responses.

Consider the scenario in which an extensionless route of /some/page  is used. Assume the request doesn't pattern-

match a server-side route, but its pattern does match a client-side route. Now consider an incoming request for 

/images/user-512.png , which generally expects to find an image file on the server. If that requested resource path

doesn't match any server-side route or static file, it's unlikely that the client-side application would handle it—

generally returning a 404 HTTP status code is desired.

Install the client-side routing npm package. Using Angular as an example:

An extension method named MapSpaFallbackRoute  is used in the Configure  method:



  

    

app.UseMvc(routes =>
{
    routes.MapRoute(
        name: "default",
        template: "{controller=Home}/{action=Index}/{id?}");

    routes.MapSpaFallbackRoute(
        name: "spa-fallback",
        defaults: new { controller = "Home", action = "Index" });
});

Create a new project

dotnet new --install Microsoft.AspNetCore.SpaTemplates::*

T EM P L AT EST EM P L AT ES SH O RT  N A M ESH O RT  N A M E L A N GUA GEL A N GUA GE TA GSTA GS

MVC ASP.NET Core with
Angular

angular [C#] Web/MVC/SPA

MVC ASP.NET Core with
React.js

react [C#] Web/MVC/SPA

MVC ASP.NET Core with
React.js and Redux

reactredux [C#] Web/MVC/SPA

dotnet new angular

Set the runtime configuration modeSet the runtime configuration mode

Routes are evaluated in the order in which they're configured. Consequently, the default  route in the preceding

code example is used first for pattern matching.

JavaScript Services provide pre-configured application templates. SpaServices is used in these templates in

conjunction with different frameworks and libraries such as Angular, React, and Redux.

These templates can be installed via the .NET Core CLI by running the following command:

A list of available SPA templates is displayed:

To create a new project using one of the SPA templates, include the Shor t NameShor t Name of the template in the dotnet new

command. The following command creates an Angular application with ASP.NET Core MVC configured for the

server side:

Two primary runtime configuration modes exist:

DevelopmentDevelopment:

ProductionProduction:

Includes source maps to ease debugging.

Doesn't optimize the client-side code for performance.

Excludes source maps.

Optimizes the client-side code via bundling and minification.

ASP.NET Core uses an environment variable named ASPNETCORE_ENVIRONMENT  to store the configuration mode. For

more information, see Set the environment.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new


Run with .NET Core CLIRun with .NET Core CLI

dotnet restore && npm i

dotnet run

Run with Visual Studio 2017Run with Visual Studio 2017

Test the app

it('should display a title', async(() => {
    const titleText = fixture.nativeElement.querySelector('h1').textContent;
    expect(titleText).toEqual('Counter');
}));

it('should start with count 0, then increments by 1 when clicked', async(() => {
    const countElement = fixture.nativeElement.querySelector('strong');
    expect(countElement.textContent).toEqual('0');

    const incrementButton = fixture.nativeElement.querySelector('button');
    incrementButton.click();
    fixture.detectChanges();
    expect(countElement.textContent).toEqual('1');
}));

npm test

Restore the required NuGet and npm packages by running the following command at the project root:

Build and run the application:

The application starts on localhost according to the runtime configuration mode. Navigating to 

http://localhost:5000  in the browser displays the landing page.

Open the .csproj file generated by the dotnet new command. The required NuGet and npm packages are restored

automatically upon project open. This restoration process may take up to a few minutes, and the application is

ready to run when it completes. Click the green run button or press Ctrl + F5 , and the browser opens to the

application's landing page. The application runs on localhost according to the runtime configuration mode.

SpaServices templates are pre-configured to run client-side tests using Karma and Jasmine. Jasmine is a popular

unit testing framework for JavaScript, whereas Karma is a test runner for those tests. Karma is configured to work

with the Webpack Dev Middleware such that the developer isn't required to stop and run the test every time

changes are made. Whether it's the code running against the test case or the test case itself, the test runs

automatically.

Using the Angular application as an example, two Jasmine test cases are already provided for the CounterComponent

in the counter.component.spec.ts file:

Open the command prompt in the ClientApp directory. Run the following command:

The script launches the Karma test runner, which reads the settings defined in the karma.conf.js file. Among other

settings, the karma.conf.js identifies the test files to be executed via its files  array:

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new
https://karma-runner.github.io/1.0/index.html
https://jasmine.github.io/


module.exports = function (config) {
    config.set({
        files: [
            '../../wwwroot/dist/vendor.js',
            './boot-tests.ts'
        ],

Publish the app

<Target Name="RunWebpack" AfterTargets="ComputeFilesToPublish">
  <!-- As part of publishing, ensure the JS resources are freshly built in production mode -->
  <Exec Command="npm install" />
  <Exec Command="node node_modules/webpack/bin/webpack.js --config webpack.config.vendor.js --env.prod" />
  <Exec Command="node node_modules/webpack/bin/webpack.js --env.prod" />

  <!-- Include the newly-built files in the publish output -->
  <ItemGroup>
    <DistFiles Include="wwwroot\dist\**; ClientApp\dist\**" />
    <ResolvedFileToPublish Include="@(DistFiles->'%(FullPath)')" Exclude="@(ResolvedFileToPublish)">
      <RelativePath>%(DistFiles.Identity)</RelativePath>
      <CopyToPublishDirectory>PreserveNewest</CopyToPublishDirectory>
    </ResolvedFileToPublish>
  </ItemGroup>
</Target>

dotnet publish -c Release

Additional resources

See this GitHub issue for more information on publishing to Azure.

Combining the generated client-side assets and the published ASP.NET Core artifacts into a ready-to-deploy

package can be cumbersome. Thankfully, SpaServices orchestrates that entire publication process with a custom

MSBuild target named RunWebpack :

The MSBuild target has the following responsibilities:

1. Restore the npm packages.

2. Create a production-grade build of the third-party, client-side assets.

3. Create a production-grade build of the custom client-side assets.

4. Copy the Webpack-generated assets to the publish folder.

The MSBuild target is invoked when running:

Angular Docs

https://github.com/dotnet/AspNetCore.Docs/issues/12474
https://angular.io/docs


Client-side library acquisition in ASP.NET Core with
LibMan
9/22/2020 • 2 minutes to read • Edit Online

LibMan use cases

Additional resources

By Scott Addie

Library Manager (LibMan) is a lightweight, client-side library acquisition tool. LibMan downloads popular libraries

and frameworks from the file system or from a content delivery network (CDN). The supported CDNs include

CDNJS, jsDelivr, and unpkg. The selected library files are fetched and placed in the appropriate location within the

ASP.NET Core project.

LibMan offers the following benefits:

Only the library files you need are downloaded.

Additional tooling, such as Node.js, npm, and WebPack, isn't necessary to acquire a subset of files in a library.

Files can be placed in a specific location without resorting to build tasks or manual file copying.

For more information about LibMan's benefits, watch Modern front-end web development in Visual Studio 2017:

LibMan segment.

LibMan isn't a package management system. If you're already using a package manager, such as npm or yarn,

continue doing so. LibMan wasn't developed to replace those tools.

Use LibMan with ASP.NET Core in Visual Studio

Use the LibMan CLI with ASP.NET Core

LibMan GitHub repository

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/client-side/libman/index.md
https://twitter.com/Scott_Addie
https://wikipedia.org/wiki/Content_delivery_network
https://cdnjs.com/
https://www.jsdelivr.com/
https://unpkg.com/#/
https://nodejs.org
https://www.npmjs.com
https://webpack.js.org
https://channel9.msdn.com/Events/Build/2017/B8073#time=43m34s
https://yarnpkg.com
https://github.com/aspnet/LibraryManager


Use the LibMan CLI with ASP.NET Core
9/22/2020 • 8 minutes to read • Edit Online

Prerequisites

Installation

dotnet tool install -g Microsoft.Web.LibraryManager.Cli

dotnet tool install -g Microsoft.Web.LibraryManager.Cli --version 1.0.94-g606058a278 --add-source C:\Temp\

Usage

libman

libman --version

libman --help

By Scott Addie

The LibMan CLI is a cross-platform tool that's supported everywhere .NET Core is supported.

.NET Core 2.1 SDK or later

To install the LibMan CLI:

A .NET Core Global Tool is installed from the Microsoft.Web.LibraryManager.Cli NuGet package.

To install the LibMan CLI from a specific NuGet package source:

In the preceding example, a .NET Core Global Tool is installed from the local Windows machine's

C:\Temp\Microsoft.Web.LibraryManager.Cli.1.0.94-g606058a278.nupkg file.

After successful installation of the CLI, the following command can be used:

To view the installed CLI version:

To view the available CLI commands:

The preceding command displays output similar to the following:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/client-side/libman/libman-cli.md
https://twitter.com/Scott_Addie
https://dotnet.microsoft.com/download/dotnet-core
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools#install-a-global-tool
https://www.nuget.org/packages/Microsoft.Web.LibraryManager.Cli/


 1.0.163+g45474d37ed

Usage: libman [options] [command]

Options:
  --help|-h  Show help information
  --version  Show version information

Commands:
  cache      List or clean libman cache contents
  clean      Deletes all library files defined in libman.json from the project
  init       Create a new libman.json
  install    Add a library definition to the libman.json file, and download the 
             library to the specified location
  restore    Downloads all files from provider and saves them to specified 
             destination
  uninstall  Deletes all files for the specified library from their specified 
             destination, then removes the specified library definition from 
             libman.json
  update     Updates the specified library

Use "libman [command] --help" for more information about a command.

Initialize LibMan in the project

SynopsisSynopsis

libman init [-d|--default-destination] [-p|--default-provider] [--verbosity]
libman init [-h|--help]

OptionsOptions

The following sections outline the available CLI commands.

The libman init  command creates a libman.json file if one doesn't exist. The file is created with the default item

template content.

The following options are available for the libman init  command:

-d|--default-destination <PATH>

A path relative to the current folder. Library files are installed in this location if no destination  property is

defined for a library in libman.json. The <PATH>  value is written to the defaultDestination  property of

libman.json.

-p|--default-provider <PROVIDER>

The provider to use if no provider is defined for a given library. The <PROVIDER>  value is written to the 

defaultProvider  property of libman.json. Replace <PROVIDER>  with one of the following values:

cdnjs

filesystem

jsdelivr

unpkg

-h|--help

Show help information.

--verbosity <LEVEL>



ExamplesExamples

{
  "version": "1.0",
  "defaultProvider": "cdnjs",
  "libraries": []
}

Add library files

SynopsisSynopsis

libman install <LIBRARY> [-d|--destination] [--files] [-p|--provider] [--verbosity]
libman install [-h|--help]

ArgumentsArguments

Set the verbosity of the output. Replace <LEVEL>  with one of the following values:

quiet

normal

detailed

To create a libman.json file in an ASP.NET Core project:

libman init

Navigate to the project root.

Run the following command:

Type the name of the default provider, or press Enter  to use the default CDNJS provider. Valid values

include:

cdnjs

filesystem

jsdelivr

unpkg

A libman.json file is added to the project root with the following content:

The libman install  command downloads and installs library files into the project. A libman.json file is added if

one doesn't exist. The libman.json file is modified to store configuration details for the library files.



OptionsOptions

ExamplesExamples

{
  "version": "1.0",
  "defaultProvider": "cdnjs",
  "libraries": []
}

libman install jquery@3.2.1 --provider cdnjs --destination wwwroot/scripts/jquery --files jquery.min.js

LIBRARY

The name of the library to install. This name may include version number notation (for example, @1.2.0 ).

The following options are available for the libman install  command:

-d|--destination <PATH>

The location to install the library. If not specified, the default location is used. If no defaultDestination

property is specified in libman.json, this option is required.

--files <FILE>

Specify the name of the file to install from the library. If not specified, all files from the library are installed.

Provide one --files  option per file to be installed. Relative paths are supported too. For example: 

--files dist/browser/signalr.js .

-p|--provider <PROVIDER>

The name of the provider to use for the library acquisition. Replace <PROVIDER>  with one of the following

values:

cdnjs

filesystem

jsdelivr

unpkg

If not specified, the defaultProvider  property in libman.json is used. If no defaultProvider  property is

specified in libman.json, this option is required.

-h|--help

Show help information.

--verbosity <LEVEL>

Set the verbosity of the output. Replace <LEVEL>  with one of the following values:

quiet

normal

detailed

Consider the following libman.json file:

To install the jQuery version 3.2.1 jquery.min.js file to the wwwroot/scripts/jquery folder using the CDNJS

provider :

The libman.json file resembles the following:



{
  "version": "1.0",
  "defaultProvider": "cdnjs",
  "libraries": [
    {
      "library": "jquery@3.2.1",
      "destination": "wwwroot/scripts/jquery",
      "files": [
        "jquery.min.js"
      ]
    }
  ]
}

libman install C:\temp\contosoCalendar\ --provider filesystem --files calendar.js --files calendar.css

{
  "version": "1.0",
  "defaultProvider": "cdnjs",
  "libraries": [
    {
      "library": "jquery@3.2.1",
      "destination": "wwwroot/scripts/jquery",
      "files": [
        "jquery.min.js"
      ]
    },
    {
      "library": "C:\\temp\\contosoCalendar\\",
      "provider": "filesystem",
      "destination": "wwwroot/lib/contosoCalendar",
      "files": [
        "calendar.js",
        "calendar.css"
      ]
    }
  ]
}

To install the calendar.js and calendar.css files from C:\temp\contosoCalendar\ using the file system provider :

The following prompt appears for two reasons:

The libman.json file doesn't contain a defaultDestination  property.

The libman install  command doesn't contain the -d|--destination  option.

After accepting the default destination, the libman.json file resembles the following:



Restore library files

SynopsisSynopsis

libman restore [--verbosity]
libman restore [-h|--help]

OptionsOptions

ExamplesExamples

libman restore

Delete library files

SynopsisSynopsis

libman clean [--verbosity]
libman clean [-h|--help]

OptionsOptions

The libman restore  command installs library files defined in libman.json. The following rules apply:

If no libman.json file exists in the project root, an error is returned.

If a library specifies a provider, the defaultProvider  property in libman.json is ignored.

If a library specifies a destination, the defaultDestination  property in libman.json is ignored.

The following options are available for the libman restore  command:

-h|--help

Show help information.

--verbosity <LEVEL>

Set the verbosity of the output. Replace <LEVEL>  with one of the following values:

quiet

normal

detailed

To restore the library files defined in libman.json:

The libman clean  command deletes library files previously restored via LibMan. Folders that become empty after

this operation are deleted. The library files' associated configurations in the libraries  property of libman.json

aren't removed.

The following options are available for the libman clean  command:

-h|--help

Show help information.

--verbosity <LEVEL>

Set the verbosity of the output. Replace <LEVEL>  with one of the following values:

quiet



ExamplesExamples

libman clean

Uninstall library files

SynopsisSynopsis

libman uninstall <LIBRARY> [--verbosity]
libman uninstall [-h|--help]

ArgumentsArguments

OptionsOptions

ExamplesExamples

normal

detailed

To delete library files installed via LibMan:

The libman uninstall  command:

Deletes all files associated with the specified library from the destination in libman.json.

Removes the associated library configuration from libman.json.

An error occurs when:

No libman.json file exists in the project root.

The specified library doesn't exist.

If more than one library with the same name is installed, you're prompted to choose one.

LIBRARY

The name of the library to uninstall. This name may include version number notation (for example, @1.2.0 ).

The following options are available for the libman uninstall  command:

-h|--help

Show help information.

--verbosity <LEVEL>

Set the verbosity of the output. Replace <LEVEL>  with one of the following values:

quiet

normal

detailed

Consider the following libman.json file:



{
  "version": "1.0",
  "defaultProvider": "cdnjs",
  "libraries": [
    {
      "library": "jquery@3.3.1",
      "files": [
        "jquery.min.js",
        "jquery.js",
        "jquery.min.map"
      ],
      "destination": "wwwroot/lib/jquery/"
    },
    {
      "provider": "unpkg",
      "library": "bootstrap@4.1.3",
      "destination": "wwwroot/lib/bootstrap/"
    },
    {
      "provider": "filesystem",
      "library": "C:\\temp\\lodash\\",
      "files": [
        "lodash.js",
        "lodash.min.js"
      ],
      "destination": "wwwroot/lib/lodash/"
    }
  ]
}

Update library version

SynopsisSynopsis

libman update <LIBRARY> [-pre] [--to] [--verbosity]
libman update [-h|--help]

ArgumentsArguments

libman uninstall jquery

libman uninstall jquery@3.3.1

libman uninstall C:\temp\lodash\

To uninstall jQuery, either of the following commands succeed:

To uninstall the Lodash files installed via the filesystem  provider :

The libman update  command updates a library installed via LibMan to the specified version.

An error occurs when:

No libman.json file exists in the project root.

The specified library doesn't exist.

If more than one library with the same name is installed, you're prompted to choose one.



OptionsOptions

ExamplesExamples

Manage library cache

SynopsisSynopsis

libman cache clean [<PROVIDER>] [--verbosity]
libman cache list [--files] [--libraries] [--verbosity]
libman cache [-h|--help]

ArgumentsArguments

LIBRARY

The name of the library to update.

The following options are available for the libman update  command:

-pre

Obtain the latest prerelease version of the library.

--to <VERSION>

Obtain a specific version of the library.

-h|--help

Show help information.

--verbosity <LEVEL>

Set the verbosity of the output. Replace <LEVEL>  with one of the following values:

quiet

normal

detailed

libman update jquery

libman update jquery --to 3.3.1

libman update jquery -pre

To update jQuery to the latest version:

To update jQuery to version 3.3.1:

To update jQuery to the latest prerelease version:

The libman cache  command manages the LibMan library cache. The filesystem  provider doesn't use the library

cache.

PROVIDER

Only used with the clean  command. Specifies the provider cache to clean. Valid values include:



OptionsOptions

ExamplesExamples

cdnjs

filesystem

jsdelivr

unpkg

The following options are available for the libman cache  command:

--files

List the names of files that are cached.

--libraries

List the names of libraries that are cached.

-h|--help

Show help information.

--verbosity <LEVEL>

Set the verbosity of the output. Replace <LEVEL>  with one of the following values:

quiet

normal

detailed

libman cache list

libman cache list --libraries

Cache contents:
---------------
unpkg:
    knockout
    react
    vue
cdnjs:
    font-awesome
    jquery
    knockout
    lodash.js
    react

libman cache list --files

To view the names of cached libraries per provider, use one of the following commands:

Output similar to the following is displayed:

To view the names of cached library files per provider :

Output similar to the following is displayed:



Cache contents:
---------------
unpkg:
    knockout:
        <list omitted for brevity>
    react:
        <list omitted for brevity>
    vue:
        <list omitted for brevity>
cdnjs:
    font-awesome
        metadata.json
    jquery
        metadata.json
        3.2.1\core.js
        3.2.1\jquery.js
        3.2.1\jquery.min.js
        3.2.1\jquery.min.map
        3.2.1\jquery.slim.js
        3.2.1\jquery.slim.min.js
        3.2.1\jquery.slim.min.map
        3.3.1\core.js
        3.3.1\jquery.js
        3.3.1\jquery.min.js
        3.3.1\jquery.min.map
        3.3.1\jquery.slim.js
        3.3.1\jquery.slim.min.js
        3.3.1\jquery.slim.min.map
    knockout
        metadata.json
        3.4.2\knockout-debug.js
        3.4.2\knockout-min.js
    lodash.js
        metadata.json
        4.17.10\lodash.js
        4.17.10\lodash.min.js
    react
        metadata.json

libman cache clean cdnjs

Cache contents:
---------------
unpkg:
    knockout
    react
    vue
cdnjs:
    (empty)

libman cache clean

Notice the preceding output shows that jQuery versions 3.2.1 and 3.3.1 are cached under the CDNJS

provider.

To empty the library cache for the CDNJS provider :

After emptying the CDNJS provider cache, the libman cache list  command displays the following:

To empty the cache for all supported providers:



Additional resources

Cache contents:
---------------
unpkg:
    (empty)
cdnjs:
    (empty)

After emptying all provider caches, the libman cache list  command displays the following:

Install a Global Tool

Use LibMan with ASP.NET Core in Visual Studio

LibMan GitHub repository

https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools#install-a-global-tool
https://github.com/aspnet/LibraryManager


  

Use LibMan with ASP.NET Core in Visual Studio
9/22/2020 • 7 minutes to read • Edit Online

Prerequisites

Add library files

Use the Add Client-Side Library dialogUse the Add Client-Side Library dialog

By Scott Addie

Visual Studio has built-in support for LibMan in ASP.NET Core projects, including:

Support for configuring and running LibMan restore operations on build.

Menu items for triggering LibMan restore and clean operations.

Search dialog for finding libraries and adding the files to a project.

Editing support for libman.json—the LibMan manifest file.

View or download sample code (how to download)

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

Library files can be added to an ASP.NET Core project in two different ways:

1. Use the Add Client-Side Library dialog

2. Manually configure LibMan manifest file entries

Follow these steps to install a client-side library:

In Solution ExplorerSolution Explorer , right-click the project folder in which the files should be added. Choose AddAdd >

Client-S ide L ibrar yClient-S ide L ibrar y . The Add Client-S ide L ibrar yAdd Client-S ide L ibrar y  dialog appears:

Select the library provider from the ProviderProvider  drop down. CDNJS is the default provider.

Type the library name to fetch in the L ibrar yLibrar y  text box. IntelliSense provides a list of libraries beginning with

the provided text.

Select the library from the IntelliSense list. Notice the library name is suffixed with the @  symbol and the

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/client-side/libman/libman-vs.md
https://twitter.com/Scott_Addie
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/client-side/libman/samples/
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019


  Manually configure LibMan manifest file entriesManually configure LibMan manifest file entries

L A UN C H  LO C AT IO NL A UN C H  LO C AT IO N SUGGEST ED F O L DERSUGGEST ED F O L DER

project root (if wwwroot exists) wwwroot/lib/jquery/

project root (if wwwroot doesn't exist) lib/jquery/

Pages folder in project Pages/jquery/

Restore operation started...
Restoring libraries for project LibManSample
Restoring library jquery@3.3.1... (LibManSample)
wwwroot/lib/jquery/jquery.min.js written to destination (LibManSample)
wwwroot/lib/jquery/jquery.js written to destination (LibManSample)
wwwroot/lib/jquery/jquery.min.map written to destination (LibManSample)
Restore operation completed
1 libraries restored in 2.32 seconds

latest stable version known to the selected provider.

Decide which files to include:

Select the Include all l ibrar y filesInclude all l ibrar y files  radio button to include all of the library's files.

Select the Choose specific filesChoose specific files  radio button to include a subset of the library's files. When the radio

button is selected, the file selector tree is enabled. Check the boxes to the left of the file names to

download.

Specify the project folder for storing the files in the Target LocationTarget Location text box. As a recommendation, store

each library in a separate folder.

The suggested Target LocationTarget Location folder is based on the location from which the dialog launched:

If launched from the project root:

If launched from a project folder, the corresponding folder name is used.

wwwroot/lib is used if wwwroot exists.

lib is used if wwwroot doesn't exist.

The folder suggestion is suffixed with the library name. The following table illustrates folder suggestions

when installing jQuery in a Razor Pages project.

Click the InstallInstall  button to download the files, per the configuration in libman.json.

Review the L ibrar y ManagerLibrar y Manager  feed of the OutputOutput window for installation details. For example:

All LibMan operations in Visual Studio are based on the content of the project root's LibMan manifest

(libman.json). You can manually edit libman.json to configure library files for the project. Visual Studio restores all

library files once libman.json is saved.

To open libman.json for editing, the following options exist:

Double-click the libman.json file in Solution ExplorerSolution Explorer .

Right-click the project in Solution ExplorerSolution Explorer  and select Manage Client-S ide L ibrar iesManage Client-S ide L ibrar ies . ††

Select Manage Client-S ide L ibrar iesManage Client-S ide L ibrar ies  from the Visual Studio ProjectProject menu. ††

††  If the libman.json file doesn't already exist in the project root, it will be created with the default item template

content.

Visual Studio offers rich JSON editing support such as colorization, formatting, IntelliSense, and schema validation.



  

{
  "version": "1.0",
  "defaultProvider": "cdnjs",
  "libraries": [
    {
      "library": "jquery@3.3.1",
      "files": [
        "jquery.min.js",
        "jquery.js",
        "jquery.min.map"
      ],
      "destination": "wwwroot/lib/jquery/"
    },
    {
      "provider": "unpkg",
      "library": "bootstrap@4.1.3",
      "destination": "wwwroot/lib/bootstrap/"
    },
    {
      "provider": "filesystem",
      "library": "C:\\temp\\lodash\\",
      "files": [
        "lodash.js",
        "lodash.min.js"
      ],
      "destination": "wwwroot/lib/lodash/"
    }
  ]
}

NOTENOTE

Restore library files

The LibMan manifest's JSON schema is found at https://json.schemastore.org/libman.

With the following manifest file, LibMan retrieves files per the configuration defined in the libraries  property. An

explanation of the object literals defined within libraries  follows:

A subset of jQuery version 3.3.1 is retrieved from the CDNJS provider. The subset is defined in the files

property—jquery.min.js, jquery.js, and jquery.min.map. The files are placed in the project's wwwroot/lib/jquery

folder.

The entirety of Bootstrap version 4.1.3 is retrieved and placed in a wwwroot/lib/bootstrap folder. The object

literal's provider  property overrides the defaultProvider  property value. LibMan retrieves the Bootstrap files

from the unpkg provider.

A subset of Lodash was approved by a governing body within the organization. The lodash.js and lodash.min.js

files are retrieved from the local file system at C:\temp\lodash\. The files are copied to the project's

wwwroot/lib/lodash folder.

LibMan only supports one version of each library from each provider. The libman.json file fails schema validation if it contains

two libraries with the same library name for a given provider.

To restore library files from within Visual Studio, there must be a valid libman.json file in the project root. Restored

files are placed in the project at the location specified for each library.

Library files can be restored in an ASP.NET Core project in two ways:

1. Restore files during build

2. Restore files manually

https://json.schemastore.org/libman
https://jquery.com/
https://getbootstrap.com/
https://lodash.com/


  

    

Restore files during buildRestore files during build

Restore files manuallyRestore files manually

LibMan can restore the defined library files as part of the build process. By default, the restore-on-build behavior is

disabled.

To enable and test the restore-on-build behavior :

<PackageReference Include="Microsoft.Web.LibraryManager.Build" Version="1.0.113" />

1>------ Build started: Project: LibManSample, Configuration: Debug Any CPU ------
1>
1>Restore operation started...
1>Restoring library jquery@3.3.1...
1>Restoring library bootstrap@4.1.3...
1>
1>2 libraries restored in 10.66 seconds
1>LibManSample -> C:\LibManSample\bin\Debug\netcoreapp2.1\LibManSample.dll
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

Right-click libman.json in Solution ExplorerSolution Explorer  and select Enable Restore Client-S ide L ibrar ies on BuildEnable Restore Client-S ide L ibrar ies on Build

from the context menu.

Click the YesYes  button when prompted to install a NuGet package. The Microsoft.Web.LibraryManager.Build

NuGet package is added to the project:

Build the project to confirm LibMan file restoration occurs. The Microsoft.Web.LibraryManager.Build  package

injects an MSBuild target that runs LibMan during the project's build operation.

Review the BuildBuild feed of the OutputOutput window for a LibMan activity log:

When the restore-on-build behavior is enabled, the libman.json context menu displays a Disable Restore Client-Disable Restore Client-

S ide L ibrar ies on BuildSide L ibrar ies on Build option. Selecting this option removes the Microsoft.Web.LibraryManager.Build  package

reference from the project file. Consequently, the client-side libraries are no longer restored on each build.

Regardless of the restore-on-build setting, you can manually restore at any time from the libman.json context

menu. For more information, see Restore files manually.

To manually restore library files:

For all projects in the solution:

For a specific project:

Right-click the solution name in Solution ExplorerSolution Explorer .

Select the Restore Client-S ide L ibrar iesRestore Client-S ide L ibrar ies  option.

Right-click the libman.json file in Solution ExplorerSolution Explorer .

Select the Restore Client-S ide L ibrar iesRestore Client-S ide L ibrar ies  option.

While the restore operation is running:

The Task Status Center (TSC) icon on the Visual Studio status bar will be animated and will read Restore

operation started. Clicking the icon opens a tooltip listing the known background tasks.

Messages will be sent to the status bar and the L ibrar y ManagerLibrar y Manager  feed of the OutputOutput window. For

example:

https://www.nuget.org/packages/Microsoft.Web.LibraryManager.Build/


Delete library files

Clean libraries operation started...
Clean libraries operation completed
2 libraries were successfully deleted in 1.91 secs

Uninstall library files

Restore operation started...
Restoring libraries for project LibManSample
Restoring library jquery@3.3.1... (LibManSample)
wwwroot/lib/jquery/jquery.min.js written to destination (LibManSample)
wwwroot/lib/jquery/jquery.js written to destination (LibManSample)
wwwroot/lib/jquery/jquery.min.map written to destination (LibManSample)
Restore operation completed
1 libraries restored in 2.32 seconds

To perform the clean operation, which deletes library files previously restored in Visual Studio:

Right-click the libman.json file in Solution ExplorerSolution Explorer .

Select the Clean Client-S ide L ibrar iesClean Client-S ide L ibrar ies  option.

To prevent unintentional removal of non-library files, the clean operation doesn't delete whole directories. It only

removes files that were included in the previous restore.

While the clean operation is running:

The TSC icon on the Visual Studio status bar will be animated and will read Client libraries operation started.

Clicking the icon opens a tooltip listing the known background tasks.

Messages are sent to the status bar and the L ibrar y ManagerLibrar y Manager  feed of the OutputOutput window. For example:

The clean operation only deletes files from the project. Library files stay in the cache for faster retrieval on future

restore operations. To manage library files stored in the local machine's cache, use the LibMan CLI.

To uninstall library files:

Open libman.json.

Position the caret inside the corresponding libraries  object literal.

Click the light bulb icon that appears in the left margin, and select UninstallUninstall

<librar y_name>@<librar y_version><librar y_name>@<librar y_version>:

Alternatively, you can manually edit and save the LibMan manifest (libman.json). The restore operation runs when

the file is saved. Library files that are no longer defined in libman.json are removed from the project.



Update library version

Additional resources

To check for an updated library version:

Open libman.json.

Position the caret inside the corresponding libraries  object literal.

Click the light bulb icon that appears in the left margin. Hover over Check for updatesCheck for updates .

LibMan checks for a library version newer than the version installed. The following outcomes can occur :

A No updates foundNo updates found message is displayed if the latest version is already installed.

The latest stable version is displayed if not already installed.

If a pre-release newer than the installed version is available, the pre-release is displayed.

To downgrade to an older library version, manually edit the libman.json file. When the file is saved, the LibMan

restore operation:

Removes redundant files from the previous version.

Adds new and updated files from the new version.

Use the LibMan CLI with ASP.NET Core

LibMan GitHub repository

https://github.com/aspnet/LibraryManager


Use Grunt in ASP.NET Core
9/22/2020 • 8 minutes to read • Edit Online

Preparing the application

Grunt is a JavaScript task runner that automates script minification, TypeScript compilation, code quality "lint" tools,

CSS pre-processors, and just about any repetitive chore that needs doing to support client development. Grunt is

fully supported in Visual Studio.

This example uses an empty ASP.NET Core project as its starting point, to show how to automate the client build

process from scratch.

The finished example cleans the target deployment directory, combines JavaScript files, checks code quality,

condenses JavaScript file content and deploys to the root of your web application. We will use the following

packages:

gruntgrunt: The Grunt task runner package.

grunt-contr ib-cleangrunt-contr ib-clean: A plugin that removes files or directories.

grunt-contr ib-jshintgrunt-contr ib-jshint: A plugin that reviews JavaScript code quality.

grunt-contr ib-concatgrunt-contr ib-concat: A plugin that joins files into a single file.

grunt-contr ib-uglifygrunt-contr ib-uglify : A plugin that minifies JavaScript to reduce size.

grunt-contr ib-watchgrunt-contr ib-watch: A plugin that watches file activity.

To begin, set up a new empty web application and add TypeScript example files. TypeScript files are automatically

compiled into JavaScript using default Visual Studio settings and will be our raw material to process using Grunt.

1. In Visual Studio, create a new ASP.NET Web Application .

2. In the New ASP.NET ProjectNew ASP.NET Project dialog, select the ASP.NET Core EmptyEmpty  template and click the OK button.

3. In the Solution Explorer, review the project structure. The \src  folder includes empty wwwroot  and 

Dependencies  nodes.

4. Add a new folder named TypeScript  to your project directory.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/client-side/using-grunt.md


Configuring NPM

enum Tastes { Sweet, Sour, Salty, Bitter }

class Food {
  constructor(name: string, calories: number) {
    this._name = name;
    this._calories = calories;
  }

  private _name: string;
  get Name() {
    return this._name;
  }

  private _calories: number;
  get Calories() {
    return this._calories;
  }

  private _taste: Tastes;
  get Taste(): Tastes { return this._taste }
  set Taste(value: Tastes) {
    this._taste = value;
  }
}

5. Before adding any files, make sure that Visual Studio has the option 'compile on save' for TypeScript files

checked. Navigate to ToolsTools  > OptionsOptions  > Text EditorText Editor  > Typescr iptTypescr ipt > ProjectProject:

6. Right-click the TypeScript  directory and select Add > New ItemAdd > New Item from the context menu. Select the

JavaScr ipt fileJavaScr ipt file item and name the file Tastes.ts (note the *.ts extension). Copy the line of TypeScript code

below into the file (when you save, a new Tastes.js file will appear with the JavaScript source).

7. Add a second file to the TypeScr iptTypeScr ipt directory and name it Food.ts . Copy the code below into the file.

Next, configure NPM to download grunt and grunt-tasks.

1. In the Solution Explorer, right-click the project and select Add > New ItemAdd > New Item from the context menu. Select

the NPM configuration fileNPM configuration file item, leave the default name, package.json, and click the AddAdd button.

2. In the package.json file, inside the devDependencies  object braces, enter "grunt". Select grunt  from the

Intellisense list and press the Enter key. Visual Studio will quote the grunt package name, and add a colon. To

the right of the colon, select the latest stable version of the package from the top of the Intellisense list

(press Ctrl-Space  if Intellisense doesn't appear).



NOTENOTE

NOTENOTE

"devDependencies": {
  "grunt": "0.4.5",
  "grunt-contrib-clean": "0.6.0",
  "grunt-contrib-jshint": "0.11.0",
  "grunt-contrib-concat": "0.5.1",
  "grunt-contrib-uglify": "0.8.0",
  "grunt-contrib-watch": "0.6.1"
}

NPM uses semantic versioning to organize dependencies. Semantic versioning, also known as SemVer, identifies

packages with the numbering scheme <major>.<minor>.<patch>. Intellisense simplifies semantic versioning by

showing only a few common choices. The top item in the Intellisense list (0.4.5 in the example above) is considered

the latest stable version of the package. The caret (^) symbol matches the most recent major version and the tilde (~)

matches the most recent minor version. See the NPM semver version parser reference as a guide to the full

expressivity that SemVer provides.

3. Add more dependencies to load grunt-contrib-* packages for clean, jshint, concat, uglify, and watch as

shown in the example below. The versions don't need to match the example.

4. Save the package.json file.

The packages for each devDependencies  item will download, along with any files that each package requires. You

can find the package files in the node_modules directory by enabling the Show All FilesShow All Files  button in SolutionSolution

ExplorerExplorer .

If you need to, you can manually restore dependencies in Solution ExplorerSolution Explorer  by right-clicking on Dependencies\NPM  and

selecting the Restore PackagesRestore Packages menu option.

https://semver.org/
https://www.npmjs.com/package/semver


Configuring Grunt
Grunt is configured using a manifest named Gruntfile.js that defines, loads and registers tasks that can be run

manually or configured to run automatically based on events in Visual Studio.

module.exports = function (grunt) {
  grunt.initConfig({
  });
};

module.exports = function (grunt) {
  grunt.initConfig({
    clean: ["wwwroot/lib/*", "temp/"],
  });
};

grunt.loadNpmTasks("grunt-contrib-clean");

1. Right-click the project and select AddAdd > New ItemNew Item. Select the JavaScr ipt FileJavaScr ipt File item template, change the

name to Gruntfile.js, and click the AddAdd button.

2. Add the following code to Gruntfile.js. The initConfig  function sets options for each package, and the

remainder of the module loads and register tasks.

3. Inside the initConfig  function, add options for the clean  task as shown in the example Gruntfile.js below.

The clean  task accepts an array of directory strings. This task removes files from wwwroot/lib and removes

the entire /temp directory.

4. Below the initConfig  function, add a call to grunt.loadNpmTasks . This will make the task runnable from

Visual Studio.

5. Save Gruntfile.js. The file should look something like the screenshot below.

6. Right-click Gruntfile.js and select Task Runner ExplorerTask Runner Explorer  from the context menu. The Task RunnerTask Runner

ExplorerExplorer  window will open.

7. Verify that clean  shows under TasksTasks  in the Task Runner ExplorerTask Runner Explorer .



NOTENOTE

concat: {
  all: {
    src: ['TypeScript/Tastes.js', 'TypeScript/Food.js'],
    dest: 'temp/combined.js'
  }
},

NOTENOTE

jshint: {
  files: ['temp/*.js'],
  options: {
    '-W069': false,
  }
},

8. Right-click the clean task and select RunRun from the context menu. A command window displays progress of

the task.

There are no files or directories to clean yet. If you like, you can manually create them in the Solution Explorer and

then run the clean task as a test.

9. In the initConfig  function, add an entry for concat  using the code below.

The src  property array lists files to combine, in the order that they should be combined. The dest

property assigns the path to the combined file that's produced.

The all  property in the code above is the name of a target. Targets are used in some Grunt tasks to allow multiple

build environments. You can view the built-in targets using IntelliSense or assign your own.

10. Add the jshint  task using the code below.

The jshint code-quality  utility is run against every JavaScript file found in the temp directory.



NOTENOTE

uglify: {
 all: {
   src: ['temp/combined.js'],
   dest: 'wwwroot/lib/combined.min.js'
 }
},

grunt.loadNpmTasks('grunt-contrib-jshint');
grunt.loadNpmTasks('grunt-contrib-concat');
grunt.loadNpmTasks('grunt-contrib-uglify');

The option "-W069" is an error produced by jshint when JavaScript uses bracket syntax to assign a property instead

of dot notation, i.e. Tastes["Sweet"]  instead of Tastes.Sweet . The option turns off the warning to allow the rest

of the process to continue.

11. Add the uglify  task using the code below.

The task minifies the combined.js file found in the temp directory and creates the result file in wwwroot/lib

following the standard naming convention <file name>.min.js.

12. Under the call to grunt.loadNpmTasks  that loads grunt-contrib-clean , include the same call for jshint,

concat, and uglify using the code below.

13. Save Gruntfile.js. The file should look something like the example below.

14. Notice that the Task Runner ExplorerTask Runner Explorer  Tasks list includes clean , concat , jshint  and uglify  tasks. Run

each task in order and observe the results in Solution ExplorerSolution Explorer . Each task should run without errors.



All together nowAll together now

grunt.registerTask("all", ['clean', 'concat', 'jshint', 'uglify']);

NOTENOTE

The concat task creates a new combined.js file and places it into the temp directory. The jshint  task simply

runs and doesn't produce output. The uglify  task creates a new combined.min.js file and places it into

wwwroot/lib. On completion, the solution should look something like the screenshot below:

For more information on the options for each package, visit https://www.npmjs.com/ and lookup the package name

in the search box on the main page. For example, you can look up the grunt-contrib-clean package to get a

documentation link that explains all of its parameters.

Use the Grunt registerTask()  method to run a series of tasks in a particular sequence. For example, to run the

example steps above in the order clean -> concat -> jshint -> uglify, add the code below to the module. The code

should be added to the same level as the loadNpmTasks() calls, outside initConfig.

The new task shows up in Task Runner Explorer under Alias Tasks. You can right-click and run it just as you would

other tasks. The all  task will run clean , concat , jshint  and uglify , in order.

https://www.npmjs.com/


Watching for changes

watch: {
  files: ["TypeScript/*.js"],
  tasks: ["all"]
}

grunt.loadNpmTasks('grunt-contrib-watch');

Binding to Visual Studio events

A watch  task keeps an eye on files and directories. The watch triggers tasks automatically if it detects changes. Add

the code below to initConfig to watch for changes to *.js files in the TypeScript directory. If a JavaScript file is

changed, watch  will run the all  task.

Add a call to loadNpmTasks()  to show the watch  task in Task Runner Explorer.

Right-click the watch task in Task Runner Explorer and select Run from the context menu. The command window

that shows the watch task running will display a "Waiting…" message. Open one of the TypeScript files, add a space,

and then save the file. This will trigger the watch task and trigger the other tasks to run in order. The screenshot

below shows a sample run.

Unless you want to manually start your tasks every time you work in Visual Studio, bind tasks to Before BuildBefore Build,

After BuildAfter Build, CleanClean, and Project OpenProject Open events.

Bind watch  so that it runs every time Visual Studio opens. In Task Runner Explorer, right-click the watch task and

select BindingsBindings  > Project OpenProject Open from the context menu.

Unload and reload the project. When the project loads again, the watch task starts running automatically.



Summary
Grunt is a powerful task runner that can be used to automate most client-build tasks. Grunt leverages NPM to

deliver its packages, and features tooling integration with Visual Studio. Visual Studio's Task Runner Explorer

detects changes to configuration files and provides a convenient interface to run tasks, view running tasks, and

bind tasks to Visual Studio events.



Bundle and minify static assets in ASP.NET Core
9/22/2020 • 7 minutes to read • Edit Online

What is bundling and minification

BundlingBundling

MinificationMinification

AddAltToImg = function (imageTagAndImageID, imageContext) {
    ///<signature>
    ///<summary> Adds an alt tab to the image
    // </summary>
    //<param name="imgElement" type="String">The image selector.</param>
    //<param name="ContextForImage" type="String">The image context.</param>
    ///</signature>
    var imageElement = $(imageTagAndImageID, imageContext);
    imageElement.attr('alt', imageElement.attr('id').replace(/ID/, ''));
}

AddAltToImg=function(t,a){var r=$(t,a);r.attr("alt",r.attr("id").replace(/ID/,""))};

By Scott Addie and David Pine

This article explains the benefits of applying bundling and minification, including how these features can be used

with ASP.NET Core web apps.

Bundling and minification are two distinct performance optimizations you can apply in a web app. Used together,

bundling and minification improve performance by reducing the number of server requests and reducing the size

of the requested static assets.

Bundling and minification primarily improve the first page request load time. Once a web page has been

requested, the browser caches the static assets (JavaScript, CSS, and images). Consequently, bundling and

minification don't improve performance when requesting the same page, or pages, on the same site requesting the

same assets. If the expires header isn't set correctly on the assets and if bundling and minification isn't used, the

browser's freshness heuristics mark the assets stale after a few days. Additionally, the browser requires a validation

request for each asset. In this case, bundling and minification provide a performance improvement even after the

first page request.

Bundling combines multiple files into a single file. Bundling reduces the number of server requests that are

necessary to render a web asset, such as a web page. You can create any number of individual bundles specifically

for CSS, JavaScript, etc. Fewer files means fewer HTTP requests from the browser to the server or from the service

providing your application. This results in improved first page load performance.

Minification removes unnecessary characters from code without altering functionality. The result is a significant

size reduction in requested assets (such as CSS, images, and JavaScript files). Common side effects of minification

include shortening variable names to one character and removing comments and unnecessary whitespace.

Consider the following JavaScript function:

Minification reduces the function to the following:

In addition to removing the comments and unnecessary whitespace, the following parameter and variable names

were renamed as follows:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/client-side/bundling-and-minification.md
https://twitter.com/Scott_Addie
https://twitter.com/davidpine7


O RIGIN A LO RIGIN A L REN A M EDREN A M ED

imageTagAndImageID t

imageContext a

imageElement r

Impact of bundling and minification

A C T IO NA C T IO N W IT H  B / MW IT H  B / M W IT H O UT  B / MW IT H O UT  B / M C H A N GEC H A N GE

File Requests 7 18 157%

KB Transferred 156 264.68 70%

Load Time (ms) 885 2360 167%

Choose a bundling and minification strategy

Configure bundling and minification

NOTENOTE

The following table outlines differences between individually loading assets and using bundling and minification:

Browsers are fairly verbose with regard to HTTP request headers. The total bytes sent metric saw a significant

reduction when bundling. The load time shows a significant improvement, however this example ran locally.

Greater performance gains are realized when using bundling and minification with assets transferred over a

network.

The MVC and Razor Pages project templates provide a solution for bundling and minification consisting of a JSON

configuration file. Third-party tools, such as the Grunt task runner, accomplish the same tasks with a bit more

complexity. A third-party tool is a great fit when your development workflow requires processing beyond bundling

and minification—such as linting and image optimization. By using design-time bundling and minification, the

minified files are created prior to the app's deployment. Bundling and minifying before deployment provides the

advantage of reduced server load. However, it's important to recognize that design-time bundling and minification

increases build complexity and only works with static files.

The BuildBundlerMinifier NuGet package needs to be added to your project for this to work.

In ASP.NET Core 2.0 or earlier, the MVC and Razor Pages project templates provide a bundleconfig.json

configuration file that defines the options for each bundle:

In ASP.NET Core 2.1 or later, add a new JSON file, named bundleconfig.json, to the MVC or Razor Pages project

root. Include the following JSON in that file as a starting point:

https://www.nuget.org/packages/BuildBundlerMinifier


[
  {
    "outputFileName": "wwwroot/css/site.min.css",
    "inputFiles": [
      "wwwroot/css/site.css"
    ]
  },
  {
    "outputFileName": "wwwroot/js/site.min.js",
    "inputFiles": [
      "wwwroot/js/site.js"
    ],
    "minify": {
      "enabled": true,
      "renameLocals": true
    },
    "sourceMap": false
  }
]

Add files to workflow

.about, [role=main], [role=complementary] {
    margin-top: 60px;
}

footer {
    margin-top: 10px;
}

The bundleconfig.json file defines the options for each bundle. In the preceding example, a single bundle

configuration is defined for the custom JavaScript (wwwroot/js/site.js) and stylesheet (wwwroot/css/site.css) files.

Configuration options include:

outputFileName : The name of the bundle file to output. Can contain a relative path from the bundleconfig.json

file. requiredrequired

inputFiles : An array of files to bundle together. These are relative paths to the configuration file. optionaloptional , *an

empty value results in an empty output file. globbing patterns are supported.

minify : The minification options for the output type. optionaloptional , default - minify: { enabled: true }

includeInProject : Flag indicating whether to add generated files to project file. optionaloptional , default - false

sourceMap : Flag indicating whether to generate a source map for the bundled file. optionaloptional , default - false

sourceMapRootPath : The root path for storing the generated source map file.

Configuration options are available per output file type.

CSS Minifier

JavaScript Minifier

HTML Minifier

Consider an example in which an additional custom.css file is added resembling the following:

To minify custom.css and bundle it with site.css into a site.min.css file, add the relative path to bundleconfig.json:

https://www.tldp.org/LDP/abs/html/globbingref.html
https://github.com/madskristensen/BundlerMinifier/wiki/cssminifier
https://github.com/madskristensen/BundlerMinifier/wiki/JavaScript-Minifier-settings
https://github.com/madskristensen/BundlerMinifier/wiki


[
  {
    "outputFileName": "wwwroot/css/site.min.css",
    "inputFiles": [
      "wwwroot/css/site.css",
      "wwwroot/css/custom.css"
    ]
  },
  {
    "outputFileName": "wwwroot/js/site.min.js",
    "inputFiles": [
      "wwwroot/js/site.js"
    ],
    "minify": {
      "enabled": true,
      "renameLocals": true
    },
    "sourceMap": false
  }
]

NOTENOTE

"inputFiles": ["wwwroot/**/!(*.min).css" ]

Environment-based bundling and minification

<environment include="Development">
    <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
    <link rel="stylesheet" href="~/css/site.css" />
</environment>

<environment names="Development">
    <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
    <link rel="stylesheet" href="~/css/site.css" />
</environment>

Alternatively, the following globbing pattern could be used:

This globbing pattern matches all CSS files and excludes the minified file pattern.

Build the application. Open site.min.css and notice the content of custom.css is appended to the end of the file.

As a best practice, the bundled and minified files of your app should be used in a production environment. During

development, the original files make for easier debugging of the app.

Specify which files to include in your pages by using the Environment Tag Helper in your views. The Environment

Tag Helper only renders its contents when running in specific environments.

The following environment  tag renders the unprocessed CSS files when running in the Development  environment:

The following environment  tag renders the bundled and minified CSS files when running in an environment other

than Development . For example, running in Production  or Staging  triggers the rendering of these stylesheets:



<environment exclude="Development">
    <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
          asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
          asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
    <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
</environment>

<environment names="Staging,Production">
    <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
          asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
          asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
    <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
</environment>

Consume bundleconfig.json from Gulp

Manually convert the bundling and minification workflow to use GulpManually convert the bundling and minification workflow to use Gulp

WARNINGWARNING

"devDependencies": {
  "del": "^3.0.0",
  "gulp": "^4.0.0",
  "gulp-concat": "^2.6.1",
  "gulp-cssmin": "^0.2.0",
  "gulp-htmlmin": "^3.0.0",
  "gulp-uglify": "^3.0.0",
  "merge-stream": "^1.0.1"
}

npm i

npm i -g gulp-cli

'use strict';

var gulp = require('gulp'),
    concat = require('gulp-concat'),
    cssmin = require('gulp-cssmin'),

There are cases in which an app's bundling and minification workflow requires additional processing. Examples

include image optimization, cache busting, and CDN asset processing. To satisfy these requirements, you can

convert the bundling and minification workflow to use Gulp.

Add a package.json file, with the following devDependencies , to the project root:

The gulp-uglify  module doesn't support ECMAScript (ES) 2015 / ES6 and later. Install gulp-terser instead of 

gulp-uglify  to use ES2015 / ES6 or later.

Install the dependencies by running the following command at the same level as package.json:

Install the Gulp CLI as a global dependency:

Copy the gulpfile.js file below to the project root:

https://www.npmjs.com/package/gulp-terser


    cssmin = require('gulp-cssmin'),
    htmlmin = require('gulp-htmlmin'),
    uglify = require('gulp-uglify'),
    merge = require('merge-stream'),
    del = require('del'),
    bundleconfig = require('./bundleconfig.json');

const regex = {
    css: /\.css$/,
    html: /\.(html|htm)$/,
    js: /\.js$/
};

gulp.task('min:js', async function () {
    merge(getBundles(regex.js).map(bundle => {
        return gulp.src(bundle.inputFiles, { base: '.' })
            .pipe(concat(bundle.outputFileName))
            .pipe(uglify())
            .pipe(gulp.dest('.'));
    }))
});

gulp.task('min:css', async function () {
    merge(getBundles(regex.css).map(bundle => {
        return gulp.src(bundle.inputFiles, { base: '.' })
            .pipe(concat(bundle.outputFileName))
            .pipe(cssmin())
            .pipe(gulp.dest('.'));
    }))
});

gulp.task('min:html', async function () {
    merge(getBundles(regex.html).map(bundle => {
        return gulp.src(bundle.inputFiles, { base: '.' })
            .pipe(concat(bundle.outputFileName))
            .pipe(htmlmin({ collapseWhitespace: true, minifyCSS: true, minifyJS: true }))
            .pipe(gulp.dest('.'));
    }))
});

gulp.task('min', gulp.series(['min:js', 'min:css', 'min:html']));

gulp.task('clean', () => {
    return del(bundleconfig.map(bundle => bundle.outputFileName));
});

gulp.task('watch', () => {
    getBundles(regex.js).forEach(
        bundle => gulp.watch(bundle.inputFiles, gulp.series(["min:js"])));

    getBundles(regex.css).forEach(
        bundle => gulp.watch(bundle.inputFiles, gulp.series(["min:css"])));

    getBundles(regex.html).forEach(
        bundle => gulp.watch(bundle.inputFiles, gulp.series(['min:html'])));
});

const getBundles = (regexPattern) => {
    return bundleconfig.filter(bundle => {
        return regexPattern.test(bundle.outputFileName);
    });
};

gulp.task('default', gulp.series("min"));

Run Gulp tasksRun Gulp tasks
To trigger the Gulp minification task before the project builds in Visual Studio:



1>------ Build started: Project: BuildBundlerMinifierApp, Configuration: Debug Any CPU ------
1>BuildBundlerMinifierApp -> C:\BuildBundlerMinifierApp\bin\Debug\netcoreapp2.0\BuildBundlerMinifierApp.dll
1>[14:17:49] Using gulpfile C:\BuildBundlerMinifierApp\gulpfile.js
1>[14:17:49] Starting 'min:js'...
1>[14:17:49] Starting 'min:css'...
1>[14:17:49] Starting 'min:html'...
1>[14:17:49] Finished 'min:js' after 83 ms
1>[14:17:49] Finished 'min:css' after 88 ms
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

Additional resources

<Target Name="MyPreCompileTarget" BeforeTargets="Build">
  <Exec Command="gulp min" />
</Target>

1. Install the BuildBundlerMinifier NuGet package.

2. Add the following MSBuild Target to the project file:

In this example, any tasks defined within the MyPreCompileTarget  target run before the predefined Build  target.

Output similar to the following appears in Visual Studio's Output window:

Use Grunt

Use multiple environments

Tag Helpers

https://www.nuget.org/packages/BuildBundlerMinifier
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-targets


Browser Link in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

Browser Link setup

ConfigurationConfiguration

app.UseBrowserLink();

if (env.IsDevelopment())
{
    app.UseDeveloperExceptionPage();
    app.UseBrowserLink();
}

How to use Browser Link

By Nicolò Carandini, Mike Wasson, and Tom Dykstra

Browser Link is a Visual Studio feature. It creates a communication channel between the development environment

and one or more web browsers. You can use Browser Link to refresh your web app in several browsers at once,

which is useful for cross-browser testing.

Add the Microsoft.VisualStudio.Web.BrowserLink package to your project. For ASP.NET Core Razor Pages or MVC

projects, also enable runtime compilation of Razor (.cshtml) files as described in Razor file compilation in ASP.NET

Core. Razor syntax changes are applied only when runtime compilation has been enabled.

When converting an ASP.NET Core 2.0 project to ASP.NET Core 2.1 and transitioning to the

Microsoft.AspNetCore.App metapackage, install the Microsoft.VisualStudio.Web.BrowserLink package for Browser

Link functionality. The ASP.NET Core 2.1 project templates use the Microsoft.AspNetCore.App  metapackage by

default.

The ASP.NET Core 2.0 Web ApplicationWeb Application, EmptyEmpty , and Web APIWeb API project templates use the Microsoft.AspNetCore.All

metapackage, which contains a package reference for Microsoft.VisualStudio.Web.BrowserLink. Therefore, using the

Microsoft.AspNetCore.All  metapackage requires no further action to make Browser Link available for use.

The ASP.NET Core 1.x Web ApplicationWeb Application project template has a package reference for the

Microsoft.VisualStudio.Web.BrowserLink package. Other project types require you to add a package reference to 

Microsoft.VisualStudio.Web.BrowserLink .

Call UseBrowserLink  in the Startup.Configure  method:

The UseBrowserLink  call is typically placed inside an if  block that only enables Browser Link in the Development

environment. For example:

For more information, see Use multiple environments in ASP.NET Core.

When you have an ASP.NET Core project open, Visual Studio shows the Browser Link toolbar control next to the

Debug TargetDebug Target toolbar control:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/client-side/using-browserlink.md
https://github.com/ncarandini
https://github.com/MikeWasson
https://github.com/tdykstra
https://www.nuget.org/packages/Microsoft.VisualStudio.Web.BrowserLink/
https://www.nuget.org/packages/Microsoft.VisualStudio.Web.BrowserLink/
https://www.nuget.org/packages/Microsoft.VisualStudio.Web.BrowserLink/
https://www.nuget.org/packages/Microsoft.VisualStudio.Web.BrowserLink/


Refresh the web app in several browsers at once

From the Browser Link toolbar control, you can:

Refresh the web app in several browsers at once.

Open the Browser L ink DashboardBrowser L ink Dashboard.

Enable or disable Browser L inkBrowser L ink . Note: Browser Link is disabled by default in Visual Studio.

Enable or disable CSS Auto-Sync.

To choose a single web browser to launch when starting the project, use the drop-down menu in the DebugDebug

TargetTarget toolbar control:

To open multiple browsers at once, choose Browse with...Browse with... from the same drop-down. Hold down the Ctrl key to

select the browsers you want, and then click BrowseBrowse:

The following screenshot shows Visual Studio with the Index view open and two open browsers:



Hover over the Browser Link toolbar control to see the browsers that are connected to the project:

Change the Index view, and all connected browsers are updated when you click the Browser Link refresh button:



The Browser Link DashboardThe Browser Link Dashboard

Browser Link also works with browsers that you launch from outside Visual Studio and navigate to the app URL.

Open the Browser L ink DashboardBrowser L ink Dashboard window from the Browser Link drop down menu to manage the connection

with open browsers:

If no browser is connected, you can start a non-debugging session by selecting the View in BrowserView in Browser  link:



  

Enable or disable Browser LinkEnable or disable Browser Link

Enable or disable CSS Auto-SyncEnable or disable CSS Auto-Sync

How it works

Otherwise, the connected browsers are shown with the path to the page that each browser is showing:

You can also click on an individual browser name to refresh only that browser.

When you re-enable Browser Link after disabling it, you must refresh the browsers to reconnect them.

When CSS Auto-Sync is enabled, connected browsers are automatically refreshed when you make any change to

CSS files.

Browser Link uses SignalR to create a communication channel between Visual Studio and the browser. When

Browser Link is enabled, Visual Studio acts as a SignalR server that multiple clients (browsers) can connect to.

Browser Link also registers a middleware component in the ASP.NET Core request pipeline. This component injects

special <script>  references into every page request from the server. You can see the script references by selecting



    <!-- Visual Studio Browser Link -->
    <script type="application/json" id="__browserLink_initializationData">
        {"requestId":"a717d5a07c1741949a7cefd6fa2bad08","requestMappingFromServer":false}
    </script>
    <script type="text/javascript" src="http://localhost:54139/b6e36e429d034f578ebccd6a79bf19bf/browserLink" 
async="async"></script>
    <!-- End Browser Link -->
</body>

View sourceView source in the browser and scrolling to the end of the <body>  tag content:

Your source files aren't modified. The middleware component injects the script references dynamically.

Because the browser-side code is all JavaScript, it works on all browsers that SignalR supports without requiring a

browser plug-in.



  

    

Session and state management in ASP.NET Core
9/22/2020 • 31 minutes to read • Edit Online

State management

STO RA GE A P P RO A C HSTO RA GE A P P RO A C H STO RA GE M EC H A N ISMSTO RA GE M EC H A N ISM

Cookies HTTP cookies. May include data stored using server-side app
code.

Session state HTTP cookies and server-side app code

TempData HTTP cookies or session state

Query strings HTTP query strings

Hidden fields HTTP form fields

HttpContext.Items Server-side app code

Cache Server-side app code

Cookies

Session state

By Rick Anderson, Kirk Larkin, and Diana LaRose

HTTP is a stateless protocol. By default, HTTP requests are independent messages that don't retain user values. This

article describes several approaches to preserve user data between requests.

View or download sample code (how to download)

State can be stored using several approaches. Each approach is described later in this topic.

Cookies store data across requests. Because cookies are sent with every request, their size should be kept to a

minimum. Ideally, only an identifier should be stored in a cookie with the data stored by the app. Most browsers

restrict cookie size to 4096 bytes. Only a limited number of cookies are available for each domain.

Because cookies are subject to tampering, they must be validated by the app. Cookies can be deleted by users and

expire on clients. However, cookies are generally the most durable form of data persistence on the client.

Cookies are often used for personalization, where content is customized for a known user. The user is only

identified and not authenticated in most cases. The cookie can store the user's name, account name, or unique user

ID such as a GUID. The cookie can be used to access the user's personalized settings, such as their preferred

website background color.

See the European Union General Data Protection Regulations (GDPR) when issuing cookies and dealing with

privacy concerns. For more information, see General Data Protection Regulation (GDPR) support in ASP.NET Core.

Session state is an ASP.NET Core scenario for storage of user data while the user browses a web app. Session state

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/app-state.md
https://twitter.com/RickAndMSFT
https://twitter.com/serpent5
https://github.com/DianaLaRose
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/app-state/samples
https://ec.europa.eu/info/law/law-topic/data-protection


WARNINGWARNING

Configure session stateConfigure session state

uses a store maintained by the app to persist data across requests from a client. The session data is backed by a

cache and considered ephemeral data. The site should continue to function without the session data. Critical

application data should be stored in the user database and cached in session only as a performance optimization.

Session isn't supported in SignalR apps because a SignalR Hub may execute independent of an HTTP context. For

example, this can occur when a long polling request is held open by a hub beyond the lifetime of the request's

HTTP context.

ASP.NET Core maintains session state by providing a cookie to the client that contains a session ID. The cookie

session ID:

Is sent to the app with each request.

Is used by the app to fetch the session data.

Session state exhibits the following behaviors:

The session cookie is specific to the browser. Sessions aren't shared across browsers.

Session cookies are deleted when the browser session ends.

If a cookie is received for an expired session, a new session is created that uses the same session cookie.

Empty sessions aren't retained. The session must have at least one value set to persist the session across

requests. When a session isn't retained, a new session ID is generated for each new request.

The app retains a session for a limited time after the last request. The app either sets the session timeout or

uses the default value of 20 minutes. Session state is ideal for storing user data:

Session data is deleted either when the ISession.Clear implementation is called or when the session expires.

There's no default mechanism to inform app code that a client browser has been closed or when the session

cookie is deleted or expired on the client.

Session state cookies aren't marked essential by default. Session state isn't functional unless tracking is

permitted by the site visitor. For more information, see General Data Protection Regulation (GDPR) support in

ASP.NET Core.

That's specific to a particular session.

Where the data doesn't require permanent storage across sessions.

Don't store sensitive data in session state. The user might not close the browser and clear the session cookie. Some

browsers maintain valid session cookies across browser windows. A session might not be restricted to a single user. The next

user might continue to browse the app with the same session cookie.

The in-memory cache provider stores session data in the memory of the server where the app resides. In a server

farm scenario:

Use sticky sessions to tie each session to a specific app instance on an individual server. Azure App Service uses

Application Request Routing (ARR) to enforce sticky sessions by default. However, sticky sessions can affect

scalability and complicate web app updates. A better approach is to use a Redis or SQL Server distributed

cache, which doesn't require sticky sessions. For more information, see Distributed caching in ASP.NET Core.

The session cookie is encrypted via IDataProtector. Data Protection must be properly configured to read

session cookies on each machine. For more information, see ASP.NET Core Data Protection and Key storage

providers.

The Microsoft.AspNetCore.Session package:

Is included implicitly by the framework.

Provides middleware for managing session state.

https://docs.microsoft.com/en-us/aspnet/signalr/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.clear
https://azure.microsoft.com/services/app-service/
https://docs.microsoft.com/en-us/iis/extensions/planning-for-arr/using-the-application-request-routing-module
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotector
https://www.nuget.org/packages/Microsoft.AspNetCore.Session/


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddDistributedMemoryCache();

        services.AddSession(options =>
        {
            options.IdleTimeout = TimeSpan.FromSeconds(10);
            options.Cookie.HttpOnly = true;
            options.Cookie.IsEssential = true;
        });

        services.AddControllersWithViews();
        services.AddRazorPages();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseExceptionHandler("/Home/Error");
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();

        app.UseRouting();

        app.UseAuthentication();
        app.UseAuthorization();

        app.UseSession();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapDefaultControllerRoute();
            endpoints.MapRazorPages();
        });
    }
}

To enable the session middleware, Startup  must contain:

Any of the IDistributedCache memory caches. The IDistributedCache  implementation is used as a backing

store for session. For more information, see Distributed caching in ASP.NET Core.

A call to AddSession in ConfigureServices .

A call to UseSession in Configure .

The following code shows how to set up the in-memory session provider with a default in-memory

implementation of IDistributedCache :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.sessionservicecollectionextensions.addsession
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionmiddlewareextensions.usesession


Load session state asynchronouslyLoad session state asynchronously

Session optionsSession options

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

Cookie Determines the settings used to create the cookie. Name
defaults to SessionDefaults.CookieName (
.AspNetCore.Session ). Path defaults to

SessionDefaults.CookiePath ( / ). SameSite defaults to

SameSiteMode.Lax ( 1 ). HttpOnly defaults to true .

IsEssential defaults to false .

IdleTimeout The IdleTimeout  indicates how long the session can be idle

before its contents are abandoned. Each session access resets
the timeout. This setting only applies to the content of the
session, not the cookie. The default is 20 minutes.

IOTimeout The maximum amount of time allowed to load a session from
the store or to commit it back to the store. This setting may
only apply to asynchronous operations. This timeout can be
disabled using InfiniteTimeSpan. The default is 1 minute.

The preceding code sets a short timeout to simplify testing.

The order of middleware is important. Call UseSession  after UseRouting  and before UseEndpoints . See

Middleware Ordering.

HttpContext.Session is available after session state is configured.

HttpContext.Session  can't be accessed before UseSession  has been called.

A new session with a new session cookie can't be created after the app has begun writing to the response stream.

The exception is recorded in the web server log and not displayed in the browser.

The default session provider in ASP.NET Core loads session records from the underlying IDistributedCache backing

store asynchronously only if the ISession.LoadAsync method is explicitly called before the TryGetValue, Set, or

Remove methods. If LoadAsync  isn't called first, the underlying session record is loaded synchronously, which can

incur a performance penalty at scale.

To have apps enforce this pattern, wrap the DistributedSessionStore and DistributedSession implementations with

versions that throw an exception if the LoadAsync  method isn't called before TryGetValue , Set , or Remove .

Register the wrapped versions in the services container.

To override session defaults, use SessionOptions.

Session uses a cookie to track and identify requests from a single browser. By default, this cookie is named 

.AspNetCore.Session , and it uses a path of / . Because the cookie default doesn't specify a domain, it isn't made

available to the client-side script on the page (because HttpOnly defaults to true ).

To override cookie session defaults, use SessionOptions:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.session#microsoft_aspnetcore_http_httpcontext_session
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.loadasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.trygetvalue
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.set
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.remove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.session.distributedsessionstore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.session.distributedsession
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions.cookie#microsoft_aspnetcore_builder_sessionoptions_cookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.name#microsoft_aspnetcore_http_cookiebuilder_name
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.session.sessiondefaults.cookiename
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.path#microsoft_aspnetcore_http_cookiebuilder_path
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.session.sessiondefaults.cookiepath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.samesite#microsoft_aspnetcore_http_cookiebuilder_samesite
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.samesitemode#microsoft_aspnetcore_http_samesitemode_lax
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.httponly#microsoft_aspnetcore_http_cookiebuilder_httponly
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.isessential#microsoft_aspnetcore_http_cookiebuilder_isessential
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions.idletimeout#microsoft_aspnetcore_builder_sessionoptions_idletimeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions.iotimeout#microsoft_aspnetcore_builder_sessionoptions_iotimeout
https://docs.microsoft.com/en-us/dotnet/api/system.threading.timeout.infinitetimespan
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.httponly#microsoft_aspnetcore_http_cookiebuilder_httponly
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions


public void ConfigureServices(IServiceCollection services)
{
    services.AddDistributedMemoryCache();

    services.AddSession(options =>
    {
        options.Cookie.Name = ".AdventureWorks.Session";
        options.IdleTimeout = TimeSpan.FromSeconds(10);
        options.Cookie.IsEssential = true;
    });

    services.AddControllersWithViews();
    services.AddRazorPages();
}

Set and get Session valuesSet and get Session values

@page
@using Microsoft.AspNetCore.Http
@model IndexModel

...

Name: @HttpContext.Session.GetString(IndexModel.SessionKeyName)

The app uses the IdleTimeout property to determine how long a session can be idle before its contents in the

server's cache are abandoned. This property is independent of the cookie expiration. Each request that passes

through the Session Middleware resets the timeout.

Session state is non-locking. If two requests simultaneously attempt to modify the contents of a session, the last

request overrides the first. Session  is implemented as a coherent session, which means that all the contents are

stored together. When two requests seek to modify different session values, the last request may override session

changes made by the first.

Session state is accessed from a Razor Pages PageModel class or MVC Controller class with HttpContext.Session.

This property is an ISession implementation.

The ISession  implementation provides several extension methods to set and retrieve integer and string values.

The extension methods are in the Microsoft.AspNetCore.Http namespace.

ISession  extension methods:

Get(ISession, String)

GetInt32(ISession, String)

GetString(ISession, String)

SetInt32(ISession, String, Int32)

SetString(ISession, String, String)

The following example retrieves the session value for the IndexModel.SessionKeyName  key ( _Name  in the sample

app) in a Razor Pages page:

The following example shows how to set and get an integer and a string:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions.idletimeout#microsoft_aspnetcore_builder_sessionoptions_idletimeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.session.sessionmiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.session#microsoft_aspnetcore_http_httpcontext_session
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.sessionextensions.get
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.sessionextensions.getint32
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.sessionextensions.getstring
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.sessionextensions.setint32
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.sessionextensions.setstring


                 

public class IndexModel : PageModel
{
    public const string SessionKeyName = "_Name";
    public const string SessionKeyAge = "_Age";
    const string SessionKeyTime = "_Time";

    public string SessionInfo_Name { get; private set; }
    public string SessionInfo_Age { get; private set; }
    public string SessionInfo_CurrentTime { get; private set; }
    public string SessionInfo_SessionTime { get; private set; }
    public string SessionInfo_MiddlewareValue { get; private set; }

    public void OnGet()
    {
        // Requires: using Microsoft.AspNetCore.Http;
        if (string.IsNullOrEmpty(HttpContext.Session.GetString(SessionKeyName)))
        {
            HttpContext.Session.SetString(SessionKeyName, "The Doctor");
            HttpContext.Session.SetInt32(SessionKeyAge, 773);
        }

        var name = HttpContext.Session.GetString(SessionKeyName);
        var age = HttpContext.Session.GetInt32(SessionKeyAge);

public static class SessionExtensions
{
    public static void Set<T>(this ISession session, string key, T value)
    {
        session.SetString(key, JsonSerializer.Serialize(value));
    }

    public static T Get<T>(this ISession session, string key)
    {
        var value = session.GetString(key);
        return value == null ? default : JsonSerializer.Deserialize<T>(value);
    }
}

// Requires SessionExtensions from sample download.
if (HttpContext.Session.Get<DateTime>(SessionKeyTime) == default)
{
    HttpContext.Session.Set<DateTime>(SessionKeyTime, currentTime);
}

TempData

All session data must be serialized to enable a distributed cache scenario, even when using the in-memory cache.

String and integer serializers are provided by the extension methods of ISession. Complex types must be serialized

by the user using another mechanism, such as JSON.

Use the following sample code to serialize objects:

The following example shows how to set and get a serializable object with the SessionExtensions  class:

ASP.NET Core exposes the Razor Pages TempData or Controller TempData. This property stores data until it's read

in another request. The Keep(String) and Peek(string) methods can be used to examine the data without deletion at

the end of the request. Keep marks all items in the dictionary for retention. TempData  is:

Useful for redirection when data is required for more than a single request.

Implemented by TempData  providers using either cookies or session state.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.tempdata#microsoft_aspnetcore_mvc_razorpages_pagemodel_tempdata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.tempdata#microsoft_aspnetcore_mvc_controller_tempdata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.itempdatadictionary.keep
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.itempdatadictionary.peek
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.itempdatadictionary.keep


TempData samples

public class CreateModel : PageModel
{
    private readonly RazorPagesContactsContext _context;

    public CreateModel(RazorPagesContactsContext context)
    {
        _context = context;
    }

    public IActionResult OnGet()
    {
        return Page();
    }

    [TempData]
    public string Message { get; set; }

    [BindProperty]
    public Customer Customer { get; set; }

    public async Task<IActionResult> OnPostAsync()
    {
        if (!ModelState.IsValid)
        {
            return Page();
        }

        _context.Customer.Add(Customer);
        await _context.SaveChangesAsync();
        Message = $"Customer {Customer.Name} added";

        return RedirectToPage("./IndexPeek");
    }
}

@page
@model IndexModel

<h1>Peek Contacts</h1>

@{
    if (TempData.Peek("Message") != null)
    {
        <h3>Message: @TempData.Peek("Message")</h3>
    }
}

@*Content removed for brevity.*@

Consider the following page that creates a customer:

The following page displays TempData["Message"] :

In the preceding markup, at the end of the request, TempData["Message"]  is notnot deleted because Peek  is used.

Refreshing the page displays the contents of TempData["Message"] .

The following markup is similar to the preceding code, but uses Keep  to preserve the data at the end of the

request:



@page
@model IndexModel

<h1>Contacts Keep</h1>

@{
    if (TempData["Message"] != null)
    {
        <h3>Message: @TempData["Message"]</h3>
    }
    TempData.Keep("Message");
}

@*Content removed for brevity.*@

@page
@model IndexModel

<h1>Index no Keep or Peek</h1>

@{
    if (TempData["Message"] != null)
    {
        <h3>Message: @TempData["Message"]</h3>
    }
}

@*Content removed for brevity.*@

TempData providersTempData providers

Choose a TempData providerChoose a TempData provider

Navigating between the IndexPeek and IndexKeep pages won't delete TempData["Message"] .

The following code displays TempData["Message"] , but at the end of the request, TempData["Message"]  is deleted:

The cookie-based TempData provider is used by default to store TempData in cookies.

The cookie data is encrypted using IDataProtector, encoded with Base64UrlTextEncoder, then chunked. The

maximum cookie size is less than 4096 bytes due to encryption and chunking. The cookie data isn't compressed

because compressing encrypted data can lead to security problems such as the CRIME and BREACH attacks. For

more information on the cookie-based TempData provider, see CookieTempDataProvider.

Choosing a TempData provider involves several considerations, such as:

Does the app already use session state? If so, using the session state TempData provider has no additional cost

to the app beyond the size of the data.

Does the app use TempData only sparingly for relatively small amounts of data, up to 500 bytes? If so, the

cookie TempData provider adds a small cost to each request that carries TempData. If not, the session state

TempData provider can be beneficial to avoid round-tripping a large amount of data in each request until the

TempData is consumed.

Does the app run in a server farm on multiple servers? If so, there's no additional configuration required to use

the cookie TempData provider outside of Data Protection (see ASP.NET Core Data Protection and Key storage

providers).

Most web clients such as web browsers enforce limits on the maximum size of each cookie and the total number

of cookies. When using the cookie TempData provider, verify the app won't exceed these limits. Consider the total

size of the data. Account for increases in cookie size due to encryption and chunking.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotector
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webutilities.base64urltextencoder
http://www.faqs.org/rfcs/rfc2965.html
https://wikipedia.org/wiki/CRIME_(security_exploit)
https://wikipedia.org/wiki/BREACH_(security_exploit)
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.cookietempdataprovider
http://www.faqs.org/rfcs/rfc2965.html


  

  

Configure the TempData providerConfigure the TempData provider

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews()
        .AddSessionStateTempDataProvider();
    services.AddRazorPages()
        .AddSessionStateTempDataProvider();

    services.AddSession();
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }
    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthentication();
    app.UseAuthorization();

    app.UseSession();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapDefaultControllerRoute();
        endpoints.MapRazorPages();
    });
}

Query strings

Hidden fields

The cookie-based TempData provider is enabled by default.

To enable the session-based TempData provider, use the AddSessionStateTempDataProvider extension method.

Only one call to AddSessionStateTempDataProvider  is required:

A limited amount of data can be passed from one request to another by adding it to the new request's query

string. This is useful for capturing state in a persistent manner that allows links with embedded state to be shared

through email or social networks. Because URL query strings are public, never use query strings for sensitive data.

In addition to unintended sharing, including data in query strings can expose the app to Cross-Site Request

Forgery (CSRF) attacks. Any preserved session state must protect against CSRF attacks. For more information, see

Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core.

Data can be saved in hidden form fields and posted back on the next request. This is common in multi-page forms.

Because the client can potentially tamper with the data, the app must always revalidate the data stored in hidden

fields.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcviewfeaturesmvcbuilderextensions.addsessionstatetempdataprovider
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)


  HttpContext.Items

public void Configure(IApplicationBuilder app, ILogger<Startup> logger)
{
    app.UseRouting();

    app.Use(async (context, next) =>
    {
        logger.LogInformation($"Before setting: Verified: {context.Items["isVerified"]}");
        context.Items["isVerified"] = true;
        await next.Invoke();
    });

    app.Use(async (context, next) =>
    {
        logger.LogInformation($"Next: Verified: {context.Items["isVerified"]}");
        await next.Invoke();
    });

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapGet("/", async context =>
        {
            await context.Response.WriteAsync($"Verified: {context.Items["isVerified"]}");
        });
    });
}

The HttpContext.Items collection is used to store data while processing a single request. The collection's contents

are discarded after a request is processed. The Items  collection is often used to allow components or middleware

to communicate when they operate at different points in time during a request and have no direct way to pass

parameters.

In the following example, middleware adds isVerified  to the Items  collection:

For middleware that's only used in a single app, fixed string  keys are acceptable. Middleware shared between

apps should use unique object keys to avoid key collisions. The following example shows how to use a unique

object key defined in a middleware class:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.items#microsoft_aspnetcore_http_httpcontext_items


  

public class HttpContextItemsMiddleware
{
    private readonly RequestDelegate _next;
    public static readonly object HttpContextItemsMiddlewareKey = new Object();

    public HttpContextItemsMiddleware(RequestDelegate next)
    {
        _next = next;
    }

    public async Task Invoke(HttpContext httpContext)
    {
        httpContext.Items[HttpContextItemsMiddlewareKey] = "K-9";

        await _next(httpContext);
    }
}

public static class HttpContextItemsMiddlewareExtensions
{
    public static IApplicationBuilder 
        UseHttpContextItemsMiddleware(this IApplicationBuilder app)
    {
        return app.UseMiddleware<HttpContextItemsMiddleware>();
    }
}

HttpContext.Items
    .TryGetValue(HttpContextItemsMiddleware.HttpContextItemsMiddlewareKey, 
        out var middlewareSetValue);
SessionInfo_MiddlewareValue = 
    middlewareSetValue?.ToString() ?? "Middleware value not set!";

Cache

Common errors

Other code can access the value stored in HttpContext.Items  using the key exposed by the middleware class:

This approach also has the advantage of eliminating the use of key strings in the code.

Caching is an efficient way to store and retrieve data. The app can control the lifetime of cached items. For more

information, see Response caching in ASP.NET Core.

Cached data isn't associated with a specific request, user, or session. Do not cache user-specific data that mayDo not cache user-specific data that may

be retr ieved by other user requests.be retr ieved by other user requests.

To cache application wide data, see Cache in-memory in ASP.NET Core.

"Unable to resolve service for type 'Microsoft.Extensions.Caching.Distributed.IDistributedCache' while

attempting to activate 'Microsoft.AspNetCore.Session.DistributedSessionStore'."

This is typically caused by failing to configure at least one IDistributedCache  implementation. For more

information, see Distributed caching in ASP.NET Core and Cache in-memory in ASP.NET Core.

If the session middleware fails to persist a session:

The middleware logs the exception and the request continues normally.

This leads to unpredictable behavior.



SignalR and session state

Additional resources

State management

STO RA GE A P P RO A C HSTO RA GE A P P RO A C H STO RA GE M EC H A N ISMSTO RA GE M EC H A N ISM

Cookies HTTP cookies (may include data stored using server-side app
code)

Session state HTTP cookies and server-side app code

TempData HTTP cookies or session state

Query strings HTTP query strings

Hidden fields HTTP form fields

HttpContext.Items Server-side app code

Cache Server-side app code

Dependency Injection Server-side app code

Cookies

The session middleware can fail to persist a session if the backing store isn't available. For example, a user stores a

shopping cart in session. The user adds an item to the cart but the commit fails. The app doesn't know about the

failure so it reports to the user that the item was added to their cart, which isn't true.

The recommended approach to check for errors is to call await feature.Session.CommitAsync  when the app is done

writing to the session. CommitAsync throws an exception if the backing store is unavailable. If CommitAsync  fails,

the app can process the exception. LoadAsync throws under the same conditions when the data store is

unavailable.

SignalR apps should not use session state to store information. SignalR apps can store per connection state in 

Context.Items  in the hub.

Host ASP.NET Core in a web farm

By Rick Anderson, Steve Smith, Diana LaRose, and Luke Latham

HTTP is a stateless protocol. Without taking additional steps, HTTP requests are independent messages that don't

retain user values or app state. This article describes several approaches to preserve user data and app state

between requests.

View or download sample code (how to download)

State can be stored using several approaches. Each approach is described later in this topic.

Cookies store data across requests. Because cookies are sent with every request, their size should be kept to a

minimum. Ideally, only an identifier should be stored in a cookie with the data stored by the app. Most browsers

restrict cookie size to 4096 bytes. Only a limited number of cookies are available for each domain.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.commitasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.loadasync
https://twitter.com/RickAndMSFT
https://ardalis.com/
https://github.com/DianaLaRose
https://github.com/guardrex
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/app-state/samples


Session state

NOTENOTE

WARNINGWARNING

Because cookies are subject to tampering, they must be validated by the app. Cookies can be deleted by users and

expire on clients. However, cookies are generally the most durable form of data persistence on the client.

Cookies are often used for personalization, where content is customized for a known user. The user is only

identified and not authenticated in most cases. The cookie can store the user's name, account name, or unique user

ID (such as a GUID). You can then use the cookie to access the user's personalized settings, such as their preferred

website background color.

Be mindful of the European Union General Data Protection Regulations (GDPR) when issuing cookies and dealing

with privacy concerns. For more information, see General Data Protection Regulation (GDPR) support in ASP.NET

Core.

Session state is an ASP.NET Core scenario for storage of user data while the user browses a web app. Session state

uses a store maintained by the app to persist data across requests from a client. The session data is backed by a

cache and considered ephemeral data—the site should continue to function without the session data. Critical

application data should be stored in the user database and cached in session only as a performance optimization.

Session isn't supported in SignalR apps because a SignalR Hub may execute independent of an HTTP context. For example,

this can occur when a long polling request is held open by a hub beyond the lifetime of the request's HTTP context.

ASP.NET Core maintains session state by providing a cookie to the client that contains a session ID, which is sent to

the app with each request. The app uses the session ID to fetch the session data.

Session state exhibits the following behaviors:

Because the session cookie is specific to the browser, sessions aren't shared across browsers.

Session cookies are deleted when the browser session ends.

If a cookie is received for an expired session, a new session is created that uses the same session cookie.

Empty sessions aren't retained—the session must have at least one value set into it to persist the session across

requests. When a session isn't retained, a new session ID is generated for each new request.

The app retains a session for a limited time after the last request. The app either sets the session timeout or

uses the default value of 20 minutes. Session state is ideal for storing user data that's specific to a particular

session but where the data doesn't require permanent storage across sessions.

Session data is deleted either when the ISession.Clear implementation is called or when the session expires.

There's no default mechanism to inform app code that a client browser has been closed or when the session

cookie is deleted or expired on the client.

The ASP.NET Core MVC and Razor pages templates include support for General Data Protection Regulation

(GDPR). Session state cookies aren't marked essential by default, so session state isn't functional unless

tracking is permitted by the site visitor. For more information, see General Data Protection Regulation (GDPR)

support in ASP.NET Core.

Don't store sensitive data in session state. The user might not close the browser and clear the session cookie. Some

browsers maintain valid session cookies across browser windows. A session might not be restricted to a single user—the

next user might continue to browse the app with the same session cookie.

The in-memory cache provider stores session data in the memory of the server where the app resides. In a server

farm scenario:

https://ec.europa.eu/info/law/law-topic/data-protection
https://docs.microsoft.com/en-us/aspnet/signalr/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.clear


Configure session stateConfigure session state

public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddDistributedMemoryCache();

        services.AddSession(options =>
        {
            // Set a short timeout for easy testing.
            options.IdleTimeout = TimeSpan.FromSeconds(10);
            options.Cookie.HttpOnly = true;
            // Make the session cookie essential
            options.Cookie.IsEssential = true;
        });

        services.AddMvc()
            .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseExceptionHandler("/Error");
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseSession();
        app.UseHttpContextItemsMiddleware();
        app.UseMvc();
    }
}

Use sticky sessions to tie each session to a specific app instance on an individual server. Azure App Service uses

Application Request Routing (ARR) to enforce sticky sessions by default. However, sticky sessions can affect

scalability and complicate web app updates. A better approach is to use a Redis or SQL Server distributed

cache, which doesn't require sticky sessions. For more information, see Distributed caching in ASP.NET Core.

The session cookie is encrypted via IDataProtector. Data Protection must be properly configured to read

session cookies on each machine. For more information, see ASP.NET Core Data Protection and Key storage

providers.

The Microsoft.AspNetCore.Session package, which is included in the Microsoft.AspNetCore.App metapackage,

provides middleware for managing session state. To enable the session middleware, Startup  must contain:

Any of the IDistributedCache memory caches. The IDistributedCache  implementation is used as a backing

store for session. For more information, see Distributed caching in ASP.NET Core.

A call to AddSession in ConfigureServices .

A call to UseSession in Configure .

The following code shows how to set up the in-memory session provider with a default in-memory

implementation of IDistributedCache :

The order of middleware is important. In the preceding example, an InvalidOperationException  exception occurs

when UseSession  is invoked after UseMvc . For more information, see Middleware Ordering.

https://azure.microsoft.com/services/app-service/
https://docs.microsoft.com/en-us/iis/extensions/planning-for-arr/using-the-application-request-routing-module
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotector
https://www.nuget.org/packages/Microsoft.AspNetCore.Session/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.sessionservicecollectionextensions.addsession
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionmiddlewareextensions.usesession


Load session state asynchronouslyLoad session state asynchronously

Session optionsSession options

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

Cookie Determines the settings used to create the cookie. Name
defaults to SessionDefaults.CookieName (
.AspNetCore.Session ). Path defaults to

SessionDefaults.CookiePath ( / ). SameSite defaults to

SameSiteMode.Lax ( 1 ). HttpOnly defaults to true .

IsEssential defaults to false .

IdleTimeout The IdleTimeout  indicates how long the session can be idle

before its contents are abandoned. Each session access resets
the timeout. This setting only applies to the content of the
session, not the cookie. The default is 20 minutes.

IOTimeout The maximum amount of time allowed to load a session from
the store or to commit it back to the store. This setting may
only apply to asynchronous operations. This timeout can be
disabled using InfiniteTimeSpan. The default is 1 minute.

HttpContext.Session is available after session state is configured.

HttpContext.Session  can't be accessed before UseSession  has been called.

A new session with a new session cookie can't be created after the app has begun writing to the response stream.

The exception is recorded in the web server log and not displayed in the browser.

The default session provider in ASP.NET Core loads session records from the underlying IDistributedCache backing

store asynchronously only if the ISession.LoadAsync method is explicitly called before the TryGetValue, Set, or

Remove methods. If LoadAsync  isn't called first, the underlying session record is loaded synchronously, which can

incur a performance penalty at scale.

To have apps enforce this pattern, wrap the DistributedSessionStore and DistributedSession implementations with

versions that throw an exception if the LoadAsync  method isn't called before TryGetValue , Set , or Remove .

Register the wrapped versions in the services container.

To override session defaults, use SessionOptions.

Session uses a cookie to track and identify requests from a single browser. By default, this cookie is named 

.AspNetCore.Session , and it uses a path of / . Because the cookie default doesn't specify a domain, it isn't made

available to the client-side script on the page (because HttpOnly defaults to true ).

To override cookie session defaults, use SessionOptions :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.session#microsoft_aspnetcore_http_httpcontext_session
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.loadasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.trygetvalue
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.set
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession.remove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.session.distributedsessionstore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.session.distributedsession
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions.cookie#microsoft_aspnetcore_builder_sessionoptions_cookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.name#microsoft_aspnetcore_http_cookiebuilder_name
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.session.sessiondefaults.cookiename
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.path#microsoft_aspnetcore_http_cookiebuilder_path
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.session.sessiondefaults.cookiepath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.samesite#microsoft_aspnetcore_http_cookiebuilder_samesite
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.samesitemode#microsoft_aspnetcore_http_samesitemode_lax
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.httponly#microsoft_aspnetcore_http_cookiebuilder_httponly
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.isessential#microsoft_aspnetcore_http_cookiebuilder_isessential
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions.idletimeout#microsoft_aspnetcore_builder_sessionoptions_idletimeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions.iotimeout#microsoft_aspnetcore_builder_sessionoptions_iotimeout
https://docs.microsoft.com/en-us/dotnet/api/system.threading.timeout.infinitetimespan
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.httponly#microsoft_aspnetcore_http_cookiebuilder_httponly


public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddDistributedMemoryCache();

    services.AddMvc()
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

    services.AddSession(options =>
    {
        options.Cookie.Name = ".AdventureWorks.Session";
        options.IdleTimeout = TimeSpan.FromSeconds(10);
        options.Cookie.IsEssential = true;
    });
}

Set and get Session valuesSet and get Session values

@page
@using Microsoft.AspNetCore.Http
@model IndexModel

...

Name: @HttpContext.Session.GetString(IndexModel.SessionKeyName)

The app uses the IdleTimeout property to determine how long a session can be idle before its contents in the

server's cache are abandoned. This property is independent of the cookie expiration. Each request that passes

through the Session Middleware resets the timeout.

Session state is non-locking. If two requests simultaneously attempt to modify the contents of a session, the last

request overrides the first. Session  is implemented as a coherent session, which means that all the contents are

stored together. When two requests seek to modify different session values, the last request may override session

changes made by the first.

Session state is accessed from a Razor Pages PageModel class or MVC Controller class with HttpContext.Session.

This property is an ISession implementation.

The ISession  implementation provides several extension methods to set and retrieve integer and string values.

The extension methods are in the Microsoft.AspNetCore.Http namespace (add a using Microsoft.AspNetCore.Http;

statement to gain access to the extension methods) when the Microsoft.AspNetCore.Http.Extensions package is

referenced by the project. Both packages are included in the Microsoft.AspNetCore.App metapackage.

ISession  extension methods:

Get(ISession, String)

GetInt32(ISession, String)

GetString(ISession, String)

SetInt32(ISession, String, Int32)

SetString(ISession, String, String)

The following example retrieves the session value for the IndexModel.SessionKeyName  key ( _Name  in the sample

app) in a Razor Pages page:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions.idletimeout#microsoft_aspnetcore_builder_sessionoptions_idletimeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.session.sessionmiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.session#microsoft_aspnetcore_http_httpcontext_session
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http
https://www.nuget.org/packages/Microsoft.AspNetCore.Http.Extensions/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.sessionextensions.get
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.sessionextensions.getint32
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.sessionextensions.getstring
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.sessionextensions.setint32
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.sessionextensions.setstring


public class IndexModel : PageModel
{
    public const string SessionKeyName = "_Name";
    public const string SessionKeyAge = "_Age";
    const string SessionKeyTime = "_Time";

    public string SessionInfo_Name { get; private set; }
    public string SessionInfo_Age { get; private set; }
    public string SessionInfo_CurrentTime { get; private set; }
    public string SessionInfo_SessionTime { get; private set; }
    public string SessionInfo_MiddlewareValue { get; private set; }

    public void OnGet()
    {
        // Requires: using Microsoft.AspNetCore.Http;
        if (string.IsNullOrEmpty(HttpContext.Session.GetString(SessionKeyName)))
        {
            HttpContext.Session.SetString(SessionKeyName, "The Doctor");
            HttpContext.Session.SetInt32(SessionKeyAge, 773);
        }

        var name = HttpContext.Session.GetString(SessionKeyName);
        var age = HttpContext.Session.GetInt32(SessionKeyAge);

public static class SessionExtensions
{
    public static void Set<T>(this ISession session, string key, T value)
    {
        session.SetString(key, JsonConvert.SerializeObject(value));
    }

    public static T Get<T>(this ISession session, string key)
    {
        var value = session.GetString(key);

        return value == null ? default(T) : 
            JsonConvert.DeserializeObject<T>(value);
    }
}

// Requires you add the Set and Get extension method mentioned in the topic.
if (HttpContext.Session.Get<DateTime>(SessionKeyTime) == default(DateTime))
{
    HttpContext.Session.Set<DateTime>(SessionKeyTime, currentTime);
}

TempData

The following example shows how to set and get an integer and a string:

All session data must be serialized to enable a distributed cache scenario, even when using the in-memory cache.

String and integer serializers are provided by the extension methods of ISession). Complex types must be

serialized by the user using another mechanism, such as JSON.

Add the following extension methods to set and get serializable objects:

The following example shows how to set and get a serializable object with the extension methods:

ASP.NET Core exposes the Razor Pages TempData or Controller TempData. This property stores data until it's read

in another request. Keep(String) and Peek(string) methods can be used to examine the data without deletion at the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.isession
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.tempdata#microsoft_aspnetcore_mvc_razorpages_pagemodel_tempdata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.tempdata#microsoft_aspnetcore_mvc_controller_tempdata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.itempdatadictionary.keep
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.itempdatadictionary.peek


TempData samples

public class CreateModel : PageModel
{
    private readonly RazorPagesContactsContext _context;

    public CreateModel(RazorPagesContactsContext context)
    {
        _context = context;
    }

    public IActionResult OnGet()
    {
        return Page();
    }

    [TempData]
    public string Message { get; set; }

    [BindProperty]
    public Customer Customer { get; set; }

    public async Task<IActionResult> OnPostAsync()
    {
        if (!ModelState.IsValid)
        {
            return Page();
        }

        _context.Customer.Add(Customer);
        await _context.SaveChangesAsync();
        Message = $"Customer {Customer.Name} added";

        return RedirectToPage("./IndexPeek");
    }
}

@page
@model IndexModel

<h1>Peek Contacts</h1>

@{
    if (TempData.Peek("Message") != null)
    {
        <h3>Message: @TempData.Peek("Message")</h3>
    }
}

@*Content removed for brevity.*@

end of the request. Keep() marks all items in the dictionary for retention. TempData  is particularly useful for

redirection when data is required for more than a single request. TempData  is implemented by TempData

providers using either cookies or session state.

Consider the following page that creates a customer:

The following page displays TempData["Message"] :

In the preceding markup, at the end of the request, TempData["Message"]  is notnot deleted because Peek  is used.

Refreshing the page displays TempData["Message"] .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.itempdatadictionary.keep


@page
@model IndexModel

<h1>Contacts Keep</h1>

@{
    if (TempData["Message"] != null)
    {
        <h3>Message: @TempData["Message"]</h3>
    }
    TempData.Keep("Message");
}

@*Content removed for brevity.*@

@page
@model IndexModel

<h1>Index no Keep or Peek</h1>

@{
    if (TempData["Message"] != null)
    {
        <h3>Message: @TempData["Message"]</h3>
    }
}

@*Content removed for brevity.*@

TempData providersTempData providers

Choose a TempData providerChoose a TempData provider

The following markup is similar to the preceding code, but uses Keep  to preserve the data at the end of the

request:

Navigating between the IndexPeek and IndexKeep pages won't delete TempData["Message"] .

The following code displays TempData["Message"] , but at the end of the request, TempData["Message"]  is deleted:

The cookie-based TempData provider is used by default to store TempData in cookies.

The cookie data is encrypted using IDataProtector, encoded with Base64UrlTextEncoder, then chunked. Because the

cookie is chunked, the single cookie size limit found in ASP.NET Core 1.x doesn't apply. The cookie data isn't

compressed because compressing encrypted data can lead to security problems such as the CRIME and BREACH

attacks. For more information on the cookie-based TempData provider, see CookieTempDataProvider.

Choosing a TempData provider involves several considerations, such as:

1. Does the app already use session state? If so, using the session state TempData provider has no additional cost

to the app (aside from the size of the data).

2. Does the app use TempData only sparingly for relatively small amounts of data (up to 500 bytes)? If so, the

cookie TempData provider adds a small cost to each request that carries TempData. If not, the session state

TempData provider can be beneficial to avoid round-tripping a large amount of data in each request until the

TempData is consumed.

3. Does the app run in a server farm on multiple servers? If so, there's no additional configuration required to use

the cookie TempData provider outside of Data Protection (see ASP.NET Core Data Protection and Key storage

providers).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotector
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webutilities.base64urltextencoder
https://wikipedia.org/wiki/CRIME_(security_exploit)
https://wikipedia.org/wiki/BREACH_(security_exploit)
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.cookietempdataprovider


NOTENOTE

Configure the TempData providerConfigure the TempData provider

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddMvc()
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
        .AddSessionStateTempDataProvider();

    services.AddSession();
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseDatabaseErrorPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();
    app.UseSession();
    app.UseMvc();
}

IMPORTANTIMPORTANT

Query strings

Most web clients (such as web browsers) enforce limits on the maximum size of each cookie, the total number of cookies, or

both. When using the cookie TempData provider, verify the app won't exceed these limits. Consider the total size of the data.

Account for increases in cookie size due to encryption and chunking.

The cookie-based TempData provider is enabled by default.

To enable the session-based TempData provider, use the AddSessionStateTempDataProvider extension method:

The order of middleware is important. In the preceding example, an InvalidOperationException  exception occurs

when UseSession  is invoked after UseMvc . For more information, see Middleware Ordering.

If targeting .NET Framework and using the session-based TempData provider, add the Microsoft.AspNetCore.Session

package to the project.

A limited amount of data can be passed from one request to another by adding it to the new request's query

string. This is useful for capturing state in a persistent manner that allows links with embedded state to be shared

through email or social networks. Because URL query strings are public, never use query strings for sensitive data.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcviewfeaturesmvcbuilderextensions.addsessionstatetempdataprovider
https://www.nuget.org/packages/Microsoft.AspNetCore.Session/


Hidden fields

HttpContext.Items

app.Use(async (context, next) =>
{
    // perform some verification
    context.Items["isVerified"] = true;
    await next.Invoke();
});

app.Run(async (context) =>
{
    await context.Response.WriteAsync($"Verified: {context.Items["isVerified"]}");
});

In addition to unintended sharing, including data in query strings can create opportunities for Cross-Site Request

Forgery (CSRF) attacks, which can trick users into visiting malicious sites while authenticated. Attackers can then

steal user data from the app or take malicious actions on behalf of the user. Any preserved app or session state

must protect against CSRF attacks. For more information, see Prevent Cross-Site Request Forgery (XSRF/CSRF)

attacks in ASP.NET Core.

Data can be saved in hidden form fields and posted back on the next request. This is common in multi-page forms.

Because the client can potentially tamper with the data, the app must always revalidate the data stored in hidden

fields.

The HttpContext.Items collection is used to store data while processing a single request. The collection's contents

are discarded after a request is processed. The Items  collection is often used to allow components or middleware

to communicate when they operate at different points in time during a request and have no direct way to pass

parameters.

In the following example, middleware adds isVerified  to the Items  collection.

Later in the pipeline, another middleware can access the value of isVerified :

For middleware that's only used by a single app, string  keys are acceptable. Middleware shared between app

instances should use unique object keys to avoid key collisions. The following example shows how to use a unique

object key defined in a middleware class:

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.items#microsoft_aspnetcore_http_httpcontext_items


 

public class HttpContextItemsMiddleware
{
    private readonly RequestDelegate _next;
    public static readonly object HttpContextItemsMiddlewareKey = new Object();

    public HttpContextItemsMiddleware(RequestDelegate next)
    {
        _next = next;
    }

    public async Task Invoke(HttpContext httpContext)
    {
        httpContext.Items[HttpContextItemsMiddlewareKey] = "K-9";

        await _next(httpContext);
    }
}

public static class HttpContextItemsMiddlewareExtensions
{
    public static IApplicationBuilder 
        UseHttpContextItemsMiddleware(this IApplicationBuilder builder)
    {
        return builder.UseMiddleware<HttpContextItemsMiddleware>();
    }
}

HttpContext.Items
    .TryGetValue(HttpContextItemsMiddleware.HttpContextItemsMiddlewareKey, 
        out var middlewareSetValue);
SessionInfo_MiddlewareValue = 
    middlewareSetValue?.ToString() ?? "Middleware value not set!";

Cache

Dependency Injection

Other code can access the value stored in HttpContext.Items  using the key exposed by the middleware class:

This approach also has the advantage of eliminating the use of key strings in the code.

Caching is an efficient way to store and retrieve data. The app can control the lifetime of cached items.

Cached data isn't associated with a specific request, user, or session. Be careful not to cache user-specificBe careful not to cache user-specific

data that may be retr ieved by other users'  requests.data that may be retr ieved by other users'  requests.

For more information, see Response caching in ASP.NET Core.

Use Dependency Injection to make data available to all users:

public class MyAppData
{
    // Declare properties and methods
}

1. Define a service containing the data. For example, a class named MyAppData  is defined:

2. Add the service class to Startup.ConfigureServices :



Common errors

SignalR and session state

Additional resources

public void ConfigureServices(IServiceCollection services)
{
    services.AddSingleton<MyAppData>();
}

public class IndexModel : PageModel
{
    public IndexModel(MyAppData myService)
    {
        // Do something with the service
        //    Examples: Read data, store in a field or property
    }
}

3. Consume the data service class:

"Unable to resolve service for type 'Microsoft.Extensions.Caching.Distributed.IDistributedCache' while

attempting to activate 'Microsoft.AspNetCore.Session.DistributedSessionStore'."

This is usually caused by failing to configure at least one IDistributedCache  implementation. For more

information, see Distributed caching in ASP.NET Core and Cache in-memory in ASP.NET Core.

In the event that the session middleware fails to persist a session (for example, if the backing store isn't

available), the middleware logs the exception and the request continues normally. This leads to

unpredictable behavior.

For example, a user stores a shopping cart in session. The user adds an item to the cart but the commit fails.

The app doesn't know about the failure so it reports to the user that the item was added to their cart, which

isn't true.

The recommended approach to check for errors is to call await feature.Session.CommitAsync();  from app

code when the app is done writing to the session. CommitAsync  throws an exception if the backing store is

unavailable. If CommitAsync  fails, the app can process the exception. LoadAsync  throws under the same

conditions where the data store is unavailable.

SignalR apps should not use session state to store information. SignalR apps can store per connection state in 

Context.Items  in the hub.

Host ASP.NET Core in a web farm



Layout in ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

What is a Layout

By Steve Smith and Dave Brock

Pages and views frequently share visual and programmatic elements. This article demonstrates how to:

Use common layouts.

Share directives.

Run common code before rendering pages or views.

This document discusses layouts for the two different approaches to ASP.NET Core MVC: Razor Pages and

controllers with views. For this topic, the differences are minimal:

Razor Pages are in the Pages folder.

Controllers with views uses a Views folder for views.

Most web apps have a common layout that provides the user with a consistent experience as they

navigate from page to page. The layout typically includes common user interface elements such as the

app header, navigation or menu elements, and footer.

Common HTML structures such as scripts and stylesheets are also frequently used by many pages within

an app. All of these shared elements may be defined in a layout file, which can then be referenced by any

view used within the app. Layouts reduce duplicate code in views.

By convention, the default layout for an ASP.NET Core app is named _Layout.cshtml. The layout files for

new ASP.NET Core projects created with the templates are:

Razor Pages: Pages/Shared/_Layout.cshtml

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/layout.md
https://ardalis.com/
https://twitter.com/daveabrock


<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>@ViewData["Title"] - WebApplication1</title>

    <environment include="Development">
        <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
        <link rel="stylesheet" href="~/css/site.css" />
    </environment>
    <environment exclude="Development">
        <link rel="stylesheet" 
href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
              asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
              asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-
test-value="absolute" />
        <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
    </environment>
</head>
<body>
    <nav class="navbar navbar-inverse navbar-fixed-top">
        <div class="container">
            <div class="navbar-header">
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-
target=".navbar-collapse">
                    <span class="sr-only">Toggle navigation</span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                </button>
                <a asp-page="/Index" class="navbar-brand">WebApplication1</a>
            </div>
            <div class="navbar-collapse collapse">

Controller with views: Views/Shared/_Layout.cshtml

The layout defines a top level template for views in the app. Apps don't require a layout. Apps can define

more than one layout, with different views specifying different layouts.

The following code shows the layout file for a template created project with a controller and views:



    

                <ul class="nav navbar-nav">
                    <li><a asp-page="/Index">Home</a></li>
                    <li><a asp-page="/About">About</a></li>
                    <li><a asp-page="/Contact">Contact</a></li>
                </ul>
            </div>
        </div>
    </nav>

    <partial name="_CookieConsentPartial" />

    <div class="container body-content">
        @RenderBody()
        <hr />
        <footer>
            <p>&copy; 2018 - WebApplication1</p>
        </footer>
    </div>

    <environment include="Development">
        <script src="~/lib/jquery/dist/jquery.js"></script>
        <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
        <script src="~/js/site.js" asp-append-version="true"></script>
    </environment>
    <environment exclude="Development">
        <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-3.3.1.min.js"
                asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
                asp-fallback-test="window.jQuery"
                crossorigin="anonymous"
                integrity="sha384-tsQFqpEReu7ZLhBV2VZlAu7zcOV+rXbYlF2cqB8txI/8aZajjp4Bqd+V6D5IgvKT">
        </script>
        <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
                asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
                asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
                crossorigin="anonymous"
                integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
        </script>
        <script src="~/js/site.min.js" asp-append-version="true"></script>
    </environment>

    @RenderSection("Scripts", required: false)
</body>
</html>

Specifying a Layout

@{
    Layout = "_Layout";
}

SectionsSections

Razor views have a Layout  property. Individual views specify a layout by setting this property:

The layout specified can use a full path (for example, /Pages/Shared/_Layout.cshtml or

/Views/Shared/_Layout.cshtml) or a partial name (example: _Layout ). When a partial name is provided,

the Razor view engine searches for the layout file using its standard discovery process. The folder where

the handler method (or controller) exists is searched first, followed by the Shared folder. This discovery

process is identical to the process used to discover partial views.

By default, every layout must call RenderBody . Wherever the call to RenderBody  is placed, the contents of

the view will be rendered.

 



         

<script type="text/javascript" src="~/scripts/global.js"></script>

@RenderSection("Scripts", required: false)

@section Scripts {
     <script type="text/javascript" src="~/scripts/main.js"></script>
}

@section Scripts {
    <partial name="_ValidationScriptsPartial" />
}

Ignoring sectionsIgnoring sections

Importing Shared Directives

A layout can optionally reference one or more sections, by calling RenderSection . Sections provide a way

to organize where certain page elements should be placed. Each call to RenderSection  can specify

whether that section is required or optional:

If a required section isn't found, an exception is thrown. Individual views specify the content to be

rendered within a section using the @section  Razor syntax. If a page or view defines a section, it must be

rendered (or an error will occur).

An example @section  definition in Razor Pages view:

In the preceding code, scripts/main.js is added to the scripts  section on a page or view. Other pages or

views in the same app might not require this script and wouldn't define a scripts section.

The following markup uses the Partial Tag Helper to render _ValidationScriptsPartial.cshtml:

The preceding markup was generated by scaffolding Identity.

Sections defined in a page or view are available only in its immediate layout page. They cannot be

referenced from partials, view components, or other parts of the view system.

By default, the body and all sections in a content page must all be rendered by the layout page. The Razor

view engine enforces this by tracking whether the body and each section have been rendered.

To instruct the view engine to ignore the body or sections, call the IgnoreBody  and IgnoreSection

methods.

The body and every section in a Razor page must be either rendered or ignored.

  

Views and pages can use Razor directives to import namespaces and use dependency injection. Directives

shared by many views may be specified in a common _ViewImports.cshtml file. The _ViewImports  file

supports the following directives:

@addTagHelper

@removeTagHelper

@tagHelperPrefix

@using

@model

@inherits

@inject



 

@using WebApplication1
@using WebApplication1.Models
@using WebApplication1.Models.AccountViewModels
@using WebApplication1.Models.ManageViewModels
@using Microsoft.AspNetCore.Identity
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Running Code Before Each View

@{
    Layout = "_Layout";
}

The file doesn't support other Razor features, such as functions and section definitions.

A sample _ViewImports.cshtml  file:

The _ViewImports.cshtml file for an ASP.NET Core MVC app is typically placed in the Pages (or Views)

folder. A _ViewImports.cshtml file can be placed within any folder, in which case it will only be applied to

pages or views within that folder and its subfolders. _ViewImports  files are processed starting at the root

level and then for each folder leading up to the location of the page or view itself. _ViewImports  settings

specified at the root level may be overridden at the folder level.

For example, suppose:

The root level _ViewImports.cshtml file includes @model MyModel1  and @addTagHelper *, MyTagHelper1 .

A subfolder _ViewImports.cshtml file includes @model MyModel2  and @addTagHelper *, MyTagHelper2 .

Pages and views in the subfolder will have access to both Tag Helpers and the MyModel2  model.

If multiple _ViewImports.cshtml files are found in the file hierarchy, the combined behavior of the

directives are:

@addTagHelper , @removeTagHelper : all run, in order

@tagHelperPrefix : the closest one to the view overrides any others

@model : the closest one to the view overrides any others

@inherits : the closest one to the view overrides any others

@using : all are included; duplicates are ignored

@inject : for each property, the closest one to the view overrides any others with the same property

name

 

Code that needs to run before each view or page should be placed in the _ViewStart.cshtml file. By

convention, the _ViewStart.cshtml file is located in the Pages (or Views) folder. The statements listed in

_ViewStart.cshtml are run before every full view (not layouts, and not partial views). Like

ViewImports.cshtml, _ViewStart.cshtml is hierarchical. If a _ViewStart.cshtml file is defined in the view or

pages folder, it will be run after the one defined in the root of the Pages (or Views) folder (if any).

A sample _ViewStart.cshtml file:

The file above specifies that all views will use the _Layout.cshtml layout.

_ViewStart.cshtml and _ViewImports.cshtml are notnot typically placed in the /Pages/Shared (or

/Views/Shared) folder. The app-level versions of these files should be placed directly in the /Pages (or

/Views) folder.



        

Razor syntax reference for ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

Rendering HTML

Razor syntax

<p>@@Username</p>

<p>@Username</p>

<a href="mailto:Support@contoso.com">Support@contoso.com</a>

Implicit Razor expressions

<p>@DateTime.Now</p>
<p>@DateTime.IsLeapYear(2016)</p>

<p>@await DoSomething("hello", "world")</p>

By Rick Anderson, Taylor Mullen, and Dan Vicarel

Razor is a markup syntax for embedding server-based code into webpages. The Razor syntax consists of

Razor markup, C#, and HTML. Files containing Razor generally have a .cshtml file extension. Razor is also

found in Razor components files (.razor).

The default Razor language is HTML. Rendering HTML from Razor markup is no different than rendering

HTML from an HTML file. HTML markup in .cshtml Razor files is rendered by the server unchanged.

Razor supports C# and uses the @  symbol to transition from HTML to C#. Razor evaluates C# expressions

and renders them in the HTML output.

When an @  symbol is followed by a Razor reserved keyword, it transitions into Razor-specific markup.

Otherwise, it transitions into plain C#.

To escape an @  symbol in Razor markup, use a second @  symbol:

The code is rendered in HTML with a single @  symbol:

HTML attributes and content containing email addresses don't treat the @  symbol as a transition character.

The email addresses in the following example are untouched by Razor parsing:

Implicit Razor expressions start with @  followed by C# code:

With the exception of the C# await  keyword, implicit expressions must not contain spaces. If the C#

statement has a clear ending, spaces can be intermingled:

Implicit expressions cannotcannot contain C# generics, as the characters inside the brackets ( <> ) are interpreted as

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/razor.md
https://twitter.com/RickAndMSFT
https://twitter.com/ntaylormullen
https://github.com/Rabadash8820


  

<p>@GenericMethod<int>()</p>

Explicit Razor expressions

<p>Last week this time: @(DateTime.Now - TimeSpan.FromDays(7))</p>

<p>Last week: @DateTime.Now - TimeSpan.FromDays(7)</p>

<p>Last week: 7/7/2016 4:39:52 PM - TimeSpan.FromDays(7)</p>

@{
    var joe = new Person("Joe", 33);
}

<p>Age@(joe.Age)</p>

<p>@(GenericMethod<int>())</p>

Expression encoding

an HTML tag. The following code is notnot valid:

The preceding code generates a compiler error similar to one of the following:

The "int" element wasn't closed. All elements must be either self-closing or have a matching end tag.

Cannot convert method group 'GenericMethod' to non-delegate type 'object'. Did you intend to invoke

the method?`

Generic method calls must be wrapped in an explicit Razor expression or a Razor code block.

Explicit Razor expressions consist of an @  symbol with balanced parenthesis. To render last week's time, the

following Razor markup is used:

Any content within the @()  parenthesis is evaluated and rendered to the output.

Implicit expressions, described in the previous section, generally can't contain spaces. In the following code,

one week isn't subtracted from the current time:

The code renders the following HTML:

Explicit expressions can be used to concatenate text with an expression result:

Without the explicit expression, <p>Age@joe.Age</p>  is treated as an email address, and <p>Age@joe.Age</p>  is

rendered. When written as an explicit expression, <p>Age33</p>  is rendered.

Explicit expressions can be used to render output from generic methods in .cshtml files. The following markup

shows how to correct the error shown earlier caused by the brackets of a C# generic. The code is written as

an explicit expression:

C# expressions that evaluate to a string are HTML encoded. C# expressions that evaluate to IHtmlContent  are

rendered directly through IHtmlContent.WriteTo . C# expressions that don't evaluate to IHtmlContent  are

converted to a string by ToString  and encoded before they're rendered.



   

@("<span>Hello World</span>")

&lt;span&gt;Hello World&lt;/span&gt;

WARNINGWARNING

@Html.Raw("<span>Hello World</span>")

<span>Hello World</span>

Razor code blocks

@{
    var quote = "The future depends on what you do today. - Mahatma Gandhi";
}

<p>@quote</p>

@{
    quote = "Hate cannot drive out hate, only love can do that. - Martin Luther King, Jr.";
}

<p>@quote</p>

<p>The future depends on what you do today. - Mahatma Gandhi</p>
<p>Hate cannot drive out hate, only love can do that. - Martin Luther King, Jr.</p>

The preceding code renders the following HTML:

The HTML is shown in the browser as plain text:

<span>Hello World</span>

HtmlHelper.Raw  output isn't encoded but rendered as HTML markup.

Using HtmlHelper.Raw  on unsanitized user input is a security risk. User input might contain malicious JavaScript or

other exploits. Sanitizing user input is difficult. Avoid using HtmlHelper.Raw  with user input.

The code renders the following HTML:

Razor code blocks start with @  and are enclosed by {} . Unlike expressions, C# code inside code blocks isn't

rendered. Code blocks and expressions in a view share the same scope and are defined in order :

The code renders the following HTML:

In code blocks, declare local functions with markup to serve as templating methods:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/local-functions


                  

@{
    void RenderName(string name)
    {
        <p>Name: <strong>@name</strong></p>
    }

    RenderName("Mahatma Gandhi");
    RenderName("Martin Luther King, Jr.");
}

<p>Name: <strong>Mahatma Gandhi</strong></p>
<p>Name: <strong>Martin Luther King, Jr.</strong></p>

Implicit transitionsImplicit transitions

@{
    var inCSharp = true;
    <p>Now in HTML, was in C# @inCSharp</p>
}

Explicit delimited transitionExplicit delimited transition

@for (var i = 0; i < people.Length; i++)
{
    var person = people[i];
    <text>Name: @person.Name</text>
}

Explicit line transitionExplicit line transition

@for (var i = 0; i < people.Length; i++)
{
    var person = people[i];
    @:Name: @person.Name
}

The code renders the following HTML:

The default language in a code block is C#, but the Razor Page can transition back to HTML:

To define a subsection of a code block that should render HTML, surround the characters for rendering with

the Razor <text>  tag:

Use this approach to render HTML that isn't surrounded by an HTML tag. Without an HTML or Razor tag, a

Razor runtime error occurs.

The <text>  tag is useful to control whitespace when rendering content:

Only the content between the <text>  tag is rendered.

No whitespace before or after the <text>  tag appears in the HTML output.

To render the rest of an entire line as HTML inside a code block, use @:  syntax:

Without the @:  in the code, a Razor runtime error is generated.

Extra @  characters in a Razor file can cause compiler errors at statements later in the block. These compiler

errors can be difficult to understand because the actual error occurs before the reported error. This error is

common after combining multiple implicit/explicit expressions into a single code block.



Control structures

Conditionals Conditionals @if, else if, else, and @switch

@if (value % 2 == 0)
{
    <p>The value was even.</p>
}

@if (value % 2 == 0)
{
    <p>The value was even.</p>
}
else if (value >= 1337)
{
    <p>The value is large.</p>
}
else
{
    <p>The value is odd and small.</p>
}

@switch (value)
{
    case 1:
        <p>The value is 1!</p>
        break;
    case 1337:
        <p>Your number is 1337!</p>
        break;
    default:
        <p>Your number wasn't 1 or 1337.</p>
        break;
}

Looping Looping @for, @foreach, @while, and @do while

@{
    var people = new Person[]
    {
          new Person("Weston", 33),
          new Person("Johnathon", 41),
          ...
    };
}

Control structures are an extension of code blocks. All aspects of code blocks (transitioning to markup, inline

C#) also apply to the following structures:

@if  controls when code runs:

else  and else if  don't require the @  symbol:

The following markup shows how to use a switch statement:

Templated HTML can be rendered with looping control statements. To render a list of people:

The following looping statements are supported:

@for



@for (var i = 0; i < people.Length; i++)
{
    var person = people[i];
    <p>Name: @person.Name</p>
    <p>Age: @person.Age</p>
}

@foreach (var person in people)
{
    <p>Name: @person.Name</p>
    <p>Age: @person.Age</p>
}

@{ var i = 0; }
@while (i < people.Length)
{
    var person = people[i];
    <p>Name: @person.Name</p>
    <p>Age: @person.Age</p>

    i++;
}

@{ var i = 0; }
@do
{
    var person = people[i];
    <p>Name: @person.Name</p>
    <p>Age: @person.Age</p>

    i++;
} while (i < people.Length);

Compound Compound @using

@using (Html.BeginForm())
{
    <div>
        Email: <input type="email" id="Email" value="">
        <button>Register</button>
    </div>
}

@try, catch, finally

@foreach

@while

@do while

In C#, a using  statement is used to ensure an object is disposed. In Razor, the same mechanism is used to

create HTML Helpers that contain additional content. In the following code, HTML Helpers render a <form>

tag with the @using  statement:

Exception handling is similar to C#:



  

@try
{
    throw new InvalidOperationException("You did something invalid.");
}
catch (Exception ex)
{
    <p>The exception message: @ex.Message</p>
}
finally
{
    <p>The finally statement.</p>
}

@lock

@lock (SomeLock)
{
    // Do critical section work
}

CommentsComments

@{
    /* C# comment */
    // Another C# comment
}
<!-- HTML comment -->

<!-- HTML comment -->

@*
    @{
        /* C# comment */
        // Another C# comment
    }
    <!-- HTML comment -->
*@

Directives

Razor has the capability to protect critical sections with lock statements:

Razor supports C# and HTML comments:

The code renders the following HTML:

Razor comments are removed by the server before the webpage is rendered. Razor uses @* *@  to delimit

comments. The following code is commented out, so the server doesn't render any markup:

Razor directives are represented by implicit expressions with reserved keywords following the @  symbol. A

directive typically changes the way a view is parsed or enables different functionality.

Understanding how Razor generates code for a view makes it easier to understand how directives work.



                                

                        

  

@{
    var quote = "Getting old ain't for wimps! - Anonymous";
}

<div>Quote of the Day: @quote</div>

public class _Views_Something_cshtml : RazorPage<dynamic>
{
    public override async Task ExecuteAsync()
    {
        var output = "Getting old ain't for wimps! - Anonymous";

        WriteLiteral("/r/n<div>Quote of the Day: ");
        Write(output);
        WriteLiteral("</div>");
    }
}

@attribute

@attribute [Authorize]

@code

@code {
    // C# members (fields, properties, and methods)
}

@functions

@functions {
    // C# members (fields, properties, and methods)
}

The code generates a class similar to the following:

Later in this article, the section Inspect the Razor C# class generated for a view explains how to view this

generated class.

The @attribute  directive adds the given attribute to the class of the generated page or view. The following

example adds the [Authorize]  attribute:

This scenario only applies to Razor components (.razor).

The @code  block enables a Razor component to add C# members (fields, properties, and methods) to a

component:

For Razor components, @code  is an alias of @functions  and recommended over @functions . More than one 

@code  block is permissible.

The @functions  directive enables adding C# members (fields, properties, and methods) to the generated

class:

In Razor components, use @code  over @functions  to add C# members.

For example:



    

@functions {
    public string GetHello()
    {
        return "Hello";
    }
}

<div>From method: @GetHello()</div> 

<div>From method: Hello</div>

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Razor;

public class _Views_Home_Test_cshtml : RazorPage<dynamic>
{
    // Functions placed between here 
    public string GetHello()
    {
        return "Hello";
    }
    // And here.
#pragma warning disable 1998
    public override async Task ExecuteAsync()
    {
        WriteLiteral("\r\n<div>From method: ");
        Write(GetHello());
        WriteLiteral("</div>\r\n");
    }
#pragma warning restore 1998

@{
    RenderName("Mahatma Gandhi");
    RenderName("Martin Luther King, Jr.");
}

@functions {
    private void RenderName(string name)
    {
        <p>Name: <strong>@name</strong></p>
    }
}

<p>Name: <strong>Mahatma Gandhi</strong></p>
<p>Name: <strong>Martin Luther King, Jr.</strong></p>

@implements

The code generates the following HTML markup:

The following code is the generated Razor C# class:

@functions  methods serve as templating methods when they have markup:

The code renders the following HTML:

The @implements  directive implements an interface for the generated class.

The following example implements System.IDisposable so that the Dispose method can be called:

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose


    

@implements IDisposable

<h1>Example</h1>

@functions {
    private bool _isDisposed;

    ...

    public void Dispose() => _isDisposed = true;
}

@inherits

@inherits TypeNameOfClassToInheritFrom

using Microsoft.AspNetCore.Mvc.Razor;

public abstract class CustomRazorPage<TModel> : RazorPage<TModel>
{
    public string CustomText { get; } = 
        "Gardyloo! - A Scottish warning yelled from a window before dumping" +
        "a slop bucket on the street below.";
}

@inherits CustomRazorPage<TModel>

<div>Custom text: @CustomText</div>

<div>
    Custom text: Gardyloo! - A Scottish warning yelled from a window before dumping
    a slop bucket on the street below.
</div>

@inherits CustomRazorPage<TModel>

@inherits CustomRazorPage<TModel>

<div>The Login Email: @Model.Email</div>
<div>Custom text: @CustomText</div>

The @inherits  directive provides full control of the class the view inherits:

The following code is a custom Razor page type:

The CustomText  is displayed in a view:

The code renders the following HTML:

@model  and @inherits  can be used in the same view. @inherits  can be in a _ViewImports.cshtml file that

the view imports:

The following code is an example of a strongly-typed view:

If "rick@contoso.com" is passed in the model, the view generates the following HTML markup:



                                                            

    

<div>The Login Email: rick@contoso.com</div>
<div>
    Custom text: Gardyloo! - A Scottish warning yelled from a window before dumping
    a slop bucket on the street below.
</div>

@inject

@layout

@model

@model TypeNameOfModel

@model LoginViewModel

public class _Views_Account_Login_cshtml : RazorPage<LoginViewModel>

<div>The Login Email: @Model.Email</div>

@namespace

@namespace Your.Namespace.Here

The @inject  directive enables the Razor Page to inject a service from the service container into a view. For

more information, see Dependency injection into views.

This scenario only applies to Razor components (.razor).

The @layout  directive specifies a layout for a Razor component. Layout components are used to avoid code

duplication and inconsistency. For more information, see ASP.NET Core Blazor layouts.

This scenario only applies to MVC views and Razor Pages (.cshtml).

The @model  directive specifies the type of the model passed to a view or page:

In an ASP.NET Core MVC or Razor Pages app created with individual user accounts,

Views/Account/Login.cshtml contains the following model declaration:

The class generated inherits from RazorPage<dynamic> :

Razor exposes a Model  property for accessing the model passed to the view:

The @model  directive specifies the type of the Model  property. The directive specifies the T  in RazorPage<T>

that the generated class that the view derives from. If the @model  directive isn't specified, the Model  property

is of type dynamic . For more information, see Strongly typed models and the @model keyword.

The @namespace  directive:

Sets the namespace of the class of the generated Razor page, MVC view, or Razor component.

Sets the root derived namespaces of a pages, views, or components classes from the closest imports file in

the directory tree, _ViewImports.cshtml (views or pages) or _Imports.razor (Razor components).

For the Razor Pages example shown in the following table:



                                        

                                                

PA GEPA GE N A M ESPA C EN A M ESPA C E

Pages/Index.cshtml Hello.World

Pages/MorePages/Page.cshtml Hello.World.MorePages

Pages/MorePages/EvenMorePages/Page.cshtml Hello.World.MorePages.EvenMorePages

PA GEPA GE N A M ESPA C EN A M ESPA C E

Pages/Index.cshtml Hello.World

Pages/MorePages/Page.cshtml Hello.World.MorePages

Pages/MorePages/EvenMorePages/Page.cshtml Another.Planet

@page

@section

@using

Each page imports Pages/_ViewImports.cshtml.

Pages/_ViewImports.cshtml contains @namespace Hello.World .

Each page has Hello.World  as the root of it's namespace.

The preceding relationships apply to import files used with MVC views and Razor components.

When multiple import files have a @namespace  directive, the file closest to the page, view, or component in

the directory tree is used to set the root namespace.

If the EvenMorePages folder in the preceding example has an imports file with @namespace Another.Planet  (or

the Pages/MorePages/EvenMorePages/Page.cshtml file contains @namespace Another.Planet ), the result is

shown in the following table.

The @page  directive has different effects depending on the type of the file where it appears. The directive:

In a .cshtml file indicates that the file is a Razor Page. For more information, see Custom routes and

Introduction to Razor Pages in ASP.NET Core.

Specifies that a Razor component should handle requests directly. For more information, see ASP.NET Core

Blazor routing.

The @page  directive on the first line of a .cshtml file indicates that the file is a Razor Page. For more

information, see Introduction to Razor Pages in ASP.NET Core.

This scenario only applies to MVC views and Razor Pages (.cshtml).

The @section  directive is used in conjunction with MVC and Razor Pages layouts to enable views or pages to

render content in different parts of the HTML page. For more information, see Layout in ASP.NET Core.

The @using  directive adds the C# using  directive to the generated view:



  

                    

                                    

    

    

    

                                                    

    

    

@using System.IO
@{
    var dir = Directory.GetCurrentDirectory();
}
<p>@dir</p>

Directive attributes

@attributes

@bind

@on{EVENT}

@on{EVENT}:preventDefault

@on{EVENT}:stopPropagation

@key

@ref

@typeparam

In Razor components, @using  also controls which components are in scope.

Razor directive attributes are represented by implicit expressions with reserved keywords following the @

symbol. A directive attribute typically changes the way an element is parsed or enables different functionality.

This scenario only applies to Razor components (.razor).

@attributes  allows a component to render non-declared attributes. For more information, see Create and

use ASP.NET Core Razor components.

This scenario only applies to Razor components (.razor).

Data binding in components is accomplished with the @bind  attribute. For more information, see ASP.NET

Core Blazor data binding.

This scenario only applies to Razor components (.razor).

Razor provides event handling features for components. For more information, see ASP.NET Core Blazor

event handling.

This scenario only applies to Razor components (.razor).

Prevents the default action for the event.

This scenario only applies to Razor components (.razor).

Stops event propagation for the event.

This scenario only applies to Razor components (.razor).

The @key  directive attribute causes the components diffing algorithm to guarantee preservation of elements

or components based on the key's value. For more information, see Create and use ASP.NET Core Razor

components.

This scenario only applies to Razor components (.razor).

Component references ( @ref ) provide a way to reference a component instance so that you can issue

commands to that instance. For more information, see Create and use ASP.NET Core Razor components.

This scenario only applies to Razor components (.razor).



Templated Razor delegates

@<tag>...</tag>

public class Pet
{
    public string Name { get; set; }
}

@{
    Func<dynamic, object> petTemplate = @<p>You have a pet named <strong>@item.Name</strong>.</p>;

    var pets = new List<Pet>
    {
        new Pet { Name = "Rin Tin Tin" },
        new Pet { Name = "Mr. Bigglesworth" },
        new Pet { Name = "K-9" }
    };
}

@foreach (var pet in pets)
{
    @petTemplate(pet)
}

<p>You have a pet named <strong>Rin Tin Tin</strong>.</p>
<p>You have a pet named <strong>Mr. Bigglesworth</strong>.</p>
<p>You have a pet named <strong>K-9</strong>.</p>

The @typeparam  directive declares a generic type parameter for the generated component class. For more

information, see ASP.NET Core Blazor templated components.

Razor templates allow you to define a UI snippet with the following format:

The following example illustrates how to specify a templated Razor delegate as a Func<T,TResult>. The

dynamic type is specified for the parameter of the method that the delegate encapsulates. An object type is

specified as the return value of the delegate. The template is used with a List<T> of Pet  that has a Name

property.

The template is rendered with pets  supplied by a foreach  statement:

Rendered output:

You can also supply an inline Razor template as an argument to a method. In the following example, the 

Repeat  method receives a Razor template. The method uses the template to produce HTML content with

repeats of items supplied from a list:

https://docs.microsoft.com/en-us/dotnet/api/system.func-2
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/using-type-dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/object
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1


@using Microsoft.AspNetCore.Html

@functions {
    public static IHtmlContent Repeat(IEnumerable<dynamic> items, int times,
        Func<dynamic, IHtmlContent> template)
    {
        var html = new HtmlContentBuilder();

        foreach (var item in items)
        {
            for (var i = 0; i < times; i++)
            {
                html.AppendHtml(template(item));
            }
        }

        return html;
    }
}

<ul>
    @Repeat(pets, 3, @<li>@item.Name</li>)
</ul>

<ul>
    <li>Rin Tin Tin</li>
    <li>Rin Tin Tin</li>
    <li>Rin Tin Tin</li>
    <li>Mr. Bigglesworth</li>
    <li>Mr. Bigglesworth</li>
    <li>Mr. Bigglesworth</li>
    <li>K-9</li>
    <li>K-9</li>
    <li>K-9</li>
</ul>

Tag Helpers

DIREC T IVEDIREC T IVE F UN C T IO NF UN C T IO N

@addTagHelper Makes Tag Helpers available to a view.

@removeTagHelper Removes Tag Helpers previously added from a view.

Using the list of pets from the prior example, the Repeat  method is called with:

List<T> of Pet .

Number of times to repeat each pet.

Inline template to use for the list items of an unordered list.

Rendered output:

This scenario only applies to MVC views and Razor Pages (.cshtml).

There are three directives that pertain to Tag Helpers.

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1


         

 

@tagHelperPrefix Specifies a tag prefix to enable Tag Helper support and to
make Tag Helper usage explicit.

DIREC T IVEDIREC T IVE F UN C T IO NF UN C T IO N

Razor reserved keywords
Razor keywordsRazor keywords

C# Razor keywordsC# Razor keywords

Reserved keywords not used by RazorReserved keywords not used by Razor

Inspect the Razor C# class generated for a view

page  (Requires ASP.NET Core 2.1 or later)

namespace

functions

inherits

model

section

helper  (Not currently supported by ASP.NET Core)

Razor keywords are escaped with @(Razor Keyword)  (for example, @(functions) ).

case

do

default

for

foreach

if

else

lock

switch

try

catch

finally

using

while

C# Razor keywords must be double-escaped with @(@C# Razor Keyword)  (for example, @(@case) ). The first @

escapes the Razor parser. The second @  escapes the C# parser.

class

With .NET Core SDK 2.1 or later, the Razor SDK handles compilation of Razor files. When building a project,

the Razor SDK generates an obj/<build_configuration>/<target_framework_moniker>/Razor directory in the

project root. The directory structure within the Razor directory mirrors the project's directory structure.

Consider the following directory structure in an ASP.NET Core 2.1 Razor Pages project targeting .NET Core

2.1:



 Areas/
   Admin/
     Pages/
       Index.cshtml
       Index.cshtml.cs
 Pages/
   Shared/
     _Layout.cshtml
   _ViewImports.cshtml
   _ViewStart.cshtml
   Index.cshtml
   Index.cshtml.cs

 obj/
   Debug/
     netcoreapp2.1/
       Razor/
         Areas/
           Admin/
             Pages/
               Index.g.cshtml.cs
         Pages/
           Shared/
             _Layout.g.cshtml.cs
           _ViewImports.g.cshtml.cs
           _ViewStart.g.cshtml.cs
           Index.g.cshtml.cs

#if V2
using Microsoft.AspNetCore.Mvc.Razor.Extensions;
using Microsoft.AspNetCore.Razor.Language;

public class CustomTemplateEngine : MvcRazorTemplateEngine
{
    public CustomTemplateEngine(RazorEngine engine, RazorProject project) 
        : base(engine, project)
    {
    }
        
    public override RazorCSharpDocument GenerateCode(RazorCodeDocument codeDocument)
    {
        var csharpDocument = base.GenerateCode(codeDocument);
        var generatedCode = csharpDocument.GeneratedCode;

        // Look at generatedCode

        return csharpDocument;
    }
}
#endif

Building the project in Debug configuration yields the following obj directory:

To view the generated class for Pages/Index.cshtml, open

obj/Debug/netcoreapp2.1/Razor/Pages/Index.g.cshtml.cs.

Add the following class to the ASP.NET Core MVC project:

In Startup.ConfigureServices , override the RazorTemplateEngine  added by MVC with the 

CustomTemplateEngine  class:



public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddMvc();

View lookups and case sensitivity

Set a breakpoint on the return csharpDocument;  statement of CustomTemplateEngine . When program

execution stops at the breakpoint, view the value of generatedCode .

The Razor view engine performs case-sensitive lookups for views. However, the actual lookup is determined

by the underlying file system:

File based source:

Precompiled views: With ASP.NET Core 2.0 and later, looking up precompiled views is case insensitive on

all operating systems. The behavior is identical to physical file provider's behavior on Windows. If two

precompiled views differ only in case, the result of lookup is non-deterministic.

On operating systems with case insensitive file systems (for example, Windows), physical file

provider lookups are case insensitive. For example, return View("Test")  results in matches for

/Views/Home/Test.cshtml, /Views/home/test.cshtml, and any other casing variant.

On case-sensitive file systems (for example, Linux, OSX, and with EmbeddedFileProvider ), lookups

are case-sensitive. For example, return View("Test")  specifically matches

/Views/Home/Test.cshtml.

Developers are encouraged to match the casing of file and directory names to the casing of:

Area, controller, and action names.

Razor Pages.

Matching case ensures the deployments find their views regardless of the underlying file system.



Additional resources
Introduction to ASP.NET Web Programming Using the Razor Syntax provides many samples of programming

with Razor syntax.

https://docs.microsoft.com/en-us/aspnet/web-pages/overview/getting-started/introducing-razor-syntax-c


Create reusable UI using the Razor class library
project in ASP.NET Core
9/22/2020 • 10 minutes to read • Edit Online

Create a class library containing Razor UI

Reference RCL content

Override views, partial views, and pages

By Rick Anderson

Razor views, pages, controllers, page models, Razor components, View components, and data models can be

built into a Razor class library (RCL). The RCL can be packaged and reused. Applications can include the RCL and

override the views and pages it contains. When a view, partial view, or Razor Page is found in both the web app

and the RCL, the Razor markup (.cshtml file) in the web app takes precedence.

View or download sample code (how to download)

Visual Studio

.NET Core CLI

From Visual Studio select Create new a new projectCreate new a new project.

Select Razor Class L ibrar yRazor Class L ibrar y  > NextNext.

Name the library (for example, "RazorClassLib"), > CreateCreate. To avoid a file name collision with the generated

view library, ensure the library name doesn't end in .Views .

Select Suppor t pages and viewsSuppor t pages and views  if you need to support views. By default, only Razor Pages are supported.

Select CreateCreate.

The Razor class library (RCL) template defaults to Razor component development by default. The Suppor tSuppor t

pages and viewspages and views  option supports pages and views.

Add Razor files to the RCL.

The ASP.NET Core templates assume the RCL content is in the Areas folder. See RCL Pages layout to create an

RCL that exposes content in ~/Pages  rather than ~/Areas/Pages .

The RCL can be referenced by:

NuGet package. See Creating NuGet packages and dotnet add package and Create and publish a NuGet

package.

{ProjectName}.csproj. See dotnet-add reference.

When a view, partial view, or Razor Page is found in both the web app and the RCL, the Razor markup (.cshtml

file) in the web app takes precedence. For example, add WebApp1/Areas/MyFeature/Pages/Page1.cshtml to

WebApp1, and Page1 in the WebApp1 will take precedence over Page1 in the RCL.

In the sample download, rename WebApp1/Areas/MyFeature2 to WebApp1/Areas/MyFeature to test

precedence.

Copy the RazorUIClassLib/Areas/MyFeature/Pages/Shared/_Message.cshtml partial view to

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/razor-pages/ui-class.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/ui-class/samples
https://docs.microsoft.com/en-us/nuget/create-packages/creating-a-package
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://docs.microsoft.com/en-us/nuget/quickstart/create-and-publish-a-package-using-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-add-reference


    

  

RCL Pages layoutRCL Pages layout

<body>
  <partial name="_Header">
  @RenderBody()
  <partial name="_Footer">
</body>

Create an RCL with static assets

Exclude static assetsExclude static assets

<PropertyGroup>
  <DefaultItemExcludes>$(DefaultItemExcludes);wwwroot\lib.css</DefaultItemExcludes>
</PropertyGroup>

Typescript integrationTypescript integration

WebApp1/Areas/MyFeature/Pages/Shared/_Message.cshtml. Update the markup to indicate the new location.

Build and run the app to verify the app's version of the partial is being used.

To reference RCL content as though it is part of the web app's Pages folder, create the RCL project with the

following file structure:

RazorUIClassLib/Pages

RazorUIClassLib/Pages/Shared

Suppose RazorUIClassLib/Pages/Shared contains two partial files: _Header.cshtml and _Footer.cshtml. The 

<partial>  tags could be added to _Layout.cshtml file:

An RCL may require companion static assets that can be referenced by either the RCL or the consuming app of

the RCL. ASP.NET Core allows creating RCLs that include static assets that are available to a consuming app.

To include companion assets as part of an RCL, create a wwwroot folder in the class library and include any

required files in that folder.

When packing an RCL, all companion assets in the wwwroot folder are automatically included in the package.

Use the dotnet pack  command rather than the NuGet.exe version nuget pack .

To exclude static assets, add the desired exclusion path to the $(DefaultItemExcludes)  property group in the

project file. Separate entries with a semicolon ( ; ).

In the following example, the lib.css stylesheet in the wwwroot folder isn't considered a static asset and isn't

included in the published RCL:

To include TypeScript files in an RCL:

<TypescriptOutDir>wwwroot</TypescriptOutDir>

1. Place the TypeScript files (.ts) outside of the wwwroot folder. For example, place the files in a Client folder.

2. Configure the TypeScript build output for the wwwroot folder. Set the TypescriptOutDir  property inside

of a PropertyGroup  in the project file:

3. Include the TypeScript target as a dependency of the ResolveCurrentProjectStaticWebAssets  target by

adding the following target inside of a PropertyGroup  in the project file:



    Consume content from a referenced RCLConsume content from a referenced RCL

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    ...

    app.UseStaticFiles();

    ...
}

using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Hosting;

public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStaticWebAssets();
                webBuilder.UseStartup<Startup>();
            });
}

Multi-project development flowMulti-project development flow

<ResolveCurrentProjectStaticWebAssetsInputsDependsOn>
  CompileTypeScript;
  $(ResolveCurrentProjectStaticWebAssetsInputs)
</ResolveCurrentProjectStaticWebAssetsInputsDependsOn>

The files included in the wwwroot folder of the RCL are exposed to either the RCL or the consuming app under

the prefix _content/{LIBRARY NAME}/ . For example, a library named Razor.Class.Lib results in a path to static

content at _content/Razor.Class.Lib/ . When producing a NuGet package and the assembly name isn't the same

as the package ID, use the package ID for {LIBRARY NAME} .

The consuming app references static assets provided by the library with <script> , <style> , <img> , and other

HTML tags. The consuming app must have static file support enabled in Startup.Configure :

When running the consuming app from build output ( dotnet run ), static web assets are enabled by default in

the Development environment. To support assets in other environments when running from build output, call 

UseStaticWebAssets  on the host builder in Program.cs:

Calling UseStaticWebAssets  isn't required when running an app from published output ( dotnet publish ).

When the consuming app runs:

The assets in the RCL stay in their original folders. The assets aren't moved to the consuming app.

Any change within the RCL's wwwroot folder is reflected in the consuming app after the RCL is rebuilt and

without rebuilding the consuming app.

When the RCL is built, a manifest is produced that describes the static web asset locations. The consuming app

reads the manifest at runtime to consume the assets from referenced projects and packages. When a new asset

is added to an RCL, the RCL must be rebuilt to update its manifest before a consuming app can access the new



PublishPublish

Create a class library containing Razor UI

<Project Sdk="Microsoft.NET.Sdk.Razor">

  <PropertyGroup>
    <TargetFramework>netstandard2.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.2.0" />
  </ItemGroup>

</Project>

Reference RCL content

Walkthrough: Create an RCL project and use from a Razor Pages
project

asset.

When the app is published, the companion assets from all referenced projects and packages are copied into the

wwwroot folder of the published app under _content/{LIBRARY NAME}/ .

Razor views, pages, controllers, page models, Razor components, View components, and data models can be

built into a Razor class library (RCL). The RCL can be packaged and reused. Applications can include the RCL and

override the views and pages it contains. When a view, partial view, or Razor Page is found in both the web app

and the RCL, the Razor markup (.cshtml file) in the web app takes precedence.

View or download sample code (how to download)

Visual Studio

.NET Core CLI

From the Visual Studio FileFile menu, select NewNew  > ProjectProject.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application.

Name the library (for example, "RazorClassLib") > OKOK. To avoid a file name collision with the generated view

library, ensure the library name doesn't end in .Views .

Verify ASP.NET Core 2.1ASP.NET Core 2.1  or later is selected.

Select Razor Class L ibrar yRazor Class L ibrar y  > OKOK.

An RCL has the following project file:

Add Razor files to the RCL.

The ASP.NET Core templates assume the RCL content is in the Areas folder. See RCL Pages layout to create an

RCL that exposes content in ~/Pages  rather than ~/Areas/Pages .

The RCL can be referenced by:

NuGet package. See Creating NuGet packages and dotnet add package and Create and publish a NuGet

package.

{ProjectName}.csproj. See dotnet-add reference.

You can download the complete project and test it rather than creating it. The sample download contains

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/ui-class/samples
https://docs.microsoft.com/en-us/nuget/create-packages/creating-a-package
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://docs.microsoft.com/en-us/nuget/quickstart/create-and-publish-a-package-using-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-add-reference
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/razor-pages/ui-class/samples


 

Test the download appTest the download app

Create an RCL

Add Razor files and folders to the projectAdd Razor files and folders to the project

additional code and links that make the project easy to test. You can leave feedback in this GitHub issue with

your comments on download samples versus step-by-step instructions.

If you haven't downloaded the completed app and would rather create the walkthrough project, skip to the next

section.

Visual Studio

.NET Core CLI

Open the .sln file in Visual Studio. Run the app.

Follow the instructions in Test WebApp1

In this section, an RCL is created. Razor files are added to the RCL.

Visual Studio

.NET Core CLI

Create the RCL project:

From the Visual Studio FileFile menu, select NewNew  > ProjectProject.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application.

Name the app RazorUIClassL ibRazorUIClassL ib > OKOK.

Verify ASP.NET Core 2.1ASP.NET Core 2.1  or later is selected.

Select Razor Class L ibrar yRazor Class L ibrar y  > OKOK.

Add a Razor partial view file named RazorUIClassLib/Areas/MyFeature/Pages/Shared/_Message.cshtml.

<h3>_Message.cshtml partial view.</h3>

<p>RazorUIClassLib\Areas\MyFeature\Pages\Shared\_Message.cshtml</p>

@page
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<h2>Hello from a Razor UI class library!</h2>
<p> From  RazorUIClassLib\Areas\MyFeature\Pages\Page1.cshtml</p>

<partial name="_Message" />

dotnet new viewimports -o RazorUIClassLib/Areas/MyFeature/Pages

Replace the markup in RazorUIClassLib/Areas/MyFeature/Pages/Shared/_Message.cshtml with the

following code:

Replace the markup in RazorUIClassLib/Areas/MyFeature/Pages/Page1.cshtml with the following code:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers  is required to use the partial view (

<partial name="_Message" /> ). Rather than including the @addTagHelper  directive, you can add a

_ViewImports.cshtml file. For example:

For more information on _ViewImports.cshtml, see Importing Shared Directives

https://github.com/dotnet/AspNetCore.Docs/issues/6098


  

Use the Razor UI library from a Razor Pages projectUse the Razor UI library from a Razor Pages project

Test WebApp1Test WebApp1

Override views, partial views, and pages

RCL Pages layoutRCL Pages layout

dotnet build RazorUIClassLib

Build the class library to verify there are no compiler errors:

The build output contains RazorUIClassLib.dll and RazorUIClassLib.Views.dll. RazorUIClassLib.Views.dll contains

the compiled Razor content.

Visual Studio

.NET Core CLI

Create the Razor Pages web app:

From Solution ExplorerSolution Explorer , right-click the solution > AddAdd > New ProjectNew Project.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application.

Name the app WebApp1WebApp1 .

Verify ASP.NET Core 2.1ASP.NET Core 2.1  or later is selected.

Select Web ApplicationWeb Application > OKOK.

From Solution ExplorerSolution Explorer , right-click on WebApp1WebApp1  and select Set as Star tUp ProjectSet as Star tUp Project.

From Solution ExplorerSolution Explorer , right-click on WebApp1WebApp1  and select Build DependenciesBuild Dependencies  > ProjectProject

DependenciesDependencies .

Check RazorUIClassL ibRazorUIClassL ib as a dependency of WebApp1WebApp1 .

From Solution ExplorerSolution Explorer , right-click on WebApp1WebApp1  and select AddAdd > ReferenceReference.

In the Reference ManagerReference Manager  dialog, check RazorUIClassL ibRazorUIClassL ib > OKOK.

Run the app.

Browse to /MyFeature/Page1  to verify that the Razor UI class library is in use.

When a view, partial view, or Razor Page is found in both the web app and the RCL, the Razor markup (.cshtml

file) in the web app takes precedence. For example, add WebApp1/Areas/MyFeature/Pages/Page1.cshtml to

WebApp1, and Page1 in the WebApp1 will take precedence over Page1 in the RCL.

In the sample download, rename WebApp1/Areas/MyFeature2 to WebApp1/Areas/MyFeature to test

precedence.

Copy the RazorUIClassLib/Areas/MyFeature/Pages/Shared/_Message.cshtml partial view to

WebApp1/Areas/MyFeature/Pages/Shared/_Message.cshtml. Update the markup to indicate the new location.

Build and run the app to verify the app's version of the partial is being used.

To reference RCL content as though it is part of the web app's Pages folder, create the RCL project with the

following file structure:

RazorUIClassLib/Pages

RazorUIClassLib/Pages/Shared



<body>
  <partial name="_Header">
  @RenderBody()
  <partial name="_Footer">
</body>

Additional resources

Suppose RazorUIClassLib/Pages/Shared contains two partial files: _Header.cshtml and _Footer.cshtml. The 

<partial>  tags could be added to _Layout.cshtml file:

ASP.NET Core Razor components class libraries



ASP.NET Core built-in Tag Helpers
9/22/2020 • 2 minutes to read • Edit Online

Built-in ASP.NET Core Tag Helpers

Additional resources

By Peter Kellner

For an overview of Tag Helpers, see Tag Helpers in ASP.NET Core.

There are built-in Tag Helpers which aren't listed in this document. The unlisted Tag Helpers are used internally by

the Razor view engine. The Tag Helper for the ~  (tilde) character is unlisted. The tilde Tag Helper expands to the

root path of the website.

Anchor Tag HelperAnchor Tag Helper

Cache Tag HelperCache Tag Helper

Component Tag HelperComponent Tag Helper

Distr ibuted Cache Tag HelperDistr ibuted Cache Tag Helper

Environment Tag HelperEnvironment Tag Helper

Form Tag HelperForm Tag Helper

Form Action Tag HelperForm Action Tag Helper

Image Tag HelperImage Tag Helper

Input Tag HelperInput Tag Helper

Label Tag HelperLabel Tag Helper

L ink Tag HelperL ink Tag Helper

Par tial Tag HelperPar tial Tag Helper

Scr ipt Tag HelperScr ipt Tag Helper

Select Tag HelperSelect Tag Helper

Textarea Tag HelperTextarea Tag Helper

Validation Message Tag HelperValidation Message Tag Helper

Validation Summar y Tag HelperValidation Summar y Tag Helper

Tag Helpers in ASP.NET Core

Tag Helper Components in ASP.NET Core

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/index.md
https://peterkellner.net


Tag Helpers in ASP.NET Core
9/22/2020 • 12 minutes to read • Edit Online

What are Tag Helpers

What Tag Helpers provide

By Rick Anderson

Tag Helpers enable server-side code to participate in creating and rendering HTML elements

in Razor files. For example, the built-in ImageTagHelper  can append a version number to the

image name. Whenever the image changes, the server generates a new unique version for

the image, so clients are guaranteed to get the current image (instead of a stale cached

image). There are many built-in Tag Helpers for common tasks - such as creating forms,

links, loading assets and more - and even more available in public GitHub repositories and

as NuGet packages. Tag Helpers are authored in C#, and they target HTML elements based

on element name, attribute name, or parent tag. For example, the built-in LabelTagHelper

can target the HTML <label>  element when the LabelTagHelper  attributes are applied. If

you're familiar with HTML Helpers, Tag Helpers reduce the explicit transitions between

HTML and C# in Razor views. In many cases, HTML Helpers provide an alternative approach

to a specific Tag Helper, but it's important to recognize that Tag Helpers don't replace HTML

Helpers and there's not a Tag Helper for each HTML Helper. Tag Helpers compared to HTML

Helpers explains the differences in more detail.

An HTML-fr iendly development experienceAn HTML-fr iendly development experience For the most part, Razor markup using Tag

Helpers looks like standard HTML. Front-end designers conversant with

HTML/CSS/JavaScript can edit Razor without learning C# Razor syntax.

A r ich IntelliSense environment for creating HTML and Razor markupA r ich IntelliSense environment for creating HTML and Razor markup This is in

sharp contrast to HTML Helpers, the previous approach to server-side creation of markup in

Razor views. Tag Helpers compared to HTML Helpers explains the differences in more detail.

IntelliSense support for Tag Helpers explains the IntelliSense environment. Even developers

experienced with Razor C# syntax are more productive using Tag Helpers than writing C#

Razor markup.

A way to make you more productive and able to produce more robust, reliable,A way to make you more productive and able to produce more robust, reliable,

and maintainable code using information only available on the ser verand maintainable code using information only available on the ser ver  For

example, historically the mantra on updating images was to change the name of the image

when you change the image. Images should be aggressively cached for performance

reasons, and unless you change the name of an image, you risk clients getting a stale copy.

Historically, after an image was edited, the name had to be changed and each reference to

the image in the web app needed to be updated. Not only is this very labor intensive, it's

also error prone (you could miss a reference, accidentally enter the wrong string, etc.) The

built-in ImageTagHelper  can do this for you automatically. The ImageTagHelper  can append a

version number to the image name, so whenever the image changes, the server

automatically generates a new unique version for the image. Clients are guaranteed to get

the current image. This robustness and labor savings comes essentially free by using the 

ImageTagHelper .

Most built-in Tag Helpers target standard HTML elements and provide server-side attributes

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/intro.md
https://twitter.com/RickAndMSFT
https://stephenwalther.com/archive/2009/03/03/chapter-6-understanding-html-helpers


 

    

public class Movie
{
    public int ID { get; set; }
    public string Title { get; set; }
    public DateTime ReleaseDate { get; set; }
    public string Genre { get; set; }
    public decimal Price { get; set; }
}

<label asp-for="Movie.Title"></label>

<label for="Movie_Title">Title</label>

Managing Tag Helper scope

@addTagHelper  makes Tag Helpers available makes Tag Helpers available

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, AuthoringTagHelpers

for the element. For example, the <input>  element used in many views in the

Views/Account folder contains the asp-for  attribute. This attribute extracts the name of the

specified model property into the rendered HTML. Consider a Razor view with the following

model:

The following Razor markup:

Generates the following HTML:

The asp-for  attribute is made available by the For  property in the LabelTagHelper. See

Author Tag Helpers for more information.

Tag Helpers scope is controlled by a combination of @addTagHelper , @removeTagHelper , and

the "!" opt-out character.

  

If you create a new ASP.NET Core web app named AuthoringTagHelpers, the following

Views/_ViewImports.cshtml file will be added to your project:

The @addTagHelper  directive makes Tag Helpers available to the view. In this case, the view

file is Pages/_ViewImports.cshtml, which by default is inherited by all files in the Pages

folder and subfolders; making Tag Helpers available. The code above uses the wildcard

syntax ("*") to specify that all Tag Helpers in the specified assembly

(Microsoft.AspNetCore.Mvc.TagHelpers) will be available to every view file in the Views

directory or subdirectory. The first parameter after @addTagHelper  specifies the Tag Helpers

to load (we are using "*" for all Tag Helpers), and the second parameter

"Microsoft.AspNetCore.Mvc.TagHelpers" specifies the assembly containing the Tag Helpers.

Microsoft.AspNetCore.Mvc.TagHelpers is the assembly for the built-in ASP.NET Core Tag

Helpers.

To expose all of the Tag Helpers in this project (which creates an assembly named

AuthoringTagHelpers), you would use the following:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.labeltaghelper?view=aspnetcore-2.0


@using AuthoringTagHelpers
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, AuthoringTagHelpers

@using AuthoringTagHelpers
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper AuthoringTagHelpers.TagHelpers.EmailTagHelper, AuthoringTagHelpers

@addTagHelper AuthoringTagHelpers.TagHelpers.E*, AuthoringTagHelpers
@addTagHelper AuthoringTagHelpers.TagHelpers.Email*, AuthoringTagHelpers

@removeTagHelper  removes Tag Helpers removes Tag Helpers

Controlling Tag Helper scope with the Controlling Tag Helper scope with the _ViewImports.cshtml_ViewImports.cshtml file file

Opting out of individual elementsOpting out of individual elements

<!span asp-validation-for="Email" class="text-danger"></!span>

If your project contains an EmailTagHelper  with the default namespace (

AuthoringTagHelpers.TagHelpers.EmailTagHelper ), you can provide the fully qualified name

(FQN) of the Tag Helper :

To add a Tag Helper to a view using an FQN, you first add the FQN (

AuthoringTagHelpers.TagHelpers.EmailTagHelper ), and then the assembly name

(AuthoringTagHelpers). Most developers prefer to use the "*" wildcard syntax. The wildcard

syntax allows you to insert the wildcard character "*" as the suffix in an FQN. For example,

any of the following directives will bring in the EmailTagHelper :

As mentioned previously, adding the @addTagHelper  directive to the

Views/_ViewImports.cshtml file makes the Tag Helper available to all view files in the Views

directory and subdirectories. You can use the @addTagHelper  directive in specific view files if

you want to opt-in to exposing the Tag Helper to only those views.

  

The @removeTagHelper  has the same two parameters as @addTagHelper , and it removes a

Tag Helper that was previously added. For example, @removeTagHelper  applied to a specific

view removes the specified Tag Helper from the view. Using @removeTagHelper  in a

Views/Folder/_ViewImports.cshtml file removes the specified Tag Helper from all of the

views in Folder.

You can add a _ViewImports.cshtml to any view folder, and the view engine applies the

directives from both that file and the Views/_ViewImports.cshtml file. If you added an empty

Views/Home/_ViewImports.cshtml file for the Home views, there would be no change

because the _ViewImports.cshtml file is additive. Any @addTagHelper  directives you add to

the Views/Home/_ViewImports.cshtml file (that are not in the default

Views/_ViewImports.cshtml file) would expose those Tag Helpers to views only in the Home

folder.

  

You can disable a Tag Helper at the element level with the Tag Helper opt-out character ("!").

For example, Email  validation is disabled in the <span>  with the Tag Helper opt-out

character :

You must apply the Tag Helper opt-out character to the opening and closing tag. (The Visual

Studio editor automatically adds the opt-out character to the closing tag when you add one



  

Using Using @tagHelperPrefix  to make Tag Helper usage explicit to make Tag Helper usage explicit

@tagHelperPrefix th:

Self-closing Tag Helpers

C# in Tag Helpers attribute/declaration

<input asp-for="LastName"  
       @(Model?.LicenseId == null ? "disabled" : string.Empty) />

<input asp-for="LastName" 
       disabled="@(Model?.LicenseId == null)" />

IntelliSense support for Tag Helpers

to the opening tag). After you add the opt-out character, the element and Tag Helper

attributes are no longer displayed in a distinctive font.

  

The @tagHelperPrefix  directive allows you to specify a tag prefix string to enable Tag Helper

support and to make Tag Helper usage explicit. For example, you could add the following

markup to the Views/_ViewImports.cshtml file:

In the code image below, the Tag Helper prefix is set to th: , so only those elements using

the prefix th:  support Tag Helpers (Tag Helper-enabled elements have a distinctive font).

The <label>  and <input>  elements have the Tag Helper prefix and are Tag Helper-enabled,

while the <span>  element doesn't.

The same hierarchy rules that apply to @addTagHelper  also apply to @tagHelperPrefix .

Many Tag Helpers can't be used as self-closing tags. Some Tag Helpers are designed to be

self-closing tags. Using a Tag Helper that was not designed to be self-closing suppresses the

rendered output. Self-closing a Tag Helper results in a self-closing tag in the rendered

output. For more information, see this note in Authoring Tag Helpers.

Tag Helpers do not allow C# in the element's attribute or tag declaration area. For example,

the following code is not valid:

The preceding code can be written as:

When you create a new ASP.NET Core web app in Visual Studio, it adds the NuGet package

"Microsoft.AspNetCore.Razor.Tools". This is the package that adds Tag Helper tooling.

Consider writing an HTML <label>  element. As soon as you enter <l  in the Visual Studio

editor, IntelliSense displays matching elements:



Not only do you get HTML help, but the icon (the "@" symbol with "<>" under it).

identifies the element as targeted by Tag Helpers. Pure HTML elements (such as the 

fieldset ) display the "<>" icon.

A pure HTML <label>  tag displays the HTML tag (with the default Visual Studio color

theme) in a brown font, the attributes in red, and the attribute values in blue.

After you enter <label , IntelliSense lists the available HTML/CSS attributes and the Tag

Helper-targeted attributes:

IntelliSense statement completion allows you to enter the tab key to complete the statement

with the selected value:

As soon as a Tag Helper attribute is entered, the tag and attribute fonts change. Using the

default Visual Studio "Blue" or "Light" color theme, the font is bold purple. If you're using the

"Dark" theme the font is bold teal. The images in this document were taken using the

default theme.

You can enter the Visual Studio CompleteWord shortcut (Ctrl +spacebar is the default inside

the double quotes (""), and you are now in C#, just like you would be in a C# class.

IntelliSense displays all the methods and properties on the page model. The methods and

properties are available because the property type is ModelExpression . In the image below,

I'm editing the Register  view, so the RegisterViewModel  is available.

https://docs.microsoft.com/en-us/visualstudio/ide/default-keyboard-shortcuts-in-visual-studio


  Tag Helpers compared to HTML Helpers

@Html.Label("FirstName", "First Name:", new {@class="caption"})

new {@class="caption"}

<label class="caption" asp-for="FirstName"></label>

IntelliSense lists the properties and methods available to the model on the page. The rich

IntelliSense environment helps you select the CSS class:

Tag Helpers attach to HTML elements in Razor views, while HTML Helpers are invoked as

methods interspersed with HTML in Razor views. Consider the following Razor markup,

which creates an HTML label with the CSS class "caption":

The at ( @ ) symbol tells Razor this is the start of code. The next two parameters

("FirstName" and "First Name:") are strings, so IntelliSense can't help. The last argument:

Is an anonymous object used to represent attributes. Because class  is a reserved keyword

in C#, you use the @  symbol to force C# to interpret @class=  as a symbol (property name).

To a front-end designer (someone familiar with HTML/CSS/JavaScript and other client

technologies but not familiar with C# and Razor), most of the line is foreign. The entire line

must be authored with no help from IntelliSense.

Using the LabelTagHelper , the same markup can be written as:

With the Tag Helper version, as soon as you enter <l  in the Visual Studio editor,

IntelliSense displays matching elements:

https://stephenwalther.com/archive/2009/03/03/chapter-6-understanding-html-helpers
https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense


@Html.AntiForgeryToken()

IntelliSense helps you write the entire line.

The following code image shows the Form portion of the Views/Account/Register.cshtml

Razor view generated from the ASP.NET 4.5.x MVC template included with Visual Studio.

The Visual Studio editor displays C# code with a grey background. For example, the 

AntiForgeryToken  HTML Helper :

is displayed with a grey background. Most of the markup in the Register view is C#.

Compare that to the equivalent approach using Tag Helpers:



<div class="form-group">
    <label asp-for="Email" class="col-md-2 control-label"></label>
    <div class="col-md-10">
        <input asp-for="Email" class="form-control" />
        <span asp-validation-for="Email" class="text-danger"></span>
    </div>
</div>

Tag Helpers compared to Web Server Controls

The markup is much cleaner and easier to read, edit, and maintain than the HTML Helpers

approach. The C# code is reduced to the minimum that the server needs to know about. The

Visual Studio editor displays markup targeted by a Tag Helper in a distinctive font.

Consider the Email group:

Each of the "asp-" attributes has a value of "Email", but "Email" isn't a string. In this context,

"Email" is the C# model expression property for the RegisterViewModel .

The Visual Studio editor helps you write allall  of the markup in the Tag Helper approach of the

register form, while Visual Studio provides no help for most of the code in the HTML

Helpers approach. IntelliSense support for Tag Helpers goes into detail on working with Tag

Helpers in the Visual Studio editor.

Tag Helpers don't own the element they're associated with; they simply participate in

the rendering of the element and content. ASP.NET /previous-

versions/dotnet/netframework-3.0/7698y1f0(v=vs.85) are declared and invoked on

a page.

/previous-versions/zsyt68f1(v=vs.140) have a non-trivial lifecycle that can make

developing and debugging difficult.

Web Server controls allow you to add functionality to the client Document Object

Model (DOM) elements by using a client control. Tag Helpers have no DOM.

https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-3.0/7698y1f0(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/zsyt68f1(v=vs.140)


Customizing the Tag Helper element font

Built-in ASP.NET Core Tag Helpers

Web Server controls include automatic browser detection. Tag Helpers have no

knowledge of the browser.

Multiple Tag Helpers can act on the same element (see Avoiding Tag Helper conflicts )

while you typically can't compose Web Server controls.

Tag Helpers can modify the tag and content of HTML elements that they're scoped to,

but don't directly modify anything else on a page. Web Server controls have a less

specific scope and can perform actions that affect other parts of your page; enabling

unintended side effects.

Web Server controls use type converters to convert strings into objects. With Tag

Helpers, you work natively in C#, so you don't need to do type conversion.

Web Server controls use System.ComponentModel to implement the run-time and

design-time behavior of components and controls. System.ComponentModel  includes

the base classes and interfaces for implementing attributes and type converters,

binding to data sources, and licensing components. Contrast that to Tag Helpers,

which typically derive from TagHelper , and the TagHelper  base class exposes only

two methods, Process  and ProcessAsync .

You can customize the font and colorization from ToolsTools  > OptionsOptions  > EnvironmentEnvironment >

Fonts and ColorsFonts and Colors :

Anchor Tag HelperAnchor Tag Helper

Cache Tag HelperCache Tag Helper

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel


Additional resources

Component Tag HelperComponent Tag Helper

Distr ibuted Cache Tag HelperDistr ibuted Cache Tag Helper

Environment Tag HelperEnvironment Tag Helper

Form Tag HelperForm Tag Helper

Form Action Tag HelperForm Action Tag Helper

Image Tag HelperImage Tag Helper

Input Tag HelperInput Tag Helper

Label Tag HelperLabel Tag Helper

L ink Tag HelperL ink Tag Helper

Par tial Tag HelperPar tial Tag Helper

Scr ipt Tag HelperScr ipt Tag Helper

Select Tag HelperSelect Tag Helper

Textarea Tag HelperTextarea Tag Helper

Validation Message Tag HelperValidation Message Tag Helper

Validation Summar y Tag HelperValidation Summar y Tag Helper

Author Tag Helpers

Working with Forms

TagHelperSamples on GitHub contains Tag Helper samples for working with Bootstrap.

https://github.com/dpaquette/TagHelperSamples
https://getbootstrap.com/


Author Tag Helpers in ASP.NET Core
9/22/2020 • 16 minutes to read • Edit Online

Get started with Tag Helpers

A minimal Tag Helper

<email>Support</email>

<a href="mailto:Support@contoso.com">Support@contoso.com</a>

By Rick Anderson

View or download sample code (how to download)

This tutorial provides an introduction to programming Tag Helpers. Introduction to Tag Helpers describes the

benefits that Tag Helpers provide.

A tag helper is any class that implements the ITagHelper  interface. However, when you author a tag helper, you

generally derive from TagHelper , doing so gives you access to the Process  method.

1. Create a new ASP.NET Core project called AuthoringTagHelpersAuthoringTagHelpers . You won't need authentication for this

project.

2. Create a folder to hold the Tag Helpers called TagHelpers. The TagHelpers folder is not required, but it's a

reasonable convention. Now let's get started writing some simple tag helpers.

In this section, you write a tag helper that updates an email tag. For example:

The server will use our email tag helper to convert that markup into the following:

That is, an anchor tag that makes this an email link. You might want to do this if you are writing a blog engine

and need it to send email for marketing, support, and other contacts, all to the same domain.

using Microsoft.AspNetCore.Razor.TagHelpers;
using System.Threading.Tasks;

namespace AuthoringTagHelpers.TagHelpers
{
    public class EmailTagHelper : TagHelper
    {
        public override void Process(TagHelperContext context, TagHelperOutput output)
        {
            output.TagName = "a";    // Replaces <email> with <a> tag
        }
    }
}

1. Add the following EmailTagHelper  class to the TagHelpers folder.

Tag helpers use a naming convention that targets elements of the root class name (minus the

TagHelper portion of the class name). In this example, the root name of EmailTagHelperEmailTagHelper  is email,

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/authoring.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/tag-helpers/authoring/sample


@using AuthoringTagHelpers
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper AuthoringTagHelpers.TagHelpers.EmailTagHelper, AuthoringTagHelpers

public class Email : TagHelper

@using AuthoringTagHelpers
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, AuthoringTagHelpers

so the <email>  tag will be targeted. This naming convention should work for most tag helpers,

later on I'll show how to override it.

The EmailTagHelper  class derives from TagHelper . The TagHelper  class provides methods and

properties for writing Tag Helpers.

The overridden Process  method controls what the tag helper does when executed. The TagHelper

class also provides an asynchronous version ( ProcessAsync ) with the same parameters.

The context parameter to Process  (and ProcessAsync ) contains information associated with the

execution of the current HTML tag.

The output parameter to Process  (and ProcessAsync ) contains a stateful HTML element

representative of the original source used to generate an HTML tag and content.

Our class name has a suffix of TagHelperTagHelper , which is not required, but it's considered a best practice

convention. You could declare the class as:

2. To make the EmailTagHelper  class available to all our Razor views, add the addTagHelper  directive to the

Views/_ViewImports.cshtml file:

The code above uses the wildcard syntax to specify all the tag helpers in our assembly will be available.

The first string after @addTagHelper  specifies the tag helper to load (Use "*" for all tag helpers), and the

second string "AuthoringTagHelpers" specifies the assembly the tag helper is in. Also, note that the second

line brings in the ASP.NET Core MVC tag helpers using the wildcard syntax (those helpers are discussed in

Introduction to Tag Helpers.) It's the @addTagHelper  directive that makes the tag helper available to the

Razor view. Alternatively, you can provide the fully qualified name (FQN) of a tag helper as shown below:

To add a tag helper to a view using a FQN, you first add the FQN ( AuthoringTagHelpers.TagHelpers.EmailTagHelper

), and then the assembly nameassembly name (AuthoringTagHelpers, not necessarily the namespace ). Most developers will

prefer to use the wildcard syntax. Introduction to Tag Helpers goes into detail on tag helper adding, removing,

hierarchy, and wildcard syntax.

1. Update the markup in the Views/Home/Contact.cshtml file with these changes:



SetAttribute and SetContent

public class EmailTagHelper : TagHelper
{
    private const string EmailDomain = "contoso.com";

    // Can be passed via <email mail-to="..." />. 
    // PascalCase gets translated into kebab-case.
    public string MailTo { get; set; }

    public override void Process(TagHelperContext context, TagHelperOutput output)
    {
        output.TagName = "a";    // Replaces <email> with <a> tag

        var address = MailTo + "@" + EmailDomain;
        output.Attributes.SetAttribute("href", "mailto:" + address);
        output.Content.SetContent(address);
    }
}

@{
    ViewData["Title"] = "Contact";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<address>
    One Microsoft Way<br />
    Redmond, WA 98052<br />
    <abbr title="Phone">P:</abbr>
    425.555.0100
</address>

<address>
    <strong>Support:</strong><email>Support</email><br />
    <strong>Marketing:</strong><email>Marketing</email>
</address>

2. Run the app and use your favorite browser to view the HTML source so you can verify that the email tags

are replaced with anchor markup (For example, <a>Support</a> ). Support and Marketing are rendered as

a links, but they don't have an href  attribute to make them functional. We'll fix that in the next section.

In this section, we'll update the EmailTagHelper  so that it will create a valid anchor tag for email. We'll update it to

take information from a Razor view (in the form of a mail-to  attribute) and use that in generating the anchor.

Update the EmailTagHelper  class with the following:

Pascal-cased class and property names for tag helpers are translated into their kebab case. Therefore, to

use the MailTo  attribute, you'll use <email mail-to="value"/>  equivalent.

The last line sets the completed content for our minimally functional tag helper.

The highlighted line shows the syntax for adding attributes:

https://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101


public override void Process(TagHelperContext context, TagHelperOutput output)
{
    output.TagName = "a";    // Replaces <email> with <a> tag

    var address = MailTo + "@" + EmailDomain;
    output.Attributes.SetAttribute("href", "mailto:" + address);
    output.Content.SetContent(address);
}

NOTENOTE

[HtmlTargetElement("email", TagStructure = TagStructure.WithoutEndTag)] 
public class EmailVoidTagHelper : TagHelper
{
    private const string EmailDomain = "contoso.com";
    // Code removed for brevity

ProcessAsyncProcessAsync

That approach works for the attribute "href" as long as it doesn't currently exist in the attributes collection. You

can also use the output.Attributes.Add  method to add a tag helper attribute to the end of the collection of tag

attributes.

@{
    ViewData["Title"] = "Contact Copy";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<address>
    One Microsoft Way Copy Version <br />
    Redmond, WA 98052-6399<br />
    <abbr title="Phone">P:</abbr>
    425.555.0100
</address>

<address>
    <strong>Support:</strong><email mail-to="Support"></email><br />
    <strong>Marketing:</strong><email mail-to="Marketing"></email>
</address>

1. Update the markup in the Views/Home/Contact.cshtml file with these changes:

2. Run the app and verify that it generates the correct links.

  

If you were to write the email tag self-closing ( <email mail-to="Rick" /> ), the final output would also be self-closing. To

enable the ability to write the tag with only a start tag ( <email mail-to="Rick"> ) you must mark the class with the

following:

With a self-closing email tag helper, the output would be <a href="mailto:Rick@contoso.com" /> . Self-closing

anchor tags are not valid HTML, so you wouldn't want to create one, but you might want to create a tag helper

that's self-closing. Tag helpers set the type of the TagMode  property after reading a tag.

In this section, we'll write an asynchronous email helper.

1. Replace the EmailTagHelper  class with the following code:



RemoveAll, PreContent.SetHtmlContent and PostContent.SetHtmlContentRemoveAll, PreContent.SetHtmlContent and PostContent.SetHtmlContent

public class EmailTagHelper : TagHelper
{
    private const string EmailDomain = "contoso.com";
    public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
    {
        output.TagName = "a";                                 // Replaces <email> with <a> tag
        var content = await output.GetChildContentAsync();
        var target = content.GetContent() + "@" + EmailDomain;
        output.Attributes.SetAttribute("href", "mailto:" + target);
        output.Content.SetContent(target);
    }
}

@{
    ViewData["Title"] = "Contact";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<address>
    One Microsoft Way<br />
    Redmond, WA 98052<br />
    <abbr title="Phone">P:</abbr>
    425.555.0100
</address>

<address>
    <strong>Support:</strong><email>Support</email><br />
    <strong>Marketing:</strong><email>Marketing</email>
</address>

Notes:Notes:

This version uses the asynchronous ProcessAsync  method. The asynchronous 

GetChildContentAsync  returns a Task  containing the TagHelperContent .

Use the output  parameter to get contents of the HTML element.

2. Make the following change to the Views/Home/Contact.cshtml file so the tag helper can get the target

email.

3. Run the app and verify that it generates valid email links.

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace AuthoringTagHelpers.TagHelpers
{
    [HtmlTargetElement(Attributes = "bold")]
    public class BoldTagHelper : TagHelper
    {
        public override void Process(TagHelperContext context, TagHelperOutput output)
        {
            output.Attributes.RemoveAll("bold");
            output.PreContent.SetHtmlContent("<strong>");
            output.PostContent.SetHtmlContent("</strong>");
        }
    }
}

1. Add the following BoldTagHelper  class to the TagHelpers folder.



[HtmlTargetElement("bold")]
[HtmlTargetElement(Attributes = "bold")]
public class BoldTagHelper : TagHelper
{
    public override void Process(TagHelperContext context, TagHelperOutput output)
    {
        output.Attributes.RemoveAll("bold");
        output.PreContent.SetHtmlContent("<strong>");
        output.PostContent.SetHtmlContent("</strong>");
    }
}

[HtmlTargetElement("bold", Attributes = "bold")]

@{
    ViewData["Title"] = "About";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p bold>Use this area to provide additional information.</p>

<bold> Is this bold?</bold>

The [HtmlTargetElement]  attribute passes an attribute parameter that specifies that any HTML

element that contains an HTML attribute named "bold" will match, and the Process  override

method in the class will run. In our sample, the Process  method removes the "bold" attribute and

surrounds the containing markup with <strong></strong> .

Because you don't want to replace the existing tag content, you must write the opening <strong>

tag with the PreContent.SetHtmlContent  method and the closing </strong>  tag with the 

PostContent.SetHtmlContent  method.

2. Modify the About.cshtml view to contain a bold  attribute value. The completed code is shown below.

3. Run the app. You can use your favorite browser to inspect the source and verify the markup.

The [HtmlTargetElement]  attribute above only targets HTML markup that provides an attribute name of

"bold". The <bold>  element wasn't modified by the tag helper.

4. Comment out the [HtmlTargetElement]  attribute line and it will default to targeting <bold>  tags, that is,

HTML markup of the form <bold> . Remember, the default naming convention will match the class name

BoldBoldTagHelper to <bold>  tags.

5. Run the app and verify that the <bold>  tag is processed by the tag helper.

Decorating a class with multiple [HtmlTargetElement]  attributes results in a logical-OR of the targets. For

example, using the code below, a bold tag or a bold attribute will match.

When multiple attributes are added to the same statement, the runtime treats them as a logical-AND. For

example, in the code below, an HTML element must be named "bold" with an attribute named "bold" (

<bold bold /> ) to match.

You can also use the [HtmlTargetElement]  to change the name of the targeted element. For example if you

wanted the BoldTagHelper  to target <MyBold>  tags, you would use the following attribute:



[HtmlTargetElement("MyBold")]

Pass a model to a Tag Helper

using System;

namespace AuthoringTagHelpers.Models
{
    public class WebsiteContext
    {
        public Version Version { get; set; }
        public int CopyrightYear { get; set; }
        public bool Approved { get; set; }
        public int TagsToShow { get; set; }
    }
}

using System;
using AuthoringTagHelpers.Models;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace AuthoringTagHelpers.TagHelpers
{
    public class WebsiteInformationTagHelper : TagHelper
    {
        public WebsiteContext Info { get; set; }

      public override void Process(TagHelperContext context, TagHelperOutput output)
      {
         output.TagName = "section";
         output.Content.SetHtmlContent(
$@"<ul><li><strong>Version:</strong> {Info.Version}</li>
<li><strong>Copyright Year:</strong> {Info.CopyrightYear}</li>
<li><strong>Approved:</strong> {Info.Approved}</li>
<li><strong>Number of tags to show:</strong> {Info.TagsToShow}</li></ul>");
         output.TagMode = TagMode.StartTagAndEndTag;
      }
   }
}

[HtmlTargetElement("WebsiteInformation")]

1. Add a Models folder.

2. Add the following WebsiteContext  class to the Models folder :

3. Add the following WebsiteInformationTagHelper  class to the TagHelpers folder.

As mentioned previously, tag helpers translates Pascal-cased C# class names and properties for tag

helpers into kebab case. Therefore, to use the WebsiteInformationTagHelper  in Razor, you'll write 

<website-information /> .

You are not explicitly identifying the target element with the [HtmlTargetElement]  attribute, so the

default of website-information  will be targeted. If you applied the following attribute (note it's not

kebab case but matches the class name):

The kebab case tag <website-information />  wouldn't match. If you want use the [HtmlTargetElement]

attribute, you would use kebab case as shown below:

https://wiki.c2.com/?KebabCase


[HtmlTargetElement("Website-Information")]

$@"<ul><li><strong>Version:</strong> {Info.Version}</li>

@using AuthoringTagHelpers.Models
@{
    ViewData["Title"] = "About";
    WebsiteContext webContext = new WebsiteContext {
                                    Version = new Version(1, 3),
                                    CopyrightYear = 1638,
                                    Approved = true,
                                    TagsToShow = 131 };
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p bold>Use this area to provide additional information.</p>

<bold> Is this bold?</bold>

<h3> web site info </h3>
<website-information info="webContext" />

NOTENOTE

<website-information info="webContext" />

NOTENOTE

<website-information info="webContext" >
</website-information>

Elements that are self-closing have no content. For this example, the Razor markup will use a self-

closing tag, but the tag helper will be creating a section element (which isn't self-closing and you

are writing content inside the section  element). Therefore, you need to set TagMode  to 

StartTagAndEndTag  to write output. Alternatively, you can comment out the line setting TagMode

and write markup with a closing tag. (Example markup is provided later in this tutorial.)

The $  (dollar sign) in the following line uses an interpolated string:

4. Add the following markup to the About.cshtml view. The highlighted markup displays the web site

information.

In the Razor markup shown below:

Razor knows the info  attribute is a class, not a string, and you want to write C# code. Any non-string tag helper

attribute should be written without the @  character.

5. Run the app, and navigate to the About view to see the web site information.

You can use the following markup with a closing tag and remove the line with TagMode.StartTagAndEndTag  in the

tag helper:

https://www.w3.org/TR/html5/sections.html#the-section-element
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interpolated-strings


Condition Tag Helper
The condition tag helper renders output when passed a true value.

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace AuthoringTagHelpers.TagHelpers
{
    [HtmlTargetElement(Attributes = nameof(Condition))]
    public class ConditionTagHelper : TagHelper
    {
        public bool Condition { get; set; }

        public override void Process(TagHelperContext context, TagHelperOutput output)
        {
            if (!Condition)
            {
                output.SuppressOutput();
            }
        }
    }
}

@using AuthoringTagHelpers.Models
@model WebsiteContext

@{
    ViewData["Title"] = "Home Page";
}

<div>
    <h3>Information about our website (outdated):</h3>
    <Website-InforMation info="Model" />
    <div condition="Model.Approved">
        <p>
            This website has <strong surround="em">@Model.Approved</strong> been approved yet.
            Visit www.contoso.com for more information.
        </p>
    </div>
</div>

public IActionResult Index(bool approved = false)
{
    return View(new WebsiteContext
    {
        Approved = approved,
        CopyrightYear = 2015,
        Version = new Version(1, 3, 3, 7),
        TagsToShow = 20
    });
}

1. Add the following ConditionTagHelper  class to the TagHelpers folder.

2. Replace the contents of the Views/Home/Index.cshtml file with the following markup:

3. Replace the Index  method in the Home  controller with the following code:

4. Run the app and browse to the home page. The markup in the conditional div  won't be rendered.

Append the query string ?approved=true  to the URL (for example, 

http://localhost:1235/Home/Index?approved=true ). approved  is set to true and the conditional markup will



    

NOTENOTE

[HtmlTargetElement(Attributes = nameof(Condition))]
 //   [HtmlTargetElement(Attributes = "condition")]
 public class ConditionTagHelper : TagHelper
{
   public bool Condition { get; set; }

   public override void Process(TagHelperContext context, TagHelperOutput output)
   {
      if (!Condition)
      {
         output.SuppressOutput();
      }
   }
}

Avoid Tag Helper conflictsAvoid Tag Helper conflicts

be displayed.

Use the nameof operator to specify the attribute to target rather than specifying a string as you did with the bold tag

helper:

The nameof operator will protect the code should it ever be refactored (we might want to change the name to 

RedCondition ).

In this section, you write a pair of auto-linking tag helpers. The first will replace markup containing a URL starting

with HTTP to an HTML anchor tag containing the same URL (and thus yielding a link to the URL). The second will

do the same for a URL starting with WWW.

Because these two helpers are closely related and you may refactor them in the future, we'll keep them in the

same file.

[HtmlTargetElement("p")]
public class AutoLinkerHttpTagHelper : TagHelper
{
    public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
    {
        var childContent = await output.GetChildContentAsync();
        // Find Urls in the content and replace them with their anchor tag equivalent.
        output.Content.SetHtmlContent(Regex.Replace(
             childContent.GetContent(),
             @"\b(?:https?://)(\S+)\b",
              "<a target=\"_blank\" href=\"$0\">$0</a>"));  // http link version}
    }
}

NOTENOTE

1. Add the following AutoLinkerHttpTagHelper  class to the TagHelpers folder.

The AutoLinkerHttpTagHelper  class targets p  elements and uses Regex to create the anchor.

2. Add the following markup to the end of the Views/Home/Contact.cshtml file:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/nameof
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/nameof
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference


@{
    ViewData["Title"] = "Contact";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<address>
    One Microsoft Way<br />
    Redmond, WA 98052<br />
    <abbr title="Phone">P:</abbr>
    425.555.0100
</address>

<address>
    <strong>Support:</strong><email>Support</email><br />
    <strong>Marketing:</strong><email>Marketing</email>
</address>

<p>Visit us at http://docs.asp.net or at www.microsoft.com</p>

    [HtmlTargetElement("p")]
    public class AutoLinkerHttpTagHelper : TagHelper
    {
        public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
        {
            var childContent = await output.GetChildContentAsync();
            // Find Urls in the content and replace them with their anchor tag equivalent.
            output.Content.SetHtmlContent(Regex.Replace(
                 childContent.GetContent(),
                 @"\b(?:https?://)(\S+)\b",
                  "<a target=\"_blank\" href=\"$0\">$0</a>"));  // http link version}
        }
    }

    [HtmlTargetElement("p")]
    public class AutoLinkerWwwTagHelper : TagHelper
    {
        public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
        {
            var childContent = await output.GetChildContentAsync();
            // Find Urls in the content and replace them with their anchor tag equivalent.
            output.Content.SetHtmlContent(Regex.Replace(
                childContent.GetContent(),
                 @"\b(www\.)(\S+)\b",
                 "<a target=\"_blank\" href=\"http://$0\">$0</a>"));  // www version
        }
    }
}

3. Run the app and verify that the tag helper renders the anchor correctly.

4. Update the AutoLinker  class to include the AutoLinkerWwwTagHelper  which will convert www text to an

anchor tag that also contains the original www text. The updated code is highlighted below:

5. Run the app. Notice the www text is rendered as a link but the HTTP text isn't. If you put a break point in

both classes, you can see that the HTTP tag helper class runs first. The problem is that the tag helper

output is cached, and when the WWW tag helper is run, it overwrites the cached output from the HTTP tag

helper. Later in the tutorial we'll see how to control the order that tag helpers run in. We'll fix the code with

the following:



  public class AutoLinkerHttpTagHelper : TagHelper
  {
      public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
      {
          var childContent = output.Content.IsModified ? output.Content.GetContent() :
              (await output.GetChildContentAsync()).GetContent();

          // Find Urls in the content and replace them with their anchor tag equivalent.
          output.Content.SetHtmlContent(Regex.Replace(
               childContent,
               @"\b(?:https?://)(\S+)\b",
                "<a target=\"_blank\" href=\"$0\">$0</a>"));  // http link version}
      }
  }

  [HtmlTargetElement("p")]
  public class AutoLinkerWwwTagHelper : TagHelper
  {
      public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
      {
          var childContent = output.Content.IsModified ? output.Content.GetContent() : 
              (await output.GetChildContentAsync()).GetContent();

          // Find Urls in the content and replace them with their anchor tag equivalent.
          output.Content.SetHtmlContent(Regex.Replace(
               childContent,
               @"\b(www\.)(\S+)\b",
               "<a target=\"_blank\" href=\"http://$0\">$0</a>"));  // www version
      }
  }

NOTENOTE

var childContent = await output.GetChildContentAsync();

var childContent = output.Content.IsModified ? output.Content.GetContent() : 
    (await output.GetChildContentAsync()).GetContent();

In the first edition of the auto-linking tag helpers, you got the content of the target with the following code:

That is, you call GetChildContentAsync  using the TagHelperOutput  passed into the ProcessAsync  method. As

mentioned previously, because the output is cached, the last tag helper to run wins. You fixed that problem with

the following code:

The code above checks to see if the content has been modified, and if it has, it gets the content from the output

buffer.

6. Run the app and verify that the two links work as expected. While it might appear our auto linker tag

helper is correct and complete, it has a subtle problem. If the WWW tag helper runs first, the www links

won't be correct. Update the code by adding the Order  overload to control the order that the tag runs in.

The Order  property determines the execution order relative to other tag helpers targeting the same

element. The default order value is zero and instances with lower values are executed first.



Inspect and retrieve child content

public class AutoLinkerHttpTagHelper : TagHelper
{
    public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
    {
        var childContent = output.Content.IsModified ? output.Content.GetContent() :
            (await output.GetChildContentAsync()).GetContent();

        // Find Urls in the content and replace them with their anchor tag equivalent.
        output.Content.SetHtmlContent(Regex.Replace(
             childContent,
             @"\b(?:https?://)(\S+)\b",
              "<a target=\"_blank\" href=\"$0\">$0</a>"));  // http link version}
    }
}

Load minified partial view TagHelper

public class AutoLinkerHttpTagHelper : TagHelper
{
    // This filter must run before the AutoLinkerWwwTagHelper as it searches and replaces http and 
    // the AutoLinkerWwwTagHelper adds http to the markup.
    public override int Order
    {
        get  {  return int.MinValue;   }
    }

The preceding code guarantees that the HTTP tag helper runs before the WWW tag helper. Change Order

to MaxValue  and verify that the markup generated for the WWW tag is incorrect.

The tag helpers provide several properties to retrieve content.

The result of GetChildContentAsync  can be appended to output.Content .

You can inspect the result of GetChildContentAsync  with GetContent .

If you modify output.Content , the TagHelper body won't be executed or rendered unless you call 

GetChildContentAsync  as in our auto-linker sample:

Multiple calls to GetChildContentAsync  returns the same value and doesn't re-execute the TagHelper  body

unless you pass in a false parameter indicating not to use the cached result.

In production environments, performance can be improved by loading minified partial views. To take advantage

of minified partial view in production:

Create/set up a pre-build process that minifies partial views.

Use the following code to load minified partial views in non-development environments.



public class MinifiedVersionPartialTagHelper : PartialTagHelper
    {
        public MinifiedVersionPartialTagHelper(ICompositeViewEngine viewEngine, 
                                IViewBufferScope viewBufferScope)
                               : base(viewEngine, viewBufferScope)
        {

        }

        public override Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
        {
            // Append ".min" to load the minified partial view.
            if (!IsDevelopment())
            {
                Name += ".min";
            }

            return base.ProcessAsync(context, output);
        }

        private bool IsDevelopment()
        {
            return Environment.GetEnvironmentVariable("ASPNETCORE_ENVIRONMENT") 
                                                 == EnvironmentName.Development;
        }
    }



Tag Helpers in forms in ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
    <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
    <!-- Input and Submit elements -->
    <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

Using a named routeUsing a named route

By Rick Anderson, N. Taylor Mullen, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML

Form element provides the primary mechanism web apps use to post back data to the server. Most of this

document describes Tag Helpers and how they can help you productively create robust HTML forms. We

recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to

recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When an

HTML Helper alternative exists, it's mentioned.

 

The Form Tag Helper :

Generates the HTML <FORM> action  attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the 

[ValidateAntiForgeryToken]  attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name>  attribute, where <Parameter Name>  is added to the route values. The

routeValues  parameters to Html.BeginForm  and Html.BeginRouteForm  provide similar functionality.

Has an HTML Helper alternative Html.BeginForm  and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action  attribute value from the Form Tag Helper attributes asp-controller  and 

asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken]  attribute in the HTTP Post action method). Protecting a

pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route  Tag Helper attribute can also generate markup for the HTML action  attribute. An app with a route

named register  could use the following markup for the registration page:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://github.com/NTaylorMullen
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages


<form asp-route="register" method="post">
    <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
     asp-route-returnurl="@ViewData["ReturnUrl"]"
     method="post" class="form-horizontal" role="form">

NOTENOTE

The Form Action Tag Helper

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N

asp-controller The name of the controller.

asp-action The name of the action method.

asp-area The name of the area.

asp-page The name of the Razor page.

asp-page-handler The name of the Razor page handler.

asp-route The name of the route.

asp-route-{value} A single URL route value. For example, asp-route-id="1234"

.

asp-all-route-data All route values.

asp-fragment The URL fragment.

Submit to controller exampleSubmit to controller example

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User

Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl  is only populated automatically when you try to access an authorized resource but

are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the

login page with the returnUrl  set.

The Form Action Tag Helper generates the formaction  attribute on the generated <button ...>  or 

<input type="image" ...>  tag. The formaction  attribute controls where a form submits its data. It binds to <input>

elements of type image  and <button> elements. The Form Action Tag Helper enables the usage of several

AnchorTagHelper asp-  attributes to control what formaction  link is generated for the corresponding element.

Supported AnchorTagHelper attributes to control the value of formaction :

The following markup submits the form to the Index  action of HomeController  when the input or button are

selected:

https://www.w3.org/wiki/HTML/Elements/input
https://www.w3.org/wiki/HTML/Elements/button


<form method="post">
    <button asp-controller="Home" asp-action="Index">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-controller="Home" 
                                asp-action="Index">
</form>

<form method="post">
    <button formaction="/Home">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home">
</form>

Submit to page exampleSubmit to page example

<form method="post">
    <button asp-page="About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-page="About">
</form>

<form method="post">
    <button formaction="/About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/About">
</form>

Submit to route exampleSubmit to route example

public class HomeController : Controller
{
    [Route("/Home/Test", Name = "Custom")]
    public string Test()
    {
        return "This is the test page";
    }
}

<form method="post">
    <button asp-route="Custom">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-route="Custom">
</form>

<form method="post">
    <button formaction="/Home/Test">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home/Test">
</form>

The previous markup generates following HTML:

The following markup submits the form to the About  Razor Page:

The previous markup generates following HTML:

Consider the /Home/Test  endpoint:

The following markup submits the form to the /Home/Test  endpoint.

The previous markup generates following HTML:



The Input Tag Helper

<input asp-for="<Expression Name>">

. N ET  T Y P E. N ET  T Y P E IN P UT  T Y P EIN P UT  T Y P E

Bool type="checkbox"

String type="text"

DateTime type="datetime-local"

Byte type="number"

Int type="number"

Single, Double type="number"

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
'RegisterViewModel' does not contain a definition for 'Email' and no
extension method 'Email' accepting a first argument of type 'RegisterViewModel'
could be found (are you missing a using directive or an assembly reference?)

Generates the id  and name  HTML attributes for the expression name specified in the asp-for  attribute. 

asp-for="Property1.Property2"  is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for  attribute value. See the Expression names section for additional information.

Sets the HTML type  attribute value based on the model type and data annotation attributes applied to the

model property

Won't overwrite the HTML type  attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor  and Html.EditorFor . See the HTML HelperHTML Helper

alternatives to Input Tag Helperalternatives to Input Tag Helper  section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get

an error similar to the following:

The Input  Tag Helper sets the HTML type  attribute based on the .NET type. The following table lists some

common .NET types and generated HTML type (not every .NET type is listed).

The following table shows some common data annotations attributes that the input tag helper will map to specific

input types (not every validation attribute is listed):

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/HTML/Element/input/datetime-local
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter


AT T RIB UT EAT T RIB UT E IN P UT  T Y P EIN P UT  T Y P E

[EmailAddress] type="email"

[Url] type="url"

[HiddenInput] type="hidden"

[Phone] type="tel"

[DataType(DataType.Password)] type="password"

[DataType(DataType.Date)] type="date"

[DataType(DataType.Time)] type="time"

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    <button type="submit">Register</button>
</form>

  <form method="post" action="/Demo/RegisterInput">
      Email:
      <input type="email" data-val="true"
             data-val-email="The Email Address field is not a valid email address."
             data-val-required="The Email Address field is required."
             id="Email" name="Email" value=""><br>
      Password:
      <input type="password" data-val="true"
             data-val-required="The Password field is required."
             id="Password" name="Password"><br>
      <button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

Sample:

The code above generates the following HTML:



HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty, 
  new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

@{
  var joe = "Joe";
}

<input asp-for="@joe">

<input type="text" id="joe" name="joe" value="Joe">

Navigating child propertiesNavigating child properties

The data annotations applied to the Email  and Password  properties generate metadata on the model. The Input

Tag Helper consumes the model metadata and produces HTML5 data-val-*  attributes (see Model Validation).

These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery

validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of the

validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is

provided in the attribute, it's displayed as the value for the data-val-rule  attribute. There are also attributes of the

form data-val-ruleName-argumentName="argumentValue"  that provide additional details about the rule, for example, 

data-val-maxlength-max="1024"  .

Html.TextBox , Html.TextBoxFor , Html.Editor  and Html.EditorFor  have overlapping features with the Input Tag

Helper. The Input Tag Helper will automatically set the type  attribute; Html.TextBox  and Html.TextBoxFor  won't. 

Html.Editor  and Html.EditorFor  handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor  and Html.TextBoxFor  are strongly typed (they use lambda expressions); 

Html.TextBox  and Html.Editor  are not (they use expression names).

@Html.Editor()  and @Html.EditorFor()  use a special ViewDataDictionary  entry named htmlAttributes  when

executing their default templates. This behavior is optionally augmented using additionalViewData  parameters. The

key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes  object

passed to input helpers like @Html.TextBox() .

The asp-for  attribute value is a ModelExpression  and the right hand side of a lambda expression. Therefore, 

asp-for="Property1"  becomes m => m.Property1  in the generated code which is why you don't need to prefix with 

Model . You can use the "@" character to start an inline expression and move before the m. :

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member"  generates the same name as 

asp-for="CollectionProperty[i].Member"  when i  has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including ModelState .

Consider <input type="text" asp-for="@Name"> . The calculated value  attribute is the first non-null value from:

ModelState  entry with key "Name".

Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex

model class that contains a child Address  property.

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/


public class AddressViewModel
{
    public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
    public string Email { get; set; }

    [DataType(DataType.Password)]
    public string Password { get; set; }

    public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    Address: <input asp-for="Address.AddressLine1" /><br />
    <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="">

Expression names and CollectionsExpression names and Collections

public class Person
{
    public List<string> Colors { get; set; }

    public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
{
    ViewData["Index"] = colorIndex;
    return View(GetPerson(id));
}

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color  element:



@model Person
@{
    var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
    @Html.EditorFor(m => m.Colors[index])
    <label asp-for="Age"></label>
    <input asp-for="Age" /><br />
    <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" /> <br />

public class ToDoItem
{
    public string Name { get; set; }

    public bool IsDone { get; set; }
}

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
    <table>
        <tr> <th>Name</th> <th>Is Done</th> </tr>

        @for (int i = 0; i < Model.Count; i++)
        {
            <tr>
                @Html.EditorFor(model => model[i])
            </tr>
        }

    </table>
    <button type="submit">Save</button>
</form>

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:



@model ToDoItem

<td>
    <label asp-for="@Model.Name"></label>
    @Html.DisplayFor(model => model.Name)
</td>
<td>
    <input asp-for="@Model.IsDone" />
</td>

@*
    This template replaces the following Razor which evaluates the indexer three times.
    <td>
         <label asp-for="@Model[i].Name"></label>
         @Html.DisplayFor(model => model[i].Name)
     </td>
     <td>
         <input asp-for="@Model[i].IsDone" />
     </td>
*@

NOTENOTE

The Textarea Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class DescriptionViewModel
    {
        [MinLength(5)]
        [MaxLength(1024)]
        public string Description { get; set; }
    }
}

foreach  should be used if possible when the value is going to be used in an asp-for  or Html.DisplayFor

equivalent context. In general, for  is better than foreach  (if the scenario allows it) because it doesn't need to

allocate an enumerator ; however, evaluating an indexer in a LINQ expression can be expensive and should be

minimized.

 

The commented sample code above shows how you would replace the lambda expression with the @  operator to access

each ToDoItem  in the list.

The Textarea Tag Helper  tag helper is similar to the Input Tag Helper.

Generates the id  and name  attributes, and the data validation attributes from the model for a <textarea>

element.

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

https://www.w3.org/wiki/HTML/Elements/textarea


@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
    <textarea asp-for="Description"></textarea>
    <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
  <textarea data-val="true"
   data-val-maxlength="The field Description must be a string or array type with a maximum length of 
&#x27;1024&#x27;."
   data-val-maxlength-max="1024"
   data-val-minlength="The field Description must be a string or array type with a minimum length of 
&#x27;5&#x27;."
   data-val-minlength-min="5"
   id="Description" name="Description">
  </textarea>
  <button type="submit">Test</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Label Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class SimpleViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }
    }
}

The following HTML is generated:

Generates the label caption and for  attribute on a <label> element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper  provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display  attribute. The intended display name

might change over time, and the combination of Display  attribute and Label Tag Helper will apply the 

Display  everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label


@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
    <label asp-for="Email"></label>
    <input asp-for="Email" /> <br />
</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

<span asp-validation-for="Email"></span>

<span class="field-validation-valid"
  data-valmsg-for="Email"
  data-valmsg-replace="true"></span>

NOTENOTE

The following HTML is generated for the <label>  element:

The Label Tag Helper generated the for  attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id  and for  elements so they can be correctly associated. The

caption in this sample comes from the Display  attribute. If the model didn't contain a Display  attribute, the

caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper  (which displays a validation message for a

single property on your model), and the Validation Summary Tag Helper  (which displays a summary of validation

errors). The Input Tag Helper  adds HTML5 client side validation attributes to input elements based on data

annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper

displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property"  attribute to the span element, which attaches the validation

error messages on the input field of the specified model property. When a client side validation error occurs,

jQuery displays the error message in the <span>  element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only

be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper  is used with the asp-validation-for  attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

You generally use the Validation Message Tag Helper  after an Input  Tag Helper for the same property. Doing so

displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model

Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/


<span class="field-validation-error" data-valmsg-for="Email"
            data-valmsg-replace="true">
   The Email Address field is required.
</span>

The Validation Summary Tag HelperThe Validation Summary Tag Helper

A SP -VA L IDAT IO N -SUM M A RYA SP -VA L IDAT IO N -SUM M A RY VA L IDAT IO N  M ESSA GES DISP L AY EDVA L IDAT IO N  M ESSA GES DISP L AY ED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
    <div asp-validation-summary="ModelOnly"></div>
    Email:  <input asp-for="Email" /> <br />
    <span asp-validation-for="Email"></span><br />
    Password: <input asp-for="Password" /><br />
    <span asp-validation-for="Password"></span><br />
    <button type="submit">Register</button>
</form>

validation is disabled), MVC places that error message as the body of the <span>  element.

Targets <div>  elements with the asp-validation-summary  attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper  is used to display a summary of validation messages. The 

asp-validation-summary  attribute value can be any of the following:

In the following example, the data model has DataAnnotation  attributes, which generates validation error messages

on the <input>  element. When a validation error occurs, the Validation Tag Helper displays the error message:

The generated HTML (when the model is valid):



<form action="/DemoReg/Register" method="post">
  <div class="validation-summary-valid" data-valmsg-summary="true">
  <ul><li style="display:none"></li></ul></div>
  Email:  <input name="Email" id="Email" type="email" value=""
   data-val-required="The Email field is required."
   data-val-email="The Email field is not a valid email address."
   data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Email"></span><br>
  Password: <input name="Password" id="Password" type="password"
   data-val-required="The Password field is required." data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Password"></span><br>
  <button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select> 

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModel
    {
        public string Country { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"  },
        };
    }
}

public IActionResult Index()
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor  and Html.ListBoxFor

The Select Tag Helper  asp-for  specifies the model property name for the select element and asp-items  specifies

the option elements. For example:

Sample:

The Index  method initializes the CountryViewModel , sets the selected country and passes it to the Index  view.

The HTTP POST Index  method displays the selection:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option


[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
    if (ModelState.IsValid)
    {
        var msg = model.Country + " selected";
        return RedirectToAction("IndexSuccess", new { message = msg });
    }

    // If we got this far, something failed; redisplay form.
    return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
    <select asp-for="Country" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/">
     <select id="Country" name="Country">
       <option value="MX">Mexico</option>
       <option selected="selected" value="CA">Canada</option>
       <option value="US">USA</option>
     </select>
       <br /><button type="submit">Register</button>
     <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select> 

Enum bindingEnum binding

The Index  view:

Which generates the following HTML (with "CA" selected):

We don't recommend using ViewBag  or ViewData  with the Select Tag Helper. A view model is more robust at providing

MVC metadata and generally less problematic.

The asp-for  attribute value is a special case and doesn't require a Model  prefix, the other Tag Helper attributes do

(such as asp-items )

It's often convenient to use <select>  with an enum  property and generate the SelectListItem  elements from the 

enum  values.

Sample:



    public class CountryEnumViewModel
    {
        public CountryEnum EnumCountry { get; set; }
    }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
    <select asp-for="EnumCountry" 
            asp-items="Html.GetEnumSelectList<CountryEnum>()">
    </select> 
    <br /><button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

The GetEnumSelectList  method generates a SelectList  object for an enum.

You can mark your enumerator list with the Display  attribute to get a richer UI:

The following HTML is generated:



  <form method="post" action="/Home/IndexEnum">
         <select data-val="true" data-val-required="The EnumCountry field is required."
                 id="EnumCountry" name="EnumCountry">
             <option value="0">United Mexican States</option>
             <option value="1">United States of America</option>
             <option value="2">Canada</option>
             <option value="3">France</option>
             <option value="4">Germany</option>
             <option selected="selected" value="5">Spain</option>
         </select>
         <br /><button type="submit">Register</button>
         <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
    </form>

Option GroupOption Group
The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup  objects.

The CountryViewModelGroup  groups the SelectListItem  elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup


public class CountryViewModelGroup
{
    public CountryViewModelGroup()
    {
        var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
        var EuropeGroup = new SelectListGroup { Name = "Europe" };

        Countries = new List<SelectListItem>
        {
            new SelectListItem
            {
                Value = "MEX",
                Text = "Mexico",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "CAN",
                Text = "Canada",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "US",
                Text = "USA",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "FR",
                Text = "France",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "ES",
                Text = "Spain",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "DE",
                Text = "Germany",
                Group = EuropeGroup
            }
      };
    }

    public string Country { get; set; }

    public List<SelectListItem> Countries { get; }

The two groups are shown below:



 <form method="post" action="/Home/IndexGroup">
      <select id="Country" name="Country">
          <optgroup label="North America">
              <option value="MEX">Mexico</option>
              <option value="CAN">Canada</option>
              <option value="US">USA</option>
          </optgroup>
          <optgroup label="Europe">
              <option value="FR">France</option>
              <option value="ES">Spain</option>
              <option value="DE">Germany</option>
          </optgroup>
      </select>
      <br /><button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModelIEnumerable
    {
        public IEnumerable<string> CountryCodes { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"    },
            new SelectListItem { Value = "FR", Text = "France" },
            new SelectListItem { Value = "ES", Text = "Spain"  },
            new SelectListItem { Value = "DE", Text = "Germany"}
         };
    }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the 

asp-for  attribute is an IEnumerable . For example, given the following model:

With the following view:

https://w3c.github.io/html-reference/select.html


@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
    <select asp-for="CountryCodes" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
    <select id="CountryCodes"
    multiple="multiple"
    name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>
    <br /><button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    @Html.EditorForModel()
    <br /><button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
    <option value="">--none--</option>
</select>

public IActionResult IndexNone()
{
    var model = new CountryViewModel();
    model.Insert(0, new SelectListItem("<none>", ""));
    return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate

repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action

method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option


@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    <select asp-for="Country">
        <option value="">&lt;none&gt;</option>
        <option value="MX">Mexico</option>
        <option value="CA">Canada</option>
        <option value="US">USA</option>
    </select> 
    <br /><button type="submit">Register</button>
</form>

public IActionResult IndexOption(int id)
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

 <form method="post" action="/Home/IndexEmpty">
      <select id="Country" name="Country">
          <option value="">&lt;none&gt;</option>
          <option value="MX">Mexico</option>
          <option value="CA" selected="selected">Canada</option>
          <option value="US">USA</option>
      </select>
      <br /><button type="submit">Register</button>
   <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Additional resources

The correct <option>  element will be selected ( contain the selected="selected"  attribute) depending on the

current Country  value.

Tag Helpers in ASP.NET Core

HTML Form element

Request Verification Token

Model Binding in ASP.NET Core

Model validation in ASP.NET Core MVC

IAttributeAdapter Interface

Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final


  

Tag Helper Components in ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

Use cases

Inject into HTML head elementInject into HTML head element

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace RazorPagesSample.TagHelpers
{
    public class AddressStyleTagHelperComponent : TagHelperComponent
    {
        private readonly string _style = 
            @"<link rel=""stylesheet"" href=""/css/address.css"" />";

        public override int Order => 1;

        public override Task ProcessAsync(TagHelperContext context,
                                          TagHelperOutput output)
        {
            if (string.Equals(context.TagName, "head", 
                              StringComparison.OrdinalIgnoreCase))
            {
                output.PostContent.AppendHtml(_style);
            }

            return Task.CompletedTask;
        }
    }
}

By Scott Addie and Fiyaz Bin Hasan

A Tag Helper Component is a Tag Helper that allows you to conditionally modify or add HTML elements from

server-side code. This feature is available in ASP.NET Core 2.0 or later.

ASP.NET Core includes two built-in Tag Helper Components: head  and body . They're located in the

Microsoft.AspNetCore.Mvc.Razor.TagHelpers namespace and can be used in both MVC and Razor Pages. Tag Helper

Components don't require registration with the app in _ViewImports.cshtml.

View or download sample code (how to download)

Two common use cases of Tag Helper Components include:

1. Injecting a <link>  into the <head> .

2. Injecting a <script>  into the <body> .

The following sections describe these use cases.

Inside the HTML <head>  element, CSS files are commonly imported with the HTML <link>  element. The following

code injects a <link>  element into the <head>  element using the head  Tag Helper Component:

In the preceding code:

AddressStyleTagHelperComponent  implements TagHelperComponent. The abstraction:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/th-components.md
https://twitter.com/Scott_Addie
https://github.com/fiyazbinhasan
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razor.taghelpers
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/tag-helpers/th-components/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.razor.taghelpers.taghelpercomponent


  Inject into HTML body elementInject into HTML body element

using System;
using System.IO;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace RazorPagesSample.TagHelpers
{
    public class AddressScriptTagHelperComponent : TagHelperComponent
    {
        public override int Order => 2;
        
        public override async Task ProcessAsync(TagHelperContext context,
                                                TagHelperOutput output)
        {
            if (string.Equals(context.TagName, "body",
                              StringComparison.OrdinalIgnoreCase))
            {
                var script = await File.ReadAllTextAsync(
                    "TagHelpers/Templates/AddressToolTipScript.html");
                output.PostContent.AppendHtml(script);
            }
        }
    }
}

<script>
$("address[printable]").hover(function() {
    $(this).attr({
        "data-toggle": "tooltip",
        "data-placement": "right",
        "title": "Home of Microsoft!"
    });
});
</script>

Register a Component

The Order property defines the order in which the Components are rendered. Order  is necessary when there

are multiple usages of Tag Helper Components in an app.

ProcessAsync compares the execution context's TagName property value to head . If the comparison evaluates

to true, the content of the _style  field is injected into the HTML <head>  element.

Allows initialization of the class with a TagHelperContext.

Enables the use of Tag Helper Components to add or modify HTML elements.

The body  Tag Helper Component can inject a <script>  element into the <body>  element. The following code

demonstrates this technique:

A separate HTML file is used to store the <script>  element. The HTML file makes the code cleaner and more

maintainable. The preceding code reads the contents of TagHelpers/Templates/AddressToolTipScript.html and

appends it with the Tag Helper output. The AddressToolTipScript.html file includes the following markup:

The preceding code binds a Bootstrap tooltip widget to any <address>  element that includes a printable  attribute.

The effect is visible when a mouse pointer hovers over the element.

A Tag Helper Component must be added to the app's Tag Helper Components collection. There are three ways to

add to the collection:

Registration via services container

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.razor.taghelpers.taghelpercontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.razor.taghelpers.taghelpercomponent.order
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.razor.taghelpers.taghelpercomponent.processasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.razor.taghelpers.taghelpercontext.tagname
https://getbootstrap.com/docs/3.3/javascript/#tooltips


  

  

Registration via services containerRegistration via services container

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddMvc()
            .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

    services.AddTransient<ITagHelperComponent, 
        AddressScriptTagHelperComponent>();
    services.AddTransient<ITagHelperComponent, 
        AddressStyleTagHelperComponent>();
}

Registration via Razor fileRegistration via Razor file

@using RazorPagesSample.TagHelpers;
@using Microsoft.AspNetCore.Mvc.Razor.TagHelpers;
@inject ITagHelperComponentManager manager;

@{
    string markup;

    if (Model.IsWeekend)
    {
        markup = "<em class='text-warning'>Office closed today!</em>";
    }
    else
    {
        markup = "<em class='text-info'>Office open today!</em>";
    }

    manager.Components.Add(new AddressTagHelperComponent(markup, 1));
}

Registration via Razor file

Registration via Page Model or controller

If the Tag Helper Component class isn't managed with ITagHelperComponentManager, it must be registered with

the dependency injection (DI) system. The following Startup.ConfigureServices  code registers the 

AddressStyleTagHelperComponent  and AddressScriptTagHelperComponent  classes with a transient lifetime:

If the Tag Helper Component isn't registered with DI, it can be registered from a Razor Pages page or an MVC view.

This technique is used for controlling the injected markup and the component execution order from a Razor file.

ITagHelperComponentManager  is used to add Tag Helper Components or remove them from the app. The following

code demonstrates this technique with AddressTagHelperComponent :

In the preceding code:

The @inject  directive provides an instance of ITagHelperComponentManager . The instance is assigned to a

variable named manager  for access downstream in the Razor file.

An instance of AddressTagHelperComponent  is added to the app's Tag Helper Components collection.

AddressTagHelperComponent  is modified to accommodate a constructor that accepts the markup  and order

parameters:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razor.taghelpers.itaghelpercomponentmanager


  

private readonly string _markup;

public override int Order { get; }

public AddressTagHelperComponent(string markup = "", int order = 1)
{
    _markup = markup;
    Order = order;
}

public override async Task ProcessAsync(TagHelperContext context,
                                        TagHelperOutput output)
{
    if (string.Equals(context.TagName, "address",
            StringComparison.OrdinalIgnoreCase) &&
        output.Attributes.ContainsName("printable"))
    {
        TagHelperContent childContent = await output.GetChildContentAsync();
        string content = childContent.GetContent();
        output.Content.SetHtmlContent(
            $"<div>{content}<br>{_markup}</div>{_printableButton}");
    }
}

Registration via Page Model or controllerRegistration via Page Model or controller

The provided markup  parameter is used in ProcessAsync  as follows:

If the Tag Helper Component isn't registered with DI, it can be registered from a Razor Pages page model or an

MVC controller. This technique is useful for separating C# logic from Razor files.

Constructor injection is used to access an instance of ITagHelperComponentManager . The Tag Helper Component is

added to the instance's Tag Helper Components collection. The following Razor Pages page model demonstrates

this technique with AddressTagHelperComponent :



using System;
using Microsoft.AspNetCore.Mvc.Razor.TagHelpers;
using Microsoft.AspNetCore.Mvc.RazorPages;
using RazorPagesSample.TagHelpers;

public class IndexModel : PageModel
{
    private readonly ITagHelperComponentManager _tagHelperComponentManager;

    public bool IsWeekend
    {
        get
        {
            var dayOfWeek = DateTime.Now.DayOfWeek;

            return dayOfWeek == DayOfWeek.Saturday ||
                   dayOfWeek == DayOfWeek.Sunday;
        }
    }

    public IndexModel(ITagHelperComponentManager tagHelperComponentManager)
    {
        _tagHelperComponentManager = tagHelperComponentManager;
    }

    public void OnGet()
    {
        string markup;

        if (IsWeekend)
        {
            markup = "<em class='text-warning'>Office closed today!</em>";
        }
        else
        {
            markup = "<em class='text-info'>Office open today!</em>";
        }

        _tagHelperComponentManager.Components.Add(
            new AddressTagHelperComponent(markup, 1));
    }
}

Create a Component

In the preceding code:

Constructor injection is used to access an instance of ITagHelperComponentManager .

An instance of AddressTagHelperComponent  is added to the app's Tag Helper Components collection.

To create a custom Tag Helper Component:

Create a public class deriving from TagHelperComponentTagHelper.

Apply an [HtmlTargetElement]  attribute to the class. Specify the name of the target HTML element.

Optional: Apply an [EditorBrowsable(EditorBrowsableState.Never)]  attribute to the class to suppress the type's

display in IntelliSense.

The following code creates a custom Tag Helper Component that targets the <address>  HTML element:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razor.taghelpers.taghelpercomponenttaghelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.razor.taghelpers.htmltargetelementattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.editorbrowsableattribute


using System.ComponentModel;
using Microsoft.AspNetCore.Mvc.Razor.TagHelpers;
using Microsoft.AspNetCore.Razor.TagHelpers;
using Microsoft.Extensions.Logging;

namespace RazorPagesSample.TagHelpers
{
    [HtmlTargetElement("address")]
    [EditorBrowsable(EditorBrowsableState.Never)]
    public class AddressTagHelperComponentTagHelper : TagHelperComponentTagHelper
    {
        public AddressTagHelperComponentTagHelper(
            ITagHelperComponentManager componentManager, 
            ILoggerFactory loggerFactory) : base(componentManager, loggerFactory)
        {
        }
    }
}

public class AddressTagHelperComponent : TagHelperComponent
{
    private readonly string _printableButton =
        "<button type='button' class='btn btn-info' onclick=\"window.open(" +
        "'https://binged.it/2AXRRYw')\">" +
        "<span class='glyphicon glyphicon-road' aria-hidden='true'></span>" +
        "</button>";

    public override int Order => 3;

    public override async Task ProcessAsync(TagHelperContext context,
                                            TagHelperOutput output)
    {
        if (string.Equals(context.TagName, "address",
                StringComparison.OrdinalIgnoreCase) &&
            output.Attributes.ContainsName("printable"))
        {
            var content = await output.GetChildContentAsync();
            output.Content.SetHtmlContent(
                $"<div>{content.GetContent()}</div>{_printableButton}");
        }
    }
}

<address printable>
    One Microsoft Way<br />
    Redmond, WA 98052-6399<br />
    <abbr title="Phone">P:</abbr>
    425.555.0100
</address>

Use the custom address  Tag Helper Component to inject HTML markup as follows:

The preceding ProcessAsync  method injects the HTML provided to SetHtmlContent into the matching <address>

element. The injection occurs when:

The execution context's TagName  property value equals address .

The corresponding <address>  element has a printable  attribute.

For example, the if  statement evaluates to true when processing the following <address>  element:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.razor.taghelpers.taghelpercontent.sethtmlcontent


Additional resources
Dependency injection in ASP.NET Core

Dependency injection into views in ASP.NET Core

ASP.NET Core built-in Tag Helpers



                    

Anchor Tag Helper in ASP.NET Core
9/22/2020 • 6 minutes to read • Edit Online

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;

public class SpeakerController : Controller
{
    private List<Speaker> Speakers =
        new List<Speaker>
        {
            new Speaker {SpeakerId = 10},
            new Speaker {SpeakerId = 11},
            new Speaker {SpeakerId = 12}
        };

    [Route("Speaker/{id:int}")]
    public IActionResult Detail(int id) =>
        View(Speakers.FirstOrDefault(a => a.SpeakerId == id));

    [Route("/Speaker/Evaluations", 
           Name = "speakerevals")]
    public IActionResult Evaluations() => View();

    [Route("/Speaker/EvaluationsCurrent",
           Name = "speakerevalscurrent")]
    public IActionResult Evaluations(
        int speakerId,
        bool currentYear) => View();

    public IActionResult Index() => View(Speakers);
}

public class Speaker
{
    public int SpeakerId { get; set; }
}

Anchor Tag Helper attributes
asp-controllerasp-controller

By Peter Kellner and Scott Addie

The Anchor Tag Helper enhances the standard HTML anchor ( <a ... ></a> ) tag by adding new attributes.

By convention, the attribute names are prefixed with asp- . The rendered anchor element's href  attribute

value is determined by the values of the asp-  attributes.

For an overview of Tag Helpers, see Tag Helpers in ASP.NET Core.

View or download sample code (how to download)

SpeakerController is used in samples throughout this document:

The asp-controller attribute assigns the controller used for generating the URL. The following markup lists

all speakers:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/anchor-tag-helper.md
https://peterkellner.net
https://github.com/scottaddie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/tag-helpers/built-in/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.controller


                    

                    

<a asp-controller="Speaker"
   asp-action="Index">All Speakers</a>

<a href="/Speaker">All Speakers</a>

<a href="/Home">All Speakers</a>

asp-actionasp-action

<a asp-controller="Speaker"
   asp-action="Evaluations">Speaker Evaluations</a>

<a href="/Speaker/Evaluations">Speaker Evaluations</a>

asp-route-{value}asp-route-{value}

public IActionResult AnchorTagHelper(int id)
{
    var speaker = new Speaker
    {
        SpeakerId = id
    };

    return View(speaker);
}

The generated HTML:

If the asp-controller  attribute is specified and asp-action  isn't, the default asp-action  value is the

controller action associated with the currently executing view. If asp-action  is omitted from the preceding

markup, and the Anchor Tag Helper is used in HomeController's Index view (/Home), the generated HTML

is:

The asp-action attribute value represents the controller action name included in the generated href

attribute. The following markup sets the generated href  attribute value to the speaker evaluations page:

The generated HTML:

If no asp-controller  attribute is specified, the default controller calling the view executing the current view

is used.

If the asp-action  attribute value is Index , then no action is appended to the URL, leading to the invocation

of the default Index  action. The action specified (or defaulted), must exist in the controller referenced in 

asp-controller .

The asp-route-{value} attribute enables a wildcard route prefix. Any value occupying the {value}

placeholder is interpreted as a potential route parameter. If a default route isn't found, this route prefix is

appended to the generated href  attribute as a request parameter and value. Otherwise, it's substituted in

the route template.

Consider the following controller action:

With a default route template defined in Startup.Configure:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.routevalues


                    

app.UseMvc(routes =>
{
    // need route and attribute on controller: [Area("Blogs")]
    routes.MapRoute(name: "mvcAreaRoute",
                    template: "{area:exists}/{controller=Home}/{action=Index}");

    // default route for non-areas
    routes.MapRoute(
        name: "default",
        template: "{controller=Home}/{action=Index}/{id?}");
});

@model Speaker
<!DOCTYPE html>
<html>
<body>
    <a asp-controller="Speaker"
       asp-action="Detail" 
       asp-route-id="@Model.SpeakerId">SpeakerId: @Model.SpeakerId</a>
</body>
</html>

<a href="/Speaker/Detail/12">SpeakerId: 12</a>

@model Speaker
<!DOCTYPE html>
<html>
<body>
    <a asp-controller="Speaker"
       asp-action="Detail"
       asp-route-speakerid="@Model.SpeakerId">SpeakerId: @Model.SpeakerId</a>
<body>
</html>

<a href="/Speaker/Detail?speakerid=12">SpeakerId: 12</a>

asp-routeasp-route

[Route("/Speaker/Evaluations", 
       Name = "speakerevals")]
public IActionResult Evaluations() => View();

The MVC view uses the model, provided by the action, as follows:

The default route's {id?}  placeholder was matched. The generated HTML:

Assume the route prefix isn't part of the matching routing template, as with the following MVC view:

The following HTML is generated because speakerid  wasn't found in the matching route:

If either asp-controller  or asp-action  aren't specified, then the same default processing is followed as is

in the asp-route  attribute.

The asp-route attribute is used for creating a URL linking directly to a named route. Using routing

attributes, a route can be named as shown in the SpeakerController  and used in its Evaluations  action:

In the following markup, the asp-route  attribute references the named route:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.route


                    

                    

<a asp-route="speakerevals">Speaker Evaluations</a>

<a href="/Speaker/Evaluations">Speaker Evaluations</a>

asp-all-route-dataasp-all-route-data

@{
var parms = new Dictionary<string, string>
            {
                { "speakerId", "11" },
                { "currentYear", "true" }
            };
}

<a asp-route="speakerevalscurrent"
   asp-all-route-data="parms">Speaker Evaluations</a>

<a href="/Speaker/EvaluationsCurrent?speakerId=11&currentYear=true">Speaker Evaluations</a>

[Route("/Speaker/EvaluationsCurrent",
       Name = "speakerevalscurrent")]
public IActionResult Evaluations(
    int speakerId,
    bool currentYear) => View();

asp-fragmentasp-fragment

<a asp-controller="Speaker"
   asp-action="Evaluations"
   asp-fragment="SpeakerEvaluations">Speaker Evaluations</a>

The Anchor Tag Helper generates a route directly to that controller action using the URL

/Speaker/Evaluations. The generated HTML:

If asp-controller  or asp-action  is specified in addition to asp-route , the route generated may not be

what you expect. To avoid a route conflict, asp-route  shouldn't be used with the asp-controller  and 

asp-action  attributes.

The asp-all-route-data attribute supports the creation of a dictionary of key-value pairs. The key is the

parameter name, and the value is the parameter value.

In the following example, a dictionary is initialized and passed to a Razor view. Alternatively, the data could

be passed in with your model.

The preceding code generates the following HTML:

The asp-all-route-data  dictionary is flattened to produce a querystring meeting the requirements of the

overloaded Evaluations  action:

If any keys in the dictionary match route parameters, those values are substituted in the route as

appropriate. The other non-matching values are generated as request parameters.

The asp-fragment attribute defines a URL fragment to append to the URL. The Anchor Tag Helper adds the

hash character (#). Consider the following markup:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.routevalues
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.fragment


                    

<a href="/Speaker/Evaluations#SpeakerEvaluations">Speaker Evaluations</a>

asp-areaasp-area

Usage in Razor PagesUsage in Razor Pages

<a asp-area="Sessions"
   asp-page="/Index">View Sessions</a>

<a href="/Sessions">View Sessions</a>

TIPTIP

Usage in MVCUsage in MVC

The generated HTML:

Hash tags are useful when building client-side apps. They can be used for easy marking and searching in

JavaScript, for example.

The asp-area attribute sets the area name used to set the appropriate route. The following examples depict

how the asp-area  attribute causes a remapping of routes.

Razor Pages areas are supported in ASP.NET Core 2.1 or later.

Consider the following directory hierarchy:

{Project name}{Project name}

wwwrootwwwroot

AreasAreas

PagesPages

SessionsSessions

PagesPages

_ViewStart.cshtml

Index.cshtml

Index.cshtml.cs

The markup to reference the Sessions area Index Razor Page is:

The generated HTML:

To support areas in a Razor Pages app, do one of the following in Startup.ConfigureServices :

services.AddMvc()
        .AddRazorPagesOptions(options => options.AllowAreas = true);

Set the compatibility version to 2.1 or later.

Set the RazorPagesOptions.AllowAreas property to true :

Consider the following directory hierarchy:

{Project name}{Project name}

wwwrootwwwroot

AreasAreas

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.area
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.razorpagesoptions.allowareas


<a asp-area="Blogs"
   asp-controller="Home"
   asp-action="AboutBlog">About Blog</a>

<a href="/Blogs/Home/AboutBlog">About Blog</a>

TIPTIP

app.UseMvc(routes =>
{
    // need route and attribute on controller: [Area("Blogs")]
    routes.MapRoute(name: "mvcAreaRoute",
                    template: "{area:exists}/{controller=Home}/{action=Index}");

    // default route for non-areas
    routes.MapRoute(
        name: "default",
        template: "{controller=Home}/{action=Index}/{id?}");
});

asp-protocolasp-protocol

<a asp-protocol="https"
   asp-controller="Home"
   asp-action="About">About</a>

<a href="https://localhost/Home/About">About</a>

asp-hostasp-host

ControllersControllers

BlogsBlogs

ControllersControllers

ViewsViews

HomeController.cs

HomeHome

_ViewStart.cshtml

AboutBlog.cshtml

Index.cshtml

Setting asp-area  to "Blogs" prefixes the directory Areas/Blogs to the routes of the associated controllers

and views for this anchor tag. The markup to reference the AboutBlog view is:

The generated HTML:

To support areas in an MVC app, the route template must include a reference to the area, if it exists. That template

is represented by the second parameter of the routes.MapRoute  method call in Startup.Configure:

The asp-protocol attribute is for specifying a protocol (such as https ) in your URL. For example:

The generated HTML:

The host name in the example is localhost. The Anchor Tag Helper uses the website's public domain when

generating the URL.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.protocol


                    

                    

<a asp-protocol="https"
   asp-host="microsoft.com"
   asp-controller="Home"
   asp-action="About">About</a>

<a href="https://microsoft.com/Home/About">About</a>

asp-pageasp-page

<a asp-page="/Attendee">All Attendees</a>

<a href="/Attendee">All Attendees</a>

<a asp-page="/Attendee"
   asp-route-attendeeid="10">View Attendee</a>

<a href="/Attendee?attendeeid=10">View Attendee</a>

asp-page-handlerasp-page-handler

public void OnGetProfile(int attendeeId)
{
    ViewData["AttendeeId"] = attendeeId;

    // code omitted for brevity
}

The asp-host attribute is for specifying a host name in your URL. For example:

The generated HTML:

The asp-page attribute is used with Razor Pages. Use it to set an anchor tag's href  attribute value to a

specific page. Prefixing the page name with a forward slash ("/") creates the URL.

The following sample points to the attendee Razor Page:

The generated HTML:

The asp-page  attribute is mutually exclusive with the asp-route , asp-controller , and asp-action

attributes. However, asp-page  can be used with asp-route-{value}  to control routing, as the following

markup demonstrates:

The generated HTML:

The asp-page-handler attribute is used with Razor Pages. It's intended for linking to specific page handlers.

Consider the following page handler :

The page model's associated markup links to the OnGetProfile  page handler. Note the On<Verb>  prefix of

the page handler method name is omitted in the asp-page-handler  attribute value. When the method is

asynchronous, the Async  suffix is omitted, too.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.host
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.page
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.anchortaghelper.pagehandler


<a asp-page="/Attendee"
   asp-page-handler="Profile"
   asp-route-attendeeid="12">Attendee Profile</a>

<a href="/Attendee?attendeeid=12&handler=Profile">Attendee Profile</a>

Additional resources

The generated HTML:

Areas in ASP.NET Core

Introduction to Razor Pages in ASP.NET Core

Compatibility version for ASP.NET Core MVC



Cache Tag Helper in ASP.NET Core MVC
9/22/2020 • 4 minutes to read • Edit Online

<cache>@DateTime.Now</cache>

Cache Tag Helper Attributes
enabledenabled

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L ESEXA M P L ES DEFA ULTDEFA ULT

Boolean true , false true

<cache enabled="true">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

expires-onexpires-on

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L EEXA M P L E

DateTimeOffset @new DateTime(2025,1,29,17,02,0)

<cache expires-on="@new DateTime(2025,1,29,17,02,0)">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

expires-afterexpires-after

By Peter Kellner

The Cache Tag Helper provides the ability to improve the performance of your ASP.NET Core app by caching its

content to the internal ASP.NET Core cache provider.

For an overview of Tag Helpers, see Tag Helpers in ASP.NET Core.

The following Razor markup caches the current date:

The first request to the page that contains the Tag Helper displays the current date. Additional requests show the

cached value until the cache expires (default 20 minutes) or until the cached date is evicted from the cache.

enabled  determines if the content enclosed by the Cache Tag Helper is cached. The default is true . If set to 

false , the rendered output is notnot cached.

Example:

expires-on  sets an absolute expiration date for the cached item.

The following example caches the contents of the Cache Tag Helper until 5:02 PM on January 29, 2025:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/cache-tag-helper.md
https://peterkellner.net


AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L EEXA M P L E DEFA ULTDEFA ULT

TimeSpan @TimeSpan.FromSeconds(120) 20 minutes

<cache expires-after="@TimeSpan.FromSeconds(120)">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

expires-slidingexpires-sliding

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L EEXA M P L E

TimeSpan @TimeSpan.FromSeconds(60)

<cache expires-sliding="@TimeSpan.FromSeconds(60)">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-by-headervary-by-header

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L ESEXA M P L ES

String User-Agent , User-Agent,content-encoding

<cache vary-by-header="User-Agent">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-by-queryvary-by-query

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L ESEXA M P L ES

String Make , Make,Model

expires-after  sets the length of time from the first request time to cache the contents.

Example:

The Razor View Engine sets the default expires-after  value to twenty minutes.

Sets the time that a cache entry should be evicted if its value hasn't been accessed.

Example:

vary-by-header  accepts a comma-delimited list of header values that trigger a cache refresh when they change.

The following example monitors the header value User-Agent . The example caches the content for every

different User-Agent  presented to the web server :

vary-by-query  accepts a comma-delimited list of Keys in a query string (Query) that trigger a cache refresh

when the value of any listed key changes.

The following example monitors the values of Make  and Model . The example caches the content for every

different Make  and Model  presented to the web server :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iquerycollection.keys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.query


<cache vary-by-query="Make,Model">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-by-routevary-by-route

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L ESEXA M P L ES

String Make , Make,Model

routes.MapRoute(
    name: "default",
    template: "{controller=Home}/{action=Index}/{Make?}/{Model?}");

<cache vary-by-route="Make,Model">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-by-cookievary-by-cookie

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L ESEXA M P L ES

String .AspNetCore.Identity.Application , 

.AspNetCore.Identity.Application,HairColor

<cache vary-by-cookie=".AspNetCore.Identity.Application">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-by-uservary-by-user

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L ESEXA M P L ES DEFA ULTDEFA ULT

Boolean true , false true

vary-by-route  accepts a comma-delimited list of route parameter names that trigger a cache refresh when the

route data parameter value changes.

Example:

Startup.cs:

Index.cshtml:

vary-by-cookie  accepts a comma-delimited list of cookie names that trigger a cache refresh when the cookie

values change.

The following example monitors the cookie associated with ASP.NET Core Identity. When a user is authenticated,

a change in the Identity cookie triggers a cache refresh:

vary-by-user  specifies whether or not the cache resets when the signed-in user (or Context Principal) changes.

The current user is also known as the Request Context Principal and can be viewed in a Razor view by

referencing @User.Identity.Name .



<cache vary-by-user="true">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

vary-byvary-by

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L EEXA M P L E

String @Model

public IActionResult Index(string myParam1, string myParam2, string myParam3)
{
    int num1;
    int num2;
    int.TryParse(myParam1, out num1);
    int.TryParse(myParam2, out num2);
    return View(viewName, num1 + num2);
}

<cache vary-by="@Model">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

prioritypriority

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L ESEXA M P L ES DEFA ULTDEFA ULT

CacheItemPriority High , Low , NeverRemove , Normal Normal

The following example monitors the current logged in user to trigger a cache refresh:

Using this attribute maintains the contents in cache through a sign-in and sign-out cycle. When the value is set to

true , an authentication cycle invalidates the cache for the authenticated user. The cache is invalidated because a

new unique cookie value is generated when a user is authenticated. Cache is maintained for the anonymous

state when no cookie is present or the cookie has expired. If the user is notnot authenticated, the cache is

maintained.

vary-by  allows for customization of what data is cached. When the object referenced by the attribute's string

value changes, the content of the Cache Tag Helper is updated. Often, a string-concatenation of model values are

assigned to this attribute. Effectively, this results in a scenario where an update to any of the concatenated values

invalidates the cache.

The following example assumes the controller method rendering the view sums the integer value of the two

route parameters, myParam1  and myParam2 , and returns the sum as the single model property. When this sum

changes, the content of the Cache Tag Helper is rendered and cached again.

Action:

Index.cshtml:

priority  provides cache eviction guidance to the built-in cache provider. The web server evicts Low  cache

entries first when it's under memory pressure.

Example:



 

<cache priority="High">
    Current Time Inside Cache Tag Helper: @DateTime.Now
</cache>

Additional resources

The priority  attribute doesn't guarantee a specific level of cache retention. CacheItemPriority  is only a

suggestion. Setting this attribute to NeverRemove  doesn't guarantee that cached items are always retained. See

the topics in the Additional Resources section for more information.

The Cache Tag Helper is dependent on the memory cache service. The Cache Tag Helper adds the service if it

hasn't been added.

Cache in-memory in ASP.NET Core

Introduction to Identity on ASP.NET Core



Component Tag Helper in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

Prerequisites

Component Tag Helper

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using {APP ASSEMBLY}.Pages

...

<component type="typeof(Counter)" render-mode="ServerPrerendered" />

<label style="font-size:@(Size)px;color:@Color">
    <input @bind="Value"
           id="survey" 
           name="blazor" 
           type="checkbox" />
    Enjoying Blazor?
</label>

@code {
    [Parameter]
    public bool Value { get; set; }

    [Parameter]
    public int Size { get; set; } = 8;

    [Parameter]
    public string Color { get; set; }

    protected override void OnInitialized()
    {
        Size += 10;
    }
}

By Daniel Roth and Luke Latham

To render a component from a page or view, use the Component Tag Helper.

Follow the guidance in the Prepare the app to use components in pages and views section of the Integrate

ASP.NET Core Razor components into Razor Pages and MVC apps article.

The following Component Tag Helper renders the Counter  component in a page or view:

The preceding example assumes that the Counter  component is in the app's Pages folder. The placeholder 

{APP ASSEMBLY}  is the app's assembly name (for example, @using BlazorSample.Pages ).

The Component Tag Helper can also pass parameters to components. Consider the following ColorfulCheckbox

component that sets the check box label's color and size:

The Size  ( int ) and Color  ( string ) component parameters can be set by the Component Tag Helper :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/component-tag-helper.md
https://github.com/danroth27
https://github.com/guardrex
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper


@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using {APP ASSEMBLY}.Shared

...

<component type="typeof(ColorfulCheckbox)" render-mode="ServerPrerendered" 
    param-Size="14" param-Color="@("blue")" />

<label style="font-size:24px;color:blue">
    <input id="survey" name="blazor" type="checkbox">
    Enjoying Blazor?
</label>

public class MyClass
{
    public MyClass()
    {
    }

    public int MyInt { get; set; } = 999;
    public string MyString { get; set; } = "Initial value";
}

<h2>MyComponent</h2>

<p>Int: @MyObject.MyInt</p>
<p>String: @MyObject.MyString</p>

@code
{
    [Parameter]
    public MyClass MyObject { get; set; }
}

The preceding example assumes that the ColorfulCheckbox  component is in the app's Shared folder. The

placeholder {APP ASSEMBLY}  is the app's assembly name (for example, @using BlazorSample.Shared ).

The following HTML is rendered in the page or view:

Passing a quoted string requires an explicit Razor expression, as shown for param-Color  in the preceding

example. The Razor parsing behavior for a string  type value doesn't apply to a param-*  attribute because the

attribute is an object  type.

The parameter type must be JSON serializable, which typically means that the type must have a default

constructor and settable properties. For example, you can specify a value for Size  and Color  in the preceding

example because the types of Size  and Color  are primitive types ( int  and string ), which are supported by

the JSON serializer.

In the following example, a class object is passed to the component:

MyClass.cs:

The class must have a public parameter less constructor.The class must have a public parameter less constructor.

Shared/MyComponent.razor:

Pages/MyPage.cshtml:



@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using {APP ASSEMBLY}
@using {APP ASSEMBLY}.Shared

...

@{
    var myObject = new MyClass();
    myObject.MyInt = 7;
    myObject.MyString = "Set by MyPage";
}

<component type="typeof(MyComponent)" render-mode="ServerPrerendered" 
    param-MyObject="@myObject" />

REN DER M O DEREN DER M O DE DESC RIP T IO NDESC RIP T IO N

ServerPrerendered Renders the component into static HTML and includes a
marker for a Blazor Server app. When the user-agent starts,
this marker is used to bootstrap a Blazor app.

Server Renders a marker for a Blazor Server app. Output from the
component isn't included. When the user-agent starts, this
marker is used to bootstrap a Blazor app.

Static Renders the component into static HTML.

Additional resources

The preceding example assumes that the MyComponent  component is in the app's Shared folder. The placeholder 

{APP ASSEMBLY}  is the app's assembly name (for example, @using BlazorSample  and @using BlazorSample.Shared

). MyClass  is in the app's namespace.

RenderMode configures whether the component:

Is prerendered into the page.

Is rendered as static HTML on the page or if it includes the necessary information to bootstrap a Blazor app

from the user agent.

While pages and views can use components, the converse isn't true. Components can't use view- and page-

specific features, such as partial views and sections. To use logic from a partial view in a component, factor out

the partial view logic into a component.

Rendering server components from a static HTML page isn't supported.

ComponentTagHelper

Tag Helpers in ASP.NET Core

Create and use ASP.NET Core Razor components

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_serverprerendered
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_server
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.rendermode#microsoft_aspnetcore_mvc_rendering_rendermode_static
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.componenttaghelper


Distributed Cache Tag Helper in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Distributed Cache Tag Helper Attributes
Attributes shared with the Cache Tag HelperAttributes shared with the Cache Tag Helper

namename

AT T RIB UT E T Y P EAT T RIB UT E T Y P E EXA M P L EEXA M P L E

String my-distributed-cache-unique-key-101

<distributed-cache name="my-distributed-cache-unique-key-101">
    Time Inside Cache Tag Helper: @DateTime.Now
</distributed-cache>

By Peter Kellner

The Distributed Cache Tag Helper provides the ability to dramatically improve the performance of your ASP.NET

Core app by caching its content to a distributed cache source.

For an overview of Tag Helpers, see Tag Helpers in ASP.NET Core.

The Distributed Cache Tag Helper inherits from the same base class as the Cache Tag Helper. All of the Cache Tag

Helper attributes are available to the Distributed Tag Helper.

The Distributed Cache Tag Helper uses constructor injection. The IDistributedCache interface is passed into the

Distributed Cache Tag Helper's constructor. If no concrete implementation of IDistributedCache  is created in 

Startup.ConfigureServices  (Startup.cs), the Distributed Cache Tag Helper uses the same in-memory provider for

storing cached data as the Cache Tag Helper.

enabled

expires-on

expires-after

expires-sliding

vary-by-header

vary-by-query

vary-by-route

vary-by-cookie

vary-by-user

vary-by priority

The Distributed Cache Tag Helper inherits from the same class as Cache Tag Helper. For descriptions of these

attributes, see the Cache Tag Helper.

name  is required. The name  attribute is used as a key for each stored cache instance. Unlike the Cache Tag Helper

that assigns a cache key to each instance based on the Razor page name and location in the Razor page, the

Distributed Cache Tag Helper only bases its key on the attribute name .

Example:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/distributed-cache-tag-helper.md
https://peterkellner.net
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache


Distributed Cache Tag Helper IDistributedCache implementations

Additional resources

There are two implementations of IDistributedCache built in to ASP.NET Core. One is based on SQL Server, and

the other is based on Redis. Third-party implementations are also available, such as NCache. Details of these

implementations can be found at Distributed caching in ASP.NET Core. Both implementations involve setting an

instance of IDistributedCache  in Startup .

There are no tag attributes specifically associated with using any specific implementation of IDistributedCache .

Cache Tag Helper in ASP.NET Core MVC

Dependency injection in ASP.NET Core

Distributed caching in ASP.NET Core

Cache in-memory in ASP.NET Core

Introduction to Identity on ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
http://www.alachisoft.com/ncache/aspnet-core-idistributedcache-ncache.html


Environment Tag Helper in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Environment Tag Helper Attributes
namesnames

<environment names="Staging,Production">
    <strong>HostingEnvironment.EnvironmentName is Staging or Production</strong>
</environment>

include and exclude attributes

includeinclude

<environment include="Staging,Production">
    <strong>HostingEnvironment.EnvironmentName is Staging or Production</strong>
</environment>

excludeexclude

<environment exclude="Development">
    <strong>HostingEnvironment.EnvironmentName is not Development</strong>
</environment>

By Peter Kellner and Hisham Bin Ateya

The Environment Tag Helper conditionally renders its enclosed content based on the current hosting environment.

The Environment Tag Helper's single attribute, names , is a comma-separated list of environment names. If any of

the provided environment names match the current environment, the enclosed content is rendered.

For an overview of Tag Helpers, see Tag Helpers in ASP.NET Core.

names  accepts a single hosting environment name or a comma-separated list of hosting environment names that

trigger the rendering of the enclosed content.

Environment values are compared to the current value returned by IHostingEnvironment.EnvironmentName. The

comparison ignores case.

The following example uses an Environment Tag Helper. The content is rendered if the hosting environment is

Staging or Production:

include  & exclude  attributes control rendering the enclosed content based on the included or excluded hosting

environment names.

The include  property exhibits similar behavior to the names  attribute. An environment listed in the include

attribute value must match the app's hosting environment (IHostingEnvironment.EnvironmentName) to render

the content of the <environment>  tag.

In contrast to the include  attribute, the content of the <environment>  tag is rendered when the hosting

environment doesn't match an environment listed in the exclude  attribute value.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/environment-tag-helper.md
https://peterkellner.net
https://twitter.com/hishambinateya
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.environmentname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.environmentname


Additional resources
Use multiple environments in ASP.NET Core



Tag Helpers in forms in ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
    <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
    <!-- Input and Submit elements -->
    <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

Using a named routeUsing a named route

By Rick Anderson, N. Taylor Mullen, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML

Form element provides the primary mechanism web apps use to post back data to the server. Most of this

document describes Tag Helpers and how they can help you productively create robust HTML forms. We

recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to

recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When an

HTML Helper alternative exists, it's mentioned.

 

The Form Tag Helper :

Generates the HTML <FORM> action  attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the 

[ValidateAntiForgeryToken]  attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name>  attribute, where <Parameter Name>  is added to the route values. The

routeValues  parameters to Html.BeginForm  and Html.BeginRouteForm  provide similar functionality.

Has an HTML Helper alternative Html.BeginForm  and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action  attribute value from the Form Tag Helper attributes asp-controller  and 

asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken]  attribute in the HTTP Post action method). Protecting a

pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route  Tag Helper attribute can also generate markup for the HTML action  attribute. An app with a route

named register  could use the following markup for the registration page:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://github.com/NTaylorMullen
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages


<form asp-route="register" method="post">
    <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
     asp-route-returnurl="@ViewData["ReturnUrl"]"
     method="post" class="form-horizontal" role="form">

NOTENOTE

The Form Action Tag Helper

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N

asp-controller The name of the controller.

asp-action The name of the action method.

asp-area The name of the area.

asp-page The name of the Razor page.

asp-page-handler The name of the Razor page handler.

asp-route The name of the route.

asp-route-{value} A single URL route value. For example, asp-route-id="1234"

.

asp-all-route-data All route values.

asp-fragment The URL fragment.

Submit to controller exampleSubmit to controller example

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User

Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl  is only populated automatically when you try to access an authorized resource but

are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the

login page with the returnUrl  set.

The Form Action Tag Helper generates the formaction  attribute on the generated <button ...>  or 

<input type="image" ...>  tag. The formaction  attribute controls where a form submits its data. It binds to <input>

elements of type image  and <button> elements. The Form Action Tag Helper enables the usage of several

AnchorTagHelper asp-  attributes to control what formaction  link is generated for the corresponding element.

Supported AnchorTagHelper attributes to control the value of formaction :

The following markup submits the form to the Index  action of HomeController  when the input or button are

selected:

https://www.w3.org/wiki/HTML/Elements/input
https://www.w3.org/wiki/HTML/Elements/button


<form method="post">
    <button asp-controller="Home" asp-action="Index">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-controller="Home" 
                                asp-action="Index">
</form>

<form method="post">
    <button formaction="/Home">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home">
</form>

Submit to page exampleSubmit to page example

<form method="post">
    <button asp-page="About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-page="About">
</form>

<form method="post">
    <button formaction="/About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/About">
</form>

Submit to route exampleSubmit to route example

public class HomeController : Controller
{
    [Route("/Home/Test", Name = "Custom")]
    public string Test()
    {
        return "This is the test page";
    }
}

<form method="post">
    <button asp-route="Custom">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-route="Custom">
</form>

<form method="post">
    <button formaction="/Home/Test">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home/Test">
</form>

The previous markup generates following HTML:

The following markup submits the form to the About  Razor Page:

The previous markup generates following HTML:

Consider the /Home/Test  endpoint:

The following markup submits the form to the /Home/Test  endpoint.

The previous markup generates following HTML:



The Input Tag Helper

<input asp-for="<Expression Name>">

. N ET  T Y P E. N ET  T Y P E IN P UT  T Y P EIN P UT  T Y P E

Bool type="checkbox"

String type="text"

DateTime type="datetime-local"

Byte type="number"

Int type="number"

Single, Double type="number"

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
'RegisterViewModel' does not contain a definition for 'Email' and no
extension method 'Email' accepting a first argument of type 'RegisterViewModel'
could be found (are you missing a using directive or an assembly reference?)

Generates the id  and name  HTML attributes for the expression name specified in the asp-for  attribute. 

asp-for="Property1.Property2"  is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for  attribute value. See the Expression names section for additional information.

Sets the HTML type  attribute value based on the model type and data annotation attributes applied to the

model property

Won't overwrite the HTML type  attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor  and Html.EditorFor . See the HTML HelperHTML Helper

alternatives to Input Tag Helperalternatives to Input Tag Helper  section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get

an error similar to the following:

The Input  Tag Helper sets the HTML type  attribute based on the .NET type. The following table lists some

common .NET types and generated HTML type (not every .NET type is listed).

The following table shows some common data annotations attributes that the input tag helper will map to specific

input types (not every validation attribute is listed):

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/HTML/Element/input/datetime-local
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter


AT T RIB UT EAT T RIB UT E IN P UT  T Y P EIN P UT  T Y P E

[EmailAddress] type="email"

[Url] type="url"

[HiddenInput] type="hidden"

[Phone] type="tel"

[DataType(DataType.Password)] type="password"

[DataType(DataType.Date)] type="date"

[DataType(DataType.Time)] type="time"

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    <button type="submit">Register</button>
</form>

  <form method="post" action="/Demo/RegisterInput">
      Email:
      <input type="email" data-val="true"
             data-val-email="The Email Address field is not a valid email address."
             data-val-required="The Email Address field is required."
             id="Email" name="Email" value=""><br>
      Password:
      <input type="password" data-val="true"
             data-val-required="The Password field is required."
             id="Password" name="Password"><br>
      <button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

Sample:

The code above generates the following HTML:



HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty, 
  new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

@{
  var joe = "Joe";
}

<input asp-for="@joe">

<input type="text" id="joe" name="joe" value="Joe">

Navigating child propertiesNavigating child properties

The data annotations applied to the Email  and Password  properties generate metadata on the model. The Input

Tag Helper consumes the model metadata and produces HTML5 data-val-*  attributes (see Model Validation).

These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery

validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of the

validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is

provided in the attribute, it's displayed as the value for the data-val-rule  attribute. There are also attributes of the

form data-val-ruleName-argumentName="argumentValue"  that provide additional details about the rule, for example, 

data-val-maxlength-max="1024"  .

Html.TextBox , Html.TextBoxFor , Html.Editor  and Html.EditorFor  have overlapping features with the Input Tag

Helper. The Input Tag Helper will automatically set the type  attribute; Html.TextBox  and Html.TextBoxFor  won't. 

Html.Editor  and Html.EditorFor  handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor  and Html.TextBoxFor  are strongly typed (they use lambda expressions); 

Html.TextBox  and Html.Editor  are not (they use expression names).

@Html.Editor()  and @Html.EditorFor()  use a special ViewDataDictionary  entry named htmlAttributes  when

executing their default templates. This behavior is optionally augmented using additionalViewData  parameters. The

key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes  object

passed to input helpers like @Html.TextBox() .

The asp-for  attribute value is a ModelExpression  and the right hand side of a lambda expression. Therefore, 

asp-for="Property1"  becomes m => m.Property1  in the generated code which is why you don't need to prefix with 

Model . You can use the "@" character to start an inline expression and move before the m. :

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member"  generates the same name as 

asp-for="CollectionProperty[i].Member"  when i  has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including ModelState .

Consider <input type="text" asp-for="@Name"> . The calculated value  attribute is the first non-null value from:

ModelState  entry with key "Name".

Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex

model class that contains a child Address  property.

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/


public class AddressViewModel
{
    public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
    public string Email { get; set; }

    [DataType(DataType.Password)]
    public string Password { get; set; }

    public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    Address: <input asp-for="Address.AddressLine1" /><br />
    <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="">

Expression names and CollectionsExpression names and Collections

public class Person
{
    public List<string> Colors { get; set; }

    public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
{
    ViewData["Index"] = colorIndex;
    return View(GetPerson(id));
}

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color  element:



@model Person
@{
    var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
    @Html.EditorFor(m => m.Colors[index])
    <label asp-for="Age"></label>
    <input asp-for="Age" /><br />
    <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" /> <br />

public class ToDoItem
{
    public string Name { get; set; }

    public bool IsDone { get; set; }
}

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
    <table>
        <tr> <th>Name</th> <th>Is Done</th> </tr>

        @for (int i = 0; i < Model.Count; i++)
        {
            <tr>
                @Html.EditorFor(model => model[i])
            </tr>
        }

    </table>
    <button type="submit">Save</button>
</form>

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:



@model ToDoItem

<td>
    <label asp-for="@Model.Name"></label>
    @Html.DisplayFor(model => model.Name)
</td>
<td>
    <input asp-for="@Model.IsDone" />
</td>

@*
    This template replaces the following Razor which evaluates the indexer three times.
    <td>
         <label asp-for="@Model[i].Name"></label>
         @Html.DisplayFor(model => model[i].Name)
     </td>
     <td>
         <input asp-for="@Model[i].IsDone" />
     </td>
*@

NOTENOTE

The Textarea Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class DescriptionViewModel
    {
        [MinLength(5)]
        [MaxLength(1024)]
        public string Description { get; set; }
    }
}

foreach  should be used if possible when the value is going to be used in an asp-for  or Html.DisplayFor

equivalent context. In general, for  is better than foreach  (if the scenario allows it) because it doesn't need to

allocate an enumerator ; however, evaluating an indexer in a LINQ expression can be expensive and should be

minimized.

 

The commented sample code above shows how you would replace the lambda expression with the @  operator to access

each ToDoItem  in the list.

The Textarea Tag Helper  tag helper is similar to the Input Tag Helper.

Generates the id  and name  attributes, and the data validation attributes from the model for a <textarea>

element.

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

https://www.w3.org/wiki/HTML/Elements/textarea


@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
    <textarea asp-for="Description"></textarea>
    <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
  <textarea data-val="true"
   data-val-maxlength="The field Description must be a string or array type with a maximum length of 
&#x27;1024&#x27;."
   data-val-maxlength-max="1024"
   data-val-minlength="The field Description must be a string or array type with a minimum length of 
&#x27;5&#x27;."
   data-val-minlength-min="5"
   id="Description" name="Description">
  </textarea>
  <button type="submit">Test</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Label Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class SimpleViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }
    }
}

The following HTML is generated:

Generates the label caption and for  attribute on a <label> element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper  provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display  attribute. The intended display name

might change over time, and the combination of Display  attribute and Label Tag Helper will apply the 

Display  everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label


@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
    <label asp-for="Email"></label>
    <input asp-for="Email" /> <br />
</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

<span asp-validation-for="Email"></span>

<span class="field-validation-valid"
  data-valmsg-for="Email"
  data-valmsg-replace="true"></span>

NOTENOTE

The following HTML is generated for the <label>  element:

The Label Tag Helper generated the for  attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id  and for  elements so they can be correctly associated. The

caption in this sample comes from the Display  attribute. If the model didn't contain a Display  attribute, the

caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper  (which displays a validation message for a

single property on your model), and the Validation Summary Tag Helper  (which displays a summary of validation

errors). The Input Tag Helper  adds HTML5 client side validation attributes to input elements based on data

annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper

displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property"  attribute to the span element, which attaches the validation

error messages on the input field of the specified model property. When a client side validation error occurs,

jQuery displays the error message in the <span>  element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only

be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper  is used with the asp-validation-for  attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

You generally use the Validation Message Tag Helper  after an Input  Tag Helper for the same property. Doing so

displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model

Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/


<span class="field-validation-error" data-valmsg-for="Email"
            data-valmsg-replace="true">
   The Email Address field is required.
</span>

The Validation Summary Tag HelperThe Validation Summary Tag Helper

A SP -VA L IDAT IO N -SUM M A RYA SP -VA L IDAT IO N -SUM M A RY VA L IDAT IO N  M ESSA GES DISP L AY EDVA L IDAT IO N  M ESSA GES DISP L AY ED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
    <div asp-validation-summary="ModelOnly"></div>
    Email:  <input asp-for="Email" /> <br />
    <span asp-validation-for="Email"></span><br />
    Password: <input asp-for="Password" /><br />
    <span asp-validation-for="Password"></span><br />
    <button type="submit">Register</button>
</form>

validation is disabled), MVC places that error message as the body of the <span>  element.

Targets <div>  elements with the asp-validation-summary  attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper  is used to display a summary of validation messages. The 

asp-validation-summary  attribute value can be any of the following:

In the following example, the data model has DataAnnotation  attributes, which generates validation error messages

on the <input>  element. When a validation error occurs, the Validation Tag Helper displays the error message:

The generated HTML (when the model is valid):



<form action="/DemoReg/Register" method="post">
  <div class="validation-summary-valid" data-valmsg-summary="true">
  <ul><li style="display:none"></li></ul></div>
  Email:  <input name="Email" id="Email" type="email" value=""
   data-val-required="The Email field is required."
   data-val-email="The Email field is not a valid email address."
   data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Email"></span><br>
  Password: <input name="Password" id="Password" type="password"
   data-val-required="The Password field is required." data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Password"></span><br>
  <button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select> 

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModel
    {
        public string Country { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"  },
        };
    }
}

public IActionResult Index()
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor  and Html.ListBoxFor

The Select Tag Helper  asp-for  specifies the model property name for the select element and asp-items  specifies

the option elements. For example:

Sample:

The Index  method initializes the CountryViewModel , sets the selected country and passes it to the Index  view.

The HTTP POST Index  method displays the selection:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option


[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
    if (ModelState.IsValid)
    {
        var msg = model.Country + " selected";
        return RedirectToAction("IndexSuccess", new { message = msg });
    }

    // If we got this far, something failed; redisplay form.
    return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
    <select asp-for="Country" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/">
     <select id="Country" name="Country">
       <option value="MX">Mexico</option>
       <option selected="selected" value="CA">Canada</option>
       <option value="US">USA</option>
     </select>
       <br /><button type="submit">Register</button>
     <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select> 

Enum bindingEnum binding

The Index  view:

Which generates the following HTML (with "CA" selected):

We don't recommend using ViewBag  or ViewData  with the Select Tag Helper. A view model is more robust at providing

MVC metadata and generally less problematic.

The asp-for  attribute value is a special case and doesn't require a Model  prefix, the other Tag Helper attributes do

(such as asp-items )

It's often convenient to use <select>  with an enum  property and generate the SelectListItem  elements from the 

enum  values.

Sample:



    public class CountryEnumViewModel
    {
        public CountryEnum EnumCountry { get; set; }
    }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
    <select asp-for="EnumCountry" 
            asp-items="Html.GetEnumSelectList<CountryEnum>()">
    </select> 
    <br /><button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

The GetEnumSelectList  method generates a SelectList  object for an enum.

You can mark your enumerator list with the Display  attribute to get a richer UI:

The following HTML is generated:



  <form method="post" action="/Home/IndexEnum">
         <select data-val="true" data-val-required="The EnumCountry field is required."
                 id="EnumCountry" name="EnumCountry">
             <option value="0">United Mexican States</option>
             <option value="1">United States of America</option>
             <option value="2">Canada</option>
             <option value="3">France</option>
             <option value="4">Germany</option>
             <option selected="selected" value="5">Spain</option>
         </select>
         <br /><button type="submit">Register</button>
         <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
    </form>

Option GroupOption Group
The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup  objects.

The CountryViewModelGroup  groups the SelectListItem  elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup


public class CountryViewModelGroup
{
    public CountryViewModelGroup()
    {
        var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
        var EuropeGroup = new SelectListGroup { Name = "Europe" };

        Countries = new List<SelectListItem>
        {
            new SelectListItem
            {
                Value = "MEX",
                Text = "Mexico",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "CAN",
                Text = "Canada",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "US",
                Text = "USA",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "FR",
                Text = "France",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "ES",
                Text = "Spain",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "DE",
                Text = "Germany",
                Group = EuropeGroup
            }
      };
    }

    public string Country { get; set; }

    public List<SelectListItem> Countries { get; }

The two groups are shown below:



 <form method="post" action="/Home/IndexGroup">
      <select id="Country" name="Country">
          <optgroup label="North America">
              <option value="MEX">Mexico</option>
              <option value="CAN">Canada</option>
              <option value="US">USA</option>
          </optgroup>
          <optgroup label="Europe">
              <option value="FR">France</option>
              <option value="ES">Spain</option>
              <option value="DE">Germany</option>
          </optgroup>
      </select>
      <br /><button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModelIEnumerable
    {
        public IEnumerable<string> CountryCodes { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"    },
            new SelectListItem { Value = "FR", Text = "France" },
            new SelectListItem { Value = "ES", Text = "Spain"  },
            new SelectListItem { Value = "DE", Text = "Germany"}
         };
    }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the 

asp-for  attribute is an IEnumerable . For example, given the following model:

With the following view:

https://w3c.github.io/html-reference/select.html


@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
    <select asp-for="CountryCodes" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
    <select id="CountryCodes"
    multiple="multiple"
    name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>
    <br /><button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    @Html.EditorForModel()
    <br /><button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
    <option value="">--none--</option>
</select>

public IActionResult IndexNone()
{
    var model = new CountryViewModel();
    model.Insert(0, new SelectListItem("<none>", ""));
    return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate

repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action

method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option


@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    <select asp-for="Country">
        <option value="">&lt;none&gt;</option>
        <option value="MX">Mexico</option>
        <option value="CA">Canada</option>
        <option value="US">USA</option>
    </select> 
    <br /><button type="submit">Register</button>
</form>

public IActionResult IndexOption(int id)
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

 <form method="post" action="/Home/IndexEmpty">
      <select id="Country" name="Country">
          <option value="">&lt;none&gt;</option>
          <option value="MX">Mexico</option>
          <option value="CA" selected="selected">Canada</option>
          <option value="US">USA</option>
      </select>
      <br /><button type="submit">Register</button>
   <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Additional resources

The correct <option>  element will be selected ( contain the selected="selected"  attribute) depending on the

current Country  value.

Tag Helpers in ASP.NET Core

HTML Form element

Request Verification Token

Model Binding in ASP.NET Core

Model validation in ASP.NET Core MVC

IAttributeAdapter Interface

Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final


Tag Helpers in forms in ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
    <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
    <!-- Input and Submit elements -->
    <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

Using a named routeUsing a named route

By Rick Anderson, N. Taylor Mullen, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML

Form element provides the primary mechanism web apps use to post back data to the server. Most of this

document describes Tag Helpers and how they can help you productively create robust HTML forms. We

recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to

recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When an

HTML Helper alternative exists, it's mentioned.

 

The Form Tag Helper :

Generates the HTML <FORM> action  attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the 

[ValidateAntiForgeryToken]  attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name>  attribute, where <Parameter Name>  is added to the route values. The

routeValues  parameters to Html.BeginForm  and Html.BeginRouteForm  provide similar functionality.

Has an HTML Helper alternative Html.BeginForm  and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action  attribute value from the Form Tag Helper attributes asp-controller  and 

asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken]  attribute in the HTTP Post action method). Protecting a

pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route  Tag Helper attribute can also generate markup for the HTML action  attribute. An app with a route

named register  could use the following markup for the registration page:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://github.com/NTaylorMullen
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages


<form asp-route="register" method="post">
    <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
     asp-route-returnurl="@ViewData["ReturnUrl"]"
     method="post" class="form-horizontal" role="form">

NOTENOTE

The Form Action Tag Helper

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N

asp-controller The name of the controller.

asp-action The name of the action method.

asp-area The name of the area.

asp-page The name of the Razor page.

asp-page-handler The name of the Razor page handler.

asp-route The name of the route.

asp-route-{value} A single URL route value. For example, asp-route-id="1234"

.

asp-all-route-data All route values.

asp-fragment The URL fragment.

Submit to controller exampleSubmit to controller example

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User

Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl  is only populated automatically when you try to access an authorized resource but

are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the

login page with the returnUrl  set.

The Form Action Tag Helper generates the formaction  attribute on the generated <button ...>  or 

<input type="image" ...>  tag. The formaction  attribute controls where a form submits its data. It binds to <input>

elements of type image  and <button> elements. The Form Action Tag Helper enables the usage of several

AnchorTagHelper asp-  attributes to control what formaction  link is generated for the corresponding element.

Supported AnchorTagHelper attributes to control the value of formaction :

The following markup submits the form to the Index  action of HomeController  when the input or button are

selected:

https://www.w3.org/wiki/HTML/Elements/input
https://www.w3.org/wiki/HTML/Elements/button


<form method="post">
    <button asp-controller="Home" asp-action="Index">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-controller="Home" 
                                asp-action="Index">
</form>

<form method="post">
    <button formaction="/Home">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home">
</form>

Submit to page exampleSubmit to page example

<form method="post">
    <button asp-page="About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-page="About">
</form>

<form method="post">
    <button formaction="/About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/About">
</form>

Submit to route exampleSubmit to route example

public class HomeController : Controller
{
    [Route("/Home/Test", Name = "Custom")]
    public string Test()
    {
        return "This is the test page";
    }
}

<form method="post">
    <button asp-route="Custom">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-route="Custom">
</form>

<form method="post">
    <button formaction="/Home/Test">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home/Test">
</form>

The previous markup generates following HTML:

The following markup submits the form to the About  Razor Page:

The previous markup generates following HTML:

Consider the /Home/Test  endpoint:

The following markup submits the form to the /Home/Test  endpoint.

The previous markup generates following HTML:



The Input Tag Helper

<input asp-for="<Expression Name>">

. N ET  T Y P E. N ET  T Y P E IN P UT  T Y P EIN P UT  T Y P E

Bool type="checkbox"

String type="text"

DateTime type="datetime-local"

Byte type="number"

Int type="number"

Single, Double type="number"

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
'RegisterViewModel' does not contain a definition for 'Email' and no
extension method 'Email' accepting a first argument of type 'RegisterViewModel'
could be found (are you missing a using directive or an assembly reference?)

Generates the id  and name  HTML attributes for the expression name specified in the asp-for  attribute. 

asp-for="Property1.Property2"  is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for  attribute value. See the Expression names section for additional information.

Sets the HTML type  attribute value based on the model type and data annotation attributes applied to the

model property

Won't overwrite the HTML type  attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor  and Html.EditorFor . See the HTML HelperHTML Helper

alternatives to Input Tag Helperalternatives to Input Tag Helper  section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get

an error similar to the following:

The Input  Tag Helper sets the HTML type  attribute based on the .NET type. The following table lists some

common .NET types and generated HTML type (not every .NET type is listed).

The following table shows some common data annotations attributes that the input tag helper will map to specific

input types (not every validation attribute is listed):

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/HTML/Element/input/datetime-local
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter


AT T RIB UT EAT T RIB UT E IN P UT  T Y P EIN P UT  T Y P E

[EmailAddress] type="email"

[Url] type="url"

[HiddenInput] type="hidden"

[Phone] type="tel"

[DataType(DataType.Password)] type="password"

[DataType(DataType.Date)] type="date"

[DataType(DataType.Time)] type="time"

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    <button type="submit">Register</button>
</form>

  <form method="post" action="/Demo/RegisterInput">
      Email:
      <input type="email" data-val="true"
             data-val-email="The Email Address field is not a valid email address."
             data-val-required="The Email Address field is required."
             id="Email" name="Email" value=""><br>
      Password:
      <input type="password" data-val="true"
             data-val-required="The Password field is required."
             id="Password" name="Password"><br>
      <button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

Sample:

The code above generates the following HTML:



HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty, 
  new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

@{
  var joe = "Joe";
}

<input asp-for="@joe">

<input type="text" id="joe" name="joe" value="Joe">

Navigating child propertiesNavigating child properties

The data annotations applied to the Email  and Password  properties generate metadata on the model. The Input

Tag Helper consumes the model metadata and produces HTML5 data-val-*  attributes (see Model Validation).

These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery

validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of the

validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is

provided in the attribute, it's displayed as the value for the data-val-rule  attribute. There are also attributes of the

form data-val-ruleName-argumentName="argumentValue"  that provide additional details about the rule, for example, 

data-val-maxlength-max="1024"  .

Html.TextBox , Html.TextBoxFor , Html.Editor  and Html.EditorFor  have overlapping features with the Input Tag

Helper. The Input Tag Helper will automatically set the type  attribute; Html.TextBox  and Html.TextBoxFor  won't. 

Html.Editor  and Html.EditorFor  handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor  and Html.TextBoxFor  are strongly typed (they use lambda expressions); 

Html.TextBox  and Html.Editor  are not (they use expression names).

@Html.Editor()  and @Html.EditorFor()  use a special ViewDataDictionary  entry named htmlAttributes  when

executing their default templates. This behavior is optionally augmented using additionalViewData  parameters. The

key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes  object

passed to input helpers like @Html.TextBox() .

The asp-for  attribute value is a ModelExpression  and the right hand side of a lambda expression. Therefore, 

asp-for="Property1"  becomes m => m.Property1  in the generated code which is why you don't need to prefix with 

Model . You can use the "@" character to start an inline expression and move before the m. :

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member"  generates the same name as 

asp-for="CollectionProperty[i].Member"  when i  has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including ModelState .

Consider <input type="text" asp-for="@Name"> . The calculated value  attribute is the first non-null value from:

ModelState  entry with key "Name".

Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex

model class that contains a child Address  property.

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/


public class AddressViewModel
{
    public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
    public string Email { get; set; }

    [DataType(DataType.Password)]
    public string Password { get; set; }

    public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    Address: <input asp-for="Address.AddressLine1" /><br />
    <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="">

Expression names and CollectionsExpression names and Collections

public class Person
{
    public List<string> Colors { get; set; }

    public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
{
    ViewData["Index"] = colorIndex;
    return View(GetPerson(id));
}

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color  element:



@model Person
@{
    var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
    @Html.EditorFor(m => m.Colors[index])
    <label asp-for="Age"></label>
    <input asp-for="Age" /><br />
    <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" /> <br />

public class ToDoItem
{
    public string Name { get; set; }

    public bool IsDone { get; set; }
}

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
    <table>
        <tr> <th>Name</th> <th>Is Done</th> </tr>

        @for (int i = 0; i < Model.Count; i++)
        {
            <tr>
                @Html.EditorFor(model => model[i])
            </tr>
        }

    </table>
    <button type="submit">Save</button>
</form>

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:



@model ToDoItem

<td>
    <label asp-for="@Model.Name"></label>
    @Html.DisplayFor(model => model.Name)
</td>
<td>
    <input asp-for="@Model.IsDone" />
</td>

@*
    This template replaces the following Razor which evaluates the indexer three times.
    <td>
         <label asp-for="@Model[i].Name"></label>
         @Html.DisplayFor(model => model[i].Name)
     </td>
     <td>
         <input asp-for="@Model[i].IsDone" />
     </td>
*@

NOTENOTE

The Textarea Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class DescriptionViewModel
    {
        [MinLength(5)]
        [MaxLength(1024)]
        public string Description { get; set; }
    }
}

foreach  should be used if possible when the value is going to be used in an asp-for  or Html.DisplayFor

equivalent context. In general, for  is better than foreach  (if the scenario allows it) because it doesn't need to

allocate an enumerator ; however, evaluating an indexer in a LINQ expression can be expensive and should be

minimized.

 

The commented sample code above shows how you would replace the lambda expression with the @  operator to access

each ToDoItem  in the list.

The Textarea Tag Helper  tag helper is similar to the Input Tag Helper.

Generates the id  and name  attributes, and the data validation attributes from the model for a <textarea>

element.

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

https://www.w3.org/wiki/HTML/Elements/textarea


@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
    <textarea asp-for="Description"></textarea>
    <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
  <textarea data-val="true"
   data-val-maxlength="The field Description must be a string or array type with a maximum length of 
&#x27;1024&#x27;."
   data-val-maxlength-max="1024"
   data-val-minlength="The field Description must be a string or array type with a minimum length of 
&#x27;5&#x27;."
   data-val-minlength-min="5"
   id="Description" name="Description">
  </textarea>
  <button type="submit">Test</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Label Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class SimpleViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }
    }
}

The following HTML is generated:

Generates the label caption and for  attribute on a <label> element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper  provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display  attribute. The intended display name

might change over time, and the combination of Display  attribute and Label Tag Helper will apply the 

Display  everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label


@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
    <label asp-for="Email"></label>
    <input asp-for="Email" /> <br />
</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

<span asp-validation-for="Email"></span>

<span class="field-validation-valid"
  data-valmsg-for="Email"
  data-valmsg-replace="true"></span>

NOTENOTE

The following HTML is generated for the <label>  element:

The Label Tag Helper generated the for  attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id  and for  elements so they can be correctly associated. The

caption in this sample comes from the Display  attribute. If the model didn't contain a Display  attribute, the

caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper  (which displays a validation message for a

single property on your model), and the Validation Summary Tag Helper  (which displays a summary of validation

errors). The Input Tag Helper  adds HTML5 client side validation attributes to input elements based on data

annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper

displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property"  attribute to the span element, which attaches the validation

error messages on the input field of the specified model property. When a client side validation error occurs,

jQuery displays the error message in the <span>  element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only

be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper  is used with the asp-validation-for  attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

You generally use the Validation Message Tag Helper  after an Input  Tag Helper for the same property. Doing so

displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model

Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/


<span class="field-validation-error" data-valmsg-for="Email"
            data-valmsg-replace="true">
   The Email Address field is required.
</span>

The Validation Summary Tag HelperThe Validation Summary Tag Helper

A SP -VA L IDAT IO N -SUM M A RYA SP -VA L IDAT IO N -SUM M A RY VA L IDAT IO N  M ESSA GES DISP L AY EDVA L IDAT IO N  M ESSA GES DISP L AY ED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
    <div asp-validation-summary="ModelOnly"></div>
    Email:  <input asp-for="Email" /> <br />
    <span asp-validation-for="Email"></span><br />
    Password: <input asp-for="Password" /><br />
    <span asp-validation-for="Password"></span><br />
    <button type="submit">Register</button>
</form>

validation is disabled), MVC places that error message as the body of the <span>  element.

Targets <div>  elements with the asp-validation-summary  attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper  is used to display a summary of validation messages. The 

asp-validation-summary  attribute value can be any of the following:

In the following example, the data model has DataAnnotation  attributes, which generates validation error messages

on the <input>  element. When a validation error occurs, the Validation Tag Helper displays the error message:

The generated HTML (when the model is valid):



<form action="/DemoReg/Register" method="post">
  <div class="validation-summary-valid" data-valmsg-summary="true">
  <ul><li style="display:none"></li></ul></div>
  Email:  <input name="Email" id="Email" type="email" value=""
   data-val-required="The Email field is required."
   data-val-email="The Email field is not a valid email address."
   data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Email"></span><br>
  Password: <input name="Password" id="Password" type="password"
   data-val-required="The Password field is required." data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Password"></span><br>
  <button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select> 

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModel
    {
        public string Country { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"  },
        };
    }
}

public IActionResult Index()
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor  and Html.ListBoxFor

The Select Tag Helper  asp-for  specifies the model property name for the select element and asp-items  specifies

the option elements. For example:

Sample:

The Index  method initializes the CountryViewModel , sets the selected country and passes it to the Index  view.

The HTTP POST Index  method displays the selection:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option


[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
    if (ModelState.IsValid)
    {
        var msg = model.Country + " selected";
        return RedirectToAction("IndexSuccess", new { message = msg });
    }

    // If we got this far, something failed; redisplay form.
    return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
    <select asp-for="Country" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/">
     <select id="Country" name="Country">
       <option value="MX">Mexico</option>
       <option selected="selected" value="CA">Canada</option>
       <option value="US">USA</option>
     </select>
       <br /><button type="submit">Register</button>
     <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select> 

Enum bindingEnum binding

The Index  view:

Which generates the following HTML (with "CA" selected):

We don't recommend using ViewBag  or ViewData  with the Select Tag Helper. A view model is more robust at providing

MVC metadata and generally less problematic.

The asp-for  attribute value is a special case and doesn't require a Model  prefix, the other Tag Helper attributes do

(such as asp-items )

It's often convenient to use <select>  with an enum  property and generate the SelectListItem  elements from the 

enum  values.

Sample:



    public class CountryEnumViewModel
    {
        public CountryEnum EnumCountry { get; set; }
    }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
    <select asp-for="EnumCountry" 
            asp-items="Html.GetEnumSelectList<CountryEnum>()">
    </select> 
    <br /><button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

The GetEnumSelectList  method generates a SelectList  object for an enum.

You can mark your enumerator list with the Display  attribute to get a richer UI:

The following HTML is generated:



  <form method="post" action="/Home/IndexEnum">
         <select data-val="true" data-val-required="The EnumCountry field is required."
                 id="EnumCountry" name="EnumCountry">
             <option value="0">United Mexican States</option>
             <option value="1">United States of America</option>
             <option value="2">Canada</option>
             <option value="3">France</option>
             <option value="4">Germany</option>
             <option selected="selected" value="5">Spain</option>
         </select>
         <br /><button type="submit">Register</button>
         <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
    </form>

Option GroupOption Group
The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup  objects.

The CountryViewModelGroup  groups the SelectListItem  elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup


public class CountryViewModelGroup
{
    public CountryViewModelGroup()
    {
        var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
        var EuropeGroup = new SelectListGroup { Name = "Europe" };

        Countries = new List<SelectListItem>
        {
            new SelectListItem
            {
                Value = "MEX",
                Text = "Mexico",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "CAN",
                Text = "Canada",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "US",
                Text = "USA",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "FR",
                Text = "France",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "ES",
                Text = "Spain",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "DE",
                Text = "Germany",
                Group = EuropeGroup
            }
      };
    }

    public string Country { get; set; }

    public List<SelectListItem> Countries { get; }

The two groups are shown below:



 <form method="post" action="/Home/IndexGroup">
      <select id="Country" name="Country">
          <optgroup label="North America">
              <option value="MEX">Mexico</option>
              <option value="CAN">Canada</option>
              <option value="US">USA</option>
          </optgroup>
          <optgroup label="Europe">
              <option value="FR">France</option>
              <option value="ES">Spain</option>
              <option value="DE">Germany</option>
          </optgroup>
      </select>
      <br /><button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModelIEnumerable
    {
        public IEnumerable<string> CountryCodes { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"    },
            new SelectListItem { Value = "FR", Text = "France" },
            new SelectListItem { Value = "ES", Text = "Spain"  },
            new SelectListItem { Value = "DE", Text = "Germany"}
         };
    }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the 

asp-for  attribute is an IEnumerable . For example, given the following model:

With the following view:

https://w3c.github.io/html-reference/select.html


@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
    <select asp-for="CountryCodes" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
    <select id="CountryCodes"
    multiple="multiple"
    name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>
    <br /><button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    @Html.EditorForModel()
    <br /><button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
    <option value="">--none--</option>
</select>

public IActionResult IndexNone()
{
    var model = new CountryViewModel();
    model.Insert(0, new SelectListItem("<none>", ""));
    return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate

repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action

method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option


@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    <select asp-for="Country">
        <option value="">&lt;none&gt;</option>
        <option value="MX">Mexico</option>
        <option value="CA">Canada</option>
        <option value="US">USA</option>
    </select> 
    <br /><button type="submit">Register</button>
</form>

public IActionResult IndexOption(int id)
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

 <form method="post" action="/Home/IndexEmpty">
      <select id="Country" name="Country">
          <option value="">&lt;none&gt;</option>
          <option value="MX">Mexico</option>
          <option value="CA" selected="selected">Canada</option>
          <option value="US">USA</option>
      </select>
      <br /><button type="submit">Register</button>
   <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Additional resources

The correct <option>  element will be selected ( contain the selected="selected"  attribute) depending on the

current Country  value.

Tag Helpers in ASP.NET Core

HTML Form element

Request Verification Token

Model Binding in ASP.NET Core

Model validation in ASP.NET Core MVC

IAttributeAdapter Interface

Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final


Image Tag Helper in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Image Tag Helper Attributes
srcsrc

asp-append-versionasp-append-version

<img src="~/images/asplogo.png" asp-append-version="true">

<img src="/images/asplogo.png?v=Kl_dqr9NVtnMdsM2MUg4qthUnWZm5T1fCEimBPWDNgM">

Hash caching behavior

By Peter Kellner

The Image Tag Helper enhances the <img>  tag to provide cache-busting behavior for static image files.

A cache-busting string is a unique value representing the hash of the static image file appended to the asset's URL.

The unique string prompts clients (and some proxies) to reload the image from the host web server and not from

the client's cache.

If the image source ( src ) is a static file on the host web server :

A unique cache-busting string is appended as a query parameter to the image source.

If the file on the host web server changes, a unique request URL is generated that includes the updated request

parameter.

For an overview of Tag Helpers, see Tag Helpers in ASP.NET Core.

To activate the Image Tag Helper, the src  attribute is required on the <img>  element.

The image source ( src ) must point to a physical static file on the server. If the src  is a remote URI, the cache-

busting query string parameter isn't generated.

When asp-append-version  is specified with a true  value along with a src  attribute, the Image Tag Helper is

invoked.

The following example uses an Image Tag Helper :

If the static file exists in the directory /wwwroot/images/, the generated HTML is similar to the following (the hash

will be different):

The value assigned to the parameter v  is the hash value of the asplogo.png file on disk. If the web server is

unable to obtain read access to the static file, no v  parameter is added to the src  attribute in the rendered

markup.

The Image Tag Helper uses the cache provider on the local web server to store the calculated Sha512  hash of a

given file. If the file is requested multiple times, the hash isn't recalculated. The cache is invalidated by a file watcher

that's attached to the file when the file's Sha512  hash is calculated. When the file changes on disk, a new hash is

calculated and cached.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/image-tag-helper.md
https://peterkellner.net


Additional resources
Cache in-memory in ASP.NET Core



Tag Helpers in forms in ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
    <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
    <!-- Input and Submit elements -->
    <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

Using a named routeUsing a named route

By Rick Anderson, N. Taylor Mullen, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML

Form element provides the primary mechanism web apps use to post back data to the server. Most of this

document describes Tag Helpers and how they can help you productively create robust HTML forms. We

recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to

recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When an

HTML Helper alternative exists, it's mentioned.

 

The Form Tag Helper :

Generates the HTML <FORM> action  attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the 

[ValidateAntiForgeryToken]  attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name>  attribute, where <Parameter Name>  is added to the route values. The

routeValues  parameters to Html.BeginForm  and Html.BeginRouteForm  provide similar functionality.

Has an HTML Helper alternative Html.BeginForm  and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action  attribute value from the Form Tag Helper attributes asp-controller  and 

asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken]  attribute in the HTTP Post action method). Protecting a

pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route  Tag Helper attribute can also generate markup for the HTML action  attribute. An app with a route

named register  could use the following markup for the registration page:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://github.com/NTaylorMullen
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages


<form asp-route="register" method="post">
    <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
     asp-route-returnurl="@ViewData["ReturnUrl"]"
     method="post" class="form-horizontal" role="form">

NOTENOTE

The Form Action Tag Helper

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N

asp-controller The name of the controller.

asp-action The name of the action method.

asp-area The name of the area.

asp-page The name of the Razor page.

asp-page-handler The name of the Razor page handler.

asp-route The name of the route.

asp-route-{value} A single URL route value. For example, asp-route-id="1234"

.

asp-all-route-data All route values.

asp-fragment The URL fragment.

Submit to controller exampleSubmit to controller example

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User

Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl  is only populated automatically when you try to access an authorized resource but

are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the

login page with the returnUrl  set.

The Form Action Tag Helper generates the formaction  attribute on the generated <button ...>  or 

<input type="image" ...>  tag. The formaction  attribute controls where a form submits its data. It binds to <input>

elements of type image  and <button> elements. The Form Action Tag Helper enables the usage of several

AnchorTagHelper asp-  attributes to control what formaction  link is generated for the corresponding element.

Supported AnchorTagHelper attributes to control the value of formaction :

The following markup submits the form to the Index  action of HomeController  when the input or button are

selected:

https://www.w3.org/wiki/HTML/Elements/input
https://www.w3.org/wiki/HTML/Elements/button


<form method="post">
    <button asp-controller="Home" asp-action="Index">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-controller="Home" 
                                asp-action="Index">
</form>

<form method="post">
    <button formaction="/Home">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home">
</form>

Submit to page exampleSubmit to page example

<form method="post">
    <button asp-page="About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-page="About">
</form>

<form method="post">
    <button formaction="/About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/About">
</form>

Submit to route exampleSubmit to route example

public class HomeController : Controller
{
    [Route("/Home/Test", Name = "Custom")]
    public string Test()
    {
        return "This is the test page";
    }
}

<form method="post">
    <button asp-route="Custom">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-route="Custom">
</form>

<form method="post">
    <button formaction="/Home/Test">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home/Test">
</form>

The previous markup generates following HTML:

The following markup submits the form to the About  Razor Page:

The previous markup generates following HTML:

Consider the /Home/Test  endpoint:

The following markup submits the form to the /Home/Test  endpoint.

The previous markup generates following HTML:



The Input Tag Helper

<input asp-for="<Expression Name>">

. N ET  T Y P E. N ET  T Y P E IN P UT  T Y P EIN P UT  T Y P E

Bool type="checkbox"

String type="text"

DateTime type="datetime-local"

Byte type="number"

Int type="number"

Single, Double type="number"

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
'RegisterViewModel' does not contain a definition for 'Email' and no
extension method 'Email' accepting a first argument of type 'RegisterViewModel'
could be found (are you missing a using directive or an assembly reference?)

Generates the id  and name  HTML attributes for the expression name specified in the asp-for  attribute. 

asp-for="Property1.Property2"  is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for  attribute value. See the Expression names section for additional information.

Sets the HTML type  attribute value based on the model type and data annotation attributes applied to the

model property

Won't overwrite the HTML type  attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor  and Html.EditorFor . See the HTML HelperHTML Helper

alternatives to Input Tag Helperalternatives to Input Tag Helper  section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get

an error similar to the following:

The Input  Tag Helper sets the HTML type  attribute based on the .NET type. The following table lists some

common .NET types and generated HTML type (not every .NET type is listed).

The following table shows some common data annotations attributes that the input tag helper will map to specific

input types (not every validation attribute is listed):

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/HTML/Element/input/datetime-local
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter


AT T RIB UT EAT T RIB UT E IN P UT  T Y P EIN P UT  T Y P E

[EmailAddress] type="email"

[Url] type="url"

[HiddenInput] type="hidden"

[Phone] type="tel"

[DataType(DataType.Password)] type="password"

[DataType(DataType.Date)] type="date"

[DataType(DataType.Time)] type="time"

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    <button type="submit">Register</button>
</form>

  <form method="post" action="/Demo/RegisterInput">
      Email:
      <input type="email" data-val="true"
             data-val-email="The Email Address field is not a valid email address."
             data-val-required="The Email Address field is required."
             id="Email" name="Email" value=""><br>
      Password:
      <input type="password" data-val="true"
             data-val-required="The Password field is required."
             id="Password" name="Password"><br>
      <button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

Sample:

The code above generates the following HTML:



HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty, 
  new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

@{
  var joe = "Joe";
}

<input asp-for="@joe">

<input type="text" id="joe" name="joe" value="Joe">

Navigating child propertiesNavigating child properties

The data annotations applied to the Email  and Password  properties generate metadata on the model. The Input

Tag Helper consumes the model metadata and produces HTML5 data-val-*  attributes (see Model Validation).

These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery

validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of the

validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is

provided in the attribute, it's displayed as the value for the data-val-rule  attribute. There are also attributes of the

form data-val-ruleName-argumentName="argumentValue"  that provide additional details about the rule, for example, 

data-val-maxlength-max="1024"  .

Html.TextBox , Html.TextBoxFor , Html.Editor  and Html.EditorFor  have overlapping features with the Input Tag

Helper. The Input Tag Helper will automatically set the type  attribute; Html.TextBox  and Html.TextBoxFor  won't. 

Html.Editor  and Html.EditorFor  handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor  and Html.TextBoxFor  are strongly typed (they use lambda expressions); 

Html.TextBox  and Html.Editor  are not (they use expression names).

@Html.Editor()  and @Html.EditorFor()  use a special ViewDataDictionary  entry named htmlAttributes  when

executing their default templates. This behavior is optionally augmented using additionalViewData  parameters. The

key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes  object

passed to input helpers like @Html.TextBox() .

The asp-for  attribute value is a ModelExpression  and the right hand side of a lambda expression. Therefore, 

asp-for="Property1"  becomes m => m.Property1  in the generated code which is why you don't need to prefix with 

Model . You can use the "@" character to start an inline expression and move before the m. :

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member"  generates the same name as 

asp-for="CollectionProperty[i].Member"  when i  has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including ModelState .

Consider <input type="text" asp-for="@Name"> . The calculated value  attribute is the first non-null value from:

ModelState  entry with key "Name".

Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex

model class that contains a child Address  property.

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/


public class AddressViewModel
{
    public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
    public string Email { get; set; }

    [DataType(DataType.Password)]
    public string Password { get; set; }

    public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    Address: <input asp-for="Address.AddressLine1" /><br />
    <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="">

Expression names and CollectionsExpression names and Collections

public class Person
{
    public List<string> Colors { get; set; }

    public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
{
    ViewData["Index"] = colorIndex;
    return View(GetPerson(id));
}

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color  element:



@model Person
@{
    var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
    @Html.EditorFor(m => m.Colors[index])
    <label asp-for="Age"></label>
    <input asp-for="Age" /><br />
    <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" /> <br />

public class ToDoItem
{
    public string Name { get; set; }

    public bool IsDone { get; set; }
}

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
    <table>
        <tr> <th>Name</th> <th>Is Done</th> </tr>

        @for (int i = 0; i < Model.Count; i++)
        {
            <tr>
                @Html.EditorFor(model => model[i])
            </tr>
        }

    </table>
    <button type="submit">Save</button>
</form>

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:



@model ToDoItem

<td>
    <label asp-for="@Model.Name"></label>
    @Html.DisplayFor(model => model.Name)
</td>
<td>
    <input asp-for="@Model.IsDone" />
</td>

@*
    This template replaces the following Razor which evaluates the indexer three times.
    <td>
         <label asp-for="@Model[i].Name"></label>
         @Html.DisplayFor(model => model[i].Name)
     </td>
     <td>
         <input asp-for="@Model[i].IsDone" />
     </td>
*@

NOTENOTE

The Textarea Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class DescriptionViewModel
    {
        [MinLength(5)]
        [MaxLength(1024)]
        public string Description { get; set; }
    }
}

foreach  should be used if possible when the value is going to be used in an asp-for  or Html.DisplayFor

equivalent context. In general, for  is better than foreach  (if the scenario allows it) because it doesn't need to

allocate an enumerator ; however, evaluating an indexer in a LINQ expression can be expensive and should be

minimized.

 

The commented sample code above shows how you would replace the lambda expression with the @  operator to access

each ToDoItem  in the list.

The Textarea Tag Helper  tag helper is similar to the Input Tag Helper.

Generates the id  and name  attributes, and the data validation attributes from the model for a <textarea>

element.

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

https://www.w3.org/wiki/HTML/Elements/textarea


@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
    <textarea asp-for="Description"></textarea>
    <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
  <textarea data-val="true"
   data-val-maxlength="The field Description must be a string or array type with a maximum length of 
&#x27;1024&#x27;."
   data-val-maxlength-max="1024"
   data-val-minlength="The field Description must be a string or array type with a minimum length of 
&#x27;5&#x27;."
   data-val-minlength-min="5"
   id="Description" name="Description">
  </textarea>
  <button type="submit">Test</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Label Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class SimpleViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }
    }
}

The following HTML is generated:

Generates the label caption and for  attribute on a <label> element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper  provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display  attribute. The intended display name

might change over time, and the combination of Display  attribute and Label Tag Helper will apply the 

Display  everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label


@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
    <label asp-for="Email"></label>
    <input asp-for="Email" /> <br />
</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

<span asp-validation-for="Email"></span>

<span class="field-validation-valid"
  data-valmsg-for="Email"
  data-valmsg-replace="true"></span>

NOTENOTE

The following HTML is generated for the <label>  element:

The Label Tag Helper generated the for  attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id  and for  elements so they can be correctly associated. The

caption in this sample comes from the Display  attribute. If the model didn't contain a Display  attribute, the

caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper  (which displays a validation message for a

single property on your model), and the Validation Summary Tag Helper  (which displays a summary of validation

errors). The Input Tag Helper  adds HTML5 client side validation attributes to input elements based on data

annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper

displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property"  attribute to the span element, which attaches the validation

error messages on the input field of the specified model property. When a client side validation error occurs,

jQuery displays the error message in the <span>  element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only

be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper  is used with the asp-validation-for  attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

You generally use the Validation Message Tag Helper  after an Input  Tag Helper for the same property. Doing so

displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model

Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/


<span class="field-validation-error" data-valmsg-for="Email"
            data-valmsg-replace="true">
   The Email Address field is required.
</span>

The Validation Summary Tag HelperThe Validation Summary Tag Helper

A SP -VA L IDAT IO N -SUM M A RYA SP -VA L IDAT IO N -SUM M A RY VA L IDAT IO N  M ESSA GES DISP L AY EDVA L IDAT IO N  M ESSA GES DISP L AY ED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
    <div asp-validation-summary="ModelOnly"></div>
    Email:  <input asp-for="Email" /> <br />
    <span asp-validation-for="Email"></span><br />
    Password: <input asp-for="Password" /><br />
    <span asp-validation-for="Password"></span><br />
    <button type="submit">Register</button>
</form>

validation is disabled), MVC places that error message as the body of the <span>  element.

Targets <div>  elements with the asp-validation-summary  attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper  is used to display a summary of validation messages. The 

asp-validation-summary  attribute value can be any of the following:

In the following example, the data model has DataAnnotation  attributes, which generates validation error messages

on the <input>  element. When a validation error occurs, the Validation Tag Helper displays the error message:

The generated HTML (when the model is valid):



<form action="/DemoReg/Register" method="post">
  <div class="validation-summary-valid" data-valmsg-summary="true">
  <ul><li style="display:none"></li></ul></div>
  Email:  <input name="Email" id="Email" type="email" value=""
   data-val-required="The Email field is required."
   data-val-email="The Email field is not a valid email address."
   data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Email"></span><br>
  Password: <input name="Password" id="Password" type="password"
   data-val-required="The Password field is required." data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Password"></span><br>
  <button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select> 

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModel
    {
        public string Country { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"  },
        };
    }
}

public IActionResult Index()
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor  and Html.ListBoxFor

The Select Tag Helper  asp-for  specifies the model property name for the select element and asp-items  specifies

the option elements. For example:

Sample:

The Index  method initializes the CountryViewModel , sets the selected country and passes it to the Index  view.

The HTTP POST Index  method displays the selection:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option


[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
    if (ModelState.IsValid)
    {
        var msg = model.Country + " selected";
        return RedirectToAction("IndexSuccess", new { message = msg });
    }

    // If we got this far, something failed; redisplay form.
    return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
    <select asp-for="Country" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/">
     <select id="Country" name="Country">
       <option value="MX">Mexico</option>
       <option selected="selected" value="CA">Canada</option>
       <option value="US">USA</option>
     </select>
       <br /><button type="submit">Register</button>
     <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select> 

Enum bindingEnum binding

The Index  view:

Which generates the following HTML (with "CA" selected):

We don't recommend using ViewBag  or ViewData  with the Select Tag Helper. A view model is more robust at providing

MVC metadata and generally less problematic.

The asp-for  attribute value is a special case and doesn't require a Model  prefix, the other Tag Helper attributes do

(such as asp-items )

It's often convenient to use <select>  with an enum  property and generate the SelectListItem  elements from the 

enum  values.

Sample:



    public class CountryEnumViewModel
    {
        public CountryEnum EnumCountry { get; set; }
    }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
    <select asp-for="EnumCountry" 
            asp-items="Html.GetEnumSelectList<CountryEnum>()">
    </select> 
    <br /><button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

The GetEnumSelectList  method generates a SelectList  object for an enum.

You can mark your enumerator list with the Display  attribute to get a richer UI:

The following HTML is generated:



  <form method="post" action="/Home/IndexEnum">
         <select data-val="true" data-val-required="The EnumCountry field is required."
                 id="EnumCountry" name="EnumCountry">
             <option value="0">United Mexican States</option>
             <option value="1">United States of America</option>
             <option value="2">Canada</option>
             <option value="3">France</option>
             <option value="4">Germany</option>
             <option selected="selected" value="5">Spain</option>
         </select>
         <br /><button type="submit">Register</button>
         <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
    </form>

Option GroupOption Group
The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup  objects.

The CountryViewModelGroup  groups the SelectListItem  elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup


public class CountryViewModelGroup
{
    public CountryViewModelGroup()
    {
        var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
        var EuropeGroup = new SelectListGroup { Name = "Europe" };

        Countries = new List<SelectListItem>
        {
            new SelectListItem
            {
                Value = "MEX",
                Text = "Mexico",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "CAN",
                Text = "Canada",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "US",
                Text = "USA",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "FR",
                Text = "France",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "ES",
                Text = "Spain",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "DE",
                Text = "Germany",
                Group = EuropeGroup
            }
      };
    }

    public string Country { get; set; }

    public List<SelectListItem> Countries { get; }

The two groups are shown below:



 <form method="post" action="/Home/IndexGroup">
      <select id="Country" name="Country">
          <optgroup label="North America">
              <option value="MEX">Mexico</option>
              <option value="CAN">Canada</option>
              <option value="US">USA</option>
          </optgroup>
          <optgroup label="Europe">
              <option value="FR">France</option>
              <option value="ES">Spain</option>
              <option value="DE">Germany</option>
          </optgroup>
      </select>
      <br /><button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModelIEnumerable
    {
        public IEnumerable<string> CountryCodes { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"    },
            new SelectListItem { Value = "FR", Text = "France" },
            new SelectListItem { Value = "ES", Text = "Spain"  },
            new SelectListItem { Value = "DE", Text = "Germany"}
         };
    }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the 

asp-for  attribute is an IEnumerable . For example, given the following model:

With the following view:

https://w3c.github.io/html-reference/select.html


@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
    <select asp-for="CountryCodes" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
    <select id="CountryCodes"
    multiple="multiple"
    name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>
    <br /><button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    @Html.EditorForModel()
    <br /><button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
    <option value="">--none--</option>
</select>

public IActionResult IndexNone()
{
    var model = new CountryViewModel();
    model.Insert(0, new SelectListItem("<none>", ""));
    return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate

repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action

method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option


@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    <select asp-for="Country">
        <option value="">&lt;none&gt;</option>
        <option value="MX">Mexico</option>
        <option value="CA">Canada</option>
        <option value="US">USA</option>
    </select> 
    <br /><button type="submit">Register</button>
</form>

public IActionResult IndexOption(int id)
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

 <form method="post" action="/Home/IndexEmpty">
      <select id="Country" name="Country">
          <option value="">&lt;none&gt;</option>
          <option value="MX">Mexico</option>
          <option value="CA" selected="selected">Canada</option>
          <option value="US">USA</option>
      </select>
      <br /><button type="submit">Register</button>
   <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Additional resources

The correct <option>  element will be selected ( contain the selected="selected"  attribute) depending on the

current Country  value.

Tag Helpers in ASP.NET Core

HTML Form element

Request Verification Token

Model Binding in ASP.NET Core

Model validation in ASP.NET Core MVC

IAttributeAdapter Interface

Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final


Tag Helpers in forms in ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
    <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
    <!-- Input and Submit elements -->
    <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

Using a named routeUsing a named route

By Rick Anderson, N. Taylor Mullen, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML

Form element provides the primary mechanism web apps use to post back data to the server. Most of this

document describes Tag Helpers and how they can help you productively create robust HTML forms. We

recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to

recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When an

HTML Helper alternative exists, it's mentioned.

 

The Form Tag Helper :

Generates the HTML <FORM> action  attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the 

[ValidateAntiForgeryToken]  attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name>  attribute, where <Parameter Name>  is added to the route values. The

routeValues  parameters to Html.BeginForm  and Html.BeginRouteForm  provide similar functionality.

Has an HTML Helper alternative Html.BeginForm  and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action  attribute value from the Form Tag Helper attributes asp-controller  and 

asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken]  attribute in the HTTP Post action method). Protecting a

pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route  Tag Helper attribute can also generate markup for the HTML action  attribute. An app with a route

named register  could use the following markup for the registration page:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://github.com/NTaylorMullen
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages


<form asp-route="register" method="post">
    <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
     asp-route-returnurl="@ViewData["ReturnUrl"]"
     method="post" class="form-horizontal" role="form">

NOTENOTE

The Form Action Tag Helper

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N

asp-controller The name of the controller.

asp-action The name of the action method.

asp-area The name of the area.

asp-page The name of the Razor page.

asp-page-handler The name of the Razor page handler.

asp-route The name of the route.

asp-route-{value} A single URL route value. For example, asp-route-id="1234"

.

asp-all-route-data All route values.

asp-fragment The URL fragment.

Submit to controller exampleSubmit to controller example

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User

Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl  is only populated automatically when you try to access an authorized resource but

are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the

login page with the returnUrl  set.

The Form Action Tag Helper generates the formaction  attribute on the generated <button ...>  or 

<input type="image" ...>  tag. The formaction  attribute controls where a form submits its data. It binds to <input>

elements of type image  and <button> elements. The Form Action Tag Helper enables the usage of several

AnchorTagHelper asp-  attributes to control what formaction  link is generated for the corresponding element.

Supported AnchorTagHelper attributes to control the value of formaction :

The following markup submits the form to the Index  action of HomeController  when the input or button are

selected:

https://www.w3.org/wiki/HTML/Elements/input
https://www.w3.org/wiki/HTML/Elements/button


<form method="post">
    <button asp-controller="Home" asp-action="Index">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-controller="Home" 
                                asp-action="Index">
</form>

<form method="post">
    <button formaction="/Home">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home">
</form>

Submit to page exampleSubmit to page example

<form method="post">
    <button asp-page="About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-page="About">
</form>

<form method="post">
    <button formaction="/About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/About">
</form>

Submit to route exampleSubmit to route example

public class HomeController : Controller
{
    [Route("/Home/Test", Name = "Custom")]
    public string Test()
    {
        return "This is the test page";
    }
}

<form method="post">
    <button asp-route="Custom">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-route="Custom">
</form>

<form method="post">
    <button formaction="/Home/Test">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home/Test">
</form>

The previous markup generates following HTML:

The following markup submits the form to the About  Razor Page:

The previous markup generates following HTML:

Consider the /Home/Test  endpoint:

The following markup submits the form to the /Home/Test  endpoint.

The previous markup generates following HTML:



The Input Tag Helper

<input asp-for="<Expression Name>">

. N ET  T Y P E. N ET  T Y P E IN P UT  T Y P EIN P UT  T Y P E

Bool type="checkbox"

String type="text"

DateTime type="datetime-local"

Byte type="number"

Int type="number"

Single, Double type="number"

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
'RegisterViewModel' does not contain a definition for 'Email' and no
extension method 'Email' accepting a first argument of type 'RegisterViewModel'
could be found (are you missing a using directive or an assembly reference?)

Generates the id  and name  HTML attributes for the expression name specified in the asp-for  attribute. 

asp-for="Property1.Property2"  is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for  attribute value. See the Expression names section for additional information.

Sets the HTML type  attribute value based on the model type and data annotation attributes applied to the

model property

Won't overwrite the HTML type  attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor  and Html.EditorFor . See the HTML HelperHTML Helper

alternatives to Input Tag Helperalternatives to Input Tag Helper  section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get

an error similar to the following:

The Input  Tag Helper sets the HTML type  attribute based on the .NET type. The following table lists some

common .NET types and generated HTML type (not every .NET type is listed).

The following table shows some common data annotations attributes that the input tag helper will map to specific

input types (not every validation attribute is listed):

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/HTML/Element/input/datetime-local
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter


AT T RIB UT EAT T RIB UT E IN P UT  T Y P EIN P UT  T Y P E

[EmailAddress] type="email"

[Url] type="url"

[HiddenInput] type="hidden"

[Phone] type="tel"

[DataType(DataType.Password)] type="password"

[DataType(DataType.Date)] type="date"

[DataType(DataType.Time)] type="time"

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    <button type="submit">Register</button>
</form>

  <form method="post" action="/Demo/RegisterInput">
      Email:
      <input type="email" data-val="true"
             data-val-email="The Email Address field is not a valid email address."
             data-val-required="The Email Address field is required."
             id="Email" name="Email" value=""><br>
      Password:
      <input type="password" data-val="true"
             data-val-required="The Password field is required."
             id="Password" name="Password"><br>
      <button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

Sample:

The code above generates the following HTML:



HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty, 
  new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

@{
  var joe = "Joe";
}

<input asp-for="@joe">

<input type="text" id="joe" name="joe" value="Joe">

Navigating child propertiesNavigating child properties

The data annotations applied to the Email  and Password  properties generate metadata on the model. The Input

Tag Helper consumes the model metadata and produces HTML5 data-val-*  attributes (see Model Validation).

These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery

validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of the

validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is

provided in the attribute, it's displayed as the value for the data-val-rule  attribute. There are also attributes of the

form data-val-ruleName-argumentName="argumentValue"  that provide additional details about the rule, for example, 

data-val-maxlength-max="1024"  .

Html.TextBox , Html.TextBoxFor , Html.Editor  and Html.EditorFor  have overlapping features with the Input Tag

Helper. The Input Tag Helper will automatically set the type  attribute; Html.TextBox  and Html.TextBoxFor  won't. 

Html.Editor  and Html.EditorFor  handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor  and Html.TextBoxFor  are strongly typed (they use lambda expressions); 

Html.TextBox  and Html.Editor  are not (they use expression names).

@Html.Editor()  and @Html.EditorFor()  use a special ViewDataDictionary  entry named htmlAttributes  when

executing their default templates. This behavior is optionally augmented using additionalViewData  parameters. The

key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes  object

passed to input helpers like @Html.TextBox() .

The asp-for  attribute value is a ModelExpression  and the right hand side of a lambda expression. Therefore, 

asp-for="Property1"  becomes m => m.Property1  in the generated code which is why you don't need to prefix with 

Model . You can use the "@" character to start an inline expression and move before the m. :

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member"  generates the same name as 

asp-for="CollectionProperty[i].Member"  when i  has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including ModelState .

Consider <input type="text" asp-for="@Name"> . The calculated value  attribute is the first non-null value from:

ModelState  entry with key "Name".

Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex

model class that contains a child Address  property.

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/


public class AddressViewModel
{
    public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
    public string Email { get; set; }

    [DataType(DataType.Password)]
    public string Password { get; set; }

    public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    Address: <input asp-for="Address.AddressLine1" /><br />
    <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="">

Expression names and CollectionsExpression names and Collections

public class Person
{
    public List<string> Colors { get; set; }

    public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
{
    ViewData["Index"] = colorIndex;
    return View(GetPerson(id));
}

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color  element:



@model Person
@{
    var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
    @Html.EditorFor(m => m.Colors[index])
    <label asp-for="Age"></label>
    <input asp-for="Age" /><br />
    <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" /> <br />

public class ToDoItem
{
    public string Name { get; set; }

    public bool IsDone { get; set; }
}

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
    <table>
        <tr> <th>Name</th> <th>Is Done</th> </tr>

        @for (int i = 0; i < Model.Count; i++)
        {
            <tr>
                @Html.EditorFor(model => model[i])
            </tr>
        }

    </table>
    <button type="submit">Save</button>
</form>

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:



@model ToDoItem

<td>
    <label asp-for="@Model.Name"></label>
    @Html.DisplayFor(model => model.Name)
</td>
<td>
    <input asp-for="@Model.IsDone" />
</td>

@*
    This template replaces the following Razor which evaluates the indexer three times.
    <td>
         <label asp-for="@Model[i].Name"></label>
         @Html.DisplayFor(model => model[i].Name)
     </td>
     <td>
         <input asp-for="@Model[i].IsDone" />
     </td>
*@

NOTENOTE

The Textarea Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class DescriptionViewModel
    {
        [MinLength(5)]
        [MaxLength(1024)]
        public string Description { get; set; }
    }
}

foreach  should be used if possible when the value is going to be used in an asp-for  or Html.DisplayFor

equivalent context. In general, for  is better than foreach  (if the scenario allows it) because it doesn't need to

allocate an enumerator ; however, evaluating an indexer in a LINQ expression can be expensive and should be

minimized.

 

The commented sample code above shows how you would replace the lambda expression with the @  operator to access

each ToDoItem  in the list.

The Textarea Tag Helper  tag helper is similar to the Input Tag Helper.

Generates the id  and name  attributes, and the data validation attributes from the model for a <textarea>

element.

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

https://www.w3.org/wiki/HTML/Elements/textarea


@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
    <textarea asp-for="Description"></textarea>
    <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
  <textarea data-val="true"
   data-val-maxlength="The field Description must be a string or array type with a maximum length of 
&#x27;1024&#x27;."
   data-val-maxlength-max="1024"
   data-val-minlength="The field Description must be a string or array type with a minimum length of 
&#x27;5&#x27;."
   data-val-minlength-min="5"
   id="Description" name="Description">
  </textarea>
  <button type="submit">Test</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Label Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class SimpleViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }
    }
}

The following HTML is generated:

Generates the label caption and for  attribute on a <label> element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper  provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display  attribute. The intended display name

might change over time, and the combination of Display  attribute and Label Tag Helper will apply the 

Display  everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label


@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
    <label asp-for="Email"></label>
    <input asp-for="Email" /> <br />
</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

<span asp-validation-for="Email"></span>

<span class="field-validation-valid"
  data-valmsg-for="Email"
  data-valmsg-replace="true"></span>

NOTENOTE

The following HTML is generated for the <label>  element:

The Label Tag Helper generated the for  attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id  and for  elements so they can be correctly associated. The

caption in this sample comes from the Display  attribute. If the model didn't contain a Display  attribute, the

caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper  (which displays a validation message for a

single property on your model), and the Validation Summary Tag Helper  (which displays a summary of validation

errors). The Input Tag Helper  adds HTML5 client side validation attributes to input elements based on data

annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper

displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property"  attribute to the span element, which attaches the validation

error messages on the input field of the specified model property. When a client side validation error occurs,

jQuery displays the error message in the <span>  element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only

be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper  is used with the asp-validation-for  attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

You generally use the Validation Message Tag Helper  after an Input  Tag Helper for the same property. Doing so

displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model

Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/


<span class="field-validation-error" data-valmsg-for="Email"
            data-valmsg-replace="true">
   The Email Address field is required.
</span>

The Validation Summary Tag HelperThe Validation Summary Tag Helper

A SP -VA L IDAT IO N -SUM M A RYA SP -VA L IDAT IO N -SUM M A RY VA L IDAT IO N  M ESSA GES DISP L AY EDVA L IDAT IO N  M ESSA GES DISP L AY ED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
    <div asp-validation-summary="ModelOnly"></div>
    Email:  <input asp-for="Email" /> <br />
    <span asp-validation-for="Email"></span><br />
    Password: <input asp-for="Password" /><br />
    <span asp-validation-for="Password"></span><br />
    <button type="submit">Register</button>
</form>

validation is disabled), MVC places that error message as the body of the <span>  element.

Targets <div>  elements with the asp-validation-summary  attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper  is used to display a summary of validation messages. The 

asp-validation-summary  attribute value can be any of the following:

In the following example, the data model has DataAnnotation  attributes, which generates validation error messages

on the <input>  element. When a validation error occurs, the Validation Tag Helper displays the error message:

The generated HTML (when the model is valid):



<form action="/DemoReg/Register" method="post">
  <div class="validation-summary-valid" data-valmsg-summary="true">
  <ul><li style="display:none"></li></ul></div>
  Email:  <input name="Email" id="Email" type="email" value=""
   data-val-required="The Email field is required."
   data-val-email="The Email field is not a valid email address."
   data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Email"></span><br>
  Password: <input name="Password" id="Password" type="password"
   data-val-required="The Password field is required." data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Password"></span><br>
  <button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select> 

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModel
    {
        public string Country { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"  },
        };
    }
}

public IActionResult Index()
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor  and Html.ListBoxFor

The Select Tag Helper  asp-for  specifies the model property name for the select element and asp-items  specifies

the option elements. For example:

Sample:

The Index  method initializes the CountryViewModel , sets the selected country and passes it to the Index  view.

The HTTP POST Index  method displays the selection:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option


[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
    if (ModelState.IsValid)
    {
        var msg = model.Country + " selected";
        return RedirectToAction("IndexSuccess", new { message = msg });
    }

    // If we got this far, something failed; redisplay form.
    return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
    <select asp-for="Country" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/">
     <select id="Country" name="Country">
       <option value="MX">Mexico</option>
       <option selected="selected" value="CA">Canada</option>
       <option value="US">USA</option>
     </select>
       <br /><button type="submit">Register</button>
     <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select> 

Enum bindingEnum binding

The Index  view:

Which generates the following HTML (with "CA" selected):

We don't recommend using ViewBag  or ViewData  with the Select Tag Helper. A view model is more robust at providing

MVC metadata and generally less problematic.

The asp-for  attribute value is a special case and doesn't require a Model  prefix, the other Tag Helper attributes do

(such as asp-items )

It's often convenient to use <select>  with an enum  property and generate the SelectListItem  elements from the 

enum  values.

Sample:



    public class CountryEnumViewModel
    {
        public CountryEnum EnumCountry { get; set; }
    }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
    <select asp-for="EnumCountry" 
            asp-items="Html.GetEnumSelectList<CountryEnum>()">
    </select> 
    <br /><button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

The GetEnumSelectList  method generates a SelectList  object for an enum.

You can mark your enumerator list with the Display  attribute to get a richer UI:

The following HTML is generated:



  <form method="post" action="/Home/IndexEnum">
         <select data-val="true" data-val-required="The EnumCountry field is required."
                 id="EnumCountry" name="EnumCountry">
             <option value="0">United Mexican States</option>
             <option value="1">United States of America</option>
             <option value="2">Canada</option>
             <option value="3">France</option>
             <option value="4">Germany</option>
             <option selected="selected" value="5">Spain</option>
         </select>
         <br /><button type="submit">Register</button>
         <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
    </form>

Option GroupOption Group
The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup  objects.

The CountryViewModelGroup  groups the SelectListItem  elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup


public class CountryViewModelGroup
{
    public CountryViewModelGroup()
    {
        var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
        var EuropeGroup = new SelectListGroup { Name = "Europe" };

        Countries = new List<SelectListItem>
        {
            new SelectListItem
            {
                Value = "MEX",
                Text = "Mexico",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "CAN",
                Text = "Canada",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "US",
                Text = "USA",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "FR",
                Text = "France",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "ES",
                Text = "Spain",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "DE",
                Text = "Germany",
                Group = EuropeGroup
            }
      };
    }

    public string Country { get; set; }

    public List<SelectListItem> Countries { get; }

The two groups are shown below:



 <form method="post" action="/Home/IndexGroup">
      <select id="Country" name="Country">
          <optgroup label="North America">
              <option value="MEX">Mexico</option>
              <option value="CAN">Canada</option>
              <option value="US">USA</option>
          </optgroup>
          <optgroup label="Europe">
              <option value="FR">France</option>
              <option value="ES">Spain</option>
              <option value="DE">Germany</option>
          </optgroup>
      </select>
      <br /><button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModelIEnumerable
    {
        public IEnumerable<string> CountryCodes { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"    },
            new SelectListItem { Value = "FR", Text = "France" },
            new SelectListItem { Value = "ES", Text = "Spain"  },
            new SelectListItem { Value = "DE", Text = "Germany"}
         };
    }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the 

asp-for  attribute is an IEnumerable . For example, given the following model:

With the following view:

https://w3c.github.io/html-reference/select.html


@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
    <select asp-for="CountryCodes" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
    <select id="CountryCodes"
    multiple="multiple"
    name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>
    <br /><button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    @Html.EditorForModel()
    <br /><button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
    <option value="">--none--</option>
</select>

public IActionResult IndexNone()
{
    var model = new CountryViewModel();
    model.Insert(0, new SelectListItem("<none>", ""));
    return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate

repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action

method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option


@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    <select asp-for="Country">
        <option value="">&lt;none&gt;</option>
        <option value="MX">Mexico</option>
        <option value="CA">Canada</option>
        <option value="US">USA</option>
    </select> 
    <br /><button type="submit">Register</button>
</form>

public IActionResult IndexOption(int id)
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

 <form method="post" action="/Home/IndexEmpty">
      <select id="Country" name="Country">
          <option value="">&lt;none&gt;</option>
          <option value="MX">Mexico</option>
          <option value="CA" selected="selected">Canada</option>
          <option value="US">USA</option>
      </select>
      <br /><button type="submit">Register</button>
   <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Additional resources

The correct <option>  element will be selected ( contain the selected="selected"  attribute) depending on the

current Country  value.

Tag Helpers in ASP.NET Core

HTML Form element

Request Verification Token

Model Binding in ASP.NET Core

Model validation in ASP.NET Core MVC

IAttributeAdapter Interface

Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final


Link Tag Helper in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>@ViewData["Title"] - WebLinkTH</title>

    <environment include="Development">
        <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
    </environment>
    <environment exclude="Development">
        <link rel="stylesheet" 
              href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4.1.3/css/bootstrap.min.css"
              asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
              asp-fallback-test-class="sr-only" asp-fallback-test-property="position" 
              asp-fallback-test-value="absolute"
              crossorigin="anonymous"
              integrity="sha256-eSi1q2PG6J7g7ib17yAaWMcrr5GrtohYChqibrV7PBE=" />
    </environment>
    <link rel="stylesheet" href="~/css/site.css" />
</head>

By Rick Anderson

The Link Tag Helper generates a link to a primary or fall back CSS file. Typically the primary CSS file is on a Content

Delivery Network (CDN).

A CDN:

Provides several performance advantages vs hosting the asset with the web app.

Should not be relied on as the only source for the asset. CDNs are not always available, therefore a reliable

fallback should be used. Typically the fallback is the site hosting the web app.

The Link Tag Helper allows you to specify a CDN for the CSS file and a fallback when the CDN is not available. The

Link Tag Helper provides the performance advantage of a CDN with the robustness of local hosting.

The following Razor markup shows the head  element of a layout file created with the ASP.NET Core web app

template:

The following is rendered HTML from the preceding code (in a non-Development environment):

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/link-tag-helper.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.linktaghelper
https://docs.microsoft.com/en-us/office365/enterprise/content-delivery-networks#what-exactly-is-a-cdn
https://docs.microsoft.com/en-us/office365/enterprise/content-delivery-networks#how-do-cdns-make-services-work-faster


<html>
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>Home page - WebLinkTH</title>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.1.3/css/bootstrap.min.css"
          crossorigin="anonymous" integrity="sha256-eS<snip>BE=" />
    <meta name="x-stylesheet-fallback-test" content="" class="sr-only" />
    <script>
        !function (a, b, c, d) {
            var e, f = document,
                g = f.getElementsByTagName("SCRIPT"),
                h = g[g.length - 1].previousElementSibling,
                i = f.defaultView && f.defaultView.getComputedStyle ? f.defaultView.getComputedStyle(h) : 
h.currentStyle;
            if (i && i[a] !== b) for (e = 0; e < c.length; e++)
                f.write('<link href="' + c[e] + '" ' + d + "/>")
        }
            ("position", "absolute", ["\/lib\/bootstrap\/dist\/css\/bootstrap.min.css"],
                "rel=\u0022stylesheet\u0022 crossorigin=\u0022anonymous\u0022 integrity=\abc<snip>BE=\u0022 
");
    </script>

    <link rel="stylesheet" href="/css/site.css" />
</head>

Commonly used Link Tag Helper attributes

hrefhref

asp-fallback-hrefasp-fallback-href

asp-fallback-test-classasp-fallback-test-class

asp-fallback-test-propertyasp-fallback-test-property

asp-fallback-test-valueasp-fallback-test-value

Additional resources

In the preceding code, the Link Tag Helper generated the 

<meta name="x-stylesheet-fallback-test" content="" class="sr-only" />  element and the following JavaScript

which is used to verify the requested bootstrap.min.css file is available on the CDN. In this case, the CSS file was

available so the Tag Helper generated the <link />  element with the CDN CSS file.

See Link Tag Helper for all the Link Tag Helper attributes, properties, and methods.

Preferred address of the linked resource. The address is passed thought to the generated HTML in all cases.

The URL of a CSS stylesheet to fallback to in the case the primary URL fails.

The class name defined in the stylesheet to use for the fallback test. For more information, see FallbackTestClass.

The CSS property name to use for the fallback test. For more information, see FallbackTestProperty.

The CSS property value to use for the fallback test. For more information, see FallbackTestValue.

Tag Helpers in ASP.NET Core

Areas in ASP.NET Core

Introduction to Razor Pages in ASP.NET Core

Compatibility version for ASP.NET Core MVC

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.linktaghelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.linktaghelper.fallbacktestclass#microsoft_aspnetcore_mvc_taghelpers_linktaghelper_fallbacktestclass
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.linktaghelper.fallbacktestproperty#microsoft_aspnetcore_mvc_taghelpers_linktaghelper_fallbacktestproperty
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.linktaghelper.fallbacktestvalue#microsoft_aspnetcore_mvc_taghelpers_linktaghelper_fallbacktestvalue


Partial Tag Helper in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

Overview

namespace TagHelpersBuiltIn.Models
{
    public class Product
    {
        public int Number { get; set; }

        public string Name { get; set; }

        public string Description { get; set; }
    }
}

name

<partial name="Shared/_ProductPartial.cshtml" for="Product">

By Scott Addie

For an overview of Tag Helpers, see Tag Helpers in ASP.NET Core.

View or download sample code (how to download)

The Partial Tag Helper is used for rendering a partial view in Razor Pages and MVC apps. Consider that it:

Requires ASP.NET Core 2.1 or later.

Is an alternative to HTML Helper syntax.

Renders the partial view asynchronously.

The HTML Helper options for rendering a partial view include:

@await Html.PartialAsync

@await Html.RenderPartialAsync

@Html.Partial

@Html.RenderPartial

The Product model is used in samples throughout this document:

An inventory of the Partial Tag Helper attributes follows.

The name  attribute is required. It indicates the name or the path of the partial view to be rendered. When a

partial view name is provided, the view discovery process is initiated. That process is bypassed when an explicit

path is provided. For all acceptable name  values, see Partial view discovery.

The following markup uses an explicit path, indicating that _ProductPartial.cshtml is to be loaded from the Shared

folder. Using the for attribute, a model is passed to the partial view for binding.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/partial-tag-helper.md
https://github.com/scottaddie
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/tag-helpers/built-in/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.partialasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.renderpartialasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.partial
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.htmlhelperpartialextensions.renderpartial


  for

<partial name="_ProductPartial" for="Product">

using Microsoft.AspNetCore.Mvc.RazorPages;
using TagHelpersBuiltIn.Models;

namespace TagHelpersBuiltIn.Pages
{
    public class ProductModel : PageModel
    {
        public Product Product { get; set; }

        public void OnGet()
        {
            Product = new Product
            {
                Number = 1,
                Name = "Test product",
                Description = "This is a test product"
            };
        }
    }
}

model

<partial name="_ProductPartial"
         model='new Product { Number = 1, Name = "Test product", Description = "This is a test" }'>

view-data

@{
    ViewData["IsNumberReadOnly"] = true;
}

<partial name="_ProductViewDataPartial" for="Product" view-data="ViewData">

The for  attribute assigns a ModelExpression to be evaluated against the current model. A ModelExpression

infers the @Model.  syntax. For example, for="Product"  can be used instead of for="@Model.Product" . This default

inference behavior is overridden by using the @  symbol to define an inline expression.

The following markup loads _ProductPartial.cshtml:

The partial view is bound to the associated page model's Product  property:

The model  attribute assigns a model instance to pass to the partial view. The model  attribute can't be used with

the for attribute.

In the following markup, a new Product  object is instantiated and passed to the model  attribute for binding:

The view-data  attribute assigns a ViewDataDictionary to pass to the partial view. The following markup makes

the entire ViewData collection accessible to the partial view:

In the preceding code, the IsNumberReadOnly  key value is set to true  and added to the ViewData collection.

Consequently, ViewData["IsNumberReadOnly"]  is made accessible within the following partial view:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.modelexpression
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary


  

@model TagHelpersBuiltIn.Models.Product

<div class="form-group">
    <label asp-for="Number"></label>
    @if ((bool)ViewData["IsNumberReadOnly"])
    {
        <input asp-for="Number" type="number" class="form-control" readonly />
    }
    else
    {
        <input asp-for="Number" type="number" class="form-control" />
    }
</div>
<div class="form-group">
    <label asp-for="Name"></label>
    <input asp-for="Name" type="text" class="form-control" />
</div>
<div class="form-group">
    <label asp-for="Description"></label>
    <textarea asp-for="Description" rows="4" cols="50" class="form-control"></textarea>
</div>

Migrate from an HTML Helper

@foreach (var product in Model.Products)
{
    @await Html.PartialAsync("_ProductPartial", product)
}

@foreach (var product in Model.Products)
{
    <partial name="_ProductPartial" model="product" />
}

Additional resources

In this example, the value of ViewData["IsNumberReadOnly"]  determines whether the Number field is displayed as

read only.

Consider the following asynchronous HTML Helper example. A collection of products is iterated and displayed.

Per the PartialAsync  method's first parameter, the _ProductPartial.cshtml partial view is loaded. An instance of

the Product  model is passed to the partial view for binding.

The following Partial Tag Helper achieves the same asynchronous rendering behavior as the PartialAsync  HTML

Helper. The model  attribute is assigned a Product  model instance for binding to the partial view.

Partial views in ASP.NET Core

Views in ASP.NET Core MVC



  

Script Tag Helper in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

<script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-3.3.1.min.js"
        asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
        asp-fallback-test="window.jQuery"
        crossorigin="anonymous"
        integrity="sha384-tsQFqpEReu7ZLhBV2VZlAu7zcOV+rXbYlF2cqB8txI/8aZajjp4Bqd+V6D5IgvKT">
</script>

Commonly used Script Tag Helper attributes

asp-fallback-testasp-fallback-test

asp-fallback-srcasp-fallback-src

Additional resources

By Rick Anderson

The Script Tag Helper generates a link to a primary or fall back script file. Typically the primary script file is on a

Content Delivery Network (CDN).

A CDN:

Provides several performance advantages vs hosting the asset with the web app.

Should not be relied on as the only source for the asset. CDNs are not always available, therefore a reliable

fallback should be used. Typically the fallback is the site hosting the web app.

The Script Tag Helper allows you to specify a CDN for the script file and a fallback when the CDN is not available.

The Script Tag Helper provides the performance advantage of a CDN with the robustness of local hosting.

The following Razor markup shows a script  element with a fallback:

Don't use the <script>  element's defer attribute to defer loading the CDN script. The Script Tag Helper renders

JavaScript that immediately executes the asp-fallback-test expression. The expression fails if loading the CDN script

is deferred.

See Script Tag Helper for all the Script Tag Helper attributes, properties, and methods.

The script method defined in the primary script to use for the fallback test. For more information, see

FallbackTestExpression.

The URL of a Script tag to fallback to in the case the primary one fails. For more information, see FallbackSrc.

Tag Helpers in ASP.NET Core

Areas in ASP.NET Core

Introduction to Razor Pages in ASP.NET Core

Compatibility version for ASP.NET Core MVC

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/tag-helpers/built-in/script-tag-helper.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.scripttaghelper
https://docs.microsoft.com/en-us/office365/enterprise/content-delivery-networks#what-exactly-is-a-cdn
https://docs.microsoft.com/en-us/office365/enterprise/content-delivery-networks#how-do-cdns-make-services-work-faster
https://developer.mozilla.org/docs/Web/HTML/Element/script
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.scripttaghelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.scripttaghelper.fallbacktestexpression#microsoft_aspnetcore_mvc_taghelpers_scripttaghelper_fallbacktestexpression
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.taghelpers.scripttaghelper.fallbacksrc#microsoft_aspnetcore_mvc_taghelpers_scripttaghelper_fallbacksrc


Tag Helpers in forms in ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
    <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
    <!-- Input and Submit elements -->
    <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

Using a named routeUsing a named route

By Rick Anderson, N. Taylor Mullen, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML

Form element provides the primary mechanism web apps use to post back data to the server. Most of this

document describes Tag Helpers and how they can help you productively create robust HTML forms. We

recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to

recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When an

HTML Helper alternative exists, it's mentioned.

 

The Form Tag Helper :

Generates the HTML <FORM> action  attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the 

[ValidateAntiForgeryToken]  attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name>  attribute, where <Parameter Name>  is added to the route values. The

routeValues  parameters to Html.BeginForm  and Html.BeginRouteForm  provide similar functionality.

Has an HTML Helper alternative Html.BeginForm  and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action  attribute value from the Form Tag Helper attributes asp-controller  and 

asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken]  attribute in the HTTP Post action method). Protecting a

pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route  Tag Helper attribute can also generate markup for the HTML action  attribute. An app with a route

named register  could use the following markup for the registration page:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://github.com/NTaylorMullen
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages


<form asp-route="register" method="post">
    <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
     asp-route-returnurl="@ViewData["ReturnUrl"]"
     method="post" class="form-horizontal" role="form">

NOTENOTE

The Form Action Tag Helper

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N

asp-controller The name of the controller.

asp-action The name of the action method.

asp-area The name of the area.

asp-page The name of the Razor page.

asp-page-handler The name of the Razor page handler.

asp-route The name of the route.

asp-route-{value} A single URL route value. For example, asp-route-id="1234"

.

asp-all-route-data All route values.

asp-fragment The URL fragment.

Submit to controller exampleSubmit to controller example

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User

Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl  is only populated automatically when you try to access an authorized resource but

are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the

login page with the returnUrl  set.

The Form Action Tag Helper generates the formaction  attribute on the generated <button ...>  or 

<input type="image" ...>  tag. The formaction  attribute controls where a form submits its data. It binds to <input>

elements of type image  and <button> elements. The Form Action Tag Helper enables the usage of several

AnchorTagHelper asp-  attributes to control what formaction  link is generated for the corresponding element.

Supported AnchorTagHelper attributes to control the value of formaction :

The following markup submits the form to the Index  action of HomeController  when the input or button are

selected:

https://www.w3.org/wiki/HTML/Elements/input
https://www.w3.org/wiki/HTML/Elements/button


<form method="post">
    <button asp-controller="Home" asp-action="Index">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-controller="Home" 
                                asp-action="Index">
</form>

<form method="post">
    <button formaction="/Home">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home">
</form>

Submit to page exampleSubmit to page example

<form method="post">
    <button asp-page="About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-page="About">
</form>

<form method="post">
    <button formaction="/About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/About">
</form>

Submit to route exampleSubmit to route example

public class HomeController : Controller
{
    [Route("/Home/Test", Name = "Custom")]
    public string Test()
    {
        return "This is the test page";
    }
}

<form method="post">
    <button asp-route="Custom">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-route="Custom">
</form>

<form method="post">
    <button formaction="/Home/Test">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home/Test">
</form>

The previous markup generates following HTML:

The following markup submits the form to the About  Razor Page:

The previous markup generates following HTML:

Consider the /Home/Test  endpoint:

The following markup submits the form to the /Home/Test  endpoint.

The previous markup generates following HTML:



The Input Tag Helper

<input asp-for="<Expression Name>">

. N ET  T Y P E. N ET  T Y P E IN P UT  T Y P EIN P UT  T Y P E

Bool type="checkbox"

String type="text"

DateTime type="datetime-local"

Byte type="number"

Int type="number"

Single, Double type="number"

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
'RegisterViewModel' does not contain a definition for 'Email' and no
extension method 'Email' accepting a first argument of type 'RegisterViewModel'
could be found (are you missing a using directive or an assembly reference?)

Generates the id  and name  HTML attributes for the expression name specified in the asp-for  attribute. 

asp-for="Property1.Property2"  is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for  attribute value. See the Expression names section for additional information.

Sets the HTML type  attribute value based on the model type and data annotation attributes applied to the

model property

Won't overwrite the HTML type  attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor  and Html.EditorFor . See the HTML HelperHTML Helper

alternatives to Input Tag Helperalternatives to Input Tag Helper  section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get

an error similar to the following:

The Input  Tag Helper sets the HTML type  attribute based on the .NET type. The following table lists some

common .NET types and generated HTML type (not every .NET type is listed).

The following table shows some common data annotations attributes that the input tag helper will map to specific

input types (not every validation attribute is listed):

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/HTML/Element/input/datetime-local
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter


AT T RIB UT EAT T RIB UT E IN P UT  T Y P EIN P UT  T Y P E

[EmailAddress] type="email"

[Url] type="url"

[HiddenInput] type="hidden"

[Phone] type="tel"

[DataType(DataType.Password)] type="password"

[DataType(DataType.Date)] type="date"

[DataType(DataType.Time)] type="time"

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    <button type="submit">Register</button>
</form>

  <form method="post" action="/Demo/RegisterInput">
      Email:
      <input type="email" data-val="true"
             data-val-email="The Email Address field is not a valid email address."
             data-val-required="The Email Address field is required."
             id="Email" name="Email" value=""><br>
      Password:
      <input type="password" data-val="true"
             data-val-required="The Password field is required."
             id="Password" name="Password"><br>
      <button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

Sample:

The code above generates the following HTML:



HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty, 
  new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

@{
  var joe = "Joe";
}

<input asp-for="@joe">

<input type="text" id="joe" name="joe" value="Joe">

Navigating child propertiesNavigating child properties

The data annotations applied to the Email  and Password  properties generate metadata on the model. The Input

Tag Helper consumes the model metadata and produces HTML5 data-val-*  attributes (see Model Validation).

These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery

validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of the

validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is

provided in the attribute, it's displayed as the value for the data-val-rule  attribute. There are also attributes of the

form data-val-ruleName-argumentName="argumentValue"  that provide additional details about the rule, for example, 

data-val-maxlength-max="1024"  .

Html.TextBox , Html.TextBoxFor , Html.Editor  and Html.EditorFor  have overlapping features with the Input Tag

Helper. The Input Tag Helper will automatically set the type  attribute; Html.TextBox  and Html.TextBoxFor  won't. 

Html.Editor  and Html.EditorFor  handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor  and Html.TextBoxFor  are strongly typed (they use lambda expressions); 

Html.TextBox  and Html.Editor  are not (they use expression names).

@Html.Editor()  and @Html.EditorFor()  use a special ViewDataDictionary  entry named htmlAttributes  when

executing their default templates. This behavior is optionally augmented using additionalViewData  parameters. The

key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes  object

passed to input helpers like @Html.TextBox() .

The asp-for  attribute value is a ModelExpression  and the right hand side of a lambda expression. Therefore, 

asp-for="Property1"  becomes m => m.Property1  in the generated code which is why you don't need to prefix with 

Model . You can use the "@" character to start an inline expression and move before the m. :

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member"  generates the same name as 

asp-for="CollectionProperty[i].Member"  when i  has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including ModelState .

Consider <input type="text" asp-for="@Name"> . The calculated value  attribute is the first non-null value from:

ModelState  entry with key "Name".

Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex

model class that contains a child Address  property.

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/


public class AddressViewModel
{
    public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
    public string Email { get; set; }

    [DataType(DataType.Password)]
    public string Password { get; set; }

    public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    Address: <input asp-for="Address.AddressLine1" /><br />
    <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="">

Expression names and CollectionsExpression names and Collections

public class Person
{
    public List<string> Colors { get; set; }

    public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
{
    ViewData["Index"] = colorIndex;
    return View(GetPerson(id));
}

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color  element:



@model Person
@{
    var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
    @Html.EditorFor(m => m.Colors[index])
    <label asp-for="Age"></label>
    <input asp-for="Age" /><br />
    <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" /> <br />

public class ToDoItem
{
    public string Name { get; set; }

    public bool IsDone { get; set; }
}

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
    <table>
        <tr> <th>Name</th> <th>Is Done</th> </tr>

        @for (int i = 0; i < Model.Count; i++)
        {
            <tr>
                @Html.EditorFor(model => model[i])
            </tr>
        }

    </table>
    <button type="submit">Save</button>
</form>

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:



@model ToDoItem

<td>
    <label asp-for="@Model.Name"></label>
    @Html.DisplayFor(model => model.Name)
</td>
<td>
    <input asp-for="@Model.IsDone" />
</td>

@*
    This template replaces the following Razor which evaluates the indexer three times.
    <td>
         <label asp-for="@Model[i].Name"></label>
         @Html.DisplayFor(model => model[i].Name)
     </td>
     <td>
         <input asp-for="@Model[i].IsDone" />
     </td>
*@

NOTENOTE

The Textarea Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class DescriptionViewModel
    {
        [MinLength(5)]
        [MaxLength(1024)]
        public string Description { get; set; }
    }
}

foreach  should be used if possible when the value is going to be used in an asp-for  or Html.DisplayFor

equivalent context. In general, for  is better than foreach  (if the scenario allows it) because it doesn't need to

allocate an enumerator ; however, evaluating an indexer in a LINQ expression can be expensive and should be

minimized.

 

The commented sample code above shows how you would replace the lambda expression with the @  operator to access

each ToDoItem  in the list.

The Textarea Tag Helper  tag helper is similar to the Input Tag Helper.

Generates the id  and name  attributes, and the data validation attributes from the model for a <textarea>

element.

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

https://www.w3.org/wiki/HTML/Elements/textarea


@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
    <textarea asp-for="Description"></textarea>
    <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
  <textarea data-val="true"
   data-val-maxlength="The field Description must be a string or array type with a maximum length of 
&#x27;1024&#x27;."
   data-val-maxlength-max="1024"
   data-val-minlength="The field Description must be a string or array type with a minimum length of 
&#x27;5&#x27;."
   data-val-minlength-min="5"
   id="Description" name="Description">
  </textarea>
  <button type="submit">Test</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Label Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class SimpleViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }
    }
}

The following HTML is generated:

Generates the label caption and for  attribute on a <label> element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper  provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display  attribute. The intended display name

might change over time, and the combination of Display  attribute and Label Tag Helper will apply the 

Display  everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label


@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
    <label asp-for="Email"></label>
    <input asp-for="Email" /> <br />
</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

<span asp-validation-for="Email"></span>

<span class="field-validation-valid"
  data-valmsg-for="Email"
  data-valmsg-replace="true"></span>

NOTENOTE

The following HTML is generated for the <label>  element:

The Label Tag Helper generated the for  attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id  and for  elements so they can be correctly associated. The

caption in this sample comes from the Display  attribute. If the model didn't contain a Display  attribute, the

caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper  (which displays a validation message for a

single property on your model), and the Validation Summary Tag Helper  (which displays a summary of validation

errors). The Input Tag Helper  adds HTML5 client side validation attributes to input elements based on data

annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper

displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property"  attribute to the span element, which attaches the validation

error messages on the input field of the specified model property. When a client side validation error occurs,

jQuery displays the error message in the <span>  element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only

be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper  is used with the asp-validation-for  attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

You generally use the Validation Message Tag Helper  after an Input  Tag Helper for the same property. Doing so

displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model

Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/


<span class="field-validation-error" data-valmsg-for="Email"
            data-valmsg-replace="true">
   The Email Address field is required.
</span>

The Validation Summary Tag HelperThe Validation Summary Tag Helper

A SP -VA L IDAT IO N -SUM M A RYA SP -VA L IDAT IO N -SUM M A RY VA L IDAT IO N  M ESSA GES DISP L AY EDVA L IDAT IO N  M ESSA GES DISP L AY ED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
    <div asp-validation-summary="ModelOnly"></div>
    Email:  <input asp-for="Email" /> <br />
    <span asp-validation-for="Email"></span><br />
    Password: <input asp-for="Password" /><br />
    <span asp-validation-for="Password"></span><br />
    <button type="submit">Register</button>
</form>

validation is disabled), MVC places that error message as the body of the <span>  element.

Targets <div>  elements with the asp-validation-summary  attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper  is used to display a summary of validation messages. The 

asp-validation-summary  attribute value can be any of the following:

In the following example, the data model has DataAnnotation  attributes, which generates validation error messages

on the <input>  element. When a validation error occurs, the Validation Tag Helper displays the error message:

The generated HTML (when the model is valid):



<form action="/DemoReg/Register" method="post">
  <div class="validation-summary-valid" data-valmsg-summary="true">
  <ul><li style="display:none"></li></ul></div>
  Email:  <input name="Email" id="Email" type="email" value=""
   data-val-required="The Email field is required."
   data-val-email="The Email field is not a valid email address."
   data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Email"></span><br>
  Password: <input name="Password" id="Password" type="password"
   data-val-required="The Password field is required." data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Password"></span><br>
  <button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select> 

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModel
    {
        public string Country { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"  },
        };
    }
}

public IActionResult Index()
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor  and Html.ListBoxFor

The Select Tag Helper  asp-for  specifies the model property name for the select element and asp-items  specifies

the option elements. For example:

Sample:

The Index  method initializes the CountryViewModel , sets the selected country and passes it to the Index  view.

The HTTP POST Index  method displays the selection:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option


[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
    if (ModelState.IsValid)
    {
        var msg = model.Country + " selected";
        return RedirectToAction("IndexSuccess", new { message = msg });
    }

    // If we got this far, something failed; redisplay form.
    return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
    <select asp-for="Country" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/">
     <select id="Country" name="Country">
       <option value="MX">Mexico</option>
       <option selected="selected" value="CA">Canada</option>
       <option value="US">USA</option>
     </select>
       <br /><button type="submit">Register</button>
     <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select> 

Enum bindingEnum binding

The Index  view:

Which generates the following HTML (with "CA" selected):

We don't recommend using ViewBag  or ViewData  with the Select Tag Helper. A view model is more robust at providing

MVC metadata and generally less problematic.

The asp-for  attribute value is a special case and doesn't require a Model  prefix, the other Tag Helper attributes do

(such as asp-items )

It's often convenient to use <select>  with an enum  property and generate the SelectListItem  elements from the 

enum  values.

Sample:



    public class CountryEnumViewModel
    {
        public CountryEnum EnumCountry { get; set; }
    }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
    <select asp-for="EnumCountry" 
            asp-items="Html.GetEnumSelectList<CountryEnum>()">
    </select> 
    <br /><button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

The GetEnumSelectList  method generates a SelectList  object for an enum.

You can mark your enumerator list with the Display  attribute to get a richer UI:

The following HTML is generated:



  <form method="post" action="/Home/IndexEnum">
         <select data-val="true" data-val-required="The EnumCountry field is required."
                 id="EnumCountry" name="EnumCountry">
             <option value="0">United Mexican States</option>
             <option value="1">United States of America</option>
             <option value="2">Canada</option>
             <option value="3">France</option>
             <option value="4">Germany</option>
             <option selected="selected" value="5">Spain</option>
         </select>
         <br /><button type="submit">Register</button>
         <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
    </form>

Option GroupOption Group
The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup  objects.

The CountryViewModelGroup  groups the SelectListItem  elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup


public class CountryViewModelGroup
{
    public CountryViewModelGroup()
    {
        var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
        var EuropeGroup = new SelectListGroup { Name = "Europe" };

        Countries = new List<SelectListItem>
        {
            new SelectListItem
            {
                Value = "MEX",
                Text = "Mexico",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "CAN",
                Text = "Canada",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "US",
                Text = "USA",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "FR",
                Text = "France",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "ES",
                Text = "Spain",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "DE",
                Text = "Germany",
                Group = EuropeGroup
            }
      };
    }

    public string Country { get; set; }

    public List<SelectListItem> Countries { get; }

The two groups are shown below:



 <form method="post" action="/Home/IndexGroup">
      <select id="Country" name="Country">
          <optgroup label="North America">
              <option value="MEX">Mexico</option>
              <option value="CAN">Canada</option>
              <option value="US">USA</option>
          </optgroup>
          <optgroup label="Europe">
              <option value="FR">France</option>
              <option value="ES">Spain</option>
              <option value="DE">Germany</option>
          </optgroup>
      </select>
      <br /><button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModelIEnumerable
    {
        public IEnumerable<string> CountryCodes { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"    },
            new SelectListItem { Value = "FR", Text = "France" },
            new SelectListItem { Value = "ES", Text = "Spain"  },
            new SelectListItem { Value = "DE", Text = "Germany"}
         };
    }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the 

asp-for  attribute is an IEnumerable . For example, given the following model:

With the following view:

https://w3c.github.io/html-reference/select.html


@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
    <select asp-for="CountryCodes" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
    <select id="CountryCodes"
    multiple="multiple"
    name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>
    <br /><button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    @Html.EditorForModel()
    <br /><button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
    <option value="">--none--</option>
</select>

public IActionResult IndexNone()
{
    var model = new CountryViewModel();
    model.Insert(0, new SelectListItem("<none>", ""));
    return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate

repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action

method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option


@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    <select asp-for="Country">
        <option value="">&lt;none&gt;</option>
        <option value="MX">Mexico</option>
        <option value="CA">Canada</option>
        <option value="US">USA</option>
    </select> 
    <br /><button type="submit">Register</button>
</form>

public IActionResult IndexOption(int id)
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

 <form method="post" action="/Home/IndexEmpty">
      <select id="Country" name="Country">
          <option value="">&lt;none&gt;</option>
          <option value="MX">Mexico</option>
          <option value="CA" selected="selected">Canada</option>
          <option value="US">USA</option>
      </select>
      <br /><button type="submit">Register</button>
   <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Additional resources

The correct <option>  element will be selected ( contain the selected="selected"  attribute) depending on the

current Country  value.

Tag Helpers in ASP.NET Core

HTML Form element

Request Verification Token

Model Binding in ASP.NET Core

Model validation in ASP.NET Core MVC

IAttributeAdapter Interface

Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final


Tag Helpers in forms in ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
    <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
    <!-- Input and Submit elements -->
    <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

Using a named routeUsing a named route

By Rick Anderson, N. Taylor Mullen, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML

Form element provides the primary mechanism web apps use to post back data to the server. Most of this

document describes Tag Helpers and how they can help you productively create robust HTML forms. We

recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to

recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When an

HTML Helper alternative exists, it's mentioned.

 

The Form Tag Helper :

Generates the HTML <FORM> action  attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the 

[ValidateAntiForgeryToken]  attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name>  attribute, where <Parameter Name>  is added to the route values. The

routeValues  parameters to Html.BeginForm  and Html.BeginRouteForm  provide similar functionality.

Has an HTML Helper alternative Html.BeginForm  and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action  attribute value from the Form Tag Helper attributes asp-controller  and 

asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken]  attribute in the HTTP Post action method). Protecting a

pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route  Tag Helper attribute can also generate markup for the HTML action  attribute. An app with a route

named register  could use the following markup for the registration page:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://github.com/NTaylorMullen
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages


<form asp-route="register" method="post">
    <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
     asp-route-returnurl="@ViewData["ReturnUrl"]"
     method="post" class="form-horizontal" role="form">

NOTENOTE

The Form Action Tag Helper

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N

asp-controller The name of the controller.

asp-action The name of the action method.

asp-area The name of the area.

asp-page The name of the Razor page.

asp-page-handler The name of the Razor page handler.

asp-route The name of the route.

asp-route-{value} A single URL route value. For example, asp-route-id="1234"

.

asp-all-route-data All route values.

asp-fragment The URL fragment.

Submit to controller exampleSubmit to controller example

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User

Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl  is only populated automatically when you try to access an authorized resource but

are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the

login page with the returnUrl  set.

The Form Action Tag Helper generates the formaction  attribute on the generated <button ...>  or 

<input type="image" ...>  tag. The formaction  attribute controls where a form submits its data. It binds to <input>

elements of type image  and <button> elements. The Form Action Tag Helper enables the usage of several

AnchorTagHelper asp-  attributes to control what formaction  link is generated for the corresponding element.

Supported AnchorTagHelper attributes to control the value of formaction :

The following markup submits the form to the Index  action of HomeController  when the input or button are

selected:

https://www.w3.org/wiki/HTML/Elements/input
https://www.w3.org/wiki/HTML/Elements/button


<form method="post">
    <button asp-controller="Home" asp-action="Index">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-controller="Home" 
                                asp-action="Index">
</form>

<form method="post">
    <button formaction="/Home">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home">
</form>

Submit to page exampleSubmit to page example

<form method="post">
    <button asp-page="About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-page="About">
</form>

<form method="post">
    <button formaction="/About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/About">
</form>

Submit to route exampleSubmit to route example

public class HomeController : Controller
{
    [Route("/Home/Test", Name = "Custom")]
    public string Test()
    {
        return "This is the test page";
    }
}

<form method="post">
    <button asp-route="Custom">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-route="Custom">
</form>

<form method="post">
    <button formaction="/Home/Test">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home/Test">
</form>

The previous markup generates following HTML:

The following markup submits the form to the About  Razor Page:

The previous markup generates following HTML:

Consider the /Home/Test  endpoint:

The following markup submits the form to the /Home/Test  endpoint.

The previous markup generates following HTML:



The Input Tag Helper

<input asp-for="<Expression Name>">

. N ET  T Y P E. N ET  T Y P E IN P UT  T Y P EIN P UT  T Y P E

Bool type="checkbox"

String type="text"

DateTime type="datetime-local"

Byte type="number"

Int type="number"

Single, Double type="number"

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
'RegisterViewModel' does not contain a definition for 'Email' and no
extension method 'Email' accepting a first argument of type 'RegisterViewModel'
could be found (are you missing a using directive or an assembly reference?)

Generates the id  and name  HTML attributes for the expression name specified in the asp-for  attribute. 

asp-for="Property1.Property2"  is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for  attribute value. See the Expression names section for additional information.

Sets the HTML type  attribute value based on the model type and data annotation attributes applied to the

model property

Won't overwrite the HTML type  attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor  and Html.EditorFor . See the HTML HelperHTML Helper

alternatives to Input Tag Helperalternatives to Input Tag Helper  section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get

an error similar to the following:

The Input  Tag Helper sets the HTML type  attribute based on the .NET type. The following table lists some

common .NET types and generated HTML type (not every .NET type is listed).

The following table shows some common data annotations attributes that the input tag helper will map to specific

input types (not every validation attribute is listed):

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/HTML/Element/input/datetime-local
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter


AT T RIB UT EAT T RIB UT E IN P UT  T Y P EIN P UT  T Y P E

[EmailAddress] type="email"

[Url] type="url"

[HiddenInput] type="hidden"

[Phone] type="tel"

[DataType(DataType.Password)] type="password"

[DataType(DataType.Date)] type="date"

[DataType(DataType.Time)] type="time"

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    <button type="submit">Register</button>
</form>

  <form method="post" action="/Demo/RegisterInput">
      Email:
      <input type="email" data-val="true"
             data-val-email="The Email Address field is not a valid email address."
             data-val-required="The Email Address field is required."
             id="Email" name="Email" value=""><br>
      Password:
      <input type="password" data-val="true"
             data-val-required="The Password field is required."
             id="Password" name="Password"><br>
      <button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

Sample:

The code above generates the following HTML:



HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty, 
  new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

@{
  var joe = "Joe";
}

<input asp-for="@joe">

<input type="text" id="joe" name="joe" value="Joe">

Navigating child propertiesNavigating child properties

The data annotations applied to the Email  and Password  properties generate metadata on the model. The Input

Tag Helper consumes the model metadata and produces HTML5 data-val-*  attributes (see Model Validation).

These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery

validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of the

validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is

provided in the attribute, it's displayed as the value for the data-val-rule  attribute. There are also attributes of the

form data-val-ruleName-argumentName="argumentValue"  that provide additional details about the rule, for example, 

data-val-maxlength-max="1024"  .

Html.TextBox , Html.TextBoxFor , Html.Editor  and Html.EditorFor  have overlapping features with the Input Tag

Helper. The Input Tag Helper will automatically set the type  attribute; Html.TextBox  and Html.TextBoxFor  won't. 

Html.Editor  and Html.EditorFor  handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor  and Html.TextBoxFor  are strongly typed (they use lambda expressions); 

Html.TextBox  and Html.Editor  are not (they use expression names).

@Html.Editor()  and @Html.EditorFor()  use a special ViewDataDictionary  entry named htmlAttributes  when

executing their default templates. This behavior is optionally augmented using additionalViewData  parameters. The

key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes  object

passed to input helpers like @Html.TextBox() .

The asp-for  attribute value is a ModelExpression  and the right hand side of a lambda expression. Therefore, 

asp-for="Property1"  becomes m => m.Property1  in the generated code which is why you don't need to prefix with 

Model . You can use the "@" character to start an inline expression and move before the m. :

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member"  generates the same name as 

asp-for="CollectionProperty[i].Member"  when i  has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including ModelState .

Consider <input type="text" asp-for="@Name"> . The calculated value  attribute is the first non-null value from:

ModelState  entry with key "Name".

Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex

model class that contains a child Address  property.

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/


public class AddressViewModel
{
    public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
    public string Email { get; set; }

    [DataType(DataType.Password)]
    public string Password { get; set; }

    public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    Address: <input asp-for="Address.AddressLine1" /><br />
    <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="">

Expression names and CollectionsExpression names and Collections

public class Person
{
    public List<string> Colors { get; set; }

    public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
{
    ViewData["Index"] = colorIndex;
    return View(GetPerson(id));
}

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color  element:



@model Person
@{
    var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
    @Html.EditorFor(m => m.Colors[index])
    <label asp-for="Age"></label>
    <input asp-for="Age" /><br />
    <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" /> <br />

public class ToDoItem
{
    public string Name { get; set; }

    public bool IsDone { get; set; }
}

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
    <table>
        <tr> <th>Name</th> <th>Is Done</th> </tr>

        @for (int i = 0; i < Model.Count; i++)
        {
            <tr>
                @Html.EditorFor(model => model[i])
            </tr>
        }

    </table>
    <button type="submit">Save</button>
</form>

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:



@model ToDoItem

<td>
    <label asp-for="@Model.Name"></label>
    @Html.DisplayFor(model => model.Name)
</td>
<td>
    <input asp-for="@Model.IsDone" />
</td>

@*
    This template replaces the following Razor which evaluates the indexer three times.
    <td>
         <label asp-for="@Model[i].Name"></label>
         @Html.DisplayFor(model => model[i].Name)
     </td>
     <td>
         <input asp-for="@Model[i].IsDone" />
     </td>
*@

NOTENOTE

The Textarea Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class DescriptionViewModel
    {
        [MinLength(5)]
        [MaxLength(1024)]
        public string Description { get; set; }
    }
}

foreach  should be used if possible when the value is going to be used in an asp-for  or Html.DisplayFor

equivalent context. In general, for  is better than foreach  (if the scenario allows it) because it doesn't need to

allocate an enumerator ; however, evaluating an indexer in a LINQ expression can be expensive and should be

minimized.

 

The commented sample code above shows how you would replace the lambda expression with the @  operator to access

each ToDoItem  in the list.

The Textarea Tag Helper  tag helper is similar to the Input Tag Helper.

Generates the id  and name  attributes, and the data validation attributes from the model for a <textarea>

element.

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

https://www.w3.org/wiki/HTML/Elements/textarea


@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
    <textarea asp-for="Description"></textarea>
    <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
  <textarea data-val="true"
   data-val-maxlength="The field Description must be a string or array type with a maximum length of 
&#x27;1024&#x27;."
   data-val-maxlength-max="1024"
   data-val-minlength="The field Description must be a string or array type with a minimum length of 
&#x27;5&#x27;."
   data-val-minlength-min="5"
   id="Description" name="Description">
  </textarea>
  <button type="submit">Test</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Label Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class SimpleViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }
    }
}

The following HTML is generated:

Generates the label caption and for  attribute on a <label> element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper  provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display  attribute. The intended display name

might change over time, and the combination of Display  attribute and Label Tag Helper will apply the 

Display  everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label


@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
    <label asp-for="Email"></label>
    <input asp-for="Email" /> <br />
</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

<span asp-validation-for="Email"></span>

<span class="field-validation-valid"
  data-valmsg-for="Email"
  data-valmsg-replace="true"></span>

NOTENOTE

The following HTML is generated for the <label>  element:

The Label Tag Helper generated the for  attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id  and for  elements so they can be correctly associated. The

caption in this sample comes from the Display  attribute. If the model didn't contain a Display  attribute, the

caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper  (which displays a validation message for a

single property on your model), and the Validation Summary Tag Helper  (which displays a summary of validation

errors). The Input Tag Helper  adds HTML5 client side validation attributes to input elements based on data

annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper

displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property"  attribute to the span element, which attaches the validation

error messages on the input field of the specified model property. When a client side validation error occurs,

jQuery displays the error message in the <span>  element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only

be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper  is used with the asp-validation-for  attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

You generally use the Validation Message Tag Helper  after an Input  Tag Helper for the same property. Doing so

displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model

Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/


<span class="field-validation-error" data-valmsg-for="Email"
            data-valmsg-replace="true">
   The Email Address field is required.
</span>

The Validation Summary Tag HelperThe Validation Summary Tag Helper

A SP -VA L IDAT IO N -SUM M A RYA SP -VA L IDAT IO N -SUM M A RY VA L IDAT IO N  M ESSA GES DISP L AY EDVA L IDAT IO N  M ESSA GES DISP L AY ED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
    <div asp-validation-summary="ModelOnly"></div>
    Email:  <input asp-for="Email" /> <br />
    <span asp-validation-for="Email"></span><br />
    Password: <input asp-for="Password" /><br />
    <span asp-validation-for="Password"></span><br />
    <button type="submit">Register</button>
</form>

validation is disabled), MVC places that error message as the body of the <span>  element.

Targets <div>  elements with the asp-validation-summary  attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper  is used to display a summary of validation messages. The 

asp-validation-summary  attribute value can be any of the following:

In the following example, the data model has DataAnnotation  attributes, which generates validation error messages

on the <input>  element. When a validation error occurs, the Validation Tag Helper displays the error message:

The generated HTML (when the model is valid):



<form action="/DemoReg/Register" method="post">
  <div class="validation-summary-valid" data-valmsg-summary="true">
  <ul><li style="display:none"></li></ul></div>
  Email:  <input name="Email" id="Email" type="email" value=""
   data-val-required="The Email field is required."
   data-val-email="The Email field is not a valid email address."
   data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Email"></span><br>
  Password: <input name="Password" id="Password" type="password"
   data-val-required="The Password field is required." data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Password"></span><br>
  <button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select> 

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModel
    {
        public string Country { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"  },
        };
    }
}

public IActionResult Index()
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor  and Html.ListBoxFor

The Select Tag Helper  asp-for  specifies the model property name for the select element and asp-items  specifies

the option elements. For example:

Sample:

The Index  method initializes the CountryViewModel , sets the selected country and passes it to the Index  view.

The HTTP POST Index  method displays the selection:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option


[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
    if (ModelState.IsValid)
    {
        var msg = model.Country + " selected";
        return RedirectToAction("IndexSuccess", new { message = msg });
    }

    // If we got this far, something failed; redisplay form.
    return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
    <select asp-for="Country" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/">
     <select id="Country" name="Country">
       <option value="MX">Mexico</option>
       <option selected="selected" value="CA">Canada</option>
       <option value="US">USA</option>
     </select>
       <br /><button type="submit">Register</button>
     <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select> 

Enum bindingEnum binding

The Index  view:

Which generates the following HTML (with "CA" selected):

We don't recommend using ViewBag  or ViewData  with the Select Tag Helper. A view model is more robust at providing

MVC metadata and generally less problematic.

The asp-for  attribute value is a special case and doesn't require a Model  prefix, the other Tag Helper attributes do

(such as asp-items )

It's often convenient to use <select>  with an enum  property and generate the SelectListItem  elements from the 

enum  values.

Sample:



    public class CountryEnumViewModel
    {
        public CountryEnum EnumCountry { get; set; }
    }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
    <select asp-for="EnumCountry" 
            asp-items="Html.GetEnumSelectList<CountryEnum>()">
    </select> 
    <br /><button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

The GetEnumSelectList  method generates a SelectList  object for an enum.

You can mark your enumerator list with the Display  attribute to get a richer UI:

The following HTML is generated:



  <form method="post" action="/Home/IndexEnum">
         <select data-val="true" data-val-required="The EnumCountry field is required."
                 id="EnumCountry" name="EnumCountry">
             <option value="0">United Mexican States</option>
             <option value="1">United States of America</option>
             <option value="2">Canada</option>
             <option value="3">France</option>
             <option value="4">Germany</option>
             <option selected="selected" value="5">Spain</option>
         </select>
         <br /><button type="submit">Register</button>
         <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
    </form>

Option GroupOption Group
The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup  objects.

The CountryViewModelGroup  groups the SelectListItem  elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup


public class CountryViewModelGroup
{
    public CountryViewModelGroup()
    {
        var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
        var EuropeGroup = new SelectListGroup { Name = "Europe" };

        Countries = new List<SelectListItem>
        {
            new SelectListItem
            {
                Value = "MEX",
                Text = "Mexico",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "CAN",
                Text = "Canada",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "US",
                Text = "USA",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "FR",
                Text = "France",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "ES",
                Text = "Spain",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "DE",
                Text = "Germany",
                Group = EuropeGroup
            }
      };
    }

    public string Country { get; set; }

    public List<SelectListItem> Countries { get; }

The two groups are shown below:



 <form method="post" action="/Home/IndexGroup">
      <select id="Country" name="Country">
          <optgroup label="North America">
              <option value="MEX">Mexico</option>
              <option value="CAN">Canada</option>
              <option value="US">USA</option>
          </optgroup>
          <optgroup label="Europe">
              <option value="FR">France</option>
              <option value="ES">Spain</option>
              <option value="DE">Germany</option>
          </optgroup>
      </select>
      <br /><button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModelIEnumerable
    {
        public IEnumerable<string> CountryCodes { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"    },
            new SelectListItem { Value = "FR", Text = "France" },
            new SelectListItem { Value = "ES", Text = "Spain"  },
            new SelectListItem { Value = "DE", Text = "Germany"}
         };
    }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the 

asp-for  attribute is an IEnumerable . For example, given the following model:

With the following view:

https://w3c.github.io/html-reference/select.html


@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
    <select asp-for="CountryCodes" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
    <select id="CountryCodes"
    multiple="multiple"
    name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>
    <br /><button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    @Html.EditorForModel()
    <br /><button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
    <option value="">--none--</option>
</select>

public IActionResult IndexNone()
{
    var model = new CountryViewModel();
    model.Insert(0, new SelectListItem("<none>", ""));
    return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate

repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action

method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option


@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    <select asp-for="Country">
        <option value="">&lt;none&gt;</option>
        <option value="MX">Mexico</option>
        <option value="CA">Canada</option>
        <option value="US">USA</option>
    </select> 
    <br /><button type="submit">Register</button>
</form>

public IActionResult IndexOption(int id)
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

 <form method="post" action="/Home/IndexEmpty">
      <select id="Country" name="Country">
          <option value="">&lt;none&gt;</option>
          <option value="MX">Mexico</option>
          <option value="CA" selected="selected">Canada</option>
          <option value="US">USA</option>
      </select>
      <br /><button type="submit">Register</button>
   <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Additional resources

The correct <option>  element will be selected ( contain the selected="selected"  attribute) depending on the

current Country  value.

Tag Helpers in ASP.NET Core

HTML Form element

Request Verification Token

Model Binding in ASP.NET Core

Model validation in ASP.NET Core MVC

IAttributeAdapter Interface

Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final


Tag Helpers in forms in ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
    <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
    <!-- Input and Submit elements -->
    <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

Using a named routeUsing a named route

By Rick Anderson, N. Taylor Mullen, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a Form. The HTML

Form element provides the primary mechanism web apps use to post back data to the server. Most of this

document describes Tag Helpers and how they can help you productively create robust HTML forms. We

recommend you read Introduction to Tag Helpers before you read this document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's important to

recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for each HTML Helper. When an

HTML Helper alternative exists, it's mentioned.

 

The Form Tag Helper :

Generates the HTML <FORM> action  attribute value for a MVC controller action or named route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when used with the 

[ValidateAntiForgeryToken]  attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name>  attribute, where <Parameter Name>  is added to the route values. The

routeValues  parameters to Html.BeginForm  and Html.BeginRouteForm  provide similar functionality.

Has an HTML Helper alternative Html.BeginForm  and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action  attribute value from the Form Tag Helper attributes asp-controller  and 

asp-action . The Form Tag Helper also generates a hidden Request Verification Token to prevent cross-site request

forgery (when used with the [ValidateAntiForgeryToken]  attribute in the HTTP Post action method). Protecting a

pure HTML Form from cross-site request forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route  Tag Helper attribute can also generate markup for the HTML action  attribute. An app with a route

named register  could use the following markup for the registration page:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://github.com/NTaylorMullen
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages


<form asp-route="register" method="post">
    <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
     asp-route-returnurl="@ViewData["ReturnUrl"]"
     method="post" class="form-horizontal" role="form">

NOTENOTE

The Form Action Tag Helper

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N

asp-controller The name of the controller.

asp-action The name of the action method.

asp-area The name of the area.

asp-page The name of the Razor page.

asp-page-handler The name of the Razor page handler.

asp-route The name of the route.

asp-route-{value} A single URL route value. For example, asp-route-id="1234"

.

asp-all-route-data All route values.

asp-fragment The URL fragment.

Submit to controller exampleSubmit to controller example

Many of the views in the Views/Account folder (generated when you create a new web app with Individual User

Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl  is only populated automatically when you try to access an authorized resource but

are not authenticated or authorized. When you attempt an unauthorized access, the security middleware redirects you to the

login page with the returnUrl  set.

The Form Action Tag Helper generates the formaction  attribute on the generated <button ...>  or 

<input type="image" ...>  tag. The formaction  attribute controls where a form submits its data. It binds to <input>

elements of type image  and <button> elements. The Form Action Tag Helper enables the usage of several

AnchorTagHelper asp-  attributes to control what formaction  link is generated for the corresponding element.

Supported AnchorTagHelper attributes to control the value of formaction :

The following markup submits the form to the Index  action of HomeController  when the input or button are

selected:

https://www.w3.org/wiki/HTML/Elements/input
https://www.w3.org/wiki/HTML/Elements/button


<form method="post">
    <button asp-controller="Home" asp-action="Index">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-controller="Home" 
                                asp-action="Index">
</form>

<form method="post">
    <button formaction="/Home">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home">
</form>

Submit to page exampleSubmit to page example

<form method="post">
    <button asp-page="About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-page="About">
</form>

<form method="post">
    <button formaction="/About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/About">
</form>

Submit to route exampleSubmit to route example

public class HomeController : Controller
{
    [Route("/Home/Test", Name = "Custom")]
    public string Test()
    {
        return "This is the test page";
    }
}

<form method="post">
    <button asp-route="Custom">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-route="Custom">
</form>

<form method="post">
    <button formaction="/Home/Test">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home/Test">
</form>

The previous markup generates following HTML:

The following markup submits the form to the About  Razor Page:

The previous markup generates following HTML:

Consider the /Home/Test  endpoint:

The following markup submits the form to the /Home/Test  endpoint.

The previous markup generates following HTML:



The Input Tag Helper

<input asp-for="<Expression Name>">

. N ET  T Y P E. N ET  T Y P E IN P UT  T Y P EIN P UT  T Y P E

Bool type="checkbox"

String type="text"

DateTime type="datetime-local"

Byte type="number"

Int type="number"

Single, Double type="number"

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
'RegisterViewModel' does not contain a definition for 'Email' and no
extension method 'Email' accepting a first argument of type 'RegisterViewModel'
could be found (are you missing a using directive or an assembly reference?)

Generates the id  and name  HTML attributes for the expression name specified in the asp-for  attribute. 

asp-for="Property1.Property2"  is equivalent to m => m.Property1.Property2 . The name of the expression is

what is used for the asp-for  attribute value. See the Expression names section for additional information.

Sets the HTML type  attribute value based on the model type and data annotation attributes applied to the

model property

Won't overwrite the HTML type  attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model properties

Has an HTML Helper feature overlap with Html.TextBoxFor  and Html.EditorFor . See the HTML HelperHTML Helper

alternatives to Input Tag Helperalternatives to Input Tag Helper  section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag Helper you'll get

an error similar to the following:

The Input  Tag Helper sets the HTML type  attribute based on the .NET type. The following table lists some

common .NET types and generated HTML type (not every .NET type is listed).

The following table shows some common data annotations attributes that the input tag helper will map to specific

input types (not every validation attribute is listed):

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/HTML/Element/input/datetime-local
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter


AT T RIB UT EAT T RIB UT E IN P UT  T Y P EIN P UT  T Y P E

[EmailAddress] type="email"

[Url] type="url"

[HiddenInput] type="hidden"

[Phone] type="tel"

[DataType(DataType.Password)] type="password"

[DataType(DataType.Date)] type="date"

[DataType(DataType.Time)] type="time"

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    <button type="submit">Register</button>
</form>

  <form method="post" action="/Demo/RegisterInput">
      Email:
      <input type="email" data-val="true"
             data-val-email="The Email Address field is not a valid email address."
             data-val-required="The Email Address field is required."
             id="Email" name="Email" value=""><br>
      Password:
      <input type="password" data-val="true"
             data-val-required="The Password field is required."
             id="Password" name="Password"><br>
      <button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

Sample:

The code above generates the following HTML:



HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty, 
  new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

@{
  var joe = "Joe";
}

<input asp-for="@joe">

<input type="text" id="joe" name="joe" value="Joe">

Navigating child propertiesNavigating child properties

The data annotations applied to the Email  and Password  properties generate metadata on the model. The Input

Tag Helper consumes the model metadata and produces HTML5 data-val-*  attributes (see Model Validation).

These attributes describe the validators to attach to the input fields. This provides unobtrusive HTML5 and jQuery

validation. The unobtrusive attributes have the format data-val-rule="Error Message" , where rule is the name of the

validation rule (such as data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is

provided in the attribute, it's displayed as the value for the data-val-rule  attribute. There are also attributes of the

form data-val-ruleName-argumentName="argumentValue"  that provide additional details about the rule, for example, 

data-val-maxlength-max="1024"  .

Html.TextBox , Html.TextBoxFor , Html.Editor  and Html.EditorFor  have overlapping features with the Input Tag

Helper. The Input Tag Helper will automatically set the type  attribute; Html.TextBox  and Html.TextBoxFor  won't. 

Html.Editor  and Html.EditorFor  handle collections, complex objects and templates; the Input Tag Helper doesn't.

The Input Tag Helper, Html.EditorFor  and Html.TextBoxFor  are strongly typed (they use lambda expressions); 

Html.TextBox  and Html.Editor  are not (they use expression names).

@Html.Editor()  and @Html.EditorFor()  use a special ViewDataDictionary  entry named htmlAttributes  when

executing their default templates. This behavior is optionally augmented using additionalViewData  parameters. The

key "htmlAttributes" is case-insensitive. The key "htmlAttributes" is handled similarly to the htmlAttributes  object

passed to input helpers like @Html.TextBox() .

The asp-for  attribute value is a ModelExpression  and the right hand side of a lambda expression. Therefore, 

asp-for="Property1"  becomes m => m.Property1  in the generated code which is why you don't need to prefix with 

Model . You can use the "@" character to start an inline expression and move before the m. :

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member"  generates the same name as 

asp-for="CollectionProperty[i].Member"  when i  has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources, including ModelState .

Consider <input type="text" asp-for="@Name"> . The calculated value  attribute is the first non-null value from:

ModelState  entry with key "Name".

Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more complex

model class that contains a child Address  property.

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/


public class AddressViewModel
{
    public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
    public string Email { get; set; }

    [DataType(DataType.Password)]
    public string Password { get; set; }

    public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    Address: <input asp-for="Address.AddressLine1" /><br />
    <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="">

Expression names and CollectionsExpression names and Collections

public class Person
{
    public List<string> Colors { get; set; }

    public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
{
    ViewData["Index"] = colorIndex;
    return View(GetPerson(id));
}

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

Sample, a model containing an array of Colors :

The action method:

The following Razor shows how you access a specific Color  element:



@model Person
@{
    var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
    @Html.EditorFor(m => m.Colors[index])
    <label asp-for="Age"></label>
    <input asp-for="Age" /><br />
    <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" /> <br />

public class ToDoItem
{
    public string Name { get; set; }

    public bool IsDone { get; set; }
}

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
    <table>
        <tr> <th>Name</th> <th>Is Done</th> </tr>

        @for (int i = 0; i < Model.Count; i++)
        {
            <tr>
                @Html.EditorFor(model => model[i])
            </tr>
        }

    </table>
    <button type="submit">Save</button>
</form>

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:



@model ToDoItem

<td>
    <label asp-for="@Model.Name"></label>
    @Html.DisplayFor(model => model.Name)
</td>
<td>
    <input asp-for="@Model.IsDone" />
</td>

@*
    This template replaces the following Razor which evaluates the indexer three times.
    <td>
         <label asp-for="@Model[i].Name"></label>
         @Html.DisplayFor(model => model[i].Name)
     </td>
     <td>
         <input asp-for="@Model[i].IsDone" />
     </td>
*@

NOTENOTE

The Textarea Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class DescriptionViewModel
    {
        [MinLength(5)]
        [MaxLength(1024)]
        public string Description { get; set; }
    }
}

foreach  should be used if possible when the value is going to be used in an asp-for  or Html.DisplayFor

equivalent context. In general, for  is better than foreach  (if the scenario allows it) because it doesn't need to

allocate an enumerator ; however, evaluating an indexer in a LINQ expression can be expensive and should be

minimized.

 

The commented sample code above shows how you would replace the lambda expression with the @  operator to access

each ToDoItem  in the list.

The Textarea Tag Helper  tag helper is similar to the Input Tag Helper.

Generates the id  and name  attributes, and the data validation attributes from the model for a <textarea>

element.

Provides strong typing.

HTML Helper alternative: Html.TextAreaFor

Sample:

https://www.w3.org/wiki/HTML/Elements/textarea


@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
    <textarea asp-for="Description"></textarea>
    <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
  <textarea data-val="true"
   data-val-maxlength="The field Description must be a string or array type with a maximum length of 
&#x27;1024&#x27;."
   data-val-maxlength-max="1024"
   data-val-minlength="The field Description must be a string or array type with a minimum length of 
&#x27;5&#x27;."
   data-val-minlength-min="5"
   id="Description" name="Description">
  </textarea>
  <button type="submit">Test</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Label Tag Helper

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class SimpleViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }
    }
}

The following HTML is generated:

Generates the label caption and for  attribute on a <label> element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper  provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display  attribute. The intended display name

might change over time, and the combination of Display  attribute and Label Tag Helper will apply the 

Display  everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label


@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
    <label asp-for="Email"></label>
    <input asp-for="Email" /> <br />
</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

<span asp-validation-for="Email"></span>

<span class="field-validation-valid"
  data-valmsg-for="Email"
  data-valmsg-replace="true"></span>

NOTENOTE

The following HTML is generated for the <label>  element:

The Label Tag Helper generated the for  attribute value of "Email", which is the ID associated with the <input>

element. The Tag Helpers generate consistent id  and for  elements so they can be correctly associated. The

caption in this sample comes from the Display  attribute. If the model didn't contain a Display  attribute, the

caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper  (which displays a validation message for a

single property on your model), and the Validation Summary Tag Helper  (which displays a summary of validation

errors). The Input Tag Helper  adds HTML5 client side validation attributes to input elements based on data

annotation attributes on your model classes. Validation is also performed on the server. The Validation Tag Helper

displays these error messages when a validation error occurs.

Adds the HTML5 data-valmsg-for="property"  attribute to the span element, which attaches the validation

error messages on the input field of the specified model property. When a client side validation error occurs,

jQuery displays the error message in the <span>  element.

Validation also takes place on the server. Clients may have JavaScript disabled and some validation can only

be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper  is used with the asp-validation-for  attribute on a HTML span element.

The Validation Message Tag Helper will generate the following HTML:

You generally use the Validation Message Tag Helper  after an Input  Tag Helper for the same property. Doing so

displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side validation. See Model

Validation for more information.

When a server side validation error occurs (for example when you have custom server side validation or client-side

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/


<span class="field-validation-error" data-valmsg-for="Email"
            data-valmsg-replace="true">
   The Email Address field is required.
</span>

The Validation Summary Tag HelperThe Validation Summary Tag Helper

A SP -VA L IDAT IO N -SUM M A RYA SP -VA L IDAT IO N -SUM M A RY VA L IDAT IO N  M ESSA GES DISP L AY EDVA L IDAT IO N  M ESSA GES DISP L AY ED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
    <div asp-validation-summary="ModelOnly"></div>
    Email:  <input asp-for="Email" /> <br />
    <span asp-validation-for="Email"></span><br />
    Password: <input asp-for="Password" /><br />
    <span asp-validation-for="Password"></span><br />
    <button type="submit">Register</button>
</form>

validation is disabled), MVC places that error message as the body of the <span>  element.

Targets <div>  elements with the asp-validation-summary  attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper  is used to display a summary of validation messages. The 

asp-validation-summary  attribute value can be any of the following:

In the following example, the data model has DataAnnotation  attributes, which generates validation error messages

on the <input>  element. When a validation error occurs, the Validation Tag Helper displays the error message:

The generated HTML (when the model is valid):



<form action="/DemoReg/Register" method="post">
  <div class="validation-summary-valid" data-valmsg-summary="true">
  <ul><li style="display:none"></li></ul></div>
  Email:  <input name="Email" id="Email" type="email" value=""
   data-val-required="The Email field is required."
   data-val-email="The Email field is not a valid email address."
   data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Email"></span><br>
  Password: <input name="Password" id="Password" type="password"
   data-val-required="The Password field is required." data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Password"></span><br>
  <button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select> 

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModel
    {
        public string Country { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"  },
        };
    }
}

public IActionResult Index()
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor  and Html.ListBoxFor

The Select Tag Helper  asp-for  specifies the model property name for the select element and asp-items  specifies

the option elements. For example:

Sample:

The Index  method initializes the CountryViewModel , sets the selected country and passes it to the Index  view.

The HTTP POST Index  method displays the selection:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option


[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
    if (ModelState.IsValid)
    {
        var msg = model.Country + " selected";
        return RedirectToAction("IndexSuccess", new { message = msg });
    }

    // If we got this far, something failed; redisplay form.
    return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
    <select asp-for="Country" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/">
     <select id="Country" name="Country">
       <option value="MX">Mexico</option>
       <option selected="selected" value="CA">Canada</option>
       <option value="US">USA</option>
     </select>
       <br /><button type="submit">Register</button>
     <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select> 

Enum bindingEnum binding

The Index  view:

Which generates the following HTML (with "CA" selected):

We don't recommend using ViewBag  or ViewData  with the Select Tag Helper. A view model is more robust at providing

MVC metadata and generally less problematic.

The asp-for  attribute value is a special case and doesn't require a Model  prefix, the other Tag Helper attributes do

(such as asp-items )

It's often convenient to use <select>  with an enum  property and generate the SelectListItem  elements from the 

enum  values.

Sample:



    public class CountryEnumViewModel
    {
        public CountryEnum EnumCountry { get; set; }
    }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
    <select asp-for="EnumCountry" 
            asp-items="Html.GetEnumSelectList<CountryEnum>()">
    </select> 
    <br /><button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

The GetEnumSelectList  method generates a SelectList  object for an enum.

You can mark your enumerator list with the Display  attribute to get a richer UI:

The following HTML is generated:



  <form method="post" action="/Home/IndexEnum">
         <select data-val="true" data-val-required="The EnumCountry field is required."
                 id="EnumCountry" name="EnumCountry">
             <option value="0">United Mexican States</option>
             <option value="1">United States of America</option>
             <option value="2">Canada</option>
             <option value="3">France</option>
             <option value="4">Germany</option>
             <option selected="selected" value="5">Spain</option>
         </select>
         <br /><button type="submit">Register</button>
         <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
    </form>

Option GroupOption Group
The HTML <optgroup> element is generated when the view model contains one or more SelectListGroup  objects.

The CountryViewModelGroup  groups the SelectListItem  elements into the "North America" and "Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup


public class CountryViewModelGroup
{
    public CountryViewModelGroup()
    {
        var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
        var EuropeGroup = new SelectListGroup { Name = "Europe" };

        Countries = new List<SelectListItem>
        {
            new SelectListItem
            {
                Value = "MEX",
                Text = "Mexico",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "CAN",
                Text = "Canada",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "US",
                Text = "USA",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "FR",
                Text = "France",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "ES",
                Text = "Spain",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "DE",
                Text = "Germany",
                Group = EuropeGroup
            }
      };
    }

    public string Country { get; set; }

    public List<SelectListItem> Countries { get; }

The two groups are shown below:



 <form method="post" action="/Home/IndexGroup">
      <select id="Country" name="Country">
          <optgroup label="North America">
              <option value="MEX">Mexico</option>
              <option value="CAN">Canada</option>
              <option value="US">USA</option>
          </optgroup>
          <optgroup label="Europe">
              <option value="FR">France</option>
              <option value="ES">Spain</option>
              <option value="DE">Germany</option>
          </optgroup>
      </select>
      <br /><button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModelIEnumerable
    {
        public IEnumerable<string> CountryCodes { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"    },
            new SelectListItem { Value = "FR", Text = "France" },
            new SelectListItem { Value = "ES", Text = "Spain"  },
            new SelectListItem { Value = "DE", Text = "Germany"}
         };
    }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property specified in the 

asp-for  attribute is an IEnumerable . For example, given the following model:

With the following view:

https://w3c.github.io/html-reference/select.html


@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
    <select asp-for="CountryCodes" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
    <select id="CountryCodes"
    multiple="multiple"
    name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>
    <br /><button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    @Html.EditorForModel()
    <br /><button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
    <option value="">--none--</option>
</select>

public IActionResult IndexNone()
{
    var model = new CountryViewModel();
    model.Insert(0, new SelectListItem("<none>", ""));
    return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to eliminate

repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following view and action

method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option


@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    <select asp-for="Country">
        <option value="">&lt;none&gt;</option>
        <option value="MX">Mexico</option>
        <option value="CA">Canada</option>
        <option value="US">USA</option>
    </select> 
    <br /><button type="submit">Register</button>
</form>

public IActionResult IndexOption(int id)
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

 <form method="post" action="/Home/IndexEmpty">
      <select id="Country" name="Country">
          <option value="">&lt;none&gt;</option>
          <option value="MX">Mexico</option>
          <option value="CA" selected="selected">Canada</option>
          <option value="US">USA</option>
      </select>
      <br /><button type="submit">Register</button>
   <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Additional resources

The correct <option>  element will be selected ( contain the selected="selected"  attribute) depending on the

current Country  value.

Tag Helpers in ASP.NET Core

HTML Form element

Request Verification Token

Model Binding in ASP.NET Core

Model validation in ASP.NET Core MVC

IAttributeAdapter Interface

Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final


                            

Tag Helpers in forms in ASP.NET Core
9/22/2020 • 18 minutes to read • Edit Online

The Form Tag Helper

<form asp-controller="Demo" asp-action="Register" method="post">
    <!-- Input and Submit elements -->
</form>

<form method="post" action="/Demo/Register">
    <!-- Input and Submit elements -->
    <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

Using a named routeUsing a named route

By Rick Anderson, N. Taylor Mullen, Dave Paquette, and Jerrie Pelser

This document demonstrates working with Forms and the HTML elements commonly used on a

Form. The HTML Form element provides the primary mechanism web apps use to post back data to

the server. Most of this document describes Tag Helpers and how they can help you productively

create robust HTML forms. We recommend you read Introduction to Tag Helpers before you read this

document.

In many cases, HTML Helpers provide an alternative approach to a specific Tag Helper, but it's

important to recognize that Tag Helpers don't replace HTML Helpers and there's not a Tag Helper for

each HTML Helper. When an HTML Helper alternative exists, it's mentioned.

 

The Form Tag Helper :

Generates the HTML <FORM> action  attribute value for a MVC controller action or named

route

Generates a hidden Request Verification Token to prevent cross-site request forgery (when

used with the [ValidateAntiForgeryToken]  attribute in the HTTP Post action method)

Provides the asp-route-<Parameter Name>  attribute, where <Parameter Name>  is added to the

route values. The routeValues  parameters to Html.BeginForm  and Html.BeginRouteForm

provide similar functionality.

Has an HTML Helper alternative Html.BeginForm  and Html.BeginRouteForm

Sample:

The Form Tag Helper above generates the following HTML:

The MVC runtime generates the action  attribute value from the Form Tag Helper attributes 

asp-controller  and asp-action . The Form Tag Helper also generates a hidden Request Verification

Token to prevent cross-site request forgery (when used with the [ValidateAntiForgeryToken]

attribute in the HTTP Post action method). Protecting a pure HTML Form from cross-site request

forgery is difficult, the Form Tag Helper provides this service for you.

The asp-route  Tag Helper attribute can also generate markup for the HTML action  attribute. An app

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/working-with-forms.md
https://twitter.com/RickAndMSFT
https://github.com/NTaylorMullen
https://twitter.com/Dave_Paquette
https://github.com/jerriep
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages


      

<form asp-route="register" method="post">
    <!-- Input and Submit elements -->
</form>

<form asp-controller="Account" asp-action="Login"
     asp-route-returnurl="@ViewData["ReturnUrl"]"
     method="post" class="form-horizontal" role="form">

NOTENOTE

The Form Action Tag Helper

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N

asp-controller The name of the controller.

asp-action The name of the action method.

asp-area The name of the area.

asp-page The name of the Razor page.

asp-page-handler The name of the Razor page handler.

asp-route The name of the route.

asp-route-{value} A single URL route value. For example, 
asp-route-id="1234" .

asp-all-route-data All route values.

asp-fragment The URL fragment.

Submit to controller exampleSubmit to controller example

with a route named register  could use the following markup for the registration page:

Many of the views in the Views/Account folder (generated when you create a new web app with

Individual User Accounts) contain the asp-route-returnurl attribute:

With the built in templates, returnUrl  is only populated automatically when you try to access an

authorized resource but are not authenticated or authorized. When you attempt an unauthorized access, the

security middleware redirects you to the login page with the returnUrl  set.

The Form Action Tag Helper generates the formaction  attribute on the generated <button ...>  or 

<input type="image" ...>  tag. The formaction  attribute controls where a form submits its data. It

binds to <input> elements of type image  and <button> elements. The Form Action Tag Helper

enables the usage of several AnchorTagHelper asp-  attributes to control what formaction  link is

generated for the corresponding element.

Supported AnchorTagHelper attributes to control the value of formaction :

The following markup submits the form to the Index  action of HomeController  when the input or

https://www.w3.org/wiki/HTML/Elements/input
https://www.w3.org/wiki/HTML/Elements/button


<form method="post">
    <button asp-controller="Home" asp-action="Index">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-controller="Home" 
                                asp-action="Index">
</form>

<form method="post">
    <button formaction="/Home">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home">
</form>

Submit to page exampleSubmit to page example

<form method="post">
    <button asp-page="About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-page="About">
</form>

<form method="post">
    <button formaction="/About">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/About">
</form>

Submit to route exampleSubmit to route example

public class HomeController : Controller
{
    [Route("/Home/Test", Name = "Custom")]
    public string Test()
    {
        return "This is the test page";
    }
}

<form method="post">
    <button asp-route="Custom">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" asp-route="Custom">
</form>

button are selected:

The previous markup generates following HTML:

The following markup submits the form to the About  Razor Page:

The previous markup generates following HTML:

Consider the /Home/Test  endpoint:

The following markup submits the form to the /Home/Test  endpoint.

The previous markup generates following HTML:



                         

<form method="post">
    <button formaction="/Home/Test">Click Me</button>
    <input type="image" src="..." alt="Or Click Me" formaction="/Home/Test">
</form>

The Input Tag Helper

<input asp-for="<Expression Name>">

. N ET  T Y P E. N ET  T Y P E IN P UT  T Y P EIN P UT  T Y P E

Bool type="checkbox"

String type="text"

DateTime type="datetime-local"

Byte type="number"

The Input Tag Helper binds an HTML <input> element to a model expression in your razor view.

Syntax:

The Input Tag Helper :

An error occurred during the compilation of a resource required to process
this request. Please review the following specific error details and modify
your source code appropriately.

Type expected
'RegisterViewModel' does not contain a definition for 'Email' and no
extension method 'Email' accepting a first argument of type 'RegisterViewModel'
could be found (are you missing a using directive or an assembly reference?)

Generates the id  and name  HTML attributes for the expression name specified in the 

asp-for  attribute. asp-for="Property1.Property2"  is equivalent to 

m => m.Property1.Property2 . The name of the expression is what is used for the asp-for

attribute value. See the Expression names section for additional information.

Sets the HTML type  attribute value based on the model type and data annotation attributes

applied to the model property

Won't overwrite the HTML type  attribute value when one is specified

Generates HTML5 validation attributes from data annotation attributes applied to model

properties

Has an HTML Helper feature overlap with Html.TextBoxFor  and Html.EditorFor . See the

HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper  section for details.

Provides strong typing. If the name of the property changes and you don't update the Tag

Helper you'll get an error similar to the following:

The Input  Tag Helper sets the HTML type  attribute based on the .NET type. The following table lists

some common .NET types and generated HTML type (not every .NET type is listed).

https://www.w3.org/wiki/HTML/Elements/input
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://developer.mozilla.org/docs/Web/HTML/Element/input/datetime-local


Int type="number"

Single, Double type="number"

. N ET  T Y P E. N ET  T Y P E IN P UT  T Y P EIN P UT  T Y P E

AT T RIB UT EAT T RIB UT E IN P UT  T Y P EIN P UT  T Y P E

[EmailAddress] type="email"

[Url] type="url"

[HiddenInput] type="hidden"

[Phone] type="tel"

[DataType(DataType.Password)] type="password"

[DataType(DataType.Date)] type="date"

[DataType(DataType.Time)] type="time"

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterInput" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    <button type="submit">Register</button>
</form>

The following table shows some common data annotations attributes that the input tag helper will

map to specific input types (not every validation attribute is listed):

Sample:

The code above generates the following HTML:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter


                                  

  <form method="post" action="/Demo/RegisterInput">
      Email:
      <input type="email" data-val="true"
             data-val-email="The Email Address field is not a valid email address."
             data-val-required="The Email Address field is required."
             id="Email" name="Email" value=""><br>
      Password:
      <input type="password" data-val="true"
             data-val-required="The Password field is required."
             id="Password" name="Password"><br>
      <button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

HTML Helper alternatives to Input Tag HelperHTML Helper alternatives to Input Tag Helper

HtmlAttributesHtmlAttributes

@Html.EditorFor(model => model.YourProperty, 
  new { htmlAttributes = new { @class="myCssClass", style="Width:100px" } })

Expression namesExpression names

@{
  var joe = "Joe";
}

<input asp-for="@joe">

The data annotations applied to the Email  and Password  properties generate metadata on the

model. The Input Tag Helper consumes the model metadata and produces HTML5 data-val-*

attributes (see Model Validation). These attributes describe the validators to attach to the input fields.

This provides unobtrusive HTML5 and jQuery validation. The unobtrusive attributes have the format 

data-val-rule="Error Message" , where rule is the name of the validation rule (such as 

data-val-required , data-val-email , data-val-maxlength , etc.) If an error message is provided in the

attribute, it's displayed as the value for the data-val-rule  attribute. There are also attributes of the

form data-val-ruleName-argumentName="argumentValue"  that provide additional details about the rule,

for example, data-val-maxlength-max="1024"  .

Html.TextBox , Html.TextBoxFor , Html.Editor  and Html.EditorFor  have overlapping features with

the Input Tag Helper. The Input Tag Helper will automatically set the type  attribute; Html.TextBox

and Html.TextBoxFor  won't. Html.Editor  and Html.EditorFor  handle collections, complex objects

and templates; the Input Tag Helper doesn't. The Input Tag Helper, Html.EditorFor  and

Html.TextBoxFor  are strongly typed (they use lambda expressions); Html.TextBox  and Html.Editor

are not (they use expression names).

@Html.Editor()  and @Html.EditorFor()  use a special ViewDataDictionary  entry named 

htmlAttributes  when executing their default templates. This behavior is optionally augmented using 

additionalViewData  parameters. The key "htmlAttributes" is case-insensitive. The key

"htmlAttributes" is handled similarly to the htmlAttributes  object passed to input helpers like 

@Html.TextBox() .

The asp-for  attribute value is a ModelExpression  and the right hand side of a lambda expression.

Therefore, asp-for="Property1"  becomes m => m.Property1  in the generated code which is why you

don't need to prefix with Model . You can use the "@" character to start an inline expression and

move before the m. :

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://jquery.com/


<input type="text" id="joe" name="joe" value="Joe">

Navigating child propertiesNavigating child properties

public class AddressViewModel
{
    public string AddressLine1 { get; set; }
}

public class RegisterAddressViewModel
{
    public string Email { get; set; }

    [DataType(DataType.Password)]
    public string Password { get; set; }

    public AddressViewModel Address { get; set; }
}

@model RegisterAddressViewModel

<form asp-controller="Demo" asp-action="RegisterAddress" method="post">
    Email:  <input asp-for="Email" /> <br />
    Password: <input asp-for="Password" /><br />
    Address: <input asp-for="Address.AddressLine1" /><br />
    <button type="submit">Register</button>
</form>

<input type="text" id="Address_AddressLine1" name="Address.AddressLine1" value="">

Expression names and CollectionsExpression names and Collections

Generates the following:

With collection properties, asp-for="CollectionProperty[23].Member"  generates the same name as 

asp-for="CollectionProperty[i].Member"  when i  has the value 23 .

When ASP.NET Core MVC calculates the value of ModelExpression , it inspects several sources,

including ModelState . Consider <input type="text" asp-for="@Name"> . The calculated value  attribute

is the first non-null value from:

ModelState  entry with key "Name".

Result of the expression Model.Name .

You can also navigate to child properties using the property path of the view model. Consider a more

complex model class that contains a child Address  property.

In the view, we bind to Address.AddressLine1 :

The following HTML is generated for Address.AddressLine1 :

Sample, a model containing an array of Colors :



public class Person
{
    public List<string> Colors { get; set; }

    public int Age { get; set; }
}

public IActionResult Edit(int id, int colorIndex)
{
    ViewData["Index"] = colorIndex;
    return View(GetPerson(id));
}

@model Person
@{
    var index = (int)ViewData["index"];
}

<form asp-controller="ToDo" asp-action="Edit" method="post">
    @Html.EditorFor(m => m.Colors[index])
    <label asp-for="Age"></label>
    <input asp-for="Age" /><br />
    <button type="submit">Post</button>
</form>

@model string

<label asp-for="@Model"></label>
<input asp-for="@Model" /> <br />

public class ToDoItem
{
    public string Name { get; set; }

    public bool IsDone { get; set; }
}

The action method:

The following Razor shows how you access a specific Color  element:

The Views/Shared/EditorTemplates/String.cshtml template:

Sample using List<T> :

The following Razor shows how to iterate over a collection:



      

@model List<ToDoItem>

<form asp-controller="ToDo" asp-action="Edit" method="post">
    <table>
        <tr> <th>Name</th> <th>Is Done</th> </tr>

        @for (int i = 0; i < Model.Count; i++)
        {
            <tr>
                @Html.EditorFor(model => model[i])
            </tr>
        }

    </table>
    <button type="submit">Save</button>
</form>

@model ToDoItem

<td>
    <label asp-for="@Model.Name"></label>
    @Html.DisplayFor(model => model.Name)
</td>
<td>
    <input asp-for="@Model.IsDone" />
</td>

@*
    This template replaces the following Razor which evaluates the indexer three times.
    <td>
         <label asp-for="@Model[i].Name"></label>
         @Html.DisplayFor(model => model[i].Name)
     </td>
     <td>
         <input asp-for="@Model[i].IsDone" />
     </td>
*@

NOTENOTE

The Textarea Tag Helper

The Views/Shared/EditorTemplates/ToDoItem.cshtml template:

foreach  should be used if possible when the value is going to be used in an asp-for  or 

Html.DisplayFor  equivalent context. In general, for  is better than foreach  (if the scenario allows it)

because it doesn't need to allocate an enumerator ; however, evaluating an indexer in a LINQ

expression can be expensive and should be minimized.

 

The commented sample code above shows how you would replace the lambda expression with the @

operator to access each ToDoItem  in the list.

The Textarea Tag Helper  tag helper is similar to the Input Tag Helper.

Generates the id  and name  attributes, and the data validation attributes from the model for

a <textarea> element.

Provides strong typing.

https://www.w3.org/wiki/HTML/Elements/textarea


              

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class DescriptionViewModel
    {
        [MinLength(5)]
        [MaxLength(1024)]
        public string Description { get; set; }
    }
}

@model DescriptionViewModel

<form asp-controller="Demo" asp-action="RegisterTextArea" method="post">
    <textarea asp-for="Description"></textarea>
    <button type="submit">Test</button>
</form>

<form method="post" action="/Demo/RegisterTextArea">
  <textarea data-val="true"
   data-val-maxlength="The field Description must be a string or array type with a maximum length 
of &#x27;1024&#x27;."
   data-val-maxlength-max="1024"
   data-val-minlength="The field Description must be a string or array type with a minimum length 
of &#x27;5&#x27;."
   data-val-minlength-min="5"
   id="Description" name="Description">
  </textarea>
  <button type="submit">Test</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Label Tag Helper

HTML Helper alternative: Html.TextAreaFor

Sample:

The following HTML is generated:

Generates the label caption and for  attribute on a <label> element for an expression name

HTML Helper alternative: Html.LabelFor .

The Label Tag Helper  provides the following benefits over a pure HTML label element:

You automatically get the descriptive label value from the Display  attribute. The intended

display name might change over time, and the combination of Display  attribute and Label

Tag Helper will apply the Display  everywhere it's used.

Less markup in source code

Strong typing with the model property.

Sample:

https://www.w3.org/wiki/HTML/Elements/label


                

                                                

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class SimpleViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }
    }
}

@model SimpleViewModel

<form asp-controller="Demo" asp-action="RegisterLabel" method="post">
    <label asp-for="Email"></label>
    <input asp-for="Email" /> <br />
</form>

<label for="Email">Email Address</label>

The Validation Tag Helpers

The Validation Message Tag HelperThe Validation Message Tag Helper

<span asp-validation-for="Email"></span>

The following HTML is generated for the <label>  element:

The Label Tag Helper generated the for  attribute value of "Email", which is the ID associated with

the <input>  element. The Tag Helpers generate consistent id  and for  elements so they can be

correctly associated. The caption in this sample comes from the Display  attribute. If the model didn't

contain a Display  attribute, the caption would be the property name of the expression.

There are two Validation Tag Helpers. The Validation Message Tag Helper  (which displays a validation

message for a single property on your model), and the Validation Summary Tag Helper  (which

displays a summary of validation errors). The Input Tag Helper  adds HTML5 client side validation

attributes to input elements based on data annotation attributes on your model classes. Validation is

also performed on the server. The Validation Tag Helper displays these error messages when a

validation error occurs.

Adds the HTML5 data-valmsg-for="property"  attribute to the span element, which attaches the

validation error messages on the input field of the specified model property. When a client

side validation error occurs, jQuery displays the error message in the <span>  element.

Validation also takes place on the server. Clients may have JavaScript disabled and some

validation can only be done on the server side.

HTML Helper alternative: Html.ValidationMessageFor

The Validation Message Tag Helper  is used with the asp-validation-for  attribute on a HTML span

element.

The Validation Message Tag Helper will generate the following HTML:

https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/docs/Web/HTML/Element/span
https://jquery.com/
https://developer.mozilla.org/docs/Web/HTML/Element/span


                                                

<span class="field-validation-valid"
  data-valmsg-for="Email"
  data-valmsg-replace="true"></span>

NOTENOTE

<span class="field-validation-error" data-valmsg-for="Email"
            data-valmsg-replace="true">
   The Email Address field is required.
</span>

The Validation Summary Tag HelperThe Validation Summary Tag Helper

A SP -VA L IDAT IO N -SUM M A RYA SP -VA L IDAT IO N -SUM M A RY VA L IDAT IO N  M ESSA GES DISP L AY EDVA L IDAT IO N  M ESSA GES DISP L AY ED

ValidationSummary.All Property and model level

ValidationSummary.ModelOnly Model

ValidationSummary.None None

SampleSample

You generally use the Validation Message Tag Helper  after an Input  Tag Helper for the same

property. Doing so displays any validation error messages near the input that caused the error.

You must have a view with the correct JavaScript and jQuery script references in place for client side

validation. See Model Validation for more information.

When a server side validation error occurs (for example when you have custom server side

validation or client-side validation is disabled), MVC places that error message as the body of the 

<span>  element.

Targets <div>  elements with the asp-validation-summary  attribute

HTML Helper alternative: @Html.ValidationSummary

The Validation Summary Tag Helper  is used to display a summary of validation messages. The 

asp-validation-summary  attribute value can be any of the following:

In the following example, the data model has DataAnnotation  attributes, which generates validation

error messages on the <input>  element. When a validation error occurs, the Validation Tag Helper

displays the error message:

https://jquery.com/


                

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public class RegisterViewModel
    {
        [Required]
        [EmailAddress]
        [Display(Name = "Email Address")]
        public string Email { get; set; }

        [Required]
        [DataType(DataType.Password)]
        public string Password { get; set; }
    }
}

@model RegisterViewModel

<form asp-controller="Demo" asp-action="RegisterValidation" method="post">
    <div asp-validation-summary="ModelOnly"></div>
    Email:  <input asp-for="Email" /> <br />
    <span asp-validation-for="Email"></span><br />
    Password: <input asp-for="Password" /><br />
    <span asp-validation-for="Password"></span><br />
    <button type="submit">Register</button>
</form>

<form action="/DemoReg/Register" method="post">
  <div class="validation-summary-valid" data-valmsg-summary="true">
  <ul><li style="display:none"></li></ul></div>
  Email:  <input name="Email" id="Email" type="email" value=""
   data-val-required="The Email field is required."
   data-val-email="The Email field is not a valid email address."
   data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Email"></span><br>
  Password: <input name="Password" id="Password" type="password"
   data-val-required="The Password field is required." data-val="true"><br>
  <span class="field-validation-valid" data-valmsg-replace="true"
   data-valmsg-for="Password"></span><br>
  <button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

The Select Tag Helper

<select asp-for="Country" asp-items="Model.Countries"></select> 

The generated HTML (when the model is valid):

Generates select and associated option elements for properties of your model.

Has an HTML Helper alternative Html.DropDownListFor  and Html.ListBoxFor

The Select Tag Helper  asp-for  specifies the model property name for the select element and 

asp-items  specifies the option elements. For example:

Sample:

https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option
https://www.w3.org/wiki/HTML/Elements/select
https://www.w3.org/wiki/HTML/Elements/option


using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModel
    {
        public string Country { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"  },
        };
    }
}

public IActionResult Index()
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Index(CountryViewModel model)
{
    if (ModelState.IsValid)
    {
        var msg = model.Country + " selected";
        return RedirectToAction("IndexSuccess", new { message = msg });
    }

    // If we got this far, something failed; redisplay form.
    return View(model);
}

@model CountryViewModel

<form asp-controller="Home" asp-action="Index" method="post">
    <select asp-for="Country" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

The Index  method initializes the CountryViewModel , sets the selected country and passes it to the 

Index  view.

The HTTP POST Index  method displays the selection:

The Index  view:

Which generates the following HTML (with "CA" selected):



<form method="post" action="/">
     <select id="Country" name="Country">
       <option value="MX">Mexico</option>
       <option selected="selected" value="CA">Canada</option>
       <option value="US">USA</option>
     </select>
       <br /><button type="submit">Register</button>
     <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
   </form>

NOTENOTE

<select asp-for="Country" asp-items="Model.Countries"></select> 

Enum bindingEnum binding

    public class CountryEnumViewModel
    {
        public CountryEnum EnumCountry { get; set; }
    }
}

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

We don't recommend using ViewBag  or ViewData  with the Select Tag Helper. A view model is more robust

at providing MVC metadata and generally less problematic.

The asp-for  attribute value is a special case and doesn't require a Model  prefix, the other Tag Helper

attributes do (such as asp-items )

It's often convenient to use <select>  with an enum  property and generate the SelectListItem

elements from the enum  values.

Sample:

The GetEnumSelectList  method generates a SelectList  object for an enum.



@model CountryEnumViewModel

<form asp-controller="Home" asp-action="IndexEnum" method="post">
    <select asp-for="EnumCountry" 
            asp-items="Html.GetEnumSelectList<CountryEnum>()">
    </select> 
    <br /><button type="submit">Register</button>
</form>

using System.ComponentModel.DataAnnotations;

namespace FormsTagHelper.ViewModels
{
    public enum CountryEnum
    {
        [Display(Name = "United Mexican States")]
        Mexico,
        [Display(Name = "United States of America")]
        USA,
        Canada,
        France,
        Germany,
        Spain
    }
}

  <form method="post" action="/Home/IndexEnum">
         <select data-val="true" data-val-required="The EnumCountry field is required."
                 id="EnumCountry" name="EnumCountry">
             <option value="0">United Mexican States</option>
             <option value="1">United States of America</option>
             <option value="2">Canada</option>
             <option value="3">France</option>
             <option value="4">Germany</option>
             <option selected="selected" value="5">Spain</option>
         </select>
         <br /><button type="submit">Register</button>
         <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
    </form>

Option GroupOption Group

You can mark your enumerator list with the Display  attribute to get a richer UI:

The following HTML is generated:

The HTML <optgroup> element is generated when the view model contains one or more 

SelectListGroup  objects.

The CountryViewModelGroup  groups the SelectListItem  elements into the "North America" and

"Europe" groups:

https://www.w3.org/wiki/HTML/Elements/optgroup


public class CountryViewModelGroup
{
    public CountryViewModelGroup()
    {
        var NorthAmericaGroup = new SelectListGroup { Name = "North America" };
        var EuropeGroup = new SelectListGroup { Name = "Europe" };

        Countries = new List<SelectListItem>
        {
            new SelectListItem
            {
                Value = "MEX",
                Text = "Mexico",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "CAN",
                Text = "Canada",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "US",
                Text = "USA",
                Group = NorthAmericaGroup
            },
            new SelectListItem
            {
                Value = "FR",
                Text = "France",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "ES",
                Text = "Spain",
                Group = EuropeGroup
            },
            new SelectListItem
            {
                Value = "DE",
                Text = "Germany",
                Group = EuropeGroup
            }
      };
    }

    public string Country { get; set; }

    public List<SelectListItem> Countries { get; }

The two groups are shown below:



 <form method="post" action="/Home/IndexGroup">
      <select id="Country" name="Country">
          <optgroup label="North America">
              <option value="MEX">Mexico</option>
              <option value="CAN">Canada</option>
              <option value="US">USA</option>
          </optgroup>
          <optgroup label="Europe">
              <option value="FR">France</option>
              <option value="ES">Spain</option>
              <option value="DE">Germany</option>
          </optgroup>
      </select>
      <br /><button type="submit">Register</button>
      <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Multiple selectMultiple select

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Collections.Generic;

namespace FormsTagHelper.ViewModels
{
    public class CountryViewModelIEnumerable
    {
        public IEnumerable<string> CountryCodes { get; set; }

        public List<SelectListItem> Countries { get; } = new List<SelectListItem>
        {
            new SelectListItem { Value = "MX", Text = "Mexico" },
            new SelectListItem { Value = "CA", Text = "Canada" },
            new SelectListItem { Value = "US", Text = "USA"    },
            new SelectListItem { Value = "FR", Text = "France" },
            new SelectListItem { Value = "ES", Text = "Spain"  },
            new SelectListItem { Value = "DE", Text = "Germany"}
         };
    }
}

The generated HTML:

The Select Tag Helper will automatically generate the multiple = "multiple" attribute if the property

specified in the asp-for  attribute is an IEnumerable . For example, given the following model:

With the following view:

https://w3c.github.io/html-reference/select.html


@model CountryViewModelIEnumerable

<form asp-controller="Home" asp-action="IndexMultiSelect" method="post">
    <select asp-for="CountryCodes" asp-items="Model.Countries"></select> 
    <br /><button type="submit">Register</button>
</form>

<form method="post" action="/Home/IndexMultiSelect">
    <select id="CountryCodes"
    multiple="multiple"
    name="CountryCodes"><option value="MX">Mexico</option>
<option value="CA">Canada</option>
<option value="US">USA</option>
<option value="FR">France</option>
<option value="ES">Spain</option>
<option value="DE">Germany</option>
</select>
    <br /><button type="submit">Register</button>
  <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
</form>

No selectionNo selection

@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    @Html.EditorForModel()
    <br /><button type="submit">Register</button>
</form>

@model CountryViewModel

<select asp-for="Country" asp-items="Model.Countries">
    <option value="">--none--</option>
</select>

public IActionResult IndexNone()
{
    var model = new CountryViewModel();
    model.Insert(0, new SelectListItem("<none>", ""));
    return View(model);
}

Generates the following HTML:

If you find yourself using the "not specified" option in multiple pages, you can create a template to

eliminate repeating the HTML:

The Views/Shared/EditorTemplates/CountryViewModel.cshtml template:

Adding HTML <option> elements isn't limited to the No selection case. For example, the following

view and action method will generate HTML similar to the code above:

https://www.w3.org/wiki/HTML/Elements/option


@model CountryViewModel

<form asp-controller="Home" asp-action="IndexEmpty" method="post">
    <select asp-for="Country">
        <option value="">&lt;none&gt;</option>
        <option value="MX">Mexico</option>
        <option value="CA">Canada</option>
        <option value="US">USA</option>
    </select> 
    <br /><button type="submit">Register</button>
</form>

public IActionResult IndexOption(int id)
{
    var model = new CountryViewModel();
    model.Country = "CA";
    return View(model);
}

 <form method="post" action="/Home/IndexEmpty">
      <select id="Country" name="Country">
          <option value="">&lt;none&gt;</option>
          <option value="MX">Mexico</option>
          <option value="CA" selected="selected">Canada</option>
          <option value="US">USA</option>
      </select>
      <br /><button type="submit">Register</button>
   <input name="__RequestVerificationToken" type="hidden" value="<removed for brevity>">
 </form>

Additional resources

The correct <option>  element will be selected ( contain the selected="selected"  attribute)

depending on the current Country  value.

Tag Helpers in ASP.NET Core

HTML Form element

Request Verification Token

Model Binding in ASP.NET Core

Model validation in ASP.NET Core MVC

IAttributeAdapter Interface

Code snippets for this document

https://www.w3.org/TR/html401/interact/forms.html
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.iattributeadapter
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/working-with-forms/sample/final


Share controllers, views, Razor Pages and more with
Application Parts
9/22/2020 • 7 minutes to read • Edit Online

Load ASP.NET Core features

// Requires using System.Reflection;
public void ConfigureServices(IServiceCollection services)
{
    var assembly = typeof(MySharedController).Assembly;
    services.AddControllersWithViews()
        .AddApplicationPart(assembly)
        .AddRazorRuntimeCompilation();

    services.Configure<MvcRazorRuntimeCompilationOptions>(options => 
    { options.FileProviders.Add(new EmbeddedFileProvider(assembly)); });
}

// Requires using System.Reflection;
// Requires using Microsoft.AspNetCore.Mvc.ApplicationParts;
public void ConfigureServices(IServiceCollection services)
{
    var assembly = typeof(MySharedController).GetTypeInfo().Assembly;
    // This creates an AssemblyPart, but does not create any related parts for items such as views.
    var part = new AssemblyPart(assembly);
    services.AddControllersWithViews()
        .ConfigureApplicationPartManager(apm => apm.ApplicationParts.Add(part));
}

By Rick Anderson

View or download sample code (how to download)

An Application Part is an abstraction over the resources of an app. Application Parts allow ASP.NET Core to discover

controllers, view components, tag helpers, Razor Pages, razor compilation sources, and more. AssemblyPart is an

Application part. AssemblyPart  encapsulates an assembly reference and exposes types and compilation references.

Feature providers work with application parts to populate the features of an ASP.NET Core app. The main use case

for application parts is to configure an app to discover (or avoid loading) ASP.NET Core features from an assembly.

For example, you might want to share common functionality between multiple apps. Using Application Parts, you

can share an assembly (DLL) containing controllers, views, Razor Pages, razor compilation sources, Tag Helpers, and

more with multiple apps. Sharing an assembly is preferred to duplicating code in multiple projects.

ASP.NET Core apps load features from ApplicationPart. The AssemblyPart class represents an application part that's

backed by an assembly.

Use the Microsoft.AspNetCore.Mvc.ApplicationParts and AssemblyPart classes to discover and load ASP.NET Core

features (controllers, view components, etc.). The ApplicationPartManager tracks the application parts and feature

providers available. ApplicationPartManager  is configured in Startup.ConfigureServices :

The following code provides an alternative approach to configuring ApplicationPartManager  using AssemblyPart :

The preceding two code samples load the SharedController  from an assembly. The SharedController  is not in the

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/advanced/app-parts.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/advanced/app-parts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.assemblypart
https://docs.microsoft.com/en-us/dotnet/api/system.web.webpages.applicationpart
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.assemblypart
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.assemblypart
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.applicationpartmanager


Include viewsInclude views

Prevent loading resourcesPrevent loading resources

Feature providers

Display available featuresDisplay available features

app's project. See the WebAppParts solution sample download.

Use a Razor class library to include views in the assembly.

Application parts can be used to avoid loading resources in a particular assembly or location. Add or remove

members of the Microsoft.AspNetCore.Mvc.ApplicationParts collection to hide or make available resources. The

order of the entries in the ApplicationParts  collection isn't important. Configure the ApplicationPartManager

before using it to configure services in the container. For example, configure the ApplicationPartManager  before

invoking AddControllersAsServices . Call Remove  on the ApplicationParts  collection to remove a resource.

The ApplicationPartManager  includes parts for :

The app's assembly and dependent assemblies.

Microsoft.AspNetCore.Mvc.ApplicationParts.CompiledRazorAssemblyPart

Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation

Microsoft.AspNetCore.Mvc.TagHelpers .

Microsoft.AspNetCore.Mvc.Razor .

 

Application feature providers examine application parts and provide features for those parts. There are built-in

feature providers for the following ASP.NET Core features:

ControllerFeatureProvider

TagHelperFeatureProvider

MetadataReferenceFeatureProvider

ViewsFeatureProvider

internal class  RazorCompiledItemFeatureProvider

Feature providers inherit from IApplicationFeatureProvider<TFeature>, where T  is the type of the feature. Feature

providers can be implemented for any of the previously listed feature types. The order of feature providers in the 

ApplicationPartManager.FeatureProviders  can impact run time behavior. Later added providers can react to actions

taken by earlier added providers.

The features available to an app can be enumerated by requesting an ApplicationPartManager  through dependency

injection:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/advanced/app-parts/3.0sample1/WebAppParts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllers.controllerfeatureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razor.taghelpers.taghelperfeatureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razor.compilation.metadatareferencefeatureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razor.compilation.viewsfeatureprovider
https://github.com/dotnet/AspNetCore/blob/master/src/Mvc/Mvc.Razor/src/ApplicationParts/RazorCompiledItemFeatureProvider.cs#L14
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.iapplicationfeatureprovider-1


using AppPartsSample.ViewModels;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ApplicationParts;
using Microsoft.AspNetCore.Mvc.Controllers;
using System.Linq;
using Microsoft.AspNetCore.Mvc.Razor.Compilation;
using Microsoft.AspNetCore.Mvc.Razor.TagHelpers;
using Microsoft.AspNetCore.Mvc.ViewComponents;

namespace AppPartsSample.Controllers
{
    public class FeaturesController : Controller
    {
        private readonly ApplicationPartManager _partManager;

        public FeaturesController(ApplicationPartManager partManager)
        {
            _partManager = partManager;
        }

        public IActionResult Index()
        {
            var viewModel = new FeaturesViewModel();

            var controllerFeature = new ControllerFeature();
            _partManager.PopulateFeature(controllerFeature);
            viewModel.Controllers = controllerFeature.Controllers.ToList();

            var tagHelperFeature = new TagHelperFeature();
            _partManager.PopulateFeature(tagHelperFeature);
            viewModel.TagHelpers = tagHelperFeature.TagHelpers.ToList();

            var viewComponentFeature = new ViewComponentFeature();
            _partManager.PopulateFeature(viewComponentFeature);
            viewModel.ViewComponents = viewComponentFeature.ViewComponents.ToList();

            return View(viewModel);
        }
    }
}

Controllers:
    - FeaturesController
    - HomeController
    - HelloController
    - GenericController`1
    - GenericController`1
Tag Helpers:
    - PrerenderTagHelper
    - AnchorTagHelper
    - CacheTagHelper
    - DistributedCacheTagHelper
    - EnvironmentTagHelper
    - Additional Tag Helpers omitted for brevity.
View Components:
    - SampleViewComponent

Discovery in application parts

The download sample uses the preceding code to display the app features:

HTTP 404 errors are not uncommon when developing with application parts. These errors are typically caused by

missing an essential requirement for how applications parts are discovered. If your app returns an HTTP 404 error,

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/advanced/app-parts/sample2


Load ASP.NET Core features

public void ConfigureServices(IServiceCollection services)
{
    // Requires using System.Reflection;
    var assembly = typeof(MySharedController).GetTypeInfo().Assembly;
    services.AddMvc()
        .AddApplicationPart(assembly)
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

public void ConfigureServices(IServiceCollection services)
{
    // Requires using System.Reflection;
    // Requires using Microsoft.AspNetCore.Mvc.ApplicationParts;
    var assembly = typeof(MySharedController).GetTypeInfo().Assembly;
    var part = new AssemblyPart(assembly);
    services.AddMvc()
        .ConfigureApplicationPartManager(apm => apm.ApplicationParts.Add(part))
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

Include viewsInclude views

verify the following requirements have been met:

The applicationName  setting needs to be set to the root assembly used for discovery. The root assembly used

for discovery is normally the entry point assembly.

The root assembly needs to have a reference to the parts used for discovery. The reference can be direct or

transitive.

The root assembly needs to reference the Web SDK. The framework has logic that stamps attributes into the

root assembly that are used for discovery.

By Rick Anderson

View or download sample code (how to download)

An Application Part is an abstraction over the resources of an app. Application Parts allow ASP.NET Core to discover

controllers, view components, tag helpers, Razor Pages, razor compilation sources, and more. AssemblyPart is an

Application part. AssemblyPart  encapsulates an assembly reference and exposes types and compilation references.

Feature providers work with application parts to populate the features of an ASP.NET Core app. The main use case

for application parts is to configure an app to discover (or avoid loading) ASP.NET Core features from an assembly.

For example, you might want to share common functionality between multiple apps. Using Application Parts, you

can share an assembly (DLL) containing controllers, views, Razor Pages, razor compilation sources, Tag Helpers, and

more with multiple apps. Sharing an assembly is preferred to duplicating code in multiple projects.

ASP.NET Core apps load features from ApplicationPart. The AssemblyPart class represents an application part that's

backed by an assembly.

Use the ApplicationPart  and AssemblyPart  classes to discover and load ASP.NET Core features (controllers, view

components, etc.). The ApplicationPartManager tracks the application parts and feature providers available. 

ApplicationPartManager  is configured in Startup.ConfigureServices :

The following code provides an alternative approach to configuring ApplicationPartManager  using AssemblyPart :

The preceding two code samples load the SharedController  from an assembly. The SharedController  is not in the

application's project. See the WebAppParts solution sample download.

https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/advanced/app-parts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.assemblypart#microsoft_aspnetcore_mvc_applicationparts_assemblypart
https://docs.microsoft.com/en-us/dotnet/api/system.web.webpages.applicationpart
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.assemblypart
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.applicationpartmanager
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/advanced/app-parts/sample1/WebAppParts


Prevent loading resourcesPrevent loading resources

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc()
            .SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
            .ConfigureApplicationPartManager(apm =>
            {
                var dependentLibrary = apm.ApplicationParts
                    .FirstOrDefault(part => part.Name == "MyDependentLibrary");

                if (dependentLibrary != null)
                {
                    apm.ApplicationParts.Remove(dependentLibrary);
                }
            });
}

Application feature providers

Display available featuresDisplay available features

Use a Razor class library to include views in the assembly.

Application parts can be used to avoid loading resources in a particular assembly or location. Add or remove

members of the Microsoft.AspNetCore.Mvc.ApplicationParts collection to hide or make available resources. The

order of the entries in the ApplicationParts  collection isn't important. Configure the ApplicationPartManager

before using it to configure services in the container. For example, configure the ApplicationPartManager  before

invoking AddControllersAsServices . Call Remove  on the ApplicationParts  collection to remove a resource.

The following code uses Microsoft.AspNetCore.Mvc.ApplicationParts to remove MyDependentLibrary  from the app:

The ApplicationPartManager  includes parts for :

The app's assembly and dependent assemblies.

Microsoft.AspNetCore.Mvc.TagHelpers .

Microsoft.AspNetCore.Mvc.Razor .

Application feature providers examine application parts and provide features for those parts. There are built-in

feature providers for the following ASP.NET Core features:

Controllers

Tag Helpers

View Components

Feature providers inherit from IApplicationFeatureProvider<TFeature>, where T  is the type of the feature. Feature

providers can be implemented for any of the previously listed feature types. The order of feature providers in the 

ApplicationPartManager.FeatureProviders  can impact run time behavior. Later added providers can react to actions

taken by earlier added providers.

The features available to an app can be enumerated by requesting an ApplicationPartManager  through dependency

injection:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllers.controllerfeatureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razor.taghelpers.taghelperfeatureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewcomponents.viewcomponentfeatureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationparts.iapplicationfeatureprovider-1


using AppPartsSample.ViewModels;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ApplicationParts;
using Microsoft.AspNetCore.Mvc.Controllers;
using System.Linq;
using Microsoft.AspNetCore.Mvc.Razor.Compilation;
using Microsoft.AspNetCore.Mvc.Razor.TagHelpers;
using Microsoft.AspNetCore.Mvc.ViewComponents;

namespace AppPartsSample.Controllers
{
    public class FeaturesController : Controller
    {
        private readonly ApplicationPartManager _partManager;

        public FeaturesController(ApplicationPartManager partManager)
        {
            _partManager = partManager;
        }

        public IActionResult Index()
        {
            var viewModel = new FeaturesViewModel();

            var controllerFeature = new ControllerFeature();
            _partManager.PopulateFeature(controllerFeature);
            viewModel.Controllers = controllerFeature.Controllers.ToList();

            var tagHelperFeature = new TagHelperFeature();
            _partManager.PopulateFeature(tagHelperFeature);
            viewModel.TagHelpers = tagHelperFeature.TagHelpers.ToList();

            var viewComponentFeature = new ViewComponentFeature();
            _partManager.PopulateFeature(viewComponentFeature);
            viewModel.ViewComponents = viewComponentFeature.ViewComponents.ToList();

            return View(viewModel);
        }
    }
}

Controllers:
    - FeaturesController
    - HomeController
    - HelloController
    - GenericController`1
    - GenericController`1
Tag Helpers:
    - PrerenderTagHelper
    - AnchorTagHelper
    - CacheTagHelper
    - DistributedCacheTagHelper
    - EnvironmentTagHelper
    - Additional Tag Helpers omitted for brevity.
View Components:
    - SampleViewComponent

Discovery in application parts

The download sample uses the preceding code to display the app features:

HTTP 404 errors are not uncommon when developing with application parts. These errors are typically caused by

missing an essential requirement for how applications parts are discovered. If your app returns an HTTP 404 error,

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/advanced/app-parts/sample2


verify the following requirements have been met:

The applicationName  setting needs to be set to the root assembly used for discovery. The root assembly used

for discovery is normally the entry point assembly.

The root assembly needs to have a reference to the parts used for discovery. The reference can be direct or

transitive.

The root assembly needs to reference the Web SDK.

The ASP.NET Core framework has custom build logic that stamps attributes into the root assembly that

are used for discovery.



Work with the application model in ASP.NET Core
9/22/2020 • 10 minutes to read • Edit Online

Models and Providers

NOTENOTE

IApplicationModelProviderIApplicationModelProvider

By Steve Smith

ASP.NET Core MVC defines an application model representing the components of an MVC app. You can read and

manipulate this model to modify how MVC elements behave. By default, MVC follows certain conventions to

determine which classes are considered to be controllers, which methods on those classes are actions, and how

parameters and routing behave. You can customize this behavior to suit your app's needs by creating your own

conventions and applying them globally or as attributes.

The ASP.NET Core MVC application model include both abstract interfaces and concrete implementation classes

that describe an MVC application. This model is the result of MVC discovering the app's controllers, actions, action

parameters, routes, and filters according to default conventions. By working with the application model, you can

modify your app to follow different conventions from the default MVC behavior. The parameters, names, routes,

and filters are all used as configuration data for actions and controllers.

The ASP.NET Core MVC Application Model has the following structure:

ApplicationModel

Controllers (ControllerModel)

Actions (ActionModel)

Parameters (ParameterModel)

Each level of the model has access to a common Properties  collection, and lower levels can access and overwrite

property values set by higher levels in the hierarchy. The properties are persisted to the 

ActionDescriptor.Properties  when the actions are created. Then when a request is being handled, any properties a

convention added or modified can be accessed through ActionContext.ActionDescriptor.Properties . Using

properties is a great way to configure your filters, model binders, etc. on a per-action basis.

The ActionDescriptor.Properties  collection isn't thread safe (for writes) once app startup has finished. Conventions are

the best way to safely add data to this collection.

ASP.NET Core MVC loads the application model using a provider pattern, defined by the IApplicationModelProvider

interface. This section covers some of the internal implementation details of how this provider functions. This is an

advanced topic - most apps that leverage the application model should do so by working with conventions.

Implementations of the IApplicationModelProvider  interface "wrap" one another, with each implementation calling 

OnProvidersExecuting  in ascending order based on its Order  property. The OnProvidersExecuted  method is then

called in reverse order. The framework defines several providers:

First ( Order=-1000 ):

DefaultApplicationModelProvider

Then ( Order=-990 ):

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/application-model.md
https://ardalis.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.iapplicationmodelprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.internal.defaultapplicationmodelprovider


            

NOTENOTE

NOTENOTE

Conventions

Sample: Modifying the ApplicationModelSample: Modifying the ApplicationModel

AuthorizationApplicationModelProvider

CorsApplicationModelProvider

The order in which two providers with the same value for Order  are called is undefined, and therefore shouldn't be relied

upon.

IApplicationModelProvider  is an advanced concept for framework authors to extend. In general, apps should use

conventions and frameworks should use providers. The key distinction is that providers always run before conventions.

The DefaultApplicationModelProvider  establishes many of the default behaviors used by ASP.NET Core MVC. Its

responsibilities include:

Adding global filters to the context

Adding controllers to the context

Adding public controller methods as actions

Adding action method parameters to the context

Applying route and other attributes

Some built-in behaviors are implemented by the DefaultApplicationModelProvider . This provider is responsible for

constructing the ControllerModel , which in turn references ActionModel , PropertyModel , and ParameterModel

instances. The DefaultApplicationModelProvider  class is an internal framework implementation detail that can and

will change in the future.

The AuthorizationApplicationModelProvider  is responsible for applying the behavior associated with the 

AuthorizeFilter  and AllowAnonymousFilter  attributes. Learn more about these attributes.

The CorsApplicationModelProvider  implements behavior associated with the IEnableCorsAttribute  and 

IDisableCorsAttribute , and the DisableCorsAuthorizationFilter . Learn more about CORS.

The application model defines convention abstractions that provide a simpler way to customize the behavior of the

models than overriding the entire model or provider. These abstractions are the recommended way to modify your

app's behavior. Conventions provide a way for you to write code that will dynamically apply customizations. While

filters provide a means of modifying the framework's behavior, customizations let you control how the whole app

works together.

The following conventions are available:

IApplicationModelConvention

IControllerModelConvention

IActionModelConvention

IParameterModelConvention

Conventions are applied by adding them to MVC options or by implementing Attribute s and applying them to

controllers, actions, or action parameters (similar to Filters ). Unlike filters, conventions are only executed when

the app is starting, not as part of each request.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.internal.authorizationapplicationmodelprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cors.internal.corsapplicationmodelprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.controllermodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.actionmodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.propertymodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.parametermodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.iapplicationmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.icontrollermodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.iactionmodelconvention
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.iparametermodelconvention


using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace AppModelSample.Conventions
{
    public class ApplicationDescription : IApplicationModelConvention
    {
        private readonly string _description;

        public ApplicationDescription(string description)
        {
            _description = description;
        }

        public void Apply(ApplicationModel application)
        {
            application.Properties["description"] = _description;
        }
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc(options =>
    {
        options.Conventions.Add(new ApplicationDescription("My Application Description"));
        options.Conventions.Add(new NamespaceRoutingConvention());
        //options.Conventions.Add(new IdsMustBeInRouteParameterModelConvention());
    });
}

public class AppModelController : Controller
{
    public string Description()
    {
        return "Description: " + ControllerContext.ActionDescriptor.Properties["description"];
    }
}

Sample: Modifying the ControllerModel DescriptionSample: Modifying the ControllerModel Description

The following convention is used to add a property to the application model.

Application model conventions are applied as options when MVC is added in ConfigureServices  in Startup .

Properties are accessible from the ActionDescriptor  properties collection within controller actions:

As in the previous example, the controller model can also be modified to include custom properties. These will

override existing properties with the same name specified in the application model. The following convention

attribute adds a description at the controller level:



using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace AppModelSample.Conventions
{
    public class ControllerDescriptionAttribute : Attribute, IControllerModelConvention
    {
        private readonly string _description;

        public ControllerDescriptionAttribute(string description)
        {
            _description = description;
        }

        public void Apply(ControllerModel controllerModel)
        {
            controllerModel.Properties["description"] = _description;
        }
    }
}

[ControllerDescription("Controller Description")]
public class DescriptionAttributesController : Controller
{
    public string Index()
    {
        return "Description: " + ControllerContext.ActionDescriptor.Properties["description"];
    }

Sample: Modifying the ActionModel DescriptionSample: Modifying the ActionModel Description

using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace AppModelSample.Conventions
{
    public class ActionDescriptionAttribute : Attribute, IActionModelConvention
    {
        private readonly string _description;

        public ActionDescriptionAttribute(string description)
        {
            _description = description;
        }

        public void Apply(ActionModel actionModel)
        {
            actionModel.Properties["description"] = _description;
        }
    }
}

This convention is applied as an attribute on a controller.

The "description" property is accessed in the same manner as in previous examples.

A separate attribute convention can be applied to individual actions, overriding behavior already applied at the

application or controller level.

Applying this to an action within the previous example's controller demonstrates how it overrides the controller-

level convention:



[ControllerDescription("Controller Description")]
public class DescriptionAttributesController : Controller
{
    public string Index()
    {
        return "Description: " + ControllerContext.ActionDescriptor.Properties["description"];
    }

    [ActionDescription("Action Description")]
    public string UseActionDescriptionAttribute()
    {
        return "Description: " + ControllerContext.ActionDescriptor.Properties["description"];
    }
}

Sample: Modifying the ParameterModelSample: Modifying the ParameterModel

using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace AppModelSample.Conventions
{
    public class MustBeInRouteParameterModelConvention : Attribute, IParameterModelConvention
    {
        public void Apply(ParameterModel model)
        {
            if (model.BindingInfo == null)
            {
                model.BindingInfo = new BindingInfo();
            }
            model.BindingInfo.BindingSource = BindingSource.Path;
        }
    }
}

public class ParameterModelController : Controller
{
    // Will bind:  /ParameterModel/GetById/123
    // WON'T bind: /ParameterModel/GetById?id=123
    public string GetById([MustBeInRouteParameterModelConvention]int id)
    {
        return $"Bound to id: {id}";
    }
}

Sample: Modifying the ActionModel NameSample: Modifying the ActionModel Name

The following convention can be applied to action parameters to modify their BindingInfo . The following

convention requires that the parameter be a route parameter ; other potential binding sources (such as query string

values) are ignored.

The attribute may be applied to any action parameter :

The following convention modifies the ActionModel  to update the name of the action to which it's applied. The new

name is provided as a parameter to the attribute. This new name is used by routing, so it will affect the route used

to reach this action method.



using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace AppModelSample.Conventions
{
    public class CustomActionNameAttribute : Attribute, IActionModelConvention
    {
        private readonly string _actionName;

        public CustomActionNameAttribute(string actionName)
        {
            _actionName = actionName;
        }

        public void Apply(ActionModel actionModel)
        {
            // this name will be used by routing
            actionModel.ActionName = _actionName;
        }
    }
}

// Route: /Home/MyCoolAction
[CustomActionName("MyCoolAction")]
public string SomeName()
{
    return ControllerContext.ActionDescriptor.ActionName;
}

NOTENOTE

Sample: Custom Routing ConventionSample: Custom Routing Convention

This attribute is applied to an action method in the HomeController :

Even though the method name is SomeName , the attribute overrides the MVC convention of using the method name

and replaces the action name with MyCoolAction . Thus, the route used to reach this action is /Home/MyCoolAction .

This example is essentially the same as using the built-in ActionName attribute.

You can use an IApplicationModelConvention  to customize how routing works. For example, the following

convention will incorporate Controllers' namespaces into their routes, replacing .  in the namespace with /  in the

route:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionnameattribute


using Microsoft.AspNetCore.Mvc.ApplicationModels;
using System.Linq;

namespace AppModelSample.Conventions
{
    public class NamespaceRoutingConvention : IApplicationModelConvention
    {
        public void Apply(ApplicationModel application)
        {
            foreach (var controller in application.Controllers)
            {
                var hasAttributeRouteModels = controller.Selectors
                    .Any(selector => selector.AttributeRouteModel != null);

                if (!hasAttributeRouteModels
                    && controller.ControllerName.Contains("Namespace")) // affect one controller in this sample
                {
                    // Replace the . in the namespace with a / to create the attribute route
                    // Ex: MySite.Admin namespace will correspond to MySite/Admin attribute route
                    // Then attach [controller], [action] and optional {id?} token.
                    // [Controller] and [action] is replaced with the controller and action
                    // name to generate the final template
                    controller.Selectors[0].AttributeRouteModel = new AttributeRouteModel()
                    {
                        Template = controller.ControllerType.Namespace.Replace('.', '/') + 
"/[controller]/[action]/{id?}"
                    };
                }
            }

            // You can continue to put attribute route templates for the controller actions depending on the 
way you want them to behave
        }
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc(options =>
    {
        options.Conventions.Add(new ApplicationDescription("My Application Description"));
        options.Conventions.Add(new NamespaceRoutingConvention());
        //options.Conventions.Add(new IdsMustBeInRouteParameterModelConvention());
    });
}

TIPTIP

The convention is added as an option in Startup.

You can add conventions to your middleware by accessing MvcOptions  using 

services.Configure<MvcOptions>(c => c.Conventions.Add(YOURCONVENTION));

This sample applies this convention to routes that are not using attribute routing where the controller has

"Namespace" in its name. The following controller demonstrates this convention:



using Microsoft.AspNetCore.Mvc;

namespace AppModelSample.Controllers
{
    public class NamespaceRoutingController : Controller
    {
        // using NamespaceRoutingConvention
        // route: /AppModelSample/Controllers/NamespaceRouting/Index
        public string Index()
        {
            return "This demonstrates namespace routing.";
        }
    }
}

Application Model Usage in WebApiCompatShim

NOTENOTE

services.AddMvc().AddWebApiConventions();

Action ConventionsAction Conventions

OverloadingOverloading

Parameter ConventionsParameter Conventions

ASP.NET Core MVC uses a different set of conventions from ASP.NET Web API 2. Using custom conventions, you can

modify an ASP.NET Core MVC app's behavior to be consistent with that of a Web API app. Microsoft ships the

WebApiCompatShim specifically for this purpose.

Learn more about migration from ASP.NET Web API.

To use the Web API Compatibility Shim, you need to add the package to your project and then add the conventions

to MVC by calling AddWebApiConventions  in Startup :

The conventions provided by the shim are only applied to parts of the app that have had certain attributes applied

to them. The following four attributes are used to control which controllers should have their conventions modified

by the shim's conventions:

UseWebApiActionConventionsAttribute

UseWebApiOverloadingAttribute

UseWebApiParameterConventionsAttribute

UseWebApiRoutesAttribute

The UseWebApiActionConventionsAttribute  is used to map the HTTP method to actions based on their name (for

instance, Get  would map to HttpGet ). It only applies to actions that don't use attribute routing.

The UseWebApiOverloadingAttribute  is used to apply the WebApiOverloadingApplicationModelConvention  convention.

This convention adds an OverloadActionConstraint  to the action selection process, which limits candidate actions to

those for which the request satisfies all non-optional parameters.

The UseWebApiParameterConventionsAttribute  is used to apply the 

WebApiParameterConventionsApplicationModelConvention  action convention. This convention specifies that simple

types used as action parameters are bound from the URI by default, while complex types are bound from the

request body.

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.WebApiCompatShim/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.webapicompatshim.usewebapiactionconventionsattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.webapicompatshim.usewebapioverloadingattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.webapicompatshim.usewebapiparameterconventionsattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.webapicompatshim.usewebapiroutesattribute


RoutesRoutes

Using ApiExplorer to Document Your App

using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace AppModelSample.Conventions
{
    public class EnableApiExplorerApplicationConvention : IApplicationModelConvention
    {
        public void Apply(ApplicationModel application)
        {
            application.ApiExplorer.IsVisible = true;
        }
    }
}

The UseWebApiRoutesAttribute  controls whether the WebApiApplicationModelConvention  controller convention is

applied. When enabled, this convention is used to add support for areas to the route.

In addition to a set of conventions, the compatibility package includes a System.Web.Http.ApiController  base class

that replaces the one provided by Web API. This allows your controllers written for Web API and inheriting from its 

ApiController  to work as they were designed, while running on ASP.NET Core MVC. All of the UseWebApi*

attributes listed earlier are applied to the base controller class. The ApiController  exposes properties, methods,

and result types that are compatible with those found in Web API.

The application model exposes an ApiExplorer  property at each level that can be used to traverse the app's

structure. This can be used to generate help pages for your Web APIs using tools like Swagger. The ApiExplorer

property exposes an IsVisible  property that can be set to specify which parts of your app's model should be

exposed. You can configure this setting using a convention:

Using this approach (and additional conventions if required), you can enable or disable API visibility at any level

within your app.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.apiexplorermodel


Areas in ASP.NET Core
9/22/2020 • 14 minutes to read • Edit Online

Areas for controllers with views

By Dhananjay Kumar and Rick Anderson

Areas are an ASP.NET feature used to organize related functionality into a group as a separate:

Namespace for routing.

Folder structure for views and Razor Pages.

Using areas creates a hierarchy for the purpose of routing by adding another route parameter, area , to 

controller  and action  or a Razor Page page .

Areas provide a way to partition an ASP.NET Core Web app into smaller functional groups, each with its own

set of Razor Pages, controllers, views, and models. An area is effectively a structure inside an app. In an

ASP.NET Core web project, logical components like Pages, Model, Controller, and View are kept in different

folders. The ASP.NET Core runtime uses naming conventions to create the relationship between these

components. For a large app, it may be advantageous to partition the app into separate high level areas of

functionality. For instance, an e-commerce app with multiple business units, such as checkout, billing, and

search. Each of these units have their own area to contain views, controllers, Razor Pages, and models.

Consider using Areas in a project when:

The app is made of multiple high-level functional components that can be logically separated.

You want to partition the app so that each functional area can be worked on independently.

View or download sample code (how to download). The download sample provides a basic app for testing

areas.

If you're using Razor Pages, see Areas with Razor Pages in this document.

A typical ASP.NET Core web app using areas, controllers, and views contains the following:

[Area("Products")]
public class ManageController : Controller
{

An Area folder structure.

Controllers with the [Area]  attribute to associate the controller with the area:

The area route added to startup:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/areas.md
https://twitter.com/debug_mode
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/areas/31samples


    Area folder structureArea folder structure

/Areas/<Area-Name>/Views/<Controller-Name>/<Action-Name>.cshtml
/Areas/<Area-Name>/Views/Shared/<Action-Name>.cshtml
/Views/Shared/<Action-Name>.cshtml
/Pages/Shared/<Action-Name>.cshtml

Associate the controller with an AreaAssociate the controller with an Area

app.UseEndpoints(endpoints =>
{
    endpoints.MapControllerRoute(
        name: "MyArea",
        pattern: "{area:exists}/{controller=Home}/{action=Index}/{id?}");

    endpoints.MapControllerRoute(
        name: "default",
        pattern: "{controller=Home}/{action=Index}/{id?}");
});

Consider an app that has two logical groups, Products and Services. Using areas, the folder structure would

be similar to the following:

Project name

Areas

Products

Services

Controllers

Views

HomeController.cs

ManageController.cs

Home

Manage

Index.cshtml

Index.cshtml

About.cshtml

Controllers

Views

HomeController.cs

Home

Index.cshtml

While the preceding layout is typical when using Areas, only the view files are required to use this folder

structure. View discovery searches for a matching area view file in the following order :

  

Area controllers are designated with the [Area] attribute:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.areaattribute


    

using Microsoft.AspNetCore.Mvc;
using Microsoft.Docs.Samples;

namespace MVCareas.Areas.Products.Controllers
{
    [Area("Products")]
    public class ManageController : Controller
    {
        public IActionResult Index()
        {
            ViewData["routeInfo"] = ControllerContext.MyDisplayRouteInfo();
            return View();
        }

        public IActionResult About()
        {
            ViewData["routeInfo"] = ControllerContext.MyDisplayRouteInfo();
            return View();
        }
    }
}

Add Area routeAdd Area route

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }
    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllerRoute(
            name: "MyArea",
            pattern: "{area:exists}/{controller=Home}/{action=Index}/{id?}");

        endpoints.MapControllerRoute(
            name: "default",
            pattern: "{controller=Home}/{action=Index}/{id?}");
    });
}

Area routes typically use conventional routing rather than attribute routing. Conventional routing is order-

dependent. In general, routes with areas should be placed earlier in the route table as they're more specific

than routes without an area.

{area:...}  can be used as a token in route templates if url space is uniform across all areas:

In the preceding code, exists  applies a constraint that the route must match an area. Using {area:...}

with MapControllerRoute :

Is the least complicated mechanism to adding routing to areas.



public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }
    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapAreaControllerRoute(
            name: "MyAreaProducts",
            areaName: "Products",
            pattern: "Products/{controller=Home}/{action=Index}/{id?}");

        endpoints.MapAreaControllerRoute(
            name: "MyAreaServices",
            areaName: "Services",
            pattern: "Services/{controller=Home}/{action=Index}/{id?}");

        endpoints.MapControllerRoute(
            name: "default",
            pattern: "{controller=Home}/{action=Index}/{id?}");
    });
}

Link generation with MVC areasLink generation with MVC areas

Matches all controllers with the [Area("Area name")]  attribute.

The following code uses MapAreaControllerRoute to create two named area routes:

For more information, see Area routing.

The following code from the sample download shows link generation with the area specified:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapareacontrollerroute
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/areas/31samples


<li>Anchor Tag Helper links</li>
<ul>
    <li>
        <a asp-area="Products" asp-controller="Home" asp-action="About">
            Products/Home/About
        </a>
    </li>
    <li>
        <a asp-area="Services" asp-controller="Home" asp-action="About">
            Services About
        </a>
    </li>
    <li>
        <a asp-area="" asp-controller="Home" asp-action="About">
            /Home/About
        </a>
    </li>
</ul>
<li>Html.ActionLink generated links</li>
<ul>
    <li>
        @Html.ActionLink("Product/Manage/About", "About", "Manage",
                                                new { area = "Products" })
    </li>
</ul>
<li>Url.Action generated links</li>
<ul>
    <li>
        <a href='@Url.Action("About", "Manage", new { area = "Products" })'>
            Products/Manage/About
        </a>
    </li>
</ul>

Shared layout for Areas using the _ViewStart.cshtml fileShared layout for Areas using the _ViewStart.cshtml file

Application root folderApplication root folder

_ViewImports.cshtml_ViewImports.cshtml

The sample download includes a partial view that contains:

The preceding links.

Links similar to the preceding except area  is not specified.

The partial view is referenced in the layout file, so every page in the app displays the generated links. The

links generated without specifying the area are only valid when referenced from a page in the same area

and controller.

When the area or controller is not specified, routing depends on the ambient values. The current route

values of the current request are considered ambient values for link generation. In many cases for the

sample app, using the ambient values generates incorrect links with the markup that doesn't specify the

area.

For more information, see Routing to controller actions.

To share a common layout for the entire app, keep the _ViewStart.cshtml in the application root folder. For

more information, see Layout in ASP.NET Core

  

The application root folder is the folder containing Startup.cs in web app created with the ASP.NET Core

templates.

/Views/_ViewImports.cshtml, for MVC, and /Pages/_ViewImports.cshtml for Razor Pages, is not imported to

views in areas. Use one of the following approaches to provide view imports to all views:



        

Change default area folder where views are storedChange default area folder where views are stored

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<RazorViewEngineOptions>(options =>
    {
        options.AreaViewLocationFormats.Clear();
        options.AreaViewLocationFormats.Add("/MyAreas/{2}/Views/{1}/{0}.cshtml");
        options.AreaViewLocationFormats.Add("/MyAreas/{2}/Views/Shared/{0}.cshtml");
        options.AreaViewLocationFormats.Add("/Views/Shared/{0}.cshtml");
    });

    services.AddControllersWithViews();
}

Areas with Razor Pages

Link generation with Razor Pages and areasLink generation with Razor Pages and areas

Add _ViewImports.cshtml to the application root folder. A _ViewImports.cshtml in the application root

folder will apply to all views in the app.

Copy the _ViewImports.cshtml file to the appropriate view folder under areas.

The _ViewImports.cshtml file typically contains Tag Helpers imports, @using , and @inject  statements. For

more information, see Importing Shared Directives.

 

The following code changes the default area folder from "Areas"  to "MyAreas" :

 

Areas with Razor Pages require an Areas/<area name>/Pages  folder in the root of the app. The following

folder structure is used with the sample app:

Project name

Areas

Products

Services

Pages

_ViewImports

About

Index

Pages

Manage

About

Index

The following code from the sample download shows link generation with the area specified (for example, 

asp-area="Products" ):

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/areas/31samples
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/areas/samples/RPareas


<li>Anchor Tag Helper links</li>
<ul>
    <li>
        <a asp-area="Products" asp-page="/About">
            Products/About
        </a>
    </li>
    <li>
        <a asp-area="Services" asp-page="/Manage/About">
            Services/Manage/About
        </a>
    </li>
    <li>
        <a asp-area="" asp-page="/About">
            /About
        </a>
    </li>
</ul>
<li>Url.Page generated links</li>
<ul>
    <li>
        <a href='@Url.Page("/Manage/About", new { area = "Services" })'>
            Services/Manage/About
        </a>
    </li>
    <li>
        <a href='@Url.Page("/About", new { area = "Products" })'>
            Products/About
        </a>
    </li>
</ul>

<li>
    <a asp-page="/Manage/About">
        Services/Manage/About
    </a>
</li>
<li>
    <a asp-page="/About">
        /About
    </a>
</li>

The sample download includes a partial view that contains the preceding links and the same links without

specifying the area. The partial view is referenced in the layout file, so every page in the app displays the

generated links. The links generated without specifying the area are only valid when referenced from a page

in the same area.

When the area is not specified, routing depends on the ambient values. The current route values of the

current request are considered ambient values for link generation. In many cases for the sample app, using

the ambient values generates incorrect links. For example, consider the links generated from the following

code:

For the preceding code:

The link generated from <a asp-page="/Manage/About">  is correct only when the last request was for a

page in Services  area. For example, /Services/Manage/ , /Services/Manage/Index , or 

/Services/Manage/About .

The link generated from <a asp-page="/About">  is correct only when the last request was for a page in 

/Home .



Import namespace and Tag Helpers with _ViewImports fileImport namespace and Tag Helpers with _ViewImports file

@page
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@model RPareas.Areas.Services.Pages.Manage.AboutModel
@{
    ViewData["Title"] = "Srv Mng About";
}

<a asp-area="Products" asp-page="/Index">
    Products/Index
</a>

@namespace RPareas.Areas.Products.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@page
@model AboutModel
@{
    ViewData["Title"] = "Prod About";
}

Shared layout for Razor Pages AreasShared layout for Razor Pages Areas

Publishing AreasPublishing Areas

The code is from the sample download.

A _ViewImports.cshtml file can be added to each area Pages folder to import the namespace and Tag

Helpers to each Razor Page in the folder.

Consider the Services area of the sample code, which doesn't contain a _ViewImports.cshtml file. The

following markup shows the /Services/Manage/About Razor Page:

In the preceding markup:

The fully qualified domain name must be used to specify the model (

@model RPareas.Areas.Services.Pages.Manage.AboutModel ).

Tag Helpers are enabled by @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

In the sample download, the Products area contains the following _ViewImports.cshtml file:

The following markup shows the /Products/About Razor Page:

In the preceding file, the namespace and @addTagHelper  directive is imported to the file by the

Areas/Products/Pages/_ViewImports.cshtml file.

For more information, see Managing Tag Helper scope and Importing Shared Directives.

To share a common layout for the entire app, move the _ViewStart.cshtml to the application root folder.

All *.cshtml files and files within the wwwroot directory are published to output when 

<Project Sdk="Microsoft.NET.Sdk.Web">  is included in the *.csproj file.

Areas are an ASP.NET feature used to organize related functionality into a group as a separate namespace

(for routing) and folder structure (for views). Using areas creates a hierarchy for the purpose of routing by

adding another route parameter, area , to controller  and action  or a Razor Page page .

Areas provide a way to partition an ASP.NET Core Web app into smaller functional groups, each with its own

set of Razor Pages, controllers, views, and models. An area is effectively a structure inside an app. In an

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/areas/31samples/RPareas


Areas for controllers with views

Area folder structureArea folder structure

ASP.NET Core web project, logical components like Pages, Model, Controller, and View are kept in different

folders. The ASP.NET Core runtime uses naming conventions to create the relationship between these

components. For a large app, it may be advantageous to partition the app into separate high level areas of

functionality. For instance, an e-commerce app with multiple business units, such as checkout, billing, and

search. Each of these units have their own area to contain views, controllers, Razor Pages, and models.

Consider using Areas in a project when:

The app is made of multiple high-level functional components that can be logically separated.

You want to partition the app so that each functional area can be worked on independently.

View or download sample code (how to download). The download sample provides a basic app for testing

areas.

If you're using Razor Pages, see Areas with Razor Pages in this document.

A typical ASP.NET Core web app using areas, controllers, and views contains the following:

[Area("Products")]
public class ManageController : Controller
{

app.UseMvc(routes =>
{
    routes.MapRoute(
      name: "MyArea",
      template: "{area:exists}/{controller=Home}/{action=Index}/{id?}");

    routes.MapRoute(
       name: "default",
       template: "{controller=Home}/{action=Index}/{id?}");
});

An Area folder structure.

Controllers with the [Area]  attribute to associate the controller with the area:

The area route added to startup:

Consider an app that has two logical groups, Products and Services. Using areas, the folder structure would

be similar to the following:

Project name

Areas

Products

Controllers

Views

HomeController.cs

ManageController.cs

Home

Manage

Index.cshtml

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/areas/samples


/Areas/<Area-Name>/Views/<Controller-Name>/<Action-Name>.cshtml
/Areas/<Area-Name>/Views/Shared/<Action-Name>.cshtml
/Views/Shared/<Action-Name>.cshtml
/Pages/Shared/<Action-Name>.cshtml

Associate the controller with an AreaAssociate the controller with an Area

using Microsoft.AspNetCore.Mvc;

namespace MVCareas.Areas.Products.Controllers
{
    [Area("Products")]
    public class ManageController : Controller
    {
        public IActionResult Index()
        {
            return View();
        }

        public IActionResult About()
        {
            return View();
        }
    }
}

Add Area routeAdd Area route

Services

Index.cshtml

About.cshtml

Controllers

Views

HomeController.cs

Home

Index.cshtml

While the preceding layout is typical when using Areas, only the view files are required to use this folder

structure. View discovery searches for a matching area view file in the following order :

 

Area controllers are designated with the [Area] attribute:

Area routes typically use conventional routing rather than attribute routing. Conventional routing is order-

dependent. In general, routes with areas should be placed earlier in the route table as they're more specific

than routes without an area.

{area:...}  can be used as a token in route templates if url space is uniform across all areas:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.areaattribute


public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseMvc(routes =>
    {
        routes.MapRoute(
          name: "MyArea",
          template: "{area:exists}/{controller=Home}/{action=Index}/{id?}");

        routes.MapRoute(
           name: "default",
           template: "{controller=Home}/{action=Index}/{id?}");
    });
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseMvc(routes =>
    {
        routes.MapAreaRoute(
            name: "MyAreaProducts",
            areaName:"Products",
            template: "Products/{controller=Home}/{action=Index}/{id?}");

        routes.MapAreaRoute(
            name: "MyAreaServices",
            areaName: "Services",
            template: "Services/{controller=Home}/{action=Index}/{id?}");

        routes.MapRoute(
           name: "default",
           template: "{controller=Home}/{action=Index}/{id?}");
    });
}

In the preceding code, exists  applies a constraint that the route must match an area. Using {area:...}  is

the least complicated mechanism to adding routing to areas.

The following code uses MapAreaRoute to create two named area routes:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mvcarearoutebuilderextensions.maparearoute


Link generation with MVC areasLink generation with MVC areas

<li>Anchor Tag Helper links</li>
<ul>
    <li>
        <a asp-area="Products" asp-controller="Home" asp-action="About">
            Products/Home/About
        </a>
    </li>
    <li>
        <a asp-area="Services" asp-controller="Home" asp-action="About">
            Services About
        </a>
    </li>
    <li>
        <a asp-area="" asp-controller="Home" asp-action="About">
            /Home/About
        </a>
    </li>
</ul>
<li>Html.ActionLink generated links</li>
<ul>
    <li>
        @Html.ActionLink("Product/Manage/About", "About", "Manage", 
                                                new { area = "Products" })
    </li>
</ul>
<li>Url.Action generated links</li>
<ul>
    <li>
        <a href='@Url.Action("About", "Manage", new { area = "Products" })'>
            Products/Manage/About
        </a>
    </li>
</ul>

Shared layout for Areas using the _ViewStart.cshtml fileShared layout for Areas using the _ViewStart.cshtml file

_ViewImports.cshtml_ViewImports.cshtml

When using MapAreaRoute  with ASP.NET Core 2.2, see this GitHub issue.

For more information, see Area routing.

The following code from the sample download shows link generation with the area specified:

The links generated with the preceding code are valid anywhere in the app.

The sample download includes a partial view that contains the preceding links and the same links without

specifying the area. The partial view is referenced in the layout file, so every page in the app displays the

generated links. The links generated without specifying the area are only valid when referenced from a page

in the same area and controller.

When the area or controller is not specified, routing depends on the ambient values. The current route

values of the current request are considered ambient values for link generation. In many cases for the

sample app, using the ambient values generates incorrect links.

For more information, see Routing to controller actions.

To share a common layout for the entire app, move the _ViewStart.cshtml to the application root folder.

In its standard location, /Views/_ViewImports.cshtml doesn't apply to areas. To use common Tag Helpers, 

@using , or @inject  in your area, ensure a proper _ViewImports.cshtml file applies to your area views. If

you want the same behavior in all your views, move /Views/_ViewImports.cshtml to the application root.

https://github.com/dotnet/AspNetCore/issues/7772
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/areas/samples


Change default area folder where views are storedChange default area folder where views are stored

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<RazorViewEngineOptions>(options =>
    {
        options.AreaViewLocationFormats.Clear();
        options.AreaViewLocationFormats.Add("/MyAreas/{2}/Views/{1}/{0}.cshtml");
        options.AreaViewLocationFormats.Add("/MyAreas/{2}/Views/Shared/{0}.cshtml");
        options.AreaViewLocationFormats.Add("/Views/Shared/{0}.cshtml");
    });

    services.AddMvc();
}

Areas with Razor Pages

Link generation with Razor Pages and areasLink generation with Razor Pages and areas

 

The following code changes the default area folder from "Areas"  to "MyAreas" :

 

Areas with Razor Pages require an Areas/<area name>/Pages  folder in the root of the app. The following

folder structure is used with the sample app:

Project name

Areas

Products

Services

Pages

_ViewImports

About

Index

Pages

Manage

About

Index

The following code from the sample download shows link generation with the area specified (for example, 

asp-area="Products" ):

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/areas/samples
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/areas/samples/RPareas


<li>Anchor Tag Helper links</li>
<ul>
    <li>
        <a asp-area="Products" asp-page="/About">
            Products/About
        </a>
    </li>
    <li>
        <a asp-area="Services" asp-page="/Manage/About">
            Services/Manage/About
        </a>
    </li>
    <li>
        <a asp-area="" asp-page="/About">
            /About
        </a>
    </li>
</ul>
<li>Url.Page generated links</li>
<ul>
    <li>
        <a href='@Url.Page("/Manage/About", new { area = "Services" })'>
            Services/Manage/About
        </a>
    </li>
    <li>
        <a href='@Url.Page("/About", new { area = "Products" })'>
            Products/About
        </a>
    </li>
</ul>

<li>
    <a asp-page="/Manage/About">
        Services/Manage/About
    </a>
</li>
<li>
    <a asp-page="/About">
        /About
    </a>
</li>

The links generated with the preceding code are valid anywhere in the app.

The sample download includes a partial view that contains the preceding links and the same links without

specifying the area. The partial view is referenced in the layout file, so every page in the app displays the

generated links. The links generated without specifying the area are only valid when referenced from a page

in the same area.

When the area is not specified, routing depends on the ambient values. The current route values of the

current request are considered ambient values for link generation. In many cases for the sample app, using

the ambient values generates incorrect links. For example, consider the links generated from the following

code:

For the preceding code:

The link generated from <a asp-page="/Manage/About">  is correct only when the last request was for a

page in Services  area. For example, /Services/Manage/ , /Services/Manage/Index , or 

/Services/Manage/About .

The link generated from <a asp-page="/About">  is correct only when the last request was for a page in 



Import namespace and Tag Helpers with _ViewImports fileImport namespace and Tag Helpers with _ViewImports file

@page
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@model RPareas.Areas.Services.Pages.Manage.AboutModel
@{
    ViewData["Title"] = "Srv Mng About";
}

<h2>/Services/Manage/About</h2>

<a asp-area="Products" asp-page="/Index">
    Products/Index
</a>

@namespace RPareas.Areas.Products.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@page
@model AboutModel
@{
    ViewData["Title"] = "Prod About";
}

<h2>Products/About</h2>

<a asp-area="Services" asp-page="/Manage/About">
    Services/Manage/About
</a>

Shared layout for Razor Pages AreasShared layout for Razor Pages Areas

Publishing AreasPublishing Areas

/Home .

The code is from the sample download.

A _ViewImports.cshtml file can be added to each area Pages folder to import the namespace and Tag

Helpers to each Razor Page in the folder.

Consider the Services area of the sample code, which doesn't contain a _ViewImports.cshtml file. The

following markup shows the /Services/Manage/About Razor Page:

In the preceding markup:

The fully qualified domain name must be used to specify the model (

@model RPareas.Areas.Services.Pages.Manage.AboutModel ).

Tag Helpers are enabled by @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

In the sample download, the Products area contains the following _ViewImports.cshtml file:

The following markup shows the /Products/About Razor Page:

In the preceding file, the namespace and @addTagHelper  directive is imported to the file by the

Areas/Products/Pages/_ViewImports.cshtml file.

For more information, see Managing Tag Helper scope and Importing Shared Directives.

To share a common layout for the entire app, move the _ViewStart.cshtml to the application root folder.

All *.cshtml files and files within the wwwroot directory are published to output when 

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/areas/samples/RPareas


<Project Sdk="Microsoft.NET.Sdk.Web">  is included in the *.csproj file.



Filters in ASP.NET Core
9/22/2020 • 44 minutes to read • Edit Online

How filters work

By Kirk Larkin, Rick Anderson, Tom Dykstra, and Steve Smith

Filters in ASP.NET Core allow code to be run before or after specific stages in the request processing pipeline.

Built-in filters handle tasks such as:

Authorization (preventing access to resources a user isn't authorized for).

Response caching (short-circuiting the request pipeline to return a cached response).

Custom filters can be created to handle cross-cutting concerns. Examples of cross-cutting concerns include

error handling, caching, configuration, authorization, and logging. Filters avoid duplicating code. For example,

an error handling exception filter could consolidate error handling.

This document applies to Razor Pages, API controllers, and controllers with views. Filters don't work directly

with Razor components. A filter can only indirectly affect a component when:

The component is embedded in a page or view.

The page or controller/view uses the filter.

View or download sample (how to download).

Filters run within the ASP.NET Core action invocation pipeline, sometimes referred to as the filter pipeline. The

filter pipeline runs after ASP.NET Core selects the action to execute.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/filters.md
https://github.com/serpent5
https://twitter.com/RickAndMSFT
https://github.com/tdykstra/
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/filters/3.1sample


Filter typesFilter types

Implementation

Each filter type is executed at a different stage in the filter pipeline:

Authorization filters run first and are used to determine whether the user is authorized for the request.

Authorization filters short-circuit the pipeline if the request is not authorized.

Resource filters:

Run after authorization.

OnResourceExecuting runs code before the rest of the filter pipeline. For example, 

OnResourceExecuting  runs code before model binding.

OnResourceExecuted runs code after the rest of the pipeline has completed.

Action filters:

Run code immediately before and after an action method is called.

Can change the arguments passed into an action.

Can change the result returned from the action.

Are notnot supported in Razor Pages.

Exception filters apply global policies to unhandled exceptions that occur before the response body has

been written to.

Result filters run code immediately before and after the execution of action results. They run only when

the action method has executed successfully. They are useful for logic that must surround view or

formatter execution.

The following diagram shows how filter types interact in the filter pipeline.

Filters support both synchronous and asynchronous implementations through different interface definitions.

Synchronous filters run code before and after their pipeline stage. For example, OnActionExecuting is called

before the action method is called. OnActionExecuted is called after the action method returns.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresourcefilter.onresourceexecuting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresourcefilter.onresourceexecuted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.onactionexecuting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.onactionexecuted


public class MySampleActionFilter : IActionFilter 
{
    public void OnActionExecuting(ActionExecutingContext context)
    {
        // Do something before the action executes.
        MyDebug.Write(MethodBase.GetCurrentMethod(), context.HttpContext.Request.Path);
    }

    public void OnActionExecuted(ActionExecutedContext context)
    {
        // Do something after the action executes.
        MyDebug.Write(MethodBase.GetCurrentMethod(), context.HttpContext.Request.Path);
    }
}

public class SampleAsyncActionFilter : IAsyncActionFilter
{
    public async Task OnActionExecutionAsync(
        ActionExecutingContext context,
        ActionExecutionDelegate next)
    {
        // Do something before the action executes.

        // next() calls the action method.
        var resultContext = await next();
        // resultContext.Result is set.
        // Do something after the action executes.
    }
}

Multiple filter stagesMultiple filter stages

Built-in filter attributesBuilt-in filter attributes

In the preceding code, MyDebug is a utility function in the sample download.

Asynchronous filters define an On-Stage-ExecutionAsync  method. For example, OnActionExecutionAsync:

In the preceding code, the SampleAsyncActionFilter  has an ActionExecutionDelegate ( next ) that executes the

action method.

Interfaces for multiple filter stages can be implemented in a single class. For example, the ActionFilterAttribute

class implements:

Synchronous: IActionFilter and IResultFilter

Asynchronous: IAsyncActionFilter and IAsyncResultFilter

IOrderedFilter

Implement eithereither  the synchronous or the async version of a filter interface, notnot both. The runtime checks first

to see if the filter implements the async interface, and if so, it calls that. If not, it calls the synchronous

interface's method(s). If both asynchronous and synchronous interfaces are implemented in one class, only the

async method is called. When using abstract classes like ActionFilterAttribute, override only the synchronous

methods or the asynchronous methods for each filter type.

ASP.NET Core includes built-in attribute-based filters that can be subclassed and customized. For example, the

following result filter adds a header to the response:

   

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/filters/3.1sample/FiltersSample/Helper/MyDebug.cs
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/filters/3.1sample/FiltersSample/Helper/MyDebug.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.onactionexecutionasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutiondelegate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iactionfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncactionfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iorderedfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionfilterattribute


public class AddHeaderAttribute : ResultFilterAttribute
{
    private readonly string _name;
    private readonly string _value;

    public AddHeaderAttribute(string name, string value)
    {
        _name = name;
        _value = value;
    }

    public override void OnResultExecuting(ResultExecutingContext context)
    {
        context.HttpContext.Response.Headers.Add( _name, new string[] { _value });
        base.OnResultExecuting(context);
    }
}

[AddHeader("Author", "Rick Anderson")]
public class SampleController : Controller
{
    public IActionResult Index()
    {
        return Content("Examine the headers using the F12 developer tools.");
    }

public class MyActionFilterAttribute : ActionFilterAttribute
{
    private readonly PositionOptions _settings;

    public MyActionFilterAttribute(IOptions<PositionOptions> options)
    {
        _settings = options.Value;
        Order = 1;
    }

    public override void OnResultExecuting(ResultExecutingContext context)
    {
        context.HttpContext.Response.Headers.Add(_settings.Title, 
                                                 new string[] { _settings.Name });
        base.OnResultExecuting(context);
    }
}

Attributes allow filters to accept arguments, as shown in the preceding example. Apply the AddHeaderAttribute

to a controller or action method and specify the name and value of the HTTP header :

Use a tool such as the browser developer tools to examine the headers. Under Response HeadersResponse Headers , 

author: Rick Anderson  is displayed.

The following code implements an ActionFilterAttribute  that:

Reads the title and name from the configuration system. Unlike the previous sample, the following code

doesn't require filter parameters to be added to the code.

Adds the title and name to the response header.

The configuration options are provided from the configuration system using the options pattern. For example,

from the appsettings.json file:

https://developer.mozilla.org/docs/Learn/Common_questions/What_are_browser_developer_tools


{
  "Position": {
    "Title": "Editor",
    "Name": "Joe Smith"
  },
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  },
  "AllowedHosts": "*"
}

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<PositionOptions>(
             Configuration.GetSection("Position"));
    services.AddScoped<MyActionFilterAttribute>();

    services.AddControllersWithViews();
}

public class PositionOptions
{
    public string Title { get; set; }
    public string Name { get; set; }
}

[AddHeader("Author", "Rick Anderson")]
public class SampleController : Controller
{
    public IActionResult Index()
    {
        return Content("Examine the headers using the F12 developer tools.");
    }

    [ServiceFilter(typeof(MyActionFilterAttribute))]
    public IActionResult Index2()
    {
        return Content("Header values by configuration.");
    }

In the StartUp.ConfigureServices :

The PositionOptions  class is added to the service container with the "Position"  configuration area.

The MyActionFilterAttribute  is added to the service container.

The following code shows the PositionOptions  class:

The following code applies the MyActionFilterAttribute  to the Index2  method:

Under Response HeadersResponse Headers , author: Rick Anderson , and Editor: Joe Smith  is displayed when the 

Sample/Index2  endpoint is called.

The following code applies the MyActionFilterAttribute  and the AddHeaderAttribute  to the Razor Page:



[AddHeader("Author", "Rick Anderson")]
[ServiceFilter(typeof(MyActionFilterAttribute))]
public class IndexModel : PageModel
{
    public void OnGet()
    {
    }
}

Filter scopes and order of execution

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews(options =>
   {
        options.Filters.Add(typeof(MySampleActionFilter));
    });
}

Default order of executionDefault order of execution

Filters cannot be applied to Razor Page handler methods. They can be applied either to the Razor Page model

or globally.

Several of the filter interfaces have corresponding attributes that can be used as base classes for custom

implementations.

Filter attributes:

ActionFilterAttribute

ExceptionFilterAttribute

ResultFilterAttribute

FormatFilterAttribute

ServiceFilterAttribute

TypeFilterAttribute

A filter can be added to the pipeline at one of three scopes:

Using an attribute on a controller action. Filter attributes cannot be applied to Razor Pages handler

methods.

Using an attribute on a controller or Razor Page.

Globally for all controllers, actions, and Razor Pages as shown in the following code:

When there are multiple filters for a particular stage of the pipeline, scope determines the default order of filter

execution. Global filters surround class filters, which in turn surround method filters.

As a result of filter nesting, the after code of filters runs in the reverse order of the before code. The filter

sequence:

The before code of global filters.

The after code of global filters.

The before code of controller and Razor Page filters.

The after code of controller and Razor Page filters.

The before code of action method filters.

The after code of action method filters.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.exceptionfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.typefilterattribute


SEQ UEN C ESEQ UEN C E F ILT ER SC O P EF ILT ER SC O P E F ILT ER M ET H O DF ILT ER M ET H O D

1 Global OnActionExecuting

2 Controller or Razor Page OnActionExecuting

3 Method OnActionExecuting

4 Method OnActionExecuted

5 Controller or Razor Page OnActionExecuted

6 Global OnActionExecuted

Controller level filtersController level filters

The following example that illustrates the order in which filter methods are called for synchronous action

filters.

Every controller that inherits from the Controller base class includes Controller.OnActionExecuting,

Controller.OnActionExecutionAsync, and Controller.OnActionExecuted OnActionExecuted  methods. These

methods:

Wrap the filters that run for a given action.

OnActionExecuting  is called before any of the action's filters.

OnActionExecuted  is called after all of the action filters.

OnActionExecutionAsync  is called before any of the action's filters. Code in the filter after next  runs after the

action method.

For example, in the download sample, MySampleActionFilter  is applied globally in startup.

The TestController :

Applies the SampleActionFilterAttribute  ( [SampleActionFilter] ) to the FilterTest2  action.

Overrides OnActionExecuting  and OnActionExecuted .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.onactionexecuting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.onactionexecutionasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.onactionexecuted


        

public class TestController : Controller
{
    [SampleActionFilter(Order = int.MinValue)]
    public IActionResult FilterTest2()
    {
        return ControllerContext.MyDisplayRouteInfo();
    }

    public override void OnActionExecuting(ActionExecutingContext context)
    {
        // Do something before the action executes.
        MyDebug.Write(MethodBase.GetCurrentMethod(), HttpContext.Request.Path);
        base.OnActionExecuting(context);
    }

    public override void OnActionExecuted(ActionExecutedContext context)
    {
        // Do something after the action executes.
        MyDebug.Write(MethodBase.GetCurrentMethod(), HttpContext.Request.Path);
        base.OnActionExecuted(context);
    }
}

Overriding the default orderOverriding the default order

[SampleActionFilter(Order = int.MinValue)]

MyDisplayRouteInfo is provided by the Rick.Docs.Samples.RouteInfo NuGet package and displays route

information.

Navigating to https://localhost:5001/Test2/FilterTest2  runs the following code:

TestController.OnActionExecuting

TestController.OnActionExecuted

MySampleActionFilter.OnActionExecuting

MySampleActionFilter.OnActionExecuted

SampleActionFilterAttribute.OnActionExecuting

SampleActionFilterAttribute.OnActionExecuted

TestController.FilterTest2

Controller level filters set the Order property to int.MinValue . Controller level filters can notnot be set to run

after filters applied to methods. Order is explained in the next section.

For Razor Pages, see Implement Razor Page filters by overriding filter methods.

The default sequence of execution can be overridden by implementing IOrderedFilter. IOrderedFilter  exposes

the Order property that takes precedence over scope to determine the order of execution. A filter with a lower 

Order  value:

Runs the before code before that of a filter with a higher value of Order .

Runs the after code after that of a filter with a higher Order  value.

The Order  property is set with a constructor parameter :

Consider the two action filters in the following controller :

https://github.com/Rick-Anderson/RouteInfo/blob/master/Microsoft.Docs.Samples.RouteInfo/ControllerContextExtensions.cs
https://www.nuget.org/packages/Rick.Docs.Samples.RouteInfo
https://github.com/dotnet/AspNetCore/blob/master/src/Mvc/Mvc.Core/src/Filters/ControllerActionFilter.cs#L15-L17
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iorderedfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iorderedfilter.order#microsoft_aspnetcore_mvc_filters_iorderedfilter_order


[MyAction2Filter]
public class Test2Controller : Controller
{
    public IActionResult FilterTest2()
    {
        return ControllerContext.MyDisplayRouteInfo();
    }

    public override void OnActionExecuting(ActionExecutingContext context)
    {
        // Do something before the action executes.
        MyDebug.Write(MethodBase.GetCurrentMethod(), HttpContext.Request.Path);
        base.OnActionExecuting(context);
    }

    public override void OnActionExecuted(ActionExecutedContext context)
    {
        // Do something after the action executes.
        MyDebug.Write(MethodBase.GetCurrentMethod(), HttpContext.Request.Path);
        base.OnActionExecuted(context);
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews(options =>
   {
        options.Filters.Add(typeof(MySampleActionFilter));
    });
}

A global filter is added in StartUp.ConfigureServices :

The 3 filters run in the following order :

Test2Controller.OnActionExecuting

Test2Controller.OnActionExecuted

MySampleActionFilter.OnActionExecuting

MyAction2FilterAttribute.OnResultExecuting

MyAction2FilterAttribute.OnActionExecuting

MySampleActionFilter.OnActionExecuted

Test2Controller.FilterTest2

The Order  property overrides scope when determining the order in which filters run. Filters are sorted first by

order, then scope is used to break ties. All of the built-in filters implement IOrderedFilter  and set the default 

Order  value to 0. As mentioned previously, controller level filters set the Order property to int.MinValue  For

built-in filters, scope determines order unless Order  is set to a non-zero value.

In the preceding code, MySampleActionFilter  has global scope so it runs before MyAction2FilterAttribute ,

which has controller scope. To make MyAction2FilterAttribute  run first, set the order to int.MinValue :

https://github.com/dotnet/AspNetCore/blob/master/src/Mvc/Mvc.Core/src/Filters/ControllerActionFilter.cs#L15-L17


    

[MyAction2Filter(int.MinValue)]
public class Test2Controller : Controller
{
    public IActionResult FilterTest2()
    {
        return ControllerContext.MyDisplayRouteInfo();
    }

    public override void OnActionExecuting(ActionExecutingContext context)
    {
        // Do something before the action executes.
        MyDebug.Write(MethodBase.GetCurrentMethod(), HttpContext.Request.Path);
        base.OnActionExecuting(context);
    }

    public override void OnActionExecuted(ActionExecutedContext context)
    {
        // Do something after the action executes.
        MyDebug.Write(MethodBase.GetCurrentMethod(), HttpContext.Request.Path);
        base.OnActionExecuted(context);
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews(options =>
   {
        options.Filters.Add(typeof(MySampleActionFilter),
                            int.MinValue);
    });
}

Cancellation and short-circuiting

public class ShortCircuitingResourceFilterAttribute : Attribute, IResourceFilter
{
    public void OnResourceExecuting(ResourceExecutingContext context)
    {
        context.Result = new ContentResult()
        {
            Content = "Resource unavailable - header not set."
        };
    }

    public void OnResourceExecuted(ResourceExecutedContext context)
    {
    }
}

To make the global filter MySampleActionFilter  run first, set Order  to int.MinValue :

The filter pipeline can be short-circuited by setting the Result property on the ResourceExecutingContext

parameter provided to the filter method. For instance, the following Resource filter prevents the rest of the

pipeline from executing:

   

In the following code, both the ShortCircuitingResourceFilter  and the AddHeader  filter target the 

SomeResource  action method. The ShortCircuitingResourceFilter :

Runs first, because it's a Resource Filter and AddHeader  is an Action Filter.

Short-circuits the rest of the pipeline.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resourceexecutingcontext.result#microsoft_aspnetcore_mvc_filters_resourceexecutingcontext_result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resourceexecutingcontext


    

[AddHeader("Author", "Rick Anderson")]
public class SampleController : Controller
{
    public IActionResult Index()
    {
        return Content("Examine the headers using the F12 developer tools.");
    }

Dependency injection

ServiceFilterAttributeServiceFilterAttribute

Therefore the AddHeader  filter never runs for the SomeResource  action. This behavior would be the same if both

filters were applied at the action method level, provided the ShortCircuitingResourceFilter  ran first. The 

ShortCircuitingResourceFilter  runs first because of its filter type, or by explicit use of Order  property.

Filters can be added by type or by instance. If an instance is added, that instance is used for every request. If a

type is added, it's type-activated. A type-activated filter means:

An instance is created for each request.

Any constructor dependencies are populated by dependency injection (DI).

Filters that are implemented as attributes and added directly to controller classes or action methods cannot

have constructor dependencies provided by dependency injection (DI). Constructor dependencies cannot be

provided by DI because:

Attributes must have their constructor parameters supplied where they're applied.

This is a limitation of how attributes work.

The following filters support constructor dependencies provided from DI:

ServiceFilterAttribute

TypeFilterAttribute

IFilterFactory implemented on the attribute.

The preceding filters can be applied to a controller or action method:

Loggers are available from DI. However, avoid creating and using filters purely for logging purposes. The built-

in framework logging typically provides what's needed for logging. Logging added to filters:

Should focus on business domain concerns or behavior specific to the filter.

Should notnot log actions or other framework events. The built-in filters log actions and framework events.

Service filter implementation types are registered in ConfigureServices . A ServiceFilterAttribute retrieves an

instance of the filter from DI.

The following code shows the AddHeaderResultServiceFilter :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.typefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute


public class AddHeaderResultServiceFilter : IResultFilter
{
    private ILogger _logger;
    public AddHeaderResultServiceFilter(ILoggerFactory loggerFactory)
    {
        _logger = loggerFactory.CreateLogger<AddHeaderResultServiceFilter>();
    }

    public void OnResultExecuting(ResultExecutingContext context)
    {
        var headerName = "OnResultExecuting";
        context.HttpContext.Response.Headers.Add(
            headerName, new string[] { "ResultExecutingSuccessfully" });
        _logger.LogInformation("Header added: {HeaderName}", headerName);
    }

    public void OnResultExecuted(ResultExecutedContext context)
    {
        // Can't add to headers here because response has started.
        _logger.LogInformation("AddHeaderResultServiceFilter.OnResultExecuted");
    }
}

public void ConfigureServices(IServiceCollection services)
{
    // Add service filters.
    services.AddScoped<AddHeaderResultServiceFilter>();
    services.AddScoped<SampleActionFilterAttribute>();

    services.AddControllersWithViews(options =>
   {
       options.Filters.Add(new AddHeaderAttribute("GlobalAddHeader",
           "Result filter added to MvcOptions.Filters"));         // An instance
        options.Filters.Add(typeof(MySampleActionFilter));         // By type
        options.Filters.Add(new SampleGlobalActionFilter());       // An instance
    });
}

[ServiceFilter(typeof(AddHeaderResultServiceFilter))]
public IActionResult Index()
{
    return View();
}

In the following code, AddHeaderResultServiceFilter  is added to the DI container :

In the following code, the ServiceFilter  attribute retrieves an instance of the AddHeaderResultServiceFilter

filter from DI:

When using ServiceFilterAttribute , setting ServiceFilterAttribute.IsReusable:

Provides a hint that the filter instance may be reused outside of the request scope it was created within.

The ASP.NET Core runtime doesn't guarantee:

That a single instance of the filter will be created.

The filter will not be re-requested from the DI container at some later point.

Should not be used with a filter that depends on services with a lifetime other than singleton.

ServiceFilterAttribute implements IFilterFactory. IFilterFactory  exposes the CreateInstance method for

creating an IFilterMetadata instance. CreateInstance  loads the specified type from DI.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute.isreusable#microsoft_aspnetcore_mvc_servicefilterattribute_isreusable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory.createinstance
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifiltermetadata


    

            

        

TypeFilterAttributeTypeFilterAttribute

[TypeFilter(typeof(LogConstantFilter),
    Arguments = new object[] { "Method 'Hi' called" })]
public IActionResult Hi(string name)
{
    return Content($"Hi {name}");
}

Authorization filters

Resource filters

TypeFilterAttribute is similar to ServiceFilterAttribute, but its type isn't resolved directly from the DI container. It

instantiates the type by using Microsoft.Extensions.DependencyInjection.ObjectFactory.

Because TypeFilterAttribute  types aren't resolved directly from the DI container :

Types that are referenced using the TypeFilterAttribute  don't need to be registered with the DI container.

They do have their dependencies fulfilled by the DI container.

TypeFilterAttribute  can optionally accept constructor arguments for the type.

When using TypeFilterAttribute , setting TypeFilterAttribute.IsReusable:

Provides hint that the filter instance may be reused outside of the request scope it was created within.

The ASP.NET Core runtime provides no guarantees that a single instance of the filter will be created.

Should not be used with a filter that depends on services with a lifetime other than singleton.

The following example shows how to pass arguments to a type using TypeFilterAttribute :

Authorization filters:

Are the first filters run in the filter pipeline.

Control access to action methods.

Have a before method, but no after method.

Custom authorization filters require a custom authorization framework. Prefer configuring the authorization

policies or writing a custom authorization policy over writing a custom filter. The built-in authorization filter :

Calls the authorization system.

Does not authorize requests.

Do notnot throw exceptions within authorization filters:

The exception will not be handled.

Exception filters will not handle the exception.

Consider issuing a challenge when an exception occurs in an authorization filter.

Learn more about Authorization.

Resource filters:

Implement either the IResourceFilter or IAsyncResourceFilter interface.

Execution wraps most of the filter pipeline.

Only Authorization filters run before resource filters.

Resource filters are useful to short-circuit most of the pipeline. For example, a caching filter can avoid the rest

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.typefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.objectfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.typefilterattribute.isreusable#microsoft_aspnetcore_mvc_typefilterattribute_isreusable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresourcefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncresourcefilter


                   Action filters

public class MySampleActionFilter : IActionFilter 
{
    public void OnActionExecuting(ActionExecutingContext context)
    {
        // Do something before the action executes.
        MyDebug.Write(MethodBase.GetCurrentMethod(), context.HttpContext.Request.Path);
    }

    public void OnActionExecuted(ActionExecutedContext context)
    {
        // Do something after the action executes.
        MyDebug.Write(MethodBase.GetCurrentMethod(), context.HttpContext.Request.Path);
    }
}

of the pipeline on a cache hit.

Resource filter examples:

The short-circuiting resource filter shown previously.

DisableFormValueModelBindingAttribute:

Prevents model binding from accessing the form data.

Used for large file uploads to prevent the form data from being read into memory.

Action filters do notnot apply to Razor Pages. Razor Pages supports IPageFilter and IAsyncPageFilter . For more

information, see Filter methods for Razor Pages.

Action filters:

Implement either the IActionFilter or IAsyncActionFilter interface.

Their execution surrounds the execution of action methods.

The following code shows a sample action filter :

The ActionExecutingContext provides the following properties:

ActionArguments - enables reading the inputs to an action method.

Controller - enables manipulating the controller instance.

Result - setting Result  short-circuits execution of the action method and subsequent action filters.

Throwing an exception in an action method:

Prevents running of subsequent filters.

Unlike setting Result , is treated as a failure instead of a successful result.

The ActionExecutedContext provides Controller  and Result  plus the following properties:

Canceled - True if the action execution was short-circuited by another filter.

Exception - Non-null if the action or a previously run action filter threw an exception. Setting this

property to null:

Effectively handles the exception.

Result  is executed as if it was returned from the action method.

For an IAsyncActionFilter , a call to the ActionExecutionDelegate:

https://github.com/aspnet/Entropy/blob/rel/2.0.0-preview2/samples/Mvc.FileUpload/Filters/DisableFormValueModelBindingAttribute.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iactionfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncactionfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutingcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutingcontext.actionarguments#microsoft_aspnetcore_mvc_filters_actionexecutingcontext_actionarguments
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.actionexecutingcontext.result#system_web_mvc_actionexecutingcontext_result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutedcontext
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.actionexecutedcontext.canceled#system_web_mvc_actionexecutedcontext_canceled
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.actionexecutedcontext.exception#system_web_mvc_actionexecutedcontext_exception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutiondelegate


public class ValidateModelAttribute : ActionFilterAttribute
{
    public override void OnActionExecuting(ActionExecutingContext 
                                           context)
    {
        if (!context.ModelState.IsValid)
        {
            context.Result = new BadRequestObjectResult(
                                                context.ModelState);
        }
    }

NOTENOTE

Executes any subsequent action filters and the action method.

Returns ActionExecutedContext .

To short-circuit, assign Microsoft.AspNetCore.Mvc.Filters.ActionExecutingContext.Result to a result instance and

don't call next  (the ActionExecutionDelegate ).

The framework provides an abstract ActionFilterAttribute that can be subclassed.

The OnActionExecuting  action filter can be used to:

Validate model state.

Return an error if the state is invalid.

Controllers annotated with the [ApiController]  attribute automatically validate model state and return a 400

response. For more information, see Automatic HTTP 400 responses.

The OnActionExecuted  method runs after the action method:

And can see and manipulate the results of the action through the Result property.

Canceled is set to true if the action execution was short-circuited by another filter.

Exception is set to a non-null value if the action or a subsequent action filter threw an exception. Setting 

Exception  to null:

Effectively handles an exception.

ActionExecutedContext.Result  is executed as if it were returned normally from the action method.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutingcontext.result#microsoft_aspnetcore_mvc_filters_actionexecutingcontext_result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutedcontext.result#microsoft_aspnetcore_mvc_filters_actionexecutedcontext_result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutedcontext.canceled#microsoft_aspnetcore_mvc_filters_actionexecutedcontext_canceled
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutedcontext.exception#microsoft_aspnetcore_mvc_filters_actionexecutedcontext_exception


              

public class ValidateModelAttribute : ActionFilterAttribute
{
    public override void OnActionExecuting(ActionExecutingContext 
                                           context)
    {
        if (!context.ModelState.IsValid)
        {
            context.Result = new BadRequestObjectResult(
                                                context.ModelState);
        }
    }

    public override void OnActionExecuted(ActionExecutedContext 
                                          context)
    {
        var result = context.Result;
        // Do something with Result.
        if (context.Canceled == true)
        {
            // Action execution was short-circuited by another filter.
        }

        if(context.Exception != null)
        {
            // Exception thrown by action or action filter.
            // Set to null to handle the exception.
            context.Exception = null;
        }
        base.OnActionExecuted(context);
    }
}

Exception filters
Exception filters:

Implement IExceptionFilter or IAsyncExceptionFilter.

Can be used to implement common error handling policies.

The following sample exception filter uses a custom error view to display details about exceptions that occur

when the app is in development:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iexceptionfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncexceptionfilter


public class CustomExceptionFilter : IExceptionFilter
{
    private readonly IWebHostEnvironment _hostingEnvironment;
    private readonly IModelMetadataProvider _modelMetadataProvider;

    public CustomExceptionFilter(
        IWebHostEnvironment hostingEnvironment,
        IModelMetadataProvider modelMetadataProvider)
    {
        _hostingEnvironment = hostingEnvironment;
        _modelMetadataProvider = modelMetadataProvider;
    }

    public void OnException(ExceptionContext context)
    {
        if (!_hostingEnvironment.IsDevelopment())
        {
            return;
        }
        var result = new ViewResult {ViewName = "CustomError"};
        result.ViewData = new ViewDataDictionary(_modelMetadataProvider,
                                                    context.ModelState);
        result.ViewData.Add("Exception", context.Exception);
        // TODO: Pass additional detailed data via ViewData
        context.Result = result;
    }
}

[TypeFilter(typeof(CustomExceptionFilter))]
public class FailingController : Controller
{
    [AddHeader("Failing Controller", 
               "Won't appear when exception is handled")]
    public IActionResult Index()
    {
        throw new Exception("Testing custom exception filter.");
    }
}

The following code tests the exception filter :

Exception filters:

Don't have before and after events.

Implement OnException or OnExceptionAsync.

Handle unhandled exceptions that occur in Razor Page or controller creation, model binding, action filters,

or action methods.

Do notnot catch exceptions that occur in resource filters, result filters, or MVC result execution.

To handle an exception, set the ExceptionHandled property to true  or write a response. This stops

propagation of the exception. An exception filter can't turn an exception into a "success". Only an action filter

can do that.

Exception filters:

Are good for trapping exceptions that occur within actions.

Are not as flexible as error handling middleware.

Prefer middleware for exception handling. Use exception filters only where error handling differs based on

which action method is called. For example, an app might have action methods for both API endpoints and for

views/HTML. The API endpoints could return error information as JSON, while the view-based actions could

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iexceptionfilter.onexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncexceptionfilter.onexceptionasync
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.exceptioncontext.exceptionhandled#system_web_mvc_exceptioncontext_exceptionhandled


        Result filters

IResultFilter and IAsyncResultFilterIResultFilter and IAsyncResultFilter

public class AddHeaderResultServiceFilter : IResultFilter
{
    private ILogger _logger;
    public AddHeaderResultServiceFilter(ILoggerFactory loggerFactory)
    {
        _logger = loggerFactory.CreateLogger<AddHeaderResultServiceFilter>();
    }

    public void OnResultExecuting(ResultExecutingContext context)
    {
        var headerName = "OnResultExecuting";
        context.HttpContext.Response.Headers.Add(
            headerName, new string[] { "ResultExecutingSuccessfully" });
        _logger.LogInformation("Header added: {HeaderName}", headerName);
    }

    public void OnResultExecuted(ResultExecutedContext context)
    {
        // Can't add to headers here because response has started.
        _logger.LogInformation("AddHeaderResultServiceFilter.OnResultExecuted");
    }
}

return an error page as HTML.

Result filters:

Implement an interface:

Their execution surrounds the execution of action results.

IResultFilter or IAsyncResultFilter

IAlwaysRunResultFilter or IAsyncAlwaysRunResultFilter

The following code shows a result filter that adds an HTTP header :

The kind of result being executed depends on the action. An action returning a view includes all razor

processing as part of the ViewResult being executed. An API method might perform some serialization as part

of the execution of the result. Learn more about action results.

Result filters are only executed when an action or action filter produces an action result. Result filters are not

executed when:

An authorization filter or resource filter short-circuits the pipeline.

An exception filter handles an exception by producing an action result.

The Microsoft.AspNetCore.Mvc.Filters.IResultFilter.OnResultExecuting method can short-circuit execution of the

action result and subsequent result filters by setting

Microsoft.AspNetCore.Mvc.Filters.ResultExecutingContext.Cancel to true . Write to the response object when

short-circuiting to avoid generating an empty response. Throwing an exception in 

IResultFilter.OnResultExecuting :

Prevents execution of the action result and subsequent filters.

Is treated as a failure instead of a successful result.

When the Microsoft.AspNetCore.Mvc.Filters.IResultFilter.OnResultExecuted method runs, the response has

probably already been sent to the client. If the response has already been sent to the client, it cannot be

changed.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ialwaysrunresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncalwaysrunresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresultfilter.onresultexecuting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultexecutingcontext.cancel#microsoft_aspnetcore_mvc_filters_resultexecutingcontext_cancel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresultfilter.onresultexecuted


public class MyAsyncResponseFilter : IAsyncResultFilter
{
    public async Task OnResultExecutionAsync(ResultExecutingContext context,
                                             ResultExecutionDelegate next)
    {
        if (!(context.Result is EmptyResult))
        {
            await next();
        }
        else
        {
            context.Cancel = true;
        }

    }
}

IAlwaysRunResultFilter and IAsyncAlwaysRunResultFilterIAlwaysRunResultFilter and IAsyncAlwaysRunResultFilter

ResultExecutedContext.Canceled  is set to true  if the action result execution was short-circuited by another

filter.

ResultExecutedContext.Exception  is set to a non-null value if the action result or a subsequent result filter

threw an exception. Setting Exception  to null effectively handles an exception and prevents the exception from

being thrown again later in the pipeline. There is no reliable way to write data to a response when handling an

exception in a result filter. If the headers have been flushed to the client when an action result throws an

exception, there's no reliable mechanism to send a failure code.

For an IAsyncResultFilter, a call to await next  on the ResultExecutionDelegate executes any subsequent result

filters and the action result. To short-circuit, set ResultExecutingContext.Cancel to true  and don't call the 

ResultExecutionDelegate :

The framework provides an abstract ResultFilterAttribute  that can be subclassed. The AddHeaderAttribute

class shown previously is an example of a result filter attribute.

The IAlwaysRunResultFilter and IAsyncAlwaysRunResultFilter interfaces declare an IResultFilter implementation

that runs for all action results. This includes action results produced by:

Authorization filters and resource filters that short-circuit.

Exception filters.

For example, the following filter always runs and sets an action result (ObjectResult) with a 422 Unprocessable

Entity status code when content negotiation fails:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultexecutiondelegate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultexecutingcontext.cancel#microsoft_aspnetcore_mvc_filters_resultexecutingcontext_cancel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ialwaysrunresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncalwaysrunresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.objectresult


                        

public class UnprocessableResultFilter : Attribute, IAlwaysRunResultFilter
{
    public void OnResultExecuting(ResultExecutingContext context)
    {
        if (context.Result is StatusCodeResult statusCodeResult &&
            statusCodeResult.StatusCode == 415)
        {
            context.Result = new ObjectResult("Can't process this!")
            {
                StatusCode = 422,
            };
        }
    }

    public void OnResultExecuted(ResultExecutedContext context)
    {
    }
}

IFilterFactoryIFilterFactory

public class AddHeaderWithFactoryAttribute : Attribute, IFilterFactory
{
    // Implement IFilterFactory
    public IFilterMetadata CreateInstance(IServiceProvider serviceProvider)
    {
        return new InternalAddHeaderFilter();
    }

    private class InternalAddHeaderFilter : IResultFilter
    {
        public void OnResultExecuting(ResultExecutingContext context)
        {
            context.HttpContext.Response.Headers.Add(
                "Internal", new string[] { "My header" });
        }

        public void OnResultExecuted(ResultExecutedContext context)
        {
        }
    }

    public bool IsReusable
    {
        get
        {
            return false;
        }
    }
}

IFilterFactory implements IFilterMetadata. Therefore, an IFilterFactory  instance can be used as an 

IFilterMetadata  instance anywhere in the filter pipeline. When the runtime prepares to invoke the filter, it

attempts to cast it to an IFilterFactory . If that cast succeeds, the CreateInstance method is called to create the 

IFilterMetadata  instance that is invoked. This provides a flexible design, since the precise filter pipeline

doesn't need to be set explicitly when the app starts.

IFilterFactory  can be implemented using custom attribute implementations as another approach to creating

filters:

The filter is applied in the following code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifiltermetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory.createinstance


[AddHeader("Author", "Rick Anderson")]
public class SampleController : Controller
{
    public IActionResult Index()
    {
        return Content("Examine the headers using the F12 developer tools.");
    }

    [ServiceFilter(typeof(MyActionFilterAttribute))]
    public IActionResult Index2()
    {
        return Content("Header values by configuration.");
    }

    [ShortCircuitingResourceFilter]
    public IActionResult SomeResource()
    {
        return Content("Successful access to resource - header is set.");
    }

    [AddHeaderWithFactory]
    public IActionResult HeaderWithFactory()
    {
        return Content("Examine the headers using the F12 developer tools.");
    }
}

IFilterFactory implemented on an attributeIFilterFactory implemented on an attribute

Test the preceding code by running the download sample:

Invoke the F12 developer tools.

Navigate to https://localhost:5001/Sample/HeaderWithFactory .

The F12 developer tools display the following response headers added by the sample code:

author :author : Rick Anderson

globaladdheader :globaladdheader : Result filter added to MvcOptions.Filters

internal:internal: My header

The preceding code creates the internal:internal: My header  response header.

Filters that implement IFilterFactory  are useful for filters that:

Don't require passing parameters.

Have constructor dependencies that need to be filled by DI.

TypeFilterAttribute implements IFilterFactory. IFilterFactory  exposes the CreateInstance method for creating

an IFilterMetadata instance. CreateInstance  loads the specified type from the services container (DI).

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/filters/3.1sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.typefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory.createinstance
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifiltermetadata


  

public class SampleActionFilterAttribute : TypeFilterAttribute
{
    public SampleActionFilterAttribute()
                         :base(typeof(SampleActionFilterImpl))
    { 
    }

    private class SampleActionFilterImpl : IActionFilter
    {
        private readonly ILogger _logger;
        public SampleActionFilterImpl(ILoggerFactory loggerFactory)
        {
            _logger = loggerFactory.CreateLogger<SampleActionFilterAttribute>();
        }

        public void OnActionExecuting(ActionExecutingContext context)
        {
           _logger.LogInformation("SampleActionFilterAttribute.OnActionExecuting");
        }

        public void OnActionExecuted(ActionExecutedContext context)
        {
            _logger.LogInformation("SampleActionFilterAttribute.OnActionExecuted");
        }
    }
}

[SampleActionFilter]
public IActionResult FilterTest()
{
    return Content("From FilterTest");
}

[TypeFilter(typeof(SampleActionFilterAttribute))]
public IActionResult TypeFilterTest()
{
    return Content("From TypeFilterTest");
}

// ServiceFilter must be registered in ConfigureServices or
// System.InvalidOperationException: No service for type '<filter>'
// has been registered. Is thrown.
[ServiceFilter(typeof(SampleActionFilterAttribute))]
public IActionResult ServiceFilterTest()
{
    return Content("From ServiceFilterTest");
}

Using middleware in the filter pipeline

The following code shows three approaches to applying the [SampleActionFilter] :

In the preceding code, decorating the method with [SampleActionFilter]  is the preferred approach to applying

the SampleActionFilter .

Resource filters work like middleware in that they surround the execution of everything that comes later in the

pipeline. But filters differ from middleware in that they're part of the runtime, which means that they have

access to context and constructs.

To use middleware as a filter, create a type with a Configure  method that specifies the middleware to inject

into the filter pipeline. The following example uses the localization middleware to establish the current culture

for a request:



public class LocalizationPipeline
{
    public void Configure(IApplicationBuilder applicationBuilder)
    {
        var supportedCultures = new[]
        {
            new CultureInfo("en-US"),
            new CultureInfo("fr")
        };

        var options = new RequestLocalizationOptions
        {
            DefaultRequestCulture = new RequestCulture(
                                       culture: "en-US", 
                                       uiCulture: "en-US"),
            SupportedCultures = supportedCultures,
            SupportedUICultures = supportedCultures
        };
        options.RequestCultureProviders = new[] 
            { new RouteDataRequestCultureProvider() {
                Options = options } };

        applicationBuilder.UseRequestLocalization(options);
    }
}

[Route("{culture}/[controller]/[action]")]
[MiddlewareFilter(typeof(LocalizationPipeline))]
public IActionResult CultureFromRouteData()
{
    return Content(
          $"CurrentCulture:{CultureInfo.CurrentCulture.Name},"
        + $"CurrentUICulture:{CultureInfo.CurrentUICulture.Name}");
}

Next actions

Use the MiddlewareFilterAttribute to run the middleware:

Middleware filters run at the same stage of the filter pipeline as Resource filters, before model binding and

after the rest of the pipeline.

See Filter methods for Razor Pages.

To experiment with filters, download, test, and modify the GitHub sample.

By Kirk Larkin, Rick Anderson, Tom Dykstra, and Steve Smith

Filters in ASP.NET Core allow code to be run before or after specific stages in the request processing pipeline.

Built-in filters handle tasks such as:

Authorization (preventing access to resources a user isn't authorized for).

Response caching (short-circuiting the request pipeline to return a cached response).

Custom filters can be created to handle cross-cutting concerns. Examples of cross-cutting concerns include

error handling, caching, configuration, authorization, and logging. Filters avoid duplicating code. For example,

an error handling exception filter could consolidate error handling.

This document applies to Razor Pages, API controllers, and controllers with views.

View or download sample (how to download).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.middlewarefilterattribute
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/filters/3.1sample
https://github.com/serpent5
https://twitter.com/RickAndMSFT
https://github.com/tdykstra/
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/filters/sample


How filters work

Filter typesFilter types

Filters run within the ASP.NET Core action invocation pipeline, sometimes referred to as the filter pipeline. The

filter pipeline runs after ASP.NET Core selects the action to execute.

Each filter type is executed at a different stage in the filter pipeline:

Authorization filters run first and are used to determine whether the user is authorized for the request.

Authorization filters short-circuit the pipeline if the request is unauthorized.

Resource filters:

Run after authorization.

OnResourceExecuting can run code before the rest of the filter pipeline. For example, 

OnResourceExecuting  can run code before model binding.

OnResourceExecuted can run code after the rest of the pipeline has completed.

Action filters can run code immediately before and after an individual action method is called. They can

be used to manipulate the arguments passed into an action and the result returned from the action.

Action filters are notnot supported in Razor Pages.

Exception filters are used to apply global policies to unhandled exceptions that occur before anything

has been written to the response body.

Result filters can run code immediately before and after the execution of individual action results. They

run only when the action method has executed successfully. They are useful for logic that must surround

view or formatter execution.

The following diagram shows how filter types interact in the filter pipeline.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresourcefilter.onresourceexecuting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresourcefilter.onresourceexecuted


Implementation

public class MySampleActionFilter : IActionFilter
{
    public void OnActionExecuting(ActionExecutingContext context)
    {
        // Do something before the action executes.
    }

    public void OnActionExecuted(ActionExecutedContext context)
    {
        // Do something after the action executes.
    }
}

public class SampleAsyncActionFilter : IAsyncActionFilter
{
    public async Task OnActionExecutionAsync(
        ActionExecutingContext context,
        ActionExecutionDelegate next)
    {
        // Do something before the action executes.

        // next() calls the action method.
        var resultContext = await next();
        // resultContext.Result is set.
        // Do something after the action executes.
    }
}

Filters support both synchronous and asynchronous implementations through different interface definitions.

Synchronous filters can run code before ( On-Stage-Executing ) and after ( On-Stage-Executed ) their pipeline

stage. For example, OnActionExecuting  is called before the action method is called. OnActionExecuted  is called

after the action method returns.

Asynchronous filters define an On-Stage-ExecutionAsync  method:

In the preceding code, the SampleAsyncActionFilter  has an ActionExecutionDelegate ( next ) that executes the

action method. Each of the On-Stage-ExecutionAsync  methods take a FilterType-ExecutionDelegate  that

executes the filter's pipeline stage.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutiondelegate


Multiple filter stagesMultiple filter stages

Built-in filter attributesBuilt-in filter attributes

public class AddHeaderAttribute : ResultFilterAttribute
{
    private readonly string _name;
    private readonly string _value;

    public AddHeaderAttribute(string name, string value)
    {
        _name = name;
        _value = value;
    }

    public override void OnResultExecuting(ResultExecutingContext context)
    {
        context.HttpContext.Response.Headers.Add( _name, new string[] { _value });
        base.OnResultExecuting(context);
    }
}

[AddHeader("Author", "Joe Smith")]
public class SampleController : Controller
{
    public IActionResult Index()
    {
        return Content("Examine the headers using the F12 developer tools.");
    }

    [ShortCircuitingResourceFilter]
    public IActionResult SomeResource()
    {
        return Content("Successful access to resource - header is set.");
    }

Interfaces for multiple filter stages can be implemented in a single class. For example, the ActionFilterAttribute

class implements IActionFilter , IResultFilter , and their async equivalents.

Implement eithereither  the synchronous or the async version of a filter interface, notnot both. The runtime checks first

to see if the filter implements the async interface, and if so, it calls that. If not, it calls the synchronous

interface's method(s). If both asynchronous and synchronous interfaces are implemented in one class, only the

async method is called. When using abstract classes like ActionFilterAttribute override only the synchronous

methods or the async method for each filter type.

ASP.NET Core includes built-in attribute-based filters that can be subclassed and customized. For example, the

following result filter adds a header to the response:

 

Attributes allow filters to accept arguments, as shown in the preceding example. Apply the AddHeaderAttribute

to a controller or action method and specify the name and value of the HTTP header :

Several of the filter interfaces have corresponding attributes that can be used as base classes for custom

implementations.

Filter attributes:

ActionFilterAttribute

ExceptionFilterAttribute

ResultFilterAttribute

FormatFilterAttribute

ServiceFilterAttribute

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.exceptionfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute


Filter scopes and order of execution

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc(options =>
    {
        options.Filters.Add(new AddHeaderAttribute("GlobalAddHeader",
            "Result filter added to MvcOptions.Filters"));         // An instance
        options.Filters.Add(typeof(MySampleActionFilter));         // By type
        options.Filters.Add(new SampleGlobalActionFilter());       // An instance
    }).SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

Default order of executionDefault order of execution

SEQ UEN C ESEQ UEN C E F ILT ER SC O P EF ILT ER SC O P E F ILT ER M ET H O DF ILT ER M ET H O D

1 Global OnActionExecuting

2 Controller OnActionExecuting

3 Method OnActionExecuting

4 Method OnActionExecuted

5 Controller OnActionExecuted

6 Global OnActionExecuted

TypeFilterAttribute

A filter can be added to the pipeline at one of three scopes:

Using an attribute on an action.

Using an attribute on a controller.

Globally for all controllers and actions as shown in the following code:

The preceding code adds three filters globally using the MvcOptions.Filters collection.

When there are multiple filters of the same type, scope determines the default order of filter execution. Global

filters surround class filters. Class filters surround method filters.

As a result of filter nesting, the after code of filters runs in the reverse order of the before code. The filter

sequence:

The before code of global filters.

The after code of global filters.

The before code of controller filters.

The after code of controller filters.

The before code of action method filters.

The after code of action method filters.

The following example that illustrates the order in which filter methods are called for synchronous action

filters.

This sequence shows:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.typefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.filters#microsoft_aspnetcore_mvc_mvcoptions_filters


Controller and Razor Page level filtersController and Razor Page level filters

public class TestController : Controller
{
    [SampleActionFilter]
    public IActionResult FilterTest2()
    {
        return Content($"From FilterTest2");
    }

    public override void OnActionExecuting(ActionExecutingContext context)
    {
        // Do something before the action executes.
        base.OnActionExecuting(context);
    }

    public override void OnActionExecuted(ActionExecutedContext context)
    {
        // Do something after the action executes.
        base.OnActionExecuted(context);
    }
}

Overriding the default orderOverriding the default order

The method filter is nested within the controller filter.

The controller filter is nested within the global filter.

Every controller that inherits from the Controller base class includes Controller.OnActionExecuting,

Controller.OnActionExecutionAsync, and Controller.OnActionExecuted OnActionExecuted  methods. These

methods:

Wrap the filters that run for a given action.

OnActionExecuting  is called before any of the action's filters.

OnActionExecuted  is called after all of the action filters.

OnActionExecutionAsync  is called before any of the action's filters. Code in the filter after next  runs after the

action method.

For example, in the download sample, MySampleActionFilter  is applied globally in startup.

The TestController :

Applies the SampleActionFilterAttribute  ( [SampleActionFilter] ) to the FilterTest2  action.

Overrides OnActionExecuting  and OnActionExecuted .

Navigating to https://localhost:5001/Test/FilterTest2  runs the following code:

TestController.OnActionExecuting

TestController.OnActionExecuted

MySampleActionFilter.OnActionExecuting

MySampleActionFilter.OnActionExecuted

SampleActionFilterAttribute.OnActionExecuting

SampleActionFilterAttribute.OnActionExecuted

TestController.FilterTest2

For Razor Pages, see Implement Razor Page filters by overriding filter methods.

The default sequence of execution can be overridden by implementing IOrderedFilter. IOrderedFilter  exposes

the Order property that takes precedence over scope to determine the order of execution. A filter with a lower 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.onactionexecuting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.onactionexecutionasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller.onactionexecuted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iorderedfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iorderedfilter.order#microsoft_aspnetcore_mvc_filters_iorderedfilter_order


[MyFilter(Name = "Controller Level Attribute", Order=1)]

SEQ UEN C ESEQ UEN C E F ILT ER SC O P EF ILT ER SC O P E ORDER  P RO P ERT Y P RO P ERT Y F ILT ER M ET H O DF ILT ER M ET H O D

1 Method 0 OnActionExecuting

2 Controller 1 OnActionExecuting

3 Global 2 OnActionExecuting

4 Global 2 OnActionExecuted

5 Controller 1 OnActionExecuted

6 Method 0 OnActionExecuted

Cancellation and short-circuiting

public class ShortCircuitingResourceFilterAttribute : Attribute, IResourceFilter
{
    public void OnResourceExecuting(ResourceExecutingContext context)
    {
        context.Result = new ContentResult()
        {
            Content = "Resource unavailable - header not set."
        };
    }

    public void OnResourceExecuted(ResourceExecutedContext context)
    {
    }
}

Order  value:

Runs the before code before that of a filter with a higher value of Order .

Runs the after code after that of a filter with a higher Order  value.

The Order  property can be set with a constructor parameter :

Consider the same 3 action filters shown in the preceding example. If the Order  property of the controller and

global filters is set to 1 and 2 respectively, the order of execution is reversed.

The Order  property overrides scope when determining the order in which filters run. Filters are sorted first by

order, then scope is used to break ties. All of the built-in filters implement IOrderedFilter  and set the default 

Order  value to 0. For built-in filters, scope determines order unless Order  is set to a non-zero value.

The filter pipeline can be short-circuited by setting the Result property on the ResourceExecutingContext

parameter provided to the filter method. For instance, the following Resource filter prevents the rest of the

pipeline from executing:

 

In the following code, both the ShortCircuitingResourceFilter  and the AddHeader  filter target the 

SomeResource  action method. The ShortCircuitingResourceFilter :

Runs first, because it's a Resource Filter and AddHeader  is an Action Filter.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resourceexecutingcontext.result#microsoft_aspnetcore_mvc_filters_resourceexecutingcontext_result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resourceexecutingcontext


[AddHeader("Author", "Joe Smith")]
public class SampleController : Controller
{
    public IActionResult Index()
    {
        return Content("Examine the headers using the F12 developer tools.");
    }

    [ShortCircuitingResourceFilter]
    public IActionResult SomeResource()
    {
        return Content("Successful access to resource - header is set.");
    }

Dependency injection

ServiceFilterAttributeServiceFilterAttribute

Short-circuits the rest of the pipeline.

Therefore the AddHeader  filter never runs for the SomeResource  action. This behavior would be the same if both

filters were applied at the action method level, provided the ShortCircuitingResourceFilter  ran first. The 

ShortCircuitingResourceFilter  runs first because of its filter type, or by explicit use of Order  property.

Filters can be added by type or by instance. If an instance is added, that instance is used for every request. If a

type is added, it's type-activated. A type-activated filter means:

An instance is created for each request.

Any constructor dependencies are populated by dependency injection (DI).

Filters that are implemented as attributes and added directly to controller classes or action methods cannot

have constructor dependencies provided by dependency injection (DI). Constructor dependencies cannot be

provided by DI because:

Attributes must have their constructor parameters supplied where they're applied.

This is a limitation of how attributes work.

The following filters support constructor dependencies provided from DI:

ServiceFilterAttribute

TypeFilterAttribute

IFilterFactory implemented on the attribute.

The preceding filters can be applied to a controller or action method:

Loggers are available from DI. However, avoid creating and using filters purely for logging purposes. The built-

in framework logging typically provides what's needed for logging. Logging added to filters:

Should focus on business domain concerns or behavior specific to the filter.

Should notnot log actions or other framework events. The built in filters log actions and framework events.

Service filter implementation types are registered in ConfigureServices . A ServiceFilterAttribute retrieves an

instance of the filter from DI.

The following code shows the AddHeaderResultServiceFilter :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.typefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute


public class AddHeaderResultServiceFilter : IResultFilter
{
    private ILogger _logger;
    public AddHeaderResultServiceFilter(ILoggerFactory loggerFactory)
    {
        _logger = loggerFactory.CreateLogger<AddHeaderResultServiceFilter>();
    }

    public void OnResultExecuting(ResultExecutingContext context)
    {
        var headerName = "OnResultExecuting";
        context.HttpContext.Response.Headers.Add(
            headerName, new string[] { "ResultExecutingSuccessfully" });
        _logger.LogInformation("Header added: {HeaderName}", headerName);
    }

    public void OnResultExecuted(ResultExecutedContext context)
    {
        // Can't add to headers here because response has started.
    }
}

public void ConfigureServices(IServiceCollection services)
{
    // Add service filters.
    services.AddScoped<AddHeaderResultServiceFilter>();
    services.AddScoped<SampleActionFilterAttribute>();

    services.AddMvc(options =>
    {
        options.Filters.Add(new AddHeaderAttribute("GlobalAddHeader",
            "Result filter added to MvcOptions.Filters"));         // An instance
        options.Filters.Add(typeof(MySampleActionFilter));         // By type
        options.Filters.Add(new SampleGlobalActionFilter());       // An instance
    }).SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

[ServiceFilter(typeof(AddHeaderResultServiceFilter))]
public IActionResult Index()
{
    return View();
}

In the following code, AddHeaderResultServiceFilter  is added to the DI container :

In the following code, the ServiceFilter  attribute retrieves an instance of the AddHeaderResultServiceFilter

filter from DI:

When using ServiceFilterAttribute , setting ServiceFilterAttribute.IsReusable:

Provides a hint that the filter instance may be reused outside of the request scope it was created within.

The ASP.NET Core runtime doesn't guarantee:

That a single instance of the filter will be created.

The filter will not be re-requested from the DI container at some later point.

Should not be used with a filter that depends on services with a lifetime other than singleton.

ServiceFilterAttribute implements IFilterFactory. IFilterFactory  exposes the CreateInstance method for

creating an IFilterMetadata instance. CreateInstance  loads the specified type from DI.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute.isreusable#microsoft_aspnetcore_mvc_servicefilterattribute_isreusable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory.createinstance
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifiltermetadata


TypeFilterAttributeTypeFilterAttribute

[TypeFilter(typeof(LogConstantFilter),
    Arguments = new object[] { "Method 'Hi' called" })]
public IActionResult Hi(string name)
{
    return Content($"Hi {name}");
}

public class LogConstantFilter : IActionFilter
{
    private readonly string _value;
    private readonly ILogger<LogConstantFilter> _logger;

    public LogConstantFilter(string value, ILogger<LogConstantFilter> logger)
    {
        _logger = logger;
        _value = value;
    }

    public void OnActionExecuting(ActionExecutingContext context)
    {
        _logger.LogInformation(_value);
    }

    public void OnActionExecuted(ActionExecutedContext context)
    { }
}

Authorization filters

TypeFilterAttribute is similar to ServiceFilterAttribute, but its type isn't resolved directly from the DI container. It

instantiates the type by using Microsoft.Extensions.DependencyInjection.ObjectFactory.

Because TypeFilterAttribute  types aren't resolved directly from the DI container :

Types that are referenced using the TypeFilterAttribute  don't need to be registered with the DI container.

They do have their dependencies fulfilled by the DI container.

TypeFilterAttribute  can optionally accept constructor arguments for the type.

When using TypeFilterAttribute , setting TypeFilterAttribute.IsReusable:

Provides hint that the filter instance may be reused outside of the request scope it was created within.

The ASP.NET Core runtime provides no guarantees that a single instance of the filter will be created.

Should not be used with a filter that depends on services with a lifetime other than singleton.

The following example shows how to pass arguments to a type using TypeFilterAttribute :

Authorization filters:

Are the first filters run in the filter pipeline.

Control access to action methods.

Have a before method, but no after method.

Custom authorization filters require a custom authorization framework. Prefer configuring the authorization

policies or writing a custom authorization policy over writing a custom filter. The built-in authorization filter :

Calls the authorization system.

Does not authorize requests.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.typefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.objectfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.typefilterattribute.isreusable#microsoft_aspnetcore_mvc_typefilterattribute_isreusable


Resource filters

Action filters

IMPORTANTIMPORTANT

public class MySampleActionFilter : IActionFilter
{
    public void OnActionExecuting(ActionExecutingContext context)
    {
        // Do something before the action executes.
    }

    public void OnActionExecuted(ActionExecutedContext context)
    {
        // Do something after the action executes.
    }
}

Do notnot throw exceptions within authorization filters:

The exception will not be handled.

Exception filters will not handle the exception.

Consider issuing a challenge when an exception occurs in an authorization filter.

Learn more about Authorization.

Resource filters:

Implement either the IResourceFilter or IAsyncResourceFilter interface.

Execution wraps most of the filter pipeline.

Only Authorization filters run before resource filters.

Resource filters are useful to short-circuit most of the pipeline. For example, a caching filter can avoid the rest

of the pipeline on a cache hit.

Resource filter examples:

The short-circuiting resource filter shown previously.

DisableFormValueModelBindingAttribute:

Prevents model binding from accessing the form data.

Used for large file uploads to prevent the form data from being read into memory.

Action filters do notnot  apply to Razor Pages. Razor Pages supports IPageFilter and IAsyncPageFilter . For more information,

see Filter methods for Razor Pages.

Action filters:

Implement either the IActionFilter or IAsyncActionFilter interface.

Their execution surrounds the execution of action methods.

The following code shows a sample action filter :

The ActionExecutingContext provides the following properties:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresourcefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncresourcefilter
https://github.com/aspnet/Entropy/blob/rel/2.0.0-preview2/samples/Mvc.FileUpload/Filters/DisableFormValueModelBindingAttribute.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ipagefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iactionfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncactionfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutingcontext


public class ValidateModelAttribute : ActionFilterAttribute
{
    public override void OnActionExecuting(ActionExecutingContext context)
    {
        if (!context.ModelState.IsValid)
        {
            context.Result = new BadRequestObjectResult(context.ModelState);
        }
    }

ActionArguments - enables the inputs to an action method be read.

Controller - enables manipulating the controller instance.

Result - setting Result  short-circuits execution of the action method and subsequent action filters.

Throwing an exception in an action method:

Prevents running of subsequent filters.

Unlike setting Result , is treated as a failure instead of a successful result.

The ActionExecutedContext provides Controller  and Result  plus the following properties:

Canceled - True if the action execution was short-circuited by another filter.

Exception - Non-null if the action or a previously run action filter threw an exception. Setting this

property to null:

Effectively handles the exception.

Result  is executed as if it was returned from the action method.

For an IAsyncActionFilter , a call to the ActionExecutionDelegate:

Executes any subsequent action filters and the action method.

Returns ActionExecutedContext .

To short-circuit, assign Microsoft.AspNetCore.Mvc.Filters.ActionExecutingContext.Result to a result instance and

don't call next  (the ActionExecutionDelegate ).

The framework provides an abstract ActionFilterAttribute that can be subclassed.

The OnActionExecuting  action filter can be used to:

Validate model state.

Return an error if the state is invalid.

The OnActionExecuted  method runs after the action method:

And can see and manipulate the results of the action through the Result property.

Canceled is set to true if the action execution was short-circuited by another filter.

Exception is set to a non-null value if the action or a subsequent action filter threw an exception. Setting 

Exception  to null:

Effectively handles an exception.

ActionExecutedContext.Result  is executed as if it were returned normally from the action method.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutingcontext.actionarguments#microsoft_aspnetcore_mvc_filters_actionexecutingcontext_actionarguments
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.actionexecutingcontext.result#system_web_mvc_actionexecutingcontext_result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutedcontext
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.actionexecutedcontext.canceled#system_web_mvc_actionexecutedcontext_canceled
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.actionexecutedcontext.exception#system_web_mvc_actionexecutedcontext_exception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutiondelegate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutingcontext.result#microsoft_aspnetcore_mvc_filters_actionexecutingcontext_result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutedcontext.result#microsoft_aspnetcore_mvc_filters_actionexecutedcontext_result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutedcontext.canceled#microsoft_aspnetcore_mvc_filters_actionexecutedcontext_canceled
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.actionexecutedcontext.exception#microsoft_aspnetcore_mvc_filters_actionexecutedcontext_exception


public class ValidateModelAttribute : ActionFilterAttribute
{
    public override void OnActionExecuting(ActionExecutingContext context)
    {
        if (!context.ModelState.IsValid)
        {
            context.Result = new BadRequestObjectResult(context.ModelState);
        }
    }

    public override void OnActionExecuted(ActionExecutedContext context)
    {
        var result = context.Result;
        // Do something with Result.
        if (context.Canceled == true)
        {
            // Action execution was short-circuited by another filter.
        }

        if(context.Exception != null)
        {
            // Exception thrown by action or action filter.
            // Set to null to handle the exception.
            context.Exception = null;
        }
        base.OnActionExecuted(context);
    }
}

Exception filters
Exception filters:

Implement IExceptionFilter or IAsyncExceptionFilter.

Can be used to implement common error handling policies.

The following sample exception filter uses a custom error view to display details about exceptions that occur

when the app is in development:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iexceptionfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncexceptionfilter


public class CustomExceptionFilter : IExceptionFilter
{
    private readonly IHostingEnvironment _hostingEnvironment;
    private readonly IModelMetadataProvider _modelMetadataProvider;

    public CustomExceptionFilter(
        IHostingEnvironment hostingEnvironment,
        IModelMetadataProvider modelMetadataProvider)
    {
        _hostingEnvironment = hostingEnvironment;
        _modelMetadataProvider = modelMetadataProvider;
    }

    public void OnException(ExceptionContext context)
    {
        if (!_hostingEnvironment.IsDevelopment())
        {
            return;
        }
        var result = new ViewResult {ViewName = "CustomError"};
        result.ViewData = new ViewDataDictionary(_modelMetadataProvider,
                                                    context.ModelState);
        result.ViewData.Add("Exception", context.Exception);
        // TODO: Pass additional detailed data via ViewData
        context.Result = result;
    }
}

Result filters

IResultFilter and IAsyncResultFilterIResultFilter and IAsyncResultFilter

Exception filters:

Don't have before and after events.

Implement OnException or OnExceptionAsync.

Handle unhandled exceptions that occur in Razor Page or controller creation, model binding, action filters,

or action methods.

Do notnot catch exceptions that occur in resource filters, result filters, or MVC result execution.

To handle an exception, set the ExceptionHandled property to true  or write a response. This stops

propagation of the exception. An exception filter can't turn an exception into a "success". Only an action filter

can do that.

Exception filters:

Are good for trapping exceptions that occur within actions.

Are not as flexible as error handling middleware.

Prefer middleware for exception handling. Use exception filters only where error handling differs based on

which action method is called. For example, an app might have action methods for both API endpoints and for

views/HTML. The API endpoints could return error information as JSON, while the view-based actions could

return an error page as HTML.

Result filters:

Implement an interface:

Their execution surrounds the execution of action results.

IResultFilter or IAsyncResultFilter

IAlwaysRunResultFilter or IAsyncAlwaysRunResultFilter

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iexceptionfilter.onexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncexceptionfilter.onexceptionasync
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.exceptioncontext.exceptionhandled#system_web_mvc_exceptioncontext_exceptionhandled
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ialwaysrunresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncalwaysrunresultfilter


public class AddHeaderResultServiceFilter : IResultFilter
{
    private ILogger _logger;
    public AddHeaderResultServiceFilter(ILoggerFactory loggerFactory)
    {
        _logger = loggerFactory.CreateLogger<AddHeaderResultServiceFilter>();
    }

    public void OnResultExecuting(ResultExecutingContext context)
    {
        var headerName = "OnResultExecuting";
        context.HttpContext.Response.Headers.Add(
            headerName, new string[] { "ResultExecutingSuccessfully" });
        _logger.LogInformation("Header added: {HeaderName}", headerName);
    }

    public void OnResultExecuted(ResultExecutedContext context)
    {
        // Can't add to headers here because response has started.
    }
}

The following code shows a result filter that adds an HTTP header :

The kind of result being executed depends on the action. An action returning a view would include all razor

processing as part of the ViewResult being executed. An API method might perform some serialization as part

of the execution of the result. Learn more about action results.

Result filters are only executed when an action or action filter produces an action result. Result filters are not

executed when:

An authorization filter or resource filter short-circuits the pipeline.

An exception filter handles an exception by producing an action result.

The Microsoft.AspNetCore.Mvc.Filters.IResultFilter.OnResultExecuting method can short-circuit execution of the

action result and subsequent result filters by setting

Microsoft.AspNetCore.Mvc.Filters.ResultExecutingContext.Cancel to true . Write to the response object when

short-circuiting to avoid generating an empty response. Throwing an exception in 

IResultFilter.OnResultExecuting  will:

Prevent execution of the action result and subsequent filters.

Be treated as a failure instead of a successful result.

When the Microsoft.AspNetCore.Mvc.Filters.IResultFilter.OnResultExecuted method runs, the response has

likely already been sent to the client. If the response has already been sent to the client, it cannot be changed

further.

ResultExecutedContext.Canceled  is set to true  if the action result execution was short-circuited by another

filter.

ResultExecutedContext.Exception  is set to a non-null value if the action result or a subsequent result filter

threw an exception. Setting Exception  to null effectively handles an exception and prevents the exception from

being rethrown by ASP.NET Core later in the pipeline. There is no reliable way to write data to a response when

handling an exception in a result filter. If the headers have been flushed to the client when an action result

throws an exception, there's no reliable mechanism to send a failure code.

For an IAsyncResultFilter, a call to await next  on the ResultExecutionDelegate executes any subsequent result

filters and the action result. To short-circuit, set ResultExecutingContext.Cancel to true  and don't call the 

ResultExecutionDelegate :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresultfilter.onresultexecuting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultexecutingcontext.cancel#microsoft_aspnetcore_mvc_filters_resultexecutingcontext_cancel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresultfilter.onresultexecuted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultexecutiondelegate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.resultexecutingcontext.cancel#microsoft_aspnetcore_mvc_filters_resultexecutingcontext_cancel


public class MyAsyncResponseFilter : IAsyncResultFilter
{
    public async Task OnResultExecutionAsync(ResultExecutingContext context,
                                             ResultExecutionDelegate next)
    {
        if (!(context.Result is EmptyResult))
        {
            await next();
        }
        else
        {
            context.Cancel = true;
        }

    }
}

IAlwaysRunResultFilter and IAsyncAlwaysRunResultFilterIAlwaysRunResultFilter and IAsyncAlwaysRunResultFilter

public class UnprocessableResultFilter : Attribute, IAlwaysRunResultFilter
{
    public void OnResultExecuting(ResultExecutingContext context)
    {
        if (context.Result is StatusCodeResult statusCodeResult &&
            statusCodeResult.StatusCode == 415)
        {
            context.Result = new ObjectResult("Can't process this!")
            {
                StatusCode = 422,
            };
        }
    }

    public void OnResultExecuted(ResultExecutedContext context)
    {
    }
}

IFilterFactoryIFilterFactory

The framework provides an abstract ResultFilterAttribute  that can be subclassed. The AddHeaderAttribute

class shown previously is an example of a result filter attribute.

The IAlwaysRunResultFilter and IAsyncAlwaysRunResultFilter interfaces declare an IResultFilter implementation

that runs for all action results. This includes action results produced by:

Authorization filters and resource filters that short-circuit.

Exception filters.

For example, the following filter always runs and sets an action result (ObjectResult) with a 422 Unprocessable

Entity status code when content negotiation fails:

IFilterFactory implements IFilterMetadata. Therefore, an IFilterFactory  instance can be used as an 

IFilterMetadata  instance anywhere in the filter pipeline. When the runtime prepares to invoke the filter, it

attempts to cast it to an IFilterFactory . If that cast succeeds, the CreateInstance method is called to create the 

IFilterMetadata  instance that is invoked. This provides a flexible design, since the precise filter pipeline

doesn't need to be set explicitly when the app starts.

IFilterFactory  can be implemented using custom attribute implementations as another approach to creating

filters:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ialwaysrunresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncalwaysrunresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iresultfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.objectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifiltermetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory.createinstance


public class AddHeaderWithFactoryAttribute : Attribute, IFilterFactory
{
    // Implement IFilterFactory
    public IFilterMetadata CreateInstance(IServiceProvider serviceProvider)
    {
        return new InternalAddHeaderFilter();
    }

    private class InternalAddHeaderFilter : IResultFilter
    {
        public void OnResultExecuting(ResultExecutingContext context)
        {
            context.HttpContext.Response.Headers.Add(
                "Internal", new string[] { "My header" });
        }

        public void OnResultExecuted(ResultExecutedContext context)
        {
        }
    }

    public bool IsReusable
    {
        get
        {
            return false;
        }
    }
}

IFilterFactory implemented on an attributeIFilterFactory implemented on an attribute

The preceding code can be tested by running the download sample:

Invoke the F12 developer tools.

Navigate to https://localhost:5001/Sample/HeaderWithFactory .

The F12 developer tools display the following response headers added by the sample code:

author :author : Joe Smith

globaladdheader :globaladdheader : Result filter added to MvcOptions.Filters

internal:internal: My header

The preceding code creates the internal:internal: My header  response header.

Filters that implement IFilterFactory  are useful for filters that:

Don't require passing parameters.

Have constructor dependencies that need to be filled by DI.

TypeFilterAttribute implements IFilterFactory. IFilterFactory  exposes the CreateInstance method for creating

an IFilterMetadata instance. CreateInstance  loads the specified type from the services container (DI).

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/filters/sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.typefilterattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory.createinstance
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifiltermetadata


public class SampleActionFilterAttribute : TypeFilterAttribute
{
    public SampleActionFilterAttribute():base(typeof(SampleActionFilterImpl))
    {
    }

    private class SampleActionFilterImpl : IActionFilter
    {
        private readonly ILogger _logger;
        public SampleActionFilterImpl(ILoggerFactory loggerFactory)
        {
            _logger = loggerFactory.CreateLogger<SampleActionFilterAttribute>();
        }

        public void OnActionExecuting(ActionExecutingContext context)
        {
            _logger.LogInformation("Business action starting...");
            // perform some business logic work

        }

        public void OnActionExecuted(ActionExecutedContext context)
        {
            // perform some business logic work
            _logger.LogInformation("Business action completed.");
        }
    }
}

[SampleActionFilter]
public IActionResult FilterTest()
{
    return Content($"From FilterTest");
}

[TypeFilter(typeof(SampleActionFilterAttribute))]
public IActionResult TypeFilterTest()
{
    return Content($"From ServiceFilterTest");
}

// ServiceFilter must be registered in ConfigureServices or
// System.InvalidOperationException: No service for type '<filter>' has been registered.
// Is thrown.
[ServiceFilter(typeof(SampleActionFilterAttribute))]
public IActionResult ServiceFilterTest()
{
    return Content($"From ServiceFilterTest");
}

Using middleware in the filter pipeline

The following code shows three approaches to applying the [SampleActionFilter] :

In the preceding code, decorating the method with [SampleActionFilter]  is the preferred approach to applying

the SampleActionFilter .

Resource filters work like middleware in that they surround the execution of everything that comes later in the

pipeline. But filters differ from middleware in that they're part of the ASP.NET Core runtime, which means that

they have access to ASP.NET Core context and constructs.

To use middleware as a filter, create a type with a Configure  method that specifies the middleware to inject



public class LocalizationPipeline
{
    public void Configure(IApplicationBuilder applicationBuilder)
    {
        var supportedCultures = new[]
        {
            new CultureInfo("en-US"),
            new CultureInfo("fr")
        };

        var options = new RequestLocalizationOptions
        {

            DefaultRequestCulture = new RequestCulture(culture: "en-US", 
                                                     uiCulture: "en-US"),
            SupportedCultures = supportedCultures,
            SupportedUICultures = supportedCultures
        };
        options.RequestCultureProviders = new[] 
            { new RouteDataRequestCultureProvider() { Options = options } };

        applicationBuilder.UseRequestLocalization(options);
    }
}

[Route("{culture}/[controller]/[action]")]
[MiddlewareFilter(typeof(LocalizationPipeline))]
public IActionResult CultureFromRouteData()
{
    return Content($"CurrentCulture:{CultureInfo.CurrentCulture.Name},"
        + $"CurrentUICulture:{CultureInfo.CurrentUICulture.Name}");
}

Next actions

into the filter pipeline. The following example uses the localization middleware to establish the current culture

for a request:

Use the MiddlewareFilterAttribute to run the middleware:

Middleware filters run at the same stage of the filter pipeline as Resource filters, before model binding and

after the rest of the pipeline.

See Filter methods for Razor Pages.

To experiment with filters, download, test, and modify the GitHub sample.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.middlewarefilterattribute
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/filters/sample


ASP.NET Core Razor SDK
9/22/2020 • 8 minutes to read • Edit Online

Overview

Prerequisites

Use the Razor SDK

By Rick Anderson

The .NET Core 2.1 SDK or later includes the Microsoft.NET.Sdk.Razor  MSBuild SDK (Razor SDK). The Razor SDK:

Is required to build, package, and publish projects containing Razor files for ASP.NET Core MVC-based or

Blazor projects.

Includes a set of predefined targets, properties, and items that allow customizing the compilation of Razor

(.cshtml or .razor) files.

The Razor SDK includes Content  items with Include  attributes set to the **\*.cshtml  and **\*.razor  globbing

patterns. Matching files are published.

Standardizes the experience around building, packaging, and publishing projects containing Razor files for

ASP.NET Core MVC-based projects.

Includes a set of predefined targets, properties, and items that allow customizing the compilation of Razor

files.

The Razor SDK includes a Content  item with an Include  attribute set to the **\*.cshtml  globbing pattern.

Matching files are published.

.NET Core 2.1 SDK or later

Most web apps aren't required to explicitly reference the Razor SDK.

To use the Razor SDK to build class libraries containing Razor views or Razor Pages, we recommend starting with

the Razor class library (RCL) project template. An RCL that's used to build Blazor (.razor) files minimally requires a

reference to the Microsoft.AspNetCore.Components package. An RCL that's used to build Razor views or pages

(.cshtml files) minimally requires targeting netcoreapp3.0  or later and has a FrameworkReference  to the

Microsoft.AspNetCore.App metapackage in its project file.

To use the Razor SDK to build class libraries containing Razor views or Razor Pages:

<Project SDK="Microsoft.NET.Sdk.Razor">
  <!-- omitted for brevity -->
</Project>

Use Microsoft.NET.Sdk.Razor  instead of Microsoft.NET.Sdk :

Typically, a package reference to Microsoft.AspNetCore.Mvc  is required to receive additional dependencies

that are required to build and compile Razor Pages and Razor views. At a minimum, your project should

add package references to:

Microsoft.AspNetCore.Razor.Design

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/razor-pages/sdk.md
https://twitter.com/RickAndMSFT
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://www.nuget.org/packages/Microsoft.AspNetCore.Components


    

WARNINGWARNING

PropertiesProperties

WARNINGWARNING

IT EM SIT EM S DESC RIP T IO NDESC RIP T IO N

RazorGenerate Item elements (.cshtml files) that are inputs to code
generation.

RazorComponent Item elements (.razor files) that are inputs to Razor
component code generation.

<Project Sdk="Microsoft.NET.Sdk.Razor">

  <PropertyGroup>
    <TargetFramework>netcoreapp2.1</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.1.3" />
  </ItemGroup>

</Project>

Microsoft.AspNetCore.Mvc.Razor.Extensions

Microsoft.AspNetCore.Mvc.Razor

The Microsoft.AspNetCore.Razor.Design  package provides the Razor compilation tasks and targets for the

project.

The preceding packages are included in Microsoft.AspNetCore.Mvc . The following markup shows a project

file that uses the Razor SDK to build Razor files for an ASP.NET Core Razor Pages app:

The Microsoft.AspNetCore.Razor.Design  and Microsoft.AspNetCore.Mvc.Razor.Extensions  packages are included in

the Microsoft.AspNetCore.App metapackage. However, the version-less Microsoft.AspNetCore.App  package reference

provides a metapackage to the app that doesn't include the latest version of Microsoft.AspNetCore.Razor.Design .

Projects must reference a consistent version of Microsoft.AspNetCore.Razor.Design  (or Microsoft.AspNetCore.Mvc )

so that the latest build-time fixes for Razor are included. For more information, see this GitHub issue.

The following properties control the Razor's SDK behavior as part of a project build:

RazorCompileOnBuild : When true , compiles and emits the Razor assembly as part of building the project.

Defaults to true .

RazorCompileOnPublish : When true , compiles and emits the Razor assembly as part of publishing the project.

Defaults to true .

The properties and items in the following table are used to configure inputs and output to the Razor SDK.

Starting with ASP.NET Core 3.0, MVC Views or Razor Pages aren't served by default if the RazorCompileOnBuild  or 

RazorCompileOnPublish  MSBuild properties in the project file are disabled. Applications must add an explicit reference to

the Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation package if the app relies on runtime compilation to process

.cshtml files.

https://github.com/aspnet/Razor/issues/2553
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation


RazorCompile Item elements (.cs files) that are inputs to Razor compilation
targets. Use this ItemGroup  to specify additional files to be

compiled into the Razor assembly.

RazorTargetAssemblyAttribute Item elements used to code generate attributes for the Razor
assembly. For example: 
RazorAssemblyAttribute

Include="System.Reflection.AssemblyMetadataAttribute"

_Parameter1="BuildSource"
_Parameter2="https://docs.microsoft.com/">

RazorEmbeddedResource Item elements added as embedded resources to the
generated Razor assembly.

IT EM SIT EM S DESC RIP T IO NDESC RIP T IO N

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N

RazorTargetName File name (without extension) of the assembly produced by
Razor.

RazorOutputPath The Razor output directory.

RazorCompileToolset Used to determine the toolset used to build the Razor
assembly. Valid values are Implicit , RazorSDK , and 

PrecompilationTool .

EnableDefaultContentItems Default is true . When true , includes web.config, .json,

and .cshtml files as content in the project. When referenced
via Microsoft.NET.Sdk.Web , files under wwwroot and

config files are also included.

EnableDefaultRazorGenerateItems When true , includes .cshtml files from Content  items in 

RazorGenerate  items.

GenerateRazorTargetAssemblyInfo When true , generates a .cs file containing attributes

specified by RazorAssemblyAttribute  and includes the file

in the compile output.

EnableDefaultRazorTargetAssemblyInfoAttributes When true , adds a default set of assembly attributes to 

RazorAssemblyAttribute .

CopyRazorGenerateFilesToPublishDirectory When true , copies RazorGenerate  items (.cshtml) files to

the publish directory. Typically, Razor files aren't required for a
published app if they participate in compilation at build-time
or publish-time. Defaults to false .

PreserveCompilationReferences When true , copy reference assembly items to the publish

directory. Typically, reference assemblies aren't required for a
published app if Razor compilation occurs at build-time or
publish-time. Set to true  if your published app requires

runtime compilation. For example, set the value to true  if

the app modifies .cshtml files at runtime or uses embedded
views. Defaults to false .

https://github.com/aspnet/websdk/blob/rel-2.0.0/src/ProjectSystem/Microsoft.NET.Sdk.Web.ProjectSystem.Targets/netstandard1.0/Microsoft.NET.Sdk.Web.ProjectSystem.targets#L21


IncludeRazorContentInPack When true , all Razor content items (.cshtml files) are

marked for inclusion in the generated NuGet package.
Defaults to false .

EmbedRazorGenerateSources When true , adds RazorGenerate (.cshtml) items as

embedded files to the generated Razor assembly. Defaults to 
false .

UseRazorBuildServer When true , uses a persistent build server process to

offload code generation work. Defaults to the value of 
UseSharedCompilation .

GenerateMvcApplicationPartsAssemblyAttributes When true , the SDK generates additional attributes used

by MVC at runtime to perform application part discovery.

DefaultWebContentItemExcludes A globbing pattern for item elements that are to be excluded
from the Content  item group in projects targeting the Web

or Razor SDK

ExcludeConfigFilesFromBuildOutput When true , .config and .json files do not get copied to the

build output directory.

AddRazorSupportForMvc When true , configures the Razor SDK to add support for

the MVC configuration that is required when building
applications containing MVC views or Razor Pages. This
property is implicitly set for .NET Core 3.0 or later projects
targeting the Web SDK

RazorLangVersion The version of the Razor Language to target.

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N

RazorTargetName File name (without extension) of the assembly produced by
Razor.

RazorOutputPath The Razor output directory.

RazorCompileToolset Used to determine the toolset used to build the Razor
assembly. Valid values are Implicit , RazorSDK , and 

PrecompilationTool .

EnableDefaultContentItems Default is true . When true , includes web.config, .json,

and .cshtml files as content in the project. When referenced
via Microsoft.NET.Sdk.Web , files under wwwroot and

config files are also included.

EnableDefaultRazorGenerateItems When true , includes .cshtml files from Content  items in 

RazorGenerate  items.

GenerateRazorTargetAssemblyInfo When true , generates a .cs file containing attributes

specified by RazorAssemblyAttribute  and includes the file

in the compile output.

https://github.com/aspnet/websdk/blob/rel-2.0.0/src/ProjectSystem/Microsoft.NET.Sdk.Web.ProjectSystem.Targets/netstandard1.0/Microsoft.NET.Sdk.Web.ProjectSystem.targets#L21


EnableDefaultRazorTargetAssemblyInfoAttributes When true , adds a default set of assembly attributes to 

RazorAssemblyAttribute .

CopyRazorGenerateFilesToPublishDirectory When true , copies RazorGenerate  items (.cshtml) files to

the publish directory. Typically, Razor files aren't required for a
published app if they participate in compilation at build-time
or publish-time. Defaults to false .

CopyRefAssembliesToPublishDirectory When true , copy reference assembly items to the publish

directory. Typically, reference assemblies aren't required for a
published app if Razor compilation occurs at build-time or
publish-time. Set to true  if your published app requires

runtime compilation. For example, set the value to true  if

the app modifies .cshtml files at runtime or uses embedded
views. Defaults to false .

IncludeRazorContentInPack When true , all Razor content items (.cshtml files) are

marked for inclusion in the generated NuGet package.
Defaults to false .

EmbedRazorGenerateSources When true , adds RazorGenerate (.cshtml) items as

embedded files to the generated Razor assembly. Defaults to 
false .

UseRazorBuildServer When true , uses a persistent build server process to

offload code generation work. Defaults to the value of 
UseSharedCompilation .

GenerateMvcApplicationPartsAssemblyAttributes When true , the SDK generates additional attributes used

by MVC at runtime to perform application part discovery.

DefaultWebContentItemExcludes A globbing pattern for item elements that are to be excluded
from the Content  item group in projects targeting the Web

or Razor SDK

ExcludeConfigFilesFromBuildOutput When true , .config and .json files do not get copied to the

build output directory.

AddRazorSupportForMvc When true , configures the Razor SDK to add support for

the MVC configuration that is required when building
applications containing MVC views or Razor Pages. This
property is implicitly set for .NET Core 3.0 or later projects
targeting the Web SDK

RazorLangVersion The version of the Razor Language to target.

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N

TargetsTargets

For more information on properties, see MSBuild properties.

The Razor SDK defines two primary targets:

RazorGenerate : Code generates .cs files from RazorGenerate  item elements. Use the RazorGenerateDependsOn

property to specify additional targets that can run before or after this target.

RazorCompile : Compiles generated .cs files in to a Razor assembly. Use the RazorCompileDependsOn  to specify

https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-properties


Runtime compilation of Razor viewsRuntime compilation of Razor views

Razor language version

<PropertyGroup>
  <RazorLangVersion>{VERSION}</RazorLangVersion>
</PropertyGroup>

Additional resources

additional targets that can run before or after this target.

RazorComponentGenerate : Code generates .cs files for RazorComponent  item elements. Use the 

RazorComponentGenerateDependsOn  property to specify additional targets that can run before or after this target.

By default, the Razor SDK doesn't publish reference assemblies that are required to perform runtime

compilation. This results in compilation failures when the application model relies on runtime compilation

—for example, the app uses embedded views or changes views after the app is published. Set 

CopyRefAssembliesToPublishDirectory  to true  to continue publishing reference assemblies.

For a web app, ensure your app is targeting the Microsoft.NET.Sdk.Web  SDK.

When targeting the Microsoft.NET.Sdk.Web  SDK, the Razor language version is inferred from the app's target

framework version. For projects targeting the Microsoft.NET.Sdk.Razor  SDK or in the rare case that the app

requires a different Razor language version than the inferred value, a version can be configured by setting the 

<RazorLangVersion>  property in the app's project file:

Razor's language version is tightly integrated with the version of the runtime that it was built for. Targeting a

language version that isn't designed for the runtime is unsupported and likely produces build errors.

Additions to the csproj format for .NET Core

Common MSBuild project items

https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/visualstudio/msbuild/common-msbuild-project-items


View components in ASP.NET Core
9/22/2020 • 11 minutes to read • Edit Online

View components

Creating a view component

The view component classThe view component class

By Rick Anderson

View or download sample code (how to download)

View components are similar to partial views, but they're much more powerful. View components don't use

model binding, and only depend on the data provided when calling into it. This article was written using

controllers and views, but view components also work with Razor Pages.

A view component:

Renders a chunk rather than a whole response.

Includes the same separation-of-concerns and testability benefits found between a controller and view.

Can have parameters and business logic.

Is typically invoked from a layout page.

View components are intended anywhere you have reusable rendering logic that's too complex for a partial

view, such as:

Dynamic navigation menus

Tag cloud (where it queries the database)

Login panel

Shopping cart

Recently published articles

Sidebar content on a typical blog

A login panel that would be rendered on every page and show either the links to log out or log in, depending

on the log in state of the user

A view component consists of two parts: the class (typically derived from ViewComponent) and the result it

returns (typically a view). Like controllers, a view component can be a POCO, but most developers will want to

take advantage of the methods and properties available by deriving from ViewComponent .

When considering if view components meet an app's specifications, consider using Razor Components instead.

Razor Components also combine markup with C# code to produce reusable UI units. Razor Components are

designed for developer productivity when providing client-side UI logic and composition. For more information,

see Create and use ASP.NET Core Razor components.

This section contains the high-level requirements to create a view component. Later in the article, we'll examine

each step in detail and create a view component.

A view component class can be created by any of the following:

Deriving from ViewComponent

Decorating a class with the [ViewComponent]  attribute, or deriving from a class with the [ViewComponent]

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/view-components.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/view-components/sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewcomponent


View component methodsView component methods

View search pathView search path

Customize the view search pathCustomize the view search path

services.AddMvc()
    .AddRazorOptions(options =>
    {
        options.ViewLocationFormats.Add("/{0}.cshtml");
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

attribute

Creating a class where the name ends with the suffix ViewComponent

Like controllers, view components must be public, non-nested, and non-abstract classes. The view component

name is the class name with the "ViewComponent" suffix removed. It can also be explicitly specified using the 

ViewComponentAttribute.Name  property.

A view component class:

Fully supports constructor dependency injection

Doesn't take part in the controller lifecycle, which means you can't use filters in a view component

A view component defines its logic in an InvokeAsync  method that returns a Task<IViewComponentResult>  or in a

synchronous Invoke  method that returns an IViewComponentResult . Parameters come directly from invocation

of the view component, not from model binding. A view component never directly handles a request. Typically, a

view component initializes a model and passes it to a view by calling the View  method. In summary, view

component methods:

Define an InvokeAsync  method that returns a Task<IViewComponentResult>  or a synchronous Invoke  method

that returns an IViewComponentResult .

Typically initializes a model and passes it to a view by calling the ViewComponent  View  method.

Parameters come from the calling method, not HTTP. There's no model binding.

Are not reachable directly as an HTTP endpoint. They're invoked from your code (usually in a view). A view

component never handles a request.

Are overloaded on the signature rather than any details from the current HTTP request.

The runtime searches for the view in the following paths:

/Views/{Controller Name}/Components/{View Component Name}/{View Name}

/Views/Shared/Components/{View Component Name}/{View Name}

/Pages/Shared/Components/{View Component Name}/{View Name}

The search path applies to projects using controllers + views and Razor Pages.

The default view name for a view component is Default, which means your view file will typically be named

Default.cshtml. You can specify a different view name when creating the view component result or when calling

the View  method.

We recommend you name the view file Default.cshtml and use the Views/Shared/Components/{View

Component Name}/{View Name} path. The PriorityList  view component used in this sample uses

Views/Shared/Components/PriorityList/Default.cshtml for the view component view.

To customize the view search path, modify Razor's ViewLocationFormats collection. For example, to search for

views within the path "/Components/{View Component Name}/{View Name}", add a new item to the collection:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razor.razorviewengineoptions.viewlocationformats#microsoft_aspnetcore_mvc_razor_razorviewengineoptions_viewlocationformats


  

Invoking a view component

@await Component.InvokeAsync("Name of view component", {Anonymous Type Containing Parameters})

@await Component.InvokeAsync("PriorityList", new { maxPriority = 4, isDone = true })

Invoking a view component as a Tag Helper

<vc:priority-list max-priority="2" is-done="false">
</vc:priority-list>

<vc:[view-component-name]
  parameter1="parameter1 value"
  parameter2="parameter2 value">
</vc:[view-component-name]>

@addTagHelper *, MyWebApp

@await Component.InvokeAsync("PriorityList", new { maxPriority = 4, isDone = true })

<vc:priority-list max-priority="2" is-done="false">
</vc:priority-list>

In the preceding code, the placeholder "{0}" represents the path "Components/{View Component Name}/{View

Name}".

To use the view component, call the following inside a view:

The parameters will be passed to the InvokeAsync  method. The PriorityList  view component developed in the

article is invoked from the Views/ToDo/Index.cshtml view file. In the following, the InvokeAsync  method is called

with two parameters:

For ASP.NET Core 1.1 and higher, you can invoke a view component as a Tag Helper:

Pascal-cased class and method parameters for Tag Helpers are translated into their kebab case. The Tag Helper to

invoke a view component uses the <vc></vc>  element. The view component is specified as follows:

To use a view component as a Tag Helper, register the assembly containing the view component using the 

@addTagHelper  directive. If your view component is in an assembly called MyWebApp , add the following directive

to the _ViewImports.cshtml file:

You can register a view component as a Tag Helper to any file that references the view component. See

Managing Tag Helper Scope for more information on how to register Tag Helpers.

The InvokeAsync  method used in this tutorial:

In Tag Helper markup:

In the sample above, the PriorityList  view component becomes priority-list . The parameters to the view

component are passed as attributes in kebab case.

https://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101


Invoking a view component directly from a controllerInvoking a view component directly from a controller

public IActionResult IndexVC()
{
    return ViewComponent("PriorityList", new { maxPriority = 3, isDone = false });
}

Walkthrough: Creating a simple view component

Add a ViewComponent classAdd a ViewComponent class

View components are typically invoked from a view, but you can invoke them directly from a controller method.

While view components don't define endpoints like controllers, you can easily implement a controller action that

returns the content of a ViewComponentResult .

In this example, the view component is called directly from the controller :

Download, build and test the starter code. It's a simple project with a ToDo  controller that displays a list of ToDo

items.

Create a ViewComponents folder and add the following PriorityListViewComponent  class:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/views/view-components/sample


using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using ViewComponentSample.Models;

namespace ViewComponentSample.ViewComponents
{
    public class PriorityListViewComponent : ViewComponent
    {
        private readonly ToDoContext db;

        public PriorityListViewComponent(ToDoContext context)
        {
            db = context;
        }

        public async Task<IViewComponentResult> InvokeAsync(
        int maxPriority, bool isDone)
        {
            var items = await GetItemsAsync(maxPriority, isDone);
            return View(items);
        }
        private Task<List<TodoItem>> GetItemsAsync(int maxPriority, bool isDone)
        {
            return db.ToDo.Where(x => x.IsDone == isDone &&
                                 x.Priority <= maxPriority).ToListAsync();
        }
    }
}

Create the view component Razor viewCreate the view component Razor view

Notes on the code:

[ViewComponent(Name = "PriorityList")]
   public class XYZ : ViewComponent

View component classes can be contained in anyany  folder in the project.

Because the class name PriorityListViewComponentViewComponent ends with the suffix ViewComponentViewComponent, the runtime

will use the string "PriorityList" when referencing the class component from a view. I'll explain that in

more detail later.

The [ViewComponent]  attribute can change the name used to reference a view component. For example,

we could've named the class XYZ  and applied the ViewComponent  attribute:

The [ViewComponent]  attribute above tells the view component selector to use the name PriorityList

when looking for the views associated with the component, and to use the string "PriorityList" when

referencing the class component from a view. I'll explain that in more detail later.

The component uses dependency injection to make the data context available.

InvokeAsync  exposes a method which can be called from a view, and it can take an arbitrary number of

arguments.

The InvokeAsync  method returns the set of ToDo  items that satisfy the isDone  and maxPriority

parameters.

Create the Views/Shared/Components folder. This folder mustmust be named Components.



@model IEnumerable<ViewComponentSample.Models.TodoItem>

<h3>Priority Items</h3>
<ul>
    @foreach (var todo in Model)
    {
        <li>@todo.Name</li>
    }
</ul>

</table>
<div>
    @await Component.InvokeAsync("PriorityList", new { maxPriority = 2, isDone = false })
</div>

Create the Views/Shared/Components/PriorityList folder. This folder name must match the name of the

view component class, or the name of the class minus the suffix (if we followed convention and used the

ViewComponent suffix in the class name). If you used the ViewComponent  attribute, the class name would

need to match the attribute designation.

Create a Views/Shared/Components/PriorityList/Default.cshtml Razor view:

The Razor view takes a list of TodoItem  and displays them. If the view component InvokeAsync  method

doesn't pass the name of the view (as in our sample), Default is used for the view name by convention.

Later in the tutorial, I'll show you how to pass the name of the view. To override the default styling for a

specific controller, add a view to the controller-specific view folder (for example

Views/ToDo/Components/PriorityList/Default.cshtml).

If the view component is controller-specific, you can add it to the controller-specific folder

(Views/ToDo/Components/PriorityList/Default.cshtml).

Add a div  containing a call to the priority list component to the bottom of the Views/ToDo/index.cshtml

file:

The markup @await Component.InvokeAsync  shows the syntax for calling view components. The first argument is

the name of the component we want to invoke or call. Subsequent parameters are passed to the component. 

InvokeAsync  can take an arbitrary number of arguments.

Test the app. The following image shows the ToDo list and the priority items:



public IActionResult IndexVC()
{
    return ViewComponent("PriorityList", new { maxPriority = 3, isDone = false });
}

Specifying a view nameSpecifying a view name

You can also call the view component directly from the controller :

A complex view component might need to specify a non-default view under some conditions. The following

code shows how to specify the "PVC" view from the InvokeAsync  method. Update the InvokeAsync  method in

the PriorityListViewComponent  class.



public async Task<IViewComponentResult> InvokeAsync(
    int maxPriority, bool isDone)
{
    string MyView = "Default";
    // If asking for all completed tasks, render with the "PVC" view.
    if (maxPriority > 3 && isDone == true)
    {
        MyView = "PVC";
    }
    var items = await GetItemsAsync(maxPriority, isDone);
    return View(MyView, items);
}

@model IEnumerable<ViewComponentSample.Models.TodoItem>

<h2> PVC Named Priority Component View</h2>
<h4>@ViewBag.PriorityMessage</h4>
<ul>
    @foreach (var todo in Model)
    {
        <li>@todo.Name</li>
    }
</ul>

@await Component.InvokeAsync("PriorityList", new { maxPriority = 4, isDone = true })

Copy the Views/Shared/Components/PriorityList/Default.cshtml file to a view named

Views/Shared/Components/PriorityList/PVC.cshtml. Add a heading to indicate the PVC view is being used.

Update Views/ToDo/Index.cshtml:

Run the app and verify PVC view.



Examine the view pathExamine the view path

If the PVC view isn't rendered, verify you are calling the view component with a priority of 4 or higher.

An unhandled exception occurred while processing the request.
InvalidOperationException: The view 'Components/PriorityList/Default' wasn't found. The following 
locations were searched:
/Views/ToDo/Components/PriorityList/Default.cshtml
/Views/Shared/Components/PriorityList/Default.cshtml
EnsureSuccessful

Change the priority parameter to three or less so the priority view isn't returned.

Temporarily rename the Views/ToDo/Components/PriorityList/Default.cshtml to 1Default.cshtml.

Test the app, you'll get the following error :

Copy Views/ToDo/Components/PriorityList/1Default.cshtml to

Views/Shared/Components/PriorityList/Default.cshtml.

Add some markup to the Shared ToDo view component view to indicate the view is from the Shared

folder.

Test the SharedShared component view.



Avoiding hard-coded stringsAvoiding hard-coded strings

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using ViewComponentSample.Models;

namespace ViewComponentSample.ViewComponents
{
    public class PriorityList : ViewComponent
    {
        private readonly ToDoContext db;

        public PriorityList(ToDoContext context)
        {
            db = context;
        }

        public async Task<IViewComponentResult> InvokeAsync(
        int maxPriority, bool isDone)
        {
            var items = await GetItemsAsync(maxPriority, isDone);
            return View(items);
        }
        private Task<List<TodoItem>> GetItemsAsync(int maxPriority, bool isDone)
        {
            return db.ToDo.Where(x => x.IsDone == isDone &&
                                 x.Priority <= maxPriority).ToListAsync();
        }
    }
}

If you want compile time safety, you can replace the hard-coded view component name with the class name.

Create the view component without the "ViewComponent" suffix:

Add a using  statement to your Razor view file, and use the nameof  operator :



@using ViewComponentSample.Models
@using ViewComponentSample.ViewComponents
@model IEnumerable<TodoItem>

    <h2>ToDo nameof</h2>
    <!-- Markup removed for brevity.  -->

    <div>

        @*
            Note: 
            To use the below line, you need to #define no_suffix in ViewComponents/PriorityList.cs or it 
won't compile.
            By doing so it will cause a problem to index as there will be multiple viewcomponents 
            with the same name after the compiler removes the suffix "ViewComponent"
        *@

        @*@await Component.InvokeAsync(nameof(PriorityList), new { maxPriority = 4, isDone = true })*@
    </div>

Perform synchronous work

public class PriorityList : ViewComponent
{
    public IViewComponentResult Invoke(int maxPriority, bool isDone)
    {
        var items = new List<string> { $"maxPriority: {maxPriority}", $"isDone: {isDone}" };
        return View(items);
    }
}

@model List<string>

<h3>Priority Items</h3>
<ul>
    @foreach (var item in Model)
    {
        <li>@item</li>
    }
</ul>

The framework handles invoking a synchronous Invoke  method if you don't need to perform asynchronous

work. The following method creates a synchronous Invoke  view component:

The view component's Razor file lists the strings passed to the Invoke  method

(Views/Home/Components/PriorityList/Default.cshtml):

The view component is invoked in a Razor file (for example, Views/Home/Index.cshtml) using one of the

following approaches:

IViewComponentHelper

Tag Helper

To use the IViewComponentHelper approach, call Component.InvokeAsync :

The view component is invoked in a Razor file (for example, Views/Home/Index.cshtml) with

IViewComponentHelper.

Call Component.InvokeAsync :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iviewcomponenthelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iviewcomponenthelper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iviewcomponenthelper


@await Component.InvokeAsync(nameof(PriorityList), new { maxPriority = 4, isDone = true })

@addTagHelper *, MyWebApp

<vc:priority-list max-priority="999" is-done="false">
</vc:priority-list>

All view component parameters are required

Additional resources

To use the Tag Helper, register the assembly containing the View Component using the @addTagHelper  directive

(the view component is in an assembly called MyWebApp ):

Use the view component Tag Helper in the Razor markup file:

The method signature of PriorityList.Invoke  is synchronous, but Razor finds and calls the method with 

Component.InvokeAsync  in the markup file.

Each parameter in a view component is a required attribute. See this GitHub issue. If any parameter is omitted:

The InvokeAsync  method signature won't match, therefore the method won't execute.

The ViewComponent won't render any markup.

No errors will be thrown.

Dependency injection into views

https://github.com/dotnet/AspNetCore/issues/5011


 

Razor file compilation in ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

Razor compilation

Enable runtime compilation at project creation

Enable runtime compilation in an existing project

Conditionally enable runtime compilation in an existing project

By Rick Anderson

Razor files with a .cshtml extension are compiled at both build and publish time using the Razor SDK. Runtime

compilation may be optionally enabled by configuring your project.

Build-time and publish-time compilation of Razor files is enabled by default by the Razor SDK. When enabled,

runtime compilation complements build-time compilation, allowing Razor files to be updated if they're edited.

The Razor Pages and MVC project templates include an option to enable runtime compilation when the project is

created. This option is supported in ASP.NET Core 3.1 and later.

Visual Studio

.NET Core CLI

In the Create a new ASP.NET Core web applicationCreate a new ASP.NET Core web application dialog:

1. Select either the Web ApplicationWeb Application or the Web Application (Model-View-Controller)Web Application (Model-View-Controller)  project template.

2. Select the Enable Razor runtime compilationEnable Razor runtime compilation check box.

To enable runtime compilation for all environments in an existing project:

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages()
        .AddRazorRuntimeCompilation();

    // code omitted for brevity
}

1. Install the Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation NuGet package.

2. Update the project's Startup.ConfigureServices  method to include a call to AddRazorRuntimeCompilation.

For example:

Runtime compilation can be enabled such that it's only available for local development. Conditionally enabling in

this manner ensures that the published output:

Uses compiled views.

Doesn't enable file watchers in production.

To enable runtime compilation only in the Development environment:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/views/view-compilation.md
https://twitter.com/RickAndMSFT
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.razorruntimecompilationmvcbuilderextensions.addrazorruntimecompilation


{
    "iisSettings": {
      "windowsAuthentication": false,
      "anonymousAuthentication": true,
      "iisExpress": {
        "applicationUrl": "http://localhost:57676",
        "sslPort": 44364
      }
    },
    "profiles": {
      "IIS Express": {
        "commandName": "IISExpress",
        "launchBrowser": true,
        "environmentVariables": {
          "ASPNETCORE_ENVIRONMENT": "Development",
          "ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation"
        }
      },
      "RazorPagesApp": {
        "commandName": "Project",
        "launchBrowser": true,
        "applicationUrl": "https://localhost:5001;http://localhost:5000",
        "environmentVariables": {
          "ASPNETCORE_ENVIRONMENT": "Development",
          "ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation"
        }
      }
    }
  }
  

Enable runtime compilation for a Razor Class Library

1. Install the Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation NuGet package.

2. Modify the launch profile environmentVariables  section in launchSettings.json:

Verify ASPNETCORE_ENVIRONMENT  is set to "Development" .

Set ASPNETCORE_HOSTINGSTARTUPASSEMBLIES  to "Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation" .

In the following example, runtime compilation is enabled in the Development environment for the IIS Express

and RazorPagesApp  launch profiles:

No code changes are needed in the project's Startup  class. At runtime, ASP.NET Core searches for an assembly-

level HostingStartup attribute in Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation . The HostingStartup

attribute specifies the app startup code to execute. That startup code enables runtime compilation.

Consider a scenario in which a Razor Pages project references a Razor Class Library (RCL) named MyClassLib. The

RCL contains a _Layout.cshtml file that all of your team's MVC and Razor Pages projects consume. You want to

enable runtime compilation for the _Layout.cshtml file in that RCL. Make the following changes in the Razor Pages

project:

1. Enable runtime compilation with the instructions at Conditionally enable runtime compilation in an existing

project.

2. Configure the runtime compilation options in Startup.ConfigureServices :

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation/


Additional resources

Razor compilation

Runtime compilation

Conditionally enable runtime compilationConditionally enable runtime compilation

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages();

    services.Configure<MvcRazorRuntimeCompilationOptions>(options =>
    {
        var libraryPath = Path.GetFullPath(
            Path.Combine(HostEnvironment.ContentRootPath, "..", "MyClassLib"));
        options.FileProviders.Add(new PhysicalFileProvider(libraryPath));
    });
}

In the preceding code, an absolute path to the MyClassLib RCL is constructed. The PhysicalFileProvider API

is used to locate directories and files at that absolute path. Finally, the PhysicalFileProvider  instance is

added to a file providers collection, which allows access to the RCL's .cshtml files.

RazorCompileOnBuild and RazorCompileOnPublish properties.

Introduction to Razor Pages in ASP.NET Core

Views in ASP.NET Core MVC

ASP.NET Core Razor SDK

Razor files with a .cshtml extension are compiled at both build and publish time using the Razor SDK. Runtime

compilation may be optionally enabled by configuring your application.

Build-time and publish-time compilation of Razor files is enabled by default by the Razor SDK. When enabled,

runtime compilation complements build-time compilation, allowing Razor files to be updated if they're edited.

To enable runtime compilation for all environments and configuration modes:

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages()
        .AddRazorRuntimeCompilation();

    // code omitted for brevity
}

1. Install the Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation NuGet package.

2. Update the project's Startup.ConfigureServices  method to include a call to AddRazorRuntimeCompilation.

For example:

Runtime compilation can be enabled such that it's only available for local development. Conditionally enabling in

this manner ensures that the published output:

Uses compiled views.

Is smaller in size.

Doesn't enable file watchers in production.

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.razorruntimecompilationmvcbuilderextensions.addrazorruntimecompilation


Additional resources

To enable runtime compilation based on the environment and configuration mode:

<PackageReference Include="Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation" Version="3.1.0" 
Condition="'$(Configuration)' == 'Debug'" />

public class Startup
{
    public Startup(IConfiguration configuration, IWebHostEnvironment env)
    {
        Configuration = configuration;
        Env = env;
    }

    public IWebHostEnvironment Env { get; set; }
    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        IMvcBuilder builder = services.AddRazorPages();

#if DEBUG
            if (Env.IsDevelopment())
            {
                builder.AddRazorRuntimeCompilation();
            }
#endif
    }

    public void Configure(IApplicationBuilder app)
    {
        if (Env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseExceptionHandler("/Error");
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();

        app.UseRouting();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapRazorPages();
        });
    }
}

1. Conditionally reference the Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation package based on the

active Configuration  value:

2. Update the project's Startup.ConfigureServices  method to include a call to AddRazorRuntimeCompilation .

Conditionally execute AddRazorRuntimeCompilation  such that it only runs in Debug mode when the 

ASPNETCORE_ENVIRONMENT  variable is set to Development :

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation/


Razor compilation

IMPORTANTIMPORTANT

Runtime compilation

Additional resources

RazorCompileOnBuild and RazorCompileOnPublish properties.

Introduction to Razor Pages in ASP.NET Core

Views in ASP.NET Core MVC

ASP.NET Core Razor SDK

See the runtime compilation sample on GitHub for a sample that shows making runtime compilation work

across projects.

A Razor file is compiled at runtime, when the associated Razor Page or MVC view is invoked. Razor files are

compiled at both build and publish time using the Razor SDK.

Build- and publish-time compilation of Razor files is enabled by default by the Razor SDK. Editing Razor files after

they're updated is supported at build time. By default, only the compiled Views.dll and no .cshtml files or

references assemblies required to compile Razor files are deployed with your app.

The precompilation tool has been deprecated, and will be removed in ASP.NET Core 3.0. We recommend migrating to Razor

Sdk.

The Razor SDK is effective only when no precompilation-specific properties are set in the project file. For instance, setting

the .csproj file's MvcRazorCompileOnPublish  property to true  disables the Razor SDK.

Build-time compilation is supplemented by runtime compilation of Razor files. ASP.NET Core MVC will recompile

Razor files when the contents of a .cshtml file change.

Introduction to Razor Pages in ASP.NET Core

Views in ASP.NET Core MVC

ASP.NET Core Razor SDK

https://github.com/aspnet/samples/tree/master/samples/aspnetcore/mvc/runtimecompilation


      

Upload files in ASP.NET Core
9/22/2020 • 66 minutes to read • Edit Online

Security considerations

WARNINGWARNING

By Steve Smith and Rutger Storm

ASP.NET Core supports uploading one or more files using buffered model binding for smaller files and unbuffered

streaming for larger files.

View or download sample code (how to download)

Use caution when providing users with the ability to upload files to a server. Attackers may attempt to:

Execute denial of service attacks.

Upload viruses or malware.

Compromise networks and servers in other ways.

Security steps that reduce the likelihood of a successful attack are:

Upload files to a dedicated file upload area, preferably to a non-system drive. A dedicated location makes it

easier to impose security restrictions on uploaded files. Disable execute permissions on the file upload location.†

Do notnot persist uploaded files in the same directory tree as the app.†

Use a safe file name determined by the app. Don't use a file name provided by the user or the untrusted file

name of the uploaded file.† HTML encode the untrusted file name when displaying it. For example, logging the

file name or displaying in UI (Razor automatically HTML encodes output).

Allow only approved file extensions for the app's design specification.†

Verify that client-side checks are performed on the server.† Client-side checks are easy to circumvent.

Check the size of an uploaded file. Set a maximum size limit to prevent large uploads.†

When files shouldn't be overwritten by an uploaded file with the same name, check the file name against the

database or physical storage before uploading the file.

Run a virus/malware scanner on uploaded content before the file is stored.Run a virus/malware scanner on uploaded content before the file is stored.

†The sample app demonstrates an approach that meets the criteria.

Uploading malicious code to a system is frequently the first step to executing code that can:

Completely gain control of a system.

Overload a system with the result that the system crashes.

Compromise user or system data.

Apply graffiti to a public UI.

For information on reducing the attack surface area when accepting files from users, see the following resources:

Unrestricted File Upload

Azure Security: Ensure appropriate controls are in place when accepting files from users

For more information on implementing security measures, including examples from the sample app, see the

Validation section.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/models/file-uploads.md
https://ardalis.com/
https://github.com/rutix
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/file-uploads/samples/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/denial-of-service
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool-input-validation#controls-users


      

Storage scenarios

File upload scenarios

NOTENOTE

Upload small files with buffered model binding to physical storageUpload small files with buffered model binding to physical storage

Common storage options for files include:

Database

For small file uploads, a database is often faster than physical storage (file system or network share)

options.

A database is often more convenient than physical storage options because retrieval of a database record

for user data can concurrently supply the file content (for example, an avatar image).

A database is potentially less expensive than using a data storage service.

Physical storage (file system or network share)

For large file uploads:

Physical storage is potentially less expensive than using a data storage service.

The app's process must have read and write permissions to the storage location. Never grant executeNever grant execute

permission.permission.

Database limits may restrict the size of the upload.

Physical storage is often less economical than storage in a database.

Data storage service (for example, Azure Blob Storage)

Services usually offer improved scalability and resiliency over on-premises solutions that are usually

subject to single points of failure.

Services are potentially lower cost in large storage infrastructure scenarios.

For more information, see Quickstart: Use .NET to create a blob in object storage.

Two general approaches for uploading files are buffering and streaming.

Buffer ingBuffer ing

The entire file is read into an IFormFile, which is a C# representation of the file used to process or save the file.

The resources (disk, memory) used by file uploads depend on the number and size of concurrent file uploads. If an

app attempts to buffer too many uploads, the site crashes when it runs out of memory or disk space. If the size or

frequency of file uploads is exhausting app resources, use streaming.

Any single buffered file exceeding 64 KB is moved from memory to a temp file on disk.

Buffering small files is covered in the following sections of this topic:

Physical storage

Database

StreamingStreaming

The file is received from a multipart request and directly processed or saved by the app. Streaming doesn't improve

performance significantly. Streaming reduces the demands for memory or disk space when uploading files.

Streaming large files is covered in the Upload large files with streaming section.

To upload small files, use a multipart form or construct a POST request using JavaScript.

https://azure.microsoft.com/services/storage/blobs/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile


<form enctype="multipart/form-data" method="post">
    <dl>
        <dt>
            <label asp-for="FileUpload.FormFile"></label>
        </dt>
        <dd>
            <input asp-for="FileUpload.FormFile" type="file">
            <span asp-validation-for="FileUpload.FormFile"></span>
        </dd>
    </dl>
    <input asp-page-handler="Upload" class="btn" type="submit" value="Upload" />
</form>

<form action="BufferedSingleFileUploadPhysical/?handler=Upload" 
      enctype="multipart/form-data" onsubmit="AJAXSubmit(this);return false;" 
      method="post">
    <dl>
        <dt>
            <label for="FileUpload_FormFile">File</label>
        </dt>
        <dd>
            <input id="FileUpload_FormFile" type="file" 
                name="FileUpload.FormFile" />
        </dd>
    </dl>

    <input class="btn" type="submit" value="Upload" />

    <div style="margin-top:15px">
        <output name="result"></output>
    </div>
</form>

<script>
  async function AJAXSubmit (oFormElement) {
    var resultElement = oFormElement.elements.namedItem("result");
    const formData = new FormData(oFormElement);

    try {
    const response = await fetch(oFormElement.action, {
      method: 'POST',
      body: formData
    });

    if (response.ok) {
      window.location.href = '/';
    }

    resultElement.value = 'Result: ' + response.status + ' ' + 
      response.statusText;
    } catch (error) {
      console.error('Error:', error);
    }
  }
</script>

The following example demonstrates the use of a Razor Pages form to upload a single file

(Pages/BufferedSingleFileUploadPhysical.cshtml in the sample app):

The following example is analogous to the prior example except that:

JavaScript's (Fetch API) is used to submit the form's data.

There's no validation.

https://developer.mozilla.org/docs/Web/API/Fetch_API


<input asp-for="FileUpload.FormFiles" type="file" multiple>

WARNINGWARNING

string untrustedFileName = Path.GetFileName(pathName);

To perform the form POST in JavaScript for clients that don't support the Fetch API, use one of the following

approaches:

<script>
  "use strict";

  function AJAXSubmit (oFormElement) {
    var oReq = new XMLHttpRequest();
    oReq.onload = function(e) { 
    oFormElement.elements.namedItem("result").value = 
      'Result: ' + this.status + ' ' + this.statusText;
    };
    oReq.open("post", oFormElement.action);
    oReq.send(new FormData(oFormElement));
  }
</script>

Use a Fetch Polyfill (for example, window.fetch polyfill (github/fetch)).

Use XMLHttpRequest . For example:

In order to support file uploads, HTML forms must specify an encoding type ( enctype ) of multipart/form-data .

For a files  input element to support uploading multiple files provide the multiple  attribute on the <input>

element:

The individual files uploaded to the server can be accessed through Model Binding using IFormFile. The sample app

demonstrates multiple buffered file uploads for database and physical storage scenarios.

 

Do notnot  use the FileName  property of IFormFile other than for display and logging. When displaying or logging, HTML

encode the file name. An attacker can provide a malicious filename, including full paths or relative paths. Applications should:

Remove the path from the user-supplied filename.

Save the HTML-encoded, path-removed filename for UI or logging.

Generate a new random filename for storage.

The following code removes the path from the file name:

The examples provided thus far don't take into account security considerations. Additional information is provided by the

following sections and the sample app:

Security considerations

Validation

When uploading files using model binding and IFormFile, the action method can accept:

A single IFormFile.

Any of the following collections that represent several files:

IFormFileCollection

IEnumerable<IFormFile>

List<IFormFile>

https://caniuse.com/#feat=fetch
https://github.com/github/fetch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/file-uploads/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfilecollection
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile


NOTENOTE

public async Task<IActionResult> OnPostUploadAsync(List<IFormFile> files)
{
    long size = files.Sum(f => f.Length);

    foreach (var formFile in files)
    {
        if (formFile.Length > 0)
        {
            var filePath = Path.GetTempFileName();

            using (var stream = System.IO.File.Create(filePath))
            {
                await formFile.CopyToAsync(stream);
            }
        }
    }

    // Process uploaded files
    // Don't rely on or trust the FileName property without validation.

    return Ok(new { count = files.Count, size });
}

foreach (var formFile in files)
{
    if (formFile.Length > 0)
    {
        var filePath = Path.Combine(_config["StoredFilesPath"], 
            Path.GetRandomFileName());

        using (var stream = System.IO.File.Create(filePath))
        {
            await formFile.CopyToAsync(stream);
        }
    }
}

Binding matches form files by name. For example, the HTML name  value in <input type="file" name="formFile">  must

match the C# parameter/property bound ( FormFile ). For more information, see the Match name attribute value to

parameter name of POST method section.

The following example:

Loops through one or more uploaded files.

Uses Path.GetTempFileName to return a full path for a file, including the file name.

Saves the files to the local file system using a file name generated by the app.

Returns the total number and size of files uploaded.

Use Path.GetRandomFileName  to generate a file name without a path. In the following example, the path is obtained

from configuration:

The path passed to the FileStream must include the file name. If the file name isn't provided, an

UnauthorizedAccessException is thrown at runtime.

Files uploaded using the IFormFile technique are buffered in memory or on disk on the server before processing.

Inside the action method, the IFormFile contents are accessible as a Stream. In addition to the local file system, files

can be saved to a network share or to a file storage service, such as Azure Blob storage.

https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream
https://docs.microsoft.com/en-us/dotnet/api/system.unauthorizedaccessexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream
https://docs.microsoft.com/en-us/azure/visual-studio/vs-storage-aspnet5-getting-started-blobs


      

WARNINGWARNING

Upload small files with buffered model binding to a databaseUpload small files with buffered model binding to a database

public class AppFile
{
    public int Id { get; set; }
    public byte[] Content { get; set; }
}

public class BufferedSingleFileUploadDbModel : PageModel
{
    ...

    [BindProperty]
    public BufferedSingleFileUploadDb FileUpload { get; set; }

    ...
}

public class BufferedSingleFileUploadDb
{
    [Required]
    [Display(Name="File")]
    public IFormFile FormFile { get; set; }
}

NOTENOTE

For another example that loops over multiple files for upload and uses safe file names, see

Pages/BufferedMultipleFileUploadPhysical.cshtml.cs in the sample app.

Path.GetTempFileName throws an IOException if more than 65,535 files are created without deleting previous temporary files.

The limit of 65,535 files is a per-server limit. For more information on this limit on Windows OS, see the remarks in the

following topics:

GetTempFileNameA function

GetTempFileName

To store binary file data in a database using Entity Framework, define a Byte array property on the entity:

Specify a page model property for the class that includes an IFormFile:

IFormFile can be used directly as an action method parameter or as a bound model property. The prior example uses a bound

model property.

The FileUpload  is used in the Razor Pages form:

https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename
https://docs.microsoft.com/en-us/dotnet/api/system.io.ioexception
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-gettempfilenamea#remarks
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename
https://docs.microsoft.com/en-us/ef/core/index
https://docs.microsoft.com/en-us/dotnet/api/system.byte
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile


      

<form enctype="multipart/form-data" method="post">
    <dl>
        <dt>
            <label asp-for="FileUpload.FormFile"></label>
        </dt>
        <dd>
            <input asp-for="FileUpload.FormFile" type="file">
        </dd>
    </dl>
    <input asp-page-handler="Upload" class="btn" type="submit" value="Upload">
</form>

public async Task<IActionResult> OnPostUploadAsync()
{
    using (var memoryStream = new MemoryStream())
    {
        await FileUpload.FormFile.CopyToAsync(memoryStream);

        // Upload the file if less than 2 MB
        if (memoryStream.Length < 2097152)
        {
            var file = new AppFile()
            {
                Content = memoryStream.ToArray()
            };

            _dbContext.File.Add(file);

            await _dbContext.SaveChangesAsync();
        }
        else
        {
            ModelState.AddModelError("File", "The file is too large.");
        }
    }

    return Page();
}

WARNINGWARNING

Upload large files with streamingUpload large files with streaming

When the form is POSTed to the server, copy the IFormFile to a stream and save it as a byte array in the database. In

the following example, _dbContext  stores the app's database context:

The preceding example is similar to a scenario demonstrated in the sample app:

Pages/BufferedSingleFileUploadDb.cshtml

Pages/BufferedSingleFileUploadDb.cshtml.cs

Use caution when storing binary data in relational databases, as it can adversely impact performance.

Don't rely on or trust the FileName  property of IFormFile without validation. The FileName  property should only be used

for display purposes and only after HTML encoding.

The examples provided don't take into account security considerations. Additional information is provided by the following

sections and the sample app:

Security considerations

Validation

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/file-uploads/samples/


public class GenerateAntiforgeryTokenCookieAttribute : ResultFilterAttribute
{
    public override void OnResultExecuting(ResultExecutingContext context)
    {
        var antiforgery = context.HttpContext.RequestServices.GetService<IAntiforgery>();

        // Send the request token as a JavaScript-readable cookie
        var tokens = antiforgery.GetAndStoreTokens(context.HttpContext);

        context.HttpContext.Response.Cookies.Append(
            "RequestVerificationToken",
            tokens.RequestToken,
            new CookieOptions() { HttpOnly = false });
    }

    public override void OnResultExecuted(ResultExecutedContext context)
    {
    }
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class DisableFormValueModelBindingAttribute : Attribute, IResourceFilter
{
    public void OnResourceExecuting(ResourceExecutingContext context)
    {
        var factories = context.ValueProviderFactories;
        factories.RemoveType<FormValueProviderFactory>();
        factories.RemoveType<FormFileValueProviderFactory>();
        factories.RemoveType<JQueryFormValueProviderFactory>();
    }

    public void OnResourceExecuted(ResourceExecutedContext context)
    {
    }
}

The following example demonstrates how to use JavaScript to stream a file to a controller action. The file's

antiforgery token is generated using a custom filter attribute and passed to the client HTTP headers instead of in

the request body. Because the action method processes the uploaded data directly, form model binding is disabled

by another custom filter. Within the action, the form's contents are read using a MultipartReader , which reads each

individual MultipartSection , processing the file or storing the contents as appropriate. After the multipart sections

are read, the action performs its own model binding.

The initial page response loads the form and saves an antiforgery token in a cookie (via the 

GenerateAntiforgeryTokenCookieAttribute  attribute). The attribute uses ASP.NET Core's built-in antiforgery support

to set a cookie with a request token:

The DisableFormValueModelBindingAttribute  is used to disable model binding:

In the sample app, GenerateAntiforgeryTokenCookieAttribute  and DisableFormValueModelBindingAttribute  are

applied as filters to the page application models of /StreamedSingleFileUploadDb  and 

/StreamedSingleFileUploadPhysical  in Startup.ConfigureServices  using Razor Pages conventions:



services.AddRazorPages(options =>
{
    options.Conventions
        .AddPageApplicationModelConvention("/StreamedSingleFileUploadDb",
            model =>
            {
                model.Filters.Add(
                    new GenerateAntiforgeryTokenCookieAttribute());
                model.Filters.Add(
                    new DisableFormValueModelBindingAttribute());
            });
    options.Conventions
        .AddPageApplicationModelConvention("/StreamedSingleFileUploadPhysical",
            model =>
            {
                model.Filters.Add(
                    new GenerateAntiforgeryTokenCookieAttribute());
                model.Filters.Add(
                    new DisableFormValueModelBindingAttribute());
            });
});

[HttpPost]
[DisableFormValueModelBinding]
[ValidateAntiForgeryToken]
public async Task<IActionResult> UploadDatabase()
{
    if (!MultipartRequestHelper.IsMultipartContentType(Request.ContentType))
    {
        ModelState.AddModelError("File", 
            $"The request couldn't be processed (Error 1).");
        // Log error

        return BadRequest(ModelState);
    }

    // Accumulate the form data key-value pairs in the request (formAccumulator).
    var formAccumulator = new KeyValueAccumulator();
    var trustedFileNameForDisplay = string.Empty;
    var untrustedFileNameForStorage = string.Empty;
    var streamedFileContent = new byte[0];

    var boundary = MultipartRequestHelper.GetBoundary(
        MediaTypeHeaderValue.Parse(Request.ContentType),
        _defaultFormOptions.MultipartBoundaryLengthLimit);
    var reader = new MultipartReader(boundary, HttpContext.Request.Body);

    var section = await reader.ReadNextSectionAsync();

    while (section != null)
    {
        var hasContentDispositionHeader = 
            ContentDispositionHeaderValue.TryParse(
                section.ContentDisposition, out var contentDisposition);

        if (hasContentDispositionHeader)
        {
            if (MultipartRequestHelper

Since model binding doesn't read the form, parameters that are bound from the form don't bind (query, route, and

header continue to work). The action method works directly with the Request  property. A MultipartReader  is used

to read each section. Key/value data is stored in a KeyValueAccumulator . After the multipart sections are read, the

contents of the KeyValueAccumulator  are used to bind the form data to a model type.

The complete StreamingController.UploadDatabase  method for streaming to a database with EF Core:



            if (MultipartRequestHelper
                .HasFileContentDisposition(contentDisposition))
            {
                untrustedFileNameForStorage = contentDisposition.FileName.Value;
                // Don't trust the file name sent by the client. To display
                // the file name, HTML-encode the value.
                trustedFileNameForDisplay = WebUtility.HtmlEncode(
                        contentDisposition.FileName.Value);

                streamedFileContent = 
                    await FileHelpers.ProcessStreamedFile(section, contentDisposition, 
                        ModelState, _permittedExtensions, _fileSizeLimit);

                if (!ModelState.IsValid)
                {
                    return BadRequest(ModelState);
                }
            }
            else if (MultipartRequestHelper
                .HasFormDataContentDisposition(contentDisposition))
            {
                // Don't limit the key name length because the 
                // multipart headers length limit is already in effect.
                var key = HeaderUtilities
                    .RemoveQuotes(contentDisposition.Name).Value;
                var encoding = GetEncoding(section);

                if (encoding == null)
                {
                    ModelState.AddModelError("File", 
                        $"The request couldn't be processed (Error 2).");
                    // Log error

                    return BadRequest(ModelState);
                }

                using (var streamReader = new StreamReader(
                    section.Body,
                    encoding,
                    detectEncodingFromByteOrderMarks: true,
                    bufferSize: 1024,
                    leaveOpen: true))
                {
                    // The value length limit is enforced by 
                    // MultipartBodyLengthLimit
                    var value = await streamReader.ReadToEndAsync();

                    if (string.Equals(value, "undefined", 
                        StringComparison.OrdinalIgnoreCase))
                    {
                        value = string.Empty;
                    }

                    formAccumulator.Append(key, value);

                    if (formAccumulator.ValueCount > 
                        _defaultFormOptions.ValueCountLimit)
                    {
                        // Form key count limit of 
                        // _defaultFormOptions.ValueCountLimit 
                        // is exceeded.
                        ModelState.AddModelError("File", 
                            $"The request couldn't be processed (Error 3).");
                        // Log error

                        return BadRequest(ModelState);
                    }
                }
            }
        }



        }

        // Drain any remaining section body that hasn't been consumed and
        // read the headers for the next section.
        section = await reader.ReadNextSectionAsync();
    }

    // Bind form data to the model
    var formData = new FormData();
    var formValueProvider = new FormValueProvider(
        BindingSource.Form,
        new FormCollection(formAccumulator.GetResults()),
        CultureInfo.CurrentCulture);
    var bindingSuccessful = await TryUpdateModelAsync(formData, prefix: "",
        valueProvider: formValueProvider);

    if (!bindingSuccessful)
    {
        ModelState.AddModelError("File", 
            "The request couldn't be processed (Error 5).");
        // Log error

        return BadRequest(ModelState);
    }

    // **WARNING!**
    // In the following example, the file is saved without
    // scanning the file's contents. In most production
    // scenarios, an anti-virus/anti-malware scanner API
    // is used on the file before making the file available
    // for download or for use by other systems. 
    // For more information, see the topic that accompanies 
    // this sample app.

    var file = new AppFile()
    {
        Content = streamedFileContent,
        UntrustedName = untrustedFileNameForStorage,
        Note = formData.Note,
        Size = streamedFileContent.Length, 
        UploadDT = DateTime.UtcNow
    };

    _context.File.Add(file);
    await _context.SaveChangesAsync();

    return Created(nameof(StreamingController), null);
}

MultipartRequestHelper  (Utilities/MultipartRequestHelper.cs):



using System;
using System.IO;
using Microsoft.Net.Http.Headers;

namespace SampleApp.Utilities
{
    public static class MultipartRequestHelper
    {
        // Content-Type: multipart/form-data; boundary="----WebKitFormBoundarymx2fSWqWSd0OxQqq"
        // The spec at https://tools.ietf.org/html/rfc2046#section-5.1 states that 70 characters is a 
reasonable limit.
        public static string GetBoundary(MediaTypeHeaderValue contentType, int lengthLimit)
        {
            var boundary = HeaderUtilities.RemoveQuotes(contentType.Boundary).Value;

            if (string.IsNullOrWhiteSpace(boundary))
            {
                throw new InvalidDataException("Missing content-type boundary.");
            }

            if (boundary.Length > lengthLimit)
            {
                throw new InvalidDataException(
                    $"Multipart boundary length limit {lengthLimit} exceeded.");
            }

            return boundary;
        }

        public static bool IsMultipartContentType(string contentType)
        {
            return !string.IsNullOrEmpty(contentType)
                   && contentType.IndexOf("multipart/", StringComparison.OrdinalIgnoreCase) >= 0;
        }

        public static bool HasFormDataContentDisposition(ContentDispositionHeaderValue contentDisposition)
        {
            // Content-Disposition: form-data; name="key";
            return contentDisposition != null
                && contentDisposition.DispositionType.Equals("form-data")
                && string.IsNullOrEmpty(contentDisposition.FileName.Value)
                && string.IsNullOrEmpty(contentDisposition.FileNameStar.Value);
        }

        public static bool HasFileContentDisposition(ContentDispositionHeaderValue contentDisposition)
        {
            // Content-Disposition: form-data; name="myfile1"; filename="Misc 002.jpg"
            return contentDisposition != null
                && contentDisposition.DispositionType.Equals("form-data")
                && (!string.IsNullOrEmpty(contentDisposition.FileName.Value)
                    || !string.IsNullOrEmpty(contentDisposition.FileNameStar.Value));
        }
    }
}

[HttpPost]
[DisableFormValueModelBinding]
[ValidateAntiForgeryToken]
public async Task<IActionResult> UploadPhysical()
{
    if (!MultipartRequestHelper.IsMultipartContentType(Request.ContentType))
    {
        ModelState.AddModelError("File", 
            $"The request couldn't be processed (Error 1).");

The complete StreamingController.UploadPhysical  method for streaming to a physical location:



        // Log error

        return BadRequest(ModelState);
    }

    var boundary = MultipartRequestHelper.GetBoundary(
        MediaTypeHeaderValue.Parse(Request.ContentType),
        _defaultFormOptions.MultipartBoundaryLengthLimit);
    var reader = new MultipartReader(boundary, HttpContext.Request.Body);
    var section = await reader.ReadNextSectionAsync();

    while (section != null)
    {
        var hasContentDispositionHeader = 
            ContentDispositionHeaderValue.TryParse(
                section.ContentDisposition, out var contentDisposition);

        if (hasContentDispositionHeader)
        {
            // This check assumes that there's a file
            // present without form data. If form data
            // is present, this method immediately fails
            // and returns the model error.
            if (!MultipartRequestHelper
                .HasFileContentDisposition(contentDisposition))
            {
                ModelState.AddModelError("File", 
                    $"The request couldn't be processed (Error 2).");
                // Log error

                return BadRequest(ModelState);
            }
            else
            {
                // Don't trust the file name sent by the client. To display
                // the file name, HTML-encode the value.
                var trustedFileNameForDisplay = WebUtility.HtmlEncode(
                        contentDisposition.FileName.Value);
                var trustedFileNameForFileStorage = Path.GetRandomFileName();

                // **WARNING!**
                // In the following example, the file is saved without
                // scanning the file's contents. In most production
                // scenarios, an anti-virus/anti-malware scanner API
                // is used on the file before making the file available
                // for download or for use by other systems. 
                // For more information, see the topic that accompanies 
                // this sample.

                var streamedFileContent = await FileHelpers.ProcessStreamedFile(
                    section, contentDisposition, ModelState, 
                    _permittedExtensions, _fileSizeLimit);

                if (!ModelState.IsValid)
                {
                    return BadRequest(ModelState);
                }

                using (var targetStream = System.IO.File.Create(
                    Path.Combine(_targetFilePath, trustedFileNameForFileStorage)))
                {
                    await targetStream.WriteAsync(streamedFileContent);

                    _logger.LogInformation(
                        "Uploaded file '{TrustedFileNameForDisplay}' saved to " +
                        "'{TargetFilePath}' as {TrustedFileNameForFileStorage}", 
                        trustedFileNameForDisplay, _targetFilePath, 
                        trustedFileNameForFileStorage);
                }



         

                }
            }
        }

        // Drain any remaining section body that hasn't been consumed and
        // read the headers for the next section.
        section = await reader.ReadNextSectionAsync();
    }

    return Created(nameof(StreamingController), null);
}

Validation

WARNINGWARNING

Content validationContent validation

File extension validationFile extension validation

private string[] permittedExtensions = { ".txt", ".pdf" };

var ext = Path.GetExtension(uploadedFileName).ToLowerInvariant();

if (string.IsNullOrEmpty(ext) || !permittedExtensions.Contains(ext))
{
    // The extension is invalid ... discontinue processing the file
}

File signature validationFile signature validation

In the sample app, validation checks are handled by FileHelpers.ProcessStreamedFile .

The sample app's FileHelpers  class demonstrates a several checks for buffered IFormFile and streamed file

uploads. For processing IFormFile buffered file uploads in the sample app, see the ProcessFormFile  method in the

Utilities/FileHelpers.cs file. For processing streamed files, see the ProcessStreamedFile  method in the same file.

The validation processing methods demonstrated in the sample app don't scan the content of uploaded files. In most

production scenarios, a virus/malware scanner API is used on the file before making the file available to users or other

systems.

Although the topic sample provides a working example of validation techniques, don't implement the FileHelpers  class in a

production app unless you:

Fully understand the implementation.

Modify the implementation as appropriate for the app's environment and specifications.

Never indiscriminately implement security code in an app without addressing these requirements.Never indiscriminately implement security code in an app without addressing these requirements.

Use a third par ty virus/malware scanning API on uploaded content.Use a third par ty virus/malware scanning API on uploaded content.

Scanning files is demanding on server resources in high volume scenarios. If request processing performance is

diminished due to file scanning, consider offloading the scanning work to a background service, possibly a service

running on a server different from the app's server. Typically, uploaded files are held in a quarantined area until the

background virus scanner checks them. When a file passes, the file is moved to the normal file storage location.

These steps are usually performed in conjunction with a database record that indicates the scanning status of a file.

By using such an approach, the app and app server remain focused on responding to requests.

The uploaded file's extension should be checked against a list of permitted extensions. For example:

A file's signature is determined by the first few bytes at the start of a file. These bytes can be used to indicate if the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile


private static readonly Dictionary<string, List<byte[]>> _fileSignature = 
    new Dictionary<string, List<byte[]>>
{
    { ".jpeg", new List<byte[]>
        {
            new byte[] { 0xFF, 0xD8, 0xFF, 0xE0 },
            new byte[] { 0xFF, 0xD8, 0xFF, 0xE2 },
            new byte[] { 0xFF, 0xD8, 0xFF, 0xE3 },
        }
    },
};

using (var reader = new BinaryReader(uploadedFileData))
{
    var signatures = _fileSignature[ext];
    var headerBytes = reader.ReadBytes(signatures.Max(m => m.Length));

    return signatures.Any(signature => 
        headerBytes.Take(signature.Length).SequenceEqual(signature));
}

File name securityFile name security

@foreach (var file in Model.DatabaseFiles) {
    <tr>
        <td>
            @file.UntrustedName
        </td>
    </tr>
}

Size validationSize validation

{
  "FileSizeLimit": 2097152
}

extension matches the content of the file. The sample app checks file signatures for a few common file types. In the

following example, the file signature for a JPEG image is checked against the file:

To obtain additional file signatures, see the File Signatures Database and official file specifications.

Never use a client-supplied file name for saving a file to physical storage. Create a safe file name for the file using

Path.GetRandomFileName or Path.GetTempFileName to create a full path (including the file name) for temporary

storage.

Razor automatically HTML encodes property values for display. The following code is safe to use:

Outside of Razor, always HtmlEncode file name content from a user's request.

Many implementations must include a check that the file exists; otherwise, the file is overwritten by a file of the

same name. Supply additional logic to meet your app's specifications.

Limit the size of uploaded files.

In the sample app, the size of the file is limited to 2 MB (indicated in bytes). The limit is supplied via Configuration

from the appsettings.json file:

The FileSizeLimit  is injected into PageModel  classes:

https://www.filesignatures.net/
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getrandomfilename
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename
https://docs.microsoft.com/en-us/dotnet/api/system.net.webutility.htmlencode


            

public class BufferedSingleFileUploadPhysicalModel : PageModel
{
    private readonly long _fileSizeLimit;

    public BufferedSingleFileUploadPhysicalModel(IConfiguration config)
    {
        _fileSizeLimit = config.GetValue<long>("FileSizeLimit");
    }

    ...
}

if (formFile.Length > _fileSizeLimit)
{
    // The file is too large ... discontinue processing the file
}

Match name attribute value to parameter name of POST methodMatch name attribute value to parameter name of POST method

Server and app configuration
Multipart body length limitMultipart body length limit

When a file size exceeds the limit, the file is rejected:

In non-Razor forms that POST form data or use JavaScript's FormData  directly, the name specified in the form's

element or FormData  must match the name of the parameter in the controller's action.

In the following example:

<input type="file" name="battlePlans" multiple>

var formData = new FormData();

for (var file in files) {
  formData.append("battlePlans", file, file.name);
}

When using an <input>  element, the name  attribute is set to the value battlePlans :

When using FormData  in JavaScript, the name is set to the value battlePlans :

Use a matching name for the parameter of the C# method ( battlePlans ):

public async Task<IActionResult> OnPostUploadAsync(List<IFormFile> battlePlans)

public async Task<IActionResult> Post(List<IFormFile> battlePlans)

For a Razor Pages page handler method named Upload :

For an MVC POST controller action method:

MultipartBodyLengthLimit sets the limit for the length of each multipart body. Form sections that exceed this limit

throw an InvalidDataException when parsed. The default is 134,217,728 (128 MB). Customize the limit using the

MultipartBodyLengthLimit setting in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.formoptions.multipartbodylengthlimit#microsoft_aspnetcore_http_features_formoptions_multipartbodylengthlimit
https://docs.microsoft.com/en-us/dotnet/api/system.io.invaliddataexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.formoptions.multipartbodylengthlimit#microsoft_aspnetcore_http_features_formoptions_multipartbodylengthlimit


      

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<FormOptions>(options =>
    {
        // Set the limit to 256 MB
        options.MultipartBodyLengthLimit = 268435456;
    });
}

services.AddRazorPages(options =>
{
    options.Conventions
        .AddPageApplicationModelConvention("/FileUploadPage",
            model.Filters.Add(
                new RequestFormLimitsAttribute()
                {
                    // Set the limit to 256 MB
                    MultipartBodyLengthLimit = 268435456
                });
});

// Set the limit to 256 MB
[RequestFormLimits(MultipartBodyLengthLimit = 268435456)]
public class BufferedSingleFileUploadPhysicalModel : PageModel
{
    ...
}

Kestrel maximum request body sizeKestrel maximum request body size

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.ConfigureKestrel((context, options) =>
            {
                // Handle requests up to 50 MB
                options.Limits.MaxRequestBodySize = 52428800;
            })
            .UseStartup<Startup>();
        });

RequestFormLimitsAttribute is used to set the MultipartBodyLengthLimit for a single page or action.

In a Razor Pages app, apply the filter with a convention in Startup.ConfigureServices :

In a Razor Pages app or an MVC app, apply the filter to the page model or action method:

For apps hosted by Kestrel, the default maximum request body size is 30,000,000 bytes, which is approximately

28.6 MB. Customize the limit using the MaxRequestBodySize Kestrel server option:

RequestSizeLimitAttribute is used to set the MaxRequestBodySize for a single page or action.

In a Razor Pages app, apply the filter with a convention in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestformlimitsattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.formoptions.multipartbodylengthlimit#microsoft_aspnetcore_http_features_formoptions_multipartbodylengthlimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute


      

services.AddRazorPages(options =>
{
    options.Conventions
        .AddPageApplicationModelConvention("/FileUploadPage",
            model =>
            {
                // Handle requests up to 50 MB
                model.Filters.Add(
                    new RequestSizeLimitAttribute(52428800));
            });
});

// Handle requests up to 50 MB
[RequestSizeLimit(52428800)]
public class BufferedSingleFileUploadPhysicalModel : PageModel
{
    ...
}

@attribute [RequestSizeLimitAttribute(52428800)]

Other Kestrel limitsOther Kestrel limits

IISIIS

<system.webServer>
  <security>
    <requestFiltering>
      <requestLimits maxAllowedContentLength="52428800" />
    </requestFiltering>
  </security>
</system.webServer>

Troubleshoot

Not Found error when deployed to an IIS serverNot Found error when deployed to an IIS server

HTTP 404.13 - Not Found
The request filtering module is configured to deny a request that exceeds the request content length.

In a Razor pages app or an MVC app, apply the filter to the page handler class or action method:

The RequestSizeLimitAttribute  can also be applied using the @attribute  Razor directive:

Other Kestrel limits may apply for apps hosted by Kestrel:

Maximum client connections

Request and response data rates

The default request limit ( maxAllowedContentLength ) is 30,000,000 bytes, which is approximately 28.6 MB.

Customize the limit in the web.config  file. In the following example, the limit is set to 50 MB (52,428,800 bytes):

The maxAllowedContentLength  setting only applies to IIS. For more information, see Request Limits <requestLimits> .

Below are some common problems encountered when working with uploading files and their possible solutions.

The following error indicates that the uploaded file exceeds the server's configured content length:

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/requestfiltering/requestlimits/


Connection failureConnection failure

Null Reference Exception with IFormFileNull Reference Exception with IFormFile

Stream was too longStream was too long

Security considerations

For more information, see the IIS section.

A connection error and a reset server connection probably indicates that the uploaded file exceeds Kestrel's

maximum request body size. For more information, see the Kestrel maximum request body size section. Kestrel

client connection limits may also require adjustment.

If the controller is accepting uploaded files using IFormFile but the value is null , confirm that the HTML form is

specifying an enctype  value of multipart/form-data . If this attribute isn't set on the <form>  element, the file

upload doesn't occur and any bound IFormFile arguments are null . Also confirm that the upload naming in form

data matches the app's naming.

The examples in this topic rely upon MemoryStream to hold the uploaded file's content. The size limit of a 

MemoryStream  is int.MaxValue . If the app's file upload scenario requires holding file content larger than 50 MB, use

an alternative approach that doesn't rely upon a single MemoryStream  for holding an uploaded file's content.

ASP.NET Core supports uploading one or more files using buffered model binding for smaller files and unbuffered

streaming for larger files.

View or download sample code (how to download)

Use caution when providing users with the ability to upload files to a server. Attackers may attempt to:

Execute denial of service attacks.

Upload viruses or malware.

Compromise networks and servers in other ways.

Security steps that reduce the likelihood of a successful attack are:

Upload files to a dedicated file upload area, preferably to a non-system drive. A dedicated location makes it

easier to impose security restrictions on uploaded files. Disable execute permissions on the file upload location.†

Do notnot persist uploaded files in the same directory tree as the app.†

Use a safe file name determined by the app. Don't use a file name provided by the user or the untrusted file

name of the uploaded file.† HTML encode the untrusted file name when displaying it. For example, logging the

file name or displaying in UI (Razor automatically HTML encodes output).

Allow only approved file extensions for the app's design specification.†

Verify that client-side checks are performed on the server.† Client-side checks are easy to circumvent.

Check the size of an uploaded file. Set a maximum size limit to prevent large uploads.†

When files shouldn't be overwritten by an uploaded file with the same name, check the file name against the

database or physical storage before uploading the file.

Run a virus/malware scanner on uploaded content before the file is stored.Run a virus/malware scanner on uploaded content before the file is stored.

†The sample app demonstrates an approach that meets the criteria.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.io.memorystream
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/file-uploads/samples/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/denial-of-service


WARNINGWARNING

Storage scenarios

File upload scenarios

Uploading malicious code to a system is frequently the first step to executing code that can:

Completely gain control of a system.

Overload a system with the result that the system crashes.

Compromise user or system data.

Apply graffiti to a public UI.

For information on reducing the attack surface area when accepting files from users, see the following resources:

Unrestricted File Upload

Azure Security: Ensure appropriate controls are in place when accepting files from users

For more information on implementing security measures, including examples from the sample app, see the

Validation section.

Common storage options for files include:

Database

For small file uploads, a database is often faster than physical storage (file system or network share)

options.

A database is often more convenient than physical storage options because retrieval of a database record

for user data can concurrently supply the file content (for example, an avatar image).

A database is potentially less expensive than using a data storage service.

Physical storage (file system or network share)

For large file uploads:

Physical storage is potentially less expensive than using a data storage service.

The app's process must have read and write permissions to the storage location. Never grant executeNever grant execute

permission.permission.

Database limits may restrict the size of the upload.

Physical storage is often less economical than storage in a database.

Data storage service (for example, Azure Blob Storage)

Services usually offer improved scalability and resiliency over on-premises solutions that are usually

subject to single points of failure.

Services are potentially lower cost in large storage infrastructure scenarios.

For more information, see Quickstart: Use .NET to create a blob in object storage.

Two general approaches for uploading files are buffering and streaming.

Buffer ingBuffer ing

The entire file is read into an IFormFile, which is a C# representation of the file used to process or save the file.

The resources (disk, memory) used by file uploads depend on the number and size of concurrent file uploads. If an

app attempts to buffer too many uploads, the site crashes when it runs out of memory or disk space. If the size or

frequency of file uploads is exhausting app resources, use streaming.

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool-input-validation#controls-users
https://azure.microsoft.com/services/storage/blobs/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile


NOTENOTE

Upload small files with buffered model binding to physical storageUpload small files with buffered model binding to physical storage

<form enctype="multipart/form-data" method="post">
    <dl>
        <dt>
            <label asp-for="FileUpload.FormFile"></label>
        </dt>
        <dd>
            <input asp-for="FileUpload.FormFile" type="file">
            <span asp-validation-for="FileUpload.FormFile"></span>
        </dd>
    </dl>
    <input asp-page-handler="Upload" class="btn" type="submit" value="Upload" />
</form>

Any single buffered file exceeding 64 KB is moved from memory to a temp file on disk.

Buffering small files is covered in the following sections of this topic:

Physical storage

Database

StreamingStreaming

The file is received from a multipart request and directly processed or saved by the app. Streaming doesn't improve

performance significantly. Streaming reduces the demands for memory or disk space when uploading files.

Streaming large files is covered in the Upload large files with streaming section.

To upload small files, use a multipart form or construct a POST request using JavaScript.

The following example demonstrates the use of a Razor Pages form to upload a single file

(Pages/BufferedSingleFileUploadPhysical.cshtml in the sample app):

The following example is analogous to the prior example except that:

JavaScript's (Fetch API) is used to submit the form's data.

There's no validation.

https://developer.mozilla.org/docs/Web/API/Fetch_API


<form action="BufferedSingleFileUploadPhysical/?handler=Upload" 
      enctype="multipart/form-data" onsubmit="AJAXSubmit(this);return false;" 
      method="post">
    <dl>
        <dt>
            <label for="FileUpload_FormFile">File</label>
        </dt>
        <dd>
            <input id="FileUpload_FormFile" type="file" 
                name="FileUpload.FormFile" />
        </dd>
    </dl>

    <input class="btn" type="submit" value="Upload" />

    <div style="margin-top:15px">
        <output name="result"></output>
    </div>
</form>

<script>
  async function AJAXSubmit (oFormElement) {
    var resultElement = oFormElement.elements.namedItem("result");
    const formData = new FormData(oFormElement);

    try {
    const response = await fetch(oFormElement.action, {
      method: 'POST',
      body: formData
    });

    if (response.ok) {
      window.location.href = '/';
    }

    resultElement.value = 'Result: ' + response.status + ' ' + 
      response.statusText;
    } catch (error) {
      console.error('Error:', error);
    }
  }
</script>

To perform the form POST in JavaScript for clients that don't support the Fetch API, use one of the following

approaches:

<script>
  "use strict";

  function AJAXSubmit (oFormElement) {
    var oReq = new XMLHttpRequest();
    oReq.onload = function(e) { 
    oFormElement.elements.namedItem("result").value = 
      'Result: ' + this.status + ' ' + this.statusText;
    };
    oReq.open("post", oFormElement.action);
    oReq.send(new FormData(oFormElement));
  }
</script>

Use a Fetch Polyfill (for example, window.fetch polyfill (github/fetch)).

Use XMLHttpRequest . For example:

https://caniuse.com/#feat=fetch
https://github.com/github/fetch


<input asp-for="FileUpload.FormFiles" type="file" multiple>

WARNINGWARNING

string untrustedFileName = Path.GetFileName(pathName);

NOTENOTE

In order to support file uploads, HTML forms must specify an encoding type ( enctype ) of multipart/form-data .

For a files  input element to support uploading multiple files provide the multiple  attribute on the <input>

element:

The individual files uploaded to the server can be accessed through Model Binding using IFormFile. The sample app

demonstrates multiple buffered file uploads for database and physical storage scenarios.

 

Do notnot  use the FileName  property of IFormFile other than for display and logging. When displaying or logging, HTML

encode the file name. An attacker can provide a malicious filename, including full paths or relative paths. Applications should:

Remove the path from the user-supplied filename.

Save the HTML-encoded, path-removed filename for UI or logging.

Generate a new random filename for storage.

The following code removes the path from the file name:

The examples provided thus far don't take into account security considerations. Additional information is provided by the

following sections and the sample app:

Security considerations

Validation

When uploading files using model binding and IFormFile, the action method can accept:

A single IFormFile.

Any of the following collections that represent several files:

IFormFileCollection

IEnumerable<IFormFile>

List<IFormFile>

Binding matches form files by name. For example, the HTML name  value in <input type="file" name="formFile">  must

match the C# parameter/property bound ( FormFile ). For more information, see the Match name attribute value to

parameter name of POST method section.

The following example:

Loops through one or more uploaded files.

Uses Path.GetTempFileName to return a full path for a file, including the file name.

Saves the files to the local file system using a file name generated by the app.

Returns the total number and size of files uploaded.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/file-uploads/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfilecollection
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename


public async Task<IActionResult> OnPostUploadAsync(List<IFormFile> files)
{
    long size = files.Sum(f => f.Length);

    foreach (var formFile in files)
    {
        if (formFile.Length > 0)
        {
            var filePath = Path.GetTempFileName();

            using (var stream = System.IO.File.Create(filePath))
            {
                await formFile.CopyToAsync(stream);
            }
        }
    }

    // Process uploaded files
    // Don't rely on or trust the FileName property without validation.

    return Ok(new { count = files.Count, size });
}

foreach (var formFile in files)
{
    if (formFile.Length > 0)
    {
        var filePath = Path.Combine(_config["StoredFilesPath"], 
            Path.GetRandomFileName());

        using (var stream = System.IO.File.Create(filePath))
        {
            await formFile.CopyToAsync(stream);
        }
    }
}

WARNINGWARNING

Upload small files with buffered model binding to a databaseUpload small files with buffered model binding to a database

Use Path.GetRandomFileName  to generate a file name without a path. In the following example, the path is obtained

from configuration:

The path passed to the FileStream must include the file name. If the file name isn't provided, an

UnauthorizedAccessException is thrown at runtime.

Files uploaded using the IFormFile technique are buffered in memory or on disk on the server before processing.

Inside the action method, the IFormFile contents are accessible as a Stream. In addition to the local file system, files

can be saved to a network share or to a file storage service, such as Azure Blob storage.

For another example that loops over multiple files for upload and uses safe file names, see

Pages/BufferedMultipleFileUploadPhysical.cshtml.cs in the sample app.

Path.GetTempFileName throws an IOException if more than 65,535 files are created without deleting previous temporary files.

The limit of 65,535 files is a per-server limit. For more information on this limit on Windows OS, see the remarks in the

following topics:

GetTempFileNameA function

GetTempFileName

https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream
https://docs.microsoft.com/en-us/dotnet/api/system.unauthorizedaccessexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream
https://docs.microsoft.com/en-us/azure/visual-studio/vs-storage-aspnet5-getting-started-blobs
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename
https://docs.microsoft.com/en-us/dotnet/api/system.io.ioexception
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-gettempfilenamea#remarks
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename


public class AppFile
{
    public int Id { get; set; }
    public byte[] Content { get; set; }
}

public class BufferedSingleFileUploadDbModel : PageModel
{
    ...

    [BindProperty]
    public BufferedSingleFileUploadDb FileUpload { get; set; }

    ...
}

public class BufferedSingleFileUploadDb
{
    [Required]
    [Display(Name="File")]
    public IFormFile FormFile { get; set; }
}

NOTENOTE

<form enctype="multipart/form-data" method="post">
    <dl>
        <dt>
            <label asp-for="FileUpload.FormFile"></label>
        </dt>
        <dd>
            <input asp-for="FileUpload.FormFile" type="file">
        </dd>
    </dl>
    <input asp-page-handler="Upload" class="btn" type="submit" value="Upload">
</form>

To store binary file data in a database using Entity Framework, define a Byte array property on the entity:

Specify a page model property for the class that includes an IFormFile:

IFormFile can be used directly as an action method parameter or as a bound model property. The prior example uses a bound

model property.

The FileUpload  is used in the Razor Pages form:

When the form is POSTed to the server, copy the IFormFile to a stream and save it as a byte array in the database. In

the following example, _dbContext  stores the app's database context:

https://docs.microsoft.com/en-us/ef/core/index
https://docs.microsoft.com/en-us/dotnet/api/system.byte
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile


public async Task<IActionResult> OnPostUploadAsync()
{
    using (var memoryStream = new MemoryStream())
    {
        await FileUpload.FormFile.CopyToAsync(memoryStream);

        // Upload the file if less than 2 MB
        if (memoryStream.Length < 2097152)
        {
            var file = new AppFile()
            {
                Content = memoryStream.ToArray()
            };

            _dbContext.File.Add(file);

            await _dbContext.SaveChangesAsync();
        }
        else
        {
            ModelState.AddModelError("File", "The file is too large.");
        }
    }

    return Page();
}

WARNINGWARNING

Upload large files with streamingUpload large files with streaming

The preceding example is similar to a scenario demonstrated in the sample app:

Pages/BufferedSingleFileUploadDb.cshtml

Pages/BufferedSingleFileUploadDb.cshtml.cs

Use caution when storing binary data in relational databases, as it can adversely impact performance.

Don't rely on or trust the FileName  property of IFormFile without validation. The FileName  property should only be used

for display purposes and only after HTML encoding.

The examples provided don't take into account security considerations. Additional information is provided by the following

sections and the sample app:

Security considerations

Validation

The following example demonstrates how to use JavaScript to stream a file to a controller action. The file's

antiforgery token is generated using a custom filter attribute and passed to the client HTTP headers instead of in

the request body. Because the action method processes the uploaded data directly, form model binding is disabled

by another custom filter. Within the action, the form's contents are read using a MultipartReader , which reads each

individual MultipartSection , processing the file or storing the contents as appropriate. After the multipart sections

are read, the action performs its own model binding.

The initial page response loads the form and saves an antiforgery token in a cookie (via the 

GenerateAntiforgeryTokenCookieAttribute  attribute). The attribute uses ASP.NET Core's built-in antiforgery support

to set a cookie with a request token:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/file-uploads/samples/


public class GenerateAntiforgeryTokenCookieAttribute : ResultFilterAttribute
{
    public override void OnResultExecuting(ResultExecutingContext context)
    {
        var antiforgery = context.HttpContext.RequestServices.GetService<IAntiforgery>();

        // Send the request token as a JavaScript-readable cookie
        var tokens = antiforgery.GetAndStoreTokens(context.HttpContext);

        context.HttpContext.Response.Cookies.Append(
            "RequestVerificationToken",
            tokens.RequestToken,
            new CookieOptions() { HttpOnly = false });
    }

    public override void OnResultExecuted(ResultExecutedContext context)
    {
    }
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class DisableFormValueModelBindingAttribute : Attribute, IResourceFilter
{
    public void OnResourceExecuting(ResourceExecutingContext context)
    {
        var factories = context.ValueProviderFactories;
        factories.RemoveType<FormValueProviderFactory>();
        factories.RemoveType<FormFileValueProviderFactory>();
        factories.RemoveType<JQueryFormValueProviderFactory>();
    }

    public void OnResourceExecuted(ResourceExecutedContext context)
    {
    }
}

The DisableFormValueModelBindingAttribute  is used to disable model binding:

In the sample app, GenerateAntiforgeryTokenCookieAttribute  and DisableFormValueModelBindingAttribute  are

applied as filters to the page application models of /StreamedSingleFileUploadDb  and 

/StreamedSingleFileUploadPhysical  in Startup.ConfigureServices  using Razor Pages conventions:



services.AddRazorPages(options =>
{
    options.Conventions
        .AddPageApplicationModelConvention("/StreamedSingleFileUploadDb",
            model =>
            {
                model.Filters.Add(
                    new GenerateAntiforgeryTokenCookieAttribute());
                model.Filters.Add(
                    new DisableFormValueModelBindingAttribute());
            });
    options.Conventions
        .AddPageApplicationModelConvention("/StreamedSingleFileUploadPhysical",
            model =>
            {
                model.Filters.Add(
                    new GenerateAntiforgeryTokenCookieAttribute());
                model.Filters.Add(
                    new DisableFormValueModelBindingAttribute());
            });
});

[HttpPost]
[DisableFormValueModelBinding]
[ValidateAntiForgeryToken]
public async Task<IActionResult> UploadDatabase()
{
    if (!MultipartRequestHelper.IsMultipartContentType(Request.ContentType))
    {
        ModelState.AddModelError("File", 
            $"The request couldn't be processed (Error 1).");
        // Log error

        return BadRequest(ModelState);
    }

    // Accumulate the form data key-value pairs in the request (formAccumulator).
    var formAccumulator = new KeyValueAccumulator();
    var trustedFileNameForDisplay = string.Empty;
    var untrustedFileNameForStorage = string.Empty;
    var streamedFileContent = new byte[0];

    var boundary = MultipartRequestHelper.GetBoundary(
        MediaTypeHeaderValue.Parse(Request.ContentType),
        _defaultFormOptions.MultipartBoundaryLengthLimit);
    var reader = new MultipartReader(boundary, HttpContext.Request.Body);

    var section = await reader.ReadNextSectionAsync();

    while (section != null)
    {
        var hasContentDispositionHeader = 
            ContentDispositionHeaderValue.TryParse(
                section.ContentDisposition, out var contentDisposition);

        if (hasContentDispositionHeader)
        {
            if (MultipartRequestHelper

Since model binding doesn't read the form, parameters that are bound from the form don't bind (query, route, and

header continue to work). The action method works directly with the Request  property. A MultipartReader  is used

to read each section. Key/value data is stored in a KeyValueAccumulator . After the multipart sections are read, the

contents of the KeyValueAccumulator  are used to bind the form data to a model type.

The complete StreamingController.UploadDatabase  method for streaming to a database with EF Core:



            if (MultipartRequestHelper
                .HasFileContentDisposition(contentDisposition))
            {
                untrustedFileNameForStorage = contentDisposition.FileName.Value;
                // Don't trust the file name sent by the client. To display
                // the file name, HTML-encode the value.
                trustedFileNameForDisplay = WebUtility.HtmlEncode(
                        contentDisposition.FileName.Value);

                streamedFileContent = 
                    await FileHelpers.ProcessStreamedFile(section, contentDisposition, 
                        ModelState, _permittedExtensions, _fileSizeLimit);

                if (!ModelState.IsValid)
                {
                    return BadRequest(ModelState);
                }
            }
            else if (MultipartRequestHelper
                .HasFormDataContentDisposition(contentDisposition))
            {
                // Don't limit the key name length because the 
                // multipart headers length limit is already in effect.
                var key = HeaderUtilities
                    .RemoveQuotes(contentDisposition.Name).Value;
                var encoding = GetEncoding(section);

                if (encoding == null)
                {
                    ModelState.AddModelError("File", 
                        $"The request couldn't be processed (Error 2).");
                    // Log error

                    return BadRequest(ModelState);
                }

                using (var streamReader = new StreamReader(
                    section.Body,
                    encoding,
                    detectEncodingFromByteOrderMarks: true,
                    bufferSize: 1024,
                    leaveOpen: true))
                {
                    // The value length limit is enforced by 
                    // MultipartBodyLengthLimit
                    var value = await streamReader.ReadToEndAsync();

                    if (string.Equals(value, "undefined", 
                        StringComparison.OrdinalIgnoreCase))
                    {
                        value = string.Empty;
                    }

                    formAccumulator.Append(key, value);

                    if (formAccumulator.ValueCount > 
                        _defaultFormOptions.ValueCountLimit)
                    {
                        // Form key count limit of 
                        // _defaultFormOptions.ValueCountLimit 
                        // is exceeded.
                        ModelState.AddModelError("File", 
                            $"The request couldn't be processed (Error 3).");
                        // Log error

                        return BadRequest(ModelState);
                    }
                }
            }
        }



        }

        // Drain any remaining section body that hasn't been consumed and
        // read the headers for the next section.
        section = await reader.ReadNextSectionAsync();
    }

    // Bind form data to the model
    var formData = new FormData();
    var formValueProvider = new FormValueProvider(
        BindingSource.Form,
        new FormCollection(formAccumulator.GetResults()),
        CultureInfo.CurrentCulture);
    var bindingSuccessful = await TryUpdateModelAsync(formData, prefix: "",
        valueProvider: formValueProvider);

    if (!bindingSuccessful)
    {
        ModelState.AddModelError("File", 
            "The request couldn't be processed (Error 5).");
        // Log error

        return BadRequest(ModelState);
    }

    // **WARNING!**
    // In the following example, the file is saved without
    // scanning the file's contents. In most production
    // scenarios, an anti-virus/anti-malware scanner API
    // is used on the file before making the file available
    // for download or for use by other systems. 
    // For more information, see the topic that accompanies 
    // this sample app.

    var file = new AppFile()
    {
        Content = streamedFileContent,
        UntrustedName = untrustedFileNameForStorage,
        Note = formData.Note,
        Size = streamedFileContent.Length, 
        UploadDT = DateTime.UtcNow
    };

    _context.File.Add(file);
    await _context.SaveChangesAsync();

    return Created(nameof(StreamingController), null);
}

MultipartRequestHelper  (Utilities/MultipartRequestHelper.cs):



using System;
using System.IO;
using Microsoft.Net.Http.Headers;

namespace SampleApp.Utilities
{
    public static class MultipartRequestHelper
    {
        // Content-Type: multipart/form-data; boundary="----WebKitFormBoundarymx2fSWqWSd0OxQqq"
        // The spec at https://tools.ietf.org/html/rfc2046#section-5.1 states that 70 characters is a 
reasonable limit.
        public static string GetBoundary(MediaTypeHeaderValue contentType, int lengthLimit)
        {
            var boundary = HeaderUtilities.RemoveQuotes(contentType.Boundary).Value;

            if (string.IsNullOrWhiteSpace(boundary))
            {
                throw new InvalidDataException("Missing content-type boundary.");
            }

            if (boundary.Length > lengthLimit)
            {
                throw new InvalidDataException(
                    $"Multipart boundary length limit {lengthLimit} exceeded.");
            }

            return boundary;
        }

        public static bool IsMultipartContentType(string contentType)
        {
            return !string.IsNullOrEmpty(contentType)
                   && contentType.IndexOf("multipart/", StringComparison.OrdinalIgnoreCase) >= 0;
        }

        public static bool HasFormDataContentDisposition(ContentDispositionHeaderValue contentDisposition)
        {
            // Content-Disposition: form-data; name="key";
            return contentDisposition != null
                && contentDisposition.DispositionType.Equals("form-data")
                && string.IsNullOrEmpty(contentDisposition.FileName.Value)
                && string.IsNullOrEmpty(contentDisposition.FileNameStar.Value);
        }

        public static bool HasFileContentDisposition(ContentDispositionHeaderValue contentDisposition)
        {
            // Content-Disposition: form-data; name="myfile1"; filename="Misc 002.jpg"
            return contentDisposition != null
                && contentDisposition.DispositionType.Equals("form-data")
                && (!string.IsNullOrEmpty(contentDisposition.FileName.Value)
                    || !string.IsNullOrEmpty(contentDisposition.FileNameStar.Value));
        }
    }
}

[HttpPost]
[DisableFormValueModelBinding]
[ValidateAntiForgeryToken]
public async Task<IActionResult> UploadPhysical()
{
    if (!MultipartRequestHelper.IsMultipartContentType(Request.ContentType))
    {
        ModelState.AddModelError("File", 
            $"The request couldn't be processed (Error 1).");

The complete StreamingController.UploadPhysical  method for streaming to a physical location:



        // Log error

        return BadRequest(ModelState);
    }

    var boundary = MultipartRequestHelper.GetBoundary(
        MediaTypeHeaderValue.Parse(Request.ContentType),
        _defaultFormOptions.MultipartBoundaryLengthLimit);
    var reader = new MultipartReader(boundary, HttpContext.Request.Body);
    var section = await reader.ReadNextSectionAsync();

    while (section != null)
    {
        var hasContentDispositionHeader = 
            ContentDispositionHeaderValue.TryParse(
                section.ContentDisposition, out var contentDisposition);

        if (hasContentDispositionHeader)
        {
            // This check assumes that there's a file
            // present without form data. If form data
            // is present, this method immediately fails
            // and returns the model error.
            if (!MultipartRequestHelper
                .HasFileContentDisposition(contentDisposition))
            {
                ModelState.AddModelError("File", 
                    $"The request couldn't be processed (Error 2).");
                // Log error

                return BadRequest(ModelState);
            }
            else
            {
                // Don't trust the file name sent by the client. To display
                // the file name, HTML-encode the value.
                var trustedFileNameForDisplay = WebUtility.HtmlEncode(
                        contentDisposition.FileName.Value);
                var trustedFileNameForFileStorage = Path.GetRandomFileName();

                // **WARNING!**
                // In the following example, the file is saved without
                // scanning the file's contents. In most production
                // scenarios, an anti-virus/anti-malware scanner API
                // is used on the file before making the file available
                // for download or for use by other systems. 
                // For more information, see the topic that accompanies 
                // this sample.

                var streamedFileContent = await FileHelpers.ProcessStreamedFile(
                    section, contentDisposition, ModelState, 
                    _permittedExtensions, _fileSizeLimit);

                if (!ModelState.IsValid)
                {
                    return BadRequest(ModelState);
                }

                using (var targetStream = System.IO.File.Create(
                    Path.Combine(_targetFilePath, trustedFileNameForFileStorage)))
                {
                    await targetStream.WriteAsync(streamedFileContent);

                    _logger.LogInformation(
                        "Uploaded file '{TrustedFileNameForDisplay}' saved to " +
                        "'{TargetFilePath}' as {TrustedFileNameForFileStorage}", 
                        trustedFileNameForDisplay, _targetFilePath, 
                        trustedFileNameForFileStorage);
                }



                }
            }
        }

        // Drain any remaining section body that hasn't been consumed and
        // read the headers for the next section.
        section = await reader.ReadNextSectionAsync();
    }

    return Created(nameof(StreamingController), null);
}

Validation

WARNINGWARNING

Content validationContent validation

File extension validationFile extension validation

private string[] permittedExtensions = { ".txt", ".pdf" };

var ext = Path.GetExtension(uploadedFileName).ToLowerInvariant();

if (string.IsNullOrEmpty(ext) || !permittedExtensions.Contains(ext))
{
    // The extension is invalid ... discontinue processing the file
}

File signature validationFile signature validation

In the sample app, validation checks are handled by FileHelpers.ProcessStreamedFile .

The sample app's FileHelpers  class demonstrates a several checks for buffered IFormFile and streamed file

uploads. For processing IFormFile buffered file uploads in the sample app, see the ProcessFormFile  method in the

Utilities/FileHelpers.cs file. For processing streamed files, see the ProcessStreamedFile  method in the same file.

The validation processing methods demonstrated in the sample app don't scan the content of uploaded files. In most

production scenarios, a virus/malware scanner API is used on the file before making the file available to users or other

systems.

Although the topic sample provides a working example of validation techniques, don't implement the FileHelpers  class in a

production app unless you:

Fully understand the implementation.

Modify the implementation as appropriate for the app's environment and specifications.

Never indiscriminately implement security code in an app without addressing these requirements.Never indiscriminately implement security code in an app without addressing these requirements.

Use a third par ty virus/malware scanning API on uploaded content.Use a third par ty virus/malware scanning API on uploaded content.

Scanning files is demanding on server resources in high volume scenarios. If request processing performance is

diminished due to file scanning, consider offloading the scanning work to a background service, possibly a service

running on a server different from the app's server. Typically, uploaded files are held in a quarantined area until the

background virus scanner checks them. When a file passes, the file is moved to the normal file storage location.

These steps are usually performed in conjunction with a database record that indicates the scanning status of a file.

By using such an approach, the app and app server remain focused on responding to requests.

The uploaded file's extension should be checked against a list of permitted extensions. For example:

A file's signature is determined by the first few bytes at the start of a file. These bytes can be used to indicate if the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile


private static readonly Dictionary<string, List<byte[]>> _fileSignature = 
    new Dictionary<string, List<byte[]>>
{
    { ".jpeg", new List<byte[]>
        {
            new byte[] { 0xFF, 0xD8, 0xFF, 0xE0 },
            new byte[] { 0xFF, 0xD8, 0xFF, 0xE2 },
            new byte[] { 0xFF, 0xD8, 0xFF, 0xE3 },
        }
    },
};

using (var reader = new BinaryReader(uploadedFileData))
{
    var signatures = _fileSignature[ext];
    var headerBytes = reader.ReadBytes(signatures.Max(m => m.Length));

    return signatures.Any(signature => 
        headerBytes.Take(signature.Length).SequenceEqual(signature));
}

File name securityFile name security

@foreach (var file in Model.DatabaseFiles) {
    <tr>
        <td>
            @file.UntrustedName
        </td>
    </tr>
}

Size validationSize validation

{
  "FileSizeLimit": 2097152
}

extension matches the content of the file. The sample app checks file signatures for a few common file types. In the

following example, the file signature for a JPEG image is checked against the file:

To obtain additional file signatures, see the File Signatures Database and official file specifications.

Never use a client-supplied file name for saving a file to physical storage. Create a safe file name for the file using

Path.GetRandomFileName or Path.GetTempFileName to create a full path (including the file name) for temporary

storage.

Razor automatically HTML encodes property values for display. The following code is safe to use:

Outside of Razor, always HtmlEncode file name content from a user's request.

Many implementations must include a check that the file exists; otherwise, the file is overwritten by a file of the

same name. Supply additional logic to meet your app's specifications.

Limit the size of uploaded files.

In the sample app, the size of the file is limited to 2 MB (indicated in bytes). The limit is supplied via Configuration

from the appsettings.json file:

The FileSizeLimit  is injected into PageModel  classes:

https://www.filesignatures.net/
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getrandomfilename
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename
https://docs.microsoft.com/en-us/dotnet/api/system.net.webutility.htmlencode


public class BufferedSingleFileUploadPhysicalModel : PageModel
{
    private readonly long _fileSizeLimit;

    public BufferedSingleFileUploadPhysicalModel(IConfiguration config)
    {
        _fileSizeLimit = config.GetValue<long>("FileSizeLimit");
    }

    ...
}

if (formFile.Length > _fileSizeLimit)
{
    // The file is too large ... discontinue processing the file
}

Match name attribute value to parameter name of POST methodMatch name attribute value to parameter name of POST method

Server and app configuration
Multipart body length limitMultipart body length limit

When a file size exceeds the limit, the file is rejected:

In non-Razor forms that POST form data or use JavaScript's FormData  directly, the name specified in the form's

element or FormData  must match the name of the parameter in the controller's action.

In the following example:

<input type="file" name="battlePlans" multiple>

var formData = new FormData();

for (var file in files) {
  formData.append("battlePlans", file, file.name);
}

When using an <input>  element, the name  attribute is set to the value battlePlans :

When using FormData  in JavaScript, the name is set to the value battlePlans :

Use a matching name for the parameter of the C# method ( battlePlans ):

public async Task<IActionResult> OnPostUploadAsync(List<IFormFile> battlePlans)

public async Task<IActionResult> Post(List<IFormFile> battlePlans)

For a Razor Pages page handler method named Upload :

For an MVC POST controller action method:

MultipartBodyLengthLimit sets the limit for the length of each multipart body. Form sections that exceed this limit

throw an InvalidDataException when parsed. The default is 134,217,728 (128 MB). Customize the limit using the

MultipartBodyLengthLimit setting in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.formoptions.multipartbodylengthlimit#microsoft_aspnetcore_http_features_formoptions_multipartbodylengthlimit
https://docs.microsoft.com/en-us/dotnet/api/system.io.invaliddataexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.formoptions.multipartbodylengthlimit#microsoft_aspnetcore_http_features_formoptions_multipartbodylengthlimit


public void ConfigureServices(IServiceCollection services)
{
    services.Configure<FormOptions>(options =>
    {
        // Set the limit to 256 MB
        options.MultipartBodyLengthLimit = 268435456;
    });
}

services.AddRazorPages(options =>
{
    options.Conventions
        .AddPageApplicationModelConvention("/FileUploadPage",
            model.Filters.Add(
                new RequestFormLimitsAttribute()
                {
                    // Set the limit to 256 MB
                    MultipartBodyLengthLimit = 268435456
                });
});

// Set the limit to 256 MB
[RequestFormLimits(MultipartBodyLengthLimit = 268435456)]
public class BufferedSingleFileUploadPhysicalModel : PageModel
{
    ...
}

Kestrel maximum request body sizeKestrel maximum request body size

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.ConfigureKestrel((context, options) =>
            {
                // Handle requests up to 50 MB
                options.Limits.MaxRequestBodySize = 52428800;
            })
            .UseStartup<Startup>();
        });

RequestFormLimitsAttribute is used to set the MultipartBodyLengthLimit for a single page or action.

In a Razor Pages app, apply the filter with a convention in Startup.ConfigureServices :

In a Razor Pages app or an MVC app, apply the filter to the page model or action method:

For apps hosted by Kestrel, the default maximum request body size is 30,000,000 bytes, which is approximately

28.6 MB. Customize the limit using the MaxRequestBodySize Kestrel server option:

RequestSizeLimitAttribute is used to set the MaxRequestBodySize for a single page or action.

In a Razor Pages app, apply the filter with a convention in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestformlimitsattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.formoptions.multipartbodylengthlimit#microsoft_aspnetcore_http_features_formoptions_multipartbodylengthlimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute


services.AddRazorPages(options =>
{
    options.Conventions
        .AddPageApplicationModelConvention("/FileUploadPage",
            model =>
            {
                // Handle requests up to 50 MB
                model.Filters.Add(
                    new RequestSizeLimitAttribute(52428800));
            });
});

// Handle requests up to 50 MB
[RequestSizeLimit(52428800)]
public class BufferedSingleFileUploadPhysicalModel : PageModel
{
    ...
}

@attribute [RequestSizeLimitAttribute(52428800)]

Other Kestrel limitsOther Kestrel limits

IISIIS

<system.webServer>
  <security>
    <requestFiltering>
      <requestLimits maxAllowedContentLength="52428800" />
    </requestFiltering>
  </security>
</system.webServer>

services.Configure<IISServerOptions>(options =>
{
    options.MaxRequestBodySize = 52428800;
});

In a Razor pages app or an MVC app, apply the filter to the page handler class or action method:

The RequestSizeLimitAttribute  can also be applied using the @attribute  Razor directive:

Other Kestrel limits may apply for apps hosted by Kestrel:

Maximum client connections

Request and response data rates

The default request limit ( maxAllowedContentLength ) is 30,000,000 bytes, which is approximately 28.6 MB.

Customize the limit in the web.config  file. In the following example, the limit is set to 50 MB (52,428,800 bytes):

The maxAllowedContentLength  setting only applies to IIS. For more information, see Request Limits <requestLimits> .

Increase the maximum request body size for the HTTP request by setting IISServerOptions.MaxRequestBodySize in 

Startup.ConfigureServices . In the following example, the limit is set to 50 MB (52,428,800 bytes):

For more information, see Host ASP.NET Core on Windows with IIS.

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/requestfiltering/requestlimits/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iisserveroptions.maxrequestbodysize


Troubleshoot

Not Found error when deployed to an IIS serverNot Found error when deployed to an IIS server

HTTP 404.13 - Not Found
The request filtering module is configured to deny a request that exceeds the request content length.

Connection failureConnection failure

Null Reference Exception with IFormFileNull Reference Exception with IFormFile

Stream was too longStream was too long

Security considerations

Below are some common problems encountered when working with uploading files and their possible solutions.

The following error indicates that the uploaded file exceeds the server's configured content length:

For more information, see the IIS section.

A connection error and a reset server connection probably indicates that the uploaded file exceeds Kestrel's

maximum request body size. For more information, see the Kestrel maximum request body size section. Kestrel

client connection limits may also require adjustment.

If the controller is accepting uploaded files using IFormFile but the value is null , confirm that the HTML form is

specifying an enctype  value of multipart/form-data . If this attribute isn't set on the <form>  element, the file

upload doesn't occur and any bound IFormFile arguments are null . Also confirm that the upload naming in form

data matches the app's naming.

The examples in this topic rely upon MemoryStream to hold the uploaded file's content. The size limit of a 

MemoryStream  is int.MaxValue . If the app's file upload scenario requires holding file content larger than 50 MB, use

an alternative approach that doesn't rely upon a single MemoryStream  for holding an uploaded file's content.

ASP.NET Core supports uploading one or more files using buffered model binding for smaller files and unbuffered

streaming for larger files.

View or download sample code (how to download)

Use caution when providing users with the ability to upload files to a server. Attackers may attempt to:

Execute denial of service attacks.

Upload viruses or malware.

Compromise networks and servers in other ways.

Security steps that reduce the likelihood of a successful attack are:

Upload files to a dedicated file upload area, preferably to a non-system drive. A dedicated location makes it

easier to impose security restrictions on uploaded files. Disable execute permissions on the file upload location.†

Do notnot persist uploaded files in the same directory tree as the app.†

Use a safe file name determined by the app. Don't use a file name provided by the user or the untrusted file

name of the uploaded file.† HTML encode the untrusted file name when displaying it. For example, logging the

file name or displaying in UI (Razor automatically HTML encodes output).

Allow only approved file extensions for the app's design specification.†

Verify that client-side checks are performed on the server.† Client-side checks are easy to circumvent.

Check the size of an uploaded file. Set a maximum size limit to prevent large uploads.†

When files shouldn't be overwritten by an uploaded file with the same name, check the file name against the

database or physical storage before uploading the file.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.io.memorystream
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/file-uploads/samples/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/denial-of-service


WARNINGWARNING

Storage scenarios

File upload scenarios

Run a virus/malware scanner on uploaded content before the file is stored.Run a virus/malware scanner on uploaded content before the file is stored.

†The sample app demonstrates an approach that meets the criteria.

Uploading malicious code to a system is frequently the first step to executing code that can:

Completely gain control of a system.

Overload a system with the result that the system crashes.

Compromise user or system data.

Apply graffiti to a public UI.

For information on reducing the attack surface area when accepting files from users, see the following resources:

Unrestricted File Upload

Azure Security: Ensure appropriate controls are in place when accepting files from users

For more information on implementing security measures, including examples from the sample app, see the

Validation section.

Common storage options for files include:

Database

For small file uploads, a database is often faster than physical storage (file system or network share)

options.

A database is often more convenient than physical storage options because retrieval of a database record

for user data can concurrently supply the file content (for example, an avatar image).

A database is potentially less expensive than using a data storage service.

Physical storage (file system or network share)

For large file uploads:

Physical storage is potentially less expensive than using a data storage service.

The app's process must have read and write permissions to the storage location. Never grant executeNever grant execute

permission.permission.

Database limits may restrict the size of the upload.

Physical storage is often less economical than storage in a database.

Data storage service (for example, Azure Blob Storage)

Services usually offer improved scalability and resiliency over on-premises solutions that are usually

subject to single points of failure.

Services are potentially lower cost in large storage infrastructure scenarios.

For more information, see Quickstart: Use .NET to create a blob in object storage. The topic demonstrates

UploadFromFileAsync, but UploadFromStreamAsync can be used to save a FileStream to blob storage when

working with a Stream.

Two general approaches for uploading files are buffering and streaming.

Buffer ingBuffer ing

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool-input-validation#controls-users
https://azure.microsoft.com/services/storage/blobs/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.storage.file.cloudfile.uploadfromfileasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.storage.file.cloudfile.uploadfromstreamasync
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream


NOTENOTE

Upload small files with buffered model binding to physical storageUpload small files with buffered model binding to physical storage

<form enctype="multipart/form-data" method="post">
    <dl>
        <dt>
            <label asp-for="FileUpload.FormFile"></label>
        </dt>
        <dd>
            <input asp-for="FileUpload.FormFile" type="file">
            <span asp-validation-for="FileUpload.FormFile"></span>
        </dd>
    </dl>
    <input asp-page-handler="Upload" class="btn" type="submit" value="Upload" />
</form>

The entire file is read into an IFormFile, which is a C# representation of the file used to process or save the file.

The resources (disk, memory) used by file uploads depend on the number and size of concurrent file uploads. If an

app attempts to buffer too many uploads, the site crashes when it runs out of memory or disk space. If the size or

frequency of file uploads is exhausting app resources, use streaming.

Any single buffered file exceeding 64 KB is moved from memory to a temp file on disk.

Buffering small files is covered in the following sections of this topic:

Physical storage

Database

StreamingStreaming

The file is received from a multipart request and directly processed or saved by the app. Streaming doesn't improve

performance significantly. Streaming reduces the demands for memory or disk space when uploading files.

Streaming large files is covered in the Upload large files with streaming section.

To upload small files, use a multipart form or construct a POST request using JavaScript.

The following example demonstrates the use of a Razor Pages form to upload a single file

(Pages/BufferedSingleFileUploadPhysical.cshtml in the sample app):

The following example is analogous to the prior example except that:

JavaScript's (Fetch API) is used to submit the form's data.

There's no validation.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://developer.mozilla.org/docs/Web/API/Fetch_API


<form action="BufferedSingleFileUploadPhysical/?handler=Upload" 
      enctype="multipart/form-data" onsubmit="AJAXSubmit(this);return false;" 
      method="post">
    <dl>
        <dt>
            <label for="FileUpload_FormFile">File</label>
        </dt>
        <dd>
            <input id="FileUpload_FormFile" type="file" 
                name="FileUpload.FormFile" />
        </dd>
    </dl>

    <input class="btn" type="submit" value="Upload" />

    <div style="margin-top:15px">
        <output name="result"></output>
    </div>
</form>

<script>
  async function AJAXSubmit (oFormElement) {
    var resultElement = oFormElement.elements.namedItem("result");
    const formData = new FormData(oFormElement);

    try {
    const response = await fetch(oFormElement.action, {
      method: 'POST',
      body: formData
    });

    if (response.ok) {
      window.location.href = '/';
    }

    resultElement.value = 'Result: ' + response.status + ' ' + 
      response.statusText;
    } catch (error) {
      console.error('Error:', error);
    }
  }
</script>

To perform the form POST in JavaScript for clients that don't support the Fetch API, use one of the following

approaches:

<script>
  "use strict";

  function AJAXSubmit (oFormElement) {
    var oReq = new XMLHttpRequest();
    oReq.onload = function(e) { 
    oFormElement.elements.namedItem("result").value = 
      'Result: ' + this.status + ' ' + this.statusText;
    };
    oReq.open("post", oFormElement.action);
    oReq.send(new FormData(oFormElement));
  }
</script>

Use a Fetch Polyfill (for example, window.fetch polyfill (github/fetch)).

Use XMLHttpRequest . For example:

https://caniuse.com/#feat=fetch
https://github.com/github/fetch


<input asp-for="FileUpload.FormFiles" type="file" multiple>

WARNINGWARNING

string untrustedFileName = Path.GetFileName(pathName);

NOTENOTE

In order to support file uploads, HTML forms must specify an encoding type ( enctype ) of multipart/form-data .

For a files  input element to support uploading multiple files provide the multiple  attribute on the <input>

element:

The individual files uploaded to the server can be accessed through Model Binding using IFormFile. The sample app

demonstrates multiple buffered file uploads for database and physical storage scenarios.

 

Do notnot  use the FileName  property of IFormFile other than for display and logging. When displaying or logging, HTML

encode the file name. An attacker can provide a malicious filename, including full paths or relative paths. Applications should:

Remove the path from the user-supplied filename.

Save the HTML-encoded, path-removed filename for UI or logging.

Generate a new random filename for storage.

The following code removes the path from the file name:

The examples provided thus far don't take into account security considerations. Additional information is provided by the

following sections and the sample app:

Security considerations

Validation

When uploading files using model binding and IFormFile, the action method can accept:

A single IFormFile.

Any of the following collections that represent several files:

IFormFileCollection

IEnumerable<IFormFile>

List<IFormFile>

Binding matches form files by name. For example, the HTML name  value in <input type="file" name="formFile">  must

match the C# parameter/property bound ( FormFile ). For more information, see the Match name attribute value to

parameter name of POST method section.

The following example:

Loops through one or more uploaded files.

Uses Path.GetTempFileName to return a full path for a file, including the file name.

Saves the files to the local file system using a file name generated by the app.

Returns the total number and size of files uploaded.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/file-uploads/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfilecollection
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename


public async Task<IActionResult> OnPostUploadAsync(List<IFormFile> files)
{
    long size = files.Sum(f => f.Length);

    foreach (var formFile in files)
    {
        if (formFile.Length > 0)
        {
            var filePath = Path.GetTempFileName();

            using (var stream = System.IO.File.Create(filePath))
            {
                await formFile.CopyToAsync(stream);
            }
        }
    }

    // Process uploaded files
    // Don't rely on or trust the FileName property without validation.

    return Ok(new { count = files.Count, size });
}

foreach (var formFile in files)
{
    if (formFile.Length > 0)
    {
        var filePath = Path.Combine(_config["StoredFilesPath"], 
            Path.GetRandomFileName());

        using (var stream = System.IO.File.Create(filePath))
        {
            await formFile.CopyToAsync(stream);
        }
    }
}

WARNINGWARNING

Upload small files with buffered model binding to a databaseUpload small files with buffered model binding to a database

Use Path.GetRandomFileName  to generate a file name without a path. In the following example, the path is obtained

from configuration:

The path passed to the FileStream must include the file name. If the file name isn't provided, an

UnauthorizedAccessException is thrown at runtime.

Files uploaded using the IFormFile technique are buffered in memory or on disk on the server before processing.

Inside the action method, the IFormFile contents are accessible as a Stream. In addition to the local file system, files

can be saved to a network share or to a file storage service, such as Azure Blob storage.

For another example that loops over multiple files for upload and uses safe file names, see

Pages/BufferedMultipleFileUploadPhysical.cshtml.cs in the sample app.

Path.GetTempFileName throws an IOException if more than 65,535 files are created without deleting previous temporary files.

The limit of 65,535 files is a per-server limit. For more information on this limit on Windows OS, see the remarks in the

following topics:

GetTempFileNameA function

GetTempFileName

https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream
https://docs.microsoft.com/en-us/dotnet/api/system.unauthorizedaccessexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream
https://docs.microsoft.com/en-us/azure/visual-studio/vs-storage-aspnet5-getting-started-blobs
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename
https://docs.microsoft.com/en-us/dotnet/api/system.io.ioexception
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-gettempfilenamea#remarks
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename


public class AppFile
{
    public int Id { get; set; }
    public byte[] Content { get; set; }
}

public class BufferedSingleFileUploadDbModel : PageModel
{
    ...

    [BindProperty]
    public BufferedSingleFileUploadDb FileUpload { get; set; }

    ...
}

public class BufferedSingleFileUploadDb
{
    [Required]
    [Display(Name="File")]
    public IFormFile FormFile { get; set; }
}

NOTENOTE

<form enctype="multipart/form-data" method="post">
    <dl>
        <dt>
            <label asp-for="FileUpload.FormFile"></label>
        </dt>
        <dd>
            <input asp-for="FileUpload.FormFile" type="file">
        </dd>
    </dl>
    <input asp-page-handler="Upload" class="btn" type="submit" value="Upload">
</form>

To store binary file data in a database using Entity Framework, define a Byte array property on the entity:

Specify a page model property for the class that includes an IFormFile:

IFormFile can be used directly as an action method parameter or as a bound model property. The prior example uses a bound

model property.

The FileUpload  is used in the Razor Pages form:

When the form is POSTed to the server, copy the IFormFile to a stream and save it as a byte array in the database. In

the following example, _dbContext  stores the app's database context:

https://docs.microsoft.com/en-us/ef/core/index
https://docs.microsoft.com/en-us/dotnet/api/system.byte
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile


public async Task<IActionResult> OnPostUploadAsync()
{
    using (var memoryStream = new MemoryStream())
    {
        await FileUpload.FormFile.CopyToAsync(memoryStream);

        // Upload the file if less than 2 MB
        if (memoryStream.Length < 2097152)
        {
            var file = new AppFile()
            {
                Content = memoryStream.ToArray()
            };

            _dbContext.File.Add(file);

            await _dbContext.SaveChangesAsync();
        }
        else
        {
            ModelState.AddModelError("File", "The file is too large.");
        }
    }

    return Page();
}

WARNINGWARNING

Upload large files with streamingUpload large files with streaming

The preceding example is similar to a scenario demonstrated in the sample app:

Pages/BufferedSingleFileUploadDb.cshtml

Pages/BufferedSingleFileUploadDb.cshtml.cs

Use caution when storing binary data in relational databases, as it can adversely impact performance.

Don't rely on or trust the FileName  property of IFormFile without validation. The FileName  property should only be used

for display purposes and only after HTML encoding.

The examples provided don't take into account security considerations. Additional information is provided by the following

sections and the sample app:

Security considerations

Validation

The following example demonstrates how to use JavaScript to stream a file to a controller action. The file's

antiforgery token is generated using a custom filter attribute and passed to the client HTTP headers instead of in

the request body. Because the action method processes the uploaded data directly, form model binding is disabled

by another custom filter. Within the action, the form's contents are read using a MultipartReader , which reads each

individual MultipartSection , processing the file or storing the contents as appropriate. After the multipart sections

are read, the action performs its own model binding.

The initial page response loads the form and saves an antiforgery token in a cookie (via the 

GenerateAntiforgeryTokenCookieAttribute  attribute). The attribute uses ASP.NET Core's built-in antiforgery support

to set a cookie with a request token:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/file-uploads/samples/


public class GenerateAntiforgeryTokenCookieAttribute : ResultFilterAttribute
{
    public override void OnResultExecuting(ResultExecutingContext context)
    {
        var antiforgery = context.HttpContext.RequestServices.GetService<IAntiforgery>();

        // Send the request token as a JavaScript-readable cookie
        var tokens = antiforgery.GetAndStoreTokens(context.HttpContext);

        context.HttpContext.Response.Cookies.Append(
            "RequestVerificationToken",
            tokens.RequestToken,
            new CookieOptions() { HttpOnly = false });
    }

    public override void OnResultExecuted(ResultExecutedContext context)
    {
    }
}

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class DisableFormValueModelBindingAttribute : Attribute, IResourceFilter
{
    public void OnResourceExecuting(ResourceExecutingContext context)
    {
        var factories = context.ValueProviderFactories;
        factories.RemoveType<FormValueProviderFactory>();
        factories.RemoveType<JQueryFormValueProviderFactory>();
    }

    public void OnResourceExecuted(ResourceExecutedContext context)
    {
    }
}

The DisableFormValueModelBindingAttribute  is used to disable model binding:

In the sample app, GenerateAntiforgeryTokenCookieAttribute  and DisableFormValueModelBindingAttribute  are

applied as filters to the page application models of /StreamedSingleFileUploadDb  and 

/StreamedSingleFileUploadPhysical  in Startup.ConfigureServices  using Razor Pages conventions:



services.AddMvc()
    .AddRazorPagesOptions(options =>
        {
            options.Conventions
                .AddPageApplicationModelConvention("/StreamedSingleFileUploadDb",
                    model =>
                    {
                        model.Filters.Add(
                            new GenerateAntiforgeryTokenCookieAttribute());
                        model.Filters.Add(
                            new DisableFormValueModelBindingAttribute());
                    });
            options.Conventions
                .AddPageApplicationModelConvention("/StreamedSingleFileUploadPhysical",
                    model =>
                    {
                        model.Filters.Add(
                            new GenerateAntiforgeryTokenCookieAttribute());
                        model.Filters.Add(
                            new DisableFormValueModelBindingAttribute());
                    });
        })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

[HttpPost]
[DisableFormValueModelBinding]
[ValidateAntiForgeryToken]
public async Task<IActionResult> UploadDatabase()
{
    if (!MultipartRequestHelper.IsMultipartContentType(Request.ContentType))
    {
        ModelState.AddModelError("File", 
            $"The request couldn't be processed (Error 1).");
        // Log error

        return BadRequest(ModelState);
    }

    // Accumulate the form data key-value pairs in the request (formAccumulator).
    var formAccumulator = new KeyValueAccumulator();
    var trustedFileNameForDisplay = string.Empty;
    var untrustedFileNameForStorage = string.Empty;
    var streamedFileContent = new byte[0];

    var boundary = MultipartRequestHelper.GetBoundary(
        MediaTypeHeaderValue.Parse(Request.ContentType),
        _defaultFormOptions.MultipartBoundaryLengthLimit);
    var reader = new MultipartReader(boundary, HttpContext.Request.Body);

    var section = await reader.ReadNextSectionAsync();

    while (section != null)
    {
        var hasContentDispositionHeader = 
            ContentDispositionHeaderValue.TryParse(
                section.ContentDisposition, out var contentDisposition);

        if (hasContentDispositionHeader)

Since model binding doesn't read the form, parameters that are bound from the form don't bind (query, route, and

header continue to work). The action method works directly with the Request  property. A MultipartReader  is used

to read each section. Key/value data is stored in a KeyValueAccumulator . After the multipart sections are read, the

contents of the KeyValueAccumulator  are used to bind the form data to a model type.

The complete StreamingController.UploadDatabase  method for streaming to a database with EF Core:



        if (hasContentDispositionHeader)
        {
            if (MultipartRequestHelper
                .HasFileContentDisposition(contentDisposition))
            {
                untrustedFileNameForStorage = contentDisposition.FileName.Value;
                // Don't trust the file name sent by the client. To display
                // the file name, HTML-encode the value.
                trustedFileNameForDisplay = WebUtility.HtmlEncode(
                        contentDisposition.FileName.Value);

                streamedFileContent = 
                    await FileHelpers.ProcessStreamedFile(section, contentDisposition, 
                        ModelState, _permittedExtensions, _fileSizeLimit);

                if (!ModelState.IsValid)
                {
                    return BadRequest(ModelState);
                }
            }
            else if (MultipartRequestHelper
                .HasFormDataContentDisposition(contentDisposition))
            {
                // Don't limit the key name length because the 
                // multipart headers length limit is already in effect.
                var key = HeaderUtilities
                    .RemoveQuotes(contentDisposition.Name).Value;
                var encoding = GetEncoding(section);

                if (encoding == null)
                {
                    ModelState.AddModelError("File", 
                        $"The request couldn't be processed (Error 2).");
                    // Log error

                    return BadRequest(ModelState);
                }

                using (var streamReader = new StreamReader(
                    section.Body,
                    encoding,
                    detectEncodingFromByteOrderMarks: true,
                    bufferSize: 1024,
                    leaveOpen: true))
                {
                    // The value length limit is enforced by 
                    // MultipartBodyLengthLimit
                    var value = await streamReader.ReadToEndAsync();

                    if (string.Equals(value, "undefined", 
                        StringComparison.OrdinalIgnoreCase))
                    {
                        value = string.Empty;
                    }

                    formAccumulator.Append(key, value);

                    if (formAccumulator.ValueCount > 
                        _defaultFormOptions.ValueCountLimit)
                    {
                        // Form key count limit of 
                        // _defaultFormOptions.ValueCountLimit 
                        // is exceeded.
                        ModelState.AddModelError("File", 
                            $"The request couldn't be processed (Error 3).");
                        // Log error

                        return BadRequest(ModelState);
                    }
                }



                }
            }
        }

        // Drain any remaining section body that hasn't been consumed and
        // read the headers for the next section.
        section = await reader.ReadNextSectionAsync();
    }

    // Bind form data to the model
    var formData = new FormData();
    var formValueProvider = new FormValueProvider(
        BindingSource.Form,
        new FormCollection(formAccumulator.GetResults()),
        CultureInfo.CurrentCulture);
    var bindingSuccessful = await TryUpdateModelAsync(formData, prefix: "",
        valueProvider: formValueProvider);

    if (!bindingSuccessful)
    {
        ModelState.AddModelError("File", 
            "The request couldn't be processed (Error 5).");
        // Log error

        return BadRequest(ModelState);
    }

    // **WARNING!**
    // In the following example, the file is saved without
    // scanning the file's contents. In most production
    // scenarios, an anti-virus/anti-malware scanner API
    // is used on the file before making the file available
    // for download or for use by other systems. 
    // For more information, see the topic that accompanies 
    // this sample app.

    var file = new AppFile()
    {
        Content = streamedFileContent,
        UntrustedName = untrustedFileNameForStorage,
        Note = formData.Note,
        Size = streamedFileContent.Length, 
        UploadDT = DateTime.UtcNow
    };

    _context.File.Add(file);
    await _context.SaveChangesAsync();

    return Created(nameof(StreamingController), null);
}

MultipartRequestHelper  (Utilities/MultipartRequestHelper.cs):



using System;
using System.IO;
using Microsoft.Net.Http.Headers;

namespace SampleApp.Utilities
{
    public static class MultipartRequestHelper
    {
        // Content-Type: multipart/form-data; boundary="----WebKitFormBoundarymx2fSWqWSd0OxQqq"
        // The spec at https://tools.ietf.org/html/rfc2046#section-5.1 states that 70 characters is a 
reasonable limit.
        public static string GetBoundary(MediaTypeHeaderValue contentType, int lengthLimit)
        {
            var boundary = HeaderUtilities.RemoveQuotes(contentType.Boundary).Value;

            if (string.IsNullOrWhiteSpace(boundary))
            {
                throw new InvalidDataException("Missing content-type boundary.");
            }

            if (boundary.Length > lengthLimit)
            {
                throw new InvalidDataException(
                    $"Multipart boundary length limit {lengthLimit} exceeded.");
            }

            return boundary;
        }

        public static bool IsMultipartContentType(string contentType)
        {
            return !string.IsNullOrEmpty(contentType)
                   && contentType.IndexOf("multipart/", StringComparison.OrdinalIgnoreCase) >= 0;
        }

        public static bool HasFormDataContentDisposition(ContentDispositionHeaderValue contentDisposition)
        {
            // Content-Disposition: form-data; name="key";
            return contentDisposition != null
                && contentDisposition.DispositionType.Equals("form-data")
                && string.IsNullOrEmpty(contentDisposition.FileName.Value)
                && string.IsNullOrEmpty(contentDisposition.FileNameStar.Value);
        }

        public static bool HasFileContentDisposition(ContentDispositionHeaderValue contentDisposition)
        {
            // Content-Disposition: form-data; name="myfile1"; filename="Misc 002.jpg"
            return contentDisposition != null
                && contentDisposition.DispositionType.Equals("form-data")
                && (!string.IsNullOrEmpty(contentDisposition.FileName.Value)
                    || !string.IsNullOrEmpty(contentDisposition.FileNameStar.Value));
        }
    }
}

[HttpPost]
[DisableFormValueModelBinding]
[ValidateAntiForgeryToken]
public async Task<IActionResult> UploadPhysical()
{
    if (!MultipartRequestHelper.IsMultipartContentType(Request.ContentType))
    {
        ModelState.AddModelError("File", 
            $"The request couldn't be processed (Error 1).");

The complete StreamingController.UploadPhysical  method for streaming to a physical location:



        // Log error

        return BadRequest(ModelState);
    }

    var boundary = MultipartRequestHelper.GetBoundary(
        MediaTypeHeaderValue.Parse(Request.ContentType),
        _defaultFormOptions.MultipartBoundaryLengthLimit);
    var reader = new MultipartReader(boundary, HttpContext.Request.Body);
    var section = await reader.ReadNextSectionAsync();

    while (section != null)
    {
        var hasContentDispositionHeader = 
            ContentDispositionHeaderValue.TryParse(
                section.ContentDisposition, out var contentDisposition);

        if (hasContentDispositionHeader)
        {
            // This check assumes that there's a file
            // present without form data. If form data
            // is present, this method immediately fails
            // and returns the model error.
            if (!MultipartRequestHelper
                .HasFileContentDisposition(contentDisposition))
            {
                ModelState.AddModelError("File", 
                    $"The request couldn't be processed (Error 2).");
                // Log error

                return BadRequest(ModelState);
            }
            else
            {
                // Don't trust the file name sent by the client. To display
                // the file name, HTML-encode the value.
                var trustedFileNameForDisplay = WebUtility.HtmlEncode(
                        contentDisposition.FileName.Value);
                var trustedFileNameForFileStorage = Path.GetRandomFileName();

                // **WARNING!**
                // In the following example, the file is saved without
                // scanning the file's contents. In most production
                // scenarios, an anti-virus/anti-malware scanner API
                // is used on the file before making the file available
                // for download or for use by other systems. 
                // For more information, see the topic that accompanies 
                // this sample.

                var streamedFileContent = await FileHelpers.ProcessStreamedFile(
                    section, contentDisposition, ModelState, 
                    _permittedExtensions, _fileSizeLimit);

                if (!ModelState.IsValid)
                {
                    return BadRequest(ModelState);
                }

                using (var targetStream = System.IO.File.Create(
                    Path.Combine(_targetFilePath, trustedFileNameForFileStorage)))
                {
                    await targetStream.WriteAsync(streamedFileContent);

                    _logger.LogInformation(
                        "Uploaded file '{TrustedFileNameForDisplay}' saved to " +
                        "'{TargetFilePath}' as {TrustedFileNameForFileStorage}", 
                        trustedFileNameForDisplay, _targetFilePath, 
                        trustedFileNameForFileStorage);
                }



                }
            }
        }

        // Drain any remaining section body that hasn't been consumed and
        // read the headers for the next section.
        section = await reader.ReadNextSectionAsync();
    }

    return Created(nameof(StreamingController), null);
}

Validation

WARNINGWARNING

Content validationContent validation

File extension validationFile extension validation

private string[] permittedExtensions = { ".txt", ".pdf" };

var ext = Path.GetExtension(uploadedFileName).ToLowerInvariant();

if (string.IsNullOrEmpty(ext) || !permittedExtensions.Contains(ext))
{
    // The extension is invalid ... discontinue processing the file
}

File signature validationFile signature validation

In the sample app, validation checks are handled by FileHelpers.ProcessStreamedFile .

The sample app's FileHelpers  class demonstrates a several checks for buffered IFormFile and streamed file

uploads. For processing IFormFile buffered file uploads in the sample app, see the ProcessFormFile  method in the

Utilities/FileHelpers.cs file. For processing streamed files, see the ProcessStreamedFile  method in the same file.

The validation processing methods demonstrated in the sample app don't scan the content of uploaded files. In most

production scenarios, a virus/malware scanner API is used on the file before making the file available to users or other

systems.

Although the topic sample provides a working example of validation techniques, don't implement the FileHelpers  class in a

production app unless you:

Fully understand the implementation.

Modify the implementation as appropriate for the app's environment and specifications.

Never indiscriminately implement security code in an app without addressing these requirements.Never indiscriminately implement security code in an app without addressing these requirements.

Use a third par ty virus/malware scanning API on uploaded content.Use a third par ty virus/malware scanning API on uploaded content.

Scanning files is demanding on server resources in high volume scenarios. If request processing performance is

diminished due to file scanning, consider offloading the scanning work to a background service, possibly a service

running on a server different from the app's server. Typically, uploaded files are held in a quarantined area until the

background virus scanner checks them. When a file passes, the file is moved to the normal file storage location.

These steps are usually performed in conjunction with a database record that indicates the scanning status of a file.

By using such an approach, the app and app server remain focused on responding to requests.

The uploaded file's extension should be checked against a list of permitted extensions. For example:

A file's signature is determined by the first few bytes at the start of a file. These bytes can be used to indicate if the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile


private static readonly Dictionary<string, List<byte[]>> _fileSignature = 
    new Dictionary<string, List<byte[]>>
{
    { ".jpeg", new List<byte[]>
        {
            new byte[] { 0xFF, 0xD8, 0xFF, 0xE0 },
            new byte[] { 0xFF, 0xD8, 0xFF, 0xE2 },
            new byte[] { 0xFF, 0xD8, 0xFF, 0xE3 },
        }
    },
};

using (var reader = new BinaryReader(uploadedFileData))
{
    var signatures = _fileSignature[ext];
    var headerBytes = reader.ReadBytes(signatures.Max(m => m.Length));

    return signatures.Any(signature => 
        headerBytes.Take(signature.Length).SequenceEqual(signature));
}

File name securityFile name security

@foreach (var file in Model.DatabaseFiles) {
    <tr>
        <td>
            @file.UntrustedName
        </td>
    </tr>
}

Size validationSize validation

{
  "FileSizeLimit": 2097152
}

extension matches the content of the file. The sample app checks file signatures for a few common file types. In the

following example, the file signature for a JPEG image is checked against the file:

To obtain additional file signatures, see the File Signatures Database and official file specifications.

Never use a client-supplied file name for saving a file to physical storage. Create a safe file name for the file using

Path.GetRandomFileName or Path.GetTempFileName to create a full path (including the file name) for temporary

storage.

Razor automatically HTML encodes property values for display. The following code is safe to use:

Outside of Razor, always HtmlEncode file name content from a user's request.

Many implementations must include a check that the file exists; otherwise, the file is overwritten by a file of the

same name. Supply additional logic to meet your app's specifications.

Limit the size of uploaded files.

In the sample app, the size of the file is limited to 2 MB (indicated in bytes). The limit is supplied via Configuration

from the appsettings.json file:

The FileSizeLimit  is injected into PageModel  classes:

https://www.filesignatures.net/
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getrandomfilename
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename
https://docs.microsoft.com/en-us/dotnet/api/system.net.webutility.htmlencode


public class BufferedSingleFileUploadPhysicalModel : PageModel
{
    private readonly long _fileSizeLimit;

    public BufferedSingleFileUploadPhysicalModel(IConfiguration config)
    {
        _fileSizeLimit = config.GetValue<long>("FileSizeLimit");
    }

    ...
}

if (formFile.Length > _fileSizeLimit)
{
    // The file is too large ... discontinue processing the file
}

Match name attribute value to parameter name of POST methodMatch name attribute value to parameter name of POST method

Server and app configuration
Multipart body length limitMultipart body length limit

When a file size exceeds the limit, the file is rejected:

In non-Razor forms that POST form data or use JavaScript's FormData  directly, the name specified in the form's

element or FormData  must match the name of the parameter in the controller's action.

In the following example:

<input type="file" name="battlePlans" multiple>

var formData = new FormData();

for (var file in files) {
  formData.append("battlePlans", file, file.name);
}

When using an <input>  element, the name  attribute is set to the value battlePlans :

When using FormData  in JavaScript, the name is set to the value battlePlans :

Use a matching name for the parameter of the C# method ( battlePlans ):

public async Task<IActionResult> OnPostUploadAsync(List<IFormFile> battlePlans)

public async Task<IActionResult> Post(List<IFormFile> battlePlans)

For a Razor Pages page handler method named Upload :

For an MVC POST controller action method:

MultipartBodyLengthLimit sets the limit for the length of each multipart body. Form sections that exceed this limit

throw an InvalidDataException when parsed. The default is 134,217,728 (128 MB). Customize the limit using the

MultipartBodyLengthLimit setting in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.formoptions.multipartbodylengthlimit#microsoft_aspnetcore_http_features_formoptions_multipartbodylengthlimit
https://docs.microsoft.com/en-us/dotnet/api/system.io.invaliddataexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.formoptions.multipartbodylengthlimit#microsoft_aspnetcore_http_features_formoptions_multipartbodylengthlimit


public void ConfigureServices(IServiceCollection services)
{
    services.Configure<FormOptions>(options =>
    {
        // Set the limit to 256 MB
        options.MultipartBodyLengthLimit = 268435456;
    });
}

services.AddMvc()
    .AddRazorPagesOptions(options =>
    {
        options.Conventions
            .AddPageApplicationModelConvention("/FileUploadPage",
                model.Filters.Add(
                    new RequestFormLimitsAttribute()
                    {
                        // Set the limit to 256 MB
                        MultipartBodyLengthLimit = 268435456
                    });
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

// Set the limit to 256 MB
[RequestFormLimits(MultipartBodyLengthLimit = 268435456)]
public class BufferedSingleFileUploadPhysicalModel : PageModel
{
    ...
}

Kestrel maximum request body sizeKestrel maximum request body size

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, options) =>
        {
            // Handle requests up to 50 MB
            options.Limits.MaxRequestBodySize = 52428800;
        });

RequestFormLimitsAttribute is used to set the MultipartBodyLengthLimit for a single page or action.

In a Razor Pages app, apply the filter with a convention in Startup.ConfigureServices :

In a Razor Pages app or an MVC app, apply the filter to the page model or action method:

For apps hosted by Kestrel, the default maximum request body size is 30,000,000 bytes, which is approximately

28.6 MB. Customize the limit using the MaxRequestBodySize Kestrel server option:

RequestSizeLimitAttribute is used to set the MaxRequestBodySize for a single page or action.

In a Razor Pages app, apply the filter with a convention in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestformlimitsattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.formoptions.multipartbodylengthlimit#microsoft_aspnetcore_http_features_formoptions_multipartbodylengthlimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute


services.AddMvc()
    .AddRazorPagesOptions(options =>
    {
        options.Conventions
            .AddPageApplicationModelConvention("/FileUploadPage",
                model =>
                {
                    // Handle requests up to 50 MB
                    model.Filters.Add(
                        new RequestSizeLimitAttribute(52428800));
                });
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

// Handle requests up to 50 MB
[RequestSizeLimit(52428800)]
public class BufferedSingleFileUploadPhysicalModel : PageModel
{
    ...
}

Other Kestrel limitsOther Kestrel limits

IISIIS

<system.webServer>
  <security>
    <requestFiltering>
      <requestLimits maxAllowedContentLength="52428800" />
    </requestFiltering>
  </security>
</system.webServer>

services.Configure<IISServerOptions>(options =>
{
    options.MaxRequestBodySize = 52428800;
});

Troubleshoot

In a Razor pages app or an MVC app, apply the filter to the page handler class or action method:

Other Kestrel limits may apply for apps hosted by Kestrel:

Maximum client connections

Request and response data rates

The default request limit ( maxAllowedContentLength ) is 30,000,000 bytes, which is approximately 28.6 MB.

Customize the limit in the web.config  file. In the following example, the limit is set to 50 MB (52,428,800 bytes):

The maxAllowedContentLength  setting only applies to IIS. For more information, see Request Limits <requestLimits> .

Increase the maximum request body size for the HTTP request by setting IISServerOptions.MaxRequestBodySize in 

Startup.ConfigureServices . In the following example, the limit is set to 50 MB (52,428,800 bytes):

For more information, see Host ASP.NET Core on Windows with IIS.

Below are some common problems encountered when working with uploading files and their possible solutions.

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/requestfiltering/requestlimits/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iisserveroptions.maxrequestbodysize


Not Found error when deployed to an IIS serverNot Found error when deployed to an IIS server

HTTP 404.13 - Not Found
The request filtering module is configured to deny a request that exceeds the request content length.

Connection failureConnection failure

Null Reference Exception with IFormFileNull Reference Exception with IFormFile

Stream was too longStream was too long

Additional resources

The following error indicates that the uploaded file exceeds the server's configured content length:

For more information, see the IIS section.

A connection error and a reset server connection probably indicates that the uploaded file exceeds Kestrel's

maximum request body size. For more information, see the Kestrel maximum request body size section. Kestrel

client connection limits may also require adjustment.

If the controller is accepting uploaded files using IFormFile but the value is null , confirm that the HTML form is

specifying an enctype  value of multipart/form-data . If this attribute isn't set on the <form>  element, the file

upload doesn't occur and any bound IFormFile arguments are null . Also confirm that the upload naming in form

data matches the app's naming.

The examples in this topic rely upon MemoryStream to hold the uploaded file's content. The size limit of a 

MemoryStream  is int.MaxValue . If the app's file upload scenario requires holding file content larger than 50 MB, use

an alternative approach that doesn't rely upon a single MemoryStream  for holding an uploaded file's content.

HTTP connection request draining

Unrestricted File Upload

Azure Security: Security Frame: Input Validation | Mitigations

Azure Cloud Design Patterns: Valet Key pattern

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/system.io.memorystream
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool-input-validation
https://docs.microsoft.com/en-us/azure/architecture/patterns/valet-key


ASP.NET Core Web SDK
9/22/2020 • 2 minutes to read • Edit Online

OverviewOverview

<Project Sdk="Microsoft.NET.Sdk.Web">
  <!-- omitted for brevity -->
</Project>

PropertiesProperties

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N

DisableImplicitFrameworkReferences Disables implicit reference to the 
Microsoft.AspNetCore.App  shared framework.

DisableImplicitAspNetCoreAnalyzers Disables implicit reference to ASP.NET Core analyzers.

DisableImplicitComponentsAnalyzers Disables implicit reference to Razor Components analyzers
when building Blazor (server) applications.

Microsoft.NET.Sdk.Web  is an MSBuild project SDK for building ASP.NET Core apps. It's possible to build an ASP.NET

Core app without this SDK, however, the Web SDK is:

Tailored towards providing a first-class experience.

The recommended target for most users.

Use the Web.SDK in a project:

Features enabled by using the Web SDK:

Projects targeting .NET Core 3.0 or later implicitly reference:

The ASP.NET Core shared framework.

Analyzers designed for building ASP.NET Core apps.

The Web SDK imports MSBuild targets that enable the use of publish profiles and publishing using

WebDeploy.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/razor-pages/web-sdk.md
https://docs.microsoft.com/en-us/visualstudio/msbuild/how-to-use-project-sdk
https://docs.microsoft.com/en-us/visualstudio/extensibility/getting-started-with-roslyn-analyzers


dotnet aspnet-codegenerator
9/22/2020 • 4 minutes to read • Edit Online

Installing aspnet-codegenerator

dotnet tool install -g dotnet-aspnet-codegenerator

dotnet tool update -g dotnet-aspnet-codegenerator

Synopsis

dotnet aspnet-codegenerator [arguments] [-p|--project] [-n|--nuget-package-dir] [-c|--configuration] [-
tfm|--target-framework] [-b|--build-base-path] [--no-build] 
dotnet aspnet-codegenerator [-h|--help]

Description

Arguments

GEN ERATO RGEN ERATO R O P ERAT IO NO P ERAT IO N

area Scaffolds an Area

controller Scaffolds a controller

identity Scaffolds Identity

razorpage Scaffolds Razor Pages

By Rick Anderson

dotnet aspnet-codegenerator  - Runs the ASP.NET Core scaffolding engine. dotnet aspnet-codegenerator  is

only required to scaffold from the command line, it's not needed to use scaffolding with Visual Studio.

This article applies to .NET Core 2.1 SDK and later.

dotnet-aspnet-codegenerator  is a global tool that must be installed. The following command installs the latest

stable version of the dotnet-aspnet-codegenerator  tool:

The following command updates dotnet-aspnet-codegenerator  to the latest stable version available from the

installed .NET Core SDKs:

The dotnet aspnet-codegenerator  global command runs the ASP.NET Core code generator and scaffolding

engine.

generator

The code generator to run. The following generators are available:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/tools/dotnet-aspnet-codegenerator.md
https://twitter.com/RickAndMSFT
https://dotnet.microsoft.com/download/dotnet-core/2.1
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools


view Scaffolds a view

GEN ERATO RGEN ERATO R O P ERAT IO NO P ERAT IO N

Options

Generator options

Area optionsArea options

-n|--nuget-package-dir

Specifies the NuGet package directory.

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug .

-tfm|--target-framework

Target Framework to use. For example, net46 .

-b|--build-base-path

The build base path.

-h|--help

Prints out a short help for the command.

--no-build

Doesn't build the project before running. It also implicitly sets the --no-restore  flag.

-p|--project <PATH>

Specifies the path of the project file to run (folder name or full path). If not specified, it defaults to the current

directory.

The following sections detail the options available for the supported generators:

Area

Controller

Identity

Razorpage

View

 

This tool is intended for ASP.NET Core web projects with controllers and views. It's not intended for Razor

Pages apps.

Usage: dotnet aspnet-codegenerator area AreaNameToGenerate

The preceding command generates the following folders:

Areas

AreaNameToGenerate

Controllers

Data

Models

https://docs.microsoft.com/en-us/dotnet/standard/frameworks


Controller optionsController options

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

--model or -m Model class to use.

--dataContext or -dc The DbContext  class to use.

--bootstrapVersion or -b Specifies the bootstrap version. Valid values are 3  or 4 .

Default is 4 . If needed and not present, a wwwroot
directory is created that includes the bootstrap files of the
specified version.

--referenceScriptLibraries or -scripts Reference script libraries in the generated views. Adds 
_ValidationScriptsPartial  to Edit and Create pages.

--layout or -l Custom Layout page to use.

--useDefaultLayout or -udl Use the default layout for the views.

--force or -f Overwrite existing files.

--relativeFolderPath or -outDir The relative output folder path from project where the file
are generated. If not specified, files are generated in the
project folder.

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

--controllerName or -name Name of the controller.

--useAsyncActions or -async Generate async controller actions.

--noViews or -nv Generate nono views.

--restWithNoViews or -api Generate a Controller with REST style API. noViews  is

assumed and any view related options are ignored.

--readWriteActions or -actions Generate controller with read/write actions without a
model.

dotnet aspnet-codegenerator controller -h

RazorpageRazorpage

Views

 

The following table lists options for aspnet-codegenerator  controller  and razorpage :

The following table lists options unique to aspnet-codegenerator controller :

Use the -h  switch for help on the aspnet-codegenerator controller  command:

See Scaffold the movie model for an example of dotnet aspnet-codegenerator controller .

 

Razor Pages can be individually scaffolded by specifying the name of the new page and the template to use.

The supported templates are:



dotnet aspnet-codegenerator razorpage MyEdit Edit -m Movie -dc RazorPagesMovieContext -outDir 
Pages/Movies

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

--model or -m Model class to use.

--dataContext or -dc The DbContext  class to use.

--bootstrapVersion or -b Specifies the bootstrap version. Valid values are 3  or 4 .

Default is 4 . If needed and not present, a wwwroot
directory is created that includes the bootstrap files of the
specified version.

--referenceScriptLibraries or -scripts Reference script libraries in the generated views. Adds 
_ValidationScriptsPartial  to Edit and Create pages.

--layout or -l Custom Layout page to use.

--useDefaultLayout or -udl Use the default layout for the views.

--force or -f Overwrite existing files.

--relativeFolderPath or -outDir The relative output folder path from project where the file
are generated. If not specified, files are generated in the
project folder.

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

--namespaceName or -namespace The name of the namespace to use for the generated
PageModel

Empty

Create

Edit

Delete

Details

List

For example, the following command uses the Edit template to generate MyEdit.cshtml and MyEdit.cshtml.cs:

Typically, the template and generated file name is not specified, and the following templates are created:

Create

Edit

Delete

Details

List

The following table lists options for aspnet-codegenerator  razorpage  and controller :

The following table lists options unique to aspnet-codegenerator razorpage :



--partialView or -partial Generate a partial view. Layout options -l and -udl are
ignored if this is specified.

--noPageModel or -npm Switch to not generate a PageModel class for Empty
template

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

dotnet aspnet-codegenerator razorpage -h

IdentityIdentity

Use the -h  switch for help on the aspnet-codegenerator razorpage  command:

See Scaffold the movie model for an example of dotnet aspnet-codegenerator razorpage .

See Scaffold Identity



Create web APIs with ASP.NET Core
9/22/2020 • 10 minutes to read • Edit Online

ControllerBase class

[ApiController]
[Route("[controller]")]
public class WeatherForecastController : ControllerBase

[Route("api/[controller]")]
[ApiController]
public class ValuesController : ControllerBase

[HttpPost]
[ProducesResponseType(StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public ActionResult<Pet> Create(Pet pet)
{
    pet.Id = _petsInMemoryStore.Any() ? 
             _petsInMemoryStore.Max(p => p.Id) + 1 : 1;
    _petsInMemoryStore.Add(pet);

    return CreatedAtAction(nameof(GetById), new { id = pet.Id }, pet);
}

M ET H O DM ET H O D N OT ESN OT ES

BadRequest Returns 400 status code.

NotFound Returns 404 status code.

By Scott Addie and Tom Dykstra

ASP.NET Core supports creating RESTful services, also known as web APIs, using C#. To handle requests, a web

API uses controllers. Controllers in a web API are classes that derive from ControllerBase . This article shows

how to use controllers for handling web API requests.

View or download sample code. (How to download).

A web API consists of one or more controller classes that derive from ControllerBase. The web API project

template provides a starter controller :

Don't create a web API controller by deriving from the Controller class. Controller  derives from 

ControllerBase  and adds support for views, so it's for handling web pages, not web API requests. There's an

exception to this rule: if you plan to use the same controller for both views and web APIs, derive it from 

Controller .

The ControllerBase  class provides many properties and methods that are useful for handling HTTP requests.

For example, ControllerBase.CreatedAtAction  returns a 201 status code:

Here are some more examples of methods that ControllerBase  provides.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/web-api/index.md
https://github.com/scottaddie
https://github.com/tdykstra
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/index/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controller
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound


PhysicalFile Returns a file.

TryUpdateModelAsync Invokes model binding.

TryValidateModel Invokes model validation.

M ET H O DM ET H O D N OT ESN OT ES

Attributes

[HttpPost]
[ProducesResponseType(StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public ActionResult<Pet> Create(Pet pet)
{
    pet.Id = _petsInMemoryStore.Any() ? 
             _petsInMemoryStore.Max(p => p.Id) + 1 : 1;
    _petsInMemoryStore.Add(pet);

    return CreatedAtAction(nameof(GetById), new { id = pet.Id }, pet);
}

AT T RIB UT EAT T RIB UT E N OT ESN OT ES

[Route] Specifies URL pattern for a controller or action.

[Bind] Specifies prefix and properties to include for model binding.

[HttpGet] Identifies an action that supports the HTTP GET action
verb.

[Consumes] Specifies data types that an action accepts.

[Produces] Specifies data types that an action returns.

ApiController attribute

For a list of all available methods and properties, see ControllerBase.

The Microsoft.AspNetCore.Mvc namespace provides attributes that can be used to configure the behavior of

web API controllers and action methods. The following example uses attributes to specify the supported HTTP

action verb and any known HTTP status codes that could be returned:

Here are some more examples of attributes that are available.

For a list that includes the available attributes, see the Microsoft.AspNetCore.Mvc namespace.

The [ApiController]  attribute can be applied to a controller class to enable the following opinionated, API-

specific behaviors:

Attribute routing requirement

Automatic HTTP 400 responses

Binding source parameter inference

Multipart/form-data request inference

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.physicalfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.tryupdatemodelasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.tryvalidatemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.bindattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpgetattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.consumesattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.producesattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute


Attribute on specific controllersAttribute on specific controllers

[ApiController]
[Route("[controller]")]
public class WeatherForecastController : ControllerBase

[Route("api/[controller]")]
[ApiController]
public class ValuesController : ControllerBase

Attribute on multiple controllersAttribute on multiple controllers

[ApiController]
public class MyControllerBase : ControllerBase
{
}

[Produces(MediaTypeNames.Application.Json)]
[Route("[controller]")]
public class PetsController : MyControllerBase

[Produces(MediaTypeNames.Application.Json)]
[Route("api/[controller]")]
public class PetsController : MyControllerBase

Attribute on an assemblyAttribute on an assembly

Problem details for error status codes

The Problem details for error status codes feature requires a compatibility version of 2.2 or later. The other

features require a compatibility version of 2.1 or later.

Attribute routing requirement

Automatic HTTP 400 responses

Binding source parameter inference

Multipart/form-data request inference

These features require a compatibility version of 2.1 or later.

The [ApiController]  attribute can be applied to specific controllers, as in the following example from the

project template:

One approach to using the attribute on more than one controller is to create a custom base controller class

annotated with the [ApiController]  attribute. The following example shows a custom base class and a

controller that derives from it:

If compatibility version is set to 2.2 or later, the [ApiController]  attribute can be applied to an assembly.

Annotation in this manner applies web API behavior to all controllers in the assembly. There's no way to opt

out for individual controllers. Apply the assembly-level attribute to the namespace declaration surrounding

the Startup  class:



  

        

                                    

[assembly: ApiController]
namespace WebApiSample
{
    public class Startup
    {
        ...
    }
}

Attribute routing requirement

[ApiController]
[Route("[controller]")]
public class WeatherForecastController : ControllerBase

[Route("api/[controller]")]
[ApiController]
public class ValuesController : ControllerBase

Automatic HTTP 400 responses

if (!ModelState.IsValid)
{
    return BadRequest(ModelState);
}

Default BadRequest responseDefault BadRequest response

{
  "": [
    "A non-empty request body is required."
  ]
}

The [ApiController]  attribute makes attribute routing a requirement. For example:

Actions are inaccessible via conventional routes defined by UseEndpoints , UseMvc, or

UseMvcWithDefaultRoute in Startup.Configure .

Actions are inaccessible via conventional routes defined by UseMvc or UseMvcWithDefaultRoute in 

Startup.Configure .

The [ApiController]  attribute makes model validation errors automatically trigger an HTTP 400 response.

Consequently, the following code is unnecessary in an action method:

ASP.NET Core MVC uses the ModelStateInvalidFilter action filter to do the preceding check.

With a compatibility version of 2.1, the default response type for an HTTP 400 response is SerializableError.

The following request body is an example of the serialized type:

With a compatibility version of 2.2 or later, the default response type for an HTTP 400 response is

ValidationProblemDetails. The following request body is an example of the serialized type:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvc
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvcwithdefaultroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvc
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvcwithdefaultroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.infrastructure.modelstateinvalidfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.serializableerror
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails


{
  "type": "https://tools.ietf.org/html/rfc7231#section-6.5.1",
  "title": "One or more validation errors occurred.",
  "status": 400,
  "traceId": "|7fb5e16a-4c8f23bbfc974667.",
  "errors": {
    "": [
      "A non-empty request body is required."
    ]
  }
}

Log automatic 400 responsesLog automatic 400 responses

Disable automatic 400 responseDisable automatic 400 response

services.AddControllers()
    .ConfigureApiBehaviorOptions(options =>
    {
        options.SuppressConsumesConstraintForFormFileParameters = true;
        options.SuppressInferBindingSourcesForParameters = true;
        options.SuppressModelStateInvalidFilter = true;
        options.SuppressMapClientErrors = true;
        options.ClientErrorMapping[StatusCodes.Status404NotFound].Link =
            "https://httpstatuses.com/404";
    });

services.AddMvc()
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
    .ConfigureApiBehaviorOptions(options =>
    {
        options.SuppressConsumesConstraintForFormFileParameters = true;
        options.SuppressInferBindingSourcesForParameters = true;
        options.SuppressModelStateInvalidFilter = true;
        options.SuppressMapClientErrors = true;
        options.ClientErrorMapping[404].Link =
            "https://httpstatuses.com/404";
    });

services.Configure<ApiBehaviorOptions>(options =>
{
    options.SuppressConsumesConstraintForFormFileParameters = true;
    options.SuppressInferBindingSourcesForParameters = true;
    options.SuppressModelStateInvalidFilter = true;
});

The ValidationProblemDetails  type:

Provides a machine-readable format for specifying errors in web API responses.

Complies with the RFC 7807 specification.

To make automatic and custom responses consistent, call the ValidationProblem method instead of

BadRequest. ValidationProblem  returns a ValidationProblemDetails object as well as the automatic response.

See How to log automatic 400 responses on model validation errors (dotnet/AspNetCore.Docs#12157).

To disable the automatic 400 behavior, set the SuppressModelStateInvalidFilter property to true . Add the

following highlighted code in Startup.ConfigureServices :

https://tools.ietf.org/html/rfc7807
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.validationproblem
https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.badrequest
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://github.com/dotnet/AspNetCore.Docs/issues/12157
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apibehavioroptions.suppressmodelstateinvalidfilter#microsoft_aspnetcore_mvc_apibehavioroptions_suppressmodelstateinvalidfilter


    Binding source parameter inference

AT T RIB UT EAT T RIB UT E B IN DIN G SO URC EB IN DIN G SO URC E

[FromBody] Request body

[FromForm] Form data in the request body

[FromHeader] Request header

[FromQuery] Request query string parameter

[FromRoute] Route data from the current request

[FromServices] The request service injected as an action parameter

WARNINGWARNING

[HttpGet]
public ActionResult<List<Product>> Get(
    [FromQuery] bool discontinuedOnly = false)
{
    List<Product> products = null;

    if (discontinuedOnly)
    {
        products = _productsInMemoryStore.Where(p => p.IsDiscontinued).ToList();
    }
    else
    {
        products = _productsInMemoryStore;
    }

    return products;
}

A binding source attribute defines the location at which an action parameter's value is found. The following

binding source attributes exist:

Don't use [FromRoute]  when values might contain %2f  (that is / ). %2f  won't be unescaped to / . Use 

[FromQuery]  if the value might contain %2f .

Without the [ApiController]  attribute or binding source attributes like [FromQuery] , the ASP.NET Core

runtime attempts to use the complex object model binder. The complex object model binder pulls data from

value providers in a defined order.

In the following example, the [FromQuery]  attribute indicates that the discontinuedOnly  parameter value is

provided in the request URL's query string:

The [ApiController]  attribute applies inference rules for the default data sources of action parameters. These

rules save you from having to identify binding sources manually by applying attributes to the action

parameters. The binding source inference rules behave as follows:

[FromBody]  is inferred for complex type parameters. An exception to the [FromBody]  inference rule is any

complex, built-in type with a special meaning, such as IFormCollection and CancellationToken. The binding

source inference code ignores those special types.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromformattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromheaderattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromqueryattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromrouteattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformcollection
https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken


FromBody inference notesFromBody inference notes

NOTENOTE

Disable inference rulesDisable inference rules

services.AddControllers()
    .ConfigureApiBehaviorOptions(options =>
    {
        options.SuppressConsumesConstraintForFormFileParameters = true;
        options.SuppressInferBindingSourcesForParameters = true;
        options.SuppressModelStateInvalidFilter = true;
        options.SuppressMapClientErrors = true;
        options.ClientErrorMapping[StatusCodes.Status404NotFound].Link =
            "https://httpstatuses.com/404";
    });

[FromForm]  is inferred for action parameters of type IFormFile and IFormFileCollection. It's not inferred for

any simple or user-defined types.

[FromRoute]  is inferred for any action parameter name matching a parameter in the route template. When

more than one route matches an action parameter, any route value is considered [FromRoute] .

[FromQuery]  is inferred for any other action parameters.

[FromBody]  isn't inferred for simple types such as string  or int . Therefore, the [FromBody]  attribute should

be used for simple types when that functionality is needed.

When an action has more than one parameter bound from the request body, an exception is thrown. For

example, all of the following action method signatures cause an exception:

[HttpPost]
public IActionResult Action1(Product product, Order order)

[HttpPost]
public IActionResult Action2(Product product, [FromBody] Order order)

[HttpPost]
public IActionResult Action3([FromBody] Product product, [FromBody] Order order)

[FromBody]  inferred on both because they're complex types.

[FromBody]  attribute on one, inferred on the other because it's a complex type.

[FromBody]  attribute on both.

In ASP.NET Core 2.1, collection type parameters such as lists and arrays are incorrectly inferred as [FromQuery] . The 

[FromBody]  attribute should be used for these parameters if they are to be bound from the request body. This

behavior is corrected in ASP.NET Core 2.2 or later, where collection type parameters are inferred to be bound from the

body by default.

To disable binding source inference, set SuppressInferBindingSourcesForParameters to true . Add the

following code in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfilecollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apibehavioroptions.suppressinferbindingsourcesforparameters#microsoft_aspnetcore_mvc_apibehavioroptions_suppressinferbindingsourcesforparameters


  

services.AddMvc()
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
    .ConfigureApiBehaviorOptions(options =>
    {
        options.SuppressConsumesConstraintForFormFileParameters = true;
        options.SuppressInferBindingSourcesForParameters = true;
        options.SuppressModelStateInvalidFilter = true;
        options.SuppressMapClientErrors = true;
        options.ClientErrorMapping[404].Link =
            "https://httpstatuses.com/404";
    });

services.Configure<ApiBehaviorOptions>(options =>
{
    options.SuppressConsumesConstraintForFormFileParameters = true;
    options.SuppressInferBindingSourcesForParameters = true;
    options.SuppressModelStateInvalidFilter = true;
});

Multipart/form-data request inference

services.AddControllers()
    .ConfigureApiBehaviorOptions(options =>
    {
        options.SuppressConsumesConstraintForFormFileParameters = true;
        options.SuppressInferBindingSourcesForParameters = true;
        options.SuppressModelStateInvalidFilter = true;
        options.SuppressMapClientErrors = true;
        options.ClientErrorMapping[StatusCodes.Status404NotFound].Link =
            "https://httpstatuses.com/404";
    });

services.AddMvc()
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
    .ConfigureApiBehaviorOptions(options =>
    {
        options.SuppressConsumesConstraintForFormFileParameters = true;
        options.SuppressInferBindingSourcesForParameters = true;
        options.SuppressModelStateInvalidFilter = true;
        options.SuppressMapClientErrors = true;
        options.ClientErrorMapping[404].Link =
            "https://httpstatuses.com/404";
    });

services.Configure<ApiBehaviorOptions>(options =>
{
    options.SuppressConsumesConstraintForFormFileParameters = true;
    options.SuppressInferBindingSourcesForParameters = true;
    options.SuppressModelStateInvalidFilter = true;
});

The [ApiController]  attribute applies an inference rule when an action parameter is annotated with the 

[FromForm]  attribute. The multipart/form-data  request content type is inferred.

To disable the default behavior, set the SuppressConsumesConstraintForFormFileParameters property to 

true  in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromformattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apibehavioroptions.suppressconsumesconstraintforformfileparameters#microsoft_aspnetcore_mvc_apibehavioroptions_suppressconsumesconstraintforformfileparameters


 Problem details for error status codes

if (pet == null)
{
    return NotFound();
}

{
  type: "https://tools.ietf.org/html/rfc7231#section-6.5.4",
  title: "Not Found",
  status: 404,
  traceId: "0HLHLV31KRN83:00000001"
}

Disable ProblemDetails responseDisable ProblemDetails response

services.AddControllers()
    .ConfigureApiBehaviorOptions(options =>
    {
        options.SuppressConsumesConstraintForFormFileParameters = true;
        options.SuppressInferBindingSourcesForParameters = true;
        options.SuppressModelStateInvalidFilter = true;
        options.SuppressMapClientErrors = true;
        options.ClientErrorMapping[StatusCodes.Status404NotFound].Link =
            "https://httpstatuses.com/404";
    });

services.AddMvc()
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
    .ConfigureApiBehaviorOptions(options =>
    {
        options.SuppressConsumesConstraintForFormFileParameters = true;
        options.SuppressInferBindingSourcesForParameters = true;
        options.SuppressModelStateInvalidFilter = true;
        options.SuppressMapClientErrors = true;
        options.ClientErrorMapping[404].Link =
            "https://httpstatuses.com/404";
    });

Define supported request content types with the [Consumes]
attribute

When the compatibility version is 2.2 or later, MVC transforms an error result (a result with status code 400 or

higher) to a result with ProblemDetails. The ProblemDetails  type is based on the RFC 7807 specification for

providing machine-readable error details in an HTTP response.

Consider the following code in a controller action:

The NotFound  method produces an HTTP 404 status code with a ProblemDetails  body. For example:

The automatic creation of a ProblemDetails  for error status codes is disabled when the

SuppressMapClientErrors property is set to true . Add the following code in Startup.ConfigureServices :

  

By default, an action supports all available request content types. For example, if an app is configured to

support both JSON and XML input formatters, an action supports multiple content types, including 

application/json  and application/xml .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.problemdetails
https://tools.ietf.org/html/rfc7807
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apibehavioroptions.suppressmapclienterrors


[HttpPost]
[Consumes("application/xml")]
public IActionResult CreateProduct(Product product)

[ApiController]
[Route("api/[controller]")]
public class ConsumesController : ControllerBase
{
    [HttpPost]
    [Consumes("application/json")]
    public IActionResult PostJson(IEnumerable<int> values) =>
        Ok(new { Consumes = "application/json", Values = values });

    [HttpPost]
    [Consumes("application/x-www-form-urlencoded")]
    public IActionResult PostForm([FromForm] IEnumerable<int> values) =>
        Ok(new { Consumes = "application/x-www-form-urlencoded", Values = values });
}

Additional resources

The [Consumes] attribute allows an action to limit the supported request content types. Apply the [Consumes]

attribute to an action or controller, specifying one or more content types:

In the preceding code, the CreateProduct  action specifies the content type application/xml . Requests routed

to this action must specify a Content-Type  header of application/xml . Requests that don't specify a 

Content-Type  header of application/xml  result in a 415 Unsupported Media Type response.

The [Consumes]  attribute also allows an action to influence its selection based on an incoming request's

content type by applying a type constraint. Consider the following example:

In the preceding code, ConsumesController  is configured to handle requests sent to the 

https://localhost:5001/api/Consumes  URL. Both of the controller's actions, PostJson  and PostForm , handle

POST requests with the same URL. Without the [Consumes]  attribute applying a type constraint, an

ambiguous match exception is thrown.

The [Consumes]  attribute is applied to both actions. The PostJson  action handles requests sent with a 

Content-Type  header of application/json . The PostForm  action handles requests sent with a Content-Type

header of application/x-www-form-urlencoded .

Controller action return types in ASP.NET Core web API

Handle errors in ASP.NET Core web APIs

Custom formatters in ASP.NET Core Web API

Format response data in ASP.NET Core Web API

ASP.NET Core Web API help pages with Swagger / OpenAPI

Routing to controller actions in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.consumesattribute
https://developer.mozilla.org/docs/Web/HTTP/Status/415


Tutorial: Create a web API with ASP.NET Core
9/22/2020 • 47 minutes to read • Edit Online

Overview

A P IA P I DESC RIP T IO NDESC RIP T IO N REQ UEST  B O DYREQ UEST  B O DY RESP O N SE B O DYRESP O N SE B O DY

GET /api/TodoItems Get all to-do items None Array of to-do items

GET /api/TodoItems/{id} Get an item by ID None To-do item

POST /api/TodoItems Add a new item To-do item To-do item

PUT /api/TodoItems/{id} Update an existing item  To-do item None

DELETE
/api/TodoItems/{id}

   

Delete an item    None None

By Rick Anderson, Kirk Larkin, and Mike Wasson

This tutorial teaches the basics of building a web API with ASP.NET Core.

In this tutorial, you learn how to:

Create a web API project.

Add a model class and a database context.

Scaffold a controller with CRUD methods.

Configure routing, URL paths, and return values.

Call the web API with Postman.

At the end, you have a web API that can manage "to-do" items stored in a database.

This tutorial creates the following API:

The following diagram shows the design of the app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-web-api.md
https://twitter.com/RickAndMSFT
https://twitter.com/serpent5
https://github.com/mikewasson


  

Prerequisites

Create a web project

Test the projectTest the project

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.8 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET 5.0 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the FileFile menu, select NewNew  > ProjectProject.

Select the ASP.NET Core Web ApplicationASP.NET Core Web Application template and click NextNext.

Name the project TodoApi and click CreateCreate.

In the Create a new ASP.NET Core Web ApplicationCreate a new ASP.NET Core Web Application dialog, confirm that .NET Core.NET Core and ASP.NET CoreASP.NET Core

5.05.0  are selected. Select the APIAPI template and click CreateCreate.

The project template creates a WeatherForecast  API with support for Swagger.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run without the debugger.

Visual Studio displays the following dialog:

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet/5.0


Select YesYes  if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes  if you agree to trust the development certificate.

Visual Studio launches:

The IIS Express web server.

The default browser and navigates to https://localhost:<port>/https://localhost:5001/swagger/index.html ,

where <port>  is a randomly chosen port number.

The Swagger page /swagger/index.html  is displayed. Select GETGET > Tr y it outTr y it out > ExecuteExecute. The page displays:

The Curl command to test the WeatherForecast API.

The URL to test the WeatherForecast API.

The response code, body, and headers.

A drop down list box with media types and the example value and schema.

Swagger is used to generate useful documentation and help pages for web APIs. This tutorial focuses on creating

a web API. For more information on Swagger, see ASP.NET Core Web API help pages with Swagger / OpenAPI.

Copy and past the Request URLRequest URL  in the browser : https://localhost:<port>/WeatherForecast

JSON similar to the following is returned:

https://curl.haxx.se/


[
    {
        "date": "2019-07-16T19:04:05.7257911-06:00",
        "temperatureC": 52,
        "temperatureF": 125,
        "summary": "Mild"
    },
    {
        "date": "2019-07-17T19:04:05.7258461-06:00",
        "temperatureC": 36,
        "temperatureF": 96,
        "summary": "Warm"
    },
    {
        "date": "2019-07-18T19:04:05.7258467-06:00",
        "temperatureC": 39,
        "temperatureF": 102,
        "summary": "Cool"
    },
    {
        "date": "2019-07-19T19:04:05.7258471-06:00",
        "temperatureC": 10,
        "temperatureF": 49,
        "summary": "Bracing"
    },
    {
        "date": "2019-07-20T19:04:05.7258474-06:00",
        "temperatureC": -1,
        "temperatureF": 31,
        "summary": "Chilly"
    }
]

Update the launchUrlUpdate the launchUrl

"launchUrl": "api/TodoItems",

Add a model class

In Properties\launchSettings.json, update launchUrl  from "swagger"  to "api/TodoItems" :

Because Swagger has been removed, the preceding markup changes the URL that is launched to the GET method

of the controller added in the following sections.

A model is a set of classes that represent the data that the app manages. The model for this app is a single 

TodoItem  class.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the project. Select AddAdd > New FolderNew Folder . Name the folder Models.

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoItem and select AddAdd.

Replace the template code with the following:



namespace TodoApi.Models
{
    public class TodoItem
    {
        public long Id { get; set; }
        public string Name { get; set; }
        public bool IsComplete { get; set; }
    }
}

Add a database context

Add NuGet packagesAdd NuGet packages

The Id  property functions as the unique key in a relational database.

Model classes can go anywhere in the project, but the Models folder is used by convention.

The database context is the main class that coordinates Entity Framework functionality for a data model. This

class is created by deriving from the Microsoft.EntityFrameworkCore.DbContext class.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From the ToolsTools  menu, select NuGet Package Manager > Manage NuGet Packages for SolutionNuGet Package Manager > Manage NuGet Packages for Solution.

Select the BrowseBrowse tab, and then enter **Microsoft. EntityFrameworkCore.SqlSer verEntityFrameworkCore.SqlSer ver  in the search box.

Select the Include prereleaseInclude prerelease checkbox so the 5.0 RC version is available.

Select Microsoft.EntityFrameworkCore.SqlSer verMicrosoft.EntityFrameworkCore.SqlSer ver  in the left pane.

Select the ProjectProject check box in the right pane and then select InstallInstall .

Use the preceding instructions to add the Microsoft.EntityFrameworkCore.InMemor yMicrosoft.EntityFrameworkCore.InMemor y  NuGet package.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext


Add the TodoContext database context

Register the database context

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoContext and click AddAdd.

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
    public class TodoContext : DbContext
    {
        public TodoContext(DbContextOptions<TodoContext> options)
            : base(options)
        {
        }

        public DbSet<TodoItem> TodoItems { get; set; }
    }
}

Enter the following code:

In ASP.NET Core, services such as the DB context must be registered with the dependency injection (DI) container.

The container provides the service to controllers.

Update Startup.cs with the following code:



// Unused usings removed
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.EntityFrameworkCore;
using TodoApi.Models;

namespace TodoApi
{
    public class Startup
    {
        public Startup(IConfiguration configuration)
        {
            Configuration = configuration;
        }

        public IConfiguration Configuration { get; }

        public void ConfigureServices(IServiceCollection services)
        {
            services.AddDbContext<TodoContext>(opt =>
                                               opt.UseInMemoryDatabase("TodoList"));
            services.AddControllers();
        }

        public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
        {
            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
            }

            app.UseHttpsRedirection();
            app.UseRouting();

            app.UseAuthorization();

            app.UseEndpoints(endpoints =>
            {
                endpoints.MapControllers();
            });
        }
    }
}

Scaffold a controller

The preceding code:

Removes the Swagger calls.

Removes unused using  declarations.

Adds the database context to the DI container.

Specifies that the database context will use an in-memory database.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Right-click the Controllers folder.

Select AddAdd > New Scaffolded ItemNew Scaffolded Item.



Update the PostTodoItem create method

// POST: api/TodoItems
[HttpPost]
public async Task<ActionResult<TodoItem>> PostTodoItem(TodoItem todoItem)
{
    _context.TodoItems.Add(todoItem);
    await _context.SaveChangesAsync();

    //return CreatedAtAction("GetTodoItem", new { id = todoItem.Id }, todoItem);
    return CreatedAtAction(nameof(GetTodoItem), new { id = todoItem.Id }, todoItem);
}

Install PostmanInstall Postman

Select API Controller  with actions, using Entity FrameworkAPI Controller  with actions, using Entity Framework , and then select AddAdd.

In the Add API Controller  with actions, using Entity FrameworkAdd API Controller  with actions, using Entity Framework dialog:

Select TodoItem (TodoApi.Models)TodoItem (TodoApi.Models)  in the Model classModel class .

Select TodoContext (TodoApi.Models)TodoContext (TodoApi.Models)  in the Data context classData context class .

Select AddAdd.

The generated code:

Marks the class with the [ApiController]  attribute. This attribute indicates that the controller responds to

web API requests. For information about specific behaviors that the attribute enables, see Create web APIs

with ASP.NET Core.

Uses DI to inject the database context ( TodoContext ) into the controller. The database context is used in each

of the CRUD methods in the controller.

The ASP.NET Core templates for :

Controllers with views include [action]  in the route template.

API controllers don't include [action]  in the route template.

When the [action]  token isn't in the route template, the action name is excluded from the route. That is, the

action's associated method name isn't used in the matching route.

Replace the return statement in the PostTodoItem  to use the nameof operator :

The preceding code is an HTTP POST method, as indicated by the [HttpPost]  attribute. The method gets the

value of the to-do item from the body of the HTTP request.

For more information, see Attribute routing with Http[Verb] attributes.

The CreatedAtAction method:

Returns an HTTP 201 status code if successful. HTTP 201 is the standard response for an HTTP POST method

that creates a new resource on the server.

Adds a Location header to the response. The Location  header specifies the URI of the newly created to-do

item. For more information, see 10.2.2 201 Created.

References the GetTodoItem  action to create the Location  header's URI. The C# nameof  keyword is used to

avoid hard-coding the action name in the CreatedAtAction  call.

This tutorial uses Postman to test the web API.

Install Postman

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://wikipedia.org/wiki/Create,_read,_update_and_delete
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/nameof
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://developer.mozilla.org/docs/Web/HTTP/Status/201
https://developer.mozilla.org/docs/Web/HTTP/Headers/Location
https://developer.mozilla.org/docs/Glossary/URI
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.getpostman.com/downloads/


Test PostTodoItem with PostmanTest PostTodoItem with Postman

Test the location header URITest the location header URI

Start the web app.

Start Postman.

Disable SSL cer tificate ver ificationSSL cer tificate ver ification

From FileFile > SettingsSettings  (GeneralGeneral  tab), disable SSL cer tificate ver ificationSSL cer tificate ver ification.

WARNINGWARNING
Re-enable SSL certificate verification after testing the controller.

      

{
  "name":"walk dog",
  "isComplete":true
}

Create a new request.

Set the HTTP method to POST .

Set the URI to https://localhost:<port>/api/TodoItems . For example, 

https://localhost:5001/api/TodoItems .

Select the BodyBody  tab.

Select the rawraw  radio button.

Set the type to JSON (application/json)JSON (application/json) .

In the request body enter JSON for a to-do item:

Select SendSend.

The location header URI can be tested in the browser. Copy and paste the location header URI into the browser.

To test in Postman:



Examine the GET methods

[
  {
    "id": 1,
    "name": "Item1",
    "isComplete": false
  }
]

Test Get with PostmanTest Get with Postman

Select the HeadersHeaders  tab in the ResponseResponse pane.

Copy the LocationLocation header value:

Set the HTTP method to GET .

Set the URI to https://localhost:<port>/api/TodoItems/1 . For example, 

https://localhost:5001/api/TodoItems/1 .

Select SendSend.

Two GET endpoints are implemented:

GET /api/TodoItems

GET /api/TodoItems/{id}

Test the app by calling the two endpoints from a browser or Postman. For example:

https://localhost:5001/api/TodoItems

https://localhost:5001/api/TodoItems/1

A response similar to the following is produced by the call to GetTodoItems :

Create a new request.

Set the HTTP method to GETGET.

Set the request URI to https://localhost:<port>/api/TodoItems . For example, 



Routing and URL paths

// GET: api/TodoItems/5
[HttpGet("{id}")]
public async Task<ActionResult<TodoItem>> GetTodoItem(long id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        return NotFound();
    }

    return todoItem;
}

Return values

https://localhost:5001/api/TodoItems .

Set Two pane viewTwo pane view  in Postman.

Select SendSend.

This app uses an in-memory database. If the app is stopped and started, the preceding GET request will not

return any data. If no data is returned, POST data to the app.

The [HttpGet]  attribute denotes a method that responds to an HTTP GET request. The URL path for each method

is constructed as follows:

[Route("api/[controller]")]
[ApiController]
public class TodoItemsController : ControllerBase
{
    private readonly TodoContext _context;

    public TodoItemsController(TodoContext context)
    {
        _context = context;
    }

Start with the template string in the controller's Route  attribute:

Replace [controller]  with the name of the controller, which by convention is the controller class name

minus the "Controller" suffix. For this sample, the controller class name is TodoItemsTodoItemsController, so the

controller name is "TodoItems". ASP.NET Core routing is case insensitive.

If the [HttpGet]  attribute has a route template (for example, [HttpGet("products")] ), append that to the

path. This sample doesn't use a template. For more information, see Attribute routing with Http[Verb]

attributes.

In the following GetTodoItem  method, "{id}"  is a placeholder variable for the unique identifier of the to-do

item. When GetTodoItem  is invoked, the value of "{id}"  in the URL is provided to the method in its id

parameter.

The return type of the GetTodoItems  and GetTodoItem  methods is ActionResult<T> type. ASP.NET Core

automatically serializes the object to JSON and writes the JSON into the body of the response message. The

response code for this return type is 200 OK, assuming there are no unhandled exceptions. Unhandled

exceptions are translated into 5xx errors.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpgetattribute
https://www.json.org/
https://developer.mozilla.org/docs/Web/HTTP/Status/200


The PutTodoItem method

// PUT: api/TodoItems/5
[HttpPut("{id}")]
public async Task<IActionResult> PutTodoItem(long id, TodoItem todoItem)
{
    if (id != todoItem.Id)
    {
        return BadRequest();
    }

    _context.Entry(todoItem).State = EntityState.Modified;

    try
    {
        await _context.SaveChangesAsync();
    }
    catch (DbUpdateConcurrencyException)
    {
        if (!TodoItemExists(id))
        {
            return NotFound();
        }
        else
        {
            throw;
        }
    }

    return NoContent();
}

Test the PutTodoItem methodTest the PutTodoItem method

  {
    "Id":1,
    "name":"feed fish",
    "isComplete":true
  }

ActionResult  return types can represent a wide range of HTTP status codes. For example, GetTodoItem  can

return two different status values:

If no item matches the requested ID, the method returns a 404 status NotFound error code.

Otherwise, the method returns 200 with a JSON response body. Returning item  results in an HTTP 200

response.

Examine the PutTodoItem  method:

PutTodoItem  is similar to PostTodoItem , except it uses HTTP PUT. The response is 204 (No Content). According to

the HTTP specification, a PUT request requires the client to send the entire updated entity, not just the changes. To

support partial updates, use HTTP PATCH.

If you get an error calling PutTodoItem , call GET  to ensure there's an item in the database.

This sample uses an in-memory database that must be initialized each time the app is started. There must be an

item in the database before you make a PUT call. Call GET to ensure there's an item in the database before

making a PUT call.

Update the to-do item that has Id = 1 and set its name to "feed fish" :

https://developer.mozilla.org/docs/Web/HTTP/Status/404
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppatchattribute


The DeleteTodoItem method

// DELETE: api/TodoItems/5
[HttpDelete("{id}")]
public async Task<IActionResult> DeleteTodoItem(long id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);
    if (todoItem == null)
    {
        return NotFound();
    }

    _context.TodoItems.Remove(todoItem);
    await _context.SaveChangesAsync();

    return NoContent();
}

Test the DeleteTodoItem methodTest the DeleteTodoItem method

Prevent over-posting

The following image shows the Postman update:

Examine the DeleteTodoItem  method:

Use Postman to delete a to-do item:

Set the method to DELETE .

Set the URI of the object to delete (for example https://localhost:5001/api/TodoItems/1 ).

Select SendSend.

 

Currently the sample app exposes the entire TodoItem  object. Production apps typically limit the data that's input

and returned using a subset of the model. There are multiple reasons behind this and security is a major one. The

subset of a model is usually referred to as a Data Transfer Object (DTO), input model, or view model. DTODTO is used



namespace TodoApi.Models
{
    public class TodoItem
    {
        public long Id { get; set; }
        public string Name { get; set; }
        public bool IsComplete { get; set; }
        public string Secret { get; set; }
    }
}

public class TodoItemDTO
{
    public long Id { get; set; }
    public string Name { get; set; }
    public bool IsComplete { get; set; }
}

// GET: api/TodoItems
[HttpGet]
public async Task<ActionResult<IEnumerable<TodoItemDTO>>> GetTodoItems()
{
    return await _context.TodoItems
        .Select(x => ItemToDTO(x))
        .ToListAsync();
}

[HttpGet("{id}")]
public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        return NotFound();
    }

    return ItemToDTO(todoItem);
}

[HttpPut("{id}")]
public async Task<IActionResult> UpdateTodoItem(long id, TodoItemDTO todoItemDTO)
{
    if (id != todoItemDTO.Id)

in this article.

A DTO may be used to:

Prevent over-posting.

Hide properties that clients are not supposed to view.

Omit some properties in order to reduce payload size.

Flatten object graphs that contain nested objects. Flattened object graphs can be more convenient for clients.

To demonstrate the DTO approach, update the TodoItem  class to include a secret field:

The secret field needs to be hidden from this app, but an administrative app could choose to expose it.

Verify you can post and get the secret field.

Create a DTO model:

Update the TodoItemsController  to use TodoItemDTO :



    if (id != todoItemDTO.Id)
    {
        return BadRequest();
    }

    var todoItem = await _context.TodoItems.FindAsync(id);
    if (todoItem == null)
    {
        return NotFound();
    }

    todoItem.Name = todoItemDTO.Name;
    todoItem.IsComplete = todoItemDTO.IsComplete;

    try
    {
        await _context.SaveChangesAsync();
    }
    catch (DbUpdateConcurrencyException) when (!TodoItemExists(id))
    {
        return NotFound();
    }

    return NoContent();
}

[HttpPost]
public async Task<ActionResult<TodoItemDTO>> CreateTodoItem(TodoItemDTO todoItemDTO)
{
    var todoItem = new TodoItem
    {
        IsComplete = todoItemDTO.IsComplete,
        Name = todoItemDTO.Name
    };

    _context.TodoItems.Add(todoItem);
    await _context.SaveChangesAsync();

    return CreatedAtAction(
        nameof(GetTodoItem),
        new { id = todoItem.Id },
        ItemToDTO(todoItem));
}

[HttpDelete("{id}")]
public async Task<IActionResult> DeleteTodoItem(long id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        return NotFound();
    }

    _context.TodoItems.Remove(todoItem);
    await _context.SaveChangesAsync();

    return NoContent();
}

private bool TodoItemExists(long id) =>
     _context.TodoItems.Any(e => e.Id == id);

private static TodoItemDTO ItemToDTO(TodoItem todoItem) =>
    new TodoItemDTO
    {
        Id = todoItem.Id,
        Name = todoItem.Name,
        IsComplete = todoItem.IsComplete



  

    };

Call the web API with JavaScript

Overview

A P IA P I DESC RIP T IO NDESC RIP T IO N REQ UEST  B O DYREQ UEST  B O DY RESP O N SE B O DYRESP O N SE B O DY

GET /api/TodoItems Get all to-do items None Array of to-do items

GET /api/TodoItems/{id} Get an item by ID None To-do item

POST /api/TodoItems Add a new item To-do item To-do item

PUT /api/TodoItems/{id} Update an existing item  To-do item None

DELETE
/api/TodoItems/{id}

   

Delete an item    None None

Prerequisites

Verify you can't post or get the secret field.

See Tutorial: Call an ASP.NET Core web API with JavaScript.

In this tutorial, you learn how to:

Create a web API project.

Add a model class and a database context.

Scaffold a controller with CRUD methods.

Configure routing, URL paths, and return values.

Call the web API with Postman.

At the end, you have a web API that can manage "to-do" items stored in a database.

This tutorial creates the following API:

The following diagram shows the design of the app.



Create a web project

Test the APITest the API

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the FileFile menu, select NewNew  > ProjectProject.

Select the ASP.NET Core Web ApplicationASP.NET Core Web Application template and click NextNext.

Name the project TodoApi and click CreateCreate.

In the Create a new ASP.NET Core Web ApplicationCreate a new ASP.NET Core Web Application dialog, confirm that .NET Core.NET Core and ASP.NET CoreASP.NET Core

3.13.1  are selected. Select the APIAPI template and click CreateCreate.

The project template creates a WeatherForecast  API. Call the Get  method from a browser to test the app.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run the app. Visual Studio launches a browser and navigates to 

https://localhost:<port>/WeatherForecast , where <port>  is a randomly chosen port number.

If you get a dialog box that asks if you should trust the IIS Express certificate, select YesYes . In the SecuritySecurity

WarningWarning dialog that appears next, select YesYes .

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1


[
    {
        "date": "2019-07-16T19:04:05.7257911-06:00",
        "temperatureC": 52,
        "temperatureF": 125,
        "summary": "Mild"
    },
    {
        "date": "2019-07-17T19:04:05.7258461-06:00",
        "temperatureC": 36,
        "temperatureF": 96,
        "summary": "Warm"
    },
    {
        "date": "2019-07-18T19:04:05.7258467-06:00",
        "temperatureC": 39,
        "temperatureF": 102,
        "summary": "Cool"
    },
    {
        "date": "2019-07-19T19:04:05.7258471-06:00",
        "temperatureC": 10,
        "temperatureF": 49,
        "summary": "Bracing"
    },
    {
        "date": "2019-07-20T19:04:05.7258474-06:00",
        "temperatureC": -1,
        "temperatureF": 31,
        "summary": "Chilly"
    }
]

Add a model class

public class TodoItem
{
    public long Id { get; set; }
    public string Name { get; set; }
    public bool IsComplete { get; set; }
}

JSON similar to the following is returned:

A model is a set of classes that represent the data that the app manages. The model for this app is a single 

TodoItem  class.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the project. Select AddAdd > New FolderNew Folder . Name the folder Models.

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoItem and select AddAdd.

Replace the template code with the following code:

The Id  property functions as the unique key in a relational database.

Model classes can go anywhere in the project, but the Models folder is used by convention.



Add a database context

Add NuGet packagesAdd NuGet packages

Add the TodoContext database context

The database context is the main class that coordinates Entity Framework functionality for a data model. This

class is created by deriving from the Microsoft.EntityFrameworkCore.DbContext  class.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From the ToolsTools  menu, select NuGet Package Manager > Manage NuGet Packages for SolutionNuGet Package Manager > Manage NuGet Packages for Solution.

Select the BrowseBrowse tab, and then enter Microsoft.EntityFrameworkCore.SqlSer verMicrosoft.EntityFrameworkCore.SqlSer ver  in the search box.

Select Microsoft.EntityFrameworkCore.SqlSer verMicrosoft.EntityFrameworkCore.SqlSer ver  in the left pane.

Select the ProjectProject check box in the right pane and then select InstallInstall .

Use the preceding instructions to add the Microsoft.EntityFrameworkCore.InMemor yMicrosoft.EntityFrameworkCore.InMemor y  NuGet package.

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoContext and click AddAdd.

Enter the following code:



Register the database context

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
    public class TodoContext : DbContext
    {
        public TodoContext(DbContextOptions<TodoContext> options)
            : base(options)
        {
        }

        public DbSet<TodoItem> TodoItems { get; set; }
    }
}

In ASP.NET Core, services such as the DB context must be registered with the dependency injection (DI) container.

The container provides the service to controllers.

Update Startup.cs with the following highlighted code:



// Unused usings removed
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.EntityFrameworkCore;
using TodoApi.Models;

namespace TodoApi
{
    public class Startup
    {
        public Startup(IConfiguration configuration)
        {
            Configuration = configuration;
        }

        public IConfiguration Configuration { get; }

        public void ConfigureServices(IServiceCollection services)
        {
            services.AddDbContext<TodoContext>(opt =>
               opt.UseInMemoryDatabase("TodoList"));
            services.AddControllers();
        }

        public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
        {
            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
            }

            app.UseHttpsRedirection();

            app.UseRouting();

            app.UseAuthorization();

            app.UseEndpoints(endpoints =>
            {
                endpoints.MapControllers();
            });
        }
    }
}

Scaffold a controller

The preceding code:

Removes unused using  declarations.

Adds the database context to the DI container.

Specifies that the database context will use an in-memory database.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Right-click the Controllers folder.

Select AddAdd > New Scaffolded ItemNew Scaffolded Item.

Select API Controller  with actions, using Entity FrameworkAPI Controller  with actions, using Entity Framework , and then select AddAdd.



Examine the PostTodoItem create method

// POST: api/TodoItems
[HttpPost]
public async Task<ActionResult<TodoItem>> PostTodoItem(TodoItem todoItem)
{
    _context.TodoItems.Add(todoItem);
    await _context.SaveChangesAsync();

    //return CreatedAtAction("GetTodoItem", new { id = todoItem.Id }, todoItem);
    return CreatedAtAction(nameof(GetTodoItem), new { id = todoItem.Id }, todoItem);
}

Install PostmanInstall Postman

In the Add API Controller  with actions, using Entity FrameworkAdd API Controller  with actions, using Entity Framework dialog:

Select TodoItem (TodoApi.Models)TodoItem (TodoApi.Models)  in the Model classModel class .

Select TodoContext (TodoApi.Models)TodoContext (TodoApi.Models)  in the Data context classData context class .

Select AddAdd.

The generated code:

Marks the class with the [ApiController]  attribute. This attribute indicates that the controller responds to

web API requests. For information about specific behaviors that the attribute enables, see Create web APIs

with ASP.NET Core.

Uses DI to inject the database context ( TodoContext ) into the controller. The database context is used in each

of the CRUD methods in the controller.

The ASP.NET Core templates for :

Controllers with views include [action]  in the route template.

API controllers don't include [action]  in the route template.

When the [action]  token isn't in the route template, the action name is excluded from the route. That is, the

action's associated method name isn't used in the matching route.

Replace the return statement in the PostTodoItem  to use the nameof operator :

The preceding code is an HTTP POST method, as indicated by the [HttpPost]  attribute. The method gets the

value of the to-do item from the body of the HTTP request.

For more information, see Attribute routing with Http[Verb] attributes.

The CreatedAtAction method:

Returns an HTTP 201 status code if successful. HTTP 201 is the standard response for an HTTP POST method

that creates a new resource on the server.

Adds a Location header to the response. The Location  header specifies the URI of the newly created to-do

item. For more information, see 10.2.2 201 Created.

References the GetTodoItem  action to create the Location  header's URI. The C# nameof  keyword is used to

avoid hard-coding the action name in the CreatedAtAction  call.

This tutorial uses Postman to test the web API.

Install Postman

Start the web app.

Start Postman.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://wikipedia.org/wiki/Create,_read,_update_and_delete
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/nameof
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://developer.mozilla.org/docs/Web/HTTP/Headers/Location
https://developer.mozilla.org/docs/Glossary/URI
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.getpostman.com/downloads/


Test PostTodoItem with PostmanTest PostTodoItem with Postman

Test the location header URI with PostmanTest the location header URI with Postman

Disable SSL cer tificate ver ificationSSL cer tificate ver ification

From FileFile > SettingsSettings  (GeneralGeneral  tab), disable SSL cer tificate ver ificationSSL cer tificate ver ification.

WARNINGWARNING
Re-enable SSL certificate verification after testing the controller.

 

{
  "name":"walk dog",
  "isComplete":true
}

Create a new request.

Set the HTTP method to POST .

Set the URI to https://localhost:<port>/api/TodoItems . For example, 

https://localhost:5001/api/TodoItems .

Select the BodyBody  tab.

Select the rawraw  radio button.

Set the type to JSON (application/json)JSON (application/json) .

In the request body enter JSON for a to-do item:

Select SendSend.

Select the HeadersHeaders  tab in the ResponseResponse pane.

Copy the LocationLocation header value:



Examine the GET methods

[
  {
    "id": 1,
    "name": "Item1",
    "isComplete": false
  }
]

Test Get with PostmanTest Get with Postman

Set the HTTP method to GET .

Set the URI to https://localhost:<port>/api/TodoItems/1 . For example, 

https://localhost:5001/api/TodoItems/1 .

Select SendSend.

These methods implement two GET endpoints:

GET /api/TodoItems

GET /api/TodoItems/{id}

Test the app by calling the two endpoints from a browser or Postman. For example:

https://localhost:5001/api/TodoItems

https://localhost:5001/api/TodoItems/1

A response similar to the following is produced by the call to GetTodoItems :

Create a new request.

Set the HTTP method to GETGET.

Set the request URI to https://localhost:<port>/api/TodoItems . For example, 

https://localhost:5001/api/TodoItems .

Set Two pane viewTwo pane view  in Postman.

Select SendSend.



Routing and URL paths

// GET: api/TodoItems/5
[HttpGet("{id}")]
public async Task<ActionResult<TodoItem>> GetTodoItem(long id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        return NotFound();
    }

    return todoItem;
}

Return values

This app uses an in-memory database. If the app is stopped and started, the preceding GET request will not

return any data. If no data is returned, POST data to the app.

The [HttpGet]  attribute denotes a method that responds to an HTTP GET request. The URL path for each method

is constructed as follows:

[Route("api/[controller]")]
[ApiController]
public class TodoItemsController : ControllerBase
{
    private readonly TodoContext _context;

    public TodoItemsController(TodoContext context)
    {
        _context = context;
    }

Start with the template string in the controller's Route  attribute:

Replace [controller]  with the name of the controller, which by convention is the controller class name

minus the "Controller" suffix. For this sample, the controller class name is TodoItemsTodoItemsController, so the

controller name is "TodoItems". ASP.NET Core routing is case insensitive.

If the [HttpGet]  attribute has a route template (for example, [HttpGet("products")] ), append that to the

path. This sample doesn't use a template. For more information, see Attribute routing with Http[Verb]

attributes.

In the following GetTodoItem  method, "{id}"  is a placeholder variable for the unique identifier of the to-do

item. When GetTodoItem  is invoked, the value of "{id}"  in the URL is provided to the method in its id

parameter.

The return type of the GetTodoItems  and GetTodoItem  methods is ActionResult<T> type. ASP.NET Core

automatically serializes the object to JSON and writes the JSON into the body of the response message. The

response code for this return type is 200, assuming there are no unhandled exceptions. Unhandled exceptions

are translated into 5xx errors.

ActionResult  return types can represent a wide range of HTTP status codes. For example, GetTodoItem  can

return two different status values:

If no item matches the requested ID, the method returns a 404 NotFound error code.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpgetattribute
https://www.json.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound


The PutTodoItem method

// PUT: api/TodoItems/5
[HttpPut("{id}")]
public async Task<IActionResult> PutTodoItem(long id, TodoItem todoItem)
{
    if (id != todoItem.Id)
    {
        return BadRequest();
    }

    _context.Entry(todoItem).State = EntityState.Modified;

    try
    {
        await _context.SaveChangesAsync();
    }
    catch (DbUpdateConcurrencyException)
    {
        if (!TodoItemExists(id))
        {
            return NotFound();
        }
        else
        {
            throw;
        }
    }

    return NoContent();
}

Test the PutTodoItem methodTest the PutTodoItem method

  {
    "Id":1,
    "name":"feed fish",
    "isComplete":true
  }

Otherwise, the method returns 200 with a JSON response body. Returning item  results in an HTTP 200

response.

Examine the PutTodoItem  method:

PutTodoItem  is similar to PostTodoItem , except it uses HTTP PUT. The response is 204 (No Content). According to

the HTTP specification, a PUT request requires the client to send the entire updated entity, not just the changes. To

support partial updates, use HTTP PATCH.

If you get an error calling PutTodoItem , call GET  to ensure there's an item in the database.

This sample uses an in-memory database that must be initialized each time the app is started. There must be an

item in the database before you make a PUT call. Call GET to ensure there's an item in the database before

making a PUT call.

Update the to-do item that has Id = 1 and set its name to "feed fish":

The following image shows the Postman update:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppatchattribute


The DeleteTodoItem method

// DELETE: api/TodoItems/5
[HttpDelete("{id}")]
public async Task<ActionResult<TodoItem>> DeleteTodoItem(long id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);
    if (todoItem == null)
    {
        return NotFound();
    }

    _context.TodoItems.Remove(todoItem);
    await _context.SaveChangesAsync();

    return todoItem;
}

Test the DeleteTodoItem methodTest the DeleteTodoItem method

Prevent over-posting

Examine the DeleteTodoItem  method:

Use Postman to delete a to-do item:

Set the method to DELETE .

Set the URI of the object to delete (for example https://localhost:5001/api/TodoItems/1 ).

Select SendSend.

 

Currently the sample app exposes the entire TodoItem  object. Production apps typically limit the data that's input

and returned using a subset of the model. There are multiple reasons behind this and security is a major one. The

subset of a model is usually referred to as a Data Transfer Object (DTO), input model, or view model. DTODTO is used

in this article.



public class TodoItem
{
    public long Id { get; set; }
    public string Name { get; set; }
    public bool IsComplete { get; set; }
    public string Secret { get; set; }
}

public class TodoItemDTO
{
    public long Id { get; set; }
    public string Name { get; set; }
    public bool IsComplete { get; set; }
}

    [HttpGet]
    public async Task<ActionResult<IEnumerable<TodoItemDTO>>> GetTodoItems()
    {
        return await _context.TodoItems
            .Select(x => ItemToDTO(x))
            .ToListAsync();
    }

    [HttpGet("{id}")]
    public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
    {
        var todoItem = await _context.TodoItems.FindAsync(id);

        if (todoItem == null)
        {
            return NotFound();
        }

        return ItemToDTO(todoItem);
    }

    [HttpPut("{id}")]
    public async Task<IActionResult> UpdateTodoItem(long id, TodoItemDTO todoItemDTO)
    {
        if (id != todoItemDTO.Id)
        {
            return BadRequest();
        }

        var todoItem = await _context.TodoItems.FindAsync(id);
        if (todoItem == null)

A DTO may be used to:

Prevent over-posting.

Hide properties that clients are not supposed to view.

Omit some properties in order to reduce payload size.

Flatten object graphs that contain nested objects. Flattened object graphs can be more convenient for clients.

To demonstrate the DTO approach, update the TodoItem  class to include a secret field:

The secret field needs to be hidden from this app, but an administrative app could choose to expose it.

Verify you can post and get the secret field.

Create a DTO model:

Update the TodoItemsController  to use TodoItemDTO :



        if (todoItem == null)
        {
            return NotFound();
        }

        todoItem.Name = todoItemDTO.Name;
        todoItem.IsComplete = todoItemDTO.IsComplete;

        try
        {
            await _context.SaveChangesAsync();
        }
        catch (DbUpdateConcurrencyException) when (!TodoItemExists(id))
        {
            return NotFound();
        }

        return NoContent();
    }

    [HttpPost]
    public async Task<ActionResult<TodoItemDTO>> CreateTodoItem(TodoItemDTO todoItemDTO)
    {
        var todoItem = new TodoItem
        {
            IsComplete = todoItemDTO.IsComplete,
            Name = todoItemDTO.Name
        };

        _context.TodoItems.Add(todoItem);
        await _context.SaveChangesAsync();

        return CreatedAtAction(
            nameof(GetTodoItem),
            new { id = todoItem.Id },
            ItemToDTO(todoItem));
    }

    [HttpDelete("{id}")]
    public async Task<IActionResult> DeleteTodoItem(long id)
    {
        var todoItem = await _context.TodoItems.FindAsync(id);

        if (todoItem == null)
        {
            return NotFound();
        }

        _context.TodoItems.Remove(todoItem);
        await _context.SaveChangesAsync();

        return NoContent();
    }

    private bool TodoItemExists(long id) =>
         _context.TodoItems.Any(e => e.Id == id);

    private static TodoItemDTO ItemToDTO(TodoItem todoItem) =>
        new TodoItemDTO
        {
            Id = todoItem.Id,
            Name = todoItem.Name,
            IsComplete = todoItem.IsComplete
        };       
}

Verify you can't post or get the secret field.



Call the web API with JavaScript

Overview 2.1

A P IA P I DESC RIP T IO NDESC RIP T IO N REQ UEST  B O DYREQ UEST  B O DY RESP O N SE B O DYRESP O N SE B O DY

GET /api/TodoItems Get all to-do items None Array of to-do items

GET /api/TodoItems/{id} Get an item by ID None To-do item

POST /api/TodoItems Add a new item To-do item To-do item

PUT /api/TodoItems/{id} Update an existing item  To-do item None

DELETE /api/TodoItems/{id}  
 

Delete an item    None None

Prerequisites 2.1

See Tutorial: Call an ASP.NET Core web API with JavaScript.

In this tutorial, you learn how to:

Create a web API project.

Add a model class and a database context.

Add a controller.

Add CRUD methods.

Configure routing and URL paths.

Specify return values.

Call the web API with Postman.

Call the web API with JavaScript.

At the end, you have a web API that can manage "to-do" items stored in a relational database.

This tutorial creates the following API:

The following diagram shows the design of the app.

Visual Studio

Visual Studio Code



WARNINGWARNING

Create a web project 2.1

Test the API 2.1Test the API 2.1

Visual Studio for Mac

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't work

with Visual Studio.

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the FileFile menu, select NewNew  > ProjectProject.

Select the ASP.NET Core Web ApplicationASP.NET Core Web Application template and click NextNext.

Name the project TodoApi and click CreateCreate.

In the Create a new ASP.NET Core Web ApplicationCreate a new ASP.NET Core Web Application dialog, confirm that .NET Core.NET Core and ASP.NET CoreASP.NET Core

2.22.2  are selected. Select the APIAPI template and click CreateCreate. Don'tDon't select Enable Docker Suppor tEnable Docker Suppor t.

The project template creates a values  API. Call the Get  method from a browser to test the app.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run the app. Visual Studio launches a browser and navigates to 

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124


["value1","value2"]

Add a model class 2.1

namespace TodoApi.Models
{
    public class TodoItem
    {
        public long Id { get; set; }
        public string Name { get; set; }
        public bool IsComplete { get; set; }
    }
}

Add a database context 2.1

https://localhost:<port>/api/values , where <port>  is a randomly chosen port number.

If you get a dialog box that asks if you should trust the IIS Express certificate, select YesYes . In the SecuritySecurity

WarningWarning dialog that appears next, select YesYes .

The following JSON is returned:

A model is a set of classes that represent the data that the app manages. The model for this app is a single 

TodoItem  class.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the project. Select AddAdd > New FolderNew Folder . Name the folder Models.

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoItem and select AddAdd.

Replace the template code with the following code:

The Id  property functions as the unique key in a relational database.

Model classes can go anywhere in the project, but the Models folder is used by convention.

The database context is the main class that coordinates Entity Framework functionality for a data model. This

class is created by deriving from the Microsoft.EntityFrameworkCore.DbContext  class.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Right-click the Models folder and select AddAdd > ClassClass . Name the class TodoContext and click AddAdd.

Replace the template code with the following code:



Register the database context 2.1

using Microsoft.EntityFrameworkCore;

namespace TodoApi.Models
{
    public class TodoContext : DbContext
    {
        public TodoContext(DbContextOptions<TodoContext> options)
            : base(options)
        {
        }

        public DbSet<TodoItem> TodoItems { get; set; }
    }
}

In ASP.NET Core, services such as the DB context must be registered with the dependency injection (DI) container.

The container provides the service to controllers.

Update Startup.cs with the following highlighted code:



// Unused usings removed
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using TodoApi.Models;

namespace TodoApi
{
    public class Startup
    {
        public Startup(IConfiguration configuration)
        {
            Configuration = configuration;
        }

        public IConfiguration Configuration { get; }

        // This method gets called by the runtime. Use this method to add services to the 
        //container.
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddDbContext<TodoContext>(opt =>
                opt.UseInMemoryDatabase("TodoList"));
            services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
        }

        // This method gets called by the runtime. Use this method to configure the HTTP 
        //request pipeline.
        public void Configure(IApplicationBuilder app, IHostingEnvironment env)
        {
            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
            }
            else
            {
                // The default HSTS value is 30 days. You may want to change this for 
                // production scenarios, see https://aka.ms/aspnetcore-hsts.
                app.UseHsts();
            }

            app.UseHttpsRedirection();
            app.UseMvc();
        }
    }
}

Add a controller 2.1

The preceding code:

Removes unused using  declarations.

Adds the database context to the DI container.

Specifies that the database context will use an in-memory database.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Right-click the Controllers folder.

Select AddAdd > New ItemNew Item.



In the Add New ItemAdd New Item dialog, select the API Controller  ClassAPI Controller  Class  template.

Name the class TodoController, and select AddAdd.

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using TodoApi.Models;

namespace TodoApi.Controllers
{
    [Route("api/[controller]")]
    [ApiController]
    public class TodoController : ControllerBase
    {
        private readonly TodoContext _context;

        public TodoController(TodoContext context)
        {
            _context = context;

            if (_context.TodoItems.Count() == 0)
            {
                // Create a new TodoItem if collection is empty,
                // which means you can't delete all TodoItems.
                _context.TodoItems.Add(new TodoItem { Name = "Item1" });
                _context.SaveChanges();
            }
        }
    }
}

Replace the template code with the following code:

The preceding code:



Add Get methods 2.1

// GET: api/Todo
[HttpGet]
public async Task<ActionResult<IEnumerable<TodoItem>>> GetTodoItems()
{
    return await _context.TodoItems.ToListAsync();
}

// GET: api/Todo/5
[HttpGet("{id}")]
public async Task<ActionResult<TodoItem>> GetTodoItem(long id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        return NotFound();
    }

    return todoItem;
}

[
  {
    "id": 1,
    "name": "Item1",
    "isComplete": false
  }
]

Defines an API controller class without methods.

Marks the class with the [ApiController]  attribute. This attribute indicates that the controller responds to

web API requests. For information about specific behaviors that the attribute enables, see Create web APIs

with ASP.NET Core.

Uses DI to inject the database context ( TodoContext ) into the controller. The database context is used in each

of the CRUD methods in the controller.

Adds an item named Item1  to the database if the database is empty. This code is in the constructor, so it runs

every time there's a new HTTP request. If you delete all items, the constructor creates Item1  again the next

time an API method is called. So it may look like the deletion didn't work when it actually did work.

To provide an API that retrieves to-do items, add the following methods to the TodoController  class:

These methods implement two GET endpoints:

GET /api/todo

GET /api/todo/{id}

Stop the app if it's still running. Then run it again to include the latest changes.

Test the app by calling the two endpoints from a browser. For example:

https://localhost:<port>/api/todo

https://localhost:<port>/api/todo/1

The following HTTP response is produced by the call to GetTodoItems :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://wikipedia.org/wiki/Create,_read,_update_and_delete


Routing and URL paths 2.1

// GET: api/Todo/5
[HttpGet("{id}")]
public async Task<ActionResult<TodoItem>> GetTodoItem(long id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        return NotFound();
    }

    return todoItem;
}

Return values 2.1

Test the GetTodoItems method 2.1

The [HttpGet]  attribute denotes a method that responds to an HTTP GET request. The URL path for each method

is constructed as follows:

namespace TodoApi.Controllers
{
    [Route("api/[controller]")]
    [ApiController]
    public class TodoController : ControllerBase
    {
        private readonly TodoContext _context;

Start with the template string in the controller's Route  attribute:

Replace [controller]  with the name of the controller, which by convention is the controller class name

minus the "Controller" suffix. For this sample, the controller class name is TodoTodoController, so the controller

name is "todo". ASP.NET Core routing is case insensitive.

If the [HttpGet]  attribute has a route template (for example, [HttpGet("products")] ), append that to the

path. This sample doesn't use a template. For more information, see Attribute routing with Http[Verb]

attributes.

In the following GetTodoItem  method, "{id}"  is a placeholder variable for the unique identifier of the to-do

item. When GetTodoItem  is invoked, the value of "{id}"  in the URL is provided to the method in its id

parameter.

The return type of the GetTodoItems  and GetTodoItem  methods is ActionResult<T> type. ASP.NET Core

automatically serializes the object to JSON and writes the JSON into the body of the response message. The

response code for this return type is 200, assuming there are no unhandled exceptions. Unhandled exceptions

are translated into 5xx errors.

ActionResult  return types can represent a wide range of HTTP status codes. For example, GetTodoItem  can

return two different status values:

If no item matches the requested ID, the method returns a 404 NotFound error code.

Otherwise, the method returns 200 with a JSON response body. Returning item  results in an HTTP 200

response.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpgetattribute
https://www.json.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound


WARNINGWARNING

Add a Create method 2.1

This tutorial uses Postman to test the web API.

Install Postman.

Start the web app.

Start Postman.

Disable SSL cer tificate ver ificationSSL cer tificate ver ification.

Visual Studio

Visual Studio Code / Visual Studio for Mac

From FileFile > SettingsSettings  (GeneralGeneral  tab), disable SSL cer tificate ver ificationSSL cer tificate ver ification.

Re-enable SSL certificate verification after testing the controller.

Create a new request.

Set Two pane viewTwo pane view  in Postman.

Select SendSend.

Set the HTTP method to GETGET.

Set the request URI to https://localhost:<port>/api/todo . For example, 

https://localhost:5001/api/todo .

Add the following PostTodoItem  method inside of Controllers/TodoController.cs:

https://www.getpostman.com/downloads/


// POST: api/Todo
[HttpPost]
public async Task<ActionResult<TodoItem>> PostTodoItem(TodoItem item)
{
    _context.TodoItems.Add(item);
    await _context.SaveChangesAsync();

    return CreatedAtAction(nameof(GetTodoItem), new { id = item.Id }, item);
}

Test the PostTodoItem method 2.1Test the PostTodoItem method 2.1

The preceding code is an HTTP POST method, as indicated by the [HttpPost]  attribute. The method gets the

value of the to-do item from the body of the HTTP request.

The CreatedAtAction  method:

// GET: api/Todo/5
[HttpGet("{id}")]
public async Task<ActionResult<TodoItem>> GetTodoItem(long id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        return NotFound();
    }

    return todoItem;
}

Returns an HTTP 201 status code, if successful. HTTP 201 is the standard response for an HTTP POST

method that creates a new resource on the server.

Adds a Location  header to the response. The Location  header specifies the URI of the newly created to-

do item. For more information, see 10.2.2 201 Created.

References the GetTodoItem  action to create the Location  header's URI. The C# nameof  keyword is used

to avoid hard-coding the action name in the CreatedAtAction  call.

{
  "name":"walk dog",
  "isComplete":true
}

Build the project.

In Postman, set the HTTP method to POST .

Set the URI to https://localhost:<port>/api/TodoItem . For example, https://localhost:5001/api/TodoItem .

Select the BodyBody  tab.

Select the rawraw  radio button.

Set the type to JSON (application/json)JSON (application/json) .

In the request body enter JSON for a to-do item:

Select SendSend.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppostattribute
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html


Test the location header URI 2.1Test the location header URI 2.1

Add a PutTodoItem method 2.1

If you get a 405 Method Not Allowed error, it's probably the result of not compiling the project after

adding the PostTodoItem  method.

Select the HeadersHeaders  tab in the ResponseResponse pane.

Copy the LocationLocation header value:

Set the method to GET. * Set the URI to https://localhost:<port>/api/TodoItems/2 . For example, 

https://localhost:5001/api/TodoItems/2 .

Select SendSend.

Add the following PutTodoItem  method:



// PUT: api/Todo/5
[HttpPut("{id}")]
public async Task<IActionResult> PutTodoItem(long id, TodoItem item)
{
    if (id != item.Id)
    {
        return BadRequest();
    }

    _context.Entry(item).State = EntityState.Modified;
    await _context.SaveChangesAsync();

    return NoContent();
}

Test the PutTodoItem method 2.1Test the PutTodoItem method 2.1

  {
    "Id":1,
    "name":"feed fish",
    "isComplete":true
  }

PutTodoItem  is similar to PostTodoItem , except it uses HTTP PUT. The response is 204 (No Content). According to

the HTTP specification, a PUT request requires the client to send the entire updated entity, not just the changes. To

support partial updates, use HTTP PATCH.

If you get an error calling PutTodoItem , call GET  to ensure there's an item in the database.

This sample uses an in-memory database that must be initialized each time the app is started. There must be an

item in the database before you make a PUT call. Call GET to ensure there's an item in the database before

making a PUT call.

Update the to-do item that has Id = 1 and set its name to "feed fish":

The following image shows the Postman update:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httppatchattribute


Add a DeleteTodoItem method 2.1

// DELETE: api/Todo/5
[HttpDelete("{id}")]
public async Task<IActionResult> DeleteTodoItem(long id)
{
    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        return NotFound();
    }

    _context.TodoItems.Remove(todoItem);
    await _context.SaveChangesAsync();

    return NoContent();
}

Test the DeleteTodoItem method 2.1Test the DeleteTodoItem method 2.1

Call the web API with JavaScript 2.1

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        // The default HSTS value is 30 days. You may want to change this for 
        // production scenarios, see https://aka.ms/aspnetcore-hsts.
        app.UseHsts();
    }

    app.UseDefaultFiles();
    app.UseStaticFiles();
    app.UseHttpsRedirection();
    app.UseMvc();
}

Add the following DeleteTodoItem  method:

The DeleteTodoItem  response is 204 (No Content).

Use Postman to delete a to-do item:

Set the method to DELETE .

Set the URI of the object to delete (for example, https://localhost:5001/api/todo/1 ).

Select SendSend.

The sample app allows you to delete all the items. However, when the last item is deleted, a new one is created by

the model class constructor the next time the API is called.

In this section, an HTML page is added that uses JavaScript to call the web API. jQuery initiates the request.

JavaScript updates the page with the details from the web API's response.

Configure the app to serve static files and enable default file mapping by updating Startup.cs with the following

highlighted code:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles


<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8">
    <title>To-do CRUD</title>
    <style>
        input[type='submit'], button, [aria-label] {
            cursor: pointer;
        }

        #spoiler {
            display: none;
        }

        table {
            font-family: Arial, sans-serif;
            border: 1px solid;
            border-collapse: collapse;
        }

        th {
            background-color: #0066CC;
            color: white;
        }

        td {
            border: 1px solid;
            padding: 5px;
        }
    </style>
</head>
<body>
    <h1>To-do CRUD</h1>
    <h3>Add</h3>
    <form action="javascript:void(0);" method="POST" onsubmit="addItem()">
        <input type="text" id="add-name" placeholder="New to-do">
        <input type="submit" value="Add">
    </form>

    <div id="spoiler">
        <h3>Edit</h3>
        <form class="my-form">
            <input type="hidden" id="edit-id">
            <input type="checkbox" id="edit-isComplete">
            <input type="text" id="edit-name">
            <input type="submit" value="Save">
            <a onclick="closeInput()" aria-label="Close">&#10006;</a>
        </form>
    </div>

    <p id="counter"></p>

    <table>
        <tr>
            <th>Is Complete</th>
            <th>Name</th>
            <th></th>
            <th></th>
        </tr>
        <tbody id="todos"></tbody>
    </table>

    <script src="https://code.jquery.com/jquery-3.3.1.min.js"
            integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="

Create a wwwroot folder in the project directory.

Add an HTML file named index.html to the wwwroot directory. Replace its contents with the following markup:



            integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="
            crossorigin="anonymous"></script>
    <script src="site.js"></script>
</body>
</html>

const uri = "api/todo";
let todos = null;
function getCount(data) {
  const el = $("#counter");
  let name = "to-do";
  if (data) {
    if (data > 1) {
      name = "to-dos";
    }
    el.text(data + " " + name);
  } else {
    el.text("No " + name);
  }
}

$(document).ready(function() {
  getData();
});

function getData() {
  $.ajax({
    type: "GET",
    url: uri,
    cache: false,
    success: function(data) {
      const tBody = $("#todos");

      $(tBody).empty();

      getCount(data.length);

      $.each(data, function(key, item) {
        const tr = $("<tr></tr>")
          .append(
            $("<td></td>").append(
              $("<input/>", {
                type: "checkbox",
                disabled: true,
                checked: item.isComplete
              })
            )
          )
          .append($("<td></td>").text(item.name))
          .append(
            $("<td></td>").append(
              $("<button>Edit</button>").on("click", function() {
                editItem(item.id);
              })
            )
          )
          .append(
            $("<td></td>").append(
              $("<button>Delete</button>").on("click", function() {
                deleteItem(item.id);
              })
            )
          );

        tr.appendTo(tBody);
      });

Add a JavaScript file named site.js to the wwwroot directory. Replace its contents with the following code:



      });

      todos = data;
    }
  });
}

function addItem() {
  const item = {
    name: $("#add-name").val(),
    isComplete: false
  };

  $.ajax({
    type: "POST",
    accepts: "application/json",
    url: uri,
    contentType: "application/json",
    data: JSON.stringify(item),
    error: function(jqXHR, textStatus, errorThrown) {
      alert("Something went wrong!");
    },
    success: function(result) {
      getData();
      $("#add-name").val("");
    }
  });
}

function deleteItem(id) {
  $.ajax({
    url: uri + "/" + id,
    type: "DELETE",
    success: function(result) {
      getData();
    }
  });
}

function editItem(id) {
  $.each(todos, function(key, item) {
    if (item.id === id) {
      $("#edit-name").val(item.name);
      $("#edit-id").val(item.id);
      $("#edit-isComplete")[0].checked = item.isComplete;
    }
  });
  $("#spoiler").css({ display: "block" });
}

$(".my-form").on("submit", function() {
  const item = {
    name: $("#edit-name").val(),
    isComplete: $("#edit-isComplete").is(":checked"),
    id: $("#edit-id").val()
  };

  $.ajax({
    url: uri + "/" + $("#edit-id").val(),
    type: "PUT",
    accepts: "application/json",
    contentType: "application/json",
    data: JSON.stringify(item),
    success: function(result) {
      getData();
    }
  });

  closeInput();
  return false;



  return false;
});

function closeInput() {
  $("#spoiler").css({ display: "none" });
}

Get a list of to-do items 2.1Get a list of to-do items 2.1

A change to the ASP.NET Core project's launch settings may be required to test the HTML page locally:

Open Properties\launchSettings.json.

Remove the launchUrl  property to force the app to open at index.html—the project's default file.

This sample calls all of the CRUD methods of the web API. Following are explanations of the calls to the API.

jQuery sends an HTTP GET request to the web API, which returns JSON representing an array of to-do items. The 

success  callback function is invoked if the request succeeds. In the callback, the DOM is updated with the to-do

information.



$(document).ready(function() {
  getData();
});

function getData() {
  $.ajax({
    type: "GET",
    url: uri,
    cache: false,
    success: function(data) {
      const tBody = $("#todos");

      $(tBody).empty();

      getCount(data.length);

      $.each(data, function(key, item) {
        const tr = $("<tr></tr>")
          .append(
            $("<td></td>").append(
              $("<input/>", {
                type: "checkbox",
                disabled: true,
                checked: item.isComplete
              })
            )
          )
          .append($("<td></td>").text(item.name))
          .append(
            $("<td></td>").append(
              $("<button>Edit</button>").on("click", function() {
                editItem(item.id);
              })
            )
          )
          .append(
            $("<td></td>").append(
              $("<button>Delete</button>").on("click", function() {
                deleteItem(item.id);
              })
            )
          );

        tr.appendTo(tBody);
      });

      todos = data;
    }
  });
}

Add a to-do item 2.1Add a to-do item 2.1
jQuery sends an HTTP POST request with the to-do item in the request body. The accepts  and contentType

options are set to application/json  to specify the media type being received and sent. The to-do item is

converted to JSON by using JSON.stringify. When the API returns a successful status code, the getData  function

is invoked to update the HTML table.

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify


function addItem() {
  const item = {
    name: $("#add-name").val(),
    isComplete: false
  };

  $.ajax({
    type: "POST",
    accepts: "application/json",
    url: uri,
    contentType: "application/json",
    data: JSON.stringify(item),
    error: function(jqXHR, textStatus, errorThrown) {
      alert("Something went wrong!");
    },
    success: function(result) {
      getData();
      $("#add-name").val("");
    }
  });
}

Update a to-do item 2.1Update a to-do item 2.1

$.ajax({
  url: uri + "/" + $("#edit-id").val(),
  type: "PUT",
  accepts: "application/json",
  contentType: "application/json",
  data: JSON.stringify(item),
  success: function(result) {
    getData();
  }
});

Delete a to-do item 2.1Delete a to-do item 2.1

$.ajax({
  url: uri + "/" + id,
  type: "DELETE",
  success: function(result) {
    getData();
  }
});

Add authentication support to a web API 2.1

Updating a to-do item is similar to adding one. The url  changes to add the unique identifier of the item, and the

type  is PUT .

Deleting a to-do item is accomplished by setting the type  on the AJAX call to DELETE  and specifying the item's

unique identifier in the URL.

 

ASP.NET Core Identity adds user interface (UI) login functionality to ASP.NET Core web apps. To secure web APIs

and SPAs, use one of the following:

Azure Active Directory

Azure Active Directory B2C (Azure AD B2C)

IdentityServer4

https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-protect-backend-with-aad
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw
https://identityserver.io


Additional resources 2.1

IdentityServer4 is an OpenID Connect and OAuth 2.0 framework for ASP.NET Core. IdentityServer4 enables the

following security features:

Authentication as a Service (AaaS)

Single sign-on/off (SSO) over multiple application types

Access control for APIs

Federation Gateway

For more information, see Welcome to IdentityServer4.

View or download sample code for this tutorial. See how to download.

For more information, see the following resources:

Create web APIs with ASP.NET Core

ASP.NET Core Web API help pages with Swagger / OpenAPI

Razor Pages with Entity Framework Core in ASP.NET Core - Tutorial 1 of 8

Routing to controller actions in ASP.NET Core

Controller action return types in ASP.NET Core web API

Deploy ASP.NET Core apps to Azure App Service

Host and deploy ASP.NET Core

YouTube version of this tutorial

https://docs.identityserver.io/en/latest/index.html
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/first-web-api/samples
https://www.youtube.com/watch?v=TTkhEyGBfAk


Create a web API with ASP.NET Core and MongoDB
9/22/2020 • 21 minutes to read • Edit Online

Prerequisites

Configure MongoDB

By Pratik Khandelwal and Scott Addie

This tutorial creates a web API that performs Create, Read, Update, and Delete (CRUD) operations on a MongoDB

NoSQL database.

In this tutorial, you learn how to:

Configure MongoDB

Create a MongoDB database

Define a MongoDB collection and schema

Perform MongoDB CRUD operations from a web API

Customize JSON serialization

View or download sample code (how to download)

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core SDK 3.0 or later

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

MongoDB

If using Windows, MongoDB is installed at C:\Program Files\MongoDB by default. Add C:\Program

Files\MongoDB\Server\<version_number>\bin to the Path  environment variable. This change enables MongoDB

access from anywhere on your development machine.

Use the mongo Shell in the following steps to create a database, make collections, and store documents. For more

information on mongo Shell commands, see Working with the mongo Shell.

mongod --dbpath <data_directory_path>

mongo

1. Choose a directory on your development machine for storing the data. For example, C:\BooksData on

Windows. Create the directory if it doesn't exist. The mongo Shell doesn't create new directories.

2. Open a command shell. Run the following command to connect to MongoDB on default port 27017.

Remember to replace <data_directory_path>  with the directory you chose in the previous step.

3. Open another command shell instance. Connect to the default test database by running the following

command:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/first-mongo-app.md
https://twitter.com/K2Prk
https://twitter.com/Scott_Addie
https://www.mongodb.com/what-is-mongodb
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/first-mongo-app/samples
https://dotnet.microsoft.com/download/dotnet-core
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/mongo/#working-with-the-mongo-shell


use BookstoreDb

db.createCollection('Books')

{ "ok" : 1 }

db.Books.insertMany([{'Name':'Design Patterns','Price':54.93,'Category':'Computers','Author':'Ralph 
Johnson'}, {'Name':'Clean Code','Price':43.15,'Category':'Computers','Author':'Robert C. Martin'}])

{
  "acknowledged" : true,
  "insertedIds" : [
    ObjectId("5bfd996f7b8e48dc15ff215d"),
    ObjectId("5bfd996f7b8e48dc15ff215e")
  ]
}

NOTENOTE

db.Books.find({}).pretty()

4. Run the following in a command shell:

If it doesn't already exist, a database named BookstoreDb is created. If the database does exist, its connection

is opened for transactions.

5. Create a Books  collection using following command:

The following result is displayed:

6. Define a schema for the Books  collection and insert two documents using the following command:

The following result is displayed:

The ID's shown in this article will not match the IDs when you run this sample.

7. View the documents in the database using the following command:

The following result is displayed:



Create the ASP.NET Core web API project

Add an entity model

{
  "_id" : ObjectId("5bfd996f7b8e48dc15ff215d"),
  "Name" : "Design Patterns",
  "Price" : 54.93,
  "Category" : "Computers",
  "Author" : "Ralph Johnson"
}
{
  "_id" : ObjectId("5bfd996f7b8e48dc15ff215e"),
  "Name" : "Clean Code",
  "Price" : 43.15,
  "Category" : "Computers",
  "Author" : "Robert C. Martin"
}

The schema adds an autogenerated _id  property of type ObjectId  for each document.

The database is ready. You can start creating the ASP.NET Core web API.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Install-Package MongoDB.Driver -Version {VERSION}

1. Go to FileFile > NewNew  > ProjectProject.

2. Select the ASP.NET Core Web ApplicationASP.NET Core Web Application project type, and select NextNext.

3. Name the project BooksApi, and select CreateCreate.

4. Select the .NET Core.NET Core target framework and ASP.NET Core 3.0ASP.NET Core 3.0 . Select the APIAPI project template, and select

CreateCreate.

5. Visit the NuGet Gallery: MongoDB.Driver to determine the latest stable version of the .NET driver for

MongoDB. In the Package Manager ConsolePackage Manager Console window, navigate to the project root. Run the following

command to install the .NET driver for MongoDB:

1. Add a Models directory to the project root.

2. Add a Book  class to the Models directory with the following code:

https://www.nuget.org/packages/MongoDB.Driver/


      Add a configuration model

using MongoDB.Bson;
using MongoDB.Bson.Serialization.Attributes;

namespace BooksApi.Models
{
    public class Book
    {
        [BsonId]
        [BsonRepresentation(BsonType.ObjectId)]
        public string Id { get; set; }

        [BsonElement("Name")]
        public string BookName { get; set; }

        public decimal Price { get; set; }

        public string Category { get; set; }

        public string Author { get; set; }
    }
}

In the preceding class, the Id  property:

Is required for mapping the Common Language Runtime (CLR) object to the MongoDB collection.

Is annotated with [BsonId]  to designate this property as the document's primary key.

Is annotated with [BsonRepresentation(BsonType.ObjectId)]  to allow passing the parameter as type 

string  instead of an ObjectId structure. Mongo handles the conversion from string  to ObjectId .

The BookName  property is annotated with the [BsonElement]  attribute. The attribute's value of Name

represents the property name in the MongoDB collection.

{
  "BookstoreDatabaseSettings": {
    "BooksCollectionName": "Books",
    "ConnectionString": "mongodb://localhost:27017",
    "DatabaseName": "BookstoreDb"
  },
  "Logging": {
    "IncludeScopes": false,
    "Debug": {
      "LogLevel": {
        "Default": "Warning"
      }
    },
    "Console": {
      "LogLevel": {
        "Default": "Warning"
      }
    }
  }
}

1. Add the following database configuration values to appsettings.json:

2. Add a BookstoreDatabaseSettings.cs file to the Models directory with the following code:

https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonIdAttribute.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonRepresentationAttribute.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_ObjectId.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonElementAttribute.htm


Add a CRUD operations service

namespace BooksApi.Models
{
    public class BookstoreDatabaseSettings : IBookstoreDatabaseSettings
    {
        public string BooksCollectionName { get; set; }
        public string ConnectionString { get; set; }
        public string DatabaseName { get; set; }
    }

    public interface IBookstoreDatabaseSettings
    {
        string BooksCollectionName { get; set; }
        string ConnectionString { get; set; }
        string DatabaseName { get; set; }
    }
}

public void ConfigureServices(IServiceCollection services)
{
    // requires using Microsoft.Extensions.Options
    services.Configure<BookstoreDatabaseSettings>(
        Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

    services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
        sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

    services.AddControllers();
}

using BooksApi.Models;

The preceding BookstoreDatabaseSettings  class is used to store the appsettings.json file's 

BookstoreDatabaseSettings  property values. The JSON and C# property names are named identically to ease

the mapping process.

3. Add the following highlighted code to Startup.ConfigureServices :

In the preceding code:

The configuration instance to which the appsettings.json file's BookstoreDatabaseSettings  section binds is

registered in the Dependency Injection (DI) container. For example, a BookstoreDatabaseSettings  object's 

ConnectionString  property is populated with the BookstoreDatabaseSettings:ConnectionString  property

in appsettings.json.

The IBookstoreDatabaseSettings  interface is registered in DI with a singleton service lifetime. When

injected, the interface instance resolves to a BookstoreDatabaseSettings  object.

4. Add the following code to the top of Startup.cs to resolve the BookstoreDatabaseSettings  and 

IBookstoreDatabaseSettings  references:

1. Add a Services directory to the project root.

2. Add a BookService  class to the Services directory with the following code:



using BooksApi.Models;
using MongoDB.Driver;
using System.Collections.Generic;
using System.Linq;

namespace BooksApi.Services
{
    public class BookService
    {
        private readonly IMongoCollection<Book> _books;

        public BookService(IBookstoreDatabaseSettings settings)
        {
            var client = new MongoClient(settings.ConnectionString);
            var database = client.GetDatabase(settings.DatabaseName);

            _books = database.GetCollection<Book>(settings.BooksCollectionName);
        }

        public List<Book> Get() =>
            _books.Find(book => true).ToList();

        public Book Get(string id) =>
            _books.Find<Book>(book => book.Id == id).FirstOrDefault();

        public Book Create(Book book)
        {
            _books.InsertOne(book);
            return book;
        }

        public void Update(string id, Book bookIn) =>
            _books.ReplaceOne(book => book.Id == id, bookIn);

        public void Remove(Book bookIn) =>
            _books.DeleteOne(book => book.Id == bookIn.Id);

        public void Remove(string id) => 
            _books.DeleteOne(book => book.Id == id);
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<BookstoreDatabaseSettings>(
        Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

    services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
        sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

    services.AddSingleton<BookService>();

    services.AddControllers();
}

In the preceding code, an IBookstoreDatabaseSettings  instance is retrieved from DI via constructor injection.

This technique provides access to the appsettings.json configuration values that were added in the Add a

configuration model section.

3. Add the following highlighted code to Startup.ConfigureServices :

In the preceding code, the BookService  class is registered with DI to support constructor injection in

consuming classes. The singleton service lifetime is most appropriate because BookService  takes a direct



Add a controller

using BooksApi.Models;
using BooksApi.Services;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;

namespace BooksApi.Controllers
{
    [Route("api/[controller]")]
    [ApiController]
    public class BooksController : ControllerBase
    {
        private readonly BookService _bookService;

        public BooksController(BookService bookService)
        {
            _bookService = bookService;
        }

using BooksApi.Services;

dependency on MongoClient . Per the official Mongo Client reuse guidelines, MongoClient  should be

registered in DI with a singleton service lifetime.

4. Add the following code to the top of Startup.cs to resolve the BookService  reference:

The BookService  class uses the following MongoDB.Driver  members to perform CRUD operations against the

database:

public BookService(IBookstoreDatabaseSettings settings)
{
    var client = new MongoClient(settings.ConnectionString);
    var database = client.GetDatabase(settings.DatabaseName);

    _books = database.GetCollection<Book>(settings.BooksCollectionName);
}

MongoClient: Reads the server instance for performing database operations. The constructor of this class is

provided the MongoDB connection string:

IMongoDatabase: Represents the Mongo database for performing operations. This tutorial uses the generic

GetCollection<TDocument>(collection) method on the interface to gain access to data in a specific

collection. Perform CRUD operations against the collection after this method is called. In the 

GetCollection<TDocument>(collection)  method call:

collection  represents the collection name.

TDocument  represents the CLR object type stored in the collection.

GetCollection<TDocument>(collection)  returns a MongoCollection object representing the collection. In this tutorial,

the following methods are invoked on the collection:

DeleteOne: Deletes a single document matching the provided search criteria.

Find<TDocument>: Returns all documents in the collection matching the provided search criteria.

InsertOne: Inserts the provided object as a new document in the collection.

ReplaceOne: Replaces the single document matching the provided search criteria with the provided object.

Add a BooksController  class to the Controllers directory with the following code:

https://mongodb.github.io/mongo-csharp-driver/2.8/reference/driver/connecting/#re-use
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_MongoClient.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_IMongoDatabase.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoDatabase_GetCollection__1.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_MongoCollection.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_DeleteOne.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollectionExtensions_Find__1_1.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_InsertOne.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_ReplaceOne.htm


        [HttpGet]
        public ActionResult<List<Book>> Get() =>
            _bookService.Get();

        [HttpGet("{id:length(24)}", Name = "GetBook")]
        public ActionResult<Book> Get(string id)
        {
            var book = _bookService.Get(id);

            if (book == null)
            {
                return NotFound();
            }

            return book;
        }

        [HttpPost]
        public ActionResult<Book> Create(Book book)
        {
            _bookService.Create(book);

            return CreatedAtRoute("GetBook", new { id = book.Id.ToString() }, book);
        }

        [HttpPut("{id:length(24)}")]
        public IActionResult Update(string id, Book bookIn)
        {
            var book = _bookService.Get(id);

            if (book == null)
            {
                return NotFound();
            }

            _bookService.Update(id, bookIn);

            return NoContent();
        }

        [HttpDelete("{id:length(24)}")]
        public IActionResult Delete(string id)
        {
            var book = _bookService.Get(id);

            if (book == null)
            {
                return NotFound();
            }

            _bookService.Remove(book.Id);

            return NoContent();
        }
    }
}

The preceding web API controller :

Uses the BookService  class to perform CRUD operations.

Contains action methods to support GET, POST, PUT, and DELETE HTTP requests.

Calls CreatedAtRoute in the Create  action method to return an HTTP 201 response. Status code 201 is the

standard response for an HTTP POST method that creates a new resource on the server. CreatedAtRoute  also

adds a Location  header to the response. The Location  header specifies the URI of the newly created book.

https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.createdatroute
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html


            Test the web API

Configure JSON serialization options

[
  {
    "id":"5bfd996f7b8e48dc15ff215d",
    "bookName":"Design Patterns",
    "price":54.93,
    "category":"Computers",
    "author":"Ralph Johnson"
  },
  {
    "id":"5bfd996f7b8e48dc15ff215e",
    "bookName":"Clean Code",
    "price":43.15,
    "category":"Computers",
    "author":"Robert C. Martin"
  }
]

{
  "id":"{ID}",
  "bookName":"Clean Code",
  "price":43.15,
  "category":"Computers",
  "author":"Robert C. Martin"
}

1. Build and run the app.

2. Navigate to http://localhost:<port>/api/books  to test the controller's parameterless Get  action method.

The following JSON response is displayed:

3. Navigate to http://localhost:<port>/api/books/{id here}  to test the controller's overloaded Get  action

method. The following JSON response is displayed:

There are two details to change about the JSON responses returned in the Test the web API section:

The property names' default camel casing should be changed to match the Pascal casing of the CLR object's

property names.

The bookName  property should be returned as Name .

To satisfy the preceding requirements, make the following changes:

1. JSON.NET has been removed from ASP.NET shared framework. Add a package reference to 

Microsoft.AspNetCore.Mvc.NewtonsoftJson .

2. In Startup.ConfigureServices , chain the following highlighted code on to the AddControllers  method call:

https://nuget.org/packages/Microsoft.AspNetCore.Mvc.NewtonsoftJson


Prerequisites

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<BookstoreDatabaseSettings>(
        Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

    services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
        sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

    services.AddSingleton<BookService>();

    services.AddControllers()
        .AddNewtonsoftJson(options => options.UseMemberCasing());
}

[BsonElement("Name")]
[JsonProperty("Name")]
public string BookName { get; set; }

using Newtonsoft.Json;

With the preceding change, property names in the web API's serialized JSON response match their

corresponding property names in the CLR object type. For example, the Book  class's Author  property

serializes as Author .

3. In Models/Book.cs, annotate the BookName  property with the following [JsonProperty]  attribute:

The [JsonProperty]  attribute's value of Name  represents the property name in the web API's serialized

JSON response.

4. Add the following code to the top of Models/Book.cs to resolve the [JsonProperty]  attribute reference:

5. Repeat the steps defined in the Test the web API section. Notice the difference in JSON property names.

This tutorial creates a web API that performs Create, Read, Update, and Delete (CRUD) operations on a MongoDB

NoSQL database.

In this tutorial, you learn how to:

Configure MongoDB

Create a MongoDB database

Define a MongoDB collection and schema

Perform MongoDB CRUD operations from a web API

Customize JSON serialization

View or download sample code (how to download)

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core SDK 2.2

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

MongoDB

https://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_JsonPropertyAttribute.htm
https://www.mongodb.com/what-is-mongodb
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/first-mongo-app/samples
https://dotnet.microsoft.com/download/dotnet-core
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/


Configure MongoDB
If using Windows, MongoDB is installed at C:\Program Files\MongoDB by default. Add C:\Program

Files\MongoDB\Server\<version_number>\bin to the Path  environment variable. This change enables MongoDB

access from anywhere on your development machine.

Use the mongo Shell in the following steps to create a database, make collections, and store documents. For more

information on mongo Shell commands, see Working with the mongo Shell.

mongod --dbpath <data_directory_path>

mongo

use BookstoreDb

db.createCollection('Books')

{ "ok" : 1 }

db.Books.insertMany([{'Name':'Design Patterns','Price':54.93,'Category':'Computers','Author':'Ralph 
Johnson'}, {'Name':'Clean Code','Price':43.15,'Category':'Computers','Author':'Robert C. Martin'}])

{
  "acknowledged" : true,
  "insertedIds" : [
    ObjectId("5bfd996f7b8e48dc15ff215d"),
    ObjectId("5bfd996f7b8e48dc15ff215e")
  ]
}

1. Choose a directory on your development machine for storing the data. For example, C:\BooksData on

Windows. Create the directory if it doesn't exist. The mongo Shell doesn't create new directories.

2. Open a command shell. Run the following command to connect to MongoDB on default port 27017.

Remember to replace <data_directory_path>  with the directory you chose in the previous step.

3. Open another command shell instance. Connect to the default test database by running the following

command:

4. Run the following in a command shell:

If it doesn't already exist, a database named BookstoreDb is created. If the database does exist, its connection

is opened for transactions.

5. Create a Books  collection using following command:

The following result is displayed:

6. Define a schema for the Books  collection and insert two documents using the following command:

The following result is displayed:

https://docs.mongodb.com/manual/mongo/#working-with-the-mongo-shell


Create the ASP.NET Core web API project

Add an entity model

NOTENOTE

db.Books.find({}).pretty()

{
  "_id" : ObjectId("5bfd996f7b8e48dc15ff215d"),
  "Name" : "Design Patterns",
  "Price" : 54.93,
  "Category" : "Computers",
  "Author" : "Ralph Johnson"
}
{
  "_id" : ObjectId("5bfd996f7b8e48dc15ff215e"),
  "Name" : "Clean Code",
  "Price" : 43.15,
  "Category" : "Computers",
  "Author" : "Robert C. Martin"
}

The ID's shown in this article will not match the IDs when you run this sample.

7. View the documents in the database using the following command:

The following result is displayed:

The schema adds an autogenerated _id  property of type ObjectId  for each document.

The database is ready. You can start creating the ASP.NET Core web API.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Install-Package MongoDB.Driver -Version {VERSION}

1. Go to FileFile > NewNew  > ProjectProject.

2. Select the ASP.NET Core Web ApplicationASP.NET Core Web Application project type, and select NextNext.

3. Name the project BooksApi, and select CreateCreate.

4. Select the .NET Core.NET Core target framework and ASP.NET Core 2.2ASP.NET Core 2.2 . Select the APIAPI project template, and select

CreateCreate.

5. Visit the NuGet Gallery: MongoDB.Driver to determine the latest stable version of the .NET driver for

MongoDB. In the Package Manager ConsolePackage Manager Console window, navigate to the project root. Run the following

command to install the .NET driver for MongoDB:

1. Add a Models directory to the project root.

2. Add a Book  class to the Models directory with the following code:

https://www.nuget.org/packages/MongoDB.Driver/


Add a configuration model

using MongoDB.Bson;
using MongoDB.Bson.Serialization.Attributes;

namespace BooksApi.Models
{
    public class Book
    {
        [BsonId]
        [BsonRepresentation(BsonType.ObjectId)]
        public string Id { get; set; }

        [BsonElement("Name")]
        public string BookName { get; set; }

        public decimal Price { get; set; }

        public string Category { get; set; }

        public string Author { get; set; }
    }
}

In the preceding class, the Id  property:

Is required for mapping the Common Language Runtime (CLR) object to the MongoDB collection.

Is annotated with [BsonId]  to designate this property as the document's primary key.

Is annotated with [BsonRepresentation(BsonType.ObjectId)]  to allow passing the parameter as type 

string  instead of an ObjectId structure. Mongo handles the conversion from string  to ObjectId .

The BookName  property is annotated with the [BsonElement]  attribute. The attribute's value of Name

represents the property name in the MongoDB collection.

{
  "BookstoreDatabaseSettings": {
    "BooksCollectionName": "Books",
    "ConnectionString": "mongodb://localhost:27017",
    "DatabaseName": "BookstoreDb"
  },
  "Logging": {
    "IncludeScopes": false,
    "Debug": {
      "LogLevel": {
        "Default": "Warning"
      }
    },
    "Console": {
      "LogLevel": {
        "Default": "Warning"
      }
    }
  }
}

1. Add the following database configuration values to appsettings.json:

2. Add a BookstoreDatabaseSettings.cs file to the Models directory with the following code:

https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonIdAttribute.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonRepresentationAttribute.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_ObjectId.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Bson_Serialization_Attributes_BsonElementAttribute.htm


Add a CRUD operations service

namespace BooksApi.Models
{
    public class BookstoreDatabaseSettings : IBookstoreDatabaseSettings
    {
        public string BooksCollectionName { get; set; }
        public string ConnectionString { get; set; }
        public string DatabaseName { get; set; }
    }

    public interface IBookstoreDatabaseSettings
    {
        string BooksCollectionName { get; set; }
        string ConnectionString { get; set; }
        string DatabaseName { get; set; }
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<BookstoreDatabaseSettings>(
        Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

    services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
        sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

    services.AddMvc()
            .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

using BooksApi.Models;

The preceding BookstoreDatabaseSettings  class is used to store the appsettings.json file's 

BookstoreDatabaseSettings  property values. The JSON and C# property names are named identically to ease

the mapping process.

3. Add the following highlighted code to Startup.ConfigureServices :

In the preceding code:

The configuration instance to which the appsettings.json file's BookstoreDatabaseSettings  section binds is

registered in the Dependency Injection (DI) container. For example, a BookstoreDatabaseSettings  object's 

ConnectionString  property is populated with the BookstoreDatabaseSettings:ConnectionString  property

in appsettings.json.

The IBookstoreDatabaseSettings  interface is registered in DI with a singleton service lifetime. When

injected, the interface instance resolves to a BookstoreDatabaseSettings  object.

4. Add the following code to the top of Startup.cs to resolve the BookstoreDatabaseSettings  and 

IBookstoreDatabaseSettings  references:

1. Add a Services directory to the project root.

2. Add a BookService  class to the Services directory with the following code:



using BooksApi.Models;
using MongoDB.Driver;
using System.Collections.Generic;
using System.Linq;

namespace BooksApi.Services
{
    public class BookService
    {
        private readonly IMongoCollection<Book> _books;

        public BookService(IBookstoreDatabaseSettings settings)
        {
            var client = new MongoClient(settings.ConnectionString);
            var database = client.GetDatabase(settings.DatabaseName);

            _books = database.GetCollection<Book>(settings.BooksCollectionName);
        }

        public List<Book> Get() =>
            _books.Find(book => true).ToList();

        public Book Get(string id) =>
            _books.Find<Book>(book => book.Id == id).FirstOrDefault();

        public Book Create(Book book)
        {
            _books.InsertOne(book);
            return book;
        }

        public void Update(string id, Book bookIn) =>
            _books.ReplaceOne(book => book.Id == id, bookIn);

        public void Remove(Book bookIn) =>
            _books.DeleteOne(book => book.Id == bookIn.Id);

        public void Remove(string id) => 
            _books.DeleteOne(book => book.Id == id);
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<BookstoreDatabaseSettings>(
        Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

    services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
        sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

    services.AddSingleton<BookService>();

    services.AddMvc()
            .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

In the preceding code, an IBookstoreDatabaseSettings  instance is retrieved from DI via constructor injection.

This technique provides access to the appsettings.json configuration values that were added in the Add a

configuration model section.

3. Add the following highlighted code to Startup.ConfigureServices :

In the preceding code, the BookService  class is registered with DI to support constructor injection in



Add a controller

using BooksApi.Models;
using BooksApi.Services;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;

namespace BooksApi.Controllers
{
    [Route("api/[controller]")]
    [ApiController]
    public class BooksController : ControllerBase
    {
        private readonly BookService _bookService;

        public BooksController(BookService bookService)
        {
            _bookService = bookService;

using BooksApi.Services;

consuming classes. The singleton service lifetime is most appropriate because BookService  takes a direct

dependency on MongoClient . Per the official Mongo Client reuse guidelines, MongoClient  should be

registered in DI with a singleton service lifetime.

4. Add the following code to the top of Startup.cs to resolve the BookService  reference:

The BookService  class uses the following MongoDB.Driver  members to perform CRUD operations against the

database:

public BookService(IBookstoreDatabaseSettings settings)
{
    var client = new MongoClient(settings.ConnectionString);
    var database = client.GetDatabase(settings.DatabaseName);

    _books = database.GetCollection<Book>(settings.BooksCollectionName);
}

MongoClient: Reads the server instance for performing database operations. The constructor of this class is

provided the MongoDB connection string:

IMongoDatabase: Represents the Mongo database for performing operations. This tutorial uses the generic

GetCollection<TDocument>(collection) method on the interface to gain access to data in a specific

collection. Perform CRUD operations against the collection after this method is called. In the 

GetCollection<TDocument>(collection)  method call:

collection  represents the collection name.

TDocument  represents the CLR object type stored in the collection.

GetCollection<TDocument>(collection)  returns a MongoCollection object representing the collection. In this tutorial,

the following methods are invoked on the collection:

DeleteOne: Deletes a single document matching the provided search criteria.

Find<TDocument>: Returns all documents in the collection matching the provided search criteria.

InsertOne: Inserts the provided object as a new document in the collection.

ReplaceOne: Replaces the single document matching the provided search criteria with the provided object.

Add a BooksController  class to the Controllers directory with the following code:

https://mongodb.github.io/mongo-csharp-driver/2.8/reference/driver/connecting/#re-use
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_MongoClient.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_IMongoDatabase.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoDatabase_GetCollection__1.htm
https://api.mongodb.com/csharp/current/html/T_MongoDB_Driver_MongoCollection.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_DeleteOne.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollectionExtensions_Find__1_1.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_InsertOne.htm
https://api.mongodb.com/csharp/current/html/M_MongoDB_Driver_IMongoCollection_1_ReplaceOne.htm


            _bookService = bookService;
        }

        [HttpGet]
        public ActionResult<List<Book>> Get() =>
            _bookService.Get();

        [HttpGet("{id:length(24)}", Name = "GetBook")]
        public ActionResult<Book> Get(string id)
        {
            var book = _bookService.Get(id);

            if (book == null)
            {
                return NotFound();
            }

            return book;
        }

        [HttpPost]
        public ActionResult<Book> Create(Book book)
        {
            _bookService.Create(book);

            return CreatedAtRoute("GetBook", new { id = book.Id.ToString() }, book);
        }

        [HttpPut("{id:length(24)}")]
        public IActionResult Update(string id, Book bookIn)
        {
            var book = _bookService.Get(id);

            if (book == null)
            {
                return NotFound();
            }

            _bookService.Update(id, bookIn);

            return NoContent();
        }

        [HttpDelete("{id:length(24)}")]
        public IActionResult Delete(string id)
        {
            var book = _bookService.Get(id);

            if (book == null)
            {
                return NotFound();
            }

            _bookService.Remove(book.Id);

            return NoContent();
        }
    }
}

The preceding web API controller :

Uses the BookService  class to perform CRUD operations.

Contains action methods to support GET, POST, PUT, and DELETE HTTP requests.

Calls CreatedAtRoute in the Create  action method to return an HTTP 201 response. Status code 201 is the

standard response for an HTTP POST method that creates a new resource on the server. CreatedAtRoute  also

https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.createdatroute
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html


Test the web API

Configure JSON serialization options

adds a Location  header to the response. The Location  header specifies the URI of the newly created book.

[
  {
    "id":"5bfd996f7b8e48dc15ff215d",
    "bookName":"Design Patterns",
    "price":54.93,
    "category":"Computers",
    "author":"Ralph Johnson"
  },
  {
    "id":"5bfd996f7b8e48dc15ff215e",
    "bookName":"Clean Code",
    "price":43.15,
    "category":"Computers",
    "author":"Robert C. Martin"
  }
]

{
  "id":"{ID}",
  "bookName":"Clean Code",
  "price":43.15,
  "category":"Computers",
  "author":"Robert C. Martin"
}

1. Build and run the app.

2. Navigate to http://localhost:<port>/api/books  to test the controller's parameterless Get  action method.

The following JSON response is displayed:

3. Navigate to http://localhost:<port>/api/books/{id here}  to test the controller's overloaded Get  action

method. The following JSON response is displayed:

There are two details to change about the JSON responses returned in the Test the web API section:

The property names' default camel casing should be changed to match the Pascal casing of the CLR object's

property names.

The bookName  property should be returned as Name .

To satisfy the preceding requirements, make the following changes:

1. In Startup.ConfigureServices , chain the following highlighted code on to the AddMvc  method call:



Add authentication support to a web API

Next steps

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<BookstoreDatabaseSettings>(
        Configuration.GetSection(nameof(BookstoreDatabaseSettings)));

    services.AddSingleton<IBookstoreDatabaseSettings>(sp =>
        sp.GetRequiredService<IOptions<BookstoreDatabaseSettings>>().Value);

    services.AddSingleton<BookService>();

    services.AddMvc()
            .AddJsonOptions(options => options.UseMemberCasing())
            .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

[BsonElement("Name")]
[JsonProperty("Name")]
public string BookName { get; set; }

using Newtonsoft.Json;

With the preceding change, property names in the web API's serialized JSON response match their

corresponding property names in the CLR object type. For example, the Book  class's Author  property

serializes as Author .

2. In Models/Book.cs, annotate the BookName  property with the following [JsonProperty]  attribute:

The [JsonProperty]  attribute's value of Name  represents the property name in the web API's serialized

JSON response.

3. Add the following code to the top of Models/Book.cs to resolve the [JsonProperty]  attribute reference:

4. Repeat the steps defined in the Test the web API section. Notice the difference in JSON property names.

ASP.NET Core Identity adds user interface (UI) login functionality to ASP.NET Core web apps. To secure web APIs and

SPAs, use one of the following:

Azure Active Directory

Azure Active Directory B2C (Azure AD B2C)

IdentityServer4

IdentityServer4 is an OpenID Connect and OAuth 2.0 framework for ASP.NET Core. IdentityServer4 enables the

following security features:

Authentication as a Service (AaaS)

Single sign-on/off (SSO) over multiple application types

Access control for APIs

Federation Gateway

For more information, see Welcome to IdentityServer4.

For more information on building ASP.NET Core web APIs, see the following resources:

https://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_JsonPropertyAttribute.htm
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-protect-backend-with-aad
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw
https://identityserver.io
https://docs.identityserver.io/en/latest/index.html


YouTube version of this article

Create web APIs with ASP.NET Core

Controller action return types in ASP.NET Core web API

https://www.youtube.com/watch?v=7uJt_sOenyo&feature=youtu.be


 

ASP.NET Core web API help pages with Swagger /
OpenAPI
9/22/2020 • 2 minutes to read • Edit Online

What is Swagger / OpenAPI?

OpenAPI specification (openapi.json)

{
  "openapi": "3.0.1",
  "info": {
    "title": "API V1",
    "version": "v1"
  },
  "paths": {
    "/api/Todo": {
      "get": {
        "tags": [
          "Todo"
        ],
        "operationId": "ApiTodoGet",
        "responses": {
          "200": {
            "description": "Success",
            "content": {
              "text/plain": {
                "schema": {
                  "type": "array",

By Christoph Nienaber and Rico Suter

When consuming a web API, understanding its various methods can be challenging for a developer. Swagger,

also known as OpenAPI, solves the problem of generating useful documentation and help pages for web APIs. It

provides benefits such as interactive documentation, client SDK generation, and API discoverability.

In this article, the Swashbuckle.AspNetCore and NSwag .NET Swagger implementations are showcased:

Swashbuckle.AspNetCoreSwashbuckle.AspNetCore is an open source project for generating Swagger documents for ASP.NET

Core Web APIs.

NSwagNSwag is another open source project for generating Swagger documents and integrating Swagger UI

or ReDoc into ASP.NET Core web APIs. Additionally, NSwag offers approaches to generate C# and

TypeScript client code for your API.

Swagger is a language-agnostic specification for describing REST APIs. The Swagger project was donated to the

OpenAPI Initiative, where it's now referred to as OpenAPI. Both names are used interchangeably; however,

OpenAPI is preferred. It allows both computers and humans to understand the capabilities of a service without

any direct access to the implementation (source code, network access, documentation). One goal is to minimize

the amount of work needed to connect disassociated services. Another goal is to reduce the amount of time

needed to accurately document a service.

The core to the OpenAPI flow is the specification—by default, a document named openapi.json. It's generated by

the OpenAPI tool chain (or third-party implementations of it) based on your service. It describes the capabilities

of your API and how to access it with HTTP. It drives the Swagger UI and is used by the tool chain to enable

discovery and client code generation. Here's an example of an OpenAPI specification, reduced for brevity:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/web-api-help-pages-using-swagger.md
https://twitter.com/zuckerthoben
https://blog.rsuter.com/
https://swagger.io/
https://www.openapis.org/
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/RicoSuter/NSwag
https://swagger.io/swagger-ui/
https://github.com/Rebilly/ReDoc
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.openapis.org/


                  "type": "array",
                  "items": {
                    "$ref": "#/components/schemas/ToDoItem"
                  }
                }
              },
              "application/json": {
                "schema": {
                  "type": "array",
                  "items": {
                    "$ref": "#/components/schemas/ToDoItem"
                  }
                }
              },
              "text/json": {
                "schema": {
                  "type": "array",
                  "items": {
                    "$ref": "#/components/schemas/ToDoItem"
                  }
                }
              }
            }
          }
        }
      },
      "post": {
        …
      }
    },
    "/api/Todo/{id}": {
      "get": {
        …
      },
      "put": {
        …
      },
      "delete": {
        …
      }
    }
  },
  "components": {
    "schemas": {
      "ToDoItem": {
        "type": "object",
        "properties": {
          "id": {
            "type": "integer",
            "format": "int32"
          },
          "name": {
            "type": "string",
            "nullable": true
          },
          "isCompleted": {
            "type": "boolean"
          }
        },
        "additionalProperties": false
      }
    }
  }
}

Swagger UI



Swagger UI offers a web-based UI that provides information about the service, using the generated OpenAPI

specification. Both Swashbuckle and NSwag include an embedded version of Swagger UI, so that it can be

hosted in your ASP.NET Core app using a middleware registration call. The web UI looks like this:

Each public action method in your controllers can be tested from the UI. Click a method name to expand the

section. Add any necessary parameters, and click Tr y it out!Tr y it out! .

https://swagger.io/swagger-ui/


NOTENOTE

Next steps

The Swagger UI version used for the screenshots is version 2. For a version 3 example, see Petstore example.

Get started with Swashbuckle

Get started with NSwag

https://petstore.swagger.io/


Get started with Swashbuckle and ASP.NET Core
9/22/2020 • 14 minutes to read • Edit Online

Package installation

Add and configure Swagger middleware

By Shayne Boyer and Scott Addie

View or download sample code (how to download)

There are three main components to Swashbuckle:

Swashbuckle.AspNetCore.Swagger: a Swagger object model and middleware to expose SwaggerDocument

objects as JSON endpoints.

Swashbuckle.AspNetCore.SwaggerGen: a Swagger generator that builds SwaggerDocument  objects directly

from your routes, controllers, and models. It's typically combined with the Swagger endpoint middleware to

automatically expose Swagger JSON.

Swashbuckle.AspNetCore.SwaggerUI: an embedded version of the Swagger UI tool. It interprets Swagger

JSON to build a rich, customizable experience for describing the web API functionality. It includes built-in

test harnesses for the public methods.

Swashbuckle can be added with the following approaches:

Visual Studio

Visual Studio for Mac

Visual Studio Code

.NET Core CLI

From the Package Manager ConsolePackage Manager Console window:

Install-Package Swashbuckle.AspNetCore -Version 5.5.0

Go to ViewView  > Other WindowsOther Windows > Package Manager ConsolePackage Manager Console

Navigate to the directory in which the TodoApi.csproj file exists

Execute the following command:

From the Manage NuGet PackagesManage NuGet Packages  dialog:

Right-click the project in Solution ExplorerSolution Explorer  > Manage NuGet PackagesManage NuGet Packages

Set the Package sourcePackage source to "nuget.org"

Ensure the "Include prerelease" option is enabled

Enter "Swashbuckle.AspNetCore" in the search box

Select the latest "Swashbuckle.AspNetCore" package from the BrowseBrowse tab and click InstallInstall

Add the Swagger generator to the services collection in the Startup.ConfigureServices  method:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/getting-started-with-swashbuckle.md
https://twitter.com/spboyer
https://twitter.com/Scott_Addie
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/web-api-help-pages-using-swagger/samples/
https://www.nuget.org/packages/Swashbuckle.AspNetCore.Swagger/
https://www.nuget.org/packages/Swashbuckle.AspNetCore.SwaggerGen/
https://www.nuget.org/packages/Swashbuckle.AspNetCore.SwaggerUI/


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<TodoContext>(opt =>
        opt.UseInMemoryDatabase("TodoList"));
    services.AddMvc();

    // Register the Swagger generator, defining 1 or more Swagger documents
    services.AddSwaggerGen();
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<TodoContext>(opt =>
        opt.UseInMemoryDatabase("TodoList"));
    services.AddMvc()
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

    // Register the Swagger generator, defining 1 or more Swagger documents
    services.AddSwaggerGen();
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<TodoContext>(opt =>
        opt.UseInMemoryDatabase("TodoList"));
    services.AddControllers();

    // Register the Swagger generator, defining 1 or more Swagger documents
    services.AddSwaggerGen();
}

public void Configure(IApplicationBuilder app)
{
    // Enable middleware to serve generated Swagger as a JSON endpoint.
    app.UseSwagger();

    // Enable middleware to serve swagger-ui (HTML, JS, CSS, etc.),
    // specifying the Swagger JSON endpoint.
    app.UseSwaggerUI(c =>
    {
        c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
    });

    app.UseMvc();
}

In the Startup.Configure  method, enable the middleware for serving the generated JSON document and the

Swagger UI:



public void Configure(IApplicationBuilder app)
{
    // Enable middleware to serve generated Swagger as a JSON endpoint.
    app.UseSwagger();

    // Enable middleware to serve swagger-ui (HTML, JS, CSS, etc.),
    // specifying the Swagger JSON endpoint.
    app.UseSwaggerUI(c =>
    {
        c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
    });

    app.UseRouting();
    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
    });
}

NOTENOTE

TIPTIP

app.UseSwaggerUI(c =>
{
    c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
    c.RoutePrefix = string.Empty;
});

Swashbuckle relies on MVC's Microsoft.AspNetCore.Mvc.ApiExplorer to discover the routes and endpoints. If the project calls

AddMvc, routes and endpoints are discovered automatically. When calling AddMvcCore, the AddApiExplorer method must

be explicitly called. For more information, see Swashbuckle, ApiExplorer, and Routing.

The preceding UseSwaggerUI  method call enables the Static File Middleware. If targeting .NET Framework or .NET

Core 1.x, add the Microsoft.AspNetCore.StaticFiles NuGet package to the project.

Launch the app, and navigate to http://localhost:<port>/swagger/v1/swagger.json . The generated document

describing the endpoints appears as shown in OpenAPI specification (openapi.json).

The Swagger UI can be found at http://localhost:<port>/swagger . Explore the API via Swagger UI and incorporate

it in other programs.

To serve the Swagger UI at the app's root ( http://localhost:<port>/ ), set the RoutePrefix  property to an empty

string:

If using directories with IIS or a reverse proxy, set the Swagger endpoint to a relative path using the ./  prefix. For

example, ./swagger/v1/swagger.json . Using /swagger/v1/swagger.json  instructs the app to look for the JSON file at

the true root of the URL (plus the route prefix, if used). For example, use 

http://localhost:<port>/<route_prefix>/swagger/v1/swagger.json  instead of 

http://localhost:<port>/<virtual_directory>/<route_prefix>/swagger/v1/swagger.json .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apiexplorer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccoreservicecollectionextensions.addmvccore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcapiexplorermvccorebuilderextensions.addapiexplorer
https://github.com/domaindrivendev/Swashbuckle.AspNetCore#swashbuckle-apiexplorer-and-routing
https://www.nuget.org/packages/Microsoft.AspNetCore.StaticFiles/


NOTENOTE

public void Configure(IApplicationBuilder app)
{
    // Enable middleware to serve generated Swagger as a JSON endpoint.
    app.UseSwagger(c =>
    {
        c.SerializeAsV2 = true;
    });

    // Enable middleware to serve swagger-ui (HTML, JS, CSS, etc.),
    // specifying the Swagger JSON endpoint.
    app.UseSwaggerUI(c =>
    {
        c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
    });

    app.UseRouting();
    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
    });
}

Customize and extend

using System;
using System.Reflection;
using System.IO;

API info and descriptionAPI info and description

using Microsoft.OpenApi.Models;

By default, Swashbuckle generates and exposes Swagger JSON in version 3.0 of the specification—officially called the

OpenAPI Specification. To support backwards compatibility, you can opt into exposing JSON in the 2.0 format instead. This

2.0 format is important for integrations such as Microsoft Power Apps and Microsoft Flow that currently support OpenAPI

version 2.0. To opt into the 2.0 format, set the SerializeAsV2  property in Startup.Configure :

Swagger provides options for documenting the object model and customizing the UI to match your theme.

In the Startup  class, add the following namespaces:

The configuration action passed to the AddSwaggerGen  method adds information such as the author, license, and

description:

In the Startup  class, import the following namespace to use the OpenApiInfo  class:

Using the OpenApiInfo  class, modify the information displayed in the UI:



// Register the Swagger generator, defining 1 or more Swagger documents
services.AddSwaggerGen(c =>
{
    c.SwaggerDoc("v1", new OpenApiInfo
    {
        Version = "v1",
        Title = "ToDo API",
        Description = "A simple example ASP.NET Core Web API",
        TermsOfService = new Uri("https://example.com/terms"),
        Contact = new OpenApiContact
        {
            Name = "Shayne Boyer",
            Email = string.Empty,
            Url = new Uri("https://twitter.com/spboyer"),
        },
        License = new OpenApiLicense
        {
            Name = "Use under LICX",
            Url = new Uri("https://example.com/license"),
        }
    });
});

XML commentsXML comments

<PropertyGroup>
  <GenerateDocumentationFile>true</GenerateDocumentationFile>
  <NoWarn>$(NoWarn);1591</NoWarn>
</PropertyGroup>

The Swagger UI displays the version's information:

XML comments can be enabled with the following approaches:

Visual Studio

Visual Studio for Mac

Visual Studio Code

.NET Core CLI

Right-click the project in Solution ExplorerSolution Explorer  and select Edit <project_name>.csprojEdit <project_name>.csproj .

Manually add the highlighted lines to the .csproj file:



warning CS1591: Missing XML comment for publicly visible type or member 'TodoController.GetAll()'

<PropertyGroup>
  <GenerateDocumentationFile>true</GenerateDocumentationFile>
  <NoWarn>$(NoWarn);1591</NoWarn>
</PropertyGroup>

<PropertyGroup>
  <DocumentationFile>bin\$(Configuration)\$(TargetFramework)\$(AssemblyName).xml</DocumentationFile>
  <NoWarn>$(NoWarn);1591</NoWarn>
</PropertyGroup>

namespace TodoApi
{
#pragma warning disable CS1591
    public class Program
    {
        public static void Main(string[] args) =>
            BuildWebHost(args).Run();

        public static IWebHost BuildWebHost(string[] args) =>
            WebHost.CreateDefaultBuilder(args)
                .UseStartup<Startup>()
                .Build();
    }
#pragma warning restore CS1591
}

Right-click the project in Solution ExplorerSolution Explorer  and select Proper tiesProper ties .

Check the XML documentation fileXML documentation file box under the OutputOutput section of the BuildBuild tab.

Enabling XML comments provides debug information for undocumented public types and members.

Undocumented types and members are indicated by the warning message. For example, the following message

indicates a violation of warning code 1591:

To suppress warnings project-wide, define a semicolon-delimited list of warning codes to ignore in the project file.

Appending the warning codes to $(NoWarn);  applies the C# default values too.

To suppress warnings only for specific members, enclose the code in #pragma warning preprocessor directives.

This approach is useful for code that shouldn't be exposed via the API docs. In the following example, warning code

CS1591 is ignored for the entire Program  class. Enforcement of the warning code is restored at the close of the

class definition. Specify multiple warning codes with a comma-delimited list.

Configure Swagger to use the XML file that's generated with the preceding instructions. For Linux or non-Windows

operating systems, file names and paths can be case-sensitive. For example, a TodoApi.XML file is valid on

Windows but not CentOS.

https://github.com/dotnet/sdk/blob/2eb6c546931b5bcb92cd3128b93932a980553ea1/src/Tasks/Microsoft.NET.Build.Tasks/targets/Microsoft.NET.Sdk.CSharp.props#L16
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-pragma-warning


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<TodoContext>(opt =>
        opt.UseInMemoryDatabase("TodoList"));
    services.AddControllers();

    // Register the Swagger generator, defining 1 or more Swagger documents
    services.AddSwaggerGen(c =>
    {
        c.SwaggerDoc("v1", new OpenApiInfo
        {
            Version = "v1",
            Title = "ToDo API",
            Description = "A simple example ASP.NET Core Web API",
            TermsOfService = new Uri("https://example.com/terms"),
            Contact = new OpenApiContact
            {
                Name = "Shayne Boyer",
                Email = string.Empty,
                Url = new Uri("https://twitter.com/spboyer"),
            },
            License = new OpenApiLicense
            {
                Name = "Use under LICX",
                Url = new Uri("https://example.com/license"),
            }
        });

        // Set the comments path for the Swagger JSON and UI.
        var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";
        var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
        c.IncludeXmlComments(xmlPath);
    });
}



public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<TodoContext>(opt =>
        opt.UseInMemoryDatabase("TodoList"));
    services.AddMvc()
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

    // Register the Swagger generator, defining 1 or more Swagger documents
    services.AddSwaggerGen(c =>
    {
        c.SwaggerDoc("v1", new OpenApiInfo
        {
            Version = "v1",
            Title = "ToDo API",
            Description = "A simple example ASP.NET Core Web API",
            TermsOfService = new Uri("https://example.com/terms"),
            Contact = new OpenApiContact
            {
                Name = "Shayne Boyer",
                Email = string.Empty,
                Url = new Uri("https://twitter.com/spboyer"),
            },
            License = new OpenApiLicense
            {
                Name = "Use under LICX",
                Url = new Uri("https://example.com/license"),
            }
        });

        // Set the comments path for the Swagger JSON and UI.
        var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";
        var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
        c.IncludeXmlComments(xmlPath);
    });
}



public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<TodoContext>(opt =>
        opt.UseInMemoryDatabase("TodoList"));
    services.AddMvc();

    // Register the Swagger generator, defining 1 or more Swagger documents
    services.AddSwaggerGen(c =>
    {
        c.SwaggerDoc("v1", new OpenApiInfo
        {
            Version = "v1",
            Title = "ToDo API",
            Description = "A simple example ASP.NET Core Web API",
            TermsOfService = new Uri("https://example.com/terms"),
            Contact = new OpenApiContact
            {
                Name = "Shayne Boyer",
                Email = string.Empty,
                Url = new Uri("https://twitter.com/spboyer"),
            },
            License = new OpenApiLicense
            {
                Name = "Use under LICX",
                Url = new Uri("https://example.com/license"),
            }
        });

        // Set the comments path for the Swagger JSON and UI.
        var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";
        var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
        c.IncludeXmlComments(xmlPath);
    });
}



public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<TodoContext>(opt =>
        opt.UseInMemoryDatabase("TodoList"));
    services.AddMvc();

    // Register the Swagger generator, defining 1 or more Swagger documents
    services.AddSwaggerGen(c =>
    {
        c.SwaggerDoc("v1", new OpenApiInfo
        {
            Version = "v1",
            Title = "ToDo API",
            Description = "A simple example ASP.NET Core Web API",
            TermsOfService = new Uri("https://example.com/terms"),
            Contact = new OpenApiContact
            {
                Name = "Shayne Boyer",
                Email = string.Empty,
                Url = new Uri("https://twitter.com/spboyer"),
            },
            License = new OpenApiLicense
            {
                Name = "Use under LICX",
                Url = new Uri("https://example.com/license"),
            }
        });

        // Set the comments path for the Swagger JSON and UI.
        var xmlFile = $"{Assembly.GetEntryAssembly().GetName().Name}.xml";
        var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
        c.IncludeXmlComments(xmlPath);
    });
}

/// <summary>
/// Deletes a specific TodoItem.
/// </summary>
/// <param name="id"></param>        
[HttpDelete("{id}")]
public IActionResult Delete(long id)
{
    var todo = _context.TodoItems.Find(id);

    if (todo == null)
    {
        return NotFound();
    }

    _context.TodoItems.Remove(todo);
    _context.SaveChanges();

    return NoContent();
}

In the preceding code, Reflection is used to build an XML file name matching that of the web API project. The

AppContext.BaseDirectory property is used to construct a path to the XML file. Some Swagger features (for

example, schemata of input parameters or HTTP methods and response codes from the respective attributes) work

without the use of an XML documentation file. For most features, namely method summaries and the descriptions

of parameters and response codes, the use of an XML file is mandatory.

Adding triple-slash comments to an action enhances the Swagger UI by adding the description to the section

header. Add a <summary> element above the Delete  action:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/api/system.appcontext.basedirectory
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/summary


"delete": {
    "tags": [
        "Todo"
    ],
    "summary": "Deletes a specific TodoItem.",
    "operationId": "ApiTodoByIdDelete",
    "consumes": [],
    "produces": [],
    "parameters": [
        {
            "name": "id",
            "in": "path",
            "description": "",
            "required": true,
            "type": "integer",
            "format": "int64"
        }
    ],
    "responses": {
        "200": {
            "description": "Success"
        }
    }
}

The Swagger UI displays the inner text of the preceding code's <summary>  element:

The UI is driven by the generated JSON schema:

Add a <remarks> element to the Create  action method documentation. It supplements information specified in

the <summary>  element and provides a more robust Swagger UI. The <remarks>  element content can consist of

text, JSON, or XML.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/remarks


/// <summary>
/// Creates a TodoItem.
/// </summary>
/// <remarks>
/// Sample request:
///
///     POST /Todo
///     {
///        "id": 1,
///        "name": "Item1",
///        "isComplete": true
///     }
///
/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>            
[HttpPost]
[ProducesResponseType(typeof(TodoItem), StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public IActionResult Create([FromBody] TodoItem item)
{
    if (item == null)
    {
        return BadRequest();
    }

    _context.TodoItems.Add(item);
    _context.SaveChanges();

    return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

/// <summary>
/// Creates a TodoItem.
/// </summary>
/// <remarks>
/// Sample request:
///
///     POST /Todo
///     {
///        "id": 1,
///        "name": "Item1",
///        "isComplete": true
///     }
///
/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>            
[HttpPost]
[ProducesResponseType(StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public ActionResult<TodoItem> Create(TodoItem item)
{
    _context.TodoItems.Add(item);
    _context.SaveChanges();

    return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}



/// <summary>
/// Creates a TodoItem.
/// </summary>
/// <remarks>
/// Sample request:
///
///     POST /Todo
///     {
///        "id": 1,
///        "name": "Item1",
///        "isComplete": true
///     }
///
/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>            
[HttpPost]
[ProducesResponseType(StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public ActionResult<TodoItem> Create(TodoItem item)
{
    _context.TodoItems.Add(item);
    _context.SaveChanges();

    return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

Data annotationsData annotations

Notice the UI enhancements with these additional comments:

Mark the model with attributes, found in the System.ComponentModel.DataAnnotations namespace, to help drive

the Swagger UI components.

Add the [Required]  attribute to the Name  property of the TodoItem  class:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations


using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

namespace TodoApi.Models
{
    public class TodoItem
    {
        public long Id { get; set; }

        [Required]
        public string Name { get; set; }

        [DefaultValue(false)]
        public bool IsComplete { get; set; }
    }
}

"definitions": {
    "TodoItem": {
        "required": [
            "name"
        ],
        "type": "object",
        "properties": {
            "id": {
                "format": "int64",
                "type": "integer"
            },
            "name": {
                "type": "string"
            },
            "isComplete": {
                "default": false,
                "type": "boolean"
            }
        }
    }
},

[Produces("application/json")]
[Route("api/[controller]")]
public class TodoController : ControllerBase
{
    private readonly TodoContext _context;

[Produces("application/json")]
[Route("api/[controller]")]
[ApiController]
public class TodoController : ControllerBase
{
    private readonly TodoContext _context;

The presence of this attribute changes the UI behavior and alters the underlying JSON schema:

Add the [Produces("application/json")]  attribute to the API controller. Its purpose is to declare that the controller's

actions support a response content type of application/json:



[Produces("application/json")]
[Route("api/[controller]")]
[ApiController]
public class TodoController : ControllerBase
{
    private readonly TodoContext _context;

Describe response typesDescribe response types

The Response Content TypeResponse Content Type drop-down selects this content type as the default for the controller's GET actions:

As the usage of data annotations in the web API increases, the UI and API help pages become more descriptive and

useful.

Developers consuming a web API are most concerned with what's returned—specifically response types and error

codes (if not standard). The response types and error codes are denoted in the XML comments and data

annotations.

The Create  action returns an HTTP 201 status code on success. An HTTP 400 status code is returned when the

posted request body is null. Without proper documentation in the Swagger UI, the consumer lacks knowledge of

these expected outcomes. Fix that problem by adding the highlighted lines in the following example:



/// <summary>
/// Creates a TodoItem.
/// </summary>
/// <remarks>
/// Sample request:
///
///     POST /Todo
///     {
///        "id": 1,
///        "name": "Item1",
///        "isComplete": true
///     }
///
/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>            
[HttpPost]
[ProducesResponseType(typeof(TodoItem), StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public IActionResult Create([FromBody] TodoItem item)
{
    if (item == null)
    {
        return BadRequest();
    }

    _context.TodoItems.Add(item);
    _context.SaveChanges();

    return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

/// <summary>
/// Creates a TodoItem.
/// </summary>
/// <remarks>
/// Sample request:
///
///     POST /Todo
///     {
///        "id": 1,
///        "name": "Item1",
///        "isComplete": true
///     }
///
/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>            
[HttpPost]
[ProducesResponseType(StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public ActionResult<TodoItem> Create(TodoItem item)
{
    _context.TodoItems.Add(item);
    _context.SaveChanges();

    return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}



/// <summary>
/// Creates a TodoItem.
/// </summary>
/// <remarks>
/// Sample request:
///
///     POST /Todo
///     {
///        "id": 1,
///        "name": "Item1",
///        "isComplete": true
///     }
///
/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>            
[HttpPost]
[ProducesResponseType(StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public ActionResult<TodoItem> Create(TodoItem item)
{
    _context.TodoItems.Add(item);
    _context.SaveChanges();

    return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

Customize the UICustomize the UI

The Swagger UI now clearly documents the expected HTTP response codes:

In ASP.NET Core 2.2 or later, conventions can be used as an alternative to explicitly decorating individual actions

with [ProducesResponseType] . For more information, see Use web API conventions.

To support the [ProducesResponseType]  decoration, the Swashbuckle.AspNetCore.Annotations package offers

extensions to enable and enrich the response, schema, and parameter metadata.

The default UI is both functional and presentable. However, API documentation pages should represent your brand

or theme. Branding the Swashbuckle components requires adding the resources to serve static files and building

the folder structure to host those files.

https://github.com/domaindrivendev/Swashbuckle.AspNetCore/blob/master/README.md#swashbuckleaspnetcoreannotations


<PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="2.0.0" />

public void Configure(IApplicationBuilder app)
{
    app.UseStaticFiles();

    // Enable middleware to serve generated Swagger as a JSON endpoint.
    app.UseSwagger();

    // Enable middleware to serve swagger-ui (HTML, JS, CSS, etc.),
    // specifying the Swagger JSON endpoint.
    app.UseSwaggerUI(c =>
    {
        c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
    });

    app.UseMvc();
}

public void Configure(IApplicationBuilder app)
{
    app.UseStaticFiles();

    // Enable middleware to serve generated Swagger as a JSON endpoint.
    app.UseSwagger();

    // Enable middleware to serve swagger-ui (HTML, JS, CSS, etc.),
    // specifying the Swagger JSON endpoint.
    app.UseSwaggerUI(c =>
    {
        c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
    });

    app.UseRouting();
    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
    });
}

app.UseSwaggerUI(c =>
{
     c.InjectStylesheet("/swagger-ui/custom.css");
}

If targeting .NET Framework or .NET Core 1.x, add the Microsoft.AspNetCore.StaticFiles NuGet package to the

project:

The preceding NuGet package is already installed if targeting .NET Core 2.x and using the metapackage.

Enable Static File Middleware:

To inject additional CSS stylesheets, add them to the project's wwwroot folder and specify the relative path in the

middleware options:

https://www.nuget.org/packages/Microsoft.AspNetCore.StaticFiles


Get started with NSwag and ASP.NET Core
9/22/2020 • 6 minutes to read • Edit Online

Register the NSwag middleware

Add and configure Swagger middleware

By Christoph Nienaber, Rico Suter, and Dave Brock

View or download sample code (how to download)

View or download sample code (how to download)

NSwag offers the following capabilities:

The ability to utilize the Swagger UI and Swagger generator.

Flexible code generation capabilities.

With NSwag, you don't need an existing API—you can use third-party APIs that incorporate Swagger and generate

a client implementation. NSwag allows you to expedite the development cycle and easily adapt to API changes.

Register the NSwag middleware to:

Generate the Swagger specification for the implemented web API.

Serve the Swagger UI to browse and test the web API.

To use the NSwag ASP.NET Core middleware, install the NSwag.AspNetCore NuGet package. This package contains

the middleware to generate and serve the Swagger specification, Swagger UI (v2 and v3), and ReDoc UI.

Use one of the following approaches to install the NSwag NuGet package:

Visual Studio

Visual Studio for Mac

.NET Core CLI

From the Package Manager ConsolePackage Manager Console window:

Install-Package NSwag.AspNetCore

Go to ViewView  > Other WindowsOther Windows > Package Manager ConsolePackage Manager Console

Navigate to the directory in which the TodoApi.csproj file exists

Execute the following command:

From the Manage NuGet PackagesManage NuGet Packages  dialog:

Right-click the project in Solution ExplorerSolution Explorer  > Manage NuGet PackagesManage NuGet Packages

Set the Package sourcePackage source to "nuget.org"

Enter "NSwag.AspNetCore" in the search box

Select the "NSwag.AspNetCore" package from the BrowseBrowse tab and click InstallInstall

Add and configure Swagger in your ASP.NET Core app by performing the following steps:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/getting-started-with-NSwag.md
https://twitter.com/zuckerthoben
https://rsuter.com
https://twitter.com/daveabrock
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/web-api-help-pages-using-swagger/samples/2.1/TodoApi.NSwag
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/web-api-help-pages-using-swagger/samples/2.0/TodoApi.NSwag
https://github.com/RicoSuter/NSwag
https://www.nuget.org/packages/NSwag.AspNetCore/
https://github.com/Rebilly/ReDoc


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<TodoContext>(opt =>
        opt.UseInMemoryDatabase("TodoList"));
    services.AddMvc();

    // Register the Swagger services
    services.AddSwaggerDocument();
}

public void Configure(IApplicationBuilder app)
{
    app.UseStaticFiles();

    // Register the Swagger generator and the Swagger UI middlewares
    app.UseOpenApi();
    app.UseSwaggerUi3();

    app.UseMvc();
}

Code generation

Generate code with NSwagStudioGenerate code with NSwagStudio

In the Startup.ConfigureServices  method, register the required Swagger services:

In the Startup.Configure  method, enable the middleware for serving the generated Swagger specification and

the Swagger UI:

Launch the app. Navigate to:

http://localhost:<port>/swagger  to view the Swagger UI.

http://localhost:<port>/swagger/v1/swagger.json  to view the Swagger specification.

You can take advantage of NSwag's code generation capabilities by choosing one of the following options:

NSwagStudio: A Windows desktop app for generating API client code in C# or TypeScript.

The NSwag.CodeGeneration.CSharp or NSwag.CodeGeneration.TypeScript NuGet packages for code generation

inside your project.

NSwag from the command line.

The NSwag.MSBuild NuGet package.

The Unchase OpenAPI (Swagger) Connected Service: A Visual Studio Connected Service for generating API

client code in C# or TypeScript. Also generates C# controllers for OpenAPI services with NSwag.

Install NSwagStudio by following the instructions at the NSwagStudio GitHub repository. On the NSwag

release page you can download an xcopy version which can be started without installation and admin

privileges.

Launch NSwagStudio and enter the swagger.json file URL in the Swagger Specification URLSwagger Specification URL  text box. For

example, http://localhost:44354/swagger/v1/swagger.json.

Click the Create local CopyCreate local Copy  button to generate a JSON representation of your Swagger specification.

https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://www.nuget.org/packages/NSwag.CodeGeneration.CSharp/
https://www.nuget.org/packages/NSwag.CodeGeneration.TypeScript/
https://github.com/RicoSuter/NSwag/wiki/CommandLine
https://github.com/RicoSuter/NSwag/wiki/NSwag.MSBuild
https://marketplace.visualstudio.com/items?itemName=Unchase.unchaseopenapiconnectedservice
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio


In the OutputsOutputs  area, click the CSharp ClientCSharp Client check box. Depending on your project, you can also choose

TypeScript ClientTypeScr ipt Client or CSharp Web API ControllerCSharp Web API Controller . If you select CSharp Web API ControllerCSharp Web API Controller , a service

specification rebuilds the service, serving as a reverse generation.

Click Generate OutputsGenerate Outputs  to produce a complete C# client implementation of the TodoApi.NSwag project. To

see the generated client code, click the CSharp ClientCSharp Client tab:



//----------------------
// <auto-generated>
//     Generated using the NSwag toolchain v12.0.9.0 (NJsonSchema v9.13.10.0 (Newtonsoft.Json v11.0.0.0)) 
(http://NSwag.org)
// </auto-generated>
//----------------------

namespace MyNamespace
{
    #pragma warning disable

    [System.CodeDom.Compiler.GeneratedCode("NSwag", "12.0.9.0 (NJsonSchema v9.13.10.0 (Newtonsoft.Json 
v11.0.0.0))")]
    public partial class TodoClient
    {
        private string _baseUrl = "https://localhost:44354";
        private System.Net.Http.HttpClient _httpClient;
        private System.Lazy<Newtonsoft.Json.JsonSerializerSettings> _settings;

        public TodoClient(System.Net.Http.HttpClient httpClient)
        {
            _httpClient = httpClient;
            _settings = new System.Lazy<Newtonsoft.Json.JsonSerializerSettings>(() =>
            {
                var settings = new Newtonsoft.Json.JsonSerializerSettings();
                UpdateJsonSerializerSettings(settings);
                return settings;
            });
        }

        public string BaseUrl
        {
            get { return _baseUrl; }
            set { _baseUrl = value; }
        }

        // code omitted for brevity

TIPTIP

 var todoClient = new TodoClient();

// Gets all to-dos from the API
 var allTodos = await todoClient.GetAllAsync();

 // Create a new TodoItem, and save it via the API.
var createdTodo = await todoClient.CreateAsync(new TodoItem());

// Get a single to-do by ID
var foundTodo = await todoClient.GetByIdAsync(1);

Customize API documentation

The C# client code is generated based on selections in the SettingsSettings tab. Modify the settings to perform tasks such as default

namespace renaming and synchronous method generation.

Copy the generated C# code into a file in the client project that will consume the API.

Start consuming the web API:

Swagger provides options for documenting the object model to ease consumption of the web API.



API info and descriptionAPI info and description

services.AddSwaggerDocument(config =>
{
    config.PostProcess = document =>
    {
        document.Info.Version = "v1";
        document.Info.Title = "ToDo API";
        document.Info.Description = "A simple ASP.NET Core web API";
        document.Info.TermsOfService = "None";
        document.Info.Contact = new NSwag.OpenApiContact
        {
            Name = "Shayne Boyer",
            Email = string.Empty,
            Url = "https://twitter.com/spboyer"
        };
        document.Info.License = new NSwag.OpenApiLicense
        {
            Name = "Use under LICX",
            Url = "https://example.com/license"
        };
    };
});

XML commentsXML comments

In the Startup.ConfigureServices  method, a configuration action passed to the AddSwaggerDocument  method adds

information such as the author, license, and description:

The Swagger UI displays the version's information:

To enable XML comments, perform the following steps:

Visual Studio

Visual Studio for Mac

.NET Core CLI

Right-click the project in Solution ExplorerSolution Explorer  and select Edit <project_name>.csprojEdit <project_name>.csproj .

Manually add the highlighted lines to the .csproj file:



<PropertyGroup>
  <GenerateDocumentationFile>true</GenerateDocumentationFile>
  <NoWarn>$(NoWarn);1591</NoWarn>
</PropertyGroup>

Data annotationsData annotations

[HttpPost]
public IActionResult Create([FromBody] TodoItem item)
{
    if (item == null)
    {
        return BadRequest();
    }

    _context.TodoItems.Add(item);
    _context.SaveChanges();

    return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

[ProducesResponseType(typeof(TodoItem), StatusCodes.Status201Created)]  // Created
[ProducesResponseType(StatusCodes.Status400BadRequest)]                 // BadRequest

[HttpPost]
public ActionResult<TodoItem> Create(TodoItem item)
{
    _context.TodoItems.Add(item);
    _context.SaveChanges();

    return CreatedAtRoute("GetTodo", new { id = item.Id }, item);
}

Right-click the project in Solution ExplorerSolution Explorer  and select Proper tiesProper ties

Check the XML documentation fileXML documentation file box under the OutputOutput section of the BuildBuild tab

Because NSwag uses Reflection, and the recommended return type for web API actions is IActionResult, it can't

infer what your action is doing and what it returns.

Consider the following example:

The preceding action returns IActionResult , but inside the action it's returning either CreatedAtRoute or

BadRequest. Use data annotations to tell clients which HTTP status codes this action is known to return. Mark the

action with the following attributes:

Because NSwag uses Reflection, and the recommended return type for web API actions is ActionResult<T>, it can

only infer the return type defined by T . You can't automatically infer other possible return types.

Consider the following example:

The preceding action returns ActionResult<T> . Inside the action, it's returning CreatedAtRoute. Since the controller

has the [ApiController]  attribute, a BadRequest response is possible, too. For more information, see Automatic

HTTP 400 responses. Use data annotations to tell clients which HTTP status codes this action is known to return.

Mark the action with the following attributes:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult
https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.createdatroute
https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.badrequest
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1
https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.createdatroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/system.web.http.apicontroller.badrequest


[ProducesResponseType(StatusCodes.Status201Created)]     // Created
[ProducesResponseType(StatusCodes.Status400BadRequest)]  // BadRequest

In ASP.NET Core 2.2 or later, you can use conventions instead of explicitly decorating individual actions with 

[ProducesResponseType] . For more information, see Use web API conventions.

The Swagger generator can now accurately describe this action, and generated clients know what they receive

when calling the endpoint. As a recommendation, mark all actions with these attributes.

For guidelines on what HTTP responses your API actions should return, see the RFC 7231 specification.

https://tools.ietf.org/html/rfc7231#section-4.3


Develop ASP.NET Core apps using OpenAPI tools
9/22/2020 • 2 minutes to read • Edit Online

Installation

dotnet tool install -g Microsoft.dotnet-openapi

Add

<OpenApiReference Include="openapi.json" />

Add FileAdd File
OptionsOptions

SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N EXA M P L EEXA M P L E

-p --updateProject The project to operate on. dotnet openapi add file --
updateProject .\Ref.csproj
.\OpenAPI.json

-c --code-generator The code generator to apply
to the reference. Options are
NSwagCSharp  and 

NSwagTypeScript . If 

--code-generator  is not

specified the tooling defaults
to NSwagCSharp .

dotnet openapi add file
.\OpenApi.json --code-
generator

-h --help Show help information dotnet openapi add file --
help

ArgumentsArguments

A RGUM EN TA RGUM EN T DESC RIP T IO NDESC RIP T IO N EXA M P L EEXA M P L E

source-file The source to create a reference from.
Must be an OpenAPI file.

dotnet openapi add file .\OpenAPI.json

Add URLAdd URL
OptionsOptions

By Ryan Brandenburg

Microsoft.dotnet-openapi is a .NET Core Global Tool for managing OpenAPI references within a project.

To install Microsoft.dotnet-openapi , run the following command:

Adding an OpenAPI reference using any of the commands on this page adds an <OpenApiReference />  element

similar to the following to the .csproj file:

The preceding reference is required for the app to call the generated client code.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/web-api/Microsoft.dotnet-openapi.md
https://www.nuget.org/packages/Microsoft.dotnet-openapi
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools
https://github.com/OAI/OpenAPI-Specification


SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N EXA M P L EEXA M P L E

-p --updateProject The project to operate on. dotnet openapi add url --
updateProject .\Ref.csproj 
https://contoso.com/openapi.json

-o --output-file Where to place the local
copy of the OpenAPI file.

dotnet openapi add url 
https://contoso.com/openapi.json

--output-file myclient.json

-c --code-generator The code generator to apply
to the reference. Options are
NSwagCSharp  and 

NSwagTypeScript .

dotnet openapi add file
.\OpenApi.json --code-
generator

-h --help Show help information dotnet openapi add url --
help

ArgumentsArguments

A RGUM EN TA RGUM EN T DESC RIP T IO NDESC RIP T IO N EXA M P L EEXA M P L E

source-URL The source to create a reference from.
Must be a URL.

dotnet openapi add url 
https://contoso.com/openapi.json

Remove

OptionsOptions

SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N EXA M P L EEXA M P L E

-p --updateProject The project to operate on. dotnet openapi remove --
updateProject .\Ref.csproj
.\OpenAPI.json

-h --help Show help information dotnet openapi remove --
help

ArgumentsArguments

A RGUM EN TA RGUM EN T DESC RIP T IO NDESC RIP T IO N EXA M P L EEXA M P L E

source-file The source to remove the reference to. dotnet openapi remove .\OpenAPI.json

Refresh

OptionsOptions

SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N EXA M P L EEXA M P L E

Removes the OpenAPI reference matching the given filename from the .csproj file. When the OpenAPI reference is

removed, clients won't be generated. Local .json and .yaml files are deleted.

Refreshes the local version of a file that was downloaded using the latest content from the download URL.



-p --updateProject The project to operate on. dotnet openapi refresh --
updateProject .\Ref.csproj 
https://contoso.com/openapi.json

-h --help Show help information dotnet openapi refresh --
help

SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N EXA M P L EEXA M P L E

ArgumentsArguments

A RGUM EN TA RGUM EN T DESC RIP T IO NDESC RIP T IO N EXA M P L EEXA M P L E

source-URL The URL to refresh the reference from. dotnet openapi refresh 
https://contoso.com/openapi.json



   

  

Controller action return types in ASP.NET Core web
API
9/22/2020 • 6 minutes to read • Edit Online

Specific type

[HttpGet]
public List<Product> Get() =>
    _repository.GetProducts();

Return IEnumerable<T> or IAsyncEnumerable<T>Return IEnumerable<T> or IAsyncEnumerable<T>

public IEnumerable<Product> GetOnSaleProducts() =>
    _context.Products.Where(p => p.IsOnSale);

public async Task<IEnumerable<Product>> GetOnSaleProducts() =>
    await _context.Products.Where(p => p.IsOnSale).ToListAsync();

By Scott Addie

View or download sample code (how to download)

ASP.NET Core offers the following options for web API controller action return types:

Specific type

IActionResult

ActionResult<T>

Specific type

IActionResult

This document explains when it's most appropriate to use each return type.

The simplest action returns a primitive or complex data type (for example, string  or a custom object type).

Consider the following action, which returns a collection of custom Product  objects:

Without known conditions to safeguard against during action execution, returning a specific type could suffice.

The preceding action accepts no parameters, so parameter constraints validation isn't needed.

When multiple return types are possible, it's common to mix an ActionResult return type with the primitive or

complex return type. Either IActionResult or ActionResult<T> are necessary to accommodate this type of action.

Several samples of multiple return types are provided in this document.

In ASP.NET Core 2.2 and earlier, returning IEnumerable<T> from an action results in synchronous collection

iteration by the serializer. The result is the blocking of calls and a potential for thread pool starvation. To illustrate,

imagine that Entity Framework (EF) Core is being used for the web API's data access needs. The following action's

return type is synchronously enumerated during serialization:

To avoid synchronous enumeration and blocking waits on the database in ASP.NET Core 2.2 and earlier, invoke 

ToListAsync :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/web-api/action-return-types.md
https://github.com/scottaddie
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/action-return-types/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1


    

public IEnumerable<Product> GetOnSaleProducts() =>
    _context.Products.Where(p => p.IsOnSale);

[HttpGet("syncsale")]
public IEnumerable<Product> GetOnSaleProducts()
{
    var products = _repository.GetProducts();

    foreach (var product in products)
    {
        if (product.IsOnSale)
        {
            yield return product;
        }
    }
}

[HttpGet("asyncsale")]
public async IAsyncEnumerable<Product> GetOnSaleProductsAsync()
{
    var products = _repository.GetProductsAsync();

    await foreach (var product in products)
    {
        if (product.IsOnSale)
        {
            yield return product;
        }
    }
}

IActionResult type

In ASP.NET Core 3.0 and later, returning IAsyncEnumerable<T>  from an action:

No longer results in synchronous iteration.

Becomes as efficient as returning IEnumerable<T>.

ASP.NET Core 3.0 and later buffers the result of the following action before providing it to the serializer :

Consider declaring the action signature's return type as IAsyncEnumerable<T>  to guarantee the asynchronous

iteration. Ultimately, the iteration mode is based on the underlying concrete type being returned. MVC

automatically buffers any concrete type that implements IAsyncEnumerable<T> .

Consider the following action, which returns sale-priced product records as IEnumerable<Product> :

The IAsyncEnumerable<Product>  equivalent of the preceding action is:

Both of the preceding actions are non-blocking as of ASP.NET Core 3.0.

The IActionResult return type is appropriate when multiple ActionResult  return types are possible in an action.

The ActionResult  types represent various HTTP status codes. Any non-abstract class deriving from ActionResult

qualifies as a valid return type. Some common return types in this category are BadRequestResult (400),

NotFoundResult (404), and OkObjectResult (200). Alternatively, convenience methods in the ControllerBase class

can be used to return ActionResult  types from an action. For example, return BadRequest();  is a shorthand form

of return new BadRequestResult(); .

Because there are multiple return types and paths in this type of action, liberal use of the [ProducesResponseType]

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.badrequestresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.notfoundresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.okobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.producesresponsetypeattribute


Synchronous actionSynchronous action

[HttpGet("{id}")]
[ProducesResponseType(StatusCodes.Status200OK)]
[ProducesResponseType(StatusCodes.Status404NotFound)]
public IActionResult GetById(int id)
{
    if (!_repository.TryGetProduct(id, out var product))
    {
        return NotFound();
    }

    return Ok(product);
}

[HttpGet("{id}")]
[ProducesResponseType(typeof(Product), StatusCodes.Status200OK)]
[ProducesResponseType(StatusCodes.Status404NotFound)]
public IActionResult GetById(int id)
{
    if (!_repository.TryGetProduct(id, out var product))
    {
        return NotFound();
    }

    return Ok(product);
}

Asynchronous actionAsynchronous action

[HttpPost]
[Consumes(MediaTypeNames.Application.Json)]
[ProducesResponseType(StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public async Task<IActionResult> CreateAsync(Product product)
{
    if (product.Description.Contains("XYZ Widget"))
    {
        return BadRequest();
    }

    await _repository.AddProductAsync(product);

    return CreatedAtAction(nameof(GetById), new { id = product.Id }, product);
}

attribute is necessary. This attribute produces more descriptive response details for web API help pages generated

by tools like Swagger. [ProducesResponseType]  indicates the known types and HTTP status codes to be returned

by the action.

Consider the following synchronous action in which there are two possible return types:

In the preceding action:

A 404 status code is returned when the product represented by id  doesn't exist in the underlying data store.

The NotFound convenience method is invoked as shorthand for return new NotFoundResult(); .

A 200 status code is returned with the Product  object when the product does exist. The Ok convenience

method is invoked as shorthand for return new OkObjectResult(product); .

Consider the following asynchronous action in which there are two possible return types:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.ok


                    

[HttpPost]
[Consumes("application/json")]
[ProducesResponseType(typeof(Product), StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public async Task<IActionResult> CreateAsync([FromBody] Product product)
{
    if (product.Description.Contains("XYZ Widget"))
    {
        return BadRequest();
    }

    await _repository.AddProductAsync(product);

    return CreatedAtAction(nameof(GetById), new { id = product.Id }, product);
}

public class Product
{
    public int Id { get; set; }

    [Required]
    public string Name { get; set; }

    [Required]
    public string Description { get; set; }
}

ActionResult<T> type

In the preceding action:

A 400 status code is returned when the product description contains "XYZ Widget". The BadRequest

convenience method is invoked as shorthand for return new BadRequestResult(); .

A 201 status code is generated by the CreatedAtAction convenience method when a product is created. An

alternative to calling CreatedAtAction  is 

return new CreatedAtActionResult(nameof(GetById), "Products", new { id = product.Id }, product); . In this

code path, the Product  object is provided in the response body. A Location  response header containing the

newly created product's URL is provided.

For example, the following model indicates that requests must include the Name  and Description  properties.

Failure to provide Name  and Description  in the request causes model validation to fail.

If the [ApiController]  attribute in ASP.NET Core 2.1 or later is applied, model validation errors result in a 400

status code. For more information, see Automatic HTTP 400 responses.

ASP.NET Core 2.1 introduced the ActionResult<T> return type for web API controller actions. It enables you to

return a type deriving from ActionResult or return a specific type. ActionResult<T>  offers the following benefits

over the IActionResult type:

The [ProducesResponseType]  attribute's Type  property can be excluded. For example, 

[ProducesResponseType(200, Type = typeof(Product))]  is simplified to [ProducesResponseType(200)] . The

action's expected return type is instead inferred from the T  in ActionResult<T> .

Implicit cast operators support the conversion of both T  and ActionResult  to ActionResult<T> . T  converts

to ObjectResult, which means return new ObjectResult(T);  is simplified to return T; .

C# doesn't support implicit cast operators on interfaces. Consequently, conversion of the interface to a concrete

type is necessary to use ActionResult<T> . For example, use of IEnumerable  in the following example doesn't

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.producesresponsetypeattribute
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/implicit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.objectresult


[HttpGet]
public ActionResult<IEnumerable<Product>> Get() =>
    _repository.GetProducts();

Synchronous actionSynchronous action

[HttpGet("{id}")]
[ProducesResponseType(StatusCodes.Status200OK)]
[ProducesResponseType(StatusCodes.Status404NotFound)]
public ActionResult<Product> GetById(int id)
{
    if (!_repository.TryGetProduct(id, out var product))
    {
        return NotFound();
    }

    return product;
}

Asynchronous actionAsynchronous action

[HttpPost]
[Consumes(MediaTypeNames.Application.Json)]
[ProducesResponseType(StatusCodes.Status201Created)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]
public async Task<ActionResult<Product>> CreateAsync(Product product)
{
    if (product.Description.Contains("XYZ Widget"))
    {
        return BadRequest();
    }

    await _repository.AddProductAsync(product);

    return CreatedAtAction(nameof(GetById), new { id = product.Id }, product);
}

work:

One option to fix the preceding code is to return _repository.GetProducts().ToList(); .

Most actions have a specific return type. Unexpected conditions can occur during action execution, in which case

the specific type isn't returned. For example, an action's input parameter may fail model validation. In such a case,

it's common to return the appropriate ActionResult  type instead of the specific type.

Consider a synchronous action in which there are two possible return types:

In the preceding action:

A 404 status code is returned when the product doesn't exist in the database.

A 200 status code is returned with the corresponding Product  object when the product does exist. Before

ASP.NET Core 2.1, the return product;  line had to be return Ok(product); .

Consider an asynchronous action in which there are two possible return types:

In the preceding action:

A 400 status code (BadRequest) is returned by the ASP.NET Core runtime when:

The [ApiController]  attribute has been applied and model validation fails.

The product description contains "XYZ Widget".

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute


Additional resources

A 201 status code is generated by the CreatedAtAction method when a product is created. In this code path,

the Product  object is provided in the response body. A Location  response header containing the newly

created product's URL is provided.

Handle requests with controllers in ASP.NET Core MVC

Model validation in ASP.NET Core MVC

ASP.NET Core Web API help pages with Swagger / OpenAPI

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction


JsonPatch in ASP.NET Core web API
9/22/2020 • 13 minutes to read • Edit Online

Package installation

JSON Patch, AddNewtonsoftJson, and System.Text.Json

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews(options =>
    {
        options.InputFormatters.Insert(0, GetJsonPatchInputFormatter());
    });
}

private static NewtonsoftJsonPatchInputFormatter GetJsonPatchInputFormatter()
{
    var builder = new ServiceCollection()
        .AddLogging()
        .AddMvc()
        .AddNewtonsoftJson()
        .Services.BuildServiceProvider();

    return builder
        .GetRequiredService<IOptions<MvcOptions>>()
        .Value
        .InputFormatters
        .OfType<NewtonsoftJsonPatchInputFormatter>()
        .First();
}

By Tom Dykstra and Kirk Larkin

This article explains how to handle JSON Patch requests in an ASP.NET Core web API.

To enable JSON Patch support in your app, complete the following steps:

services
    .AddControllersWithViews()
    .AddNewtonsoftJson();

1. Install the Microsoft.AspNetCore.Mvc.NewtonsoftJson  NuGet package.

2. Update the project's Startup.ConfigureServices  method to call AddNewtonsoftJson. For example:

AddNewtonsoftJson  is compatible with the MVC service registration methods:

AddRazorPages

AddControllersWithViews

AddControllers

AddNewtonsoftJson  replaces the System.Text.Json -based input and output formatters used for formatting allall  JSON

content. To add support for JSON Patch using Newtonsoft.Json , while leaving the other formatters unchanged,

update the project's Startup.ConfigureServices  method as follows:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/web-api/jsonpatch.md
https://github.com/tdykstra
https://github.com/serpent5
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.NewtonsoftJson/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.newtonsoftjsonmvcbuilderextensions.addnewtonsoftjson
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addrazorpages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addcontrollerswithviews
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addcontrollers


using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Formatters;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Options;
using System.Linq;

PATCH HTTP request method

JSON Patch

Resource exampleResource example

{
  "customerName": "John",
  "orders": [
    {
      "orderName": "Order0",
      "orderType": null
    },
    {
      "orderName": "Order1",
      "orderType": null
    }
  ]
}

JSON patch exampleJSON patch example

The preceding code requires the Microsoft.AspNetCore.Mvc.NewtonsoftJson  package and the following using

statements:

The PUT and PATCH methods are used to update an existing resource. The difference between them is that PUT

replaces the entire resource, while PATCH specifies only the changes.

JSON Patch is a format for specifying updates to be applied to a resource. A JSON Patch document has an array of

operations. Each operation identifies a particular type of change. Examples of such changes include adding an array

element or replacing a property value.

For example, the following JSON documents represent a resource, a JSON Patch document for the resource, and

the result of applying the Patch operations.

https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc6902


[
  {
    "op": "add",
    "path": "/customerName",
    "value": "Barry"
  },
  {
    "op": "add",
    "path": "/orders/-",
    "value": {
      "orderName": "Order2",
      "orderType": null
    }
  }
]

Resource after patchResource after patch

{
  "customerName": "Barry",
  "orders": [
    {
      "orderName": "Order0",
      "orderType": null
    },
    {
      "orderName": "Order1",
      "orderType": null
    },
    {
      "orderName": "Order2",
      "orderType": null
    }
  ]
}

Path syntax

OperationsOperations

O P ERAT IO NO P ERAT IO N N OT ESN OT ES

In the preceding JSON:

The op  property indicates the type of operation.

The path  property indicates the element to update.

The value  property provides the new value.

Here's the resource after applying the preceding JSON Patch document:

The changes made by applying a JSON Patch document to a resource are atomic. If any operation in the list fails, no

operation in the list is applied.

The path property of an operation object has slashes between levels. For example, "/address/zipCode" .

Zero-based indexes are used to specify array elements. The first element of the addresses  array would be at 

/addresses/0 . To add  to the end of an array, use a hyphen ( - ) rather than an index number: /addresses/- .

The following table shows supported operations as defined in the JSON Patch specification:

https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6902


add Add a property or array element. For existing property: set
value.

remove Remove a property or array element.

replace Same as remove  followed by add  at same location.

move Same as remove  from source followed by add  to

destination using value from source.

copy Same as add  to destination using value from source.

test Return success status code if value at path  = provided 

value .

O P ERAT IO NO P ERAT IO N N OT ESN OT ES

JSON Patch in ASP.NET Core

Action method code

[HttpPatch]
public IActionResult JsonPatchWithModelState(
    [FromBody] JsonPatchDocument<Customer> patchDoc)
{
    if (patchDoc != null)
    {
        var customer = CreateCustomer();

        patchDoc.ApplyTo(customer, ModelState);

        if (!ModelState.IsValid)
        {
            return BadRequest(ModelState);
        }

        return new ObjectResult(customer);
    }
    else
    {
        return BadRequest(ModelState);
    }
}

The ASP.NET Core implementation of JSON Patch is provided in the Microsoft.AspNetCore.JsonPatch NuGet

package.

In an API controller, an action method for JSON Patch:

Is annotated with the HttpPatch  attribute.

Accepts a JsonPatchDocument<T> , typically with [FromBody] .

Calls ApplyTo  on the patch document to apply the changes.

Here's an example:

This code from the sample app works with the following Customer  model:

https://www.nuget.org/packages/microsoft.aspnetcore.jsonpatch/


public class Customer
{
    public string CustomerName { get; set; }
    public List<Order> Orders { get; set; }
}

public class Order
{
    public string OrderName { get; set; }
    public string OrderType { get; set; }
}

Model stateModel state

{
    "Customer": [
        "The current value 'John' at path 'customerName' is not equal to the test value 'Nancy'."
    ]
}

Dynamic objectsDynamic objects

[HttpPatch]
public IActionResult JsonPatchForDynamic([FromBody]JsonPatchDocument patch)
{
    dynamic obj = new ExpandoObject();
    patch.ApplyTo(obj);

    return Ok(obj);
}

The add operation

The sample action method:

Constructs a Customer .

Applies the patch.

Returns the result in the body of the response.

In a real app, the code would retrieve the data from a store such as a database and update the database after

applying the patch.

The preceding action method example calls an overload of ApplyTo  that takes model state as one of its parameters.

With this option, you can get error messages in responses. The following example shows the body of a 400 Bad

Request response for a test  operation:

The following action method example shows how to apply a patch to a dynamic object:

If path  points to an array element: inserts new element before the one specified by path .

If path  points to a property: sets the property value.

If path  points to a nonexistent location:

If the resource to patch is a dynamic object: adds a property.

If the resource to patch is a static object: the request fails.

The following sample patch document sets the value of CustomerName  and adds an Order  object to the end of the 

Orders  array.



[
  {
    "op": "add",
    "path": "/customerName",
    "value": "Barry"
  },
  {
    "op": "add",
    "path": "/orders/-",
    "value": {
      "orderName": "Order2",
      "orderType": null
    }
  }
]

The remove operation

[
  {
    "op": "remove",
    "path": "/customerName"
  },
  {
    "op": "remove",
    "path": "/orders/0"
  }
]

The replace operation

If path  points to an array element: removes the element.

If path  points to a property:

If resource to patch is a dynamic object: removes the property.

If resource to patch is a static object:

If the property is nullable: sets it to null.

If the property is non-nullable, sets it to default<T> .

The following sample patch document sets CustomerName  to null and deletes Orders[0] :

This operation is functionally the same as a remove  followed by an add .

The following sample patch document sets the value of CustomerName  and replaces Orders[0] with a new Order

object:



[
  {
    "op": "replace",
    "path": "/customerName",
    "value": "Barry"
  },
  {
    "op": "replace",
    "path": "/orders/0",
    "value": {
      "orderName": "Order2",
      "orderType": null
    }
  }
]

The move operation

[
  {
    "op": "move",
    "from": "/orders/0/orderName",
    "path": "/customerName"
  },
  {
    "op": "move",
    "from": "/orders/1",
    "path": "/orders/0"
  }
]

The copy operation

If path  points to an array element: copies from  element to location of path  element, then runs a remove

operation on the from  element.

If path  points to a property: copies value of from  property to path  property, then runs a remove  operation

on the from  property.

If path  points to a nonexistent property:

If the resource to patch is a static object: the request fails.

If the resource to patch is a dynamic object: copies from  property to location indicated by path , then

runs a remove  operation on the from  property.

The following sample patch document:

Copies the value of Orders[0].OrderName  to CustomerName .

Sets Orders[0].OrderName  to null.

Moves Orders[1]  to before Orders[0] .

This operation is functionally the same as a move  operation without the final remove  step.

The following sample patch document:

Copies the value of Orders[0].OrderName  to CustomerName .

Inserts a copy of Orders[1]  before Orders[0] .



[
  {
    "op": "copy",
    "from": "/orders/0/orderName",
    "path": "/customerName"
  },
  {
    "op": "copy",
    "from": "/orders/1",
    "path": "/orders/0"
  }
]

The test operation

[
  {
    "op": "test",
    "path": "/customerName",
    "value": "Nancy"
  },
  {
    "op": "add",
    "path": "/customerName",
    "value": "Barry"
  }
]

Get the code

Additional resources

If the value at the location indicated by path  is different from the value provided in value , the request fails. In that

case, the whole PATCH request fails even if all other operations in the patch document would otherwise succeed.

The test  operation is commonly used to prevent an update when there's a concurrency conflict.

The following sample patch document has no effect if the initial value of CustomerName  is "John", because the test

fails:

View or download sample code. (How to download).

To test the sample, run the app and send HTTP requests with the following settings:

URL: http://localhost:{port}/jsonpatch/jsonpatchwithmodelstate

HTTP method: PATCH

Header: Content-Type: application/json-patch+json

Body: Copy and paste one of the JSON patch document samples from the JSON project folder.

IETF RFC 5789 PATCH method specification

IETF RFC 6902 JSON Patch specification

IETF RFC 6901 JSON Patch path format spec

JSON Patch documentation. Includes links to resources for creating JSON Patch documents.

ASP.NET Core JSON Patch source code

This article explains how to handle JSON Patch requests in an ASP.NET Core web API.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/jsonpatch/samples
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc6901
https://jsonpatch.com/
https://github.com/dotnet/AspNetCore/tree/master/src/Features/JsonPatch/src


PATCH HTTP request method

JSON Patch

Resource exampleResource example

{
  "customerName": "John",
  "orders": [
    {
      "orderName": "Order0",
      "orderType": null
    },
    {
      "orderName": "Order1",
      "orderType": null
    }
  ]
}

JSON patch exampleJSON patch example

[
  {
    "op": "add",
    "path": "/customerName",
    "value": "Barry"
  },
  {
    "op": "add",
    "path": "/orders/-",
    "value": {
      "orderName": "Order2",
      "orderType": null
    }
  }
]

Resource after patchResource after patch

The PUT and PATCH methods are used to update an existing resource. The difference between them is that PUT

replaces the entire resource, while PATCH specifies only the changes.

JSON Patch is a format for specifying updates to be applied to a resource. A JSON Patch document has an array of

operations. Each operation identifies a particular type of change, such as add an array element or replace a

property value.

For example, the following JSON documents represent a resource, a JSON patch document for the resource, and

the result of applying the patch operations.

In the preceding JSON:

The op  property indicates the type of operation.

The path  property indicates the element to update.

The value  property provides the new value.

Here's the resource after applying the preceding JSON Patch document:

https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc6902


{
  "customerName": "Barry",
  "orders": [
    {
      "orderName": "Order0",
      "orderType": null
    },
    {
      "orderName": "Order1",
      "orderType": null
    },
    {
      "orderName": "Order2",
      "orderType": null
    }
  ]
}

Path syntax

OperationsOperations

O P ERAT IO NO P ERAT IO N N OT ESN OT ES

add Add a property or array element. For existing property: set
value.

remove Remove a property or array element.

replace Same as remove  followed by add  at same location.

move Same as remove  from source followed by add  to

destination using value from source.

copy Same as add  to destination using value from source.

test Return success status code if value at path  = provided 

value .

JsonPatch in ASP.NET Core

Action method code

The changes made by applying a JSON Patch document to a resource are atomic: if any operation in the list fails, no

operation in the list is applied.

The path property of an operation object has slashes between levels. For example, "/address/zipCode" .

Zero-based indexes are used to specify array elements. The first element of the addresses  array would be at 

/addresses/0 . To add  to the end of an array, use a hyphen (-) rather than an index number: /addresses/- .

The following table shows supported operations as defined in the JSON Patch specification:

The ASP.NET Core implementation of JSON Patch is provided in the Microsoft.AspNetCore.JsonPatch NuGet

package. The package is included in the Microsoft.AspnetCore.App metapackage.

In an API controller, an action method for JSON Patch:

https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6902
https://www.nuget.org/packages/microsoft.aspnetcore.jsonpatch/


[HttpPatch]
public IActionResult JsonPatchWithModelState(
    [FromBody] JsonPatchDocument<Customer> patchDoc)
{
    if (patchDoc != null)
    {
        var customer = CreateCustomer();

        patchDoc.ApplyTo(customer, ModelState);

        if (!ModelState.IsValid)
        {
            return BadRequest(ModelState);
        }

        return new ObjectResult(customer);
    }
    else
    {
        return BadRequest(ModelState);
    }
}

public class Customer
{
    public string CustomerName { get; set; }
    public List<Order> Orders { get; set; }
}

public class Order
{
    public string OrderName { get; set; }
    public string OrderType { get; set; }
}

Model stateModel state

Is annotated with the HttpPatch  attribute.

Accepts a JsonPatchDocument<T> , typically with [FromBody] .

Calls ApplyTo  on the patch document to apply the changes.

Here's an example:

This code from the sample app works with the following Customer  model.

The sample action method:

Constructs a Customer .

Applies the patch.

Returns the result in the body of the response.

In a real app, the code would retrieve the data from a store such as a database and update the database after

applying the patch.

The preceding action method example calls an overload of ApplyTo  that takes model state as one of its parameters.

With this option, you can get error messages in responses. The following example shows the body of a 400 Bad

Request response for a test  operation:



{
    "Customer": [
        "The current value 'John' at path 'customerName' is not equal to the test value 'Nancy'."
    ]
}

Dynamic objectsDynamic objects

[HttpPatch]
public IActionResult JsonPatchForDynamic([FromBody]JsonPatchDocument patch)
{
    dynamic obj = new ExpandoObject();
    patch.ApplyTo(obj);

    return Ok(obj);
}

The add operation

[
  {
    "op": "add",
    "path": "/customerName",
    "value": "Barry"
  },
  {
    "op": "add",
    "path": "/orders/-",
    "value": {
      "orderName": "Order2",
      "orderType": null
    }
  }
]

The remove operation

The following action method example shows how to apply a patch to a dynamic object.

If path  points to an array element: inserts new element before the one specified by path .

If path  points to a property: sets the property value.

If path  points to a nonexistent location:

If the resource to patch is a dynamic object: adds a property.

If the resource to patch is a static object: the request fails.

The following sample patch document sets the value of CustomerName  and adds an Order  object to the end of the 

Orders  array.

If path  points to an array element: removes the element.

If path  points to a property:

If resource to patch is a dynamic object: removes the property.

If resource to patch is a static object:

If the property is nullable: sets it to null.

If the property is non-nullable, sets it to default<T> .

The following sample patch document sets CustomerName  to null and deletes Orders[0] .



[
  {
    "op": "remove",
    "path": "/customerName"
  },
  {
    "op": "remove",
    "path": "/orders/0"
  }
]

The replace operation

[
  {
    "op": "replace",
    "path": "/customerName",
    "value": "Barry"
  },
  {
    "op": "replace",
    "path": "/orders/0",
    "value": {
      "orderName": "Order2",
      "orderType": null
    }
  }
]

The move operation

This operation is functionally the same as a remove  followed by an add .

The following sample patch document sets the value of CustomerName  and replaces Orders[0] with a new Order

object.

If path  points to an array element: copies from  element to location of path  element, then runs a remove

operation on the from  element.

If path  points to a property: copies value of from  property to path  property, then runs a remove  operation

on the from  property.

If path  points to a nonexistent property:

If the resource to patch is a static object: the request fails.

If the resource to patch is a dynamic object: copies from  property to location indicated by path , then

runs a remove  operation on the from  property.

The following sample patch document:

Copies the value of Orders[0].OrderName  to CustomerName .

Sets Orders[0].OrderName  to null.

Moves Orders[1]  to before Orders[0] .



[
  {
    "op": "move",
    "from": "/orders/0/orderName",
    "path": "/customerName"
  },
  {
    "op": "move",
    "from": "/orders/1",
    "path": "/orders/0"
  }
]

The copy operation

[
  {
    "op": "copy",
    "from": "/orders/0/orderName",
    "path": "/customerName"
  },
  {
    "op": "copy",
    "from": "/orders/1",
    "path": "/orders/0"
  }
]

The test operation

[
  {
    "op": "test",
    "path": "/customerName",
    "value": "Nancy"
  },
  {
    "op": "add",
    "path": "/customerName",
    "value": "Barry"
  }
]

This operation is functionally the same as a move  operation without the final remove  step.

The following sample patch document:

Copies the value of Orders[0].OrderName  to CustomerName .

Inserts a copy of Orders[1]  before Orders[0] .

If the value at the location indicated by path  is different from the value provided in value , the request fails. In that

case, the whole PATCH request fails even if all other operations in the patch document would otherwise succeed.

The test  operation is commonly used to prevent an update when there's a concurrency conflict.

The following sample patch document has no effect if the initial value of CustomerName  is "John", because the test

fails:



Get the code

Additional resources

View or download sample code. (How to download).

To test the sample, run the app and send HTTP requests with the following settings:

URL: http://localhost:{port}/jsonpatch/jsonpatchwithmodelstate

HTTP method: PATCH

Header: Content-Type: application/json-patch+json

Body: Copy and paste one of the JSON patch document samples from the JSON project folder.

IETF RFC 5789 PATCH method specification

IETF RFC 6902 JSON Patch specification

IETF RFC 6901 JSON Patch path format spec

JSON Patch documentation. Includes links to resources for creating JSON Patch documents.

ASP.NET Core JSON Patch source code

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/jsonpatch/samples/2.2
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc6901
https://jsonpatch.com/
https://github.com/dotnet/AspNetCore/tree/master/src/Features/JsonPatch/src


Format response data in ASP.NET Core Web API
9/22/2020 • 7 minutes to read • Edit Online

Format-specific Action Results

// GET: api/authors
[HttpGet]
public ActionResult Get()
{
    return Ok(_authors.List());
}

// GET api/authors/about
[HttpGet("About")]
public ContentResult About()
{
    return Content("An API listing authors of docs.asp.net.");
}

By Rick Anderson and Steve Smith

ASP.NET Core MVC has support for formatting response data. Response data can be formatted using specific

formats or in response to client requested format.

View or download sample code (how to download)

Some action result types are specific to a particular format, such as JsonResult and ContentResult. Actions can

return results that are formatted in a particular format, regardless of client preferences. For example, returning 

JsonResult  returns JSON-formatted data. Returning ContentResult  or a string returns plain-text-formatted string

data.

An action isn't required to return any specific type. ASP.NET Core supports any object return value. Results from

actions that return objects that are not IActionResult types are serialized using the appropriate IOutputFormatter

implementation. For more information, see Controller action return types in ASP.NET Core web API.

The built-in helper method Ok returns JSON-formatted data:

The sample download returns the list of authors. Using the F12 browser developer tools or Postman with the

previous code:

The response header containing content-type:content-type: application/json; charset=utf-8  is displayed.

The request headers are displayed. For example, the Accept  header. The Accept  header is ignored by the

preceding code.

To return plain text formatted data, use ContentResult and the Content helper :

In the preceding code, the Content-Type  returned is text/plain . Returning a string delivers Content-Type  of 

text/plain :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/web-api/advanced/formatting.md
https://twitter.com/RickAndMSFT
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/advanced/formatting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.jsonresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.contentresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.ioutputformatter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.ok
https://www.getpostman.com/tools
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.contentresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.content


  

// GET api/authors/version
[HttpGet("version")]
public string Version()
{
    return "Version 1.0.0";
}

Content negotiation

// GET: api/authors/search?namelike=th
[HttpGet("Search")]
public IActionResult Search(string namelike)
{
    var result = _authors.GetByNameSubstring(namelike);
    if (!result.Any())
    {
        return NotFound(namelike);
    }
    return Ok(result);
}

// GET api/authors/RickAndMSFT
[HttpGet("{alias}")]
public Author Get(string alias)
{
    return _authors.GetByAlias(alias);
}

The Accept headerThe Accept header

For actions with multiple return types, return IActionResult . For example, returning different HTTP status codes

based on the result of operations performed.

Content negotiation occurs when the client specifies an Accept header. The default format used by ASP.NET Core

is JSON. Content negotiation is:

Implemented by ObjectResult.

Built into the status code-specific action results returned from the helper methods. The action results helper

methods are based on ObjectResult .

When a model type is returned, the return type is ObjectResult .

The following action method uses the Ok  and NotFound  helper methods:

By default, ASP.NET Core supports application/json , text/json , and text/plain  media types. Tools such as

Fiddler or Postman can set the Accept  request header to specify the return format. When the Accept  header

contains a type the server supports, that type is returned. The next section shows how to add additional

formatters.

Controller actions can return POCOs (Plain Old CLR Objects). When a POCO is returned, the runtime

automatically creates an ObjectResult  that wraps the object. The client gets the formatted serialized object. If the

object being returned is null , a 204 No Content  response is returned.

Returning an object type:

In the preceding code, a request for a valid author alias returns a 200 OK  response with the author's data. A

request for an invalid alias returns a 204 No Content  response.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
https://json.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.objectresult
https://www.telerik.com/fiddler
https://www.getpostman.com/tools


Browsers and content negotiationBrowsers and content negotiation

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllers(options =>
    {
        options.RespectBrowserAcceptHeader = true; // false by default
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc(options =>
    {
        options.RespectBrowserAcceptHeader = true; // false by default
    });

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
}

Configure formattersConfigure formatters

Add XML format supportAdd XML format support

Content negotiation takes place when an Accept  header appears in the request. When a request contains an

accept header, ASP.NET Core:

Enumerates the media types in the accept header in preference order.

Tries to find a formatter that can produce a response in one of the formats specified.

If no formatter is found that can satisfy the client's request, ASP.NET Core:

Returns 406 Not Acceptable  if MvcOptions has been set, or -

Tries to find the first formatter that can produce a response.

If no formatter is configured for the requested format, the first formatter that can format the object is used. If no 

Accept  header appears in the request:

The first formatter that can handle the object is used to serialize the response.

There isn't any negotiation taking place. The server is determining what format to return.

If the Accept header contains */* , the Header is ignored unless RespectBrowserAcceptHeader  is set to true on

MvcOptions.

Unlike typical API clients, web browsers supply Accept  headers. Web browser specify many formats, including

wildcards. By default, when the framework detects that the request is coming from a browser :

The Accept  header is ignored.

The content is returned in JSON, unless otherwise configured.

This provides a more consistent experience across browsers when consuming APIs.

To configure an app to honor browser accept headers, set RespectBrowserAcceptHeader to true :

Apps that need to support additional formats can add the appropriate NuGet packages and configure support.

There are separate formatters for input and output. Input formatters are used by Model Binding. Output

formatters are used to format responses. For information on creating a custom formatter, see Custom Formatters.

XML formatters implemented using XmlSerializer are configured by calling AddXmlSerializerFormatters:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.respectbrowseracceptheader#microsoft_aspnetcore_mvc_mvcoptions_respectbrowseracceptheader
https://docs.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcxmlmvcbuilderextensions.addxmlserializerformatters


        

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllers()
        .AddXmlSerializerFormatters();
}

Configure System.Text.Json-based formattersConfigure System.Text.Json-based formatters

services.AddControllers().AddJsonOptions(options =>
{
    // Use the default property (Pascal) casing.
    options.JsonSerializerOptions.PropertyNamingPolicy = null;

    // Configure a custom converter.
    options.JsonSerializerOptions.Converters.Add(new MyCustomJsonConverter());
});

public IActionResult Get()
{
    return Json(model, new JsonSerializerOptions
    {
        WriteIndented = true,
    });
}

Add Newtonsoft.Json-based JSON format supportAdd Newtonsoft.Json-based JSON format support

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllers()
        .AddNewtonsoftJson();
}

The preceding code serializes results using XmlSerializer .

When using the preceding code, controller methods return the appropriate format based on the request's Accept

header.

Features for the System.Text.Json -based formatters can be configured using 

Microsoft.AspNetCore.Mvc.JsonOptions.SerializerOptions .

Output serialization options, on a per-action basis, can be configured using JsonResult . For example:

Prior to ASP.NET Core 3.0, the default used JSON formatters implemented using the Newtonsoft.Json  package. In

ASP.NET Core 3.0 or later, the default JSON formatters are based on System.Text.Json . Support for 

Newtonsoft.Json  based formatters and features is available by installing the 

Microsoft.AspNetCore.Mvc.NewtonsoftJson  NuGet package and configuring it in Startup.ConfigureServices .

Some features may not work well with System.Text.Json -based formatters and require a reference to the 

Newtonsoft.Json -based formatters. Continue using the Newtonsoft.Json -based formatters if the app:

Uses Newtonsoft.Json  attributes. For example, [JsonProperty]  or [JsonIgnore] .

Customizes the serialization settings.

Relies on features that Newtonsoft.Json  provides.

Configures Microsoft.AspNetCore.Mvc.JsonResult.SerializerSettings . Prior to ASP.NET Core 3.0, 

JsonResult.SerializerSettings  accepts an instance of JsonSerializerSettings  that is specific to 

Newtonsoft.Json .

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.NewtonsoftJson/


services.AddControllers().AddNewtonsoftJson(options =>
{
    // Use the default property (Pascal) casing
    options.SerializerSettings.ContractResolver = new DefaultContractResolver();

    // Configure a custom converter
    options.SerializerSettings.Converters.Add(new MyCustomJsonConverter());
});

public IActionResult Get()
{
    return Json(model, new JsonSerializerSettings
    {
        Formatting = Formatting.Indented,
    });
}

Add XML format supportAdd XML format support

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc()
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_1)
        .AddXmlSerializerFormatters();
}

Specify a formatSpecify a format

[ApiController]
[Route("[controller]")]
[Produces("application/json")]
public class WeatherForecastController : ControllerBase
{

Generates OpenAPI documentation.

Features for the Newtonsoft.Json -based formatters can be configured using 

Microsoft.AspNetCore.Mvc.MvcNewtonsoftJsonOptions.SerializerSettings :

Output serialization options, on a per-action basis, can be configured using JsonResult . For example:

XML formatting requires the Microsoft.AspNetCore.Mvc.Formatters.Xml NuGet package.

XML formatters implemented using XmlSerializer are configured by calling AddXmlSerializerFormatters:

The preceding code serializes results using XmlSerializer .

When using the preceding code, controller methods should return the appropriate format based on the request's 

Accept  header.

To restrict the response formats, apply the [Produces]  filter. Like most Filters, [Produces]  can be applied at the

action, controller, or global scope:

The preceding [Produces]  filter :

Forces all actions within the controller to return JSON-formatted responses.

If other formatters are configured and the client specifies a different format, JSON is returned.

For more information, see Filters.

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Formatters.Xml/
https://docs.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcxmlmvcbuilderextensions.addxmlserializerformatters
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.producesattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.producesattribute


Special case formattersSpecial case formatters

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllers(options =>
    {
        // requires using Microsoft.AspNetCore.Mvc.Formatters;
        options.OutputFormatters.RemoveType<StringOutputFormatter>();
        options.OutputFormatters.RemoveType<HttpNoContentOutputFormatter>();
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc(options =>
    {
        // requires using Microsoft.AspNetCore.Mvc.Formatters;
        options.OutputFormatters.RemoveType<StringOutputFormatter>();
        options.OutputFormatters.RemoveType<HttpNoContentOutputFormatter>();
    });

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
}

Response format URL mappings

[Route("api/[controller]")]
[ApiController]
[FormatFilter]
public class ProductsController : ControllerBase
{
    [HttpGet("{id}.{format?}")]
    public Product Get(int id)
    {

Some special cases are implemented using built-in formatters. By default, string  return types are formatted as

text/plain (text/html if requested via the Accept  header). This behavior can be deleted by removing the

StringOutputFormatter. Formatters are removed in the ConfigureServices  method. Actions that have a model

object return type return 204 No Content  when returning null . This behavior can be deleted by removing the

HttpNoContentOutputFormatter. The following code removes the StringOutputFormatter  and 

HttpNoContentOutputFormatter .

Without the StringOutputFormatter , the built-in JSON formatter formats string  return types. If the built-in JSON

formatter is removed and an XML formatter is available, the XML formatter formats string  return types.

Otherwise, string  return types return 406 Not Acceptable .

Without the HttpNoContentOutputFormatter , null objects are formatted using the configured formatter. For

example:

The JSON formatter returns a response with a body of null .

The XML formatter returns an empty XML element with the attribute xsi:nil="true"  set.

Clients can request a particular format as part of the URL, for example:

In the query string or part of the path.

By using a format-specific file extension such as .xml or .json.

The mapping from request path should be specified in the route the API is using. For example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.stringoutputformatter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.httpnocontentoutputformatter


RO UT ERO UT E F O RM AT T ERF O RM AT T ER

/api/products/5 The default output formatter

/api/products/5.json The JSON formatter (if configured)

/api/products/5.xml The XML formatter (if configured)

The preceding route allows the requested format to be specified as an optional file extension. The [FormatFilter]

attribute checks for the existence of the format value in the RouteData  and maps the response format to the

appropriate formatter when the response is created.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatfilterattribute


Custom formatters in ASP.NET Core Web API
9/22/2020 • 5 minutes to read • Edit Online

When to use custom formatters

Overview of how to use a custom formatter

How to create a custom formatter class

By Kirk Larkin and Tom Dykstra.

ASP.NET Core MVC supports data exchange in Web APIs using input and output formatters. Input formatters are

used by Model Binding. Output formatters are used to format responses.

The framework provides built-in input and output formatters for JSON and XML. It provides a built-in output

formatter for plain text, but doesn't provide an input formatter for plain text.

This article shows how to add support for additional formats by creating custom formatters. For an example of a

custom plain text input formatter, see TextPlainInputFormatter on GitHub.

View or download sample code (how to download)

Use a custom formatter to add support for a content type that isn't handled by the built-in formatters.

To create a custom formatter :

For serializing data sent to the client, create an output formatter class.

For deserializing data received from the client, create an input formatter class.

Add instances of formatter classes to the InputFormatters  and OutputFormatters  collections in MvcOptions.

To create a formatter :

Derive the class from the appropriate base class. The sample app derives from TextOutputFormatter and

TextInputFormatter.

Specify valid media types and encodings in the constructor.

Override the CanReadType and CanWriteType methods.

Override the ReadRequestBodyAsync and WriteResponseBodyAsync  methods.

The following code shows the VcardOutputFormatter  class from the sample:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/web-api/advanced/custom-formatters.md
https://twitter.com/serpent5
https://github.com/tdykstra
https://github.com/aspnet/Entropy/blob/master/samples/Mvc.Formatters/TextPlainInputFormatter.cs
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/advanced/custom-formatters/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.textoutputformatter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.textinputformatter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.inputformatter.canreadtype
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.outputformatter.canwritetype
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.inputformatter.readrequestbodyasync
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/advanced/custom-formatters/samples


public class VcardOutputFormatter : TextOutputFormatter
{
    public VcardOutputFormatter()
    {
        SupportedMediaTypes.Add(MediaTypeHeaderValue.Parse("text/vcard"));

        SupportedEncodings.Add(Encoding.UTF8);
        SupportedEncodings.Add(Encoding.Unicode);
    }

    protected override bool CanWriteType(Type type)
    {
        return typeof(Contact).IsAssignableFrom(type) ||
            typeof(IEnumerable<Contact>).IsAssignableFrom(type);
    }

    public override async Task WriteResponseBodyAsync(
        OutputFormatterWriteContext context, Encoding selectedEncoding)
    {
        var httpContext = context.HttpContext;
        var serviceProvider = httpContext.RequestServices;

        var logger = serviceProvider.GetRequiredService<ILogger<VcardOutputFormatter>>();
        var buffer = new StringBuilder();

        if (context.Object is IEnumerable<Contact> contacts)
        {
            foreach (var contact in contacts)
            {
                FormatVcard(buffer, contact, logger);
            }
        }
        else
        {
            FormatVcard(buffer, (Contact)context.Object, logger);
        }

        await httpContext.Response.WriteAsync(buffer.ToString());
    }

    private static void FormatVcard(
        StringBuilder buffer, Contact contact, ILogger logger)
    {
        buffer.AppendLine("BEGIN:VCARD");
        buffer.AppendLine("VERSION:2.1");
        buffer.AppendLine($"N:{contact.LastName};{contact.FirstName}");
        buffer.AppendLine($"FN:{contact.FirstName} {contact.LastName}");
        buffer.AppendLine($"UID:{contact.Id}");
        buffer.AppendLine("END:VCARD");

        logger.LogInformation("Writing {FirstName} {LastName}",
            contact.FirstName, contact.LastName);
    }
}

Derive from the appropriate base classDerive from the appropriate base class

public class VcardOutputFormatter : TextOutputFormatter

Specify valid media types and encodingsSpecify valid media types and encodings

For text media types (for example, vCard), derive from the TextInputFormatter or TextOutputFormatter base class.

For binary types, derive from the InputFormatter or OutputFormatter base class.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.textinputformatter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.textoutputformatter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.inputformatter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.outputformatter


public VcardOutputFormatter()
{
    SupportedMediaTypes.Add(MediaTypeHeaderValue.Parse("text/vcard"));

    SupportedEncodings.Add(Encoding.UTF8);
    SupportedEncodings.Add(Encoding.Unicode);
}

Override CanReadType and CanWriteTypeOverride CanReadType and CanWriteType

protected override bool CanWriteType(Type type)
{
    return typeof(Contact).IsAssignableFrom(type) ||
        typeof(IEnumerable<Contact>).IsAssignableFrom(type);
}

The CanWriteResult methodThe CanWriteResult method

Override ReadRequestBodyAsync and WriteResponseBodyAsyncOverride ReadRequestBodyAsync and WriteResponseBodyAsync

In the constructor, specify valid media types and encodings by adding to the SupportedMediaTypes  and 

SupportedEncodings  collections.

A formatter class can notnot use constructor injection for its dependencies. For example, 

ILogger<VcardOutputFormatter>  cannot be added as a parameter to the constructor. To access services, use the

context object that gets passed in to the methods. A code example in this article and the sample show how to do

this.

Specify the type to deserialize into or serialize from by overriding the CanReadType  or CanWriteType  methods. For

example, creating vCard text from a Contact  type and vice versa.

In some scenarios, CanWriteResult  must be overridden rather than CanWriteType . Use CanWriteResult  if the

following conditions are true:

The action method returns a model class.

There are derived classes which might be returned at runtime.

The derived class returned by the action must be known at runtime.

For example, suppose the action method:

Signature returns a Person  type.

Can return a Student  or Instructor  type that derives from Person .

For the formatter to handle only Student  objects, check the type of Object in the context object provided to the 

CanWriteResult  method. When the action method returns IActionResult :

It's not necessary to use CanWriteResult .

The CanWriteType  method receives the runtime type.

 

Deserialization or serialization is performed in ReadRequestBodyAsync  or WriteResponseBodyAsync . The following

example shows how to get services from the dependency injection container. Services can't be obtained from

constructor parameters.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/advanced/custom-formatters/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.formatters.outputformattercanwritecontext.object#microsoft_aspnetcore_mvc_formatters_outputformattercanwritecontext_object


public override async Task WriteResponseBodyAsync(
    OutputFormatterWriteContext context, Encoding selectedEncoding)
{
    var httpContext = context.HttpContext;
    var serviceProvider = httpContext.RequestServices;

    var logger = serviceProvider.GetRequiredService<ILogger<VcardOutputFormatter>>();
    var buffer = new StringBuilder();

    if (context.Object is IEnumerable<Contact> contacts)
    {
        foreach (var contact in contacts)
        {
            FormatVcard(buffer, contact, logger);
        }
    }
    else
    {
        FormatVcard(buffer, (Contact)context.Object, logger);
    }

    await httpContext.Response.WriteAsync(buffer.ToString());
}

private static void FormatVcard(
    StringBuilder buffer, Contact contact, ILogger logger)
{
    buffer.AppendLine("BEGIN:VCARD");
    buffer.AppendLine("VERSION:2.1");
    buffer.AppendLine($"N:{contact.LastName};{contact.FirstName}");
    buffer.AppendLine($"FN:{contact.FirstName} {contact.LastName}");
    buffer.AppendLine($"UID:{contact.Id}");
    buffer.AppendLine("END:VCARD");

    logger.LogInformation("Writing {FirstName} {LastName}",
        contact.FirstName, contact.LastName);
}

How to configure MVC to use a custom formatter

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllers(options =>
    {
        options.InputFormatters.Insert(0, new VcardInputFormatter());
        options.OutputFormatters.Insert(0, new VcardOutputFormatter());
    });
}

services.AddMvc(options =>
{
    options.InputFormatters.Insert(0, new VcardInputFormatter());
    options.OutputFormatters.Insert(0, new VcardOutputFormatter());
})
.SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

To use a custom formatter, add an instance of the formatter class to the InputFormatters  or OutputFormatters

collection.

Formatters are evaluated in the order you insert them. The first one takes precedence.



The complete VcardInputFormatter  class

public class VcardInputFormatter : TextInputFormatter
{
    public VcardInputFormatter()
    {
        SupportedMediaTypes.Add(MediaTypeHeaderValue.Parse("text/vcard"));

        SupportedEncodings.Add(Encoding.UTF8);
        SupportedEncodings.Add(Encoding.Unicode);
    }

    protected override bool CanReadType(Type type)
    {
        return type == typeof(Contact);
    }

    public override async Task<InputFormatterResult> ReadRequestBodyAsync(
        InputFormatterContext context, Encoding effectiveEncoding)
    {
        var httpContext = context.HttpContext;
        var serviceProvider = httpContext.RequestServices;

        var logger = serviceProvider.GetRequiredService<ILogger<VcardInputFormatter>>();

        using var reader = new StreamReader(httpContext.Request.Body, effectiveEncoding);
        string nameLine = null;

        try
        {
            await ReadLineAsync("BEGIN:VCARD", reader, context, logger);
            await ReadLineAsync("VERSION:", reader, context, logger);

            nameLine = await ReadLineAsync("N:", reader, context, logger);

            var split = nameLine.Split(";".ToCharArray());
            var contact = new Contact
            {
                LastName = split[0].Substring(2),
                FirstName = split[1]
            };

            await ReadLineAsync("FN:", reader, context, logger);
            await ReadLineAsync("END:VCARD", reader, context, logger);

            logger.LogInformation("nameLine = {nameLine}", nameLine);

            return await InputFormatterResult.SuccessAsync(contact);
        }
        catch
        {
            logger.LogError("Read failed: nameLine = {nameLine}", nameLine);
            return await InputFormatterResult.FailureAsync();
        }
    }

    private static async Task<string> ReadLineAsync(
        string expectedText, StreamReader reader, InputFormatterContext context,
        ILogger logger)
    {
        var line = await reader.ReadLineAsync();

        if (!line.StartsWith(expectedText))
        {
            var errorMessage = $"Looked for '{expectedText}' and got '{line}'";

The following code shows the VcardInputFormatter  class from the sample:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/advanced/custom-formatters/samples


            context.ModelState.TryAddModelError(context.ModelName, errorMessage);
            logger.LogError(errorMessage);

            throw new Exception(errorMessage);
        }

        return line;
    }
}

Test the app

BEGIN:VCARD
VERSION:2.1
N:Davolio;Nancy
FN:Nancy Davolio
END:VCARD

Additional resources

Run the sample app for this article, which implements basic vCard input and output formatters. The app reads and

writes vCards similar to the following:

To see vCard output, run the app and send a Get request with Accept header text/vcard  to 

https://localhost:5001/api/contacts .

To add a vCard to the in-memory collection of contacts:

Send a Post  request to /api/contacts  with a tool like Postman.

Set the Content-Type  header to text/vcard .

Set vCard  text in the body, formatted like the preceding example.

Format response data in ASP.NET Core Web API

Manage Protobuf references with dotnet-grpc

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/advanced/custom-formatters/samples


Use web API analyzers
9/22/2020 • 2 minutes to read • Edit Online

Reference the analyzer package

<PropertyGroup>
 <IncludeOpenAPIAnalyzers>true</IncludeOpenAPIAnalyzers>
</PropertyGroup>

Package installation

Analyzers for web API conventions

ASP.NET Core 2.2 and later provides an MVC analyzers package intended for use with web API projects. The

analyzers work with controllers annotated with ApiControllerAttribute, while building on web API conventions.

The analyzers package notifies you of any controller action that:

Returns an undeclared status code.

Returns an undeclared success result.

Documents a status code that isn't returned.

Includes an explicit model validation check.

In ASP.NET Core 3.0 or later, the analyzers are included in the .NET Core SDK. To enable the analyzer in your project,

include the IncludeOpenAPIAnalyzers  property in the project file:

Install the Microsoft.AspNetCore.Mvc.Api.Analyzers NuGet package with one of the following approaches:

Visual Studio

Visual Studio for Mac

Visual Studio Code

.NET Core CLI

From the Package Manager ConsolePackage Manager Console window:

Install-Package Microsoft.AspNetCore.Mvc.Api.Analyzers

Go to ViewView  > Other WindowsOther Windows > Package Manager ConsolePackage Manager Console.

Navigate to the directory in which the ApiConventions.csproj file exists.

Execute the following command:

OpenAPI documents contain status codes and response types that an action may return. In ASP.NET Core MVC,

attributes such as ProducesResponseTypeAttribute and ProducesAttribute are used to document an action. ASP.NET

Core Web API help pages with Swagger / OpenAPI goes into further detail on documenting your web API.

One of the analyzers in the package inspects controllers annotated with ApiControllerAttribute and identifies

actions that don't entirely document their responses. Consider the following example:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/web-api/advanced/analyzers.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Api.Analyzers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.producesresponsetypeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.producesattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute


// GET api/contacts/{guid}
[HttpGet("{id}", Name = "GetById")]
[ProducesResponseType(typeof(Contact), StatusCodes.Status200OK)]
public IActionResult Get(string id)
{
    var contact = _contacts.Get(id);

    if (contact == null)
    {
        return NotFound();
    }

    return Ok(contact);
}

Additional resources

The preceding action documents the HTTP 200 success return type but doesn't document the HTTP 404 failure

status code. The analyzer reports the missing documentation for the HTTP 404 status code as a warning. An option

to fix the problem is provided.

Use web API conventions

ASP.NET Core Web API help pages with Swagger / OpenAPI

Create web APIs with ASP.NET Core



Use web API conventions
9/22/2020 • 3 minutes to read • Edit Online

Apply web API conventions

By Pranav Krishnamoorthy and Scott Addie

ASP.NET Core 2.2 and later includes a way to extract common API documentation and apply it to multiple actions,

controllers, or all controllers within an assembly. Web API conventions are a substitute for decorating individual

actions with [ProducesResponseType] .

A convention allows you to:

Define the most common return types and status codes returned from a specific type of action.

Identify actions that deviate from the defined standard.

ASP.NET Core MVC 2.2 and later includes a set of default conventions in

Microsoft.AspNetCore.Mvc.DefaultApiConventions. The conventions are based on the controller

(ValuesController.cs) provided in the ASP.NET Core APIAPI project template. If your actions follow the patterns in the

template, you should be successful using the default conventions. If the default conventions don't meet your

needs, see Create web API conventions.

At runtime, Microsoft.AspNetCore.Mvc.ApiExplorer understands conventions. ApiExplorer  is MVC's abstraction to

communicate with OpenAPI (also known as Swagger) document generators. Attributes from the applied

convention are associated with an action and are included in the action's OpenAPI documentation. API analyzers

also understand conventions. If your action is unconventional (for example, it returns a status code that isn't

documented by the applied convention), a warning encourages you to document the status code.

View or download sample code (how to download)

Conventions don't compose; each action may be associated with exactly one convention. More specific

conventions take precedence over less specific conventions. The selection is non-deterministic when two or more

conventions of the same priority apply to an action. The following options exist to apply a convention to an action,

from the most specific to the least specific:

1. Microsoft.AspNetCore.Mvc.ApiConventionMethodAttribute  — Applies to individual actions and specifies the

convention type and the convention method that applies.

In the following example, the default convention type's Microsoft.AspNetCore.Mvc.DefaultApiConventions.Put

convention method is applied to the Update  action:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/web-api/advanced/conventions.md
https://github.com/pranavkm
https://github.com/scottaddie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.producesresponsetypeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.defaultapiconventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apiexplorer
https://www.openapis.org/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/advanced/conventions/sample


  Create web API conventions

// PUT api/contactsconvention/{guid}
[HttpPut("{id}")]
[ApiConventionMethod(typeof(DefaultApiConventions), 
                     nameof(DefaultApiConventions.Put))]
public IActionResult Update(string id, Contact contact)
{
    var contactToUpdate = _contacts.Get(id);

    if (contactToUpdate == null)
    {
        return NotFound();
    }

    _contacts.Update(contact);

    return NoContent();
}

[ProducesDefaultResponseType]
[ProducesResponseType(StatusCodes.Status204NoContent)]
[ProducesResponseType(StatusCodes.Status404NotFound)]
[ProducesResponseType(StatusCodes.Status400BadRequest)]

[ApiController]
[ApiConventionType(typeof(DefaultApiConventions))]
[Route("api/[controller]")]
public class ContactsConventionController : ControllerBase
{

[assembly: ApiConventionType(typeof(DefaultApiConventions))]
namespace ApiConventions
{
    public class Startup
    {

The Microsoft.AspNetCore.Mvc.DefaultApiConventions.Put  convention method applies the following

attributes to the action:

For more information on [ProducesDefaultResponseType] , see Default Response.

2. Microsoft.AspNetCore.Mvc.ApiConventionTypeAttribute  applied to a controller — Applies the specified

convention type to all actions on the controller. A convention method is marked with hints that determine

the actions to which the convention method applies. For more information on hints, see Create web API

conventions).

In the following example, the default set of conventions is applied to all actions in

ContactsConventionController:

3. Microsoft.AspNetCore.Mvc.ApiConventionTypeAttribute  applied to an assembly — Applies the specified

convention type to all controllers in the current assembly. As a recommendation, apply assembly-level

attributes in the Startup.cs file.

In the following example, the default set of conventions is applied to all controllers in the assembly:

If the default API conventions don't meet your needs, create your own conventions. A convention is:

https://swagger.io/docs/specification/describing-responses/#default


  

  

Response typesResponse types

public static class MyAppConventions
{
    [ProducesResponseType(StatusCodes.Status200OK)]
    [ProducesResponseType(StatusCodes.Status404NotFound)]
    public static void Find(int id)
    {
    }
}

Naming requirementsNaming requirements

[ProducesResponseType(StatusCodes.Status200OK)]
[ProducesResponseType(StatusCodes.Status404NotFound)]
[ApiConventionNameMatch(ApiConventionNameMatchBehavior.Prefix)]
public static void Find(
    [ApiConventionNameMatch(ApiConventionNameMatchBehavior.Suffix)]
    int id)
{ }

Additional resources

A static type with methods.

Capable of defining response types and naming requirements on actions.

These methods are annotated with [ProducesResponseType]  or [ProducesDefaultResponseType]  attributes. For

example:

If more specific metadata attributes are absent, applying this convention to an assembly enforces that:

The convention method applies to any action named Find .

A parameter named id  is present on the Find  action.

The [ApiConventionNameMatch]  and [ApiConventionTypeMatch]  attributes can be applied to the convention method

that determines the actions to which they apply. For example:

In the preceding example:

The Microsoft.AspNetCore.Mvc.ApiExplorer.ApiConventionNameMatchBehavior.Prefix  option applied to the method

indicates that the convention matches any action prefixed with "Find". Examples of matching actions include 

Find , FindPet , and FindById .

The Microsoft.AspNetCore.Mvc.ApiExplorer.ApiConventionNameMatchBehavior.Suffix  applied to the parameter

indicates that the convention matches methods with exactly one parameter ending in the suffix identifier.

Examples include parameters such as id  or petId . ApiConventionTypeMatch  can be similarly applied to types

to constrain the parameter type. A params[]  argument indicates remaining parameters that don't need to be

explicitly matched.

Use web API analyzers

ASP.NET Core Web API help pages with Swagger / OpenAPI



Handle errors in ASP.NET Core web APIs
9/22/2020 • 7 minutes to read • Edit Online

Developer Exception Page

[HttpGet("{city}")]
public WeatherForecast Get(string city)
{
    if (!string.Equals(city?.TrimEnd(), "Redmond", StringComparison.OrdinalIgnoreCase))
    {
        throw new ArgumentException(
            $"We don't offer a weather forecast for {city}.", nameof(city));
    }
    
    return GetWeather().First();
}

curl -i https://localhost:5001/weatherforecast/chicago

This article describes how to handle and customize error handling with ASP.NET Core web APIs.

View or download sample code (How to download)

The Developer Exception Page is a useful tool to get detailed stack traces for server errors. It uses

DeveloperExceptionPageMiddleware to capture synchronous and asynchronous exceptions from the HTTP pipeline

and to generate error responses. To illustrate, consider the following controller action:

Run the following curl  command to test the preceding action:

In ASP.NET Core 3.0 and later, the Developer Exception Page displays a plain-text response if the client doesn't

request HTML-formatted output. The following output appears:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/web-api/handle-errors.md
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/handle-errors/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.developerexceptionpagemiddleware


HTTP/1.1 500 Internal Server Error
Transfer-Encoding: chunked
Content-Type: text/plain
Server: Microsoft-IIS/10.0
X-Powered-By: ASP.NET
Date: Fri, 27 Sep 2019 16:13:16 GMT

System.ArgumentException: We don't offer a weather forecast for chicago. (Parameter 'city')
   at WebApiSample.Controllers.WeatherForecastController.Get(String city) in 
C:\working_folder\aspnet\AspNetCore.Docs\aspnetcore\web-api\handle-
errors\samples\3.x\Controllers\WeatherForecastController.cs:line 34
   at lambda_method(Closure , Object , Object[] )
   at Microsoft.Extensions.Internal.ObjectMethodExecutor.Execute(Object target, Object[] parameters)
   at 
Microsoft.AspNetCore.Mvc.Infrastructure.ActionMethodExecutor.SyncObjectResultExecutor.Execute(IActionResultTyp
eMapper mapper, ObjectMethodExecutor executor, Object controller, Object[] arguments)
   at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.
<InvokeActionMethodAsync>g__Logged|12_1(ControllerActionInvoker invoker)
   at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.
<InvokeNextActionFilterAsync>g__Awaited|10_0(ControllerActionInvoker invoker, Task lastTask, State next, Scope 
scope, Object state, Boolean isCompleted)
   at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.Rethrow(ActionExecutedContextSealed 
context)
   at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.Next(State& next, Scope& scope, Object& 
state, Boolean& isCompleted)
   at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.InvokeInnerFilterAsync()
--- End of stack trace from previous location where exception was thrown ---
   at Microsoft.AspNetCore.Mvc.Infrastructure.ResourceInvoker.
<InvokeFilterPipelineAsync>g__Awaited|19_0(ResourceInvoker invoker, Task lastTask, State next, Scope scope, 
Object state, Boolean isCompleted)
   at Microsoft.AspNetCore.Mvc.Infrastructure.ResourceInvoker.<InvokeAsync>g__Logged|17_1(ResourceInvoker 
invoker)
   at Microsoft.AspNetCore.Routing.EndpointMiddleware.<Invoke>g__AwaitRequestTask|6_0(Endpoint endpoint, Task 
requestTask, ILogger logger)
   at Microsoft.AspNetCore.Authorization.AuthorizationMiddleware.Invoke(HttpContext context)
   at Microsoft.AspNetCore.Diagnostics.DeveloperExceptionPageMiddleware.Invoke(HttpContext context)

HEADERS
=======
Accept: */*
Host: localhost:44312
User-Agent: curl/7.55.1

curl -i -H "Accept: text/html" https://localhost:5001/weatherforecast/chicago

To display an HTML-formatted response instead, set the Accept  HTTP request header to the text/html  media

type. For example:

Consider the following excerpt from the HTTP response:

In ASP.NET Core 2.2 and earlier, the Developer Exception Page displays an HTML-formatted response. For example,

consider the following excerpt from the HTTP response:



HTTP/1.1 500 Internal Server Error
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
Server: Microsoft-IIS/10.0
X-Powered-By: ASP.NET
Date: Fri, 27 Sep 2019 16:55:37 GMT

<!DOCTYPE html>
<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
    <head>
        <meta charset="utf-8" />
        <title>Internal Server Error</title>
        <style>
            body {
    font-family: 'Segoe UI', Tahoma, Arial, Helvetica, sans-serif;
    font-size: .813em;
    color: #222;
    background-color: #fff;
}

WARNINGWARNING

Exception handler

The HTML-formatted response becomes useful when testing via tools like Postman. The following screen capture

shows both the plain-text and the HTML-formatted responses in Postman:

Enable the Developer Exception Page only when the app is running in the Development environmentonly when the app is running in the Development environment . You don't

want to share detailed exception information publicly when the app runs in production. For more information on configuring

environments, see Use multiple environments in ASP.NET Core.

In non-development environments, Exception Handling Middleware can be used to produce an error payload:

1. In Startup.Configure , invoke UseExceptionHandler to use the middleware:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.exceptionhandlerextensions.useexceptionhandler


public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/error");
    }

    app.UseHttpsRedirection();
    app.UseRouting();
    app.UseAuthorization();
    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
    });
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseMvc();
}

[ApiController]
public class ErrorController : ControllerBase
{
    [Route("/error")]
    public IActionResult Error() => Problem();
}

2. Configure a controller action to respond to the /error  route:



[ApiController]
public class ErrorController : ControllerBase
{
    [Route("/error")]
    public ActionResult Error([FromServices] IHostingEnvironment webHostEnvironment)
    {
        var feature = HttpContext.Features.Get<IExceptionHandlerPathFeature>();
        var ex = feature?.Error;
        var isDev = webHostEnvironment.IsDevelopment();
        var problemDetails = new ProblemDetails
        {
            Status = (int)HttpStatusCode.InternalServerError,
            Instance = feature?.Path,
            Title = isDev ? $"{ex.GetType().Name}: {ex.Message}" : "An error occurred.",
            Detail = isDev ? ex.StackTrace : null,
        };

        return StatusCode(problemDetails.Status.Value, problemDetails);
    }
}

The preceding Error  action sends an RFC 7807-compliant payload to the client.

Exception Handling Middleware can also provide more detailed content-negotiated output in the local

development environment. Use the following steps to produce a consistent payload format across development

and production environments:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseExceptionHandler("/error-local-development");
    }
    else
    {
        app.UseExceptionHandler("/error");
    }
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseExceptionHandler("/error-local-development");
    }
    else
    {
        app.UseExceptionHandler("/error");
    }
}

1. In Startup.Configure , register environment-specific Exception Handling Middleware instances:

In the preceding code, the middleware is registered with:

A route of /error-local-development  in the Development environment.

A route of /error  in environments that aren't Development.

2. Apply attribute routing to controller actions:

https://tools.ietf.org/html/rfc7807


[ApiController]
public class ErrorController : ControllerBase
{
    [Route("/error-local-development")]
    public IActionResult ErrorLocalDevelopment(
        [FromServices] IWebHostEnvironment webHostEnvironment)
    {
        if (webHostEnvironment.EnvironmentName != "Development")
        {
            throw new InvalidOperationException(
                "This shouldn't be invoked in non-development environments.");
        }

        var context = HttpContext.Features.Get<IExceptionHandlerFeature>();

        return Problem(
            detail: context.Error.StackTrace,
            title: context.Error.Message);
    }

    [Route("/error")]
    public IActionResult Error() => Problem();
}



Use exceptions to modify the response

[ApiController]
public class ErrorController : ControllerBase
{
    [Route("/error-local-development")]
    public IActionResult ErrorLocalDevelopment(
        [FromServices] IHostingEnvironment webHostEnvironment)
    {
        if (!webHostEnvironment.IsDevelopment())
        {
            throw new InvalidOperationException(
                "This shouldn't be invoked in non-development environments.");
        }

        var feature = HttpContext.Features.Get<IExceptionHandlerPathFeature>();
        var ex = feature?.Error;

        var problemDetails = new ProblemDetails
        {
            Status = (int)HttpStatusCode.InternalServerError,
            Instance = feature?.Path,
            Title = ex.GetType().Name,
            Detail = ex.StackTrace,
        };

        return StatusCode(problemDetails.Status.Value, problemDetails);
    }

    [Route("/error")]
    public ActionResult Error(
        [FromServices] IHostingEnvironment webHostEnvironment)
    {
        var feature = HttpContext.Features.Get<IExceptionHandlerPathFeature>();
        var ex = feature?.Error;
        var isDev = webHostEnvironment.IsDevelopment();
        var problemDetails = new ProblemDetails
        {
            Status = (int)HttpStatusCode.InternalServerError,
            Instance = feature?.Path,
            Title = isDev ? $"{ex.GetType().Name}: {ex.Message}" : "An error occurred.",
            Detail = isDev ? ex.StackTrace : null,
        };

        return StatusCode(problemDetails.Status.Value, problemDetails);
    }
}

The contents of the response can be modified from outside of the controller. In ASP.NET 4.x Web API, one way to do

this was using the HttpResponseException type. ASP.NET Core doesn't include an equivalent type. Support for 

HttpResponseException  can be added with the following steps:

public class HttpResponseException : Exception
{
    public int Status { get; set; } = 500;

    public object Value { get; set; }
}

1. Create a well-known exception type named HttpResponseException :

2. Create an action filter named HttpResponseExceptionFilter :

https://docs.microsoft.com/en-us/dotnet/api/system.web.http.httpresponseexception


                  Validation failure error response

services.AddControllers()
    .ConfigureApiBehaviorOptions(options =>
    {
        options.InvalidModelStateResponseFactory = context =>
        {
            var result = new BadRequestObjectResult(context.ModelState);

            // TODO: add `using System.Net.Mime;` to resolve MediaTypeNames
            result.ContentTypes.Add(MediaTypeNames.Application.Json);
            result.ContentTypes.Add(MediaTypeNames.Application.Xml);

            return result;
        };
    });

public class HttpResponseExceptionFilter : IActionFilter, IOrderedFilter
{
    public int Order { get; set; } = int.MaxValue - 10;

    public void OnActionExecuting(ActionExecutingContext context) { }

    public void OnActionExecuted(ActionExecutedContext context)
    {
        if (context.Exception is HttpResponseException exception)
        {
            context.Result = new ObjectResult(exception.Value)
            {
                StatusCode = exception.Status,
            };
            context.ExceptionHandled = true;
        }
    }
}

services.AddControllers(options =>
    options.Filters.Add(new HttpResponseExceptionFilter()));

services.AddMvc(options =>
        options.Filters.Add(new HttpResponseExceptionFilter()))
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

services.AddMvc(options =>
        options.Filters.Add(new HttpResponseExceptionFilter()))
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

In the preceding filter, the magic number 10 is subtracted from the maximum integer value. Subtracting this

number allows other filters to run at the very end of the pipeline.

3. In Startup.ConfigureServices , add the action filter to the filters collection:

For web API controllers, MVC responds with a ValidationProblemDetails response type when model validation

fails. MVC uses the results of InvalidModelStateResponseFactory to construct the error response for a validation

failure. The following example uses the factory to change the default response type to SerializableError in 

Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apibehavioroptions.invalidmodelstateresponsefactory#microsoft_aspnetcore_mvc_apibehavioroptions_invalidmodelstateresponsefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.serializableerror


  

services.AddMvc()
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
    .ConfigureApiBehaviorOptions(options =>
    {
        options.InvalidModelStateResponseFactory = context =>
        {
            var result = new BadRequestObjectResult(context.ModelState);

            // TODO: add `using System.Net.Mime;` to resolve MediaTypeNames
            result.ContentTypes.Add(MediaTypeNames.Application.Json);
            result.ContentTypes.Add(MediaTypeNames.Application.Xml);

            return result;
        };
    });

services.AddMvc()
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

services.Configure<ApiBehaviorOptions>(options =>
{
    options.InvalidModelStateResponseFactory = context =>
    {
        var result = new BadRequestObjectResult(context.ModelState);

        // TODO: add `using using System.Net.Mime;` to resolve MediaTypeNames
        result.ContentTypes.Add(MediaTypeNames.Application.Json);
        result.ContentTypes.Add(MediaTypeNames.Application.Xml);

        return result;
    };
});

Client error response

IMPORTANTIMPORTANT

Implement Implement ProblemDetailsFactory

An error result is defined as a result with an HTTP status code of 400 or higher. For web API controllers, MVC

transforms an error result to a result with ProblemDetails.

ASP.NET Core 2.1 generates a problem details response that's nearly RFC 7807-compliant. If 100 percent compliance is

important, upgrade the project to ASP.NET Core 2.2 or later.

The error response can be configured in one of the following ways:

1. Implement ProblemDetailsFactory

2. Use ApiBehaviorOptions.ClientErrorMapping

MVC uses Microsoft.AspNetCore.Mvc.Infrastructure.ProblemDetailsFactory to produce all instances of

ProblemDetails and ValidationProblemDetails. This includes client error responses, validation failure error

responses, and the ControllerBase.Problem and ControllerBase.ValidationProblem helper methods.

To customize the problem details response, register a custom implementation of ProblemDetailsFactory in 

Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.problemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.infrastructure.problemdetailsfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.problemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validationproblemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.problem
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.validationproblem
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.infrastructure.problemdetailsfactory


    

public void ConfigureServices(IServiceCollection serviceCollection)
{
    services.AddControllers();
    services.AddTransient<ProblemDetailsFactory, CustomProblemDetailsFactory>();
}

Use ApiBehaviorOptions.ClientErrorMappingUse ApiBehaviorOptions.ClientErrorMapping

services.AddControllers()
    .ConfigureApiBehaviorOptions(options =>
    {
        options.SuppressConsumesConstraintForFormFileParameters = true;
        options.SuppressInferBindingSourcesForParameters = true;
        options.SuppressModelStateInvalidFilter = true;
        options.SuppressMapClientErrors = true;
        options.ClientErrorMapping[StatusCodes.Status404NotFound].Link =
            "https://httpstatuses.com/404";
    });

services.AddMvc()
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
    .ConfigureApiBehaviorOptions(options =>
    {
        options.SuppressConsumesConstraintForFormFileParameters = true;
        options.SuppressInferBindingSourcesForParameters = true;
        options.SuppressModelStateInvalidFilter = true;
        options.SuppressMapClientErrors = true;
        options.ClientErrorMapping[404].Link =
            "https://httpstatuses.com/404";
    });

The error response can be configured as outlined in the Use ApiBehaviorOptions.ClientErrorMapping section.

Use the ClientErrorMapping property to configure the contents of the ProblemDetails  response. For example, the

following code in Startup.ConfigureServices  updates the type  property for 404 responses:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apibehavioroptions.clienterrormapping


Test web APIs with the HTTP REPL
9/22/2020 • 19 minutes to read • Edit Online

Prerequisites

Installation

dotnet tool install -g Microsoft.dotnet-httprepl

Usage

httprepl

httprepl -h

httprepl --help

By Scott Addie

The HTTP Read-Eval-Print Loop (REPL) is:

A lightweight, cross-platform command-line tool that's supported everywhere .NET Core is supported.

Used for making HTTP requests to test ASP.NET Core web APIs (and non-ASP.NET Core web APIs) and view their

results.

Capable of testing web APIs hosted in any environment, including localhost and Azure App Service.

The following HTTP verbs are supported:

DELETE

GET

HEAD

OPTIONS

PATCH

POST

PUT

To follow along, view or download the sample ASP.NET Core web API (how to download).

.NET Core 2.1 SDK or later

To install the HTTP REPL, run the following command:

A .NET Core Global Tool is installed from the Microsoft.dotnet-httprepl NuGet package.

After successful installation of the tool, run the following command to start the HTTP REPL:

To view the available HTTP REPL commands, run one of the following commands:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/web-api/http-repl.md
https://twitter.com/Scott_Addie
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#74-supported-methods
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/web-api/http-repl/samples
https://dotnet.microsoft.com/download/dotnet-core
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools#install-a-global-tool
https://www.nuget.org/packages/Microsoft.dotnet-httprepl


Usage:
  httprepl [<BASE_ADDRESS>] [options]

Arguments:
  <BASE_ADDRESS> - The initial base address for the REPL.

Options:
  -h|--help - Show help information.

Once the REPL starts, these commands are valid:

Setup Commands:
Use these commands to configure the tool for your API server

connect        Configures the directory structure and base address of the api server
set header     Sets or clears a header for all requests. e.g. `set header content-type application/json`

HTTP Commands:
Use these commands to execute requests against your application.

GET            get - Issues a GET request
POST           post - Issues a POST request
PUT            put - Issues a PUT request
DELETE         delete - Issues a DELETE request
PATCH          patch - Issues a PATCH request
HEAD           head - Issues a HEAD request
OPTIONS        options - Issues a OPTIONS request

Navigation Commands:
The REPL allows you to navigate your URL space and focus on specific APIs that you are working on.

set base       Set the base URI. e.g. `set base http://locahost:5000`
ls             Show all endpoints for the current path
cd             Append the given directory to the currently selected path, or move up a path when using `cd ..`

Shell Commands:
Use these commands to interact with the REPL shell.

clear          Removes all text from the shell
echo [on/off]  Turns request echoing on or off, show the request that was made when using request commands
exit           Exit the shell

REPL Customization Commands:
Use these commands to customize the REPL behavior.

pref [get/set] Allows viewing or changing preferences, e.g. 'pref set editor.command.default 'C:\\Program 
Files\\Microsoft VS Code\\Code.exe'`
run            Runs the script at the given path. A script is a set of commands that can be typed with one 
command per line
ui             Displays the Swagger UI page, if available, in the default browser

Use `help <COMMAND>` for more detail on an individual command. e.g. `help get`.
For detailed tool info, see https://aka.ms/http-repl-doc.

Connect to the web API

The following output is displayed:

The HTTP REPL offers command completion. Pressing the Tab key iterates through the list of commands that

complete the characters or API endpoint that you typed. The following sections outline the available CLI commands.

Connect to a web API by running the following command:



httprepl <ROOT URI>

httprepl https://localhost:5001

connect <ROOT URI>

(Disconnected)~ connect https://localhost:5001

Manually point to the Swagger document for the web API

connect <ROOT URI> --swagger <SWAGGER URI>

(Disconnected)~ connect https://localhost:5001 --swagger /swagger/v1/swagger.json

Navigate the web API
View available endpointsView available endpoints

https://localhot:5001/~ ls

.        []
Fruits   [get|post]
People   [get|post]

https://localhost:5001/~

<ROOT URI>  is the base URI for the web API. For example:

Alternatively, run the following command at any time while the HTTP REPL is running:

For example:

The connect command above will attempt to find the Swagger document automatically. If for some reason it is

unable to do so, you can specify the URI of the Swagger document for the web API by using the --swagger  option:

For example:

To list the different endpoints (controllers) at the current path of the web API address, run the ls  or dir

command:

The following output format is displayed:

The preceding output indicates that there are two controllers available: Fruits  and People . Both controllers

support parameterless HTTP GET and POST operations.

Navigating into a specific controller reveals more detail. For example, the following command's output shows the 

Fruits  controller also supports HTTP GET, PUT, and DELETE operations. Each of these operations expects an id

parameter in the route:



  

https://localhost:5001/fruits~ ls
.      [get|post]
..     []
{id}   [get|put|delete]

https://localhost:5001/fruits~

https://localhost:5001/~ ui

Navigate to an endpointNavigate to an endpoint

https://localhost:5001/~ cd people

/people    [get|post]

https://localhost:5001/people~

Customize the HTTP REPL

View the settingsView the settings

https://localhost:5001/~ pref get

colors.json=Green
colors.json.arrayBrace=BoldCyan
colors.json.comma=BoldYellow
colors.json.name=BoldMagenta
colors.json.nameSeparator=BoldWhite
colors.json.objectBrace=Cyan
colors.protocol=BoldGreen
colors.status=BoldYellow

Alternatively, run the ui  command to open the web API's Swagger UI page in a browser. For example:

To navigate to a different endpoint on the web API, run the cd  command:

The path following the cd  command is case insensitive. The following output format is displayed:

The HTTP REPL's default colors can be customized. Additionally, a default text editor can be defined. The HTTP REPL

preferences are persisted across the current session and are honored in future sessions. Once modified, the

preferences are stored in the following file:

Linux

macOS

Windows

%HOME%/.httpreplprefs

The .httpreplprefs file is loaded on startup and not monitored for changes at runtime. Manual modifications to the

file take effect only after restarting the tool.

To view the available settings, run the pref get  command. For example:

The preceding command displays the available key-value pairs:



  Set color preferencesSet color preferences

https://localhost:5001/people~ pref set colors.json White

Set indentation sizeSet indentation size

[
  {
    "id": 1,
    "name": "Apple"
  },
  {
    "id": 2,
    "name": "Orange"
  },
  {
    "id": 3,
    "name": "Strawberry"
  }
]

pref set formatting.json.indentSize 4

[
    {
        "id": 1,
        "name": "Apple"
    },
    {
        "id": 2,
        "name": "Orange"
    },
    {
        "id": 3,
        "name": "Strawberry"
    }
]

Response colorization is currently supported for JSON only. To customize the default HTTP REPL tool coloring,

locate the key corresponding to the color to be changed. For instructions on how to find the keys, see the View the

settings section. For example, change the colors.json  key value from Green  to White  as follows:

Only the allowed colors may be used. Subsequent HTTP requests display output with the new coloring.

When specific color keys aren't set, more generic keys are considered. To demonstrate this fallback behavior,

consider the following example:

If colors.json.name  doesn't have a value, colors.json.string  is used.

If colors.json.string  doesn't have a value, colors.json.literal  is used.

If colors.json.literal  doesn't have a value, colors.json  is used.

If colors.json  doesn't have a value, the command shell's default text color ( AllowedColors.None ) is used.

Response indentation size customization is currently supported for JSON only. The default size is two spaces. For

example:

To change the default size, set the formatting.json.indentSize  key. For example, to always use four spaces:

Subsequent responses honor the setting of four spaces:

https://github.com/dotnet/HttpRepl/blob/01d5c3c3373e98fe566ff5ef8a17c571de880293/src/Microsoft.Repl/ConsoleHandling/AllowedColors.cs


      

 

Set the default text editorSet the default text editor

pref set editor.command.default "<EXECUTABLE>"

pref set editor.command.default "/usr/bin/code"

pref set editor.command.default.arguments "--disable-extensions --new-window"

Set the Swagger search pathsSet the Swagger search paths

pref set swagger.searchPaths "swagger/v2/swagger.json|swagger/v3/swagger.json"

Test HTTP GET requests
SynopsisSynopsis

get <PARAMETER> [-F|--no-formatting] [-h|--header] [--response] [--response:body] [--response:headers] [-s|--
streaming]

ArgumentsArguments

OptionsOptions

By default, the HTTP REPL has no text editor configured for use. To test web API methods requiring an HTTP request

body, a default text editor must be set. The HTTP REPL tool launches the configured text editor for the sole purpose

of composing the request body. Run the following command to set your preferred text editor as the default:

In the preceding command, <EXECUTABLE>  is the full path to the text editor's executable file. For example, run the

following command to set Visual Studio Code as the default text editor :

Linux

macOS

Windows

To launch the default text editor with specific CLI arguments, set the editor.command.default.arguments  key. For

example, assume Visual Studio Code is the default text editor and that you always want the HTTP REPL to open

Visual Studio Code in a new session with extensions disabled. Run the following command:

By default, the HTTP REPL has a set of relative paths that it uses to find the Swagger document when executing the 

connect  command without the --swagger  option. These relative paths are combined with the root and base paths

specified in the connect  command. The default relative paths are:

swagger.json

swagger/v1/swagger.json

/swagger.json

/swagger/v1/swagger.json

To use a different set of search paths in your environment, set the swagger.searchPaths  preference. The value must

be a pipe-delimited list of relative paths. For example:

PARAMETER

The route parameter, if any, expected by the associated controller action method.



ExampleExample

The following options are available for the get  command:

-F|--no-formatting

A flag whose presence suppresses HTTP response formatting.

-h|--header

Sets an HTTP request header. The following two value formats are supported:

{header}={value}

{header}:{value}

--response

Specifies a file to which the entire HTTP response (including headers and body) should be written. For

example, --response "C:\response.txt" . The file is created if it doesn't exist.

--response:body

Specifies a file to which the HTTP response body should be written. For example, 

--response:body "C:\response.json" . The file is created if it doesn't exist.

--response:headers

Specifies a file to which the HTTP response headers should be written. For example, 

--response:headers "C:\response.txt" . The file is created if it doesn't exist.

-s|--streaming

A flag whose presence enables streaming of the HTTP response.

To issue an HTTP GET request:

https://localhost:5001/people~ get

1. Run the get  command on an endpoint that supports it:

The preceding command displays the following output format:



 Test HTTP POST requests
SynopsisSynopsis

post <PARAMETER> [-c|--content] [-f|--file] [-h|--header] [--no-body] [-F|--no-formatting] [--response] [--
response:body] [--response:headers] [-s|--streaming]

ArgumentsArguments

OptionsOptions

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Fri, 21 Jun 2019 03:38:45 GMT
Server: Kestrel
Transfer-Encoding: chunked

[
  {
    "id": 1,
    "name": "Scott Hunter"
  },
  {
    "id": 2,
    "name": "Scott Hanselman"
  },
  {
    "id": 3,
    "name": "Scott Guthrie"
  }
]

https://localhost:5001/people~

https://localhost:5001/people~ get 2

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Fri, 21 Jun 2019 06:17:57 GMT
Server: Kestrel
Transfer-Encoding: chunked

[
  {
    "id": 2,
    "name": "Scott Hanselman"
  }
]

https://localhost:5001/people~

2. Retrieve a specific record by passing a parameter to the get  command:

The preceding command displays the following output format:

PARAMETER

The route parameter, if any, expected by the associated controller action method.



ExampleExample

-F|--no-formatting

A flag whose presence suppresses HTTP response formatting.

-h|--header

Sets an HTTP request header. The following two value formats are supported:

{header}={value}

{header}:{value}

--response

Specifies a file to which the entire HTTP response (including headers and body) should be written. For

example, --response "C:\response.txt" . The file is created if it doesn't exist.

--response:body

Specifies a file to which the HTTP response body should be written. For example, 

--response:body "C:\response.json" . The file is created if it doesn't exist.

--response:headers

Specifies a file to which the HTTP response headers should be written. For example, 

--response:headers "C:\response.txt" . The file is created if it doesn't exist.

-s|--streaming

A flag whose presence enables streaming of the HTTP response.

-c|--content

Provides an inline HTTP request body. For example, -c "{"id":2,"name":"Cherry"}" .

-f|--file

Provides a path to a file containing the HTTP request body. For example, -f "C:\request.json" .

--no-body

Indicates that no HTTP request body is needed.

To issue an HTTP POST request:

https://localhost:5001/people~ post -h Content-Type=application/json

{
  "id": 0,
  "name": ""
}

1. Run the post  command on an endpoint that supports it:

In the preceding command, the Content-Type  HTTP request header is set to indicate a request body media

type of JSON. The default text editor opens a .tmp file with a JSON template representing the HTTP request

body. For example:



 Test HTTP PUT requests
SynopsisSynopsis

put <PARAMETER> [-c|--content] [-f|--file] [-h|--header] [--no-body] [-F|--no-formatting] [--response] [--
response:body] [--response:headers] [-s|--streaming]

ArgumentsArguments

OptionsOptions

TIPTIP

{
  "id": 0,
  "name": "Scott Addie"
}

HTTP/1.1 201 Created
Content-Type: application/json; charset=utf-8
Date: Thu, 27 Jun 2019 21:24:18 GMT
Location: https://localhost:5001/people/4
Server: Kestrel
Transfer-Encoding: chunked

{
  "id": 4,
  "name": "Scott Addie"
}

https://localhost:5001/people~

To set the default text editor, see the Set the default text editor section.

2. Modify the JSON template to satisfy model validation requirements:

3. Save the .tmp file, and close the text editor. The following output appears in the command shell:

PARAMETER

The route parameter, if any, expected by the associated controller action method.

-F|--no-formatting

A flag whose presence suppresses HTTP response formatting.

-h|--header

Sets an HTTP request header. The following two value formats are supported:

{header}={value}

{header}:{value}

--response

Specifies a file to which the entire HTTP response (including headers and body) should be written. For

example, --response "C:\response.txt" . The file is created if it doesn't exist.



ExampleExample

--response:body

Specifies a file to which the HTTP response body should be written. For example, 

--response:body "C:\response.json" . The file is created if it doesn't exist.

--response:headers

Specifies a file to which the HTTP response headers should be written. For example, 

--response:headers "C:\response.txt" . The file is created if it doesn't exist.

-s|--streaming

A flag whose presence enables streaming of the HTTP response.

-c|--content

Provides an inline HTTP request body. For example, -c "{"id":2,"name":"Cherry"}" .

-f|--file

Provides a path to a file containing the HTTP request body. For example, -f "C:\request.json" .

--no-body

Indicates that no HTTP request body is needed.

To issue an HTTP PUT request:

https://localhost:5001/fruits~ get
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Sat, 22 Jun 2019 00:07:32 GMT
Server: Kestrel
Transfer-Encoding: chunked

[
  {
    "id": 1,
    "data": "Apple"
  },
  {
    "id": 2,
    "data": "Orange"
  },
  {
    "id": 3,
    "data": "Strawberry"
  }
]

https://localhost:5001/fruits~ put 2 -h Content-Type=application/json

1. Optional: Run the get  command to view the data before modifying it:

2. Run the put  command on an endpoint that supports it:

In the preceding command, the Content-Type  HTTP request header is set to indicate a request body media

type of JSON. The default text editor opens a .tmp file with a JSON template representing the HTTP request

body. For example:



 Test HTTP DELETE requests
SynopsisSynopsis

{
  "id": 0,
  "name": ""
}

TIPTIP

{
  "id": 2,
  "name": "Cherry"
}

[main 2019-06-28T17:27:01.805Z] update#setState idle
HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2019 17:28:21 GMT
Server: Kestrel

https://localhost:5001/fruits~ get
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Sat, 22 Jun 2019 00:08:20 GMT
Server: Kestrel
Transfer-Encoding: chunked

[
  {
    "id": 1,
    "data": "Apple"
  },
  {
    "id": 2,
    "data": "Cherry"
  },
  {
    "id": 3,
    "data": "Strawberry"
  }
]

https://localhost:5001/fruits~

To set the default text editor, see the Set the default text editor section.

3. Modify the JSON template to satisfy model validation requirements:

4. Save the .tmp file, and close the text editor. The following output appears in the command shell:

5. Optional: Issue a get  command to see the modifications. For example, if you typed "Cherry" in the text

editor, a get  returns the following:



delete <PARAMETER> [-F|--no-formatting] [-h|--header] [--response] [--response:body] [--response:headers] [-s|-
-streaming]

ArgumentsArguments

OptionsOptions

ExampleExample

PARAMETER

The route parameter, if any, expected by the associated controller action method.

-F|--no-formatting

A flag whose presence suppresses HTTP response formatting.

-h|--header

Sets an HTTP request header. The following two value formats are supported:

{header}={value}

{header}:{value}

--response

Specifies a file to which the entire HTTP response (including headers and body) should be written. For

example, --response "C:\response.txt" . The file is created if it doesn't exist.

--response:body

Specifies a file to which the HTTP response body should be written. For example, 

--response:body "C:\response.json" . The file is created if it doesn't exist.

--response:headers

Specifies a file to which the HTTP response headers should be written. For example, 

--response:headers "C:\response.txt" . The file is created if it doesn't exist.

-s|--streaming

A flag whose presence enables streaming of the HTTP response.

To issue an HTTP DELETE request:

1. Optional: Run the get  command to view the data before modifying it:



 Test HTTP PATCH requests
SynopsisSynopsis

https://localhost:5001/fruits~ get
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Sat, 22 Jun 2019 00:07:32 GMT
Server: Kestrel
Transfer-Encoding: chunked

[
  {
    "id": 1,
    "data": "Apple"
  },
  {
    "id": 2,
    "data": "Orange"
  },
  {
    "id": 3,
    "data": "Strawberry"
  }
]

https://localhost:5001/fruits~ delete 2

HTTP/1.1 204 No Content
Date: Fri, 28 Jun 2019 17:36:42 GMT
Server: Kestrel

https://localhost:5001/fruits~ get
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Sat, 22 Jun 2019 00:16:30 GMT
Server: Kestrel
Transfer-Encoding: chunked

[
  {
    "id": 1,
    "data": "Apple"
  },
  {
    "id": 3,
    "data": "Strawberry"
  }
]

https://localhost:5001/fruits~

2. Run the delete  command on an endpoint that supports it:

The preceding command displays the following output format:

3. Optional: Issue a get  command to see the modifications. In this example, a get  returns the following:



 

patch <PARAMETER> [-c|--content] [-f|--file] [-h|--header] [--no-body] [-F|--no-formatting] [--response] [--
response:body] [--response:headers] [-s|--streaming]

ArgumentsArguments

OptionsOptions

Test HTTP HEAD requests
SynopsisSynopsis

head <PARAMETER> [-F|--no-formatting] [-h|--header] [--response] [--response:body] [--response:headers] [-s|--
streaming]

ArgumentsArguments

PARAMETER

The route parameter, if any, expected by the associated controller action method.

-F|--no-formatting

A flag whose presence suppresses HTTP response formatting.

-h|--header

Sets an HTTP request header. The following two value formats are supported:

{header}={value}

{header}:{value}

--response

Specifies a file to which the entire HTTP response (including headers and body) should be written. For

example, --response "C:\response.txt" . The file is created if it doesn't exist.

--response:body

Specifies a file to which the HTTP response body should be written. For example, 

--response:body "C:\response.json" . The file is created if it doesn't exist.

--response:headers

Specifies a file to which the HTTP response headers should be written. For example, 

--response:headers "C:\response.txt" . The file is created if it doesn't exist.

-s|--streaming

A flag whose presence enables streaming of the HTTP response.

-c|--content

Provides an inline HTTP request body. For example, -c "{"id":2,"name":"Cherry"}" .

-f|--file

Provides a path to a file containing the HTTP request body. For example, -f "C:\request.json" .

--no-body

Indicates that no HTTP request body is needed.



 

OptionsOptions

Test HTTP OPTIONS requests
SynopsisSynopsis

options <PARAMETER> [-F|--no-formatting] [-h|--header] [--response] [--response:body] [--response:headers] [-
s|--streaming]

ArgumentsArguments

OptionsOptions

PARAMETER

The route parameter, if any, expected by the associated controller action method.

-F|--no-formatting

A flag whose presence suppresses HTTP response formatting.

-h|--header

Sets an HTTP request header. The following two value formats are supported:

{header}={value}

{header}:{value}

--response

Specifies a file to which the entire HTTP response (including headers and body) should be written. For

example, --response "C:\response.txt" . The file is created if it doesn't exist.

--response:body

Specifies a file to which the HTTP response body should be written. For example, 

--response:body "C:\response.json" . The file is created if it doesn't exist.

--response:headers

Specifies a file to which the HTTP response headers should be written. For example, 

--response:headers "C:\response.txt" . The file is created if it doesn't exist.

-s|--streaming

A flag whose presence enables streaming of the HTTP response.

PARAMETER

The route parameter, if any, expected by the associated controller action method.

-F|--no-formatting

A flag whose presence suppresses HTTP response formatting.

-h|--header

Sets an HTTP request header. The following two value formats are supported:

{header}={value}

{header}:{value}

--response



Set HTTP request headers

Test secured endpoints

Default credentialsDefault credentials

HTTP request headersHTTP request headers

Specifies a file to which the entire HTTP response (including headers and body) should be written. For

example, --response "C:\response.txt" . The file is created if it doesn't exist.

--response:body

Specifies a file to which the HTTP response body should be written. For example, 

--response:body "C:\response.json" . The file is created if it doesn't exist.

--response:headers

Specifies a file to which the HTTP response headers should be written. For example, 

--response:headers "C:\response.txt" . The file is created if it doesn't exist.

-s|--streaming

A flag whose presence enables streaming of the HTTP response.

To set an HTTP request header, use one of the following approaches:

https://localhost:5001/people~ post -h Content-Type=application/json

https://localhost:5001/people~ set header Content-Type application/json

https://localhost:5001/people~ set header Content-Type

Set inline with the HTTP request. For example:

With the preceding approach, each distinct HTTP request header requires its own -h  option.

Set before sending the HTTP request. For example:

When setting the header before sending a request, the header remains set for the duration of the command

shell session. To clear the header, provide an empty value. For example:

The HTTP REPL supports the testing of secured endpoints in two ways: via the default credentials of the logged in

user or through the use of HTTP request headers.

Consider a scenario in which the web API you're testing is hosted in IIS and is secured with Windows authentication.

You want the credentials of the user running the tool to flow across to the HTTP endpoints being tested. To pass the

default credentials of the logged in user :

pref set httpClient.useDefaultCredentials true

1. Set the httpClient.useDefaultCredentials  preference to true :

2. Exit and restart the tool before sending another request to the web API.

Examples of supported authentication and authorization schemes include basic authentication, JWT bearer tokens,



set header Authorization "bearer <TOKEN VALUE>"

and digest authentication. For example, you can send a bearer token to an endpoint with the following command:

To access an Azure-hosted endpoint or to use the Azure REST API, you need a bearer token. Use the following steps

to obtain a bearer token for your Azure subscription via the Azure CLI. The HTTP REPL sets the bearer token in an

HTTP request header and retrieves a list of Azure App Service Web Apps.

az login

az account show --query id

az account set --subscription "<SUBSCRIPTION ID>"

az account get-access-token --query accessToken

httprepl https://management.azure.com

https://management.azure.com/> set header Authorization "bearer <ACCESS TOKEN>"

https://management.azure.com/> cd subscriptions/<SUBSCRIPTION ID>

https://management.azure.com/subscriptions/{SUBSCRIPTION ID}> get providers/Microsoft.Web/sites?api-
version=2016-08-01

1. Log in to Azure:

2. Get your subscription ID with the following command:

3. Copy your subscription ID and run the following command:

4. Get your bearer token with the following command:

5. Connect to the Azure REST API via the HTTP REPL:

6. Set the Authorization  HTTP request header :

7. Navigate to the subscription:

8. Get a list of your subscription's Azure App Service Web Apps:

The following response is displayed:

https://docs.microsoft.com/en-us/rest/api/azure/
https://docs.microsoft.com/en-us/cli/azure/


Toggle HTTP request display

Enable request displayEnable request display

https://localhost:5001/people~ echo on
Request echoing is on

HTTP/1.1 200 OK
Cache-Control: no-cache
Content-Length: 35948
Content-Type: application/json; charset=utf-8
Date: Thu, 19 Sep 2019 23:04:03 GMT
Expires: -1
Pragma: no-cache
Strict-Transport-Security: max-age=31536000; includeSubDomains
X-Content-Type-Options: nosniff
x-ms-correlation-request-id: <em>xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx</em>
x-ms-original-request-ids: <em>xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx;xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx</em>
x-ms-ratelimit-remaining-subscription-reads: 11999
x-ms-request-id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
x-ms-routing-request-id: WESTUS:xxxxxxxxxxxxxxxx:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx
{
  "value": [
    <AZURE RESOURCES LIST>
  ]
}

By default, display of the HTTP request being sent is suppressed. It's possible to change the corresponding setting

for the duration of the command shell session.

View the HTTP request being sent by running the echo on  command. For example:

Subsequent HTTP requests in the current session display the request headers. For example:



https://localhost:5001/people~ post

[main 2019-06-28T18:50:11.930Z] update#setState idle
Request to https://localhost:5001...

POST /people HTTP/1.1
Content-Length: 41
Content-Type: application/json
User-Agent: HTTP-REPL

{
  "id": 0,
  "name": "Scott Addie"
}

Response from https://localhost:5001...

HTTP/1.1 201 Created
Content-Type: application/json; charset=utf-8
Date: Fri, 28 Jun 2019 18:50:21 GMT
Location: https://localhost:5001/people/4
Server: Kestrel
Transfer-Encoding: chunked

{
  "id": 4,
  "name": "Scott Addie"
}

https://localhost:5001/people~

Disable request displayDisable request display

https://localhost:5001/people~ echo off
Request echoing is off

Run a script

Suppress display of the HTTP request being sent by running the echo off  command. For example:

If you frequently execute the same set of HTTP REPL commands, consider storing them in a text file. Commands in

the file take the same form as those executed manually on the command line. The commands can be executed in a

batched fashion using the run  command. For example:

set base https://localhost:5001
ls
cd People
ls
get 1

https://localhost:5001/~ run C:\http-repl-scripts\people-script.txt

1. Create a text file containing a set of newline-delimited commands. To illustrate, consider a people-script.txt

file containing the following commands:

2. Execute the run  command, passing in the text file's path. For example:

The following output appears:



Clear the output

httprepl https://localhost:5001
(Disconnected)~ set base "https://localhost:5001"
Using swagger metadata from https://localhost:5001/swagger/v1/swagger.json

https://localhost:5001/~ ls
.        []
Fruits   [get|post]
People   [get|post]

https://localhost:5001/~

https://localhost:5001/~ clear

https://localhost:5001/~

Additional resources

https://localhost:5001/~ set base https://localhost:5001
Using swagger metadata from https://localhost:5001/swagger/v1/swagger.json

https://localhost:5001/~ ls
.        []
Fruits   [get|post]
People   [get|post]

https://localhost:5001/~ cd People
/People    [get|post]

https://localhost:5001/People~ ls
.      [get|post]
..     []
{id}   [get|put|delete]

https://localhost:5001/People~ get 1
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Fri, 12 Jul 2019 19:20:10 GMT
Server: Kestrel
Transfer-Encoding: chunked

{
  "id": 1,
  "name": "Scott Hunter"
}

https://localhost:5001/People~

To remove all output written to the command shell by the HTTP REPL tool, run the clear  or cls  command. To

illustrate, imagine the command shell contains the following output:

Run the following command to clear the output:

After running the preceding command, the command shell contains only the following output:

REST API requests

https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#74-supported-methods


HTTP REPL GitHub repository

https://github.com/dotnet/HttpRepl


Introduction to ASP.NET Core SignalR
9/22/2020 • 2 minutes to read • Edit Online

What is SignalR?

Transports

Hubs

ASP.NET Core SignalR is an open-source library that simplifies adding real-time web functionality to apps.

Real-time web functionality enables server-side code to push content to clients instantly.

Good candidates for SignalR:

Apps that require high frequency updates from the server. Examples are gaming, social networks, voting,

auction, maps, and GPS apps.

Dashboards and monitoring apps. Examples include company dashboards, instant sales updates, or travel

alerts.

Collaborative apps. Whiteboard apps and team meeting software are examples of collaborative apps.

Apps that require notifications. Social networks, email, chat, games, travel alerts, and many other apps use

notifications.

SignalR provides an API for creating server-to-client remote procedure calls (RPC). The RPCs call JavaScript

functions on clients from server-side .NET Core code.

Here are some features of SignalR for ASP.NET Core:

Handles connection management automatically.

Sends messages to all connected clients simultaneously. For example, a chat room.

Sends messages to specific clients or groups of clients.

Scales to handle increasing traffic.

The source is hosted in a SignalR repository on GitHub.

SignalR supports the following techniques for handling real-time communication (in order of graceful

fallback):

WebSockets

Server-Sent Events

Long Polling

SignalR automatically chooses the best transport method that is within the capabilities of the server and client.

SignalR uses hubs to communicate between clients and servers.

A hub is a high-level pipeline that allows a client and server to call methods on each other. SignalR handles the

dispatching across machine boundaries automatically, allowing clients to call methods on the server and vice

versa. You can pass strongly-typed parameters to methods, which enables model binding. SignalR provides

two built-in hub protocols: a text protocol based on JSON and a binary protocol based on MessagePack.

MessagePack generally creates smaller messages compared to JSON. Older browsers must support XHR level

2 to provide MessagePack protocol support.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/introduction.md
https://wikipedia.org/wiki/Remote_procedure_call
https://github.com/dotnet/AspNetCore/tree/master/src/SignalR
https://tools.ietf.org/html/rfc7118
https://msgpack.org/
https://caniuse.com/#feat=xhr2


Additional resources

Hubs call client-side code by sending messages that contain the name and parameters of the client-side

method. Objects sent as method parameters are deserialized using the configured protocol. The client tries to

match the name to a method in the client-side code. When the client finds a match, it calls the method and

passes to it the deserialized parameter data.

Get started with SignalR for ASP.NET Core

Supported Platforms

Hubs

JavaScript client



ASP.NET Core SignalR supported platforms
9/22/2020 • 2 minutes to read • Edit Online

Server system requirements

JavaScript client

B RO W SERB RO W SER VERSIO NVERSIO N

Microsoft Edge Current†

Mozilla Firefox Current†

Google Chrome; includes Android Current†

Safari; includes iOS Current†

Microsoft Internet Explorer 11

.NET client

Java client

Unsupported clients

SignalR for ASP.NET Core supports any server platform that ASP.NET Core supports.

The JavaScript client runs on NodeJS 8 and later versions and the following browsers:

†Current refers to the latest version of the browser.

The .NET client runs on any platform supported by ASP.NET Core. For example, Xamarin developers can use

SignalR for building Android apps using Xamarin.Android 8.4.0.1 and later and iOS apps using Xamarin.iOS

11.14.0.4 and later.

If the server runs IIS, the WebSockets transport requires IIS 8.0 or later on Windows Server 2012 or later. Other

transports are supported on all platforms.

The Java client supports Java 8 and later versions.

The following clients are available but are experimental or unofficial. They aren't currently supported and may

never be.

C++ client

Swift client

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/supported-platforms.md
https://github.com/aspnet/Announcements/issues/305
https://github.com/aspnet/SignalR-Client-Cpp
https://github.com/moozzyk/SignalR-Client-Swift


Tutorial: Get started with ASP.NET Core SignalR
9/22/2020 • 13 minutes to read • Edit Online

Prerequisites

Create a web app project

This tutorial teaches the basics of building a real-time app using SignalR. You learn how to:

Create a web project.

Add the SignalR client library.

Create a SignalR hub.

Configure the project to use SignalR.

Add code that sends messages from any client to all connected clients.

At the end, you'll have a working chat app:

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the menu, select File > New ProjectFile > New Project.

In the Create a new projectCreate a new project dialog, select ASP.NET Core Web ApplicationASP.NET Core Web Application, and then select NextNext.

In the Configure your new projectConfigure your new project dialog, name the project SignalRChat, and then select CreateCreate.

In the Create a new ASP.NET Core web ApplicationCreate a new ASP.NET Core web Application dialog, select .NET Core.NET Core and ASP.NET CoreASP.NET Core

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/signalr.md
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1


  Add the SignalR client library

3.13.1 .

Select Web ApplicationWeb Application to create a project that uses Razor Pages, and then select CreateCreate.

The SignalR server library is included in the ASP.NET Core 3.1 shared framework. The JavaScript client library

isn't automatically included in the project. For this tutorial, you use Library Manager (LibMan) to get the client

library from unpkg. unpkg is a content delivery network (CDN) that can deliver anything found in npm, the

Node.js package manager.

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the project, and select AddAdd > Client-S ide L ibrar yClient-S ide L ibrar y .

In the Add Client-S ide L ibrar yAdd Client-S ide L ibrar y  dialog, for ProviderProvider  select unpkgunpkg.

For L ibrar yLibrar y , enter @microsoft/signalr@latest .

Select Choose specific filesChoose specific files , expand the dist/browser folder, and select signalr.js and signalr.min.js.

Set Target LocationTarget Location to wwwroot/js/signalr/, and select InstallInstall .



Create a SignalR hub

Configure SignalR

LibMan creates a wwwroot/js/signalr folder and copies the selected files to it.

A hub is a class that serves as a high-level pipeline that handles client-server communication.

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRChat.Hubs
{
    public class ChatHub : Hub
    {
        public async Task SendMessage(string user, string message)
        {
            await Clients.All.SendAsync("ReceiveMessage", user, message);
        }
    }
}

In the SignalRChat project folder, create a Hubs folder.

In the Hubs folder, create a ChatHub.cs file with the following code:

The ChatHub  class inherits from the SignalR Hub  class. The Hub  class manages connections, groups, and

messaging.

The SendMessage  method can be called by a connected client to send a message to all clients. JavaScript

client code that calls the method is shown later in the tutorial. SignalR code is asynchronous to provide

maximum scalability.

The SignalR server must be configured to pass SignalR requests to SignalR.



using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.HttpsPolicy;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using SignalRChat.Hubs;

namespace SignalRChat
{
    public class Startup
    {
        public Startup(IConfiguration configuration)
        {
            Configuration = configuration;
        }

        public IConfiguration Configuration { get; }

        // This method gets called by the runtime. Use this method to add services to the container.
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddRazorPages();
            services.AddSignalR();
        }

        // This method gets called by the runtime. Use this method to configure the HTTP request 
pipeline.
        public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
        {
            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
            }
            else
            {
                app.UseExceptionHandler("/Error");
                // The default HSTS value is 30 days. You may want to change this for production 
scenarios, see https://aka.ms/aspnetcore-hsts.
                app.UseHsts();
            }

            app.UseHttpsRedirection();
            app.UseStaticFiles();

            app.UseRouting();

            app.UseAuthorization();

            app.UseEndpoints(endpoints =>
            {
                endpoints.MapRazorPages();
                endpoints.MapHub<ChatHub>("/chathub");
            });
        }
    }
}

Add the following highlighted code to the Startup.cs file.

These changes add SignalR to the ASP.NET Core dependency injection and routing systems.



Add SignalR client code

@page
    <div class="container">
        <div class="row">&nbsp;</div>
        <div class="row">
            <div class="col-2">User</div>
            <div class="col-4"><input type="text" id="userInput" /></div>
        </div>
        <div class="row">
            <div class="col-2">Message</div>
            <div class="col-4"><input type="text" id="messageInput" /></div>
        </div>
        <div class="row">&nbsp;</div>
        <div class="row">
            <div class="col-6">
                <input type="button" id="sendButton" value="Send Message" />
            </div>
        </div>
    </div>
    <div class="row">
        <div class="col-12">
            <hr />
        </div>
    </div>
    <div class="row">
        <div class="col-6">
            <ul id="messagesList"></ul>
        </div>
    </div>
<script src="~/js/signalr/dist/browser/signalr.js"></script>
<script src="~/js/chat.js"></script>

Replace the content in Pages\Index.cshtml with the following code:

The preceding code:

Creates text boxes for name and message text, and a submit button.

Creates a list with id="messagesList"  for displaying messages that are received from the SignalR hub.

Includes script references to SignalR and the chat.js application code that you create in the next step.

In the wwwroot/js folder, create a chat.js file with the following code:



Run the app

"use strict";

var connection = new signalR.HubConnectionBuilder().withUrl("/chatHub").build();

//Disable send button until connection is established
document.getElementById("sendButton").disabled = true;

connection.on("ReceiveMessage", function (user, message) {
    var msg = message.replace(/&/g, "&amp;").replace(/</g, "&lt;").replace(/>/g, "&gt;");
    var encodedMsg = user + " says " + msg;
    var li = document.createElement("li");
    li.textContent = encodedMsg;
    document.getElementById("messagesList").appendChild(li);
});

connection.start().then(function () {
    document.getElementById("sendButton").disabled = false;
}).catch(function (err) {
    return console.error(err.toString());
});

document.getElementById("sendButton").addEventListener("click", function (event) {
    var user = document.getElementById("userInput").value;
    var message = document.getElementById("messageInput").value;
    connection.invoke("SendMessage", user, message).catch(function (err) {
        return console.error(err.toString());
    });
    event.preventDefault();
});

The preceding code:

Creates and starts a connection.

Adds to the submit button a handler that sends messages to the hub.

Adds to the connection object a handler that receives messages from the hub and adds them to the

list.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press CTRL+F5CTRL+F5  to run the app without debugging.

Copy the URL from the address bar, open another browser instance or tab, and paste the URL in the

address bar.

Choose either browser, enter a name and message, and select the Send MessageSend Message button.

The name and message are displayed on both pages instantly.



TIPTIP

dotnet dev-certs https --clean
dotnet dev-certs https --trust

If the app doesn't work, open your browser developer tools (F12) and go to the console. You might see errors

related to your HTML and JavaScript code. For example, suppose you put signalr.js in a different folder than

directed. In that case the reference to that file won't work and you'll see a 404 error in the console. 

If you get the error ERR_SPDY_INADEQUATE_TRANSPORT_SECURITY in Chrome, run these commands to update

your development certificate:

This tutorial teaches the basics of building a real-time app using SignalR. You learn how to:

Create a web project.

Add the SignalR client library.

Create a SignalR hub.

Configure the project to use SignalR.

Add code that sends messages from any client to all connected clients. At the end, you'll have a working chat

app:



Prerequisites

WARNINGWARNING

Create a web project

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2017 version 15.9 or later with the ASP.NET and web developmentASP.NET and web development workload. You can use

Visual Studio 2019, but some project creation steps differ from what's shown in the tutorial.

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't work

with Visual Studio.

Visual Studio

Visual Studio Code

Visual Studio for Mac

From the menu, select File > New ProjectFile > New Project.

In the New ProjectNew Project dialog, select Installed > Visual C# > Web > ASP.NET Core Web ApplicationInstalled > Visual C# > Web > ASP.NET Core Web Application.

Name the project SignalRChat.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124


Add the SignalR client library

Select Web ApplicationWeb Application to create a project that uses Razor Pages.

Select a target framework of .NET Core.NET Core, select ASP.NET Core 2.2ASP.NET Core 2.2 , and click OKOK.

The SignalR server library is included in the Microsoft.AspNetCore.App  metapackage. The JavaScript client

library isn't automatically included in the project. For this tutorial, you use Library Manager (LibMan) to get the

client library from unpkg. unpkg is a content delivery network (CDN) that can deliver anything found in npm,

the Node.js package manager.



Create a SignalR hub

Visual Studio

Visual Studio Code

Visual Studio for Mac

In Solution ExplorerSolution Explorer , right-click the project, and select AddAdd > Client-S ide L ibrar yClient-S ide L ibrar y .

In the Add Client-S ide L ibrar yAdd Client-S ide L ibrar y  dialog, for ProviderProvider  select unpkgunpkg.

For L ibrar yLibrar y , enter @microsoft/signalr@3 , and select the latest version that isn't preview.

Select Choose specific filesChoose specific files , expand the dist/browser folder, and select signalr.js and signalr.min.js.

Set Target LocationTarget Location to wwwroot/lib/signalr/, and select InstallInstall .

LibMan creates a wwwroot/lib/signalr folder and copies the selected files to it.



Configure SignalR

A hub is a class that serves as a high-level pipeline that handles client-server communication.

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRChat.Hubs
{
    public class ChatHub : Hub
    {
        public async Task SendMessage(string user, string message)
        {
            await Clients.All.SendAsync("ReceiveMessage", user, message);
        }
    }
}

In the SignalRChat project folder, create a Hubs folder.

In the Hubs folder, create a ChatHub.cs file with the following code:

The ChatHub  class inherits from the SignalR Hub  class. The Hub  class manages connections, groups, and

messaging.

The SendMessage  method can be called by a connected client to send a message to all clients. JavaScript

client code that calls the method is shown later in the tutorial. SignalR code is asynchronous to provide

maximum scalability.

The SignalR server must be configured to pass SignalR requests to SignalR.

Add the following highlighted code to the Startup.cs file.



using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using SignalRChat.Hubs;

namespace SignalRChat
{
    public class Startup
    {
        public Startup(IConfiguration configuration)
        {
            Configuration = configuration;
        }

        public IConfiguration Configuration { get; }

        // This method gets called by the runtime. Use this method to add services to the container.
        public void ConfigureServices(IServiceCollection services)
        {
            services.Configure<CookiePolicyOptions>(options =>
            {
                // This lambda determines whether user consent for non-essential cookies is needed 
for a given request.
                options.CheckConsentNeeded = context => true;
                options.MinimumSameSitePolicy = SameSiteMode.None;
            });

            services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

            services.AddSignalR();
        }

        // This method gets called by the runtime. Use this method to configure the HTTP request 
pipeline.
        public void Configure(IApplicationBuilder app, IHostingEnvironment env)
        {
            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
            }
            else
            {
                app.UseExceptionHandler("/Error");
                app.UseHsts();
            }

            app.UseHttpsRedirection();
            app.UseStaticFiles();
            app.UseCookiePolicy();
            app.UseSignalR(routes =>
            {
                routes.MapHub<ChatHub>("/chathub");
            });
            app.UseMvc();
        }
    }
}

These changes add SignalR to the ASP.NET Core dependency injection system and the middleware

pipeline.



Add SignalR client code

@page
<div class="container">
    <div class="row">&nbsp;</div>
    <div class="row">
        <div class="col-6">&nbsp;</div>
        <div class="col-6">
            User..........<input type="text" id="userInput" />
            <br />
            Message...<input type="text" id="messageInput" />
            <input type="button" id="sendButton" value="Send Message" />
        </div>
    </div>
    <div class="row">
        <div class="col-12">
            <hr />
        </div>
    </div>
    <div class="row">
        <div class="col-6">&nbsp;</div>
        <div class="col-6">
            <ul id="messagesList"></ul>
        </div>
    </div>
</div>
<script src="~/lib/signalr/dist/browser/signalr.js"></script>
<script src="~/js/chat.js"></script>

Replace the content in Pages\Index.cshtml with the following code:

The preceding code:

Creates text boxes for name and message text, and a submit button.

Creates a list with id="messagesList"  for displaying messages that are received from the SignalR hub.

Includes script references to SignalR and the chat.js application code that you create in the next step.

In the wwwroot/js folder, create a chat.js file with the following code:



Run the app

"use strict";

var connection = new signalR.HubConnectionBuilder().withUrl("/chatHub").build();

//Disable send button until connection is established
document.getElementById("sendButton").disabled = true;

connection.on("ReceiveMessage", function (user, message) {
    var msg = message.replace(/&/g, "&amp;").replace(/</g, "&lt;").replace(/>/g, "&gt;");
    var encodedMsg = user + " says " + msg;
    var li = document.createElement("li");
    li.textContent = encodedMsg;
    document.getElementById("messagesList").appendChild(li);
});

connection.start().then(function(){
    document.getElementById("sendButton").disabled = false;
}).catch(function (err) {
    return console.error(err.toString());
});

document.getElementById("sendButton").addEventListener("click", function (event) {
    var user = document.getElementById("userInput").value;
    var message = document.getElementById("messageInput").value;
    connection.invoke("SendMessage", user, message).catch(function (err) {
        return console.error(err.toString());
    });
    event.preventDefault();
});

The preceding code:

Creates and starts a connection.

Adds to the submit button a handler that sends messages to the hub.

Adds to the connection object a handler that receives messages from the hub and adds them to the

list.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press CTRL+F5CTRL+F5  to run the app without debugging.

Copy the URL from the address bar, open another browser instance or tab, and paste the URL in the

address bar.

Choose either browser, enter a name and message, and select the Send MessageSend Message button.

The name and message are displayed on both pages instantly.



TIPTIP

Additional resources

If the app doesn't work, open your browser developer tools (F12) and go to the console. You might see errors related to

your HTML and JavaScript code. For example, suppose you put signalr.js in a different folder than directed. In that case

the reference to that file won't work and you'll see a 404 error in the console.

Youtube version of this tutorial

https://www.youtube.com/watch?v=iKlVmu-r0JQ


Use ASP.NET Core SignalR with TypeScript and
Webpack
9/22/2020 • 21 minutes to read • Edit Online

Prerequisites

Create the ASP.NET Core web app

By Sébastien Sougnez and Scott Addie

Webpack enables developers to bundle and build the client-side resources of a web app. This tutorial demonstrates

using Webpack in an ASP.NET Core SignalR web app whose client is written in TypeScript.

In this tutorial, you learn how to:

Scaffold a starter ASP.NET Core SignalR app

Configure the SignalR TypeScript client

Configure a build pipeline using Webpack

Configure the SignalR server

Enable communication between client and server

View or download sample code (how to download)

Visual Studio

Visual Studio Code

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 3.0 or later

Node.js with npm

Visual Studio

Visual Studio Code

Configure Visual Studio to look for npm in the PATH environment variable. By default, Visual Studio uses the

version of npm found in its installation directory. Follow these instructions in Visual Studio:

1. Launch Visual Studio. At the start window, select Continue without codeContinue without code.

2. Navigate to ToolsTools  > OptionsOptions  > Projects and SolutionsProjects and Solutions  > Web Package ManagementWeb Package Management > ExternalExternal

Web ToolsWeb Tools .

3. Select the $(PATH) entry from the list. Click the up arrow to move the entry to the second position in the list,

and select OKOK.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/signalr-typescript-webpack.md
https://twitter.com/ssougnez
https://twitter.com/Scott_Addie
https://webpack.js.org/
https://www.typescriptlang.org/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/signalr-typescript-webpack/sample
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://nodejs.org/
https://www.npmjs.com/


Configure Webpack and TypeScript

Visual Studio configuration is complete.

1. Use the FileFile > NewNew  > ProjectProject menu option and choose the ASP.NET Core Web ApplicationASP.NET Core Web Application template. Select

NextNext.

2. Name the project SignalRWebPack, and select CreateCreate.

3. Select .NET Core from the target framework drop-down, and select ASP.NET Core 3.1 from the framework

selector drop-down. Select the EmptyEmpty  template, and select CreateCreate.

Add the Microsoft.TypeScript.MSBuild  package to the project:

1. In Solution ExplorerSolution Explorer  (right pane), right-click the project node and select Manage NuGet PackagesManage NuGet Packages . In the

BrowseBrowse tab, search for Microsoft.TypeScript.MSBuild , and then click InstallInstall  on the right to install the package.

Visual Studio adds the NuGet package under the DependenciesDependencies  node in Solution ExplorerSolution Explorer , enabling TypeScript

compilation in the project.

The following steps configure the conversion of TypeScript to JavaScript and the bundling of client-side resources.

npm init -y

1. Run the following command in the project root to create a package.json file:

2. Add the highlighted property to the package.json file and save the file changes:



{
  "name": "SignalRWebPack",
  "version": "1.0.0",
  "private": true,
  "description": "",
  "main": "index.js",
  "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1"
  },
  "keywords": [],
  "author": "",
  "license": "ISC"
}

npm i -D -E clean-webpack-plugin@3.0.0 css-loader@3.4.2 html-webpack-plugin@3.2.0 mini-css-extract-
plugin@0.9.0 ts-loader@6.2.1 typescript@3.7.5 webpack@4.41.5 webpack-cli@3.3.10

"scripts": {
  "build": "webpack --mode=development --watch",
  "release": "webpack --mode=production",
  "publish": "npm run release && dotnet publish -c Release"
},

Setting the private  property to true  prevents package installation warnings in the next step.

3. Install the required npm packages. Run the following command from the project root:

Some command details to note:

A version number follows the @  sign for each package name. npm installs those specific package

versions.

The -E  option disables npm's default behavior of writing semantic versioning range operators to

package.json. For example, "webpack": "4.41.5"  is used instead of "webpack": "^4.41.5" . This option

prevents unintended upgrades to newer package versions.

See the npm-install docs for more detail.

4. Replace the scripts  property of the package.json file with the following code:

Some explanation of the scripts:

build : Bundles the client-side resources in development mode and watches for file changes. The file

watcher causes the bundle to regenerate each time a project file changes. The mode  option disables

production optimizations, such as tree shaking and minification. Only use build  in development.

release : Bundles the client-side resources in production mode.

publish : Runs the release  script to bundle the client-side resources in production mode. It calls the

.NET Core CLI's publish command to publish the app.

5. Create a file named webpack.config.js, in the project root, with the following code:

https://semver.org/
https://docs.npmjs.com/cli/install
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish


const path = require("path");
const HtmlWebpackPlugin = require("html-webpack-plugin");
const { CleanWebpackPlugin } = require("clean-webpack-plugin");
const MiniCssExtractPlugin = require("mini-css-extract-plugin");
module.exports = {
    entry: "./src/index.ts",
    output: {
        path: path.resolve(__dirname, "wwwroot"),
        filename: "[name].[chunkhash].js",
        publicPath: "/"
    },
    resolve: {
        extensions: [".js", ".ts"]
    },
    module: {
        rules: [
            {
                test: /\.ts$/,
                use: "ts-loader"
            },
            {
                test: /\.css$/,
                use: [MiniCssExtractPlugin.loader, "css-loader"]
            }
        ]
    },
    plugins: [
        new CleanWebpackPlugin(),
        new HtmlWebpackPlugin({
            template: "./src/index.html"
        }),
        new MiniCssExtractPlugin({
            filename: "css/[name].[chunkhash].css"
        })
    ]
};

<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <title>ASP.NET Core SignalR</title>
</head>
<body>
    <div id="divMessages" class="messages">
    </div>
    <div class="input-zone">
        <label id="lblMessage" for="tbMessage">Message:</label>
        <input id="tbMessage" class="input-zone-input" type="text" />
        <button id="btnSend">Send</button>
    </div>
</body>
</html>

The preceding file configures the Webpack compilation. Some configuration details to note:

The output  property overrides the default value of dist. The bundle is instead emitted in the wwwroot

directory.

The resolve.extensions  array includes .js to import the SignalR client JavaScript.

6. Create a new src directory in the project root to store the project's client-side assets.

7. Create src/index.html with the following markup.



*, *::before, *::after {
    box-sizing: border-box;
}

html, body {
    margin: 0;
    padding: 0;
}

.input-zone {
    align-items: center;
    display: flex;
    flex-direction: row;
    margin: 10px;
}

.input-zone-input {
    flex: 1;
    margin-right: 10px;
}

.message-author {
    font-weight: bold;
}

.messages {
    border: 1px solid #000;
    margin: 10px;
    max-height: 300px;
    min-height: 300px;
    overflow-y: auto;
    padding: 5px;
}

{
  "compilerOptions": {
    "target": "es5"
  }
}

The preceding HTML defines the homepage's boilerplate markup.

8. Create a new src/css directory. Its purpose is to store the project's .css files.

9. Create src/css/main.css with the following CSS:

The preceding main.css file styles the app.

10. Create src/tsconfig.json with the following JSON:

The preceding code configures the TypeScript compiler to produce ECMAScript 5-compatible JavaScript.

11. Create src/index.ts with the following code:

https://wikipedia.org/wiki/ECMAScript


Configure the app

import "./css/main.css";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
    if (e.key === "Enter") {
        send();
    }
});

btnSend.addEventListener("click", send);

function send() {
}

The preceding TypeScript retrieves references to DOM elements and attaches two event handlers:

keyup : This event fires when the user types in the tbMessage textbox. The send  function is called when

the user presses the EnterEnter  key.

click : This event fires when the user clicks the SendSend button. The send  function is called.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    
    app.UseRouting();
    app.UseDefaultFiles();
    app.UseStaticFiles();
    
    app.UseEndpoints(endpoints =>
    {
        endpoints.MapHub<ChatHub>("/hub");
    });
        
}

app.UseEndpoints(endpoints =>
{
    endpoints.MapHub<ChatHub>("/hub");
});

1. In Startup.Configure , add calls to UseDefaultFiles and UseStaticFiles.

The preceding code allows the server to locate and serve the index.html file. The file is served whether the

user enters its full URL or the root URL of the web app.

2. At the end of Startup.Configure , map a /hub route to the ChatHub  hub. Replace the code that displays Hello

World! with the following line:

3. In Startup.ConfigureServices , call AddSignalR.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#microsoft_aspnetcore_builder_defaultfilesextensions_usedefaultfiles_microsoft_aspnetcore_builder_iapplicationbuilder_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#microsoft_aspnetcore_builder_staticfileextensions_usestaticfiles_microsoft_aspnetcore_builder_iapplicationbuilder_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr#microsoft_extensions_dependencyinjection_signalrdependencyinjectionextensions_addsignalr_microsoft_extensions_dependencyinjection_iservicecollection_


Enable client and server communication

services.AddSignalR();

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRWebPack.Hubs
{
    public class ChatHub : Hub
    {
    }
}

using SignalRWebPack.Hubs;

4. Create a new directory named Hubs in the project root SignalRWebPack/ to store the SignalR hub.

5. Create hub Hubs/ChatHub.cs with the following code:

6. Add the following using  statement at the top of the Startup.cs file to resolve the ChatHub  reference:

The app currently displays a basic form to send messages, but is not yet functional. The server is listening to a

specific route but does nothing with sent messages.

npm i @microsoft/signalr @types/node

1. Run the following command at the project root:

The preceding command installs:

The SignalR TypeScript client, which allows the client to send messages to the server.

The TypeScript type definitions for Node.js, which enables compile-time checking of Node.js types.

2. Add the highlighted code to the src/index.ts file:

https://www.npmjs.com/package/@microsoft/signalr


import "./css/main.css";
import * as signalR from "@microsoft/signalr";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/hub")
    .build();

connection.on("messageReceived", (username: string, message: string) => {
    let m = document.createElement("div");

    m.innerHTML =
        `<div class="message-author">${username}</div><div>${message}</div>`;

    divMessages.appendChild(m);
    divMessages.scrollTop = divMessages.scrollHeight;
});

connection.start().catch(err => document.write(err));

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
    if (e.key === "Enter") {
        send();
    }
});

btnSend.addEventListener("click", send);

function send() {
}

The preceding code supports receiving messages from the server. The HubConnectionBuilder  class creates a

new builder for configuring the server connection. The withUrl  function configures the hub URL.

SignalR enables the exchange of messages between a client and a server. Each message has a specific name.

For example, messages with the name messageReceived  can run the logic responsible for displaying the new

message in the messages zone. Listening to a specific message can be done via the on  function. Any

number of message names can be listened to. It's also possible to pass parameters to the message, such as

the author's name and the content of the message received. Once the client receives a message, a new div

element is created with the author's name and the message content in its innerHTML  attribute. It's added to

the main div  element displaying the messages.

3. Now that the client can receive a message, configure it to send messages. Add the highlighted code to the

src/index.ts file:



import "./css/main.css";
import * as signalR from "@microsoft/signalr";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/hub")
    .build();

connection.on("messageReceived", (username: string, message: string) => {
    let messages = document.createElement("div");

    messages.innerHTML =
        `<div class="message-author">${username}</div><div>${message}</div>`;

    divMessages.appendChild(messages);
    divMessages.scrollTop = divMessages.scrollHeight;
});

connection.start().catch(err => document.write(err));

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
    if (e.key === "Enter") {
        send();
    }
});

btnSend.addEventListener("click", send);

function send() {
    connection.send("newMessage", username, tbMessage.value)
        .then(() => tbMessage.value = "");
}

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRWebPack.Hubs
{
    public class ChatHub : Hub
    {
        public async Task NewMessage(long username, string message)
        {
            await Clients.All.SendAsync("messageReceived", username, message);
        }
    }
}

Sending a message through the WebSockets connection requires calling the send  method. The method's

first parameter is the message name. The message data inhabits the other parameters. In this example, a

message identified as newMessage  is sent to the server. The message consists of the username and the user

input from a text box. If the send works, the text box value is cleared.

4. Add the NewMessage  method to the ChatHub  class:

The preceding code broadcasts received messages to all connected users once the server receives them. It's

unnecessary to have a generic on  method to receive all the messages. A method named after the message

name suffices.

In this example, the TypeScript client sends a message identified as newMessage . The C# NewMessage  method



Test the app

expects the data sent by the client. A call is made to SendAsync on Clients.All. The received messages are

sent to all clients connected to the hub.

Confirm that the app works with the following steps.

Visual Studio

Visual Studio Code

npm run release

1. Run Webpack in release mode. Using the Package Manager ConsolePackage Manager Console window, run the following

command in the project root. If you are not in the project root, enter cd SignalRWebPack  before entering the

command.

This command generates the client-side assets to be served when running the app. The assets are placed in

the wwwroot folder.

Webpack completed the following tasks:

Purged the contents of the wwwroot directory.

Converted the TypeScript to JavaScript in a process known as transpilation.

Mangled the generated JavaScript to reduce file size in a process known as minification.

Copied the processed JavaScript, CSS, and HTML files from src to the wwwroot directory.

Injected the following elements into the wwwroot/index.html file:

A <link>  tag, referencing the wwwroot/main.<hash>.css file. This tag is placed immediately

before the closing </head>  tag.

A <script>  tag, referencing the minified wwwroot/main.<hash>.js file. This tag is placed

immediately before the closing </body>  tag.

2. Select DebugDebug > Star t without debuggingStar t without debugging to launch the app in a browser without attaching the debugger.

The wwwroot/index.html file is served at http://localhost:<port_number> .

If you get compile errors, try closing and reopening the solution.

3. Open another browser instance (any browser). Paste the URL in the address bar.

4. Choose either browser, type something in the MessageMessage text box, and click the SendSend button. The unique

user name and message are displayed on both pages instantly.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.clientproxyextensions.sendasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.ihubclients-1.all


Prerequisites

Create the ASP.NET Core web app

Visual Studio

Visual Studio Code

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

Node.js with npm

Visual Studio

Visual Studio Code

Configure Visual Studio to look for npm in the PATH environment variable. By default, Visual Studio uses the

version of npm found in its installation directory. Follow these instructions in Visual Studio:

1. Navigate to ToolsTools  > OptionsOptions  > Projects and SolutionsProjects and Solutions  > Web Package ManagementWeb Package Management > ExternalExternal

Web ToolsWeb Tools .

2. Select the $(PATH) entry from the list. Click the up arrow to move the entry to the second position in the list.

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://nodejs.org/
https://www.npmjs.com/


Configure Webpack and TypeScript

Visual Studio configuration is completed. It's time to create the project.

1. Use the FileFile > NewNew  > ProjectProject menu option and choose the ASP.NET Core Web ApplicationASP.NET Core Web Application template.

2. Name the project SignalRWebPack, and select CreateCreate.

3. Select .NET Core from the target framework drop-down, and select ASP.NET Core 2.2 from the framework

selector drop-down. Select the EmptyEmpty  template, and select CreateCreate.

The following steps configure the conversion of TypeScript to JavaScript and the bundling of client-side resources.

npm init -y

{
  "name": "SignalRWebPack",
  "version": "1.0.0",
  "private": true,
  "description": "",
  "main": "index.js",
  "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1"
  },
  "keywords": [],
  "author": "",
  "license": "ISC"
}

1. Run the following command in the project root to create a package.json file:

2. Add the highlighted property to the package.json file:

Setting the private  property to true  prevents package installation warnings in the next step.

3. Install the required npm packages. Run the following command from the project root:



npm install -D -E clean-webpack-plugin@1.0.1 css-loader@2.1.0 html-webpack-plugin@4.0.0-beta.5 mini-
css-extract-plugin@0.5.0 ts-loader@5.3.3 typescript@3.3.3 webpack@4.29.3 webpack-cli@3.2.3

"scripts": {
  "build": "webpack --mode=development --watch",
  "release": "webpack --mode=production",
  "publish": "npm run release && dotnet publish -c Release"
},

Some command details to note:

A version number follows the @  sign for each package name. npm installs those specific package

versions.

The -E  option disables npm's default behavior of writing semantic versioning range operators to

package.json. For example, "webpack": "4.29.3"  is used instead of "webpack": "^4.29.3" . This option

prevents unintended upgrades to newer package versions.

See the npm-install docs for more detail.

4. Replace the scripts  property of the package.json file with the following code:

Some explanation of the scripts:

build : Bundles the client-side resources in development mode and watches for file changes. The file

watcher causes the bundle to regenerate each time a project file changes. The mode  option disables

production optimizations, such as tree shaking and minification. Only use build  in development.

release : Bundles the client-side resources in production mode.

publish : Runs the release  script to bundle the client-side resources in production mode. It calls the

.NET Core CLI's publish command to publish the app.

5. Create a file named webpack.config.js in the project root, with the following code:

https://semver.org/
https://docs.npmjs.com/cli/install
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish


const path = require("path");
const HtmlWebpackPlugin = require("html-webpack-plugin");
const CleanWebpackPlugin = require("clean-webpack-plugin");
const MiniCssExtractPlugin = require("mini-css-extract-plugin");

module.exports = {
    entry: "./src/index.ts",
    output: {
        path: path.resolve(__dirname, "wwwroot"),
        filename: "[name].[chunkhash].js",
        publicPath: "/"
    },
    resolve: {
        extensions: [".js", ".ts"]
    },
    module: {
        rules: [
            {
                test: /\.ts$/,
                use: "ts-loader"
            },
            {
                test: /\.css$/,
                use: [MiniCssExtractPlugin.loader, "css-loader"]
            }
        ]
    },
    plugins: [
        new CleanWebpackPlugin(["wwwroot/*"]),
        new HtmlWebpackPlugin({
            template: "./src/index.html"
        }),
        new MiniCssExtractPlugin({
            filename: "css/[name].[chunkhash].css"
        })
    ]
};

<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <title>ASP.NET Core SignalR</title>
</head>
<body>
    <div id="divMessages" class="messages">
    </div>
    <div class="input-zone">
        <label id="lblMessage" for="tbMessage">Message:</label>
        <input id="tbMessage" class="input-zone-input" type="text" />
        <button id="btnSend">Send</button>
    </div>
</body>
</html>

The preceding file configures the Webpack compilation. Some configuration details to note:

The output  property overrides the default value of dist. The bundle is instead emitted in the wwwroot

directory.

The resolve.extensions  array includes .js to import the SignalR client JavaScript.

6. Create a new src directory in the project root to store the project's client-side assets.

7. Create src/index.html with the following markup.



*, *::before, *::after {
    box-sizing: border-box;
}

html, body {
    margin: 0;
    padding: 0;
}

.input-zone {
    align-items: center;
    display: flex;
    flex-direction: row;
    margin: 10px;
}

.input-zone-input {
    flex: 1;
    margin-right: 10px;
}

.message-author {
    font-weight: bold;
}

.messages {
    border: 1px solid #000;
    margin: 10px;
    max-height: 300px;
    min-height: 300px;
    overflow-y: auto;
    padding: 5px;
}

{
  "compilerOptions": {
    "target": "es5"
  }
}

The preceding HTML defines the homepage's boilerplate markup.

8. Create a new src/css directory. Its purpose is to store the project's .css files.

9. Create src/css/main.css with the following markup:

The preceding main.css file styles the app.

10. Create src/tsconfig.json with the following JSON:

The preceding code configures the TypeScript compiler to produce ECMAScript 5-compatible JavaScript.

11. Create src/index.ts with the following code:

https://wikipedia.org/wiki/ECMAScript


Configure the ASP.NET Core app

import "./css/main.css";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
    if (e.keyCode === 13) {
        send();
    }
});

btnSend.addEventListener("click", send);

function send() {
}

The preceding TypeScript retrieves references to DOM elements and attaches two event handlers:

keyup : This event fires when the user types in the tbMessage  textbox. The send  function is called when

the user presses the EnterEnter  key.

click : This event fires when the user clicks the SendSend button. The send  function is called.

app.UseDefaultFiles();
app.UseStaticFiles();

services.AddSignalR();

app.UseSignalR(options =>
{
    options.MapHub<ChatHub>("/hub");
});

1. The code provided in the Startup.Configure  method displays Hello World!. Replace the app.Run  method

call with calls to UseDefaultFiles and UseStaticFiles.

The preceding code allows the server to locate and serve the index.html file, whether the user enters its full

URL or the root URL of the web app.

2. Call AddSignalR in Startup.ConfigureServices . It adds the SignalR services to the project.

3. Map a /hub route to the ChatHub  hub. Add the following lines at the end of Startup.Configure :

4. Create a new directory, called Hubs, in the project root. Its purpose is to store the SignalR hub, which is

created in the next step.

5. Create hub Hubs/ChatHub.cs with the following code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.defaultfilesextensions.usedefaultfiles#microsoft_aspnetcore_builder_defaultfilesextensions_usedefaultfiles_microsoft_aspnetcore_builder_iapplicationbuilder_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles#microsoft_aspnetcore_builder_staticfileextensions_usestaticfiles_microsoft_aspnetcore_builder_iapplicationbuilder_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr#microsoft_extensions_dependencyinjection_signalrdependencyinjectionextensions_addsignalr_microsoft_extensions_dependencyinjection_iservicecollection_


Enable client and server communication

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRWebPack.Hubs
{
    public class ChatHub : Hub
    {
    }
}

using SignalRWebPack.Hubs;

6. Add the following code at the top of the Startup.cs file to resolve the ChatHub  reference:

The app currently displays a simple form to send messages. Nothing happens when you try to do so. The server is

listening to a specific route but does nothing with sent messages.

npm install @aspnet/signalr

1. Run the following command at the project root:

The preceding command installs the SignalR TypeScript client, which allows the client to send messages to

the server.

2. Add the highlighted code to the src/index.ts file:

https://www.npmjs.com/package/@microsoft/signalr


import "./css/main.css";
import * as signalR from "@aspnet/signalr";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/hub")
    .build();

connection.on("messageReceived", (username: string, message: string) => {
    let m = document.createElement("div");

    m.innerHTML =
        `<div class="message-author">${username}</div><div>${message}</div>`;

    divMessages.appendChild(m);
    divMessages.scrollTop = divMessages.scrollHeight;
});

connection.start().catch(err => document.write(err));

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
    if (e.keyCode === 13) {
        send();
    }
});

btnSend.addEventListener("click", send);

function send() {
}

The preceding code supports receiving messages from the server. The HubConnectionBuilder  class creates a

new builder for configuring the server connection. The withUrl  function configures the hub URL.

SignalR enables the exchange of messages between a client and a server. Each message has a specific name.

For example, messages with the name messageReceived  can run the logic responsible for displaying the new

message in the messages zone. Listening to a specific message can be done via the on  function. You can

listen to any number of message names. It's also possible to pass parameters to the message, such as the

author's name and the content of the message received. Once the client receives a message, a new div

element is created with the author's name and the message content in its innerHTML  attribute. The new

message is added to the main div  element displaying the messages.

3. Now that the client can receive a message, configure it to send messages. Add the highlighted code to the

src/index.ts file:



import "./css/main.css";
import * as signalR from "@aspnet/signalr";

const divMessages: HTMLDivElement = document.querySelector("#divMessages");
const tbMessage: HTMLInputElement = document.querySelector("#tbMessage");
const btnSend: HTMLButtonElement = document.querySelector("#btnSend");
const username = new Date().getTime();

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/hub")
    .build();

connection.on("messageReceived", (username: string, message: string) => {
    let messageContainer = document.createElement("div");

    messageContainer.innerHTML =
        `<div class="message-author">${username}</div><div>${message}</div>`;

    divMessages.appendChild(messageContainer);
    divMessages.scrollTop = divMessages.scrollHeight;
});

connection.start().catch(err => document.write(err));

tbMessage.addEventListener("keyup", (e: KeyboardEvent) => {
    if (e.keyCode === 13) {
        send();
    }
});

btnSend.addEventListener("click", send);

function send() {
    connection.send("newMessage", username, tbMessage.value)
              .then(() => tbMessage.value = "");
}

using Microsoft.AspNetCore.SignalR;
using System.Threading.Tasks;

namespace SignalRWebPack.Hubs
{
    public class ChatHub : Hub
    {
        public async Task NewMessage(long username, string message)
        {
            await Clients.All.SendAsync("messageReceived", username, message);
        }
    }
}

Sending a message through the WebSockets connection requires calling the send  method. The method's

first parameter is the message name. The message data inhabits the other parameters. In this example, a

message identified as newMessage  is sent to the server. The message consists of the username and the user

input from a text box. If the send works, the text box value is cleared.

4. Add the NewMessage  method to the ChatHub  class:

The preceding code broadcasts received messages to all connected users once the server receives them. It's

unnecessary to have a generic on  method to receive all the messages. A method named after the message

name suffices.

In this example, the TypeScript client sends a message identified as newMessage . The C# NewMessage  method



Test the app

expects the data sent by the client. A call is made to SendAsync on Clients.All. The received messages are

sent to all clients connected to the hub.

Confirm that the app works with the following steps.

Visual Studio

Visual Studio Code

npm run release

1. Run Webpack in release mode. Using the Package Manager ConsolePackage Manager Console window, run the following

command in the project root. If you are not in the project root, enter cd SignalRWebPack  before entering the

command.

This command generates the client-side assets to be served when running the app. The assets are placed in

the wwwroot folder.

Webpack completed the following tasks:

Purged the contents of the wwwroot directory.

Converted the TypeScript to JavaScript in a process known as transpilation.

Mangled the generated JavaScript to reduce file size in a process known as minification.

Copied the processed JavaScript, CSS, and HTML files from src to the wwwroot directory.

Injected the following elements into the wwwroot/index.html file:

A <link>  tag, referencing the wwwroot/main.<hash>.css file. This tag is placed immediately

before the closing </head>  tag.

A <script>  tag, referencing the minified wwwroot/main.<hash>.js file. This tag is placed

immediately before the closing </body>  tag.

2. Select DebugDebug > Star t without debuggingStar t without debugging to launch the app in a browser without attaching the debugger.

The wwwroot/index.html file is served at http://localhost:<port_number> .

3. Open another browser instance (any browser). Paste the URL in the address bar.

4. Choose either browser, type something in the MessageMessage text box, and click the SendSend button. The unique

user name and message are displayed on both pages instantly.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.clientproxyextensions.sendasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.ihubclients-1.all


Additional resources
ASP.NET Core SignalR JavaScript client

Use hubs in ASP.NET Core SignalR



Use ASP.NET Core SignalR with Blazor WebAssembly
9/22/2020 • 7 minutes to read • Edit Online

Prerequisites

Create a hosted Blazor WebAssembly app project

NOTENOTE

By Daniel Roth and Luke Latham

This tutorial teaches the basics of building a real-time app using SignalR with Blazor WebAssembly. You learn how

to:

Create a Blazor WebAssembly Hosted app project

Add the SignalR client library

Add a SignalR hub

Add SignalR services and an endpoint for the SignalR hub

Add Razor component code for chat

At the end of this tutorial, you'll have a working chat app.

View or download sample code (how to download)

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

Visual Studio 2019 16.6 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Follow the guidance for your choice of tooling:

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

Visual Studio 16.6 or later and .NET Core SDK 3.1.300 or later are required.

1. Create a new project.

2. Select Blazor AppBlazor App and select NextNext.

3. Type BlazorSignalRApp  in the Project nameProject name field. Confirm the LocationLocation entry is correct or provide a

location for the project. Select CreateCreate.

4. Choose the Blazor WebAssembly AppBlazor WebAssembly App template.

5. Under AdvancedAdvanced, select the ASP.NET Core hostedASP.NET Core hosted check box.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/signalr-blazor-webassembly.md
https://github.com/danroth27
https://github.com/guardrex
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/signalr-blazor-webassembly/samples/
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1


Add the SignalR client library

Add a SignalR hub

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.SignalR;

namespace BlazorSignalRApp.Server.Hubs
{
    public class ChatHub : Hub
    {
        public async Task SendMessage(string user, string message)
        {
            await Clients.All.SendAsync("ReceiveMessage", user, message);
        }
    }
}

Add services and an endpoint for the SignalR hub

6. Select CreateCreate.

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

1. In Solution ExplorerSolution Explorer , right-click the BlazorSignalRApp.Client  project and select Manage NuGetManage NuGet

PackagesPackages .

2. In the Manage NuGet PackagesManage NuGet Packages  dialog, confirm that the Package sourcePackage source is set to nuget.org .

3. With BrowseBrowse selected, type Microsoft.AspNetCore.SignalR.Client  in the search box.

4. In the search results, select the Microsoft.AspNetCore.SignalR.Client  package and select InstallInstall .

5. If the Preview ChangesPreview Changes  dialog appears, select OKOK.

6. If the L icense AcceptanceLicense Acceptance dialog appears, select I AcceptI Accept if you agree with the license terms.

In the BlazorSignalRApp.Server  project, create a Hubs  (plural) folder and add the following ChatHub  class (

Hubs/ChatHub.cs ):

using BlazorSignalRApp.Server.Hubs;

1. In the BlazorSignalRApp.Server  project, open the Startup.cs  file.

2. Add the namespace for the ChatHub  class to the top of the file:

3. Add SignalR and Response Compression Middleware services to Startup.ConfigureServices :

https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR.Client


Add Razor component code for chat

public void ConfigureServices(IServiceCollection services)
{
    services.AddSignalR();
    services.AddControllersWithViews();
    services.AddResponseCompression(opts =>
    {
        opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.Concat(
            new[] { "application/octet-stream" });
    });
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    app.UseResponseCompression();

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseWebAssemblyDebugging();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseBlazorFrameworkFiles();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
        endpoints.MapHub<ChatHub>("/chathub");
        endpoints.MapFallbackToFile("index.html");
    });
}

4. In Startup.Configure :

Use Response Compression Middleware at the top of the processing pipeline's configuration.

Between the endpoints for controllers and the client-side fallback, add an endpoint for the hub.

1. In the BlazorSignalRApp.Client  project, open the Pages/Index.razor  file.

2. Replace the markup with the following code:



@page "/"
@using Microsoft.AspNetCore.SignalR.Client
@inject NavigationManager NavigationManager
@implements IDisposable

<div class="form-group">
    <label>
        User:
        <input @bind="userInput" />
    </label>
</div>
<div class="form-group">
    <label>
        Message:
        <input @bind="messageInput" size="50" />
    </label>
</div>
<button @onclick="Send" disabled="@(!IsConnected)">Send</button>

<hr>

<ul id="messagesList">
    @foreach (var message in messages)
    {
        <li>@message</li>
    }
</ul>

@code {
    private HubConnection hubConnection;
    private List<string> messages = new List<string>();
    private string userInput;
    private string messageInput;

    protected override async Task OnInitializedAsync()
    {
        hubConnection = new HubConnectionBuilder()
            .WithUrl(NavigationManager.ToAbsoluteUri("/chathub"))
            .Build();

        hubConnection.On<string, string>("ReceiveMessage", (user, message) =>
        {
            var encodedMsg = $"{user}: {message}";
            messages.Add(encodedMsg);
            StateHasChanged();
        });

        await hubConnection.StartAsync();
    }

    Task Send() =>
        hubConnection.SendAsync("SendMessage", userInput, messageInput);

    public bool IsConnected =>
        hubConnection.State == HubConnectionState.Connected;
        
    public void Dispose()
    {
        _ = hubConnection.DisposeAsync();
    }
}

Run the app
1. Follow the guidance for your tooling:



Next steps

Additional resources

Visual Studio

Visual Studio Code

Visual Studio for Mac

.NET Core CLI

1. In Solution ExplorerSolution Explorer , select the BlazorSignalRApp.Server  project. Press F5 to run the app with debugging

or Ctrl+F5 to run the app without debugging.

2. Copy the URL from the address bar, open another browser instance or tab, and paste the URL in the

address bar.

3. Choose either browser, enter a name and message, and select the button to send the message. The name

and message are displayed on both pages instantly:

Quotes: Star Trek VI: The Undiscovered Country ©1991 Paramount

In this tutorial, you learned how to:

Create a Blazor WebAssembly Hosted app project

Add the SignalR client library

Add a SignalR hub

Add SignalR services and an endpoint for the SignalR hub

Add Razor component code for chat

To learn more about building Blazor apps, see the Blazor documentation:

Introduction to ASP.NET Core Blazor

Introduction to ASP.NET Core SignalR

SignalR cross-origin negotiation for authentication

https://www.paramountmovies.com/movies/star-trek-vi-the-undiscovered-country


Use hubs in SignalR for ASP.NET Core
9/22/2020 • 7 minutes to read • Edit Online

What is a SignalR hub

Configure SignalR hubs

services.AddSignalR();

app.UseRouting();
app.UseEndpoints(endpoints =>
{
    endpoints.MapHub<ChatHub>("/chathub");
});

app.UseSignalR(route =>
{
    route.MapHub<ChatHub>("/chathub");
});

Create and use hubs

public class ChatHub : Hub
{
    public Task SendMessage(string user, string message)
    {
        return Clients.All.SendAsync("ReceiveMessage", user, message);
    }
}

By Rachel Appel and Kevin Griffin

View or download sample code (how to download)

The SignalR Hubs API enables you to call methods on connected clients from the server. In the server code, you

define methods that are called by client. In the client code, you define methods that are called from the server.

SignalR takes care of everything behind the scenes that makes real-time client-to-server and server-to-client

communications possible.

The SignalR middleware requires some services, which are configured by calling services.AddSignalR .

When adding SignalR functionality to an ASP.NET Core app, setup SignalR routes by calling endpoint.MapHub  in

the Startup.Configure  method's app.UseEndpoints  callback.

When adding SignalR functionality to an ASP.NET Core app, setup SignalR routes by calling app.UseSignalR  in

the Startup.Configure  method.

Create a hub by declaring a class that inherits from Hub , and add public methods to it. Clients can call methods

that are defined as public .

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/hubs.md
https://twitter.com/rachelappel
https://twitter.com/1kevgriff
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/signalr/hubs/sample/


NOTENOTE

The Context object

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N

ConnectionId Gets the unique ID for the connection, assigned by SignalR.
There is one connection ID for each connection.

UserIdentifier Gets the user identifier. By default, SignalR uses the 
ClaimTypes.NameIdentifier  from the ClaimsPrincipal

associated with the connection as the user identifier.

User Gets the ClaimsPrincipal  associated with the current

user.

Items Gets a key/value collection that can be used to share data
within the scope of this connection. Data can be stored in
this collection and it will persist for the connection across
different hub method invocations.

Features Gets the collection of features available on the connection.
For now, this collection isn't needed in most scenarios, so it
isn't documented in detail yet.

ConnectionAborted Gets a CancellationToken  that notifies when the

connection is aborted.

M ET H O DM ET H O D DESC RIP T IO NDESC RIP T IO N

GetHttpContext Returns the HttpContext  for the connection, or null  if

the connection is not associated with an HTTP request. For
HTTP connections, you can use this method to get
information such as HTTP headers and query strings.

Abort Aborts the connection.

The Clients object

You can specify a return type and parameters, including complex types and arrays, as you would in any C#

method. SignalR handles the serialization and deserialization of complex objects and arrays in your parameters

and return values.

Hubs are transient:

Don't store state in a property on the hub class. Every hub method call is executed on a new hub instance.

Use await  when calling asynchronous methods that depend on the hub staying alive. For example, a method such

as Clients.All.SendAsync(...)  can fail if it's called without await  and the hub method completes before 

SendAsync  finishes.

The Hub  class has a Context  property that contains the following properties with information about the

connection:

Hub.Context  also contains the following methods:



P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N

All Calls a method on all connected clients

Caller Calls a method on the client that invoked the hub method

Others Calls a method on all connected clients except the client that
invoked the method

M ET H O DM ET H O D DESC RIP T IO NDESC RIP T IO N

AllExcept Calls a method on all connected clients except for the
specified connections

Client Calls a method on a specific connected client

Clients Calls a method on specific connected clients

Group Calls a method on all connections in the specified group

GroupExcept Calls a method on all connections in the specified group,
except the specified connections

Groups Calls a method on multiple groups of connections

OthersInGroup Calls a method on a group of connections, excluding the
client that invoked the hub method

User Calls a method on all connections associated with a specific
user

Users Calls a method on all connections associated with the
specified users

Send messages to clients

The Hub  class has a Clients  property that contains the following properties for communication between

server and client:

Hub.Clients  also contains the following methods:

Each property or method in the preceding tables returns an object with a SendAsync  method. The SendAsync

method allows you to supply the name and parameters of the client method to call.

To make calls to specific clients, use the properties of the Clients  object. In the following example, there are

three Hub methods:

SendMessage  sends a message to all connected clients, using Clients.All .

SendMessageToCaller  sends a message back to the caller, using Clients.Caller .

SendMessageToGroups  sends a message to all clients in the SignalR Users  group.



  

public Task SendMessage(string user, string message)
{
    return Clients.All.SendAsync("ReceiveMessage", user, message);
}

public Task SendMessageToCaller(string message)
{
    return Clients.Caller.SendAsync("ReceiveMessage", message);
}

public Task SendMessageToGroup(string message)
{
    return Clients.Group("SignalR Users").SendAsync("ReceiveMessage", message);
}

Strongly typed hubs

public interface IChatClient
{
    Task ReceiveMessage(string user, string message);
    Task ReceiveMessage(string message);
}

public class StronglyTypedChatHub : Hub<IChatClient>
{
    public async Task SendMessage(string user, string message)
    {
        await Clients.All.ReceiveMessage(user, message);
    }

    public Task SendMessageToCaller(string message)
    {
        return Clients.Caller.ReceiveMessage(message);
    }
}

public interface IClient
{
    Task ClientMethod();
}

A drawback of using SendAsync  is that it relies on a magic string to specify the client method to be called. This

leaves code open to runtime errors if the method name is misspelled or missing from the client.

An alternative to using SendAsync  is to strongly type the Hub  with Hub<T>. In the following example, the 

ChatHub  client methods have been extracted out into an interface called IChatClient .

This interface can be used to refactor the preceding ChatHub  example.

Using Hub<IChatClient>  enables compile-time checking of the client methods. This prevents issues caused by

using magic strings, since Hub<T>  can only provide access to the methods defined in the interface.

Using a strongly typed Hub<T>  disables the ability to use SendAsync . Any methods defined on the interface can

still be defined as asynchronous. In fact, each of these methods should return a Task . Since it's an interface,

don't use the async  keyword. For example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hub-1


NOTENOTE

Change the name of a hub method

[HubMethodName("SendMessageToUser")]
public Task DirectMessage(string user, string message)
{
    return Clients.User(user).SendAsync("ReceiveMessage", message);
}

Handle events for a connection

public override async Task OnConnectedAsync()
{
    await Groups.AddToGroupAsync(Context.ConnectionId, "SignalR Users");
    await base.OnConnectedAsync();
}

public override async Task OnDisconnectedAsync(Exception exception)
{
    await Groups.RemoveFromGroupAsync(Context.ConnectionId, "SignalR Users");
    await base.OnDisconnectedAsync(exception);
}

WARNINGWARNING

Handle errors

The Async  suffix isn't stripped from the method name. Unless your client method is defined with 

.on('MyMethodAsync') , you shouldn't use MyMethodAsync  as a name.

By default, a server hub method name is the name of the .NET method. However, you can use the

HubMethodName attribute to change this default and manually specify a name for the method. The client

should use this name, instead of the .NET method name, when invoking the method.

The SignalR Hubs API provides the OnConnectedAsync  and OnDisconnectedAsync  virtual methods to manage and

track connections. Override the OnConnectedAsync  virtual method to perform actions when a client connects to

the Hub, such as adding it to a group.

Override the OnDisconnectedAsync  virtual method to perform actions when a client disconnects. If the client

disconnects intentionally (by calling connection.stop() , for example), the exception  parameter will be null .

However, if the client is disconnected due to an error (such as a network failure), the exception  parameter will

contain an exception describing the failure.

Security warning: Exposing ConnectionId  can lead to malicious impersonation if the SignalR server or client version is

ASP.NET Core 2.2 or earlier.

Exceptions thrown in your hub methods are sent to the client that invoked the method. On the JavaScript client,

the invoke  method returns a JavaScript Promise. When the client receives an error with a handler attached to

the promise using catch , it's invoked and passed as a JavaScript Error  object.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hubmethodnameattribute
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Using_promises


connection.invoke("SendMessage", user, message).catch(err => console.error(err));

Microsoft.AspNetCore.SignalR.HubException: An unexpected error occurred invoking 'MethodName' on the 
server.

public Task ThrowException()
{
    throw new HubException("This error will be sent to the client!");
}

NOTENOTE

Related resources

If your Hub throws an exception, connections aren't closed. By default, SignalR returns a generic error message

to the client. For example:

Unexpected exceptions often contain sensitive information, such as the name of a database server in an

exception triggered when the database connection fails. SignalR doesn't expose these detailed error messages

by default as a security measure. See the Security considerations article for more information on why exception

details are suppressed.

If you have an exceptional condition you do want to propagate to the client, you can use the HubException  class.

If you throw a HubException  from your hub method, SignalR willwill  send the entire message to the client,

unmodified.

SignalR only sends the Message  property of the exception to the client. The stack trace and other properties on the

exception aren't available to the client.

Intro to ASP.NET Core SignalR

JavaScript client

Publish to Azure



Send messages from outside a hub
9/22/2020 • 2 minutes to read • Edit Online

Get an instance of IHubContext

NOTENOTE

Inject an instance of IHubContext in a controllerInject an instance of IHubContext in a controller

public class HomeController : Controller
{
    private readonly IHubContext<NotificationHub> _hubContext;

    public HomeController(IHubContext<NotificationHub> hubContext)
    {
        _hubContext = hubContext;
    }
}

public async Task<IActionResult> Index()
{
    await _hubContext.Clients.All.SendAsync("Notify", $"Home page loaded at: {DateTime.Now}");
    return View();
}

Get an instance of IHubContext in middlewareGet an instance of IHubContext in middleware

By Mikael Mengistu

The SignalR hub is the core abstraction for sending messages to clients connected to the SignalR server. It's also

possible to send messages from other places in your app using the IHubContext  service. This article explains how

to access a SignalR IHubContext  to send notifications to clients from outside a hub.

View or download sample code (how to download)

In ASP.NET Core SignalR, you can access an instance of IHubContext  via dependency injection. You can inject an

instance of IHubContext  into a controller, middleware, or other DI service. Use the instance to send messages to

clients.

This differs from ASP.NET 4.x SignalR which used GlobalHost to provide access to the IHubContext . ASP.NET Core has a

dependency injection framework that removes the need for this global singleton.

You can inject an instance of IHubContext  into a controller by adding it to your constructor :

Now, with access to an instance of IHubContext , you can call hub methods as if you were in the hub itself.

Access the IHubContext  within the middleware pipeline like so:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/hubcontext.md
https://twitter.com/MikaelM_12
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/signalr/hubcontext/sample/


app.Use(async (context, next) =>
{
    var hubContext = context.RequestServices
                            .GetRequiredService<IHubContext<ChatHub>>();
    //...
    
    if (next != null)
    {
        await next.Invoke();
    }
});

NOTENOTE

Get an instance of IHubContext from IHostGet an instance of IHubContext from IHost

    public class Program
    {
        public static void Main(string[] args)
        {
            var host = CreateHostBuilder(args).Build();
            var hubContext = host.Services.GetService(typeof(IHubContext<ChatHub>));
            host.Run();
        }

        public static IHostBuilder CreateHostBuilder(string[] args) =>
            Host.CreateDefaultBuilder(args)
                .ConfigureWebHostDefaults(webBuilder => {
                    webBuilder.UseStartup<Startup>();
                });
    }

Inject a strongly-typed HubContextInject a strongly-typed HubContext

public class ChatController : Controller
{
    public IHubContext<ChatHub, IChatClient> _strongChatHubContext { get; }

    public ChatController(IHubContext<ChatHub, IChatClient> chatHubContext)
    {
        _strongChatHubContext = chatHubContext;
    }

    public async Task SendMessage(string message)
    {
        await _strongChatHubContext.Clients.All.ReceiveMessage(message);
    }
}

Related resources

When hub methods are called from outside of the Hub  class, there's no caller associated with the invocation. Therefore,

there's no access to the ConnectionId , Caller , and Others  properties.

Accessing an IHubContext  from the web host is useful for integrating with areas outside of ASP.NET Core, for

example, using third-party dependency injection frameworks:

To inject a strongly-typed HubContext, ensure your Hub inherits from Hub<T> . Inject it using the 

IHubContext<THub, T>  interface rather than IHubContext<THub> .



Get started

Hubs

Publish to Azure



Manage users and groups in SignalR
9/22/2020 • 2 minutes to read • Edit Online

Users in SignalR

NOTENOTE

public Task SendPrivateMessage(string user, string message)
{
    return Clients.User(user).SendAsync("ReceiveMessage", message);
}

Groups in SignalR

By Brennan Conroy

SignalR allows messages to be sent to all connections associated with a specific user, as well as to named groups of

connections.

View or download sample code (how to download)

A single user in SignalR can have multiple connections to an app. For example, a user could be connected on their

desktop as well as their phone. Each device has a separate SignalR connection, but they're all associated with the

same user. If a message is sent to the user, all of the connections associated with that user receive the message. The

user identifier for a connection can be accessed by the Context.UserIdentifier  property in the hub.

By default, SignalR uses the ClaimTypes.NameIdentifier  from the ClaimsPrincipal  associated with the connection

as the user identifier. To customize this behavior, see Use claims to customize identity handling.

Send a message to a specific user by passing the user identifier to the User  function in a hub method, as shown in

the following example:

The user identifier is case-sensitive.

A group is a collection of connections associated with a name. Messages can be sent to all connections in a group.

Groups are the recommended way to send to a connection or multiple connections because the groups are

managed by the application. A connection can be a member of multiple groups. Groups are ideal for something

like a chat application, where each room can be represented as a group. Connections are added to or removed

from groups via the AddToGroupAsync  and RemoveFromGroupAsync  methods.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/groups.md
https://github.com/BrennanConroy
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/signalr/groups/sample/


public async Task AddToGroup(string groupName)
{
    await Groups.AddToGroupAsync(Context.ConnectionId, groupName);

    await Clients.Group(groupName).SendAsync("Send", $"{Context.ConnectionId} has joined the group 
{groupName}.");
}

public async Task RemoveFromGroup(string groupName)
{
    await Groups.RemoveFromGroupAsync(Context.ConnectionId, groupName);

    await Clients.Group(groupName).SendAsync("Send", $"{Context.ConnectionId} has left the group 
{groupName}.");
}

NOTENOTE

Related resources

Group membership isn't preserved when a connection reconnects. The connection needs to rejoin the group when

it's re-established. It's not possible to count the members of a group, since this information is not available if the

application is scaled to multiple servers.

To protect access to resources while using groups, use authentication and authorization functionality in ASP.NET

Core. If a user is added to a group only when the credentials are valid for that group, messages sent to that group

will only go to authorized users. However, groups are not a security feature. Authentication claims have features

that groups do not, such as expiry and revocation. If a user's permission to access the group is revoked, the app

must remove the user from the group explicitly.

Group names are case-sensitive.

Get started

Hubs

Publish to Azure



SignalR API design considerations
9/22/2020 • 2 minutes to read • Edit Online

Use custom object parameters to ensure backwards-compatibility

public async Task<string> GetTotalLength(string param1)
{
    return param1.Length;
}

connection.invoke("GetTotalLength", "value1");

public async Task<string> GetTotalLength(string param1, string param2)
{
    return param1.Length + param2.Length;
}

Microsoft.AspNetCore.SignalR.HubException: Failed to invoke 'GetTotalLength' due to an error on the server.

System.IO.InvalidDataException: Invocation provides 1 argument(s) but target expects 2.

By Andrew Stanton-Nurse

This article provides guidance for building SignalR-based APIs.

Adding parameters to a SignalR hub method (on either the client or the server) is a breaking change. This means

older clients/servers will get errors when they try to invoke the method without the appropriate number of

parameters. However, adding properties to a custom object parameter is notnot a breaking change. This can be used

to design compatible APIs that are resilient to changes on the client or the server.

For example, consider a server-side API like the following:

The JavaScript client calls this method using invoke  as follows:

If you later add a second parameter to the server method, older clients won't provide this parameter value. For

example:

When the old client tries to invoke this method, it will get an error like this:

On the server, you'll see a log message like this:

The old client only sent one parameter, but the newer server API required two parameters. Using custom objects as

parameters gives you more flexibility. Let's redesign the original API to use a custom object:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/api-design.md
https://twitter.com/anurse


public class TotalLengthRequest
{
    public string Param1 { get; set; }
}

public async Task GetTotalLength(TotalLengthRequest req)
{
    return req.Param1.Length;
}

connection.invoke("GetTotalLength", { param1: "value1" });

public class TotalLengthRequest
{
    public string Param1 { get; set; }
    public string Param2 { get; set; }
}

public async Task GetTotalLength(TotalLengthRequest req)
{
    var length = req.Param1.Length;
    if (req.Param2 != null)
    {
        length += req.Param2.Length;
    }
    return length;
}

connection.invoke("GetTotalLength", { param1: "value1", param2: "value2" });

public async Task Broadcast(string message)
{
    await Clients.All.SendAsync("ReceiveMessage", new
    {
        Message = message
    });
}

connection.on("ReceiveMessage", (req) => {
    appendMessageToChatWindow(req.message);
});

Now, the client uses an object to call the method:

Instead of adding a parameter, add a property to the TotalLengthRequest  object:

When the old client sends a single parameter, the extra Param2  property will be left null . You can detect a

message sent by an older client by checking the Param2  for null  and apply a default value. A new client can send

both parameters.

The same technique works for methods defined on the client. You can send a custom object from the server side:

On the client side, you access the Message  property rather than using a parameter :

If you later decide to add the sender of the message to the payload, add a property to the object:



public async Task Broadcast(string message)
{
    await Clients.All.SendAsync("ReceiveMessage", new
    {
        Sender = Context.User.Identity.Name,
        Message = message
    });
}

connection.on("ReceiveMessage", (req) => {
    let message = req.message;
    if (req.sender) {
        message = req.sender + ": " + message;
    }
    appendMessageToChatWindow(message);
});

The older clients won't be expecting the Sender  value, so they'll ignore it. A new client can accept it by updating to

read the new property:

In this case, the new client is also tolerant of an old server that doesn't provide the Sender  value. Since the old

server won't provide the Sender  value, the client checks to see if it exists before accessing it.



Use hub filters in ASP.NET Core SignalR
9/22/2020 • 3 minutes to read • Edit Online

Configure hub filters

public void ConfigureServices(IServiceCollection services)
{
    services.AddSignalR(options =>
    {
        // Global filters will run first
        options.AddFilter<CustomFilter>();
    }).AddHubOptions<ChatHub>(options =>
    {
        // Local filters will run second
        options.AddFilter<CustomFilter2>();
    });
}

Hub filters:

Are available in ASP.NET Core 5.0 or later.

Allow logic to run before and after hub methods are invoked by clients.

This article provides guidance for writing and using hub filters.

Hub filters can be applied globally or per hub type. The order in which filters are added is the order in which the

filters run. Global hub filters run before local hub filters.

A hub filter can be added in one of the following ways:

hubOptions.AddFilter<TFilter>();

hubOptions.AddFilter(typeof(TFilter));

hubOptions.AddFilter(new MyFilter());

Add a filter by concrete type:

This will be resolved from dependency injection (DI) or type activated.

Add a filter by runtime type:

This will be resolved from DI or type activated.

Add a filter by instance:

This instance will be used like a singleton. All hub method invocations will use the same instance.

Hub filters are created and disposed per hub invocation. If you want to store global state in the filter, or no state,

add the hub filter type to DI as a singleton for better performance. Alternatively, add the filter as an instance if you

can.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/hub-filters.md


Create hub filters

public class CustomFilter : IHubFilter
{
    public async ValueTask<object> InvokeMethodAsync(
        HubInvocationContext invocationContext, Func<HubInvocationContext, ValueTask<object>> next)
    {
        Console.WriteLine($"Calling hub method '{invocationContext.HubMethodName}'");
        try
        {
            return await next(invocationContext);
        }
        catch (Exception ex)
        {
            Console.WriteLine($"Exception calling '{invocationContext.HubMethodName}'");
            throw ex;
        }
    }

    // Optional method
    public Task OnConnectedAsync(HubLifetimeContext context, Func<HubLifetimeContext, Task> next)
    {
        return next(context);
    }

    // Optional method
    public Task OnDisconnectedAsync(
        HubLifetimeContext context, Exception exception, Func<HubLifetimeContext, Exception, Task> next)
    {
        return next(context, exception);
    }
}

Use hub filters

Create a filter by declaring a class that inherits from IHubFilter , and add the InvokeMethodAsync  method. There is

also OnConnectedAsync  and OnDisconnectedAsync  that can optionally be implemented to wrap the OnConnectedAsync

and OnDisconnectedAsync  hub methods respectively.

Filters are very similar to middleware. The next  method invokes the next filter. The final filter will invoke the hub

method. Filters can also store the result from awaiting next  and run logic after the hub method has been called

before returning the result from next .

To skip a hub method invocation in a filter, throw an exception of type HubException  instead of calling next . The

client will receive an error if it was expecting a result.

When writing the filter logic, try to make it generic by using attributes on hub methods instead of checking for hub

method names.

Consider a filter that will check a hub method argument for banned phrases and replace any phrases it finds with 

*** . For this example, assume a LanguageFilterAttribute  class is defined. The class has a property named 

FilterArgument  that can be set when using the attribute.

1. Place the attribute on the hub method that has a string argument to be cleaned:



The HubInvocationContext object

public class ChatHub
{
    [LanguageFilter(filterArgument: 0)]
    public async Task SendMessage(string message, string username)
    {
        await Clients.All.SendAsync("SendMessage", $"{username} says: {message}");
    }
}

public class LanguageFilter : IHubFilter
{
    // populated from a file or inline
    private List<string> bannedPhrases = new List<string> { "async void", ".Result" };

    public async ValueTask<object> InvokeMethodAsync(HubInvocationContext invocationContext, 
        Func<HubInvocationContext, ValueTask<object>> next)
    {
        var languageFilter = (LanguageFilterAttribute)Attribute.GetCustomAttribute(
            invocationContext.HubMethod, typeof(LanguageFilterAttribute));
        if (languageFilter != null &&
            invocationContext.HubMethodArguments.Count > languageFilter.FilterArgument &&
            invocationContext.HubMethodArguments[languageFilter.FilterArgument] is string str)
        {
            foreach (var bannedPhrase in bannedPhrases)
            {
                str = str.Replace(bannedPhrase, "***");
            }

            arguments = invocationContext.HubMethodArguments.ToArray();
            arguments[languageFilter.FilterArgument] = str;
            invocationContext = new HubInvocationContext(invocationContext.Context,
                invocationContext.ServiceProvider,
                invocationContext.Hub,
                invocationContext.HubMethod,
                arguments);
        }

        return await next(invocationContext);
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddSignalR(hubOptions =>
    {
        hubOptions.AddFilter<LanguageFilter>();
    });

    services.AddSingleton<LanguageFilter>();
}

2. Define a hub filter to check for the attribute and replace banned phrases in a hub method argument with 

*** :

3. Register the hub filter in the Startup.ConfigureServices  method. To avoid reinitializing the banned phrases

list for every invocation, the hub filter is registered as a singleton:

The HubInvocationContext  contains information for the current hub method invocation.



P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N T Y P ET Y P E

Context The HubCallerContext  contains

information about the connection.

HubCallerContext

Hub The instance of the Hub being used for
this hub method invocation.

Hub

HubMethodName The name of the hub method being
invoked.

string

HubMethodArguments The list of arguments being passed to
the hub method.

IReadOnlyList<string>

ServiceProvider The scoped service provider for this hub
method invocation.

IServiceProvider

HubMethod The hub method information. MethodInfo

The HubLifetimeContext object

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N T Y P ET Y P E

Context The HubCallerContext  contains

information about the connection.

HubCallerContext

Hub The instance of the Hub being used for
this hub method invocation.

Hub

ServiceProvider The scoped service provider for this hub
method invocation.

IServiceProvider

Authorization and filters

The HubLifetimeContext  contains information for the OnConnectedAsync  and OnDisconnectedAsync  hub methods.

Authorize attributes on hub methods run before hub filters.



ASP.NET Core SignalR clients
9/22/2020 • 2 minutes to read • Edit Online

Versioning, support, and compatibility

SIGN A L R VERSIO NSIGN A L R VERSIO N . N ET  C O RE VERSIO N. N ET  C O RE VERSIO N SUP P O RT  L EVELSUP P O RT  L EVEL EN D O F  SUP P O RTEN D O F  SUP P O RT

1.0.x 2.1.x Long Term Support August 21, 2021

1.1.x 2.2.x End Of Life December 23, 2019

3.x or higher same as SignalR version See the the .NET Core
Support Policy

Feature distribution

F EAT UREF EAT URE SERVERSERVER . N ET  C L IEN T. N ET  C L IEN T JAVA SC RIP T  C L IEN TJAVA SC RIP T  C L IEN T JAVA  C L IEN TJAVA  C L IEN T

Azure SignalR Service
Support

2.1.0 1.0.0 1.0.0 1.0.0

Server-to-client
Streaming

2.1.0 1.0.0 1.0.0 1.0.0

Client-to-server
Streaming

3.0.0 3.0.0 3.0.0 3.0.0

Automatic
Reconnection (.NET,
JavaScript)

3.0.0 3.0.0 3.0.0 ❌

WebSockets Transport 2.1.0 1.0.0 1.0.0 1.0.0

Server-Sent Events
Transport

2.1.0 1.0.0 1.0.0 ❌

The SignalR clients ship alongside the server components and are versioned to match. Any supported client can

safely connect to any supported server, and any compatibility issues would be considered bugs to be fixed. SignalR

clients are supported in the same support lifecycle as the rest of .NET Core. See the .NET Core Support Policy for

details.

Many features require a compatible client andand server. See below for a table showing the minimum versions for

various features.

The 1.x versions of SignalR map to the 2.1 and 2.2 .NET Core releases and have the same lifetime. For version 3.x

and above, the SignalR version exactly matches the rest of .NET and has the same support lifecycle.

NOTE:NOTE: In ASP.NET Core 3.0, the JavaScript client moved to the @microsoft/signalr  npm package.

The table below shows the features and support for the clients that offer real-time support. For each feature, the

minimum version supporting this feature is listed. If no version is listed, the feature isn't supported.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/client-features.md
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core


Long Polling
Transport

2.1.0 1.0.0 1.0.0 3.0.0

JSON Hub Protocol 2.1.0 1.0.0 1.0.0 1.0.0

MessagePack Hub
Protocol

2.1.0 1.0.0 1.0.0 ❌

F EAT UREF EAT URE SERVERSERVER . N ET  C L IEN T. N ET  C L IEN T JAVA SC RIP T  C L IEN TJAVA SC RIP T  C L IEN T JAVA  C L IEN TJAVA  C L IEN T

Additional resources

Support for enabling additional client features is tracked in our issue tracker.

Get started with SignalR for ASP.NET Core

Supported platforms

Hubs

JavaScript client

https://github.com/dotnet/AspNetCore/issues


ASP.NET Core SignalR .NET Client
9/22/2020 • 7 minutes to read • Edit Online

Install the SignalR .NET client package

Install-Package Microsoft.AspNetCore.SignalR.Client

Connect to a hub

The ASP.NET Core SignalR .NET client library lets you communicate with SignalR hubs from .NET apps.

View or download sample code (how to download)

The code sample in this article is a WPF app that uses the ASP.NET Core SignalR .NET client.

The Microsoft.AspNetCore.SignalR.Client package is required for .NET clients to connect to SignalR hubs.

Visual Studio

.NET Core CLI

To install the client library, run the following command in the Package Manager ConsolePackage Manager Console window:

To establish a connection, create a HubConnectionBuilder  and call Build . The hub URL, protocol, transport type,

log level, headers, and other options can be configured while building a connection. Configure any required

options by inserting any of the HubConnectionBuilder  methods into Build . Start the connection with 

StartAsync .

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/dotnet-client.md
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/signalr/dotnet-client/sample
https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR.Client


using System;
using System.Threading.Tasks;
using System.Windows;
using Microsoft.AspNetCore.SignalR.Client;

namespace SignalRChatClient
{
    public partial class MainWindow : Window
    {
        HubConnection connection;
        public MainWindow()
        {
            InitializeComponent();

            connection = new HubConnectionBuilder()
                .WithUrl("http://localhost:53353/ChatHub")
                .Build();

            connection.Closed += async (error) =>
            {
                await Task.Delay(new Random().Next(0,5) * 1000);
                await connection.StartAsync();
            };
        }

        private async void connectButton_Click(object sender, RoutedEventArgs e)
        {
            connection.On<string, string>("ReceiveMessage", (user, message) =>
            {
                this.Dispatcher.Invoke(() =>
                {
                   var newMessage = $"{user}: {message}";
                   messagesList.Items.Add(newMessage);
                });
            });

            try
            {
                await connection.StartAsync();
                messagesList.Items.Add("Connection started");
                connectButton.IsEnabled = false;
                sendButton.IsEnabled = true;
            }
            catch (Exception ex)
            {
                messagesList.Items.Add(ex.Message);
            }
        }

        private async void sendButton_Click(object sender, RoutedEventArgs e)
        {
            try
            {
                await connection.InvokeAsync("SendMessage", 
                    userTextBox.Text, messageTextBox.Text);
            }
            catch (Exception ex)
            {                
                messagesList.Items.Add(ex.Message);                
            }
        }
    }
}

Handle lost connection



  Automatically reconnectAutomatically reconnect

HubConnection connection= new HubConnectionBuilder()
    .WithUrl(new Uri("http://127.0.0.1:5000/chathub"))
    .WithAutomaticReconnect()
    .Build();

connection.Reconnecting += error =>
{
    Debug.Assert(connection.State == HubConnectionState.Reconnecting);

    // Notify users the connection was lost and the client is reconnecting.
    // Start queuing or dropping messages.

    return Task.CompletedTask;
};

WARNINGWARNING

connection.Reconnected += connectionId =>
{
    Debug.Assert(connection.State == HubConnectionState.Connected);

    // Notify users the connection was reestablished.
    // Start dequeuing messages queued while reconnecting if any.

    return Task.CompletedTask;
};

The HubConnection can be configured to automatically reconnect using the WithAutomaticReconnect  method on

the HubConnectionBuilder. It won't automatically reconnect by default.

Without any parameters, WithAutomaticReconnect()  configures the client to wait 0, 2, 10, and 30 seconds

respectively before trying each reconnect attempt, stopping after four failed attempts.

Before starting any reconnect attempts, the HubConnection  will transition to the 

HubConnectionState.Reconnecting  state and fire the Reconnecting  event. This provides an opportunity to warn

users that the connection has been lost and to disable UI elements. Non-interactive apps can start queuing or

dropping messages.

If the client successfully reconnects within its first four attempts, the HubConnection  will transition back to the 

Connected  state and fire the Reconnected  event. This provides an opportunity to inform users the connection

has been reestablished and dequeue any queued messages.

Since the connection looks entirely new to the server, a new ConnectionId  will be provided to the Reconnected

event handlers.

The Reconnected  event handler's connectionId  parameter will be null if the HubConnection  was configured to skip

negotiation.

WithAutomaticReconnect()  won't configure the HubConnection  to retry initial start failures, so start failures need

to be handled manually:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnectionbuilder


public static async Task<bool> ConnectWithRetryAsync(HubConnection connection, CancellationToken token)
{
    // Keep trying to until we can start or the token is canceled.
    while (true)
    {
        try
        {
            await connection.StartAsync(token);
            Debug.Assert(connection.State == HubConnectionState.Connected);
            return true;
        }
        catch when (token.IsCancellationRequested)
        {
            return false;
        }
        catch
        {
            // Failed to connect, trying again in 5000 ms.
            Debug.Assert(connection.State == HubConnectionState.Disconnected);
            await Task.Delay(5000);
        }
    }
}

connection.Closed += error =>
{
    Debug.Assert(connection.State == HubConnectionState.Disconnected);

    // Notify users the connection has been closed or manually try to restart the connection.

    return Task.CompletedTask;
};

HubConnection connection= new HubConnectionBuilder()
    .WithUrl(new Uri("http://127.0.0.1:5000/chathub"))
    .WithAutomaticReconnect(new[] { TimeSpan.Zero, TimeSpan.Zero, TimeSpan.FromSeconds(10) })
    .Build();

    // .WithAutomaticReconnect(new[] { TimeSpan.Zero, TimeSpan.FromSeconds(2), TimeSpan.FromSeconds(10), 
TimeSpan.FromSeconds(30) }) yields the default behavior.

If the client doesn't successfully reconnect within its first four attempts, the HubConnection  will transition to the 

Disconnected  state and fire the Closed event. This provides an opportunity to attempt to restart the connection

manually or inform users the connection has been permanently lost.

In order to configure a custom number of reconnect attempts before disconnecting or change the reconnect

timing, WithAutomaticReconnect  accepts an array of numbers representing the delay in milliseconds to wait

before starting each reconnect attempt.

The preceding example configures the HubConnection  to start attempting reconnects immediately after the

connection is lost. This is also true for the default configuration.

If the first reconnect attempt fails, the second reconnect attempt will also start immediately instead of waiting 2

seconds like it would in the default configuration.

If the second reconnect attempt fails, the third reconnect attempt will start in 10 seconds which is again like the

default configuration.

The custom behavior then diverges again from the default behavior by stopping after the third reconnect

attempt failure. In the default configuration there would be one more reconnect attempt in another 30 seconds.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnection.closed


  

public class RandomRetryPolicy : IRetryPolicy
{
    private readonly Random _random = new Random();

    public TimeSpan? NextRetryDelay(RetryContext retryContext)
    {
        // If we've been reconnecting for less than 60 seconds so far,
        // wait between 0 and 10 seconds before the next reconnect attempt.
        if (retryContext.ElapsedTime < TimeSpan.FromSeconds(60))
        {
            return TimeSpan.FromSeconds(_random.NextDouble() * 10);
        }
        else
        {
            // If we've been reconnecting for more than 60 seconds so far, stop reconnecting.
            return null;
        }
    }
}

HubConnection connection = new HubConnectionBuilder()
    .WithUrl(new Uri("http://127.0.0.1:5000/chathub"))
    .WithAutomaticReconnect(new RandomRetryPolicy())
    .Build();

Manually reconnectManually reconnect

WARNINGWARNING

If you want even more control over the timing and number of automatic reconnect attempts, 

WithAutomaticReconnect  accepts an object implementing the IRetryPolicy  interface, which has a single method

named NextRetryDelay .

NextRetryDelay  takes a single argument with the type RetryContext . The RetryContext  has three properties: 

PreviousRetryCount , ElapsedTime  and RetryReason , which are a long , a TimeSpan  and an Exception

respectively. Before the first reconnect attempt, both PreviousRetryCount  and ElapsedTime  will be zero, and the 

RetryReason  will be the Exception that caused the connection to be lost. After each failed retry attempt, 

PreviousRetryCount  will be incremented by one, ElapsedTime  will be updated to reflect the amount of time spent

reconnecting so far, and the RetryReason  will be the Exception that caused the last reconnect attempt to fail.

NextRetryDelay  must return either a TimeSpan representing the time to wait before the next reconnect attempt

or null  if the HubConnection  should stop reconnecting.

Alternatively, you can write code that will reconnect your client manually as demonstrated in Manually reconnect.

Prior to 3.0, the .NET client for SignalR doesn't automatically reconnect. You must write code that will reconnect your client

manually.

Use the Closed event to respond to a lost connection. For example, you might want to automate reconnection.

The Closed  event requires a delegate that returns a Task , which allows async code to run without using 

async void . To satisfy the delegate signature in a Closed  event handler that runs synchronously, return 

Task.CompletedTask :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnection.closed


connection.Closed += (error) => {
    // Do your close logic.
    return Task.CompletedTask;
};

connection.Closed += async (error) =>
{
    await Task.Delay(new Random().Next(0,5) * 1000);
    await connection.StartAsync();
};

Call hub methods from client

await connection.InvokeAsync("SendMessage", 
    userTextBox.Text, messageTextBox.Text);

NOTENOTE

Call client methods from hub

connection.On<string, string>("ReceiveMessage", (user, message) =>
{
    this.Dispatcher.Invoke(() =>
    {
       var newMessage = $"{user}: {message}";
       messagesList.Items.Add(newMessage);
    });
});

The main reason for the async support is so you can restart the connection. Starting a connection is an async

action.

In a Closed  handler that restarts the connection, consider waiting for some random delay to prevent

overloading the server, as shown in the following example:

InvokeAsync  calls methods on the hub. Pass the hub method name and any arguments defined in the hub

method to InvokeAsync . SignalR is asynchronous, so use async  and await  when making the calls.

The InvokeAsync  method returns a Task  which completes when the server method returns. The return value, if

any, is provided as the result of the Task . Any exceptions thrown by the method on the server produce a faulted 

Task . Use await  syntax to wait for the server method to complete and try...catch  syntax to handle errors.

The SendAsync  method returns a Task  which completes when the message has been sent to the server. No

return value is provided since this Task  doesn't wait until the server method completes. Any exceptions thrown

on the client while sending the message produce a faulted Task . Use await  and try...catch  syntax to handle

send errors.

Calling hub methods from a client is only supported when using the Azure SignalR Service in Default mode. For more

information, see Frequently Asked Questions (azure-signalr GitHub repository).

Define methods the hub calls using connection.On  after building, but before starting the connection.

The preceding code in connection.On  runs when server-side code calls it using the SendAsync  method.

https://github.com/Azure/azure-signalr/blob/dev/docs/faq.md#what-is-the-meaning-of-service-mode-defaultserverlessclassic-how-can-i-choose


public async Task SendMessage(string user, string message)
{
    await Clients.All.SendAsync("ReceiveMessage", user,message);
}

Error handling and logging

try
{
    await connection.InvokeAsync("SendMessage", 
        userTextBox.Text, messageTextBox.Text);
}
catch (Exception ex)
{                
    messagesList.Items.Add(ex.Message);                
}

Additional resources

Handle errors with a try-catch statement. Inspect the Exception  object to determine the proper action to take

after an error occurs.

Hubs

JavaScript client

Publish to Azure

Azure SignalR Service serverless documentation

https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-serverless-development-config


ASP.NET Core SignalR Java client
9/22/2020 • 3 minutes to read • Edit Online

Install the SignalR Java client package

implementation 'com.microsoft.signalr:signalr:1.0.0'

<dependency>
    <groupId>com.microsoft.signalr</groupId>
    <artifactId>signalr</artifactId>
    <version>1.0.0</version>
</dependency>

Connect to a hub

HubConnection hubConnection = HubConnectionBuilder.create(input)
        .build();

Call hub methods from client

hubConnection.send("Send", input);

By Mikael Mengistu

The Java client enables connecting to an ASP.NET Core SignalR server from Java code, including Android apps. Like

the JavaScript client and the .NET client, the Java client enables you to receive and send messages to a hub in real

time. The Java client is available in ASP.NET Core 2.2 and later.

The sample Java console app referenced in this article uses the SignalR Java client.

View or download sample code (how to download)

The signalr-1.0.0 JAR file allows clients to connect to SignalR hubs. To find the latest JAR file version number, see

the Maven search results.

If using Gradle, add the following line to the dependencies  section of your build.gradle file:

If using Maven, add the following lines inside the <dependencies>  element of your pom.xml file:

To establish a HubConnection , the HubConnectionBuilder  should be used. The hub URL and log level can be

configured while building a connection. Configure any required options by calling any of the HubConnectionBuilder

methods before build . Start the connection with start .

A call to send  invokes a hub method. Pass the hub method name and any arguments defined in the hub method

to send .

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/java-client.md
https://twitter.com/MikaelM_12
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/signalr/java-client/sample
https://search.maven.org/search?q=g:com.microsoft.signalr AND a:signalr


NOTENOTE

Call client methods from hub

hubConnection.on("Send", (message) -> {
    System.out.println("New Message: " + message);
}, String.class);

Add logging

implementation 'org.slf4j:slf4j-jdk14:1.7.25'

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

Android development notes

Configure bearer token authentication

Calling hub methods from a client is only supported when using the Azure SignalR Service in Default mode. For more

information, see Frequently Asked Questions (azure-signalr GitHub repository).

Use hubConnection.on  to define methods on the client that the hub can call. Define the methods after building but

before starting the connection.

The SignalR Java client uses the SLF4J library for logging. It's a high-level logging API that allows users of the

library to chose their own specific logging implementation by bringing in a specific logging dependency. The

following code snippet shows how to use java.util.logging  with the SignalR Java client.

If you don't configure logging in your dependencies, SLF4J loads a default no-operation logger with the following

warning message:

This can safely be ignored.

With regards to Android SDK compatibility for the SignalR client features, consider the following items when

specifying your target Android SDK version:

The SignalR Java Client will run on Android API Level 16 and later.

Connecting through the Azure SignalR Service will require Android API Level 20 and later because the Azure

SignalR Service requires TLS 1.2 and doesn't support SHA-1-based cipher suites. Android added support for

SHA-256 (and above) cipher suites in API Level 20.

In the SignalR Java client, you can configure a bearer token to use for authentication by providing an "access token

factory" to the HttpHubConnectionBuilder. Use withAccessTokenFactory to provide an RxJava Single<String>. With

a call to Single.defer, you can write logic to produce access tokens for your client.

https://github.com/Azure/azure-signalr/blob/dev/docs/faq.md#what-is-the-meaning-of-service-mode-defaultserverlessclassic-how-can-i-choose
https://www.slf4j.org/
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://developer.android.com/reference/javax/net/ssl/SSLSocket
https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder?view=aspnet-signalr-java
https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder.withaccesstokenprovider?view=aspnet-signalr-java#com_microsoft_signalr__http_hub_connection_builder_withaccesstokenprovider_single_string__
https://github.com/ReactiveX/RxJava
https://reactivex.io/documentation/single.html
https://reactivex.io/RxJava/javadoc/io/reactivex/Single.html#defer-java.util.concurrent.Callable-


HubConnection hubConnection = HubConnectionBuilder.create("YOUR HUB URL HERE")
    .withAccessTokenProvider(Single.defer(() -> {
        // Your logic here.
        return Single.just("An Access Token");
    })).build();

Known limitations

Additional resources

Only the JSON protocol is supported.

Transport fallback and the Server Sent Events transport aren't supported.

Only the JSON protocol is supported.

Only the WebSockets transport is supported.

Streaming isn't supported yet.

Java API reference

Use hubs in ASP.NET Core SignalR

ASP.NET Core SignalR JavaScript client

Publish an ASP.NET Core SignalR app to Azure App Service

Azure SignalR Service serverless documentation

https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr?view=aspnet-signalr-java
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-serverless-development-config


ASP.NET Core SignalR JavaScript client
9/22/2020 • 14 minutes to read • Edit Online

Install the SignalR client package

Install with npmInstall with npm

npm init -y
npm install @microsoft/signalr

<script src="~/lib/signalr/signalr.js"></script>

Use a Content Delivery Network (CDN)Use a Content Delivery Network (CDN)

<script src="https://cdnjs.cloudflare.com/ajax/libs/microsoft-signalr/3.1.7/signalr.min.js"></script>

Install with LibManInstall with LibMan

Connect to a hub

By Rachel Appel

The ASP.NET Core SignalR JavaScript client library enables developers to call server-side hub code.

View or download sample code (how to download)

The SignalR JavaScript client library is delivered as an npm package. The following sections outline different

ways to install the client library.

For Visual Studio, run the following commands from Package Manager ConsolePackage Manager Console while in the root folder. For

Visual Studio Code, run the following commands from the Integrated TerminalIntegrated Terminal .

npm installs the package contents in the node_modules\@microsoft\signalr\dist\browser folder. Create a new

folder named signalr under the wwwroot\lib folder. Copy the signalr.js file to the wwwroot\lib\signalr folder.

Reference the SignalR JavaScript client in the <script>  element. For example:

To use the client library without the npm prerequisite, reference a CDN-hosted copy of the client library. For

example:

The client library is available on the following CDNs:

cdnjs

jsDelivr

unpkg

LibMan can be used to install specific client library files from the CDN-hosted client library. For example, only

add the minified JavaScript file to the project. For details on that approach, see Add the SignalR client library.

The following code creates and starts a connection. The hub's name is case insensitive:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/javascript-client.md
https://twitter.com/rachelappel
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/signalr/javascript-client/samples
https://www.npmjs.com/
https://cdnjs.com/libraries/microsoft-signalr
https://www.jsdelivr.com/package/npm/@microsoft/signalr
https://unpkg.com/@microsoft/signalr@next/dist/browser/signalr.min.js


const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .configureLogging(signalR.LogLevel.Information)
    .build();

async function start() {
    try {
        await connection.start();
        console.log("SignalR Connected.");
    } catch (err) {
        console.log(err);
        setTimeout(start, 5000);
    }
};

connection.onclose(start);

// Start the connection.
start();

Cross-origin connectionsCross-origin connections
Typically, browsers load connections from the same domain as the requested page. However, there are

occasions when a connection to another domain is required.

To prevent a malicious site from reading sensitive data from another site, cross-origin connections are disabled

by default. To allow a cross-origin request, enable it in the Startup  class:



using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using SignalRChat.Hubs;

namespace SignalRChat
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddRazorPages();
            services.AddSignalR();

            services.AddCors(options =>
            {
                options.AddDefaultPolicy(builder =>
                {
                    builder.WithOrigins("https://example.com")
                        .AllowCredentials();
                });
            });
        }

        public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
        {
            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
            }
            else
            {
                app.UseExceptionHandler("/Error");
            }

            app.UseStaticFiles();
            app.UseRouting();

            app.UseCors();

            app.UseEndpoints(endpoints =>
            {
                endpoints.MapRazorPages();
                endpoints.MapHub<ChatHub>("/chathub");
            });
        }
    }
}

Call hub methods from the client
JavaScript clients call public methods on hubs via the invoke method of the HubConnection. The invoke

method accepts:

The name of the hub method.

Any arguments defined in the hub method.

In the following example, the method name on the hub is SendMessage . The second and third arguments

passed to invoke  map to the hub method's user  and message  arguments:

https://docs.microsoft.com/en-us/javascript/api/%40microsoft/signalr/hubconnection#invoke-string--any---
https://docs.microsoft.com/en-us/javascript/api/%40microsoft/signalr/hubconnection


try {
    await connection.invoke("SendMessage", user, message);
} catch (err) {
    console.error(err);
}

NOTENOTE

NOTENOTE

Call client methods from the hub

connection.on("ReceiveMessage", (user, message) => {
    const li = document.createElement("li");
    li.textContent = `${user}: ${message}`;
    document.getElementById("messageList").appendChild(li);
});

public async Task SendMessage(string user, string message)
{
    await Clients.All.SendAsync("ReceiveMessage", user, message);
}

Calling hub methods from a client is only supported when using the Azure SignalR Service in Default mode. For more

information, see Frequently Asked Questions (azure-signalr GitHub repository).

The invoke  method returns a JavaScript Promise. The Promise  is resolved with the return value (if any) when

the method on the server returns. If the method on the server throws an error, the Promise  is rejected with the

error message. Use async  and await  or the Promise 's then  and catch  methods to handle these cases.

JavaScript clients can also call public methods on hubs via the the send method of the HubConnection . Unlike

the invoke  method, the send  method doesn't wait for a response from the server. The send  method returns

a JavaScript Promise . The Promise  is resolved when the message has been sent to the server. If there is an

error sending the message, the Promise  is rejected with the error message. Use async  and await  or the 

Promise 's then  and catch  methods to handle these cases.

Using send  doesn't wait until the server has received the message. Consequently, it's not possible to return data or

errors from the server.

To receive messages from the hub, define a method using the on method of the HubConnection .

The name of the JavaScript client method.

Arguments the hub passes to the method.

In the following example, the method name is ReceiveMessage . The argument names are user  and message :

The preceding code in connection.on  runs when server-side code calls it using the SendAsync method:

SignalR determines which client method to call by matching the method name and arguments defined in 

SendAsync  and connection.on .

https://github.com/Azure/azure-signalr/blob/dev/docs/faq.md#what-is-the-meaning-of-service-mode-defaultserverlessclassic-how-can-i-choose
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://docs.microsoft.com/en-us/javascript/api/%40microsoft/signalr/hubconnection#send-string--any---
https://docs.microsoft.com/en-us/javascript/api/%40microsoft/signalr/hubconnection#on-string---args--any-------void-
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.clientproxyextensions.sendasync


  

NOTENOTE

Error handling and logging

try {
    await connection.invoke("SendMessage", user, message);
} catch (err) {
    console.error(err);
}

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .configureLogging(signalR.LogLevel.Information)
    .build();

Reconnect clients
Automatically reconnectAutomatically reconnect

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .withAutomaticReconnect()
    .build();

As a best practice, call the start method on the HubConnection  after on . Doing so ensures your handlers are

registered before any messages are received.

Use try  and catch  with async  and await  or the Promise 's catch  method to handle client-side errors. Use 

console.error  to output errors to the browser's console:

Set up client-side log tracing by passing a logger and type of event to log when the connection is made.

Messages are logged with the specified log level and higher. Available log levels are as follows:

signalR.LogLevel.Error : Error messages. Logs Error  messages only.

signalR.LogLevel.Warning : Warning messages about potential errors. Logs Warning , and Error  messages.

signalR.LogLevel.Information : Status messages without errors. Logs Information , Warning , and Error

messages.

signalR.LogLevel.Trace : Trace messages. Logs everything, including data transported between hub and

client.

Use the configureLogging method on HubConnectionBuilder to configure the log level. Messages are logged to

the browser console:

The JavaScript client for SignalR can be configured to automatically reconnect using the 

withAutomaticReconnect  method on HubConnectionBuilder. It won't automatically reconnect by default.

Without any parameters, withAutomaticReconnect()  configures the client to wait 0, 2, 10, and 30 seconds

respectively before trying each reconnect attempt, stopping after four failed attempts.

Before starting any reconnect attempts, the HubConnection  will transition to the 

HubConnectionState.Reconnecting  state and fire its onreconnecting  callbacks instead of transitioning to the 

Disconnected  state and triggering its onclose  callbacks like a HubConnection  without automatic reconnect

configured. This provides an opportunity to warn users that the connection has been lost and to disable UI

https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnection#start
https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnectionbuilder#configurelogging
https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnectionbuilder
https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnectionbuilder


connection.onreconnecting(error => {
    console.assert(connection.state === signalR.HubConnectionState.Reconnecting);

    document.getElementById("messageInput").disabled = true;

    const li = document.createElement("li");
    li.textContent = `Connection lost due to error "${error}". Reconnecting.`;
    document.getElementById("messagesList").appendChild(li);
});

WARNINGWARNING

connection.onreconnected(connectionId => {
    console.assert(connection.state === signalR.HubConnectionState.Connected);

    document.getElementById("messageInput").disabled = false;

    const li = document.createElement("li");
    li.textContent = `Connection reestablished. Connected with connectionId "${connectionId}".`;
    document.getElementById("messagesList").appendChild(li);
});

async function start() {
    try {
        await connection.start();
        console.assert(connection.state === signalR.HubConnectionState.Connected);
        console.log("SignalR Connected.");
    } catch (err) {
        console.assert(connection.state === signalR.HubConnectionState.Disconnected);
        console.log(err);
        setTimeout(() => start(), 5000);
    }
};

elements.

If the client successfully reconnects within its first four attempts, the HubConnection  will transition back to the 

Connected  state and fire its onreconnected  callbacks. This provides an opportunity to inform users the

connection has been reestablished.

Since the connection looks entirely new to the server, a new connectionId  will be provided to the 

onreconnected  callback.

The onreconnected  callback's connectionId  parameter will be undefined if the HubConnection  was configured to

skip negotiation.

withAutomaticReconnect()  won't configure the HubConnection  to retry initial start failures, so start failures need

to be handled manually:

If the client doesn't successfully reconnect within its first four attempts, the HubConnection  will transition to the 

Disconnected  state and fire its onclose callbacks. This provides an opportunity to inform users the connection

has been permanently lost and recommend refreshing the page:

https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnection#onclose


connection.onclose(error => {
    console.assert(connection.state === signalR.HubConnectionState.Disconnected);

    document.getElementById("messageInput").disabled = true;

    const li = document.createElement("li");
    li.textContent = `Connection closed due to error "${error}". Try refreshing this page to restart the 
connection.`;
    document.getElementById("messagesList").appendChild(li);
});

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .withAutomaticReconnect([0, 0, 10000])
    .build();

    // .withAutomaticReconnect([0, 2000, 10000, 30000]) yields the default behavior

In order to configure a custom number of reconnect attempts before disconnecting or change the reconnect

timing, withAutomaticReconnect  accepts an array of numbers representing the delay in milliseconds to wait

before starting each reconnect attempt.

The preceding example configures the HubConnection  to start attempting reconnects immediately after the

connection is lost. This is also true for the default configuration.

If the first reconnect attempt fails, the second reconnect attempt will also start immediately instead of waiting 2

seconds like it would in the default configuration.

If the second reconnect attempt fails, the third reconnect attempt will start in 10 seconds which is again like the

default configuration.

The custom behavior then diverges again from the default behavior by stopping after the third reconnect

attempt failure instead of trying one more reconnect attempt in another 30 seconds like it would in the default

configuration.

If you want even more control over the timing and number of automatic reconnect attempts, 

withAutomaticReconnect  accepts an object implementing the IRetryPolicy  interface, which has a single

method named nextRetryDelayInMilliseconds .

nextRetryDelayInMilliseconds  takes a single argument with the type RetryContext . The RetryContext  has

three properties: previousRetryCount , elapsedMilliseconds  and retryReason  which are a number , a number

and an Error  respectively. Before the first reconnect attempt, both previousRetryCount  and 

elapsedMilliseconds  will be zero, and the retryReason  will be the Error that caused the connection to be lost.

After each failed retry attempt, previousRetryCount  will be incremented by one, elapsedMilliseconds  will be

updated to reflect the amount of time spent reconnecting so far in milliseconds, and the retryReason  will be

the Error that caused the last reconnect attempt to fail.

nextRetryDelayInMilliseconds  must return either a number representing the number of milliseconds to wait

before the next reconnect attempt or null  if the HubConnection  should stop reconnecting.



  

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .withAutomaticReconnect({
        nextRetryDelayInMilliseconds: retryContext => {
            if (retryContext.elapsedMilliseconds < 60000) {
                // If we've been reconnecting for less than 60 seconds so far,
                // wait between 0 and 10 seconds before the next reconnect attempt.
                return Math.random() * 10000;
            } else {
                // If we've been reconnecting for more than 60 seconds so far, stop reconnecting.
                return null;
            }
        }
    })
    .build();

Manually reconnectManually reconnect

async function start() {
    try {
        await connection.start();
        console.log("SignalR Connected.");
    } catch (err) {
        console.log(err);
        setTimeout(start, 5000);
    }
};

connection.onclose(start);

Additional resources

Alternatively, you can write code that will reconnect your client manually as demonstrated in Manually

reconnect.

The following code demonstrates a typical manual reconnection approach:

1. A function (in this case, the start  function) is created to start the connection.

2. Call the start  function in the connection's onclose  event handler.

A real-world implementation would use an exponential back-off or retry a specified number of times before

giving up.

JavaScript API reference

JavaScript tutorial

WebPack and TypeScript tutorial

Hubs

.NET client

Publish to Azure

Cross-Origin Requests (CORS)

Azure SignalR Service serverless documentation

By Rachel Appel

The ASP.NET Core SignalR JavaScript client library enables developers to call server-side hub code.

View or download sample code (how to download)

https://docs.microsoft.com/en-us/javascript/api/?view=signalr-js-latest&preserve-view=true
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-serverless-development-config
https://twitter.com/rachelappel
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/signalr/javascript-client/samples


Install the SignalR client package

Install with npmInstall with npm

npm init -y
npm install @aspnet/signalr

<script src="~/lib/signalr/signalr.js"></script>

Use a Content Delivery Network (CDN)Use a Content Delivery Network (CDN)

<script src="https://cdnjs.cloudflare.com/ajax/libs/microsoft-signalr/3.1.3/signalr.min.js"></script>

Install with LibManInstall with LibMan

Connect to a hub

The SignalR JavaScript client library is delivered as an npm package. The following sections outline different

ways to install the client library.

If using Visual Studio, run the following commands from Package Manager ConsolePackage Manager Console while in the root folder.

For Visual Studio Code, run the following commands from the Integrated TerminalIntegrated Terminal .

npm installs the package contents in the node_modules\@aspnet\signalr\dist\browser folder. Create a new

folder named signalr under the wwwroot\lib folder. Copy the signalr.js file to the wwwroot\lib\signalr folder.

Reference the SignalR JavaScript client in the <script>  element. For example:

To use the client library without the npm prerequisite, reference a CDN-hosted copy of the client library. For

example:

The client library is available on the following CDNs:

cdnjs

jsDelivr

unpkg

LibMan can be used to install specific client library files from the CDN-hosted client library. For example, only

add the minified JavaScript file to the project. For details on that approach, see Add the SignalR client library.

The following code creates and starts a connection. The hub's name is case insensitive.

https://www.npmjs.com/
https://cdnjs.com/libraries/aspnet-signalr
https://www.jsdelivr.com/package/npm/@aspnet/signalr
https://unpkg.com/@aspnet/signalr@next/dist/browser/signalr.min.js


const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chatHub")
    .configureLogging(signalR.LogLevel.Information)
    .build();

async function start() {
    try {
        await connection.start();
        console.log("connected");
    } catch (err) {
        console.log(err);
        setTimeout(() => start(), 5000);
    }
};

connection.onclose(async () => {
    await start();
});

// Start the connection.
start();

/* this is here to show an alternative to start, with a then
connection.start().then(() => console.log("connected"));
*/

/* this is here to show another alternative to start, with a catch
connection.start().catch(err => console.error(err));
*/

Cross-origin connectionsCross-origin connections
Typically, browsers load connections from the same domain as the requested page. However, there are

occasions when a connection to another domain is required.

To prevent a malicious site from reading sensitive data from another site, cross-origin connections are disabled

by default. To allow a cross-origin request, enable it in the Startup  class.



using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using SignalRChat.Hubs;

namespace SignalRChat
{
    public class Startup
    {
        public Startup(IConfiguration configuration)
        {
            Configuration = configuration;
        }

        public IConfiguration Configuration { get; }

        public void ConfigureServices(IServiceCollection services)
        {
            services.Configure<CookiePolicyOptions>(options =>
            {
                options.CheckConsentNeeded = context => true;
                options.MinimumSameSitePolicy = SameSiteMode.None;
            });

            services.AddMvc();

            services.AddCors(options => options.AddPolicy("CorsPolicy", 
            builder => 
            {
                builder.AllowAnyMethod().AllowAnyHeader()
                       .WithOrigins("http://localhost:55830")
                       .AllowCredentials();
            }));

            services.AddSignalR();
        }

        public void Configure(IApplicationBuilder app, IHostingEnvironment env)
        {
            if (env.IsDevelopment())
            {
                app.UseBrowserLink();
                app.UseDeveloperExceptionPage();
            }
            else
            {
                app.UseExceptionHandler("/Error");
                app.UseHsts();
            }

            app.UseHttpsRedirection();
            app.UseStaticFiles();
            app.UseCookiePolicy();
            app.UseCors("CorsPolicy");
            app.UseSignalR(routes => 
            {
                routes.MapHub<ChatHub>("/chathub");
            });
            app.UseMvc();            
        }
    }
}



Call hub methods from client

NOTENOTE

NOTENOTE

Call client methods from hub

connection.on("ReceiveMessage", (user, message) => {
    const encodedMsg = `${user} says ${message}`;
    const li = document.createElement("li");
    li.textContent = encodedMsg;
    document.getElementById("messagesList").appendChild(li);
});

public async Task SendMessage(string user, string message)
{
    await Clients.All.SendAsync("ReceiveMessage", user, message);
}

JavaScript clients call public methods on hubs via the invoke method of the HubConnection. The invoke

method accepts two arguments:

connection.invoke("SendMessage", user, message).catch(err => console.error(err));

The name of the hub method. In the following example, the method name on the hub is SendMessage .

Any arguments defined in the hub method. In the following example, the argument name is message .

The example code uses arrow function syntax that is supported in current versions of all major browsers

except Internet Explorer.

Calling hub methods from a client is only supported when using the Azure SignalR Service in Default mode. For more

information, see Frequently Asked Questions (azure-signalr GitHub repository).

The invoke  method returns a JavaScript Promise. The Promise  is resolved with the return value (if any) when

the method on the server returns. If the method on the server throws an error, the Promise  is rejected with the

error message. Use the then  and catch  methods on the Promise  itself to handle these cases (or await

syntax).

The send  method returns a JavaScript Promise . The Promise  is resolved when the message has been sent to

the server. If there is an error sending the message, the Promise  is rejected with the error message. Use the 

then  and catch  methods on the Promise  itself to handle these cases (or await  syntax).

Using send  doesn't wait until the server has received the message. Consequently, it's not possible to return data or

errors from the server.

To receive messages from the hub, define a method using the on method of the HubConnection .

The name of the JavaScript client method. In the following example, the method name is ReceiveMessage .

Arguments the hub passes to the method. In the following example, the argument value is message .

The preceding code in connection.on  runs when server-side code calls it using the SendAsync method.

https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnection#invoke
https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnection
https://github.com/Azure/azure-signalr/blob/dev/docs/faq.md#what-is-the-meaning-of-service-mode-defaultserverlessclassic-how-can-i-choose
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnection#on
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.clientproxyextensions.sendasync


NOTENOTE

Error handling and logging

connection.start().catch(err => console.error(err));

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chatHub")
    .configureLogging(signalR.LogLevel.Information)
    .build();

Reconnect clients
Manually reconnectManually reconnect

WARNINGWARNING

SignalR determines which client method to call by matching the method name and arguments defined in 

SendAsync  and connection.on .

As a best practice, call the start method on the HubConnection  after on . Doing so ensures your handlers are

registered before any messages are received.

Chain a catch  method to the end of the start  method to handle client-side errors. Use console.error  to

output errors to the browser's console.

Set up client-side log tracing by passing a logger and type of event to log when the connection is made.

Messages are logged with the specified log level and higher. Available log levels are as follows:

signalR.LogLevel.Error : Error messages. Logs Error  messages only.

signalR.LogLevel.Warning : Warning messages about potential errors. Logs Warning , and Error  messages.

signalR.LogLevel.Information : Status messages without errors. Logs Information , Warning , and Error

messages.

signalR.LogLevel.Trace : Trace messages. Logs everything, including data transported between hub and

client.

Use the configureLogging method on HubConnectionBuilder to configure the log level. Messages are logged to

the browser console.

Prior to 3.0, the JavaScript client for SignalR doesn't automatically reconnect. You must write code that will reconnect

your client manually.

The following code demonstrates a typical manual reconnection approach:

1. A function (in this case, the start  function) is created to start the connection.

2. Call the start  function in the connection's onclose  event handler.

https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnection#start
https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnectionbuilder#configurelogging
https://docs.microsoft.com/en-us/javascript/api/%40aspnet/signalr/hubconnectionbuilder


async function start() {
    try {
        await connection.start();
        console.log("connected");
    } catch (err) {
        console.log(err);
        setTimeout(() => start(), 5000);
    }
};

connection.onclose(async () => {
    await start();
});

Additional resources

A real-world implementation would use an exponential back-off or retry a specified number of times before

giving up.

JavaScript API reference

JavaScript tutorial

WebPack and TypeScript tutorial

Hubs

.NET client

Publish to Azure

Cross-Origin Requests (CORS)

Azure SignalR Service serverless documentation

https://docs.microsoft.com/en-us/javascript/api/?view=signalr-js-latest
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-serverless-development-config


ASP.NET Core SignalR hosting and scaling
9/22/2020 • 5 minutes to read • Edit Online

Sticky Sessions

TCP connection resources

An attempt was made to access a socket in a way forbidden by its access permissions...

Scale out

By Andrew Stanton-Nurse, Brady Gaster, and Tom Dykstra

This article explains hosting and scaling considerations for high-traffic apps that use ASP.NET Core SignalR.

SignalR requires that all HTTP requests for a specific connection be handled by the same server process. When

SignalR is running on a server farm (multiple servers), "sticky sessions" must be used. "Sticky sessions" are also

called session affinity by some load balancers. Azure App Service uses Application Request Routing (ARR) to route

requests. Enabling the "ARR Affinity" setting in your Azure App Service will enable "sticky sessions". The only

circumstances in which sticky sessions are not required are:

1. When hosting on a single server, in a single process.

2. When using the Azure SignalR Service.

3. When all clients are configured to onlyonly  use WebSockets, andand the SkipNegotiation setting is enabled in the

client configuration.

In all other circumstances (including when the Redis backplane is used), the server environment must be

configured for sticky sessions.

For guidance on configuring Azure App Service for SignalR, see Publish an ASP.NET Core SignalR app to Azure App

Service.

The number of concurrent TCP connections that a web server can support is limited. Standard HTTP clients use

ephemeral connections. These connections can be closed when the client goes idle and reopened later. On the other

hand, a SignalR connection is persistent. SignalR connections stay open even when the client goes idle. In a high-

traffic app that serves many clients, these persistent connections can cause servers to hit their maximum number

of connections.

Persistent connections also consume some additional memory, to track each connection.

The heavy use of connection-related resources by SignalR can affect other web apps that are hosted on the same

server. When SignalR opens and holds the last available TCP connections, other web apps on the same server also

have no more connections available to them.

If a server runs out of connections, you'll see random socket errors and connection reset errors. For example:

To keep SignalR resource usage from causing errors in other web apps, run SignalR on different servers than your

other web apps.

To keep SignalR resource usage from causing errors in a SignalR app, scale out to limit the number of connections

a server has to handle.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/scale.md
https://twitter.com/anurse
https://twitter.com/bradygaster
https://github.com/tdykstra
https://docs.microsoft.com/en-us/iis/extensions/planning-for-arr/application-request-routing-version-2-overview


     Azure SignalR Service

An app that uses SignalR needs to keep track of all its connections, which creates problems for a server farm. Add a

server, and it gets new connections that the other servers don't know about. For example, SignalR on each server in

the following diagram is unaware of the connections on the other servers. When SignalR on one of the servers

wants to send a message to all clients, the message only goes to the clients connected to that server.

The options for solving this problem are the Azure SignalR Service and Redis backplane.

The Azure SignalR Service is a proxy rather than a backplane. Each time a client initiates a connection to the server,

the client is redirected to connect to the service. That process is illustrated in the following diagram:

The result is that the service manages all of the client connections, while each server needs only a small constant

number of connections to the service, as shown in the following diagram:

This approach to scale-out has several advantages over the Redis backplane alternative:

Sticky sessions, also known as client affinity, is not required, because clients are immediately redirected to the

Azure SignalR Service when they connect.

A SignalR app can scale out based on the number of messages sent, while the Azure SignalR Service scales to

https://docs.microsoft.com/en-us/iis/extensions/configuring-application-request-routing-arr/http-load-balancing-using-application-request-routing#step-3---configure-client-affinity


 Redis backplane

IIS limitations on Windows client OS

handle any number of connections. For example, there could be thousands of clients, but if only a few messages

per second are sent, the SignalR app won't need to scale out to multiple servers just to handle the connections

themselves.

A SignalR app won't use significantly more connection resources than a web app without SignalR.

For these reasons, we recommend the Azure SignalR Service for all ASP.NET Core SignalR apps hosted on Azure,

including App Service, VMs, and containers.

For more information see the Azure SignalR Service documentation.

Redis is an in-memory key-value store that supports a messaging system with a publish/subscribe model. The

SignalR Redis backplane uses the pub/sub feature to forward messages to other servers. When a client makes a

connection, the connection information is passed to the backplane. When a server wants to send a message to all

clients, it sends to the backplane. The backplane knows all connected clients and which servers they're on. It sends

the message to all clients via their respective servers. This process is illustrated in the following diagram:

The Redis backplane is the recommended scale-out approach for apps hosted on your own infrastructure. If there is

significant connection latency between your data center and an Azure data center, Azure SignalR Service may not

be a practical option for on-premises apps with low latency or high throughput requirements.

The Azure SignalR Service advantages noted earlier are disadvantages for the Redis backplane:

Sticky sessions, also known as client affinity, is required, except when bothboth of the following are true:

A SignalR app must scale out based on number of clients even if few messages are being sent.

A SignalR app uses significantly more connection resources than a web app without SignalR.

All clients are configured to onlyonly  use WebSockets.

The SkipNegotiation setting is enabled in the client configuration. Once a connection is initiated on a

server, the connection has to stay on that server.

Windows 10 and Windows 8.x are client operating systems. IIS on client operating systems has a limit of 10

concurrent connections. SignalR's connections are:

Transient and frequently re-established.

NotNot disposed immediately when no longer used.

The preceding conditions make it likely to hit the 10 connection limit on a client OS. When a client OS is used for

https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://redis.io/
https://docs.microsoft.com/en-us/iis/extensions/configuring-application-request-routing-arr/http-load-balancing-using-application-request-routing#step-3---configure-client-affinity


Linux with Nginx

proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;

Third-party SignalR backplane providers

Next steps

development, we recommend:

Avoid IIS.

Use Kestrel or IIS Express as deployment targets.

Set the proxy's Connection  and Upgrade  headers to the following for SignalR WebSockets:

For more information, see NGINX as a WebSocket Proxy.

NCache

Orleans

For more information, see the following resources:

Azure SignalR Service documentation

Set up a Redis backplane

https://www.nginx.com/blog/websocket-nginx/
https://www.alachisoft.com/ncache/asp-net-core-signalr.html
https://github.com/OrleansContrib/SignalR.Orleans
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview


Publish an ASP.NET Core SignalR app to Azure App
Service
9/22/2020 • 2 minutes to read • Edit Online

NOTENOTE

Publish the app

By Brady Gaster

Azure App Service is a Microsoft cloud computing platform service for hosting web apps, including ASP.NET

Core.

This article refers to publishing an ASP.NET Core SignalR app from Visual Studio. For more information, see SignalR service

for Azure.

This article covers publishing using the tools in Visual Studio. Visual Studio Code users can use Azure CLI

commands to publish apps to Azure. For more information, see Publish an ASP.NET Core app to Azure with

command line tools.

IT EMIT EM DESC RIP T IO NDESC RIP T IO N

NameName Unique name of the app.

SubscriptionSubscription Azure subscription that the app uses.

Resource GroupResource Group Group of related resources to which the app belongs.

Hosting PlanHosting Plan Pricing plan for the web app.

1. Right-click on the project in Solution ExplorerSolution Explorer  and select PublishPublish .

2. Confirm that App Ser viceApp Ser vice and Create newCreate new  are selected in the Pick a publish targetPick a publish target dialog.

3. Select Create ProfileCreate Profile from the PublishPublish button drop down.

Enter the information described in the following table in the Create App Ser viceCreate App Ser vice dialog and select

CreateCreate.

4. Select the Azure S ignalR Ser viceAzure S ignalR Ser vice in the DependenciesDependencies  > AddAdd drop-down list:

5. In the Azure S ignalR Ser viceAzure S ignalR Ser vice dialog, select Create a new Azure S ignalR Ser vice instanceCreate a new Azure S ignalR Ser vice instance.

6. Provide a NameName, Resource GroupResource Group, and LocationLocation. Return to the Azure S ignalR Ser viceAzure S ignalR Ser vice dialog and

select AddAdd.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/publish-to-azure-web-app.md
https://twitter.com/bradygaster
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://azure.microsoft.com/
https://azure.microsoft.com/services/signalr-service
https://docs.microsoft.com/en-us/cli/azure
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-dotnet


  Configure the app in Azure App Service

NOTENOTE

App Service Plan limits

Additional resources

Visual Studio completes the following tasks:

Creates a Publish Profile containing publish settings.

Creates an Azure Web App with the provided details.

Publishes the app.

Launches a browser, which loads the web app.

The format of the app's URL is {APP SERVICE NAME}.azurewebsites.net . For example, an app named 

SignalRChatApp  has a URL of https://signalrchatapp.azurewebsites.net .

If an HTTP 502.2 - Bad Gateway error occurs when deploying an app that targets a preview .NET Core release,

see Deploy ASP.NET Core preview release to Azure App Service to resolve it.

This section only applies to apps not using the Azure SignalR Service.

If the app uses the Azure SignalR Service, the App Service doesn't require the configuration of Application Request Routing

(ARR) Affinity and Web Sockets described in this section. Clients connect their Web Sockets to the Azure SignalR Service,

not directly to the app.

For apps hosted without the Azure SignalR Service, enable:

ARR Affinity to route requests from a user back to the same App Service instance. The default setting is OnOn.

Web Sockets to allow the Web Sockets transport to function. The default setting is OffOff .

1. In the Azure portal, navigate to the web app in App Ser vicesApp Ser vices .

2. Open ConfigurationConfiguration > General settingsGeneral settings .

3. Set Web socketsWeb sockets  to OnOn.

4. Verify that ARR affinityARR affinity  is set to OnOn.

Web Sockets and other transports are limited based on the App Service Plan selected. For more information, see

the Azure Cloud Services limits and App Service limits sections of the Azure subscription and service limits,

quotas, and constraints article.

What is Azure SignalR Service?

Introduction to ASP.NET Core SignalR

Host and deploy ASP.NET Core

Publish an ASP.NET Core app to Azure with Visual Studio

Publish an ASP.NET Core app to Azure with command line tools

Host and deploy ASP.NET Core Preview apps on Azure

https://azure.github.io/AppService/2016/05/16/Disable-Session-affinity-cookie-(ARR-cookie)-for-Azure-web-apps.html
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#app-service-limits
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-dotnet


Set up a Redis backplane for ASP.NET Core SignalR
scale-out
9/22/2020 • 4 minutes to read • Edit Online

Set up a Redis backplane

By Andrew Stanton-Nurse, Brady Gaster, and Tom Dykstra,

This article explains SignalR-specific aspects of setting up a Redis server to use for scaling out an ASP.NET Core

SignalR app.

IMPORTANTIMPORTANT

Deploy a Redis server.

For production use, a Redis backplane is recommended only when it runs in the same data center as the SignalR app.

Otherwise, network latency degrades performance. If your SignalR app is running in the Azure cloud, we recommend

Azure SignalR Service instead of a Redis backplane. You can use the Azure Redis Cache Service for development and

test environments.

For more information, see the following resources:

ASP.NET Core SignalR production hosting and scaling

Redis documentation

Azure Redis Cache documentation

services.AddSignalR().AddRedis("<your_Redis_connection_string>");

services.AddSignalR()
  .AddRedis(connectionString, options => {
      options.Configuration.ChannelPrefix = "MyApp";
  });

In the SignalR app, install the Microsoft.AspNetCore.SignalR.Redis  NuGet package.

In the Startup.ConfigureServices  method, call AddRedis  after AddSignalR :

Configure options as needed:

Most options can be set in the connection string or in the ConfigurationOptions object. Options specified in 

ConfigurationOptions  override the ones set in the connection string.

The following example shows how to set options in the ConfigurationOptions  object. This example adds a

channel prefix so that multiple apps can share the same Redis instance, as explained in the following step.

In the preceding code, options.Configuration  is initialized with whatever was specified in the connection

string.

In the SignalR app, install one of the following NuGet packages:

Microsoft.AspNetCore.SignalR.StackExchangeRedis  - Depends on StackExchange.Redis 2.X.X. This is the

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/redis-backplane.md
https://twitter.com/anurse
https://twitter.com/bradygaster
https://github.com/tdykstra
https://redis.io/
https://redis.io/
https://docs.microsoft.com/en-us/azure/redis-cache/
https://stackexchange.github.io/StackExchange.Redis/Configuration#configuration-options


services.AddSignalR().AddStackExchangeRedis("<your_Redis_connection_string>");

recommended package for ASP.NET Core 2.2 and later.

Microsoft.AspNetCore.SignalR.Redis  - Depends on StackExchange.Redis 1.X.X. This package isn't included

in ASP.NET Core 3.0 and later.

In the Startup.ConfigureServices  method, call AddStackExchangeRedis:

When using Microsoft.AspNetCore.SignalR.Redis , call AddRedis.

services.AddSignalR()
  .AddStackExchangeRedis(connectionString, options => {
      options.Configuration.ChannelPrefix = "MyApp";
  });

Configure options as needed:

Most options can be set in the connection string or in the ConfigurationOptions object. Options specified in 

ConfigurationOptions  override the ones set in the connection string.

The following example shows how to set options in the ConfigurationOptions  object. This example adds a

channel prefix so that multiple apps can share the same Redis instance, as explained in the following step.

When using Microsoft.AspNetCore.SignalR.Redis , call AddRedis.

In the preceding code, options.Configuration  is initialized with whatever was specified in the connection string.

For information about Redis options, see the StackExchange Redis documentation.

services.AddSignalR().AddStackExchangeRedis("<your_Redis_connection_string>");

services.AddSignalR()
  .AddStackExchangeRedis(connectionString, options => {
      options.Configuration.ChannelPrefix = "MyApp";
  });

In the SignalR app, install the following NuGet package:

Microsoft.AspNetCore.SignalR.StackExchangeRedis

In the Startup.ConfigureServices  method, call AddStackExchangeRedis:

Configure options as needed:

Most options can be set in the connection string or in the ConfigurationOptions object. Options specified in 

ConfigurationOptions  override the ones set in the connection string.

The following example shows how to set options in the ConfigurationOptions  object. This example adds a

channel prefix so that multiple apps can share the same Redis instance, as explained in the following step.

In the preceding code, options.Configuration  is initialized with whatever was specified in the connection

string.

For information about Redis options, see the StackExchange Redis documentation.

If you're using one Redis server for multiple SignalR apps, use a different channel prefix for each SignalR

app.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.stackexchangeredisdependencyinjectionextensions.addstackexchangeredis
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.redisdependencyinjectionextensions.addredis
https://stackexchange.github.io/StackExchange.Redis/Configuration#configuration-options
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.redisdependencyinjectionextensions.addredis
https://stackexchange.github.io/StackExchange.Redis/Configuration.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.stackexchangeredisdependencyinjectionextensions.addstackexchangeredis
https://stackexchange.github.io/StackExchange.Redis/Configuration#configuration-options
https://stackexchange.github.io/StackExchange.Redis/Configuration.html


Redis server errors

Custom behavior for connection failuresCustom behavior for connection failures

services.AddSignalR()
        .AddRedis(o =>
        {
            o.ConnectionFactory = async writer =>
            {
                var config = new ConfigurationOptions
                {
                    AbortOnConnectFail = false
                };
                config.EndPoints.Add(IPAddress.Loopback, 0);
                config.SetDefaultPorts();
                var connection = await ConnectionMultiplexer.ConnectAsync(config, writer);
                connection.ConnectionFailed += (_, e) =>
                {
                    Console.WriteLine("Connection to Redis failed.");
                };

                if (!connection.IsConnected)
                {
                    Console.WriteLine("Did not connect to Redis.");
                }

                return connection;
            };
        });

Setting a channel prefix isolates one SignalR app from others that use different channel prefixes. If you don't

assign different prefixes, a message sent from one app to all of its own clients will go to all clients of all apps

that use the Redis server as a backplane.

Configure your server farm load balancing software for sticky sessions. Here are some examples of

documentation on how to do that:

IIS

HAProxy

Nginx

pfSense

When a Redis server goes down, SignalR throws exceptions that indicate messages won't be delivered. Some

typical exception messages:

Failed writing message

Failed to invoke hub method 'MethodName'

Connection to Redis failed

SignalR doesn't buffer messages to send them when the server comes back up. Any messages sent while the Redis

server is down are lost.

SignalR automatically reconnects when the Redis server is available again.

Here's an example that shows how to handle Redis connection failure events.

https://docs.microsoft.com/en-us/iis/extensions/configuring-application-request-routing-arr/http-load-balancing-using-application-request-routing
https://www.haproxy.com/blog/load-balancing-affinity-persistence-sticky-sessions-what-you-need-to-know/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#sticky
https://www.netgate.com/docs/pfsense/loadbalancing/inbound-load-balancing.html#sticky-connections


services.AddSignalR()
        .AddMessagePackProtocol()
        .AddStackExchangeRedis(o =>
        {
            o.ConnectionFactory = async writer =>
            {
                var config = new ConfigurationOptions
                {
                    AbortOnConnectFail = false
                };
                config.EndPoints.Add(IPAddress.Loopback, 0);
                config.SetDefaultPorts();
                var connection = await ConnectionMultiplexer.ConnectAsync(config, writer);
                connection.ConnectionFailed += (_, e) =>
                {
                    Console.WriteLine("Connection to Redis failed.");
                };

                if (!connection.IsConnected)
                {
                    Console.WriteLine("Did not connect to Redis.");
                }

                return connection;
            };
        });

Redis Clustering

Next steps

Redis Clustering is a method for achieving high availability by using multiple Redis servers. Clustering isn't

officially supported, but it might work.

For more information, see the following resources:

ASP.NET Core SignalR production hosting and scaling

Redis documentation

StackExchange Redis documentation

Azure Redis Cache documentation

https://redis.io/topics/cluster-spec
https://redis.io/documentation
https://stackexchange.github.io/StackExchange.Redis/
https://docs.microsoft.com/en-us/azure/redis-cache/


Host ASP.NET Core SignalR in background services
9/22/2020 • 4 minutes to read • Edit Online

Enable SignalR in startup

public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddSignalR();
        services.AddHostedService<Worker>();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseRouting();
        app.UseEndpoints(endpoints =>
        {
            endpoints.MapHub<ClockHub>("/hubs/clock");
        });
    }
}

By Brady Gaster

This article provides guidance for :

Hosting SignalR Hubs using a background worker process hosted with ASP.NET Core.

Sending messages to connected clients from within a .NET Core BackgroundService.

View or download sample code (how to download)

View or download sample code (how to download)

Hosting ASP.NET Core SignalR Hubs in the context of a background worker process is identical to hosting a Hub in

an ASP.NET Core web app. In the Startup.ConfigureServices  method, calling services.AddSignalR  adds the

required services to the ASP.NET Core Dependency Injection (DI) layer to support SignalR. In Startup.Configure ,

the MapHub  method is called in the UseEndpoints  callback to connect the Hub endpoints in the ASP.NET Core

request pipeline.

Hosting ASP.NET Core SignalR Hubs in the context of a background worker process is identical to hosting a Hub in

an ASP.NET Core web app. In the Startup.ConfigureServices  method, calling services.AddSignalR  adds the

required services to the ASP.NET Core Dependency Injection (DI) layer to support SignalR. In Startup.Configure ,

the UseSignalR  method is called to connect the Hub endpoint(s) in the ASP.NET Core request pipeline.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/background-services.md
https://twitter.com/bradygaster
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/signalr/background-service/samples/3.x
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/signalr/background-service/samples/2.2


public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddSignalR();
        services.AddHostedService<Worker>();
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseSignalR((routes) =>
        {
            routes.MapHub<ClockHub>("/hubs/clock");
        });
    }
}

NOTENOTE

public class ClockHub : Hub<IClock>
{
    public async Task SendTimeToClients(DateTime dateTime)
    {
        await Clients.All.ShowTime(dateTime);
    }
}

public class ClockHub : Hub<IClock>
{
    public async Task SendTimeToClients(DateTime dateTime)
    {
        await Clients.All.ShowTime(dateTime);
    }
}

public interface IClock
{
    Task ShowTime(DateTime currentTime);
}

In the preceding example, the ClockHub  class implements the Hub<T>  class to create a strongly typed Hub. The 

ClockHub  has been configured in the Startup  class to respond to requests at the endpoint /hubs/clock .

For more information on strongly typed Hubs, see Use hubs in SignalR for ASP.NET Core.

This functionality isn't limited to the Hub<T> class. Any class that inherits from Hub, such as DynamicHub, works.

The interface used by the strongly typed ClockHub  is the IClock  interface.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hub-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.dynamichub


public interface IClock
{
    Task ShowTime(DateTime currentTime);
}

Call a SignalR Hub from a background service

services.AddHostedService<Worker>();

public class Worker : BackgroundService
{
    private readonly ILogger<Worker> _logger;
    private readonly IHubContext<ClockHub, IClock> _clockHub;

    public Worker(ILogger<Worker> logger, IHubContext<ClockHub, IClock> clockHub)
    {
        _logger = logger;
        _clockHub = clockHub;
    }

    protected override async Task ExecuteAsync(CancellationToken stoppingToken)
    {
        while (!stoppingToken.IsCancellationRequested)
        {
            _logger.LogInformation("Worker running at: {Time}", DateTime.Now);
            await _clockHub.Clients.All.ShowTime(DateTime.Now);
            await Task.Delay(1000);
        }
    }
}

During startup, the Worker  class, a BackgroundService , is enabled using AddHostedService .

Since SignalR is also enabled up during the Startup  phase, in which each Hub is attached to an individual endpoint

in ASP.NET Core's HTTP request pipeline, each Hub is represented by an IHubContext<T>  on the server. Using

ASP.NET Core's DI features, other classes instantiated by the hosting layer, like BackgroundService  classes, MVC

Controller classes, or Razor page models, can get references to server-side Hubs by accepting instances of 

IHubContext<ClockHub, IClock>  during construction.



public class Worker : BackgroundService
{
    private readonly ILogger<Worker> _logger;
    private readonly IHubContext<ClockHub, IClock> _clockHub;

    public Worker(ILogger<Worker> logger, IHubContext<ClockHub, IClock> clockHub)
    {
        _logger = logger;
        _clockHub = clockHub;
    }

    protected override async Task ExecuteAsync(CancellationToken stoppingToken)
    {
        while (!stoppingToken.IsCancellationRequested)
        {
            _logger.LogInformation("Worker running at: {Time}", DateTime.Now);
            await _clockHub.Clients.All.ShowTime(DateTime.Now);
            await Task.Delay(1000);
        }
    }
}

React to SignalR events with background services

public partial class ClockHubClient : IClock, IHostedService
{
}

As the ExecuteAsync  method is called iteratively in the background service, the server's current date and time are

sent to the connected clients using the ClockHub .

Like a Single Page App using the JavaScript client for SignalR or a .NET desktop app can do using the using the

ASP.NET Core SignalR .NET Client, a BackgroundService  or IHostedService  implementation can also be used to

connect to SignalR Hubs and respond to events.

The ClockHubClient  class implements both the IClock  interface and the IHostedService  interface. This way it can

be enabled during Startup  to run continuously and respond to Hub events from the server.

During initialization, the ClockHubClient  creates an instance of a HubConnection  and enables the IClock.ShowTime

method as the handler for the Hub's ShowTime  event.



private readonly ILogger<ClockHubClient> _logger;
private HubConnection _connection;

public ClockHubClient(ILogger<ClockHubClient> logger)
{
    _logger = logger;
    
    _connection = new HubConnectionBuilder()
        .WithUrl(Strings.HubUrl)
        .Build();

    _connection.On<DateTime>(Strings.Events.TimeSent, ShowTime);
}

public Task ShowTime(DateTime currentTime)
{
    _logger.LogInformation("{CurrentTime}", currentTime.ToShortTimeString());

    return Task.CompletedTask;
}

public async Task StartAsync(CancellationToken cancellationToken)
{
    // Loop is here to wait until the server is running
    while (true)
    {
        try
        {
            await _connection.StartAsync(cancellationToken);

            break;
        }
        catch
        {
            await Task.Delay(1000);
        }
    }
}

public Task StopAsync(CancellationToken cancellationToken)
{
    return _connection.DisposeAsync();
}

In the IHostedService.StartAsync  implementation, the HubConnection  is started asynchronously.

During the IHostedService.StopAsync  method, the HubConnection  is disposed of asynchronously.



private readonly ILogger<ClockHubClient> _logger;
private HubConnection _connection;

public ClockHubClient(ILogger<ClockHubClient> logger)
{
    _logger = logger;
    
    _connection = new HubConnectionBuilder()
        .WithUrl(Strings.HubUrl)
        .Build();

    _connection.On<DateTime>(Strings.Events.TimeSent, 
        dateTime => _ = ShowTime(dateTime));
}

public Task ShowTime(DateTime currentTime)
{
    _logger.LogInformation("{CurrentTime}", currentTime.ToShortTimeString());

    return Task.CompletedTask;
}

public async Task StartAsync(CancellationToken cancellationToken)
{
    // Loop is here to wait until the server is running
    while (true)
    {
        try
        {
            await _connection.StartAsync(cancellationToken);

            break;
        }
        catch
        {
            await Task.Delay(1000);
        }
    }
}

public Task StopAsync(CancellationToken cancellationToken)
{
    return _connection.DisposeAsync();
}

Additional resources

In the IHostedService.StartAsync  implementation, the HubConnection  is started asynchronously.

During the IHostedService.StopAsync  method, the HubConnection  is disposed of asynchronously.

Get started

Hubs

Publish to Azure

Strongly typed Hubs



ASP.NET Core SignalR configuration
9/22/2020 • 69 minutes to read • Edit Online

JSON/MessagePack serialization options

services.AddSignalR()
    .AddJsonProtocol(options => {
        options.PayloadSerializerOptions.PropertyNamingPolicy = null
    });

// At the top of the file:
using Microsoft.Extensions.DependencyInjection;

// When constructing your connection:
var connection = new HubConnectionBuilder()
    .AddJsonProtocol(options => {
        options.PayloadSerializerOptions.PropertyNamingPolicy = null;
    })
    .Build();

NOTENOTE

Switch to Newtonsoft.JsonSwitch to Newtonsoft.Json

MessagePack serialization optionsMessagePack serialization options

NOTENOTE

ASP.NET Core SignalR supports two protocols for encoding messages: JSON and MessagePack. Each protocol has

serialization configuration options.

JSON serialization can be configured on the server using the AddJsonProtocol extension method. AddJsonProtocol

can be added after AddSignalR in Startup.ConfigureServices . The AddJsonProtocol  method takes a delegate that

receives an options  object. The PayloadSerializerOptions property on that object is a System.Text.Json

JsonSerializerOptions object that can be used to configure serialization of arguments and return values. For more

information, see the System.Text.Json documentation.

As an example, to configure the serializer to not change the casing of property names, instead of the default

"camelCase" names, use the following code in Startup.ConfigureServices :

In the .NET client, the same AddJsonProtocol  extension method exists on HubConnectionBuilder. The 

Microsoft.Extensions.DependencyInjection  namespace must be imported to resolve the extension method:

It's not possible to configure JSON serialization in the JavaScript client at this time.

If you need features of Newtonsoft.Json  that aren't supported in System.Text.Json , See Switch to Newtonsoft.Json.

MessagePack serialization can be configured by providing a delegate to the AddMessagePackProtocol call. See

MessagePack in SignalR for more details.

It's not possible to configure MessagePack serialization in the JavaScript client at this time.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/configuration.md
https://www.json.org/
https://msgpack.org/index.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.jsonprotocoldependencyinjectionextensions.addjsonprotocol
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.jsonhubprotocoloptions.payloadserializeroptions
https://docs.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializeroptions
https://docs.microsoft.com/en-us/dotnet/api/system.text.json
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnectionbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msgpackprotocoldependencyinjectionextensions.addmessagepackprotocol


  Configure server options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ClientTimeoutInterval 30 seconds The server will consider the client
disconnected if it hasn't received a
message (including keep-alive) in this
interval. It could take longer than this
timeout interval for the client to actually
be marked disconnected, due to how
this is implemented. The recommended
value is double the 
KeepAliveInterval  value.

HandshakeTimeout 15 seconds If the client doesn't send an initial
handshake message within this time
interval, the connection is closed. This is
an advanced setting that should only be
modified if handshake timeout errors
are occurring due to severe network
latency. For more detail on the
handshake process, see the SignalR Hub
Protocol Specification.

KeepAliveInterval 15 seconds If the server hasn't sent a message
within this interval, a ping message is
sent automatically to keep the
connection open. When changing 
KeepAliveInterval , change the 

ServerTimeout /

serverTimeoutInMilliseconds

setting on the client. The recommended
ServerTimeout /

serverTimeoutInMilliseconds  value

is double the KeepAliveInterval

value.

SupportedProtocols All installed protocols Protocols supported by this hub. By
default, all protocols registered on the
server are allowed, but protocols can be
removed from this list to disable specific
protocols for individual hubs.

EnableDetailedErrors false If true , detailed exception messages

are returned to clients when an
exception is thrown in a Hub method.
The default is false , as these

exception messages can contain
sensitive information.

StreamBufferCapacity 10 The maximum number of items that can
be buffered for client upload streams. If
this limit is reached, the processing of
invocations is blocked until the server
processes stream items.

The following table describes options for configuring SignalR hubs:

https://github.com/aspnet/SignalR/blob/master/specs/HubProtocol.md


MaximumReceiveMessageSize 32 KB Maximum size of a single incoming hub
message.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

public void ConfigureServices(IServiceCollection services)
{
    services.AddSignalR(hubOptions =>
    {
        hubOptions.EnableDetailedErrors = true;
        hubOptions.KeepAliveInterval = TimeSpan.FromMinutes(1);
    });
}

services.AddSignalR().AddHubOptions<ChatHub>(options =>
{
    options.EnableDetailedErrors = true;
});

Advanced HTTP configuration optionsAdvanced HTTP configuration options

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapHub<ChatHub>("/chathub", options =>
        {
            options.Transports =
                HttpTransportType.WebSockets |
                HttpTransportType.LongPolling;
        });
    });
}

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ApplicationMaxBufferSize 32 KB The maximum number of bytes received
from the client that the server buffers
before applying backpressure.
Increasing this value allows the server
to receive larger messages more quickly
without applying backpressure, but can
increase memory consumption.

Options can be configured for all hubs by providing an options delegate to the AddSignalR  call in 

Startup.ConfigureServices .

Options for a single hub override the global options provided in AddSignalR  and can be configured using

AddHubOptions:

Use HttpConnectionDispatcherOptions  to configure advanced settings related to transports and memory buffer

management. These options are configured by passing a delegate to MapHub<T> in Startup.Configure .

The following table describes options for configuring ASP.NET Core SignalR's advanced HTTP options:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addhuboptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hubendpointroutebuilderextensions.maphub


    

AuthorizationData Data automatically gathered from the 
Authorize  attributes applied to the

Hub class.

A list of IAuthorizeData objects used to
determine if a client is authorized to
connect to the hub.

TransportMaxBufferSize 32 KB The maximum number of bytes sent by
the app that the server buffers before
observing backpressure. Increasing this
value allows the server to buffer larger
messages more quickly without
awaiting backpressure, but can increase
memory consumption.

Transports All Transports are enabled. A bit flags enum of 
HttpTransportType  values that can

restrict the transports a client can use
to connect.

LongPolling See below. Additional options specific to the Long
Polling transport.

WebSockets See below. Additional options specific to the
WebSockets transport.

MinimumProtocolVersion 0 Specify the minimum version of the
negotiate protocol. This is used to limit
clients to newer versions.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

PollTimeout 90 seconds The maximum amount of time the
server waits for a message to send to
the client before terminating a single
poll request. Decreasing this value
causes the client to issue new poll
requests more frequently.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

CloseTimeout 5 seconds After the server closes, if the client fails
to close within this time interval, the
connection is terminated.

SubProtocolSelector null A delegate that can be used to set the 
Sec-WebSocket-Protocol  header to a

custom value. The delegate receives the
values requested by the client as input
and is expected to return the desired
value.

Configure client options

The Long Polling transport has additional options that can be configured using the LongPolling  property:

The WebSocket transport has additional options that can be configured using the WebSockets  property:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizedata


Configure loggingConfigure logging

NOTENOTE

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub")
    .ConfigureLogging(logging => {
        logging.SetMinimumLevel(LogLevel.Information);
        logging.AddConsole();
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .configureLogging(signalR.LogLevel.Information)
    .build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .configureLogging("warn")
    .build();

ST RIN GST RIN G LO GL EVELLO GL EVEL

trace LogLevel.Trace

debug LogLevel.Debug

info  oror  information LogLevel.Information

warn  oror  warning LogLevel.Warning

Client options can be configured on the HubConnectionBuilder  type (available in the .NET and JavaScript clients). It's

also available in the Java client, but the HttpHubConnectionBuilder  subclass is what contains the builder

configuration options, as well as on the HubConnection  itself.

Logging is configured in the .NET Client using the ConfigureLogging  method. Logging providers and filters can be

registered in the same way as they are on the server. See the Logging in ASP.NET Core documentation for more

information.

In order to register Logging providers, you must install the necessary packages. See the Built-in logging providers section of

the docs for a full list.

For example, to enable Console logging, install the Microsoft.Extensions.Logging.Console  NuGet package. Call the 

AddConsole  extension method:

In the JavaScript client, a similar configureLogging  method exists. Provide a LogLevel  value indicating the

minimum level of log messages to produce. Logs are written to the browser console window.

Instead of a LogLevel  value, you can also provide a string  value representing a log level name. This is useful

when configuring SignalR logging in environments where you don't have access to the LogLevel  constants.

The following table lists the available log levels. The value you provide to configureLogging  sets the minimumminimum log

level that will be logged. Messages logged at this level, or  the levels listed after it in the tableor the levels listed after it in the table, will be logged.



error LogLevel.Error

critical LogLevel.Critical

none LogLevel.None

ST RIN GST RIN G LO GL EVELLO GL EVEL

NOTENOTE

implementation 'org.slf4j:slf4j-jdk14:1.7.25'

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

Configure allowed transportsConfigure allowed transports

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", HttpTransportType.WebSockets | HttpTransportType.LongPolling)
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", { transport: signalR.HttpTransportType.WebSockets | 
signalR.HttpTransportType.LongPolling })
    .build();

To disable logging entirely, specify signalR.LogLevel.None  in the configureLogging  method.

For more information on logging, see the SignalR Diagnostics documentation.

The SignalR Java client uses the SLF4J library for logging. It's a high-level logging API that allows users of the

library to chose their own specific logging implementation by bringing in a specific logging dependency. The

following code snippet shows how to use java.util.logging  with the SignalR Java client.

If you don't configure logging in your dependencies, SLF4J loads a default no-operation logger with the following

warning message:

This can safely be ignored.

The transports used by SignalR can be configured in the WithUrl  call ( withUrl  in JavaScript). A bitwise-OR of the

values of HttpTransportType  can be used to restrict the client to only use the specified transports. All transports are

enabled by default.

For example, to disable the Server-Sent Events transport, but allow WebSockets and Long Polling connections:

In the JavaScript client, transports are configured by setting the transport  field on the options object provided to 

withUrl :

In this version of the Java client websockets is the only available transport.

In the Java client, the transport is selected with the withTransport  method on the HttpHubConnectionBuilder . The

Java client defaults to using the WebSockets transport.

https://www.slf4j.org/


    

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
    .withTransport(TransportEnum.WEBSOCKETS)
    .build();

NOTENOTE

Configure bearer authenticationConfigure bearer authentication

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options => {
        options.AccessTokenProvider = async () => {
            // Get and return the access token.
        };
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", {
        accessTokenFactory: () => {
            // Get and return the access token.
            // This function can return a JavaScript Promise if asynchronous
            // logic is required to retrieve the access token.
        }
    })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
    .withAccessTokenProvider(Single.defer(() -> {
        // Your logic here.
        return Single.just("An Access Token");
    })).build();

Configure timeout and keep-alive optionsConfigure timeout and keep-alive options

The SignalR Java client doesn't support transport fallback yet.

To provide authentication data along with SignalR requests, use the AccessTokenProvider  option (

accessTokenFactory  in JavaScript) to specify a function that returns the desired access token. In the .NET Client, this

access token is passed in as an HTTP "Bearer Authentication" token (Using the Authorization  header with a type of 

Bearer ). In the JavaScript client, the access token is used as a Bearer token, exceptexcept in a few cases where browser

APIs restrict the ability to apply headers (specifically, in Server-Sent Events and WebSockets requests). In these

cases, the access token is provided as a query string value access_token .

In the .NET client, the AccessTokenProvider  option can be specified using the options delegate in WithUrl :

In the JavaScript client, the access token is configured by setting the accessTokenFactory  field on the options object

in withUrl :

In the SignalR Java client, you can configure a bearer token to use for authentication by providing an access token

factory to the HttpHubConnectionBuilder. Use withAccessTokenFactory to provide an RxJava Single<String>. With

a call to Single.defer, you can write logic to produce access tokens for your client.

Additional options for configuring timeout and keep-alive behavior are available on the HubConnection  object itself:

.NET

JavaScript

https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder?view=aspnet-signalr-java
https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder.withaccesstokenprovider?view=aspnet-signalr-java#com_microsoft_signalr__http_hub_connection_builder_withaccesstokenprovider_single_string__
https://github.com/ReactiveX/RxJava
https://reactivex.io/documentation/single.html
https://reactivex.io/RxJava/javadoc/io/reactivex/Single.html#defer-java.util.concurrent.Callable-


                        

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ServerTimeout 30 seconds (30,000 milliseconds) Timeout for server activity. If the server
hasn't sent a message in this interval,
the client considers the server
disconnected and triggers the Closed

event ( onclose  in JavaScript). This

value must be large enough for a ping
message to be sent from the server
andand received by the client within the
timeout interval. The recommended
value is a number at least double the
server's KeepAliveInterval  value to

allow time for pings to arrive.

HandshakeTimeout 15 seconds Timeout for initial server handshake. If
the server doesn't send a handshake
response in this interval, the client
cancels the handshake and triggers the 
Closed  event ( onclose  in

JavaScript). This is an advanced setting
that should only be modified if
handshake timeout errors are occurring
due to severe network latency. For more
detail on the handshake process, see
the SignalR Hub Protocol Specification.

KeepAliveInterval 15 seconds Determines the interval at which the
client sends ping messages. Sending
any message from the client resets the
timer to the start of the interval. If the
client hasn't sent a message in the 
ClientTimeoutInterval  set on the

server, the server considers the client
disconnected.

Configure additional optionsConfigure additional options

. N ET  O P T IO N. N ET  O P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

AccessTokenProvider null A function returning a string that is
provided as a Bearer authentication
token in HTTP requests.

Java

In the .NET Client, timeout values are specified as TimeSpan  values.

Additional options can be configured in the WithUrl  ( withUrl  in JavaScript) method on HubConnectionBuilder  or

on the various configuration APIs on the HttpHubConnectionBuilder  in the Java client:

.NET

JavaScript

Java

https://github.com/aspnet/SignalR/blob/master/specs/HubProtocol.md


SkipNegotiation false Set this to true  to skip the

negotiation step. Only suppor tedOnly suppor ted
when the WebSockets transpor t iswhen the WebSockets transpor t is
the only enabled transpor tthe only enabled transpor t . This
setting can't be enabled when using the
Azure SignalR Service.

ClientCertificates Empty A collection of TLS certificates to send
to authenticate requests.

Cookies Empty A collection of HTTP cookies to send
with every HTTP request.

Credentials Empty Credentials to send with every HTTP
request.

CloseTimeout 5 seconds WebSockets only. The maximum
amount of time the client waits after
closing for the server to acknowledge
the close request. If the server doesn't
acknowledge the close within this time,
the client disconnects.

Headers Empty A Map of additional HTTP headers to
send with every HTTP request.

HttpMessageHandlerFactory null A delegate that can be used to
configure or replace the 
HttpMessageHandler  used to send

HTTP requests. Not used for WebSocket
connections. This delegate must return
a non-null value, and it receives the
default value as a parameter. Either
modify settings on that default value
and return it, or return a new 
HttpMessageHandler  instance. WhenWhen

replacing the handler make surereplacing the handler make sure
to copy the settings you want toto copy the settings you want to
keep from the provided handler,keep from the provided handler,
other wise, the configured optionsother wise, the configured options
(such as Cookies and Headers)(such as Cookies and Headers)
won't apply to the new handler.won't apply to the new handler.

Proxy null An HTTP proxy to use when sending
HTTP requests.

UseDefaultCredentials false Set this boolean to send the default
credentials for HTTP and WebSockets
requests. This enables the use of
Windows authentication.

WebSocketConfiguration null A delegate that can be used to
configure additional WebSocket options.
Receives an instance of
ClientWebSocketOptions that can be
used to configure the options.

. N ET  O P T IO N. N ET  O P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

https://docs.microsoft.com/en-us/dotnet/api/system.net.websockets.clientwebsocketoptions


var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options => {
        options.Headers["Foo"] = "Bar";
        options.Cookies.Add(new Cookie(/* ... */);
        options.ClientCertificates.Add(/* ... */);
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", {
        skipNegotiation: true,
        transport: signalR.HttpTransportType.WebSockets
    })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
        .withHeader("Foo", "Bar")
        .shouldSkipNegotiate(true)
        .withHandshakeResponseTimeout(30*1000)
        .build();

Additional resources

JSON/MessagePack serialization options

In the .NET Client, these options can be modified by the options delegate provided to WithUrl :

In the JavaScript Client, these options can be provided in a JavaScript object provided to withUrl :

In the Java client, these options can be configured with the methods on the HttpHubConnectionBuilder  returned

from the HubConnectionBuilder.create("HUB URL")

Get started with ASP.NET Core SignalR

Use hubs in ASP.NET Core SignalR

ASP.NET Core SignalR JavaScript client

ASP.NET Core SignalR .NET Client

Use MessagePack Hub Protocol in SignalR for ASP.NET Core

ASP.NET Core SignalR supported platforms

ASP.NET Core SignalR supports two protocols for encoding messages: JSON and MessagePack. Each protocol has

serialization configuration options.

JSON serialization can be configured on the server using the AddJsonProtocol extension method. AddJsonProtocol

can be added after AddSignalR in Startup.ConfigureServices . The AddJsonProtocol  method takes a delegate that

receives an options  object. The PayloadSerializerOptions property on that object is a System.Text.Json

JsonSerializerOptions object that can be used to configure serialization of arguments and return values. For more

information, see the System.Text.Json documentation.

As an example, to configure the serializer to not change the casing of property names, instead of the default

"camelCase" names, use the following code in Startup.ConfigureServices :

https://www.json.org/
https://msgpack.org/index.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.jsonprotocoldependencyinjectionextensions.addjsonprotocol
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.jsonhubprotocoloptions.payloadserializeroptions
https://docs.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializeroptions
https://docs.microsoft.com/en-us/dotnet/api/system.text.json


services.AddSignalR()
    .AddJsonProtocol(options => {
        options.PayloadSerializerOptions.PropertyNamingPolicy = null
    });

// At the top of the file:
using Microsoft.Extensions.DependencyInjection;

// When constructing your connection:
var connection = new HubConnectionBuilder()
    .AddJsonProtocol(options => {
        options.PayloadSerializerOptions.PropertyNamingPolicy = null;
    })
    .Build();

NOTENOTE

Switch to Newtonsoft.JsonSwitch to Newtonsoft.Json

MessagePack serialization optionsMessagePack serialization options

NOTENOTE

Configure server options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ClientTimeoutInterval 30 seconds The server will consider the client
disconnected if it hasn't received a
message (including keep-alive) in this
interval. It could take longer than this
timeout interval for the client to actually
be marked disconnected, due to how
this is implemented. The recommended
value is double the 
KeepAliveInterval  value.

In the .NET client, the same AddJsonProtocol  extension method exists on HubConnectionBuilder. The 

Microsoft.Extensions.DependencyInjection  namespace must be imported to resolve the extension method:

It's not possible to configure JSON serialization in the JavaScript client at this time.

If you need features of Newtonsoft.Json  that aren't supported in System.Text.Json , See Switch to Newtonsoft.Json.

MessagePack serialization can be configured by providing a delegate to the AddMessagePackProtocol call. See

MessagePack in SignalR for more details.

It's not possible to configure MessagePack serialization in the JavaScript client at this time.

The following table describes options for configuring SignalR hubs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnectionbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msgpackprotocoldependencyinjectionextensions.addmessagepackprotocol


HandshakeTimeout 15 seconds If the client doesn't send an initial
handshake message within this time
interval, the connection is closed. This is
an advanced setting that should only be
modified if handshake timeout errors
are occurring due to severe network
latency. For more detail on the
handshake process, see the SignalR Hub
Protocol Specification.

KeepAliveInterval 15 seconds If the server hasn't sent a message
within this interval, a ping message is
sent automatically to keep the
connection open. When changing 
KeepAliveInterval , change the 

ServerTimeout /

serverTimeoutInMilliseconds

setting on the client. The recommended
ServerTimeout /

serverTimeoutInMilliseconds  value

is double the KeepAliveInterval

value.

SupportedProtocols All installed protocols Protocols supported by this hub. By
default, all protocols registered on the
server are allowed, but protocols can be
removed from this list to disable specific
protocols for individual hubs.

EnableDetailedErrors false If true , detailed exception messages

are returned to clients when an
exception is thrown in a Hub method.
The default is false , as these

exception messages can contain
sensitive information.

StreamBufferCapacity 10 The maximum number of items that can
be buffered for client upload streams. If
this limit is reached, the processing of
invocations is blocked until the server
processes stream items.

MaximumReceiveMessageSize 32 KB Maximum size of a single incoming hub
message.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

public void ConfigureServices(IServiceCollection services)
{
    services.AddSignalR(hubOptions =>
    {
        hubOptions.EnableDetailedErrors = true;
        hubOptions.KeepAliveInterval = TimeSpan.FromMinutes(1);
    });
}

Options can be configured for all hubs by providing an options delegate to the AddSignalR  call in 

Startup.ConfigureServices .

https://github.com/aspnet/SignalR/blob/master/specs/HubProtocol.md


services.AddSignalR().AddHubOptions<ChatHub>(options =>
{
    options.EnableDetailedErrors = true;
});

Advanced HTTP configuration optionsAdvanced HTTP configuration options

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapHub<ChatHub>("/chathub", options =>
        {
            options.Transports =
                HttpTransportType.WebSockets |
                HttpTransportType.LongPolling;
        });
    });
}

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ApplicationMaxBufferSize 32 KB The maximum number of bytes received
from the client that the server buffers
before applying backpressure.
Increasing this value allows the server
to receive larger messages more quickly
without applying backpressure, but can
increase memory consumption.

AuthorizationData Data automatically gathered from the 
Authorize  attributes applied to the

Hub class.

A list of IAuthorizeData objects used to
determine if a client is authorized to
connect to the hub.

TransportMaxBufferSize 32 KB The maximum number of bytes sent by
the app that the server buffers before
observing backpressure. Increasing this
value allows the server to buffer larger
messages more quickly without
awaiting backpressure, but can increase
memory consumption.

Transports All Transports are enabled. A bit flags enum of 
HttpTransportType  values that can

restrict the transports a client can use
to connect.

LongPolling See below. Additional options specific to the Long
Polling transport.

Options for a single hub override the global options provided in AddSignalR  and can be configured using

AddHubOptions:

Use HttpConnectionDispatcherOptions  to configure advanced settings related to transports and memory buffer

management. These options are configured by passing a delegate to MapHub<T> in Startup.Configure .

The following table describes options for configuring ASP.NET Core SignalR's advanced HTTP options:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addhuboptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hubendpointroutebuilderextensions.maphub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizedata


WebSockets See below. Additional options specific to the
WebSockets transport.

MinimumProtocolVersion 0 Specify the minimum version of the
negotiate protocol. This is used to limit
clients to newer versions.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

PollTimeout 90 seconds The maximum amount of time the
server waits for a message to send to
the client before terminating a single
poll request. Decreasing this value
causes the client to issue new poll
requests more frequently.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

CloseTimeout 5 seconds After the server closes, if the client fails
to close within this time interval, the
connection is terminated.

SubProtocolSelector null A delegate that can be used to set the 
Sec-WebSocket-Protocol  header to a

custom value. The delegate receives the
values requested by the client as input
and is expected to return the desired
value.

Configure client options

Configure loggingConfigure logging

NOTENOTE

The Long Polling transport has additional options that can be configured using the LongPolling  property:

The WebSocket transport has additional options that can be configured using the WebSockets  property:

Client options can be configured on the HubConnectionBuilder  type (available in the .NET and JavaScript clients). It's

also available in the Java client, but the HttpHubConnectionBuilder  subclass is what contains the builder

configuration options, as well as on the HubConnection  itself.

Logging is configured in the .NET Client using the ConfigureLogging  method. Logging providers and filters can be

registered in the same way as they are on the server. See the Logging in ASP.NET Core documentation for more

information.

In order to register Logging providers, you must install the necessary packages. See the Built-in logging providers section of

the docs for a full list.

For example, to enable Console logging, install the Microsoft.Extensions.Logging.Console  NuGet package. Call the 

AddConsole  extension method:



var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub")
    .ConfigureLogging(logging => {
        logging.SetMinimumLevel(LogLevel.Information);
        logging.AddConsole();
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .configureLogging(signalR.LogLevel.Information)
    .build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .configureLogging("warn")
    .build();

ST RIN GST RIN G LO GL EVELLO GL EVEL

trace LogLevel.Trace

debug LogLevel.Debug

info  oror  information LogLevel.Information

warn  oror  warning LogLevel.Warning

error LogLevel.Error

critical LogLevel.Critical

none LogLevel.None

NOTENOTE

In the JavaScript client, a similar configureLogging  method exists. Provide a LogLevel  value indicating the

minimum level of log messages to produce. Logs are written to the browser console window.

Instead of a LogLevel  value, you can also provide a string  value representing a log level name. This is useful

when configuring SignalR logging in environments where you don't have access to the LogLevel  constants.

The following table lists the available log levels. The value you provide to configureLogging  sets the minimumminimum log

level that will be logged. Messages logged at this level, or  the levels listed after it in the tableor the levels listed after it in the table, will be logged.

To disable logging entirely, specify signalR.LogLevel.None  in the configureLogging  method.

For more information on logging, see the SignalR Diagnostics documentation.

The SignalR Java client uses the SLF4J library for logging. It's a high-level logging API that allows users of the

library to chose their own specific logging implementation by bringing in a specific logging dependency. The

following code snippet shows how to use java.util.logging  with the SignalR Java client.

https://www.slf4j.org/


implementation 'org.slf4j:slf4j-jdk14:1.7.25'

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

Configure allowed transportsConfigure allowed transports

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", HttpTransportType.WebSockets | HttpTransportType.LongPolling)
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", { transport: signalR.HttpTransportType.WebSockets | 
signalR.HttpTransportType.LongPolling })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
    .withTransport(TransportEnum.WEBSOCKETS)
    .build();

NOTENOTE

Configure bearer authenticationConfigure bearer authentication

If you don't configure logging in your dependencies, SLF4J loads a default no-operation logger with the following

warning message:

This can safely be ignored.

The transports used by SignalR can be configured in the WithUrl  call ( withUrl  in JavaScript). A bitwise-OR of the

values of HttpTransportType  can be used to restrict the client to only use the specified transports. All transports are

enabled by default.

For example, to disable the Server-Sent Events transport, but allow WebSockets and Long Polling connections:

In the JavaScript client, transports are configured by setting the transport  field on the options object provided to 

withUrl :

In this version of the Java client websockets is the only available transport.

In the Java client, the transport is selected with the withTransport  method on the HttpHubConnectionBuilder . The

Java client defaults to using the WebSockets transport.

The SignalR Java client doesn't support transport fallback yet.

To provide authentication data along with SignalR requests, use the AccessTokenProvider  option (

accessTokenFactory  in JavaScript) to specify a function that returns the desired access token. In the .NET Client, this

access token is passed in as an HTTP "Bearer Authentication" token (Using the Authorization  header with a type of 

Bearer ). In the JavaScript client, the access token is used as a Bearer token, exceptexcept in a few cases where browser

APIs restrict the ability to apply headers (specifically, in Server-Sent Events and WebSockets requests). In these

cases, the access token is provided as a query string value access_token .

In the .NET client, the AccessTokenProvider  option can be specified using the options delegate in WithUrl :



var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options => {
        options.AccessTokenProvider = async () => {
            // Get and return the access token.
        };
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", {
        accessTokenFactory: () => {
            // Get and return the access token.
            // This function can return a JavaScript Promise if asynchronous
            // logic is required to retrieve the access token.
        }
    })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
    .withAccessTokenProvider(Single.defer(() -> {
        // Your logic here.
        return Single.just("An Access Token");
    })).build();

Configure timeout and keep-alive optionsConfigure timeout and keep-alive options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ServerTimeout 30 seconds (30,000 milliseconds) Timeout for server activity. If the server
hasn't sent a message in this interval,
the client considers the server
disconnected and triggers the Closed

event ( onclose  in JavaScript). This

value must be large enough for a ping
message to be sent from the server
andand received by the client within the
timeout interval. The recommended
value is a number at least double the
server's KeepAliveInterval  value to

allow time for pings to arrive.

In the JavaScript client, the access token is configured by setting the accessTokenFactory  field on the options object

in withUrl :

In the SignalR Java client, you can configure a bearer token to use for authentication by providing an access token

factory to the HttpHubConnectionBuilder. Use withAccessTokenFactory to provide an RxJava Single<String>. With

a call to Single.defer, you can write logic to produce access tokens for your client.

Additional options for configuring timeout and keep-alive behavior are available on the HubConnection  object itself:

.NET

JavaScript

Java

https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder?view=aspnet-signalr-java
https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder.withaccesstokenprovider?view=aspnet-signalr-java#com_microsoft_signalr__http_hub_connection_builder_withaccesstokenprovider_single_string__
https://github.com/ReactiveX/RxJava
https://reactivex.io/documentation/single.html
https://reactivex.io/RxJava/javadoc/io/reactivex/Single.html#defer-java.util.concurrent.Callable-


HandshakeTimeout 15 seconds Timeout for initial server handshake. If
the server doesn't send a handshake
response in this interval, the client
cancels the handshake and triggers the 
Closed  event ( onclose  in

JavaScript). This is an advanced setting
that should only be modified if
handshake timeout errors are occurring
due to severe network latency. For more
detail on the handshake process, see
the SignalR Hub Protocol Specification.

KeepAliveInterval 15 seconds Determines the interval at which the
client sends ping messages. Sending
any message from the client resets the
timer to the start of the interval. If the
client hasn't sent a message in the 
ClientTimeoutInterval  set on the

server, the server considers the client
disconnected.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

Configure additional optionsConfigure additional options

. N ET  O P T IO N. N ET  O P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

AccessTokenProvider null A function returning a string that is
provided as a Bearer authentication
token in HTTP requests.

SkipNegotiation false Set this to true  to skip the

negotiation step. Only suppor tedOnly suppor ted
when the WebSockets transpor t iswhen the WebSockets transpor t is
the only enabled transpor tthe only enabled transpor t . This
setting can't be enabled when using the
Azure SignalR Service.

ClientCertificates Empty A collection of TLS certificates to send
to authenticate requests.

Cookies Empty A collection of HTTP cookies to send
with every HTTP request.

Credentials Empty Credentials to send with every HTTP
request.

In the .NET Client, timeout values are specified as TimeSpan  values.

Additional options can be configured in the WithUrl  ( withUrl  in JavaScript) method on HubConnectionBuilder  or

on the various configuration APIs on the HttpHubConnectionBuilder  in the Java client:

.NET

JavaScript

Java

https://github.com/aspnet/SignalR/blob/master/specs/HubProtocol.md


CloseTimeout 5 seconds WebSockets only. The maximum
amount of time the client waits after
closing for the server to acknowledge
the close request. If the server doesn't
acknowledge the close within this time,
the client disconnects.

Headers Empty A Map of additional HTTP headers to
send with every HTTP request.

HttpMessageHandlerFactory null A delegate that can be used to
configure or replace the 
HttpMessageHandler  used to send

HTTP requests. Not used for WebSocket
connections. This delegate must return
a non-null value, and it receives the
default value as a parameter. Either
modify settings on that default value
and return it, or return a new 
HttpMessageHandler  instance. WhenWhen

replacing the handler make surereplacing the handler make sure
to copy the settings you want toto copy the settings you want to
keep from the provided handler,keep from the provided handler,
other wise, the configured optionsother wise, the configured options
(such as Cookies and Headers)(such as Cookies and Headers)
won't apply to the new handler.won't apply to the new handler.

Proxy null An HTTP proxy to use when sending
HTTP requests.

UseDefaultCredentials false Set this boolean to send the default
credentials for HTTP and WebSockets
requests. This enables the use of
Windows authentication.

WebSocketConfiguration null A delegate that can be used to
configure additional WebSocket options.
Receives an instance of
ClientWebSocketOptions that can be
used to configure the options.

. N ET  O P T IO N. N ET  O P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options => {
        options.Headers["Foo"] = "Bar";
        options.Cookies.Add(new Cookie(/* ... */);
        options.ClientCertificates.Add(/* ... */);
    })
    .Build();

In the .NET Client, these options can be modified by the options delegate provided to WithUrl :

In the JavaScript Client, these options can be provided in a JavaScript object provided to withUrl :

https://docs.microsoft.com/en-us/dotnet/api/system.net.websockets.clientwebsocketoptions


let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", {
        skipNegotiation: true,
        transport: signalR.HttpTransportType.WebSockets
    })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
        .withHeader("Foo", "Bar")
        .shouldSkipNegotiate(true)
        .withHandshakeResponseTimeout(30*1000)
        .build();

Additional resources

JSON/MessagePack serialization options

services.AddSignalR()
    .AddJsonProtocol(options => {
        options.PayloadSerializerOptions.PropertyNamingPolicy = null;
    });

In the Java client, these options can be configured with the methods on the HttpHubConnectionBuilder  returned

from the HubConnectionBuilder.create("HUB URL")

Get started with ASP.NET Core SignalR

Use hubs in ASP.NET Core SignalR

ASP.NET Core SignalR JavaScript client

ASP.NET Core SignalR .NET Client

Use MessagePack Hub Protocol in SignalR for ASP.NET Core

ASP.NET Core SignalR supported platforms

ASP.NET Core SignalR supports two protocols for encoding messages: JSON and MessagePack. Each protocol has

serialization configuration options.

JSON serialization can be configured on the server using the AddJsonProtocol extension method. AddJsonProtocol

can be added after AddSignalR in Startup.ConfigureServices . The AddJsonProtocol  method takes a delegate that

receives an options  object. The PayloadSerializerOptions property on that object is a System.Text.Json

JsonSerializerOptions object that can be used to configure serialization of arguments and return values. For more

information, see the System.Text.Json documentation.

As an example, to configure the serializer to not change the casing of property names, instead of the default

"camelCase" names, use the following code in Startup.ConfigureServices :

In the .NET client, the same AddJsonProtocol  extension method exists on HubConnectionBuilder. The 

Microsoft.Extensions.DependencyInjection  namespace must be imported to resolve the extension method:

https://www.json.org/
https://msgpack.org/index.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.jsonprotocoldependencyinjectionextensions.addjsonprotocol
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.jsonhubprotocoloptions.payloadserializeroptions
https://docs.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializeroptions
https://docs.microsoft.com/en-us/dotnet/api/system.text.json
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnectionbuilder


// At the top of the file:
using Microsoft.Extensions.DependencyInjection;

// When constructing your connection:
var connection = new HubConnectionBuilder()
    .AddJsonProtocol(options => {
        options.PayloadSerializerOptions.PropertyNamingPolicy = null;
    })
    .Build();

NOTENOTE

Switch to Newtonsoft.JsonSwitch to Newtonsoft.Json

MessagePack serialization optionsMessagePack serialization options

NOTENOTE

Configure server options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ClientTimeoutInterval 30 seconds The server will consider the client
disconnected if it hasn't received a
message (including keep-alive) in this
interval. It could take longer than this
timeout interval for the client to actually
be marked disconnected, due to how
this is implemented. The recommended
value is double the 
KeepAliveInterval  value.

HandshakeTimeout 15 seconds If the client doesn't send an initial
handshake message within this time
interval, the connection is closed. This is
an advanced setting that should only be
modified if handshake timeout errors
are occurring due to severe network
latency. For more detail on the
handshake process, see the SignalR Hub
Protocol Specification.

It's not possible to configure JSON serialization in the JavaScript client at this time.

If you need features of Newtonsoft.Json  that aren't supported in System.Text.Json , See Switch to Newtonsoft.Json.

MessagePack serialization can be configured by providing a delegate to the AddMessagePackProtocol call. See

MessagePack in SignalR for more details.

It's not possible to configure MessagePack serialization in the JavaScript client at this time.

The following table describes options for configuring SignalR hubs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msgpackprotocoldependencyinjectionextensions.addmessagepackprotocol
https://github.com/aspnet/SignalR/blob/master/specs/HubProtocol.md


KeepAliveInterval 15 seconds If the server hasn't sent a message
within this interval, a ping message is
sent automatically to keep the
connection open. When changing 
KeepAliveInterval , change the 

ServerTimeout /

serverTimeoutInMilliseconds

setting on the client. The recommended
ServerTimeout /

serverTimeoutInMilliseconds  value

is double the KeepAliveInterval

value.

SupportedProtocols All installed protocols Protocols supported by this hub. By
default, all protocols registered on the
server are allowed, but protocols can be
removed from this list to disable specific
protocols for individual hubs.

EnableDetailedErrors false If true , detailed exception messages

are returned to clients when an
exception is thrown in a Hub method.
The default is false , as these

exception messages can contain
sensitive information.

StreamBufferCapacity 10 The maximum number of items that can
be buffered for client upload streams. If
this limit is reached, the processing of
invocations is blocked until the server
processes stream items.

MaximumReceiveMessageSize 32 KB Maximum size of a single incoming hub
message.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

public void ConfigureServices(IServiceCollection services)
{
    services.AddSignalR(hubOptions =>
    {
        hubOptions.EnableDetailedErrors = true;
        hubOptions.KeepAliveInterval = TimeSpan.FromMinutes(1);
    });
}

services.AddSignalR().AddHubOptions<ChatHub>(options =>
{
    options.EnableDetailedErrors = true;
});

Advanced HTTP configuration optionsAdvanced HTTP configuration options

Options can be configured for all hubs by providing an options delegate to the AddSignalR  call in 

Startup.ConfigureServices .

Options for a single hub override the global options provided in AddSignalR  and can be configured using

AddHubOptions:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addhuboptions


public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapHub<ChatHub>("/chathub", options =>
        {
            options.Transports =
                HttpTransportType.WebSockets |
                HttpTransportType.LongPolling;
        });
    });
}

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ApplicationMaxBufferSize 32 KB The maximum number of bytes received
from the client that the server buffers
before applying backpressure.
Increasing this value allows the server
to receive larger messages more quickly
without applying backpressure, but can
increase memory consumption.

AuthorizationData Data automatically gathered from the 
Authorize  attributes applied to the

Hub class.

A list of IAuthorizeData objects used to
determine if a client is authorized to
connect to the hub.

TransportMaxBufferSize 32 KB The maximum number of bytes sent by
the app that the server buffers before
observing backpressure. Increasing this
value allows the server to buffer larger
messages more quickly without
awaiting backpressure, but can increase
memory consumption.

Transports All Transports are enabled. A bit flags enum of 
HttpTransportType  values that can

restrict the transports a client can use
to connect.

LongPolling See below. Additional options specific to the Long
Polling transport.

WebSockets See below. Additional options specific to the
WebSockets transport.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

Use HttpConnectionDispatcherOptions  to configure advanced settings related to transports and memory buffer

management. These options are configured by passing a delegate to MapHub<T> in Startup.Configure .

The following table describes options for configuring ASP.NET Core SignalR's advanced HTTP options:

The Long Polling transport has additional options that can be configured using the LongPolling  property:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hubendpointroutebuilderextensions.maphub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizedata


PollTimeout 90 seconds The maximum amount of time the
server waits for a message to send to
the client before terminating a single
poll request. Decreasing this value
causes the client to issue new poll
requests more frequently.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

CloseTimeout 5 seconds After the server closes, if the client fails
to close within this time interval, the
connection is terminated.

SubProtocolSelector null A delegate that can be used to set the 
Sec-WebSocket-Protocol  header to a

custom value. The delegate receives the
values requested by the client as input
and is expected to return the desired
value.

Configure client options

Configure loggingConfigure logging

NOTENOTE

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub")
    .ConfigureLogging(logging => {
        logging.SetMinimumLevel(LogLevel.Information);
        logging.AddConsole();
    })
    .Build();

The WebSocket transport has additional options that can be configured using the WebSockets  property:

Client options can be configured on the HubConnectionBuilder  type (available in the .NET and JavaScript clients). It's

also available in the Java client, but the HttpHubConnectionBuilder  subclass is what contains the builder

configuration options, as well as on the HubConnection  itself.

Logging is configured in the .NET Client using the ConfigureLogging  method. Logging providers and filters can be

registered in the same way as they are on the server. See the Logging in ASP.NET Core documentation for more

information.

In order to register Logging providers, you must install the necessary packages. See the Built-in logging providers section of

the docs for a full list.

For example, to enable Console logging, install the Microsoft.Extensions.Logging.Console  NuGet package. Call the 

AddConsole  extension method:

In the JavaScript client, a similar configureLogging  method exists. Provide a LogLevel  value indicating the

minimum level of log messages to produce. Logs are written to the browser console window.



let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .configureLogging(signalR.LogLevel.Information)
    .build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .configureLogging("warn")
    .build();

ST RIN GST RIN G LO GL EVELLO GL EVEL

trace LogLevel.Trace

debug LogLevel.Debug

info  oror  information LogLevel.Information

warn  oror  warning LogLevel.Warning

error LogLevel.Error

critical LogLevel.Critical

none LogLevel.None

NOTENOTE

implementation 'org.slf4j:slf4j-jdk14:1.7.25'

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

Instead of a LogLevel  value, you can also provide a string  value representing a log level name. This is useful

when configuring SignalR logging in environments where you don't have access to the LogLevel  constants.

The following table lists the available log levels. The value you provide to configureLogging  sets the minimumminimum log

level that will be logged. Messages logged at this level, or  the levels listed after it in the tableor the levels listed after it in the table, will be logged.

To disable logging entirely, specify signalR.LogLevel.None  in the configureLogging  method.

For more information on logging, see the SignalR Diagnostics documentation.

The SignalR Java client uses the SLF4J library for logging. It's a high-level logging API that allows users of the

library to chose their own specific logging implementation by bringing in a specific logging dependency. The

following code snippet shows how to use java.util.logging  with the SignalR Java client.

If you don't configure logging in your dependencies, SLF4J loads a default no-operation logger with the following

warning message:

https://www.slf4j.org/


Configure allowed transportsConfigure allowed transports

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", HttpTransportType.WebSockets | HttpTransportType.LongPolling)
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", { transport: signalR.HttpTransportType.WebSockets | 
signalR.HttpTransportType.LongPolling })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
    .withTransport(TransportEnum.WEBSOCKETS)
    .build();

NOTENOTE

Configure bearer authenticationConfigure bearer authentication

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options => {
        options.AccessTokenProvider = async () => {
            // Get and return the access token.
        };
    })
    .Build();

This can safely be ignored.

The transports used by SignalR can be configured in the WithUrl  call ( withUrl  in JavaScript). A bitwise-OR of the

values of HttpTransportType  can be used to restrict the client to only use the specified transports. All transports are

enabled by default.

For example, to disable the Server-Sent Events transport, but allow WebSockets and Long Polling connections:

In the JavaScript client, transports are configured by setting the transport  field on the options object provided to 

withUrl :

In this version of the Java client websockets is the only available transport.

In the Java client, the transport is selected with the withTransport  method on the HttpHubConnectionBuilder . The

Java client defaults to using the WebSockets transport.

The SignalR Java client doesn't support transport fallback yet.

To provide authentication data along with SignalR requests, use the AccessTokenProvider  option (

accessTokenFactory  in JavaScript) to specify a function that returns the desired access token. In the .NET Client, this

access token is passed in as an HTTP "Bearer Authentication" token (Using the Authorization  header with a type of 

Bearer ). In the JavaScript client, the access token is used as a Bearer token, exceptexcept in a few cases where browser

APIs restrict the ability to apply headers (specifically, in Server-Sent Events and WebSockets requests). In these

cases, the access token is provided as a query string value access_token .

In the .NET client, the AccessTokenProvider  option can be specified using the options delegate in WithUrl :

In the JavaScript client, the access token is configured by setting the accessTokenFactory  field on the options object

in withUrl :



let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", {
        accessTokenFactory: () => {
            // Get and return the access token.
            // This function can return a JavaScript Promise if asynchronous
            // logic is required to retrieve the access token.
        }
    })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
    .withAccessTokenProvider(Single.defer(() -> {
        // Your logic here.
        return Single.just("An Access Token");
    })).build();

Configure timeout and keep-alive optionsConfigure timeout and keep-alive options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ServerTimeout 30 seconds (30,000 milliseconds) Timeout for server activity. If the server
hasn't sent a message in this interval,
the client considers the server
disconnected and triggers the Closed

event ( onclose  in JavaScript). This

value must be large enough for a ping
message to be sent from the server
andand received by the client within the
timeout interval. The recommended
value is a number at least double the
server's KeepAliveInterval  value to

allow time for pings to arrive.

HandshakeTimeout 15 seconds Timeout for initial server handshake. If
the server doesn't send a handshake
response in this interval, the client
cancels the handshake and triggers the 
Closed  event ( onclose  in

JavaScript). This is an advanced setting
that should only be modified if
handshake timeout errors are occurring
due to severe network latency. For more
detail on the handshake process, see
the SignalR Hub Protocol Specification.

In the SignalR Java client, you can configure a bearer token to use for authentication by providing an access token

factory to the HttpHubConnectionBuilder. Use withAccessTokenFactory to provide an RxJava Single<String>. With

a call to Single.defer, you can write logic to produce access tokens for your client.

Additional options for configuring timeout and keep-alive behavior are available on the HubConnection  object itself:

.NET

JavaScript

Java

https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder?view=aspnet-signalr-java
https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder.withaccesstokenprovider?view=aspnet-signalr-java#com_microsoft_signalr__http_hub_connection_builder_withaccesstokenprovider_single_string__
https://github.com/ReactiveX/RxJava
https://reactivex.io/documentation/single.html
https://reactivex.io/RxJava/javadoc/io/reactivex/Single.html#defer-java.util.concurrent.Callable-
https://github.com/aspnet/SignalR/blob/master/specs/HubProtocol.md


KeepAliveInterval 15 seconds Determines the interval at which the
client sends ping messages. Sending
any message from the client resets the
timer to the start of the interval. If the
client hasn't sent a message in the 
ClientTimeoutInterval  set on the

server, the server considers the client
disconnected.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

Configure additional optionsConfigure additional options

. N ET  O P T IO N. N ET  O P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

AccessTokenProvider null A function returning a string that is
provided as a Bearer authentication
token in HTTP requests.

SkipNegotiation false Set this to true  to skip the

negotiation step. Only suppor tedOnly suppor ted
when the WebSockets transpor t iswhen the WebSockets transpor t is
the only enabled transpor tthe only enabled transpor t . This
setting can't be enabled when using the
Azure SignalR Service.

ClientCertificates Empty A collection of TLS certificates to send
to authenticate requests.

Cookies Empty A collection of HTTP cookies to send
with every HTTP request.

Credentials Empty Credentials to send with every HTTP
request.

CloseTimeout 5 seconds WebSockets only. The maximum
amount of time the client waits after
closing for the server to acknowledge
the close request. If the server doesn't
acknowledge the close within this time,
the client disconnects.

Headers Empty A Map of additional HTTP headers to
send with every HTTP request.

In the .NET Client, timeout values are specified as TimeSpan  values.

Additional options can be configured in the WithUrl  ( withUrl  in JavaScript) method on HubConnectionBuilder  or

on the various configuration APIs on the HttpHubConnectionBuilder  in the Java client:

.NET

JavaScript

Java



HttpMessageHandlerFactory null A delegate that can be used to
configure or replace the 
HttpMessageHandler  used to send

HTTP requests. Not used for WebSocket
connections. This delegate must return
a non-null value, and it receives the
default value as a parameter. Either
modify settings on that default value
and return it, or return a new 
HttpMessageHandler  instance. WhenWhen

replacing the handler make surereplacing the handler make sure
to copy the settings you want toto copy the settings you want to
keep from the provided handler,keep from the provided handler,
other wise, the configured optionsother wise, the configured options
(such as Cookies and Headers)(such as Cookies and Headers)
won't apply to the new handler.won't apply to the new handler.

Proxy null An HTTP proxy to use when sending
HTTP requests.

UseDefaultCredentials false Set this boolean to send the default
credentials for HTTP and WebSockets
requests. This enables the use of
Windows authentication.

WebSocketConfiguration null A delegate that can be used to
configure additional WebSocket options.
Receives an instance of
ClientWebSocketOptions that can be
used to configure the options.

. N ET  O P T IO N. N ET  O P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options => {
        options.Headers["Foo"] = "Bar";
        options.Cookies.Add(new Cookie(/* ... */);
        options.ClientCertificates.Add(/* ... */);
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", {
        skipNegotiation: true,
        transport: signalR.HttpTransportType.WebSockets
    })
    .build();

In the .NET Client, these options can be modified by the options delegate provided to WithUrl :

In the JavaScript Client, these options can be provided in a JavaScript object provided to withUrl :

In the Java client, these options can be configured with the methods on the HttpHubConnectionBuilder  returned

from the HubConnectionBuilder.create("HUB URL")

https://docs.microsoft.com/en-us/dotnet/api/system.net.websockets.clientwebsocketoptions


HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
        .withHeader("Foo", "Bar")
        .shouldSkipNegotiate(true)
        .withHandshakeResponseTimeout(30*1000)
        .build();

Additional resources

JSON/MessagePack serialization options

services.AddSignalR()
    .AddJsonProtocol(options => {
        options.PayloadSerializerSettings.ContractResolver =
            new DefaultContractResolver();
    });

// At the top of the file:
using Microsoft.Extensions.DependencyInjection;

// When constructing your connection:
var connection = new HubConnectionBuilder()
    .AddJsonProtocol(options => {
        options.PayloadSerializerSettings.ContractResolver =
            new DefaultContractResolver();
    })
    .Build();

NOTENOTE

MessagePack serialization optionsMessagePack serialization options

Get started with ASP.NET Core SignalR

Use hubs in ASP.NET Core SignalR

ASP.NET Core SignalR JavaScript client

ASP.NET Core SignalR .NET Client

Use MessagePack Hub Protocol in SignalR for ASP.NET Core

ASP.NET Core SignalR supported platforms

ASP.NET Core SignalR supports two protocols for encoding messages: JSON and MessagePack. Each protocol has

serialization configuration options.

JSON serialization can be configured on the server using the AddJsonProtocol extension method, which can be

added after AddSignalR in your Startup.ConfigureServices  method. The AddJsonProtocol  method takes a delegate

that receives an options  object. The PayloadSerializerSettings property on that object is a JSON.NET 

JsonSerializerSettings  object that can be used to configure serialization of arguments and return values. For

more information, see the JSON.NET documentation.

As an example, to configure the serializer to use "PascalCase" property names, instead of the default "camelCase"

names, use the following code in Startup.ConfigureServices :

In the .NET client, the same AddJsonProtocol  extension method exists on HubConnectionBuilder. The 

Microsoft.Extensions.DependencyInjection  namespace must be imported to resolve the extension method:

It's not possible to configure JSON serialization in the JavaScript client at this time.

https://www.json.org/
https://msgpack.org/index.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.jsonprotocoldependencyinjectionextensions.addjsonprotocol
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.jsonhubprotocoloptions.payloadserializersettings
https://www.newtonsoft.com/json/help/html/Introduction.htm
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnectionbuilder


NOTENOTE

Configure server options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ClientTimeoutInterval 30 seconds The server will consider the client
disconnected if it hasn't received a
message (including keep-alive) in this
interval. It could take longer than this
timeout interval for the client to actually
be marked disconnected, due to how
this is implemented. The recommended
value is double the 
KeepAliveInterval  value.

HandshakeTimeout 15 seconds If the client doesn't send an initial
handshake message within this time
interval, the connection is closed. This is
an advanced setting that should only be
modified if handshake timeout errors
are occurring due to severe network
latency. For more detail on the
handshake process, see the SignalR Hub
Protocol Specification.

KeepAliveInterval 15 seconds If the server hasn't sent a message
within this interval, a ping message is
sent automatically to keep the
connection open. When changing 
KeepAliveInterval , change the 

ServerTimeout /

serverTimeoutInMilliseconds

setting on the client. The recommended
ServerTimeout /

serverTimeoutInMilliseconds  value

is double the KeepAliveInterval

value.

SupportedProtocols All installed protocols Protocols supported by this hub. By
default, all protocols registered on the
server are allowed, but protocols can be
removed from this list to disable specific
protocols for individual hubs.

EnableDetailedErrors false If true , detailed exception messages

are returned to clients when an
exception is thrown in a Hub method.
The default is false , as these

exception messages can contain
sensitive information.

MessagePack serialization can be configured by providing a delegate to the AddMessagePackProtocol call. See

MessagePack in SignalR for more details.

It's not possible to configure MessagePack serialization in the JavaScript client at this time.

The following table describes options for configuring SignalR hubs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msgpackprotocoldependencyinjectionextensions.addmessagepackprotocol
https://github.com/aspnet/SignalR/blob/master/specs/HubProtocol.md


public void ConfigureServices(IServiceCollection services)
{
    services.AddSignalR(hubOptions =>
    {
        hubOptions.EnableDetailedErrors = true;
        hubOptions.KeepAliveInterval = TimeSpan.FromMinutes(1);
    });
}

services.AddSignalR().AddHubOptions<ChatHub>(options =>
{
    options.EnableDetailedErrors = true;
});

Advanced HTTP configuration optionsAdvanced HTTP configuration options

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    app.UseSignalR((configure) =>
    {
        var desiredTransports =
            HttpTransportType.WebSockets |
            HttpTransportType.LongPolling;

        configure.MapHub<ChatHub>("/chathub", (options) =>
        {
            options.Transports = desiredTransports;
        });
    });
}

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ApplicationMaxBufferSize 32 KB The maximum number of bytes received
from the client that the server buffers.
Increasing this value allows the server
to receive larger messages, but can
negatively impact memory
consumption.

AuthorizationData Data automatically gathered from the 
Authorize  attributes applied to the

Hub class.

A list of IAuthorizeData objects used to
determine if a client is authorized to
connect to the hub.

Options can be configured for all hubs by providing an options delegate to the AddSignalR  call in 

Startup.ConfigureServices .

Options for a single hub override the global options provided in AddSignalR  and can be configured using

AddHubOptions:

Use HttpConnectionDispatcherOptions  to configure advanced settings related to transports and memory buffer

management. These options are configured by passing a delegate to MapHub<T> in Startup.Configure .

The following table describes options for configuring ASP.NET Core SignalR's advanced HTTP options:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addhuboptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hubroutebuilder.maphub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizedata


TransportMaxBufferSize 32 KB The maximum number of bytes sent by
the app that the server buffers.
Increasing this value allows the server
to send larger messages, but can
negatively impact memory
consumption.

Transports All Transports are enabled. A bit flags enum of 
HttpTransportType  values that can

restrict the transports a client can use
to connect.

LongPolling See below. Additional options specific to the Long
Polling transport.

WebSockets See below. Additional options specific to the
WebSockets transport.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

PollTimeout 90 seconds The maximum amount of time the
server waits for a message to send to
the client before terminating a single
poll request. Decreasing this value
causes the client to issue new poll
requests more frequently.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

CloseTimeout 5 seconds After the server closes, if the client fails
to close within this time interval, the
connection is terminated.

SubProtocolSelector null A delegate that can be used to set the 
Sec-WebSocket-Protocol  header to a

custom value. The delegate receives the
values requested by the client as input
and is expected to return the desired
value.

Configure client options

Configure loggingConfigure logging

The Long Polling transport has additional options that can be configured using the LongPolling  property:

The WebSocket transport has additional options that can be configured using the WebSockets  property:

Client options can be configured on the HubConnectionBuilder  type (available in the .NET and JavaScript clients). It's

also available in the Java client, but the HttpHubConnectionBuilder  subclass is what contains the builder

configuration options, as well as on the HubConnection  itself.

Logging is configured in the .NET Client using the ConfigureLogging  method. Logging providers and filters can be

registered in the same way as they are on the server. See the Logging in ASP.NET Core documentation for more

information.



NOTENOTE

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub")
    .ConfigureLogging(logging => {
        logging.SetMinimumLevel(LogLevel.Information);
        logging.AddConsole();
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .configureLogging(signalR.LogLevel.Information)
    .build();

NOTENOTE

implementation 'org.slf4j:slf4j-jdk14:1.7.25'

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

Configure allowed transportsConfigure allowed transports

In order to register Logging providers, you must install the necessary packages. See the Built-in logging providers section of

the docs for a full list.

For example, to enable Console logging, install the Microsoft.Extensions.Logging.Console  NuGet package. Call the 

AddConsole  extension method:

In the JavaScript client, a similar configureLogging  method exists. Provide a LogLevel  value indicating the

minimum level of log messages to produce. Logs are written to the browser console window.

To disable logging entirely, specify signalR.LogLevel.None  in the configureLogging  method.

For more information on logging, see the SignalR Diagnostics documentation.

The SignalR Java client uses the SLF4J library for logging. It's a high-level logging API that allows users of the

library to chose their own specific logging implementation by bringing in a specific logging dependency. The

following code snippet shows how to use java.util.logging  with the SignalR Java client.

If you don't configure logging in your dependencies, SLF4J loads a default no-operation logger with the following

warning message:

This can safely be ignored.

The transports used by SignalR can be configured in the WithUrl  call ( withUrl  in JavaScript). A bitwise-OR of the

values of HttpTransportType  can be used to restrict the client to only use the specified transports. All transports are

enabled by default.

For example, to disable the Server-Sent Events transport, but allow WebSockets and Long Polling connections:

https://www.slf4j.org/


var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", HttpTransportType.WebSockets | HttpTransportType.LongPolling)
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", { transport: signalR.HttpTransportType.WebSockets | 
signalR.HttpTransportType.LongPolling })
    .build();

Configure bearer authenticationConfigure bearer authentication

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options => {
        options.AccessTokenProvider = async () => {
            // Get and return the access token.
        };
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", {
        accessTokenFactory: () => {
            // Get and return the access token.
            // This function can return a JavaScript Promise if asynchronous
            // logic is required to retrieve the access token.
        }
    })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
    .withAccessTokenProvider(Single.defer(() -> {
        // Your logic here.
        return Single.just("An Access Token");
    })).build();

In the JavaScript client, transports are configured by setting the transport  field on the options object provided to 

withUrl :

In this version of the Java client websockets is the only available transport.

To provide authentication data along with SignalR requests, use the AccessTokenProvider  option (

accessTokenFactory  in JavaScript) to specify a function that returns the desired access token. In the .NET Client, this

access token is passed in as an HTTP "Bearer Authentication" token (Using the Authorization  header with a type of 

Bearer ). In the JavaScript client, the access token is used as a Bearer token, exceptexcept in a few cases where browser

APIs restrict the ability to apply headers (specifically, in Server-Sent Events and WebSockets requests). In these

cases, the access token is provided as a query string value access_token .

In the .NET client, the AccessTokenProvider  option can be specified using the options delegate in WithUrl :

In the JavaScript client, the access token is configured by setting the accessTokenFactory  field on the options object

in withUrl :

In the SignalR Java client, you can configure a bearer token to use for authentication by providing an access token

factory to the HttpHubConnectionBuilder. Use withAccessTokenFactory to provide an RxJava Single<String>. With

a call to Single.defer, you can write logic to produce access tokens for your client.

https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder?view=aspnet-signalr-java
https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder.withaccesstokenprovider?view=aspnet-signalr-java#com_microsoft_signalr__http_hub_connection_builder_withaccesstokenprovider_single_string__
https://github.com/ReactiveX/RxJava
https://reactivex.io/documentation/single.html
https://reactivex.io/RxJava/javadoc/io/reactivex/Single.html#defer-java.util.concurrent.Callable-


Configure timeout and keep-alive optionsConfigure timeout and keep-alive options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ServerTimeout 30 seconds (30,000 milliseconds) Timeout for server activity. If the server
hasn't sent a message in this interval,
the client considers the server
disconnected and triggers the Closed

event ( onclose  in JavaScript). This

value must be large enough for a ping
message to be sent from the server
andand received by the client within the
timeout interval. The recommended
value is a number at least double the
server's KeepAliveInterval  value to

allow time for pings to arrive.

HandshakeTimeout 15 seconds Timeout for initial server handshake. If
the server doesn't send a handshake
response in this interval, the client
cancels the handshake and triggers the 
Closed  event ( onclose  in

JavaScript). This is an advanced setting
that should only be modified if
handshake timeout errors are occurring
due to severe network latency. For more
detail on the handshake process, see
the SignalR Hub Protocol Specification.

KeepAliveInterval 15 seconds Determines the interval at which the
client sends ping messages. Sending
any message from the client resets the
timer to the start of the interval. If the
client hasn't sent a message in the 
ClientTimeoutInterval  set on the

server, the server considers the client
disconnected.

Configure additional optionsConfigure additional options

. N ET  O P T IO N. N ET  O P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

AccessTokenProvider null A function returning a string that is
provided as a Bearer authentication
token in HTTP requests.

Additional options for configuring timeout and keep-alive behavior are available on the HubConnection  object itself:

.NET

JavaScript

Java

In the .NET Client, timeout values are specified as TimeSpan  values.

Additional options can be configured in the WithUrl  ( withUrl  in JavaScript) method on HubConnectionBuilder  or

on the various configuration APIs on the HttpHubConnectionBuilder  in the Java client:

.NET

JavaScript

Java

https://github.com/aspnet/SignalR/blob/master/specs/HubProtocol.md


SkipNegotiation false Set this to true  to skip the

negotiation step. Only suppor tedOnly suppor ted
when the WebSockets transpor t iswhen the WebSockets transpor t is
the only enabled transpor tthe only enabled transpor t . This
setting can't be enabled when using the
Azure SignalR Service.

ClientCertificates Empty A collection of TLS certificates to send
to authenticate requests.

Cookies Empty A collection of HTTP cookies to send
with every HTTP request.

Credentials Empty Credentials to send with every HTTP
request.

CloseTimeout 5 seconds WebSockets only. The maximum
amount of time the client waits after
closing for the server to acknowledge
the close request. If the server doesn't
acknowledge the close within this time,
the client disconnects.

Headers Empty A Map of additional HTTP headers to
send with every HTTP request.

HttpMessageHandlerFactory null A delegate that can be used to
configure or replace the 
HttpMessageHandler  used to send

HTTP requests. Not used for WebSocket
connections. This delegate must return
a non-null value, and it receives the
default value as a parameter. Either
modify settings on that default value
and return it, or return a new 
HttpMessageHandler  instance. WhenWhen

replacing the handler make surereplacing the handler make sure
to copy the settings you want toto copy the settings you want to
keep from the provided handler,keep from the provided handler,
other wise, the configured optionsother wise, the configured options
(such as Cookies and Headers)(such as Cookies and Headers)
won't apply to the new handler.won't apply to the new handler.

Proxy null An HTTP proxy to use when sending
HTTP requests.

UseDefaultCredentials false Set this boolean to send the default
credentials for HTTP and WebSockets
requests. This enables the use of
Windows authentication.

WebSocketConfiguration null A delegate that can be used to
configure additional WebSocket options.
Receives an instance of
ClientWebSocketOptions that can be
used to configure the options.

. N ET  O P T IO N. N ET  O P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

https://docs.microsoft.com/en-us/dotnet/api/system.net.websockets.clientwebsocketoptions


var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options => {
        options.Headers["Foo"] = "Bar";
        options.Cookies.Add(new Cookie(/* ... */);
        options.ClientCertificates.Add(/* ... */);
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", {
        skipNegotiation: true,
        transport: signalR.HttpTransportType.WebSockets
    })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
        .withHeader("Foo", "Bar")
        .shouldSkipNegotiate(true)
        .withHandshakeResponseTimeout(30*1000)
        .build();

Additional resources

JSON/MessagePack serialization options

In the .NET Client, these options can be modified by the options delegate provided to WithUrl :

In the JavaScript Client, these options can be provided in a JavaScript object provided to withUrl :

In the Java client, these options can be configured with the methods on the HttpHubConnectionBuilder  returned

from the HubConnectionBuilder.create("HUB URL")

Get started with ASP.NET Core SignalR

Use hubs in ASP.NET Core SignalR

ASP.NET Core SignalR JavaScript client

ASP.NET Core SignalR .NET Client

Use MessagePack Hub Protocol in SignalR for ASP.NET Core

ASP.NET Core SignalR supported platforms

ASP.NET Core SignalR supports two protocols for encoding messages: JSON and MessagePack. Each protocol has

serialization configuration options.

JSON serialization can be configured on the server using the AddJsonProtocol extension method, which can be

added after AddSignalR in your Startup.ConfigureServices  method. The AddJsonProtocol  method takes a delegate

that receives an options  object. The PayloadSerializerSettings property on that object is a JSON.NET 

JsonSerializerSettings  object that can be used to configure serialization of arguments and return values. For

more information, see the JSON.NET documentation.

As an example, to configure the serializer to use "PascalCase" property names, instead of the default "camelCase"

names, use the following code in Startup.ConfigureServices :

https://www.json.org/
https://msgpack.org/index.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.jsonprotocoldependencyinjectionextensions.addjsonprotocol
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.jsonhubprotocoloptions.payloadserializersettings
https://www.newtonsoft.com/json/help/html/Introduction.htm


services.AddSignalR()
    .AddJsonProtocol(options => {
        options.PayloadSerializerSettings.ContractResolver =
            new DefaultContractResolver();
    });

// At the top of the file:
using Microsoft.Extensions.DependencyInjection;

// When constructing your connection:
var connection = new HubConnectionBuilder()
    .AddJsonProtocol(options => {
        options.PayloadSerializerSettings.ContractResolver =
            new DefaultContractResolver();
    })
    .Build();

NOTENOTE

MessagePack serialization optionsMessagePack serialization options

NOTENOTE

Configure server options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

HandshakeTimeout 15 seconds If the client doesn't send an initial
handshake message within this time
interval, the connection is closed. This is
an advanced setting that should only be
modified if handshake timeout errors
are occurring due to severe network
latency. For more detail on the
handshake process, see the SignalR Hub
Protocol Specification.

In the .NET client, the same AddJsonProtocol  extension method exists on HubConnectionBuilder. The 

Microsoft.Extensions.DependencyInjection  namespace must be imported to resolve the extension method:

It's not possible to configure JSON serialization in the JavaScript client at this time.

MessagePack serialization can be configured by providing a delegate to the AddMessagePackProtocol call. See

MessagePack in SignalR for more details.

It's not possible to configure MessagePack serialization in the JavaScript client at this time.

The following table describes options for configuring SignalR hubs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnectionbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.msgpackprotocoldependencyinjectionextensions.addmessagepackprotocol
https://github.com/aspnet/SignalR/blob/master/specs/HubProtocol.md


KeepAliveInterval 15 seconds If the server hasn't sent a message
within this interval, a ping message is
sent automatically to keep the
connection open. When changing 
KeepAliveInterval , change the 

ServerTimeout /

serverTimeoutInMilliseconds

setting on the client. The recommended
ServerTimeout /

serverTimeoutInMilliseconds  value

is double the KeepAliveInterval

value.

SupportedProtocols All installed protocols Protocols supported by this hub. By
default, all protocols registered on the
server are allowed, but protocols can be
removed from this list to disable specific
protocols for individual hubs.

EnableDetailedErrors false If true , detailed exception messages

are returned to clients when an
exception is thrown in a Hub method.
The default is false , as these

exception messages can contain
sensitive information.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

public void ConfigureServices(IServiceCollection services)
{
    services.AddSignalR(hubOptions =>
    {
        hubOptions.EnableDetailedErrors = true;
        hubOptions.KeepAliveInterval = TimeSpan.FromMinutes(1);
    });
}

services.AddSignalR().AddHubOptions<ChatHub>(options =>
{
    options.EnableDetailedErrors = true;
});

Advanced HTTP configuration optionsAdvanced HTTP configuration options

Options can be configured for all hubs by providing an options delegate to the AddSignalR  call in 

Startup.ConfigureServices .

Options for a single hub override the global options provided in AddSignalR  and can be configured using

AddHubOptions:

Use HttpConnectionDispatcherOptions  to configure advanced settings related to transports and memory buffer

management. These options are configured by passing a delegate to MapHub<T> in Startup.Configure .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addhuboptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hubroutebuilder.maphub


public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    app.UseSignalR((configure) =>
    {
        var desiredTransports =
            HttpTransportType.WebSockets |
            HttpTransportType.LongPolling;

        configure.MapHub<ChatHub>("/chathub", (options) =>
        {
            options.Transports = desiredTransports;
        });
    });
}

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ApplicationMaxBufferSize 32 KB The maximum number of bytes received
from the client that the server buffers.
Increasing this value allows the server
to receive larger messages, but can
negatively impact memory
consumption.

AuthorizationData Data automatically gathered from the 
Authorize  attributes applied to the

Hub class.

A list of IAuthorizeData objects used to
determine if a client is authorized to
connect to the hub.

TransportMaxBufferSize 32 KB The maximum number of bytes sent by
the app that the server buffers.
Increasing this value allows the server
to send larger messages, but can
negatively impact memory
consumption.

Transports All Transports are enabled. A bit flags enum of 
HttpTransportType  values that can

restrict the transports a client can use
to connect.

LongPolling See below. Additional options specific to the Long
Polling transport.

WebSockets See below. Additional options specific to the
WebSockets transport.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

PollTimeout 90 seconds The maximum amount of time the
server waits for a message to send to
the client before terminating a single
poll request. Decreasing this value
causes the client to issue new poll
requests more frequently.

The following table describes options for configuring ASP.NET Core SignalR's advanced HTTP options:

The Long Polling transport has additional options that can be configured using the LongPolling  property:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizedata


O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

CloseTimeout 5 seconds After the server closes, if the client fails
to close within this time interval, the
connection is terminated.

SubProtocolSelector null A delegate that can be used to set the 
Sec-WebSocket-Protocol  header to a

custom value. The delegate receives the
values requested by the client as input
and is expected to return the desired
value.

Configure client options

Configure loggingConfigure logging

NOTENOTE

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub")
    .ConfigureLogging(logging => {
        logging.SetMinimumLevel(LogLevel.Information);
        logging.AddConsole();
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .configureLogging(signalR.LogLevel.Information)
    .build();

NOTENOTE

The WebSocket transport has additional options that can be configured using the WebSockets  property:

Client options can be configured on the HubConnectionBuilder  type (available in the .NET and JavaScript clients). It's

also available in the Java client, but the HttpHubConnectionBuilder  subclass is what contains the builder

configuration options, as well as on the HubConnection  itself.

Logging is configured in the .NET Client using the ConfigureLogging  method. Logging providers and filters can be

registered in the same way as they are on the server. See the Logging in ASP.NET Core documentation for more

information.

In order to register Logging providers, you must install the necessary packages. See the Built-in logging providers section of

the docs for a full list.

For example, to enable Console logging, install the Microsoft.Extensions.Logging.Console  NuGet package. Call the 

AddConsole  extension method:

In the JavaScript client, a similar configureLogging  method exists. Provide a LogLevel  value indicating the

minimum level of log messages to produce. Logs are written to the browser console window.

To disable logging entirely, specify signalR.LogLevel.None  in the configureLogging  method.



implementation 'org.slf4j:slf4j-jdk14:1.7.25'

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

Configure allowed transportsConfigure allowed transports

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", HttpTransportType.WebSockets | HttpTransportType.LongPolling)
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", { transport: signalR.HttpTransportType.WebSockets | 
signalR.HttpTransportType.LongPolling })
    .build();

Configure bearer authenticationConfigure bearer authentication

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options => {
        options.AccessTokenProvider = async () => {
            // Get and return the access token.
        };
    })
    .Build();

For more information on logging, see the SignalR Diagnostics documentation.

The SignalR Java client uses the SLF4J library for logging. It's a high-level logging API that allows users of the

library to chose their own specific logging implementation by bringing in a specific logging dependency. The

following code snippet shows how to use java.util.logging  with the SignalR Java client.

If you don't configure logging in your dependencies, SLF4J loads a default no-operation logger with the following

warning message:

This can safely be ignored.

The transports used by SignalR can be configured in the WithUrl  call ( withUrl  in JavaScript). A bitwise-OR of the

values of HttpTransportType  can be used to restrict the client to only use the specified transports. All transports are

enabled by default.

For example, to disable the Server-Sent Events transport, but allow WebSockets and Long Polling connections:

In the JavaScript client, transports are configured by setting the transport  field on the options object provided to 

withUrl :

To provide authentication data along with SignalR requests, use the AccessTokenProvider  option (

accessTokenFactory  in JavaScript) to specify a function that returns the desired access token. In the .NET Client, this

access token is passed in as an HTTP "Bearer Authentication" token (Using the Authorization  header with a type of 

Bearer ). In the JavaScript client, the access token is used as a Bearer token, exceptexcept in a few cases where browser

APIs restrict the ability to apply headers (specifically, in Server-Sent Events and WebSockets requests). In these

cases, the access token is provided as a query string value access_token .

In the .NET client, the AccessTokenProvider  option can be specified using the options delegate in WithUrl :

https://www.slf4j.org/


let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", {
        accessTokenFactory: () => {
            // Get and return the access token.
            // This function can return a JavaScript Promise if asynchronous
            // logic is required to retrieve the access token.
        }
    })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
    .withAccessTokenProvider(Single.defer(() -> {
        // Your logic here.
        return Single.just("An Access Token");
    })).build();

Configure timeout and keep-alive optionsConfigure timeout and keep-alive options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

ServerTimeout 30 seconds (30,000 milliseconds) Timeout for server activity. If the server
hasn't sent a message in this interval,
the client considers the server
disconnected and triggers the Closed

event ( onclose  in JavaScript). This

value must be large enough for a ping
message to be sent from the server
andand received by the client within the
timeout interval. The recommended
value is a number at least double the
server's KeepAliveInterval  value to

allow time for pings to arrive.

HandshakeTimeout 15 seconds Timeout for initial server handshake. If
the server doesn't send a handshake
response in this interval, the client
cancels the handshake and triggers the 
Closed  event ( onclose  in

JavaScript). This is an advanced setting
that should only be modified if
handshake timeout errors are occurring
due to severe network latency. For more
detail on the handshake process, see
the SignalR Hub Protocol Specification.

In the JavaScript client, the access token is configured by setting the accessTokenFactory  field on the options object

in withUrl :

In the SignalR Java client, you can configure a bearer token to use for authentication by providing an access token

factory to the HttpHubConnectionBuilder. Use withAccessTokenFactory to provide an RxJava Single<String>. With

a call to Single.defer, you can write logic to produce access tokens for your client.

Additional options for configuring timeout and keep-alive behavior are available on the HubConnection  object itself:

.NET

JavaScript

Java

In the .NET Client, timeout values are specified as TimeSpan  values.

https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder?view=aspnet-signalr-java
https://docs.microsoft.com/en-us/java/api/com.microsoft.signalr._http_hub_connection_builder.withaccesstokenprovider?view=aspnet-signalr-java#com_microsoft_signalr__http_hub_connection_builder_withaccesstokenprovider_single_string__
https://github.com/ReactiveX/RxJava
https://reactivex.io/documentation/single.html
https://reactivex.io/RxJava/javadoc/io/reactivex/Single.html#defer-java.util.concurrent.Callable-
https://github.com/aspnet/SignalR/blob/master/specs/HubProtocol.md


Configure additional optionsConfigure additional options

. N ET  O P T IO N. N ET  O P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

AccessTokenProvider null A function returning a string that is
provided as a Bearer authentication
token in HTTP requests.

SkipNegotiation false Set this to true  to skip the

negotiation step. Only suppor tedOnly suppor ted
when the WebSockets transpor t iswhen the WebSockets transpor t is
the only enabled transpor tthe only enabled transpor t . This
setting can't be enabled when using the
Azure SignalR Service.

ClientCertificates Empty A collection of TLS certificates to send
to authenticate requests.

Cookies Empty A collection of HTTP cookies to send
with every HTTP request.

Credentials Empty Credentials to send with every HTTP
request.

CloseTimeout 5 seconds WebSockets only. The maximum
amount of time the client waits after
closing for the server to acknowledge
the close request. If the server doesn't
acknowledge the close within this time,
the client disconnects.

Headers Empty A Map of additional HTTP headers to
send with every HTTP request.

HttpMessageHandlerFactory null A delegate that can be used to
configure or replace the 
HttpMessageHandler  used to send

HTTP requests. Not used for WebSocket
connections. This delegate must return
a non-null value, and it receives the
default value as a parameter. Either
modify settings on that default value
and return it, or return a new 
HttpMessageHandler  instance. WhenWhen

replacing the handler make surereplacing the handler make sure
to copy the settings you want toto copy the settings you want to
keep from the provided handler,keep from the provided handler,
other wise, the configured optionsother wise, the configured options
(such as Cookies and Headers)(such as Cookies and Headers)
won't apply to the new handler.won't apply to the new handler.

Additional options can be configured in the WithUrl  ( withUrl  in JavaScript) method on HubConnectionBuilder  or

on the various configuration APIs on the HttpHubConnectionBuilder  in the Java client:

.NET

JavaScript

Java



Proxy null An HTTP proxy to use when sending
HTTP requests.

UseDefaultCredentials false Set this boolean to send the default
credentials for HTTP and WebSockets
requests. This enables the use of
Windows authentication.

WebSocketConfiguration null A delegate that can be used to
configure additional WebSocket options.
Receives an instance of
ClientWebSocketOptions that can be
used to configure the options.

. N ET  O P T IO N. N ET  O P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options => {
        options.Headers["Foo"] = "Bar";
        options.Cookies.Add(new Cookie(/* ... */);
        options.ClientCertificates.Add(/* ... */);
    })
    .Build();

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub", {
        skipNegotiation: true,
        transport: signalR.HttpTransportType.WebSockets
    })
    .build();

HubConnection hubConnection = HubConnectionBuilder.create("https://example.com/chathub")
        .withHeader("Foo", "Bar")
        .shouldSkipNegotiate(true)
        .withHandshakeResponseTimeout(30*1000)
        .build();

Additional resources

In the .NET Client, these options can be modified by the options delegate provided to WithUrl :

In the JavaScript Client, these options can be provided in a JavaScript object provided to withUrl :

In the Java client, these options can be configured with the methods on the HttpHubConnectionBuilder  returned

from the HubConnectionBuilder.create("HUB URL")

Get started with ASP.NET Core SignalR

Use hubs in ASP.NET Core SignalR

ASP.NET Core SignalR JavaScript client

ASP.NET Core SignalR .NET Client

Use MessagePack Hub Protocol in SignalR for ASP.NET Core

ASP.NET Core SignalR supported platforms

https://docs.microsoft.com/en-us/dotnet/api/system.net.websockets.clientwebsocketoptions


Authentication and authorization in ASP.NET Core
SignalR
9/22/2020 • 9 minutes to read • Edit Online

Authenticate users connecting to a SignalR hub

public void Configure(IApplicationBuilder app)
{
    ...

    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapHub<ChatHub>("/chat");
        endpoints.MapControllerRoute("default", "{controller=Home}/{action=Index}/{id?}");
    });
}

public void Configure(IApplicationBuilder app)
{
    ...

    app.UseStaticFiles();

    app.UseAuthentication();

    app.UseSignalR(hubs =>
    {
        hubs.MapHub<ChatHub>("/chat");
    });

    app.UseMvc(routes =>
    {
        routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
    });
}

By Andrew Stanton-Nurse

View or download sample code (how to download)

SignalR can be used with ASP.NET Core authentication to associate a user with each connection. In a hub,

authentication data can be accessed from the HubConnectionContext.User property. Authentication allows the hub

to call methods on all connections associated with a user. For more information, see Manage users and groups in

SignalR. Multiple connections may be associated with a single user.

The following is an example of Startup.Configure  which uses SignalR and ASP.NET Core authentication:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/authn-and-authz.md
https://twitter.com/anurse
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/signalr/authn-and-authz/sample/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hubconnectioncontext.user


NOTENOTE

Cookie authenticationCookie authentication

Bearer token authenticationBearer token authentication

// Connect, using the token we got.
this.connection = new signalR.HubConnectionBuilder()
    .withUrl("/hubs/chat", { accessTokenFactory: () => this.loginToken })
    .build();

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options =>
    { 
        options.AccessTokenProvider = () => Task.FromResult(_myAccessToken);
    })
    .Build();

NOTENOTE

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

    services.AddIdentity<ApplicationUser, IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultTokenProviders();

The order in which you register the SignalR and ASP.NET Core authentication middleware matters. Always call 

UseAuthentication  before UseSignalR  so that SignalR has a user on the HttpContext .

In a browser-based app, cookie authentication allows your existing user credentials to automatically flow to

SignalR connections. When using the browser client, no additional configuration is needed. If the user is logged in

to your app, the SignalR connection automatically inherits this authentication.

Cookies are a browser-specific way to send access tokens, but non-browser clients can send them. When using the

.NET Client, the Cookies  property can be configured in the .WithUrl  call to provide a cookie. However, using

cookie authentication from the .NET client requires the app to provide an API to exchange authentication data for a

cookie.

The client can provide an access token instead of using a cookie. The server validates the token and uses it to

identify the user. This validation is done only when the connection is established. During the life of the connection,

the server doesn't automatically revalidate to check for token revocation.

On the server, bearer token authentication is configured using the JWT Bearer middleware.

In the JavaScript client, the token can be provided using the accessTokenFactory option.

In the .NET client, there's a similar AccessTokenProvider property that can be used to configure the token:

The access token function you provide is called before ever yever y  HTTP request made by SignalR. If you need to renew the token

in order to keep the connection active (because it may expire during the connection), do so from within this function and

return the updated token.

In standard web APIs, bearer tokens are sent in an HTTP header. However, SignalR is unable to set these headers in

browsers when using some transports. When using WebSockets and Server-Sent Events, the token is transmitted

as a query string parameter. To support this on the server, additional configuration is required:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.jwtbearerextensions.addjwtbearer


        .AddDefaultTokenProviders();

    services.AddAuthentication(options =>
        {
            // Identity made Cookie authentication the default.
            // However, we want JWT Bearer Auth to be the default.
            options.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
            options.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;
        })
        .AddJwtBearer(options =>
        {
            // Configure the Authority to the expected value for your authentication provider
            // This ensures the token is appropriately validated
            options.Authority = /* TODO: Insert Authority URL here */;

            // We have to hook the OnMessageReceived event in order to
            // allow the JWT authentication handler to read the access
            // token from the query string when a WebSocket or 
            // Server-Sent Events request comes in.

            // Sending the access token in the query string is required due to
            // a limitation in Browser APIs. We restrict it to only calls to the
            // SignalR hub in this code.
            // See https://docs.microsoft.com/aspnet/core/signalr/security#access-token-logging
            // for more information about security considerations when using
            // the query string to transmit the access token.
            options.Events = new JwtBearerEvents
            {
                OnMessageReceived = context =>
                {
                    var accessToken = context.Request.Query["access_token"];

                    // If the request is for our hub...
                    var path = context.HttpContext.Request.Path;
                    if (!string.IsNullOrEmpty(accessToken) &&
                        (path.StartsWithSegments("/hubs/chat")))
                    {
                        // Read the token out of the query string
                        context.Token = accessToken;
                    }
                    return Task.CompletedTask;
                }
            };
        });

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

    services.AddSignalR();

    // Change to use Name as the user identifier for SignalR
    // WARNING: This requires that the source of your JWT token 
    // ensures that the Name claim is unique!
    // If the Name claim isn't unique, users could receive messages 
    // intended for a different user!
    services.AddSingleton<IUserIdProvider, NameUserIdProvider>();

    // Change to use email as the user identifier for SignalR
    // services.AddSingleton<IUserIdProvider, EmailBasedUserIdProvider>();

    // WARNING: use *either* the NameUserIdProvider *or* the 
    // EmailBasedUserIdProvider, but do not use both. 
}

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

https://github.com/MicrosoftDocs/feedback/issues/2515


NOTENOTE

Cookies vs. bearer tokensCookies vs. bearer tokens

Windows authenticationWindows authentication

public class NameUserIdProvider : IUserIdProvider
{
    public string GetUserId(HubConnectionContext connection)
    {
        return connection.User?.Identity?.Name;
    }
}

NOTENOTE

public void ConfigureServices(IServiceCollection services)
{
    // ... other services ...

    services.AddSignalR();
    services.AddSingleton<IUserIdProvider, NameUserIdProvider>();
}

The query string is used on browsers when connecting with WebSockets and Server-Sent Events due to browser API

limitations. When using HTTPS, query string values are secured by the TLS connection. However, many servers log query

string values. For more information, see Security considerations in ASP.NET Core SignalR. SignalR uses headers to transmit

tokens in environments which support them (such as the .NET and Java clients).

Cookies are specific to browsers. Sending them from other kinds of clients adds complexity compared to sending

bearer tokens. Consequently, cookie authentication isn't recommended unless the app only needs to authenticate

users from the browser client. Bearer token authentication is the recommended approach when using clients other

than the browser client.

If Windows authentication is configured in your app, SignalR can use that identity to secure hubs. However, to send

messages to individual users, you need to add a custom User ID provider. The Windows authentication system

doesn't provide the "Name Identifier" claim. SignalR uses the claim to determine the user name.

Add a new class that implements IUserIdProvider  and retrieve one of the claims from the user to use as the

identifier. For example, to use the "Name" claim (which is the Windows username in the form [Domain]\[Username]

), create the following class:

Rather than ClaimTypes.Name , you can use any value from the User  (such as the Windows SID identifier, and so

on).

The value you choose must be unique among all the users in your system. Otherwise, a message intended for one user

could end up going to a different user.

Register this component in your Startup.ConfigureServices  method.

In the .NET Client, Windows Authentication must be enabled by setting the UseDefaultCredentials property:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connections.client.httpconnectionoptions.usedefaultcredentials


    

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/chathub", options =>
    {
        options.UseDefaultCredentials = true;
    })
    .Build();

Use claims to customize identity handlingUse claims to customize identity handling

NOTENOTE

public class EmailBasedUserIdProvider : IUserIdProvider
{
    public virtual string GetUserId(HubConnectionContext connection)
    {
        return connection.User?.FindFirst(ClaimTypes.Email)?.Value;
    }
}

// create a new user
var user = new ApplicationUser { UserName = Input.Email, Email = Input.Email };
var result = await _userManager.CreateAsync(user, Input.Password);

// add the email claim and value for this user
await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Email, Input.Email));

services.AddSingleton<IUserIdProvider, EmailBasedUserIdProvider>();

Authorize users to access hubs and hub methods

[Authorize]
public class ChatHub: Hub
{
}

Windows authentication is supported in Internet Explorer and Microsoft Edge, but not in all browsers. For example,

in Chrome and Safari, attempting to use Windows authentication and WebSockets fails. When Windows

authentication fails, the client attempts to fall back to other transports which might work.

An app that authenticates users can derive SignalR user IDs from user claims. To specify how SignalR creates user

IDs, implement IUserIdProvider  and register the implementation.

The sample code demonstrates how you would use claims to select the user's email address as the identifying

property.

The value you choose must be unique among all the users in your system. Otherwise, a message intended for one user

could end up going to a different user.

The account registration adds a claim with type ClaimsTypes.Email  to the ASP.NET identity database.

Register this component in your Startup.ConfigureServices .

By default, all methods in a hub can be called by an unauthenticated user. To require authentication, apply the

Authorize attribute to the hub:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute


    

[Authorize("MyAuthorizationPolicy")]
public class ChatHub : Hub
{
}

[Authorize]
public class ChatHub : Hub
{
    public async Task Send(string message)
    {
        // ... send a message to all users ...
    }

    [Authorize("Administrators")]
    public void BanUser(string userName)
    {
        // ... ban a user from the chat room (something only Administrators can do) ...
    }
}

Use authorization handlers to customize hub method authorizationUse authorization handlers to customize hub method authorization

You can use the constructor arguments and properties of the [Authorize]  attribute to restrict access to only users

matching specific authorization policies. For example, if you have a custom authorization policy called 

MyAuthorizationPolicy  you can ensure that only users matching that policy can access the hub using the following

code:

Individual hub methods can have the [Authorize]  attribute applied as well. If the current user doesn't match the

policy applied to the method, an error is returned to the caller :

SignalR provides a custom resource to authorization handlers when a hub method requires authorization. The

resource is an instance of HubInvocationContext . The HubInvocationContext  includes the HubCallerContext , the

name of the hub method being invoked, and the arguments to the hub method.

Consider the example of a chat room allowing multiple organization sign-in via Azure Active Directory. Anyone

with a Microsoft account can sign in to chat, but only members of the owning organization should be able to ban

users or view users' chat histories. Furthermore, we might want to restrict certain functionality from certain users.

Using the updated features in ASP.NET Core 3.0, this is entirely possible. Note how the 

DomainRestrictedRequirement  serves as a custom IAuthorizationRequirement . Now that the HubInvocationContext

resource parameter is being passed in, the internal logic can inspect the context in which the Hub is being called

and make decisions on allowing the user to execute individual Hub methods.



[Authorize]
public class ChatHub : Hub
{
    public void SendMessage(string message)
    {
    }

    [Authorize("DomainRestricted")]
    public void BanUser(string username)
    {
    }

    [Authorize("DomainRestricted")]
    public void ViewUserHistory(string username)
    {
    }
}

public class DomainRestrictedRequirement : 
    AuthorizationHandler<DomainRestrictedRequirement, HubInvocationContext>, 
    IAuthorizationRequirement
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
        DomainRestrictedRequirement requirement, 
        HubInvocationContext resource)
    {
        if (IsUserAllowedToDoThis(resource.HubMethodName, context.User.Identity.Name) && 
            context.User.Identity.Name.EndsWith("@microsoft.com"))
        {
            context.Succeed(requirement);
        }
        return Task.CompletedTask;
    }

    private bool IsUserAllowedToDoThis(string hubMethodName,
        string currentUsername)
    {
        return !(currentUsername.Equals("asdf42@microsoft.com") && 
            hubMethodName.Equals("banUser", StringComparison.OrdinalIgnoreCase));
    }
}

public void ConfigureServices(IServiceCollection services)
{
    // ... other services ...

    services
        .AddAuthorization(options =>
        {
            options.AddPolicy("DomainRestricted", policy =>
            {
                policy.Requirements.Add(new DomainRestrictedRequirement());
            });
        });
}

In Startup.ConfigureServices , add the new policy, providing the custom DomainRestrictedRequirement  requirement

as a parameter to create the DomainRestricted  policy.

In the preceding example, the DomainRestrictedRequirement  class is both an IAuthorizationRequirement  and its

own AuthorizationHandler  for that requirement. It's acceptable to split these two components into separate

classes to separate concerns. A benefit of the example's approach is there's no need to inject the 

AuthorizationHandler  during startup, as the requirement and the handler are the same thing.



Additional resources
Bearer Token Authentication in ASP.NET Core

Resource-based Authorization

https://blogs.msdn.microsoft.com/webdev/2016/10/27/bearer-token-authentication-in-asp-net-core/


    

Security considerations in ASP.NET Core SignalR
9/22/2020 • 5 minutes to read • Edit Online

Cross-origin resource sharing

By Andrew Stanton-Nurse

This article provides information on securing SignalR.

Cross-origin resource sharing (CORS) can be used to allow cross-origin SignalR connections in the browser. If

JavaScript code is hosted on a different domain from the SignalR app, CORS middleware must be enabled to allow

the JavaScript to connect to the SignalR app. Allow cross-origin requests only from domains you trust or control.

For example:

Your site is hosted on http://www.example.com

Your SignalR app is hosted on http://signalr.example.com

CORS should be configured in the SignalR app to only allow the origin www.example.com .

For more information on configuring CORS, see Enable Cross-Origin Requests (CORS). SignalR requiresrequires  the

following CORS policies:

Allow the specific expected origins. Allowing any origin is possible but is notnot secure or recommended.

HTTP methods GET  and POST  must be allowed.

Credentials must be allowed in order for cookie-based sticky sessions to work correctly. They must be enabled

even when authentication isn't used.

However, in 5.0 we have provided an option in the TypeScript client to not use credentials. The option to not use

credentials should only be used when you know 100% that credentials like Cookies are not needed in your app

(cookies are used by azure app service when using multiple servers for sticky sessions).

For example, the following CORS policy allows a SignalR browser client hosted on https://example.com  to access

the SignalR app hosted on https://signalr.example.com :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/security.md
https://twitter.com/anurse
https://www.w3.org/TR/cors/


public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    // ... other middleware ...

    // Make sure the CORS middleware is ahead of SignalR.
    app.UseCors(builder =>
    {
        builder.WithOrigins("https://example.com")
            .AllowAnyHeader()
            .WithMethods("GET", "POST")
            .AllowCredentials();
    });

    // ... other middleware ...
    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapHub<ChatHub>("/chathub");
    });

    // ... other middleware ...
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    // ... other middleware ...

    // Make sure the CORS middleware is ahead of SignalR.
    app.UseCors(builder =>
    {
        builder.WithOrigins("https://example.com")
            .AllowAnyHeader()
            .WithMethods("GET", "POST")
            .AllowCredentials();
    });

    // ... other middleware ...

    app.UseSignalR(routes =>
    {
        routes.MapHub<ChatHub>("/chathub");
    });

    // ... other middleware ...
}

WebSocket Origin Restriction
The protections provided by CORS don't apply to WebSockets. For origin restriction on WebSockets, read

WebSockets origin restriction.

The protections provided by CORS don't apply to WebSockets. Browsers do notnot:

Perform CORS pre-flight requests.

Respect the restrictions specified in Access-Control  headers when making WebSocket requests.

However, browsers do send the Origin  header when issuing WebSocket requests. Applications should be

configured to validate these headers to ensure that only WebSockets coming from the expected origins are

allowed.



// In Startup, add a static field listing the allowed Origin values:
private static readonly HashSet<string> _allowedOrigins = new HashSet<string>()
{
    // Add allowed origins here. For example:
    "https://www.mysite.com",
    "https://mysite.com",
};

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    // ... other middleware ...

    // Validate Origin header on WebSocket requests to prevent unexpected cross-site 
    // WebSocket requests.
    app.Use((context, next) =>
    {
        // Check for a WebSocket request.
        if (string.Equals(context.Request.Headers["Upgrade"], "websocket"))
        {
            var origin = context.Request.Headers["Origin"];

            // If there is an origin header, and the origin header doesn't match 
            // an allowed value:
            if (!string.IsNullOrEmpty(origin) && !_allowedOrigins.Contains(origin))
            {
                // The origin is not allowed, reject the request
                context.Response.StatusCode = StatusCodes.Status403Forbidden;
                return Task.CompletedTask;
            }
        }

        // The request is a valid Origin or not a WebSocket request, so continue.
        return next();
    });

    // ... other middleware ...

    app.UseSignalR(routes =>
    {
        routes.MapHub<ChatHub>("/chathub");
    });

    // ... other middleware ...
}

NOTENOTE

ConnectionId

In ASP.NET Core 2.1 and later, header validation can be achieved using a custom middleware placed before before 

UseSignalR , and authentication middleware, and authentication middleware in Configure :

The Origin  header is controlled by the client and, like the Referer  header, can be faked. These headers should notnot  be

used as an authentication mechanism.

Exposing ConnectionId  can lead to malicious impersonation if the SignalR server or client version is ASP.NET Core

2.2 or earlier. If the SignalR server and client version are ASP.NET Core 3.0 or later, the ConnectionToken  rather than

the ConnectionId  must be kept secret. The ConnectionToken  is purposely not exposed in any API. It can be difficult

to ensure that older SignalR clients aren't connecting to the server, so even if your SignalR server version is



  

Access token logging

info: Microsoft.AspNetCore.Hosting.Internal.WebHost[1]
      Request starting HTTP/1.1 GET http://localhost:5000/chathub?access_token=1234

Exceptions

Buffer management

ASP.NET Core 3.0 or later, the ConnectionId  shouldn't be exposed.

When using WebSockets or Server-Sent Events, the browser client sends the access token in the query string.

Receiving the access token via query string is generally secure as using the standard Authorization  header.

Always use HTTPS to ensure a secure end-to-end connection between the client and the server. Many web servers

log the URL for each request, including the query string. Logging the URLs may log the access token. ASP.NET Core

logs the URL for each request by default, which will include the query string. For example:

If you have concerns about logging this data with your server logs, you can disable this logging entirely by

configuring the Microsoft.AspNetCore.Hosting  logger to the Warning  level or above (these messages are written at

Info  level). For more information, see Log Filtering for more information. If you still want to log certain request

information, you can write a middleware to log the data you require and filter out the access_token  query string

value (if present).

Exception messages are generally considered sensitive data that shouldn't be revealed to a client. By default,

SignalR doesn't send the details of an exception thrown by a hub method to the client. Instead, the client receives a

generic message indicating an error occurred. Exception message delivery to the client can be overridden (for

example in development or test) with EnableDetailedErrors. Exception messages should not be exposed to the

client in production apps.

SignalR uses per-connection buffers to manage incoming and outgoing messages. By default, SignalR limits these

buffers to 32 KB. The largest message a client or server can send is 32 KB. The maximum memory consumed by a

connection for messages is 32 KB. If your messages are always smaller than 32 KB, you can reduce the limit, which:

Prevents a client from being able to send a larger message.

The server will never need to allocate large buffers to accept messages.

If your messages are larger than 32 KB, you can increase the limit. Increasing this limit means:

The client can cause the server to allocate large memory buffers.

Server allocation of large buffers may reduce the number of concurrent connections.

There are limits for incoming and outgoing messages, both can be configured on the

HttpConnectionDispatcherOptions object configured in MapHub :

ApplicationMaxBufferSize  represents the maximum number of bytes from the client that the server buffers. If

the client attempts to send a message larger than this limit, the connection may be closed.

TransportMaxBufferSize  represents the maximum number of bytes the server can send. If the server attempts

to send a message (including return values from hub methods) larger than this limit, an exception will be

thrown.

Setting the limit to 0  disables the limit. Removing the limit allows a client to send a message of any size.

Malicious clients sending large messages can cause excess memory to be allocated. Excess memory usage can

significantly reduce the number of concurrent connections.



Use MessagePack Hub Protocol in SignalR for
ASP.NET Core
9/22/2020 • 15 minutes to read • Edit Online

What is MessagePack?

Configure MessagePack on the server

NOTENOTE

services.AddSignalR()
    .AddMessagePackProtocol();

services.AddSignalR()
    .AddMessagePackProtocol(options =>
    {
        options.SerializerOptions = MessagePackSerializerOptions.Standard
            .WithResolver(new CustomResolver())
            .WithSecurity(MessagePackSecurity.UntrustedData);
    });

WARNINGWARNING

Configure MessagePack on the client

This article assumes the reader is familiar with the topics covered in Get Started.

MessagePack is a fast and compact binary serialization format. It's useful when performance and bandwidth are

a concern because it creates smaller messages compared to JSON. The binary messages are unreadable when

looking at network traces and logs unless the bytes are passed through a MessagePack parser. SignalR has built-

in support for the MessagePack format and provides APIs for the client and server to use.

To enable the MessagePack Hub Protocol on the server, install the 

Microsoft.AspNetCore.SignalR.Protocols.MessagePack  package in your app. In the Startup.ConfigureServices

method, add AddMessagePackProtocol  to the AddSignalR  call to enable MessagePack support on the server.

JSON is enabled by default. Adding MessagePack enables support for both JSON and MessagePack clients.

To customize how MessagePack will format your data, AddMessagePackProtocol  takes a delegate for configuring

options. In that delegate, the SerializerOptions  property can be used to configure MessagePack serialization

options. For more information on how the resolvers work, visit the MessagePack library at MessagePack-CSharp.

Attributes can be used on the objects you want to serialize to define how they should be handled.

We strongly recommend reviewing CVE-2020-5234 and applying the recommended patches. For example, calling 

.WithSecurity(MessagePackSecurity.UntrustedData)  when replacing the SerializerOptions .

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/messagepackhubprotocol.md
https://msgpack.org/index.html
https://www.json.org/
https://github.com/neuecc/MessagePack-CSharp
https://github.com/neuecc/MessagePack-CSharp/security/advisories/GHSA-7q36-4xx7-xcxf


NOTENOTE

.NET client.NET client

var hubConnection = new HubConnectionBuilder()
                        .WithUrl("/chathub")
                        .AddMessagePackProtocol()
                        .Build();

NOTENOTE

JavaScript clientJavaScript client

npm install @microsoft/signalr-protocol-msgpack

NOTENOTE

<script src="~/lib/signalr/signalr.js"></script>
<script src="~/lib/msgpack5/msgpack5.js"></script>
<script src="~/lib/signalr/signalr-protocol-msgpack.js"></script>

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .withHubProtocol(new signalR.protocols.msgpack.MessagePackHubProtocol())
    .build();

JSON is enabled by default for the supported clients. Clients can only support a single protocol. Adding MessagePack

support will replace any previously configured protocols.

To enable MessagePack in the .NET Client, install the Microsoft.AspNetCore.SignalR.Protocols.MessagePack

package and call AddMessagePackProtocol  on HubConnectionBuilder .

This AddMessagePackProtocol  call takes a delegate for configuring options just like the server.

MessagePack support for the JavaScript client is provided by the @microsoft/signalr-protocol-msgpack npm

package. Install the package by executing the following command in a command shell:

After installing the npm package, the module can be used directly via a JavaScript module loader or imported

into the browser by referencing the following file:

node_modules\@microsoft\signalr-protocol-msgpack\dist\browser\signalr-protocol-msgpack.js

In a browser, the msgpack5  library must also be referenced. Use a <script>  tag to create a reference. The library

can be found at node_modules\msgpack5\dist\msgpack5.js.

When using the <script>  element, the order is important. If signalr-protocol-msgpack.js is referenced before

msgpack5.js, an error occurs when trying to connect with MessagePack. signalr.js is also required before signalr-protocol-

msgpack.js.

Adding .withHubProtocol(new signalR.protocols.msgpack.MessagePackHubProtocol())  to the HubConnectionBuilder

will configure the client to use the MessagePack protocol when connecting to a server.

https://www.npmjs.com/package/@microsoft/signalr-protocol-msgpack


NOTENOTE

MessagePack quirks

MessagePack is case-sensitiveMessagePack is case-sensitive

public class ChatMessage
{
    public string Sender { get; }
    public string Message { get; }
}

connection.invoke("SomeMethod", { Sender: "Sally", Message: "Hello!" });

DateTime.Kind is not preserved when serializing/deserializingDateTime.Kind is not preserved when serializing/deserializing

DateTime.MinValue is not supported by MessagePack in JavaScriptDateTime.MinValue is not supported by MessagePack in JavaScript

Uncaught Error: unable to find ext type 255 at decoder.js:427

MessagePack support in "ahead-of-time" compilation environmentMessagePack support in "ahead-of-time" compilation environment

At this time, there are no configuration options for the MessagePack protocol on the JavaScript client.

There are a few issues to be aware of when using the MessagePack Hub Protocol.

The MessagePack protocol is case-sensitive. For example, consider the following C# class:

When sending from the JavaScript client, you must use PascalCased  property names, since the casing must

match the C# class exactly. For example:

Using camelCased  names won't properly bind to the C# class. You can work around this by using the Key

attribute to specify a different name for the MessagePack property. For more information, see the MessagePack-

CSharp documentation.

The MessagePack protocol doesn't provide a way to encode the Kind  value of a DateTime . As a result, when

deserializing a date, the MessagePack Hub Protocol will convert to the UTC format if the DateTime.Kind  is 

DateTimeKind.Local  otherwise it will not touch the time and pass it as is. If you're working with DateTime  values,

we recommend converting to UTC before sending them. Convert them from UTC to local time when you receive

them.

The msgpack5 library used by the SignalR JavaScript client doesn't support the timestamp96  type in

MessagePack. This type is used to encode very large date values (either very early in the past or very far in the

future). The value of DateTime.MinValue  is January 1, 0001 , which must be encoded in a timestamp96  value.

Because of this, sending DateTime.MinValue  to a JavaScript client isn't supported. When DateTime.MinValue  is

received by the JavaScript client, the following error is thrown:

Usually, DateTime.MinValue  is used to encode a "missing" or null  value. If you need to encode that value in

MessagePack, use a nullable DateTime  value ( DateTime? ) or encode a separate bool  value indicating if the date

is present.

For more information on this limitation, see GitHub issue aspnet/SignalR#2228.

The MessagePack-CSharp library used by the .NET client and server uses code generation to optimize

serialization. As a result, it isn't supported by default on environments that use "ahead-of-time" compilation

(such as Xamarin iOS or Unity). It's possible to use MessagePack in these environments by "pre-generating" the

https://github.com/neuecc/MessagePack-CSharp#object-serialization
https://github.com/mcollina/msgpack5
https://github.com/aspnet/SignalR/issues/2228
https://github.com/neuecc/MessagePack-CSharp/tree/v2.1.90


services.AddSignalR()
    .AddMessagePackProtocol(options =>
    {
        StaticCompositeResolver.Instance.Register(
            MessagePack.Resolvers.GeneratedResolver.Instance,
            MessagePack.Resolvers.StandardResolver.Instance
        );
        options.SerializerOptions = MessagePackSerializerOptions.Standard
            .WithResolver(StaticCompositeResolver.Instance)
            .WithSecurity(MessagePackSecurity.UntrustedData);
    });

Type checks are more strict in MessagePackType checks are more strict in MessagePack

InvalidDataException: Error binding arguments. Make sure that the types of the provided values match the 
types of the hub method being invoked.

Related resources

What is MessagePack?

Configure MessagePack on the server

NOTENOTE

serializer/deserializer code. For more information, see the MessagePack-CSharp documentation. Once you have

pre-generated the serializers, you can register them using the configuration delegate passed to 

AddMessagePackProtocol :

The JSON Hub Protocol will perform type conversions during deserialization. For example, if the incoming object

has a property value that is a number ( { foo: 42 } ) but the property on the .NET class is of type string , the

value will be converted. However, MessagePack doesn't perform this conversion and will throw an exception that

can be seen in server-side logs (and in the console):

For more information on this limitation, see GitHub issue aspnet/SignalR#2937.

Get Started

.NET client

JavaScript client

This article assumes the reader is familiar with the topics covered in Get Started.

MessagePack is a fast and compact binary serialization format. It's useful when performance and bandwidth are

a concern because it creates smaller messages compared to JSON. The binary messages are unreadable when

looking at network traces and logs unless the bytes are passed through a MessagePack parser. SignalR has built-

in support for the MessagePack format, and provides APIs for the client and server to use.

To enable the MessagePack Hub Protocol on the server, install the 

Microsoft.AspNetCore.SignalR.Protocols.MessagePack  package in your app. In the Startup.ConfigureServices

method, add AddMessagePackProtocol  to the AddSignalR  call to enable MessagePack support on the server.

JSON is enabled by default. Adding MessagePack enables support for both JSON and MessagePack clients.

https://github.com/neuecc/MessagePack-CSharp/tree/v2.1.90#aot-code-generation-to-support-unityxamarin
https://github.com/aspnet/SignalR/issues/2937
https://msgpack.org/index.html
https://www.json.org/


services.AddSignalR()
    .AddMessagePackProtocol();

services.AddSignalR()
    .AddMessagePackProtocol(options =>
    {
        options.FormatterResolvers = new List<MessagePack.IFormatterResolver>()
        {
            MessagePack.Resolvers.StandardResolver.Instance
        };
    });

WARNINGWARNING

public static void Main(string[] args)
{
  MessagePackSecurity.Active = MessagePackSecurity.UntrustedData;

  CreateHostBuilder(args).Build().Run();
}

Configure MessagePack on the client

NOTENOTE

.NET client.NET client

var hubConnection = new HubConnectionBuilder()
                        .WithUrl("/chathub")
                        .AddMessagePackProtocol()
                        .Build();

To customize how MessagePack will format your data, AddMessagePackProtocol  takes a delegate for configuring

options. In that delegate, the FormatterResolvers  property can be used to configure MessagePack serialization

options. For more information on how the resolvers work, visit the MessagePack library at MessagePack-CSharp.

Attributes can be used on the objects you want to serialize to define how they should be handled.

We strongly recommend reviewing CVE-2020-5234 and applying the recommended patches. For example, setting the 

MessagePackSecurity.Active  static property to MessagePackSecurity.UntrustedData . Setting the 

MessagePackSecurity.Active  requires manually installing a 1.9.x version of MessagePack. Installing MessagePack  1.9.x

upgrades the version SignalR uses. When MessagePackSecurity.Active  is not set to 

MessagePackSecurity.UntrustedData , a malicious client could cause a denial of service. Set 

MessagePackSecurity.Active  in Program.Main , as shown in the following code:

JSON is enabled by default for the supported clients. Clients can only support a single protocol. Adding MessagePack

support will replace any previously configured protocols.

To enable MessagePack in the .NET Client, install the Microsoft.AspNetCore.SignalR.Protocols.MessagePack

package and call AddMessagePackProtocol  on HubConnectionBuilder .

https://github.com/neuecc/MessagePack-CSharp
https://github.com/neuecc/MessagePack-CSharp/security/advisories/GHSA-7q36-4xx7-xcxf
https://www.nuget.org/packages/MessagePack/1.9.3


NOTENOTE

JavaScript clientJavaScript client

npm install @microsoft/signalr-protocol-msgpack

NOTENOTE

<script src="~/lib/signalr/signalr.js"></script>
<script src="~/lib/msgpack5/msgpack5.js"></script>
<script src="~/lib/signalr/signalr-protocol-msgpack.js"></script>

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .withHubProtocol(new signalR.protocols.msgpack.MessagePackHubProtocol())
    .build();

NOTENOTE

MessagePack quirks

MessagePack is case-sensitiveMessagePack is case-sensitive

This AddMessagePackProtocol  call takes a delegate for configuring options just like the server.

MessagePack support for the JavaScript client is provided by the @microsoft/signalr-protocol-msgpack npm

package. Install the package by executing the following command in a command shell:

After installing the npm package, the module can be used directly via a JavaScript module loader or imported

into the browser by referencing the following file:

node_modules\@microsoft\signalr-protocol-msgpack\dist\browser\signalr-protocol-msgpack.js

In a browser, the msgpack5  library must also be referenced. Use a <script>  tag to create a reference. The library

can be found at node_modules\msgpack5\dist\msgpack5.js.

When using the <script>  element, the order is important. If signalr-protocol-msgpack.js is referenced before

msgpack5.js, an error occurs when trying to connect with MessagePack. signalr.js is also required before signalr-protocol-

msgpack.js.

Adding .withHubProtocol(new signalR.protocols.msgpack.MessagePackHubProtocol())  to the HubConnectionBuilder

will configure the client to use the MessagePack protocol when connecting to a server.

At this time, there are no configuration options for the MessagePack protocol on the JavaScript client.

There are a few issues to be aware of when using the MessagePack Hub Protocol.

The MessagePack protocol is case-sensitive. For example, consider the following C# class:

https://www.npmjs.com/package/@microsoft/signalr-protocol-msgpack


public class ChatMessage
{
    public string Sender { get; }
    public string Message { get; }
}

connection.invoke("SomeMethod", { Sender: "Sally", Message: "Hello!" });

DateTime.Kind is not preserved when serializing/deserializingDateTime.Kind is not preserved when serializing/deserializing

DateTime.MinValue is not supported by MessagePack in JavaScriptDateTime.MinValue is not supported by MessagePack in JavaScript

Uncaught Error: unable to find ext type 255 at decoder.js:427

MessagePack support in "ahead-of-time" compilation environmentMessagePack support in "ahead-of-time" compilation environment

When sending from the JavaScript client, you must use PascalCased  property names, since the casing must

match the C# class exactly. For example:

Using camelCased  names won't properly bind to the C# class. You can work around this by using the Key

attribute to specify a different name for the MessagePack property. For more information, see the MessagePack-

CSharp documentation.

The MessagePack protocol doesn't provide a way to encode the Kind  value of a DateTime . As a result, when

deserializing a date, the MessagePack Hub Protocol assumes the incoming date is in UTC format. If you're

working with DateTime  values in local time, we recommend converting to UTC before sending them. Convert

them from UTC to local time when you receive them.

For more information on this limitation, see GitHub issue aspnet/SignalR#2632.

The msgpack5 library used by the SignalR JavaScript client doesn't support the timestamp96  type in

MessagePack. This type is used to encode very large date values (either very early in the past or very far in the

future). The value of DateTime.MinValue  is January 1, 0001 , which must be encoded in a timestamp96  value.

Because of this, sending DateTime.MinValue  to a JavaScript client isn't supported. When DateTime.MinValue  is

received by the JavaScript client, the following error is thrown:

Usually, DateTime.MinValue  is used to encode a "missing" or null  value. If you need to encode that value in

MessagePack, use a nullable DateTime  value ( DateTime? ) or encode a separate bool  value indicating if the date

is present.

For more information on this limitation, see GitHub issue aspnet/SignalR#2228.

The MessagePack-CSharp library used by the .NET client and server uses code generation to optimize

serialization. As a result, it isn't supported by default on environments that use "ahead-of-time" compilation

(such as Xamarin iOS or Unity). It's possible to use MessagePack in these environments by "pre-generating" the

serializer/deserializer code. For more information, see the MessagePack-CSharp documentation. Once you have

pre-generated the serializers, you can register them using the configuration delegate passed to 

AddMessagePackProtocol :

https://github.com/neuecc/MessagePack-CSharp#object-serialization
https://github.com/aspnet/SignalR/issues/2632
https://github.com/mcollina/msgpack5
https://github.com/aspnet/SignalR/issues/2228
https://github.com/neuecc/MessagePack-CSharp/tree/v1.8.80
https://github.com/neuecc/MessagePack-CSharp/tree/v1.8.80#pre-code-generationunityxamarin-supports


services.AddSignalR()
    .AddMessagePackProtocol(options =>
    {
        options.FormatterResolvers = new List<MessagePack.IFormatterResolver>()
        {
            MessagePack.Resolvers.GeneratedResolver.Instance,
            MessagePack.Resolvers.StandardResolver.Instance
        };
    });

Type checks are more strict in MessagePackType checks are more strict in MessagePack

InvalidDataException: Error binding arguments. Make sure that the types of the provided values match the 
types of the hub method being invoked.

Related resources

What is MessagePack?

Configure MessagePack on the server

NOTENOTE

services.AddSignalR()
    .AddMessagePackProtocol();

The JSON Hub Protocol will perform type conversions during deserialization. For example, if the incoming object

has a property value that is a number ( { foo: 42 } ) but the property on the .NET class is of type string , the

value will be converted. However, MessagePack doesn't perform this conversion and will throw an exception that

can be seen in server-side logs (and in the console):

For more information on this limitation, see GitHub issue aspnet/SignalR#2937.

Get Started

.NET client

JavaScript client

This article assumes the reader is familiar with the topics covered in Get Started.

MessagePack is a fast and compact binary serialization format. It's useful when performance and bandwidth are

a concern because it creates smaller messages compared to JSON. The binary messages are unreadable when

looking at network traces and logs unless the bytes are passed through a MessagePack parser. SignalR has built-

in support for the MessagePack format, and provides APIs for the client and server to use.

To enable the MessagePack Hub Protocol on the server, install the 

Microsoft.AspNetCore.SignalR.Protocols.MessagePack  package in your app. In the Startup.ConfigureServices

method, add AddMessagePackProtocol  to the AddSignalR  call to enable MessagePack support on the server.

JSON is enabled by default. Adding MessagePack enables support for both JSON and MessagePack clients.

To customize how MessagePack will format your data, AddMessagePackProtocol  takes a delegate for configuring

options. In that delegate, the FormatterResolvers  property can be used to configure MessagePack serialization

options. For more information on how the resolvers work, visit the MessagePack library at MessagePack-CSharp.

https://github.com/aspnet/SignalR/issues/2937
https://msgpack.org/index.html
https://www.json.org/
https://github.com/neuecc/MessagePack-CSharp


services.AddSignalR()
    .AddMessagePackProtocol(options =>
    {
        options.FormatterResolvers = new List<MessagePack.IFormatterResolver>()
        {
            MessagePack.Resolvers.StandardResolver.Instance
        };
    });

WARNINGWARNING

public static void Main(string[] args)
{
  MessagePackSecurity.Active = MessagePackSecurity.UntrustedData;

  CreateHostBuilder(args).Build().Run();
}

Configure MessagePack on the client

NOTENOTE

.NET client.NET client

var hubConnection = new HubConnectionBuilder()
                        .WithUrl("/chathub")
                        .AddMessagePackProtocol()
                        .Build();

NOTENOTE

JavaScript clientJavaScript client

Attributes can be used on the objects you want to serialize to define how they should be handled.

We strongly recommend reviewing CVE-2020-5234 and applying the recommended patches. For example, setting the 

MessagePackSecurity.Active  static property to MessagePackSecurity.UntrustedData . Setting the 

MessagePackSecurity.Active  requires manually installing a 1.9.x version of MessagePack. Installing MessagePack  1.9.x

upgrades the version SignalR uses. When MessagePackSecurity.Active  is not set to 

MessagePackSecurity.UntrustedData , a malicious client could cause a denial of service. Set 

MessagePackSecurity.Active  in Program.Main , as shown in the following code:

JSON is enabled by default for the supported clients. Clients can only support a single protocol. Adding MessagePack

support will replace any previously configured protocols.

To enable MessagePack in the .NET Client, install the Microsoft.AspNetCore.SignalR.Protocols.MessagePack

package and call AddMessagePackProtocol  on HubConnectionBuilder .

This AddMessagePackProtocol  call takes a delegate for configuring options just like the server.

MessagePack support for the JavaScript client is provided by the @aspnet/signalr-protocol-msgpack npm

package. Install the package by executing the following command in a command shell:

https://github.com/neuecc/MessagePack-CSharp/security/advisories/GHSA-7q36-4xx7-xcxf
https://www.nuget.org/packages/MessagePack/1.9.3
https://www.npmjs.com/package/@aspnet/signalr-protocol-msgpack


npm install @aspnet/signalr-protocol-msgpack

NOTENOTE

<script src="~/lib/signalr/signalr.js"></script>
<script src="~/lib/msgpack5/msgpack5.js"></script>
<script src="~/lib/signalr/signalr-protocol-msgpack.js"></script>

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .withHubProtocol(new signalR.protocols.msgpack.MessagePackHubProtocol())
    .build();

NOTENOTE

MessagePack quirks

MessagePack is case-sensitiveMessagePack is case-sensitive

public class ChatMessage
{
    public string Sender { get; }
    public string Message { get; }
}

connection.invoke("SomeMethod", { Sender: "Sally", Message: "Hello!" });

After installing the npm package, the module can be used directly via a JavaScript module loader or imported

into the browser by referencing the following file:

node_modules\@aspnet\signalr-protocol-msgpack\dist\browser\signalr-protocol-msgpack.js

In a browser, the msgpack5  library must also be referenced. Use a <script>  tag to create a reference. The library

can be found at node_modules\msgpack5\dist\msgpack5.js.

When using the <script>  element, the order is important. If signalr-protocol-msgpack.js is referenced before

msgpack5.js, an error occurs when trying to connect with MessagePack. signalr.js is also required before signalr-protocol-

msgpack.js.

Adding .withHubProtocol(new signalR.protocols.msgpack.MessagePackHubProtocol())  to the HubConnectionBuilder

will configure the client to use the MessagePack protocol when connecting to a server.

At this time, there are no configuration options for the MessagePack protocol on the JavaScript client.

There are a few issues to be aware of when using the MessagePack Hub Protocol.

The MessagePack protocol is case-sensitive. For example, consider the following C# class:

When sending from the JavaScript client, you must use PascalCased  property names, since the casing must

match the C# class exactly. For example:

Using camelCased  names won't properly bind to the C# class. You can work around this by using the Key



DateTime.Kind is not preserved when serializing/deserializingDateTime.Kind is not preserved when serializing/deserializing

DateTime.MinValue is not supported by MessagePack in JavaScriptDateTime.MinValue is not supported by MessagePack in JavaScript

Uncaught Error: unable to find ext type 255 at decoder.js:427

MessagePack support in "ahead-of-time" compilation environmentMessagePack support in "ahead-of-time" compilation environment

services.AddSignalR()
    .AddMessagePackProtocol(options =>
    {
        options.FormatterResolvers = new List<MessagePack.IFormatterResolver>()
        {
            MessagePack.Resolvers.GeneratedResolver.Instance,
            MessagePack.Resolvers.StandardResolver.Instance
        };
    });

Type checks are more strict in MessagePackType checks are more strict in MessagePack

InvalidDataException: Error binding arguments. Make sure that the types of the provided values match the 
types of the hub method being invoked.

attribute to specify a different name for the MessagePack property. For more information, see the MessagePack-

CSharp documentation.

The MessagePack protocol doesn't provide a way to encode the Kind  value of a DateTime . As a result, when

deserializing a date, the MessagePack Hub Protocol assumes the incoming date is in UTC format. If you're

working with DateTime  values in local time, we recommend converting to UTC before sending them. Convert

them from UTC to local time when you receive them.

For more information on this limitation, see GitHub issue aspnet/SignalR#2632.

The msgpack5 library used by the SignalR JavaScript client doesn't support the timestamp96  type in

MessagePack. This type is used to encode very large date values (either very early in the past or very far in the

future). The value of DateTime.MinValue  is January 1, 0001  which must be encoded in a timestamp96  value.

Because of this, sending DateTime.MinValue  to a JavaScript client isn't supported. When DateTime.MinValue  is

received by the JavaScript client, the following error is thrown:

Usually, DateTime.MinValue  is used to encode a "missing" or null  value. If you need to encode that value in

MessagePack, use a nullable DateTime  value ( DateTime? ) or encode a separate bool  value indicating if the date

is present.

For more information on this limitation, see GitHub issue aspnet/SignalR#2228.

The MessagePack-CSharp library used by the .NET client and server uses code generation to optimize

serialization. As a result, it isn't supported by default on environments that use "ahead-of-time" compilation

(such as Xamarin iOS or Unity). It's possible to use MessagePack in these environments by "pre-generating" the

serializer/deserializer code. For more information, see the MessagePack-CSharp documentation. Once you have

pre-generated the serializers, you can register them using the configuration delegate passed to 

AddMessagePackProtocol :

The JSON Hub Protocol will perform type conversions during deserialization. For example, if the incoming object

has a property value that is a number ( { foo: 42 } ) but the property on the .NET class is of type string , the

value will be converted. However, MessagePack doesn't perform this conversion and will throw an exception that

can be seen in server-side logs (and in the console):

For more information on this limitation, see GitHub issue aspnet/SignalR#2937.

https://github.com/neuecc/MessagePack-CSharp#object-serialization
https://github.com/aspnet/SignalR/issues/2632
https://github.com/mcollina/msgpack5
https://github.com/aspnet/SignalR/issues/2228
https://github.com/neuecc/MessagePack-CSharp/tree/v1.8.80
https://github.com/neuecc/MessagePack-CSharp/tree/v1.8.80#pre-code-generationunityxamarin-supports
https://github.com/aspnet/SignalR/issues/2937


Related resources
Get Started

.NET client

JavaScript client



Use streaming in ASP.NET Core SignalR
9/22/2020 • 9 minutes to read • Edit Online

Set up a hub for streaming

Server-to-client streamingServer-to-client streaming

NOTENOTE

By Brennan Conroy

ASP.NET Core SignalR supports streaming from client to server and from server to client. This is useful for

scenarios where fragments of data arrive over time. When streaming, each fragment is sent to the client or server

as soon as it becomes available, rather than waiting for all of the data to become available.

ASP.NET Core SignalR supports streaming return values of server methods. This is useful for scenarios where

fragments of data arrive over time. When a return value is streamed to the client, each fragment is sent to the

client as soon as it becomes available, rather than waiting for all the data to become available.

View or download sample code (how to download)

A hub method automatically becomes a streaming hub method when it returns IAsyncEnumerable<T>,

ChannelReader<T>, Task<IAsyncEnumerable<T>> , or Task<ChannelReader<T>> .

A hub method automatically becomes a streaming hub method when it returns a ChannelReader<T> or a 

Task<ChannelReader<T>> .

Streaming hub methods can return IAsyncEnumerable<T>  in addition to ChannelReader<T> . The simplest way to

return IAsyncEnumerable<T>  is by making the hub method an async iterator method as the following sample

demonstrates. Hub async iterator methods can accept a CancellationToken  parameter that's triggered when the

client unsubscribes from the stream. Async iterator methods avoid problems common with Channels, such as not

returning the ChannelReader  early enough or exiting the method without completing the ChannelWriter<T>.

The following sample requires C# 8.0 or later.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/streaming.md
https://github.com/BrennanConroy
https://github.com/dotnet/AspNetCore.Docs/tree/live/aspnetcore/signalr/streaming/samples/
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.channels.channelreader-1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.channels.channelreader-1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.channels.channelwriter-1


public class AsyncEnumerableHub : Hub
{
    public async IAsyncEnumerable<int> Counter(
        int count,
        int delay,
        [EnumeratorCancellation]
        CancellationToken cancellationToken)
    {
        for (var i = 0; i < count; i++)
        {
            // Check the cancellation token regularly so that the server will stop
            // producing items if the client disconnects.
            cancellationToken.ThrowIfCancellationRequested();

            yield return i;

            // Use the cancellationToken in other APIs that accept cancellation
            // tokens so the cancellation can flow down to them.
            await Task.Delay(delay, cancellationToken);
        }
    }
}

NOTENOTE

The following sample shows the basics of streaming data to the client using Channels. Whenever an object is

written to the ChannelWriter<T>, the object is immediately sent to the client. At the end, the ChannelWriter  is

completed to tell the client the stream is closed.

Write to the ChannelWriter<T>  on a background thread and return the ChannelReader  as soon as possible. Other hub

invocations are blocked until a ChannelReader  is returned.

Wrap logic in a try ... catch . Complete the Channel  in the catch  and outside the catch  to make sure the hub

method invocation is completed properly.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.channels.channelwriter-1


public ChannelReader<int> Counter(
    int count,
    int delay,
    CancellationToken cancellationToken)
{
    var channel = Channel.CreateUnbounded<int>();

    // We don't want to await WriteItemsAsync, otherwise we'd end up waiting 
    // for all the items to be written before returning the channel back to
    // the client.
    _ = WriteItemsAsync(channel.Writer, count, delay, cancellationToken);

    return channel.Reader;
}

private async Task WriteItemsAsync(
    ChannelWriter<int> writer,
    int count,
    int delay,
    CancellationToken cancellationToken)
{
    Exception localException = null;
    try
    {
        for (var i = 0; i < count; i++)
        {
            await writer.WriteAsync(i, cancellationToken);

            // Use the cancellationToken in other APIs that accept cancellation
            // tokens so the cancellation can flow down to them.
            await Task.Delay(delay, cancellationToken);
        }
    }
    catch (Exception ex)
    {
        localException = ex;
    }

    writer.Complete(localException);
}



public class StreamHub : Hub
{
    public ChannelReader<int> Counter(
        int count,
        int delay,
        CancellationToken cancellationToken)
    {
        var channel = Channel.CreateUnbounded<int>();

        // We don't want to await WriteItemsAsync, otherwise we'd end up waiting
        // for all the items to be written before returning the channel back to
        // the client.
        _ = WriteItemsAsync(channel.Writer, count, delay, cancellationToken);

        return channel.Reader;
    }

    private async Task WriteItemsAsync(
        ChannelWriter<int> writer,
        int count,
        int delay,
        CancellationToken cancellationToken)
    {
        try
        {
            for (var i = 0; i < count; i++)
            {
                // Check the cancellation token regularly so that the server will stop
                // producing items if the client disconnects.
                cancellationToken.ThrowIfCancellationRequested();
                await writer.WriteAsync(i);

                // Use the cancellationToken in other APIs that accept cancellation
                // tokens so the cancellation can flow down to them.
                await Task.Delay(delay, cancellationToken);
            }
        }
        catch (Exception ex)
        {
            writer.TryComplete(ex);
        }

        writer.TryComplete();
    }
}



public class StreamHub : Hub
{
    public ChannelReader<int> Counter(int count, int delay)
    {
        var channel = Channel.CreateUnbounded<int>();

        // We don't want to await WriteItemsAsync, otherwise we'd end up waiting 
        // for all the items to be written before returning the channel back to
        // the client.
        _ = WriteItemsAsync(channel.Writer, count, delay);

        return channel.Reader;
    }

    private async Task WriteItemsAsync(
        ChannelWriter<int> writer,
        int count,
        int delay)
    {
        try
        {
            for (var i = 0; i < count; i++)
            {
                await writer.WriteAsync(i);
                await Task.Delay(delay);
            }
        }
        catch (Exception ex)
        {
            writer.TryComplete(ex);
        }

        writer.TryComplete();
    }
}

Client-to-server streamingClient-to-server streaming

public async Task UploadStream(ChannelReader<string> stream)
{
    while (await stream.WaitToReadAsync())
    {
        while (stream.TryRead(out var item))
        {
            // do something with the stream item
            Console.WriteLine(item);
        }
    }
}

Server-to-client streaming hub methods can accept a CancellationToken  parameter that's triggered when the

client unsubscribes from the stream. Use this token to stop the server operation and release any resources if the

client disconnects before the end of the stream.

A hub method automatically becomes a client-to-server streaming hub method when it accepts one or more

objects of type ChannelReader<T> or IAsyncEnumerable<T>. The following sample shows the basics of reading

streaming data sent from the client. Whenever the client writes to the ChannelWriter<T>, the data is written into

the ChannelReader  on the server from which the hub method is reading.

An IAsyncEnumerable<T> version of the method follows.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.channels.channelreader-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.channels.channelwriter-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1


NOTENOTE

public async Task UploadStream(IAsyncEnumerable<string> stream)
{
    await foreach (var item in stream)
    {
        Console.WriteLine(item);
    }
}

.NET client
Server-to-client streamingServer-to-client streaming

// Call "Cancel" on this CancellationTokenSource to send a cancellation message to
// the server, which will trigger the corresponding token in the hub method.
var cancellationTokenSource = new CancellationTokenSource();
var stream = await hubConnection.StreamAsync<int>(
    "Counter", 10, 500, cancellationTokenSource.Token);

await foreach (var count in stream)
{
    Console.WriteLine($"{count}");
}

Console.WriteLine("Streaming completed");

// Call "Cancel" on this CancellationTokenSource to send a cancellation message to
// the server, which will trigger the corresponding token in the hub method.
var cancellationTokenSource = new CancellationTokenSource();
var channel = await hubConnection.StreamAsChannelAsync<int>(
    "Counter", 10, 500, cancellationTokenSource.Token);

// Wait asynchronously for data to become available
while (await channel.WaitToReadAsync())
{
    // Read all currently available data synchronously, before waiting for more data
    while (channel.TryRead(out var count))
    {
        Console.WriteLine($"{count}");
    }
}

Console.WriteLine("Streaming completed");

The following sample requires C# 8.0 or later.

The StreamAsync  and StreamAsChannelAsync  methods on HubConnection  are used to invoke server-to-client

streaming methods. Pass the hub method name and arguments defined in the hub method to StreamAsync  or 

StreamAsChannelAsync . The generic parameter on StreamAsync<T>  and StreamAsChannelAsync<T>  specifies the type

of objects returned by the streaming method. An object of type IAsyncEnumerable<T>  or ChannelReader<T>  is

returned from the stream invocation and represents the stream on the client.

A StreamAsync  example that returns IAsyncEnumerable<int> :

A corresponding StreamAsChannelAsync  example that returns ChannelReader<int> :

The StreamAsChannelAsync  method on HubConnection  is used to invoke a server-to-client streaming method. Pass



// Call "Cancel" on this CancellationTokenSource to send a cancellation message to
// the server, which will trigger the corresponding token in the hub method.
var cancellationTokenSource = new CancellationTokenSource();
var channel = await hubConnection.StreamAsChannelAsync<int>(
    "Counter", 10, 500, cancellationTokenSource.Token);

// Wait asynchronously for data to become available
while (await channel.WaitToReadAsync())
{
    // Read all currently available data synchronously, before waiting for more data
    while (channel.TryRead(out var count))
    {
        Console.WriteLine($"{count}");
    }
}

Console.WriteLine("Streaming completed");

var channel = await hubConnection
    .StreamAsChannelAsync<int>("Counter", 10, 500, CancellationToken.None);

// Wait asynchronously for data to become available
while (await channel.WaitToReadAsync())
{
    // Read all currently available data synchronously, before waiting for more data
    while (channel.TryRead(out var count))
    {
        Console.WriteLine($"{count}");
    }
}

Console.WriteLine("Streaming completed");

Client-to-server streamingClient-to-server streaming

NOTENOTE

the hub method name and arguments defined in the hub method to StreamAsChannelAsync . The generic parameter

on StreamAsChannelAsync<T>  specifies the type of objects returned by the streaming method. A ChannelReader<T>  is

returned from the stream invocation and represents the stream on the client.

The StreamAsChannelAsync  method on HubConnection  is used to invoke a server-to-client streaming method. Pass

the hub method name and arguments defined in the hub method to StreamAsChannelAsync . The generic parameter

on StreamAsChannelAsync<T>  specifies the type of objects returned by the streaming method. A ChannelReader<T>  is

returned from the stream invocation and represents the stream on the client.

There are two ways to invoke a client-to-server streaming hub method from the .NET client. You can either pass in

an IAsyncEnumerable<T>  or a ChannelReader  as an argument to SendAsync , InvokeAsync , or StreamAsChannelAsync ,

depending on the hub method invoked.

Whenever data is written to the IAsyncEnumerable  or ChannelWriter  object, the hub method on the server receives

a new item with the data from the client.

If using an IAsyncEnumerable  object, the stream ends after the method returning stream items exits.

The following sample requires C# 8.0 or later.



async IAsyncEnumerable<string> clientStreamData()
{
    for (var i = 0; i < 5; i++)
    {
        var data = await FetchSomeData();
        yield return data;
    }
    //After the for loop has completed and the local function exits the stream completion will be sent.
}

await connection.SendAsync("UploadStream", clientStreamData());

var channel = Channel.CreateBounded<string>(10);
await connection.SendAsync("UploadStream", channel.Reader);
await channel.Writer.WriteAsync("some data");
await channel.Writer.WriteAsync("some more data");
channel.Writer.Complete();

JavaScript client
Server-to-client streamingServer-to-client streaming

connection.stream("Counter", 10, 500)
    .subscribe({
        next: (item) => {
            var li = document.createElement("li");
            li.textContent = item;
            document.getElementById("messagesList").appendChild(li);
        },
        complete: () => {
            var li = document.createElement("li");
            li.textContent = "Stream completed";
            document.getElementById("messagesList").appendChild(li);
        },
        error: (err) => {
            var li = document.createElement("li");
            li.textContent = err;
            document.getElementById("messagesList").appendChild(li);
        },
});

Or if you're using a ChannelWriter , you complete the channel with channel.Writer.Complete() :

JavaScript clients call server-to-client streaming methods on hubs with connection.stream . The stream  method

accepts two arguments:

The name of the hub method. In the following example, the hub method name is Counter .

Arguments defined in the hub method. In the following example, the arguments are a count for the number of

stream items to receive and the delay between stream items.

connection.stream  returns an IStreamResult , which contains a subscribe  method. Pass an IStreamSubscriber  to 

subscribe  and set the next , error , and complete  callbacks to receive notifications from the stream  invocation.

To end the stream from the client, call the dispose  method on the ISubscription  that's returned from the 

subscribe  method. Calling this method causes cancellation of the CancellationToken  parameter of the Hub

method, if you provided one.



connection.stream("Counter", 10, 500)
    .subscribe({
        next: (item) => {
            var li = document.createElement("li");
            li.textContent = item;
            document.getElementById("messagesList").appendChild(li);
        },
        complete: () => {
            var li = document.createElement("li");
            li.textContent = "Stream completed";
            document.getElementById("messagesList").appendChild(li);
        },
        error: (err) => {
            var li = document.createElement("li");
            li.textContent = err;
            document.getElementById("messagesList").appendChild(li);
        },
});

Client-to-server streamingClient-to-server streaming

const subject = new signalR.Subject();
yield connection.send("UploadStream", subject);
var iteration = 0;
const intervalHandle = setInterval(() => {
    iteration++;
    subject.next(iteration.toString());
    if (iteration === 10) {
        clearInterval(intervalHandle);
        subject.complete();
    }
}, 500);

Java client
Server-to-client streamingServer-to-client streaming

To end the stream from the client, call the dispose  method on the ISubscription  that's returned from the 

subscribe  method.

JavaScript clients call client-to-server streaming methods on hubs by passing in a Subject  as an argument to 

send , invoke , or stream , depending on the hub method invoked. The Subject  is a class that looks like a 

Subject . For example in RxJS, you can use the Subject class from that library.

Calling subject.next(item)  with an item writes the item to the stream, and the hub method receives the item on

the server.

To end the stream, call subject.complete() .

The SignalR Java client uses the stream  method to invoke streaming methods. stream  accepts three or more

arguments:

The expected type of the stream items.

The name of the hub method.

Arguments defined in the hub method.

https://rxjs-dev.firebaseapp.com/api/index/class/Subject


hubConnection.stream(String.class, "ExampleStreamingHubMethod", "Arg1")
    .subscribe(
        (item) -> {/* Define your onNext handler here. */ },
        (error) -> {/* Define your onError handler here. */},
        () -> {/* Define your onCompleted handler here. */});

Additional resources

The stream  method on HubConnection  returns an Observable of the stream item type. The Observable type's 

subscribe  method is where onNext , onError  and onCompleted  handlers are defined.

Hubs

.NET client

JavaScript client

Publish to Azure



Differences between ASP.NET SignalR and ASP.NET
Core SignalR
9/22/2020 • 5 minutes to read • Edit Online

How to identify the SignalR version

A SP. N ET  SIGN A L RA SP. N ET  SIGN A L R A SP. N ET  C O RE SIGN A L RA SP. N ET  C O RE SIGN A L R

Ser ver NuGet packageSer ver NuGet package Microsoft.AspNet.SignalR None. Included in the
Microsoft.AspNetCore.App shared
framework.

Client NuGet packagesClient NuGet packages Microsoft.AspNet.SignalR.Client
Microsoft.AspNet.SignalR.JS

Microsoft.AspNetCore.SignalR.Client

JavaScript client npm packageJavaScript client npm package signalr @microsoft/signalr

Java clientJava client GitHub Repository (deprecated) Maven package com.microsoft.signalr

Ser ver app typeSer ver app type ASP.NET (System.Web) or OWIN Self-
Host

ASP.NET Core

Suppor ted ser ver platformsSuppor ted ser ver platforms .NET Framework 4.5 or later .NET Core 3.0 or later

A SP. N ET  SIGN A L RA SP. N ET  SIGN A L R A SP. N ET  C O RE SIGN A L RA SP. N ET  C O RE SIGN A L R

Ser ver NuGet packageSer ver NuGet package Microsoft.AspNet.SignalR Microsoft.AspNetCore.App (.NET Core)
Microsoft.AspNetCore.SignalR (.NET
Framework)

Client NuGet packagesClient NuGet packages Microsoft.AspNet.SignalR.Client
Microsoft.AspNet.SignalR.JS

Microsoft.AspNetCore.SignalR.Client

JavaScript client npm packageJavaScript client npm package signalr @aspnet/signalr

Java clientJava client GitHub Repository (deprecated) Maven package com.microsoft.signalr

Ser ver app typeSer ver app type ASP.NET (System.Web) or OWIN Self-
Host

ASP.NET Core

Suppor ted ser ver platformsSuppor ted ser ver platforms .NET Framework 4.5 or later .NET Framework 4.6.1 or later
.NET Core 2.1 or later

Feature differences
Automatic reconnectsAutomatic reconnects

ASP.NET Core SignalR isn't compatible with clients or servers for ASP.NET SignalR. This article details features which

have been removed or changed in ASP.NET Core SignalR.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/version-differences.md
https://www.nuget.org/packages/Microsoft.AspNet.SignalR/
https://www.nuget.org/packages/Microsoft.AspNet.SignalR.Client/
https://www.nuget.org/packages/Microsoft.AspNet.SignalR.JS/
https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR.Client/
https://www.npmjs.com/package/signalr
https://www.npmjs.com/package/@microsoft/signalr
https://github.com/SignalR/java-client
https://search.maven.org/artifact/com.microsoft.signalr/signalr
https://www.nuget.org/packages/Microsoft.AspNet.SignalR/
https://www.nuget.org/packages/Microsoft.AspNetCore.App/
https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR/
https://www.nuget.org/packages/Microsoft.AspNet.SignalR.Client/
https://www.nuget.org/packages/Microsoft.AspNet.SignalR.JS/
https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR.Client/
https://www.npmjs.com/package/signalr
https://www.npmjs.com/package/@aspnet/signalr
https://github.com/SignalR/java-client
https://search.maven.org/artifact/com.microsoft.signalr/signalr


HubConnection connection = new HubConnectionBuilder()
    .WithUrl(new Uri("http://127.0.0.1:5000/chathub"))
    .WithAutomaticReconnect()
    .Build();

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/chathub")
    .withAutomaticReconnect()
    .build();

Protocol supportProtocol support

TransportsTransports

Differences on the server

services.AddSignalR()

app.UseRouting();

app.UseEndpoints(endpoints =>
{
    endpoints.MapHub<ChatHub>("/hub");
});

app.UseSignalR(routes =>
{
    routes.MapHub<ChatHub>("/hub");
});

In ASP.NET SignalR:

By default, SignalR attempts to reconnect to the server if the connection is dropped.

In ASP.NET Core SignalR:

Automatic reconnects are opt-in with both the .NET client and the JavaScript client:

Prior to ASP.NET Core 3.0, SignalR doesn't support automatic reconnects. If the client is disconnected, the user must

explicitly start a new connection to reconnect. In ASP.NET SignalR, SignalR attempts to reconnect to the server if the

connection is dropped.

ASP.NET Core SignalR supports JSON, as well as a new binary protocol based on MessagePack. Additionally,

custom protocols can be created.

The Forever Frame transport isn't supported in ASP.NET Core SignalR.

The ASP.NET Core SignalR server-side libraries are included in Microsoft.AspNetCore.App, which is used in the

ASP.NET Core Web ApplicationASP.NET Core Web Application template for both Razor and MVC projects.

ASP.NET Core SignalR is an ASP.NET Core middleware. It must be configured by calling AddSignalR in 

Startup.ConfigureServices .

To configure routing, map routes to hubs inside the UseEndpoints method call in the Startup.Configure  method.

To configure routing, map routes to hubs inside the UseSignalR method call in the Startup.Configure  method.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.signalrappbuilderextensions.usesignalr


Sticky sessionsSticky sessions

Single hub per connectionSingle hub per connection

StreamingStreaming

StateState

PersistentConnection removalPersistentConnection removal

GlobalHostGlobalHost

HubPipelineHubPipeline

Differences on the client
TypeScriptTypeScript

The JavaScript client is hosted at npmThe JavaScript client is hosted at npm

npm init -y
npm install @microsoft/signalr

npm init -y
npm install @aspnet/signalr

jQueryjQuery

Internet Explorer supportInternet Explorer support

The scaleout model for ASP.NET SignalR allows clients to reconnect and send messages to any server in the farm. In

ASP.NET Core SignalR, the client must interact with the same server for the duration of the connection. For scaleout

using Redis, that means sticky sessions are required. For scaleout using Azure SignalR Service, sticky sessions aren't

required because the service handles connections to clients.

In ASP.NET Core SignalR, the connection model has been simplified. Connections are made directly to a single hub,

rather than a single connection being used to share access to multiple hubs.

ASP.NET Core SignalR now supports streaming data from the hub to the client.

The ability to pass arbitrary state between clients and the hub (often called HubState ) has been removed, as well as

support for progress messages. There is no counterpart of hub proxies at the moment.

In ASP.NET Core SignalR, the PersistentConnection class has been removed.

ASP.NET Core has dependency injection (DI) built into the framework. Services can use DI to access the HubContext.

The GlobalHost  object that is used in ASP.NET SignalR to get a HubContext  doesn't exist in ASP.NET Core SignalR.

ASP.NET Core SignalR doesn't have support for HubPipeline  modules.

The ASP.NET Core SignalR client is written in TypeScript. You can write in JavaScript or TypeScript when using the

JavaScript client.

In ASP.NET versions, the JavaScript client was obtained through a NuGet package in Visual Studio. In the ASP.NET

Core versions, the @microsoft/signalr  npm package contains the JavaScript libraries. This package isn't included in

the ASP.NET Core Web ApplicationASP.NET Core Web Application template. Use npm to obtain and install the @microsoft/signalr  npm

package.

In ASP.NET versions, the JavaScript client was obtained through a NuGet package in Visual Studio. In the ASP.NET

Core versions, the @aspnet/signalr  npm package contains the JavaScript libraries. This package isn't included in

the ASP.NET Core Web ApplicationASP.NET Core Web Application template. Use npm to obtain and install the @aspnet/signalr  npm package.

The dependency on jQuery has been removed, however projects can still use jQuery.

https://docs.microsoft.com/en-us/azure/azure-signalr/
https://docs.microsoft.com/en-us/previous-versions/aspnet/jj919047(v=vs.118)
https://www.typescriptlang.org/
https://www.npmjs.com/package/@microsoft/signalr
https://www.npmjs.com/package/@aspnet/signalr


JavaScript client method syntaxJavaScript client method syntax

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/hub")
    .build();

const connection = new signalR.HubConnectionBuilder()
    .withUrl("/hub")
    .build();

connection.on("ReceiveMessage", (user, message) => {
    const msg = message.replace(/&/g, "&amp;").replace(/</g, "&lt;").replace(/>/g, "&gt;");
    const encodedMsg = `${user} says ${msg}`;
    console.log(encodedMsg);
});

connection.start().catch(err => console.error(err));

Hub proxiesHub proxies

.NET and other clients.NET and other clients

connection = new HubConnectionBuilder()
    .WithUrl("url")
    .Build();

Scaleout differences

ASP.NETASP.NET

ASP.NET Core SignalR requires Microsoft Internet Explorer 11 or later (ASP.NET SignalR supported Microsoft

Internet Explorer 8 and later).

The JavaScript syntax has changed from the ASP.NET version of SignalR. Rather than using the $connection  object,

create a connection using the HubConnectionBuilder API.

Use the on method to specify client methods that the hub can call.

The JavaScript syntax has changed from the ASP.NET version of SignalR. Rather than using the $connection  object,

create a connection using the HubConnectionBuilder API.

Use the on method to specify client methods that the hub can call.

After creating the client method, start the hub connection. Chain a catch method to log or handle errors.

Hub proxies are no longer automatically generated. Instead, the method name is passed into the invoke API as a

string.

Hub proxies are no longer automatically generated. Instead, the method name is passed into the invoke API as a

string.

The Microsoft.AspNetCore.SignalR.Client NuGet package contains the .NET client libraries for ASP.NET Core SignalR.

Use the HubConnectionBuilder to create and build an instance of a connection to a hub.

ASP.NET SignalR supports SQL Server and Redis. ASP.NET Core SignalR supports Azure SignalR Service and Redis.

SignalR scaleout with Azure Service Bus

https://docs.microsoft.com/en-us/javascript/api/@aspnet/signalr/hubconnectionbuilder
https://docs.microsoft.com/en-us/javascript/api/@microsoft/signalr/hubconnection#on
https://docs.microsoft.com/en-us/javascript/api/@microsoft/signalr/hubconnectionbuilder
https://docs.microsoft.com/en-us/javascript/api/@aspnet/signalr/hubconnection#on
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://docs.microsoft.com/en-us/javascript/api/@microsoft/signalr/hubconnection#invoke
https://docs.microsoft.com/en-us/javascript/api/@aspnet/signalr/hubconnection#invoke
https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR.Client
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.client.hubconnectionbuilder
https://docs.microsoft.com/en-us/aspnet/signalr/overview/performance/scaleout-with-windows-azure-service-bus


ASP.NET CoreASP.NET Core

Additional resources

SignalR scaleout with Redis

SignalR scaleout with SQL Server

Azure SignalR Service

Redis Backplane

Hubs

JavaScript client

.NET client

Supported platforms

https://docs.microsoft.com/en-us/aspnet/signalr/overview/performance/scaleout-with-redis
https://docs.microsoft.com/en-us/aspnet/signalr/overview/performance/scaleout-with-sql-server
https://docs.microsoft.com/en-us/azure/azure-signalr/


WebSockets support in ASP.NET Core
9/22/2020 • 7 minutes to read • Edit Online

SignalR

Prerequisites

NuGet package

Configure the middleware

app.UseWebSockets();

By Tom Dykstra and Andrew Stanton-Nurse

This article explains how to get started with WebSockets in ASP.NET Core. WebSocket (RFC 6455) is a protocol

that enables two-way persistent communication channels over TCP connections. It's used in apps that benefit

from fast, real-time communication, such as chat, dashboard, and game apps.

View or download sample code (how to download). How to run.

ASP.NET Core SignalR is a library that simplifies adding real-time web functionality to apps. It uses WebSockets

whenever possible.

For most applications, we recommend SignalR over raw WebSockets. SignalR provides transport fallback for

environments where WebSockets is not available. It also provides a simple remote procedure call app model. And

in most scenarios, SignalR has no significant performance disadvantage compared to using raw WebSockets.

ASP.NET Core 1.1 or later

Any OS that supports ASP.NET Core:

Windows 7 / Windows Server 2008 or later

Linux

macOS

If the app runs on Windows with IIS:

Windows 8 / Windows Server 2012 or later

IIS 8 / IIS 8 Express

WebSockets must be enabled (See the IIS/IIS Express support section.).

If the app runs on HTTP.sys:

Windows 8 / Windows Server 2012 or later

For supported browsers, see https://caniuse.com/#feat=websockets.

Install the Microsoft.AspNetCore.WebSockets package.

Add the WebSockets middleware in the Configure  method of the Startup  class:

The following settings can be configured:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/websockets.md
https://github.com/tdykstra
https://github.com/anurse
https://wikipedia.org/wiki/WebSocket
https://tools.ietf.org/html/rfc6455
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/websockets/samples
https://caniuse.com/#feat=websockets
https://www.nuget.org/packages/Microsoft.AspNetCore.WebSockets/


var webSocketOptions = new WebSocketOptions() 
{
    KeepAliveInterval = TimeSpan.FromSeconds(120),
    ReceiveBufferSize = 4 * 1024
};

app.UseWebSockets(webSocketOptions);

Accept WebSocket requests

app.Use(async (context, next) =>
{
    if (context.Request.Path == "/ws")
    {
        if (context.WebSockets.IsWebSocketRequest)
        {
            WebSocket webSocket = await context.WebSockets.AcceptWebSocketAsync();
            await Echo(context, webSocket);
        }
        else
        {
            context.Response.StatusCode = 400;
        }
    }
    else
    {
        await next();
    }

});

KeepAliveInterval  - How frequently to send "ping" frames to the client to ensure proxies keep the connection

open. The default is two minutes.

ReceiveBufferSize  - The size of the buffer used to receive data. Advanced users may need to change this for

performance tuning based on the size of the data. The default is 4 KB.

The following settings can be configured:

KeepAliveInterval  - How frequently to send "ping" frames to the client to ensure proxies keep the connection

open. The default is two minutes.

ReceiveBufferSize - The size of the buffer used to receive data. Advanced users may need to change this for

performance tuning based on the size of the data. The default is 4 KB.

AllowedOrigins  - A list of allowed Origin header values for WebSocket requests. By default, all origins are

allowed. See "WebSocket origin restriction" below for details.

Somewhere later in the request life cycle (later in the Configure  method or in an action method, for example)

check if it's a WebSocket request and accept the WebSocket request.

The following example is from later in the Configure  method:

A WebSocket request could come in on any URL, but this sample code only accepts requests for /ws .

When using a WebSocket, you mustmust keep the middleware pipeline running for the duration of the connection. If

you attempt to send or receive a WebSocket message after the middleware pipeline ends, you may get an

exception like the following:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.websocketoptions.receivebuffersize#microsoft_aspnetcore_builder_websocketoptions_receivebuffersize


System.Net.WebSockets.WebSocketException (0x80004005): The remote party closed the WebSocket connection 
without completing the close handshake. ---> System.ObjectDisposedException: Cannot write to the response 
body, the response has completed.
Object name: 'HttpResponseStream'.

app.Use(async (context, next) => {
    var socket = await context.WebSockets.AcceptWebSocketAsync();
    var socketFinishedTcs = new TaskCompletionSource<object>();

    BackgroundSocketProcessor.AddSocket(socket, socketFinishedTcs); 

    await socketFinishedTcs.Task;
});

Send and receive messages

private async Task Echo(HttpContext context, WebSocket webSocket)
{
    var buffer = new byte[1024 * 4];
    WebSocketReceiveResult result = await webSocket.ReceiveAsync(new ArraySegment<byte>(buffer), 
CancellationToken.None);
    while (!result.CloseStatus.HasValue)
    {
        await webSocket.SendAsync(new ArraySegment<byte>(buffer, 0, result.Count), result.MessageType, 
result.EndOfMessage, CancellationToken.None);

        result = await webSocket.ReceiveAsync(new ArraySegment<byte>(buffer), CancellationToken.None);
    }
    await webSocket.CloseAsync(result.CloseStatus.Value, result.CloseStatusDescription, 
CancellationToken.None);
}

If you're using a background service to write data to a WebSocket, make sure you keep the middleware pipeline

running. Do this by using a TaskCompletionSource<TResult>. Pass the TaskCompletionSource  to your background

service and have it call TrySetResult when you finish with the WebSocket. Then await  the Task property during

the request, as shown in the following example:

The WebSocket closed exception can also happen if you return too soon from an action method. If you accept a

socket in an action method, wait for the code that uses the socket to complete before returning from the action

method.

Never use Task.Wait() , Task.Result , or similar blocking calls to wait for the socket to complete, as that can

cause serious threading issues. Always use await .

The AcceptWebSocketAsync  method upgrades the TCP connection to a WebSocket connection and provides a

WebSocket object. Use the WebSocket  object to send and receive messages.

The code shown earlier that accepts the WebSocket request passes the WebSocket  object to an Echo  method. The

code receives a message and immediately sends back the same message. Messages are sent and received in a

loop until the client closes the connection:

When accepting the WebSocket connection before beginning the loop, the middleware pipeline ends. Upon

closing the socket, the pipeline unwinds. That is, the request stops moving forward in the pipeline when the

WebSocket is accepted. When the loop is finished and the socket is closed, the request proceeds back up the

pipeline.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1.trysetresult
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1.task#system_threading_tasks_taskcompletionsource_1_task
https://docs.microsoft.com/en-us/dotnet/core/api/system.net.websockets.websocket


  

 

    

Handle client disconnects

WebSocket origin restriction

var webSocketOptions = new WebSocketOptions()
{
    KeepAliveInterval = TimeSpan.FromSeconds(120),
    ReceiveBufferSize = 4 * 1024
};
webSocketOptions.AllowedOrigins.Add("https://client.com");
webSocketOptions.AllowedOrigins.Add("https://www.client.com");

app.UseWebSockets(webSocketOptions);

NOTENOTE

IIS/IIS Express support

NOTENOTE

Enabling WebSockets on IISEnabling WebSockets on IIS

The server is not automatically informed when the client disconnects due to loss of connectivity. The server

receives a disconnect message only if the client sends it, which can't be done if the internet connection is lost. If

you want to take some action when that happens, set a timeout after nothing is received from the client within a

certain time window.

If the client isn't always sending messages and you don't want to timeout just because the connection goes idle,

have the client use a timer to send a ping message every X seconds. On the server, if a message hasn't arrived

within 2*X seconds after the previous one, terminate the connection and report that the client disconnected. Wait

for twice the expected time interval to leave extra time for network delays that might hold up the ping message.

The protections provided by CORS don't apply to WebSockets. Browsers do notnot:

Perform CORS pre-flight requests.

Respect the restrictions specified in Access-Control  headers when making WebSocket requests.

However, browsers do send the Origin  header when issuing WebSocket requests. Applications should be

configured to validate these headers to ensure that only WebSockets coming from the expected origins are

allowed.

If you're hosting your server on "https://server.com" and hosting your client on "https://client.com", add

"https://client.com" to the AllowedOrigins  list for WebSockets to verify.

The Origin  header is controlled by the client and, like the Referer  header, can be faked. Do notnot  use these headers as

an authentication mechanism.

Windows Server 2012 or later and Windows 8 or later with IIS/IIS Express 8 or later has support for the

WebSocket protocol.

WebSockets are always enabled when using IIS Express.

To enable support for the WebSocket protocol on Windows Server 2012 or later :



 

NOTENOTE

NOTENOTE

Disable WebSocket when using socket.io on Node.jsDisable WebSocket when using socket.io on Node.js

<system.webServer>
  <webSocket enabled="false" />
</system.webServer>

Sample app

These steps are not required when using IIS Express

1. Use the Add Roles and FeaturesAdd Roles and Features  wizard from the ManageManage menu or the link in Ser ver ManagerSer ver Manager .

2. Select Role-based or Feature-based InstallationRole-based or Feature-based Installation. Select NextNext.

3. Select the appropriate server (the local server is selected by default). Select NextNext.

4. Expand Web Ser ver (IIS )Web Ser ver (IIS )  in the RolesRoles  tree, expand Web Ser verWeb Ser ver , and then expand ApplicationApplication

DevelopmentDevelopment.

5. Select WebSocket ProtocolWebSocket Protocol . Select NextNext.

6. If additional features aren't needed, select NextNext.

7. Select InstallInstall .

8. When the installation completes, select CloseClose to exit the wizard.

To enable support for the WebSocket protocol on Windows 8 or later :

These steps are not required when using IIS Express

1. Navigate to Control PanelControl Panel  > ProgramsPrograms > Programs and FeaturesPrograms and Features  > Turn Windows features on or offTurn Windows features on or off

(left side of the screen).

2. Open the following nodes: Internet Information Ser vicesInternet Information Ser vices  > World Wide Web Ser vicesWorld Wide Web Ser vices  > ApplicationApplication

Development FeaturesDevelopment Features .

3. Select the WebSocket ProtocolWebSocket Protocol  feature. Select OKOK.

If using the WebSocket support in socket.io on Node.js, disable the default IIS WebSocket module using the 

webSocket  element in web.config or applicationHost.config. If this step isn't performed, the IIS WebSocket

module attempts to handle the WebSocket communication rather than Node.js and the app.

The sample app that accompanies this article is an echo app. It has a web page that makes WebSocket

connections, and the server resends any messages it receives back to the client. Run the app from a command

prompt (it's not set up to run from Visual Studio with IIS Express) and navigate to http://localhost:5000. The web

page shows the connection status in the upper left:

https://socket.io/
https://nodejs.org/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/websockets/samples


Select ConnectConnect to send a WebSocket request to the URL shown. Enter a test message and select SendSend. When

done, select Close SocketClose Socket. The Communication LogCommunication Log section reports each open, send, and close action as it

happens.



Logging and diagnostics in ASP.NET Core SignalR
9/22/2020 • 8 minutes to read • Edit Online

Server-side logging

WARNINGWARNING

{
    "Logging": {
        "LogLevel": {
            "Default": "Debug",
            "System": "Information",
            "Microsoft": "Information",
            "Microsoft.AspNetCore.SignalR": "Debug",
            "Microsoft.AspNetCore.Http.Connections": "Debug"
        }
    }
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .ConfigureLogging(logging =>
        {
            logging.AddFilter("Microsoft.AspNetCore.SignalR", LogLevel.Debug);
            logging.AddFilter("Microsoft.AspNetCore.Http.Connections", LogLevel.Debug);
        })
        .UseStartup<Startup>();

By Andrew Stanton-Nurse

This article provides guidance for gathering diagnostics from your ASP.NET Core SignalR app to help troubleshoot

issues.

Server-side logs may contain sensitive information from your app. NeverNever  post raw logs from production apps to public

forums like GitHub.

Since SignalR is part of ASP.NET Core, it uses the ASP.NET Core logging system. In the default configuration,

SignalR logs very little information, but this can configured. See the documentation on ASP.NET Core logging for

details on configuring ASP.NET Core logging.

SignalR uses two logger categories:

Microsoft.AspNetCore.SignalR : For logs related to Hub Protocols, activating Hubs, invoking methods, and other

Hub-related activities.

Microsoft.AspNetCore.Http.Connections : For logs related to transports, such as WebSockets, Long Polling,

Server-Sent Events, and low-level SignalR infrastructure.

To enable detailed logs from SignalR, configure both of the preceding prefixes to the Debug  level in your

appsettings.json file by adding the following items to the LogLevel  sub-section in Logging :

You can also configure this in code in your CreateWebHostBuilder  method:

If you aren't using JSON-based configuration, set the following configuration values in your configuration system:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/signalr/diagnostics.md
https://twitter.com/anurse


Access server-side logs

As a console app outside IISAs a console app outside IIS

Within IIS Express from Visual StudioWithin IIS Express from Visual Studio

Azure App ServiceAzure App Service

Other environmentsOther environments

JavaScript client logging

WARNINGWARNING

let connection = new signalR.HubConnectionBuilder()
    .withUrl("/my/hub/url")
    .configureLogging(signalR.LogLevel.Debug)
    .build();

Logging:LogLevel:Microsoft.AspNetCore.SignalR  = Debug

Logging:LogLevel:Microsoft.AspNetCore.Http.Connections  = Debug

Check the documentation for your configuration system to determine how to specify nested configuration values.

For example, when using environment variables, two _  characters are used instead of the :  (for example, 

Logging__LogLevel__Microsoft.AspNetCore.SignalR ).

We recommend using the Debug  level when gathering more detailed diagnostics for your app. The Trace  level

produces very low-level diagnostics and is rarely needed to diagnose issues in your app.

How you access server-side logs depends on the environment in which you're running.

If you're running in a console app, the Console logger should be enabled by default. SignalR logs will appear in the

console.

Visual Studio displays the log output in the OutputOutput window. Select the ASP.NET Core Web Ser verASP.NET Core Web Ser ver  drop down

option.

Enable the Application Logging (Filesystem)Application Logging (Filesystem)  option in the Diagnostics logsDiagnostics logs  section of the Azure App Service

portal and configure the LevelLevel  to Verbose . Logs should be available from the Log streamingLog streaming service and in logs

on the file system of the App Service. For more information, see Azure log streaming.

If the app is deployed to another environment (for example, Docker, Kubernetes, or Windows Service), see

Logging in .NET Core and ASP.NET Core for more information on how to configure logging providers suitable for

the environment.

Client-side logs may contain sensitive information from your app. NeverNever  post raw logs from production apps to public

forums like GitHub.

When using the JavaScript client, you can configure logging options using the configureLogging  method on 

HubConnectionBuilder :

To disable logging entirely, specify signalR.LogLevel.None  in the configureLogging  method.

The following table shows log levels available to the JavaScript client. Setting the log level to one of these values

enables logging at that level and all levels above it in the table.



L EVELL EVEL DESC RIP T IO NDESC RIP T IO N

None No messages are logged.

Critical Messages that indicate a failure in the entire app.

Error Messages that indicate a failure in the current operation.

Warning Messages that indicate a non-fatal problem.

Information Informational messages.

Debug Diagnostic messages useful for debugging.

Trace Very detailed diagnostic messages designed for diagnosing
specific issues.

import { ILogger, LogLevel, HubConnectionBuilder } from "@aspnet/signalr";

export class MyLogger implements ILogger {
    log(logLevel: LogLevel, message: string) {
        // Use `message` and `logLevel` to record the log message to your own system
    }
}

// later on, when configuring your connection...

let connection = new HubConnectionBuilder()
    .withUrl("/my/hub/url")
    .configureLogging(new MyLogger())
    .build();

.NET client logging

WARNINGWARNING

Console loggingConsole logging

Once you've configured the verbosity, the logs will be written to the Browser Console (or Standard Output in a

NodeJS app).

If you want to send logs to a custom logging system, you can provide a JavaScript object implementing the 

ILogger  interface. The only method that needs to be implemented is log , which takes the level of the event and

the message associated with the event. For example:

Client-side logs may contain sensitive information from your app. NeverNever  post raw logs from production apps to public

forums like GitHub.

To get logs from the .NET client, you can use the ConfigureLogging  method on HubConnectionBuilder . This works

the same way as the ConfigureLogging  method on WebHostBuilder  and HostBuilder . You can configure the same

logging providers you use in ASP.NET Core. However, you have to manually install and enable the NuGet packages

for the individual logging providers.

To add .NET client logging to a Blazor WebAssembly app, see ASP.NET Core Blazor logging.

In order to enable Console logging, add the Microsoft.Extensions.Logging.Console package. Then, use the 

https://www.nuget.org/packages/Microsoft.Extensions.Logging.Console


var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/my/hub/url")
    .ConfigureLogging(logging =>
    {
        // Log to the Console
        logging.AddConsole();

        // This will set ALL logging to Debug level
        logging.SetMinimumLevel(LogLevel.Debug);
    })
    .Build();

Debug output window loggingDebug output window logging

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/my/hub/url")
    .ConfigureLogging(logging =>
    {
        // Log to the Output Window
        logging.AddDebug();

        // This will set ALL logging to Debug level
        logging.SetMinimumLevel(LogLevel.Debug)
    })
    .Build();

Other logging providersOther logging providers

var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/my/hub/url")
    .ConfigureLogging(logging =>
    {
        // Log to your custom provider
        logging.AddProvider(new MyCustomLoggingProvider());

        // This will set ALL logging to Debug level
        logging.SetMinimumLevel(LogLevel.Debug)
    })
    .Build();

Control verbosityControl verbosity

AddConsole  method to configure the console logger :

You can also configure logs to go to the OutputOutput window in Visual Studio. Install the

Microsoft.Extensions.Logging.Debug package and use the AddDebug  method:

SignalR supports other logging providers such as Serilog, Seq, NLog, or any other logging system that integrates

with Microsoft.Extensions.Logging . If your logging system provides an ILoggerProvider , you can register it with 

AddProvider :

If you are logging from other places in your app, changing the default level to Debug  may be too verbose. You can

use a Filter to configure the logging level for SignalR logs. This can be done in code, in much the same way as on

the server :

https://www.nuget.org/packages/Microsoft.Extensions.Logging.Debug


var connection = new HubConnectionBuilder()
    .WithUrl("https://example.com/my/hub/url")
    .ConfigureLogging(logging =>
    {
        // Register your providers

        // Set the default log level to Information, but to Debug for SignalR-related loggers.
        logging.SetMinimumLevel(LogLevel.Information);
        logging.AddFilter("Microsoft.AspNetCore.SignalR", LogLevel.Debug);
        logging.AddFilter("Microsoft.AspNetCore.Http.Connections", LogLevel.Debug);
    })
    .Build();

Network traces

WARNINGWARNING

Collect a network trace with Fiddler (preferred option)

A network trace contains the full contents of every message sent by your app. NeverNever  post raw network traces from

production apps to public forums like GitHub.

If you encounter an issue, a network trace can sometimes provide a lot of helpful information. This is particularly

useful if you're going to file an issue on our issue tracker.

This method works for all apps.

Fiddler is a very powerful tool for collecting HTTP traces. Install it from telerik.com/fiddler, launch it, and then run

your app and reproduce the issue. Fiddler is available for Windows, and there are beta versions for macOS and

Linux.

If you connect using HTTPS, there are some extra steps to ensure Fiddler can decrypt the HTTPS traffic. For more

details, see the Fiddler documentation.

Once you've collected the trace, you can export the trace by choosing FileFile > SaveSave > All SessionsAll Sessions  from the menu

bar.

https://www.telerik.com/fiddler
https://docs.telerik.com/fiddler/Configure-Fiddler/Tasks/DecryptHTTPS


Collect a network trace with tcpdump (macOS and Linux only)

tcpdump -i [interface] -w trace.pcap

Collect a network trace in the browser

Microsoft Edge and Internet ExplorerMicrosoft Edge and Internet Explorer

This method works for all apps.

You can collect raw TCP traces using tcpdump by running the following command from a command shell. You

may need to be root  or prefix the command with sudo  if you get a permissions error :

Replace [interface]  with the network interface you wish to capture on. Usually, this is something like /dev/eth0

(for your standard Ethernet interface) or /dev/lo0  (for localhost traffic). For more information, see the tcpdump

man page on your host system.

This method only works for browser-based apps.

Most browser Developer Tools have a "Network" tab that allows you to capture network activity between the

browser and the server. However, these traces don't include WebSocket and Server-Sent Event messages. If you

are using those transports, using a tool like Fiddler or TcpDump (described below) is a better approach.

(The instructions are the same for both Edge and Internet Explorer)

1. Press F12 to open the Dev Tools

2. Click the Network Tab

3. Refresh the page (if needed) and reproduce the problem

4. Click the Save icon in the toolbar to export the trace as a "HAR" file:



Google ChromeGoogle Chrome

Mozilla FirefoxMozilla Firefox

1. Press F12 to open the Dev Tools

2. Click the Network Tab

3. Refresh the page (if needed) and reproduce the problem

4. Right click anywhere in the list of requests and choose "Save as HAR with content":

1. Press F12 to open the Dev Tools

2. Click the Network Tab

3. Refresh the page (if needed) and reproduce the problem

4. Right click anywhere in the list of requests and choose "Save All As HAR"



Attach diagnostics files to GitHub issues

NOTENOTE

Metrics

You can attach Diagnostics files to GitHub issues by renaming them so they have a .txt  extension and then

dragging and dropping them on to the issue.

Please don't paste the content of log files or network traces into a GitHub issue. These logs and traces can be quite large,

and GitHub usually truncates them.

Metrics is a representation of data measures over intervals of time. For example, requests per second. Metrics data

allows observation of the state of an app at a high level. .NET gRPC metrics are emitted using EventCounter.

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracing.eventcounter


SignalR server metricsSignalR server metrics

N A M EN A M E DESC RIP T IO NDESC RIP T IO N

connections-started Total connections started

connections-stopped Total connections stopped

connections-timed-out Total connections timed out

current-connections Current connections

connections-duration Average connection duration

Observe metricsObserve metrics

> dotnet-counters monitor --process-id 37016 Microsoft.AspNetCore.Http.Connections

Press p to pause, r to resume, q to quit.
    Status: Running
[Microsoft.AspNetCore.Http.Connections]
    Average Connection Duration (ms)       16,040.56
    Current Connections                         1
    Total Connections Started                   8
    Total Connections Stopped                   7
    Total Connections Timed Out                 0

Additional resources

SignalR server metrics are reported on the Microsoft.AspNetCore.Http.Connections event source.

dotnet-counters is a performance monitoring tool for ad-hoc health monitoring and first-level performance

investigation. Monitor a .NET app with Microsoft.AspNetCore.Http.Connections  as the provider name. For example:

ASP.NET Core SignalR configuration

ASP.NET Core SignalR JavaScript client

ASP.NET Core SignalR .NET Client

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connections
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters


Introduction to gRPC on .NET Core
9/22/2020 • 2 minutes to read • Edit Online

WARNINGWARNING

C# Tooling support for .proto files

syntax = "proto3";

service Greeter {
  rpc SayHello (HelloRequest) returns (HelloReply);
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string message = 1;
}

By John Luo and James Newton-King

gRPC is a language agnostic, high-performance Remote Procedure Call (RPC) framework.

The main benefits of gRPC are:

Modern, high-performance, lightweight RPC framework.

Contract-first API development, using Protocol Buffers by default, allowing for language agnostic

implementations.

Tooling available for many languages to generate strongly-typed servers and clients.

Supports client, server, and bi-directional streaming calls.

Reduced network usage with Protobuf binary serialization.

These benefits make gRPC ideal for :

Lightweight microservices where efficiency is critical.

Polyglot systems where multiple languages are required for development.

Point-to-point real-time services that need to handle streaming requests or responses.

ASP.NET Core gRPC is not currently supported on Azure App Service or IIS. The HTTP/2 implementation of Http.Sys does

not support HTTP response trailing headers which gRPC relies on. For more information, see this GitHub issue.

gRPC uses a contract-first approach to API development. Services and messages are defined in *.proto files:

.NET types for services, clients and messages are automatically generated by including *.proto files in a project:

Add a package reference to Grpc.Tools package.

Add *.proto files to the <Protobuf>  item group.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/index.md
https://github.com/juntaoluo
https://twitter.com/jamesnk
https://grpc.io/docs/guides/
https://github.com/dotnet/AspNetCore/issues/9020
https://www.nuget.org/packages/Grpc.Tools/


<ItemGroup>
  <Protobuf Include="Protos\greet.proto" />
</ItemGroup>

gRPC services on ASP.NET Core

public class GreeterService : Greeter.GreeterBase
{
    private readonly ILogger<GreeterService> _logger;

    public GreeterService(ILogger<GreeterService> logger)
    {
        _logger = logger;
    }

    public override Task<HelloReply> SayHello(HelloRequest request,
        ServerCallContext context)
    {
        _logger.LogInformation("Saying hello to {Name}", request.Name);
        return Task.FromResult(new HelloReply 
        {
            Message = "Hello " + request.Name
        });
    }
}

app.UseEndpoints(endpoints =>
{
    endpoints.MapGrpcService<GreeterService>();
});

Call gRPC services with a .NET client

var channel = GrpcChannel.ForAddress("https://localhost:5001");
var client = new Greeter.GreeterClient(channel);

var response = await client.SayHelloAsync(
    new HelloRequest { Name = "World" });

Console.WriteLine(response.Message);

For more information on gRPC tooling support, see gRPC services with C#.

gRPC services can be hosted on ASP.NET Core. Services have full integration with popular ASP.NET Core

features such as logging, dependency injection (DI), authentication and authorization.

The gRPC service project template provides a starter service:

GreeterService  inherits from the GreeterBase  type, which is generated from the Greeter  service in the

*.proto file. The service is made accessible to clients in Startup.cs:

To learn more about gRPC services on ASP.NET Core, see gRPC services with ASP.NET Core.

gRPC clients are concrete client types that are generated from *.proto files. The concrete gRPC client has

methods that translate to the gRPC service in the *.proto file.

A gRPC client is created using a channel, which represents a long-lived connection to a gRPC service. A channel

can be created using GrpcChannel.ForAddress .



Additional resources

For more information on creating clients, and calling different service methods, see Call gRPC services with the

.NET client.

gRPC services with C#

gRPC services with ASP.NET Core

Call gRPC services with the .NET client

gRPC client factory integration in .NET Core

Create a .NET Core gRPC client and server in ASP.NET Core



  

Tutorial: Create a gRPC client and server in ASP.NET
Core
9/22/2020 • 9 minutes to read • Edit Online

Prerequisites

Create a gRPC service

By John Luo

This tutorial shows how to create a .NET Core gRPC client and an ASP.NET Core gRPC Server.

At the end, you'll have a gRPC client that communicates with the gRPC Greeter service.

View or download sample code (how to download).

In this tutorial, you:

Create a gRPC Server.

Create a gRPC client.

Test the gRPC client service with the gRPC Greeter service.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Visual Studio

Visual Studio Code

Visual Studio for Mac

Start Visual Studio and select Create a new projectCreate a new project. Alternatively, from the Visual Studio FileFile menu,

select NewNew  > ProjectProject.

In the Create a new projectCreate a new project dialog, select gRPC Ser vicegRPC Ser vice and select NextNext:

Name the project GrpcGreeterGrpcGreeter . It's important to name the project GrpcGreeter so the namespaces will

match when you copy and paste code.

Select CreateCreate.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/grpc/grpc-start.md
https://github.com/juntaoluo
https://grpc.io/docs/guides/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/grpc/grpc-start/sample
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1


Run the serviceRun the service

In the Create a new gRPC ser viceCreate a new gRPC ser vice dialog:

The gRPC Ser vicegRPC Ser vice template is selected.

Select CreateCreate.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Press Ctrl+F5 to run without the debugger.

Visual Studio displays the following dialog:

Select YesYes  if you trust the IIS Express SSL certificate.

The following dialog is displayed:

Select YesYes  if you agree to trust the development certificate.

Visual Studio starts IIS Express and runs the app. The address bar shows localhost:port#  and not

something like example.com . That's because localhost  is the standard hostname for the local computer.

Localhost only serves web requests from the local computer. When Visual Studio creates a web project, a

random port is used for the web server.

The logs show the service listening on https://localhost:5001 .

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview


info: Microsoft.Hosting.Lifetime[0]
      Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[0]
      Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
      Hosting environment: Development

NOTENOTE

Examine the project filesExamine the project files

Create the gRPC client in a .NET console app

Add required packagesAdd required packages

PMC option to install packagesPMC option to install packages

The gRPC template is configured to use Transport Layer Security (TLS). gRPC clients need to use HTTPS to call the server.

macOS doesn't support ASP.NET Core gRPC with TLS. Additional configuration is required to successfully run gRPC services

on macOS. For more information, see Unable to start ASP.NET Core gRPC app on macOS.

GrpcGreeter project files:

greet.proto: The Protos/greet.proto file defines the Greeter  gRPC and is used to generate the gRPC server

assets. For more information, see Introduction to gRPC.

Services folder : Contains the implementation of the Greeter  service.

appSettings.json: Contains configuration data, such as protocol used by Kestrel. For more information, see

Configuration in ASP.NET Core.

Program.cs: Contains the entry point for the gRPC service. For more information, see .NET Generic Host.

Startup.cs: Contains code that configures app behavior. For more information, see App startup.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Open a second instance of Visual Studio and select Create a new projectCreate a new project.

In the Create a new projectCreate a new project dialog, select Console App (.NET Core)Console App (.NET Core)  and select NextNext.

In the Project nameProject name text box, enter GrpcGreeterClientGrpcGreeterClient and select CreateCreate.

The gRPC client project requires the following packages:

Grpc.Net.Client, which contains the .NET Core client.

Google.Protobuf, which contains protobuf message APIs for C#.

Grpc.Tools, which contains C# tooling support for protobuf files. The tooling package isn't required at runtime,

so the dependency is marked with PrivateAssets="All" .

Visual Studio

Visual Studio Code

Visual Studio for Mac

Install the packages using either the Package Manager Console (PMC) or Manage NuGet Packages.

From Visual Studio, select ToolsTools  > NuGet Package ManagerNuGet Package Manager  > Package Manager ConsolePackage Manager Console

From the Package Manager ConsolePackage Manager Console window, run cd GrpcGreeterClient  to change directories to the

folder containing the GrpcGreeterClient.csproj files.

https://tools.ietf.org/html/rfc5246
https://www.nuget.org/packages/Grpc.Net.Client
https://www.nuget.org/packages/Google.Protobuf/
https://www.nuget.org/packages/Grpc.Tools/


Manage NuGet Packages option to install packagesManage NuGet Packages option to install packages

Add greet.protoAdd greet.proto

Create the Greeter clientCreate the Greeter client

Install-Package Grpc.Net.Client
Install-Package Google.Protobuf
Install-Package Grpc.Tools

Run the following commands:

Right-click the project in Solution ExplorerSolution Explorer  > Manage NuGet PackagesManage NuGet Packages

Select the BrowseBrowse tab.

Enter Grpc.Net.ClientGrpc.Net.Client in the search box.

Select the Grpc.Net.ClientGrpc.Net.Client package from the BrowseBrowse tab and select InstallInstall .

Repeat for Google.Protobuf  and Grpc.Tools .

Create a Protos folder in the gRPC client project.

Copy the Protos\greet.proto file from the gRPC Greeter service to the gRPC client project.

Edit the GrpcGreeterClient.csproj project file:

Visual Studio

Visual Studio Code

Visual Studio for Mac

Right-click the project and select Edit Project FileEdit Project File.

<ItemGroup>
  <Protobuf Include="Protos\greet.proto" GrpcServices="Client" />
</ItemGroup>

Add an item group with a <Protobuf>  element that refers to the greet.proto file:

Build the project to create the types in the GrpcGreeter  namespace. The GrpcGreeter  types are generated

automatically by the build process.

Update the gRPC client Program.cs file with the following code:



using System;
using System.Net.Http;
using System.Threading.Tasks;
using GrpcGreeter;
using Grpc.Net.Client;

namespace GrpcGreeterClient
{
    class Program
    {
        static async Task Main(string[] args)
        {
            // The port number(5001) must match the port of the gRPC server.
            using var channel = GrpcChannel.ForAddress("https://localhost:5001");
            var client =  new Greeter.GreeterClient(channel);
            var reply = await client.SayHelloAsync(
                              new HelloRequest { Name = "GreeterClient" });
            Console.WriteLine("Greeting: " + reply.Message);
            Console.WriteLine("Press any key to exit...");
            Console.ReadKey();
        }
    }
}

static async Task Main(string[] args)
{
    // The port number(5001) must match the port of the gRPC server.
    using var channel = GrpcChannel.ForAddress("https://localhost:5001");
    var client =  new Greeter.GreeterClient(channel);
    var reply = await client.SayHelloAsync(
                      new HelloRequest { Name = "GreeterClient" });
    Console.WriteLine("Greeting: " + reply.Message);
    Console.WriteLine("Press any key to exit...");
    Console.ReadKey();
}

static async Task Main(string[] args)
{
    // The port number(5001) must match the port of the gRPC server.
    using var channel = GrpcChannel.ForAddress("https://localhost:5001");
    var client =  new Greeter.GreeterClient(channel);
    var reply = await client.SayHelloAsync(
                      new HelloRequest { Name = "GreeterClient" });
    Console.WriteLine("Greeting: " + reply.Message);
    Console.WriteLine("Press any key to exit...");
    Console.ReadKey();
}

Test the gRPC client with the gRPC Greeter service

Program.cs contains the entry point and logic for the gRPC client.

The Greeter client is created by:

Instantiating a GrpcChannel  containing the information for creating the connection to the gRPC service.

Using the GrpcChannel  to construct the Greeter client:

The Greeter client calls the asynchronous SayHello  method. The result of the SayHello  call is displayed:

Visual Studio



Greeting: Hello GreeterClient
Press any key to exit...

info: Microsoft.Hosting.Lifetime[0]
      Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[0]
      Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
      Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
      Content root path: C:\GH\aspnet\docs\4\Docs\aspnetcore\tutorials\grpc\grpc-start\sample\GrpcGreeter
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
      Request starting HTTP/2 POST https://localhost:5001/Greet.Greeter/SayHello application/grpc
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
      Executing endpoint 'gRPC - /Greet.Greeter/SayHello'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
      Executed endpoint 'gRPC - /Greet.Greeter/SayHello'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
      Request finished in 78.32260000000001ms 200 application/grpc

NOTENOTE

WARNINGWARNING

Next stepsNext steps

Visual Studio Code

Visual Studio for Mac

In the Greeter service, press Ctrl+F5  to start the server without the debugger.

In the GrpcGreeterClient  project, press Ctrl+F5  to start the client without the debugger.

The client sends a greeting to the service with a message containing its name, GreeterClient. The service sends

the message "Hello GreeterClient" as a response. The "Hello GreeterClient" response is displayed in the command

prompt:

The gRPC service records the details of the successful call in the logs written to the command prompt:

The code in this article requires the ASP.NET Core HTTPS development certificate to secure the gRPC service. If the .NET

gRPC client fails with the message The remote certificate is invalid according to the validation procedure.  or 

The SSL connection could not be established. , the development certificate isn't trusted. To fix this issue, see Call a

gRPC service with an untrusted/invalid certificate.

ASP.NET Core gRPC is not currently supported on Azure App Service or IIS. The HTTP/2 implementation of Http.Sys does

not support HTTP response trailing headers which gRPC relies on. For more information, see this GitHub issue.

Introduction to gRPC on .NET Core

gRPC services with C#

Migrating gRPC services from C-core to ASP.NET Core

https://github.com/dotnet/AspNetCore/issues/9020


 

gRPC services with C#
9/22/2020 • 3 minutes to read • Edit Online

WARNINGWARNING

proto file

syntax = "proto3";

option csharp_namespace = "GrpcGreeter";

package greet;

// The greeting service definition.
service Greeter {
  // Sends a greeting
  rpc SayHello (HelloRequest) returns (HelloReply);
}

// The request message containing the user's name.
message HelloRequest {
  string name = 1;
}

// The response message containing the greetings.
message HelloReply {
  string message = 1;
}

Add a .proto file to a C# app

This document outlines the concepts needed to write gRPC apps in C#. The topics covered here apply to both C-

core-based and ASP.NET Core-based gRPC apps.

ASP.NET Core gRPC is not currently supported on Azure App Service or IIS. The HTTP/2 implementation of Http.Sys does

not support HTTP response trailing headers which gRPC relies on. For more information, see this GitHub issue.

gRPC uses a contract-first approach to API development. Protocol buffers (protobuf) are used as the Interface

Definition Language (IDL) by default. The *.proto file contains:

The definition of the gRPC service.

The messages sent between clients and servers.

For more information on the syntax of protobuf files, see Create Protobuf messages for .NET apps.

For example, consider the greet.proto file used in Get started with gRPC service:

Defines a Greeter  service.

The Greeter  service defines a SayHello  call.

SayHello  sends a HelloRequest  message and receives a HelloReply  message:

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/basics.md
https://grpc.io/docs/guides/
https://grpc.io/blog/grpc-stacks
https://github.com/dotnet/AspNetCore/issues/9020
https://github.com/MicrosoftDocs/feedback/issues/2515


    

<ItemGroup>
  <Protobuf Include="Protos\greet.proto" GrpcServices="Server" />
</ItemGroup>

C# Tooling support for .proto files

<PackageReference Include="Grpc.AspNetCore" Version="2.28.0" />

<PackageReference Include="Google.Protobuf" Version="3.11.4" />
<PackageReference Include="Grpc.Net.Client" Version="2.28.0" />
<PackageReference Include="Grpc.Tools" Version="2.28.1">

Generated C# assets

The *.proto file is included in a project by adding it to the <Protobuf>  item group:

By default, a <Protobuf>  reference generates a concrete client and a service base class. The reference element's 

GrpcServices  attribute can be used to limit C# asset generation. Valid GrpcServices  options are:

Both  (default when not present)

Server

Client

None

The tooling package Grpc.Tools is required to generate the C# assets from *.proto files. The generated assets

(files):

Are generated on an as-needed basis each time the project is built.

Aren't added to the project or checked into source control.

Are a build artifact contained in the obj directory.

This package is required by both the server and client projects. The Grpc.AspNetCore  metapackage includes a

reference to Grpc.Tools . Server projects can add Grpc.AspNetCore  using the Package Manager in Visual Studio

or by adding a <PackageReference>  to the project file:

Client projects should directly reference Grpc.Tools  alongside the other packages required to use the gRPC

client. The tooling package isn't required at runtime, so the dependency is marked with PrivateAssets="All" :

The tooling package generates the C# types representing the messages defined in the included *.proto files.

For server-side assets, an abstract service base type is generated. The base type contains the definitions of all the

gRPC calls contained in the .proto file. Create a concrete service implementation that derives from this base type

and implements the logic for the gRPC calls. For the greet.proto , the example described previously, an abstract 

GreeterBase  type that contains a virtual SayHello  method is generated. A concrete implementation 

GreeterService  overrides the method and implements the logic handling the gRPC call.

https://www.nuget.org/packages/Grpc.Tools/


public class GreeterService : Greeter.GreeterBase
{
    private readonly ILogger<GreeterService> _logger;
    public GreeterService(ILogger<GreeterService> logger)
    {
        _logger = logger;
    }

    public override Task<HelloReply> SayHello(HelloRequest request, ServerCallContext context)
    {
        return Task.FromResult(new HelloReply
        {
            Message = "Hello " + request.Name
        });
    }
}

static async Task Main(string[] args)
{
    // The port number(5001) must match the port of the gRPC server.
    using var channel = GrpcChannel.ForAddress("https://localhost:5001");
    var client =  new Greeter.GreeterClient(channel);
    var reply = await client.SayHelloAsync(
                      new HelloRequest { Name = "GreeterClient" });
    Console.WriteLine("Greeting: " + reply.Message);
    Console.WriteLine("Press any key to exit...");
    Console.ReadKey();
}

<ItemGroup>
  <Protobuf Include="Protos\greet.proto" GrpcServices="Server" />
</ItemGroup>

Additional resources

For client-side assets, a concrete client type is generated. The gRPC calls in the .proto file are translated into

methods on the concrete type, which can be called. For the greet.proto , the example described previously, a

concrete GreeterClient  type is generated. Call GreeterClient.SayHelloAsync  to initiate a gRPC call to the server.

By default, server and client assets are generated for each *.proto file included in the <Protobuf>  item group. To

ensure only the server assets are generated in a server project, the GrpcServices  attribute is set to Server .

Similarly, the attribute is set to Client  in client projects.

Introduction to gRPC on .NET Core

Create a .NET Core gRPC client and server in ASP.NET Core

gRPC services with ASP.NET Core

Call gRPC services with the .NET client



Create gRPC services and methods
9/22/2020 • 5 minutes to read • Edit Online

Create new gRPC services

syntax = "proto3";

service Greeter {
  rpc SayHello (HelloRequest) returns (HelloReply);
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string message = 1;
}

By James Newton-King

This document explains how to create gRPC services and methods in C#. Topics include:

How to define services and methods in .proto files.

Generated code using gRPC C# tooling.

Implementing gRPC services and methods.

gRPC services with C# introduced gRPC's contract-first approach to API development. Services and messages are

defined in .proto files. C# tooling then generates code from .proto files. For server-side assets, an abstract base type

is generated for each service, along with classes for any messages.

The following .proto file:

Defines a Greeter  service.

The Greeter  service defines a SayHello  call.

SayHello  sends a HelloRequest  message and receives a HelloReply  message

C# tooling generates the C# GreeterBase  base type:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/services.md
https://twitter.com/jamesnk


public abstract partial class GreeterBase
{
    public virtual Task<HelloReply> SayHello(HelloRequest request, ServerCallContext context)
    {
        throw new RpcException(new Status(StatusCode.Unimplemented, ""));
    }
}

public class HelloRequest
{
    public string Name { get; set; }
}

public class HelloReply
{
    public string Message { get; set; }
}

public class GreeterService : GreeterBase
{
    public override Task<HelloReply> UnaryCall(HelloRequest request, ServerCallContext context)
    {
        return Task.FromResult(new HelloRequest { Message = $"Hello {request.Name}" });
    }
}

app.UseEndpoints(endpoints =>
{
    endpoints.MapGrpcService<GreeterService>();
});

Implement gRPC methods

By default the generated GreeterBase  doesn't do anything. Its virtual SayHello  method will return an 

UNIMPLEMENTED  error to any clients that call it. For the service to be useful an app must create a concrete

implementation of GreeterBase :

The service implementation is registered with the app. If the service is hosted by ASP.NET Core gRPC, it should be

added to the routing pipeline with the MapGrpcService  method.

See gRPC services with ASP.NET Core for more information.

A gRPC service can have different types of methods. How messages are sent and received by a service depends on

the type of method defined. The gRPC method types are:

Unary

Server streaming

Client streaming

Bi-directional streaming

Streaming calls are specified with the stream  keyword in the .proto file. stream  can be placed on a call's request

message, response message, or both.



syntax = "proto3";

service ExampleService {
  // Unary
  rpc UnaryCall (ExampleRequest) returns (ExampleResponse);

  // Server streaming
  rpc StreamingFromServer (ExampleRequest) returns (stream ExampleResponse);

  // Client streaming
  rpc StreamingFromClient (stream ExampleRequest) returns (ExampleResponse);

  // Bi-directional streaming
  rpc StreamingBothWays (stream ExampleRequest) returns (stream ExampleResponse);
}

Unary methodUnary method

public override Task<ExampleResponse> UnaryCall(ExampleRequest request,
    ServerCallContext context)
{
    var response = new ExampleResponse();
    return Task.FromResult(response);
}

message ExampleRequest {
    int pageIndex = 1;
    int pageSize = 2;
    bool isDescending = 3;
}

Server streaming methodServer streaming method

public override async Task StreamingFromServer(ExampleRequest request,
    IServerStreamWriter<ExampleResponse> responseStream, ServerCallContext context)
{
    for (var i = 0; i < 5; i++)
    {
        await responseStream.WriteAsync(new ExampleResponse());
        await Task.Delay(TimeSpan.FromSeconds(1));
    }
}

Each call type has a different method signature. Overriding generated methods from the abstract base service type

in a concrete implementation ensures the correct arguments and return type are used.

A unary method gets the request message as a parameter, and returns the response. A unary call is complete when

the response is returned.

Unary calls are the most similar to actions on web API controllers. One important difference gRPC methods have

from actions is gRPC methods are not able to bind parts of a request to different method arguments. gRPC

methods always have one message argument for the incoming request data. Multiple values can still be sent to a

gRPC service by making them fields on the request message:

A server streaming method gets the request message as a parameter. Because multiple messages can be streamed

back to the caller, responseStream.WriteAsync  is used to send response messages. A server streaming call is

complete when the method returns.

The client has no way to send additional messages or data once the server streaming method has started. Some



public override async Task StreamingFromServer(ExampleRequest request,
    IServerStreamWriter<ExampleResponse> responseStream, ServerCallContext context)
{
    while (!context.CancellationToken.IsCancellationRequested)
    {
        await responseStream.WriteAsync(new ExampleResponse());
        await Task.Delay(TimeSpan.FromSeconds(1), context.CancellationToken);
    }
}

Client streaming methodClient streaming method

public override async Task<ExampleResponse> StreamingFromClient(
    IAsyncStreamReader<ExampleRequest> requestStream, ServerCallContext context)
{
    while (await requestStream.MoveNext())
    {
        var message = requestStream.Current;
        // ...
    }
    return new ExampleResponse();
}

public override async Task<ExampleResponse> StreamingFromClient(
    IAsyncStreamReader<ExampleRequest> requestStream, ServerCallContext context)
{
    await foreach (var message in requestStream.ReadAllAsync())
    {
        // ...
    }
    return new ExampleResponse();
}

Bi-directional streaming methodBi-directional streaming method

streaming methods are designed to run forever. For continuous streaming methods, a client can cancel the call

when it's no longer needed. When cancellation happens the client sends a signal to the server and the

ServerCallContext.CancellationToken is raised. The CancellationToken  token should be used on the server with

async methods so that:

Any asynchronous work is canceled together with the streaming call.

The method exits quickly.

A client streaming method starts without the method receiving a message. The requestStream  parameter is used to

read messages from the client. A client streaming call is complete when a response message is returned:

When using C# 8 or later, the await foreach  syntax can be used to read messages. The 

IAsyncStreamReader<T>.ReadAllAsync()  extension method reads all messages from the request stream:

A bi-directional streaming method starts without the method receiving a message. The requestStream  parameter is

used to read messages from the client. The method can choose to send messages with responseStream.WriteAsync .

A bi-directional streaming call is complete when the the method returns:

https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken


public override async Task StreamingBothWays(IAsyncStreamReader<ExampleRequest> requestStream,
    IServerStreamWriter<ExampleResponse> responseStream, ServerCallContext context)
{
    await foreach (var message in requestStream.ReadAllAsync())
    {
        await responseStream.WriteAsync(new ExampleResponse());
    }
}

public override async Task StreamingBothWays(IAsyncStreamReader<ExampleRequest> requestStream,
    IServerStreamWriter<ExampleResponse> responseStream, ServerCallContext context)
{
    // Read requests in a background task.
    var readTask = Task.Run(async () =>
    {
        await foreach (var message in requestStream.ReadAllAsync())
        {
            // Process request.
        }
    });
    
    // Send responses until the client signals that it is complete.
    while (!readTask.IsCompleted)
    {
        await responseStream.WriteAsync(new ExampleResponse());
        await Task.Delay(TimeSpan.FromSeconds(1), context.CancellationToken);
    }
}

Access gRPC request headers

public override Task<ExampleResponse> UnaryCall(ExampleRequest request, ServerCallContext context)
{
    var userAgent = context.RequestHeaders.GetValue("user-agent");
    // ...

    return Task.FromResult(new ExampleResponse());
}

Additional resources

The preceding code:

Sends a response for each request.

Is a basic usage of bi-directional streaming.

It is possible to support more complex scenarios, such as reading requests and sending responses simultaneously:

In a bi-directional streaming method, the client and service can send messages to each other at any time. The best

implementation of a bi-directional method varies depending upon requirements.

A request message is not the only way for a client to send data to a gRPC service. Header values are available in a

service using ServerCallContext.RequestHeaders .

gRPC services with C#

Call gRPC services with the .NET client



 

Create Protobuf messages for .NET apps
9/22/2020 • 9 minutes to read • Edit Online

Protobuf messages

syntax = "proto3";

option csharp_namespace = "Contoso.Messages";

message Person {
    int32 id = 1;
    string first_name = 2;
    string last_name = 3;
}  

public class Person
{
    public int Id { get; set; }
    public string FirstName { get; set; }
    public string LastName { get; set; }
}

Scalar Value Types

P ROTO B UF  T Y P EP ROTO B UF  T Y P E C # T Y P EC # T Y P E

double double

By James Newton-King and Mark Rendle

gRPC uses Protobuf as its Interface Definition Language (IDL). Protobuf IDL is a language neutral format for

specifying the messages sent and received by gRPC services. Protobuf messages are defined in .proto  files. This

document explains how Protobuf concepts map to .NET.

Messages are the main data transfer object in Protobuf. They are conceptually similar to .NET classes.

The preceding message definition specifies three fields as name-value pairs. Like properties on .NET types, each

field has a name and a type. The field type can be a Protobuf scalar value type, e.g. int32 , or another message.

In addition to a name, each field in the message definition has a unique number. Field numbers are used to identify

fields when the message is serialized to Protobuf. Serializing a small number is faster than serializing the entire

field name. Because field numbers identify a field it is important to take care when changing them. For more

information about changing Protobuf messages see Versioning gRPC services.

When an app is built the Protobuf tooling generates .NET types from .proto  files. The Person  message generates

a .NET class:

For more information about Protobuf messages see the Protobuf language guide.

Protobuf supports a range of native scalar value types. The following table lists them all with their equivalent C#

type:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/protobuf.md
https://twitter.com/jamesnk
https://twitter.com/markrendle
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/proto3#simple


float float

int32 int

int64 long

uint32 uint

uint64 ulong

sint32 int

sint64 long

fixed32 uint

fixed64 ulong

sfixed32 int

sfixed64 long

bool bool

string string

bytes ByteString

P ROTO B UF  T Y P EP ROTO B UF  T Y P E C # T Y P EC # T Y P E

Dates and timesDates and times

. N ET  T Y P E. N ET  T Y P E P ROTO B UF  W EL L - KN O W N  T Y P EP ROTO B UF  W EL L - KN O W N  T Y P E

DateTimeOffset google.protobuf.Timestamp

DateTime google.protobuf.Timestamp

TimeSpan google.protobuf.Duration

Scalar values always have a default value and can't be set to null . This constraint includes string  and 

ByteString  which are C# classes. string  defaults to an empty string value and ByteString  defaults to an empty

bytes value. Attempting to set them to null  throws an error.

Nullable wrapper types can be used to support null values.

The native scalar types don't provide for date and time values, equivalent to .NET's DateTimeOffset, DateTime, and

TimeSpan. These types can be specified by using some of Protobuf's Well-Known Types extensions. These

extensions provide code generation and runtime support for complex field types across the supported platforms.

The following table shows the date and time types:

https://docs.microsoft.com/en-us/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/en-us/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/api/system.timespan


  

syntax = "proto3"

import "google/protobuf/duration.proto";  
import "google/protobuf/timestamp.proto";

message Meeting {
    string subject = 1;
    google.protobuf.Timestamp start = 2;
    google.protobuf.Duration duration = 3;
}  

// Create Timestamp and Duration from .NET DateTimeOffset and TimeSpan.
var meeting = new Meeting
{
    Time = Timestamp.FromDateTimeOffset(meetingTime), // also FromDateTime()
    Duration = Duration.FromTimeSpan(meetingLength)
};

// Convert Timestamp and Duration to .NET DateTimeOffset and TimeSpan.
var time = meeting.Time.ToDateTimeOffset();
var duration = meeting.Duration?.ToTimeSpan();

NOTENOTE

Nullable typesNullable types

syntax = "proto3"

import "google/protobuf/wrappers.proto"

message Person {
    // ...
    google.protobuf.Int32Value age = 5;
}

The generated properties in the C# class aren't the .NET date and time types. The properties use the Timestamp  and

Duration  classes in the Google.Protobuf.WellKnownTypes  namespace. These classes provide methods for

converting to and from DateTimeOffset , DateTime , and TimeSpan .

The Timestamp  type works with UTC times. DateTimeOffset  values always have an offset of zero, and the 

DateTime.Kind  property is always DateTimeKind.Utc .

The Protobuf code generation for C# uses the native types, such as int  for int32 . So the values are always

included and can't be null .

For values that require explicit null , such as using int?  in C# code, Protobuf's Well-Known Types include

wrappers that are compiled to nullable C# types. To use them, import wrappers.proto  into your .proto  file, like

the following code:

wrappers.proto  types aren't exposed in generated properties. Protobuf automatically maps them to appropriate

.NET nullable types in C# messages. For example, a google.protobuf.Int32Value  field generates an int?  property.

Reference type properties like string  and ByteString  are unchanged except null  can be assigned to them

without error.

The following table shows the complete list of wrapper types with their equivalent C# type:



C # T Y P EC # T Y P E W EL L -KN O W N  T Y P E  W RA P P ERW EL L -KN O W N  T Y P E  W RA P P ER

bool? google.protobuf.BoolValue

double? google.protobuf.DoubleValue

float? google.protobuf.FloatValue

int? google.protobuf.Int32Value

long? google.protobuf.Int64Value

uint? google.protobuf.UInt32Value

ulong? google.protobuf.UInt64Value

string google.protobuf.StringValue

ByteString google.protobuf.BytesValue

BytesBytes

var data = await File.ReadAllBytesAsync(path);

var payload = new PayloadResponse();
payload.Data = ByteString.CopyFrom(data);

var payload = await client.GetPayload(new PayloadRequest());

await File.WriteAllBytesAsync(path, payload.Data.ToByteArray());

DecimalsDecimals

Creating a custom decimal type for ProtobufCreating a custom decimal type for Protobuf

Binary payloads are supported in Protobuf with the bytes  scalar value type. A generated property in C# uses 

ByteString  as the property type.

Use ByteString.CopyFrom(byte[] data)  to create a new instance from a byte array:

ByteString  data is accessed directly using ByteString.Span  or ByteString.Memory . Or call 

ByteString.ToByteArray()  to convert an instance back into a byte array:

Protobuf doesn't natively support the .NET decimal  type, just double  and float . There's an ongoing discussion in

the Protobuf project about the possibility of adding a standard decimal type to the Well-Known Types, with

platform support for languages and frameworks that support it. Nothing has been implemented yet.

It's possible to create a message definition to represent the decimal  type that works for safe serialization between

.NET clients and servers. But developers on other platforms would have to understand the format being used and

implement their own handling for it.



package CustomTypes;

// Example: 12345.6789 -> { units = 12345, nanos = 678900000 }
message DecimalValue {

    // Whole units part of the amount
    int64 units = 1;

    // Nano units of the amount (10^-9)
    // Must be same sign as units
    sfixed32 nanos = 2;
}

NOTENOTE

namespace CustomTypes
{
    public partial class DecimalValue
    {
        private const decimal NanoFactor = 1_000_000_000;
        public DecimalValue(long units, int nanos)
        {
            Units = units;
            Nanos = nanos;
        }

        public long Units { get; }
        public int Nanos { get; }

        public static implicit operator decimal(CustomTypes.DecimalValue grpcDecimal)
        {
            return grpcDecimal.Units + grpcDecimal.Nanos / NanoFactor;
        }

        public static implicit operator CustomTypes.DecimalValue(decimal value)
        {
            var units = decimal.ToInt64(value);
            var nanos = decimal.ToInt32((value - units) * NanoFactor);
            return new CustomTypes.DecimalValue(units, nanos);
        }
    }
}

Collections
ListsLists

The nanos  field represents values from 0.999_999_999  to -0.999_999_999 . For example, the decimal  value 1.5m

would be represented as { units = 1, nanos = 500_000_000 } . This is why the nanos  field in this example uses the 

sfixed32  type, which encodes more efficiently than int32  for larger values. If the units  field is negative, the 

nanos  field should also be negative.

There are multiple other algorithms for encoding decimal  values as byte strings, but this message is easier to understand

than any of them. The values are not affected by big-endian or little-endian on different platforms.

Conversion between this type and the BCL decimal  type might be implemented in C# like this:

Lists in Protobuf are specified by using the repeated  prefix keyword on a field. The following example shows how

to create a list:



message Person {
    // ...
    repeated string roles = 8;
}

public class Person
{
    // ...
    public RepeatedField<string> Roles { get; }
}

var person = new Person();

// Add one item.
person.Roles.Add("user");

// Add all items from another collection.
var roles = new [] { "admin", "manager" };
person.Roles.Add(roles);

DictionariesDictionaries

message Person {
    // ...
    map<string, string> attributes = 9;
}

var person = new Person();

// Add one item.
person.Attributes["created_by"] = "James";

// Add all items from another collection.
var attributes = new Dictionary<string, string>
{
    ["last_modified"] = DateTime.UtcNow.ToString()
};
person.Attributes.Add(attributes);

Unstructured and conditional messages

In the generated code, repeated  fields are represented by the Google.Protobuf.Collections.RepeatedField<T>

generic type.

RepeatedField<T>  implements IList<T>. So you can use LINQ queries or convert it to an array or a list. 

RepeatedField<T>  properties don't have a public setter. Items should be added to the existing collection.

The .NET IDictionary<TKey,TValue> type is represented in Protobuf using map<key_type, value_type> .

In generated .NET code, map  fields are represented by the Google.Protobuf.Collections.MapField<TKey, TValue>

generic type. MapField<TKey, TValue>  implements IDictionary<TKey,TValue>. Like repeated  properties, map

properties don't have a public setter. Items should be added to the existing collection.

Protobuf is a contract-first messaging format. An app's messages, including its fields and types, must be specified

in .proto  files when the app is built. Protobuf's contract-first design is great at enforcing message content but can

limit scenarios where a strict contract isn't required:

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.idictionary-2
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.idictionary-2


AnyAny

import "google/protobuf/any.proto";

message Status {
    string message = 1;
    google.protobuf.Any detail = 2;
}

// Create a status with a Person message set to detail.
var status = new ErrorStatus();
status.Detail = Any.Pack(new Person { FirstName = "James" });

// Read Person message from detail.
if (status.Detail.Is(Person.Descriptor))
{
    var person = status.Detail.Unpack<Person>();
    // ...
}

OneofOneof

message Person {
    // ...
}

message Error {
    // ...
}

message ResponseMessage {
  oneof result {
    Error error = 1;
    Person person = 2;
  }
}

Messages with unknown payloads. For example, a message with a field that could contain any message.

Conditional messages. For example, a message returned from a gRPC service might be a success result or an

error result.

Dynamic values. For example, a message with a field that contains an unstructured collection of values, similar

to JSON.

Protobuf offers language features and types to support these scenarios.

The Any  type lets you use messages as embedded types without having their .proto  definition. To use the Any

type, import any.proto .

oneof  fields are a language feature. The compiler handles the oneof  keyword when it generates the message

class. Using oneof  to specify a response message that could either return a Person  or Error  might look like this:

Fields within the oneof  set must have unique field numbers in the overall message declaration.

When using oneof , the generated C# code includes an enum that specifies which of the fields has been set. You

can test the enum to find which field is set. Fields that aren't set return null  or the default value, rather than

throwing an exception.



var response = await client.GetPersonAsync(new RequestMessage());

switch (response.ResultCase)
{
    case ResponseMessage.ResultOneofCase.Person:
        HandlePerson(response.Person);
        break;
    case ResponseMessage.ResultOneofCase.Error:
        HandleError(response.Error);
        break;
    default:
        throw new ArgumentException("Unexpected result.");
}

ValueValue

import "google/protobuf/struct.proto";

message Status {
    // ...
    google.protobuf.Value data = 3;
}

// Create dynamic values.
var status = new Status();
status.Data = Value.FromStruct(new Struct
{
    Fields =
    {
        ["enabled"] = Value.ForBoolean(true),
        ["metadata"] = Value.ForList(
            Value.FromString("value1"),
            Value.FromString("value2"))
    }
});

// Read dynamic values.
switch (status.Data.KindCase)
{
    case Value.KindOneofCase.StructValue:
        foreach (var field in status.Data.StructValue.Fields)
        {
            // Read struct fields...
        }
        break;
    // ...
}

The Value  type represents a dynamically typed value. It can be either null , a number, a string, a boolean, a

dictionary of values ( Struct ), or a list of values ( ValueList ). Value  is a Protobuf Well-Known Type that uses the

previously discussed oneof  feature. To use the Value  type, import struct.proto .

Using Value  directly can be verbose. An alternative way to use Value  is with Protobuf's built-in support for

mapping messages to JSON. Protobuf's JsonFormatter  and JsonWriter  types can be used with any Protobuf

message. Value  is particularly well suited to being converted to and from JSON.

This is the JSON equivalent of the previous code:



// Create dynamic values from JSON.
var status = new Status();
status.Data = Value.Parser.ParseJson(@"{
    ""enabled"": true,
    ""metadata"": [ ""value1"", ""value2"" ]
}");

// Convert dynamic values to JSON.
// JSON can be read with a library like System.Text.Json or Newtonsoft.Json
var json = JsonFormatter.Default.Format(status.Metadata);
var document = JsonDocument.Parse(json);

Additional resources
Protobuf language guide

Versioning gRPC services

https://developers.google.com/protocol-buffers/docs/proto3#simple


Versioning gRPC services
9/22/2020 • 5 minutes to read • Edit Online

Backwards compatibility

Non-breaking changesNon-breaking changes

Binary breaking changesBinary breaking changes

By James Newton-King

New features added to an app can require gRPC services provided to clients to change, sometimes in unexpected

and breaking ways. When gRPC services change:

Consideration should be given on how changes impact clients.

A versioning strategy to support changes should be implemented.

The gRPC protocol is designed to support services that change over time. Generally, additions to gRPC services

and methods are non-breaking. Non-breaking changes allow existing clients to continue working without changes.

Changing or deleting gRPC services are breaking changes. When gRPC services have breaking changes, clients

using that service have to be updated and redeployed.

Making non-breaking changes to a service has a number of benefits:

Existing clients continue to run.

Avoids work involved with notifying clients of breaking changes, and updating them.

Only one version of the service needs to be documented and maintained.

These changes are non-breaking at a gRPC protocol level and .NET binary level.

Adding a new ser viceAdding a new ser vice

Adding a new method to a ser viceAdding a new method to a ser vice

Adding a field to a request messageAdding a field to a request message - Fields added to a request message are deserialized with the default

value on the server when not set. To be a non-breaking change, the service must succeed when the new field

isn't set by older clients.

Adding a field to a response messageAdding a field to a response message - Fields added to a response message are deserialized into the

message's unknown fields collection on the client.

Adding a value to an enumAdding a value to an enum - Enums are serialized as a numeric value. New enum values are deserialized on

the client to the enum value without an enum name. To be a non-breaking change, older clients must run

correctly when receiving the new enum value.

The following changes are non-breaking at a gRPC protocol level, but the client needs to be updated if it upgrades

to the latest .proto contract or client .NET assembly. Binary compatibility is important if you plan to publish a gRPC

library to NuGet.

Removing a fieldRemoving a field - Values from a removed field are deserialized to a message's unknown fields. This isn't a

gRPC protocol breaking change, but the client needs to be updated if it upgrades to the latest contract. It's

important that a removed field number isn't accidentally reused in the future. To ensure this doesn't happen,

specify deleted field numbers and names on the message using Protobuf's reserved keyword.

Renaming a messageRenaming a message - Message names aren't typically sent on the network, so this isn't a gRPC protocol

breaking change. The client will need to be updated if it upgrades to the latest contract. One situation where

message names areare sent on the network is with Any fields, when the message name is used to identify the

message type.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/versioning.md
https://twitter.com/jamesnk
https://developers.google.com/protocol-buffers/docs/proto3#default
https://developers.google.com/protocol-buffers/docs/proto3#unknowns
https://developers.google.com/protocol-buffers/docs/proto3#unknowns
https://developers.google.com/protocol-buffers/docs/proto3#reserved
https://developers.google.com/protocol-buffers/docs/proto3#any


Protocol breaking changesProtocol breaking changes

Behavior breaking changesBehavior breaking changes

Version number services

syntax = "proto3";

package greet.v1;

service Greeter {
  rpc SayHello (HelloRequest) returns (HelloReply);
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string message = 1;
}

Changing csharp_namespaceChanging csharp_namespace - Changing csharp_namespace  will change the namespace of generated .NET

types. This isn't a gRPC protocol breaking change, but the client needs to be updated if it upgrades to the latest

contract.

The following items are protocol and binary breaking changes:

Renaming a fieldRenaming a field - With Protobuf content, the field names are only used in generated code. The field number

is used to identify fields on the network. Renaming a field isn't a protocol breaking change for Protobuf.

However, if a server is using JSON content then renaming a field is a breaking change.

Changing a field data typeChanging a field data type - Changing a field's data type to an incompatible type will cause errors when

deserializing the message. Even if the new data type is compatible, it's likely the client needs to be updated to

support the new type if it upgrades to the latest contract.

Changing a field numberChanging a field number  - With Protobuf payloads, the field number is used to identify fields on the

network.

Renaming a package, ser vice or methodRenaming a package, ser vice or method - gRPC uses the package name, service name, and method name

to build the URL. The client gets an UNIMPLEMENTED status from the server.

Removing a ser vice or methodRemoving a ser vice or method - The client gets an UNIMPLEMENTED status from the server when calling

the removed method.

When making non-breaking changes, you must also consider whether older clients can continue working with the

new service behavior. For example, adding a new field to a request message:

Isn't a protocol breaking change.

Returning an error status on the server if the new field isn't set makes it a breaking change for old clients.

Behavior compatibility is determined by your app-specific code.

Services should strive to remain backwards compatible with old clients. Eventually changes to your app may

require breaking changes. Breaking old clients and forcing them to be updated along with your service isn't a good

user experience. A way to maintain backwards compatibility while making breaking changes is to publish multiple

versions of a service.

gRPC supports an optional package specifier, which functions much like a .NET namespace. In fact, the package

will be used as the .NET namespace for generated .NET types if option csharp_namespace  is not set in the .proto file.

The package can be used to specify a version number for your service and its messages:

The package name is combined with the service name to identify a service address. A service address allows

https://developers.google.com/protocol-buffers/docs/proto3#updating
https://developers.google.com/protocol-buffers/docs/proto3#packages


app.UseEndpoints(endpoints =>
{
    // Implements greet.v1.Greeter
    endpoints.MapGrpcService<GreeterServiceV1>();

    // Implements greet.v2.Greeter
    endpoints.MapGrpcService<GreeterServiceV2>();
});

using Greet.V1;
using Grpc.Core;
using System.Threading.Tasks;

namespace Services
{
    public class GreeterServiceV1 : Greeter.GreeterBase
    {
        private readonly IGreeter _greeter;
        public GreeterServiceV1(IGreeter greeter)
        {
            _greeter = greeter;
        }

        public override Task<HelloReply> SayHello(HelloRequest request, ServerCallContext context)
        {
            return Task.FromResult(new HelloReply
            {
                Message = _greeter.GetHelloMessage(request.Name)
            });
        }
    }
}

Additional resources

multiple versions of a service to be hosted side-by-side:

greet.v1.Greeter

greet.v2.Greeter

Implementations of the versioned service are registered in Startup.cs:

Including a version number in the package name gives you the opportunity to publish a v2 version of your service

with breaking changes, while continuing to support older clients who call the v1 version. Once clients have

updated to use the v2 service, you can choose to remove the old version. When planning to publish multiple

versions of a service:

Avoid breaking changes if reasonable.

Don't update the version number unless making breaking changes.

Do update the version number when you make breaking changes.

Publishing multiple versions of a service duplicates it. To reduce duplication, consider moving business logic from

the service implementations to a centralized location that can be reused by the old and new implementations:

Services and messages generated with different package names are different .NET typesdifferent .NET types . Moving business logic

to a centralized location requires mapping messages to common types.

Create Protobuf messages for .NET apps



Call gRPC services with the .NET client
9/22/2020 • 7 minutes to read • Edit Online

Configure gRPC client

var channel = GrpcChannel.ForAddress("https://localhost:5001");
var client = new Greet.GreeterClient(channel);

var channel = GrpcChannel.ForAddress("https://localhost:5001");

var greeterClient = new Greet.GreeterClient(channel);
var counterClient = new Count.CounterClient(channel);

// Use clients to call gRPC services

Configure TLSConfigure TLS

TIPTIP

A .NET gRPC client library is available in the Grpc.Net.Client NuGet package. This document explains how to:

Configure a gRPC client to call gRPC services.

Make gRPC calls to unary, server streaming, client streaming, and bi-directional streaming methods.

gRPC clients are concrete client types that are generated from *.proto files. The concrete gRPC client has methods

that translate to the gRPC service in the *.proto file. For example, a service called Greeter  generates a 

GreeterClient  type with methods to call the service.

A gRPC client is created from a channel. Start by using GrpcChannel.ForAddress  to create a channel, and then use

the channel to create a gRPC client:

A channel represents a long-lived connection to a gRPC service. When a channel is created, it is configured with

options related to calling a service. For example, the HttpClient  used to make calls, the maximum send and

receive message size, and logging can be specified on GrpcChannelOptions  and used with GrpcChannel.ForAddress

. For a complete list of options, see client configuration options.

A gRPC client must use the same connection-level security as the called service. gRPC client Transport Layer

Security (TLS) is configured when the gRPC channel is created. A gRPC client throws an error when it calls a

service and the connection-level security of the channel and service don't match.

To configure a gRPC channel to use TLS, ensure the server address starts with https . For example, 

GrpcChannel.ForAddress("https://localhost:5001")  uses HTTPS protocol. The gRPC channel automatically

negotiates a connection secured by TLS and uses a secure connection to make gRPC calls.

gRPC supports client certificate authentication over TLS. For information on configuring client certificates with a gRPC

channel, see Authentication and authorization in gRPC for ASP.NET Core.

To call unsecured gRPC services, ensure the server address starts with http . For example, 

GrpcChannel.ForAddress("http://localhost:5000")  uses HTTP protocol. In .NET Core 3.1 or later, additional

configuration is required to call insecure gRPC services with the .NET client.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/client.md
https://www.nuget.org/packages/Grpc.Net.Client


Client performanceClient performance

NOTENOTE

Make gRPC calls

Unary callUnary call

var client = new Greet.GreeterClient(channel);
var response = await client.SayHelloAsync(new HelloRequest { Name = "World" });

Console.WriteLine("Greeting: " + response.Message);
// Greeting: Hello World

Server streaming callServer streaming call

Channel and client performance and usage:

Creating a channel can be an expensive operation. Reusing a channel for gRPC calls provides performance

benefits.

gRPC clients are created with channels. gRPC clients are lightweight objects and don't need to be cached or

reused.

Multiple gRPC clients can be created from a channel, including different types of clients.

A channel and clients created from the channel can safely be used by multiple threads.

Clients created from the channel can make multiple simultaneous calls.

GrpcChannel.ForAddress  isn't the only option for creating a gRPC client. If calling gRPC services from an ASP.NET

Core app, consider gRPC client factory integration. gRPC integration with HttpClientFactory  offers a centralized

alternative to creating gRPC clients.

Calling gRPC over HTTP/2 with Grpc.Net.Client  is currently not supported on Xamarin. We are working to improve

HTTP/2 support in a future Xamarin release. Grpc.Core and gRPC-Web are viable alternatives that work today.

A gRPC call is initiated by calling a method on the client. The gRPC client will handle message serialization and

addressing the gRPC call to the correct service.

gRPC has different types of methods. How the client is used to make a gRPC call depends on the type of method

called. The gRPC method types are:

Unary

Server streaming

Client streaming

Bi-directional streaming

A unary call starts with the client sending a request message. A response message is returned when the service

finishes.

Each unary service method in the *.proto file will result in two .NET methods on the concrete gRPC client type for

calling the method: an asynchronous method and a blocking method. For example, on GreeterClient  there are

two ways of calling SayHello :

GreeterClient.SayHelloAsync  - calls Greeter.SayHello  service asynchronously. Can be awaited.

GreeterClient.SayHello  - calls Greeter.SayHello  service and blocks until complete. Don't use in asynchronous

code.

A server streaming call starts with the client sending a request message. ResponseStream.MoveNext()  reads

https://www.nuget.org/packages/Grpc.Core


var client = new Greet.GreeterClient(channel);
using var call = client.SayHellos(new HelloRequest { Name = "World" });

while (await call.ResponseStream.MoveNext())
{
    Console.WriteLine("Greeting: " + call.ResponseStream.Current.Message);
    // "Greeting: Hello World" is written multiple times
}

var client = new Greet.GreeterClient(channel);
using var call = client.SayHellos(new HelloRequest { Name = "World" });

await foreach (var response in call.ResponseStream.ReadAllAsync())
{
    Console.WriteLine("Greeting: " + response.Message);
    // "Greeting: Hello World" is written multiple times
}

Client streaming callClient streaming call

var client = new Counter.CounterClient(channel);
using var call = client.AccumulateCount();

for (var i = 0; i < 3; i++)
{
    await call.RequestStream.WriteAsync(new CounterRequest { Count = 1 });
}
await call.RequestStream.CompleteAsync();

var response = await call;
Console.WriteLine($"Count: {response.Count}");
// Count: 3

Bi-directional streaming callBi-directional streaming call

messages streamed from the service. The server streaming call is complete when ResponseStream.MoveNext()

returns false .

When using C# 8 or later, the await foreach  syntax can be used to read messages. The 

IAsyncStreamReader<T>.ReadAllAsync()  extension method reads all messages from the response stream:

A client streaming call starts without the client sending a message. The client can choose to send messages with 

RequestStream.WriteAsync . When the client has finished sending messages, RequestStream.CompleteAsync()

should be called to notify the service. The call is finished when the service returns a response message.

A bi-directional streaming call starts without the client sending a message. The client can choose to send

messages with RequestStream.WriteAsync . Messages streamed from the service are accessible with 

ResponseStream.MoveNext()  or ResponseStream.ReadAllAsync() . The bi-directional streaming call is complete when

the ResponseStream  has no more messages.



var client = new Echo.EchoClient(channel);
using var call = client.Echo();

Console.WriteLine("Starting background task to receive messages");
var readTask = Task.Run(async () =>
{
    await foreach (var response in call.ResponseStream.ReadAllAsync())
    {
        Console.WriteLine(response.Message);
        // Echo messages sent to the service
    }
});

Console.WriteLine("Starting to send messages");
Console.WriteLine("Type a message to echo then press enter.");
while (true)
{
    var result = Console.ReadLine();
    if (string.IsNullOrEmpty(result))
    {
        break;
    }

    await call.RequestStream.WriteAsync(new EchoMessage { Message = result });
}

Console.WriteLine("Disconnecting");
await call.RequestStream.CompleteAsync();
await readTask;

Access gRPC trailers

For best performance, and to avoid unnecessary errors in the client and service, try to complete bi-directional

streaming calls gracefully. A bi-directional call completes gracefully when the server has finished reading the

request stream and the client has finished reading the response stream. The preceding sample call is one example

of a bi-directional call that ends gracefully. In the call, the client:

1. Starts a new bi-directional streaming call by calling EchoClient.Echo .

2. Creates a background task to read messages from the service using ResponseStream.ReadAllAsync() .

3. Sends messages to the server with RequestStream.WriteAsync .

4. Notifies the server it has finished sending messages with RequestStream.CompleteAsync() .

5. Waits until the background task has read all incoming messages.

During a bi-directional streaming call, the client and service can send messages to each other at any time. The

best client logic for interacting with a bi-directional call varies depending upon the service logic.

gRPC calls may return gRPC trailers. gRPC trailers are used to provide name/value metadata about a call. Trailers

provide similar functionality to HTTP headers, but are received at the end of the call.

gRPC trailers are accessible using GetTrailers() , which returns a collection of metadata. Trailers are returned

after the response is complete, therefore, you must await all response messages before accessing the trailers.

Unary and client streaming calls must await ResponseAsync  before calling GetTrailers() :



var client = new Greet.GreeterClient(channel);
using var call = client.SayHelloAsync(new HelloRequest { Name = "World" });
var response = await call.ResponseAsync;

Console.WriteLine("Greeting: " + response.Message);
// Greeting: Hello World

var trailers = call.GetTrailers();
var myValue = trailers.GetValue("my-trailer-name");

var client = new Greet.GreeterClient(channel);
using var call = client.SayHellos(new HelloRequest { Name = "World" });

await foreach (var response in call.ResponseStream.ReadAllAsync())
{
    Console.WriteLine("Greeting: " + response.Message);
    // "Greeting: Hello World" is written multiple times
}

var trailers = call.GetTrailers();
var myValue = trailers.GetValue("my-trailer-name");

var client = new Greet.GreeterClient(channel);
string myValue = null;

try
{
    using var call = client.SayHelloAsync(new HelloRequest { Name = "World" });
    var response = await call.ResponseAsync;

    Console.WriteLine("Greeting: " + response.Message);
    // Greeting: Hello World

    var trailers = call.GetTrailers();
    myValue = trailers.GetValue("my-trailer-name");
}
catch (RpcException ex)
{
    var trailers = ex.Trailers;
    myValue = trailers.GetValue("my-trailer-name");
}

Configure deadline

Server and bidirectional streaming calls must finish awaiting the response stream before calling GetTrailers() :

gRPC trailers are also accessible from RpcException . A service may return trailers together with a non-OK gRPC

status. In this situation the trailers are retrieved from the exception thrown by the gRPC client:

Configuring a gRPC call deadline is recommended because it provides an upper limit on how long a call can run

for. It stops misbehaving services from running forever and exhausting server resources. Deadlines are a useful

tool for building reliable apps.

Configure CallOptions.Deadline  to set a deadline for a gRPC call:



var client = new Greet.GreeterClient(channel);

try
{
    var response = await client.SayHelloAsync(
        new HelloRequest { Name = "World" },
        deadline: DateTime.UtcNow.AddSeconds(5));
    
    // Greeting: Hello World
    Console.WriteLine("Greeting: " + response.Message);
}
catch (RpcException ex) when (ex.StatusCode == StatusCode.DeadlineExceeded)
{
    Console.WriteLine("Greeting timeout.");
}

Additional resources

For more information, see Reliable gRPC services with deadlines and cancellation.

gRPC client factory integration in .NET Core

Reliable gRPC services with deadlines and cancellation

gRPC services with C#



gRPC client factory integration in .NET Core
9/22/2020 • 2 minutes to read • Edit Online

Register gRPC clients

services.AddGrpcClient<Greeter.GreeterClient>(o =>
{
    o.Address = new Uri("https://localhost:5001");
});

public class AggregatorService : Aggregator.AggregatorBase
{
    private readonly Greeter.GreeterClient _client;

    public AggregatorService(Greeter.GreeterClient client)
    {
        _client = client;
    }

    public override async Task SayHellos(HelloRequest request,
        IServerStreamWriter<HelloReply> responseStream, ServerCallContext context)
    {
        // Forward the call on to the greeter service
        using (var call = _client.SayHellos(request))
        {
            await foreach (var response in call.ResponseStream.ReadAllAsync())
            {
                await responseStream.WriteAsync(response);
            }
        }
    }
}

Configure HttpClient

gRPC integration with HttpClientFactory  offers a centralized way to create gRPC clients. It can be used as an

alternative to configuring stand-alone gRPC client instances. Factory integration is available in the

Grpc.Net.ClientFactory NuGet package.

The factory offers the following benefits:

Provides a central location for configuring logical gRPC client instances

Manages the lifetime of the underlying HttpClientMessageHandler

Automatic propagation of deadline and cancellation in an ASP.NET Core gRPC service

To register a gRPC client, the generic AddGrpcClient  extension method can be used within 

Startup.ConfigureServices , specifying the gRPC typed client class and service address:

The gRPC client type is registered as transient with dependency injection (DI). The client can now be injected and

consumed directly in types created by DI. ASP.NET Core MVC controllers, SignalR hubs and gRPC services are

places where gRPC clients can automatically be injected:

HttpClientFactory  creates the HttpClient  used by the gRPC client. Standard HttpClientFactory  methods can be

used to add outgoing request middleware or to configure the underlying HttpClientHandler  of the HttpClient :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/clientfactory.md
https://www.nuget.org/packages/Grpc.Net.ClientFactory


 

services
    .AddGrpcClient<Greeter.GreeterClient>(o =>
    {
        o.Address = new Uri("https://localhost:5001");
    })
    .ConfigurePrimaryHttpMessageHandler(() =>
    {
        var handler = new HttpClientHandler();
        handler.ClientCertificates.Add(LoadCertificate());
        return handler;
    });

Configure Channel and Interceptors

services
    .AddGrpcClient<Greeter.GreeterClient>(o =>
    {
        o.Address = new Uri("https://localhost:5001");
    })
    .AddInterceptor(() => new LoggingInterceptor())
    .ConfigureChannel(o =>
    {
        o.Credentials = new CustomCredentials();
    });

Deadline and cancellation propagation

services
    .AddGrpcClient<Greeter.GreeterClient>(o =>
    {
        o.Address = new Uri("https://localhost:5001");
    })
    .EnableCallContextPropagation();

For more information, see Make HTTP requests using IHttpClientFactory.

gRPC-specific methods are available to:

Configure a gRPC client's underlying channel.

Add Interceptor  instances that the client will use when making gRPC calls.

gRPC clients created by the factory in a gRPC service can be configured with EnableCallContextPropagation()  to

automatically propagate the deadline and cancellation token to child calls. The EnableCallContextPropagation()

extension method is available in the Grpc.AspNetCore.Server.ClientFactory NuGet package.

Call context propagation works by reading the deadline and cancellation token from the current gRPC request

context and automatically propagating them to outgoing calls made by the gRPC client. Call context propagation

is an excellent way of ensuring that complex, nested gRPC scenarios always propagate the deadline and

cancellation.

By default, EnableCallContextPropagation  raises an error if the client is used outside the context of a gRPC call. The

error is designed to alert you that there isn't a call context to propagate. If you want to use the client outside of a

call context, suppress the error when the client is configured with SuppressContextNotFoundErrors :

https://www.nuget.org/packages/Grpc.AspNetCore.Server.ClientFactory


services
    .AddGrpcClient<Greeter.GreeterClient>(o =>
    {
        o.Address = new Uri("https://localhost:5001");
    })
    .EnableCallContextPropagation(o => o.SuppressContextNotFoundErrors = true);

Additional resources

For more information about deadlines and RPC cancellation, see RPC life cycle.

Call gRPC services with the .NET client

Make HTTP requests using IHttpClientFactory in ASP.NET Core

https://www.grpc.io/docs/guides/concepts/#rpc-life-cycle


  

Reliable gRPC services with deadlines and
cancellation
9/22/2020 • 3 minutes to read • Edit Online

Deadlines

By James Newton-King

Deadlines and cancellation are features used by gRPC clients to abort in-progress calls. This article discusses why

deadlines and cancellation are important, and how to use them in .NET gRPC apps.

A deadline allows a gRPC client to specify how long it will wait for a call to complete. When a deadline is exceeded,

the call is canceled. Setting a deadline is important because it provides an upper limit on how long a call can run

for. It stops misbehaving services from running forever and exhausting server resources. Deadlines are a useful

tool for building reliable apps and should be configured.

Deadline configuration:

A deadline is configured using CallOptions.Deadline  when a call is made.

There is no default deadline value. gRPC calls aren't time limited unless a deadline is specified.

A deadline is the UTC time of when the deadline is exceeded. For example, DateTime.UtcNow.AddSeconds(5)  is a

deadline of 5 seconds from now.

If a past or current time is used then the call immediately exceeds the deadline.

The deadline is sent with the gRPC call to the service and is independently tracked by both the client and the

service. It is possible that a gRPC call completes on one machine, but by the time the response has returned to

the client the deadline has been exceeded.

If a deadline is exceeded, the client and service have different behavior :

The client immediately aborts the underlying HTTP request and throws a DeadlineExceeded  error. The client app

can choose to catch the error and display a timeout message to the user.

On the server, the executing HTTP request is aborted and ServerCallContext.CancellationToken is raised.

Although the HTTP request is aborted, the gRPC call continues to run on the server until the method completes.

It's important that the cancellation token is passed to async methods so they are cancelled along with the call.

For example, passing a cancellation token to async database queries and HTTP requests. Passing a cancellation

token allows the canceled call to complete quickly on the server and free up resources for other calls.

Configure CallOptions.Deadline  to set a deadline for a gRPC call:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/deadlines-cancellation.md
https://twitter.com/jamesnk
https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken


var client = new Greet.GreeterClient(channel);

try
{
    var response = await client.SayHelloAsync(
        new HelloRequest { Name = "World" },
        deadline: DateTime.UtcNow.AddSeconds(5));
    
    // Greeting: Hello World
    Console.WriteLine("Greeting: " + response.Message);
}
catch (RpcException ex) when (ex.StatusCode == StatusCode.DeadlineExceeded)
{
    Console.WriteLine("Greeting timeout.");
}

public override async Task<HelloReply> SayHello(HelloRequest request,
    ServerCallContext context)
{
    var user = await _databaseContext.GetUserAsync(request.Name,
        context.CancellationToken);

    return new HelloReply { Message = "Hello " + user.DisplayName };
}

Propagating deadlinesPropagating deadlines

public override async Task<UserResponse> GetUser(UserRequest request,
    ServerCallContext context)
{
    var client = new User.UserServiceClient(_channel);
    var response = await client.GetUserAsync(
        new UserRequest { Id = request.Id },
        deadline: context.Deadline);

    return response;
}

Using ServerCallContext.CancellationToken  in a gRPC service:

When a gRPC call is made from an executing gRPC service, the deadline should be propagated. For example:

1. Client app calls FrontendService.GetUser  with a deadline.

2. FrontendService  calls UserService.GetUser . The deadline specified by the client should be specified with the

new gRPC call.

3. UserService.GetUser  receives the deadline. It correctly times-out if the client app's deadline is exceeded.

The call context provides the deadline with ServerCallContext.Deadline :

Manually propagating deadlines can be cumbersome. The deadline needs to be passed to every call, and it's easy to

accidentally miss. An automatic solution is available with gRPC client factory. Specifying 

EnableCallContextPropagation :

Automatically propagates the deadline and cancellation token to child calls.

Is an excellent way of ensuring that complex, nested gRPC scenarios always propagate the deadline and

cancellation.



services
    .AddGrpcClient<User.UserServiceClient>(o =>
    {
        o.Address = new Uri("https://localhost:5001");
    })
    .EnableCallContextPropagation();

Cancellation

private AsyncServerStreamingCall<HelloReply> _call;

public void StartStream()
{
    _call = client.SayHellos(new HelloRequest { Name = "World" });

    // Read response in background task.
    _ = Task.Run(async () =>
    {
        await foreach (var response in _call.ResponseStream.ReadAllAsync())
        {
            Console.WriteLine("Greeting: " + response.Message);
        }
    });
}

public void StopStream()
{
    _call.Dispose();
}

Additional resources

For more information, see gRPC client factory integration in .NET Core.

Cancellation allows a gRPC client to cancel long running calls that are no longer needed. For example, a gRPC call

that streams realtime updates is started when the user visits a page on a website. The stream should be canceled

when the user navigates away from the page.

A gRPC call can be canceled in the client by passing a cancellation token with CallOptions.CancellationToken or

calling Dispose  on the call.

gRPC services that can be cancelled should:

Pass ServerCallContext.CancellationToken  to async methods. Canceling async methods allows the call on the

server to complete quickly.

Propagate the cancellation token to child calls. Propagating the cancellation token ensures that child calls are

canceled with their parent. gRPC client factory and EnableCallContextPropagation()  automatically propagates

the cancellation token.

Call gRPC services with the .NET client

gRPC client factory integration in .NET Core

https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken


 

gRPC services with ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

WARNINGWARNING

Prerequisites

Get started with gRPC service in ASP.NET Core

Add gRPC services to an ASP.NET Core app

Configure gRPCConfigure gRPC

This document shows how to get started with gRPC services using ASP.NET Core.

ASP.NET Core gRPC is not currently supported on Azure App Service or IIS. The HTTP/2 implementation of Http.Sys does

not support HTTP response trailing headers which gRPC relies on. For more information, see this GitHub issue.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.0 SDK or later

View or download sample code (how to download).

Visual Studio

Visual Studio Code / Visual Studio for Mac

See Get started with gRPC services for detailed instructions on how to create a gRPC project.

gRPC requires the Grpc.AspNetCore package.

In Startup.cs:

gRPC is enabled with the AddGrpc  method.

Each gRPC service is added to the routing pipeline through the MapGrpcService  method.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/aspnetcore.md
https://github.com/dotnet/AspNetCore/issues/9020
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/grpc/grpc-start/sample
https://www.nuget.org/packages/Grpc.AspNetCore


public class Startup
{
    // This method gets called by the runtime. Use this method to add services to the container.
    // For more information on how to configure your application, visit https://go.microsoft.com/fwlink/?
LinkID=398940
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddGrpc();
    }

    // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseRouting();

        app.UseEndpoints(endpoints =>
        {
            // Communication with gRPC endpoints must be made through a gRPC client.
            // To learn how to create a client, visit: https://go.microsoft.com/fwlink/?linkid=2086909
            endpoints.MapGrpcService<GreeterService>();
        });
    }
}

Configure KestrelConfigure Kestrel

HTTP/2HTTP/2

TLSTLS

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

ASP.NET Core middlewares and features share the routing pipeline, therefore an app can be configured to serve

additional request handlers. The additional request handlers, such as MVC controllers, work in parallel with the

configured gRPC services.

Kestrel gRPC endpoints:

Require HTTP/2.

Should be secured with Transport Layer Security (TLS).

gRPC requires HTTP/2. gRPC for ASP.NET Core validates HttpRequest.Protocol is HTTP/2 .

Kestrel supports HTTP/2 on most modern operating systems. Kestrel endpoints are configured to support

HTTP/1.1 and HTTP/2 connections by default.

Kestrel endpoints used for gRPC should be secured with TLS. In development, an endpoint secured with TLS is

automatically created at https://localhost:5001  when the ASP.NET Core development certificate is present. No

configuration is required. An https  prefix verifies the Kestrel endpoint is using TLS.

In production, TLS must be explicitly configured. In the following appsettings.json example, an HTTP/2 endpoint

secured with TLS is provided:

https://github.com/MicrosoftDocs/feedback/issues/2515
https://tools.ietf.org/html/rfc5246
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol


{
  "Kestrel": {
    "Endpoints": {
      "HttpsInlineCertFile": {
        "Url": "https://localhost:5001",
        "Protocols": "Http2",
        "Certificate": {
          "Path": "<path to .pfx file>",
          "Password": "<certificate password>"
        }
      }
    }
  }
}

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.ConfigureKestrel(options =>
            {
                options.Listen(IPAddress.Any, 5001, listenOptions =>
                {
                    listenOptions.Protocols = HttpProtocols.Http2;
                    listenOptions.UseHttps("<path to .pfx file>", 
                        "<certificate password>");
                });
            });
            webBuilder.UseStartup<Startup>();
        });

Protocol negotiationProtocol negotiation

NOTENOTE

Integration with ASP.NET Core APIs

Alternatively, Kestrel endpoints can be configured in Program.cs:

TLS is used for more than securing communication. The TLS Application-Layer Protocol Negotiation (ALPN)

handshake is used to negotiate the connection protocol between the client and the server when an endpoint

supports multiple protocols. This negotiation determines whether the connection uses HTTP/1.1 or HTTP/2.

If an HTTP/2 endpoint is configured without TLS, the endpoint's ListenOptions.Protocols must be set to 

HttpProtocols.Http2 . An endpoint with multiple protocols (for example, HttpProtocols.Http1AndHttp2 ) can't be

used without TLS because there is no negotiation. All connections to the unsecured endpoint default to HTTP/1.1,

and gRPC calls fail.

For more information on enabling HTTP/2 and TLS with Kestrel, see Kestrel endpoint configuration.

macOS doesn't support ASP.NET Core gRPC with TLS. Additional configuration is required to successfully run gRPC services

on macOS. For more information, see Unable to start ASP.NET Core gRPC app on macOS.

gRPC services have full access to the ASP.NET Core features such as Dependency Injection (DI) and Logging. For

example, the service implementation can resolve a logger service from the DI container via the constructor :

https://tools.ietf.org/html/rfc7301#section-3


public class GreeterService : Greeter.GreeterBase
{
    public GreeterService(ILogger<GreeterService> logger)
    {
    }
}

Resolve HttpContext in gRPC methodsResolve HttpContext in gRPC methods

public class GreeterService : Greeter.GreeterBase
{
    public override Task<HelloReply> SayHello(
        HelloRequest request, ServerCallContext context)
    {
        return Task.FromResult(new HelloReply
        {
            Message = "Hello " + request.Name
        });
    }
}

public class GreeterService : Greeter.GreeterBase
{
    public override Task<HelloReply> SayHello(
        HelloRequest request, ServerCallContext context)
    {
        var httpContext = context.GetHttpContext();
        var clientCertificate = httpContext.Connection.ClientCertificate;

        return Task.FromResult(new HelloReply
        {
            Message = "Hello " + request.Name + " from " + clientCertificate.Issuer
        });
    }
}

Additional resources

By default, the gRPC service implementation can resolve other DI services with any lifetime (Singleton, Scoped, or

Transient).

The gRPC API provides access to some HTTP/2 message data, such as the method, host, header, and trailers.

Access is through the ServerCallContext  argument passed to each gRPC method:

ServerCallContext  does not provide full access to HttpContext  in all ASP.NET APIs. The GetHttpContext  extension

method provides full access to the HttpContext  representing the underlying HTTP/2 message in ASP.NET APIs:

Create a .NET Core gRPC client and server in ASP.NET Core

Introduction to gRPC on .NET Core

gRPC services with C#

Kestrel web server implementation in ASP.NET Core



Use gRPC in browser apps
9/22/2020 • 5 minutes to read • Edit Online

gRPC-Web in ASP.NET Core vs. Envoy

Configure gRPC-Web in ASP.NET Core

public void ConfigureServices(IServiceCollection services)
{
    services.AddGrpc();
}

public void Configure(IApplicationBuilder app)
{
    app.UseRouting();

    app.UseGrpcWeb(); // Must be added between UseRouting and UseEndpoints

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapGrpcService<GreeterService>().EnableGrpcWeb();
    });
}

By James Newton-King

Learn how to configure an existing ASP.NET Core gRPC service to be callable from browser apps, using the gRPC-

Web protocol. gRPC-Web allows browser JavaScript and Blazor apps to call gRPC services. It's not possible to call

an HTTP/2 gRPC service from a browser-based app. gRPC services hosted in ASP.NET Core can be configured to

support gRPC-Web alongside HTTP/2 gRPC.

For instructions on adding a gRPC service to an existing ASP.NET Core app, see Add gRPC services to an ASP.NET

Core app.

For instructions on creating a gRPC project, see Create a .NET Core gRPC client and server in ASP.NET Core.

There are two choices for how to add gRPC-Web to an ASP.NET Core app:

Support gRPC-Web alongside gRPC HTTP/2 in ASP.NET Core. This option uses middleware provided by the 

Grpc.AspNetCore.Web  package.

Use the Envoy proxy's gRPC-Web support to translate gRPC-Web to gRPC HTTP/2. The translated call is then

forwarded onto the ASP.NET Core app.

There are pros and cons to each approach. If an app's environment is already using Envoy as a proxy, it might

make sense to also use Envoy to provide gRPC-Web support. For a basic solution for gRPC-Web that only requires

ASP.NET Core, Grpc.AspNetCore.Web  is a good choice.

gRPC services hosted in ASP.NET Core can be configured to support gRPC-Web alongside HTTP/2 gRPC. gRPC-

Web does not require any changes to services. The only modification is startup configuration.

To enable gRPC-Web with an ASP.NET Core gRPC service:

Add a reference to the Grpc.AspNetCore.Web package.

Configure the app to use gRPC-Web by adding UseGrpcWeb  and EnableGrpcWeb  to Startup.cs:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/browser.md
https://twitter.com/jamesnk
https://github.com/grpc/grpc/blob/2a388793792cc80944334535b7c729494d209a7e/doc/PROTOCOL-WEB.md
https://www.envoyproxy.io/
https://www.nuget.org/packages/Grpc.AspNetCore.Web


public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddGrpc();
    }

    public void Configure(IApplicationBuilder app)
    {
        app.UseRouting();

        app.UseGrpcWeb(new GrpcWebOptions { DefaultEnabled = true });

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapGrpcService<GreeterService>();
        });
    }
}

NOTENOTE

gRPC-Web and CORSgRPC-Web and CORS

The preceding code:

Adds the gRPC-Web middleware, UseGrpcWeb , after routing and before endpoints.

Specifies the endpoints.MapGrpcService<GreeterService>()  method supports gRPC-Web with EnableGrpcWeb .

Alternatively, the gRPC-Web middleware can be configured so all services support gRPC-Web by default and 

EnableGrpcWeb  isn't required. Specify new GrpcWebOptions { DefaultEnabled = true }  when the middleware is

added.

There is a known issue that causes gRPC-Web to fail when hosted by Http.sys in .NET Core 3.x.

A workaround to get gRPC-Web working on Http.sys is available here.

Browser security prevents a web page from making requests to a different domain than the one that served the

web page. This restriction applies to making gRPC-Web calls with browser apps. For example, a browser app

served by https://www.contoso.com  is blocked from calling gRPC-Web services hosted on 

https://services.contoso.com . Cross Origin Resource Sharing (CORS) can be used to relax this restriction.

To allow a browser app to make cross-origin gRPC-Web calls, set up CORS in ASP.NET Core. Use the built-in CORS

support, and expose gRPC-specific headers with WithExposedHeaders.

https://github.com/grpc/grpc-dotnet/issues/853#issuecomment-610078202
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.withexposedheaders


public void ConfigureServices(IServiceCollection services)
{
    services.AddGrpc();

    services.AddCors(o => o.AddPolicy("AllowAll", builder =>
    {
        builder.AllowAnyOrigin()
               .AllowAnyMethod()
               .AllowAnyHeader()
               .WithExposedHeaders("Grpc-Status", "Grpc-Message", "Grpc-Encoding", "Grpc-Accept-Encoding");
    }));
}

public void Configure(IApplicationBuilder app)
{
    app.UseRouting();

    app.UseGrpcWeb();
    app.UseCors();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapGrpcService<GreeterService>().EnableGrpcWeb()
                                                  .RequireCors("AllowAll");
    });
}

gRPC-Web and streaminggRPC-Web and streaming

Call gRPC-Web from the browser

JavaScript gRPC-Web clientJavaScript gRPC-Web client

Configure gRPC-Web with the .NET gRPC clientConfigure gRPC-Web with the .NET gRPC client

The preceding code:

Calls AddCors  to add CORS services and configures a CORS policy that exposes gRPC-specific headers.

Calls UseCors  to add the CORS middleware after routing and before endpoints.

Specifies the endpoints.MapGrpcService<GreeterService>()  method supports CORS with RequiresCors .

Traditional gRPC over HTTP/2 supports streaming in all directions. gRPC-Web offers limited support for

streaming:

gRPC-Web browser clients don't support calling client streaming and bidirectional streaming methods.

ASP.NET Core gRPC services hosted on Azure App Service and IIS don't support bidirectional streaming.

When using gRPC-Web, we only recommend the use of unary methods and server streaming methods.

Browser apps can use gRPC-Web to call gRPC services. There are some requirements and limitations when calling

gRPC services with gRPC-Web from the browser :

The server must have been configured to support gRPC-Web.

Client streaming and bidirectional streaming calls aren't supported. Server streaming is supported.

Calling gRPC services on a different domain requires CORS to be configured on the server.

There is a JavaScript gRPC-Web client. For instructions on how to use gRPC-Web from JavaScript, see write

JavaScript client code with gRPC-Web.

The .NET gRPC client can be configured to make gRPC-Web calls. This is useful for Blazor WebAssembly apps,

which are hosted in the browser and have the same HTTP limitations of JavaScript code. Calling gRPC-Web with a

.NET client is the same as HTTP/2 gRPC. The only modification is how the channel is created.

https://github.com/grpc/grpc-web/tree/master/net/grpc/gateway/examples/helloworld#write-client-code


var channel = GrpcChannel.ForAddress("https://localhost:5001", new GrpcChannelOptions
    {
        HttpHandler = new GrpcWebHandler(new HttpClientHandler())
    });

var client = new Greeter.GreeterClient(channel);
var response = await client.SayHelloAsync(new HelloRequest { Name = ".NET" });

IMPORTANTIMPORTANT

Use gRPC client factory with gRPC-WebUse gRPC client factory with gRPC-Web

To use gRPC-Web:

Add a reference to the Grpc.Net.Client.Web package.

Ensure the reference to Grpc.Net.Client package is 2.29.0 or greater.

Configure the channel to use the GrpcWebHandler :

The preceding code:

Configures a channel to use gRPC-Web.

Creates a client and makes a call using the channel.

GrpcWebHandler  has the following configuration options:

InnerHandlerInnerHandler : The underlying HttpMessageHandler that makes the gRPC HTTP request, for example, 

HttpClientHandler .

GrpcWebModeGrpcWebMode: An enumeration type that specifies whether the gRPC HTTP request Content-Type  is 

application/grpc-web  or application/grpc-web-text .

HttpVersionHttpVersion: HTTP protocol Version  used to set HttpRequestMessage.Version on the underlying gRPC HTTP

request. gRPC-Web doesn't require a specific version and doesn't override the default unless specified.

GrpcWebMode.GrpcWeb  configures content to be sent without encoding. Default value.

GrpcWebMode.GrpcWebText  configures content to be base64 encoded. Required for server streaming calls

in browsers.

Generated gRPC clients have sync and async methods for calling unary methods. For example, SayHello  is sync and 

SayHelloAsync  is async. Calling a sync method in a Blazor WebAssembly app will cause the app to become unresponsive.

Async methods must always be used in Blazor WebAssembly.

A gRPC-Web compatible .NET client can be created using gRPC's integration with HttpClientFactory.

To use gRPC-Web with client factory:

Add package references to the project file for the following packages:

Register a gRPC client with dependency injection (DI) using the generic AddGrpcClient  extension method. In a

Blazor WebAssembly app, services are registered with DI in Program.cs .

Configure GrpcWebHandler  using the ConfigurePrimaryHttpMessageHandler extension method.

Grpc.Net.Client.Web

Grpc.Net.ClientFactory

https://www.nuget.org/packages/Grpc.Net.Client.Web
https://www.nuget.org/packages/Grpc.Net.Client
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestmessage.version#system_net_http_httprequestmessage_version
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.ihttpclientfactory
https://www.nuget.org/packages/Grpc.Net.Client.Web
https://www.nuget.org/packages/Grpc.Net.ClientFactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.configureprimaryhttpmessagehandler


builder.Services
    .AddGrpcClient<Greet.GreeterClient>((services, options) =>
    {
        options.Address = new Uri("https://localhost:5001");
    })
    .ConfigurePrimaryHttpMessageHandler(
        () => new GrpcWebHandler(GrpcWebMode.GrpcWebText, new HttpClientHandler()));

Additional resources

For more information, see gRPC client factory integration in .NET Core.

gRPC for Web Clients GitHub project

Enable Cross-Origin Requests (CORS) in ASP.NET Core

Create JSON Web APIs from gRPC

https://github.com/grpc/grpc-web


 

gRPC for .NET configuration
9/22/2020 • 4 minutes to read • Edit Online

Configure services options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

MaxSendMessageSize null The maximum message size in bytes
that can be sent from the server.
Attempting to send a message that
exceeds the configured maximum
message size results in an exception.
When set to null , the message size is

unlimited.

MaxReceiveMessageSize 4 MB The maximum message size in bytes
that can be received by the server. If the
server receives a message that exceeds
this limit, it throws an exception.
Increasing this value allows the server
to receive larger messages, but can
negatively impact memory
consumption. When set to null , the

message size is unlimited.

EnableDetailedErrors false If true , detailed exception messages

are returned to clients when an
exception is thrown in a service
method. The default is false . Setting 

EnableDetailedErrors  to true  can

leak sensitive information.

CompressionProviders gzip A collection of compression providers
used to compress and decompress
messages. Custom compression
providers can be created and added to
the collection. The default configured
providers support gzipgzip compression.

ResponseCompressionAlgorithm null The compression algorithm used to
compress messages sent from the
server. The algorithm must match a
compression provider in 
CompressionProviders . For the

algorithm to compress a response, the
client must indicate it supports the
algorithm by sending it in the grpc-grpc-
accept-encodingaccept-encoding header.

ResponseCompressionLevel null The compress level used to compress
messages sent from the server.

gRPC services are configured with AddGrpc  in Startup.cs. The following table describes options for configuring

gRPC services:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/configuration.md


  

Interceptors None A collection of interceptors that are run
with each gRPC call. Interceptors are
run in the order they are registered.
Globally configured interceptors are run
before interceptors configured for a
single service. For more information
about gRPC interceptors, see gRPC
Interceptors vs. Middleware.

IgnoreUnknownServices false If true , calls to unknown services and

methods don't return an
UNIMPLEMENTEDUNIMPLEMENTED status, and the
request passes to the next registered
middleware in ASP.NET Core.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

public void ConfigureServices(IServiceCollection services)
{
    services.AddGrpc(options =>
    {
        options.EnableDetailedErrors = true;
        options.MaxReceiveMessageSize = 2 * 1024 * 1024; // 2 MB
        options.MaxSendMessageSize = 5 * 1024 * 1024; // 5 MB
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddGrpc().AddServiceOptions<MyService>(options =>
    {
        options.MaxReceiveMessageSize = 2 * 1024 * 1024; // 2 MB
        options.MaxSendMessageSize = 5 * 1024 * 1024; // 5 MB
    });
}

Configure client options

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

Options can be configured for all services by providing an options delegate to the AddGrpc  call in 

Startup.ConfigureServices :

Options for a single service override the global options provided in AddGrpc  and can be configured using 

AddServiceOptions<TService> :

gRPC client configuration is set on GrpcChannelOptions . The following table describes options for configuring gRPC

channels:



HttpHandler New instance The HttpMessageHandler  used to

make gRPC calls. A client can be set to
configure a custom 
HttpClientHandler  or add additional

handlers to the HTTP pipeline for gRPC
calls. If no HttpMessageHandler  is

specified, a new HttpClientHandler

instance is created for the channel with
automatic disposal.

HttpClient null The HttpClient  used to make gRPC

calls. This setting is an alternative to 
HttpHandler .

DisposeHttpClient false If set to true  and an 

HttpMessageHandler  or HttpClient

is specified, then either the 
HttpHandler  or HttpClient ,

respectively, is disposed when the 
GrpcChannel  is disposed.

LoggerFactory null The LoggerFactory  used by the client

to log information about gRPC calls. A 
LoggerFactory  instance can be

resolved from dependency injection or
created using LoggerFactory.Create .

For examples of configuring logging,
see Logging and diagnostics in gRPC on
.NET.

MaxSendMessageSize null The maximum message size in bytes
that can be sent from the client.
Attempting to send a message that
exceeds the configured maximum
message size results in an exception.
When set to null , the message size is

unlimited.

MaxReceiveMessageSize 4 MB The maximum message size in bytes
that can be received by the client. If the
client receives a message that exceeds
this limit, it throws an exception.
Increasing this value allows the client to
receive larger messages, but can
negatively impact memory
consumption. When set to null , the

message size is unlimited.

Credentials null A ChannelCredentials  instance.

Credentials are used to add
authentication metadata to gRPC calls.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N



CompressionProviders gzip A collection of compression providers
used to compress and decompress
messages. Custom compression
providers can be created and added to
the collection. The default configured
providers support gzipgzip compression.

O P T IO NO P T IO N DEFA ULT  VA L UEDEFA ULT  VA L UE DESC RIP T IO NDESC RIP T IO N

static async Task Main(string[] args)
{
    var channel = GrpcChannel.ForAddress("https://localhost:5001", new GrpcChannelOptions
    {
        MaxReceiveMessageSize = 5 * 1024 * 1024, // 5 MB
        MaxSendMessageSize = 2 * 1024 * 1024 // 2 MB
    });
    var client = new Greeter.GreeterClient(channel);

    var reply = await client.SayHelloAsync(
                      new HelloRequest { Name = "GreeterClient" });
    Console.WriteLine("Greeting: " + reply.Message);
}

WARNINGWARNING

Additional resources

The following code:

Sets the maximum send and receive message size on the channel.

Creates a client.

ASP.NET Core gRPC is not currently supported on Azure App Service or IIS. The HTTP/2 implementation of Http.Sys does not

support HTTP response trailing headers which gRPC relies on. For more information, see this GitHub issue.

gRPC services with ASP.NET Core

Call gRPC services with the .NET client

Logging and diagnostics in gRPC on .NET

Create a .NET Core gRPC client and server in ASP.NET Core

https://github.com/dotnet/AspNetCore/issues/9020


Authentication and authorization in gRPC for
ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

Authenticate users calling a gRPC service

public void Configure(IApplicationBuilder app)
{
    app.UseRouting();
    
    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapGrpcService<GreeterService>();
    });
}

NOTENOTE

public override Task<BuyTicketsResponse> BuyTickets(
    BuyTicketsRequest request, ServerCallContext context)
{
    var user = context.GetHttpContext().User;

    // ... access data from ClaimsPrincipal ...
}

Bearer token authenticationBearer token authentication

By James Newton-King

View or download sample code (how to download)

gRPC can be used with ASP.NET Core authentication to associate a user with each call.

The following is an example of Startup.Configure  which uses gRPC and ASP.NET Core authentication:

The order in which you register the ASP.NET Core authentication middleware matters. Always call UseAuthentication  and 

UseAuthorization  after UseRouting  and before UseEndpoints .

The authentication mechanism your app uses during a call needs to be configured. Authentication configuration is

added in Startup.ConfigureServices  and will be different depending upon the authentication mechanism your app

uses. For examples of how to secure ASP.NET Core apps, see Authentication samples.

Once authentication has been setup, the user can be accessed in a gRPC service methods via the 

ServerCallContext .

The client can provide an access token for authentication. The server validates the token and uses it to identify the

user.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/authn-and-authz.md
https://twitter.com/jamesnk
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/grpc/authn-and-authz/sample/


    

public bool DoAuthenticatedCall(
    Ticketer.TicketerClient client, string token)
{
    var headers = new Metadata();
    headers.Add("Authorization", $"Bearer {token}");

    var request = new BuyTicketsRequest { Count = 1 };
    var response = await client.BuyTicketsAsync(request, headers);

    return response.Success;
}

private static GrpcChannel CreateAuthenticatedChannel(string address)
{
    var credentials = CallCredentials.FromInterceptor((context, metadata) =>
    {
        if (!string.IsNullOrEmpty(_token))
        {
            metadata.Add("Authorization", $"Bearer {_token}");
        }
        return Task.CompletedTask;
    });

    // SslCredentials is used here because this channel is using TLS.
    // CallCredentials can't be used with ChannelCredentials.Insecure on non-TLS channels.
    var channel = GrpcChannel.ForAddress(address, new GrpcChannelOptions
    {
        Credentials = ChannelCredentials.Create(new SslCredentials(), credentials)
    });
    return channel;
}

Client certificate authenticationClient certificate authentication

NOTENOTE

On the server, bearer token authentication is configured using the JWT Bearer middleware.

In the .NET gRPC client, the token can be sent with calls as a header :

Configuring ChannelCredentials  on a channel is an alternative way to send the token to the service with gRPC calls.

The credential is run each time a gRPC call is made, which avoids the need to write code in multiple places to pass

the token yourself.

The credential in the following example configures the channel to send the token with every gRPC call:

A client could alternatively provide a client certificate for authentication. Certificate authentication happens at the

TLS level, long before it ever gets to ASP.NET Core. When the request enters ASP.NET Core, the client certificate

authentication package allows you to resolve the certificate to a ClaimsPrincipal .

Configure the server to accept client certificates. For information on accepting client certificates in Kestrel, IIS, and Azure, see

Configure certificate authentication in ASP.NET Core.

In the .NET gRPC client, the client certificate is added to HttpClientHandler  that is then used to create the gRPC

client:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.jwtbearerextensions.addjwtbearer
https://tools.ietf.org/html/rfc5246#section-7.4.4


public Ticketer.TicketerClient CreateClientWithCert(
    string baseAddress,
    X509Certificate2 certificate)
{
    // Add client cert to the handler
    var handler = new HttpClientHandler();
    handler.ClientCertificates.Add(certificate);

    // Create the gRPC channel
    var channel = GrpcChannel.ForAddress(baseAddress, new GrpcChannelOptions
    {
        HttpHandler = handler
    });

    return new Ticketer.TicketerClient(channel);
}

Other authentication mechanismsOther authentication mechanisms

NOTENOTE

Authorize users to access services and service methods

[Authorize]
public class TicketerService : Ticketer.TicketerBase
{
}

Many ASP.NET Core supported authentication mechanisms work with gRPC:

Azure Active Directory

Client Certificate

IdentityServer

JWT Token

OAuth 2.0

OpenID Connect

WS-Federation

For more information on configuring authentication on the server, see ASP.NET Core authentication.

Configuring the gRPC client to use authentication will depend on the authentication mechanism you are using. The

previous bearer token and client certificate examples show a couple of ways the gRPC client can be configured to

send authentication metadata with gRPC calls:

Strongly typed gRPC clients use HttpClient  internally. Authentication can be configured on HttpClientHandler,

or by adding custom HttpMessageHandler instances to the HttpClient .

Each gRPC call has an optional CallOptions  argument. Custom headers can be sent using the option's headers

collection.

Windows Authentication (NTLM/Kerberos/Negotiate) can't be used with gRPC. gRPC requires HTTP/2, and HTTP/2 doesn't

support Windows Authentication.

By default, all methods in a service can be called by unauthenticated users. To require authentication, apply the 

[Authorize]  attribute to the service:

You can use the constructor arguments and properties of the [Authorize]  attribute to restrict access to only users

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclienthandler
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmessagehandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute


[Authorize("MyAuthorizationPolicy")]
public class TicketerService : Ticketer.TicketerBase
{
}

[Authorize]
public class TicketerService : Ticketer.TicketerBase
{
    public override Task<AvailableTicketsResponse> GetAvailableTickets(
        Empty request, ServerCallContext context)
    {
        // ... buy tickets for the current user ...
    }

    [Authorize("Administrators")]
    public override Task<BuyTicketsResponse> RefundTickets(
        BuyTicketsRequest request, ServerCallContext context)
    {
        // ... refund tickets (something only Administrators can do) ..
    }
}

Additional resources

matching specific authorization policies. For example, if you have a custom authorization policy called 

MyAuthorizationPolicy , ensure that only users matching that policy can access the service using the following code:

Individual service methods can have the [Authorize]  attribute applied as well. If the current user doesn't match the

policies applied to bothboth the method and the class, an error is returned to the caller :

Bearer Token authentication in ASP.NET Core

Configure Client Certificate authentication in ASP.NET Core

https://blogs.msdn.microsoft.com/webdev/2016/10/27/bearer-token-authentication-in-asp-net-core/


Logging and diagnostics in gRPC on .NET
9/22/2020 • 7 minutes to read • Edit Online

Logging

gRPC services logginggRPC services logging

WARNINGWARNING

{
  "Logging": {
    "LogLevel": {
      "Default": "Debug",
      "System": "Information",
      "Microsoft": "Information",
      "Grpc": "Debug"
    }
  }
}

By James Newton-King

This article provides guidance for gathering diagnostics from a gRPC app to help troubleshoot issues. Topics

covered include:

LoggingLogging - Structured logs written to .NET Core logging. ILogger is used by app frameworks to write logs, and

by users for their own logging in an app.

TracingTracing - Events related to an operation written using DiaganosticSource  and Activity . Traces from diagnostic

source are commonly used to collect app telemetry by libraries such as Application Insights and OpenTelemetry.

Metr icsMetr ics  - Representation of data measures over intervals of time, for example, requests per second. Metrics are

emitted using EventCounter  and can be observed using dotnet-counters command line tool or with Application

Insights.

gRPC services and the gRPC client write logs using .NET Core logging. Logs are a good place to start when you

need to debug unexpected behavior in your apps.

Server-side logs may contain sensitive information from your app. NeverNever  post raw logs from production apps to public

forums like GitHub.

Since gRPC services are hosted on ASP.NET Core, it uses the ASP.NET Core logging system. In the default

configuration, gRPC logs very little information, but this can configured. See the documentation on ASP.NET Core

logging for details on configuring ASP.NET Core logging.

gRPC adds logs under the Grpc  category. To enable detailed logs from gRPC, configure the Grpc  prefixes to the 

Debug  level in your appsettings.json file by adding the following items to the LogLevel  sub-section in Logging :

You can also configure this in Startup.cs with ConfigureLogging :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/diagnostics.md
https://twitter.com/jamesnk
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core
https://github.com/open-telemetry/opentelemetry-dotnet
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/azure/azure-monitor/app/eventcounters


    

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureLogging(logging =>
        {
            logging.AddFilter("Grpc", LogLevel.Debug);
        })
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseStartup<Startup>();
        });

Sample logging outputSample logging output

info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
      Request starting HTTP/2 POST https://localhost:5001/Greet.Greeter/SayHello application/grpc
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
      Executing endpoint 'gRPC - /Greet.Greeter/SayHello'
dbug: Grpc.AspNetCore.Server.ServerCallHandler[1]
      Reading message.
info: GrpcService.GreeterService[0]
      Hello World
dbug: Grpc.AspNetCore.Server.ServerCallHandler[6]
      Sending message.
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
      Executed endpoint 'gRPC - /Greet.Greeter/SayHello'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
      Request finished in 1.4113ms 200 application/grpc

Access server-side logsAccess server-side logs

As a console appAs a console app

Other environmentsOther environments

gRPC client logginggRPC client logging

WARNINGWARNING

If you aren't using JSON-based configuration, set the following configuration value in your configuration system:

Logging:LogLevel:Grpc  = Debug

Check the documentation for your configuration system to determine how to specify nested configuration values.

For example, when using environment variables, two _  characters are used instead of the :  (for example, 

Logging__LogLevel__Grpc ).

We recommend using the Debug  level when gathering more detailed diagnostics for your app. The Trace  level

produces very low-level diagnostics and is rarely needed to diagnose issues in your app.

Here is an example of console output at the Debug  level of a gRPC service:

How you access server-side logs depends on the environment in which you're running.

If you're running in a console app, the Console logger should be enabled by default. gRPC logs will appear in the

console.

If the app is deployed to another environment (for example, Docker, Kubernetes, or Windows Service), see Logging

in .NET Core and ASP.NET Core for more information on how to configure logging providers suitable for the

environment.

Client-side logs may contain sensitive information from your app. NeverNever  post raw logs from production apps to public

forums like GitHub.



[ApiController]
[Route("[controller]")]
public class GreetingController : ControllerBase
{
    private ILoggerFactory _loggerFactory;

    public GreetingController(ILoggerFactory loggerFactory)
    {
        _loggerFactory = loggerFactory;
    }

    [HttpGet]
    public async Task<ActionResult<string>> Get(string name)
    {
        var channel = GrpcChannel.ForAddress("https://localhost:5001",
            new GrpcChannelOptions { LoggerFactory = _loggerFactory });
        var client = new Greeter.GreeterClient(channel);

        var reply = await client.SayHelloAsync(new HelloRequest { Name = name });
        return Ok(reply.Message);
    }
}

var loggerFactory = LoggerFactory.Create(logging =>
{
    logging.AddConsole();
    logging.SetMinimumLevel(LogLevel.Debug);
});

var channel = GrpcChannel.ForAddress("https://localhost:5001",
    new GrpcChannelOptions { LoggerFactory = loggerFactory });

var client = Greeter.GreeterClient(channel);

gRPC client log scopesgRPC client log scopes

Sample logging outputSample logging output

To get logs from the .NET client, you can set the GrpcChannelOptions.LoggerFactory  property when the client's

channel is created. If you are calling a gRPC service from an ASP.NET Core app then the logger factory can be

resolved from dependency injection (DI):

An alternative way to enable client logging is to use the gRPC client factory to create the client. A gRPC client

registered with the client factory and resolved from DI will automatically use the app's configured logging.

If your app isn't using DI then you can create a new ILoggerFactory  instance with LoggerFactory.Create. To access

this method add the Microsoft.Extensions.Logging package to your app.

The gRPC client adds a logging scope to logs made during a gRPC call. The scope has metadata related to the gRPC

call:

GrpcMethodTypeGrpcMethodType - The gRPC method type. Possible values are names from Grpc.Core.MethodType  enum, e.g.

Unary

GrpcUriGrpcUri  - The relative URI of the gRPC method, e.g. /greet.Greeter/SayHellos

Here is an example of console output at the Debug  level of a gRPC client:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerfactory.create
https://www.nuget.org/packages/microsoft.extensions.logging/


dbug: Grpc.Net.Client.Internal.GrpcCall[1]
      Starting gRPC call. Method type: 'Unary', URI: 'https://localhost:5001/Greet.Greeter/SayHello'.
dbug: Grpc.Net.Client.Internal.GrpcCall[6]
      Sending message.
dbug: Grpc.Net.Client.Internal.GrpcCall[1]
      Reading message.
dbug: Grpc.Net.Client.Internal.GrpcCall[4]
      Finished gRPC call.

Tracing

gRPC service tracinggRPC service tracing

gRPC client tracinggRPC client tracing

Collecting tracingCollecting tracing

NOTENOTE

Metrics

gRPC services and the gRPC client provide information about gRPC calls using DiagnosticSource and Activity.

.NET gRPC uses an activity to represent a gRPC call.

Tracing events are written to the diagnostic source at the start and stop of the gRPC call activity.

Tracing doesn't capture information about when messages are sent over the lifetime of gRPC streaming calls.

gRPC services are hosted on ASP.NET Core which reports events about incoming HTTP requests. gRPC specific

metadata is added to the existing HTTP request diagnostics that ASP.NET Core provides.

Diagnostic source name is Microsoft.AspNetCore .

Activity name is Microsoft.AspNetCore.Hosting.HttpRequestIn .

Name of the gRPC method invoked by the gRPC call is added as a tag with the name grpc.method .

Status code of the gRPC call when it is complete is added as a tag with the name grpc.status_code .

The .NET gRPC client uses HttpClient  to make gRPC calls. Although HttpClient  writes diagnostic events, the .NET

gRPC client provides a custom diagnostic source, activity and events so that complete information about a gRPC

call can be collected.

Diagnostic source name is Grpc.Net.Client .

Activity name is Grpc.Net.Client.GrpcOut .

Name of the gRPC method invoked by the gRPC call is added as a tag with the name grpc.method .

Status code of the gRPC call when it is complete is added as a tag with the name grpc.status_code .

The easiest way to use DiagnosticSource  is to configure a telemetry library such as Application Insights or

OpenTelemetry in your app. The library will process information about gRPC calls along-side other app telemetry.

Tracing can be viewed in a managed service like Application Insights, or you can choose to run your own

distributed tracing system. OpenTelemetry supports exporting tracing data to Jaeger and Zipkin.

DiagnosticSource  can consume tracing events in code using DiagnosticListener . For information about listening

to a diagnostic source with code, see the DiagnosticSource user's guide.

Telemetry libraries do not capture gRPC specific Grpc.Net.Client.GrpcOut  telemetry currently. Work to improve telemetry

libraries capturing this tracing is ongoing.

Metrics is a representation of data measures over intervals of time, for example, requests per second. Metrics data

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.diagnosticsource
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.activity
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core
https://github.com/open-telemetry/opentelemetry-dotnet
https://www.jaegertracing.io/
https://zipkin.io/
https://github.com/dotnet/corefx/blob/d3942d4671919edb0cca6ddc1840190f524a809d/src/System.Diagnostics.DiagnosticSource/src/DiagnosticSourceUsersGuide.md#consuming-data-with-diagnosticlistener


gRPC service metricsgRPC service metrics

N A M EN A M E DESC RIP T IO NDESC RIP T IO N

total-calls Total Calls

current-calls Current Calls

calls-failed Total Calls Failed

calls-deadline-exceeded Total Calls Deadline Exceeded

messages-sent Total Messages Sent

messages-received Total Messages Received

calls-unimplemented Total Calls Unimplemented

gRPC client metricsgRPC client metrics

N A M EN A M E DESC RIP T IO NDESC RIP T IO N

total-calls Total Calls

current-calls Current Calls

calls-failed Total Calls Failed

calls-deadline-exceeded Total Calls Deadline Exceeded

messages-sent Total Messages Sent

messages-received Total Messages Received

Observe metricsObserve metrics

allows observation of the state of an app at a high-level. .NET gRPC metrics are emitted using EventCounter .

gRPC server metrics are reported on Grpc.AspNetCore.Server  event source.

ASP.NET Core also provides its own metrics on Microsoft.AspNetCore.Hosting  event source.

gRPC client metrics are reported on Grpc.Net.Client  event source.

dotnet-counters is a performance monitoring tool for ad-hoc health monitoring and first-level performance

investigation. Monitor a .NET app with either Grpc.AspNetCore.Server  or Grpc.Net.Client  as the provider name.

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters


> dotnet-counters monitor --process-id 1902 Grpc.AspNetCore.Server

Press p to pause, r to resume, q to quit.
    Status: Running
[Grpc.AspNetCore.Server]
    Total Calls                                 300
    Current Calls                               5
    Total Calls Failed                          0
    Total Calls Deadline Exceeded               0
    Total Messages Sent                         295
    Total Messages Received                     300
    Total Calls Unimplemented                   0

    using Microsoft.ApplicationInsights.Extensibility.EventCounterCollector;

    public void ConfigureServices(IServiceCollection services)
    {
        //... other code...

        services.ConfigureTelemetryModule<EventCounterCollectionModule>(
            (module, o) =>
            {
                // Configure App Insights to collect gRPC counters gRPC services hosted in an ASP.NET Core app
                module.Counters.Add(new EventCounterCollectionRequest("Grpc.AspNetCore.Server", "current-
calls"));
                module.Counters.Add(new EventCounterCollectionRequest("Grpc.AspNetCore.Server", "total-
calls"));
                module.Counters.Add(new EventCounterCollectionRequest("Grpc.AspNetCore.Server", "calls-
failed"));
            }
        );
    }

Additional resources

Another way to observe gRPC metrics is to capture counter data using Application Insights's

Microsoft.ApplicationInsights.EventCounterCollector package. Once setup, Application Insights collects common

.NET counters at runtime. gRPC's counters are not collected by default, but App Insights can be customized to

include additional counters.

Specify the gRPC counters for Application Insight to collect in Startup.cs:

Logging in .NET Core and ASP.NET Core

gRPC for .NET configuration

gRPC client factory integration in .NET Core

https://docs.microsoft.com/en-us/azure/azure-monitor/app/eventcounters
https://docs.microsoft.com/en-us/azure/azure-monitor/app/eventcounters#customizing-counters-to-be-collected


 

Security considerations in gRPC for ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Transport security

Exceptions

Message size limits

public void ConfigureServices(IServiceCollection services)
{
    services.AddGrpc(options =>
    {
        options.MaxReceiveMessageSize = 1 * 1024 * 1024; // 1 MB
        options.MaxSendMessageSize = 1 * 1024 * 1024; // 1 MB
    });
}

Client certificate validation

By James Newton-King

This article provides information on securing gRPC with .NET Core.

gRPC messages are sent and received using HTTP/2. We recommend:

Transport Layer Security (TLS) be used to secure messages in production gRPC apps.

gRPC services should only listen and respond over secured ports.

TLS is configured in Kestrel. For more information on configuring Kestrel endpoints, see Kestrel endpoint

configuration.

Exception messages are generally considered sensitive data that shouldn't be revealed to a client. By default, gRPC

doesn't send the details of an exception thrown by a gRPC service to the client. Instead, the client receives a generic

message indicating an error occurred. Exception message delivery to the client can be overridden (for example, in

development or test) with EnableDetailedErrors. Exception messages shouldn't be exposed to the client in

production apps.

Incoming messages to gRPC clients and services are loaded into memory. Message size limits are a mechanism to

help prevent gRPC from consuming excessive resources.

gRPC uses per-message size limits to manage incoming and outgoing messages. By default, gRPC limits incoming

messages to 4 MB. There is no limit on outgoing messages.

On the server, gRPC message limits can be configured for all services in an app with AddGrpc :

Limits can also be configured for an individual service using AddServiceOptions<TService> . For more information

on configuring message size limits, see gRPC configuration.

Client certificates are initially validated when the connection is established. By default, Kestrel doesn't perform

additional validation of a connection's client certificate.

We recommend that gRPC services secured by client certificates use the

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/security.md
https://twitter.com/jamesnk
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246#section-7.4.4


Microsoft.AspNetCore.Authentication.Certificate package. ASP.NET Core certification authentication will perform

additional validation on a client certificate, including:

Certificate has a valid extended key use (EKU)

Is within its validity period

Check certificate revocation



Performance best practices with gRPC
9/22/2020 • 6 minutes to read • Edit Online

Reuse gRPC channels

Connection concurrency

By James Newton-King

gRPC is designed for high-performance services. This document explains how to get the best performance possible

from gRPC.

A gRPC channel should be reused when making gRPC calls. Reusing a channel allows calls to be multiplexed

through an existing HTTP/2 connection.

If a new channel is created for each gRPC call then the amount of time it takes to complete can increase

significantly. Each call will require multiple network round-trips between the client and the server to create a new

HTTP/2 connection:

1. Opening a socket

2. Establishing TCP connection

3. Negotiating TLS

4. Starting HTTP/2 connection

5. Making the gRPC call

Channels are safe to share and reuse between gRPC calls:

gRPC clients are created with channels. gRPC clients are lightweight objects and don't need to be cached or

reused.

Multiple gRPC clients can be created from a channel, including different types of clients.

A channel and clients created from the channel can safely be used by multiple threads.

Clients created from the channel can make multiple simultaneous calls.

gRPC client factory offers a centralized way to configure channels. It automatically reuses underlying channels. For

more information, see gRPC client factory integration in .NET Core.

HTTP/2 connections typically have a limit on the number of maximum concurrent streams (active HTTP requests)

on a connection at one time. By default, most servers set this limit to 100 concurrent streams.

A gRPC channel uses a single HTTP/2 connection, and concurrent calls are multiplexed on that connection. When

the number of active calls reaches the connection stream limit, additional calls are queued in the client. Queued

calls wait for active calls to complete before they are sent. Applications with high load, or long running streaming

gRPC calls, could see performance issues caused by calls queuing because of this limit.

.NET 5 introduces the SocketsHttpHandler.EnableMultipleHttp2Connections  property. When set to true , additional

HTTP/2 connections are created by a channel when the concurrent stream limit is reached. When a GrpcChannel  is

created its internal SocketsHttpHandler  is automatically configured to create additional HTTP/2 connections. If an

app configures its own handler, consider setting EnableMultipleHttp2Connections  to true :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/performance.md
https://twitter.com/jamesnk
https://http2.github.io/http2-spec/#rfc.section.5.1.2


var channel = GrpcChannel.ForAddress("https://localhost", new GrpcChannelOptions
{
    HttpHandler = new SocketsHttpHandler
    {
        EnableMultipleHttp2Connections = true,

        // ...configure other handler settings
    }
});

IMPORTANTIMPORTANT

Load balancing

NOTENOTE

Client-side load balancingClient-side load balancing

There are a couple of workarounds for .NET Core 3.1 apps:

Create separate gRPC channels for areas of the app with high load. For example, the Logger  gRPC service

might have a high load. Use a separate channel to create the LoggerClient  in the app.

Use a pool of gRPC channels, for example, create a list of gRPC channels. Random  is used to pick a channel from

the list each time a gRPC channel is needed. Using Random  randomly distributes calls over multiple connections.

Increasing the maximum concurrent stream limit on the server is another way to solve this problem. In Kestrel this is

configured with MaxStreamsPerConnection.

Increasing the maximum concurrent stream limit is not recommended. Too many streams on a single HTTP/2 connection

introduces new performance issues:

Thread contention between streams trying to write to the connection.

Connection packet loss causes all calls to be blocked at the TCP layer.

Some load balancers don't work effectively with gRPC. L4 (transport) load balancers operate at a connection level,

by distributing TCP connections across endpoints. This approach works well for loading balancing API calls made

with HTTP/1.1. Concurrent calls made with HTTP/1.1 are sent on different connections, allowing calls to be load

balanced across endpoints.

Because L4 load balancers operate at a connection level, they don't work well with gRPC. gRPC uses HTTP/2, which

multiplexes multiple calls on a single TCP connection. All gRPC calls over that connection go to one endpoint.

There are two options to effectively load balance gRPC:

Client-side load balancing

L7 (application) proxy load balancing

Only gRPC calls can be load balanced between endpoints. Once a streaming gRPC call is established, all messages sent over

the stream go to one endpoint.

With client-side load balancing, the client knows about endpoints. For each gRPC call it selects a different endpoint

to send the call to. Client-side load balancing is a good choice when latency is important. There is no proxy between

the client and the service so the call is sent to the service directly. The downside to client-side load balancing is that

each client must keep track of available endpoints it should use.

Lookaside client load balancing is a technique where load balancing state is stored in a central location. Clients

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.http2limits.maxstreamsperconnection#microsoft_aspnetcore_server_kestrel_core_http2limits_maxstreamsperconnection


Proxy load balancingProxy load balancing

Inter-process communication

Keep alive pings

var handler = new SocketsHttpHandler
{
    PooledConnectionIdleTimeout = Timeout.InfiniteTimeSpan,
    KeepAlivePingDelay = TimeSpan.FromSeconds(60),
    KeepAlivePingTimeout = TimeSpan.FromSeconds(30),
    EnableMultipleHttp2Connections = true
};

var channel = GrpcChannel.ForAddress("https://localhost:5001", new GrpcChannelOptions
{
    HttpHandler = handler
});

Streaming

periodically query the central location for information to use when making load balancing decisions.

Grpc.Net.Client  currently doesn't support client-side load balancing. Grpc.Core is a good choice if client-side load

balancing is required in .NET.

An L7 (application) proxy works at a higher level than an L4 (transport) proxy. L7 proxies understand HTTP/2, and

are able to distribute gRPC calls multiplexed to the proxy on one HTTP/2 connection across multiple endpoints.

Using a proxy is simpler than client-side load balancing, but can add extra latency to gRPC calls.

There are many L7 proxies available. Some options are:

Envoy - A popular open source proxy.

Linkerd - Service mesh for Kubernetes.

YARP: A Reverse Proxy - A preview open source proxy written in .NET.

gRPC calls between a client and service are usually sent over TCP sockets. TCP is great for communicating across a

network, but inter-process communication (IPC) is more efficient when the client and service are on the same

machine.

Consider using a transport like Unix domain sockets or named pipes for gRPC calls between processes on the same

machine. For more information, see Inter-process communication with gRPC.

Keep alive pings can be used to keep HTTP/2 connections alive during periods of inactivity. Having an existing

HTTP/2 connection ready when an app resumes activity allows for the initial gRPC calls to be made quickly, without

a delay caused by the connection being reestablished.

Keep alive pings are configured on SocketsHttpHandler:

The preceding code configures a channel that sends a keep alive ping to the server every 60 seconds during

periods of inactivity. The ping ensures the server and any proxies in use won't close the connection because of

inactivity.

gRPC bidirectional streaming can be used to replace unary gRPC calls in high-performance scenarios. Once a

bidirectional stream has started, streaming messages back and forth is faster than sending messages with multiple

unary gRPC calls. Streamed messages are sent as data on an existing HTTP/2 request and eliminates the overhead

of creating a new HTTP/2 request for each unary call.

https://www.nuget.org/packages/Grpc.Core
https://www.envoyproxy.io/
https://linkerd.io/
https://microsoft.github.io/reverse-proxy/
https://wikipedia.org/wiki/Inter-process_communication
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.socketshttphandler


public override async Task SayHello(IAsyncStreamReader<HelloRequest> requestStream,
    IServerStreamWriter<HelloReply> responseStream, ServerCallContext context)
{
    await foreach (var request in requestStream.ReadAllAsync())
    {
        var helloReply = new HelloReply { Message = "Hello " + request.Name };

        await responseStream.WriteAsync(helloReply);
    }
}

var client = new Greet.GreeterClient(channel);
using var call = client.SayHello();

Console.WriteLine("Type a name then press enter.");
while (true)
{
    var text = Console.ReadLine();

    // Send and receive messages over the stream
    await call.RequestStream.WriteAsync(new HelloRequest { Name = text });
    await call.ResponseStream.MoveNext();

    Console.WriteLine($"Greeting: {call.ResponseStream.Current.Message}");
}

Example service:

Example client:

Replacing unary calls with bidirectional streaming for performance reasons is an advanced technique and is not

appropriate in many situations.

Using streaming calls is a good choice when:

1. High throughput or low latency is required.

2. gRPC and HTTP/2 are identified as a performance bottleneck.

3. A worker in the client is sending or receiving regular messages with a gRPC service.

Be aware of the additional complexity and limitations of using streaming calls instead of unary:

1. A stream can be interrupted by a service or connection error. Logic is required to restart stream if there is an

error.

2. RequestStream.WriteAsync  is not safe for multi-threading. Only one message can be written to a stream at a

time. Sending messages from multiple threads over a single stream requires a producer/consumer queue like

Channel<T> to marshall messages.

3. A gRPC streaming method is limited to receiving one type of message and sending one type of message. For

example, rpc StreamingCall(stream RequestMessage) returns (stream ResponseMessage)  receives RequestMessage

and sends ResponseMessage . Protobuf's support for unknown or conditional messages using Any  and oneof

can work around this limitation.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.channels.channel-1


Inter-process communication with gRPC
9/22/2020 • 2 minutes to read • Edit Online

Server configuration

public static readonly string SocketPath = Path.Combine(Path.GetTempPath(), "socket.tmp");

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseStartup<Startup>();
            webBuilder.ConfigureKestrel(options =>
            {
                if (File.Exists(SocketPath))
                {
                    File.Delete(SocketPath);
                }
                options.ListenUnixSocket(SocketPath);
            });
        });

Client configuration

IMPORTANTIMPORTANT

By James Newton-King

gRPC calls between a client and service are usually sent over TCP sockets. TCP was designed for communicating

across a network. Inter-process communication (IPC) is more efficient than TCP when the client and service are on

the same machine. This document explains how to use gRPC with custom transports in IPC scenarios.

Custom transports are supported by Kestrel. Kestrel is configured in Program.cs:

The preceding example:

Configures Kestrel's endpoints in ConfigureKestrel .

Calls ListenUnixSocket to listen to a Unix domain socket (UDS) with the specified path.

Kestrel has built-in support for UDS endpoints. UDS are supported on Linux, macOS and modern versions of

Windows.

GrpcChannel  supports making gRPC calls over custom transports. When a channel is created, it can be configured

with a SocketsHttpHandler  that has a custom ConnectCallback . The callback allows the client to make connections

over custom transports and then send HTTP requests over that transport.

SocketsHttpHandler.ConnectCallback  is a new API in .NET 5 release candidate 2.

Unix domain sockets connection factory example:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/interprocess.md
https://twitter.com/jamesnk
https://wikipedia.org/wiki/Inter-process_communication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket
https://wikipedia.org/wiki/Unix_domain_socket
https://devblogs.microsoft.com/commandline/af_unix-comes-to-windows/


public class UnixDomainSocketConnectionFactory
{
    private readonly EndPoint _endPoint;

    public UnixDomainSocketConnectionFactory(EndPoint endPoint)
    {
        _endPoint = endPoint;
    }

    public async ValueTask<Stream> ConnectAsync(SocketsHttpConnectionContext _,
        CancellationToken cancellationToken = default)
    {
        var socket = new Socket(AddressFamily.Unix, SocketType.Stream, ProtocolType.Unspecified);

        try
        {
            await socket.ConnectAsync(_endPoint, cancellationToken).ConfigureAwait(false);
            return new NetworkStream(socket, true);
        }
        catch
        {
            socket.Dispose();
            throw;
        }
    }
}

public static readonly string SocketPath = Path.Combine(Path.GetTempPath(), "socket.tmp");

public static GrpcChannel CreateChannel()
{
    var udsEndPoint = new UnixDomainSocketEndPoint(SocketPath);
    var connectionFactory = new UnixDomainSocketConnectionFactory(udsEndPoint);
    var socketsHttpHandler = new SocketsHttpHandler
    {
        ConnectCallback = connectionFactory.ConnectAsync
    };

    return GrpcChannel.ForAddress("http://localhost", new GrpcChannelOptions
    {
        HttpHandler = socketsHttpHandler
    });
}

Using the custom connection factory to create a channel:

Channels created using the preceding code send gRPC calls over Unix domain sockets. Support for other IPC

technologies can be implemented using the extensibility in Kestrel and SocketsHttpHandler .



Create JSON Web APIs from gRPC
9/22/2020 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

gRPC HTTP API

UsageUsage

By James Newton-King

gRPC HTTP API is an experimental project, not a committed product. We want to:

Test that our approach to creating JSON Web APIs for gRPC services works.

Get feedback on if this approach is useful to .NET developers.

Please leave feedback to ensure we build something that developers like and are productive with.

gRPC is a modern way to communicate between apps. gRPC uses HTTP/2, streaming, Protobuf and message

contracts to create high-performance, real-time services.

One limitation with gRPC is not every platform can use it. Browsers don't fully support HTTP/2, making REST and

JSON the primary way to get data into browser apps. Even with the benefits that gRPC brings, REST and JSON

have an important place in modern apps. Building gRPC andand JSON Web APIs adds unwanted overhead to app

development.

This document discusses how to create JSON Web APIs using gRPC services.

gRPC HTTP API is an experimental extension for ASP.NET Core that creates RESTful JSON APIs for gRPC services.

Once configured, gRPC HTTP API allows apps to call gRPC services with familiar HTTP concepts:

HTTP verbs

URL parameter binding

JSON requests/responses

gRPC can still be used to call services.

1. Add a package reference to Microsoft.AspNetCore.Grpc.HttpApi.

2. Register services in Startup.cs with AddGrpcHttpApi .

3. Add google/api/http.proto and google/api/annotations.proto files to your project.

4. Annotate gRPC methods in your .proto files with HTTP bindings and routes:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/httpapi.md
https://twitter.com/jamesnk
https://github.com/grpc/grpc-dotnet/issues/167
https://www.nuget.org/packages/Microsoft.AspNetCore.Grpc.HttpApi
https://github.com/aspnet/AspLabs/blob/c1e59cacf7b9606650d6ec38e54fa3a82377f360/src/GrpcHttpApi/sample/Proto/google/api/http.proto
https://github.com/aspnet/AspLabs/blob/c1e59cacf7b9606650d6ec38e54fa3a82377f360/src/GrpcHttpApi/sample/Proto/google/api/annotations.proto


syntax = "proto3";

import "google/api/annotations.proto";

package greet;

service Greeter {
  rpc SayHello (HelloRequest) returns (HelloReply) {
    option (google.api.http) = {
      get: "v1/greeter/{name}"
    };
  }
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string message = 1;
}

info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
      Request starting HTTP/1.1 GET https://localhost:5001/v1/greeter/world
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
      Executing endpoint 'gRPC - v1/greeter/{name}'
info: Server.GreeterService[0]
      Sending hello to world
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
      Executed endpoint 'gRPC - v1/greeter/{name}'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
      Request finished in 1.996ms 200 application/json

gRPC HTTP API vs gRPC-WebgRPC HTTP API vs gRPC-Web

The SayHello  gRPC method can now be invoked as gRPC+Protobuf and as an HTTP API:

Request: HTTP/1.1 GET /v1/greeter/world

Response: { "message": "Hello world" }

Server logs show that the HTTP call is executed by a gRPC service. gRPC HTTP API maps the incoming HTTP

request to a gRPC message, and then converts the response message to JSON.

This is a basic example. See HttpRule for more customization options.

Both gRPC HTTP API and gRPC-Web allow gRPC services to be called from a browser. However, the way each does

this is different:

gRPC-Web lets browser apps call gRPC services from the browser with the gRPC-Web client and Protobuf.

gRPC-Web requires the browser app generate a gRPC client, and has the advantage of sending small, fast

Protobuf messages.

gRPC HTTP API allows browser apps to call gRPC services as if they were RESTful APIs with JSON. The browser

app doesn't need to generate a gRPC client or know anything about gRPC.

No generated client is created for gRPC HTTP API. The previous Greeter  service can be called using browser

JavaScript APIs:

https://cloud.google.com/service-infrastructure/docs/service-management/reference/rpc/google.api#google.api.HttpRule


var name = nameInput.value;

fetch("/v1/greeter/" + name).then(function (response) {
  response.json().then(function (data) {
    console.log("Result: " + data.message);
  });
});

Experimental statusExperimental status

grpc-gateway

Additional resources

gRPC HTTP API is an experiment. It is not complete and it is not supported. We're interested in this technology, and

the ability it gives app developers to quickly create gRPC and JSON services at the same time. There is no

commitment to completing the gRPC HTTP API.

We want to gauge developer interest in gRPC HTTP API. If gRPC HTTP API is interesting to you then please give

feedback.

grpc-gateway is another technology for creating RESTful JSON APIs from gRPC services. It uses the same .proto

annotations to map HTTP concepts to gRPC services.

The biggest difference between grpc-gateway and gRPC HTTP API is grpc-gateway uses code generation to create

a reverse-proxy server. The reverse-proxy translates RESTful calls into gRPC and then sends them on to the gRPC

service.

For installation and usage of grpc-gateway, see the grpc-gateway documentation.

google.api.HttpRule documentation

Use gRPC in browser apps

https://github.com/grpc/grpc-dotnet/issues/167
https://grpc-ecosystem.github.io/grpc-gateway/
https://grpc-ecosystem.github.io/grpc-gateway/docs/usage.html
https://cloud.google.com/service-infrastructure/docs/service-management/reference/rpc/google.api#google.api.HttpRule


Manage Protobuf references with dotnet-grpc
9/22/2020 • 4 minutes to read • Edit Online

Installation

dotnet tool install -g dotnet-grpc

Add references

<Protobuf Include="Protos\greet.proto" GrpcServices="Server" />

Add fileAdd file

UsageUsage

dotnet grpc add-file [options] <files>...

ArgumentsArguments

A RGUM EN TA RGUM EN T DESC RIP T IO NDESC RIP T IO N

files The protobuf file references. These can be a path to glob for
local protobuf files.

By John Luo

dotnet-grpc  is a .NET Core Global Tool for managing Protobuf (.proto) references within a .NET gRPC project. The

tool can be used to add, refresh, remove, and list Protobuf references.

To install the dotnet-grpc  .NET Core Global Tool, run the following command:

dotnet-grpc  can be used to add Protobuf references as <Protobuf />  items to the .csproj file:

The Protobuf references are used to generate the C# client and/or server assets. The dotnet-grpc  tool can:

Create a Protobuf reference from local files on disk.

Create a Protobuf reference from a remote file specified by a URL.

Ensure the correct gRPC package dependencies are added to the project.

For example, the Grpc.AspNetCore  package is added to a web app. Grpc.AspNetCore  contains gRPC server and

client libraries and tooling support. Alternatively, the Grpc.Net.Client , Grpc.Tools  and Google.Protobuf  packages,

which contain only the gRPC client libraries and tooling support, are added to a Console app.

The add-file  command is used to add local files on disk as Protobuf references. The file paths provided:

Can be relative to the current directory or absolute paths.

May contain wild cards for pattern-based file globbing.

If any files are outside the project directory, a Link  element is added to display the file under the folder Protos  in

Visual Studio.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/dotnet-grpc.md
https://github.com/juntaoluo
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools
https://wikipedia.org/wiki/Glob_(programming)


OptionsOptions

SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N

-p --project The path to the project file to operate
on. If a file is not specified, the
command searches the current
directory for one.

-s --services The type of gRPC services that should
be generated. If Default  is specified, 

Both  is used for Web projects and 

Client  is used for non-Web projects.

Accepted values are Both , Client , 

Default , None , Server .

-i --additional-import-dirs Additional directories to be used when
resolving imports for the protobuf files.
This is a semicolon separated list of
paths.

--access The access modifier to use for the
generated C# classes. The default value
is Public . Accepted values are 

Internal  and Public .

Add URLAdd URL

UsageUsage

dotnet-grpc add-url [options] <url>

ArgumentsArguments

A RGUM EN TA RGUM EN T DESC RIP T IO NDESC RIP T IO N

url The URL to a remote protobuf file.

OptionsOptions

SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N

-o --output Specifies the download path for the
remote protobuf file. This is a required
option.

-p --project The path to the project file to operate
on. If a file is not specified, the
command searches the current
directory for one.

The add-url  command is used to add a remote file specified by an source URL as Protobuf reference. A file path

must be provided to specify where to download the remote file. The file path can be relative to the current

directory or an absolute path. If the file path is outside the project directory, a Link  element is added to display the

file under the virtual folder Protos  in Visual Studio.



-s --services The type of gRPC services that should
be generated. If Default  is specified, 

Both  is used for Web projects and 

Client  is used for non-Web projects.

Accepted values are Both , Client , 

Default , None , Server .

-i --additional-import-dirs Additional directories to be used when
resolving imports for the protobuf files.
This is a semicolon separated list of
paths.

--access The access modifier to use for the
generated C# classes. Default value is 
Public . Accepted values are 

Internal  and Public .

SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N

Remove

UsageUsage

dotnet-grpc remove [options] <references>...

ArgumentsArguments

A RGUM EN TA RGUM EN T DESC RIP T IO NDESC RIP T IO N

references The URLs or file paths of the protobuf references to remove.

OptionsOptions

SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N

-p --project The path to the project file to operate
on. If a file is not specified, the
command searches the current
directory for one.

Refresh

The remove  command is used to remove Protobuf references from the .csproj file. The command accepts path

arguments and source URLs as arguments. The tool:

Only removes the Protobuf reference.

Does not delete the .proto file, even if it was originally downloaded from a remote URL.

The refresh  command is used to update a remote reference with the latest content from the source URL. Both the

download file path and the source URL can be used to specify the reference to be updated. Note:

The hashes of the file contents are compared to determine whether the local file should be updated.

No timestamp information is compared.

The tool always replaces the local file with the remote file if an update is needed.



UsageUsage

dotnet-grpc refresh [options] [<references>...]

ArgumentsArguments

A RGUM EN TA RGUM EN T DESC RIP T IO NDESC RIP T IO N

references The URLs or file paths to remote protobuf references that
should be updated. Leave this argument empty to refresh all
remote references.

OptionsOptions

SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N

-p --project The path to the project file to operate
on. If a file is not specified, the
command searches the current
directory for one.

--dry-run Outputs a list of files that would be
updated without downloading any new
content.

List

UsageUsage

dotnet-grpc list [options]

OptionsOptions

SH O RT  O P T IO NSH O RT  O P T IO N LO N G O P T IO NLO N G O P T IO N DESC RIP T IO NDESC RIP T IO N

-p --project The path to the project file to operate
on. If a file is not specified, the
command searches the current
directory for one.

Additional resources

The list  command is used to display all the Protobuf references in the project file. If all values of a column are

default values, the column may be omitted.

Introduction to gRPC on .NET Core

gRPC services with C#

gRPC services with ASP.NET Core



Test gRPC services with gRPCurl in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

About gRPCurl

Set up gRPC reflection

By James Newton-King

Tooling is available for gRPC that allows developers to test services without building client apps:

gRPCurl is a command-line tool that provides interaction with gRPC services.

gRPCui builds on top of gRPCurl and adds an interactive web UI for gRPC, similar to tools such as Postman and

Swagger UI.

This article discusses how to:

Download and install gRPCurl and gRPCui.

Set up gRPC reflection with a gRPC ASP.NET Core app.

Discover and test gRPC services with grpcurl .

Interact with gRPC services via a browser using grpcui .

gRPCurl is a command-line tool created by the gRPC community. Its features include:

Calling gRPC services, including streaming services.

Service discovery using gRPC reflection.

Listing and describing gRPC services.

Works with secure (TLS) and insecure (plain-text) servers.

For information about downloading and installing grpcurl , see the gRPCurl GitHub homepage.

grpcurl  must know the Protobuf contract of services before it can call them. There are two ways to do this:

Set up gRPC reflection on the server. gRPCurl automatically discovers service contracts.

Specify .proto  files in command-line arguments to gRPCurl.

It's easier to use gRPCurl with gRPC reflection. gRPC reflection adds a new gRPC service to the app that clients can

call to discover services.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/test-tools.md
https://twitter.com/jamesnk
https://github.com/fullstorydev/grpcurl
https://github.com/fullstorydev/grpcui
https://github.com/grpc/grpc/blob/master/doc/server-reflection.md
https://github.com/fullstorydev/grpcurl#installation
https://github.com/grpc/grpc/blob/master/doc/server-reflection.md


public void ConfigureServices(IServiceCollection services)
{
    services.AddGrpc();
    services.AddGrpcReflection();
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    app.UseRouting();
    
    app.UseEndpoints(endpoints =>
    {
        endpoints.MapGrpcService<GreeterService>();

        if (env.IsDevelopment())
        {
            endpoints.MapGrpcReflectionService();
        }
    });
}

Use grpcurl

$ grpcurl -help

Discover servicesDiscover services

$ grpcurl localhost:5001 describe
greet.Greeter is a service:
service Greeter {
  rpc SayHello ( .greet.HelloRequest ) returns ( .greet.HelloReply );
  rpc SayHellos ( .greet.HelloRequest ) returns ( stream .greet.HelloReply );
}
grpc.reflection.v1alpha.ServerReflection is a service:
service ServerReflection {
  rpc ServerReflectionInfo ( stream .grpc.reflection.v1alpha.ServerReflectionRequest ) returns ( stream 
.grpc.reflection.v1alpha.ServerReflectionResponse );
}

gRPC ASP.NET Core has built-in support for gRPC reflection with the Grpc.AspNetCore.Server.Reflection  package.

To configure reflection in an app:

Add a Grpc.AspNetCore.Server.Reflection  package reference.

Register reflection in Startup.cs :

AddGrpcReflection  to register services that enable reflection.

MapGrpcReflectionService  to add a reflection service endpoint.

When gRPC reflection is set up:

A gRPC reflection service is added to the server app.

Client apps that support gRPC reflection can call the reflection service to discover services hosted by the server.

gRPC services are still called from the client. Reflection only enables service discovery and doesn't bypass

server-side security. Endpoints protected by authentication and authorization require the caller to pass

credentials for the endpoint to be called successfully.

The -help  argument explains grpcurl  command-line options:

Use the describe  verb to view the services defined by the server :

https://www.nuget.org/packages/Grpc.AspNetCore.Server.Reflection


$ grpcurl localhost:5001 describe greet.HelloRequest
greet.HelloRequest is a message:
message HelloRequest {
  string name = 1;
}

Call gRPC servicesCall gRPC services

$ grpcurl -d '{ \"name\": \"World\" }' localhost:5001 greet.Greeter/SayHello
{
  "message": "Hello World"
}

About gRPCui

Using grpcui

$ grpcui localhost:5001
gRPC Web UI available at http://127.0.0.1:55038/

The preceding example:

Runs the describe  verb on server localhost:5001 .

Prints services and methods returned by gRPC reflection.

Greeter  is a service implemented by the app.

ServerReflection  is the service added by the Grpc.AspNetCore.Server.Reflection  package.

Combine describe  with a service, method, or message name to view its detail:

Call a gRPC service by specifying a service and method name along with a JSON argument that represents the

request message. The JSON is converted into Protobuf and sent to the service.

In the preceding example:

The -d  argument specifies a request message with JSON. This argument must come before the server address

and method name.

Calls the SayHello  method on the greeter.Greeter  service.

Prints the response message as JSON.

gRPCui is an interactive web UI for gRPC. It builds on top of gRPCurl and offers a GUI for discovering and testing

gRPC services, similar to HTTP tools such as Postman or Swagger UI.

For information about downloading and installing grpcui , see the gRPCui GitHub homepage.

Run grpcui  with the server address to interact with as an argument:

The tool launches a browser window with the interactive web UI. gRPC services are automatically discovered using

gRPC reflection.

https://github.com/fullstorydev/grpcui#installation


Additional resources
gRPCurl GitHub homepage

gRPCui GitHub homepage

Grpc.AspNetCore.Server.Reflection

https://github.com/fullstorydev/grpcurl
https://github.com/fullstorydev/grpcui
https://www.nuget.org/packages/Grpc.AspNetCore.Server.Reflection


Migrating gRPC services from C-core to ASP.NET
Core
9/22/2020 • 3 minutes to read • Edit Online

gRPC service implementation lifetime

Add a singleton serviceAdd a singleton service

public void ConfigureServices(IServiceCollection services)
{
    services.AddGrpc();
    services.AddSingleton(new GreeterService());
}

Configure gRPC services options

By John Luo

Due to the implementation of the underlying stack, not all features work in the same way between C-core-based

gRPC apps and ASP.NET Core-based apps. This document highlights the key differences for migrating between the

two stacks.

In the ASP.NET Core stack, gRPC services, by default, are created with a scoped lifetime. In contrast, gRPC C-core by

default binds to a service with a singleton lifetime.

A scoped lifetime allows the service implementation to resolve other services with scoped lifetimes. For example, a

scoped lifetime can also resolve DbContext  from the DI container through constructor injection. Using scoped

lifetime:

A new instance of the service implementation is constructed for each request.

It isn't possible to share state between requests via instance members on the implementation type.

The expectation is to store shared states in a singleton service in the DI container. The stored shared states are

resolved in the constructor of the gRPC service implementation.

For more information on service lifetimes, see Dependency injection in ASP.NET Core.

To facilitate the transition from a gRPC C-core implementation to ASP.NET Core, it's possible to change the service

lifetime of the service implementation from scoped to singleton. This involves adding an instance of the service

implementation to the DI container :

However, a service implementation with a singleton lifetime is no longer able to resolve scoped services through

constructor injection.

In C-core-based apps, settings such as grpc.max_receive_message_length  and grpc.max_send_message_length  are

configured with ChannelOption  when constructing the Server instance.

In ASP.NET Core, gRPC provides configuration through the GrpcServiceOptions  type. For example, a gRPC service's

the maximum incoming message size can be configured via AddGrpc . The following example changes the default 

MaxReceiveMessageSize  of 4 MB to 16 MB:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/migration.md
https://github.com/juntaoluo
https://grpc.io/blog/grpc-stacks
https://grpc.io/grpc/csharp/api/Grpc.Core.Server.html#Grpc_Core_Server__ctor_System_Collections_Generic_IEnumerable_Grpc_Core_ChannelOption__


  

public void ConfigureServices(IServiceCollection services)
{
    services.AddGrpc(options =>
    {
        options.MaxReceiveMessageSize = 16 * 1024 * 1024; // 16 MB
    });
}

Logging

public class GreeterService : Greeter.GreeterBase
{
    public GreeterService(ILogger<GreeterService> logger)
    {
    }
}

HTTPS

gRPC Interceptors vs Middleware

For more information on configuration, see gRPC for .NET configuration.

C-core-based apps rely on the GrpcEnvironment  to configure the logger for debugging purposes. The ASP.NET Core

stack provides this functionality through the Logging API. For example, a logger can be added to the gRPC service

via constructor injection:

C-core-based apps configure HTTPS through the Server.Ports property. A similar concept is used to configure

servers in ASP.NET Core. For example, Kestrel uses endpoint configuration for this functionality.

ASP.NET Core middleware offers similar functionalities compared to interceptors in C-core-based gRPC apps.

ASP.NET Core middleware and interceptors are conceptually similar. Both:

Are used to construct a pipeline that handles a gRPC request.

Allow work to be performed before or after the next component in the pipeline.

Provide access to HttpContext :

In middleware the HttpContext  is a parameter.

In interceptors the HttpContext  can be accessed using the ServerCallContext  parameter with the 

ServerCallContext.GetHttpContext  extension method. Note that this feature is specific to interceptors

running in ASP.NET Core.

gRPC Interceptor differences from ASP.NET Core Middleware:

Interceptors:

Middleware:

Operate on the gRPC layer of abstraction using the ServerCallContext.

Provide access to:

Can catch and handle exceptions thrown from gRPC services.

The deserialized message sent to a call.

The message being returned from the call before it is serialized.

Runs before gRPC interceptors.

Operates on the underlying HTTP/2 messages.

Can only access bytes from the request and response streams.

https://grpc.io/grpc/csharp/api/Grpc.Core.GrpcEnvironment.html?q=size#Grpc_Core_GrpcEnvironment_SetLogger_Grpc_Core_Logging_ILogger_
https://grpc.io/grpc/csharp/api/Grpc.Core.Server.html#Grpc_Core_Server_Ports
https://grpc.io/grpc/csharp/api/Grpc.Core.ServerCallContext.html


Additional resources
Introduction to gRPC on .NET Core

gRPC services with C#

gRPC services with ASP.NET Core

Create a .NET Core gRPC client and server in ASP.NET Core



gRPC for Windows Communication Foundation
(WCF) developers
9/22/2020 • 3 minutes to read • Edit Online

Comparison to WCF

Benefits of gRPC

PerformancePerformance

InteroperabilityInteroperability

Usability and productivityUsability and productivity

This article provides a summary of why ASP.NET Core gRPC is a good fit for Windows Communication Foundation

(WCF) developers who want to migrate to modern architectures and platforms.

Although the implementation and approach are different for gRPC, the experience of developing and consuming

services with gRPC should be intuitive for WCF developers. WCF and gRPC are RPC (remote procedure call)

frameworks with the same goals:

Make it possible to code as though the client and server are on the same platform.

Provide a simplified portable networking API.

Both platforms share the requirement of declaring and implementing an interface, although the process for

declaring the interface is different. The many types of RPC calls that gRPC supports map well to the bindings

available to WCF services. For more information and examples, see Migrate a WCF solution to gRPC.

gRPC provides a better framework than other approaches for the following reasons.

gRPC uses HTTP/2. In contrast to HTTP/1.1, HTTP/2:

Is a smaller, faster binary protocol.

Is more efficient for computers to parse.

Supports multiplexing requests over a single connection. Multiplexing enables multiple requests to be sent over

one connection without requests blocking each other. In HTTP/1.1, the blocking is known as "head-of-line (HOL)

blocking."

gRPC uses Protobuf, an efficient binary format, to serialize messages. Protobuf messages are:

Fast to serialize and deserialize.

Use less bandwidth than text-based formats.

gRPC is a good solution for mobile devices and networks with bandwidth restrictions.

There are gRPC tools and libraries for all major programming languages and platforms, including .NET, Java,

Python, Go, C++, Node.js, Swift, Dart, Ruby, and PHP. Thanks to the Protobuf binary wire format and the efficient

code generation for each platform, developers can build cross-platform, performant apps.

gRPC is a comprehensive RPC solution. It works consistently across multiple languages and platforms. It also

provides excellent tooling, with much of the boilerplate code automatically generated. Like WCF, gRPC

automatically generates messages and a strongly typed client. Developer time is freed up to focus on business

logic.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/why-migrate-wcf-to-dotnet-grpc.md
https://docs.microsoft.com/en-us/dotnet/architecture/grpc-for-wcf-developers/migrate-wcf-to-grpc


StreamingStreaming

Deadlines, timeouts, and cancellationDeadlines, timeouts, and cancellation

SecuritySecurity

gRPC as a migration path for WCF to .NET Core and .NET 5

Get started

gRPC has full bidirectional streaming, which provides similar functionality to WCF's full duplex services. gRPC

streaming can operate over regular internet connections, load balancers, and service meshes.

gRPC allows clients to specify a maximum time for an RPC to finish. If the specified deadline is exceeded, the server

can cancel the operation independently of the client. Deadlines and cancellations can be propagated through

subsequent gRPC calls to help enforce resource usage limits. Clients can stop operations when a deadline is

exceeded, or earlier if necessary. For example, clients can stop operations because of a user interaction.

gRPC can use TLS and HTTP/2 to provide an end-to-end encrypted connection between the client and the server.

Support for client certificate authentication further increases security and trust between client and server.

.NET Core and .NET 5 marks a shift in the way that Microsoft delivers remote communication solutions to

developers who want to deliver services across a range of platforms. .NET Core and .NET 5 support calling WCF

services, but won't offer server-side support for hosting WCF.

There are two recommended paths for modernizing WCF apps:

gRPC is built on modern technologies and has emerged as the most popular choice across the developer

community for RPC apps. Starting with .NET Core 3.0, modern .NET platforms have excellent support for

gRPC. Migrating WCF services to use gRPC helps provide the RPC features, performance, an interoperability

needed in modern apps.

CoreWCF is a community effort to bring support for hosting WCF services to .NET Core and .NET 5. A

preview release is available and the project is working towards being production ready. CoreWCF only

supports a subset of WCF's features, and .NET Framework apps that migrate to use it will need code changes

and testing to be successful. CoreWCF is a good choice if an app has to maintain compatibility with existing

clients that call WCF services.

For detailed guidance on building gRPC services in ASP.NET Core for WCF developers, see ASP.NET Core gRPC for

WCF Developers

https://docs.microsoft.com/en-us/dotnet/core/additional-tools/wcf-web-service-reference-guide
https://github.com/CoreWCF/CoreWCF
https://docs.microsoft.com/en-us/dotnet/architecture/grpc-for-wcf-developers


  

  

Compare gRPC services with HTTP APIs
9/22/2020 • 5 minutes to read • Edit Online

High-level comparison

F EAT UREF EAT URE GRP CGRP C H T T P  A P IS W IT H  JSO NH T T P  A P IS W IT H  JSO N

Contract Required (.proto) Optional (OpenAPI)

Protocol HTTP/2 HTTP

Payload Protobuf (small, binary) JSON (large, human readable)

Prescriptiveness Strict specification Loose. Any HTTP is valid.

Streaming Client, server, bi-directional Client, server

Browser support No (requires grpc-web) Yes

Security Transport (TLS) Transport (TLS)

Client code-generation Yes OpenAPI + third-party tooling

gRPC strengths
PerformancePerformance

Code generationCode generation

By James Newton-King

This article explains how gRPC services compare to HTTP APIs with JSON (including ASP.NET Core web APIs). The

technology used to provide an API for your app is an important choice, and gRPC offers unique benefits compared

to HTTP APIs. This article discusses the strengths and weaknesses of gRPC and recommends scenarios for using

gRPC over other technologies.

The following table offers a high-level comparison of features between gRPC and HTTP APIs with JSON.

gRPC messages are serialized using Protobuf, an efficient binary message format. Protobuf serializes very quickly

on the server and client. Protobuf serialization results in small message payloads, important in limited bandwidth

scenarios like mobile apps.

gRPC is designed for HTTP/2, a major revision of HTTP that provides significant performance benefits over HTTP

1.x:

Binary framing and compression. HTTP/2 protocol is compact and efficient both in sending and receiving.

Multiplexing of multiple HTTP/2 calls over a single TCP connection. Multiplexing eliminates head-of-line

blocking.

HTTP/2 is not exclusive to gRPC. Many request types, including HTTP APIs with JSON, can use HTTP/2 and benefit

from its performance improvements.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/comparison.md
https://twitter.com/jamesnk
https://grpc.io/docs/guides/
https://developers.google.com/protocol-buffers/docs/overview
https://en.wikipedia.org/wiki/Head-of-line_blocking


  

  

  

Strict specificationStrict specification

StreamingStreaming

Deadline/timeouts and cancellationDeadline/timeouts and cancellation

gRPC recommended scenarios

gRPC weaknesses
Limited browser supportLimited browser support

All gRPC frameworks provide first-class support for code generation. A core file to gRPC development is the .proto

file, which defines the contract of gRPC services and messages. From this file gRPC frameworks will code generate

a service base class, messages, and a complete client.

By sharing the .proto file between the server and client, messages and client code can be generated from end to

end. Code generation of the client eliminates duplication of messages on the client and server, and creates a

strongly-typed client for you. Not having to write a client saves significant development time in applications with

many services.

A formal specification for HTTP API with JSON doesn't exist. Developers debate the best format of URLs, HTTP

verbs, and response codes.

The gRPC specification is prescriptive about the format a gRPC service must follow. gRPC eliminates debate and

saves developer time because gRPC is consistent across platforms and implementations.

HTTP/2 provides a foundation for long-lived, real-time communication streams. gRPC provides first-class support

for streaming through HTTP/2.

A gRPC service supports all streaming combinations:

Unary (no streaming)

Server to client streaming

Client to server streaming

Bi-directional streaming

gRPC allows clients to specify how long they are willing to wait for an RPC to complete. The deadline is sent to the

server, and the server can decide what action to take if it exceeds the deadline. For example, the server might cancel

in-progress gRPC/HTTP/database requests on timeout.

Propagating the deadline and cancellation through child gRPC calls helps enforce resource usage limits.

gRPC is well suited to the following scenarios:

Microser vicesMicroser vices : gRPC is designed for low latency and high throughput communication. gRPC is great for

lightweight microservices where efficiency is critical.

Point-to-point real-time communicationPoint-to-point real-time communication: gRPC has excellent support for bi-directional streaming. gRPC

services can push messages in real-time without polling.

Polyglot environmentsPolyglot environments : gRPC tooling supports all popular development languages, making gRPC a good

choice for multi-language environments.

Network constrained environmentsNetwork constrained environments : gRPC messages are serialized with Protobuf, a lightweight message

format. A gRPC message is always smaller than an equivalent JSON message.

Inter-process communication (IPC)Inter-process communication (IPC) : IPC transports such as Unix domain sockets and named pipes can be

used with gRPC to communicate between apps on the same machine. For more information, see Inter-process

communication with gRPC.

It's impossible to directly call a gRPC service from a browser today. gRPC heavily uses HTTP/2 features and no

browser provides the level of control required over web requests to support a gRPC client. For example, browsers

https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md
https://grpc.io/blog/deadlines


Not human readableNot human readable

Alternative framework scenarios

Additional resources

do not allow a caller to require that HTTP/2 be used, or provide access to underlying HTTP/2 frames.

There are two common approaches to bring gRPC to browser apps:

gRPC-Web is an additional technology from the gRPC team that provides gRPC support in the browser.

gRPC-Web allows browser apps to benefit from the high-performance and low network usage of gRPC. Not

all of gRPC's features are supported by gRPC-Web. Client and bi-directional streaming isn't supported, and

there is limited support for server streaming.

.NET Core has support for gRPC-Web. For more information, see Use gRPC in browser apps.

RESTful JSON Web APIs can be automatically created from gRPC services by annotating the .proto file with

HTTP metadata. This allows an app to support both gRPC and JSON web APIs, without duplicating effort of

building separate services for both.

.NET Core has experimental support for creating JSON web APIs from gRPC services. For more information,

see Create JSON Web APIs from gRPC.

HTTP API requests are sent as text and can be read and created by humans.

gRPC messages are encoded with Protobuf by default. While Protobuf is efficient to send and receive, its binary

format isn't human readable. Protobuf requires the message's interface description specified in the .proto file to

properly deserialize. Additional tooling is required to analyze Protobuf payloads on the wire and to compose

requests by hand.

Features such as server reflection and the gRPC command line tool exist to assist with binary Protobuf messages.

Also, Protobuf messages support conversion to and from JSON. The built-in JSON conversion provides an efficient

way to convert Protobuf messages to and from human readable form when debugging.

Other frameworks are recommended over gRPC in the following scenarios:

Browser accessible APIsBrowser accessible APIs : gRPC isn't fully supported in the browser. gRPC-Web can offer browser support, but

it has limitations and introduces a server proxy.

Broadcast real-time communicationBroadcast real-time communication: gRPC supports real-time communication via streaming, but the

concept of broadcasting a message out to registered connections doesn't exist. For example in a chat room

scenario where new chat messages should be sent to all clients in the chat room, each gRPC call is required to

individually stream new chat messages to the client. SignalR is a useful framework for this scenario. SignalR has

the concept of persistent connections and built-in support for broadcasting messages.

Create a .NET Core gRPC client and server in ASP.NET Core

Introduction to gRPC on .NET Core

gRPC services with C#

Migrating gRPC services from C-core to ASP.NET Core

https://grpc.io/docs/tutorials/basic/web.html
https://cloud.google.com/service-infrastructure/docs/service-management/reference/rpc/google.api#google.api.HttpRule
https://github.com/grpc/grpc/blob/master/doc/server-reflection.md
https://github.com/grpc/grpc/blob/master/doc/command_line_tool.md
https://developers.google.com/protocol-buffers/docs/proto3#json


    

Troubleshoot gRPC on .NET Core
9/22/2020 • 4 minutes to read • Edit Online

Mismatch between client and service SSL/TLS configuration

info: Microsoft.Hosting.Lifetime[0]
      Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[0]
      Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
      Hosting environment: Development

static async Task Main(string[] args)
{
    // The port number(5001) must match the port of the gRPC server.
    var channel = GrpcChannel.ForAddress("https://localhost:5001");
    var client = new Greet.GreeterClient(channel);
}

Call a gRPC service with an untrusted/invalid certificate

By James Newton-King

This document discusses commonly encountered problems when developing gRPC apps on .NET.

The gRPC template and samples use Transport Layer Security (TLS) to secure gRPC services by default. gRPC clients

need to use a secure connection to call secured gRPC services successfully.

You can verify the ASP.NET Core gRPC service is using TLS in the logs written on app start. The service will be

listening on an HTTPS endpoint:

The .NET Core client must use https  in the server address to make calls with a secured connection:

All gRPC client implementations support TLS. gRPC clients from other languages typically require the channel

configured with SslCredentials . SslCredentials  specifies the certificate that the client will use, and it must be

used instead of insecure credentials. For examples of configuring the different gRPC client implementations to use

TLS, see gRPC Authentication.

The .NET gRPC client requires the service to have a trusted certificate. The following error message is returned

when calling a gRPC service without a trusted certificate:

Unhandled exception. System.Net.Http.HttpRequestException: The SSL connection could not be established, see

inner exception. ---> System.Security.Authentication.AuthenticationException: The remote certificate is invalid

according to the validation procedure.

You may see this error if you are testing your app locally and the ASP.NET Core HTTPS development certificate is

not trusted. For instructions to fix this issue, see Trust the ASP.NET Core HTTPS development certificate on Windows

and macOS.

If you are calling a gRPC service on another machine and are unable to trust the certificate then the gRPC client can

be configured to ignore the invalid certificate. The following code uses

HttpClientHandler.ServerCertificateCustomValidationCallback to allow calls without a trusted certificate:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/grpc/troubleshoot.md
https://twitter.com/jamesnk
https://tools.ietf.org/html/rfc5246
https://www.grpc.io/docs/guides/auth/
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclienthandler.servercertificatecustomvalidationcallback


   

      

var httpHandler = new HttpClientHandler();
// Return `true` to allow certificates that are untrusted/invalid
httpHandler.ServerCertificateCustomValidationCallback = 
    HttpClientHandler.DangerousAcceptAnyServerCertificateValidator;

var channel = GrpcChannel.ForAddress("https://localhost:5001",
    new GrpcChannelOptions { HttpHandler = httpHandler });
var client = new Greet.GreeterClient(channel);

WARNINGWARNING

Call insecure gRPC services with .NET Core client

// This switch must be set before creating the GrpcChannel/HttpClient.
AppContext.SetSwitch(
    "System.Net.Http.SocketsHttpHandler.Http2UnencryptedSupport", true);

// The port number(5000) must match the port of the gRPC server.
var channel = GrpcChannel.ForAddress("http://localhost:5000");
var client = new Greet.GreeterClient(channel);

Unable to start ASP.NET Core gRPC app on macOS

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.ConfigureKestrel(options =>
            {
                // Setup a HTTP/2 endpoint without TLS.
                options.ListenLocalhost(5000, o => o.Protocols = 
                    HttpProtocols.Http2);
            });
            webBuilder.UseStartup<Startup>();
        });

Untrusted certificates should only be used during app development. Production apps should always use valid certificates.

Additional configuration is required to call insecure gRPC services with the .NET Core client. The gRPC client must

set the System.Net.Http.SocketsHttpHandler.Http2UnencryptedSupport  switch to true  and use http  in the server

address:

Kestrel doesn't support HTTP/2 with TLS on macOS and older Windows versions such as Windows 7. The ASP.NET

Core gRPC template and samples use TLS by default. You'll see the following error message when you attempt to

start the gRPC server :

Unable to bind to https://localhost:5001 on the IPv4 loopback interface: 'HTTP/2 over TLS is not supported on

macOS due to missing ALPN support.'.

To work around this issue, configure Kestrel and the gRPC client to use HTTP/2 without TLS. You should only do this

during development. Not using TLS will result in gRPC messages being sent without encryption.

Kestrel must configure an HTTP/2 endpoint without TLS in Program.cs:

When an HTTP/2 endpoint is configured without TLS, the endpoint's ListenOptions.Protocols must be set to 



WARNINGWARNING

gRPC C# assets are not code generated from .proto files

<ItemGroup>
  <Protobuf Include="Protos\greet.proto" GrpcServices="Server" />
</ItemGroup>

<ItemGroup>
  <Protobuf Include="Protos\greet.proto" GrpcServices="Client" />
</ItemGroup>

WPF projects unable to generate gRPC C# assets from .proto files

HttpProtocols.Http2 . HttpProtocols.Http1AndHttp2  can't be used because TLS is required to negotiate HTTP/2.

Without TLS, all connections to the endpoint default to HTTP/1.1, and gRPC calls fail.

The gRPC client must also be configured to not use TLS. For more information, see Call insecure gRPC services with

.NET Core client.

HTTP/2 without TLS should only be used during app development. Production apps should always use transport security. For

more information, see Security considerations in gRPC for ASP.NET Core.

gRPC code generation of concrete clients and service base classes requires protobuf files and tooling to be

referenced from a project. You must include:

.proto files you want to use in the <Protobuf>  item group. Imported .proto files must be referenced by the

project.

Package reference to the gRPC tooling package Grpc.Tools.

For more information on generating gRPC C# assets, see gRPC services with C#.

An ASP.NET Core web app hosting gRPC services only needs the service base class generated:

A gRPC client app making gRPC calls only needs the concrete client generated:

WPF projects have a known issue that prevents gRPC code generation from working correctly. Any gRPC types

generated in a WPF project by referencing Grpc.Tools  and .proto files will create compilation errors when used:

error CS0246: The type or namespace name 'MyGrpcServices' could not be found (are you missing a using

directive or an assembly reference?)

You can workaround this issue by:

1. Create a new .NET Core class library project.

2. In the new project, add references to enable C# code generation from *.proto files:

3. In the WPF application, add a reference to the new project.

Add a package reference to Grpc.Tools package.

Add *.proto files to the <Protobuf>  item group.

The WPF application can use the gRPC generated types from the new class library project.

https://developers.google.com/protocol-buffers/docs/proto3#importing-definitions
https://www.nuget.org/packages/Grpc.Tools/
https://github.com/dotnet/wpf/issues/810
https://www.nuget.org/packages/Grpc.Tools/


WARNINGWARNING
ASP.NET Core gRPC is not currently supported on Azure App Service or IIS. The HTTP/2 implementation of Http.Sys does not

support HTTP response trailing headers which gRPC relies on. For more information, see this GitHub issue.

https://github.com/dotnet/AspNetCore/issues/9020


Razor Pages unit tests in ASP.NET Core
9/22/2020 • 19 minutes to read • Edit Online

A P PA P P P RO JEC T  F O L DERP RO JEC T  F O L DER DESC RIP T IO NDESC RIP T IO N

Message app src/RazorPagesTestSample Allows a user to add a message, delete
one message, delete all messages, and
analyze messages (find the average
number of words per message).

Test app tests/RazorPagesTestSample.Tests Used to unit test the DAL and Index
page model of the message app.

dotnet test

Message app organization

ASP.NET Core supports unit tests of Razor Pages apps. Tests of the data access layer (DAL) and page models help

ensure:

Parts of a Razor Pages app work independently and together as a unit during app construction.

Classes and methods have limited scopes of responsibility.

Additional documentation exists on how the app should behave.

Regressions, which are errors brought about by updates to the code, are found during automated building and

deployment.

This topic assumes that you have a basic understanding of Razor Pages apps and unit tests. If you're unfamiliar

with Razor Pages apps or test concepts, see the following topics:

Introduction to Razor Pages in ASP.NET Core

Tutorial: Get started with Razor Pages in ASP.NET Core

Unit testing C# in .NET Core using dotnet test and xUnit

View or download sample code (how to download)

The sample project is composed of two apps:

The tests can be run using the built-in test features of an IDE, such as Visual Studio or Visual Studio for Mac. If

using Visual Studio Code or the command line, execute the following command at a command prompt in the

tests/RazorPagesTestSample.Tests folder :

The message app is a Razor Pages message system with the following characteristics:

The Index page of the app (Pages/Index.cshtml and Pages/Index.cshtml.cs) provides a UI and page model

methods to control the addition, deletion, and analysis of messages (find the average number of words per

message).

A message is described by the Message  class (Data/Message.cs) with two properties: Id  (key) and Text

(message). The Text  property is required and limited to 200 characters.

Messages are stored using Entity Framework's in-memory database†.

The app contains a DAL in its database context class, AppDbContext  (Data/AppDbContext.cs). The DAL methods

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/razor-pages-tests.md
https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/razor-pages-tests/samples
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-your-code
https://docs.microsoft.com/en-us/dotnet/core/tutorials/using-on-mac-vs-full-solution
https://code.visualstudio.com/
https://docs.microsoft.com/en-us/ef/core/providers/in-memory/


Test app organization

T EST  A P P  F O L DERT EST  A P P  F O L DER DESC RIP T IO NDESC RIP T IO N

UnitTests

Utilities Contains the TestDbContextOptions  method used to create

new database context options for each DAL unit test so that
the database is reset to its baseline condition for each test.

Unit tests of the data access layer (DAL)

DA L  M ET H O DDA L  M ET H O D F UN C T IO NF UN C T IO N

GetMessagesAsync Obtains a List<Message>  from the database sorted by the 

Text  property.

AddMessageAsync Adds a Message  to the database.

DeleteAllMessagesAsync Deletes all Message  entries from the database.

DeleteMessageAsync Deletes a single Message  from the database by Id .

are marked virtual , which allows mocking the methods for use in the tests.

If the database is empty on app startup, the message store is initialized with three messages. These seeded

messages are also used in tests.

†The EF topic, Test with InMemory, explains how to use an in-memory database for tests with MSTest. This topic

uses the xUnit test framework. Test concepts and test implementations across different test frameworks are

similar but not identical.

Although the sample app doesn't use the repository pattern and isn't an effective example of the Unit of Work

(UoW) pattern, Razor Pages supports these patterns of development. For more information, see Designing the

infrastructure persistence layer and Test controller logic in ASP.NET Core (the sample implements the repository

pattern).

The test app is a console app inside the tests/RazorPagesTestSample.Tests folder.

DataAccessLayerTest.cs contains the unit tests for the
DAL.

IndexPageTests.cs contains the unit tests for the Index
page model.

The test framework is xUnit. The object mocking framework is Moq.

The message app has a DAL with four methods contained in the AppDbContext  class

(src/RazorPagesTestSample/Data/AppDbContext.cs). Each method has one or two unit tests in the test app.

Unit tests of the DAL require DbContextOptions when creating a new AppDbContext  for each test. One approach to

creating the DbContextOptions  for each test is to use a DbContextOptionsBuilder:

https://docs.microsoft.com/en-us/ef/core/miscellaneous/testing/in-memory
https://xunit.github.io/
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
https://xunit.github.io/
https://github.com/moq/moq4
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptionsbuilder


var optionsBuilder = new DbContextOptionsBuilder<AppDbContext>()
    .UseInMemoryDatabase("InMemoryDb");

using (var db = new AppDbContext(optionsBuilder.Options))
{
    // Use the db here in the unit test.
}

public static DbContextOptions<AppDbContext> TestDbContextOptions()
{
    // Create a new service provider to create a new in-memory database.
    var serviceProvider = new ServiceCollection()
        .AddEntityFrameworkInMemoryDatabase()
        .BuildServiceProvider();

    // Create a new options instance using an in-memory database and 
    // IServiceProvider that the context should resolve all of its 
    // services from.
    var builder = new DbContextOptionsBuilder<AppDbContext>()
        .UseInMemoryDatabase("InMemoryDb")
        .UseInternalServiceProvider(serviceProvider);

    return builder.Options;
}

using (var db = new AppDbContext(Utilities.TestDbContextOptions()))
{
    // Use the db here in the unit test.
}

public async virtual Task DeleteMessageAsync(int id)
{
    var message = await Messages.FindAsync(id);

    if (message != null)
    {
        Messages.Remove(message);
        await SaveChangesAsync();
    }
}

The problem with this approach is that each test receives the database in whatever state the previous test left it.

This can be problematic when trying to write atomic unit tests that don't interfere with each other. To force the 

AppDbContext  to use a new database context for each test, supply a DbContextOptions  instance that's based on a

new service provider. The test app shows how to do this using its Utilities  class method TestDbContextOptions

(tests/RazorPagesTestSample.Tests/Utilities/Utilities.cs):

Using the DbContextOptions  in the DAL unit tests allows each test to run atomically with a fresh database instance:

Each test method in the DataAccessLayerTest  class (UnitTests/DataAccessLayerTest.cs) follows a similar Arrange-

Act-Assert pattern:

1. Arrange: The database is configured for the test and/or the expected outcome is defined.

2. Act: The test is executed.

3. Assert: Assertions are made to determine if the test result is a success.

For example, the DeleteMessageAsync  method is responsible for removing a single message identified by its Id

(src/RazorPagesTestSample/Data/AppDbContext.cs):



[Fact]
public async Task DeleteMessageAsync_MessageIsDeleted_WhenMessageIsFound()
{
    using (var db = new AppDbContext(Utilities.TestDbContextOptions()))
    {
        // Arrange
        var seedMessages = AppDbContext.GetSeedingMessages();
        await db.AddRangeAsync(seedMessages);
        await db.SaveChangesAsync();
        var recId = 1;
        var expectedMessages = 
            seedMessages.Where(message => message.Id != recId).ToList();

        // Act
        await db.DeleteMessageAsync(recId);

        // Assert
        var actualMessages = await db.Messages.AsNoTracking().ToListAsync();
        Assert.Equal(
            expectedMessages.OrderBy(m => m.Id).Select(m => m.Text), 
            actualMessages.OrderBy(m => m.Id).Select(m => m.Text));
    }
}

// Arrange
var seedMessages = AppDbContext.GetSeedingMessages();
await db.AddRangeAsync(seedMessages);
await db.SaveChangesAsync();
var recId = 1;
var expectedMessages = 
    seedMessages.Where(message => message.Id != recId).ToList();

// Act
await db.DeleteMessageAsync(recId);

// Assert
var actualMessages = await db.Messages.AsNoTracking().ToListAsync();
Assert.Equal(
    expectedMessages.OrderBy(m => m.Id).Select(m => m.Text), 
    actualMessages.OrderBy(m => m.Id).Select(m => m.Text));

There are two tests for this method. One test checks that the method deletes a message when the message is

present in the database. The other method tests that the database doesn't change if the message Id  for deletion

doesn't exist. The DeleteMessageAsync_MessageIsDeleted_WhenMessageIsFound  method is shown below:

First, the method performs the Arrange step, where preparation for the Act step takes place. The seeding

messages are obtained and held in seedMessages . The seeding messages are saved into the database. The

message with an Id  of 1  is set for deletion. When the DeleteMessageAsync  method is executed, the expected

messages should have all of the messages except for the one with an Id  of 1 . The expectedMessages  variable

represents this expected outcome.

The method acts: The DeleteMessageAsync  method is executed passing in the recId  of 1 :

Finally, the method obtains the Messages  from the context and compares it to the expectedMessages  asserting

that the two are equal:

In order to compare that the two List<Message>  are the same:



[Fact]
public async Task DeleteMessageAsync_NoMessageIsDeleted_WhenMessageIsNotFound()
{
    using (var db = new AppDbContext(Utilities.TestDbContextOptions()))
    {
        // Arrange
        var expectedMessages = AppDbContext.GetSeedingMessages();
        await db.AddRangeAsync(expectedMessages);
        await db.SaveChangesAsync();
        var recId = 4;

        // Act
        try
        {
            await db.DeleteMessageAsync(recId);
        }
        catch
        {
            // recId doesn't exist
        }

        // Assert
        var actualMessages = await db.Messages.AsNoTracking().ToListAsync();
        Assert.Equal(
            expectedMessages.OrderBy(m => m.Id).Select(m => m.Text), 
            actualMessages.OrderBy(m => m.Id).Select(m => m.Text));
    }
}

Unit tests of the page model methods

PA GE M O DEL  M ET H O DPA GE M O DEL  M ET H O D F UN C T IO NF UN C T IO N

OnGetAsync Obtains the messages from the DAL for the UI using the 
GetMessagesAsync  method.

OnPostAddMessageAsync If the ModelState is valid, calls AddMessageAsync  to add a

message to the database.

OnPostDeleteAllMessagesAsync Calls DeleteAllMessagesAsync  to delete all of the messages

in the database.

OnPostDeleteMessageAsync Executes DeleteMessageAsync  to delete a message with the 

Id  specified.

OnPostAnalyzeMessagesAsync If one or more messages are in the database, calculates the
average number of words per message.

The messages are ordered by Id .

Message pairs are compared on the Text  property.

A similar test method, DeleteMessageAsync_NoMessageIsDeleted_WhenMessageIsNotFound  checks the result of

attempting to delete a message that doesn't exist. In this case, the expected messages in the database should be

equal to the actual messages after the DeleteMessageAsync  method is executed. There should be no change to the

database's content:

Another set of unit tests is responsible for tests of page model methods. In the message app, the Index page

models are found in the IndexModel  class in src/RazorPagesTestSample/Pages/Index.cshtml.cs.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary


var mockAppDbContext = new Mock<AppDbContext>(optionsBuilder.Options);
var expectedMessages = AppDbContext.GetSeedingMessages();
mockAppDbContext.Setup(
    db => db.GetMessagesAsync()).Returns(Task.FromResult(expectedMessages));
var pageModel = new IndexModel(mockAppDbContext.Object);

// Act
await pageModel.OnGetAsync();

public async Task OnGetAsync()
{
    Messages = await _db.GetMessagesAsync();
}

// Assert
var actualMessages = Assert.IsAssignableFrom<List<Message>>(pageModel.Messages);
Assert.Equal(
    expectedMessages.OrderBy(m => m.Id).Select(m => m.Text), 
    actualMessages.OrderBy(m => m.Id).Select(m => m.Text));

The page model methods are tested using seven tests in the IndexPageTests  class

(tests/RazorPagesTestSample.Tests/UnitTests/IndexPageTests.cs). The tests use the familiar Arrange-Assert-Act

pattern. These tests focus on:

Determining if the methods follow the correct behavior when the ModelState is invalid.

Confirming the methods produce the correct IActionResult.

Checking that property value assignments are made correctly.

This group of tests often mock the methods of the DAL to produce expected data for the Act step where a page

model method is executed. For example, the GetMessagesAsync  method of the AppDbContext  is mocked to produce

output. When a page model method executes this method, the mock returns the result. The data doesn't come

from the database. This creates predictable, reliable test conditions for using the DAL in the page model tests.

The OnGetAsync_PopulatesThePageModel_WithAListOfMessages  test shows how the GetMessagesAsync  method is

mocked for the page model:

When the OnGetAsync  method is executed in the Act step, it calls the page model's GetMessagesAsync  method.

Unit test Act step (tests/RazorPagesTestSample.Tests/UnitTests/IndexPageTests.cs):

IndexPage  page model's OnGetAsync  method (src/RazorPagesTestSample/Pages/Index.cshtml.cs):

The GetMessagesAsync  method in the DAL doesn't return the result for this method call. The mocked version of the

method returns the result.

In the Assert  step, the actual messages ( actualMessages ) are assigned from the Messages  property of the page

model. A type check is also performed when the messages are assigned. The expected and actual messages are

compared by their Text  properties. The test asserts that the two List<Message>  instances contain the same

messages.

Other tests in this group create page model objects that include the DefaultHttpContext, the ModelStateDictionary,

an ActionContext to establish the PageContext , a ViewDataDictionary , and a PageContext . These are useful in

conducting tests. For example, the message app establishes a ModelState  error with AddModelError to check that

a valid PageResult is returned when OnPostAddMessageAsync  is executed:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.defaulthttpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actioncontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.addmodelerror
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pageresult


[Fact]
public async Task OnPostAddMessageAsync_ReturnsAPageResult_WhenModelStateIsInvalid()
{
    // Arrange
    var optionsBuilder = new DbContextOptionsBuilder<AppDbContext>()
        .UseInMemoryDatabase("InMemoryDb");
    var mockAppDbContext = new Mock<AppDbContext>(optionsBuilder.Options);
    var expectedMessages = AppDbContext.GetSeedingMessages();
    mockAppDbContext.Setup(db => db.GetMessagesAsync()).Returns(Task.FromResult(expectedMessages));
    var httpContext = new DefaultHttpContext();
    var modelState = new ModelStateDictionary();
    var actionContext = new ActionContext(httpContext, new RouteData(), new PageActionDescriptor(), 
modelState);
    var modelMetadataProvider = new EmptyModelMetadataProvider();
    var viewData = new ViewDataDictionary(modelMetadataProvider, modelState);
    var tempData = new TempDataDictionary(httpContext, Mock.Of<ITempDataProvider>());
    var pageContext = new PageContext(actionContext)
    {
        ViewData = viewData
    };
    var pageModel = new IndexModel(mockAppDbContext.Object)
    {
        PageContext = pageContext,
        TempData = tempData,
        Url = new UrlHelper(actionContext)
    };
    pageModel.ModelState.AddModelError("Message.Text", "The Text field is required.");

    // Act
    var result = await pageModel.OnPostAddMessageAsync();

    // Assert
    Assert.IsType<PageResult>(result);
}

Additional resources
Unit testing C# in .NET Core using dotnet test and xUnit

Test controller logic in ASP.NET Core

Unit Test Your Code (Visual Studio)

Integration tests in ASP.NET Core

xUnit.net

Building a complete .NET Core solution on macOS using Visual Studio for Mac

Getting started with xUnit.net: Using .NET Core with the .NET SDK command line

Moq

Moq Quickstart

ASP.NET Core supports unit tests of Razor Pages apps. Tests of the data access layer (DAL) and page models help

ensure:

Parts of a Razor Pages app work independently and together as a unit during app construction.

Classes and methods have limited scopes of responsibility.

Additional documentation exists on how the app should behave.

Regressions, which are errors brought about by updates to the code, are found during automated building and

deployment.

This topic assumes that you have a basic understanding of Razor Pages apps and unit tests. If you're unfamiliar

with Razor Pages apps or test concepts, see the following topics:

https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-your-code
https://xunit.github.io/
https://docs.microsoft.com/en-us/dotnet/core/tutorials/using-on-mac-vs-full-solution
https://xunit.github.io/docs/getting-started-dotnet-core
https://github.com/moq/moq4
https://github.com/Moq/moq4/wiki/Quickstart


A P PA P P P RO JEC T  F O L DERP RO JEC T  F O L DER DESC RIP T IO NDESC RIP T IO N

Message app src/RazorPagesTestSample Allows a user to add a message, delete
one message, delete all messages, and
analyze messages (find the average
number of words per message).

Test app tests/RazorPagesTestSample.Tests Used to unit test the DAL and Index
page model of the message app.

dotnet test

Message app organization

Test app organization

Introduction to Razor Pages in ASP.NET Core

Tutorial: Get started with Razor Pages in ASP.NET Core

Unit testing C# in .NET Core using dotnet test and xUnit

View or download sample code (how to download)

The sample project is composed of two apps:

The tests can be run using the built-in test features of an IDE, such as Visual Studio or Visual Studio for Mac. If

using Visual Studio Code or the command line, execute the following command at a command prompt in the

tests/RazorPagesTestSample.Tests folder :

The message app is a Razor Pages message system with the following characteristics:

The Index page of the app (Pages/Index.cshtml and Pages/Index.cshtml.cs) provides a UI and page model

methods to control the addition, deletion, and analysis of messages (find the average number of words per

message).

A message is described by the Message  class (Data/Message.cs) with two properties: Id  (key) and Text

(message). The Text  property is required and limited to 200 characters.

Messages are stored using Entity Framework's in-memory database†.

The app contains a DAL in its database context class, AppDbContext  (Data/AppDbContext.cs). The DAL methods

are marked virtual , which allows mocking the methods for use in the tests.

If the database is empty on app startup, the message store is initialized with three messages. These seeded

messages are also used in tests.

†The EF topic, Test with InMemory, explains how to use an in-memory database for tests with MSTest. This topic

uses the xUnit test framework. Test concepts and test implementations across different test frameworks are

similar but not identical.

Although the sample app doesn't use the repository pattern and isn't an effective example of the Unit of Work

(UoW) pattern, Razor Pages supports these patterns of development. For more information, see Designing the

infrastructure persistence layer and Test controller logic in ASP.NET Core (the sample implements the repository

pattern).

The test app is a console app inside the tests/RazorPagesTestSample.Tests folder.

https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/razor-pages-tests/samples
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-your-code
https://docs.microsoft.com/en-us/dotnet/core/tutorials/using-on-mac-vs-full-solution
https://code.visualstudio.com/
https://docs.microsoft.com/en-us/ef/core/providers/in-memory/
https://docs.microsoft.com/en-us/ef/core/miscellaneous/testing/in-memory
https://xunit.github.io/
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design


T EST  A P P  F O L DERT EST  A P P  F O L DER DESC RIP T IO NDESC RIP T IO N

UnitTests

Utilities Contains the TestDbContextOptions  method used to create

new database context options for each DAL unit test so that
the database is reset to its baseline condition for each test.

Unit tests of the data access layer (DAL)

DA L  M ET H O DDA L  M ET H O D F UN C T IO NF UN C T IO N

GetMessagesAsync Obtains a List<Message>  from the database sorted by the 

Text  property.

AddMessageAsync Adds a Message  to the database.

DeleteAllMessagesAsync Deletes all Message  entries from the database.

DeleteMessageAsync Deletes a single Message  from the database by Id .

var optionsBuilder = new DbContextOptionsBuilder<AppDbContext>()
    .UseInMemoryDatabase("InMemoryDb");

using (var db = new AppDbContext(optionsBuilder.Options))
{
    // Use the db here in the unit test.
}

DataAccessLayerTest.cs contains the unit tests for the
DAL.

IndexPageTests.cs contains the unit tests for the Index
page model.

The test framework is xUnit. The object mocking framework is Moq.

The message app has a DAL with four methods contained in the AppDbContext  class

(src/RazorPagesTestSample/Data/AppDbContext.cs). Each method has one or two unit tests in the test app.

Unit tests of the DAL require DbContextOptions when creating a new AppDbContext  for each test. One approach to

creating the DbContextOptions  for each test is to use a DbContextOptionsBuilder:

The problem with this approach is that each test receives the database in whatever state the previous test left it.

This can be problematic when trying to write atomic unit tests that don't interfere with each other. To force the 

AppDbContext  to use a new database context for each test, supply a DbContextOptions  instance that's based on a

new service provider. The test app shows how to do this using its Utilities  class method TestDbContextOptions

(tests/RazorPagesTestSample.Tests/Utilities/Utilities.cs):

https://xunit.github.io/
https://github.com/moq/moq4
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptionsbuilder


public static DbContextOptions<AppDbContext> TestDbContextOptions()
{
    // Create a new service provider to create a new in-memory database.
    var serviceProvider = new ServiceCollection()
        .AddEntityFrameworkInMemoryDatabase()
        .BuildServiceProvider();

    // Create a new options instance using an in-memory database and 
    // IServiceProvider that the context should resolve all of its 
    // services from.
    var builder = new DbContextOptionsBuilder<AppDbContext>()
        .UseInMemoryDatabase("InMemoryDb")
        .UseInternalServiceProvider(serviceProvider);

    return builder.Options;
}

using (var db = new AppDbContext(Utilities.TestDbContextOptions()))
{
    // Use the db here in the unit test.
}

public async virtual Task DeleteMessageAsync(int id)
{
    var message = await Messages.FindAsync(id);

    if (message != null)
    {
        Messages.Remove(message);
        await SaveChangesAsync();
    }
}

Using the DbContextOptions  in the DAL unit tests allows each test to run atomically with a fresh database instance:

Each test method in the DataAccessLayerTest  class (UnitTests/DataAccessLayerTest.cs) follows a similar Arrange-

Act-Assert pattern:

1. Arrange: The database is configured for the test and/or the expected outcome is defined.

2. Act: The test is executed.

3. Assert: Assertions are made to determine if the test result is a success.

For example, the DeleteMessageAsync  method is responsible for removing a single message identified by its Id

(src/RazorPagesTestSample/Data/AppDbContext.cs):

There are two tests for this method. One test checks that the method deletes a message when the message is

present in the database. The other method tests that the database doesn't change if the message Id  for deletion

doesn't exist. The DeleteMessageAsync_MessageIsDeleted_WhenMessageIsFound  method is shown below:



[Fact]
public async Task DeleteMessageAsync_MessageIsDeleted_WhenMessageIsFound()
{
    using (var db = new AppDbContext(Utilities.TestDbContextOptions()))
    {
        // Arrange
        var seedMessages = AppDbContext.GetSeedingMessages();
        await db.AddRangeAsync(seedMessages);
        await db.SaveChangesAsync();
        var recId = 1;
        var expectedMessages = 
            seedMessages.Where(message => message.Id != recId).ToList();

        // Act
        await db.DeleteMessageAsync(recId);

        // Assert
        var actualMessages = await db.Messages.AsNoTracking().ToListAsync();
        Assert.Equal(
            expectedMessages.OrderBy(m => m.Id).Select(m => m.Text), 
            actualMessages.OrderBy(m => m.Id).Select(m => m.Text));
    }
}

// Arrange
var seedMessages = AppDbContext.GetSeedingMessages();
await db.AddRangeAsync(seedMessages);
await db.SaveChangesAsync();
var recId = 1;
var expectedMessages = 
    seedMessages.Where(message => message.Id != recId).ToList();

// Act
await db.DeleteMessageAsync(recId);

// Assert
var actualMessages = await db.Messages.AsNoTracking().ToListAsync();
Assert.Equal(
    expectedMessages.OrderBy(m => m.Id).Select(m => m.Text), 
    actualMessages.OrderBy(m => m.Id).Select(m => m.Text));

First, the method performs the Arrange step, where preparation for the Act step takes place. The seeding

messages are obtained and held in seedMessages . The seeding messages are saved into the database. The

message with an Id  of 1  is set for deletion. When the DeleteMessageAsync  method is executed, the expected

messages should have all of the messages except for the one with an Id  of 1 . The expectedMessages  variable

represents this expected outcome.

The method acts: The DeleteMessageAsync  method is executed passing in the recId  of 1 :

Finally, the method obtains the Messages  from the context and compares it to the expectedMessages  asserting

that the two are equal:

In order to compare that the two List<Message>  are the same:

The messages are ordered by Id .

Message pairs are compared on the Text  property.

A similar test method, DeleteMessageAsync_NoMessageIsDeleted_WhenMessageIsNotFound  checks the result of



[Fact]
public async Task DeleteMessageAsync_NoMessageIsDeleted_WhenMessageIsNotFound()
{
    using (var db = new AppDbContext(Utilities.TestDbContextOptions()))
    {
        // Arrange
        var expectedMessages = AppDbContext.GetSeedingMessages();
        await db.AddRangeAsync(expectedMessages);
        await db.SaveChangesAsync();
        var recId = 4;

        // Act
        await db.DeleteMessageAsync(recId);

        // Assert
        var actualMessages = await db.Messages.AsNoTracking().ToListAsync();
        Assert.Equal(
            expectedMessages.OrderBy(m => m.Id).Select(m => m.Text), 
            actualMessages.OrderBy(m => m.Id).Select(m => m.Text));
    }
}

Unit tests of the page model methods

PA GE M O DEL  M ET H O DPA GE M O DEL  M ET H O D F UN C T IO NF UN C T IO N

OnGetAsync Obtains the messages from the DAL for the UI using the 
GetMessagesAsync  method.

OnPostAddMessageAsync If the ModelState is valid, calls AddMessageAsync  to add a

message to the database.

OnPostDeleteAllMessagesAsync Calls DeleteAllMessagesAsync  to delete all of the messages

in the database.

OnPostDeleteMessageAsync Executes DeleteMessageAsync  to delete a message with the 

Id  specified.

OnPostAnalyzeMessagesAsync If one or more messages are in the database, calculates the
average number of words per message.

attempting to delete a message that doesn't exist. In this case, the expected messages in the database should be

equal to the actual messages after the DeleteMessageAsync  method is executed. There should be no change to the

database's content:

Another set of unit tests is responsible for tests of page model methods. In the message app, the Index page

models are found in the IndexModel  class in src/RazorPagesTestSample/Pages/Index.cshtml.cs.

The page model methods are tested using seven tests in the IndexPageTests  class

(tests/RazorPagesTestSample.Tests/UnitTests/IndexPageTests.cs). The tests use the familiar Arrange-Assert-Act

pattern. These tests focus on:

Determining if the methods follow the correct behavior when the ModelState is invalid.

Confirming the methods produce the correct IActionResult.

Checking that property value assignments are made correctly.

This group of tests often mock the methods of the DAL to produce expected data for the Act step where a page

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult


var mockAppDbContext = new Mock<AppDbContext>(optionsBuilder.Options);
var expectedMessages = AppDbContext.GetSeedingMessages();
mockAppDbContext.Setup(
    db => db.GetMessagesAsync()).Returns(Task.FromResult(expectedMessages));
var pageModel = new IndexModel(mockAppDbContext.Object);

// Act
await pageModel.OnGetAsync();

public async Task OnGetAsync()
{
    Messages = await _db.GetMessagesAsync();
}

// Assert
var actualMessages = Assert.IsAssignableFrom<List<Message>>(pageModel.Messages);
Assert.Equal(
    expectedMessages.OrderBy(m => m.Id).Select(m => m.Text), 
    actualMessages.OrderBy(m => m.Id).Select(m => m.Text));

model method is executed. For example, the GetMessagesAsync  method of the AppDbContext  is mocked to produce

output. When a page model method executes this method, the mock returns the result. The data doesn't come

from the database. This creates predictable, reliable test conditions for using the DAL in the page model tests.

The OnGetAsync_PopulatesThePageModel_WithAListOfMessages  test shows how the GetMessagesAsync  method is

mocked for the page model:

When the OnGetAsync  method is executed in the Act step, it calls the page model's GetMessagesAsync  method.

Unit test Act step (tests/RazorPagesTestSample.Tests/UnitTests/IndexPageTests.cs):

IndexPage  page model's OnGetAsync  method (src/RazorPagesTestSample/Pages/Index.cshtml.cs):

The GetMessagesAsync  method in the DAL doesn't return the result for this method call. The mocked version of the

method returns the result.

In the Assert  step, the actual messages ( actualMessages ) are assigned from the Messages  property of the page

model. A type check is also performed when the messages are assigned. The expected and actual messages are

compared by their Text  properties. The test asserts that the two List<Message>  instances contain the same

messages.

Other tests in this group create page model objects that include the DefaultHttpContext, the ModelStateDictionary,

an ActionContext to establish the PageContext , a ViewDataDictionary , and a PageContext . These are useful in

conducting tests. For example, the message app establishes a ModelState  error with AddModelError to check that

a valid PageResult is returned when OnPostAddMessageAsync  is executed:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.defaulthttpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actioncontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.addmodelerror
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pageresult


[Fact]
public async Task OnPostAddMessageAsync_ReturnsAPageResult_WhenModelStateIsInvalid()
{
    // Arrange
    var optionsBuilder = new DbContextOptionsBuilder<AppDbContext>()
        .UseInMemoryDatabase("InMemoryDb");
    var mockAppDbContext = new Mock<AppDbContext>(optionsBuilder.Options);
    var expectedMessages = AppDbContext.GetSeedingMessages();
    mockAppDbContext.Setup(db => db.GetMessagesAsync()).Returns(Task.FromResult(expectedMessages));
    var httpContext = new DefaultHttpContext();
    var modelState = new ModelStateDictionary();
    var actionContext = new ActionContext(httpContext, new RouteData(), new PageActionDescriptor(), 
modelState);
    var modelMetadataProvider = new EmptyModelMetadataProvider();
    var viewData = new ViewDataDictionary(modelMetadataProvider, modelState);
    var tempData = new TempDataDictionary(httpContext, Mock.Of<ITempDataProvider>());
    var pageContext = new PageContext(actionContext)
    {
        ViewData = viewData
    };
    var pageModel = new IndexModel(mockAppDbContext.Object)
    {
        PageContext = pageContext,
        TempData = tempData,
        Url = new UrlHelper(actionContext)
    };
    pageModel.ModelState.AddModelError("Message.Text", "The Text field is required.");

    // Act
    var result = await pageModel.OnPostAddMessageAsync();

    // Assert
    Assert.IsType<PageResult>(result);
}

Additional resources
Unit testing C# in .NET Core using dotnet test and xUnit

Test controller logic in ASP.NET Core

Unit Test Your Code (Visual Studio)

Integration tests in ASP.NET Core

xUnit.net

Building a complete .NET Core solution on macOS using Visual Studio for Mac

Getting started with xUnit.net: Using .NET Core with the .NET SDK command line

Moq

Moq Quickstart

JustMockLite: A mocking framework for .NET developers. (Not maintained or supported by Microsoft.)

https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-your-code
https://xunit.github.io/
https://docs.microsoft.com/en-us/dotnet/core/tutorials/using-on-mac-vs-full-solution
https://xunit.github.io/docs/getting-started-dotnet-core
https://github.com/moq/moq4
https://github.com/Moq/moq4/wiki/Quickstart
https://github.com/telerik/JustMockLite


Unit test controller logic in ASP.NET Core
9/22/2020 • 25 minutes to read • Edit Online

Unit testing controllers

By Steve Smith

Unit tests involve testing a part of an app in isolation from its infrastructure and dependencies. When unit testing

controller logic, only the contents of a single action are tested, not the behavior of its dependencies or of the

framework itself.

Set up unit tests of controller actions to focus on the controller's behavior. A controller unit test avoids scenarios

such as filters, routing, and model binding. Tests that cover the interactions among components that collectively

respond to a request are handled by integration tests. For more information on integration tests, see Integration

tests in ASP.NET Core.

If you're writing custom filters and routes, unit test them in isolation, not as part of tests on a particular controller

action.

To demonstrate controller unit tests, review the following controller in the sample app.

View or download sample code (how to download)

The Home controller displays a list of brainstorming sessions and allows the creation of new brainstorming

sessions with a POST request:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/testing.md
https://ardalis.com/
https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/testing/samples/


public class HomeController : Controller
{
    private readonly IBrainstormSessionRepository _sessionRepository;

    public HomeController(IBrainstormSessionRepository sessionRepository)
    {
        _sessionRepository = sessionRepository;
    }

    public async Task<IActionResult> Index()
    {
        var sessionList = await _sessionRepository.ListAsync();

        var model = sessionList.Select(session => new StormSessionViewModel()
        {
            Id = session.Id,
            DateCreated = session.DateCreated,
            Name = session.Name,
            IdeaCount = session.Ideas.Count
        });

        return View(model);
    }

    public class NewSessionModel
    {
        [Required]
        public string SessionName { get; set; }
    }

    [HttpPost]
    public async Task<IActionResult> Index(NewSessionModel model)
    {
        if (!ModelState.IsValid)
        {
            return BadRequest(ModelState);
        }
        else
        {
            await _sessionRepository.AddAsync(new BrainstormSession()
            {
                DateCreated = DateTimeOffset.Now,
                Name = model.SessionName
            });
        }

        return RedirectToAction(actionName: nameof(Index));
    }
}

The preceding controller :

Follows the Explicit Dependencies Principle.

Expects dependency injection (DI) to provide an instance of IBrainstormSessionRepository .

Can be tested with a mocked IBrainstormSessionRepository  service using a mock object framework, such as

Moq. A mocked object is a fabricated object with a predetermined set of property and method behaviors used

for testing. For more information, see Introduction to integration tests.

The HTTP GET Index  method has no looping or branching and only calls one method. The unit test for this action:

Mocks the IBrainstormSessionRepository  service using the GetTestSessions  method. GetTestSessions

creates two mock brainstorm sessions with dates and session names.

Executes the Index  method.

https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies
https://www.nuget.org/packages/Moq/


[Fact]
public async Task Index_ReturnsAViewResult_WithAListOfBrainstormSessions()
{
    // Arrange
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.ListAsync())
        .ReturnsAsync(GetTestSessions());
    var controller = new HomeController(mockRepo.Object);

    // Act
    var result = await controller.Index();

    // Assert
    var viewResult = Assert.IsType<ViewResult>(result);
    var model = Assert.IsAssignableFrom<IEnumerable<StormSessionViewModel>>(
        viewResult.ViewData.Model);
    Assert.Equal(2, model.Count());
}

private List<BrainstormSession> GetTestSessions()
{
    var sessions = new List<BrainstormSession>();
    sessions.Add(new BrainstormSession()
    {
        DateCreated = new DateTime(2016, 7, 2),
        Id = 1,
        Name = "Test One"
    });
    sessions.Add(new BrainstormSession()
    {
        DateCreated = new DateTime(2016, 7, 1),
        Id = 2,
        Name = "Test Two"
    });
    return sessions;
}

Makes assertions on the result returned by the method:

A ViewResult is returned.

The ViewDataDictionary.Model is a StormSessionViewModel .

There are two brainstorming sessions stored in the ViewDataDictionary.Model .

The Home controller's HTTP POST Index  method tests verifies that:

When ModelState.IsValid is false , the action method returns a 400 Bad Request ViewResult with the

appropriate data.

When ModelState.IsValid  is true :

The Add  method on the repository is called.

A RedirectToActionResult is returned with the correct arguments.

An invalid model state is tested by adding errors using AddModelError as shown in the first test below:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary.model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.isvalid
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.redirecttoactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.addmodelerror


[Fact]
public async Task IndexPost_ReturnsBadRequestResult_WhenModelStateIsInvalid()
{
    // Arrange
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.ListAsync())
        .ReturnsAsync(GetTestSessions());
    var controller = new HomeController(mockRepo.Object);
    controller.ModelState.AddModelError("SessionName", "Required");
    var newSession = new HomeController.NewSessionModel();

    // Act
    var result = await controller.Index(newSession);

    // Assert
    var badRequestResult = Assert.IsType<BadRequestObjectResult>(result);
    Assert.IsType<SerializableError>(badRequestResult.Value);
}

[Fact]
public async Task IndexPost_ReturnsARedirectAndAddsSession_WhenModelStateIsValid()
{
    // Arrange
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.AddAsync(It.IsAny<BrainstormSession>()))
        .Returns(Task.CompletedTask)
        .Verifiable();
    var controller = new HomeController(mockRepo.Object);
    var newSession = new HomeController.NewSessionModel()
    {
        SessionName = "Test Name"
    };

    // Act
    var result = await controller.Index(newSession);

    // Assert
    var redirectToActionResult = Assert.IsType<RedirectToActionResult>(result);
    Assert.Null(redirectToActionResult.ControllerName);
    Assert.Equal("Index", redirectToActionResult.ActionName);
    mockRepo.Verify();
}

NOTENOTE

When ModelState isn't valid, the same ViewResult  is returned as for a GET request. The test doesn't attempt to

pass in an invalid model. Passing an invalid model isn't a valid approach, since model binding isn't running

(although an integration test does use model binding). In this case, model binding isn't tested. These unit tests

are only testing the code in the action method.

The second test verifies that when the ModelState  is valid:

A new BrainstormSession  is added (via the repository).

The method returns a RedirectToActionResult  with the expected properties.

Mocked calls that aren't called are normally ignored, but calling Verifiable  at the end of the setup call allows

mock validation in the test. This is performed with the call to mockRepo.Verify , which fails the test if the expected

method wasn't called.

The Moq library used in this sample makes it possible to mix verifiable, or "strict", mocks with non-verifiable mocks (also

called "loose" mocks or stubs). Learn more about customizing Mock behavior with Moq.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://github.com/Moq/moq4/wiki/Quickstart#customizing-mock-behavior


public class SessionController : Controller
{
    private readonly IBrainstormSessionRepository _sessionRepository;

    public SessionController(IBrainstormSessionRepository sessionRepository)
    {
        _sessionRepository = sessionRepository;
    }

    public async Task<IActionResult> Index(int? id)
    {
        if (!id.HasValue)
        {
            return RedirectToAction(actionName: nameof(Index), 
                controllerName: "Home");
        }

        var session = await _sessionRepository.GetByIdAsync(id.Value);
        if (session == null)
        {
            return Content("Session not found.");
        }

        var viewModel = new StormSessionViewModel()
        {
            DateCreated = session.DateCreated,
            Name = session.Name,
            Id = session.Id
        };

        return View(viewModel);
    }
}

SessionController in the sample app displays information related to a particular brainstorming session. The

controller includes logic to deal with invalid id  values (there are two return  scenarios in the following example

to cover these scenarios). The final return  statement returns a new StormSessionViewModel  to the view

(Controllers/SessionController.cs):

The unit tests include one test for each return  scenario in the Session controller Index  action:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/testing/samples/3.x/TestingControllersSample/src/TestingControllersSample/Controllers/SessionController.cs


[Fact]
public async Task IndexReturnsARedirectToIndexHomeWhenIdIsNull()
{
    // Arrange
    var controller = new SessionController(sessionRepository: null);

    // Act
    var result = await controller.Index(id: null);

    // Assert
    var redirectToActionResult = 
        Assert.IsType<RedirectToActionResult>(result);
    Assert.Equal("Home", redirectToActionResult.ControllerName);
    Assert.Equal("Index", redirectToActionResult.ActionName);
}

[Fact]
public async Task IndexReturnsContentWithSessionNotFoundWhenSessionNotFound()
{
    // Arrange
    int testSessionId = 1;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync((BrainstormSession)null);
    var controller = new SessionController(mockRepo.Object);

    // Act
    var result = await controller.Index(testSessionId);

    // Assert
    var contentResult = Assert.IsType<ContentResult>(result);
    Assert.Equal("Session not found.", contentResult.Content);
}

[Fact]
public async Task IndexReturnsViewResultWithStormSessionViewModel()
{
    // Arrange
    int testSessionId = 1;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync(GetTestSessions().FirstOrDefault(
            s => s.Id == testSessionId));
    var controller = new SessionController(mockRepo.Object);

    // Act
    var result = await controller.Index(testSessionId);

    // Assert
    var viewResult = Assert.IsType<ViewResult>(result);
    var model = Assert.IsType<StormSessionViewModel>(
        viewResult.ViewData.Model);
    Assert.Equal("Test One", model.Name);
    Assert.Equal(2, model.DateCreated.Day);
    Assert.Equal(testSessionId, model.Id);
}

Moving to the Ideas controller, the app exposes functionality as a web API on the api/ideas  route:

A list of ideas ( IdeaDTO ) associated with a brainstorming session is returned by the ForSession  method.

The Create  method adds new ideas to a session.



[HttpGet("forsession/{sessionId}")]
public async Task<IActionResult> ForSession(int sessionId)
{
    var session = await _sessionRepository.GetByIdAsync(sessionId);
    if (session == null)
    {
        return NotFound(sessionId);
    }

    var result = session.Ideas.Select(idea => new IdeaDTO()
    {
        Id = idea.Id,
        Name = idea.Name,
        Description = idea.Description,
        DateCreated = idea.DateCreated
    }).ToList();

    return Ok(result);
}

[HttpPost("create")]
public async Task<IActionResult> Create([FromBody]NewIdeaModel model)
{
    if (!ModelState.IsValid)
    {
        return BadRequest(ModelState);
    }

    var session = await _sessionRepository.GetByIdAsync(model.SessionId);
    if (session == null)
    {
        return NotFound(model.SessionId);
    }

    var idea = new Idea()
    {
        DateCreated = DateTimeOffset.Now,
        Description = model.Description,
        Name = model.Name
    };
    session.AddIdea(idea);

    await _sessionRepository.UpdateAsync(session);

    return Ok(session);
}

Avoid returning business domain entities directly via API calls. Domain entities:

Often include more data than the client requires.

Unnecessarily couple the app's internal domain model with the publicly exposed API.

Mapping between domain entities and the types returned to the client can be performed:

Manually with a LINQ Select , as the sample app uses. For more information, see LINQ (Language Integrated

Query).

Automatically with a library, such as AutoMapper.

Next, the sample app demonstrates unit tests for the Create  and ForSession  API methods of the Ideas

controller.

The sample app contains two ForSession  tests. The first test determines if ForSession  returns a

NotFoundObjectResult (HTTP Not Found) for an invalid session:

https://docs.microsoft.com/en-us/dotnet/standard/using-linq
https://github.com/AutoMapper/AutoMapper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.notfoundobjectresult


[Fact]
public async Task ForSession_ReturnsHttpNotFound_ForInvalidSession()
{
    // Arrange
    int testSessionId = 123;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync((BrainstormSession)null);
    var controller = new IdeasController(mockRepo.Object);

    // Act
    var result = await controller.ForSession(testSessionId);

    // Assert
    var notFoundObjectResult = Assert.IsType<NotFoundObjectResult>(result);
    Assert.Equal(testSessionId, notFoundObjectResult.Value);
}

[Fact]
public async Task ForSession_ReturnsIdeasForSession()
{
    // Arrange
    int testSessionId = 123;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync(GetTestSession());
    var controller = new IdeasController(mockRepo.Object);

    // Act
    var result = await controller.ForSession(testSessionId);

    // Assert
    var okResult = Assert.IsType<OkObjectResult>(result);
    var returnValue = Assert.IsType<List<IdeaDTO>>(okResult.Value);
    var idea = returnValue.FirstOrDefault();
    Assert.Equal("One", idea.Name);
}

[Fact]
public async Task Create_ReturnsBadRequest_GivenInvalidModel()
{
    // Arrange & Act
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    var controller = new IdeasController(mockRepo.Object);
    controller.ModelState.AddModelError("error", "some error");

    // Act
    var result = await controller.Create(model: null);

    // Assert
    Assert.IsType<BadRequestObjectResult>(result);
}

The second ForSession  test determines if ForSession  returns a list of session ideas ( <List<IdeaDTO>> ) for a

valid session. The checks also examine the first idea to confirm its Name  property is correct:

To test the behavior of the Create  method when the ModelState  is invalid, the sample app adds a model error

to the controller as part of the test. Don't try to test model validation or model binding in unit tests—just test the

action method's behavior when confronted with an invalid ModelState :

The second test of Create  depends on the repository returning null , so the mock repository is configured to



[Fact]
public async Task Create_ReturnsHttpNotFound_ForInvalidSession()
{
    // Arrange
    int testSessionId = 123;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync((BrainstormSession)null);
    var controller = new IdeasController(mockRepo.Object);

    // Act
    var result = await controller.Create(new NewIdeaModel());

    // Assert
    Assert.IsType<NotFoundObjectResult>(result);
}

[Fact]
public async Task Create_ReturnsNewlyCreatedIdeaForSession()
{
    // Arrange
    int testSessionId = 123;
    string testName = "test name";
    string testDescription = "test description";
    var testSession = GetTestSession();
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync(testSession);
    var controller = new IdeasController(mockRepo.Object);

    var newIdea = new NewIdeaModel()
    {
        Description = testDescription,
        Name = testName,
        SessionId = testSessionId
    };
    mockRepo.Setup(repo => repo.UpdateAsync(testSession))
        .Returns(Task.CompletedTask)
        .Verifiable();

    // Act
    var result = await controller.Create(newIdea);

    // Assert
    var okResult = Assert.IsType<OkObjectResult>(result);
    var returnSession = Assert.IsType<BrainstormSession>(okResult.Value);
    mockRepo.Verify();
    Assert.Equal(2, returnSession.Ideas.Count());
    Assert.Equal(testName, returnSession.Ideas.LastOrDefault().Name);
    Assert.Equal(testDescription, returnSession.Ideas.LastOrDefault().Description);
}

Test ActionResult<T>

return null . There's no need to create a test database (in memory or otherwise) and construct a query that

returns this result. The test can be accomplished in a single statement, as the sample code illustrates:

The third Create  test, Create_ReturnsNewlyCreatedIdeaForSession , verifies that the repository's UpdateAsync

method is called. The mock is called with Verifiable , and the mocked repository's Verify  method is called to

confirm the verifiable method is executed. It's not the unit test's responsibility to ensure that the UpdateAsync

method saved the data—that can be performed with an integration test.



[HttpGet("forsessionactionresult/{sessionId}")]
[ProducesResponseType(200)]
[ProducesResponseType(404)]
public async Task<ActionResult<List<IdeaDTO>>> ForSessionActionResult(int sessionId)
{
    var session = await _sessionRepository.GetByIdAsync(sessionId);

    if (session == null)
    {
        return NotFound(sessionId);
    }

    var result = session.Ideas.Select(idea => new IdeaDTO()
    {
        Id = idea.Id,
        Name = idea.Name,
        Description = idea.Description,
        DateCreated = idea.DateCreated
    }).ToList();

    return result;
}

[Fact]
public async Task ForSessionActionResult_ReturnsNotFoundObjectResultForNonexistentSession()
{
    // Arrange
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    var controller = new IdeasController(mockRepo.Object);
    var nonExistentSessionId = 999;

    // Act
    var result = await controller.ForSessionActionResult(nonExistentSessionId);

    // Assert
    var actionResult = Assert.IsType<ActionResult<List<IdeaDTO>>>(result);
    Assert.IsType<NotFoundObjectResult>(actionResult.Result);
}

In ASP.NET Core 2.1 or later, ActionResult<T> (ActionResult<TValue>) enables you to return a type deriving from 

ActionResult  or return a specific type.

The sample app includes a method that returns a List<IdeaDTO>  for a given session id . If the session id

doesn't exist, the controller returns NotFound:

Two tests of the ForSessionActionResult  controller are included in the ApiIdeasControllerTests .

The first test confirms that the controller returns an ActionResult  but not a nonexistent list of ideas for a

nonexistent session id :

The ActionResult  type is ActionResult<List<IdeaDTO>> .

The Result is a NotFoundObjectResult.

For a valid session id , the second test confirms that the method returns:

An ActionResult  with a List<IdeaDTO>  type.

The ActionResult<T>.Value is a List<IdeaDTO>  type.

The first item in the list is a valid idea matching the idea stored in the mock session (obtained by calling 

GetTestSession ).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.notfoundobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.value


[Fact]
public async Task ForSessionActionResult_ReturnsIdeasForSession()
{
    // Arrange
    int testSessionId = 123;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync(GetTestSession());
    var controller = new IdeasController(mockRepo.Object);

    // Act
    var result = await controller.ForSessionActionResult(testSessionId);

    // Assert
    var actionResult = Assert.IsType<ActionResult<List<IdeaDTO>>>(result);
    var returnValue = Assert.IsType<List<IdeaDTO>>(actionResult.Value);
    var idea = returnValue.FirstOrDefault();
    Assert.Equal("One", idea.Name);
}

[HttpPost("createactionresult")]
[ProducesResponseType(201)]
[ProducesResponseType(400)]
[ProducesResponseType(404)]
public async Task<ActionResult<BrainstormSession>> CreateActionResult([FromBody]NewIdeaModel model)
{
    if (!ModelState.IsValid)
    {
        return BadRequest(ModelState);
    }

    var session = await _sessionRepository.GetByIdAsync(model.SessionId);

    if (session == null)
    {
        return NotFound(model.SessionId);
    }

    var idea = new Idea()
    {
        DateCreated = DateTimeOffset.Now,
        Description = model.Description,
        Name = model.Name
    };
    session.AddIdea(idea);

    await _sessionRepository.UpdateAsync(session);

    return CreatedAtAction(nameof(CreateActionResult), new { id = session.Id }, session);
}

The sample app also includes a method to create a new Idea  for a given session. The controller returns:

BadRequest for an invalid model.

NotFound if the session doesn't exist.

CreatedAtAction when the session is updated with the new idea.

Three tests of CreateActionResult  are included in the ApiIdeasControllerTests .

The first text confirms that a BadRequest is returned for an invalid model.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest


[Fact]
public async Task CreateActionResult_ReturnsBadRequest_GivenInvalidModel()
{
    // Arrange & Act
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    var controller = new IdeasController(mockRepo.Object);
    controller.ModelState.AddModelError("error", "some error");

    // Act
    var result = await controller.CreateActionResult(model: null);

    // Assert
    var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
    Assert.IsType<BadRequestObjectResult>(actionResult.Result);
}

[Fact]
public async Task CreateActionResult_ReturnsNotFoundObjectResultForNonexistentSession()
{
    // Arrange
    var nonExistentSessionId = 999;
    string testName = "test name";
    string testDescription = "test description";
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    var controller = new IdeasController(mockRepo.Object);

    var newIdea = new NewIdeaModel()
    {
        Description = testDescription,
        Name = testName,
        SessionId = nonExistentSessionId
    };

    // Act
    var result = await controller.CreateActionResult(newIdea);

    // Assert
    var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
    Assert.IsType<NotFoundObjectResult>(actionResult.Result);
}

The second test checks that a NotFound is returned if the session doesn't exist.

For a valid session id , the final test confirms that:

The method returns an ActionResult  with a BrainstormSession  type.

The ActionResult<T>.Result is a CreatedAtActionResult. CreatedAtActionResult  is analogous to a 201 Created

response with a Location  header.

The ActionResult<T>.Value is a BrainstormSession  type.

The mock call to update the session, UpdateAsync(testSession) , was invoked. The Verifiable  method call is

checked by executing mockRepo.Verify()  in the assertions.

Two Idea  objects are returned for the session.

The last item (the Idea  added by the mock call to UpdateAsync ) matches the newIdea  added to the session in

the test.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.createdatactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.value


[Fact]
public async Task CreateActionResult_ReturnsNewlyCreatedIdeaForSession()
{
    // Arrange
    int testSessionId = 123;
    string testName = "test name";
    string testDescription = "test description";
    var testSession = GetTestSession();
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync(testSession);
    var controller = new IdeasController(mockRepo.Object);

    var newIdea = new NewIdeaModel()
    {
        Description = testDescription,
        Name = testName,
        SessionId = testSessionId
    };
    mockRepo.Setup(repo => repo.UpdateAsync(testSession))
        .Returns(Task.CompletedTask)
        .Verifiable();

    // Act
    var result = await controller.CreateActionResult(newIdea);

    // Assert
    var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
    var createdAtActionResult = Assert.IsType<CreatedAtActionResult>(actionResult.Result);
    var returnValue = Assert.IsType<BrainstormSession>(createdAtActionResult.Value);
    mockRepo.Verify();
    Assert.Equal(2, returnValue.Ideas.Count());
    Assert.Equal(testName, returnValue.Ideas.LastOrDefault().Name);
    Assert.Equal(testDescription, returnValue.Ideas.LastOrDefault().Description);
}

Unit tests of controller logic

Controllers play a central role in any ASP.NET Core MVC app. As such, you should have confidence that

controllers behave as intended. Automated tests can detect errors before the app is deployed to a production

environment.

View or download sample code (how to download)

Unit tests involve testing a part of an app in isolation from its infrastructure and dependencies. When unit testing

controller logic, only the contents of a single action are tested, not the behavior of its dependencies or of the

framework itself.

Set up unit tests of controller actions to focus on the controller's behavior. A controller unit test avoids scenarios

such as filters, routing, and model binding. Tests that cover the interactions among components that collectively

respond to a request are handled by integration tests. For more information on integration tests, see Integration

tests in ASP.NET Core.

If you're writing custom filters and routes, unit test them in isolation, not as part of tests on a particular controller

action.

To demonstrate controller unit tests, review the following controller in the sample app. The Home controller

displays a list of brainstorming sessions and allows the creation of new brainstorming sessions with a POST

request:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/controllers/testing/samples/
https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test


public class HomeController : Controller
{
    private readonly IBrainstormSessionRepository _sessionRepository;

    public HomeController(IBrainstormSessionRepository sessionRepository)
    {
        _sessionRepository = sessionRepository;
    }

    public async Task<IActionResult> Index()
    {
        var sessionList = await _sessionRepository.ListAsync();

        var model = sessionList.Select(session => new StormSessionViewModel()
        {
            Id = session.Id,
            DateCreated = session.DateCreated,
            Name = session.Name,
            IdeaCount = session.Ideas.Count
        });

        return View(model);
    }

    public class NewSessionModel
    {
        [Required]
        public string SessionName { get; set; }
    }

    [HttpPost]
    public async Task<IActionResult> Index(NewSessionModel model)
    {
        if (!ModelState.IsValid)
        {
            return BadRequest(ModelState);
        }
        else
        {
            await _sessionRepository.AddAsync(new BrainstormSession()
            {
                DateCreated = DateTimeOffset.Now,
                Name = model.SessionName
            });
        }

        return RedirectToAction(actionName: nameof(Index));
    }
}

The preceding controller :

Follows the Explicit Dependencies Principle.

Expects dependency injection (DI) to provide an instance of IBrainstormSessionRepository .

Can be tested with a mocked IBrainstormSessionRepository  service using a mock object framework, such as

Moq. A mocked object is a fabricated object with a predetermined set of property and method behaviors used

for testing. For more information, see Introduction to integration tests.

The HTTP GET Index  method has no looping or branching and only calls one method. The unit test for this action:

Mocks the IBrainstormSessionRepository  service using the GetTestSessions  method. GetTestSessions

creates two mock brainstorm sessions with dates and session names.

Executes the Index  method.

https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies
https://www.nuget.org/packages/Moq/


[Fact]
public async Task Index_ReturnsAViewResult_WithAListOfBrainstormSessions()
{
    // Arrange
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.ListAsync())
        .ReturnsAsync(GetTestSessions());
    var controller = new HomeController(mockRepo.Object);

    // Act
    var result = await controller.Index();

    // Assert
    var viewResult = Assert.IsType<ViewResult>(result);
    var model = Assert.IsAssignableFrom<IEnumerable<StormSessionViewModel>>(
        viewResult.ViewData.Model);
    Assert.Equal(2, model.Count());
}

private List<BrainstormSession> GetTestSessions()
{
    var sessions = new List<BrainstormSession>();
    sessions.Add(new BrainstormSession()
    {
        DateCreated = new DateTime(2016, 7, 2),
        Id = 1,
        Name = "Test One"
    });
    sessions.Add(new BrainstormSession()
    {
        DateCreated = new DateTime(2016, 7, 1),
        Id = 2,
        Name = "Test Two"
    });
    return sessions;
}

Makes assertions on the result returned by the method:

A ViewResult is returned.

The ViewDataDictionary.Model is a StormSessionViewModel .

There are two brainstorming sessions stored in the ViewDataDictionary.Model .

The Home controller's HTTP POST Index  method tests verifies that:

When ModelState.IsValid is false , the action method returns a 400 Bad Request ViewResult with the

appropriate data.

When ModelState.IsValid  is true :

The Add  method on the repository is called.

A RedirectToActionResult is returned with the correct arguments.

An invalid model state is tested by adding errors using AddModelError as shown in the first test below:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.viewdatadictionary.model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.isvalid
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.redirecttoactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.addmodelerror


[Fact]
public async Task IndexPost_ReturnsBadRequestResult_WhenModelStateIsInvalid()
{
    // Arrange
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.ListAsync())
        .ReturnsAsync(GetTestSessions());
    var controller = new HomeController(mockRepo.Object);
    controller.ModelState.AddModelError("SessionName", "Required");
    var newSession = new HomeController.NewSessionModel();

    // Act
    var result = await controller.Index(newSession);

    // Assert
    var badRequestResult = Assert.IsType<BadRequestObjectResult>(result);
    Assert.IsType<SerializableError>(badRequestResult.Value);
}

[Fact]
public async Task IndexPost_ReturnsARedirectAndAddsSession_WhenModelStateIsValid()
{
    // Arrange
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.AddAsync(It.IsAny<BrainstormSession>()))
        .Returns(Task.CompletedTask)
        .Verifiable();
    var controller = new HomeController(mockRepo.Object);
    var newSession = new HomeController.NewSessionModel()
    {
        SessionName = "Test Name"
    };

    // Act
    var result = await controller.Index(newSession);

    // Assert
    var redirectToActionResult = Assert.IsType<RedirectToActionResult>(result);
    Assert.Null(redirectToActionResult.ControllerName);
    Assert.Equal("Index", redirectToActionResult.ActionName);
    mockRepo.Verify();
}

NOTENOTE

When ModelState isn't valid, the same ViewResult  is returned as for a GET request. The test doesn't attempt to

pass in an invalid model. Passing an invalid model isn't a valid approach, since model binding isn't running

(although an integration test does use model binding). In this case, model binding isn't tested. These unit tests

are only testing the code in the action method.

The second test verifies that when the ModelState  is valid:

A new BrainstormSession  is added (via the repository).

The method returns a RedirectToActionResult  with the expected properties.

Mocked calls that aren't called are normally ignored, but calling Verifiable  at the end of the setup call allows

mock validation in the test. This is performed with the call to mockRepo.Verify , which fails the test if the expected

method wasn't called.

The Moq library used in this sample makes it possible to mix verifiable, or "strict", mocks with non-verifiable mocks (also

called "loose" mocks or stubs). Learn more about customizing Mock behavior with Moq.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary
https://github.com/Moq/moq4/wiki/Quickstart#customizing-mock-behavior


public class SessionController : Controller
{
    private readonly IBrainstormSessionRepository _sessionRepository;

    public SessionController(IBrainstormSessionRepository sessionRepository)
    {
        _sessionRepository = sessionRepository;
    }

    public async Task<IActionResult> Index(int? id)
    {
        if (!id.HasValue)
        {
            return RedirectToAction(actionName: nameof(Index), 
                controllerName: "Home");
        }

        var session = await _sessionRepository.GetByIdAsync(id.Value);
        if (session == null)
        {
            return Content("Session not found.");
        }

        var viewModel = new StormSessionViewModel()
        {
            DateCreated = session.DateCreated,
            Name = session.Name,
            Id = session.Id
        };

        return View(viewModel);
    }
}

SessionController in the sample app displays information related to a particular brainstorming session. The

controller includes logic to deal with invalid id  values (there are two return  scenarios in the following example

to cover these scenarios). The final return  statement returns a new StormSessionViewModel  to the view

(Controllers/SessionController.cs):

The unit tests include one test for each return  scenario in the Session controller Index  action:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/controllers/testing/samples/2.x/TestingControllersSample/src/TestingControllersSample/Controllers/SessionController.cs


[Fact]
public async Task IndexReturnsARedirectToIndexHomeWhenIdIsNull()
{
    // Arrange
    var controller = new SessionController(sessionRepository: null);

    // Act
    var result = await controller.Index(id: null);

    // Assert
    var redirectToActionResult = 
        Assert.IsType<RedirectToActionResult>(result);
    Assert.Equal("Home", redirectToActionResult.ControllerName);
    Assert.Equal("Index", redirectToActionResult.ActionName);
}

[Fact]
public async Task IndexReturnsContentWithSessionNotFoundWhenSessionNotFound()
{
    // Arrange
    int testSessionId = 1;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync((BrainstormSession)null);
    var controller = new SessionController(mockRepo.Object);

    // Act
    var result = await controller.Index(testSessionId);

    // Assert
    var contentResult = Assert.IsType<ContentResult>(result);
    Assert.Equal("Session not found.", contentResult.Content);
}

[Fact]
public async Task IndexReturnsViewResultWithStormSessionViewModel()
{
    // Arrange
    int testSessionId = 1;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync(GetTestSessions().FirstOrDefault(
            s => s.Id == testSessionId));
    var controller = new SessionController(mockRepo.Object);

    // Act
    var result = await controller.Index(testSessionId);

    // Assert
    var viewResult = Assert.IsType<ViewResult>(result);
    var model = Assert.IsType<StormSessionViewModel>(
        viewResult.ViewData.Model);
    Assert.Equal("Test One", model.Name);
    Assert.Equal(2, model.DateCreated.Day);
    Assert.Equal(testSessionId, model.Id);
}

Moving to the Ideas controller, the app exposes functionality as a web API on the api/ideas  route:

A list of ideas ( IdeaDTO ) associated with a brainstorming session is returned by the ForSession  method.

The Create  method adds new ideas to a session.



[HttpGet("forsession/{sessionId}")]
public async Task<IActionResult> ForSession(int sessionId)
{
    var session = await _sessionRepository.GetByIdAsync(sessionId);
    if (session == null)
    {
        return NotFound(sessionId);
    }

    var result = session.Ideas.Select(idea => new IdeaDTO()
    {
        Id = idea.Id,
        Name = idea.Name,
        Description = idea.Description,
        DateCreated = idea.DateCreated
    }).ToList();

    return Ok(result);
}

[HttpPost("create")]
public async Task<IActionResult> Create([FromBody]NewIdeaModel model)
{
    if (!ModelState.IsValid)
    {
        return BadRequest(ModelState);
    }

    var session = await _sessionRepository.GetByIdAsync(model.SessionId);
    if (session == null)
    {
        return NotFound(model.SessionId);
    }

    var idea = new Idea()
    {
        DateCreated = DateTimeOffset.Now,
        Description = model.Description,
        Name = model.Name
    };
    session.AddIdea(idea);

    await _sessionRepository.UpdateAsync(session);

    return Ok(session);
}

Avoid returning business domain entities directly via API calls. Domain entities:

Often include more data than the client requires.

Unnecessarily couple the app's internal domain model with the publicly exposed API.

Mapping between domain entities and the types returned to the client can be performed:

Manually with a LINQ Select , as the sample app uses. For more information, see LINQ (Language Integrated

Query).

Automatically with a library, such as AutoMapper.

Next, the sample app demonstrates unit tests for the Create  and ForSession  API methods of the Ideas

controller.

The sample app contains two ForSession  tests. The first test determines if ForSession  returns a

NotFoundObjectResult (HTTP Not Found) for an invalid session:

https://docs.microsoft.com/en-us/dotnet/standard/using-linq
https://github.com/AutoMapper/AutoMapper
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.notfoundobjectresult


[Fact]
public async Task ForSession_ReturnsHttpNotFound_ForInvalidSession()
{
    // Arrange
    int testSessionId = 123;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync((BrainstormSession)null);
    var controller = new IdeasController(mockRepo.Object);

    // Act
    var result = await controller.ForSession(testSessionId);

    // Assert
    var notFoundObjectResult = Assert.IsType<NotFoundObjectResult>(result);
    Assert.Equal(testSessionId, notFoundObjectResult.Value);
}

[Fact]
public async Task ForSession_ReturnsIdeasForSession()
{
    // Arrange
    int testSessionId = 123;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync(GetTestSession());
    var controller = new IdeasController(mockRepo.Object);

    // Act
    var result = await controller.ForSession(testSessionId);

    // Assert
    var okResult = Assert.IsType<OkObjectResult>(result);
    var returnValue = Assert.IsType<List<IdeaDTO>>(okResult.Value);
    var idea = returnValue.FirstOrDefault();
    Assert.Equal("One", idea.Name);
}

[Fact]
public async Task Create_ReturnsBadRequest_GivenInvalidModel()
{
    // Arrange & Act
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    var controller = new IdeasController(mockRepo.Object);
    controller.ModelState.AddModelError("error", "some error");

    // Act
    var result = await controller.Create(model: null);

    // Assert
    Assert.IsType<BadRequestObjectResult>(result);
}

The second ForSession  test determines if ForSession  returns a list of session ideas ( <List<IdeaDTO>> ) for a

valid session. The checks also examine the first idea to confirm its Name  property is correct:

To test the behavior of the Create  method when the ModelState  is invalid, the sample app adds a model error

to the controller as part of the test. Don't try to test model validation or model binding in unit tests—just test the

action method's behavior when confronted with an invalid ModelState :

The second test of Create  depends on the repository returning null , so the mock repository is configured to



[Fact]
public async Task Create_ReturnsHttpNotFound_ForInvalidSession()
{
    // Arrange
    int testSessionId = 123;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync((BrainstormSession)null);
    var controller = new IdeasController(mockRepo.Object);

    // Act
    var result = await controller.Create(new NewIdeaModel());

    // Assert
    Assert.IsType<NotFoundObjectResult>(result);
}

[Fact]
public async Task Create_ReturnsNewlyCreatedIdeaForSession()
{
    // Arrange
    int testSessionId = 123;
    string testName = "test name";
    string testDescription = "test description";
    var testSession = GetTestSession();
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync(testSession);
    var controller = new IdeasController(mockRepo.Object);

    var newIdea = new NewIdeaModel()
    {
        Description = testDescription,
        Name = testName,
        SessionId = testSessionId
    };
    mockRepo.Setup(repo => repo.UpdateAsync(testSession))
        .Returns(Task.CompletedTask)
        .Verifiable();

    // Act
    var result = await controller.Create(newIdea);

    // Assert
    var okResult = Assert.IsType<OkObjectResult>(result);
    var returnSession = Assert.IsType<BrainstormSession>(okResult.Value);
    mockRepo.Verify();
    Assert.Equal(2, returnSession.Ideas.Count());
    Assert.Equal(testName, returnSession.Ideas.LastOrDefault().Name);
    Assert.Equal(testDescription, returnSession.Ideas.LastOrDefault().Description);
}

Test ActionResult<T>

return null . There's no need to create a test database (in memory or otherwise) and construct a query that

returns this result. The test can be accomplished in a single statement, as the sample code illustrates:

The third Create  test, Create_ReturnsNewlyCreatedIdeaForSession , verifies that the repository's UpdateAsync

method is called. The mock is called with Verifiable , and the mocked repository's Verify  method is called to

confirm the verifiable method is executed. It's not the unit test's responsibility to ensure that the UpdateAsync

method saved the data—that can be performed with an integration test.



[HttpGet("forsessionactionresult/{sessionId}")]
[ProducesResponseType(200)]
[ProducesResponseType(404)]
public async Task<ActionResult<List<IdeaDTO>>> ForSessionActionResult(int sessionId)
{
    var session = await _sessionRepository.GetByIdAsync(sessionId);

    if (session == null)
    {
        return NotFound(sessionId);
    }

    var result = session.Ideas.Select(idea => new IdeaDTO()
    {
        Id = idea.Id,
        Name = idea.Name,
        Description = idea.Description,
        DateCreated = idea.DateCreated
    }).ToList();

    return result;
}

[Fact]
public async Task ForSessionActionResult_ReturnsNotFoundObjectResultForNonexistentSession()
{
    // Arrange
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    var controller = new IdeasController(mockRepo.Object);
    var nonExistentSessionId = 999;

    // Act
    var result = await controller.ForSessionActionResult(nonExistentSessionId);

    // Assert
    var actionResult = Assert.IsType<ActionResult<List<IdeaDTO>>>(result);
    Assert.IsType<NotFoundObjectResult>(actionResult.Result);
}

In ASP.NET Core 2.1 or later, ActionResult<T> (ActionResult<TValue>) enables you to return a type deriving from 

ActionResult  or return a specific type.

The sample app includes a method that returns a List<IdeaDTO>  for a given session id . If the session id

doesn't exist, the controller returns NotFound:

Two tests of the ForSessionActionResult  controller are included in the ApiIdeasControllerTests .

The first test confirms that the controller returns an ActionResult  but not a nonexistent list of ideas for a

nonexistent session id :

The ActionResult  type is ActionResult<List<IdeaDTO>> .

The Result is a NotFoundObjectResult.

For a valid session id , the second test confirms that the method returns:

An ActionResult  with a List<IdeaDTO>  type.

The ActionResult<T>.Value is a List<IdeaDTO>  type.

The first item in the list is a valid idea matching the idea stored in the mock session (obtained by calling 

GetTestSession ).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.notfoundobjectresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.value


[Fact]
public async Task ForSessionActionResult_ReturnsIdeasForSession()
{
    // Arrange
    int testSessionId = 123;
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync(GetTestSession());
    var controller = new IdeasController(mockRepo.Object);

    // Act
    var result = await controller.ForSessionActionResult(testSessionId);

    // Assert
    var actionResult = Assert.IsType<ActionResult<List<IdeaDTO>>>(result);
    var returnValue = Assert.IsType<List<IdeaDTO>>(actionResult.Value);
    var idea = returnValue.FirstOrDefault();
    Assert.Equal("One", idea.Name);
}

[HttpPost("createactionresult")]
[ProducesResponseType(201)]
[ProducesResponseType(400)]
[ProducesResponseType(404)]
public async Task<ActionResult<BrainstormSession>> CreateActionResult([FromBody]NewIdeaModel model)
{
    if (!ModelState.IsValid)
    {
        return BadRequest(ModelState);
    }

    var session = await _sessionRepository.GetByIdAsync(model.SessionId);

    if (session == null)
    {
        return NotFound(model.SessionId);
    }

    var idea = new Idea()
    {
        DateCreated = DateTimeOffset.Now,
        Description = model.Description,
        Name = model.Name
    };
    session.AddIdea(idea);

    await _sessionRepository.UpdateAsync(session);

    return CreatedAtAction(nameof(CreateActionResult), new { id = session.Id }, session);
}

The sample app also includes a method to create a new Idea  for a given session. The controller returns:

BadRequest for an invalid model.

NotFound if the session doesn't exist.

CreatedAtAction when the session is updated with the new idea.

Three tests of CreateActionResult  are included in the ApiIdeasControllerTests .

The first text confirms that a BadRequest is returned for an invalid model.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.createdataction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.badrequest


[Fact]
public async Task CreateActionResult_ReturnsBadRequest_GivenInvalidModel()
{
    // Arrange & Act
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    var controller = new IdeasController(mockRepo.Object);
    controller.ModelState.AddModelError("error", "some error");

    // Act
    var result = await controller.CreateActionResult(model: null);

    // Assert
    var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
    Assert.IsType<BadRequestObjectResult>(actionResult.Result);
}

[Fact]
public async Task CreateActionResult_ReturnsNotFoundObjectResultForNonexistentSession()
{
    // Arrange
    var nonExistentSessionId = 999;
    string testName = "test name";
    string testDescription = "test description";
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    var controller = new IdeasController(mockRepo.Object);

    var newIdea = new NewIdeaModel()
    {
        Description = testDescription,
        Name = testName,
        SessionId = nonExistentSessionId
    };

    // Act
    var result = await controller.CreateActionResult(newIdea);

    // Assert
    var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
    Assert.IsType<NotFoundObjectResult>(actionResult.Result);
}

The second test checks that a NotFound is returned if the session doesn't exist.

For a valid session id , the final test confirms that:

The method returns an ActionResult  with a BrainstormSession  type.

The ActionResult<T>.Result is a CreatedAtActionResult. CreatedAtActionResult  is analogous to a 201 Created

response with a Location  header.

The ActionResult<T>.Value is a BrainstormSession  type.

The mock call to update the session, UpdateAsync(testSession) , was invoked. The Verifiable  method call is

checked by executing mockRepo.Verify()  in the assertions.

Two Idea  objects are returned for the session.

The last item (the Idea  added by the mock call to UpdateAsync ) matches the newIdea  added to the session in

the test.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.notfound
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.createdatactionresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult-1.value


[Fact]
public async Task CreateActionResult_ReturnsNewlyCreatedIdeaForSession()
{
    // Arrange
    int testSessionId = 123;
    string testName = "test name";
    string testDescription = "test description";
    var testSession = GetTestSession();
    var mockRepo = new Mock<IBrainstormSessionRepository>();
    mockRepo.Setup(repo => repo.GetByIdAsync(testSessionId))
        .ReturnsAsync(testSession);
    var controller = new IdeasController(mockRepo.Object);

    var newIdea = new NewIdeaModel()
    {
        Description = testDescription,
        Name = testName,
        SessionId = testSessionId
    };
    mockRepo.Setup(repo => repo.UpdateAsync(testSession))
        .Returns(Task.CompletedTask)
        .Verifiable();

    // Act
    var result = await controller.CreateActionResult(newIdea);

    // Assert
    var actionResult = Assert.IsType<ActionResult<BrainstormSession>>(result);
    var createdAtActionResult = Assert.IsType<CreatedAtActionResult>(actionResult.Result);
    var returnValue = Assert.IsType<BrainstormSession>(createdAtActionResult.Value);
    mockRepo.Verify();
    Assert.Equal(2, returnValue.Ideas.Count());
    Assert.Equal(testName, returnValue.Ideas.LastOrDefault().Name);
    Assert.Equal(testDescription, returnValue.Ideas.LastOrDefault().Description);
}

Additional resources
Integration tests in ASP.NET Core

Create and run unit tests with Visual Studio

MyTested.AspNetCore.Mvc - Fluent Testing Library for ASP.NET Core MVC: Strongly-typed unit testing library,

providing a fluent interface for testing MVC and web API apps. (Not maintained or supported by Microsoft.)

JustMockLite: A mocking framework for .NET developers. (Not maintained or supported by Microsoft.)

https://docs.microsoft.com/en-us/visualstudio/test/unit-test-your-code
https://github.com/ivaylokenov/MyTested.AspNetCore.Mvc
https://github.com/telerik/JustMockLite


Test ASP.NET Core middleware
9/22/2020 • 3 minutes to read • Edit Online

Set up the TestServer

[Fact]
public async Task MiddlewareTest_ReturnsNotFoundForRequest()
{
    using var host = await new HostBuilder()
        .ConfigureWebHost(webBuilder =>
        {
            webBuilder
                .UseTestServer()
                .ConfigureServices(services =>
                {
                    services.AddMyServices();
                })
                .Configure(app =>
                {
                    app.UseMiddleware<MyMiddleware>();
                });
        })
        .StartAsync();

    ...
}

By Chris Ross

Middleware can be tested in isolation with TestServer. It allows you to:

Instantiate an app pipeline containing only the components that you need to test.

Send custom requests to verify middleware behavior.

Advantages:

Requests are sent in-memory rather than being serialized over the network.

This avoids additional concerns, such as port management and HTTPS certificates.

Exceptions in the middleware can flow directly back to the calling test.

It's possible to customize server data structures, such as HttpContext, directly in the test.

In the test project, create a test:

<ItemGroup>
  <PackageReference Include="Microsoft.AspNetCore.TestHost" Version="3.1.*" />
</ItemGroup>

Build and start a host that uses TestServer.

Add any required services that the middleware uses.

Add the Microsoft.AspNetCore.TestHost NuGet package to the project:

Configure the processing pipeline to use the middleware for the test.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/middleware.md
https://github.com/Tratcher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://www.nuget.org/packages/Microsoft.AspNetCore.TestHost/


Send requests with HttpClient

[Fact]
public async Task MiddlewareTest_ReturnsNotFoundForRequest()
{
    using var host = await new HostBuilder()
        .ConfigureWebHost(webBuilder =>
        {
            webBuilder
                .UseTestServer()
                .ConfigureServices(services =>
                {
                    services.AddMyServices();
                })
                .Configure(app =>
                {
                    app.UseMiddleware<MyMiddleware>();
                });
        })
        .StartAsync();

    var response = await host.GetTestClient().GetAsync("/");

    ...
}

[Fact]
public async Task MiddlewareTest_ReturnsNotFoundForRequest()
{
    using var host = await new HostBuilder()
        .ConfigureWebHost(webBuilder =>
        {
            webBuilder
                .UseTestServer()
                .ConfigureServices(services =>
                {
                    services.AddMyServices();
                })
                .Configure(app =>
                {
                    app.UseMiddleware<MyMiddleware>();
                });
        })
        .StartAsync();

    var response = await host.GetTestClient().GetAsync("/");

    Assert.NotEqual(HttpStatusCode.NotFound, response.StatusCode);
}

Send a request using HttpClient:

Assert the result. First, make an assertion the opposite of the result that you expect. An initial run with a false

positive assertion confirms that the test fails when the middleware is performing correctly. Run the test and

confirm that the test fails.

In the following example, the middleware should return a 404 status code (Not Found) when the root endpoint is

requested. Make the first test run with Assert.NotEqual( ... ); , which should fail:

Change the assertion to test the middleware under normal operating conditions. The final test uses 

Assert.Equal( ... ); . Run the test again to confirm that it passes.

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient


[Fact]
public async Task MiddlewareTest_ReturnsNotFoundForRequest()
{
    using var host = await new HostBuilder()
        .ConfigureWebHost(webBuilder =>
        {
            webBuilder
                .UseTestServer()
                .ConfigureServices(services =>
                {
                    services.AddMyServices();
                })
                .Configure(app =>
                {
                    app.UseMiddleware<MyMiddleware>();
                });
        })
        .StartAsync();

    var response = await host.GetTestClient().GetAsync("/");

    Assert.Equal(HttpStatusCode.NotFound, response.StatusCode);
}

Send requests with HttpContext
A test app can also send a request using SendAsync(Action<HttpContext>, CancellationToken). In the following

example, several checks are made when https://example.com/A/Path/?and=query  is processed by the middleware:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver.sendasync


[Fact]
public async Task TestMiddleware_ExpectedResponse()
{
    using var host = await new HostBuilder()
        .ConfigureWebHost(webBuilder =>
        {
            webBuilder
                .UseTestServer()
                .ConfigureServices(services =>
                {
                    services.AddMyServices();
                })
                .Configure(app =>
                {
                    app.UseMiddleware<MyMiddleware>();
                });
        })
        .StartAsync();

    var server = host.GetTestServer();
    server.BaseAddress = new Uri("https://example.com/A/Path/");

    var context = await server.SendAsync(c =>
    {
        c.Request.Method = HttpMethods.Post;
        c.Request.Path = "/and/file.txt";
        c.Request.QueryString = new QueryString("?and=query");
    });

    Assert.True(context.RequestAborted.CanBeCanceled);
    Assert.Equal(HttpProtocol.Http11, context.Request.Protocol);
    Assert.Equal("POST", context.Request.Method);
    Assert.Equal("https", context.Request.Scheme);
    Assert.Equal("example.com", context.Request.Host.Value);
    Assert.Equal("/A/Path", context.Request.PathBase.Value);
    Assert.Equal("/and/file.txt", context.Request.Path.Value);
    Assert.Equal("?and=query", context.Request.QueryString.Value);
    Assert.NotNull(context.Request.Body);
    Assert.NotNull(context.Request.Headers);
    Assert.NotNull(context.Response.Headers);
    Assert.NotNull(context.Response.Body);
    Assert.Equal(404, context.Response.StatusCode);
    Assert.Null(context.Features.Get<IHttpResponseFeature>().ReasonPhrase);
}

TestServer limitations

SendAsync permits direct configuration of an HttpContext object rather than using the HttpClient abstractions. Use

SendAsync to manipulate structures only available on the server, such as HttpContext.Items or

HttpContext.Features.

As with the earlier example that tested for a 404 - Not Found response, check the opposite for each Assert

statement in the preceding test. The check confirms that the test fails correctly when the middleware is operating

normally. After you've confirmed that the false positive test works, set the final Assert  statements for the expected

conditions and values of the test. Run it again to confirm that the test passes.

TestServer :

Was created to replicate server behaviors to test middleware.

Does notnot try to replicate all HttpClient behaviors.

Attempts to give the client access to as much control over the server as possible, and with as much visibility

into what's happening on the server as possible. For example it may throw exceptions not normally thrown by 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver.sendasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver.sendasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.items#microsoft_aspnetcore_http_httpcontext_items
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.features#microsoft_aspnetcore_http_httpcontext_features
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient


Content-Length and Transfer-Encoding headersContent-Length and Transfer-Encoding headers

HttpClient  in order to directly communicate server state.

Doesn't set some transport specific headers by default as those are not usually relevant to middleware. For

more information, see the next section.

TestServer does notnot set transport related request or response headers such as Content-Length or Transfer-

Encoding. Applications should avoid depending on these headers because their usage varies by client, scenario,

and protocol. If Content-Length  and Transfer-Encoding  are necessary to test a specific scenario, they can be

specified in the test when composing the HttpRequestMessage or HttpContext. For more information, see the

following GitHub issues:

dotnet/aspnetcore#21677

dotnet/aspnetcore#18463

dotnet/aspnetcore#13273

https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Length
https://developer.mozilla.org/docs/Web/HTTP/Headers/Transfer-Encoding
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestmessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://github.com/dotnet/aspnetcore/issues/21677
https://github.com/dotnet/aspnetcore/issues/18463
https://github.com/dotnet/aspnetcore/issues/13273


        

Integration tests in ASP.NET Core
9/22/2020 • 38 minutes to read • Edit Online

NOTENOTE

Introduction to integration tests

By Javier Calvarro Nelson, Steve Smith, and Jos van der Til

Integration tests ensure that an app's components function correctly at a level that includes the app's

supporting infrastructure, such as the database, file system, and network. ASP.NET Core supports integration

tests using a unit test framework with a test web host and an in-memory test server.

This topic assumes a basic understanding of unit tests. If unfamiliar with test concepts, see the Unit Testing in

.NET Core and .NET Standard topic and its linked content.

View or download sample code (how to download)

The sample app is a Razor Pages app and assumes a basic understanding of Razor Pages. If unfamiliar with

Razor Pages, see the following topics:

Introduction to Razor Pages

Get started with Razor Pages

Razor Pages unit tests

For testing SPAs, we recommended a tool such as Selenium, which can automate a browser.

Integration tests evaluate an app's components on a broader level than unit tests. Unit tests are used to test

isolated software components, such as individual class methods. Integration tests confirm that two or more app

components work together to produce an expected result, possibly including every component required to fully

process a request.

These broader tests are used to test the app's infrastructure and whole framework, often including the

following components:

Database

File system

Network appliances

Request-response pipeline

Unit tests use fabricated components, known as fakes or mock objects, in place of infrastructure components.

In contrast to unit tests, integration tests:

Use the actual components that the app uses in production.

Require more code and data processing.

Take longer to run.

Therefore, limit the use of integration tests to the most important infrastructure scenarios. If a behavior can be

tested using either a unit test or an integration test, choose the unit test.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/integration-tests.md
https://github.com/javiercn
https://ardalis.com/
https://jvandertil.nl
https://docs.microsoft.com/en-us/dotnet/core/testing/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples
https://www.seleniumhq.org/
https://docs.microsoft.com/en-us/dotnet/core/testing/


TIPTIP

NOTENOTE

ASP.NET Core integration tests

Don't write integration tests for every possible permutation of data and file access with databases and file systems.

Regardless of how many places across an app interact with databases and file systems, a focused set of read, write,

update, and delete integration tests are usually capable of adequately testing database and file system components. Use

unit tests for routine tests of method logic that interact with these components. In unit tests, the use of infrastructure

fakes/mocks result in faster test execution.

In discussions of integration tests, the tested project is frequently called the System Under Test, or "SUT" for short.

"SUT" is used throughout this topic to refer to the tested ASP.NET Core app.

Integration tests in ASP.NET Core require the following:

A test project is used to contain and execute the tests. The test project has a reference to the SUT.

The test project creates a test web host for the SUT and uses a test server client to handle requests and

responses with the SUT.

A test runner is used to execute the tests and report the test results.

Integration tests follow a sequence of events that include the usual Arrange, Act, and Assert test steps:

1. The SUT's web host is configured.

2. A test server client is created to submit requests to the app.

3. The Arrange test step is executed: The test app prepares a request.

4. The Act test step is executed: The client submits the request and receives the response.

5. The Assert test step is executed: The actual response is validated as a pass or fail based on an expected

response.

6. The process continues until all of the tests are executed.

7. The test results are reported.

Usually, the test web host is configured differently than the app's normal web host for the test runs. For

example, a different database or different app settings might be used for the tests.

Infrastructure components, such as the test web host and in-memory test server (TestServer), are provided or

managed by the Microsoft.AspNetCore.Mvc.Testing package. Use of this package streamlines test creation and

execution.

The Microsoft.AspNetCore.Mvc.Testing  package handles the following tasks:

Copies the dependencies file (.deps) from the SUT into the test project's bin directory.

Sets the content root to the SUT's project root so that static files and pages/views are found when the tests

are executed.

Provides the WebApplicationFactory class to streamline bootstrapping the SUT with TestServer .

The unit tests documentation describes how to set up a test project and test runner, along with detailed

instructions on how to run tests and recommendations for how to name tests and test classes.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test


NOTENOTE

Test app prerequisites

SUT environment

Basic tests with the default WebApplicationFactory

When creating a test project for an app, separate the unit tests from the integration tests into different projects. This

helps ensure that infrastructure testing components aren't accidentally included in the unit tests. Separation of unit and

integration tests also allows control over which set of tests are run.

There's virtually no difference between the configuration for tests of Razor Pages apps and MVC apps. The only

difference is in how the tests are named. In a Razor Pages app, tests of page endpoints are usually named after

the page model class (for example, IndexPageTests  to test component integration for the Index page). In an

MVC app, tests are usually organized by controller classes and named after the controllers they test (for

example, HomeControllerTests  to test component integration for the Home controller).

The test project must:

Reference the Microsoft.AspNetCore.Mvc.Testing package.

Specify the Web SDK in the project file ( <Project Sdk="Microsoft.NET.Sdk.Web"> ).

These prerequisites can be seen in the sample app. Inspect the

tests/RazorPagesProject.Tests/RazorPagesProject.Tests.csproj file. The sample app uses the xUnit test framework

and the AngleSharp parser library, so the sample app also references:

xunit

xunit.runner.visualstudio

AngleSharp

Entity Framework Core is also used in the tests. The app references:

Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore

Microsoft.AspNetCore.Identity.EntityFrameworkCore

Microsoft.EntityFrameworkCore

Microsoft.EntityFrameworkCore.InMemory

Microsoft.EntityFrameworkCore.Tools

If the SUT's environment isn't set, the environment defaults to Development.

WebApplicationFactory<TEntryPoint> is used to create a TestServer for the integration tests. TEntryPoint  is the

entry point class of the SUT, usually the Startup  class.

Test classes implement a class fixture interface (IClassFixture) to indicate the class contains tests and provide

shared object instances across the tests in the class.

The following test class, BasicTests , uses the WebApplicationFactory  to bootstrap the SUT and provide an

HttpClient to a test method, Get_EndpointsReturnSuccessAndCorrectContentType . The method checks if the

response status code is successful (status codes in the range 200-299) and the Content-Type  header is 

text/html; charset=utf-8  for several app pages.

CreateClient creates an instance of HttpClient  that automatically follows redirects and handles cookies.

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples/
https://xunit.github.io/
https://anglesharp.github.io/
https://www.nuget.org/packages/xunit
https://www.nuget.org/packages/xunit.runner.visualstudio
https://www.nuget.org/packages/AngleSharp
https://www.nuget.org/packages/Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore
https://www.nuget.org/packages/Microsoft.AspNetCore.Identity.EntityFrameworkCore
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.InMemory
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Tools
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://xunit.github.io/docs/shared-context#class-fixture
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.createclient


 

public class BasicTests 
    : IClassFixture<WebApplicationFactory<RazorPagesProject.Startup>>
{
    private readonly WebApplicationFactory<RazorPagesProject.Startup> _factory;

    public BasicTests(WebApplicationFactory<RazorPagesProject.Startup> factory)
    {
        _factory = factory;
    }

    [Theory]
    [InlineData("/")]
    [InlineData("/Index")]
    [InlineData("/About")]
    [InlineData("/Privacy")]
    [InlineData("/Contact")]
    public async Task Get_EndpointsReturnSuccessAndCorrectContentType(string url)
    {
        // Arrange
        var client = _factory.CreateClient();

        // Act
        var response = await client.GetAsync(url);

        // Assert
        response.EnsureSuccessStatusCode(); // Status Code 200-299
        Assert.Equal("text/html; charset=utf-8", 
            response.Content.Headers.ContentType.ToString());
    }
}

Customize WebApplicationFactory

By default, non-essential cookies aren't preserved across requests when the GDPR consent policy is enabled. To

preserve non-essential cookies, such as those used by the TempData provider, mark them as essential in your

tests. For instructions on marking a cookie as essential, see Essential cookies.

Web host configuration can be created independently of the test classes by inheriting from 

WebApplicationFactory  to create one or more custom factories:

1. Inherit from WebApplicationFactory  and override ConfigureWebHost. The IWebHostBuilder allows the

configuration of the service collection with ConfigureServices:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.configurewebhost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup.configureservices


public class CustomWebApplicationFactory<TStartup>
    : WebApplicationFactory<TStartup> where TStartup: class
{
    protected override void ConfigureWebHost(IWebHostBuilder builder)
    {
        builder.ConfigureServices(services =>
        {
            var descriptor = services.SingleOrDefault(
                d => d.ServiceType ==
                    typeof(DbContextOptions<ApplicationDbContext>));

            services.Remove(descriptor);

            services.AddDbContext<ApplicationDbContext>(options =>
            {
                options.UseInMemoryDatabase("InMemoryDbForTesting");
            });

            var sp = services.BuildServiceProvider();

            using (var scope = sp.CreateScope())
            {
                var scopedServices = scope.ServiceProvider;
                var db = scopedServices.GetRequiredService<ApplicationDbContext>();
                var logger = scopedServices
                    .GetRequiredService<ILogger<CustomWebApplicationFactory<TStartup>>>();

                db.Database.EnsureCreated();

                try
                {
                    Utilities.InitializeDbForTests(db);
                }
                catch (Exception ex)
                {
                    logger.LogError(ex, "An error occurred seeding the " +
                        "database with test messages. Error: {Message}", ex.Message);
                }
            }
        });
    }
}

Database seeding in the sample app is performed by the InitializeDbForTests  method. The method is

described in the Integration tests sample: Test app organization section.

The SUT's database context is registered in its Startup.ConfigureServices  method. The test app's 

builder.ConfigureServices  callback is executed after the app's Startup.ConfigureServices  code is

executed. The execution order is a breaking change for the Generic Host with the release of ASP.NET Core

3.0. To use a different database for the tests than the app's database, the app's database context must be

replaced in builder.ConfigureServices .

For SUTs that still use the Web Host, the test app's builder.ConfigureServices  callback is executed before

the SUT's Startup.ConfigureServices  code. The test app's builder.ConfigureTestServices  callback is

executed after.

The sample app finds the service descriptor for the database context and uses the descriptor to remove

the service registration. Next, the factory adds a new ApplicationDbContext  that uses an in-memory

database for the tests.

To connect to a different database than the in-memory database, change the UseInMemoryDatabase  call to

connect the context to a different database. To use a SQL Server test database:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples


services.AddDbContext<ApplicationDbContext>((options, context) => 
{
    context.UseSqlServer(
        Configuration.GetConnectionString("TestingDbConnectionString"));
});

public class IndexPageTests : 
    IClassFixture<CustomWebApplicationFactory<RazorPagesProject.Startup>>
{
    private readonly HttpClient _client;
    private readonly CustomWebApplicationFactory<RazorPagesProject.Startup> 
        _factory;

    public IndexPageTests(
        CustomWebApplicationFactory<RazorPagesProject.Startup> factory)
    {
        _factory = factory;
        _client = factory.CreateClient(new WebApplicationFactoryClientOptions
            {
                AllowAutoRedirect = false
            });
    }

[Fact]
public async Task Post_DeleteAllMessagesHandler_ReturnsRedirectToRoot()
{
    // Arrange
    var defaultPage = await _client.GetAsync("/");
    var content = await HtmlHelpers.GetDocumentAsync(defaultPage);

    //Act
    var response = await _client.SendAsync(
        (IHtmlFormElement)content.QuerySelector("form[id='messages']"),
        (IHtmlButtonElement)content.QuerySelector("button[id='deleteAllBtn']"));

    // Assert
    Assert.Equal(HttpStatusCode.OK, defaultPage.StatusCode);
    Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
    Assert.Equal("/", response.Headers.Location.OriginalString);
}

Reference the Microsoft.EntityFrameworkCore.SqlServer NuGet package in the project file.

Call UseSqlServer  with a connection string to the database.

2. Use the custom CustomWebApplicationFactory  in test classes. The following example uses the factory in

the IndexPageTests  class:

The sample app's client is configured to prevent the HttpClient  from following redirects. As explained

later in the Mock authentication section, this permits tests to check the result of the app's first response.

The first response is a redirect in many of these tests with a Location  header.

3. A typical test uses the HttpClient  and helper methods to process the request and the response:

Any POST request to the SUT must satisfy the antiforgery check that's automatically made by the app's data

protection antiforgery system. In order to arrange for a test's POST request, the test app must:

1. Make a request for the page.

2. Parse the antiforgery cookie and request validation token from the response.

3. Make the POST request with the antiforgery cookie and request validation token in place.

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.SqlServer/


NOTENOTE

Customize the client with WithWebHostBuilder

The SendAsync  helper extension methods (Helpers/HttpClientExtensions.cs) and the GetDocumentAsync  helper

method (Helpers/HtmlHelpers.cs) in the sample app use the AngleSharp parser to handle the antiforgery check

with the following methods:

GetDocumentAsync : Receives the HttpResponseMessage and returns an IHtmlDocument . GetDocumentAsync

uses a factory that prepares a virtual response based on the original HttpResponseMessage . For more

information, see the AngleSharp documentation.

SendAsync  extension methods for the HttpClient  compose an HttpRequestMessage and call

SendAsync(HttpRequestMessage) to submit requests to the SUT. Overloads for SendAsync  accept the HTML

form ( IHtmlFormElement ) and the following:

Submit button of the form ( IHtmlElement )

Form values collection ( IEnumerable<KeyValuePair<string, string>> )

Submit button ( IHtmlElement ) and form values ( IEnumerable<KeyValuePair<string, string>> )

AngleSharp is a third-party parsing library used for demonstration purposes in this topic and the sample app.

AngleSharp isn't supported or required for integration testing of ASP.NET Core apps. Other parsers can be used, such as

the Html Agility Pack (HAP). Another approach is to write code to handle the antiforgery system's request verification

token and antiforgery cookie directly.

When additional configuration is required within a test method, WithWebHostBuilder creates a new 

WebApplicationFactory  with an IWebHostBuilder that is further customized by configuration.

The Post_DeleteMessageHandler_ReturnsRedirectToRoot  test method of the sample app demonstrates the use of 

WithWebHostBuilder . This test performs a record delete in the database by triggering a form submission in the

SUT.

Because another test in the IndexPageTests  class performs an operation that deletes all of the records in the

database and may run before the Post_DeleteMessageHandler_ReturnsRedirectToRoot  method, the database is

reseeded in this test method to ensure that a record is present for the SUT to delete. Selecting the first delete

button of the messages  form in the SUT is simulated in the request to the SUT:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples/
https://anglesharp.github.io/
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpresponsemessage
https://github.com/AngleSharp/AngleSharp#documentation
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestmessage
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.sendasync#system_net_http_httpclient_sendasync_system_net_http_httprequestmessage_
https://anglesharp.github.io/
https://html-agility-pack.net/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.withwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples


  

[Fact]
public async Task Post_DeleteMessageHandler_ReturnsRedirectToRoot()
{
    // Arrange
    var client = _factory.WithWebHostBuilder(builder =>
        {
            builder.ConfigureServices(services =>
            {
                var serviceProvider = services.BuildServiceProvider();

                using (var scope = serviceProvider.CreateScope())
                {
                    var scopedServices = scope.ServiceProvider;
                    var db = scopedServices
                        .GetRequiredService<ApplicationDbContext>();
                    var logger = scopedServices
                        .GetRequiredService<ILogger<IndexPageTests>>();

                    try
                    {
                        Utilities.ReinitializeDbForTests(db);
                    }
                    catch (Exception ex)
                    {
                        logger.LogError(ex, "An error occurred seeding " +
                            "the database with test messages. Error: {Message}", 
                            ex.Message);
                    }
                }
            });
        })
        .CreateClient(new WebApplicationFactoryClientOptions
        {
            AllowAutoRedirect = false
        });
    var defaultPage = await client.GetAsync("/");
    var content = await HtmlHelpers.GetDocumentAsync(defaultPage);

    //Act
    var response = await client.SendAsync(
        (IHtmlFormElement)content.QuerySelector("form[id='messages']"),
        (IHtmlButtonElement)content.QuerySelector("form[id='messages']")
            .QuerySelector("div[class='panel-body']")
            .QuerySelector("button"));

    // Assert
    Assert.Equal(HttpStatusCode.OK, defaultPage.StatusCode);
    Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
    Assert.Equal("/", response.Headers.Location.OriginalString);
}

Client options

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

AllowAutoRedirect Gets or sets whether or not 
HttpClient  instances should

automatically follow redirect
responses.

true

The following table shows the default WebApplicationFactoryClientOptions available when creating 

HttpClient  instances.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.allowautoredirect


    

BaseAddress Gets or sets the base address of 
HttpClient  instances.

http://localhost

HandleCookies Gets or sets whether HttpClient

instances should handle cookies.

true

MaxAutomaticRedirections Gets or sets the maximum number of
redirect responses that HttpClient

instances should follow.

7

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

// Default client option values are shown
var clientOptions = new WebApplicationFactoryClientOptions();
clientOptions.AllowAutoRedirect = true;
clientOptions.BaseAddress = new Uri("http://localhost");
clientOptions.HandleCookies = true;
clientOptions.MaxAutomaticRedirections = 7;

_client = _factory.CreateClient(clientOptions);

Inject mock services

public interface IQuoteService
{
    Task<string> GenerateQuote();
}

// Quote ©1975 BBC: The Doctor (Tom Baker); Dr. Who: Planet of Evil
// https://www.bbc.co.uk/programmes/p00pyrx6
public class QuoteService : IQuoteService
{
    public Task<string> GenerateQuote()
    {
        return Task.FromResult<string>(
            "Come on, Sarah. We've an appointment in London, " +
            "and we're already 30,000 years late.");
    }
}

Create the WebApplicationFactoryClientOptions  class and pass it to the CreateClient method (default values are

shown in the code example):

Services can be overridden in a test with a call to ConfigureTestServices on the host builder. To inject mockTo inject mock

ser vices, the SUT must have a ser vices, the SUT must have a Startup  class with a  class with a Startup.ConfigureServices  method. method.

The sample SUT includes a scoped service that returns a quote. The quote is embedded in a hidden field on the

Index page when the Index page is requested.

Services/IQuoteService.cs:

Services/QuoteService.cs:

Startup.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.baseaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.handlecookies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.maxautomaticredirections
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.createclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.webhostbuilderextensions.configuretestservices


services.AddScoped<IQuoteService, QuoteService>();

public class IndexModel : PageModel
{
    private readonly ApplicationDbContext _db;
    private readonly IQuoteService _quoteService;

    public IndexModel(ApplicationDbContext db, IQuoteService quoteService)
    {
        _db = db;
        _quoteService = quoteService;
    }

    [BindProperty]
    public Message Message { get; set; }

    public IList<Message> Messages { get; private set; }

    [TempData]
    public string MessageAnalysisResult { get; set; }

    public string Quote { get; private set; }

    public async Task OnGetAsync()
    {
        Messages = await _db.GetMessagesAsync();

        Quote = await _quoteService.GenerateQuote();
    }

<input id="quote" type="hidden" value="@Model.Quote">

<input id="quote" type="hidden" value="Come on, Sarah. We&#x27;ve an appointment in 
    London, and we&#x27;re already 30,000 years late.">

// Quote ©1975 BBC: The Doctor (Tom Baker); Pyramids of Mars
// https://www.bbc.co.uk/programmes/p00pys55
public class TestQuoteService : IQuoteService
{
    public Task<string> GenerateQuote()
    {
        return Task.FromResult<string>(
            "Something's interfering with time, Mr. Scarman, " +
            "and time is my business.");
    }
}

Pages/Index.cshtml.cs:

Pages/Index.cs:

The following markup is generated when the SUT app is run:

To test the service and quote injection in an integration test, a mock service is injected into the SUT by the test.

The mock service replaces the app's QuoteService  with a service provided by the test app, called 

TestQuoteService :

IntegrationTests.IndexPageTests.cs:



  

[Fact]
public async Task Get_QuoteService_ProvidesQuoteInPage()
{
    // Arrange
    var client = _factory.WithWebHostBuilder(builder =>
        {
            builder.ConfigureTestServices(services =>
            {
                services.AddScoped<IQuoteService, TestQuoteService>();
            });
        })
        .CreateClient();

    //Act
    var defaultPage = await client.GetAsync("/");
    var content = await HtmlHelpers.GetDocumentAsync(defaultPage);
    var quoteElement = content.QuerySelector("#quote");

    // Assert
    Assert.Equal("Something's interfering with time, Mr. Scarman, " +
        "and time is my business.", quoteElement.Attributes["value"].Value);
}

<input id="quote" type="hidden" value="Something&#x27;s interfering with time, 
    Mr. Scarman, and time is my business.">

Mock authentication

services.AddRazorPages(options =>
{
    options.Conventions.AuthorizePage("/SecurePage");
});

ConfigureTestServices  is called, and the scoped service is registered:

The markup produced during the test's execution reflects the quote text supplied by TestQuoteService , thus the

assertion passes:

Tests in the AuthTests  class check that a secure endpoint:

Redirects an unauthenticated user to the app's Login page.

Returns content for an authenticated user.

In the SUT, the /SecurePage  page uses an AuthorizePage convention to apply an AuthorizeFilter to the page. For

more information, see Razor Pages authorization conventions.

In the Get_SecurePageRedirectsAnUnauthenticatedUser  test, a WebApplicationFactoryClientOptions is set to

disallow redirects by setting AllowAutoRedirect to false :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizepage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.allowautoredirect


[Fact]
public async Task Get_SecurePageRedirectsAnUnauthenticatedUser()
{
    // Arrange
    var client = _factory.CreateClient(
        new WebApplicationFactoryClientOptions
        {
            AllowAutoRedirect = false
        });

    // Act
    var response = await client.GetAsync("/SecurePage");

    // Assert
    Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
    Assert.StartsWith("http://localhost/Identity/Account/Login", 
        response.Headers.Location.OriginalString);
}

public class TestAuthHandler : AuthenticationHandler<AuthenticationSchemeOptions>
{
    public TestAuthHandler(IOptionsMonitor<AuthenticationSchemeOptions> options, 
        ILoggerFactory logger, UrlEncoder encoder, ISystemClock clock)
        : base(options, logger, encoder, clock)
    {
    }

    protected override Task<AuthenticateResult> HandleAuthenticateAsync()
    {
        var claims = new[] { new Claim(ClaimTypes.Name, "Test user") };
        var identity = new ClaimsIdentity(claims, "Test");
        var principal = new ClaimsPrincipal(identity);
        var ticket = new AuthenticationTicket(principal, "Test");

        var result = AuthenticateResult.Success(ticket);

        return Task.FromResult(result);
    }
}

By disallowing the client to follow the redirect, the following checks can be made:

The status code returned by the SUT can be checked against the expected HttpStatusCode.Redirect result, not

the final status code after the redirect to the Login page, which would be HttpStatusCode.OK.

The Location  header value in the response headers is checked to confirm that it starts with 

http://localhost/Identity/Account/Login , not the final Login page response, where the Location  header

wouldn't be present.

The test app can mock an AuthenticationHandler<TOptions> in ConfigureTestServices in order to test aspects

of authentication and authorization. A minimal scenario returns an AuthenticateResult.Success:

The TestAuthHandler  is called to authenticate a user when the authentication scheme is set to Test  where 

AddAuthentication  is registered for ConfigureTestServices . It's important for the Test  scheme to match the

scheme your app expects. Otherwise, authentication won't work.

https://docs.microsoft.com/en-us/dotnet/api/system.net.httpstatuscode
https://docs.microsoft.com/en-us/dotnet/api/system.net.httpstatuscode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhandler-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.webhostbuilderextensions.configuretestservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticateresult.success


[Fact]
public async Task Get_SecurePageIsReturnedForAnAuthenticatedUser()
{
    // Arrange
    var client = _factory.WithWebHostBuilder(builder =>
        {
            builder.ConfigureTestServices(services =>
            {
                services.AddAuthentication("Test")
                    .AddScheme<AuthenticationSchemeOptions, TestAuthHandler>(
                        "Test", options => {});
            });
        })
        .CreateClient(new WebApplicationFactoryClientOptions
        {
            AllowAutoRedirect = false,
        });

    client.DefaultRequestHeaders.Authorization = 
        new AuthenticationHeaderValue("Test");

    //Act
    var response = await client.GetAsync("/SecurePage");

    // Assert
    Assert.Equal(HttpStatusCode.OK, response.StatusCode);
}

Set the environment

protected override IHostBuilder CreateHostBuilder() =>
    base.CreateHostBuilder()
        .ConfigureHostConfiguration(
            config => config.AddEnvironmentVariables("ASPNETCORE"));

protected override IWebHostBuilder CreateWebHostBuilder() =>
    base.CreateWebHostBuilder().UseEnvironment("Testing");

How the test infrastructure infers the app content root path

For more information on WebApplicationFactoryClientOptions , see the Client options section.

By default, the SUT's host and app environment is configured to use the Development environment. To override

the SUT's environment when using IHostBuilder :

Set the ASPNETCORE_ENVIRONMENT  environment variable (for example, Staging , Production , or other custom

value, such as Testing ).

Override CreateHostBuilder  in the test app to read environment variables prefixed with ASPNETCORE .

If the SUT uses the Web Host ( IWebHostBuilder ), override CreateWebHostBuilder :

The WebApplicationFactory  constructor infers the app content root path by searching for a

WebApplicationFactoryContentRootAttribute on the assembly containing the integration tests with a key equal

to the TEntryPoint  assembly System.Reflection.Assembly.FullName . In case an attribute with the correct key

isn't found, WebApplicationFactory  falls back to searching for a solution file (.sln) and appends the TEntryPoint

assembly name to the solution directory. The app root directory (the content root path) is used to discover

views and content files.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactorycontentrootattribute


Disable shadow copying

{
  "shadowCopy": false
}

Disposal of objects

Integration tests sample

A P PA P P P RO JEC T  DIREC TO RYP RO JEC T  DIREC TO RY DESC RIP T IO NDESC RIP T IO N

Message app (the SUT) src/RazorPagesProject Allows a user to add, delete one,
delete all, and analyze messages.

Test app tests/RazorPagesProject.Tests Used to integration test the SUT.

dotnet test

Message app (SUT) organizationMessage app (SUT) organization

Shadow copying causes the tests to execute in a different directory than the output directory. For tests to work

properly, shadow copying must be disabled. The sample app uses xUnit and disables shadow copying for xUnit

by including an xunit.runner.json file with the correct configuration setting. For more information, see

Configuring xUnit with JSON.

Add the xunit.runner.json file to root of the test project with the following content:

After the tests of the IClassFixture  implementation are executed, TestServer and HttpClient are disposed when

xUnit disposes of the WebApplicationFactory. If objects instantiated by the developer require disposal, dispose

of them in the IClassFixture  implementation. For more information, see Implementing a Dispose method.

The sample app is composed of two apps:

The tests can be run using the built-in test features of an IDE, such as Visual Studio. If using Visual Studio Code

or the command line, execute the following command at a command prompt in the

tests/RazorPagesProject.Tests directory:

The SUT is a Razor Pages message system with the following characteristics:

The Index page of the app (Pages/Index.cshtml and Pages/Index.cshtml.cs) provides a UI and page model

methods to control the addition, deletion, and analysis of messages (average words per message).

A message is described by the Message  class (Data/Message.cs) with two properties: Id  (key) and Text

(message). The Text  property is required and limited to 200 characters.

Messages are stored using Entity Framework's in-memory database†.

The app contains a data access layer (DAL) in its database context class, AppDbContext

(Data/AppDbContext.cs).

If the database is empty on app startup, the message store is initialized with three messages.

The app includes a /SecurePage  that can only be accessed by an authenticated user.

†The EF topic, Test with InMemory, explains how to use an in-memory database for tests with MSTest. This topic

uses the xUnit test framework. Test concepts and test implementations across different test frameworks are

similar but not identical.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples
https://xunit.github.io/docs/configuring-with-json.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/implementing-dispose
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples
https://visualstudio.microsoft.com
https://code.visualstudio.com/
https://docs.microsoft.com/en-us/ef/core/providers/in-memory/
https://docs.microsoft.com/en-us/ef/core/miscellaneous/testing/in-memory
https://xunit.github.io/


    Test app organizationTest app organization

T EST  A P P  DIREC TO RYT EST  A P P  DIREC TO RY DESC RIP T IO NDESC RIP T IO N

AuthTests Contains test methods for:

BasicTests Contains a test method for routing and content type.

IntegrationTests Contains the integration tests for the Index page using
custom WebApplicationFactory  class.

Helpers/Utilities

Although the app doesn't use the repository pattern and isn't an effective example of the Unit of Work (UoW)

pattern, Razor Pages supports these patterns of development. For more information, see Designing the

infrastructure persistence layer and Test controller logic (the sample implements the repository pattern).

The test app is a console app inside the tests/RazorPagesProject.Tests directory.

Accessing a secure page by an unauthenticated user.

Accessing a secure page by an authenticated user
with a mock AuthenticationHandler<TOptions>.

Obtaining a GitHub user profile and checking the
profile's user login.

Utilities.cs contains the InitializeDbForTests

method used to seed the database with test data.

HtmlHelpers.cs provides a method to return an
AngleSharp IHtmlDocument  for use by the test

methods.

HttpClientExtensions.cs provide overloads for 
SendAsync  to submit requests to the SUT.

The test framework is xUnit. Integration tests are conducted using the Microsoft.AspNetCore.TestHost, which

includes the TestServer. Because the Microsoft.AspNetCore.Mvc.Testing package is used to configure the test

host and test server, the TestHost  and TestServer  packages don't require direct package references in the test

app's project file or developer configuration in the test app.

Seeding the database for testingSeeding the database for testing

Integration tests usually require a small dataset in the database prior to the test execution. For example, a delete

test calls for a database record deletion, so the database must have at least one record for the delete request to

succeed.

The sample app seeds the database with three messages in Utilities.cs that tests can use when they execute:

https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhandler-1
https://xunit.github.io/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing


public static void InitializeDbForTests(ApplicationDbContext db)
{
    db.Messages.AddRange(GetSeedingMessages());
    db.SaveChanges();
}

public static void ReinitializeDbForTests(ApplicationDbContext db)
{
    db.Messages.RemoveRange(db.Messages);
    InitializeDbForTests(db);
}

public static List<Message> GetSeedingMessages()
{
    return new List<Message>()
    {
        new Message(){ Text = "TEST RECORD: You're standing on my scarf." },
        new Message(){ Text = "TEST RECORD: Would you like a jelly baby?" },
        new Message(){ Text = "TEST RECORD: To the rational mind, " +
            "nothing is inexplicable; only unexplained." }
    };
}

NOTENOTE

Introduction to integration tests

The SUT's database context is registered in its Startup.ConfigureServices  method. The test app's 

builder.ConfigureServices  callback is executed after the app's Startup.ConfigureServices  code is executed. To

use a different database for the tests, the app's database context must be replaced in 

builder.ConfigureServices . For more information, see the Customize WebApplicationFactory section.

For SUTs that still use the Web Host, the test app's builder.ConfigureServices  callback is executed before the

SUT's Startup.ConfigureServices  code. The test app's builder.ConfigureTestServices  callback is executed after.

Integration tests ensure that an app's components function correctly at a level that includes the app's

supporting infrastructure, such as the database, file system, and network. ASP.NET Core supports integration

tests using a unit test framework with a test web host and an in-memory test server.

This topic assumes a basic understanding of unit tests. If unfamiliar with test concepts, see the Unit Testing in

.NET Core and .NET Standard topic and its linked content.

View or download sample code (how to download)

The sample app is a Razor Pages app and assumes a basic understanding of Razor Pages. If unfamiliar with

Razor Pages, see the following topics:

Introduction to Razor Pages

Get started with Razor Pages

Razor Pages unit tests

For testing SPAs, we recommended a tool such as Selenium, which can automate a browser.

Integration tests evaluate an app's components on a broader level than unit tests. Unit tests are used to test

isolated software components, such as individual class methods. Integration tests confirm that two or more app

components work together to produce an expected result, possibly including every component required to fully

process a request.

https://docs.microsoft.com/en-us/dotnet/core/testing/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples
https://www.seleniumhq.org/
https://docs.microsoft.com/en-us/dotnet/core/testing/


TIPTIP

NOTENOTE

ASP.NET Core integration tests

These broader tests are used to test the app's infrastructure and whole framework, often including the

following components:

Database

File system

Network appliances

Request-response pipeline

Unit tests use fabricated components, known as fakes or mock objects, in place of infrastructure components.

In contrast to unit tests, integration tests:

Use the actual components that the app uses in production.

Require more code and data processing.

Take longer to run.

Therefore, limit the use of integration tests to the most important infrastructure scenarios. If a behavior can be

tested using either a unit test or an integration test, choose the unit test.

Don't write integration tests for every possible permutation of data and file access with databases and file systems.

Regardless of how many places across an app interact with databases and file systems, a focused set of read, write,

update, and delete integration tests are usually capable of adequately testing database and file system components. Use

unit tests for routine tests of method logic that interact with these components. In unit tests, the use of infrastructure

fakes/mocks result in faster test execution.

In discussions of integration tests, the tested project is frequently called the System Under Test, or "SUT" for short.

"SUT" is used throughout this topic to refer to the tested ASP.NET Core app.

Integration tests in ASP.NET Core require the following:

A test project is used to contain and execute the tests. The test project has a reference to the SUT.

The test project creates a test web host for the SUT and uses a test server client to handle requests and

responses with the SUT.

A test runner is used to execute the tests and report the test results.

Integration tests follow a sequence of events that include the usual Arrange, Act, and Assert test steps:

1. The SUT's web host is configured.

2. A test server client is created to submit requests to the app.

3. The Arrange test step is executed: The test app prepares a request.

4. The Act test step is executed: The client submits the request and receives the response.

5. The Assert test step is executed: The actual response is validated as a pass or fail based on an expected

response.

6. The process continues until all of the tests are executed.

7. The test results are reported.

Usually, the test web host is configured differently than the app's normal web host for the test runs. For



NOTENOTE

Test app prerequisites

SUT environment

Basic tests with the default WebApplicationFactory

example, a different database or different app settings might be used for the tests.

Infrastructure components, such as the test web host and in-memory test server (TestServer), are provided or

managed by the Microsoft.AspNetCore.Mvc.Testing package. Use of this package streamlines test creation and

execution.

The Microsoft.AspNetCore.Mvc.Testing  package handles the following tasks:

Copies the dependencies file (.deps) from the SUT into the test project's bin directory.

Sets the content root to the SUT's project root so that static files and pages/views are found when the tests

are executed.

Provides the WebApplicationFactory class to streamline bootstrapping the SUT with TestServer .

The unit tests documentation describes how to set up a test project and test runner, along with detailed

instructions on how to run tests and recommendations for how to name tests and test classes.

When creating a test project for an app, separate the unit tests from the integration tests into different projects. This

helps ensure that infrastructure testing components aren't accidentally included in the unit tests. Separation of unit and

integration tests also allows control over which set of tests are run.

There's virtually no difference between the configuration for tests of Razor Pages apps and MVC apps. The only

difference is in how the tests are named. In a Razor Pages app, tests of page endpoints are usually named after

the page model class (for example, IndexPageTests  to test component integration for the Index page). In an

MVC app, tests are usually organized by controller classes and named after the controllers they test (for

example, HomeControllerTests  to test component integration for the Home controller).

The test project must:

Reference the following packages:

Specify the Web SDK in the project file ( <Project Sdk="Microsoft.NET.Sdk.Web"> ). The Web SDK is required

when referencing the Microsoft.AspNetCore.App metapackage.

Microsoft.AspNetCore.App

Microsoft.AspNetCore.Mvc.Testing

These prerequisites can be seen in the sample app. Inspect the

tests/RazorPagesProject.Tests/RazorPagesProject.Tests.csproj file. The sample app uses the xUnit test framework

and the AngleSharp parser library, so the sample app also references:

xunit

xunit.runner.visualstudio

AngleSharp

If the SUT's environment isn't set, the environment defaults to Development.

WebApplicationFactory<TEntryPoint> is used to create a TestServer for the integration tests. TEntryPoint  is the

entry point class of the SUT, usually the Startup  class.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test
https://www.nuget.org/packages/Microsoft.AspNetCore.App/
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples/
https://xunit.github.io/
https://anglesharp.github.io/
https://www.nuget.org/packages/xunit/
https://www.nuget.org/packages/xunit.runner.visualstudio/
https://www.nuget.org/packages/AngleSharp/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver


public class BasicTests 
    : IClassFixture<WebApplicationFactory<RazorPagesProject.Startup>>
{
    private readonly WebApplicationFactory<RazorPagesProject.Startup> _factory;

    public BasicTests(WebApplicationFactory<RazorPagesProject.Startup> factory)
    {
        _factory = factory;
    }

    [Theory]
    [InlineData("/")]
    [InlineData("/Index")]
    [InlineData("/About")]
    [InlineData("/Privacy")]
    [InlineData("/Contact")]
    public async Task Get_EndpointsReturnSuccessAndCorrectContentType(string url)
    {
        // Arrange
        var client = _factory.CreateClient();

        // Act
        var response = await client.GetAsync(url);

        // Assert
        response.EnsureSuccessStatusCode(); // Status Code 200-299
        Assert.Equal("text/html; charset=utf-8", 
            response.Content.Headers.ContentType.ToString());
    }
}

Customize WebApplicationFactory

Test classes implement a class fixture interface (IClassFixture) to indicate the class contains tests and provide

shared object instances across the tests in the class.

The following test class, BasicTests , uses the WebApplicationFactory  to bootstrap the SUT and provide an

HttpClient to a test method, Get_EndpointsReturnSuccessAndCorrectContentType . The method checks if the

response status code is successful (status codes in the range 200-299) and the Content-Type  header is 

text/html; charset=utf-8  for several app pages.

CreateClient creates an instance of HttpClient  that automatically follows redirects and handles cookies.

By default, non-essential cookies aren't preserved across requests when the GDPR consent policy is enabled. To

preserve non-essential cookies, such as those used by the TempData provider, mark them as essential in your

tests. For instructions on marking a cookie as essential, see Essential cookies.

Web host configuration can be created independently of the test classes by inheriting from 

WebApplicationFactory  to create one or more custom factories:

1. Inherit from WebApplicationFactory  and override ConfigureWebHost. The IWebHostBuilder allows the

configuration of the service collection with ConfigureServices, which is executed before the app's 

Startup.ConfigureServices . The IWebHostBuilder allows overriding and modifying registered services in

the service collection with ConfigureTestServices:

https://xunit.github.io/docs/shared-context#class-fixture
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.createclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.configurewebhost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup.configureservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.webhostbuilderextensions.configuretestservices


public class CustomWebApplicationFactory<TStartup> 
    : WebApplicationFactory<TStartup> where TStartup: class
{
    protected override void ConfigureWebHost(IWebHostBuilder builder)
    {
        builder.ConfigureServices(services =>
        {
            // Create a new service provider.
            var serviceProvider = new ServiceCollection()
                .AddEntityFrameworkInMemoryDatabase()
                .BuildServiceProvider();

            // Add a database context (ApplicationDbContext) using an in-memory 
            // database for testing.
            services.AddDbContext<ApplicationDbContext>(options => 
            {
                options.UseInMemoryDatabase("InMemoryDbForTesting");
                options.UseInternalServiceProvider(serviceProvider);
            });

            // Build the service provider.
            var sp = services.BuildServiceProvider();

            // Create a scope to obtain a reference to the database
            // context (ApplicationDbContext).
            using (var scope = sp.CreateScope())
            {
                var scopedServices = scope.ServiceProvider;
                var db = scopedServices.GetRequiredService<ApplicationDbContext>();
                var logger = scopedServices
                    .GetRequiredService<ILogger<CustomWebApplicationFactory<TStartup>>>();

                // Ensure the database is created.
                db.Database.EnsureCreated();

                try
                {
                    // Seed the database with test data.
                    Utilities.InitializeDbForTests(db);
                }
                catch (Exception ex)
                {
                    logger.LogError(ex, "An error occurred seeding the database. Error: {Message}", 
ex.Message);
                }
            }
        });
    }
}

Database seeding in the sample app is performed by the InitializeDbForTests  method. The method is

described in the Integration tests sample: Test app organization section.

2. Use the custom CustomWebApplicationFactory  in test classes. The following example uses the factory in

the IndexPageTests  class:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples


public class IndexPageTests : 
    IClassFixture<CustomWebApplicationFactory<RazorPagesProject.Startup>>
{
    private readonly HttpClient _client;
    private readonly CustomWebApplicationFactory<RazorPagesProject.Startup> 
        _factory;

    public IndexPageTests(
        CustomWebApplicationFactory<RazorPagesProject.Startup> factory)
    {
        _factory = factory;
        _client = factory.CreateClient(new WebApplicationFactoryClientOptions
            {
                AllowAutoRedirect = false
            });
    }

[Fact]
public async Task Post_DeleteAllMessagesHandler_ReturnsRedirectToRoot()
{
    // Arrange
    var defaultPage = await _client.GetAsync("/");
    var content = await HtmlHelpers.GetDocumentAsync(defaultPage);

    //Act
    var response = await _client.SendAsync(
        (IHtmlFormElement)content.QuerySelector("form[id='messages']"),
        (IHtmlButtonElement)content.QuerySelector("button[id='deleteAllBtn']"));

    // Assert
    Assert.Equal(HttpStatusCode.OK, defaultPage.StatusCode);
    Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
    Assert.Equal("/", response.Headers.Location.OriginalString);
}

The sample app's client is configured to prevent the HttpClient  from following redirects. As explained

later in the Mock authentication section, this permits tests to check the result of the app's first response.

The first response is a redirect in many of these tests with a Location  header.

3. A typical test uses the HttpClient  and helper methods to process the request and the response:

Any POST request to the SUT must satisfy the antiforgery check that's automatically made by the app's data

protection antiforgery system. In order to arrange for a test's POST request, the test app must:

1. Make a request for the page.

2. Parse the antiforgery cookie and request validation token from the response.

3. Make the POST request with the antiforgery cookie and request validation token in place.

The SendAsync  helper extension methods (Helpers/HttpClientExtensions.cs) and the GetDocumentAsync  helper

method (Helpers/HtmlHelpers.cs) in the sample app use the AngleSharp parser to handle the antiforgery check

with the following methods:

GetDocumentAsync : Receives the HttpResponseMessage and returns an IHtmlDocument . GetDocumentAsync

uses a factory that prepares a virtual response based on the original HttpResponseMessage . For more

information, see the AngleSharp documentation.

SendAsync  extension methods for the HttpClient  compose an HttpRequestMessage and call

SendAsync(HttpRequestMessage) to submit requests to the SUT. Overloads for SendAsync  accept the HTML

form ( IHtmlFormElement ) and the following:

Submit button of the form ( IHtmlElement )

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples/
https://anglesharp.github.io/
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpresponsemessage
https://github.com/AngleSharp/AngleSharp#documentation
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httprequestmessage
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.sendasync#system_net_http_httpclient_sendasync_system_net_http_httprequestmessage_


NOTENOTE

Customize the client with WithWebHostBuilder

Form values collection ( IEnumerable<KeyValuePair<string, string>> )

Submit button ( IHtmlElement ) and form values ( IEnumerable<KeyValuePair<string, string>> )

AngleSharp is a third-party parsing library used for demonstration purposes in this topic and the sample app.

AngleSharp isn't supported or required for integration testing of ASP.NET Core apps. Other parsers can be used, such as

the Html Agility Pack (HAP). Another approach is to write code to handle the antiforgery system's request verification

token and antiforgery cookie directly.

When additional configuration is required within a test method, WithWebHostBuilder creates a new 

WebApplicationFactory  with an IWebHostBuilder that is further customized by configuration.

The Post_DeleteMessageHandler_ReturnsRedirectToRoot  test method of the sample app demonstrates the use of 

WithWebHostBuilder . This test performs a record delete in the database by triggering a form submission in the

SUT.

Because another test in the IndexPageTests  class performs an operation that deletes all of the records in the

database and may run before the Post_DeleteMessageHandler_ReturnsRedirectToRoot  method, the database is

reseeded in this test method to ensure that a record is present for the SUT to delete. Selecting the first delete

button of the messages  form in the SUT is simulated in the request to the SUT:

https://anglesharp.github.io/
https://html-agility-pack.net/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.withwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples


[Fact]
public async Task Post_DeleteMessageHandler_ReturnsRedirectToRoot()
{
    // Arrange
    var client = _factory.WithWebHostBuilder(builder =>
        {
            builder.ConfigureServices(services =>
            {
                var serviceProvider = services.BuildServiceProvider();

                using (var scope = serviceProvider.CreateScope())
                {
                    var scopedServices = scope.ServiceProvider;
                    var db = scopedServices
                        .GetRequiredService<ApplicationDbContext>();
                    var logger = scopedServices
                        .GetRequiredService<ILogger<IndexPageTests>>();

                    try
                    {
                        Utilities.ReinitializeDbForTests(db);
                    }
                    catch (Exception ex)
                    {
                        logger.LogError(ex, "An error occurred seeding " +
                            "the database with test messages. Error: {Message}" +
                            ex.Message);
                    }
                }
            });
        })
        .CreateClient(new WebApplicationFactoryClientOptions
        {
            AllowAutoRedirect = false
        });
    var defaultPage = await client.GetAsync("/");
    var content = await HtmlHelpers.GetDocumentAsync(defaultPage);

    //Act
    var response = await client.SendAsync(
        (IHtmlFormElement)content.QuerySelector("form[id='messages']"),
        (IHtmlButtonElement)content.QuerySelector("form[id='messages']")
            .QuerySelector("div[class='panel-body']")
            .QuerySelector("button"));

    // Assert
    Assert.Equal(HttpStatusCode.OK, defaultPage.StatusCode);
    Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
    Assert.Equal("/", response.Headers.Location.OriginalString);
}

Client options

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

AllowAutoRedirect Gets or sets whether or not 
HttpClient  instances should

automatically follow redirect
responses.

true

The following table shows the default WebApplicationFactoryClientOptions available when creating 

HttpClient  instances.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.allowautoredirect


BaseAddress Gets or sets the base address of 
HttpClient  instances.

http://localhost

HandleCookies Gets or sets whether HttpClient

instances should handle cookies.

true

MaxAutomaticRedirections Gets or sets the maximum number of
redirect responses that HttpClient

instances should follow.

7

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

// Default client option values are shown
var clientOptions = new WebApplicationFactoryClientOptions();
clientOptions.AllowAutoRedirect = true;
clientOptions.BaseAddress = new Uri("http://localhost");
clientOptions.HandleCookies = true;
clientOptions.MaxAutomaticRedirections = 7;

_client = _factory.CreateClient(clientOptions);

Inject mock services

public interface IQuoteService
{
    Task<string> GenerateQuote();
}

// Quote ©1975 BBC: The Doctor (Tom Baker); Dr. Who: Planet of Evil
// https://www.bbc.co.uk/programmes/p00pyrx6
public class QuoteService : IQuoteService
{
    public Task<string> GenerateQuote()
    {
        return Task.FromResult<string>(
            "Come on, Sarah. We've an appointment in London, " +
            "and we're already 30,000 years late.");
    }
}

Create the WebApplicationFactoryClientOptions  class and pass it to the CreateClient method (default values are

shown in the code example):

Services can be overridden in a test with a call to ConfigureTestServices on the host builder. To inject mockTo inject mock

ser vices, the SUT must have a ser vices, the SUT must have a Startup  class with a  class with a Startup.ConfigureServices  method. method.

The sample SUT includes a scoped service that returns a quote. The quote is embedded in a hidden field on the

Index page when the Index page is requested.

Services/IQuoteService.cs:

Services/QuoteService.cs:

Startup.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.baseaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.handlecookies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.maxautomaticredirections
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.createclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.webhostbuilderextensions.configuretestservices


services.AddScoped<IQuoteService, QuoteService>();

public class IndexModel : PageModel
{
    private readonly ApplicationDbContext _db;
    private readonly IQuoteService _quoteService;

    public IndexModel(ApplicationDbContext db, IQuoteService quoteService)
    {
        _db = db;
        _quoteService = quoteService;
    }

    [BindProperty]
    public Message Message { get; set; }

    public IList<Message> Messages { get; private set; }

    [TempData]
    public string MessageAnalysisResult { get; set; }

    public string Quote { get; private set; }

    public async Task OnGetAsync()
    {
        Messages = await _db.GetMessagesAsync();

        Quote = await _quoteService.GenerateQuote();
    }

<input id="quote" type="hidden" value="@Model.Quote">

<input id="quote" type="hidden" value="Come on, Sarah. We&#x27;ve an appointment in 
    London, and we&#x27;re already 30,000 years late.">

// Quote ©1975 BBC: The Doctor (Tom Baker); Pyramids of Mars
// https://www.bbc.co.uk/programmes/p00pys55
public class TestQuoteService : IQuoteService
{
    public Task<string> GenerateQuote()
    {
        return Task.FromResult<string>(
            "Something's interfering with time, Mr. Scarman, " +
            "and time is my business.");
    }
}

Pages/Index.cshtml.cs:

Pages/Index.cs:

The following markup is generated when the SUT app is run:

To test the service and quote injection in an integration test, a mock service is injected into the SUT by the test.

The mock service replaces the app's QuoteService  with a service provided by the test app, called 

TestQuoteService :

IntegrationTests.IndexPageTests.cs:



[Fact]
public async Task Get_QuoteService_ProvidesQuoteInPage()
{
    // Arrange
    var client = _factory.WithWebHostBuilder(builder =>
        {
            builder.ConfigureTestServices(services =>
            {
                services.AddScoped<IQuoteService, TestQuoteService>();
            });
        })
        .CreateClient();

    //Act
    var defaultPage = await client.GetAsync("/");
    var content = await HtmlHelpers.GetDocumentAsync(defaultPage);
    var quoteElement = content.QuerySelector("#quote");

    // Assert
    Assert.Equal("Something's interfering with time, Mr. Scarman, " +
        "and time is my business.", quoteElement.Attributes["value"].Value);
}

<input id="quote" type="hidden" value="Something&#x27;s interfering with time, 
    Mr. Scarman, and time is my business.">

Mock authentication

services.AddMvc()
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
    .AddRazorPagesOptions(options =>
    {
        options.Conventions.AuthorizePage("/SecurePage");
    });

ConfigureTestServices  is called, and the scoped service is registered:

The markup produced during the test's execution reflects the quote text supplied by TestQuoteService , thus the

assertion passes:

Tests in the AuthTests  class check that a secure endpoint:

Redirects an unauthenticated user to the app's Login page.

Returns content for an authenticated user.

In the SUT, the /SecurePage  page uses an AuthorizePage convention to apply an AuthorizeFilter to the page. For

more information, see Razor Pages authorization conventions.

In the Get_SecurePageRedirectsAnUnauthenticatedUser  test, a WebApplicationFactoryClientOptions is set to

disallow redirects by setting AllowAutoRedirect to false :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizepage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactoryclientoptions.allowautoredirect


[Fact]
public async Task Get_SecurePageRedirectsAnUnauthenticatedUser()
{
    // Arrange
    var client = _factory.CreateClient(
        new WebApplicationFactoryClientOptions
        {
            AllowAutoRedirect = false
        });

    // Act
    var response = await client.GetAsync("/SecurePage");

    // Assert
    Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);
    Assert.StartsWith("http://localhost/Identity/Account/Login", 
        response.Headers.Location.OriginalString);
}

public class TestAuthHandler : AuthenticationHandler<AuthenticationSchemeOptions>
{
    public TestAuthHandler(IOptionsMonitor<AuthenticationSchemeOptions> options, 
        ILoggerFactory logger, UrlEncoder encoder, ISystemClock clock)
        : base(options, logger, encoder, clock)
    {
    }

    protected override Task<AuthenticateResult> HandleAuthenticateAsync()
    {
        var claims = new[] { new Claim(ClaimTypes.Name, "Test user") };
        var identity = new ClaimsIdentity(claims, "Test");
        var principal = new ClaimsPrincipal(identity);
        var ticket = new AuthenticationTicket(principal, "Test");

        var result = AuthenticateResult.Success(ticket);

        return Task.FromResult(result);
    }
}

By disallowing the client to follow the redirect, the following checks can be made:

The status code returned by the SUT can be checked against the expected HttpStatusCode.Redirect result, not

the final status code after the redirect to the Login page, which would be HttpStatusCode.OK.

The Location  header value in the response headers is checked to confirm that it starts with 

http://localhost/Identity/Account/Login , not the final Login page response, where the Location  header

wouldn't be present.

The test app can mock an AuthenticationHandler<TOptions> in ConfigureTestServices in order to test aspects

of authentication and authorization. A minimal scenario returns an AuthenticateResult.Success:

The TestAuthHandler  is called to authenticate a user when the authentication scheme is set to Test  where 

AddAuthentication  is registered for ConfigureTestServices :

https://docs.microsoft.com/en-us/dotnet/api/system.net.httpstatuscode
https://docs.microsoft.com/en-us/dotnet/api/system.net.httpstatuscode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhandler-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.webhostbuilderextensions.configuretestservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticateresult.success


[Fact]
public async Task Get_SecurePageIsReturnedForAnAuthenticatedUser()
{
    // Arrange
    var client = _factory.WithWebHostBuilder(builder =>
        {
            builder.ConfigureTestServices(services =>
            {
                services.AddAuthentication("Test")
                    .AddScheme<AuthenticationSchemeOptions, TestAuthHandler>(
                        "Test", options => {});
            });
        })
        .CreateClient(new WebApplicationFactoryClientOptions
        {
            AllowAutoRedirect = false,
        });

    client.DefaultRequestHeaders.Authorization = 
        new AuthenticationHeaderValue("Test");

    //Act
    var response = await client.GetAsync("/SecurePage");

    // Assert
    Assert.Equal(HttpStatusCode.OK, response.StatusCode);
}

Set the environment

public class CustomWebApplicationFactory<TStartup> 
    : WebApplicationFactory<TStartup> where TStartup: class
{
    protected override IWebHostBuilder CreateWebHostBuilder()
    {
        return base.CreateWebHostBuilder()
            .UseEnvironment(
                Environment.GetEnvironmentVariable("ASPNETCORE_ENVIRONMENT"));
    }

    ...
}

For more information on WebApplicationFactoryClientOptions , see the Client options section.

By default, the SUT's host and app environment is configured to use the Development environment. To override

the SUT's environment:

Set the ASPNETCORE_ENVIRONMENT  environment variable (for example, Staging , Production , or other custom

value, such as Testing ).

Override CreateWebHostBuilder  in the test app to read the ASPNETCORE_ENVIRONMENT  environment variable.

The environment can also be set directly on the host builder in a custom WebApplicationFactory<TEntryPoint>:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1


public class CustomWebApplicationFactory<TStartup> 
    : WebApplicationFactory<TStartup> where TStartup: class
{
    protected override void ConfigureWebHost(IWebHostBuilder builder)
    {
        builder.UseEnvironment(
            Environment.GetEnvironmentVariable("ASPNETCORE_ENVIRONMENT"));

        ...
    }

    ...

How the test infrastructure infers the app content root path

Disable shadow copying

{
  "shadowCopy": false
}

<ItemGroup>
  <Content Update="xunit.runner.json">
    <CopyToOutputDirectory>Always</CopyToOutputDirectory>
  </Content>
</ItemGroup>

Disposal of objects

Integration tests sample

The WebApplicationFactory  constructor infers the app content root path by searching for a

WebApplicationFactoryContentRootAttribute on the assembly containing the integration tests with a key equal

to the TEntryPoint  assembly System.Reflection.Assembly.FullName . In case an attribute with the correct key

isn't found, WebApplicationFactory  falls back to searching for a solution file (.sln) and appends the TEntryPoint

assembly name to the solution directory. The app root directory (the content root path) is used to discover

views and content files.

Shadow copying causes the tests to execute in a different directory than the output directory. For tests to work

properly, shadow copying must be disabled. The sample app uses xUnit and disables shadow copying for xUnit

by including an xunit.runner.json file with the correct configuration setting. For more information, see

Configuring xUnit with JSON.

Add the xunit.runner.json file to root of the test project with the following content:

If using Visual Studio, set the file's Copy to Output Director yCopy to Output Director y  property to Copy alwaysCopy always . If not using Visual

Studio, add a Content  target to the test app's project file:

After the tests of the IClassFixture  implementation are executed, TestServer and HttpClient are disposed when

xUnit disposes of the WebApplicationFactory. If objects instantiated by the developer require disposal, dispose

of them in the IClassFixture  implementation. For more information, see Implementing a Dispose method.

The sample app is composed of two apps:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactorycontentrootattribute
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples
https://xunit.github.io/docs/configuring-with-json.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/implementing-dispose
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/test/integration-tests/samples


A P PA P P P RO JEC T  DIREC TO RYP RO JEC T  DIREC TO RY DESC RIP T IO NDESC RIP T IO N

Message app (the SUT) src/RazorPagesProject Allows a user to add, delete one,
delete all, and analyze messages.

Test app tests/RazorPagesProject.Tests Used to integration test the SUT.

dotnet test

Message app (SUT) organizationMessage app (SUT) organization

Test app organizationTest app organization

T EST  A P P  DIREC TO RYT EST  A P P  DIREC TO RY DESC RIP T IO NDESC RIP T IO N

AuthTests Contains test methods for:

BasicTests Contains a test method for routing and content type.

IntegrationTests Contains the integration tests for the Index page using
custom WebApplicationFactory  class.

The tests can be run using the built-in test features of an IDE, such as Visual Studio. If using Visual Studio Code

or the command line, execute the following command at a command prompt in the

tests/RazorPagesProject.Tests directory:

The SUT is a Razor Pages message system with the following characteristics:

The Index page of the app (Pages/Index.cshtml and Pages/Index.cshtml.cs) provides a UI and page model

methods to control the addition, deletion, and analysis of messages (average words per message).

A message is described by the Message  class (Data/Message.cs) with two properties: Id  (key) and Text

(message). The Text  property is required and limited to 200 characters.

Messages are stored using Entity Framework's in-memory database†.

The app contains a data access layer (DAL) in its database context class, AppDbContext

(Data/AppDbContext.cs).

If the database is empty on app startup, the message store is initialized with three messages.

The app includes a /SecurePage  that can only be accessed by an authenticated user.

†The EF topic, Test with InMemory, explains how to use an in-memory database for tests with MSTest. This topic

uses the xUnit test framework. Test concepts and test implementations across different test frameworks are

similar but not identical.

Although the app doesn't use the repository pattern and isn't an effective example of the Unit of Work (UoW)

pattern, Razor Pages supports these patterns of development. For more information, see Designing the

infrastructure persistence layer and Test controller logic (the sample implements the repository pattern).

The test app is a console app inside the tests/RazorPagesProject.Tests directory.

Accessing a secure page by an unauthenticated user.

Accessing a secure page by an authenticated user
with a mock AuthenticationHandler<TOptions>.

Obtaining a GitHub user profile and checking the
profile's user login.

https://visualstudio.microsoft.com
https://code.visualstudio.com/
https://docs.microsoft.com/en-us/ef/core/providers/in-memory/
https://docs.microsoft.com/en-us/ef/core/miscellaneous/testing/in-memory
https://xunit.github.io/
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhandler-1


Helpers/Utilities

T EST  A P P  DIREC TO RYT EST  A P P  DIREC TO RY DESC RIP T IO NDESC RIP T IO N

public static void InitializeDbForTests(ApplicationDbContext db)
{
    db.Messages.AddRange(GetSeedingMessages());
    db.SaveChanges();
}

public static void ReinitializeDbForTests(ApplicationDbContext db)
{
    db.Messages.RemoveRange(db.Messages);
    InitializeDbForTests(db);
}

public static List<Message> GetSeedingMessages()
{
    return new List<Message>()
    {
        new Message(){ Text = "TEST RECORD: You're standing on my scarf." },
        new Message(){ Text = "TEST RECORD: Would you like a jelly baby?" },
        new Message(){ Text = "TEST RECORD: To the rational mind, " +
            "nothing is inexplicable; only unexplained." }
    };
}

Additional resources

Utilities.cs contains the InitializeDbForTests

method used to seed the database with test data.

HtmlHelpers.cs provides a method to return an
AngleSharp IHtmlDocument  for use by the test

methods.

HttpClientExtensions.cs provide overloads for 
SendAsync  to submit requests to the SUT.

The test framework is xUnit. Integration tests are conducted using the Microsoft.AspNetCore.TestHost, which

includes the TestServer. Because the Microsoft.AspNetCore.Mvc.Testing package is used to configure the test

host and test server, the TestHost  and TestServer  packages don't require direct package references in the test

app's project file or developer configuration in the test app.

Seeding the database for testingSeeding the database for testing

Integration tests usually require a small dataset in the database prior to the test execution. For example, a delete

test calls for a database record deletion, so the database must have at least one record for the delete request to

succeed.

The sample app seeds the database with three messages in Utilities.cs that tests can use when they execute:

Unit tests

Razor Pages unit tests in ASP.NET Core

ASP.NET Core Middleware

Test controller logic in ASP.NET Core

https://xunit.github.io/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing
https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test


ASP.NET Core load/stress testing
9/22/2020 • 2 minutes to read • Edit Online

Third-party tools

Load testing and stress testing are important to ensure a web app is performant and scalable. Their goals are

different even though they often share similar tests.

Load testsLoad tests : Test whether the app can handle a specified load of users for a certain scenario while still satisfying the

response goal. The app is run under normal conditions.

Stress testsStress tests : Test app stability when running under extreme conditions, often for a long period of time. The tests

place high user load, either spikes or gradually increasing load, on the app, or they limit the app's computing

resources.

Stress tests determine if an app under stress can recover from failure and gracefully return to expected behavior.

Under stress, the app isn't run under normal conditions.

Visual Studio 2019 announced plans to deprecate the load testing. The corresponding Azure DevOps cloud-based

load testing service has been closed.

The following list contains third-party web performance tools with various feature sets:

Apache JMeter

ApacheBench (ab)

Gatling

k6

Locust

West Wind WebSurge

Netling

Vegeta

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/load-tests.md
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://jmeter.apache.org/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://gatling.io/
https://k6.io
https://locust.io/
https://websurge.west-wind.com/
https://github.com/hallatore/Netling
https://github.com/tsenart/vegeta


        

Troubleshoot and debug ASP.NET Core projects
9/22/2020 • 4 minutes to read • Edit Online

.NET Core SDK warnings
Both the 32-bit and 64-bit versions of the .NET Core SDK are installedBoth the 32-bit and 64-bit versions of the .NET Core SDK are installed

The .NET Core SDK is installed in multiple locationsThe .NET Core SDK is installed in multiple locations

No .NET Core SDKs were detectedNo .NET Core SDKs were detected

By Rick Anderson

The following links provide troubleshooting guidance:

Troubleshoot ASP.NET Core on Azure App Service and IIS

Common errors reference for Azure App Service and IIS with ASP.NET Core

NDC Conference (London, 2018): Diagnosing issues in ASP.NET Core Applications

ASP.NET Blog: Troubleshooting ASP.NET Core Performance Problems

In the New ProjectNew Project dialog for ASP.NET Core, you may see the following warning:

Both 32-bit and 64-bit versions of the .NET Core SDK are installed. Only templates from the 64-bit

versions installed at 'C:\Program Files\dotnet\sdk\' are displayed.

This warning appears when both 32-bit (x86) and 64-bit (x64) versions of the .NET Core SDK are installed.

Common reasons both versions may be installed include:

You originally downloaded the .NET Core SDK installer using a 32-bit machine but then copied it across and

installed it on a 64-bit machine.

The 32-bit .NET Core SDK was installed by another application.

The wrong version was downloaded and installed.

Uninstall the 32-bit .NET Core SDK to prevent this warning. Uninstall from Control PanelControl Panel  > Programs andPrograms and

FeaturesFeatures  > Uninstall or change a programUninstall or change a program. If you understand why the warning occurs and its

implications, you can ignore the warning.

In the New ProjectNew Project dialog for ASP.NET Core, you may see the following warning:

The .NET Core SDK is installed in multiple locations. Only templates from the SDKs installed at 'C:\Program

Files\dotnet\sdk\' are displayed.

You see this message when you have at least one installation of the .NET Core SDK in a directory outside of

C:\Program Files\dotnet\sdk\. Usually this happens when the .NET Core SDK has been deployed on a machine

using copy/paste instead of the MSI installer.

Uninstall all 32-bit .NET Core SDKs and runtimes to prevent this warning. Uninstall from Control PanelControl Panel  >

Programs and FeaturesPrograms and Features  > Uninstall or change a programUninstall or change a program. If you understand why the warning occurs

and its implications, you can ignore the warning.

In the Visual Studio New ProjectNew Project dialog for ASP.NET Core, you may see the following warning:

No .NET Core SDKs were detected, ensure they are included in the environment variable PATH .

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot.md
https://twitter.com/RickAndMSFT
https://www.youtube.com/watch?v=RYI0DHoIVaA
https://blogs.msdn.microsoft.com/webdev/2018/05/23/asp-net-core-performance-improvements/
https://dotnet.microsoft.com/download/dotnet-core


      

          

Missing SDK after installing the .NET Core Hosting BundleMissing SDK after installing the .NET Core Hosting Bundle

Obtain data from an app

public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
    IConfiguration config)
{
    if (env.IsDevelopment())
    {
        app.Run(async (context) =>
        {
            var sb = new StringBuilder();
            var nl = System.Environment.NewLine;
            var rule = string.Concat(nl, new string('-', 40), nl);
            var authSchemeProvider = app.ApplicationServices
                .GetRequiredService<IAuthenticationSchemeProvider>();

            sb.Append($"Request{rule}");
            sb.Append($"{DateTimeOffset.Now}{nl}");
            sb.Append($"{context.Request.Method} {context.Request.Path}{nl}");
            sb.Append($"Scheme: {context.Request.Scheme}{nl}");

When executing a dotnet  command, the warning appears as:

It was not possible to find any installed dotnet SDKs.

These warnings appear when the environment variable PATH  doesn't point to any .NET Core SDKs on the

machine. To resolve this problem:

Install the .NET Core SDK. Obtain the latest installer from .NET Downloads.

Verify that the PATH  environment variable points to the location where the SDK is installed (

C:\Program Files\dotnet\  for 64-bit/x64 or C:\Program Files (x86)\dotnet\  for 32-bit/x86). The SDK

installer normally sets the PATH . Always install the same bitness SDKs and runtimes on the same machine.

Installing the .NET Core Hosting Bundle modifies the PATH  when it installs the .NET Core runtime to point to

the 32-bit (x86) version of .NET Core ( C:\Program Files (x86)\dotnet\ ). This can result in missing SDKs when

the 32-bit (x86) .NET Core dotnet  command is used (No .NET Core SDKs were detected). To resolve this

problem, move C:\Program Files\dotnet\  to a position before C:\Program Files (x86)\dotnet\  on the PATH .

If an app is capable of responding to requests, you can obtain the following data from the app using

middleware:

Request: Method, scheme, host, pathbase, path, query string, headers

Connection: Remote IP address, remote port, local IP address, local port, client certificate

Identity: Name, display name

Configuration settings

Environment variables

Place the following middleware code at the beginning of the Startup.Configure  method's request processing

pipeline. The environment is checked before the middleware is run to ensure that the code is only executed in

the Development environment.

To obtain the environment, use either of the following approaches:

Inject the IHostingEnvironment  into the Startup.Configure  method and check the environment with the

local variable. The following sample code demonstrates this approach.

Assign the environment to a property in the Startup  class. Check the environment using the property

(for example, if (Environment.IsDevelopment()) ).

https://dotnet.microsoft.com/download


            sb.Append($"Scheme: {context.Request.Scheme}{nl}");
            sb.Append($"Host: {context.Request.Headers["Host"]}{nl}");
            sb.Append($"PathBase: {context.Request.PathBase.Value}{nl}");
            sb.Append($"Path: {context.Request.Path.Value}{nl}");
            sb.Append($"Query: {context.Request.QueryString.Value}{nl}{nl}");

            sb.Append($"Connection{rule}");
            sb.Append($"RemoteIp: {context.Connection.RemoteIpAddress}{nl}");
            sb.Append($"RemotePort: {context.Connection.RemotePort}{nl}");
            sb.Append($"LocalIp: {context.Connection.LocalIpAddress}{nl}");
            sb.Append($"LocalPort: {context.Connection.LocalPort}{nl}");
            sb.Append($"ClientCert: {context.Connection.ClientCertificate}{nl}{nl}");

            sb.Append($"Identity{rule}");
            sb.Append($"User: {context.User.Identity.Name}{nl}");
            var scheme = await authSchemeProvider
                .GetSchemeAsync(IISDefaults.AuthenticationScheme);
            sb.Append($"DisplayName: {scheme?.DisplayName}{nl}{nl}");

            sb.Append($"Headers{rule}");
            foreach (var header in context.Request.Headers)
            {
                sb.Append($"{header.Key}: {header.Value}{nl}");
            }
            sb.Append(nl);

            sb.Append($"Websockets{rule}");
            if (context.Features.Get<IHttpUpgradeFeature>() != null)
            {
                sb.Append($"Status: Enabled{nl}{nl}");
            }
            else
            {
                sb.Append($"Status: Disabled{nl}{nl}");
            }

            sb.Append($"Configuration{rule}");
            foreach (var pair in config.AsEnumerable())
            {
                sb.Append($"{pair.Path}: {pair.Value}{nl}");
            }
            sb.Append(nl);

            sb.Append($"Environment Variables{rule}");
            var vars = System.Environment.GetEnvironmentVariables();
            foreach (var key in vars.Keys.Cast<string>().OrderBy(key => key, 
                StringComparer.OrdinalIgnoreCase))
            {
                var value = vars[key];
                sb.Append($"{key}: {value}{nl}");
            }

            context.Response.ContentType = "text/plain";
            await context.Response.WriteAsync(sb.ToString());
        });
    }
}

Debug ASP.NET Core apps
The following links provide information on debugging ASP.NET Core apps.

Debugging ASP Core on Linux

Debugging .NET Core on Unix over SSH

Quickstart: Debug ASP.NET with the Visual Studio debugger

See this GitHub issue for more debugging information.

https://devblogs.microsoft.com/premier-developer/debugging-asp-core-on-linux-with-visual-studio-2017/
https://devblogs.microsoft.com/devops/debugging-net-core-on-unix-over-ssh/
https://docs.microsoft.com/en-us/visualstudio/debugger/quickstart-debug-aspnet
https://github.com/dotnet/AspNetCore.Docs/issues/2960




Logging in .NET Core and ASP.NET Core
9/22/2020 • 57 minutes to read • Edit Online

Logging providers

public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            });
}

By Kirk Larkin, Juergen Gutsch and Rick Anderson

.NET Core supports a logging API that works with a variety of built-in and third-party logging

providers. This article shows how to use the logging API with built-in providers.

Most of the code examples shown in this article are from ASP.NET Core apps. The logging-specific

parts of these code snippets apply to any .NET Core app that uses the Generic Host. The ASP.NET Core

web app templates use the Generic Host.

View or download sample code (how to download)

   

Logging providers store logs, except for the Console  provider which displays logs. For example, the

Azure Application Insights provider stores logs in Azure Application Insights. Multiple providers can be

enabled.

The default ASP.NET Core web app templates:

Use the Generic Host.

Call CreateDefaultBuilder, which adds the following logging providers:

Console

Debug

EventSource

EventLog: Windows only

The preceding code shows the Program  class created with the ASP.NET Core web app templates. The

next several sections provide samples based on the ASP.NET Core web app templates, which use the

Generic Host. Non-host console apps are discussed later in this document.

To override the default set of logging providers added by Host.CreateDefaultBuilder , call 

ClearProviders  and add the required logging providers. For example, the following code:

Calls ClearProviders to remove all the ILoggerProvider instances from the builder.

Adds the Console logging provider.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/logging/index.md
https://twitter.com/serpent5
https://github.com/JuergenGutsch
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/logging/index/samples/3.x
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggingbuilderextensions.clearproviders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerprovider


   

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureLogging(logging =>
        {
            logging.ClearProviders();
            logging.AddConsole();
        })
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseStartup<Startup>();
        });

Create logs

public class AboutModel : PageModel
{
    private readonly ILogger _logger;

    public AboutModel(ILogger<AboutModel> logger)
    {
        _logger = logger;
    }
    public string Message { get; set; }

    public void OnGet()
    {
        Message = $"About page visited at {DateTime.UtcNow.ToLongTimeString()}";
        _logger.LogInformation(Message);
    }
}

Configure logging

For additional providers, see:

Built-in logging providers

Third-party logging providers.

To create logs, use an ILogger<TCategoryName> object from dependency injection (DI).

The following example:

Creates a logger, ILogger<AboutModel> , which uses a log category of the fully qualified name of the

type AboutModel . The log category is a string that is associated with each log.

Calls LogInformation to log at the Information  level. The Log level indicates the severity of the

logged event.

Levels and categories are explained in more detail later in this document.

For information on Blazor, see Create logs in Blazor and Blazor WebAssembly in this document.

Create logs in Main and Startup shows how to create logs in Main  and Startup .

Logging configuration is commonly provided by the Logging  section of appsettings. {Environment}

.json files. The following appsettings.Development.json file is generated by the ASP.NET Core web app

templates:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.loginformation


{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  }
}

{
  "Logging": {
    "LogLevel": { // All providers, LogLevel applies to all the enabled providers.
      "Default": "Error", // Default logging, Error and higher.
      "Microsoft": "Warning" // All Microsoft* categories, Warning and higher.
    },
    "Debug": { // Debug provider.
      "LogLevel": {
        "Default": "Information", // Overrides preceding LogLevel:Default setting.
        "Microsoft.Hosting": "Trace" // Debug:Microsoft.Hosting category.
      }
    },
    "EventSource": { // EventSource provider
      "LogLevel": {
        "Default": "Warning" // All categories of EventSource provider.
      }
    }
  }
}

In the preceding JSON:

The "Default" , "Microsoft" , and "Microsoft.Hosting.Lifetime"  categories are specified.

The "Microsoft"  category applies to all categories that start with "Microsoft" . For example, this

setting applies to the "Microsoft.AspNetCore.Routing.EndpointMiddleware"  category.

The "Microsoft"  category logs at log level Warning  and higher.

The "Microsoft.Hosting.Lifetime"  category is more specific than the "Microsoft"  category, so the 

"Microsoft.Hosting.Lifetime"  category logs at log level "Information" and higher.

A specific log provider is not specified, so LogLevel  applies to all the enabled logging providers

except for the Windows EventLog.

The Logging  property can have LogLevel and log provider properties. The LogLevel  specifies the

minimum level to log for selected categories. In the preceding JSON, Information  and Warning  log

levels are specified. LogLevel  indicates the severity of the log and ranges from 0 to 6:

Trace  = 0, Debug  = 1, Information  = 2, Warning  = 3, Error  = 4, Critical  = 5, and None  = 6.

When a LogLevel  is specified, logging is enabled for messages at the specified level and higher. In the

preceding JSON, the Default  category is logged for Information  and higher. For example, 

Information , Warning , Error , and Critical  messages are logged. If no LogLevel  is specified,

logging defaults to the Information  level. For more information, see Log levels.

A provider property can specify a LogLevel  property. LogLevel  under a provider specifies levels to

log for that provider, and overrides the non-provider log settings. Consider the following

appsettings.json file:

Settings in Logging.{providername}.LogLevel  override settings in Logging.LogLevel . In the preceding

JSON, the Debug  provider's default log level is set to Information :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel


Logging:Debug:LogLevel:Default:Information

The preceding setting specifies the Information  log level for every Logging:Debug:  category except 

Microsoft.Hosting . When a specific category is listed, the specific category overrides the default

category. In the preceding JSON, the Logging:Debug:LogLevel  categories "Microsoft.Hosting"  and 

"Default"  override the settings in Logging:LogLevel

The minimum log level can be specified for any of:

Specific providers: For example, Logging:EventSource:LogLevel:Default:Information

Specific categories: For example, Logging:LogLevel:Microsoft:Warning

All providers and all categories: Logging:LogLevel:Default:Warning

Any logs below the minimum level are notnot:

Passed to the provider.

Logged or displayed.

To suppress all logs, specify LogLevel.None. LogLevel.None  has a value of 6, which is higher than 

LogLevel.Critical  (5).

If a provider supports log scopes, IncludeScopes  indicates whether they're enabled. For more

information, see log scopes

The following appsettings.json file contains all the providers enabled by default:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel


{
  "Logging": {
    "LogLevel": { // No provider, LogLevel applies to all the enabled providers.
      "Default": "Error",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Warning"
    },
    "Debug": { // Debug provider.
      "LogLevel": {
        "Default": "Information" // Overrides preceding LogLevel:Default setting.
      }
    },
    "Console": {
      "IncludeScopes": true,
      "LogLevel": {
        "Microsoft.AspNetCore.Mvc.Razor.Internal": "Warning",
        "Microsoft.AspNetCore.Mvc.Razor.Razor": "Debug",
        "Microsoft.AspNetCore.Mvc.Razor": "Error",
        "Default": "Information"
      }
    },
    "EventSource": {
      "LogLevel": {
        "Microsoft": "Information"
      }
    },
    "EventLog": {
      "LogLevel": {
        "Microsoft": "Information"
      }
    },
    "AzureAppServicesFile": {
      "IncludeScopes": true,
      "LogLevel": {
        "Default": "Warning"
      }
    },
    "AzureAppServicesBlob": {
      "IncludeScopes": true,
      "LogLevel": {
        "Microsoft": "Information"
      }
    },
    "ApplicationInsights": {
      "LogLevel": {
        "Default": "Information"
      }
    }
  }
}

In the preceding sample:

The categories and levels are not suggested values. The sample is provided to show all the default

providers.

Settings in Logging.{providername}.LogLevel  override settings in Logging.LogLevel . For example,

the level in Debug.LogLevel.Default  overrides the level in LogLevel.Default .

Each default provider alias is used. Each provider defines an alias that can be used in configuration

in place of the fully qualified type name. The built-in providers aliases are:

Console

Debug

EventSource



Set log level by command line, environment variables, and other
configuration

set Logging__LogLevel__Microsoft=Information
dotnet run

setx Logging__LogLevel__Microsoft=Information /M

How filtering rules are applied

EventLog

AzureAppServicesFile

AzureAppServicesBlob

ApplicationInsights

Log level can be set by any of the configuration providers.

The :  separator doesn't work with environment variable hierarchical keys on all platforms. __ , the

double underscore, is:

Supported by all platforms. For example, the :  separator is not supported by Bash, but __  is.

Automatically replaced by a :

The following commands:

Set the environment key Logging:LogLevel:Microsoft  to a value of Information  on Windows.

Test the settings when using an app created with the ASP.NET Core web application templates. The 

dotnet run  command must be run in the project directory after using set .

The preceding environment setting:

Is only set in processes launched from the command window they were set in.

Isn't read by browsers launched with Visual Studio.

The following setx command also sets the environment key and value on Windows. Unlike set , setx

settings are persisted. The /M  switch sets the variable in the system environment. If /M  isn't used, a

user environment variable is set.

On Azure App Service, select New application settingNew application setting on the Settings > ConfigurationSettings > Configuration page.

Azure App Service application settings are:

Encrypted at rest and transmitted over an encrypted channel.

Exposed as environment variables.

For more information, see Azure Apps: Override app configuration using the Azure Portal.

For more information on setting ASP.NET Core configuration values using environment variables, see

environment variables. For information on using other configuration sources, including the command

line, Azure Key Vault, Azure App Configuration, other file formats, and more, see Configuration in

ASP.NET Core.

When an ILogger<TCategoryName> object is created, the ILoggerFactory object selects a single rule

per provider to apply to that logger. All messages written by an ILogger  instance are filtered based on

the selected rules. The most specific rule for each provider and category pair is selected from the

https://linuxhint.com/bash-environment-variables/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://azure.microsoft.com/services/app-service/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory


         

Logging output from dotnet run and Visual Studio

Log category

public class PrivacyModel : PageModel
{
    private readonly ILogger<PrivacyModel> _logger;

    public PrivacyModel(ILogger<PrivacyModel> logger)
    {
        _logger = logger;
    }

    public void OnGet()
    {
        _logger.LogInformation("GET Pages.PrivacyModel called.");
    }
}

available rules.

The following algorithm is used for each provider when an ILogger  is created for a given category:

Select all rules that match the provider or its alias. If no match is found, select all rules with an

empty provider.

From the result of the preceding step, select rules with longest matching category prefix. If no

match is found, select all rules that don't specify a category.

If multiple rules are selected, take the lastlast one.

If no rules are selected, use MinimumLevel .

   

Logs created with the default logging providers are displayed:

In Visual Studio

In the console window when the app is run with dotnet run .

In the Debug output window when debugging.

In the ASP.NET Core Web Server window.

Logs that begin with "Microsoft" categories are from ASP.NET Core framework code. ASP.NET Core and

application code use the same logging API and providers.

 

When an ILogger  object is created, a category is specified. That category is included with each log

message created by that instance of ILogger . The category string is arbitrary, but the convention is to

use the class name. For example, in a controller the name might be 

"TodoApi.Controllers.TodoController" . The ASP.NET Core web apps use ILogger<T>  to automatically

get an ILogger  instance that uses the fully qualified type name of T  as the category:

To explicitly specify the category, call ILoggerFactory.CreateLogger :



                     

public class ContactModel : PageModel
{
    private readonly ILogger _logger;

    public ContactModel(ILoggerFactory logger)
    {
        _logger = logger.CreateLogger("MyCategory");
    }

    public void OnGet()
    {
        _logger.LogInformation("GET Pages.ContactModel called.");
    }

Log level

LO GL EVELLO GL EVEL VA L UEVA L UE M ET H O DM ET H O D DESC RIP T IO NDESC RIP T IO N

Trace 0 LogTrace Contain the most
detailed messages. These
messages may contain
sensitive app data. These
messages are disabled by
default and should notnot
be enabled in
production.

Debug 1 LogDebug For debugging and
development. Use with
caution in production
due to the high volume.

Information 2 LogInformation Tracks the general flow of
the app. May have long-
term value.

Warning 3 LogWarning For abnormal or
unexpected events.
Typically includes errors
or conditions that don't
cause the app to fail.

Error 4 LogError For errors and exceptions
that cannot be handled.
These messages indicate
a failure in the current
operation or request, not
an app-wide failure.

Calling CreateLogger  with a fixed name can be useful when used in multiple methods so the events

can be organized by category.

ILogger<T>  is equivalent to calling CreateLogger  with the fully qualified type name of T .

   

The following table lists the LogLevel values, the convenience Log{LogLevel}  extension method, and

the suggested usage:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logtrace
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logdebug
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.loginformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logwarning
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logerror


Critical 5 LogCritical For failures that require
immediate attention.
Examples: data loss
scenarios, out of disk
space.

None 6 Specifies that a logging
category should not
write any messages.

LO GL EVELLO GL EVEL VA L UEVA L UE M ET H O DM ET H O D DESC RIP T IO NDESC RIP T IO N

[HttpGet]
public IActionResult Test1(int id)
{
    var routeInfo = ControllerContext.ToCtxString(id);

    _logger.Log(LogLevel.Information, MyLogEvents.TestItem, routeInfo);
    _logger.LogInformation(MyLogEvents.TestItem, routeInfo);

    return ControllerContext.MyDisplayRouteInfo();
}

[HttpGet("{id}")]
public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
{
    _logger.LogInformation(MyLogEvents.GetItem, "Getting item {Id}", id);

    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        _logger.LogWarning(MyLogEvents.GetItemNotFound, "Get({Id}) NOT FOUND", id);
        return NotFound();
    }

    return ItemToDTO(todoItem);
}

In the previous table, the LogLevel  is listed from lowest to highest severity.

The Log method's first parameter, LogLevel, indicates the severity of the log. Rather than calling 

Log(LogLevel, ...) , most developers call the Log{LogLevel} extension methods. The Log{LogLevel}

extension methods call the Log method and specify the LogLevel. For example, the following two

logging calls are functionally equivalent and produce the same log:

MyLogEvents.TestItem  is the event ID. MyLogEvents  is part of the sample app and is displayed in the

Log event ID section.

MyDisplayRouteInfo and ToCtxString are provided by the Rick.Docs.Samples.RouteInfo NuGet package.

The methods display Controller  route information.

The following code creates Information  and Warning  logs:

In the preceding code, the first Log{LogLevel}  parameter, MyLogEvents.GetItem , is the Log event ID. The

second parameter is a message template with placeholders for argument values provided by the

remaining method parameters. The method parameters are explained in the message template section

later in this document.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logcritical
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions
https://github.com/dotnet/extensions/blob/release/3.1/src/Logging/Logging.Abstractions/src/LoggerExtensions.cs
https://github.com/Rick-Anderson/RouteInfo/blob/master/Microsoft.Docs.Samples.RouteInfo/ControllerContextExtensions.cs
https://www.nuget.org/packages/Rick.Docs.Samples.RouteInfo


info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
      Request starting HTTP/2 GET https://localhost:5001/Privacy
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
      Executing endpoint '/Privacy'
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[3]
      Route matched with {page = "/Privacy"}. Executing page /Privacy
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[101]
      Executing handler method DefaultRP.Pages.PrivacyModel.OnGet - ModelState is Valid
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[102]
      Executed handler method OnGet, returned result .
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[103]
      Executing an implicit handler method - ModelState is Valid
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[104]
      Executed an implicit handler method, returned result 
Microsoft.AspNetCore.Mvc.RazorPages.PageResult.
info: Microsoft.AspNetCore.Mvc.RazorPages.Infrastructure.PageActionInvoker[4]
      Executed page /Privacy in 74.5188ms
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
      Executed endpoint '/Privacy'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
      Request finished in 149.3023ms 200 text/html; charset=utf-8

{
  "Logging": {      // Default, all providers.
    "LogLevel": {
      "Microsoft": "Warning"
    },
    "Console": { // Console provider.
      "LogLevel": {
        "Microsoft": "Information"
      }
    }
  }
}

Call the appropriate Log{LogLevel}  method to control how much log output is written to a particular

storage medium. For example:

In production:

In development:

Logging at the Trace  or Information  levels produces a high-volume of detailed log

messages. To control costs and not exceed data storage limits, log Trace  and Information

level messages to a high-volume, low-cost data store. Consider limiting Trace  and 

Information  to specific categories.

Logging at Warning  through Critical  levels should produce few log messages.

Costs and storage limits usually aren't a concern.

Few logs allow more flexibility in data store choices.

Set to Warning .

Add Trace  or Information  messages when troubleshooting. To limit output, set Trace  or 

Information  only for the categories under investigation.

ASP.NET Core writes logs for framework events. For example, consider the log output for :

A Razor Pages app created with the ASP.NET Core templates.

Logging set to Logging:Console:LogLevel:Microsoft:Information

Navigation to the Privacy page:

The following JSON sets Logging:Console:LogLevel:Microsoft:Information :



   Log event ID

public class MyLogEvents
{
    public const int GenerateItems = 1000;
    public const int ListItems     = 1001;
    public const int GetItem       = 1002;
    public const int InsertItem    = 1003;
    public const int UpdateItem    = 1004;
    public const int DeleteItem    = 1005;

    public const int TestItem      = 3000;

    public const int GetItemNotFound    = 4000;
    public const int UpdateItemNotFound = 4001;
}

[HttpGet("{id}")]
public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
{
    _logger.LogInformation(MyLogEvents.GetItem, "Getting item {Id}", id);

    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        _logger.LogWarning(MyLogEvents.GetItemNotFound, "Get({Id}) NOT FOUND", id);
        return NotFound();
    }

    return ItemToDTO(todoItem);
}

info: TodoApi.Controllers.TodoItemsController[1002]
      Getting item 1
warn: TodoApi.Controllers.TodoItemsController[4000]
      Get(1) NOT FOUND

Log message template

      

Each log can specify an event ID. The sample app uses the MyLogEvents  class to define event IDs:

An event ID associates a set of events. For example, all logs related to displaying a list of items on a

page might be 1001.

The logging provider may store the event ID in an ID field, in the logging message, or not at all. The

Debug provider doesn't show event IDs. The console provider shows event IDs in brackets after the

category:

Some logging providers store the event ID in a field, which allows for filtering on the ID.

      

Each log API uses a message template. The message template can contain placeholders for which

arguments are provided. Use names for the placeholders, not numbers.



[HttpGet("{id}")]
public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
{
    _logger.LogInformation(MyLogEvents.GetItem, "Getting item {Id}", id);

    var todoItem = await _context.TodoItems.FindAsync(id);

    if (todoItem == null)
    {
        _logger.LogWarning(MyLogEvents.GetItemNotFound, "Get({Id}) NOT FOUND", id);
        return NotFound();
    }

    return ItemToDTO(todoItem);
}

string p1 = "param1";
string p2 = "param2";
_logger.LogInformation("Parameter values: {p2}, {p1}", p1, p2);

Parameter values: param1, param2

_logger.LogInformation("Getting item {Id} at {RequestTime}", id, DateTime.Now);

Log exceptions

The order of placeholders, not their names, determines which parameters are used to provide their

values. In the following code, the parameter names are out of sequence in the message template:

The preceding code creates a log message with the parameter values in sequence:

This approach allows logging providers to implement semantic or structured logging. The arguments

themselves are passed to the logging system, not just the formatted message template. This enables

logging providers to store the parameter values as fields. For example, consider the following logger

method:

For example, when logging to Azure Table Storage:

Each Azure Table entity can have ID  and RequestTime  properties.

Tables with properties simplify queries on logged data. For example, a query can find all logs within

a particular RequestTime  range without having to parse the time out of the text message.

The logger methods have overloads that take an exception parameter :

https://github.com/NLog/NLog/wiki/How-to-use-structured-logging


[HttpGet("{id}")]
public IActionResult TestExp(int id)
{
    var routeInfo = ControllerContext.ToCtxString(id);
    _logger.LogInformation(MyLogEvents.TestItem, routeInfo);

    try
    {
        if (id == 3)
        {
            throw new Exception("Test exception");
        }
    }
    catch (Exception ex)
    {
        _logger.LogWarning(MyLogEvents.GetItemNotFound, ex, "TestExp({Id})", id);
        return NotFound();
    }

    return ControllerContext.MyDisplayRouteInfo();
}

Default log levelDefault log level

public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureLogging(logging => logging.SetMinimumLevel(LogLevel.Warning))
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            });
}

Filter functionFilter function

MyDisplayRouteInfo and ToCtxString are provided by the Rick.Docs.Samples.RouteInfo NuGet package.

The methods display Controller  route information.

Exception logging is provider-specific.

If the default log level is not set, the default log level value is Information .

For example, consider the following web app:

Created with the ASP.NET web app templates.

appsettings.json and appsettings.Development.json deleted or renamed.

With the preceding setup, navigating to the privacy or home page produces many Trace , Debug , and 

Information  messages with Microsoft  in the category name.

The following code sets the default log level when the default log level is not set in configuration:

Generally, log levels should be specified in configuration and not code.

A filter function is invoked for all providers and categories that don't have rules assigned to them by

configuration or code:

https://github.com/Rick-Anderson/RouteInfo/blob/master/Microsoft.Docs.Samples.RouteInfo/ControllerContextExtensions.cs
https://www.nuget.org/packages/Rick.Docs.Samples.RouteInfo


public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureLogging(logging =>
            {
                logging.AddFilter((provider, category, logLevel) =>
                {
                    if (provider.Contains("ConsoleLoggerProvider")
                        && category.Contains("Controller")
                        && logLevel >= LogLevel.Information)
                    {
                        return true;
                    }
                    else if (provider.Contains("ConsoleLoggerProvider")
                        && category.Contains("Microsoft")
                        && logLevel >= LogLevel.Information)
                    {
                        return true;
                    }
                    else
                    {
                        return false;
                    }
                });
            })
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            });
}

ASP.NET Core and EF Core categories

C AT EGO RYC AT EGO RY N OT ESN OT ES

Microsoft.AspNetCore General ASP.NET Core diagnostics.

Microsoft.AspNetCore.DataProtection Which keys were considered, found, and used.

Microsoft.AspNetCore.HostFiltering Hosts allowed.

Microsoft.AspNetCore.Hosting How long HTTP requests took to complete and what
time they started. Which hosting startup assemblies
were loaded.

The preceding code displays console logs when the category contains Controller  or Microsoft  and

the log level is Information  or higher.

Generally, log levels should be specified in configuration and not code.

The following table contains some categories used by ASP.NET Core and Entity Framework Core, with

notes about the logs:



         

Microsoft.AspNetCore.Mvc MVC and Razor diagnostics. Model binding, filter
execution, view compilation, action selection.

Microsoft.AspNetCore.Routing Route matching information.

Microsoft.AspNetCore.Server Connection start, stop, and keep alive responses.
HTTPS certificate information.

Microsoft.AspNetCore.StaticFiles Files served.

Microsoft.EntityFrameworkCore General Entity Framework Core diagnostics. Database
activity and configuration, change detection,
migrations.

C AT EGO RYC AT EGO RY N OT ESN OT ES

{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Trace",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  }
}

Log scopes

To view more categories in the console window, set appsettings.Development.jsonappsettings.Development.json to the

following:

      

A scope can group a set of logical operations. This grouping can be used to attach the same data to

each log that's created as part of a set. For example, every log created as part of processing a

transaction can include the transaction ID.

A scope:

Is an IDisposable type that's returned by the BeginScope method.

Lasts until it's disposed.

The following providers support scopes:

Console

AzureAppServicesFile and AzureAppServicesBlob

Use a scope by wrapping logger calls in a using  block:

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger.beginscope
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservices.batchingloggeroptions.includescopes#microsoft_extensions_logging_azureappservices_batchingloggeroptions_includescopes


[HttpGet("{id}")]
public async Task<ActionResult<TodoItemDTO>> GetTodoItem(long id)
{
    TodoItem todoItem;

    using (_logger.BeginScope("using block message"))
    {
        _logger.LogInformation(MyLogEvents.GetItem, "Getting item {Id}", id);

        todoItem = await _context.TodoItems.FindAsync(id);

        if (todoItem == null)
        {
            _logger.LogWarning(MyLogEvents.GetItemNotFound, 
                "Get({Id}) NOT FOUND", id);
            return NotFound();
        }
    }

    return ItemToDTO(todoItem);
}

{
  "Logging": {
    "Debug": {
      "LogLevel": {
        "Default": "Information"
      }
    },
    "Console": {
      "IncludeScopes": true, // Required to use Scopes.
      "LogLevel": {
        "Microsoft": "Warning",
        "Default": "Information"
      }
    },
    "LogLevel": {
      "Default": "Debug"
    }
  }
}

The following JSON enables scopes for the console provider :

The following code enables scopes for the console provider :



             

                          

            

            

public class Scopes
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureLogging((hostingContext, logging) =>
            {
                logging.ClearProviders();
                logging.AddConsole(options => options.IncludeScopes = true);
                logging.AddDebug();
            })
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            });
}

Built-in logging providers

ConsoleConsole

DebugDebug

Event SourceEvent Source

dotnet trace toolingdotnet trace tooling

Generally, logging should be specified in configuration and not code.

   

ASP.NET Core includes the following logging providers as part of the shared framework:

Console

Debug

EventSource

EventLog

The following logging providers are shipped by Microsoft, but not as part of the shared framework.

They must be installed as additional nuget.

AzureAppServicesFile and AzureAppServicesBlob

ApplicationInsights

For information on stdout  and debug logging with the ASP.NET Core Module, see Troubleshoot

ASP.NET Core on Azure App Service and IIS and ASP.NET Core Module.

The Console  provider logs output to the console. For more information on viewing Console  logs in

development, see Logging output from dotnet run and Visual Studio.

The Debug  provider writes log output by using the System.Diagnostics.Debug class. Calls to 

System.Diagnostics.Debug.WriteLine  write to the Debug  provider.

On Linux, the Debug  provider log location is distribution-dependent and may be one of the following:

/var/log/message

/var/log/syslog

The EventSource  provider writes to a cross-platform event source with the name 

Microsoft-Extensions-Logging . On Windows, the provider uses ETW.

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debug
https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal


The dotnet-trace tool is a cross-platform CLI global tool that enables the collection of .NET Core traces

of a running process. The tool collects Microsoft.Extensions.Logging.EventSource provider data using a

LoggingEventSource.

See dotnet-trace for installation instructions.

Use the dotnet trace tooling to collect a trace from an app:

dotnet trace collect -p {PID} 
    --providers Microsoft-Extensions-Logging:{Keyword}:{Provider Level}
        :FilterSpecs=\"
            {Logger Category 1}:{Category Level 1};
            {Logger Category 2}:{Category Level 2};
            ...
            {Logger Category N}:{Category Level N}\"

dotnet trace collect -p {PID} 
    --providers 'Microsoft-Extensions-Logging:{Keyword}:{Provider Level}
        :FilterSpecs=\"
            {Logger Category 1}:{Category Level 1};
            {Logger Category 2}:{Category Level 2};
            ...
            {Logger Category N}:{Category Level N}\"'

KEY W O RDKEY W O RD DESC RIP T IO NDESC RIP T IO N

1 Log meta events about the LoggingEventSource .

Doesn't log events from ILogger .

2 Turns on the Message  event when 

ILogger.Log()  is called. Provides information in a

programmatic (not formatted) way.

1. Run the app with the dotnet run  command.

2. Determine the process identifier (PID) of the .NET Core app:

On Windows, use one of the following approaches:

On Linux, use the pidof command.

Task Manager (Ctrl+Alt+Del)

tasklist command

Get-Process Powershell command

Find the PID for the process that has the same name as the app's assembly.

3. Execute the dotnet trace  command.

General command syntax:

When using a PowerShell command shell, enclose the --providers  value in single quotes ( ' ):

On non-Windows platforms, add the -f speedscope  option to change the format of the output

trace file to speedscope .

The following table defines the Keyword:

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventsource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventsource.loggingeventsource
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/tasklist
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-process
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/pidof.html


4 Turns on the FormatMessage  event when 

ILogger.Log()  is called. Provides the formatted

string version of the information.

8 Turns on the MessageJson  event when 

ILogger.Log()  is called. Provides a JSON

representation of the arguments.

KEY W O RDKEY W O RD DESC RIP T IO NDESC RIP T IO N

P RO VIDER L EVELP RO VIDER L EVEL DESC RIP T IO NDESC RIP T IO N

0 LogAlways

1 Critical

2 Error

3 Warning

4 Informational

5 Verbose

C AT EGO RY  N A M ED VA L UEC AT EGO RY  N A M ED VA L UE N UM ERIC  VA L UEN UM ERIC  VA L UE

Trace 0

Debug 1

Information 2

Warning 3

Error 4

Critical 5

P RO VIDER L EVELP RO VIDER L EVEL C AT EGO RY  L EVELC AT EGO RY  L EVEL

Verbose (5) Debug (1)

The following table lists the provider levels:

The parsing for a category level can be either a string or a number:

The provider level and category level:

Are in reverse order.

The string constants aren't all identical.

If no FilterSpecs  are specified then the EventSourceLogger  implementation attempts to

convert the provider level to a category level and applies it to all categories.



Informational (4) Information (2)

Warning (3) Warning (3)

Error (2) Error (4)

Critical (1) Critical (5)

P RO VIDER L EVELP RO VIDER L EVEL C AT EGO RY  L EVELC AT EGO RY  L EVEL

dotnet trace collect -p %PID% --providers Microsoft-Extensions-Logging:4:5

dotnet trace collect -p %PID%  --providers Microsoft-Extensions-
Logging:4:5:\"FilterSpecs=*:5\"

dotnet trace collect -p %PID%  --providers Microsoft-Extensions-
Logging:4:5:\"FilterSpecs=*:1\"

dotnet trace collect -p %PID%  --providers Microsoft-Extensions-
Logging:4:5:\"FilterSpecs=*:Debug\"

If FilterSpecs  are provided, any category that is included in the list uses the category level

encoded there, all other categories are filtered out.

The following examples assume:

An app is running and calling logger.LogDebug("12345") .

The process ID (PID) has been set via set PID=12345 , where 12345  is the actual PID.

Consider the following command:

The preceding command:

Captures debug messages.

Doesn't apply a FilterSpecs .

Specifies level 5 which maps category Debug.

Consider the following command:

The preceding command:

Doesn't capture debug messages because the category level 5 is Critical .

Provides a FilterSpecs .

The following command captures debug messages because category level 1 specifies Debug .

The following command captures debug messages because category specifies Debug .

FilterSpecs  entries for {Logger Category}  and {Category Level}  represent additional log

filtering conditions. Separate FilterSpecs  entries with the ;  semicolon character.

Example using a Windows command shell:



            PerfviewPerfview

Windows EventLogWindows EventLog

"Logging": {
  "EventLog": {
    "LogLevel": {
      "Default": "Information"
    }
  }
}

dotnet trace collect -p %PID% --providers Microsoft-Extensions-
Logging:4:2:FilterSpecs=\"Microsoft.AspNetCore.Hosting*:4\"

The preceding command activates:

The Event Source logger to produce formatted strings ( 4 ) for errors ( 2 ).

Microsoft.AspNetCore.Hosting  logging at the Informational  logging level ( 4 ).

4. Stop the dotnet trace tooling by pressing the Enter key or Ctrl+C.

The trace is saved with the name trace.nettrace in the folder where the dotnet trace  command

is executed.

5. Open the trace with Perfview. Open the trace.nettrace file and explore the trace events.

If the app doesn't build the host with CreateDefaultBuilder , add the Event Source provider to the

app's logging configuration.

For more information, see:

Trace for performance analysis utility (dotnet-trace) (.NET Core documentation)

Trace for performance analysis utility (dotnet-trace) (dotnet/diagnostics GitHub repository

documentation)

LoggingEventSource Class (.NET API Browser)

EventLevel

LoggingEventSource reference source (3.0): To obtain reference source for a different version,

change the branch to release/{Version} , where {Version}  is the version of ASP.NET Core desired.

Perfview: Useful for viewing Event Source traces.

Use the PerfView utility to collect and view logs. There are other tools for viewing ETW logs, but

PerfView provides the best experience for working with the ETW events emitted by ASP.NET Core.

To configure PerfView for collecting events logged by this provider, add the string 

*Microsoft-Extensions-Logging  to the Additional ProvidersAdditional Providers  list. Don't miss the *  at the start of the

string.

         

The EventLog  provider sends log output to the Windows Event Log. Unlike the other providers, the 

EventLog  provider does notnot inherit the default non-provider settings. If EventLog  log settings aren't

specified, they default to LogLevel.Warning.

To log events lower than LogLevel.Warning, explicitly set the log level. The following example sets the

Event Log default log level to LogLevel.Information:

AddEventLog overloads can pass in EventLogSettings. If null  or not specified, the following default

settings are used:

LogName : "Application"

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventsource.loggingeventsource
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracing.eventlevel
https://github.com/dotnet/extensions/blob/release/3.0/src/Logging/Logging.EventSource/src/LoggingEventSource.cs
https://github.com/Microsoft/perfview
https://github.com/dotnet/extensions/blob/release/3.1/src/Hosting/Hosting/src/Host.cs#L99-L103
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel#microsoft_extensions_logging_loglevel_warning
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel#microsoft_extensions_logging_loglevel_information
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventloggerfactoryextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventlog.eventlogsettings


      

public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureLogging(logging =>
            {
                logging.AddEventLog(eventLogSettings =>
                {
                    eventLogSettings.SourceName = "MyLogs"; 
                });
            })
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            });
}

Azure App ServiceAzure App Service

SourceName : ".NET Runtime"

MachineName : The local machine name is used.

The following code changes the SourceName  from the default value of ".NET Runtime"  to MyLogs :

The Microsoft.Extensions.Logging.AzureAppServices provider package writes logs to text files in an

Azure App Service app's file system and to blob storage in an Azure Storage account.

The provider package isn't included in the shared framework. To use the provider, add the provider

package to the project.

To configure provider settings, use AzureFileLoggerOptions and AzureBlobLoggerOptions, as shown in

the following example:

https://www.nuget.org/packages/Microsoft.Extensions.Logging.AzureAppServices
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet#what-is-blob-storage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservices.azurefileloggeroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservices.azureblobloggeroptions


    

      

public class Scopes
{
    public class Program
    {
        public static void Main(string[] args)
        {
            CreateHostBuilder(args).Build().Run();
        }

        public static IHostBuilder CreateHostBuilder(string[] args) =>
            Host.CreateDefaultBuilder(args)
                .ConfigureLogging(logging => logging.AddAzureWebAppDiagnostics())
                .ConfigureServices(serviceCollection => serviceCollection
                    .Configure<AzureFileLoggerOptions>(options =>
                    {
                        options.FileName = "azure-diagnostics-";
                        options.FileSizeLimit = 50 * 1024;
                        options.RetainedFileCountLimit = 5;
                    })
                    .Configure<AzureBlobLoggerOptions>(options =>
                    {
                        options.BlobName = "log.txt";
                    }))
                .ConfigureWebHostDefaults(webBuilder =>
                {
                    webBuilder.UseStartup<Startup>();
                });
    }
}

Azure log streamingAzure log streaming

Azure Application InsightsAzure Application Insights

When deployed to Azure App Service, the app uses the settings in the App Service logs section of the

App Ser viceApp Ser vice page of the Azure portal. When the following settings are updated, the changes take

effect immediately without requiring a restart or redeployment of the app.

Application Logging (Filesystem)Application Logging (Filesystem)

Application Logging (Blob)Application Logging (Blob)

The default location for log files is in the D:\home\LogFiles\Application folder, and the default file

name is diagnostics-yyyymmdd.txt. The default file size limit is 10 MB, and the default maximum

number of files retained is 2. The default blob name is {app-name}

{timestamp}/yyyy/mm/dd/hh/{guid}-applicationLog.txt.

This provider only logs when the project runs in the Azure environment.

Azure log streaming supports viewing log activity in real time from:

The app server

The web server

Failed request tracing

To configure Azure log streaming:

Navigate to the App Ser vice logsApp Ser vice logs  page from the app's portal page.

Set Application Logging (Filesystem)Application Logging (Filesystem)  to OnOn.

Choose the log LevelLevel . This setting only applies to Azure log streaming.

Navigate to the Log StreamLog Stream page to view logs. The logged messages are logged with the ILogger

interface.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log/#enable-application-logging-windows


                                             Third-party logging providers

Non-host console app

The Microsoft.Extensions.Logging.ApplicationInsights provider package writes logs to Azure

Application Insights. Application Insights is a service that monitors a web app and provides tools for

querying and analyzing the telemetry data. If you use this provider, you can query and analyze your

logs by using the Application Insights tools.

The logging provider is included as a dependency of Microsoft.ApplicationInsights.AspNetCore, which

is the package that provides all available telemetry for ASP.NET Core. If you use this package, you don't

have to install the provider package.

The Microsoft.ApplicationInsights.Web package is for ASP.NET 4.x, not ASP.NET Core.

For more information, see the following resources:

Application Insights overview

Application Insights for ASP.NET Core applications - Start here if you want to implement the full

range of Application Insights telemetry along with logging.

ApplicationInsightsLoggerProvider for .NET Core ILogger logs - Start here if you want to

implement the logging provider without the rest of Application Insights telemetry.

Application Insights logging adapters.

Install, configure, and initialize the Application Insights SDK - Interactive tutorial on the Microsoft

Learn site.

Third-party logging frameworks that work with ASP.NET Core:

elmah.io (GitHub repo)

Gelf (GitHub repo)

JSNLog (GitHub repo)

KissLog.net (GitHub repo)

Log4Net (GitHub repo)

Loggr (GitHub repo)

NLog (GitHub repo)

PLogger (GitHub repo)

Sentry (GitHub repo)

Serilog (GitHub repo)

Stackdriver (Github repo)

Some third-party frameworks can perform semantic logging, also known as structured logging.

Using a third-party framework is similar to using one of the built-in providers:

1. Add a NuGet package to your project.

2. Call an ILoggerFactory  extension method provided by the logging framework.

For more information, see each provider's documentation. Third-party logging providers aren't

supported by Microsoft.

   

For an example of how to use the Generic Host in a non-web console app, see the Program.cs file of

the Background Tasks sample app (Background tasks with hosted services in ASP.NET Core).

Logging code for apps without Generic Host differs in the way providers are added and loggers are

created.

https://www.nuget.org/packages/Microsoft.Extensions.Logging.ApplicationInsights
https://docs.microsoft.com/en-us/azure/azure-monitor/app/cloudservices
https://www.nuget.org/packages/Microsoft.ApplicationInsights.AspNetCore
https://www.nuget.org/packages/Microsoft.ApplicationInsights.Web
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core
https://docs.microsoft.com/en-us/azure/azure-monitor/app/ilogger
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-trace-logs
https://docs.microsoft.com/en-us/learn/modules/instrument-web-app-code-with-application-insights
https://elmah.io/
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://docs.graylog.org/en/2.3/pages/gelf.html
https://github.com/mattwcole/gelf-extensions-logging
https://jsnlog.com/
https://github.com/mperdeck/jsnlog
https://kisslog.net/
https://github.com/catalingavan/KissLog-net
https://logging.apache.org/log4net/
https://github.com/huorswords/Microsoft.Extensions.Logging.Log4Net.AspNetCore
https://loggr.net/
https://github.com/imobile3/Loggr.Extensions.Logging
https://nlog-project.org/
https://github.com/NLog/NLog.Extensions.Logging
https://www.nuget.org/packages/InvertedSoftware.PLogger.Core/
https://github.com/invertedsoftware/InvertedSoftware.PLogger.Core
https://sentry.io/welcome/
https://github.com/getsentry/sentry-dotnet
https://serilog.net/
https://github.com/serilog/serilog-aspnetcore
https://cloud.google.com/dotnet/docs/stackdriver#logging
https://github.com/googleapis/google-cloud-dotnet
https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/hosted-services/samples


Logging providersLogging providers

class Program
{
    static void Main(string[] args)
    {
        using var loggerFactory = LoggerFactory.Create(builder =>
        {
            builder
                .AddFilter("Microsoft", LogLevel.Warning)
                .AddFilter("System", LogLevel.Warning)
                .AddFilter("LoggingConsoleApp.Program", LogLevel.Debug)
                .AddConsole()
                .AddEventLog();
        });
        ILogger logger = loggerFactory.CreateLogger<Program>();
        logger.LogInformation("Example log message");
    }
}

Create logsCreate logs

class Program
{
    static void Main(string[] args)
    {
        using var loggerFactory = LoggerFactory.Create(builder =>
        {
            builder
                .AddFilter("Microsoft", LogLevel.Warning)
                .AddFilter("System", LogLevel.Warning)
                .AddFilter("LoggingConsoleApp.Program", LogLevel.Debug)
                .AddConsole()
                .AddEventLog();
        });
        ILogger logger = loggerFactory.CreateLogger<Program>();
        logger.LogInformation("Example log message");
    }
}

In a non-host console app, call the provider's Add{provider name}  extension method while creating a 

LoggerFactory :

To create logs, use an ILogger<TCategoryName> object. Use the LoggerFactory  to create an ILogger .

The following example creates a logger with LoggingConsoleApp.Program  as the category.

In the following example, the logger is used to create logs with Information  as the level. The Log level

indicates the severity of the logged event.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1


class Program
{
    static void Main(string[] args)
    {
        using var loggerFactory = LoggerFactory.Create(builder =>
        {
            builder
                .AddFilter("Microsoft", LogLevel.Warning)
                .AddFilter("System", LogLevel.Warning)
                .AddFilter("LoggingConsoleApp.Program", LogLevel.Debug)
                .AddConsole()
                .AddEventLog();
        });
        ILogger logger = loggerFactory.CreateLogger<Program>();
        logger.LogInformation("Example log message");
    }
}

Log during host construction

Levels and categories are explained in more detail in this document.

 

Logging during host construction isn't directly supported. However, a separate logger can be used. In

the following example, a Serilog logger is used to log in CreateHostBuilder . AddSerilog  uses the

static configuration specified in Log.Logger :

https://serilog.net/


using System;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;

public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args)
    {
        var builtConfig = new ConfigurationBuilder()
            .AddJsonFile("appsettings.json")
            .AddCommandLine(args)
            .Build();

        Log.Logger = new LoggerConfiguration()
            .WriteTo.Console()
            .WriteTo.File(builtConfig["Logging:FilePath"])
            .CreateLogger();

        try
        {
            return Host.CreateDefaultBuilder(args)
                .ConfigureServices((context, services) =>
                {
                    services.AddRazorPages();
                })
                .ConfigureAppConfiguration((hostingContext, config) =>
                {
                    config.AddConfiguration(builtConfig);
                })
                .ConfigureLogging(logging =>
                {   
                    logging.AddSerilog();
                })
                .ConfigureWebHostDefaults(webBuilder =>
                {
                    webBuilder.UseStartup<Startup>();
                });
        }
        catch (Exception ex)
        {
            Log.Fatal(ex, "Host builder error");

            throw;
        }
        finally
        {
            Log.CloseAndFlush();
        }
    }
}

Configure a service that depends on ILogger
   

Constructor injection of a logger into Startup  works in earlier versions of ASP.NET Core because a

separate DI container is created for the Web Host. For information about why only one container is

created for the Generic Host, see the breaking change announcement.

https://github.com/aspnet/Announcements/issues/353


    

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllers();
    services.AddRazorPages();

    services.AddSingleton<IMyService>((container) =>
    {
        var logger = container.GetRequiredService<ILogger<MyService>>();
        return new MyService() { Logger = logger };
    });
}

Create logs in Main

public static void Main(string[] args)
{
    var host = CreateHostBuilder(args).Build();

    var logger = host.Services.GetRequiredService<ILogger<Program>>();
    logger.LogInformation("Host created.");

    host.Run();
}

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseStartup<Startup>();
        });

Create logs in StartupCreate logs in Startup

To configure a service that depends on ILogger<T> , use constructor injection or provide a factory

method. The factory method approach is recommended only if there is no other option. For example,

consider a service that needs an ILogger<T>  instance provided by DI:

The preceding highlighted code is a Func that runs the first time the DI container needs to construct an

instance of MyService . You can access any of the registered services in this way.

   

The following code logs in Main  by getting an ILogger  instance from DI after building the host:

The following code writes logs in Startup.Configure :

https://docs.microsoft.com/en-us/dotnet/api/system.func-2


public void Configure(IApplicationBuilder app, IWebHostEnvironment env,
                      ILogger<Startup> logger)
{
    if (env.IsDevelopment())
    {
        logger.LogInformation("In Development.");
        app.UseDeveloperExceptionPage();
    }
    else
    {
        logger.LogInformation("Not Development.");
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
        endpoints.MapRazorPages();
    });
}

No asynchronous logger methodsNo asynchronous logger methods

Change log levels in a running app

Writing logs before completion of the DI container setup in the Startup.ConfigureServices  method is

not supported:

Logger injection into the Startup  constructor is not supported.

Logger injection into the Startup.ConfigureServices  method signature is not supported

The reason for this restriction is that logging depends on DI and on configuration, which in turns

depends on DI. The DI container isn't set up until ConfigureServices  finishes.

For information on configuring a service that depends on ILogger<T>  or why constructor injection of

a logger into Startup  worked in earlier versions, see Configure a service that depends on ILogger

Logging should be so fast that it isn't worth the performance cost of asynchronous code. If a logging

data store is slow, don't write to it directly. Consider writing the log messages to a fast store initially,

then moving them to the slow store later. For example, when logging to SQL Server, don't do so

directly in a Log  method, since the Log  methods are synchronous. Instead, synchronously add log

messages to an in-memory queue and have a background worker pull the messages out of the queue

to do the asynchronous work of pushing data to SQL Server. For more information, see this GitHub

issue.

   

The Logging API doesn't include a scenario to change log levels while an app is running. However,

some configuration providers are capable of reloading configuration, which takes immediate effect on

logging configuration. For example, the File Configuration Provider, reloads logging configuration by

default. If configuration is changed in code while an app is running, the app can call

IConfigurationRoot.Reload to update the app's logging configuration.

https://github.com/dotnet/AspNetCore.Docs/issues/11801
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationroot.reload


ILogger and ILoggerFactory

Apply log filter rules in code

public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureLogging(logging =>
               logging.AddFilter("System", LogLevel.Debug)
                  .AddFilter<DebugLoggerProvider>("Microsoft", LogLevel.Information)
                  .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            });
}

Create a custom logger

public void Configure(
    IApplicationBuilder app,
    IWebHostEnvironment env,
    ILoggerFactory loggerFactory)
{
    loggerFactory.AddProvider(new CustomLoggerProvider(new CustomLoggerConfiguration()));

Sample custom logger configurationSample custom logger configuration

The ILogger<TCategoryName> and ILoggerFactory interfaces and implementations are included in

the .NET Core SDK. They are also available in the following NuGet packages:

The interfaces are in Microsoft.Extensions.Logging.Abstractions.

The default implementations are in Microsoft.Extensions.Logging.

 

The preferred approach for setting log filter rules is by using Configuration.

The following example shows how to register filter rules in code:

logging.AddFilter("System", LogLevel.Debug)  specifies the System  category and log level Debug . The

filter is applied to all providers because a specific provider was not configured.

AddFilter<DebugLoggerProvider>("Microsoft", LogLevel.Information)  specifies:

The Debug  logging provider.

Log level Information  and higher.

All categories starting with "Microsoft" .

To add a custom logger, add an ILoggerProvider with ILoggerFactory:

The ILoggerProvider  creates one or more ILogger  instances. The ILogger  instances are used by the

framework to log the information.

The sample:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory
https://www.nuget.org/packages/Microsoft.Extensions.Logging.Abstractions/
https://www.nuget.org/packages/microsoft.extensions.logging/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory


public class ColorConsoleLoggerConfiguration
{
    public LogLevel LogLevel { get; set; } = LogLevel.Warning;
    public int EventId { get; set; } = 0;
    public ConsoleColor Color { get; set; } = ConsoleColor.Yellow;
}

Create the custom loggerCreate the custom logger

public class ColorConsoleLogger : ILogger
{
    private readonly string _name;
    private readonly ColorConsoleLoggerConfiguration _config;

    public ColorConsoleLogger(string name, ColorConsoleLoggerConfiguration config)
    {
        _name = name;
        _config = config;
    }

    public IDisposable BeginScope<TState>(TState state)
    {
        return null;
    }

    public bool IsEnabled(LogLevel logLevel)
    {
        return logLevel == _config.LogLevel;
    }

    public void Log<TState>(LogLevel logLevel, EventId eventId, TState state, 
                        Exception exception, Func<TState, Exception, string> formatter)
    {
        if (!IsEnabled(logLevel))
        {
            return;
        }

        if (_config.EventId == 0 || _config.EventId == eventId.Id)
        {
            var color = Console.ForegroundColor;
            Console.ForegroundColor = _config.Color;
            Console.WriteLine($"{logLevel} - {eventId.Id} " +
                              $"- {_name} - {formatter(state, exception)}");
            Console.ForegroundColor = color;
        }
    }
}

Is designed to be a very basic sample that sets the color of the log console by event ID and log

level. Loggers generally don't change by event ID and are not specific to log level.

Creates different color console entries per log level and event ID using the following configuration

type:

The preceding code sets the default level to Warning  and the color to Yellow . If the EventId  is set to

0, we will log all events.

The ILogger  implementation category name is typically the logging source. For example, the type

where the logger is created:

The preceding code:

Creates a logger instance per category name.



public bool IsEnabled(LogLevel logLevel)
{
    return logLevel >= _config.LogLevel;
}

Create the custom LoggerProviderCreate the custom LoggerProvider

public class ColorConsoleLoggerProvider : ILoggerProvider
{
    private readonly ColorConsoleLoggerConfiguration _config;
    private readonly ConcurrentDictionary<string, ColorConsoleLogger> _loggers = new 
ConcurrentDictionary<string, ColorConsoleLogger>();

    public ColorConsoleLoggerProvider(ColorConsoleLoggerConfiguration config)
    {
        _config = config;
    }

    public ILogger CreateLogger(string categoryName)
    {
        return _loggers.GetOrAdd(categoryName, name => new ColorConsoleLogger(name, _config));
    }

    public void Dispose()
    {
        _loggers.Clear();
    }
}

Usage and registration of the custom loggerUsage and registration of the custom logger

Checks logLevel == _config.LogLevel  in IsEnabled , so each logLevel  has a unique logger.

Generally, loggers should also be enabled for all higher log levels:

The LoggerProvider  is the class that creates the logger instances. Maybe it is not needed to create a

logger instance per category, but this makes sense for some Loggers, like NLog or log4net. Doing this

you are also able to choose different logging output targets per category if needed:

In the preceding code, CreateLogger creates a single instance of the ColorConsoleLogger  per category

name and stores it in the ConcurrentDictionary<TKey,TValue> ;

Register the logger in the Startup.Configure :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.build.logging.loggerdescription.createlogger
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentdictionary-2


public void Configure(IApplicationBuilder app, IWebHostEnvironment env, 
                      ILoggerFactory loggerFactory)
{
    // Default registration.
    loggerFactory.AddProvider(new ColorConsoleLoggerProvider(
                              new ColorConsoleLoggerConfiguration
    {
        LogLevel = LogLevel.Error,
        Color = ConsoleColor.Red
    }));

    // Custom registration with default values.
    loggerFactory.AddColorConsoleLogger();

    // Custom registration with a new configuration instance.
    loggerFactory.AddColorConsoleLogger(new ColorConsoleLoggerConfiguration
    {
        LogLevel = LogLevel.Debug,
        Color = ConsoleColor.Gray
    });

    // Custom registration with a configuration object.
    loggerFactory.AddColorConsoleLogger(c =>
    {
        c.LogLevel = LogLevel.Information;
        c.Color = ConsoleColor.Blue;
    });

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }
    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllerRoute(
            name: "default",
            pattern: "{controller=Home}/{action=Index}/{id?}");
    });
}

For the preceding code, provide at least one extension method for the ILoggerFactory :



   

public static class ColorConsoleLoggerExtensions
{
    public static ILoggerFactory AddColorConsoleLogger(
                                      this ILoggerFactory loggerFactory, 
                                      ColorConsoleLoggerConfiguration config)
    {
        loggerFactory.AddProvider(new ColorConsoleLoggerProvider(config));
        return loggerFactory;
    }
    public static ILoggerFactory AddColorConsoleLogger(
                                      this ILoggerFactory loggerFactory)
    {
        var config = new ColorConsoleLoggerConfiguration();
        return loggerFactory.AddColorConsoleLogger(config);
    }
    public static ILoggerFactory AddColorConsoleLogger(
                                    this ILoggerFactory loggerFactory, 
                                    Action<ColorConsoleLoggerConfiguration> configure)
    {
        var config = new ColorConsoleLoggerConfiguration();
        configure(config);
        return loggerFactory.AddColorConsoleLogger(config);
    }
}

Additional resources

Add providers

High-performance logging with LoggerMessage in ASP.NET Core

Logging bugs should be created in the github.com/dotnet/runtime/ repo.

ASP.NET Core Blazor logging

By Tom Dykstra and Steve Smith

.NET Core supports a logging API that works with a variety of built-in and third-party logging

providers. This article shows how to use the logging API with built-in providers.

View or download sample code (how to download)

A logging provider displays or stores logs. For example, the Console provider displays logs on the

console, and the Azure Application Insights provider stores them in Azure Application Insights. Logs

can be sent to multiple destinations by adding multiple providers.

To add a provider, call the provider's Add{provider name}  extension method in Program.cs:

https://github.com/dotnet/runtime/issues
https://github.com/tdykstra
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/logging/index/samples


public static void Main(string[] args)
{
    var webHost = new WebHostBuilder()
        .UseKestrel()
        .UseContentRoot(Directory.GetCurrentDirectory())
        .ConfigureAppConfiguration((hostingContext, config) =>
        {
            var env = hostingContext.HostingEnvironment;
            config.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
                  .AddJsonFile($"appsettings.{env.EnvironmentName}.json", 
                      optional: true, reloadOnChange: true);
            config.AddEnvironmentVariables();
        })
        .ConfigureLogging((hostingContext, logging) =>
        {
            // Requires `using Microsoft.Extensions.Logging;`
            logging.AddConfiguration(hostingContext.Configuration.GetSection("Logging"));
            logging.AddConsole();
            logging.AddDebug();
            logging.AddEventSourceLogger();
        })
        .UseStartup<Startup>()
        .Build();

    webHost.Run();
}

public static void Main(string[] args)
{
    CreateWebHostBuilder(args).Build().Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>();

The preceding code requires references to Microsoft.Extensions.Logging  and 

Microsoft.Extensions.Configuration .

The default project template calls CreateDefaultBuilder, which adds the following logging providers:

Console

Debug

EventSource (starting in ASP.NET Core 2.2)

If you use CreateDefaultBuilder , you can replace the default providers with your own choices. Call

ClearProviders, and add the providers you want.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggingbuilderextensions.clearproviders


public static void Main(string[] args)
{
    var host = CreateWebHostBuilder(args).Build();

    var todoRepository = host.Services.GetRequiredService<ITodoRepository>();
    todoRepository.Add(new Core.Model.TodoItem() { Name = "Feed the dog" });
    todoRepository.Add(new Core.Model.TodoItem() { Name = "Walk the dog" });

    var logger = host.Services.GetRequiredService<ILogger<Program>>();
    logger.LogInformation("Seeded the database.");

    host.Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureLogging(logging =>
        {
            logging.ClearProviders();
            logging.AddConsole();
        });

Create logs

public class AboutModel : PageModel
{
    private readonly ILogger _logger;

    public AboutModel(ILogger<AboutModel> logger)
    {
        _logger = logger;
    }

public void OnGet()
{
    Message = $"About page visited at {DateTime.UtcNow.ToLongTimeString()}";
    _logger.LogInformation("Message displayed: {Message}", Message);
}

Create logs in StartupCreate logs in Startup

Learn more about built-in logging providers and third-party logging providers later in the article.

To create logs, use an ILogger<TCategoryName> object. In a web app or hosted service, get an 

ILogger  from dependency injection (DI). In non-host console apps, use the LoggerFactory  to create

an ILogger .

The following ASP.NET Core example creates a logger with TodoApiSample.Pages.AboutModel  as the

category. The log category is a string that is associated with each log. The ILogger<T>  instance

provided by DI creates logs that have the fully qualified name of type T  as the category.

In the following ASP.NET Core and console app examples, the logger is used to create logs with 

Information  as the level. The Log level indicates the severity of the logged event.

Levels and categories are explained in more detail later in this article.

To write logs in the Startup  class, include an ILogger  parameter in the constructor signature:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger-1


public class Startup
{
    private readonly ILogger _logger;

    public Startup(IConfiguration configuration, ILogger<Startup> logger)
    {
        Configuration = configuration;
        _logger = logger;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddMvc()
            .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

        // Add our repository type
        services.AddSingleton<ITodoRepository, TodoRepository>();
        _logger.LogInformation("Added TodoRepository to services");
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            _logger.LogInformation("In Development environment");
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseExceptionHandler("/Error");
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseCookiePolicy();

        app.UseMvc();
    }
}

Create logs in the Program classCreate logs in the Program class
To write logs in the Program  class, get an ILogger  instance from DI:



public static void Main(string[] args)
{
    var host = CreateWebHostBuilder(args).Build();

    var todoRepository = host.Services.GetRequiredService<ITodoRepository>();
    todoRepository.Add(new Core.Model.TodoItem() { Name = "Feed the dog" });
    todoRepository.Add(new Core.Model.TodoItem() { Name = "Walk the dog" });

    var logger = host.Services.GetRequiredService<ILogger<Program>>();
    logger.LogInformation("Seeded the database.");

    host.Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureLogging(logging =>
        {
            logging.ClearProviders();
            logging.AddConsole();
        });

Logging during host construction isn't directly supported. However, a separate logger can be used. In

the following example, a Serilog logger is used to log in CreateWebHostBuilder . AddSerilog  uses the

static configuration specified in Log.Logger :

https://serilog.net/


using System;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;

public class Program
{
    public static void Main(string[] args)
    {
        CreateWebHostBuilder(args).Build().Run();
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args)
    {
        var builtConfig = new ConfigurationBuilder()
            .AddJsonFile("appsettings.json")
            .AddCommandLine(args)
            .Build();

        Log.Logger = new LoggerConfiguration()
            .WriteTo.Console()
            .WriteTo.File(builtConfig["Logging:FilePath"])
            .CreateLogger();

        try
        {
            return WebHost.CreateDefaultBuilder(args)
                .ConfigureServices((context, services) =>
                {
                    services.AddMvc();
                })
                .ConfigureAppConfiguration((hostingContext, config) =>
                {
                    config.AddConfiguration(builtConfig);
                })
                .ConfigureLogging(logging =>
                {
                    logging.AddSerilog();
                })
                .UseStartup<Startup>();
        }
        catch (Exception ex)
        {
            Log.Fatal(ex, "Host builder error");

            throw;
        }
        finally
        {
            Log.CloseAndFlush();
        }
    }
}

No asynchronous logger methodsNo asynchronous logger methods
Logging should be so fast that it isn't worth the performance cost of asynchronous code. If your

logging data store is slow, don't write to it directly. Consider writing the log messages to a fast store

initially, then move them to the slow store later. For example, if you're logging to SQL Server, you don't

want to do that directly in a Log  method, since the Log  methods are synchronous. Instead,

synchronously add log messages to an in-memory queue and have a background worker pull the

messages out of the queue to do the asynchronous work of pushing data to SQL Server. For more

information, see this GitHub issue.

https://github.com/dotnet/AspNetCore.Docs/issues/11801


          Configuration

{
  "Logging": {
    "LogLevel": {
      "Default": "Debug",
      "System": "Information",
      "Microsoft": "Information"
    },
    "Console":
    {
      "IncludeScopes": true
    }
  }
}

{
  "Logging": {      // Default, all providers.
    "LogLevel": {
      "Microsoft": "Warning"
    },
    "Console": { // Console provider.
      "LogLevel": {
        "Microsoft": "Information"
      }
    }
  }
}

Logging provider configuration is provided by one or more configuration providers:

File formats (INI, JSON, and XML).

Command-line arguments.

Environment variables.

In-memory .NET objects.

The unencrypted Secret Manager storage.

An encrypted user store, such as Azure Key Vault.

Custom providers (installed or created).

For example, logging configuration is commonly provided by the Logging  section of app settings files.

The following example shows the contents of a typical appsettings.Development.json file:

The Logging  property can have LogLevel  and log provider properties (Console is shown).

The LogLevel  property under Logging  specifies the minimum level to log for selected categories. In

the example, System  and Microsoft  categories log at Information  level, and all others log at Debug

level.

Other properties under Logging  specify logging providers. The example is for the Console provider. If

a provider supports log scopes, IncludeScopes  indicates whether they're enabled. A provider property

(such as Console  in the example) may also specify a LogLevel  property. LogLevel  under a provider

specifies levels to log for that provider.

If levels are specified in Logging.{providername}.LogLevel , they override anything set in 

Logging.LogLevel . For example, consider the following JSON:

In the preceding JSON, the Console  provider settings overrides the preceding (default) log level.



Sample logging output

info: Microsoft.AspNetCore.Hosting.Internal.WebHost[1]
      Request starting HTTP/1.1 GET http://localhost:5000/api/todo/0
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
      Executing action method TodoApi.Controllers.TodoController.GetById (TodoApi) with arguments 
(0) - ModelState is Valid
info: TodoApi.Controllers.TodoController[1002]
      Getting item 0
warn: TodoApi.Controllers.TodoController[4000]
      GetById(0) NOT FOUND
info: Microsoft.AspNetCore.Mvc.StatusCodeResult[1]
      Executing HttpStatusCodeResult, setting HTTP status code 404
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
      Executed action TodoApi.Controllers.TodoController.GetById (TodoApi) in 42.9286ms
info: Microsoft.AspNetCore.Hosting.Internal.WebHost[2]
      Request finished in 148.889ms 404

Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request starting HTTP/1.1 GET 
http://localhost:53104/api/todo/0  
Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Information: Executing action method 
TodoApi.Controllers.TodoController.GetById (TodoApi) with arguments (0) - ModelState is Valid
TodoApi.Controllers.TodoController:Information: Getting item 0
TodoApi.Controllers.TodoController:Warning: GetById(0) NOT FOUND
Microsoft.AspNetCore.Mvc.StatusCodeResult:Information: Executing HttpStatusCodeResult, setting 
HTTP status code 404
Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Information: Executed action 
TodoApi.Controllers.TodoController.GetById (TodoApi) in 152.5657ms
Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request finished in 316.3195ms 404

NuGet packages

The Logging API doesn't include a scenario to change log levels while an app is running. However,

some configuration providers are capable of reloading configuration, which takes immediate effect on

logging configuration. For example, the File Configuration Provider, which is added by 

CreateDefaultBuilder  to read settings files, reloads logging configuration by default. If configuration

is changed in code while an app is running, the app can call IConfigurationRoot.Reload to update the

app's logging configuration.

For information on implementing configuration providers, see Configuration in ASP.NET Core.

With the sample code shown in the preceding section, logs appear in the console when the app is run

from the command line. Here's an example of console output:

The preceding logs were generated by making an HTTP Get request to the sample app at 

http://localhost:5000/api/todo/0 .

Here's an example of the same logs as they appear in the Debug window when you run the sample

app in Visual Studio:

The logs that are created by the ILogger  calls shown in the preceding section begin with "TodoApi".

The logs that begin with "Microsoft" categories are from ASP.NET Core framework code. ASP.NET Core

and application code are using the same logging API and providers.

The remainder of this article explains some details and options for logging.

The ILogger  and ILoggerFactory  interfaces are in Microsoft.Extensions.Logging.Abstractions, and

default implementations for them are in Microsoft.Extensions.Logging.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationroot.reload
https://www.nuget.org/packages/Microsoft.Extensions.Logging.Abstractions/
https://www.nuget.org/packages/microsoft.extensions.logging/


Log category

public class TodoController : Controller
{
    private readonly ITodoRepository _todoRepository;
    private readonly ILogger _logger;

    public TodoController(ITodoRepository todoRepository,
        ILogger<TodoController> logger)
    {
        _todoRepository = todoRepository;
        _logger = logger;
    }

public class TodoController : Controller
{
    private readonly ITodoRepository _todoRepository;
    private readonly ILogger _logger;

    public TodoController(ITodoRepository todoRepository,
        ILoggerFactory logger)
    {
        _todoRepository = todoRepository;
        _logger = logger.CreateLogger("TodoApiSample.Controllers.TodoController");
    }

Log level

public IActionResult GetById(string id)
{
    _logger.LogInformation(LoggingEvents.GetItem, "Getting item {Id}", id);
    var item = _todoRepository.Find(id);
    if (item == null)
    {
        _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({Id}) NOT FOUND", id);
        return NotFound();
    }
    return new ObjectResult(item);
}

When an ILogger  object is created, a category is specified for it. That category is included with each

log message created by that instance of ILogger . The category may be any string, but the convention

is to use the class name, such as "TodoApi.Controllers.TodoController".

Use ILogger<T>  to get an ILogger  instance that uses the fully qualified type name of T  as the

category:

To explicitly specify the category, call ILoggerFactory.CreateLogger :

ILogger<T>  is equivalent to calling CreateLogger  with the fully qualified type name of T .

Every log specifies a LogLevel value. The log level indicates the severity or importance. For example,

you might write an Information  log when a method ends normally and a Warning  log when a

method returns a 404 Not Found status code.

The following code creates Information  and Warning  logs:

In the preceding code, the MyLogEvents.GetItem  and MyLogEvents.GetItemNotFound  parameters are the

Log event ID. The second parameter is a message template with placeholders for argument values

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel


provided by the remaining method parameters. The method parameters are explained in the Log

message template section in this article.

Log methods that include the level in the method name (for example, LogInformation  and LogWarning

) are extension methods for ILogger. These methods call a Log  method that takes a LogLevel

parameter. You can call the Log  method directly rather than one of these extension methods, but the

syntax is relatively complicated. For more information, see ILogger and the logger extensions source

code.

ASP.NET Core defines the following log levels, ordered here from lowest to highest severity.

Trace = 0

For information that's typically valuable only for debugging. These messages may contain

sensitive application data and so shouldn't be enabled in a production environment. Disabled

by default.

Debug = 1

For information that may be useful in development and debugging. Example: 

Entering method Configure with flag set to true.  Enable Debug  level logs in production only

when troubleshooting, due to the high volume of logs.

Information = 2

For tracking the general flow of the app. These logs typically have some long-term value.

Example: Request received for path /api/todo

Warning = 3

For abnormal or unexpected events in the app flow. These may include errors or other

conditions that don't cause the app to stop but might need to be investigated. Handled

exceptions are a common place to use the Warning  log level. Example: 

FileNotFoundException for file quotes.txt.

Error = 4

For errors and exceptions that cannot be handled. These messages indicate a failure in the

current activity or operation (such as the current HTTP request), not an app-wide failure.

Example log message: Cannot insert record due to duplicate key violation.

Critical = 5

For failures that require immediate attention. Examples: data loss scenarios, out of disk space.

Use the log level to control how much log output is written to a particular storage medium or display

window. For example:

In production:

During development:

Logging at the Trace  through Information  levels produces a high-volume of detailed log

messages. To control costs and not exceed data storage limits, log Trace  through 

Information  level messages to a high-volume, low-cost data store.

Logging at Warning  through Critical  levels typically produces fewer, smaller log

messages. Therefore, costs and storage limits usually aren't a concern, which results in

greater flexibility of data store choice.

Log Warning  through Critical  messages to the console.

Add Trace  through Information  messages when troubleshooting.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger
https://github.com/dotnet/extensions/blob/release/2.2/src/Logging/Logging.Abstractions/src/LoggerExtensions.cs


info: Microsoft.AspNetCore.Hosting.Internal.WebHost[1]
      Request starting HTTP/1.1 GET http://localhost:62555/api/todo/0
dbug: Microsoft.AspNetCore.Routing.Tree.TreeRouter[1]
      Request successfully matched the route with name 'GetTodo' and template 'api/Todo/{id}'.
dbug: Microsoft.AspNetCore.Mvc.Internal.ActionSelector[2]
      Action 'TodoApi.Controllers.TodoController.Update (TodoApi)' with id '089d59b6-92ec-472d-
b552-cc613dfd625d' did not match the constraint 
'Microsoft.AspNetCore.Mvc.Internal.HttpMethodActionConstraint'
dbug: Microsoft.AspNetCore.Mvc.Internal.ActionSelector[2]
      Action 'TodoApi.Controllers.TodoController.Delete (TodoApi)' with id 'f3476abe-4bd9-4ad3-
9261-3ead09607366' did not match the constraint 
'Microsoft.AspNetCore.Mvc.Internal.HttpMethodActionConstraint'
dbug: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
      Executing action TodoApi.Controllers.TodoController.GetById (TodoApi)
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
      Executing action method TodoApi.Controllers.TodoController.GetById (TodoApi) with arguments 
(0) - ModelState is Valid
info: TodoApi.Controllers.TodoController[1002]
      Getting item 0
warn: TodoApi.Controllers.TodoController[4000]
      GetById(0) NOT FOUND
dbug: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
      Executed action method TodoApi.Controllers.TodoController.GetById (TodoApi), returned result 
Microsoft.AspNetCore.Mvc.NotFoundResult.
info: Microsoft.AspNetCore.Mvc.StatusCodeResult[1]
      Executing HttpStatusCodeResult, setting HTTP status code 404
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
      Executed action TodoApi.Controllers.TodoController.GetById (TodoApi) in 0.8788ms
dbug: Microsoft.AspNetCore.Server.Kestrel[9]
      Connection id "0HL6L7NEFF2QD" completed keep alive response.
info: Microsoft.AspNetCore.Hosting.Internal.WebHost[2]
      Request finished in 2.7286ms 404

Log event ID

public IActionResult GetById(string id)
{
    _logger.LogInformation(LoggingEvents.GetItem, "Getting item {Id}", id);
    var item = _todoRepository.Find(id);
    if (item == null)
    {
        _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({Id}) NOT FOUND", id);
        return NotFound();
    }
    return new ObjectResult(item);
}

The Log filtering section later in this article explains how to control which log levels a provider

handles.

ASP.NET Core writes logs for framework events. The log examples earlier in this article excluded logs

below Information  level, so no Debug  or Trace  level logs were created. Here's an example of console

logs produced by running the sample app configured to show Debug  logs:

Each log can specify an event ID. The sample app does this by using a locally defined LoggingEvents

class:



public class LoggingEvents
{
    public const int GenerateItems = 1000;
    public const int ListItems = 1001;
    public const int GetItem = 1002;
    public const int InsertItem = 1003;
    public const int UpdateItem = 1004;
    public const int DeleteItem = 1005;

    public const int GetItemNotFound = 4000;
    public const int UpdateItemNotFound = 4001;
}

info: TodoApi.Controllers.TodoController[1002]
      Getting item invalidid
warn: TodoApi.Controllers.TodoController[4000]
      GetById(invalidid) NOT FOUND

Log message template

public IActionResult GetById(string id)
{
    _logger.LogInformation(LoggingEvents.GetItem, "Getting item {Id}", id);
    var item = _todoRepository.Find(id);
    if (item == null)
    {
        _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({Id}) NOT FOUND", id);
        return NotFound();
    }
    return new ObjectResult(item);
}

string p1 = "parm1";
string p2 = "parm2";
_logger.LogInformation("Parameter values: {p2}, {p1}", p1, p2);

Parameter values: parm1, parm2

An event ID associates a set of events. For example, all logs related to displaying a list of items on a

page might be 1001.

The logging provider may store the event ID in an ID field, in the logging message, or not at all. The

Debug provider doesn't show event IDs. The console provider shows event IDs in brackets after the

category:

Each log specifies a message template. The message template can contain placeholders for which

arguments are provided. Use names for the placeholders, not numbers.

The order of placeholders, not their names, determines which parameters are used to provide their

values. In the following code, notice that the parameter names are out of sequence in the message

template:

This code creates a log message with the parameter values in sequence:

The logging framework works this way so that logging providers can implement semantic logging,

also known as structured logging. The arguments themselves are passed to the logging system, not

https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging


               

_logger.LogInformation("Getting item {Id} at {RequestTime}", id, DateTime.Now);

Logging exceptions

catch (Exception ex)
{
    _logger.LogWarning(LoggingEvents.GetItemNotFound, ex, "GetById({Id}) NOT FOUND", id);
    return NotFound();
}
return new ObjectResult(item);

TodoApiSample.Controllers.TodoController: Warning: GetById(55) NOT FOUND

System.Exception: Item not found exception.
   at TodoApiSample.Controllers.TodoController.GetById(String id) in 
C:\TodoApiSample\Controllers\TodoController.cs:line 226

Log filtering

Create filter rules in configurationCreate filter rules in configuration

just the formatted message template. This information enables logging providers to store the

parameter values as fields. For example, suppose logger method calls look like this:

If you're sending the logs to Azure Table Storage, each Azure Table entity can have ID  and 

RequestTime  properties, which simplifies queries on log data. A query can find all logs within a

particular RequestTime  range without parsing the time out of the text message.

The logger methods have overloads that let you pass in an exception, as in the following example:

Different providers handle the exception information in different ways. Here's an example of Debug

provider output from the code shown above.

You can specify a minimum log level for a specific provider and category or for all providers or all

categories. Any logs below the minimum level aren't passed to that provider, so they don't get

displayed or stored.

To suppress all logs, specify LogLevel.None  as the minimum log level. The integer value of 

LogLevel.None  is 6, which is higher than LogLevel.Critical  (5).

The project template code calls CreateDefaultBuilder  to set up logging for the Console, Debug, and

EventSource (ASP.NET Core 2.2 or later) providers. The CreateDefaultBuilder  method sets up logging

to look for configuration in a Logging  section, as explained earlier in this article.

The configuration data specifies minimum log levels by provider and category, as in the following

example:



{
  "Logging": {
    "Debug": {
      "LogLevel": {
        "Default": "Information"
      }
    },
    "Console": {
      "IncludeScopes": false,
      "LogLevel": {
        "Microsoft.AspNetCore.Mvc.Razor.Internal": "Warning",
        "Microsoft.AspNetCore.Mvc.Razor.Razor": "Debug",
        "Microsoft.AspNetCore.Mvc.Razor": "Error",
        "Default": "Information"
      }
    },
    "LogLevel": {
      "Default": "Debug"
    }
  }
}

Filter rules in codeFilter rules in code

WebHost.CreateDefaultBuilder(args)
    .UseStartup<Startup>()
    .ConfigureLogging(logging =>
        logging.AddFilter("System", LogLevel.Debug)
               .AddFilter<DebugLoggerProvider>("Microsoft", LogLevel.Trace));

How filtering rules are appliedHow filtering rules are applied

N UM B ERN UM B ER P RO VIDERP RO VIDER
C AT EGO RIES T H ATC AT EGO RIES T H AT
B EGIN  W IT H  . . .B EGIN  W IT H  . . . M IN IM UM  LO G L EVELM IN IM UM  LO G L EVEL

1 Debug All categories Information

2 Console Microsoft.AspNetCore.M
vc.Razor.Internal

Warning

3 Console Microsoft.AspNetCore.M
vc.Razor.Razor

Debug

4 Console Microsoft.AspNetCore.M
vc.Razor

Error

5 Console All categories Information

This JSON creates six filter rules: one for the Debug provider, four for the Console provider, and one

for all providers. A single rule is chosen for each provider when an ILogger  object is created.

The following example shows how to register filter rules in code:

The second AddFilter  specifies the Debug provider by using its type name. The first AddFilter

applies to all providers because it doesn't specify a provider type.

The configuration data and the AddFilter  code shown in the preceding examples create the rules

shown in the following table. The first six come from the configuration example and the last two come

from the code example.



6 All providers All categories Debug

7 All providers System Debug

8 Debug Microsoft Trace

N UM B ERN UM B ER P RO VIDERP RO VIDER
C AT EGO RIES T H ATC AT EGO RIES T H AT
B EGIN  W IT H  . . .B EGIN  W IT H  . . . M IN IM UM  LO G L EVELM IN IM UM  LO G L EVEL

Provider aliasesProvider aliases

Default minimum levelDefault minimum level

WebHost.CreateDefaultBuilder(args)
    .UseStartup<Startup>()
    .ConfigureLogging(logging => logging.SetMinimumLevel(LogLevel.Warning));

When an ILogger  object is created, the ILoggerFactory  object selects a single rule per provider to

apply to that logger. All messages written by an ILogger  instance are filtered based on the selected

rules. The most specific rule possible for each provider and category pair is selected from the available

rules.

The following algorithm is used for each provider when an ILogger  is created for a given category:

Select all rules that match the provider or its alias. If no match is found, select all rules with an

empty provider.

From the result of the preceding step, select rules with longest matching category prefix. If no

match is found, select all rules that don't specify a category.

If multiple rules are selected, take the lastlast one.

If no rules are selected, use MinimumLevel .

With the preceding list of rules, suppose you create an ILogger  object for category

"Microsoft.AspNetCore.Mvc.Razor.RazorViewEngine":

For the Debug provider, rules 1, 6, and 8 apply. Rule 8 is most specific, so that's the one selected.

For the Console provider, rules 3, 4, 5, and 6 apply. Rule 3 is most specific.

The resulting ILogger  instance sends logs of Trace  level and above to the Debug provider. Logs of 

Debug  level and above are sent to the Console provider.

Each provider defines an alias that can be used in configuration in place of the fully qualified type

name. For the built-in providers, use the following aliases:

Console

Debug

EventSource

EventLog

TraceSource

AzureAppServicesFile

AzureAppServicesBlob

ApplicationInsights

There's a minimum level setting that takes effect only if no rules from configuration or code apply for

a given provider and category. The following example shows how to set the minimum level:



Filter functionsFilter functions

WebHost.CreateDefaultBuilder(args)
    .UseStartup<Startup>()
    .ConfigureLogging(logBuilder =>
    {
        logBuilder.AddFilter((provider, category, logLevel) =>
        {
            if (provider == "Microsoft.Extensions.Logging.Console.ConsoleLoggerProvider" &&
                category == "TodoApiSample.Controllers.TodoController")
            {
                return false;
            }
            return true;
        });
    });

System categories and levels

C AT EGO RYC AT EGO RY N OT ESN OT ES

Microsoft.AspNetCore General ASP.NET Core diagnostics.

Microsoft.AspNetCore.DataProtection Which keys were considered, found, and used.

Microsoft.AspNetCore.HostFiltering Hosts allowed.

Microsoft.AspNetCore.Hosting How long HTTP requests took to complete and what
time they started. Which hosting startup assemblies
were loaded.

Microsoft.AspNetCore.Mvc MVC and Razor diagnostics. Model binding, filter
execution, view compilation, action selection.

Microsoft.AspNetCore.Routing Route matching information.

Microsoft.AspNetCore.Server Connection start, stop, and keep alive responses.
HTTPS certificate information.

Microsoft.AspNetCore.StaticFiles Files served.

Microsoft.EntityFrameworkCore General Entity Framework Core diagnostics. Database
activity and configuration, change detection,
migrations.

Log scopes

If you don't explicitly set the minimum level, the default value is Information , which means that 

Trace  and Debug  logs are ignored.

A filter function is invoked for all providers and categories that don't have rules assigned to them by

configuration or code. Code in the function has access to the provider type, category, and log level. For

example:

Here are some categories used by ASP.NET Core and Entity Framework Core, with notes about what

logs to expect from them:



public IActionResult GetById(string id)
{
    TodoItem item;
    using (_logger.BeginScope("Message attached to logs created in the using block"))
    {
        _logger.LogInformation(LoggingEvents.GetItem, "Getting item {Id}", id);
        item = _todoRepository.Find(id);
        if (item == null)
        {
            _logger.LogWarning(LoggingEvents.GetItemNotFound, "GetById({Id}) NOT FOUND", id);
            return NotFound();
        }
    }
    return new ObjectResult(item);
}

.ConfigureLogging((hostingContext, logging) =>
{
    logging.AddConfiguration(hostingContext.Configuration.GetSection("Logging"));
    logging.AddConsole(options => options.IncludeScopes = true);
    logging.AddDebug();
})

NOTENOTE

info: TodoApiSample.Controllers.TodoController[1002]
      => RequestId:0HKV9C49II9CK RequestPath:/api/todo/0 => 
TodoApiSample.Controllers.TodoController.GetById (TodoApi) => Message attached to logs created in 
the using block
      Getting item 0
warn: TodoApiSample.Controllers.TodoController[4000]
      => RequestId:0HKV9C49II9CK RequestPath:/api/todo/0 => 
TodoApiSample.Controllers.TodoController.GetById (TodoApi) => Message attached to logs created in 
the using block
      GetById(0) NOT FOUND

Built-in logging providers

A scope can group a set of logical operations. This grouping can be used to attach the same data to

each log that's created as part of a set. For example, every log created as part of processing a

transaction can include the transaction ID.

A scope is an IDisposable  type that's returned by the BeginScope method and lasts until it's disposed.

Use a scope by wrapping logger calls in a using  block:

The following code enables scopes for the console provider :

Program.cs:

Configuring the IncludeScopes  console logger option is required to enable scope-based logging.

For information on configuration, see the Configuration section.

Each log message includes the scoped information:

ASP.NET Core ships the following providers:

Console

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger.beginscope


      

      

            

Console providerConsole provider

logging.AddConsole();

dotnet run

Debug providerDebug provider

logging.AddDebug();

Event Source providerEvent Source provider

logging.AddEventSourceLogger();

Debug

EventSource

EventLog

TraceSource

AzureAppServicesFile

AzureAppServicesBlob

ApplicationInsights

For information on stdout and debug logging with the ASP.NET Core Module, see Troubleshoot

ASP.NET Core on Azure App Service and IIS and ASP.NET Core Module.

The Microsoft.Extensions.Logging.Console provider package sends log output to the console.

To see console logging output, open a command prompt in the project folder and run the following

command:

The Microsoft.Extensions.Logging.Debug provider package writes log output by using the

System.Diagnostics.Debug class ( Debug.WriteLine  method calls).

On Linux, this provider writes logs to /var/log/message.

The Microsoft.Extensions.Logging.EventSource provider package writes to an Event Source cross-

platform with the name Microsoft-Extensions-Logging . On Windows, the provider uses ETW.

The Event Source provider is added automatically when CreateDefaultBuilder  is called to build the

host.

Use the PerfView utility to collect and view logs. There are other tools for viewing ETW logs, but

PerfView provides the best experience for working with the ETW events emitted by ASP.NET Core.

To configure PerfView for collecting events logged by this provider, add the string 

*Microsoft-Extensions-Logging  to the Additional ProvidersAdditional Providers  list. (Don't miss the asterisk at the start

of the string.)

https://www.nuget.org/packages/Microsoft.Extensions.Logging.Console
https://www.nuget.org/packages/Microsoft.Extensions.Logging.Debug
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debug
https://www.nuget.org/packages/Microsoft.Extensions.Logging.EventSource
https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://github.com/Microsoft/perfview


      

        

                

Windows EventLog providerWindows EventLog provider

logging.AddEventLog();

"Logging": {
  "EventLog": {
    "LogLevel": {
      "Default": "Information"
    }
  }
}

TraceSource providerTraceSource provider

logging.AddTraceSource(sourceSwitchName);

Azure App Service providerAzure App Service provider

The Microsoft.Extensions.Logging.EventLog provider package sends log output to the Windows Event

Log.

AddEventLog overloads let you pass in EventLogSettings. If null  or not specified, the following

default settings are used:

LogName : "Application"

SourceName : ".NET Runtime"

MachineName : The local machine name is used.

Events are logged for Warning level and higher. The following example sets the Event Log default log

level to LogLevel.Information:

The Microsoft.Extensions.Logging.TraceSource provider package uses the TraceSource libraries and

providers.

AddTraceSource overloads let you pass in a source switch and a trace listener.

To use this provider, an app has to run on the .NET Framework (rather than .NET Core). The provider

can route messages to a variety of listeners, such as the TextWriterTraceListener used in the sample

app.

https://www.nuget.org/packages/Microsoft.Extensions.Logging.EventLog
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventloggerfactoryextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventlog.eventlogsettings
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel#microsoft_extensions_logging_loglevel_information
https://www.nuget.org/packages/Microsoft.Extensions.Logging.TraceSource
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracesource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.tracesourcefactoryextensions
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/trace-listeners
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.textwritertracelistener


      

logging.AddAzureWebAppDiagnostics();

Azure log streamingAzure log streaming

Azure Application Insights trace loggingAzure Application Insights trace logging

The Microsoft.Extensions.Logging.AzureAppServices provider package writes logs to text files in an

Azure App Service app's file system and to blob storage in an Azure Storage account.

The provider package isn't included in the Microsoft.AspNetCore.App metapackage. When targeting

.NET Framework or referencing the Microsoft.AspNetCore.App  metapackage, add the provider package

to the project.

An AddAzureWebAppDiagnostics overload lets you pass in AzureAppServicesDiagnosticsSettings. The

settings object can override default settings, such as the logging output template, blob name, and file

size limit. (Output template is a message template that's applied to all logs in addition to what's

provided with an ILogger  method call.)

When you deploy to an App Service app, the application honors the settings in the App Service logs

section of the App Ser viceApp Ser vice page of the Azure portal. When the following settings are updated, the

changes take effect immediately without requiring a restart or redeployment of the app.

Application Logging (Filesystem)Application Logging (Filesystem)

Application Logging (Blob)Application Logging (Blob)

The default location for log files is in the D:\home\LogFiles\Application folder, and the default file

name is diagnostics-yyyymmdd.txt. The default file size limit is 10 MB, and the default maximum

number of files retained is 2. The default blob name is {app-name}

{timestamp}/yyyy/mm/dd/hh/{guid}-applicationLog.txt.

The provider only works when the project runs in the Azure environment. It has no effect when the

project is run locally—it doesn't write to local files or local development storage for blobs.

Azure log streaming lets you view log activity in real time from:

The app server

The web server

Failed request tracing

To configure Azure log streaming:

Navigate to the App Ser vice logsApp Ser vice logs  page from your app's portal page.

Set Application Logging (Filesystem)Application Logging (Filesystem)  to OnOn.

Choose the log LevelLevel . This setting only applies to Azure log streaming, not other logging providers

in the app.

Navigate to the Log StreamLog Stream page to view app messages. They're logged by the app through the 

ILogger  interface.

The Microsoft.Extensions.Logging.ApplicationInsights provider package writes logs to Azure

Application Insights. Application Insights is a service that monitors a web app and provides tools for

querying and analyzing the telemetry data. If you use this provider, you can query and analyze your

logs by using the Application Insights tools.

The provider package isn't included in the shared framework. To use the provider, add the provider

package to the project. The logging provider is included as a dependency of

Microsoft.ApplicationInsights.AspNetCore, which is the package that provides all available telemetry

for ASP.NET Core. If you use this package, you don't have to install the provider package.

https://www.nuget.org/packages/Microsoft.Extensions.Logging.AzureAppServices
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet#what-is-blob-storage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservicesloggerfactoryextensions.addazurewebappdiagnostics
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservices.azureappservicesdiagnosticssettings
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log/#enablediag
https://www.nuget.org/packages/Microsoft.Extensions.Logging.ApplicationInsights
https://www.nuget.org/packages/Microsoft.ApplicationInsights.AspNetCore


Third-party logging providers

Additional resources

Don't use the Microsoft.ApplicationInsights.Web package—that's for ASP.NET 4.x.

For more information, see the following resources:

Application Insights overview

Application Insights for ASP.NET Core applications - Start here if you want to implement the full

range of Application Insights telemetry along with logging.

ApplicationInsightsLoggerProvider for .NET Core ILogger logs - Start here if you want to

implement the logging provider without the rest of Application Insights telemetry.

Application Insights logging adapters.

Install, configure, and initialize the Application Insights SDK - Interactive tutorial on the Microsoft

Learn site.

Third-party logging frameworks that work with ASP.NET Core:

elmah.io (GitHub repo)

Gelf (GitHub repo)

JSNLog (GitHub repo)

KissLog.net (GitHub repo)

Log4Net (GitHub repo)

Loggr (GitHub repo)

NLog (GitHub repo)

Sentry (GitHub repo)

Serilog (GitHub repo)

Stackdriver (Github repo)

Some third-party frameworks can perform semantic logging, also known as structured logging.

Using a third-party framework is similar to using one of the built-in providers:

1. Add a NuGet package to your project.

2. Call an ILoggerFactory  or ILoggingBuilder  extension method provided by the logging framework.

For more information, see each provider's documentation. Third-party logging providers aren't

supported by Microsoft.

High-performance logging with LoggerMessage in ASP.NET Core

https://www.nuget.org/packages/Microsoft.ApplicationInsights.Web
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core
https://docs.microsoft.com/en-us/azure/azure-monitor/app/ilogger
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-trace-logs
https://docs.microsoft.com/en-us/learn/modules/instrument-web-app-code-with-application-insights
https://elmah.io/
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://docs.graylog.org/en/2.3/pages/gelf.html
https://github.com/mattwcole/gelf-extensions-logging
https://jsnlog.com/
https://github.com/mperdeck/jsnlog
https://kisslog.net/
https://github.com/catalingavan/KissLog-net
https://logging.apache.org/log4net/
https://github.com/huorswords/Microsoft.Extensions.Logging.Log4Net.AspNetCore
https://loggr.net/
https://github.com/imobile3/Loggr.Extensions.Logging
https://nlog-project.org/
https://github.com/NLog/NLog.Extensions.Logging
https://sentry.io/welcome/
https://github.com/getsentry/sentry-dotnet
https://serilog.net/
https://github.com/serilog/serilog-aspnetcore
https://cloud.google.com/dotnet/docs/stackdriver#logging
https://github.com/googleapis/google-cloud-dotnet
https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging


Troubleshoot ASP.NET Core on Azure App Service
and IIS
9/22/2020 • 59 minutes to read • Edit Online

App startup errors

403.14 Forbidden403.14 Forbidden

The Web server is configured to not list the contents of this directory.

By Justin Kotalik

This article provides information on common app startup errors and instructions on how to diagnose errors when

an app is deployed to Azure App Service or IIS:

App startup errors

Explains common startup HTTP status code scenarios.

Troubleshoot on Azure App Service

Provides troubleshooting advice for apps deployed to Azure App Service.

Troubleshoot on IIS

Provides troubleshooting advice for apps deployed to IIS or running on IIS Express locally. The guidance applies to

both Windows Server and Windows desktop deployments.

Clear package caches

Explains what to do when incoherent packages break an app when performing major upgrades or changing

package versions.

Additional resources

Lists additional troubleshooting topics.

In Visual Studio, an ASP.NET Core project defaults to IIS Express hosting during debugging. A 502.5 - Process Failure

or a 500.30 - Start Failure that occurs when debugging locally can be diagnosed using the advice in this topic.

The app fails to start. The following error is logged:

The error is usually caused by a broken deployment on the hosting system, which includes any of the following

scenarios:

The app is deployed to the wrong folder on the hosting system.

The deployment process failed to move all of the app's files and folders to the deployment folder on the hosting

system.

The web.config file is missing from the deployment, or the web.config file contents are malformed.

Perform the following steps:

1. Delete all of the files and folders from the deployment folder on the hosting system.

2. Redeploy the contents of the app's publish folder to the hosting system using your normal method of

deployment, such as Visual Studio, PowerShell, or manual deployment:

Confirm that the web.config file is present in the deployment and that its contents are correct.

When hosting on Azure App Service, confirm that the app is deployed to the D:\home\site\wwwroot  folder.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis.md
https://github.com/jkotalik
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview


500 Internal Server Error500 Internal Server Error

500.0 In-Process Handler Load Failure500.0 In-Process Handler Load Failure

500.30 In-Process Startup Failure500.30 In-Process Startup Failure

500.31 ANCM Failed to Find Native Dependencies500.31 ANCM Failed to Find Native Dependencies

The specified framework 'Microsoft.NETCore.App', version '3.0.0' was not found.
  - The following frameworks were found:
      2.2.1 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview5-27626-15 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview6-27713-13 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview6-27714-15 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview6-27723-08 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]

3. Confirm that all of the app's files and folders are deployed by comparing the deployment on the hosting system

to the contents of the project's publish folder.

When the app is hosted by IIS, confirm that the app is deployed to the IIS Physical pathPhysical path shown in IISIIS

ManagerManager 's Basic SettingsBasic Settings .

For more information on the layout of a published ASP.NET Core app, see ASP.NET Core directory structure. For

more information on the web.config file, see ASP.NET Core Module.

The app starts, but an error prevents the server from fulfilling the request.

This error occurs within the app's code during startup or while creating a response. The response may contain no

content, or the response may appear as a 500 Internal Server Error in the browser. The Application Event Log

usually states that the app started normally. From the server's perspective, that's correct. The app did start, but it

can't generate a valid response. Run the app at a command prompt on the server or enable the ASP.NET Core

Module stdout log to troubleshoot the problem.

The worker process fails. The app doesn't start.

An unknown error occurred loading ASP.NET Core Module components. Take one of the following actions:

Contact Microsoft Support (select Developer ToolsDeveloper Tools  then ASP.NET CoreASP.NET Core).

Ask a question on Stack Overflow.

File an issue on our GitHub repository.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the .NET Core CLR in-process, but it fails to start. The cause of a process

startup failure can usually be determined from entries in the Application Event Log and the ASP.NET Core Module

stdout log.

Common failure conditions:

The app is misconfigured due to targeting a version of the ASP.NET Core shared framework that isn't present.

Check which versions of the ASP.NET Core shared framework are installed on the target machine.

Using Azure Key Vault, lack of permissions to the Key Vault. Check the access policies in the targeted Key Vault to

ensure that the correct permissions are granted.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the .NET Core runtime in-process, but it fails to start. The most common

cause of this startup failure is when the Microsoft.NETCore.App  or Microsoft.AspNetCore.App  runtime isn't installed.

If the app is deployed to target ASP.NET Core 3.0 and that version doesn't exist on the machine, this error occurs. An

example error message follows:

The error message lists all the installed .NET Core versions and the version requested by the app. To fix this error,

https://support.microsoft.com/oas/default.aspx?prid=15832
https://github.com/dotnet/AspNetCore


500.32 ANCM Failed to Load dll500.32 ANCM Failed to Load dll

500.33 ANCM Request Handler Load Failure500.33 ANCM Request Handler Load Failure

500.34 ANCM Mixed Hosting Models Not Supported500.34 ANCM Mixed Hosting Models Not Supported

500.35 ANCM Multiple In-Process Applications in same Process500.35 ANCM Multiple In-Process Applications in same Process

500.36 ANCM Out-Of-Process Handler Load Failure500.36 ANCM Out-Of-Process Handler Load Failure

500.37 ANCM Failed to Start Within Startup Time Limit500.37 ANCM Failed to Start Within Startup Time Limit

500.38 ANCM Application DLL Not Found500.38 ANCM Application DLL Not Found

either :

Install the appropriate version of .NET Core on the machine.

Change the app to target a version of .NET Core that's present on the machine.

Publish the app as a self-contained deployment.

When running in development (the ASPNETCORE_ENVIRONMENT  environment variable is set to Development ), the

specific error is written to the HTTP response. The cause of a process startup failure is also found in the Application

Event Log.

The worker process fails. The app doesn't start.

The most common cause for this error is that the app is published for an incompatible processor architecture. If the

worker process is running as a 32-bit app and the app was published to target 64-bit, this error occurs.

To fix this error, either :

Republish the app for the same processor architecture as the worker process.

Publish the app as a framework-dependent deployment.

The worker process fails. The app doesn't start.

The app didn't reference the Microsoft.AspNetCore.App  framework. Only apps targeting the 

Microsoft.AspNetCore.App  framework can be hosted by the ASP.NET Core Module.

To fix this error, confirm that the app is targeting the Microsoft.AspNetCore.App  framework. Check the 

.runtimeconfig.json  to verify the framework targeted by the app.

The worker process can't run both an in-process app and an out-of-process app in the same process.

To fix this error, run apps in separate IIS application pools.

The worker process can't run multiple in-process apps in the same process.

To fix this error, run apps in separate IIS application pools.

The out-of-process request handler, aspnetcorev2_outofprocess.dll, isn't next to the aspnetcorev2.dll file. This

indicates a corrupted installation of the ASP.NET Core Module.

To fix this error, repair the installation of the .NET Core Hosting Bundle (for IIS) or Visual Studio (for IIS Express).

ANCM failed to start within the provided startup time limit. By default, the timeout is 120 seconds.

This error can occur when starting a large number of apps on the same machine. Check for CPU/Memory usage

spikes on the server during startup. You may need to stagger the startup process of multiple apps.

ANCM failed to locate the application DLL, which should be next to the executable.

This error occurs when hosting an app packaged as a single-file executable using the in-process hosting model. The

in-process model requires that the ANCM load the .NET Core app into the existing IIS process. This scenario isn't

supported by the single-file deployment model. Use oneone of the following approaches in the app's project file to fix

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-executables-fde
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0#single-file-executables


502.5 Process Failure502.5 Process Failure

Failed to start application (ErrorCode '0x800700c1')Failed to start application (ErrorCode '0x800700c1')

EventID: 1010
Source: IIS AspNetCore Module V2
Failed to start application '/LM/W3SVC/6/ROOT/', ErrorCode '0x800700c1'.

Connection resetConnection reset

Default startup limitsDefault startup limits

Troubleshoot on Azure App Service

this error :

1. Disable single-file publishing by setting the PublishSingleFile  MSBuild property to false .

2. Switch to the out-of-process hosting model by setting the AspNetCoreHostingModel  MSBuild property to 

OutOfProcess .

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. The cause of a process startup

failure can usually be determined from entries in the Application Event Log and the ASP.NET Core Module stdout

log.

A common failure condition is the app is misconfigured due to targeting a version of the ASP.NET Core shared

framework that isn't present. Check which versions of the ASP.NET Core shared framework are installed on the

target machine. The shared framework is the set of assemblies (.dll files) that are installed on the machine and

referenced by a metapackage such as Microsoft.AspNetCore.App . The metapackage reference can specify a

minimum required version. For more information, see The shared framework.

The 502.5 Process Failure error page is returned when a hosting or app misconfiguration causes the worker process

to fail:

The app failed to start because the app's assembly (.dll) couldn't be loaded.

This error occurs when there's a bitness mismatch between the published app and the w3wp/iisexpress process.

Confirm that the app pool's 32-bit setting is correct:

1. Select the app pool in IIS Manager's Application PoolsApplication Pools .

2. Select Advanced SettingsAdvanced Settings  under Edit Application PoolEdit Application Pool  in the ActionsActions  panel.

3. Set Enable 32-Bit ApplicationsEnable 32-Bit Applications :

If deploying a 32-bit (x86) app, set the value to True .

If deploying a 64-bit (x64) app, set the value to False .

Confirm that there isn't a conflict between a <Platform>  MSBuild property in the project file and the published

bitness of the app.

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal Ser ver Error500 Internal Ser ver Error  when

an error occurs. This often happens when an error occurs during the serialization of complex objects for a response.

This type of error appears as a connection reset error on the client. Application logging can help troubleshoot these

types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at the default

value, an app may take up to two minutes to start before the module logs a process failure. For information on

configuring the module, see Attributes of the aspNetCore element.

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/


IMPORTANTIMPORTANT

Application Event Log (Azure App Service)Application Event Log (Azure App Service)

Run the app in the Kudu consoleRun the app in the Kudu console

Test a 32-bit (x86) appTest a 32-bit (x86) app

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

To access the Application Event Log, use the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal:

1. In the Azure portal, open the app in App Ser vicesApp Ser vices .

2. Select Diagnose and solve problemsDiagnose and solve problems .

3. Select the Diagnostic ToolsDiagnostic Tools  heading.

4. Under Suppor t ToolsSuppor t Tools , select the Application EventsApplication Events  button.

5. Examine the latest error provided by the IIS AspNetCoreModule or IIS AspNetCoreModule V2 entry in the

SourceSource column.

An alternative to using the Diagnose and solve problemsDiagnose and solve problems blade is to examine the Application Event Log file

directly using Kudu:

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the LogFilesLogFiles  folder.

4. Select the pencil icon next to the eventlog.xml file.

5. Examine the log. Scroll to the bottom of the log to see the most recent events.

Many startup errors don't produce useful information in the Application Event Log. You can run the app in the Kudu

Remote Execution Console to discover the error :

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

Current releaseCurrent release

1. cd d:\home\site\wwwroot

2. Run the app:

dotnet .\{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

If the app is a framework-dependent deployment:

If the app is a self-contained deployment:

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x86) Runtime site extension.

https://github.com/projectkudu/kudu/wiki
https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


Test a 64-bit (x64) appTest a 64-bit (x64) app

ASP.NET Core Module stdout log (Azure App Service)ASP.NET Core Module stdout log (Azure App Service)

WARNINGWARNING

ASP.NET Core Module debug log (Azure App Service)ASP.NET Core Module debug log (Azure App Service)

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x32  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Current releaseCurrent release

If the app is a 64-bit (x64) framework-dependent deployment:

If the app is a self-contained deployment:

1. cd D:\Program Files\dotnet

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

1. cd D:\home\site\wwwroot

2. Run the app: {ASSEMBLY NAME}.exe

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x64) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x64  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created. Only use stdout logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

The ASP.NET Core Module stdout log often records useful error messages not found in the Application Event Log. To

enable and view stdout logs:

1. In the Azure Portal, navigate to the web app.

2. In the App Ser viceApp Ser vice blade, enter kudukudu in the search box.

3. Select Advanced ToolsAdvanced Tools  > GoGo.

4. Select Debug console > CMDDebug console > CMD.

5. Navigate to site/wwwroot

6. Select the pencil icon to edit the web.config file.

7. In the <aspNetCore />  element, set stdoutLogEnabled="true"  and select SaveSave.

Disable stdout logging when troubleshooting is complete by setting stdoutLogEnabled="false" .

For more information, see ASP.NET Core Module.

The ASP.NET Core Module debug log provides additional, deeper logging from the ASP.NET Core Module. To enable

and view stdout logs:

1. To enable the enhanced diagnostic log, perform either of the following:

Follow the instructions in Enhanced diagnostic logs to configure the app for an enhanced diagnostic

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

Slow or hanging app (Azure App Service)Slow or hanging app (Azure App Service)

Monitoring bladesMonitoring blades

2. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

3. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

4. Open the folders to the path sitesite > wwwrootwwwroot. If you didn't supply a path for the aspnetcore-debug.log file, the

file appears in the list. If you supplied a path, navigate to the location of the log file.

5. Open the log file with the pencil button next to the file name.

logging. Redeploy the app.

Add the <handlerSettings>  shown in Enhanced diagnostic logs to the live app's web.config file using the

Kudu console:

a. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

b. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

c. Open the folders to the path sitesite > wwwrootwwwroot. Edit the web.config file by selecting the pencil

button. Add the <handlerSettings>  section as shown in Enhanced diagnostic logs. Select the SaveSave

button.

Disable debug logging when troubleshooting is complete:

To disable the enhanced debug log, perform either of the following:

Remove the <handlerSettings>  from the web.config file locally and redeploy the app.

Use the Kudu console to edit the web.config file and remove the <handlerSettings>  section. Save the file.

For more information, see ASP.NET Core Module.

Failure to disable the debug log can lead to app or server failure. There's no limit on log file size. Only use debug logging to

troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

When an app responds slowly or hangs on a request, see the following articles:

Troubleshoot slow web app performance issues in Azure App Service

Use Crash Diagnoser Site Extension to Capture Dump for Intermittent Exception issues or performance issues on

Azure Web App

Monitoring blades provide an alternative troubleshooting experience to the methods described earlier in the topic.

These blades can be used to diagnose 500-series errors.

Confirm that the ASP.NET Core Extensions are installed. If the extensions aren't installed, install them manually:

1. In the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  blade section, select the ExtensionsExtensions  blade.

2. The ASP.NET Core ExtensionsASP.NET Core Extensions  should appear in the list.

3. If the extensions aren't installed, select the AddAdd button.

4. Choose the ASP.NET Core ExtensionsASP.NET Core Extensions  from the list.

5. Select OKOK to accept the legal terms.

6. Select OKOK on the Add extensionAdd extension blade.

7. An informational pop-up message indicates when the extensions are successfully installed.

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://blogs.msdn.microsoft.com/asiatech/2015/12/28/use-crash-diagnoser-site-extension-to-capture-dump-for-intermittent-exception-issues-or-performance-issues-on-azure-web-app/


WARNINGWARNING

Troubleshoot on IIS
Application Event Log (IIS)Application Event Log (IIS)

Run the app at a command promptRun the app at a command prompt

If stdout logging isn't enabled, follow these steps:

1. In the Azure portal, select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select the Go→Go→

button. The Kudu console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the folders to the path sitesite > wwwrootwwwroot and scroll down to reveal the web.config file at the bottom of the

list.

4. Click the pencil icon next to the web.config file.

5. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: \\?\%home%\LogFiles\stdout .

6. Select SaveSave to save the updated web.config file.

Proceed to activate diagnostic logging:

1. In the Azure portal, select the Diagnostics logsDiagnostics logs  blade.

2. Select the OnOn switch for Application Logging (Filesystem)Application Logging (Filesystem)  and Detailed error messagesDetailed error messages . Select the SaveSave

button at the top of the blade.

3. To include failed request tracing, also known as Failed Request Event Buffering (FREB) logging, select the OnOn

switch for Failed request tracingFailed request tracing.

4. Select the Log streamLog stream blade, which is listed immediately under the Diagnostics logsDiagnostics logs  blade in the portal.

5. Make a request to the app.

6. Within the log stream data, the cause of the error is indicated.

Be sure to disable stdout logging when troubleshooting is complete.

To view the failed request tracing logs (FREB logs):

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Select Failed Request Tracing LogsFailed Request Tracing Logs  from the SUPPORT TOOLSSUPPORT TOOLS  area of the sidebar.

See Failed request traces section of the Enable diagnostics logging for web apps in Azure App Service topic and the

Application performance FAQs for Web Apps in Azure: How do I turn on failed request tracing? for more

information.

For more information, see Enable diagnostics logging for web apps in Azure App Service.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

Access the Application Event Log:

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app. Errors have a value of IIS AspNetCore Module or IIS Express

AspNetCore Module in the Source column.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#failed-request-traces
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq#how-do-i-turn-on-failed-request-tracing
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log


Framework-dependent deploymentFramework-dependent deployment

Self-contained deploymentSelf-contained deployment

ASP.NET Core Module stdout log (IIS)ASP.NET Core Module stdout log (IIS)

Many startup errors don't produce useful information in the Application Event Log. You can find the cause of some

errors by running the app at a command prompt on the hosting system.

If the app is a framework-dependent deployment:

1. At a command prompt, navigate to the deployment folder and run the app by executing the app's assembly with

dotnet.exe. In the following command, substitute the name of the app's assembly for <assembly_name>: 

dotnet .\<assembly_name>.dll .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

If the app is a self-contained deployment:

1. At a command prompt, navigate to the deployment folder and run the app's executable. In the following

command, substitute the name of the app's assembly for <assembly_name>: <assembly_name>.exe .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

To enable and view stdout logs:

1. Navigate to the site's deployment folder on the hosting system.

2. If the logs folder isn't present, create the folder. For instructions on how to enable MSBuild to create the logs

folder in the deployment automatically, see the Directory structure topic.

3. Edit the web.config file. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to point to the

logs folder (for example, .\logs\stdout ). stdout  in the path is the log file name prefix. A timestamp, process id,

and file extension are added automatically when the log is created. Using stdout  as the file name prefix, a

typical log file is named stdout_20180205184032_5412.log.

4. Ensure your application pool's identity has write permissions to the logs folder.

5. Save the updated web.config file.

6. Make a request to the app.

7. Navigate to the logs folder. Find and open the most recent stdout log.

8. Study the log for errors.

Disable stdout logging when troubleshooting is complete:

1. Edit the web.config file.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Save the file.

For more information, see ASP.NET Core Module.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

ASP.NET Core Module debug log (IIS)ASP.NET Core Module debug log (IIS)

<aspNetCore ...>
  <handlerSettings>
    <handlerSetting name="debugLevel" value="file" />
    <handlerSetting name="debugFile" value="c:\temp\ancm.log" />
  </handlerSettings>
</aspNetCore>

Enable the Developer Exception PageEnable the Developer Exception Page

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout"
      hostingModel="InProcess">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
  </environmentVariables>
</aspNetCore>

Obtain data from an appObtain data from an app

Slow or hanging app (IIS)Slow or hanging app (IIS)

App crashes or encounters an exceptionApp crashes or encounters an exception

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

Add the following handler settings to the app's web.config file to enable ASP.NET Core Module debug log:

Confirm that the path specified for the log exists and that the app pool's identity has write permissions to the

location.

For more information, see ASP.NET Core Module.

The ASPNETCORE_ENVIRONMENT  environment variable can be added to web.config to run the app in the Development

environment. As long as the environment isn't overridden in app startup by UseEnvironment  on the host builder,

setting the environment variable allows the Developer Exception Page to appear when the app is run.

Setting the environment variable for ASPNETCORE_ENVIRONMENT  is only recommended for use on staging and testing

servers that aren't exposed to the Internet. Remove the environment variable from the web.config file after

troubleshooting. For information on setting environment variables in web.config, see environmentVariables child

element of aspNetCore.

If an app is capable of responding to requests, obtain request, connection, and additional data from the app using

terminal inline middleware. For more information and sample code, see Troubleshoot and debug ASP.NET Core

projects.

A crash dump is a snapshot of the system's memory and can help determine the cause of an app crash, startup

failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

1. Create a folder to hold crash dump files at c:\dumps . The app pool must have write access to the folder.

https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting


WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Clear package caches

2. Run the EnableDumps PowerShell script:

.\EnableDumps w3wp.exe c:\dumps

.\EnableDumps dotnet.exe c:\dumps

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

.\DisableDumps w3wp.exe

.\DisableDumps dotnet.exe

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The PowerShell

script configures WER to collect up to five dumps per app.

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see User-Mode

Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-Mode Dump File.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the development machine or

changing package versions within the app. In some cases, incoherent packages may break an app when performing

major upgrades. Most of these issues can be fixed by following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the command 

nuget locals all -clear . nuget.exe isn't a bundled install with the Windows desktop operating system and

must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/EnableDumps.ps1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/DisableDumps.ps1
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads


Additional resources

Azure documentationAzure documentation

Visual Studio documentationVisual Studio documentation

Visual Studio Code documentationVisual Studio Code documentation

App startup errors

403.14 Forbidden403.14 Forbidden

Troubleshoot and debug ASP.NET Core projects

Common errors reference for Azure App Service and IIS with ASP.NET Core

Handle errors in ASP.NET Core

ASP.NET Core Module

Application Insights for ASP.NET Core

Remote debugging web apps section of Troubleshoot a web app in Azure App Service using Visual Studio

Azure App Service diagnostics overview

How to: Monitor Apps in Azure App Service

Troubleshoot a web app in Azure App Service using Visual Studio

Troubleshoot HTTP errors of "502 bad gateway" and "503 service unavailable" in your Azure web apps

Troubleshoot slow web app performance issues in Azure App Service

Application performance FAQs for Web Apps in Azure

Azure Web App sandbox (App Service runtime execution limitations)

Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

Remote Debug ASP.NET Core on IIS in Azure in Visual Studio 2017

Remote Debug ASP.NET Core on a Remote IIS Computer in Visual Studio 2017

Learn to debug using Visual Studio

Debugging with Visual Studio Code

This article provides information on common app startup errors and instructions on how to diagnose errors when

an app is deployed to Azure App Service or IIS:

App startup errors

Explains common startup HTTP status code scenarios.

Troubleshoot on Azure App Service

Provides troubleshooting advice for apps deployed to Azure App Service.

Troubleshoot on IIS

Provides troubleshooting advice for apps deployed to IIS or running on IIS Express locally. The guidance applies to

both Windows Server and Windows desktop deployments.

Clear package caches

Explains what to do when incoherent packages break an app when performing major upgrades or changing

package versions.

Additional resources

Lists additional troubleshooting topics.

In Visual Studio, an ASP.NET Core project defaults to IIS Express hosting during debugging. A 502.5 - Process Failure

or a 500.30 - Start Failure that occurs when debugging locally can be diagnosed using the advice in this topic.

The app fails to start. The following error is logged:

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/en-us/azure/app-service/app-service-diagnostics
https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-http-502-http-503
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-aspnet-on-a-remote-iis-computer
https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger
https://code.visualstudio.com/docs/editor/debugging
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview


The Web server is configured to not list the contents of this directory.

500 Internal Server Error500 Internal Server Error

500.0 In-Process Handler Load Failure500.0 In-Process Handler Load Failure

500.0 Out-Of-Process Handler Load Failure500.0 Out-Of-Process Handler Load Failure

502.5 Process Failure502.5 Process Failure

The error is usually caused by a broken deployment on the hosting system, which includes any of the following

scenarios:

The app is deployed to the wrong folder on the hosting system.

The deployment process failed to move all of the app's files and folders to the deployment folder on the hosting

system.

The web.config file is missing from the deployment, or the web.config file contents are malformed.

Perform the following steps:

1. Delete all of the files and folders from the deployment folder on the hosting system.

2. Redeploy the contents of the app's publish folder to the hosting system using your normal method of

deployment, such as Visual Studio, PowerShell, or manual deployment:

3. Confirm that all of the app's files and folders are deployed by comparing the deployment on the hosting system

to the contents of the project's publish folder.

Confirm that the web.config file is present in the deployment and that its contents are correct.

When hosting on Azure App Service, confirm that the app is deployed to the D:\home\site\wwwroot  folder.

When the app is hosted by IIS, confirm that the app is deployed to the IIS Physical pathPhysical path shown in IISIIS

ManagerManager 's Basic SettingsBasic Settings .

For more information on the layout of a published ASP.NET Core app, see ASP.NET Core directory structure. For

more information on the web.config file, see ASP.NET Core Module.

The app starts, but an error prevents the server from fulfilling the request.

This error occurs within the app's code during startup or while creating a response. The response may contain no

content, or the response may appear as a 500 Internal Server Error in the browser. The Application Event Log

usually states that the app started normally. From the server's perspective, that's correct. The app did start, but it

can't generate a valid response. Run the app at a command prompt on the server or enable the ASP.NET Core

Module stdout log to troubleshoot the problem.

The worker process fails. The app doesn't start.

The ASP.NET Core Module fails to find the .NET Core CLR and find the in-process request handler

(aspnetcorev2_inprocess.dll). Check that:

The app targets either the Microsoft.AspNetCore.Server.IIS NuGet package or the Microsoft.AspNetCore.App

metapackage.

The version of the ASP.NET Core shared framework that the app targets is installed on the target machine.

The worker process fails. The app doesn't start.

The ASP.NET Core Module fails to find the out-of-process hosting request handler. Make sure the

aspnetcorev2_outofprocess.dll is present in a subfolder next to aspnetcorev2.dll.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. The cause of a process startup

failure can usually be determined from entries in the Application Event Log and the ASP.NET Core Module stdout

https://www.nuget.org/packages/Microsoft.AspNetCore.Server.IIS


Failed to start application (ErrorCode '0x800700c1')Failed to start application (ErrorCode '0x800700c1')

EventID: 1010
Source: IIS AspNetCore Module V2
Failed to start application '/LM/W3SVC/6/ROOT/', ErrorCode '0x800700c1'.

Connection resetConnection reset

Default startup limitsDefault startup limits

Troubleshoot on Azure App Service

IMPORTANTIMPORTANT

Application Event Log (Azure App Service)Application Event Log (Azure App Service)

log.

A common failure condition is the app is misconfigured due to targeting a version of the ASP.NET Core shared

framework that isn't present. Check which versions of the ASP.NET Core shared framework are installed on the

target machine. The shared framework is the set of assemblies (.dll files) that are installed on the machine and

referenced by a metapackage such as Microsoft.AspNetCore.App . The metapackage reference can specify a

minimum required version. For more information, see The shared framework.

The 502.5 Process Failure error page is returned when a hosting or app misconfiguration causes the worker process

to fail:

The app failed to start because the app's assembly (.dll) couldn't be loaded.

This error occurs when there's a bitness mismatch between the published app and the w3wp/iisexpress process.

Confirm that the app pool's 32-bit setting is correct:

1. Select the app pool in IIS Manager's Application PoolsApplication Pools .

2. Select Advanced SettingsAdvanced Settings  under Edit Application PoolEdit Application Pool  in the ActionsActions  panel.

3. Set Enable 32-Bit ApplicationsEnable 32-Bit Applications :

If deploying a 32-bit (x86) app, set the value to True .

If deploying a 64-bit (x64) app, set the value to False .

Confirm that there isn't a conflict between a <Platform>  MSBuild property in the project file and the published

bitness of the app.

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal Ser ver Error500 Internal Ser ver Error  when

an error occurs. This often happens when an error occurs during the serialization of complex objects for a response.

This type of error appears as a connection reset error on the client. Application logging can help troubleshoot these

types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at the default

value, an app may take up to two minutes to start before the module logs a process failure. For information on

configuring the module, see Attributes of the aspNetCore element.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

To access the Application Event Log, use the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal:

1. In the Azure portal, open the app in App Ser vicesApp Ser vices .

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/


Run the app in the Kudu consoleRun the app in the Kudu console

Test a 32-bit (x86) appTest a 32-bit (x86) app

Test a 64-bit (x64) appTest a 64-bit (x64) app

2. Select Diagnose and solve problemsDiagnose and solve problems .

3. Select the Diagnostic ToolsDiagnostic Tools  heading.

4. Under Suppor t ToolsSuppor t Tools , select the Application EventsApplication Events  button.

5. Examine the latest error provided by the IIS AspNetCoreModule or IIS AspNetCoreModule V2 entry in the

SourceSource column.

An alternative to using the Diagnose and solve problemsDiagnose and solve problems blade is to examine the Application Event Log file

directly using Kudu:

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the LogFilesLogFiles  folder.

4. Select the pencil icon next to the eventlog.xml file.

5. Examine the log. Scroll to the bottom of the log to see the most recent events.

Many startup errors don't produce useful information in the Application Event Log. You can run the app in the Kudu

Remote Execution Console to discover the error :

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

Current releaseCurrent release

1. cd d:\home\site\wwwroot

2. Run the app:

dotnet .\{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

If the app is a framework-dependent deployment:

If the app is a self-contained deployment:

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x86) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x32  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Current releaseCurrent release

If the app is a 64-bit (x64) framework-dependent deployment:

1. cd D:\Program Files\dotnet

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

https://github.com/projectkudu/kudu/wiki
https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd


ASP.NET Core Module stdout log (Azure App Service)ASP.NET Core Module stdout log (Azure App Service)

WARNINGWARNING

ASP.NET Core Module debug log (Azure App Service)ASP.NET Core Module debug log (Azure App Service)

If the app is a self-contained deployment:

1. cd D:\home\site\wwwroot

2. Run the app: {ASSEMBLY NAME}.exe

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x64) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x64  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

The ASP.NET Core Module stdout log often records useful error messages not found in the Application Event Log. To

enable and view stdout logs:

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Under SELECT PROBLEM CATEGORYSELECT PROBLEM CATEGORY, select the Web App DownWeb App Down button.

3. Under Suggested SolutionsSuggested Solutions  > Enable Stdout Log RedirectionEnable Stdout Log Redirection, select the button to Open Kudu ConsoleOpen Kudu Console

to edit Web.Configto edit Web.Config.

4. In the Kudu Diagnostic ConsoleDiagnostic Console, open the folders to the path sitesite > wwwrootwwwroot. Scroll down to reveal the

web.config file at the bottom of the list.

5. Click the pencil icon next to the web.config file.

6. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: \\?\%home%\LogFiles\stdout .

7. Select SaveSave to save the updated web.config file.

8. Make a request to the app.

9. Return to the Azure portal. Select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select the

Go→Go→ button. The Kudu console opens in a new browser tab or window.

10. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

11. Select the LogFilesLogFiles  folder.

12. Inspect the ModifiedModified column and select the pencil icon to edit the stdout log with the latest modification date.

13. When the log file opens, the error is displayed.

Disable stdout logging when troubleshooting is complete:

1. In the Kudu Diagnostic ConsoleDiagnostic Console, return to the path sitesite > wwwrootwwwroot to reveal the web.config file. Open the

web.configweb.config file again by selecting the pencil icon.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Select SaveSave to save the file.

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created. Only use stdout logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

Slow or hanging app (Azure App Service)Slow or hanging app (Azure App Service)

Monitoring bladesMonitoring blades

The ASP.NET Core Module debug log provides additional, deeper logging from the ASP.NET Core Module. To enable

and view stdout logs:

1. To enable the enhanced diagnostic log, perform either of the following:

2. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

3. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

4. Open the folders to the path sitesite > wwwrootwwwroot. If you didn't supply a path for the aspnetcore-debug.log file, the

file appears in the list. If you supplied a path, navigate to the location of the log file.

5. Open the log file with the pencil button next to the file name.

Follow the instructions in Enhanced diagnostic logs to configure the app for an enhanced diagnostic

logging. Redeploy the app.

Add the <handlerSettings>  shown in Enhanced diagnostic logs to the live app's web.config file using the

Kudu console:

a. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

b. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

c. Open the folders to the path sitesite > wwwrootwwwroot. Edit the web.config file by selecting the pencil

button. Add the <handlerSettings>  section as shown in Enhanced diagnostic logs. Select the SaveSave

button.

Disable debug logging when troubleshooting is complete:

To disable the enhanced debug log, perform either of the following:

Remove the <handlerSettings>  from the web.config file locally and redeploy the app.

Use the Kudu console to edit the web.config file and remove the <handlerSettings>  section. Save the file.

For more information, see ASP.NET Core Module.

Failure to disable the debug log can lead to app or server failure. There's no limit on log file size. Only use debug logging to

troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

When an app responds slowly or hangs on a request, see the following articles:

Troubleshoot slow web app performance issues in Azure App Service

Use Crash Diagnoser Site Extension to Capture Dump for Intermittent Exception issues or performance issues on

Azure Web App

Monitoring blades provide an alternative troubleshooting experience to the methods described earlier in the topic.

These blades can be used to diagnose 500-series errors.

Confirm that the ASP.NET Core Extensions are installed. If the extensions aren't installed, install them manually:

1. In the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  blade section, select the ExtensionsExtensions  blade.

2. The ASP.NET Core ExtensionsASP.NET Core Extensions  should appear in the list.

3. If the extensions aren't installed, select the AddAdd button.

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://blogs.msdn.microsoft.com/asiatech/2015/12/28/use-crash-diagnoser-site-extension-to-capture-dump-for-intermittent-exception-issues-or-performance-issues-on-azure-web-app/


WARNINGWARNING

Troubleshoot on IIS
Application Event Log (IIS)Application Event Log (IIS)

4. Choose the ASP.NET Core ExtensionsASP.NET Core Extensions  from the list.

5. Select OKOK to accept the legal terms.

6. Select OKOK on the Add extensionAdd extension blade.

7. An informational pop-up message indicates when the extensions are successfully installed.

If stdout logging isn't enabled, follow these steps:

1. In the Azure portal, select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select the Go→Go→

button. The Kudu console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the folders to the path sitesite > wwwrootwwwroot and scroll down to reveal the web.config file at the bottom of the

list.

4. Click the pencil icon next to the web.config file.

5. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: \\?\%home%\LogFiles\stdout .

6. Select SaveSave to save the updated web.config file.

Proceed to activate diagnostic logging:

1. In the Azure portal, select the Diagnostics logsDiagnostics logs  blade.

2. Select the OnOn switch for Application Logging (Filesystem)Application Logging (Filesystem)  and Detailed error messagesDetailed error messages . Select the SaveSave

button at the top of the blade.

3. To include failed request tracing, also known as Failed Request Event Buffering (FREB) logging, select the OnOn

switch for Failed request tracingFailed request tracing.

4. Select the Log streamLog stream blade, which is listed immediately under the Diagnostics logsDiagnostics logs  blade in the portal.

5. Make a request to the app.

6. Within the log stream data, the cause of the error is indicated.

Be sure to disable stdout logging when troubleshooting is complete.

To view the failed request tracing logs (FREB logs):

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Select Failed Request Tracing LogsFailed Request Tracing Logs  from the SUPPORT TOOLSSUPPORT TOOLS  area of the sidebar.

See Failed request traces section of the Enable diagnostics logging for web apps in Azure App Service topic and the

Application performance FAQs for Web Apps in Azure: How do I turn on failed request tracing? for more

information.

For more information, see Enable diagnostics logging for web apps in Azure App Service.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

Access the Application Event Log:

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#failed-request-traces
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq#how-do-i-turn-on-failed-request-tracing
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log


Run the app at a command promptRun the app at a command prompt

Framework-dependent deploymentFramework-dependent deployment

Self-contained deploymentSelf-contained deployment

ASP.NET Core Module stdout log (IIS)ASP.NET Core Module stdout log (IIS)

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app. Errors have a value of IIS AspNetCore Module or IIS Express

AspNetCore Module in the Source column.

Many startup errors don't produce useful information in the Application Event Log. You can find the cause of some

errors by running the app at a command prompt on the hosting system.

If the app is a framework-dependent deployment:

1. At a command prompt, navigate to the deployment folder and run the app by executing the app's assembly with

dotnet.exe. In the following command, substitute the name of the app's assembly for <assembly_name>: 

dotnet .\<assembly_name>.dll .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

If the app is a self-contained deployment:

1. At a command prompt, navigate to the deployment folder and run the app's executable. In the following

command, substitute the name of the app's assembly for <assembly_name>: <assembly_name>.exe .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

To enable and view stdout logs:

1. Navigate to the site's deployment folder on the hosting system.

2. If the logs folder isn't present, create the folder. For instructions on how to enable MSBuild to create the logs

folder in the deployment automatically, see the Directory structure topic.

3. Edit the web.config file. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to point to the

logs folder (for example, .\logs\stdout ). stdout  in the path is the log file name prefix. A timestamp, process id,

and file extension are added automatically when the log is created. Using stdout  as the file name prefix, a

typical log file is named stdout_20180205184032_5412.log.

4. Ensure your application pool's identity has write permissions to the logs folder.

5. Save the updated web.config file.

6. Make a request to the app.

7. Navigate to the logs folder. Find and open the most recent stdout log.

8. Study the log for errors.

Disable stdout logging when troubleshooting is complete:

1. Edit the web.config file.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Save the file.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

ASP.NET Core Module debug log (IIS)ASP.NET Core Module debug log (IIS)

<aspNetCore ...>
  <handlerSettings>
    <handlerSetting name="debugLevel" value="file" />
    <handlerSetting name="debugFile" value="c:\temp\ancm.log" />
  </handlerSettings>
</aspNetCore>

Enable the Developer Exception PageEnable the Developer Exception Page

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout"
      hostingModel="InProcess">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
  </environmentVariables>
</aspNetCore>

Obtain data from an appObtain data from an app

Slow or hanging app (IIS)Slow or hanging app (IIS)

App crashes or encounters an exceptionApp crashes or encounters an exception

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

Add the following handler settings to the app's web.config file to enable ASP.NET Core Module debug log:

Confirm that the path specified for the log exists and that the app pool's identity has write permissions to the

location.

For more information, see ASP.NET Core Module.

The ASPNETCORE_ENVIRONMENT  environment variable can be added to web.config to run the app in the Development

environment. As long as the environment isn't overridden in app startup by UseEnvironment  on the host builder,

setting the environment variable allows the Developer Exception Page to appear when the app is run.

Setting the environment variable for ASPNETCORE_ENVIRONMENT  is only recommended for use on staging and testing

servers that aren't exposed to the Internet. Remove the environment variable from the web.config file after

troubleshooting. For information on setting environment variables in web.config, see environmentVariables child

element of aspNetCore.

If an app is capable of responding to requests, obtain request, connection, and additional data from the app using

terminal inline middleware. For more information and sample code, see Troubleshoot and debug ASP.NET Core

projects.

A crash dump is a snapshot of the system's memory and can help determine the cause of an app crash, startup

failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting


WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Clear package caches

1. Create a folder to hold crash dump files at c:\dumps . The app pool must have write access to the folder.

2. Run the EnableDumps PowerShell script:

.\EnableDumps w3wp.exe c:\dumps

.\EnableDumps dotnet.exe c:\dumps

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

.\DisableDumps w3wp.exe

.\DisableDumps dotnet.exe

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The PowerShell

script configures WER to collect up to five dumps per app.

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see User-Mode

Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-Mode Dump File.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the development machine or

changing package versions within the app. In some cases, incoherent packages may break an app when performing

major upgrades. Most of these issues can be fixed by following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the command 

nuget locals all -clear . nuget.exe isn't a bundled install with the Windows desktop operating system and

must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/EnableDumps.ps1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/DisableDumps.ps1
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads


Additional resources

Azure documentationAzure documentation

Visual Studio documentationVisual Studio documentation

Visual Studio Code documentationVisual Studio Code documentation

App startup errors

403.14 Forbidden403.14 Forbidden

Troubleshoot and debug ASP.NET Core projects

Common errors reference for Azure App Service and IIS with ASP.NET Core

Handle errors in ASP.NET Core

ASP.NET Core Module

Application Insights for ASP.NET Core

Remote debugging web apps section of Troubleshoot a web app in Azure App Service using Visual Studio

Azure App Service diagnostics overview

How to: Monitor Apps in Azure App Service

Troubleshoot a web app in Azure App Service using Visual Studio

Troubleshoot HTTP errors of "502 bad gateway" and "503 service unavailable" in your Azure web apps

Troubleshoot slow web app performance issues in Azure App Service

Application performance FAQs for Web Apps in Azure

Azure Web App sandbox (App Service runtime execution limitations)

Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

Remote Debug ASP.NET Core on IIS in Azure in Visual Studio 2017

Remote Debug ASP.NET Core on a Remote IIS Computer in Visual Studio 2017

Learn to debug using Visual Studio

Debugging with Visual Studio Code

This article provides information on common app startup errors and instructions on how to diagnose errors when

an app is deployed to Azure App Service or IIS:

App startup errors

Explains common startup HTTP status code scenarios.

Troubleshoot on Azure App Service

Provides troubleshooting advice for apps deployed to Azure App Service.

Troubleshoot on IIS

Provides troubleshooting advice for apps deployed to IIS or running on IIS Express locally. The guidance applies to

both Windows Server and Windows desktop deployments.

Clear package caches

Explains what to do when incoherent packages break an app when performing major upgrades or changing

package versions.

Additional resources

Lists additional troubleshooting topics.

In Visual Studio, an ASP.NET Core project defaults to IIS Express hosting during debugging. A 502.5 Process Failure

that occurs when debugging locally can be diagnosed using the advice in this topic.

The app fails to start. The following error is logged:

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/en-us/azure/app-service/app-service-diagnostics
https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-http-502-http-503
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-aspnet-on-a-remote-iis-computer
https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger
https://code.visualstudio.com/docs/editor/debugging
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview


The Web server is configured to not list the contents of this directory.

500 Internal Server Error500 Internal Server Error

502.5 Process Failure502.5 Process Failure

Failed to start application (ErrorCode '0x800700c1')Failed to start application (ErrorCode '0x800700c1')

The error is usually caused by a broken deployment on the hosting system, which includes any of the following

scenarios:

The app is deployed to the wrong folder on the hosting system.

The deployment process failed to move all of the app's files and folders to the deployment folder on the hosting

system.

The web.config file is missing from the deployment, or the web.config file contents are malformed.

Perform the following steps:

1. Delete all of the files and folders from the deployment folder on the hosting system.

2. Redeploy the contents of the app's publish folder to the hosting system using your normal method of

deployment, such as Visual Studio, PowerShell, or manual deployment:

3. Confirm that all of the app's files and folders are deployed by comparing the deployment on the hosting system

to the contents of the project's publish folder.

Confirm that the web.config file is present in the deployment and that its contents are correct.

When hosting on Azure App Service, confirm that the app is deployed to the D:\home\site\wwwroot  folder.

When the app is hosted by IIS, confirm that the app is deployed to the IIS Physical pathPhysical path shown in IISIIS

ManagerManager 's Basic SettingsBasic Settings .

For more information on the layout of a published ASP.NET Core app, see ASP.NET Core directory structure. For

more information on the web.config file, see ASP.NET Core Module.

The app starts, but an error prevents the server from fulfilling the request.

This error occurs within the app's code during startup or while creating a response. The response may contain no

content, or the response may appear as a 500 Internal Server Error in the browser. The Application Event Log

usually states that the app started normally. From the server's perspective, that's correct. The app did start, but it

can't generate a valid response. Run the app at a command prompt on the server or enable the ASP.NET Core

Module stdout log to troubleshoot the problem.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. The cause of a process startup

failure can usually be determined from entries in the Application Event Log and the ASP.NET Core Module stdout

log.

A common failure condition is the app is misconfigured due to targeting a version of the ASP.NET Core shared

framework that isn't present. Check which versions of the ASP.NET Core shared framework are installed on the

target machine. The shared framework is the set of assemblies (.dll files) that are installed on the machine and

referenced by a metapackage such as Microsoft.AspNetCore.App . The metapackage reference can specify a

minimum required version. For more information, see The shared framework.

The 502.5 Process Failure error page is returned when a hosting or app misconfiguration causes the worker process

to fail:

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/


EventID: 1010
Source: IIS AspNetCore Module V2
Failed to start application '/LM/W3SVC/6/ROOT/', ErrorCode '0x800700c1'.

Connection resetConnection reset

Default startup limitsDefault startup limits

Troubleshoot on Azure App Service

IMPORTANTIMPORTANT

Application Event Log (Azure App Service)Application Event Log (Azure App Service)

The app failed to start because the app's assembly (.dll) couldn't be loaded.

This error occurs when there's a bitness mismatch between the published app and the w3wp/iisexpress process.

Confirm that the app pool's 32-bit setting is correct:

1. Select the app pool in IIS Manager's Application PoolsApplication Pools .

2. Select Advanced SettingsAdvanced Settings  under Edit Application PoolEdit Application Pool  in the ActionsActions  panel.

3. Set Enable 32-Bit ApplicationsEnable 32-Bit Applications :

If deploying a 32-bit (x86) app, set the value to True .

If deploying a 64-bit (x64) app, set the value to False .

Confirm that there isn't a conflict between a <Platform>  MSBuild property in the project file and the published

bitness of the app.

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal Ser ver Error500 Internal Ser ver Error  when

an error occurs. This often happens when an error occurs during the serialization of complex objects for a response.

This type of error appears as a connection reset error on the client. Application logging can help troubleshoot these

types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at the default

value, an app may take up to two minutes to start before the module logs a process failure. For information on

configuring the module, see Attributes of the aspNetCore element.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

To access the Application Event Log, use the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal:

1. In the Azure portal, open the app in App Ser vicesApp Ser vices .

2. Select Diagnose and solve problemsDiagnose and solve problems .

3. Select the Diagnostic ToolsDiagnostic Tools  heading.

4. Under Suppor t ToolsSuppor t Tools , select the Application EventsApplication Events  button.

5. Examine the latest error provided by the IIS AspNetCoreModule or IIS AspNetCoreModule V2 entry in the

SourceSource column.

An alternative to using the Diagnose and solve problemsDiagnose and solve problems blade is to examine the Application Event Log file

directly using Kudu:

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

https://github.com/projectkudu/kudu/wiki


Run the app in the Kudu consoleRun the app in the Kudu console

Test a 32-bit (x86) appTest a 32-bit (x86) app

Test a 64-bit (x64) appTest a 64-bit (x64) app

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the LogFilesLogFiles  folder.

4. Select the pencil icon next to the eventlog.xml file.

5. Examine the log. Scroll to the bottom of the log to see the most recent events.

Many startup errors don't produce useful information in the Application Event Log. You can run the app in the Kudu

Remote Execution Console to discover the error :

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

Current releaseCurrent release

1. cd d:\home\site\wwwroot

2. Run the app:

dotnet .\{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

If the app is a framework-dependent deployment:

If the app is a self-contained deployment:

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x86) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x32  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Current releaseCurrent release

If the app is a 64-bit (x64) framework-dependent deployment:

If the app is a self-contained deployment:

1. cd D:\Program Files\dotnet

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

1. cd D:\home\site\wwwroot

2. Run the app: {ASSEMBLY NAME}.exe

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x64) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x64  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


ASP.NET Core Module stdout log (Azure App Service)ASP.NET Core Module stdout log (Azure App Service)

WARNINGWARNING

Slow or hanging app (Azure App Service)Slow or hanging app (Azure App Service)

Monitoring bladesMonitoring blades

The console output from the app, showing any errors, is piped to the Kudu console.

The ASP.NET Core Module stdout log often records useful error messages not found in the Application Event Log. To

enable and view stdout logs:

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Under SELECT PROBLEM CATEGORYSELECT PROBLEM CATEGORY, select the Web App DownWeb App Down button.

3. Under Suggested SolutionsSuggested Solutions  > Enable Stdout Log RedirectionEnable Stdout Log Redirection, select the button to Open Kudu ConsoleOpen Kudu Console

to edit Web.Configto edit Web.Config.

4. In the Kudu Diagnostic ConsoleDiagnostic Console, open the folders to the path sitesite > wwwrootwwwroot. Scroll down to reveal the

web.config file at the bottom of the list.

5. Click the pencil icon next to the web.config file.

6. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: \\?\%home%\LogFiles\stdout .

7. Select SaveSave to save the updated web.config file.

8. Make a request to the app.

9. Return to the Azure portal. Select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select the

Go→Go→ button. The Kudu console opens in a new browser tab or window.

10. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

11. Select the LogFilesLogFiles  folder.

12. Inspect the ModifiedModified column and select the pencil icon to edit the stdout log with the latest modification date.

13. When the log file opens, the error is displayed.

Disable stdout logging when troubleshooting is complete:

1. In the Kudu Diagnostic ConsoleDiagnostic Console, return to the path sitesite > wwwrootwwwroot to reveal the web.config file. Open the

web.configweb.config file again by selecting the pencil icon.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Select SaveSave to save the file.

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created. Only use stdout logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

When an app responds slowly or hangs on a request, see the following articles:

Troubleshoot slow web app performance issues in Azure App Service

Use Crash Diagnoser Site Extension to Capture Dump for Intermittent Exception issues or performance issues on

Azure Web App

Monitoring blades provide an alternative troubleshooting experience to the methods described earlier in the topic.

These blades can be used to diagnose 500-series errors.

Confirm that the ASP.NET Core Extensions are installed. If the extensions aren't installed, install them manually:

1. In the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  blade section, select the ExtensionsExtensions  blade.

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://blogs.msdn.microsoft.com/asiatech/2015/12/28/use-crash-diagnoser-site-extension-to-capture-dump-for-intermittent-exception-issues-or-performance-issues-on-azure-web-app/


WARNINGWARNING

Troubleshoot on IIS
Application Event Log (IIS)Application Event Log (IIS)

2. The ASP.NET Core ExtensionsASP.NET Core Extensions  should appear in the list.

3. If the extensions aren't installed, select the AddAdd button.

4. Choose the ASP.NET Core ExtensionsASP.NET Core Extensions  from the list.

5. Select OKOK to accept the legal terms.

6. Select OKOK on the Add extensionAdd extension blade.

7. An informational pop-up message indicates when the extensions are successfully installed.

If stdout logging isn't enabled, follow these steps:

1. In the Azure portal, select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select the Go→Go→

button. The Kudu console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the folders to the path sitesite > wwwrootwwwroot and scroll down to reveal the web.config file at the bottom of the

list.

4. Click the pencil icon next to the web.config file.

5. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: \\?\%home%\LogFiles\stdout .

6. Select SaveSave to save the updated web.config file.

Proceed to activate diagnostic logging:

1. In the Azure portal, select the Diagnostics logsDiagnostics logs  blade.

2. Select the OnOn switch for Application Logging (Filesystem)Application Logging (Filesystem)  and Detailed error messagesDetailed error messages . Select the SaveSave

button at the top of the blade.

3. To include failed request tracing, also known as Failed Request Event Buffering (FREB) logging, select the OnOn

switch for Failed request tracingFailed request tracing.

4. Select the Log streamLog stream blade, which is listed immediately under the Diagnostics logsDiagnostics logs  blade in the portal.

5. Make a request to the app.

6. Within the log stream data, the cause of the error is indicated.

Be sure to disable stdout logging when troubleshooting is complete.

To view the failed request tracing logs (FREB logs):

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Select Failed Request Tracing LogsFailed Request Tracing Logs  from the SUPPORT TOOLSSUPPORT TOOLS  area of the sidebar.

See Failed request traces section of the Enable diagnostics logging for web apps in Azure App Service topic and the

Application performance FAQs for Web Apps in Azure: How do I turn on failed request tracing? for more

information.

For more information, see Enable diagnostics logging for web apps in Azure App Service.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

Access the Application Event Log:

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#failed-request-traces
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq#how-do-i-turn-on-failed-request-tracing
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log


Run the app at a command promptRun the app at a command prompt

Framework-dependent deploymentFramework-dependent deployment

Self-contained deploymentSelf-contained deployment

ASP.NET Core Module stdout log (IIS)ASP.NET Core Module stdout log (IIS)

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app. Errors have a value of IIS AspNetCore Module or IIS Express

AspNetCore Module in the Source column.

Many startup errors don't produce useful information in the Application Event Log. You can find the cause of some

errors by running the app at a command prompt on the hosting system.

If the app is a framework-dependent deployment:

1. At a command prompt, navigate to the deployment folder and run the app by executing the app's assembly with

dotnet.exe. In the following command, substitute the name of the app's assembly for <assembly_name>: 

dotnet .\<assembly_name>.dll .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

If the app is a self-contained deployment:

1. At a command prompt, navigate to the deployment folder and run the app's executable. In the following

command, substitute the name of the app's assembly for <assembly_name>: <assembly_name>.exe .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

To enable and view stdout logs:

1. Navigate to the site's deployment folder on the hosting system.

2. If the logs folder isn't present, create the folder. For instructions on how to enable MSBuild to create the logs

folder in the deployment automatically, see the Directory structure topic.

3. Edit the web.config file. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to point to the

logs folder (for example, .\logs\stdout ). stdout  in the path is the log file name prefix. A timestamp, process id,

and file extension are added automatically when the log is created. Using stdout  as the file name prefix, a

typical log file is named stdout_20180205184032_5412.log.

4. Ensure your application pool's identity has write permissions to the logs folder.

5. Save the updated web.config file.

6. Make a request to the app.

7. Navigate to the logs folder. Find and open the most recent stdout log.

8. Study the log for errors.

Disable stdout logging when troubleshooting is complete:

1. Edit the web.config file.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

Enable the Developer Exception PageEnable the Developer Exception Page

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
  </environmentVariables>
</aspNetCore>

Obtain data from an appObtain data from an app

Slow or hanging app (IIS)Slow or hanging app (IIS)

App crashes or encounters an exceptionApp crashes or encounters an exception

3. Save the file.

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

The ASPNETCORE_ENVIRONMENT  environment variable can be added to web.config to run the app in the Development

environment. As long as the environment isn't overridden in app startup by UseEnvironment  on the host builder,

setting the environment variable allows the Developer Exception Page to appear when the app is run.

Setting the environment variable for ASPNETCORE_ENVIRONMENT  is only recommended for use on staging and testing

servers that aren't exposed to the Internet. Remove the environment variable from the web.config file after

troubleshooting. For information on setting environment variables in web.config, see environmentVariables child

element of aspNetCore.

If an app is capable of responding to requests, obtain request, connection, and additional data from the app using

terminal inline middleware. For more information and sample code, see Troubleshoot and debug ASP.NET Core

projects.

A crash dump is a snapshot of the system's memory and can help determine the cause of an app crash, startup

failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

1. Create a folder to hold crash dump files at c:\dumps . The app pool must have write access to the folder.

2. Run the EnableDumps PowerShell script:

.\EnableDumps w3wp.exe c:\dumps

.\EnableDumps dotnet.exe c:\dumps

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/EnableDumps.ps1


WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Clear package caches

Additional resources

Azure documentationAzure documentation

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

.\DisableDumps w3wp.exe

.\DisableDumps dotnet.exe

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The PowerShell

script configures WER to collect up to five dumps per app.

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see User-Mode

Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-Mode Dump File.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the development machine or

changing package versions within the app. In some cases, incoherent packages may break an app when performing

major upgrades. Most of these issues can be fixed by following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the command 

nuget locals all -clear . nuget.exe isn't a bundled install with the Windows desktop operating system and

must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

Troubleshoot and debug ASP.NET Core projects

Common errors reference for Azure App Service and IIS with ASP.NET Core

Handle errors in ASP.NET Core

ASP.NET Core Module

Application Insights for ASP.NET Core

Remote debugging web apps section of Troubleshoot a web app in Azure App Service using Visual Studio

Azure App Service diagnostics overview

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/DisableDumps.ps1
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/en-us/azure/app-service/app-service-diagnostics


Visual Studio documentationVisual Studio documentation

Visual Studio Code documentationVisual Studio Code documentation

How to: Monitor Apps in Azure App Service

Troubleshoot a web app in Azure App Service using Visual Studio

Troubleshoot HTTP errors of "502 bad gateway" and "503 service unavailable" in your Azure web apps

Troubleshoot slow web app performance issues in Azure App Service

Application performance FAQs for Web Apps in Azure

Azure Web App sandbox (App Service runtime execution limitations)

Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

Remote Debug ASP.NET Core on IIS in Azure in Visual Studio 2017

Remote Debug ASP.NET Core on a Remote IIS Computer in Visual Studio 2017

Learn to debug using Visual Studio

Debugging with Visual Studio Code

https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-http-502-http-503
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-aspnet-on-a-remote-iis-computer
https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger
https://code.visualstudio.com/docs/editor/debugging


Common errors reference for Azure App Service and
IIS with ASP.NET Core
9/22/2020 • 22 minutes to read • Edit Online

IMPORTANTIMPORTANT

OS upgrade removed the 32-bit ASP.NET Core Module

Missing site extension, 32-bit (x86) and 64-bit (x64) site extensions
installed, or wrong process bitness set

This topic describes common errors and provides troubleshooting advice for specific errors when hosting ASP.NET

Core apps on Azure Apps Service and IIS.

For general troubleshooting guidance, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Collect the following information:

Browser behavior (status code and error message)

Application Event Log entries

ASP.NET Core Module stdout and debug log entries

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS

1. Select Star tStar t on the WindowsWindows menu, type Event Viewer, and press EnterEnter .

2. After the Event ViewerEvent Viewer  opens, expand Windows LogsWindows Logs  > ApplicationApplication in the sidebar.

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS: Follow the instructions in the Log creation and redirection and Enhanced diagnostic logs sections of

the ASP.NET Core Module topic.

Compare error information to the following common errors. If a match is found, follow the troubleshooting advice.

The list of errors in this topic isn't exhaustive. If you encounter an error not listed here, open a new issue using the

Content feedbackContent feedback button at the bottom of this topic with detailed instructions on how to reproduce the error.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

Application Log:Application Log: The Module DLL C:\WINDOWS\system32\inetsr v\aspnetcore.dllC:\WINDOWS\system32\inetsr v\aspnetcore.dll  failed to load. The data is

the error.

Troubleshooting:

Non-OS files in the C:\Windows\SysWOW64\inetsr vC:\Windows\SysWOW64\inetsr v  directory aren't preserved during an OS upgrade. If the

ASP.NET Core Module is installed prior to an OS upgrade and then any app pool is run in 32-bit mode after an OS

upgrade, this issue is encountered. After an OS upgrade, repair the ASP.NET Core Module. See Install the .NET Core

Hosting bundle. Select RepairRepair  when the installer is run.

Applies to apps hosted by Azure App Services.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/azure-iis-errors-reference.md


An x86 app is deployed but the app pool isn't enabled for 32-bit apps

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any native

dependencies. Could not find inprocess request handler. Captured output from invoking hostfxr : It was not

possible to find any compatible framework version. The specified framework 'Microsoft.AspNetCore.App',

version '{VERSION}-preview-*' was not found. Failed to start application '/LM/W3SVC/1416782824/ROOT',

ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: It was not possible to find any compatible framework version. The

specified framework 'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Invoking hostfxr to find the inprocess request handler failed without

finding any native dependencies. This most likely means the app is misconfigured, please check the versions

of Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the application and are

installed on the machine. Failed HRESULT returned: 0x8000ffff. Could not find inprocess request handler. It

was not possible to find any compatible framework version. The specified framework

'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found.

Troubleshooting:

If running the app on a preview runtime, install either the 32-bit (x86) oror  64-bit (x64) site extension that

matches the bitness of the app and the app's runtime version. Don't install both extensions or multipleDon't install both extensions or multiple

runtime versions of the extension.runtime versions of the extension.

ASP.NET Core {RUNTIME VERSION} (x86) Runtime

ASP.NET Core {RUNTIME VERSION} (x64) Runtime

Restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and both the 32-bit (x86) and 64-bit (x64) site extensions are

installed, uninstall the site extension that doesn't match the bitness of the app. After removing the site

extension, restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and the site extension's bitness matches that of the app, confirm that

the preview site extension's runtime version matches the app's runtime version.

Confirm that the app's PlatformPlatform in Application SettingsApplication Settings  matches the bitness of the app.

For more information, see Deploy ASP.NET Core apps to Azure App Service.

Browser :Browser : HTTP Error 500.30 - ANCM In-Process Start Failure

Application Log:Application Log: Application '/LM/W3SVC/5/ROOT' with physical root '{PATH}' hit unexpected managed

exception, exception code = '0xe0434352'. Please check the stderr logs for more information. Application

'/LM/W3SVC/5/ROOT' with physical root '{PATH}' failed to load clr and managed application. CLR worker

thread exited prematurely

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Failed HRESULT returned: 0x8007023e

This scenario is trapped by the SDK when publishing a self-contained app. The SDK produces an error if the RID

doesn't match the platform target (for example, win10-x64  RID with <PlatformTarget>x86</PlatformTarget>  in the

project file).

Troubleshooting:



Platform conflicts with RID

URI endpoint wrong or stopped website

CoreWebEngine or W3SVC server features disabled

Incorrect website physical path or app missing

For an x86 framework-dependent deployment ( <PlatformTarget>x86</PlatformTarget> ), enable the IIS app pool for

32-bit apps. In IIS Manager, open the app pool's Advanced SettingsAdvanced Settings  and set Enable 32-Bit ApplicationsEnable 32-Bit Applications  to TrueTrue.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

failed to start process with commandline '"C:{PATH}{ASSEMBLY}.{exe|dll}" ', ErrorCode = '0x80004005 : ff.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: Unhandled Exception: System.BadImageFormatException: Could not

load file or assembly '{ASSEMBLY}.dll'. An attempt was made to load a program with an incorrect format.

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

If this exception occurs for an Azure Apps deployment when upgrading an app and deploying newer

assemblies, manually delete all files from the prior deployment. Lingering incompatible assemblies can result

in a System.BadImageFormatException  exception when deploying an upgraded app.

Browser :Browser : ERR_CONNECTION_REFUSED --OR----OR-- Unable to connect

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

Confirm the correct URI endpoint for the app is in use. Check the bindings.

Confirm that the IIS website isn't in the Stopped state.

OS Exception:OS Exception: The IIS 7.0 CoreWebEngine and W3SVC features must be installed to use the ASP.NET Core Module.

Troubleshooting:

Confirm that the proper role and features are enabled. See IIS Configuration.

Browser :Browser : 403 Forbidden - Access is denied --OR----OR-- 403.14 Forbidden - The Web server is configured to not

list the contents of this directory.

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

Check the IIS website Basic SettingsBasic Settings  and the physical app folder. Confirm that the app is in the folder at the IIS



Incorrect role, ASP.NET Core Module not installed, or incorrect
permissions

Incorrect processPath, missing PATH variable, Hosting Bundle not
installed, system/IIS not restarted, VC++ Redistributable not installed,
or dotnet.exe access violation

website Physical pathPhysical path.

Browser :Browser : 500.19 Internal Server Error - The requested page cannot be accessed because the related

configuration data for the page is invalid. --OR----OR-- This page can't be displayed

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

<section name="aspNetCore" overrideModeDefault="Allow" />

Confirm that the proper role is enabled. See IIS Configuration.

Open Programs & FeaturesPrograms & Features  or Apps & featuresApps & features  and confirm that Windows Ser ver HostingWindows Ser ver Hosting is

installed. If Windows Ser ver HostingWindows Ser ver Hosting isn't present in the list of installed programs, download and install

the .NET Core Hosting Bundle.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

Make sure that the Application PoolApplication Pool  > Process ModelProcess Model  > IdentityIdentity  is set to ApplicationPoolIdentityApplicationPoolIdentity  or

the custom identity has the correct permissions to access the app's deployment folder.

If you uninstalled the ASP.NET Core Hosting Bundle and installed an earlier version of the hosting bundle, the

applicationHost.config file doesn't include a section for the ASP.NET Core Module. Open

applicationHost.config at %windir%/System32/inetsrv/config and find the 

<configuration><configSections><sectionGroup name="system.webServer">  section group. If the section for the

ASP.NET Core Module is missing from the section group, add the section element:

Alternatively, install the latest version of the ASP.NET Core Hosting Bundle. The latest version is backwards-

compatible with supported ASP.NET Core apps.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

failed to start process with commandline '"{...}" ', ErrorCode = '0x80070002 : 0. Application '{PATH}' wasn't

able to start. Executable was not found at '{PATH}'. Failed to start application '/LM/W3SVC/2/ROOT',

ErrorCode '0x8007023e'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Event Log: 'Application '{PATH}' wasn't able to start. Executable was

not found at '{PATH}'. Failed HRESULT returned: 0x8007023e

Troubleshooting:

https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer


Incorrect arguments of <aspNetCore> element

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Check the processPath attribute on the <aspNetCore>  element in web.config to confirm that it's dotnet  for a

framework-dependent deployment (FDD) or .\{ASSEMBLY}.exe  for a self-contained deployment (SCD).

For an FDD, dotnet.exe might not be accessible via the PATH settings. Confirm that C:\Program Files\dotnet\

exists in the System PATH settings.

For an FDD, dotnet.exe might not be accessible for the user identity of the app pool. Confirm that the app

pool user identity has access to the C:\Program Files\dotnet directory. Confirm that there are no deny rules

configured for the app pool user identity on the C:\Program Files\dotnet and app directories.

An FDD may have been deployed and .NET Core installed without restarting IIS. Either restart the server or

restart IIS by executing net stop was /ynet stop was /y  followed by net star t w3svcnet star t w3svc from a command prompt.

An FDD may have been deployed without installing the .NET Core runtime on the hosting system. If the .NET

Core runtime hasn't been installed, run the .NET Core Hosting Bundle installer.NET Core Hosting Bundle installer  on the system.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

If a specific runtime is required, download the runtime from the .NET Download Archives and install it on the

system. Complete the installation by restarting the system or restarting IIS by executing net stop was /ynet stop was /y

followed by net star t w3svcnet star t w3svc from a command prompt.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any native

dependencies. This most likely means the app is misconfigured, please check the versions of

Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the application and are installed

on the machine. Could not find inprocess request handler. Captured output from invoking hostfxr : Did you

mean to run dotnet SDK commands? Please install dotnet SDK from: https://go.microsoft.com/fwlink/?

LinkID=798306&clcid=0x409 Failed to start application '/LM/W3SVC/3/ROOT', ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: Did you mean to run dotnet SDK commands? Please install dotnet

SDK from: https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Invoking hostfxr to find the inprocess request handler failed without

finding any native dependencies. This most likely means the app is misconfigured, please check the versions

of Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the application and are

installed on the machine. Failed HRESULT returned: 0x8000ffff Could not find inprocess request handler.

Captured output from invoking hostfxr : Did you mean to run dotnet SDK commands? Please install dotnet

SDK from: https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409 Failed HRESULT returned:

0x8000ffff

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Examine the arguments attribute on the <aspNetCore>  element in web.config to confirm that it's either (a) 

.\{ASSEMBLY}.dll  for a framework-dependent deployment (FDD); or (b) not present, an empty string (

arguments="" ), or a list of the app's arguments ( arguments="{ARGUMENT_1}, {ARGUMENT_2}, ... {ARGUMENT_X}" )

for a self-contained deployment (SCD).

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer
https://dotnet.microsoft.com/download/archives
https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409


Missing .NET Core shared framework

Stopped Application Pool

Sub-application includes a <handlers> section

stdout log path incorrect

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any native

dependencies. This most likely means the app is misconfigured, please check the versions of

Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the application and are installed

on the machine. Could not find inprocess request handler. Captured output from invoking hostfxr : It was not

possible to find any compatible framework version. The specified framework 'Microsoft.AspNetCore.App',

version '{VERSION}' was not found.

Failed to start application '/LM/W3SVC/5/ROOT', ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: It was not possible to find any compatible framework version. The

specified framework 'Microsoft.AspNetCore.App', version '{VERSION}' was not found.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Failed HRESULT returned: 0x8000ffff

Troubleshooting:

For a framework-dependent deployment (FDD), confirm that the correct runtime installed on the system.

Browser :Browser : 503 Service Unavailable

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

Confirm that the Application Pool isn't in the Stopped state.

Browser :Browser : HTTP Error 500.19 - Internal Server Error

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The root app's log file is created and shows normal operation. The

sub-app's log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The root app's log file is created and shows normal operation. The

sub-app's log file isn't created.

Troubleshooting:

Confirm that the sub-app's web.config file doesn't include a <handlers>  section or that the sub-app doesn't inherit

the parent app's handlers.

The parent app's <system.webServer>  section of web.config is placed inside of a <location>  element. The

InheritInChildApplications property is set to false  to indicate that the settings specified within the <location>

element aren't inherited by apps that reside in a subdirectory of the parent app. For more information, see ASP.NET

Core Module.

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.sectioninformation.inheritinchildapplications
https://docs.microsoft.com/en-us/iis/manage/managing-your-configuration-settings/understanding-iis-configuration-delegation#the-concept-of-location


Application configuration general issue

Browser :Browser : The app responds normally.

Application Log:Application Log: Could not start stdout redirection in C:\Program Files\IIS\Asp.Net Core

Module\V2\aspnetcorev2.dll. Exception message: HRESULT 0x80070005 returned at

{PATH}\aspnetcoremodulev2\commonlib\fileoutputmanager.cpp:84. Could not stop stdout redirection in

C:\Program Files\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll. Exception message: HRESULT 0x80070002

returned at {PATH}. Could not start stdout redirection in {PATH}\aspnetcorev2_inprocess.dll.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module debug Log:ASP.NET Core Module debug Log: Could not start stdout redirection in C:\Program Files\IIS\Asp.Net Core

Module\V2\aspnetcorev2.dll. Exception message: HRESULT 0x80070005 returned at

{PATH}\aspnetcoremodulev2\commonlib\fileoutputmanager.cpp:84. Could not stop stdout redirection in

C:\Program Files\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll. Exception message: HRESULT 0x80070002

returned at {PATH}. Could not start stdout redirection in {PATH}\aspnetcorev2_inprocess.dll.

Troubleshooting:

The stdoutLogFile  path specified in the <aspNetCore>  element of web.config doesn't exist. For more

information, see ASP.NET Core Module: Log creation and redirection.

The app pool user doesn't have write access to the stdout log path.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure --OR----OR-- HTTP Error 500.30 - ANCM In-

Process Start Failure

Application Log:Application Log: Variable

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty or created with normal entries until

the point of the app failing.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Variable

Troubleshooting:

The process failed to start, most likely due to an app configuration or programming issue.

For more information, see the following topics:

Troubleshoot ASP.NET Core on Azure App Service and IIS

Troubleshoot and debug ASP.NET Core projects

This topic describes common errors and provides troubleshooting advice for specific errors when hosting ASP.NET

Core apps on Azure Apps Service and IIS.

For general troubleshooting guidance, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Collect the following information:

Browser behavior (status code and error message)

Application Event Log entries

ASP.NET Core Module stdout and debug log entries

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS

1. Select Star tStar t on the WindowsWindows menu, type Event Viewer, and press EnterEnter .

2. After the Event ViewerEvent Viewer  opens, expand Windows LogsWindows Logs  > ApplicationApplication in the sidebar.



IMPORTANTIMPORTANT

OS upgrade removed the 32-bit ASP.NET Core Module

Missing site extension, 32-bit (x86) and 64-bit (x64) site extensions
installed, or wrong process bitness set

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS: Follow the instructions in the Log creation and redirection and Enhanced diagnostic logs sections of

the ASP.NET Core Module topic.

Compare error information to the following common errors. If a match is found, follow the troubleshooting advice.

The list of errors in this topic isn't exhaustive. If you encounter an error not listed here, open a new issue using the

Content feedbackContent feedback button at the bottom of this topic with detailed instructions on how to reproduce the error.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

Application Log:Application Log: The Module DLL C:\WINDOWS\system32\inetsr v\aspnetcore.dllC:\WINDOWS\system32\inetsr v\aspnetcore.dll  failed to load. The data is

the error.

Troubleshooting:

Non-OS files in the C:\Windows\SysWOW64\inetsr vC:\Windows\SysWOW64\inetsr v  directory aren't preserved during an OS upgrade. If the

ASP.NET Core Module is installed prior to an OS upgrade and then any app pool is run in 32-bit mode after an OS

upgrade, this issue is encountered. After an OS upgrade, repair the ASP.NET Core Module. See Install the .NET Core

Hosting bundle. Select RepairRepair  when the installer is run.

Applies to apps hosted by Azure App Services.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any native

dependencies. Could not find inprocess request handler. Captured output from invoking hostfxr : It was not

possible to find any compatible framework version. The specified framework 'Microsoft.AspNetCore.App',

version '{VERSION}-preview-*' was not found. Failed to start application '/LM/W3SVC/1416782824/ROOT',

ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: It was not possible to find any compatible framework version. The

specified framework 'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found.

Troubleshooting:

If running the app on a preview runtime, install either the 32-bit (x86) oror  64-bit (x64) site extension that

matches the bitness of the app and the app's runtime version. Don't install both extensions or multipleDon't install both extensions or multiple

runtime versions of the extension.runtime versions of the extension.

ASP.NET Core {RUNTIME VERSION} (x86) Runtime

ASP.NET Core {RUNTIME VERSION} (x64) Runtime

Restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and both the 32-bit (x86) and 64-bit (x64) site extensions are

installed, uninstall the site extension that doesn't match the bitness of the app. After removing the site



An x86 app is deployed but the app pool isn't enabled for 32-bit apps

Platform conflicts with RID

URI endpoint wrong or stopped website

extension, restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and the site extension's bitness matches that of the app, confirm that

the preview site extension's runtime version matches the app's runtime version.

Confirm that the app's PlatformPlatform in Application SettingsApplication Settings  matches the bitness of the app.

For more information, see Deploy ASP.NET Core apps to Azure App Service.

Browser :Browser : HTTP Error 500.30 - ANCM In-Process Start Failure

Application Log:Application Log: Application '/LM/W3SVC/5/ROOT' with physical root '{PATH}' hit unexpected managed

exception, exception code = '0xe0434352'. Please check the stderr logs for more information. Application

'/LM/W3SVC/5/ROOT' with physical root '{PATH}' failed to load clr and managed application. CLR worker

thread exited prematurely

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

This scenario is trapped by the SDK when publishing a self-contained app. The SDK produces an error if the RID

doesn't match the platform target (for example, win10-x64  RID with <PlatformTarget>x86</PlatformTarget>  in the

project file).

Troubleshooting:

For an x86 framework-dependent deployment ( <PlatformTarget>x86</PlatformTarget> ), enable the IIS app pool for

32-bit apps. In IIS Manager, open the app pool's Advanced SettingsAdvanced Settings  and set Enable 32-Bit ApplicationsEnable 32-Bit Applications  to TrueTrue.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

failed to start process with commandline '"C:{PATH}{ASSEMBLY}.{exe|dll}" ', ErrorCode = '0x80004005 : ff.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: Unhandled Exception: System.BadImageFormatException: Could not

load file or assembly '{ASSEMBLY}.dll'. An attempt was made to load a program with an incorrect format.

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

If this exception occurs for an Azure Apps deployment when upgrading an app and deploying newer

assemblies, manually delete all files from the prior deployment. Lingering incompatible assemblies can result

in a System.BadImageFormatException  exception when deploying an upgraded app.

Browser :Browser : ERR_CONNECTION_REFUSED --OR----OR-- Unable to connect

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

Confirm the correct URI endpoint for the app is in use. Check the bindings.



CoreWebEngine or W3SVC server features disabled

Incorrect website physical path or app missing

Incorrect role, ASP.NET Core Module not installed, or incorrect
permissions

Confirm that the IIS website isn't in the Stopped state.

OS Exception:OS Exception: The IIS 7.0 CoreWebEngine and W3SVC features must be installed to use the ASP.NET Core Module.

Troubleshooting:

Confirm that the proper role and features are enabled. See IIS Configuration.

Browser :Browser : 403 Forbidden - Access is denied --OR----OR-- 403.14 Forbidden - The Web server is configured to not

list the contents of this directory.

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

Check the IIS website Basic SettingsBasic Settings  and the physical app folder. Confirm that the app is in the folder at the IIS

website Physical pathPhysical path.

Browser :Browser : 500.19 Internal Server Error - The requested page cannot be accessed because the related

configuration data for the page is invalid. --OR----OR-- This page can't be displayed

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

<section name="aspNetCore" overrideModeDefault="Allow" />

Confirm that the proper role is enabled. See IIS Configuration.

Open Programs & FeaturesPrograms & Features  or Apps & featuresApps & features  and confirm that Windows Ser ver HostingWindows Ser ver Hosting is

installed. If Windows Ser ver HostingWindows Ser ver Hosting isn't present in the list of installed programs, download and install

the .NET Core Hosting Bundle.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

Make sure that the Application PoolApplication Pool  > Process ModelProcess Model  > IdentityIdentity  is set to ApplicationPoolIdentityApplicationPoolIdentity  or

the custom identity has the correct permissions to access the app's deployment folder.

If you uninstalled the ASP.NET Core Hosting Bundle and installed an earlier version of the hosting bundle, the

applicationHost.config file doesn't include a section for the ASP.NET Core Module. Open

applicationHost.config at %windir%/System32/inetsrv/config and find the 

<configuration><configSections><sectionGroup name="system.webServer">  section group. If the section for the

ASP.NET Core Module is missing from the section group, add the section element:

Alternatively, install the latest version of the ASP.NET Core Hosting Bundle. The latest version is backwards-

https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer


Incorrect processPath, missing PATH variable, Hosting Bundle not
installed, system/IIS not restarted, VC++ Redistributable not installed,
or dotnet.exe access violation

Incorrect arguments of <aspNetCore> element

compatible with supported ASP.NET Core apps.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

failed to start process with commandline '"{...}" ', ErrorCode = '0x80070002 : 0.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Check the processPath attribute on the <aspNetCore>  element in web.config to confirm that it's dotnet  for a

framework-dependent deployment (FDD) or .\{ASSEMBLY}.exe  for a self-contained deployment (SCD).

For an FDD, dotnet.exe might not be accessible via the PATH settings. Confirm that C:\Program Files\dotnet\

exists in the System PATH settings.

For an FDD, dotnet.exe might not be accessible for the user identity of the app pool. Confirm that the app

pool user identity has access to the C:\Program Files\dotnet directory. Confirm that there are no deny rules

configured for the app pool user identity on the C:\Program Files\dotnet and app directories.

An FDD may have been deployed and .NET Core installed without restarting IIS. Either restart the server or

restart IIS by executing net stop was /ynet stop was /y  followed by net star t w3svcnet star t w3svc from a command prompt.

An FDD may have been deployed without installing the .NET Core runtime on the hosting system. If the .NET

Core runtime hasn't been installed, run the .NET Core Hosting Bundle installer.NET Core Hosting Bundle installer  on the system.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

If a specific runtime is required, download the runtime from the .NET Download Archives and install it on the

system. Complete the installation by restarting the system or restarting IIS by executing net stop was /ynet stop was /y

followed by net star t w3svcnet star t w3svc from a command prompt.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

failed to start process with commandline '"dotnet" .{ASSEMBLY}.dll', ErrorCode = '0x80004005 : 80008081.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The application to execute does not exist: 'PATH{ASSEMBLY}.dll'

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Examine the arguments attribute on the <aspNetCore>  element in web.config to confirm that it's either (a) 

.\{ASSEMBLY}.dll  for a framework-dependent deployment (FDD); or (b) not present, an empty string (

arguments="" ), or a list of the app's arguments ( arguments="{ARGUMENT_1}, {ARGUMENT_2}, ... {ARGUMENT_X}" )

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer
https://dotnet.microsoft.com/download/archives


Stopped Application Pool

Sub-application includes a <handlers> section

stdout log path incorrect

Application configuration general issue

for a self-contained deployment (SCD).

Troubleshooting:

For a framework-dependent deployment (FDD), confirm that the correct runtime installed on the system.

Browser :Browser : 503 Service Unavailable

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

Confirm that the Application Pool isn't in the Stopped state.

Browser :Browser : HTTP Error 500.19 - Internal Server Error

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The root app's log file is created and shows normal operation. The

sub-app's log file isn't created.

Troubleshooting:

Confirm that the sub-app's web.config file doesn't include a <handlers>  section.

Browser :Browser : The app responds normally.

Application Log:Application Log: Warning: Could not create stdoutLogFile \?{PATH}\path_doesnt_exist\stdout_{PROCESS

ID}_{TIMESTAMP}.log, ErrorCode = -2147024893.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

The stdoutLogFile  path specified in the <aspNetCore>  element of web.config doesn't exist. For more

information, see ASP.NET Core Module: Log creation and redirection.

The app pool user doesn't have write access to the stdout log path.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

created process with commandline '"C:{PATH}{ASSEMBLY}.{exe|dll}" ' but either crashed or did not respond or

did not listen on the given port '{PORT}', ErrorCode = '{ERROR CODE}'

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

Troubleshooting:

The process failed to start, most likely due to an app configuration or programming issue.



For more information, see the following topics:

Troubleshoot ASP.NET Core on Azure App Service and IIS

Troubleshoot and debug ASP.NET Core projects



Razor Pages with Entity Framework Core in
ASP.NET Core - Tutorial 1 of 8
9/22/2020 • 50 minutes to read • Edit Online

Prerequisites

Database engines

Troubleshooting

The sample app

By Tom Dykstra and Rick Anderson

This is the first in a series of tutorials that show how to use Entity Framework (EF) Core in an ASP.NET Core

Razor Pages app. The tutorials build a web site for a fictional Contoso University. The site includes

functionality such as student admission, course creation, and instructor assignments. The tutorial uses the

code first approach. For information on following this tutorial using the database first approach, see this

Github issue.

Download or view the completed app. Download instructions.

If you're new to Razor Pages, go through the Get started with Razor Pages tutorial series before starting

this one.

Visual Studio

Visual Studio Code

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.0 SDK or later

The Visual Studio instructions use SQL Server LocalDB, a version of SQL Server Express that runs only on

Windows.

The Visual Studio Code instructions use SQLite, a cross-platform database engine.

If you choose to use SQLite, download and install a third-party tool for managing and viewing a SQLite

database, such as DB Browser for SQLite.

If you run into a problem you can't resolve, compare your code to the completed project. A good way to get

help is by posting a question to StackOverflow.com, using the ASP.NET Core tag or the EF Core tag.

The app built in these tutorials is a basic university web site. Users can view and update student, course, and

instructor information. Here are a few of the screens created in the tutorial.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/intro.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/issues/16897
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-2016-express-localdb
https://www.sqlite.org/
https://sqlitebrowser.org/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core


The UI style of this site is based on the built-in project templates. The tutorial's focus is on how to use EF

Core, not how to customize the UI.

Follow the link at the top of the page to get the source code for the completed project. The cu30 folder has

the code for the ASP.NET Core 3.0 version of the tutorial. Files that reflect the state of the code for tutorials

1-7 can be found in the cu30snapshots folder.

Visual Studio

Visual Studio Code

To run the app after downloading the completed project:



Create the web app project

Set up the site style

Update-Database

Build the project.

In Package Manager Console (PMC) run the following command:

Run the project to seed the database.

Visual Studio

Visual Studio Code

From the Visual Studio FileFile menu, select NewNew  > ProjectProject.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application.

Name the project ContosoUniversity. It's important to use this exact name including capitalization, so

the namespaces match when code is copied and pasted.

Select .NET Core.NET Core and ASP.NET Core 3.0ASP.NET Core 3.0  in the dropdowns, and then select Web ApplicationWeb Application.

Set up the site header, footer, and menu by updating Pages/Shared/_Layout.cshtml:

Change each occurrence of "ContosoUniversity" to "Contoso University". There are three

occurrences.

Delete the HomeHome and Pr ivacyPrivacy  menu entries, and add entries for AboutAbout, StudentsStudents , CoursesCourses ,

InstructorsInstructors , and Depar tmentsDepar tments .

The changes are highlighted.



<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>@ViewData["Title"] - Contoso University</title>
    <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
    <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
    <header>
        <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom 
box-shadow mb-3">
            <div class="container">
                <a class="navbar-brand" asp-area="" asp-page="/Index">Contoso University</a>
                <button class="navbar-toggler" type="button" data-toggle="collapse" data-
target=".navbar-collapse" aria-controls="navbarSupportedContent"
                        aria-expanded="false" aria-label="Toggle navigation">
                    <span class="navbar-toggler-icon"></span>
                </button>
                <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
                    <ul class="navbar-nav flex-grow-1">
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-page="/About">About</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-
page="/Students/Index">Students</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-
page="/Courses/Index">Courses</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-
page="/Instructors/Index">Instructors</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-
page="/Departments/Index">Departments</a>
                        </li>
                    </ul>
                </div>
            </div>
        </nav>
    </header>
    <div class="container">
        <main role="main" class="pb-3">
            @RenderBody()
        </main>
    </div>

    <footer class="border-top footer text-muted">
        <div class="container">
            &copy; 2019 - Contoso University - <a asp-area="" asp-page="/Privacy">Privacy</a>
        </div>
    </footer>

    <script src="~/lib/jquery/dist/jquery.js"></script>
    <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js"></script>
    <script src="~/js/site.js" asp-append-version="true"></script>

    @RenderSection("Scripts", required: false)
</body>
</html>



@page
@model IndexModel
@{
    ViewData["Title"] = "Home page";
}

<div class="row mb-auto">
    <div class="col-md-4">
        <div class="row no-gutters border mb-4">
            <div class="col p-4 mb-4 ">
                <p class="card-text">
                    Contoso University is a sample application that
                    demonstrates how to use Entity Framework Core in an
                    ASP.NET Core Razor Pages web app.
                </p>
            </div>
        </div>
    </div>
    <div class="col-md-4">
        <div class="row no-gutters border mb-4">
            <div class="col p-4 d-flex flex-column position-static">
                <p class="card-text mb-auto">
                    You can build the application by following the steps in a series of tutorials.
                </p>
                <p>
                    <a href="https://docs.microsoft.com/aspnet/core/data/ef-rp/intro" class="stretched-
link">See the tutorial</a>
                </p>
            </div>
        </div>
    </div>
    <div class="col-md-4">
        <div class="row no-gutters border mb-4">
            <div class="col p-4 d-flex flex-column">
                <p class="card-text mb-auto">
                    You can download the completed project from GitHub.
                </p>
                <p>
                    <a href="https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-
rp/intro/samples" class="stretched-link">See project source code</a>
                </p>
            </div>
        </div>
    </div>
</div>

The data model

In Pages/Index.cshtml, replace the contents of the file with the following code to replace the text about

ASP.NET Core with text about this app:

Run the app to verify that the home page appears.

The following sections create a data model:



The Student entity

A student can enroll in any number of courses, and a course can have any number of students enrolled in it.

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        public string LastName { get; set; }
        public string FirstMidName { get; set; }
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

Create a Models folder in the project folder.

Create Models/Student.cs with the following code:

The ID  property becomes the primary key column of the database table that corresponds to this class. By

default, EF Core interprets a property that's named ID  or classnameID  as the primary key. So the

alternative automatically recognized name for the Student  class primary key is StudentID . For more

information, see EF Core - Keys.

The Enrollments  property is a navigation property. Navigation properties hold other entities that are

related to this entity. In this case, the Enrollments  property of a Student  entity holds all of the Enrollment

entities that are related to that Student. For example, if a Student row in the database has two related

Enrollment rows, the Enrollments  navigation property contains those two Enrollment entities.

In the database, an Enrollment row is related to a Student row if its StudentID column contains the student's

ID value. For example, suppose a Student row has ID=1. Related Enrollment rows will have StudentID = 1.

StudentID is a foreign key in the Enrollment table.

https://docs.microsoft.com/en-us/ef/core/modeling/keys?tabs=data-annotations
https://docs.microsoft.com/en-us/ef/core/modeling/relationships


The Enrollment entity

namespace ContosoUniversity.Models
{
    public enum Grade
    {
        A, B, C, D, F
    }

    public class Enrollment
    {
        public int EnrollmentID { get; set; }
        public int CourseID { get; set; }
        public int StudentID { get; set; }
        public Grade? Grade { get; set; }

        public Course Course { get; set; }
        public Student Student { get; set; }
    }
}

The Enrollments  property is defined as ICollection<Enrollment>  because there may be multiple related

Enrollment entities. You can use other collection types, such as List<Enrollment>  or HashSet<Enrollment> .

When ICollection<Enrollment>  is used, EF Core creates a HashSet<Enrollment>  collection by default.

Create Models/Enrollment.cs with the following code:

The EnrollmentID  property is the primary key; this entity uses the classnameID  pattern instead of ID  by

itself. For a production data model, choose one pattern and use it consistently. This tutorial uses both just to

illustrate that both work. Using ID  without classname  makes it easier to implement some kinds of data

model changes.

The Grade  property is an enum . The question mark after the Grade  type declaration indicates that the 

Grade  property is nullable. A grade that's null is different from a zero grade—null means a grade isn't

known or hasn't been assigned yet.

The StudentID  property is a foreign key, and the corresponding navigation property is Student . An 

Enrollment  entity is associated with one Student  entity, so the property contains a single Student  entity.

The CourseID  property is a foreign key, and the corresponding navigation property is Course . An 

Enrollment  entity is associated with one Course  entity.

EF Core interprets a property as a foreign key if it's named 

<navigation property name><primary key property name> . For example, StudentID  is the foreign key for the 

Student  navigation property, since the Student  entity's primary key is ID . Foreign key properties can

also be named <primary key property name> . For example, CourseID  since the Course  entity's primary key

is CourseID .

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/


            

The Course entity

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Course
    {
        [DatabaseGenerated(DatabaseGeneratedOption.None)]
        public int CourseID { get; set; }
        public string Title { get; set; }
        public int Credits { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

Scaffold Student pages

Create Models/Course.cs with the following code:

The Enrollments  property is a navigation property. A Course  entity can be related to any number of 

Enrollment  entities.

The DatabaseGenerated  attribute allows the app to specify the primary key rather than having the database

generate it.

Build the project to validate that there are no compiler errors.

In this section, you use the ASP.NET Core scaffolding tool to generate:

An EF Core context class. The context is the main class that coordinates Entity Framework functionality

for a given data model. It derives from the Microsoft.EntityFrameworkCore.DbContext  class.

Razor pages that handle Create, Read, Update, and Delete (CRUD) operations for the Student  entity.

Visual Studio

Visual Studio Code

Create a Students folder in the Pages folder.

In Solution ExplorerSolution Explorer , right-click the Pages/Students folder and select AddAdd > New Scaffolded ItemNew Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select Razor Pages using Entity Framework (CRUD)Razor Pages using Entity Framework (CRUD)  > ADDADD.

In the Add Razor Pages using Entity Framework (CRUD)Add Razor Pages using Entity Framework (CRUD)  dialog:

In the Model classModel class  drop-down, select Student (ContosoUniversity.Models)Student (ContosoUniversity.Models) .

In the Data context classData context class  row, select the ++ (plus) sign.

Change the data context name from ContosoUniversity.Models.ContosoUniversityContext to

ContosoUniversity.Data.SchoolContext.

Select AddAdd.



Database connection string

{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  },
  "AllowedHosts": "*",
  "ConnectionStrings": {
    "SchoolContext": "Server=
(localdb)\\mssqllocaldb;Database=SchoolContext6;Trusted_Connection=True;MultipleActiveResultSets=true"
  }
}

Update the database context class

The following packages are automatically installed:

Microsoft.VisualStudio.Web.CodeGeneration.Design

Microsoft.EntityFrameworkCore.SqlServer

Microsoft.Extensions.Logging.Debug

Microsoft.EntityFrameworkCore.Tools

If you have a problem with the preceding step, build the project and retry the scaffold step.

The scaffolding process:

Creates Razor pages in the Pages/Students folder :

Creates Data/SchoolContext.cs.

Adds the context to dependency injection in Startup.cs.

Adds a database connection string to appsettings.json.

Create.cshtml and Create.cshtml.cs

Delete.cshtml and Delete.cshtml.cs

Details.cshtml and Details.cshtml.cs

Edit.cshtml and Edit.cshtml.cs

Index.cshtml and Index.cshtml.cs

Visual Studio

Visual Studio Code

The connection string specifies SQL Server LocalDB.

LocalDB is a lightweight version of the SQL Server Express Database Engine and is intended for app

development, not production use. By default, LocalDB creates .mdf files in the C:/Users/<user>  directory.

The main class that coordinates EF Core functionality for a given data model is the database context class.

The context is derived from Microsoft.EntityFrameworkCore.DbContext. The context specifies which entities

are included in the data model. In this project, the class is named SchoolContext .

Update SchoolContext.cs with the following code:

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-2016-express-localdb
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext


using Microsoft.EntityFrameworkCore;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data
{
    public class SchoolContext : DbContext
    {
        public SchoolContext (DbContextOptions<SchoolContext> options)
            : base(options)
        {
        }

        public DbSet<Student> Students { get; set; }
        public DbSet<Enrollment> Enrollments { get; set; }
        public DbSet<Course> Courses { get; set; }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Course>().ToTable("Course");
            modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
            modelBuilder.Entity<Student>().ToTable("Student");
        }
    }
}

Startup.cs

The highlighted code creates a DbSet<TEntity> property for each entity set. In EF Core terminology:

An entity set typically corresponds to a database table.

An entity corresponds to a row in the table.

Since an entity set contains multiple entities, the DBSet properties should be plural names. Since the

scaffolding tool created a Student  DBSet, this step changes it to plural Students .

To make the Razor Pages code match the new DBSet name, make a global change across the whole project

of _context.Student  to _context.Students . There are 8 occurrences.

Build the project to verify there are no compiler errors.

ASP.NET Core is built with dependency injection. Services (such as the EF Core database context) are

registered with dependency injection during application startup. Components that require these services

(such as Razor Pages) are provided these services via constructor parameters. The constructor code that

gets a database context instance is shown later in the tutorial.

The scaffolding tool automatically registered the context class with the dependency injection container.

Visual Studio

Visual Studio Code

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages();

    services.AddDbContext<SchoolContext>(options =>
            options.UseSqlServer(Configuration.GetConnectionString("SchoolContext")));
}

In ConfigureServices , the highlighted lines were added by the scaffolder :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1


Create the database

using ContosoUniversity.Data;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using System;

namespace ContosoUniversity
{
    public class Program
    {
        public static void Main(string[] args)
        {
            var host = CreateHostBuilder(args).Build();

            CreateDbIfNotExists(host);

            host.Run();
        }

        private static void CreateDbIfNotExists(IHost host)
        {
            using (var scope = host.Services.CreateScope())
            {
                var services = scope.ServiceProvider;

                try
                {
                    var context = services.GetRequiredService<SchoolContext>();
                    context.Database.EnsureCreated();
                }
                catch (Exception ex)
                {
                    var logger = services.GetRequiredService<ILogger<Program>>();
                    logger.LogError(ex, "An error occurred creating the DB.");
                }
            }
        }

        public static IHostBuilder CreateHostBuilder(string[] args) =>
            Host.CreateDefaultBuilder(args)
                .ConfigureWebHostDefaults(webBuilder =>
                {
                    webBuilder.UseStartup<Startup>();
                });
    }
}

The name of the connection string is passed in to the context by calling a method on a DbContextOptions

object. For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Update Program.cs to create the database if it doesn't exist:

The EnsureCreated method takes no action if a database for the context exists. If no database exists, it

creates the database and schema. EnsureCreated  enables the following workflow for handling data model

changes:

Delete the database. Any existing data is lost.

Change the data model. For example, add an EmailAddress  field.

Run the app.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.infrastructure.databasefacade.ensurecreated#microsoft_entityframeworkcore_infrastructure_databasefacade_ensurecreated


Test the appTest the app

Seed the database

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Data
{
    public static class DbInitializer
    {
        public static void Initialize(SchoolContext context)
        {
            context.Database.EnsureCreated();

            // Look for any students.
            if (context.Students.Any())
            {
                return;   // DB has been seeded
            }

            var students = new Student[]
            {
                new 
Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2019-09-01")},
                new 
Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2017-09-01")},
                new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2018-
09-01")},
                new 
Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2017-09-01")},
                new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2017-09-
01")},
                new 
Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2016-09-01")},
                new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2018-
09-01")},
                new 
Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2019-09-01")}
            };

            context.Students.AddRange(students);
            context.SaveChanges();

            var courses = new Course[]

EnsureCreated  creates a database with the new schema.

This workflow works well early in development when the schema is rapidly evolving, as long as you don't

need to preserve data. The situation is different when data that has been entered into the database needs to

be preserved. When that is the case, use migrations.

Later in the tutorial series, you delete the database that was created by EnsureCreated  and use migrations

instead. A database that is created by EnsureCreated  can't be updated by using migrations.

Run the app.

Select the StudentsStudents  link and then Create NewCreate New .

Test the Edit, Details, and Delete links.

The EnsureCreated  method creates an empty database. This section adds code that populates the database

with test data.

Create Data/DbInitializer.cs with the following code:



            var courses = new Course[]
            {
                new Course{CourseID=1050,Title="Chemistry",Credits=3},
                new Course{CourseID=4022,Title="Microeconomics",Credits=3},
                new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
                new Course{CourseID=1045,Title="Calculus",Credits=4},
                new Course{CourseID=3141,Title="Trigonometry",Credits=4},
                new Course{CourseID=2021,Title="Composition",Credits=3},
                new Course{CourseID=2042,Title="Literature",Credits=4}
            };

            context.Courses.AddRange(courses);
            context.SaveChanges();

            var enrollments = new Enrollment[]
            {
                new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
                new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
                new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
                new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
                new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
                new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
                new Enrollment{StudentID=3,CourseID=1050},
                new Enrollment{StudentID=4,CourseID=1050},
                new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
                new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
                new Enrollment{StudentID=6,CourseID=1045},
                new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
            };

            context.Enrollments.AddRange(enrollments);
            context.SaveChanges();
        }
    }
}

Drop-Database

View the database

The code checks if there are any students in the database. If there are no students, it adds test data to the

database. It creates the test data in arrays rather than List<T>  collections to optimize performance.

// context.Database.EnsureCreated();
DbInitializer.Initialize(context);

In Program.cs, replace the EnsureCreated  call with a DbInitializer.Initialize  call:

Visual Studio

Visual Studio Code

Stop the app if it's running, and run the following command in the Package Manager ConsolePackage Manager Console (PMC):

Restart the app.

Select the Students page to see the seeded data.

Visual Studio

Visual Studio Code

Open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  (SSOX) from the ViewView  menu in Visual Studio.



        Asynchronous code

public async Task OnGetAsync()
{
    Students = await _context.Students.ToListAsync();
}

In SSOX, select (localdb)\MSSQLLocalDB > Databases > SchoolContext-{GUID}(localdb)\MSSQLLocalDB > Databases > SchoolContext-{GUID} . The database

name is generated from the context name you provided earlier plus a dash and a GUID.

Expand the TablesTables  node.

Right-click the StudentStudent table and click View DataView Data to see the columns created and the rows inserted

into the table.

Right-click the StudentStudent table and click View CodeView Code to see how the Student  model maps to the Student

table schema.

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available

threads might be in use. When that happens, the server can't process new requests until the threads are

freed up. With synchronous code, many threads may be tied up while they aren't actually doing any work

because they're waiting for I/O to complete. With asynchronous code, when a process is waiting for I/O to

complete, its thread is freed up for the server to use for processing other requests. As a result,

asynchronous code enables server resources to be used more efficiently, and the server can handle more

traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time. For low traffic situations, the

performance hit is negligible, while for high traffic situations, the potential performance improvement is

substantial.

In the following code, the async keyword, Task<T>  return value, await  keyword, and ToListAsync  method

make the code execute asynchronously.

The async  keyword tells the compiler to:

The Task<T>  return type represents ongoing work.

The await  keyword causes the compiler to split the method into two parts. The first part ends with the

operation that's started asynchronously. The second part is put into a callback method that's called when

the operation completes.

ToListAsync  is the asynchronous version of the ToList  extension method.

Generate callbacks for parts of the method body.

Create the Task object that's returned.

Some things to be aware of when writing asynchronous code that uses EF Core:

Only statements that cause queries or commands to be sent to the database are executed

asynchronously. That includes ToListAsync , SingleOrDefaultAsync , FirstOrDefaultAsync , and 

SaveChangesAsync . It doesn't include statements that just change an IQueryable , such as 

var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF Core context isn't thread safe: don't try to do multiple operations in parallel.

To take advantage of the performance benefits of async code, verify that library packages (such as for

paging) use async if they call EF Core methods that send queries to the database.

For more information about asynchronous programming in .NET, see Async Overview and Asynchronous

programming with async and await.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/async-return-types#bkmk_taskreturntype
https://docs.microsoft.com/en-us/dotnet/standard/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/


Next steps

Prerequisites

Database engines

Troubleshooting

The sample app

N E X TN E X T

T U TO R I A LT U TO R I A L

This is the first in a series of tutorials that show how to use Entity Framework (EF) Core in an ASP.NET Core

Razor Pages app. The tutorials build a web site for a fictional Contoso University. The site includes

functionality such as student admission, course creation, and instructor assignments. The tutorial uses the

code first approach. For information on following this tutorial using the database first approach, see this

Github issue.

Download or view the completed app. Download instructions.

If you're new to Razor Pages, go through the Get started with Razor Pages tutorial series before starting

this one.

Visual Studio

Visual Studio Code

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.0 SDK or later

The Visual Studio instructions use SQL Server LocalDB, a version of SQL Server Express that runs only on

Windows.

The Visual Studio Code instructions use SQLite, a cross-platform database engine.

If you choose to use SQLite, download and install a third-party tool for managing and viewing a SQLite

database, such as DB Browser for SQLite.

If you run into a problem you can't resolve, compare your code to the completed project. A good way to get

help is by posting a question to StackOverflow.com, using the ASP.NET Core tag or the EF Core tag.

The app built in these tutorials is a basic university web site. Users can view and update student, course, and

instructor information. Here are a few of the screens created in the tutorial.

https://github.com/dotnet/AspNetCore.Docs/issues/16897
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-2016-express-localdb
https://www.sqlite.org/
https://sqlitebrowser.org/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core


The UI style of this site is based on the built-in project templates. The tutorial's focus is on how to use EF

Core, not how to customize the UI.

Follow the link at the top of the page to get the source code for the completed project. The cu30 folder has

the code for the ASP.NET Core 3.0 version of the tutorial. Files that reflect the state of the code for tutorials

1-7 can be found in the cu30snapshots folder.

Visual Studio

Visual Studio Code

To run the app after downloading the completed project:



Create the web app project

Set up the site style

Update-Database

Build the project.

In Package Manager Console (PMC) run the following command:

Run the project to seed the database.

Visual Studio

Visual Studio Code

From the Visual Studio FileFile menu, select NewNew  > ProjectProject.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application.

Name the project ContosoUniversity. It's important to use this exact name including capitalization, so

the namespaces match when code is copied and pasted.

Select .NET Core.NET Core and ASP.NET Core 3.0ASP.NET Core 3.0  in the dropdowns, and then select Web ApplicationWeb Application.

Set up the site header, footer, and menu by updating Pages/Shared/_Layout.cshtml:

Change each occurrence of "ContosoUniversity" to "Contoso University". There are three

occurrences.

Delete the HomeHome and Pr ivacyPrivacy  menu entries, and add entries for AboutAbout, StudentsStudents , CoursesCourses ,

InstructorsInstructors , and Depar tmentsDepar tments .

The changes are highlighted.



<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>@ViewData["Title"] - Contoso University</title>
    <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
    <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
    <header>
        <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom 
box-shadow mb-3">
            <div class="container">
                <a class="navbar-brand" asp-area="" asp-page="/Index">Contoso University</a>
                <button class="navbar-toggler" type="button" data-toggle="collapse" data-
target=".navbar-collapse" aria-controls="navbarSupportedContent"
                        aria-expanded="false" aria-label="Toggle navigation">
                    <span class="navbar-toggler-icon"></span>
                </button>
                <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
                    <ul class="navbar-nav flex-grow-1">
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-page="/About">About</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-
page="/Students/Index">Students</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-
page="/Courses/Index">Courses</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-
page="/Instructors/Index">Instructors</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-
page="/Departments/Index">Departments</a>
                        </li>
                    </ul>
                </div>
            </div>
        </nav>
    </header>
    <div class="container">
        <main role="main" class="pb-3">
            @RenderBody()
        </main>
    </div>

    <footer class="border-top footer text-muted">
        <div class="container">
            &copy; 2019 - Contoso University - <a asp-area="" asp-page="/Privacy">Privacy</a>
        </div>
    </footer>

    <script src="~/lib/jquery/dist/jquery.js"></script>
    <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js"></script>
    <script src="~/js/site.js" asp-append-version="true"></script>

    @RenderSection("Scripts", required: false)
</body>
</html>



@page
@model IndexModel
@{
    ViewData["Title"] = "Home page";
}

<div class="row mb-auto">
    <div class="col-md-4">
        <div class="row no-gutters border mb-4">
            <div class="col p-4 mb-4 ">
                <p class="card-text">
                    Contoso University is a sample application that
                    demonstrates how to use Entity Framework Core in an
                    ASP.NET Core Razor Pages web app.
                </p>
            </div>
        </div>
    </div>
    <div class="col-md-4">
        <div class="row no-gutters border mb-4">
            <div class="col p-4 d-flex flex-column position-static">
                <p class="card-text mb-auto">
                    You can build the application by following the steps in a series of tutorials.
                </p>
                <p>
                    <a href="https://docs.microsoft.com/aspnet/core/data/ef-rp/intro" class="stretched-
link">See the tutorial</a>
                </p>
            </div>
        </div>
    </div>
    <div class="col-md-4">
        <div class="row no-gutters border mb-4">
            <div class="col p-4 d-flex flex-column">
                <p class="card-text mb-auto">
                    You can download the completed project from GitHub.
                </p>
                <p>
                    <a href="https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-
rp/intro/samples" class="stretched-link">See project source code</a>
                </p>
            </div>
        </div>
    </div>
</div>

The data model

In Pages/Index.cshtml, replace the contents of the file with the following code to replace the text about

ASP.NET Core with text about this app:

Run the app to verify that the home page appears.

The following sections create a data model:



The Student entity

A student can enroll in any number of courses, and a course can have any number of students enrolled in it.

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        public string LastName { get; set; }
        public string FirstMidName { get; set; }
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

Create a Models folder in the project folder.

Create Models/Student.cs with the following code:

The ID  property becomes the primary key column of the database table that corresponds to this class. By

default, EF Core interprets a property that's named ID  or classnameID  as the primary key. So the

alternative automatically recognized name for the Student  class primary key is StudentID . For more

information, see EF Core - Keys.

The Enrollments  property is a navigation property. Navigation properties hold other entities that are

related to this entity. In this case, the Enrollments  property of a Student  entity holds all of the Enrollment

entities that are related to that Student. For example, if a Student row in the database has two related

Enrollment rows, the Enrollments  navigation property contains those two Enrollment entities.

In the database, an Enrollment row is related to a Student row if its StudentID column contains the student's

ID value. For example, suppose a Student row has ID=1. Related Enrollment rows will have StudentID = 1.

StudentID is a foreign key in the Enrollment table.

https://docs.microsoft.com/en-us/ef/core/modeling/keys?tabs=data-annotations
https://docs.microsoft.com/en-us/ef/core/modeling/relationships


The Enrollment entity

namespace ContosoUniversity.Models
{
    public enum Grade
    {
        A, B, C, D, F
    }

    public class Enrollment
    {
        public int EnrollmentID { get; set; }
        public int CourseID { get; set; }
        public int StudentID { get; set; }
        public Grade? Grade { get; set; }

        public Course Course { get; set; }
        public Student Student { get; set; }
    }
}

The Enrollments  property is defined as ICollection<Enrollment>  because there may be multiple related

Enrollment entities. You can use other collection types, such as List<Enrollment>  or HashSet<Enrollment> .

When ICollection<Enrollment>  is used, EF Core creates a HashSet<Enrollment>  collection by default.

Create Models/Enrollment.cs with the following code:

The EnrollmentID  property is the primary key; this entity uses the classnameID  pattern instead of ID  by

itself. For a production data model, choose one pattern and use it consistently. This tutorial uses both just to

illustrate that both work. Using ID  without classname  makes it easier to implement some kinds of data

model changes.

The Grade  property is an enum . The question mark after the Grade  type declaration indicates that the 

Grade  property is nullable. A grade that's null is different from a zero grade—null means a grade isn't

known or hasn't been assigned yet.

The StudentID  property is a foreign key, and the corresponding navigation property is Student . An 

Enrollment  entity is associated with one Student  entity, so the property contains a single Student  entity.

The CourseID  property is a foreign key, and the corresponding navigation property is Course . An 

Enrollment  entity is associated with one Course  entity.

EF Core interprets a property as a foreign key if it's named 

<navigation property name><primary key property name> . For example, StudentID  is the foreign key for the 

Student  navigation property, since the Student  entity's primary key is ID . Foreign key properties can

also be named <primary key property name> . For example, CourseID  since the Course  entity's primary key

is CourseID .

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/


The Course entity

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Course
    {
        [DatabaseGenerated(DatabaseGeneratedOption.None)]
        public int CourseID { get; set; }
        public string Title { get; set; }
        public int Credits { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

Scaffold Student pages

Create Models/Course.cs with the following code:

The Enrollments  property is a navigation property. A Course  entity can be related to any number of 

Enrollment  entities.

The DatabaseGenerated  attribute allows the app to specify the primary key rather than having the database

generate it.

Build the project to validate that there are no compiler errors.

In this section, you use the ASP.NET Core scaffolding tool to generate:

An EF Core context class. The context is the main class that coordinates Entity Framework functionality

for a given data model. It derives from the Microsoft.EntityFrameworkCore.DbContext  class.

Razor pages that handle Create, Read, Update, and Delete (CRUD) operations for the Student  entity.

Visual Studio

Visual Studio Code

Create a Students folder in the Pages folder.

In Solution ExplorerSolution Explorer , right-click the Pages/Students folder and select AddAdd > New Scaffolded ItemNew Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select Razor Pages using Entity Framework (CRUD)Razor Pages using Entity Framework (CRUD)  > ADDADD.

In the Add Razor Pages using Entity Framework (CRUD)Add Razor Pages using Entity Framework (CRUD)  dialog:

In the Model classModel class  drop-down, select Student (ContosoUniversity.Models)Student (ContosoUniversity.Models) .

In the Data context classData context class  row, select the ++ (plus) sign.

Change the data context name from ContosoUniversity.Models.ContosoUniversityContext to

ContosoUniversity.Data.SchoolContext.

Select AddAdd.



Database connection string

{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  },
  "AllowedHosts": "*",
  "ConnectionStrings": {
    "SchoolContext": "Server=
(localdb)\\mssqllocaldb;Database=SchoolContext6;Trusted_Connection=True;MultipleActiveResultSets=true"
  }
}

Update the database context class

The following packages are automatically installed:

Microsoft.VisualStudio.Web.CodeGeneration.Design

Microsoft.EntityFrameworkCore.SqlServer

Microsoft.Extensions.Logging.Debug

Microsoft.EntityFrameworkCore.Tools

If you have a problem with the preceding step, build the project and retry the scaffold step.

The scaffolding process:

Creates Razor pages in the Pages/Students folder :

Creates Data/SchoolContext.cs.

Adds the context to dependency injection in Startup.cs.

Adds a database connection string to appsettings.json.

Create.cshtml and Create.cshtml.cs

Delete.cshtml and Delete.cshtml.cs

Details.cshtml and Details.cshtml.cs

Edit.cshtml and Edit.cshtml.cs

Index.cshtml and Index.cshtml.cs

Visual Studio

Visual Studio Code

The connection string specifies SQL Server LocalDB.

LocalDB is a lightweight version of the SQL Server Express Database Engine and is intended for app

development, not production use. By default, LocalDB creates .mdf files in the C:/Users/<user>  directory.

The main class that coordinates EF Core functionality for a given data model is the database context class.

The context is derived from Microsoft.EntityFrameworkCore.DbContext. The context specifies which entities

are included in the data model. In this project, the class is named SchoolContext .

Update SchoolContext.cs with the following code:

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-2016-express-localdb
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext


using Microsoft.EntityFrameworkCore;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data
{
    public class SchoolContext : DbContext
    {
        public SchoolContext (DbContextOptions<SchoolContext> options)
            : base(options)
        {
        }

        public DbSet<Student> Students { get; set; }
        public DbSet<Enrollment> Enrollments { get; set; }
        public DbSet<Course> Courses { get; set; }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Course>().ToTable("Course");
            modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
            modelBuilder.Entity<Student>().ToTable("Student");
        }
    }
}

Startup.cs

The highlighted code creates a DbSet<TEntity> property for each entity set. In EF Core terminology:

An entity set typically corresponds to a database table.

An entity corresponds to a row in the table.

Since an entity set contains multiple entities, the DBSet properties should be plural names. Since the

scaffolding tool created a Student  DBSet, this step changes it to plural Students .

To make the Razor Pages code match the new DBSet name, make a global change across the whole project

of _context.Student  to _context.Students . There are 8 occurrences.

Build the project to verify there are no compiler errors.

ASP.NET Core is built with dependency injection. Services (such as the EF Core database context) are

registered with dependency injection during application startup. Components that require these services

(such as Razor Pages) are provided these services via constructor parameters. The constructor code that

gets a database context instance is shown later in the tutorial.

The scaffolding tool automatically registered the context class with the dependency injection container.

Visual Studio

Visual Studio Code

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages();

    services.AddDbContext<SchoolContext>(options =>
            options.UseSqlServer(Configuration.GetConnectionString("SchoolContext")));
}

In ConfigureServices , the highlighted lines were added by the scaffolder :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1


Create the database

using ContosoUniversity.Data;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using System;

namespace ContosoUniversity
{
    public class Program
    {
        public static void Main(string[] args)
        {
            var host = CreateHostBuilder(args).Build();

            CreateDbIfNotExists(host);

            host.Run();
        }

        private static void CreateDbIfNotExists(IHost host)
        {
            using (var scope = host.Services.CreateScope())
            {
                var services = scope.ServiceProvider;

                try
                {
                    var context = services.GetRequiredService<SchoolContext>();
                    context.Database.EnsureCreated();
                }
                catch (Exception ex)
                {
                    var logger = services.GetRequiredService<ILogger<Program>>();
                    logger.LogError(ex, "An error occurred creating the DB.");
                }
            }
        }

        public static IHostBuilder CreateHostBuilder(string[] args) =>
            Host.CreateDefaultBuilder(args)
                .ConfigureWebHostDefaults(webBuilder =>
                {
                    webBuilder.UseStartup<Startup>();
                });
    }
}

The name of the connection string is passed in to the context by calling a method on a DbContextOptions

object. For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Update Program.cs to create the database if it doesn't exist:

The EnsureCreated method takes no action if a database for the context exists. If no database exists, it

creates the database and schema. EnsureCreated  enables the following workflow for handling data model

changes:

Delete the database. Any existing data is lost.

Change the data model. For example, add an EmailAddress  field.

Run the app.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.infrastructure.databasefacade.ensurecreated#microsoft_entityframeworkcore_infrastructure_databasefacade_ensurecreated


Test the appTest the app

Seed the database

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Data
{
    public static class DbInitializer
    {
        public static void Initialize(SchoolContext context)
        {
            context.Database.EnsureCreated();

            // Look for any students.
            if (context.Students.Any())
            {
                return;   // DB has been seeded
            }

            var students = new Student[]
            {
                new 
Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2019-09-01")},
                new 
Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2017-09-01")},
                new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2018-
09-01")},
                new 
Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2017-09-01")},
                new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2017-09-
01")},
                new 
Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2016-09-01")},
                new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2018-
09-01")},
                new 
Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2019-09-01")}
            };

            context.Students.AddRange(students);
            context.SaveChanges();

            var courses = new Course[]

EnsureCreated  creates a database with the new schema.

This workflow works well early in development when the schema is rapidly evolving, as long as you don't

need to preserve data. The situation is different when data that has been entered into the database needs to

be preserved. When that is the case, use migrations.

Later in the tutorial series, you delete the database that was created by EnsureCreated  and use migrations

instead. A database that is created by EnsureCreated  can't be updated by using migrations.

Run the app.

Select the StudentsStudents  link and then Create NewCreate New .

Test the Edit, Details, and Delete links.

The EnsureCreated  method creates an empty database. This section adds code that populates the database

with test data.

Create Data/DbInitializer.cs with the following code:



            var courses = new Course[]
            {
                new Course{CourseID=1050,Title="Chemistry",Credits=3},
                new Course{CourseID=4022,Title="Microeconomics",Credits=3},
                new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
                new Course{CourseID=1045,Title="Calculus",Credits=4},
                new Course{CourseID=3141,Title="Trigonometry",Credits=4},
                new Course{CourseID=2021,Title="Composition",Credits=3},
                new Course{CourseID=2042,Title="Literature",Credits=4}
            };

            context.Courses.AddRange(courses);
            context.SaveChanges();

            var enrollments = new Enrollment[]
            {
                new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
                new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
                new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
                new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
                new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
                new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
                new Enrollment{StudentID=3,CourseID=1050},
                new Enrollment{StudentID=4,CourseID=1050},
                new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
                new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
                new Enrollment{StudentID=6,CourseID=1045},
                new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
            };

            context.Enrollments.AddRange(enrollments);
            context.SaveChanges();
        }
    }
}

Drop-Database

View the database

The code checks if there are any students in the database. If there are no students, it adds test data to the

database. It creates the test data in arrays rather than List<T>  collections to optimize performance.

// context.Database.EnsureCreated();
DbInitializer.Initialize(context);

In Program.cs, replace the EnsureCreated  call with a DbInitializer.Initialize  call:

Visual Studio

Visual Studio Code

Stop the app if it's running, and run the following command in the Package Manager ConsolePackage Manager Console (PMC):

Restart the app.

Select the Students page to see the seeded data.

Visual Studio

Visual Studio Code

Open SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  (SSOX) from the ViewView  menu in Visual Studio.



Asynchronous code

public async Task OnGetAsync()
{
    Students = await _context.Students.ToListAsync();
}

In SSOX, select (localdb)\MSSQLLocalDB > Databases > SchoolContext-{GUID}(localdb)\MSSQLLocalDB > Databases > SchoolContext-{GUID} . The database

name is generated from the context name you provided earlier plus a dash and a GUID.

Expand the TablesTables  node.

Right-click the StudentStudent table and click View DataView Data to see the columns created and the rows inserted

into the table.

Right-click the StudentStudent table and click View CodeView Code to see how the Student  model maps to the Student

table schema.

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available

threads might be in use. When that happens, the server can't process new requests until the threads are

freed up. With synchronous code, many threads may be tied up while they aren't actually doing any work

because they're waiting for I/O to complete. With asynchronous code, when a process is waiting for I/O to

complete, its thread is freed up for the server to use for processing other requests. As a result,

asynchronous code enables server resources to be used more efficiently, and the server can handle more

traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time. For low traffic situations, the

performance hit is negligible, while for high traffic situations, the potential performance improvement is

substantial.

In the following code, the async keyword, Task<T>  return value, await  keyword, and ToListAsync  method

make the code execute asynchronously.

The async  keyword tells the compiler to:

The Task<T>  return type represents ongoing work.

The await  keyword causes the compiler to split the method into two parts. The first part ends with the

operation that's started asynchronously. The second part is put into a callback method that's called when

the operation completes.

ToListAsync  is the asynchronous version of the ToList  extension method.

Generate callbacks for parts of the method body.

Create the Task object that's returned.

Some things to be aware of when writing asynchronous code that uses EF Core:

Only statements that cause queries or commands to be sent to the database are executed

asynchronously. That includes ToListAsync , SingleOrDefaultAsync , FirstOrDefaultAsync , and 

SaveChangesAsync . It doesn't include statements that just change an IQueryable , such as 

var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF Core context isn't thread safe: don't try to do multiple operations in parallel.

To take advantage of the performance benefits of async code, verify that library packages (such as for

paging) use async if they call EF Core methods that send queries to the database.

For more information about asynchronous programming in .NET, see Async Overview and Asynchronous

programming with async and await.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/async-return-types#bkmk_taskreturntype
https://docs.microsoft.com/en-us/dotnet/standard/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/


Next steps

Prerequisites

Troubleshooting

The Contoso University web app

N E X TN E X T

T U TO R I A LT U TO R I A L

The Contoso University sample web app demonstrates how to create an ASP.NET Core Razor Pages app

using Entity Framework (EF) Core.

The sample app is a web site for a fictional Contoso University. It includes functionality such as student

admission, course creation, and instructor assignments. This page is the first in a series of tutorials that

explain how to build the Contoso University sample app.

Download or view the completed app. Download instructions.

Visual Studio

Visual Studio Code

Visual Studio 2019 with the following workloads:

ASP.NET and web developmentASP.NET and web development

.NET Core cross-platform development.NET Core cross-platform development

.NET Core 2.1 SDK or later

Familiarity with Razor Pages. New programmers should complete Get started with Razor Pages before

starting this series.

If you run into a problem you can't resolve, you can generally find the solution by comparing your code to

the completed project. A good way to get help is by posting a question to StackOverflow.com for ASP.NET

Core or EF Core.

The app built in these tutorials is a basic university web site.

Users can view and update student, course, and instructor information. Here are a few of the screens

created in the tutorial.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core


The UI style of this site is close to what's generated by the built-in templates. The tutorial focus is on EF Core



Create the ContosoUniversity Razor Pages web app

Set up the site style

with Razor Pages, not the UI.

Visual Studio

Visual Studio Code

From the Visual Studio FileFile menu, select NewNew  > ProjectProject.

Create a new ASP.NET Core Web Application. Name the project ContosoUniversityContosoUniversity . It's important to

name the project ContosoUniversity so the namespaces match when code is copy/pasted.

Select ASP.NET Core 2.1ASP.NET Core 2.1  in the dropdown, and then select Web ApplicationWeb Application.

For images of the preceding steps, see Create a Razor web app. Run the app.

A few changes set up the site menu, layout, and home page. Update Pages/Shared/_Layout.cshtml with the

following changes:

Change each occurrence of "ContosoUniversity" to "Contoso University". There are three

occurrences.

Add menu entries for StudentsStudents , CoursesCourses , InstructorsInstructors , and Depar tmentsDepar tments , and delete the ContactContact

menu entry.

The changes are highlighted. (All the markup is not displayed.)



<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>@ViewData["Title"] : Contoso University</title>

    <environment include="Development">
        <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
        <link rel="stylesheet" href="~/css/site.css" />
    </environment>
    <environment exclude="Development">
        <link rel="stylesheet" 
href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
              asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
              asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-
test-value="absolute" />
        <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
    </environment>
</head>
<body>
    <nav class="navbar navbar-inverse navbar-fixed-top">
        <div class="container">
            <div class="navbar-header">
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-
target=".navbar-collapse">
                    <span class="sr-only">Toggle navigation</span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                </button>
                <a asp-page="/Index" class="navbar-brand">Contoso University</a>
            </div>
            <div class="navbar-collapse collapse">
                <ul class="nav navbar-nav">
                    <li><a asp-page="/Index">Home</a></li>
                    <li><a asp-page="/About">About</a></li>
                    <li><a asp-page="/Students/Index">Students</a></li>
                    <li><a asp-page="/Courses/Index">Courses</a></li>
                    <li><a asp-page="/Instructors/Index">Instructors</a></li>
                    <li><a asp-page="/Departments/Index">Departments</a></li>
                </ul>
            </div>
        </div>
    </nav>

    <partial name="_CookieConsentPartial" />

    <div class="container body-content">
        @RenderBody()
        <hr />
        <footer>
            <p>&copy; 2018 : Contoso University</p>
        </footer>
    </div>

    @*Remaining markup not shown for brevity.*@

In Pages/Index.cshtml, replace the contents of the file with the following code to replace the text about

ASP.NET and MVC with text about this app:



@page
@model IndexModel
@{
    ViewData["Title"] = "Home page";
}

<div class="jumbotron">
    <h1>Contoso University</h1>
</div>
<div class="row">
    <div class="col-md-4">
        <h2>Welcome to Contoso University</h2>
        <p>
            Contoso University is a sample application that
            demonstrates how to use Entity Framework Core in an
            ASP.NET Core Razor Pages web app.
        </p>
    </div>
    <div class="col-md-4">
        <h2>Build it from scratch</h2>
        <p>You can build the application by following the steps in a series of tutorials.</p>
        <p>
            <a class="btn btn-default"
               href="https://docs.microsoft.com/aspnet/core/data/ef-rp/intro">
                See the tutorial &raquo;
            </a>
        </p>
    </div>
    <div class="col-md-4">
        <h2>Download it</h2>
        <p>You can download the completed project from GitHub.</p>
        <p>
            <a class="btn btn-default"
               href="https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-
rp/intro/samples/">
                See project source code &raquo;
            </a>
        </p>
    </div>
</div>

Create the data model

The Student entityThe Student entity

Create entity classes for the Contoso University app. Start with the following three entities:

There's a one-to-many relationship between Student  and Enrollment  entities. There's a one-to-many

relationship between Course  and Enrollment  entities. A student can enroll in any number of courses. A

course can have any number of students enrolled in it.

In the following sections, a class for each one of these entities is created.



using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        public string LastName { get; set; }
        public string FirstMidName { get; set; }
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

The Enrollment entityThe Enrollment entity

Create a Models folder. In the Models folder, create a class file named Student.cs with the following code:

The ID  property becomes the primary key column of the database (DB) table that corresponds to this

class. By default, EF Core interprets a property that's named ID  or classnameID  as the primary key. In 

classnameID , classname  is the name of the class. The alternative automatically recognized primary key is 

StudentID  in the preceding example.

The Enrollments  property is a navigation property. Navigation properties link to other entities that are

related to this entity. In this case, the Enrollments  property of a Student entity  holds all of the 

Enrollment  entities that are related to that Student . For example, if a Student row in the DB has two

related Enrollment rows, the Enrollments  navigation property contains those two Enrollment  entities. A

related Enrollment  row is a row that contains that student's primary key value in the StudentID  column.

For example, suppose the student with ID=1 has two rows in the Enrollment  table. The Enrollment  table

has two rows with StudentID  = 1. StudentID  is a foreign key in the Enrollment  table that specifies the

student in the Student  table.

If a navigation property can hold multiple entities, the navigation property must be a list type, such as 

ICollection<T> . ICollection<T>  can be specified, or a type such as List<T>  or HashSet<T> . When 

ICollection<T>  is used, EF Core creates a HashSet<T>  collection by default. Navigation properties that hold

multiple entities come from many-to-many and one-to-many relationships.

https://docs.microsoft.com/en-us/ef/core/modeling/relationships


namespace ContosoUniversity.Models
{
    public enum Grade
    {
        A, B, C, D, F
    }

    public class Enrollment
    {
        public int EnrollmentID { get; set; }
        public int CourseID { get; set; }
        public int StudentID { get; set; }
        public Grade? Grade { get; set; }

        public Course Course { get; set; }
        public Student Student { get; set; }
    }
}

The Course entityThe Course entity

In the Models folder, create Enrollment.cs with the following code:

The EnrollmentID  property is the primary key. This entity uses the classnameID  pattern instead of ID  like

the Student  entity. Typically developers choose one pattern and use it throughout the data model. In a later

tutorial, using ID without classname is shown to make it easier to implement inheritance in the data model.

The Grade  property is an enum . The question mark after the Grade  type declaration indicates that the 

Grade  property is nullable. A grade that's null is different from a zero grade -- null means a grade isn't

known or hasn't been assigned yet.

The StudentID  property is a foreign key, and the corresponding navigation property is Student . An 

Enrollment  entity is associated with one Student  entity, so the property contains a single Student  entity.

The Student  entity differs from the Student.Enrollments  navigation property, which contains multiple 

Enrollment  entities.

The CourseID  property is a foreign key, and the corresponding navigation property is Course . An 

Enrollment  entity is associated with one Course  entity.

EF Core interprets a property as a foreign key if it's named 

<navigation property name><primary key property name> . For example, StudentID  for the Student

navigation property, since the Student  entity's primary key is ID . Foreign key properties can also be

named <primary key property name> . For example, CourseID  since the Course  entity's primary key is 

CourseID .

In the Models folder, create Course.cs with the following code:



      

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Course
    {
        [DatabaseGenerated(DatabaseGeneratedOption.None)]
        public int CourseID { get; set; }
        public string Title { get; set; }
        public int Credits { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

Scaffold the student model

The Enrollments  property is a navigation property. A Course  entity can be related to any number of 

Enrollment  entities.

The DatabaseGenerated  attribute allows the app to specify the primary key rather than having the DB

generate it.

In this section, the student model is scaffolded. That is, the scaffolding tool produces pages for Create, Read,

Update, and Delete (CRUD) operations for the student model.

Build the project.

Create the Pages/Students folder.

Visual Studio

Visual Studio Code

In Solution ExplorerSolution Explorer , right click on the Pages/Students folder > AddAdd > New Scaffolded ItemNew Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog, select Razor Pages using Entity Framework (CRUD)Razor Pages using Entity Framework (CRUD)  > ADDADD.

Complete the Add Razor Pages using Entity Framework (CRUD)Add Razor Pages using Entity Framework (CRUD)  dialog:

In the Model classModel class  drop-down, select Student (ContosoUniversity.Models)Student (ContosoUniversity.Models) .

In the Data context classData context class  row, select the ++ (plus) sign and change the generated name to

ContosoUniversity.Models.SchoolContextContosoUniversity.Models.SchoolContext.

In the Data context classData context class  drop-down, select ContosoUniversity.Models.SchoolContextContosoUniversity.Models.SchoolContext

Select AddAdd.



Files createdFiles created

File updatesFile updates

Examine the context registered with dependency injection

See Scaffold the movie model if you have a problem with the preceding step.

The scaffold process created and changed the following files:

Pages/Students Create, Delete, Details, Edit, Index.

Data/SchoolContext.cs

Startup.cs : Changes to this file are detailed in the next section.

appsettings.json : The connection string used to connect to a local database is added.

ASP.NET Core is built with dependency injection. Services (such as the EF Core DB context) are registered

with dependency injection during application startup. Components that require these services (such as

Razor Pages) are provided these services via constructor parameters. The constructor code that gets a db

context instance is shown later in the tutorial.

The scaffolding tool automatically created a DB Context and registered it with the dependency injection

container.

Examine the ConfigureServices  method in Startup.cs. The highlighted line was added by the scaffolder :



public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        // This lambda determines whether user consent for 
        //non -essential cookies is needed for a given request.
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

    services.AddDbContext<SchoolContext>(options =>
       options.UseSqlServer(Configuration.GetConnectionString("SchoolContext")));
}

Update main

The name of the connection string is passed in to the context by calling a method on a DbContextOptions

object. For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

In Program.cs, modify the Main  method to do the following:

Get a DB context instance from the dependency injection container.

Call the EnsureCreated.

Dispose the context when the EnsureCreated  method completes.

The following code shows the updated Program.cs file.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.infrastructure.databasefacade.ensurecreated#microsoft_entityframeworkcore_infrastructure_databasefacade_ensurecreated


using ContosoUniversity.Models;                   // SchoolContext
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;   // CreateScope
using Microsoft.Extensions.Logging;
using System;

namespace ContosoUniversity
{
    public class Program
    {
        public static void Main(string[] args)
        {
            var host = CreateWebHostBuilder(args).Build();

            using (var scope = host.Services.CreateScope())
            {
                var services = scope.ServiceProvider;

                try
                {
                    var context = services.GetRequiredService<SchoolContext>();
                    context.Database.EnsureCreated();
                }
                catch (Exception ex)
                {
                    var logger = services.GetRequiredService<ILogger<Program>>();
                    logger.LogError(ex, "An error occurred creating the DB.");
                }
            }

            host.Run();
        }

        public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
            WebHost.CreateDefaultBuilder(args)
                .UseStartup<Startup>();
    }
}

Test the appTest the app

EnsureCreated  ensures that the database for the context exists. If it exists, no action is taken. If it does not

exist, then the database and all its schema are created. EnsureCreated  does not use migrations to create the

database. A database that is created with EnsureCreated  cannot be later updated using migrations.

EnsureCreated  is called on app start, which allows the following work flow:

Delete the DB.

Change the DB schema (for example, add an EmailAddress  field).

Run the app.

EnsureCreated  creates a DB with the EmailAddress  column.

EnsureCreated  is convenient early in development when the schema is rapidly evolving. Later in the tutorial

the DB is deleted and migrations are used.

Run the app and accept the cookie policy. This app doesn't keep personal information. You can read about

the cookie policy at EU General Data Protection Regulation (GDPR) support.

Select the StudentsStudents  link and then Create NewCreate New .

Test the Edit, Details, and Delete links.



Examine the SchoolContext DB context

using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Models
{
    public class SchoolContext : DbContext
    {
        public SchoolContext(DbContextOptions<SchoolContext> options)
            : base(options)
        {
        }

        public DbSet<Student> Student { get; set; }
        public DbSet<Enrollment> Enrollment { get; set; }
        public DbSet<Course> Course { get; set; }
    }
}

SQL Server Express LocalDBSQL Server Express LocalDB

Add code to initialize the DB with test data

using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Models
{
    public static class DbInitializer
    {
        public static void Initialize(SchoolContext context)
        {
            context.Database.EnsureCreated();

            // Look for any students.
            if (context.Student.Any())
            {

The main class that coordinates EF Core functionality for a given data model is the DB context class. The

data context is derived from Microsoft.EntityFrameworkCore.DbContext. The data context specifies which

entities are included in the data model. In this project, the class is named SchoolContext .

Update SchoolContext.cs with the following code:

The highlighted code creates a DbSet<TEntity> property for each entity set. In EF Core terminology:

An entity set typically corresponds to a DB table.

An entity corresponds to a row in the table.

DbSet<Enrollment>  and DbSet<Course>  could be omitted. EF Core includes them implicitly because the 

Student  entity references the Enrollment  entity, and the Enrollment  entity references the Course  entity.

For this tutorial, keep DbSet<Enrollment>  and DbSet<Course>  in the SchoolContext .

The connection string specifies SQL Server LocalDB. LocalDB is a lightweight version of the SQL Server

Express Database Engine and is intended for app development, not production use. LocalDB starts on

demand and runs in user mode, so there's no complex configuration. By default, LocalDB creates .mdf DB

files in the C:/Users/<user>  directory.

EF Core creates an empty DB. In this section, an Initialize  method is written to populate it with test data.

In the Data folder, create a new class file named DbInitializer.cs and add the following code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-2016-express-localdb


            {
                return;   // DB has been seeded
            }

            var students = new Student[]
            {
            new Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2005-
09-01")},
            new Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2002-
09-01")},
            new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2003-09-
01")},
            new Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2002-
09-01")},
            new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002-09-01")},
            new Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2001-09-
01")},
            new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2003-09-
01")},
            new Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2005-09-
01")}
            };
            foreach (Student s in students)
            {
                context.Student.Add(s);
            }
            context.SaveChanges();

            var courses = new Course[]
            {
            new Course{CourseID=1050,Title="Chemistry",Credits=3},
            new Course{CourseID=4022,Title="Microeconomics",Credits=3},
            new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
            new Course{CourseID=1045,Title="Calculus",Credits=4},
            new Course{CourseID=3141,Title="Trigonometry",Credits=4},
            new Course{CourseID=2021,Title="Composition",Credits=3},
            new Course{CourseID=2042,Title="Literature",Credits=4}
            };
            foreach (Course c in courses)
            {
                context.Course.Add(c);
            }
            context.SaveChanges();

            var enrollments = new Enrollment[]
            {
            new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
            new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
            new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
            new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
            new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
            new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
            new Enrollment{StudentID=3,CourseID=1050},
            new Enrollment{StudentID=4,CourseID=1050},
            new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
            new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
            new Enrollment{StudentID=6,CourseID=1045},
            new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
            };
            foreach (Enrollment e in enrollments)
            {
                context.Enrollment.Add(e);
            }
            context.SaveChanges();
        }
    }
}



public class Program
{
    public static void Main(string[] args)
    {
        var host = CreateWebHostBuilder(args).Build();

        using (var scope = host.Services.CreateScope())
        {
            var services = scope.ServiceProvider;

            try
            {
                var context = services.GetRequiredService<SchoolContext>();
                // using ContosoUniversity.Data; 
                DbInitializer.Initialize(context);
            }
            catch (Exception ex)
            {
                var logger = services.GetRequiredService<ILogger<Program>>();
                logger.LogError(ex, "An error occurred creating the DB.");
            }
        }

        host.Run();
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .UseStartup<Startup>();
}

Drop-Database

View the DB

Note: The preceding code uses Models  for the namespace ( namespace ContosoUniversity.Models ) rather

than Data . Models  is consistent with the scaffolder-generated code. For more information, see this GitHub

scaffolding issue.

The code checks if there are any students in the DB. If there are no students in the DB, the DB is initialized

with test data. It loads test data into arrays rather than List<T>  collections to optimize performance.

The EnsureCreated  method automatically creates the DB for the DB context. If the DB exists, EnsureCreated

returns without modifying the DB.

In Program.cs, modify the Main  method to call Initialize :

Visual Studio

Visual Studio Code

Stop the app if it's running, and run the following command in the Package Manager ConsolePackage Manager Console (PMC):

The database name is generated from the context name you provided earlier plus a dash and a GUID. Thus,

the database name will be "SchoolContext-{GUID}". The GUID will be different for each user. Open SQLSQL

Ser ver Object ExplorerSer ver Object Explorer  (SSOX) from the ViewView  menu in Visual Studio. In SSOX, click

(localdb)\MSSQLLocalDB > Databases > SchoolContext-{GUID}(localdb)\MSSQLLocalDB > Databases > SchoolContext-{GUID} .

Expand the TablesTables  node.

Right-click the StudentStudent table and click View DataView Data to see the columns created and the rows inserted into

https://github.com/aspnet/Scaffolding/issues/822


Asynchronous code

public async Task OnGetAsync()
{
    Student = await _context.Student.ToListAsync();
}

Additional resources

the table.

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available

threads might be in use. When that happens, the server can't process new requests until the threads are

freed up. With synchronous code, many threads may be tied up while they aren't actually doing any work

because they're waiting for I/O to complete. With asynchronous code, when a process is waiting for I/O to

complete, its thread is freed up for the server to use for processing other requests. As a result,

asynchronous code enables server resources to be used more efficiently, and the server is enabled to

handle more traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time. For low traffic situations, the

performance hit is negligible, while for high traffic situations, the potential performance improvement is

substantial.

In the following code, the async keyword, Task<T>  return value, await  keyword, and ToListAsync  method

make the code execute asynchronously.

The async  keyword tells the compiler to:

Generate callbacks for parts of the method body.

Automatically create the Task object that's returned. For more information, see Task Return Type.

The implicit return type Task  represents ongoing work.

The await  keyword causes the compiler to split the method into two parts. The first part ends with

the operation that's started asynchronously. The second part is put into a callback method that's

called when the operation completes.

ToListAsync  is the asynchronous version of the ToList  extension method.

Some things to be aware of when writing asynchronous code that uses EF Core:

Only statements that cause queries or commands to be sent to the DB are executed asynchronously.

That includes, ToListAsync , SingleOrDefaultAsync , FirstOrDefaultAsync , and SaveChangesAsync . It

doesn't include statements that just change an IQueryable , such as 

var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF Core context isn't thread safe: don't try to do multiple operations in parallel.

To take advantage of the performance benefits of async code, verify that library packages (such as for

paging) use async if they call EF Core methods that send queries to the DB.

For more information about asynchronous programming in .NET, see Async Overview and Asynchronous

programming with async and await.

In the next tutorial, basic CRUD (create, read, update, delete) operations are examined.

YouTube version of this tutorial

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/async-return-types#bkmk_taskreturntype
https://docs.microsoft.com/en-us/dotnet/standard/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://www.youtube.com/watch?v=P7iTtQnkrNs


N E X TN E X T



Part 2, Razor Pages with EF Core in ASP.NET Core -
CRUD
9/22/2020 • 22 minutes to read • Edit Online

No repository

Update the Details page

Read enrollmentsRead enrollments

public async Task<IActionResult> OnGetAsync(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    Student = await _context.Students.FirstOrDefaultAsync(m => m.ID == id);

    if (Student == null)
    {
        return NotFound();
    }
    return Page();
}

By Tom Dykstra, Jon P Smith, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you

created by following the tutorial.

In this tutorial, the scaffolded CRUD (create, read, update, delete) code is reviewed and customized.

Some developers use a service layer or repository pattern to create an abstraction layer between the UI (Razor

Pages) and the data access layer. This tutorial doesn't do that. To minimize complexity and keep the tutorial

focused on EF Core, EF Core code is added directly to the page model classes.

The scaffolded code for the Students pages doesn't include enrollment data. In this section, you add enrollments

to the Details page.

To display a student's enrollment data on the page, you need to read it. The scaffolded code in

Pages/Students/Details.cshtml.cs reads only the Student data, without the Enrollment data:

Replace the OnGetAsync  method with the following code to read enrollment data for the selected student. The

changes are highlighted.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/crud.md
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


public async Task<IActionResult> OnGetAsync(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    Student = await _context.Students
        .Include(s => s.Enrollments)
        .ThenInclude(e => e.Course)
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.ID == id);

    if (Student == null)
    {
        return NotFound();
    }
    return Page();
}

Display enrollmentsDisplay enrollments

The Include and ThenInclude methods cause the context to load the Student.Enrollments  navigation property,

and within each enrollment the Enrollment.Course  navigation property. These methods are examined in detail in

the Reading related data tutorial.

The AsNoTracking method improves performance in scenarios where the entities returned are not updated in the

current context. AsNoTracking  is discussed later in this tutorial.

Replace the code in Pages/Students/Details.cshtml with the following code to display a list of enrollments. The

changes are highlighted.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.include
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.theninclude#microsoft_entityframeworkcore_entityframeworkqueryableextensions_theninclude__3_microsoft_entityframeworkcore_query_iincludablequeryable___0_system_collections_generic_ienumerable___1___system_linq_expressions_expression_system_func___1___2___
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.asnotracking#microsoft_entityframeworkcore_entityframeworkqueryableextensions_asnotracking__1_system_linq_iqueryable___0__


@page
@model ContosoUniversity.Pages.Students.DetailsModel

@{
    ViewData["Title"] = "Details";
}

<h1>Details</h1>

<div>
    <h4>Student</h4>
    <hr />
    <dl class="row">
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Student.LastName)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Student.LastName)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Student.FirstMidName)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Student.FirstMidName)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Student.EnrollmentDate)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Student.EnrollmentDate)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Student.Enrollments)
        </dt>
        <dd class="col-sm-10">
            <table class="table">
                <tr>
                    <th>Course Title</th>
                    <th>Grade</th>
                </tr>
                @foreach (var item in Model.Student.Enrollments)
                {
                    <tr>
                        <td>
                            @Html.DisplayFor(modelItem => item.Course.Title)
                        </td>
                        <td>
                            @Html.DisplayFor(modelItem => item.Grade)
                        </td>
                    </tr>
                }
            </table>
        </dd>
    </dl>
</div>
<div>
    <a asp-page="./Edit" asp-route-id="@Model.Student.ID">Edit</a> |
    <a asp-page="./Index">Back to List</a>
</div>

The preceding code loops through the entities in the Enrollments  navigation property. For each enrollment, it

displays the course title and the grade. The course title is retrieved from the Course entity that's stored in the 

Course  navigation property of the Enrollments entity.

Run the app, select the StudentsStudents  tab, and click the DetailsDetails  link for a student. The list of courses and grades for



  

                 

Ways to read one entityWays to read one entity

Route data vs. query stringRoute data vs. query string

Update the Create page

public async Task<IActionResult> OnPostAsync()
{
    var emptyStudent = new Student();

    if (await TryUpdateModelAsync<Student>(
        emptyStudent,
        "student",   // Prefix for form value.
        s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
    {
        _context.Students.Add(emptyStudent);
        await _context.SaveChangesAsync();
        return RedirectToPage("./Index");
    }

    return Page();
}

TryUpdateModelAsyncTryUpdateModelAsync

Overposting

the selected student is displayed.

The generated code uses FirstOrDefaultAsync to read one entity. This method returns null if nothing is found;

otherwise, it returns the first row found that satisfies the query filter criteria. FirstOrDefaultAsync  is generally a

better choice than the following alternatives:

SingleOrDefaultAsync - Throws an exception if there's more than one entity that satisfies the query filter. To

determine if more than one row could be returned by the query, SingleOrDefaultAsync  tries to fetch multiple

rows. This extra work is unnecessary if the query can only return one entity, as when it searches on a unique

key.

FindAsync - Finds an entity with the primary key (PK). If an entity with the PK is being tracked by the context,

it's returned without a request to the database. This method is optimized to look up a single entity, but you

can't call Include  with FindAsync . So if related data is needed, FirstOrDefaultAsync  is the better choice.

The URL for the Details page is https://localhost:<port>/Students/Details?id=1 . The entity's primary key value is

in the query string. Some developers prefer to pass the key value in route data: 

https://localhost:<port>/Students/Details/1 . For more information, see Update the generated code.

The scaffolded OnPostAsync  code for the Create page is vulnerable to overposting. Replace the OnPostAsync

method in Pages/Students/Create.cshtml.cs with the following code.

 

The preceding code creates a Student object and then uses posted form fields to update the Student object's

properties. The TryUpdateModelAsync method:

Uses the posted form values from the PageContext property in the PageModel.

Updates only the properties listed ( s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate ).

Looks for form fields with a "student" prefix. For example, Student.FirstMidName . It's not case sensitive.

Uses the model binding system to convert form values from strings to the types in the Student  model. For

example, EnrollmentDate  has to be converted to DateTime.

Run the app, and create a student entity to test the Create page.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.firstordefaultasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_firstordefaultasync__1_system_linq_iqueryable___0__system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.singleordefaultasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_singleordefaultasync__1_system_linq_iqueryable___0__system_linq_expressions_expression_system_func___0_system_boolean___system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.findasync#microsoft_entityframeworkcore_dbcontext_findasync_system_type_system_object___
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.tryupdatemodelasync#microsoft_aspnetcore_mvc_controllerbase_tryupdatemodelasync_system_object_system_type_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.pagecontext#microsoft_aspnetcore_mvc_razorpages_pagemodel_pagecontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel


public class Student
{
    public int ID { get; set; }
    public string LastName { get; set; }
    public string FirstMidName { get; set; }
    public DateTime EnrollmentDate { get; set; }
    public string Secret { get; set; }
}

View modelView model

Using TryUpdateModel  to update fields with posted values is a security best practice because it prevents

overposting. For example, suppose the Student entity includes a Secret  property that this web page shouldn't

update or add:

Even if the app doesn't have a Secret  field on the create or update Razor Page, a hacker could set the Secret

value by overposting. A hacker could use a tool such as Fiddler, or write some JavaScript, to post a Secret  form

value. The original code doesn't limit the fields that the model binder uses when it creates a Student instance.

Whatever value the hacker specified for the Secret  form field is updated in the database. The following image

shows the Fiddler tool adding the Secret  field (with the value "OverPost") to the posted form values.

The value "OverPost" is successfully added to the Secret  property of the inserted row. That happens even

though the app designer never intended the Secret  property to be set with the Create page.

View models provide an alternative way to prevent overposting.

The application model is often called the domain model. The domain model typically contains all the properties

required by the corresponding entity in the database. The view model contains only the properties needed for

the UI that it is used for (for example, the Create page).

In addition to the view model, some apps use a binding model or input model to pass data between the Razor

Pages page model class and the browser.

Consider the following Student  view model:



using System;

namespace ContosoUniversity.Models
{
    public class StudentVM
    {
        public int ID { get; set; }
        public string LastName { get; set; }
        public string FirstMidName { get; set; }
        public DateTime EnrollmentDate { get; set; }
    }
}

[BindProperty]
public StudentVM StudentVM { get; set; }

public async Task<IActionResult> OnPostAsync()
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    var entry = _context.Add(new Student());
    entry.CurrentValues.SetValues(StudentVM);
    await _context.SaveChangesAsync();
    return RedirectToPage("./Index");
}

Update the Edit page

The following code uses the StudentVM  view model to create a new student:

The SetValues method sets the values of this object by reading values from another PropertyValues object. 

SetValues  uses property name matching. The view model type doesn't need to be related to the model type, it

just needs to have properties that match.

Using StudentVM  requires Create.cshtml be updated to use StudentVM  rather than Student .

In Pages/Students/Edit.cshtml.cs, replace the OnGetAsync  and OnPostAsync  methods with the following code.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyvalues.setvalues#microsoft_entityframeworkcore_changetracking_propertyvalues_setvalues_system_object_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyvalues
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu30snapshots/2-crud/Pages/Students/CreateVM.cshtml


public async Task<IActionResult> OnGetAsync(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    Student = await _context.Students.FindAsync(id);

    if (Student == null)
    {
        return NotFound();
    }
    return Page();
}

public async Task<IActionResult> OnPostAsync(int id)
{
    var studentToUpdate = await _context.Students.FindAsync(id);

    if (studentToUpdate == null)
    {
        return NotFound();
    }

    if (await TryUpdateModelAsync<Student>(
        studentToUpdate,
        "student",
        s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
    {
        await _context.SaveChangesAsync();
        return RedirectToPage("./Index");
    }

    return Page();
}

Entity States

The code changes are similar to the Create page with a few exceptions:

FirstOrDefaultAsync  has been replaced with FindAsync. When you don't have to include related data, 

FindAsync  is more efficient.

OnPostAsync  has an id  parameter.

The current student is fetched from the database, rather than creating an empty student.

Run the app, and test it by creating and editing a student.

The database context keeps track of whether entities in memory are in sync with their corresponding rows in the

database. This tracking information determines what happens when SaveChangesAsync is called. For example,

when a new entity is passed to the AddAsync method, that entity's state is set to Added. When SaveChangesAsync

is called, the database context issues a SQL INSERT command.

An entity may be in one of the following states:

Added : The entity doesn't yet exist in the database. The SaveChanges  method issues an INSERT statement.

Unchanged : No changes need to be saved with this entity. An entity has this status when it's read from the

database.

Modified : Some or all of the entity's property values have been modified. The SaveChanges  method

issues an UPDATE statement.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1.findasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechangesasync#microsoft_entityframeworkcore_dbcontext_savechangesasync_system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.addasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate#microsoft_entityframeworkcore_entitystate_added
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate


Update the Delete page

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Students
{
    public class DeleteModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public DeleteModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Student Student { get; set; }
        public string ErrorMessage { get; set; }

        public async Task<IActionResult> OnGetAsync(int? id, bool? saveChangesError = false)
        {
            if (id == null)
            {
                return NotFound();
            }

            Student = await _context.Students
                .AsNoTracking()
                .FirstOrDefaultAsync(m => m.ID == id);

            if (Student == null)
            {
                return NotFound();
            }

            if (saveChangesError.GetValueOrDefault())
            {
                ErrorMessage = "Delete failed. Try again";
            }

            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int? id)

Deleted : The entity has been marked for deletion. The SaveChanges  method issues a DELETE statement.

Detached : The entity isn't being tracked by the database context.

In a desktop app, state changes are typically set automatically. An entity is read, changes are made, and the entity

state is automatically changed to Modified . Calling SaveChanges  generates a SQL UPDATE statement that

updates only the changed properties.

In a web app, the DbContext  that reads an entity and displays the data is disposed after a page is rendered.

When a page's OnPostAsync  method is called, a new web request is made and with a new instance of the 

DbContext . Rereading the entity in that new context simulates desktop processing.

In this section, you implement a custom error message when the call to SaveChanges  fails.

Replace the code in Pages/Students/Delete.cshtml.cs with the following code. The changes are highlighted (other

than cleanup of using  statements).



        public async Task<IActionResult> OnPostAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            var student = await _context.Students.FindAsync(id);

            if (student == null)
            {
                return NotFound();
            }

            try
            {
                _context.Students.Remove(student);
                await _context.SaveChangesAsync();
                return RedirectToPage("./Index");
            }
            catch (DbUpdateException /* ex */)
            {
                //Log the error (uncomment ex variable name and write a log.)
                return RedirectToAction("./Delete",
                                     new { id, saveChangesError = true });
            }
        }
    }
}

The preceding code adds the optional parameter saveChangesError  to the OnGetAsync  method signature. 

saveChangesError  indicates whether the method was called after a failure to delete the student object. The delete

operation might fail because of transient network problems. Transient network errors are more likely when the

database is in the cloud. The saveChangesError  parameter is false when the Delete page OnGetAsync  is called

from the UI. When OnGetAsync  is called by OnPostAsync  (because the delete operation failed), the 

saveChangesError  parameter is true.

The OnPostAsync  method retrieves the selected entity, then calls the Remove method to set the entity's status to 

Deleted . When SaveChanges  is called, a SQL DELETE command is generated. If Remove  fails:

The database exception is caught.

The Delete pages OnGetAsync  method is called with saveChangesError=true .

Add an error message to the Delete Razor Page (Pages/Students/Delete.cshtml):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.remove#microsoft_entityframeworkcore_dbcontext_remove_system_object_


@page
@model ContosoUniversity.Pages.Students.DeleteModel

@{
    ViewData["Title"] = "Delete";
}

<h1>Delete</h1>

<p class="text-danger">@Model.ErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>
<div>
    <h4>Student</h4>
    <hr />
    <dl class="row">
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Student.LastName)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Student.LastName)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Student.FirstMidName)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Student.FirstMidName)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Student.EnrollmentDate)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Student.EnrollmentDate)
        </dd>
    </dl>

    <form method="post">
        <input type="hidden" asp-for="Student.ID" />
        <input type="submit" value="Delete" class="btn btn-danger" /> |
        <a asp-page="./Index">Back to List</a>
    </form>
</div>

Next steps

Run the app and delete a student to test the Delete page.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

In this tutorial, the scaffolded CRUD (create, read, update, delete) code is reviewed and customized.

To minimize complexity and keep these tutorials focused on EF Core, EF Core code is used in the page models.

Some developers use a service layer or repository pattern in to create an abstraction layer between the UI (Razor

Pages) and the data access layer.

In this tutorial, the Create, Edit, Delete, and Details Razor Pages in the Students folder are examined.

The scaffolded code uses the following pattern for Create, Edit, and Delete pages:

Get and display the requested data with the HTTP GET method OnGetAsync .



      

SingleOrDefaultAsync vs. FirstOrDefaultAsync

FindAsyncFindAsync

Customize the Details page

<td>
    <a asp-page="./Edit" asp-route-id="@item.ID">Edit</a> |
    <a asp-page="./Details" asp-route-id="@item.ID">Details</a> |
    <a asp-page="./Delete" asp-route-id="@item.ID">Delete</a>
</td>

@page "{id:int?}"

Save changes to the data with the HTTP POST method OnPostAsync .

The Index and Details pages get and display the requested data with the HTTP GET method OnGetAsync

The generated code uses FirstOrDefaultAsync, which is generally preferred over SingleOrDefaultAsync.

FirstOrDefaultAsync  is more efficient than SingleOrDefaultAsync  at fetching one entity:

Unless the code needs to verify that there's not more than one entity returned from the query.

SingleOrDefaultAsync  fetches more data and does unnecessary work.

SingleOrDefaultAsync  throws an exception if there's more than one entity that fits the filter part.

FirstOrDefaultAsync  doesn't throw if there's more than one entity that fits the filter part.

 

In much of the scaffolded code, FindAsync can be used in place of FirstOrDefaultAsync .

FindAsync :

Finds an entity with the primary key (PK). If an entity with the PK is being tracked by the context, it's returned

without a request to the DB.

Is simple and concise.

Is optimized to look up a single entity.

Can have perf benefits in some situations, but that rarely happens for typical web apps.

Implicitly uses FirstAsync instead of SingleAsync.

But if you want to Include  other entities, then FindAsync  is no longer appropriate. This means that you may

need to abandon FindAsync  and move to a query as your app progresses.

Browse to Pages/Students  page. The EditEdit, DetailsDetails , and DeleteDelete links are generated by the Anchor Tag Helper in

the Pages/Students/Index.cshtml file.

Run the app and select a DetailsDetails  link. The URL is of the form http://localhost:5000/Students/Details?id=2 . The

Student ID is passed using a query string ( ?id=2 ).

Update the Edit, Details, and Delete Razor Pages to use the "{id:int}"  route template. Change the page

directive for each of these pages from @page  to @page "{id:int}" .

A request to the page with the "{id:int}" route template that does notnot include a integer route value returns an

HTTP 404 (not found) error. For example, http://localhost:5000/Students/Details  returns a 404 error. To make

the ID optional, append ?  to the route constraint:

Run the app, click on a Details link, and verify the URL is passing the ID as route data (

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.firstordefaultasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_firstordefaultasync__1_system_linq_iqueryable___0__system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.singleordefaultasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_singleordefaultasync__1_system_linq_iqueryable___0__system_linq_expressions_expression_system_func___0_system_boolean___system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.findasync#microsoft_entityframeworkcore_dbcontext_findasync_system_type_system_object___
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.firstasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_firstasync__1_system_linq_iqueryable___0__system_linq_expressions_expression_system_func___0_system_boolean___system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.singleasync#microsoft_entityframeworkcore_entityframeworkqueryableextensions_singleasync__1_system_linq_iqueryable___0__system_linq_expressions_expression_system_func___0_system_boolean___system_threading_cancellationtoken_


Add related dataAdd related data

public async Task<IActionResult> OnGetAsync(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    Student = await _context.Student
                        .Include(s => s.Enrollments)
                            .ThenInclude(e => e.Course)
                        .AsNoTracking()
                        .FirstOrDefaultAsync(m => m.ID == id);

    if (Student == null)
    {
        return NotFound();
    }
    return Page();
}

Display related enrollments on the Details pageDisplay related enrollments on the Details page

http://localhost:5000/Students/Details/2 ).

Don't globally change @page  to @page "{id:int}" , doing so breaks the links to the Home and Create pages.

The scaffolded code for the Students Index page doesn't include the Enrollments  property. In this section, the

contents of the Enrollments  collection is displayed in the Details page.

The OnGetAsync  method of Pages/Students/Details.cshtml.cs uses the FirstOrDefaultAsync  method to retrieve a

single Student  entity. Add the following highlighted code:

The Include and ThenInclude methods cause the context to load the Student.Enrollments  navigation property,

and within each enrollment the Enrollment.Course  navigation property. These methods are examined in detail in

the reading-related data tutorial.

The AsNoTracking method improves performance in scenarios when the entities returned are not updated in the

current context. AsNoTracking  is discussed later in this tutorial.

Open Pages/Students/Details.cshtml. Add the following highlighted code to display a list of enrollments:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.include
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.theninclude#microsoft_entityframeworkcore_entityframeworkqueryableextensions_theninclude__3_microsoft_entityframeworkcore_query_iincludablequeryable___0_system_collections_generic_ienumerable___1___system_linq_expressions_expression_system_func___1___2___
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.asnotracking#microsoft_entityframeworkcore_entityframeworkqueryableextensions_asnotracking__1_system_linq_iqueryable___0__


@page "{id:int}"
@model ContosoUniversity.Pages.Students.DetailsModel

@{
    ViewData["Title"] = "Details";
}

<h2>Details</h2>

<div>
    <h4>Student</h4>
    <hr />
    <dl class="dl-horizontal">
        <dt>
            @Html.DisplayNameFor(model => model.Student.LastName)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Student.LastName)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Student.FirstMidName)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Student.FirstMidName)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Student.EnrollmentDate)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Student.EnrollmentDate)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Student.Enrollments)
        </dt>
        <dd>
            <table class="table">
                <tr>
                    <th>Course Title</th>
                    <th>Grade</th>
                </tr>
                @foreach (var item in Model.Student.Enrollments)
                {
                    <tr>
                        <td>
                            @Html.DisplayFor(modelItem => item.Course.Title)
                        </td>
                        <td>
                            @Html.DisplayFor(modelItem => item.Grade)
                        </td>
                    </tr>
                }
            </table>
        </dd>
    </dl>
</div>
<div>
    <a asp-page="./Edit" asp-route-id="@Model.Student.ID">Edit</a> |
    <a asp-page="./Index">Back to List</a>
</div>

If code indentation is wrong after the code is pasted, press CTRL-K-D to correct it.

The preceding code loops through the entities in the Enrollments  navigation property. For each enrollment, it

displays the course title and the grade. The course title is retrieved from the Course entity that's stored in the 

Course  navigation property of the Enrollments entity.



Update the Create page

public async Task<IActionResult> OnPostAsync()
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    var emptyStudent = new Student();

    if (await TryUpdateModelAsync<Student>(
        emptyStudent,
        "student",   // Prefix for form value.
        s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
    {
        _context.Student.Add(emptyStudent);
        await _context.SaveChangesAsync();
        return RedirectToPage("./Index");
    }

    return null;
}

TryUpdateModelAsyncTryUpdateModelAsync

var emptyStudent = new Student();

if (await TryUpdateModelAsync<Student>(
    emptyStudent,
    "student",   // Prefix for form value.
    s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
{

OverpostingOverposting

Run the app, select the StudentsStudents  tab, and click the DetailsDetails  link for a student. The list of courses and grades for

the selected student is displayed.

Update the OnPostAsync  method in Pages/Students/Create.cshtml.cs with the following code:

 

Examine the TryUpdateModelAsync code:

In the preceding code, TryUpdateModelAsync<Student>  tries to update the emptyStudent  object using the posted

form values from the PageContext property in the PageModel. TryUpdateModelAsync  only updates the properties

listed ( s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate ).

In the preceding sample:

The second argument ( "student", // Prefix ) is the prefix uses to look up values. It's not case sensitive.

The posted form values are converted to the types in the Student  model using model binding.

 

Using TryUpdateModel  to update fields with posted values is a security best practice because it prevents

overposting. For example, suppose the Student entity includes a Secret  property that this web page shouldn't

update or add:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.tryupdatemodelasync#microsoft_aspnetcore_mvc_controllerbase_tryupdatemodelasync_system_object_system_type_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.pagecontext#microsoft_aspnetcore_mvc_razorpages_pagemodel_pagecontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel


public class Student
{
    public int ID { get; set; }
    public string LastName { get; set; }
    public string FirstMidName { get; set; }
    public DateTime EnrollmentDate { get; set; }
    public string Secret { get; set; }
}

View modelView model

Even if the app doesn't have a Secret  field on the create/update Razor Page, a hacker could set the Secret

value by overposting. A hacker could use a tool such as Fiddler, or write some JavaScript, to post a Secret  form

value. The original code doesn't limit the fields that the model binder uses when it creates a Student instance.

Whatever value the hacker specified for the Secret  form field is updated in the DB. The following image shows

the Fiddler tool adding the Secret  field (with the value "OverPost") to the posted form values.

The value "OverPost" is successfully added to the Secret  property of the inserted row. The app designer never

intended the Secret  property to be set with the Create page.

 

A view model typically contains a subset of the properties included in the model used by the application. The

application model is often called the domain model. The domain model typically contains all the properties

required by the corresponding entity in the DB. The view model contains only the properties needed for the UI

layer (for example, the Create page). In addition to the view model, some apps use a binding model or input

model to pass data between the Razor Pages page model class and the browser. Consider the following Student

view model:



using System;

namespace ContosoUniversity.Models
{
    public class StudentVM
    {
        public int ID { get; set; }
        public string LastName { get; set; }
        public string FirstMidName { get; set; }
        public DateTime EnrollmentDate { get; set; }
    }
}

[BindProperty]
public StudentVM StudentVM { get; set; }

public async Task<IActionResult> OnPostAsync()
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    var entry = _context.Add(new Student());
    entry.CurrentValues.SetValues(StudentVM);
    await _context.SaveChangesAsync();
    return RedirectToPage("./Index");
}

Update the Edit page

View models provide an alternative way to prevent overposting. The view model contains only the properties to

view (display) or update.

The following code uses the StudentVM  view model to create a new student:

The SetValues method sets the values of this object by reading values from another PropertyValues object. 

SetValues  uses property name matching. The view model type doesn't need to be related to the model type, it

just needs to have properties that match.

Using StudentVM  requires CreateVM.cshtml be updated to use StudentVM  rather than Student .

In Razor Pages, the PageModel  derived class is the view model.

Update the page model for the Edit page. The major changes are highlighted:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyvalues.setvalues#microsoft_entityframeworkcore_changetracking_propertyvalues_setvalues_system_object_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyvalues
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu21/Pages/Students/CreateVM.cshtml


public class EditModel : PageModel
{
    private readonly SchoolContext _context;

    public EditModel(SchoolContext context)
    {
        _context = context;
    }

    [BindProperty]
    public Student Student { get; set; }

    public async Task<IActionResult> OnGetAsync(int? id)
    {
        if (id == null)
        {
            return NotFound();
        }

        Student = await _context.Student.FindAsync(id);

        if (Student == null)
        {
            return NotFound();
        }
        return Page();
    }

    public async Task<IActionResult> OnPostAsync(int? id)
    {
        if (!ModelState.IsValid)
        {
            return Page();
        }

        var studentToUpdate = await _context.Student.FindAsync(id);

        if (await TryUpdateModelAsync<Student>(
            studentToUpdate,
            "student",
            s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
        {
            await _context.SaveChangesAsync();
            return RedirectToPage("./Index");
        }

        return Page();
    }
}

Test the Edit and Create pagesTest the Edit and Create pages

Entity States

The code changes are similar to the Create page with a few exceptions:

OnPostAsync  has an optional id  parameter.

The current student is fetched from the DB, rather than creating an empty student.

FirstOrDefaultAsync  has been replaced with FindAsync. FindAsync  is a good choice when selecting an entity

from the primary key. See FindAsync for more information.

Create and edit a few student entities.

The DB context keeps track of whether entities in memory are in sync with their corresponding rows in the DB.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1.findasync


Update the Delete page

public class DeleteModel : PageModel
{
    private readonly SchoolContext _context;

    public DeleteModel(SchoolContext context)
    {
        _context = context;
    }

    [BindProperty]
    public Student Student { get; set; }
    public string ErrorMessage { get; set; }

The DB context sync information determines what happens when SaveChangesAsync is called. For example,

when a new entity is passed to the AddAsync method, that entity's state is set to Added. When SaveChangesAsync

is called, the DB context issues a SQL INSERT command.

An entity may be in one of the following states:

Added : The entity doesn't yet exist in the DB. The SaveChanges  method issues an INSERT statement.

Unchanged : No changes need to be saved with this entity. An entity has this status when it's read from the

DB.

Modified : Some or all of the entity's property values have been modified. The SaveChanges  method

issues an UPDATE statement.

Deleted : The entity has been marked for deletion. The SaveChanges  method issues a DELETE statement.

Detached : The entity isn't being tracked by the DB context.

In a desktop app, state changes are typically set automatically. An entity is read, changes are made, and the entity

state to automatically be changed to Modified . Calling SaveChanges  generates a SQL UPDATE statement that

updates only the changed properties.

In a web app, the DbContext  that reads an entity and displays the data is disposed after a page is rendered.

When a page's OnPostAsync  method is called, a new web request is made and with a new instance of the 

DbContext . Re-reading the entity in that new context simulates desktop processing.

In this section, code is added to implement a custom error message when the call to SaveChanges  fails. Add a

string to contain possible error messages:

Replace the OnGetAsync  method with the following code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechangesasync#microsoft_entityframeworkcore_dbcontext_savechangesasync_system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.addasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate#microsoft_entityframeworkcore_entitystate_added
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate


public async Task<IActionResult> OnGetAsync(int? id, bool? saveChangesError = false)
{
    if (id == null)
    {
        return NotFound();
    }

    Student = await _context.Student
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.ID == id);

    if (Student == null)
    {
        return NotFound();
    }

    if (saveChangesError.GetValueOrDefault())
    {
        ErrorMessage = "Delete failed. Try again";
    }

    return Page();
}

The Delete pages OnPostAsync methodThe Delete pages OnPostAsync method

public async Task<IActionResult> OnPostAsync(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    var student = await _context.Student
                    .AsNoTracking()
                    .FirstOrDefaultAsync(m => m.ID == id);

    if (student == null)
    {
        return NotFound();
    }

    try
    {
        _context.Student.Remove(student);
        await _context.SaveChangesAsync();
        return RedirectToPage("./Index");
    }
    catch (DbUpdateException /* ex */)
    {
        //Log the error (uncomment ex variable name and write a log.)
        return RedirectToAction("./Delete",
                             new { id, saveChangesError = true });
    }
}

The preceding code contains the optional parameter saveChangesError . saveChangesError  indicates whether the

method was called after a failure to delete the student object. The delete operation might fail because of transient

network problems. Transient network errors are more likely in the cloud. saveChangesError is false when the

Delete page OnGetAsync  is called from the UI. When OnGetAsync  is called by OnPostAsync  (because the delete

operation failed), the saveChangesError  parameter is true.

Replace the OnPostAsync  with the following code:



Update the Delete Razor PageUpdate the Delete Razor Page

@page "{id:int}"
@model ContosoUniversity.Pages.Students.DeleteModel

@{
    ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@Model.ErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>
<div>

Common errors

@page "{id:int}"

Additional resources

The preceding code retrieves the selected entity, then calls the Remove method to set the entity's status to 

Deleted . When SaveChanges  is called, a SQL DELETE command is generated. If Remove  fails:

The DB exception is caught.

The Delete pages OnGetAsync  method is called with saveChangesError=true .

Add the following highlighted error message to the Delete Razor Page.

Test Delete.

Students/Index or other links don't work:

Verify the Razor Page contains the correct @page  directive. For example, The Students/Index Razor Page should

notnot contain a route template:

Each Razor Page must include the @page  directive.

YouTube version of this tutorial

 P R E V I O U SP R E V I O U S N E X TN E X T

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.remove#microsoft_entityframeworkcore_dbcontext_remove_system_object_
https://www.youtube.com/watch?v=K4X1MT2jt6o


Part 3, Razor Pages with EF Core in ASP.NET Core -
Sort, Filter, Paging
9/22/2020 • 29 minutes to read • Edit Online

Add sorting

By Tom Dykstra, Rick Anderson, and Jon P Smith

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you

created by following the tutorial.

This tutorial adds sorting, filtering, and paging functionality to the Students pages.

The following illustration shows a completed page. The column headings are clickable links to sort the column.

Click a column heading repeatedly to switch between ascending and descending sort order.

Replace the code in Pages/Students/Index.cshtml.cs with the following code to add sorting.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/sort-filter-page.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://twitter.com/thereformedprog
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


using ContosoUniversity.Data;
using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Students
{
    public class IndexModel : PageModel
    {
        private readonly SchoolContext _context;

        public IndexModel(SchoolContext context)
        {
            _context = context;
        }

        public string NameSort { get; set; }
        public string DateSort { get; set; }
        public string CurrentFilter { get; set; }
        public string CurrentSort { get; set; }

        public IList<Student> Students { get; set; }

        public async Task OnGetAsync(string sortOrder)
        {
            NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
            DateSort = sortOrder == "Date" ? "date_desc" : "Date";

            IQueryable<Student> studentsIQ = from s in _context.Students
                                            select s;

            switch (sortOrder)
            {
                case "name_desc":
                    studentsIQ = studentsIQ.OrderByDescending(s => s.LastName);
                    break;
                case "Date":
                    studentsIQ = studentsIQ.OrderBy(s => s.EnrollmentDate);
                    break;
                case "date_desc":
                    studentsIQ = studentsIQ.OrderByDescending(s => s.EnrollmentDate);
                    break;
                default:
                    studentsIQ = studentsIQ.OrderBy(s => s.LastName);
                    break;
            }

            Students = await studentsIQ.AsNoTracking().ToListAsync();
        }
    }
}

The preceding code:

Adds properties to contain the sorting parameters.

Changes the name of the Student  property to Students .

Replaces the code in the OnGetAsync  method.

The OnGetAsync  method receives a sortOrder  parameter from the query string in the URL. The URL (including

the query string) is generated by the Anchor Tag Helper.



NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
DateSort = sortOrder == "Date" ? "date_desc" : "Date";

C URREN T  SO RT  O RDERC URREN T  SO RT  O RDER L A ST  N A M E H Y P ERL IN KL A ST  N A M E H Y P ERL IN K DAT E H Y P ERL IN KDAT E H Y P ERL IN K

Last Name ascending descending ascending

Last Name descending ascending ascending

Date ascending ascending descending

Date descending ascending ascending

IQueryable<Student> studentsIQ = from s in _context.Students
                                select s;

switch (sortOrder)
{
    case "name_desc":
        studentsIQ = studentsIQ.OrderByDescending(s => s.LastName);
        break;
    case "Date":
        studentsIQ = studentsIQ.OrderBy(s => s.EnrollmentDate);
        break;
    case "date_desc":
        studentsIQ = studentsIQ.OrderByDescending(s => s.EnrollmentDate);
        break;
    default:
        studentsIQ = studentsIQ.OrderBy(s => s.LastName);
        break;
}

Students = await studentsIQ.AsNoTracking().ToListAsync();

The sortOrder  parameter is either "Name" or "Date." The sortOrder  parameter is optionally followed by "_desc"

to specify descending order. The default sort order is ascending.

When the Index page is requested from the StudentsStudents  link, there's no query string. The students are displayed in

ascending order by last name. Ascending order by last name is the default (fall-through case) in the switch

statement. When the user clicks a column heading link, the appropriate sortOrder  value is provided in the query

string value.

NameSort  and DateSort  are used by the Razor Page to configure the column heading hyperlinks with the

appropriate query string values:

The code uses the C# conditional operator ?:. The ?:  operator is a ternary operator (it takes three operands). The

first line specifies that when sortOrder  is null or empty, NameSort  is set to "name_desc." If sortOrder  is notnot null

or empty, NameSort  is set to an empty string.

These two statements enable the page to set the column heading hyperlinks as follows:

The method uses LINQ to Entities to specify the column to sort by. The code initializes an IQueryable<Student>

before the switch statement, and modifies it in the switch statement:

When an IQueryable  is created or modified, no query is sent to the database. The query isn't executed until the 

IQueryable  object is converted into a collection. IQueryable  are converted to a collection by calling a method

such as ToListAsync . Therefore, the IQueryable  code results in a single query that's not executed until the

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/conditional-operator


Students = await studentsIQ.AsNoTracking().ToListAsync();

Add column heading hyperlinks to the Student Index pageAdd column heading hyperlinks to the Student Index page

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
    ViewData["Title"] = "Students";
}

<h2>Students</h2>
<p>
    <a asp-page="Create">Create New</a>
</p>

<table class="table">
    <thead>
        <tr>
            <th>
                <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort">
                    @Html.DisplayNameFor(model => model.Students[0].LastName)
                </a>
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Students[0].FirstMidName)
            </th>
            <th>
                <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort">
                    @Html.DisplayNameFor(model => model.Students[0].EnrollmentDate)
                </a>
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Students)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.LastName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.FirstMidName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.EnrollmentDate)
                </td>
                <td>
                    <a asp-page="./Edit" asp-route-id="@item.ID">Edit</a> |
                    <a asp-page="./Details" asp-route-id="@item.ID">Details</a> |
                    <a asp-page="./Delete" asp-route-id="@item.ID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

following statement:

OnGetAsync  could get verbose with a large number of sortable columns. For information about an alternative

way to code this functionality, see Use dynamic LINQ to simplify code in the MVC version of this tutorial series.

Replace the code in Students/Index.cshtml, with the following code. The changes are highlighted.



Add filtering

Update the OnGetAsync methodUpdate the OnGetAsync method

The preceding code:

Adds hyperlinks to the LastName  and EnrollmentDate  column headings.

Uses the information in NameSort  and DateSort  to set up hyperlinks with the current sort order values.

Changes the page heading from Index to Students.

Changes Model.Student  to Model.Students .

To verify that sorting works:

Run the app and select the StudentsStudents  tab.

Click the column headings.

To add filtering to the Students Index page:

A text box and a submit button is added to the Razor Page. The text box supplies a search string on the first or

last name.

The page model is updated to use the text box value.

Replace the code in Students/Index.cshtml.cs with the following code to add filtering:



using ContosoUniversity.Data;
using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Students
{
    public class IndexModel : PageModel
    {
        private readonly SchoolContext _context;

        public IndexModel(SchoolContext context)
        {
            _context = context;
        }

        public string NameSort { get; set; }
        public string DateSort { get; set; }
        public string CurrentFilter { get; set; }
        public string CurrentSort { get; set; }

        public IList<Student> Students { get; set; }

        public async Task OnGetAsync(string sortOrder, string searchString)
        {
            NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
            DateSort = sortOrder == "Date" ? "date_desc" : "Date";

            CurrentFilter = searchString;
            
            IQueryable<Student> studentsIQ = from s in _context.Students
                                            select s;
            if (!String.IsNullOrEmpty(searchString))
            {
                studentsIQ = studentsIQ.Where(s => s.LastName.Contains(searchString)
                                       || s.FirstMidName.Contains(searchString));
            }

            switch (sortOrder)
            {
                case "name_desc":
                    studentsIQ = studentsIQ.OrderByDescending(s => s.LastName);
                    break;
                case "Date":
                    studentsIQ = studentsIQ.OrderBy(s => s.EnrollmentDate);
                    break;
                case "date_desc":
                    studentsIQ = studentsIQ.OrderByDescending(s => s.EnrollmentDate);
                    break;
                default:
                    studentsIQ = studentsIQ.OrderBy(s => s.LastName);
                    break;
            }

            Students = await studentsIQ.AsNoTracking().ToListAsync();
        }
    }
}

The preceding code:

Adds the searchString  parameter to the OnGetAsync  method, and saves the parameter value in the 



IQueryable vs. IEnumerableIQueryable vs. IEnumerable

Where(s => s.LastName.ToUpper().Contains(searchString.ToUpper())`

Update the Razor pageUpdate the Razor page

CurrentFilter  property. The search string value is received from a text box that's added in the next section.

Adds to the LINQ statement a Where  clause. The Where  clause selects only students whose first name or last

name contains the search string. The LINQ statement is executed only if there's a value to search for.

The code calls the Where  method on an IQueryable  object, and the filter is processed on the server. In some

scenarios, the app might be calling the Where  method as an extension method on an in-memory collection. For

example, suppose _context.Students  changes from EF Core DbSet  to a repository method that returns an 

IEnumerable  collection. The result would normally be the same but in some cases may be different.

For example, the .NET Framework implementation of Contains  performs a case-sensitive comparison by default.

In SQL Server, Contains  case-sensitivity is determined by the collation setting of the SQL Server instance. SQL

Server defaults to case-insensitive. SQLite defaults to case-sensitive. ToUpper  could be called to make the test

explicitly case-insensitive:

The preceding code would ensure that the filter is case-insensitive even if the Where  method is called on an 

IEnumerable  or runs on SQLite.

When Contains  is called on an IEnumerable  collection, the .NET Core implementation is used. When Contains  is

called on an IQueryable  object, the database implementation is used.

Calling Contains  on an IQueryable  is usually preferable for performance reasons. With IQueryable , the filtering

is done by the database server. If an IEnumerable  is created first, all the rows have to be returned from the

database server.

There's a performance penalty for calling ToUpper . The ToUpper  code adds a function in the WHERE clause of the

TSQL SELECT statement. The added function prevents the optimizer from using an index. Given that SQL is

installed as case-insensitive, it's best to avoid the ToUpper  call when it's not needed.

For more information, see How to use case-insensitive query with Sqlite provider.

Replace the code in Pages/Students/Index.cshtml to create a SearchSearch button and assorted chrome.

https://github.com/aspnet/EntityFrameworkCore/issues/11414


@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
    ViewData["Title"] = "Students";
}

<h2>Students</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>

<form asp-page="./Index" method="get">
    <div class="form-actions no-color">
        <p>
            Find by name:
            <input type="text" name="SearchString" value="@Model.CurrentFilter" />
            <input type="submit" value="Search" class="btn btn-primary" /> |
            <a asp-page="./Index">Back to full List</a>
        </p>
    </div>
</form>

<table class="table">
    <thead>
        <tr>
            <th>
                <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort">
                    @Html.DisplayNameFor(model => model.Students[0].LastName)
                </a>
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Students[0].FirstMidName)
            </th>
            <th>
                <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort">
                    @Html.DisplayNameFor(model => model.Students[0].EnrollmentDate)
                </a>
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Students)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.LastName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.FirstMidName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.EnrollmentDate)
                </td>
                <td>
                    <a asp-page="./Edit" asp-route-id="@item.ID">Edit</a> |
                    <a asp-page="./Details" asp-route-id="@item.ID">Details</a> |
                    <a asp-page="./Delete" asp-route-id="@item.ID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>



https://localhost:<port>/Students?SearchString=an

Add paging

Create the PaginatedList classCreate the PaginatedList class

The preceding code uses the <form>  tag helper to add the search text box and button. By default, the <form>  tag

helper submits form data with a POST. With POST, the parameters are passed in the HTTP message body and not

in the URL. When HTTP GET is used, the form data is passed in the URL as query strings. Passing the data with

query strings enables users to bookmark the URL. The W3C guidelines recommend that GET should be used

when the action doesn't result in an update.

Test the app:

Select the StudentsStudents  tab and enter a search string. If you're using SQLite, the filter is case-insensitive only if

you implemented the optional ToUpper  code shown earlier.

Select SearchSearch.

Notice that the URL contains the search string. For example:

If the page is bookmarked, the bookmark contains the URL to the page and the SearchString  query string. The 

method="get"  in the form  tag is what caused the query string to be generated.

Currently, when a column heading sort link is selected, the filter value from the SearchSearch box is lost. The lost filter

value is fixed in the next section.

In this section, a PaginatedList  class is created to support paging. The PaginatedList  class uses Skip  and Take

statements to filter data on the server instead of retrieving all rows of the table. The following illustration shows

the paging buttons.

In the project folder, create PaginatedList.cs  with the following code:

https://www.w3.org/2001/tag/doc/whenToUseGet.html


using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity
{
    public class PaginatedList<T> : List<T>
    {
        public int PageIndex { get; private set; }
        public int TotalPages { get; private set; }

        public PaginatedList(List<T> items, int count, int pageIndex, int pageSize)
        {
            PageIndex = pageIndex;
            TotalPages = (int)Math.Ceiling(count / (double)pageSize);

            this.AddRange(items);
        }

        public bool HasPreviousPage
        {
            get
            {
                return (PageIndex > 1);
            }
        }

        public bool HasNextPage
        {
            get
            {
                return (PageIndex < TotalPages);
            }
        }

        public static async Task<PaginatedList<T>> CreateAsync(
            IQueryable<T> source, int pageIndex, int pageSize)
        {
            var count = await source.CountAsync();
            var items = await source.Skip(
                (pageIndex - 1) * pageSize)
                .Take(pageSize).ToListAsync();
            return new PaginatedList<T>(items, count, pageIndex, pageSize);
        }
    }
}

Add paging to the PageModel classAdd paging to the PageModel class

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;

The CreateAsync  method in the preceding code takes page size and page number and applies the appropriate 

Skip  and Take  statements to the IQueryable . When ToListAsync  is called on the IQueryable , it returns a List

containing only the requested page. The properties HasPreviousPage  and HasNextPage  are used to enable or

disable PreviousPrevious  and NextNext paging buttons.

The CreateAsync  method is used to create the PaginatedList<T> . A constructor can't create the PaginatedList<T>

object; constructors can't run asynchronous code.

Replace the code in Students/Index.cshtml.cs to add paging.



using Microsoft.EntityFrameworkCore;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Students
{
    public class IndexModel : PageModel
    {
        private readonly SchoolContext _context;

        public IndexModel(SchoolContext context)
        {
            _context = context;
        }

        public string NameSort { get; set; }
        public string DateSort { get; set; }
        public string CurrentFilter { get; set; }
        public string CurrentSort { get; set; }

        public PaginatedList<Student> Students { get; set; }

        public async Task OnGetAsync(string sortOrder,
            string currentFilter, string searchString, int? pageIndex)
        {
            CurrentSort = sortOrder;
            NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
            DateSort = sortOrder == "Date" ? "date_desc" : "Date";
            if (searchString != null)
            {
                pageIndex = 1;
            }
            else
            {
                searchString = currentFilter;
            }

            CurrentFilter = searchString;

            IQueryable<Student> studentsIQ = from s in _context.Students
                                            select s;
            if (!String.IsNullOrEmpty(searchString))
            {
                studentsIQ = studentsIQ.Where(s => s.LastName.Contains(searchString)
                                       || s.FirstMidName.Contains(searchString));
            }
            switch (sortOrder)
            {
                case "name_desc":
                    studentsIQ = studentsIQ.OrderByDescending(s => s.LastName);
                    break;
                case "Date":
                    studentsIQ = studentsIQ.OrderBy(s => s.EnrollmentDate);
                    break;
                case "date_desc":
                    studentsIQ = studentsIQ.OrderByDescending(s => s.EnrollmentDate);
                    break;
                default:
                    studentsIQ = studentsIQ.OrderBy(s => s.LastName);
                    break;
            }

            int pageSize = 3;
            Students = await PaginatedList<Student>.CreateAsync(
                studentsIQ.AsNoTracking(), pageIndex ?? 1, pageSize);
        }
    }
}



}

Add paging links to the Razor PageAdd paging links to the Razor Page

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
    ViewData["Title"] = "Students";
}

<h2>Students</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>

<form asp-page="./Index" method="get">
    <div class="form-actions no-color">
        <p>
            Find by name: 
            <input type="text" name="SearchString" value="@Model.CurrentFilter" />
            <input type="submit" value="Search" class="btn btn-primary" /> |

The preceding code:

Changes the type of the Students  property from IList<Student>  to PaginatedList<Student> .

Adds the page index, the current sortOrder , and the currentFilter  to the OnGetAsync  method signature.

Saves the sort order in the CurrentSort property.

Resets page index to 1 when there's a new search string.

Uses the PaginatedList  class to get Student entities.

All the parameters that OnGetAsync  receives are null when:

The page is called from the StudentsStudents  link.

The user hasn't clicked a paging or sorting link.

When a paging link is clicked, the page index variable contains the page number to display.

The CurrentSort  property provides the Razor Page with the current sort order. The current sort order must be

included in the paging links to keep the sort order while paging.

The CurrentFilter  property provides the Razor Page with the current filter string. The CurrentFilter  value:

Must be included in the paging links in order to maintain the filter settings during paging.

Must be restored to the text box when the page is redisplayed.

If the search string is changed while paging, the page is reset to 1. The page has to be reset to 1 because the new

filter can result in different data to display. When a search value is entered and SubmitSubmit is selected:

The search string is changed.

The searchString  parameter isn't null.

The PaginatedList.CreateAsync  method converts the student query to a single page of students in a collection

type that supports paging. That single page of students is passed to the Razor Page.

The two question marks after pageIndex  in the PaginatedList.CreateAsync  call represent the null-coalescing

operator. The null-coalescing operator defines a default value for a nullable type. The expression 

(pageIndex ?? 1)  means return the value of pageIndex  if it has a value. If pageIndex  doesn't have a value, return

1.

Replace the code in Students/Index.cshtml with the following code. The changes are highlighted:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operator


            <input type="submit" value="Search" class="btn btn-primary" /> |
            <a asp-page="./Index">Back to full List</a>
        </p>
    </div>
</form>

<table class="table">
    <thead>
        <tr>
            <th>
                <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort"
                   asp-route-currentFilter="@Model.CurrentFilter">
                    @Html.DisplayNameFor(model => model.Students[0].LastName)
                </a>
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Students[0].FirstMidName)
            </th>
            <th>
                <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort"
                   asp-route-currentFilter="@Model.CurrentFilter">
                    @Html.DisplayNameFor(model => model.Students[0].EnrollmentDate)
                </a>
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Students)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.LastName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.FirstMidName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.EnrollmentDate)
                </td>
                <td>
                    <a asp-page="./Edit" asp-route-id="@item.ID">Edit</a> |
                    <a asp-page="./Details" asp-route-id="@item.ID">Details</a> |
                    <a asp-page="./Delete" asp-route-id="@item.ID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

@{
    var prevDisabled = !Model.Students.HasPreviousPage ? "disabled" : "";
    var nextDisabled = !Model.Students.HasNextPage ? "disabled" : "";
}

<a asp-page="./Index"
   asp-route-sortOrder="@Model.CurrentSort"
   asp-route-pageIndex="@(Model.Students.PageIndex - 1)"
   asp-route-currentFilter="@Model.CurrentFilter"
   class="btn btn-primary @prevDisabled">
    Previous
</a>
<a asp-page="./Index"
   asp-route-sortOrder="@Model.CurrentSort"
   asp-route-pageIndex="@(Model.Students.PageIndex + 1)"
   asp-route-currentFilter="@Model.CurrentFilter"
   class="btn btn-primary @nextDisabled">
    Next
</a>



<a asp-page="./Index" asp-route-sortOrder="@Model.NameSort"
   asp-route-currentFilter="@Model.CurrentFilter">
    @Html.DisplayNameFor(model => model.Students[0].LastName)
</a>

<a asp-page="./Index"
   asp-route-sortOrder="@Model.CurrentSort"
   asp-route-pageIndex="@(Model.Students.PageIndex - 1)"
   asp-route-currentFilter="@Model.CurrentFilter"
   class="btn btn-primary @prevDisabled">
    Previous
</a>
<a asp-page="./Index"
   asp-route-sortOrder="@Model.CurrentSort"
   asp-route-pageIndex="@(Model.Students.PageIndex + 1)"
   asp-route-currentFilter="@Model.CurrentFilter"
   class="btn btn-primary @nextDisabled">
    Next
</a>

Add grouping

The column header links use the query string to pass the current search string to the OnGetAsync  method:

The paging buttons are displayed by tag helpers:

Run the app and navigate to the students page.

To make sure paging works, click the paging links in different sort orders.

To verify that paging works correctly with sorting and filtering, enter a search string and try paging.



Create the view modelCreate the view model

using System;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models.SchoolViewModels
{
    public class EnrollmentDateGroup
    {
        [DataType(DataType.Date)]
        public DateTime? EnrollmentDate { get; set; }

        public int StudentCount { get; set; }
    }
}

Create the Razor PageCreate the Razor Page

@page
@model ContosoUniversity.Pages.AboutModel

@{
    ViewData["Title"] = "Student Body Statistics";
}

<h2>Student Body Statistics</h2>

<table>
    <tr>
        <th>
            Enrollment Date
        </th>
        <th>
            Students
        </th>
    </tr>

    @foreach (var item in Model.Students)
    {
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.EnrollmentDate)
            </td>
            <td>
                @item.StudentCount
            </td>
        </tr>
    }
</table>

Create the page modelCreate the page model

This section creates an About page that displays how many students have enrolled for each enrollment date. The

update uses grouping and includes the following steps:

Create a view model for the data used by the AboutAbout page.

Update the About page to use the view model.

Create a Models/SchoolViewModels folder.

Create SchoolViewModels/EnrollmentDateGroup.cs with the following code:

Create a Pages/About.cshtml file with the following code:

Create a Pages/About.cshtml.cs file with the following code:



using ContosoUniversity.Models.SchoolViewModels;
using ContosoUniversity.Data;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using ContosoUniversity.Models;

namespace ContosoUniversity.Pages
{
    public class AboutModel : PageModel
    {
        private readonly SchoolContext _context;

        public AboutModel(SchoolContext context)
        {
            _context = context;
        }

        public IList<EnrollmentDateGroup> Students { get; set; }

        public async Task OnGetAsync()
        {
            IQueryable<EnrollmentDateGroup> data =
                from student in _context.Students
                group student by student.EnrollmentDate into dateGroup
                select new EnrollmentDateGroup()
                {
                    EnrollmentDate = dateGroup.Key,
                    StudentCount = dateGroup.Count()
                };

            Students = await data.AsNoTracking().ToListAsync();
        }
    }
}

The LINQ statement groups the student entities by enrollment date, calculates the number of entities in each

group, and stores the results in a collection of EnrollmentDateGroup  view model objects.

Run the app and navigate to the About page. The count of students for each enrollment date is displayed in a

table.



Next steps
In the next tutorial, the app uses migrations to update the data model.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

In this tutorial, sorting, filtering, grouping, and paging, functionality is added.

The following illustration shows a completed page. The column headings are clickable links to sort the column.

Clicking a column heading repeatedly switches between ascending and descending sort order.



Add sorting to the Index page

public class IndexModel : PageModel
{
    private readonly SchoolContext _context;

    public IndexModel(SchoolContext context)
    {
        _context = context;
    }

    public string NameSort { get; set; }
    public string DateSort { get; set; }
    public string CurrentFilter { get; set; }
    public string CurrentSort { get; set; }

public async Task OnGetAsync(string sortOrder)
{
    NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
    DateSort = sortOrder == "Date" ? "date_desc" : "Date";

    IQueryable<Student> studentIQ = from s in _context.Student
                                    select s;

    switch (sortOrder)
    {
        case "name_desc":
            studentIQ = studentIQ.OrderByDescending(s => s.LastName);
            break;
        case "Date":
            studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
            break;
        case "date_desc":
            studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
            break;
        default:
            studentIQ = studentIQ.OrderBy(s => s.LastName);
            break;
    }

    Student = await studentIQ.AsNoTracking().ToListAsync();
}

If you run into problems you can't solve, download the completed app.

Add strings to the Students/Index.cshtml.cs PageModel  to contain the sorting parameters:

Update the Students/Index.cshtml.cs OnGetAsync  with the following code:

The preceding code receives a sortOrder  parameter from the query string in the URL. The URL (including the

query string) is generated by the Anchor Tag Helper

The sortOrder  parameter is either "Name" or "Date." The sortOrder  parameter is optionally followed by "_desc"

to specify descending order. The default sort order is ascending.

When the Index page is requested from the StudentsStudents  link, there's no query string. The students are displayed in

ascending order by last name. Ascending order by last name is the default (fall-through case) in the switch

statement. When the user clicks a column heading link, the appropriate sortOrder  value is provided in the query

string value.

NameSort  and DateSort  are used by the Razor Page to configure the column heading hyperlinks with the

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


public async Task OnGetAsync(string sortOrder)
{
    NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
    DateSort = sortOrder == "Date" ? "date_desc" : "Date";

    IQueryable<Student> studentIQ = from s in _context.Student
                                    select s;

    switch (sortOrder)
    {
        case "name_desc":
            studentIQ = studentIQ.OrderByDescending(s => s.LastName);
            break;
        case "Date":
            studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
            break;
        case "date_desc":
            studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
            break;
        default:
            studentIQ = studentIQ.OrderBy(s => s.LastName);
            break;
    }

    Student = await studentIQ.AsNoTracking().ToListAsync();
}

NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
DateSort = sortOrder == "Date" ? "date_desc" : "Date";

C URREN T  SO RT  O RDERC URREN T  SO RT  O RDER L A ST  N A M E H Y P ERL IN KL A ST  N A M E H Y P ERL IN K DAT E H Y P ERL IN KDAT E H Y P ERL IN K

Last Name ascending descending ascending

Last Name descending ascending ascending

Date ascending ascending descending

Date descending ascending ascending

appropriate query string values:

The following code contains the C# conditional ?: operator:

The first line specifies that when sortOrder  is null or empty, NameSort  is set to "name_desc." If sortOrder  is notnot

null or empty, NameSort  is set to an empty string.

The ?: operator  is also known as the ternary operator.

These two statements enable the page to set the column heading hyperlinks as follows:

The method uses LINQ to Entities to specify the column to sort by. The code initializes an IQueryable<Student>

before the switch statement, and modifies it in the switch statement:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/conditional-operator


public async Task OnGetAsync(string sortOrder)
{
    NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
    DateSort = sortOrder == "Date" ? "date_desc" : "Date";

    IQueryable<Student> studentIQ = from s in _context.Student
                                    select s;

    switch (sortOrder)
    {
        case "name_desc":
            studentIQ = studentIQ.OrderByDescending(s => s.LastName);
            break;
        case "Date":
            studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
            break;
        case "date_desc":
            studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
            break;
        default:
            studentIQ = studentIQ.OrderBy(s => s.LastName);
            break;
    }

    Student = await studentIQ.AsNoTracking().ToListAsync();
}

Student = await studentIQ.AsNoTracking().ToListAsync();

Add column heading hyperlinks to the Student Index pageAdd column heading hyperlinks to the Student Index page

When an IQueryable  is created or modified, no query is sent to the database. The query isn't executed until the 

IQueryable  object is converted into a collection. IQueryable  are converted to a collection by calling a method

such as ToListAsync . Therefore, the IQueryable  code results in a single query that's not executed until the

following statement:

OnGetAsync  could get verbose with a large number of sortable columns.

Replace the code in Students/Index.cshtml, with the following highlighted code:



@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
    ViewData["Title"] = "Index";
}

<h2>Index</h2>
<p>
    <a asp-page="Create">Create New</a>
</p>

<table class="table">
    <thead>
        <tr>
            <th>
                <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort">
                    @Html.DisplayNameFor(model => model.Student[0].LastName)
                </a>
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Student[0].FirstMidName)
            </th>
            <th>
                <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort">
                    @Html.DisplayNameFor(model => model.Student[0].EnrollmentDate)
                </a>
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Student)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.LastName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.FirstMidName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.EnrollmentDate)
                </td>
                <td>
                    <a asp-page="./Edit" asp-route-id="@item.ID">Edit</a> |
                    <a asp-page="./Details" asp-route-id="@item.ID">Details</a> |
                    <a asp-page="./Delete" asp-route-id="@item.ID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

The preceding code:

Adds hyperlinks to the LastName  and EnrollmentDate  column headings.

Uses the information in NameSort  and DateSort  to set up hyperlinks with the current sort order values.

To verify that sorting works:

Run the app and select the StudentsStudents  tab.

Click Last NameLast Name.

Click Enrollment DateEnrollment Date.



Add a Search Box to the Students Index page

Add filtering functionality to the Index methodAdd filtering functionality to the Index method

public async Task OnGetAsync(string sortOrder, string searchString)
{
    NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
    DateSort = sortOrder == "Date" ? "date_desc" : "Date";
    CurrentFilter = searchString;

    IQueryable<Student> studentIQ = from s in _context.Student
                                    select s;
    if (!String.IsNullOrEmpty(searchString))
    {
        studentIQ = studentIQ.Where(s => s.LastName.Contains(searchString)
                               || s.FirstMidName.Contains(searchString));
    }

    switch (sortOrder)
    {
        case "name_desc":
            studentIQ = studentIQ.OrderByDescending(s => s.LastName);
            break;
        case "Date":
            studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
            break;
        case "date_desc":
            studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
            break;
        default:
            studentIQ = studentIQ.OrderBy(s => s.LastName);
            break;
    }

    Student = await studentIQ.AsNoTracking().ToListAsync();
}

To get a better understanding of the code:

In Students/Index.cshtml.cs, set a breakpoint on switch (sortOrder) .

Add a watch for NameSort  and DateSort .

In Students/Index.cshtml, set a breakpoint on @Html.DisplayNameFor(model => model.Student[0].LastName) .

Step through the debugger.

To add filtering to the Students Index page:

A text box and a submit button is added to the Razor Page. The text box supplies a search string on the first or

last name.

The page model is updated to use the text box value.

Update the Students/Index.cshtml.cs OnGetAsync  with the following code:

The preceding code:

Adds the searchString  parameter to the OnGetAsync  method. The search string value is received from a text

box that's added in the next section.

Added to the LINQ statement a Where  clause. The Where  clause selects only students whose first name or last

name contains the search string. The LINQ statement is executed only if there's a value to search for.

Note: The preceding code calls the Where  method on an IQueryable  object, and the filter is processed on the

server. In some scenarios, the app might be calling the Where  method as an extension method on an in-memory



Add a Search Box to the Student Index pageAdd a Search Box to the Student Index page

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
    ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>

<form asp-page="./Index" method="get">
    <div class="form-actions no-color">
        <p>
            Find by name:
            <input type="text" name="SearchString" value="@Model.CurrentFilter" />
            <input type="submit" value="Search" class="btn btn-default" /> |
            <a asp-page="./Index">Back to full List</a>
        </p>
    </div>
</form>

<table class="table">

collection. For example, suppose _context.Students  changes from EF Core DbSet  to a repository method that

returns an IEnumerable  collection. The result would normally be the same but in some cases may be different.

For example, the .NET Framework implementation of Contains  performs a case-sensitive comparison by default.

In SQL Server, Contains  case-sensitivity is determined by the collation setting of the SQL Server instance. SQL

Server defaults to case-insensitive. ToUpper  could be called to make the test explicitly case-insensitive:

Where(s => s.LastName.ToUpper().Contains(searchString.ToUpper())

The preceding code would ensure that results are case-insensitive if the code changes to use IEnumerable . When 

Contains  is called on an IEnumerable  collection, the .NET Core implementation is used. When Contains  is called

on an IQueryable  object, the database implementation is used. Returning an IEnumerable  from a repository can

have a significant performance penalty:

1. All the rows are returned from the DB server.

2. The filter is applied to all the returned rows in the application.

There's a performance penalty for calling ToUpper . The ToUpper  code adds a function in the WHERE clause of the

TSQL SELECT statement. The added function prevents the optimizer from using an index. Given that SQL is

installed as case-insensitive, it's best to avoid the ToUpper  call when it's not needed.

In Pages/Students/Index.cshtml, add the following highlighted code to create a SearchSearch button and assorted

chrome.

The preceding code uses the <form>  tag helper to add the search text box and button. By default, the <form>  tag

helper submits form data with a POST. With POST, the parameters are passed in the HTTP message body and not

in the URL. When HTTP GET is used, the form data is passed in the URL as query strings. Passing the data with

query strings enables users to bookmark the URL. The W3C guidelines recommend that GET should be used

when the action doesn't result in an update.

Test the app:

Select the StudentsStudents  tab and enter a search string.

https://www.w3.org/2001/tag/doc/whenToUseGet.html


http://localhost:5000/Students?SearchString=an

Add paging functionality to the Students Index page

Select SearchSearch.

Notice that the URL contains the search string.

If the page is bookmarked, the bookmark contains the URL to the page and the SearchString  query string. The 

method="get"  in the form  tag is what caused the query string to be generated.

Currently, when a column heading sort link is selected, the filter value from the SearchSearch box is lost. The lost filter

value is fixed in the next section.

In this section, a PaginatedList  class is created to support paging. The PaginatedList  class uses Skip  and Take

statements to filter data on the server instead of retrieving all rows of the table. The following illustration shows

the paging buttons.

In the project folder, create PaginatedList.cs  with the following code:



using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity
{
    public class PaginatedList<T> : List<T>
    {
        public int PageIndex { get; private set; }
        public int TotalPages { get; private set; }

        public PaginatedList(List<T> items, int count, int pageIndex, int pageSize)
        {
            PageIndex = pageIndex;
            TotalPages = (int)Math.Ceiling(count / (double)pageSize);

            this.AddRange(items);
        }

        public bool HasPreviousPage
        {
            get
            {
                return (PageIndex > 1);
            }
        }

        public bool HasNextPage
        {
            get
            {
                return (PageIndex < TotalPages);
            }
        }

        public static async Task<PaginatedList<T>> CreateAsync(
            IQueryable<T> source, int pageIndex, int pageSize)
        {
            var count = await source.CountAsync();
            var items = await source.Skip(
                (pageIndex - 1) * pageSize)
                .Take(pageSize).ToListAsync();
            return new PaginatedList<T>(items, count, pageIndex, pageSize);
        }
    }
}

Add paging functionality to the Index method

public PaginatedList<Student> Student { get; set; }

The CreateAsync  method in the preceding code takes page size and page number and applies the appropriate 

Skip  and Take  statements to the IQueryable . When ToListAsync  is called on the IQueryable , it returns a List

containing only the requested page. The properties HasPreviousPage  and HasNextPage  are used to enable or

disable PreviousPrevious  and NextNext paging buttons.

The CreateAsync  method is used to create the PaginatedList<T> . A constructor can't create the PaginatedList<T>

object, constructors can't run asynchronous code.

In Students/Index.cshtml.cs, update the type of Student  from IList<Student>  to PaginatedList<Student> :



public async Task OnGetAsync(string sortOrder,
    string currentFilter, string searchString, int? pageIndex)
{
    CurrentSort = sortOrder;
    NameSort = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
    DateSort = sortOrder == "Date" ? "date_desc" : "Date";
    if (searchString != null)
    {
        pageIndex = 1;
    }
    else
    {
        searchString = currentFilter;
    }

    CurrentFilter = searchString;

    IQueryable<Student> studentIQ = from s in _context.Student
                                    select s;
    if (!String.IsNullOrEmpty(searchString))
    {
        studentIQ = studentIQ.Where(s => s.LastName.Contains(searchString)
                               || s.FirstMidName.Contains(searchString));
    }
    switch (sortOrder)
    {
        case "name_desc":
            studentIQ = studentIQ.OrderByDescending(s => s.LastName);
            break;
        case "Date":
            studentIQ = studentIQ.OrderBy(s => s.EnrollmentDate);
            break;
        case "date_desc":
            studentIQ = studentIQ.OrderByDescending(s => s.EnrollmentDate);
            break;
        default:
            studentIQ = studentIQ.OrderBy(s => s.LastName);
            break;
    }

    int pageSize = 3;
    Student = await PaginatedList<Student>.CreateAsync(
        studentIQ.AsNoTracking(), pageIndex ?? 1, pageSize);
}

public async Task OnGetAsync(string sortOrder,
    string currentFilter, string searchString, int? pageIndex)

Update the Students/Index.cshtml.cs OnGetAsync  with the following code:

The preceding code adds the page index, the current sortOrder , and the currentFilter  to the method signature.

All the parameters are null when:

The page is called from the StudentsStudents  link.

The user hasn't clicked a paging or sorting link.

When a paging link is clicked, the page index variable contains the page number to display.

CurrentSort  provides the Razor Page with the current sort order. The current sort order must be included in the

paging links to keep the sort order while paging.

CurrentFilter  provides the Razor Page with the current filter string. The CurrentFilter  value:



if (searchString != null)
{
    pageIndex = 1;
}
else
{
    searchString = currentFilter;
}

Student = await PaginatedList<Student>.CreateAsync(
    studentIQ.AsNoTracking(), pageIndex ?? 1, pageSize);

Add paging links to the student Razor Page

@page
@model ContosoUniversity.Pages.Students.IndexModel

@{
    ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>

<form asp-page="./Index" method="get">
    <div class="form-actions no-color">
        <p>
            Find by name: <input type="text" name="SearchString" value="@Model.CurrentFilter" />
            <input type="submit" value="Search" class="btn btn-default" /> |
            <a asp-page="./Index">Back to full List</a>
        </p>
    </div>
</form>

<table class="table">
    <thead>
        <tr>
            <th>
                <a asp-page="./Index" asp-route-sortOrder="@Model.NameSort"
                   asp-route-currentFilter="@Model.CurrentFilter">

Must be included in the paging links in order to maintain the filter settings during paging.

Must be restored to the text box when the page is redisplayed.

If the search string is changed while paging, the page is reset to 1. The page has to be reset to 1 because the new

filter can result in different data to display. When a search value is entered and SubmitSubmit is selected:

The search string is changed.

The searchString  parameter isn't null.

The PaginatedList.CreateAsync  method converts the student query to a single page of students in a collection

type that supports paging. That single page of students is passed to the Razor Page.

The two question marks in PaginatedList.CreateAsync  represent the null-coalescing operator. The null-coalescing

operator defines a default value for a nullable type. The expression (pageIndex ?? 1)  means return the value of 

pageIndex  if it has a value. If pageIndex  doesn't have a value, return 1.

Update the markup in Students/Index.cshtml. The changes are highlighted:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operator


                   asp-route-currentFilter="@Model.CurrentFilter">
                    @Html.DisplayNameFor(model => model.Student[0].LastName)
                </a>
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Student[0].FirstMidName)
            </th>
            <th>
                <a asp-page="./Index" asp-route-sortOrder="@Model.DateSort"
                   asp-route-currentFilter="@Model.CurrentFilter">
                    @Html.DisplayNameFor(model => model.Student[0].EnrollmentDate)
                </a>
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Student)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.LastName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.FirstMidName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.EnrollmentDate)
                </td>
                <td>
                    <a asp-page="./Edit" asp-route-id="@item.ID">Edit</a> |
                    <a asp-page="./Details" asp-route-id="@item.ID">Details</a> |
                    <a asp-page="./Delete" asp-route-id="@item.ID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

@{
    var prevDisabled = !Model.Student.HasPreviousPage ? "disabled" : "";
    var nextDisabled = !Model.Student.HasNextPage ? "disabled" : "";
}

<a asp-page="./Index"
   asp-route-sortOrder="@Model.CurrentSort"
   asp-route-pageIndex="@(Model.Student.PageIndex - 1)"
   asp-route-currentFilter="@Model.CurrentFilter"
   class="btn btn-default @prevDisabled">
    Previous
</a>
<a asp-page="./Index"
   asp-route-sortOrder="@Model.CurrentSort"
   asp-route-pageIndex="@(Model.Student.PageIndex + 1)"
   asp-route-currentFilter="@Model.CurrentFilter"
   class="btn btn-default @nextDisabled">
    Next
</a>

<a asp-page="./Index" asp-route-sortOrder="@Model.NameSort"
   asp-route-currentFilter="@Model.CurrentFilter">
    @Html.DisplayNameFor(model => model.Student[0].LastName)
</a>

The column header links use the query string to pass the current search string to the OnGetAsync  method so that

the user can sort within filter results:



<a asp-page="./Index"
   asp-route-sortOrder="@Model.CurrentSort"
   asp-route-pageIndex="@(Model.Student.PageIndex - 1)"
   asp-route-currentFilter="@Model.CurrentFilter"
   class="btn btn-default @prevDisabled">
    Previous
</a>
<a asp-page="./Index"
   asp-route-sortOrder="@Model.CurrentSort"
   asp-route-pageIndex="@(Model.Student.PageIndex + 1)"
   asp-route-currentFilter="@Model.CurrentFilter"
   class="btn btn-default @nextDisabled">
    Next
</a>

Update the About page to show student statistics

The paging buttons are displayed by tag helpers:

Run the app and navigate to the students page.

To make sure paging works, click the paging links in different sort orders.

To verify that paging works correctly with sorting and filtering, enter a search string and try paging.

To get a better understanding of the code:

In Students/Index.cshtml.cs, set a breakpoint on switch (sortOrder) .

Add a watch for NameSort , DateSort , CurrentSort , and Model.Student.PageIndex .

In Students/Index.cshtml, set a breakpoint on @Html.DisplayNameFor(model => model.Student[0].LastName) .

Step through the debugger.

In this step, Pages/About.cshtml is updated to display how many students have enrolled for each enrollment date.

The update uses grouping and includes the following steps:



Create the view modelCreate the view model

using System;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models.SchoolViewModels
{
    public class EnrollmentDateGroup
    {
        [DataType(DataType.Date)]
        public DateTime? EnrollmentDate { get; set; }

        public int StudentCount { get; set; }
    }
}

Update the About page modelUpdate the About page model

Create a view model for the data used by the AboutAbout Page.

Update the About page to use the view model.

Create a SchoolViewModels folder in the Models folder.

In the SchoolViewModels folder, add a EnrollmentDateGroup.cs with the following code:

The web templates in ASP.NET Core 2.2 do not include the About page. If you are using ASP.NET Core 2.2, create

the About Razor Page.

Update the Pages/About.cshtml.cs file with the following code:



using ContosoUniversity.Models.SchoolViewModels;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using ContosoUniversity.Models;

namespace ContosoUniversity.Pages
{
    public class AboutModel : PageModel
    {
        private readonly SchoolContext _context;

        public AboutModel(SchoolContext context)
        {
            _context = context;
        }

        public IList<EnrollmentDateGroup> Student { get; set; }

        public async Task OnGetAsync()
        {
            IQueryable<EnrollmentDateGroup> data =
                from student in _context.Student
                group student by student.EnrollmentDate into dateGroup
                select new EnrollmentDateGroup()
                {
                    EnrollmentDate = dateGroup.Key,
                    StudentCount = dateGroup.Count()
                };

            Student = await data.AsNoTracking().ToListAsync();
        }
    }
}

Modify the About Razor PageModify the About Razor Page

The LINQ statement groups the student entities by enrollment date, calculates the number of entities in each

group, and stores the results in a collection of EnrollmentDateGroup  view model objects.

Replace the code in the Pages/About.cshtml file with the following code:



@page
@model ContosoUniversity.Pages.AboutModel

@{
    ViewData["Title"] = "Student Body Statistics";
}

<h2>Student Body Statistics</h2>

<table>
    <tr>
        <th>
            Enrollment Date
        </th>
        <th>
            Students
        </th>
    </tr>

    @foreach (var item in Model.Student)
    {
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.EnrollmentDate)
            </td>
            <td>
                @item.StudentCount
            </td>
        </tr>
    }
</table>

Additional resources

Run the app and navigate to the About page. The count of students for each enrollment date is displayed in a

table.

If you run into problems you can't solve, download the completed app for this stage.

Debugging ASP.NET Core 2.x source

YouTube version of this tutorial

In the next tutorial, the app uses migrations to update the data model.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/StageSnapShots/cu-part3-sorting
https://github.com/dotnet/AspNetCore.Docs/issues/4155
https://www.youtube.com/watch?v=MDs7PFpoMqI


 P R E V I O U SP R E V I O U S N E X TN E X T



Part 4, Razor Pages with EF Core migrations in
ASP.NET Core
9/22/2020 • 11 minutes to read • Edit Online

By Tom Dykstra, Jon P Smith, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you

created by following the tutorial.

This tutorial introduces the EF Core migrations feature for managing data model changes.

When a new app is developed, the data model changes frequently. Each time the model changes, the model gets

out of sync with the database. This tutorial series started by configuring the Entity Framework to create the

database if it doesn't exist. Each time the data model changes, you have to drop the database. The next time the

app runs, the call to EnsureCreated  re-creates the database to match the new data model. The DbInitializer

class then runs to seed the new database.

This approach to keeping the database in sync with the data model works well until you deploy the app to

production. When the app is running in production, it's usually storing data that needs to be maintained. The app

can't start with a test database each time a change is made (such as adding a new column). The EF Core

Migrations feature solves this problem by enabling EF Core to update the database schema instead of creating a

new database.

Rather than dropping and recreating the database when the data model changes, migrations updates the schema

and retains existing data.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/migrations.md
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


NOTENOTE

Drop the database

Drop-Database

Create an initial migration

Add-Migration InitialCreate
Update-Database

Up and Down methods

using System;

SQLite limitationsSQLite limitations

This tutorial uses the Entity Framework Core migrations feature where possible. Migrations updates the database schema

to match changes in the data model. However, migrations only does the kinds of changes that the database engine

supports, and SQLite's schema change capabilities are limited. For example, adding a column is supported, but removing a

column is not supported. If a migration is created to remove a column, the ef migrations add  command succeeds but

the ef database update  command fails.

The workaround for the SQLite limitations is to manually write migrations code to perform a table rebuild when something

in the table changes. The code would go in the Up  and Down  methods for a migration and would involve:

Creating a new table.

Copying data from the old table to the new table.

Dropping the old table.

Renaming the new table.

Writing database-specific code of this type is outside the scope of this tutorial. Instead, this tutorial drops and re-creates

the database whenever an attempt to apply a migration would fail. For more information, see the following resources:

SQLite EF Core Database Provider Limitations

Customize migration code

Data seeding

SQLite ALTER TABLE statement

Visual Studio

Visual Studio Code

Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  (SSOX) to delete the database, or run the following command in the

Package Manager ConsolePackage Manager Console (PMC):

Visual Studio

Visual Studio Code

Run the following commands in the PMC:

The EF Core migrations add  command generated code to create the database. This migrations code is in the

Migrations<timestamp>_InitialCreate.cs file. The Up  method of the InitialCreate  class creates the database

tables that correspond to the data model entity sets. The Down  method deletes them, as shown in the following

example:

https://docs.microsoft.com/en-us/ef/core/providers/sqlite/limitations
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/#customize-migration-code
https://docs.microsoft.com/en-us/ef/core/modeling/data-seeding
https://sqlite.org/lang_altertable.html


using System;
using Microsoft.EntityFrameworkCore.Metadata;
using Microsoft.EntityFrameworkCore.Migrations;

namespace ContosoUniversity.Migrations
{
    public partial class InitialCreate : Migration
    {
        protected override void Up(MigrationBuilder migrationBuilder)
        {
            migrationBuilder.CreateTable(
                name: "Course",
                columns: table => new
                {
                    CourseID = table.Column<int>(nullable: false),
                    Title = table.Column<string>(nullable: true),
                    Credits = table.Column<int>(nullable: false)
                },
                constraints: table =>
                {
                    table.PrimaryKey("PK_Course", x => x.CourseID);
                });

            migrationBuilder.CreateTable(
                name: "Student",
                columns: table => new
                {
                    ID = table.Column<int>(nullable: false)
                        .Annotation("SqlServer:ValueGenerationStrategy", 
SqlServerValueGenerationStrategy.IdentityColumn),
                    LastName = table.Column<string>(nullable: true),
                    FirstMidName = table.Column<string>(nullable: true),
                    EnrollmentDate = table.Column<DateTime>(nullable: false)
                },
                constraints: table =>
                {
                    table.PrimaryKey("PK_Student", x => x.ID);
                });

            migrationBuilder.CreateTable(
                name: "Enrollment",
                columns: table => new
                {
                    EnrollmentID = table.Column<int>(nullable: false)
                        .Annotation("SqlServer:ValueGenerationStrategy", 
SqlServerValueGenerationStrategy.IdentityColumn),
                    CourseID = table.Column<int>(nullable: false),
                    StudentID = table.Column<int>(nullable: false),
                    Grade = table.Column<int>(nullable: true)
                },
                constraints: table =>
                {
                    table.PrimaryKey("PK_Enrollment", x => x.EnrollmentID);
                    table.ForeignKey(
                        name: "FK_Enrollment_Course_CourseID",
                        column: x => x.CourseID,
                        principalTable: "Course",
                        principalColumn: "CourseID",
                        onDelete: ReferentialAction.Cascade);
                    table.ForeignKey(
                        name: "FK_Enrollment_Student_StudentID",
                        column: x => x.StudentID,
                        principalTable: "Student",
                        principalColumn: "ID",
                        onDelete: ReferentialAction.Cascade);
                });

            migrationBuilder.CreateIndex(
                name: "IX_Enrollment_CourseID",
                table: "Enrollment",



                table: "Enrollment",
                column: "CourseID");

            migrationBuilder.CreateIndex(
                name: "IX_Enrollment_StudentID",
                table: "Enrollment",
                column: "StudentID");
        }

        protected override void Down(MigrationBuilder migrationBuilder)
        {
            migrationBuilder.DropTable(
                name: "Enrollment");

            migrationBuilder.DropTable(
                name: "Course");

            migrationBuilder.DropTable(
                name: "Student");
        }
    }
}

The migrations history table

The data model snapshot

Remove EnsureCreated

The preceding code is for the initial migration. The code:

Was generated by the migrations add InitialCreate  command.

Is executed by the database update  command.

Creates a database for the data model specified by the database context class.

The migration name parameter ("InitialCreate" in the example) is used for the file name. The migration name can

be any valid file name. It's best to choose a word or phrase that summarizes what is being done in the migration.

For example, a migration that added a department table might be called "AddDepartmentTable."

Use SSOX or your SQLite tool to inspect the database.

Notice the addition of an __EFMigrationsHistory  table. The __EFMigrationsHistory  table keeps track of which

migrations have been applied to the database.

View the data in the __EFMigrationsHistory  table. It shows one row for the first migration.

Migrations creates a snapshot of the current data model in Migrations/SchoolContextModelSnapshot.cs. When

you add a migration, EF determines what changed by comparing the current data model to the snapshot file.

Because the snapshot file tracks the state of the data model, you can't delete a migration by deleting the 

<timestamp>_<migrationname>.cs  file. To back out the most recent migration, you have to use the 

migrations remove  command. That command deletes the migration and ensures the snapshot is correctly reset.

For more information, see dotnet ef migrations remove.

This tutorial series started by using EnsureCreated . EnsureCreated  doesn't create a migrations history table and

so can't be used with migrations. It's designed for testing or rapid prototyping where the database is dropped

and re-created frequently.

From this point forward, the tutorials will use migrations.

In Data/DBInitializer.cs, comment out the following line:

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet#dotnet-ef-migrations-remove


context.Database.EnsureCreated();

Applying migrations in production

Troubleshooting

SqlException: Cannot open database "ContosoUniversity" requested by the login.
The login failed.
Login failed for user 'user name'.

Additional resourcesAdditional resources

Next steps

Run the app and verify that the database is seeded.

We recommend that production apps notnot call Database.Migrate at application startup. Migrate  shouldn't be

called from an app that is deployed to a server farm. If the app is scaled out to multiple server instances, it's hard

to ensure database schema updates don't happen from multiple servers or conflict with read/write access.

Database migration should be done as part of deployment, and in a controlled way. Production database

migration approaches include:

Using migrations to create SQL scripts and using the SQL scripts in deployment.

Running dotnet ef database update  from a controlled environment.

If the app uses SQL Server LocalDB and displays the following exception:

The solution may be to run dotnet ef database update  at a command prompt.

EF Core CLI.

Package Manager Console (Visual Studio)

The next tutorial builds out the data model, adding entity properties and new entities.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

In this tutorial, the EF Core migrations feature for managing data model changes is used.

If you run into problems you can't solve, download the completed app.

When a new app is developed, the data model changes frequently. Each time the model changes, the model gets

out of sync with the database. This tutorial started by configuring the Entity Framework to create the database if

it doesn't exist. Each time the data model changes:

The DB is dropped.

EF creates a new one that matches the model.

The app seeds the DB with test data.

This approach to keeping the DB in sync with the data model works well until you deploy the app to production.

When the app is running in production, it's usually storing data that needs to be maintained. The app can't start

with a test DB each time a change is made (such as adding a new column). The EF Core Migrations feature solves

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.relationaldatabasefacadeextensions.migrate#microsoft_entityframeworkcore_relationaldatabasefacadeextensions_migrate_microsoft_entityframeworkcore_infrastructure_databasefacade_
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


Drop the database

Drop-Database

Create an initial migration and update the DB

Add-Migration InitialCreate
Update-Database

Examine the Up and Down methodsExamine the Up and Down methods

this problem by enabling EF Core to update the DB schema instead of creating a new DB.

Rather than dropping and recreating the DB when the data model changes, migrations updates the schema and

retains existing data.

Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  (SSOX) or the database drop  command:

Visual Studio

Visual Studio Code

In the Package Manager ConsolePackage Manager Console (PMC), run the following command:

Run Get-Help about_EntityFrameworkCore  from the PMC to get help information.

Build the project and create the first migration.

Visual Studio

Visual Studio Code

The EF Core migrations add  command generated code to create the DB. This migrations code is in the

Migrations<timestamp>_InitialCreate.cs file. The Up  method of the InitialCreate  class creates the DB tables

that correspond to the data model entity sets. The Down  method deletes them, as shown in the following

example:



public partial class InitialCreate : Migration
{
    protected override void Up(MigrationBuilder migrationBuilder)
    {
        migrationBuilder.CreateTable(
            name: "Course",
            columns: table => new
            {
                CourseID = table.Column<int>(nullable: false),
                Title = table.Column<string>(nullable: true),
                Credits = table.Column<int>(nullable: false)
            },
            constraints: table =>
            {
                table.PrimaryKey("PK_Course", x => x.CourseID);
            });

        migrationBuilder.CreateTable(
    protected override void Down(MigrationBuilder migrationBuilder)
    {
        migrationBuilder.DropTable(
            name: "Enrollment");

        migrationBuilder.DropTable(
            name: "Course");

        migrationBuilder.DropTable(
            name: "Student");
    }
}

The data model snapshotThe data model snapshot

Migrations calls the Up  method to implement the data model changes for a migration. When you enter a

command to roll back the update, migrations calls the Down  method.

The preceding code is for the initial migration. That code was created when the migrations add InitialCreate

command was run. The migration name parameter ("InitialCreate" in the example) is used for the file name. The

migration name can be any valid file name. It's best to choose a word or phrase that summarizes what is being

done in the migration. For example, a migration that added a department table might be called

"AddDepartmentTable."

If the initial migration is created and the DB exists:

The DB creation code is generated.

The DB creation code doesn't need to run because the DB already matches the data model. If the DB creation

code is run, it doesn't make any changes because the DB already matches the data model.

When the app is deployed to a new environment, the DB creation code must be run to create the DB.

Previously the DB was dropped and doesn't exist, so migrations creates the new DB.

Migrations create a snapshot of the current database schema in Migrations/SchoolContextModelSnapshot.cs.

When you add a migration, EF determines what changed by comparing the data model to the snapshot file.

To delete a migration, use the following command:

Visual Studio

Visual Studio Code

Remove-Migration

The remove migrations command deletes the migration and ensures the snapshot is correctly reset.



Remove EnsureCreated and test the appRemove EnsureCreated and test the app

context.Database.EnsureCreated();

Inspect the databaseInspect the database

Applying migrations in production

Troubleshooting

SqlException: Cannot open database "ContosoUniversity" requested by the login.
The login failed.
Login failed for user 'user name'.

Additional resourcesAdditional resources

For early development, EnsureCreated  was used. In this tutorial, migrations are used. EnsureCreated  has the

following limitations:

Bypasses migrations and creates the DB and schema.

Doesn't create a migrations table.

Can not be used with migrations.

Is designed for testing or rapid prototyping where the DB is dropped and re-created frequently.

Remove EnsureCreated :

Run the app and verify the DB is seeded.

Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  to inspect the DB. Notice the addition of an __EFMigrationsHistory  table. The

__EFMigrationsHistory  table keeps track of which migrations have been applied to the DB. View the data in the 

__EFMigrationsHistory  table, it shows one row for the first migration. The last log in the preceding CLI output

example shows the INSERT statement that creates this row.

Run the app and verify that everything works.

We recommend production apps should notnot call Database.Migrate at application startup. Migrate  shouldn't be

called from an app in server farm. For example, if the app has been cloud deployed with scale-out (multiple

instances of the app are running).

Database migration should be done as part of deployment, and in a controlled way. Production database

migration approaches include:

Using migrations to create SQL scripts and using the SQL scripts in deployment.

Running dotnet ef database update  from a controlled environment.

EF Core uses the __MigrationsHistory  table to see if any migrations need to run. If the DB is up-to-date, no

migration is run.

Download the completed app.

The app generates the following exception:

Solution: Run dotnet ef database update

YouTube version of this tutorial

.NET Core CLI.

Package Manager Console (Visual Studio)

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.relationaldatabasefacadeextensions.migrate#microsoft_entityframeworkcore_relationaldatabasefacadeextensions_migrate_microsoft_entityframeworkcore_infrastructure_databasefacade_
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu21snapshots/cu-part4-migrations
https://www.youtube.com/watch?v=OWSUuMLKTJo
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell


 P R E V I O U SP R E V I O U S N E X TN E X T



Part 5, Razor Pages with EF Core in ASP.NET Core -
Data Model
9/22/2020 • 57 minutes to read • Edit Online

By Tom Dykstra and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you

created by following the tutorial.

The previous tutorials worked with a basic data model that was composed of three entities. In this tutorial:

More entities and relationships are added.

The data model is customized by specifying formatting, validation, and database mapping rules.

The completed data model is shown in the following illustration:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/complex-data-model.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


The Student entity

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        [Required]
        [StringLength(50)]
        [Display(Name = "Last Name")]
        public string LastName { get; set; }
        [Required]
        [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
        [Column("FirstName")]
        [Display(Name = "First Name")]
        public string FirstMidName { get; set; }
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Enrollment Date")]
        public DateTime EnrollmentDate { get; set; }
        [Display(Name = "Full Name")]
        public string FullName
        {
            get
            {
                return LastName + ", " + FirstMidName;
            }
        }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

The FullName calculated propertyThe FullName calculated property

Replace the code in Models/Student.cs with the following code:

The preceding code adds a FullName  property and adds the following attributes to existing properties:

[DataType]

[DisplayFormat]

[StringLength]

[Column]

[Required]

[Display]

FullName  is a calculated property that returns a value that's created by concatenating two other properties. 



The DataType attributeThe DataType attribute

[DataType(DataType.Date)]

The DisplayFormat attributeThe DisplayFormat attribute

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]

The StringLength attributeThe StringLength attribute

[StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]

FullName  can't be set, so it has only a get accessor. No FullName  column is created in the database.

For student enrollment dates, all of the pages currently display the time of day along with the date, although only

the date is relevant. By using data annotation attributes, you can make one code change that will fix the display

format in every page that shows the data.

The DataType attribute specifies a data type that's more specific than the database intrinsic type. In this case only

the date should be displayed, not the date and time. The DataType Enumeration provides for many data types,

such as Date, Time, PhoneNumber, Currency, EmailAddress, etc. The DataType  attribute can also enable the app

to automatically provide type-specific features. For example:

The mailto:  link is automatically created for DataType.EmailAddress .

The date selector is provided for DataType.Date  in most browsers.

The DataType  attribute emits HTML 5 data-  (pronounced data dash) attributes. The DataType  attributes don't

provide validation.

DataType.Date  doesn't specify the format of the date that's displayed. By default, the date field is displayed

according to the default formats based on the server's CultureInfo.

The DisplayFormat  attribute is used to explicitly specify the date format. The ApplyFormatInEditMode  setting

specifies that the formatting should also be applied to the edit UI. Some fields shouldn't use 

ApplyFormatInEditMode . For example, the currency symbol should generally not be displayed in an edit text box.

The DisplayFormat  attribute can be used by itself. It's generally a good idea to use the DataType  attribute with

the DisplayFormat  attribute. The DataType  attribute conveys the semantics of the data as opposed to how to

render it on a screen. The DataType  attribute provides the following benefits that are not available in 

DisplayFormat :

The browser can enable HTML5 features. For example, show a calendar control, the locale-appropriate

currency symbol, email links, and client-side input validation.

By default, the browser renders data using the correct format based on the locale.

For more information, see the <input> Tag Helper documentation.

Data validation rules and validation error messages can be specified with attributes. The StringLength attribute

specifies the minimum and maximum length of characters that are allowed in a data field. The code shown limits

names to no more than 50 characters. An example that sets the minimum string length is shown later.

The StringLength  attribute also provides client-side and server-side validation. The minimum value has no

impact on the database schema.

The StringLength  attribute doesn't prevent a user from entering white space for a name. The RegularExpression

attribute can be used to apply restrictions to the input. For example, the following code requires the first

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatypeattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatype
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.stringlengthattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.regularexpressionattribute


      

[RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]

The Column attributeThe Column attribute

[Column("FirstName")]
public string FirstMidName { get; set; }

The Required attributeThe Required attribute

[Required]

character to be upper case and the remaining characters to be alphabetical:

Visual Studio

Visual Studio Code

In SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  (SSOX), open the Student table designer by double-clicking the StudentStudent table.

The preceding image shows the schema for the Student  table. The name fields have type nvarchar(MAX) . When

a migration is created and applied later in this tutorial, the name fields become nvarchar(50)  as a result of the

string length attributes.

Attributes can control how classes and properties are mapped to the database. In the Student  model, the 

Column  attribute is used to map the name of the FirstMidName  property to "FirstName" in the database.

When the database is created, property names on the model are used for column names (except when the 

Column  attribute is used). The Student  model uses FirstMidName  for the first-name field because the field might

also contain a middle name.

With the [Column]  attribute, Student.FirstMidName  in the data model maps to the FirstName  column of the 

Student  table. The addition of the Column  attribute changes the model backing the SchoolContext . The model

backing the SchoolContext  no longer matches the database. That discrepancy will be resolved by adding a

migration later in this tutorial.

The Required  attribute makes the name properties required fields. The Required  attribute isn't needed for non-

nullable types such as value types (for example, DateTime , int , and double ). Types that can't be null are

automatically treated as required fields.



[Display(Name = "Last Name")]
[Required]
[StringLength(50, MinimumLength=2)]
public string LastName { get; set; }

The Display attributeThe Display attribute

[Display(Name = "Last Name")]

Create a migrationCreate a migration

SqlException: Invalid column name 'FirstName'.

The Required  attribute must be used with MinimumLength  for the MinimumLength  to be enforced.

MinimumLength  and Required  allow whitespace to satisfy the validation. Use the RegularExpression  attribute for

full control over the string.

The Display  attribute specifies that the caption for the text boxes should be "First Name", "Last Name", "Full

Name", and "Enrollment Date." The default captions had no space dividing the words, for example "Lastname."

Run the app and go to the Students page. An exception is thrown. The [Column]  attribute causes EF to expect to

find a column named FirstName , but the column name in the database is still FirstMidName .

Visual Studio

Visual Studio Code

The error message is similar to the following example:

Add-Migration ColumnFirstName
Update-Database

An operation was scaffolded that may result in the loss of data.
Please review the migration for accuracy.

In the PMC, enter the following commands to create a new migration and update the database:

The first of these commands generates the following warning message:

The warning is generated because the name fields are now limited to 50 characters. If a name in the

database had more than 50 characters, the 51 to last character would be lost.

Open the Student table in SSOX:



NOTENOTE

The Instructor Entity

Before the migration was applied, the name columns were of type nvarchar(MAX). The name columns are

now nvarchar(50) . The column name has changed from FirstMidName  to FirstName .

Run the app and go to the Students page.

Notice that times are not input or displayed along with dates.

Select Create NewCreate New , and try to enter a name longer than 50 characters.

In the following sections, building the app at some stages generates compiler errors. The instructions specify when to build

the app.

Create Models/Instructor.cs with the following code:

https://docs.microsoft.com/en-us/sql/t-sql/data-types/nchar-and-nvarchar-transact-sql


using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Instructor
    {
        public int ID { get; set; }

        [Required]
        [Display(Name = "Last Name")]
        [StringLength(50)]
        public string LastName { get; set; }

        [Required]
        [Column("FirstName")]
        [Display(Name = "First Name")]
        [StringLength(50)]
        public string FirstMidName { get; set; }

        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Hire Date")]
        public DateTime HireDate { get; set; }

        [Display(Name = "Full Name")]
        public string FullName
        {
            get { return LastName + ", " + FirstMidName; }
        }

        public ICollection<CourseAssignment> CourseAssignments { get; set; }
        public OfficeAssignment OfficeAssignment { get; set; }
    }
}

[DataType(DataType.Date),Display(Name = "Hire Date"),DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", 
ApplyFormatInEditMode = true)]

Navigation propertiesNavigation properties

public ICollection<CourseAssignment> CourseAssignments { get; set; }

public OfficeAssignment OfficeAssignment { get; set; }

The OfficeAssignment entity

Multiple attributes can be on one line. The HireDate  attributes could be written as follows:

The CourseAssignments  and OfficeAssignment  properties are navigation properties.

An instructor can teach any number of courses, so CourseAssignments  is defined as a collection.

An instructor can have at most one office, so the OfficeAssignment  property holds a single OfficeAssignment

entity. OfficeAssignment  is null if no office is assigned.



using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class OfficeAssignment
    {
        [Key]
        public int InstructorID { get; set; }
        [StringLength(50)]
        [Display(Name = "Office Location")]
        public string Location { get; set; }

        public Instructor Instructor { get; set; }
    }
}

The Key attributeThe Key attribute

[Key]
public int InstructorID { get; set; }

The Instructor navigation propertyThe Instructor navigation property

The Course Entity

Create Models/OfficeAssignment.cs with the following code:

The [Key]  attribute is used to identify a property as the primary key (PK) when the property name is something

other than classnameID or ID.

There's a one-to-zero-or-one relationship between the Instructor  and OfficeAssignment  entities. An office

assignment only exists in relation to the instructor it's assigned to. The OfficeAssignment  PK is also its foreign key

(FK) to the Instructor  entity.

EF Core can't automatically recognize InstructorID  as the PK of OfficeAssignment  because InstructorID

doesn't follow the ID or classnameID naming convention. Therefore, the Key  attribute is used to identify 

InstructorID  as the PK:

By default, EF Core treats the key as non-database-generated because the column is for an identifying

relationship.

The Instructor.OfficeAssignment  navigation property can be null because there might not be an 

OfficeAssignment  row for a given instructor. An instructor might not have an office assignment.

The OfficeAssignment.Instructor  navigation property will always have an instructor entity because the foreign

key InstructorID  type is int , a non-nullable value type. An office assignment can't exist without an instructor.

When an Instructor  entity has a related OfficeAssignment  entity, each entity has a reference to the other one in

its navigation property.



using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Course
    {
        [DatabaseGenerated(DatabaseGeneratedOption.None)]
        [Display(Name = "Number")]
        public int CourseID { get; set; }

        [StringLength(50, MinimumLength = 3)]
        public string Title { get; set; }

        [Range(0, 5)]
        public int Credits { get; set; }

        public int DepartmentID { get; set; }

        public Department Department { get; set; }
        public ICollection<Enrollment> Enrollments { get; set; }
        public ICollection<CourseAssignment> CourseAssignments { get; set; }
    }
}

The DatabaseGenerated attributeThe DatabaseGenerated attribute

Update Models/Course.cs with the following code:

The Course  entity has a foreign key (FK) property DepartmentID . DepartmentID  points to the related Department

entity. The Course  entity has a Department  navigation property.

EF Core doesn't require a foreign key property for a data model when the model has a navigation property for a

related entity. EF Core automatically creates FKs in the database wherever they're needed. EF Core creates

shadow properties for automatically created FKs. However, explicitly including the FK in the data model can make

updates simpler and more efficient. For example, consider a model where the FK property DepartmentID  is not

included. When a course entity is fetched to edit:

The Department  property is null if it's not explicitly loaded.

To update the course entity, the Department  entity must first be fetched.

When the FK property DepartmentID  is included in the data model, there's no need to fetch the Department  entity

before an update.

The [DatabaseGenerated(DatabaseGeneratedOption.None)]  attribute specifies that the PK is provided by the

application rather than generated by the database.

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties


[DatabaseGenerated(DatabaseGeneratedOption.None)]
[Display(Name = "Number")]
public int CourseID { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int DepartmentID { get; set; }
public Department Department { get; set; }

public ICollection<Enrollment> Enrollments { get; set; }

public ICollection<CourseAssignment> CourseAssignments { get; set; }

The Department entity

By default, EF Core assumes that PK values are generated by the database. Database-generated is generally the

best approach. For Course  entities, the user specifies the PK. For example, a course number such as a 1000 series

for the math department, a 2000 series for the English department.

The DatabaseGenerated  attribute can also be used to generate default values. For example, the database can

automatically generate a date field to record the date a row was created or updated. For more information, see

Generated Properties.

The foreign key (FK) properties and navigation properties in the Course  entity reflect the following relationships:

A course is assigned to one department, so there's a DepartmentID  FK and a Department  navigation property.

A course can have any number of students enrolled in it, so the Enrollments  navigation property is a collection:

A course may be taught by multiple instructors, so the CourseAssignments  navigation property is a collection:

CourseAssignment  is explained later.

Create Models/Department.cs with the following code:

https://docs.microsoft.com/en-us/ef/core/modeling/generated-properties


using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Department
    {
        public int DepartmentID { get; set; }

        [StringLength(50, MinimumLength = 3)]
        public string Name { get; set; }

        [DataType(DataType.Currency)]
        [Column(TypeName = "money")]
        public decimal Budget { get; set; }

        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Start Date")]
        public DateTime StartDate { get; set; }

        public int? InstructorID { get; set; }

        public Instructor Administrator { get; set; }
        public ICollection<Course> Courses { get; set; }
    }
}

The Column attributeThe Column attribute

[Column(TypeName="money")]
public decimal Budget { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int? InstructorID { get; set; }
public Instructor Administrator { get; set; }

Previously the Column  attribute was used to change column name mapping. In the code for the Department

entity, the Column  attribute is used to change SQL data type mapping. The Budget  column is defined using the

SQL Server money type in the database:

Column mapping is generally not required. EF Core chooses the appropriate SQL Server data type based on the

CLR type for the property. The CLR decimal  type maps to a SQL Server decimal  type. Budget  is for currency,

and the money data type is more appropriate for currency.

The FK and navigation properties reflect the following relationships:

A department may or may not have an administrator.

An administrator is always an instructor. Therefore the InstructorID  property is included as the FK to the 

Instructor  entity.

The navigation property is named Administrator  but holds an Instructor  entity:

The question mark (?) in the preceding code specifies the property is nullable.

A department may have many courses, so there's a Courses navigation property:



public ICollection<Course> Courses { get; set; }

modelBuilder.Entity<Department>()
   .HasOne(d => d.Administrator)
   .WithMany()
   .OnDelete(DeleteBehavior.Restrict)

The Enrollment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public enum Grade
    {
        A, B, C, D, F
    }

    public class Enrollment
    {
        public int EnrollmentID { get; set; }
        public int CourseID { get; set; }
        public int StudentID { get; set; }
        [DisplayFormat(NullDisplayText = "No grade")]
        public Grade? Grade { get; set; }

        public Course Course { get; set; }
        public Student Student { get; set; }
    }
}

Foreign key and navigation propertiesForeign key and navigation properties

By convention, EF Core enables cascade delete for non-nullable FKs and for many-to-many relationships. This

default behavior can result in circular cascade delete rules. Circular cascade delete rules cause an exception when

a migration is added.

For example, if the Department.InstructorID  property was defined as non-nullable, EF Core would configure a

cascade delete rule. In that case, the department would be deleted when the instructor assigned as its

administrator is deleted. In this scenario, a restrict rule would make more sense. The following fluent API would

set a restrict rule and disable cascade delete.

An enrollment record is for one course taken by one student.

Update Models/Enrollment.cs with the following code:

The FK properties and navigation properties reflect the following relationships:



      

public int CourseID { get; set; }
public Course Course { get; set; }

public int StudentID { get; set; }
public Student Student { get; set; }

Many-to-Many Relationships

The CourseAssignment entity

An enrollment record is for one course, so there's a CourseID  FK property and a Course  navigation property:

An enrollment record is for one student, so there's a StudentID  FK property and a Student  navigation property:

There's a many-to-many relationship between the Student  and Course  entities. The Enrollment  entity functions

as a many-to-many join table with payload in the database. "With payload" means that the Enrollment  table

contains additional data besides FKs for the joined tables (in this case, the PK and Grade ).

The following illustration shows what these relationships look like in an entity diagram. (This diagram was

generated using EF Power Tools for EF 6.x. Creating the diagram isn't part of the tutorial.)

Each relationship line has a 1 at one end and an asterisk (*) at the other, indicating a one-to-many relationship.

If the Enrollment  table didn't include grade information, it would only need to contain the two FKs ( CourseID

and StudentID ). A many-to-many join table without payload is sometimes called a pure join table (PJT).

The Instructor  and Course  entities have a many-to-many relationship using a pure join table.

Note: EF 6.x supports implicit join tables for many-to-many relationships, but EF Core doesn't. For more

information, see Many-to-many relationships in EF Core 2.0.

https://marketplace.visualstudio.com/items?itemName=ErikEJ.EntityFramework6PowerToolsCommunityEdition
https://blog.oneunicorn.com/2017/09/25/many-to-many-relationships-in-ef-core-2-0-part-1-the-basics/


namespace ContosoUniversity.Models
{
    public class CourseAssignment
    {
        public int InstructorID { get; set; }
        public int CourseID { get; set; }
        public Instructor Instructor { get; set; }
        public Course Course { get; set; }
    }
}

Create Models/CourseAssignment.cs with the following code:

The Instructor-to-Courses many-to-many relationship requires a join table, and the entity for that join table is

CourseAssignment.

It's common to name a join entity EntityName1EntityName2 . For example, the Instructor-to-Courses join table

using this pattern would be CourseInstructor . However, we recommend using a name that describes the

relationship.

Data models start out simple and grow. Join tables without payload (PJTs) frequently evolve to include payload.

By starting with a descriptive entity name, the name doesn't need to change when the join table changes. Ideally,

the join entity would have its own natural (possibly single word) name in the business domain. For example,



Composite keyComposite key

Update the database context

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
    public class SchoolContext : DbContext
    {
        public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
        {
        }

        public DbSet<Course> Courses { get; set; }
        public DbSet<Enrollment> Enrollments { get; set; }
        public DbSet<Student> Students { get; set; }
        public DbSet<Department> Departments { get; set; }
        public DbSet<Instructor> Instructors { get; set; }
        public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
        public DbSet<CourseAssignment> CourseAssignments { get; set; }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Course>().ToTable("Course");
            modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
            modelBuilder.Entity<Student>().ToTable("Student");
            modelBuilder.Entity<Department>().ToTable("Department");
            modelBuilder.Entity<Instructor>().ToTable("Instructor");
            modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
            modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");

            modelBuilder.Entity<CourseAssignment>()
                .HasKey(c => new { c.CourseID, c.InstructorID });
        }
    }
}

Books and Customers could be linked with a join entity called Ratings. For the Instructor-to-Courses many-to-

many relationship, CourseAssignment  is preferred over CourseInstructor .

The two FKs in CourseAssignment  ( InstructorID  and CourseID ) together uniquely identify each row of the 

CourseAssignment  table. CourseAssignment  doesn't require a dedicated PK. The InstructorID  and CourseID

properties function as a composite PK. The only way to specify composite PKs to EF Core is with the fluent API.

The next section shows how to configure the composite PK.

The composite key ensures that:

Multiple rows are allowed for one course.

Multiple rows are allowed for one instructor.

Multiple rows aren't allowed for the same instructor and course.

The Enrollment  join entity defines its own PK, so duplicates of this sort are possible. To prevent such duplicates:

Add a unique index on the FK fields, or

Configure Enrollment  with a primary composite key similar to CourseAssignment . For more information, see

Indexes.

Update Data/SchoolContext.cs with the following code:

The preceding code adds the new entities and configures the CourseAssignment  entity's composite PK.

https://docs.microsoft.com/en-us/ef/core/modeling/indexes


      Fluent API alternative to attributes

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    modelBuilder.Entity<Blog>()
        .Property(b => b.Url)
        .IsRequired();
}

Entity diagram

The OnModelCreating  method in the preceding code uses the fluent API to configure EF Core behavior. The API is

called "fluent" because it's often used by stringing a series of method calls together into a single statement. The

following code is an example of the fluent API:

In this tutorial, the fluent API is used only for database mapping that can't be done with attributes. However, the

fluent API can specify most of the formatting, validation, and mapping rules that can be done with attributes.

Some attributes such as MinimumLength  can't be applied with the fluent API. MinimumLength  doesn't change the

schema, it only applies a minimum length validation rule.

Some developers prefer to use the fluent API exclusively so that they can keep their entity classes "clean."

Attributes and the fluent API can be mixed. There are some configurations that can only be done with the fluent

API (specifying a composite PK). There are some configurations that can only be done with attributes (

MinimumLength ). The recommended practice for using fluent API or attributes:

Choose one of these two approaches.

Use the chosen approach consistently as much as possible.

Some of the attributes used in this tutorial are used for :

Validation only (for example, MinimumLength ).

EF Core configuration only (for example, HasKey ).

Validation and EF Core configuration (for example, [StringLength(50)] ).

For more information about attributes vs. fluent API, see Methods of configuration.

The following illustration shows the diagram that EF Power Tools create for the completed School model.

https://docs.microsoft.com/en-us/ef/core/modeling/#use-fluent-api-to-configure-a-model
https://docs.microsoft.com/en-us/ef/core/modeling/


Seed the database

using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data
{
    public static class DbInitializer
    {
        public static void Initialize(SchoolContext context)
        {
            //context.Database.EnsureCreated();

The preceding diagram shows:

Several one-to-many relationship lines (1 to *).

The one-to-zero-or-one relationship line (1 to 0..1) between the Instructor  and OfficeAssignment  entities.

The zero-or-one-to-many relationship line (0..1 to *) between the Instructor  and Department  entities.

Update the code in Data/DbInitializer.cs:



            // Look for any students.
            if (context.Students.Any())
            {
                return;   // DB has been seeded
            }

            var students = new Student[]
            {
                new Student { FirstMidName = "Carson",   LastName = "Alexander",
                    EnrollmentDate = DateTime.Parse("2016-09-01") },
                new Student { FirstMidName = "Meredith", LastName = "Alonso",
                    EnrollmentDate = DateTime.Parse("2018-09-01") },
                new Student { FirstMidName = "Arturo",   LastName = "Anand",
                    EnrollmentDate = DateTime.Parse("2019-09-01") },
                new Student { FirstMidName = "Gytis",    LastName = "Barzdukas",
                    EnrollmentDate = DateTime.Parse("2018-09-01") },
                new Student { FirstMidName = "Yan",      LastName = "Li",
                    EnrollmentDate = DateTime.Parse("2018-09-01") },
                new Student { FirstMidName = "Peggy",    LastName = "Justice",
                    EnrollmentDate = DateTime.Parse("2017-09-01") },
                new Student { FirstMidName = "Laura",    LastName = "Norman",
                    EnrollmentDate = DateTime.Parse("2019-09-01") },
                new Student { FirstMidName = "Nino",     LastName = "Olivetto",
                    EnrollmentDate = DateTime.Parse("2011-09-01") }
            };

            context.Students.AddRange(students);
            context.SaveChanges();

            var instructors = new Instructor[]
            {
                new Instructor { FirstMidName = "Kim",     LastName = "Abercrombie",
                    HireDate = DateTime.Parse("1995-03-11") },
                new Instructor { FirstMidName = "Fadi",    LastName = "Fakhouri",
                    HireDate = DateTime.Parse("2002-07-06") },
                new Instructor { FirstMidName = "Roger",   LastName = "Harui",
                    HireDate = DateTime.Parse("1998-07-01") },
                new Instructor { FirstMidName = "Candace", LastName = "Kapoor",
                    HireDate = DateTime.Parse("2001-01-15") },
                new Instructor { FirstMidName = "Roger",   LastName = "Zheng",
                    HireDate = DateTime.Parse("2004-02-12") }
            };

            context.Instructors.AddRange(instructors);
            context.SaveChanges();

            var departments = new Department[]
            {
                new Department { Name = "English",     Budget = 350000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Abercrombie").ID },
                new Department { Name = "Mathematics", Budget = 100000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Fakhouri").ID },
                new Department { Name = "Engineering", Budget = 350000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Harui").ID },
                new Department { Name = "Economics",   Budget = 100000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Kapoor").ID }
            };

            context.Departments.AddRange(departments);
            context.SaveChanges();

            var courses = new Course[]
            {
                new Course {CourseID = 1050, Title = "Chemistry",      Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "Engineering").DepartmentID



                    DepartmentID = departments.Single( s => s.Name == "Engineering").DepartmentID
                },
                new Course {CourseID = 4022, Title = "Microeconomics", Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "Economics").DepartmentID
                },
                new Course {CourseID = 4041, Title = "Macroeconomics", Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "Economics").DepartmentID
                },
                new Course {CourseID = 1045, Title = "Calculus",       Credits = 4,
                    DepartmentID = departments.Single( s => s.Name == "Mathematics").DepartmentID
                },
                new Course {CourseID = 3141, Title = "Trigonometry",   Credits = 4,
                    DepartmentID = departments.Single( s => s.Name == "Mathematics").DepartmentID
                },
                new Course {CourseID = 2021, Title = "Composition",    Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "English").DepartmentID
                },
                new Course {CourseID = 2042, Title = "Literature",     Credits = 4,
                    DepartmentID = departments.Single( s => s.Name == "English").DepartmentID
                },
            };

            context.Courses.AddRange(courses);
            context.SaveChanges();

            var officeAssignments = new OfficeAssignment[]
            {
                new OfficeAssignment {
                    InstructorID = instructors.Single( i => i.LastName == "Fakhouri").ID,
                    Location = "Smith 17" },
                new OfficeAssignment {
                    InstructorID = instructors.Single( i => i.LastName == "Harui").ID,
                    Location = "Gowan 27" },
                new OfficeAssignment {
                    InstructorID = instructors.Single( i => i.LastName == "Kapoor").ID,
                    Location = "Thompson 304" },
            };

            context.OfficeAssignments.AddRange(officeAssignments);
            context.SaveChanges();

            var courseInstructors = new CourseAssignment[]
            {
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Harui").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Microeconomics" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Macroeconomics" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Calculus" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Trigonometry" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Harui").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Composition" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID



                    InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Literature" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
                    },
            };

            context.CourseAssignments.AddRange(courseInstructors);
            context.SaveChanges();

            var enrollments = new Enrollment[]
            {
                new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alexander").ID,
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID,
                    Grade = Grade.A
                },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alexander").ID,
                    CourseID = courses.Single(c => c.Title == "Microeconomics" ).CourseID,
                    Grade = Grade.C
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alexander").ID,
                    CourseID = courses.Single(c => c.Title == "Macroeconomics" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                        StudentID = students.Single(s => s.LastName == "Alonso").ID,
                    CourseID = courses.Single(c => c.Title == "Calculus" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                        StudentID = students.Single(s => s.LastName == "Alonso").ID,
                    CourseID = courses.Single(c => c.Title == "Trigonometry" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alonso").ID,
                    CourseID = courses.Single(c => c.Title == "Composition" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Anand").ID,
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Anand").ID,
                    CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
                    Grade = Grade.B
                    },
                new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Barzdukas").ID,
                    CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Li").ID,
                    CourseID = courses.Single(c => c.Title == "Composition").CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Justice").ID,
                    CourseID = courses.Single(c => c.Title == "Literature").CourseID,
                    Grade = Grade.B
                    }
            };

            foreach (Enrollment e in enrollments)



            foreach (Enrollment e in enrollments)
            {
                var enrollmentInDataBase = context.Enrollments.Where(
                    s =>
                            s.Student.ID == e.StudentID &&
                            s.Course.CourseID == e.CourseID).SingleOrDefault();
                if (enrollmentInDataBase == null)
                {
                    context.Enrollments.Add(e);
                }
            }
            context.SaveChanges();
        }
    }
}

Add a migration

Add-Migration ComplexDataModel

An operation was scaffolded that may result in the loss of data.
Please review the migration for accuracy.
To undo this action, use 'ef migrations remove'

The ALTER TABLE statement conflicted with the FOREIGN KEY constraint 
"FK_dbo.Course_dbo.Department_DepartmentID". The conflict occurred in
database "ContosoUniversity", table "dbo.Department", column 'DepartmentID'.

Apply the migration or drop and re-create

The preceding code provides seed data for the new entities. Most of this code creates new entity objects and

loads sample data. The sample data is used for testing. See Enrollments  and CourseAssignments  for examples of

how many-to-many join tables can be seeded.

Build the project.

Visual Studio

Visual Studio Code

In PMC, run the following command.

The preceding command displays a warning about possible data loss.

If the database update  command is run, the following error is produced:

In the next section, you see what to do about this error.

Now that you have an existing database, you need to think about how to apply changes to it. This tutorial shows

two alternatives:

Drop and re-create the database. Choose this section if you're using SQLite.

Apply the migration to the existing database. The instructions in this section work for SQL Server only, notnot

for SQLitefor SQLite.

Either choice works for SQL Server. While the apply-migration method is more complex and time-consuming, it's

the preferred approach for real-world, production environments.

               



Drop and re-create the database
Skip this section if you're using SQL Server and want to do the apply-migration approach in the following

section.

To force EF Core to create a new database, drop and update the database:

Visual Studio

Visual Studio Code

Drop-Database

Add-Migration InitialCreate
Update-Database

In the Package Manager ConsolePackage Manager Console (PMC), run the following command:

Delete the Migrations folder, then run the following command:

Run the app. Running the app runs the DbInitializer.Initialize  method. The DbInitializer.Initialize

populates the new database.

Visual Studio

Visual Studio Code

Open the database in SSOX:

If SSOX was opened previously, click the RefreshRefresh button.

Expand the TablesTables  node. The created tables are displayed.

Examine the CourseAssignmentCourseAssignment table:

Right-click the CourseAssignmentCourseAssignment table and select View DataView Data.

Verify the CourseAssignmentCourseAssignment table contains data.



   Apply the migration

migrationBuilder.AddColumn<int>(
    name: "DepartmentID",
    table: "Course",
    type: "int",
    nullable: false,
    defaultValue: 0);

Fix the foreign key constraintsFix the foreign key constraints

      

This section is optional. These steps work only for SQL Server LocalDB and only if you skipped the preceding

Drop and re-create the database section.

When migrations are run with existing data, there may be FK constraints that are not satisfied with the existing

data. With production data, steps must be taken to migrate the existing data. This section provides an example of

fixing FK constraint violations. Don't make these code changes without a backup. Don't make these code changes

if you completed the preceding Drop and re-create the database section.

The {timestamp}_ComplexDataModel.cs file contains the following code:

The preceding code adds a non-nullable DepartmentID  FK to the Course  table. The database from the previous

tutorial contains rows in Course , so that table cannot be updated by migrations.

To make the ComplexDataModel  migration work with existing data:

Change the code to give the new column ( DepartmentID ) a default value.

Create a fake department named "Temp" to act as the default department.

In the ComplexDataModel  migration class, update the Up  method:

Open the {timestamp}_ComplexDataModel.cs file.

Comment out the line of code that adds the DepartmentID  column to the Course  table.



migrationBuilder.AlterColumn<string>(
    name: "Title",
    table: "Course",
    maxLength: 50,
    nullable: true,
    oldClrType: typeof(string),
    oldNullable: true);
            
//migrationBuilder.AddColumn<int>(
//    name: "DepartmentID",
//    table: "Course",
//    nullable: false,
//    defaultValue: 0);

migrationBuilder.CreateTable(
    name: "Department",
    columns: table => new
    {
        DepartmentID = table.Column<int>(type: "int", nullable: false)
            .Annotation("SqlServer:ValueGenerationStrategy", 
SqlServerValueGenerationStrategy.IdentityColumn),
        Budget = table.Column<decimal>(type: "money", nullable: false),
        InstructorID = table.Column<int>(type: "int", nullable: true),
        Name = table.Column<string>(type: "nvarchar(50)", maxLength: 50, nullable: true),
        StartDate = table.Column<DateTime>(type: "datetime2", nullable: false)
    },
    constraints: table =>
    {
        table.PrimaryKey("PK_Department", x => x.DepartmentID);
        table.ForeignKey(
            name: "FK_Department_Instructor_InstructorID",
            column: x => x.InstructorID,
            principalTable: "Instructor",
            principalColumn: "ID",
            onDelete: ReferentialAction.Restrict);
    });

 migrationBuilder.Sql("INSERT INTO dbo.Department (Name, Budget, StartDate) VALUES ('Temp', 0.00, 
GETDATE())");
// Default value for FK points to department created above, with
// defaultValue changed to 1 in following AddColumn statement.

migrationBuilder.AddColumn<int>(
    name: "DepartmentID",
    table: "Course",
    nullable: false,
    defaultValue: 1);

Add the following highlighted code. The new code goes after the .CreateTable( name: "Department"  block:

With the preceding changes, existing Course  rows will be related to the "Temp" department after the 

ComplexDataModel.Up  method runs.

The way of handling the situation shown here is simplified for this tutorial. A production app would:

Include code or scripts to add Department  rows and related Course  rows to the new Department  rows.

Not use the "Temp" department or the default value for Course.DepartmentID .

Visual Studio

Visual Studio Code

In the Package Manager ConsolePackage Manager Console (PMC), run the following command:



Next steps

Update-Database

Because the DbInitializer.Initialize  method is designed to work only with an empty database, use SSOX to

delete all the rows in the Student and Course tables. (Cascade delete will take care of the Enrollment table.)

Run the app. Running the app runs the DbInitializer.Initialize  method. The DbInitializer.Initialize

populates the new database.

The next two tutorials show how to read and update related data.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

The previous tutorials worked with a basic data model that was composed of three entities. In this tutorial:

More entities and relationships are added.

The data model is customized by specifying formatting, validation, and database mapping rules.

The entity classes for the completed data model are shown in the following illustration:



Customize the data model with attributes

The DataType attributeThe DataType attribute

If you run into problems you can't solve, download the completed app.

In this section, the data model is customized using attributes.

The student pages currently displays the time of the enrollment date. Typically, date fields show only the date and

not the time.

Update Models/Student.cs with the following highlighted code:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        public string LastName { get; set; }
        public string FirstMidName { get; set; }
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]

The DataType attribute specifies a data type that's more specific than the database intrinsic type. In this case only

the date should be displayed, not the date and time. The DataType Enumeration provides for many data types,

such as Date, Time, PhoneNumber, Currency, EmailAddress, etc. The DataType  attribute can also enable the app

to automatically provide type-specific features. For example:

The mailto:  link is automatically created for DataType.EmailAddress .

The date selector is provided for DataType.Date  in most browsers.

The DataType  attribute emits HTML 5 data-  (pronounced data dash) attributes that HTML 5 browsers consume.

The DataType  attributes don't provide validation.

DataType.Date  doesn't specify the format of the date that's displayed. By default, the date field is displayed

according to the default formats based on the server's CultureInfo.

The DisplayFormat  attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode  setting specifies that the formatting should also be applied to the edit UI. Some fields

shouldn't use ApplyFormatInEditMode . For example, the currency symbol should generally not be displayed in an

edit text box.

The DisplayFormat  attribute can be used by itself. It's generally a good idea to use the DataType  attribute with

the DisplayFormat  attribute. The DataType  attribute conveys the semantics of the data as opposed to how to

render it on a screen. The DataType  attribute provides the following benefits that are not available in 

DisplayFormat :

The browser can enable HTML5 features. For example, show a calendar control, the locale-appropriate

currency symbol, email links, client-side input validation, etc.

By default, the browser renders data using the correct format based on the locale.

For more information, see the <input> Tag Helper documentation.

Run the app. Navigate to the Students Index page. Times are no longer displayed. Every view that uses the 

Student  model displays the date without time.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatypeattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatype


The StringLength attributeThe StringLength attribute

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        [StringLength(50)]
        public string LastName { get; set; }
        [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
        public string FirstMidName { get; set; }
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

Data validation rules and validation error messages can be specified with attributes. The StringLength attribute

specifies the minimum and maximum length of characters that are allowed in a data field. The StringLength

attribute also provides client-side and server-side validation. The minimum value has no impact on the database

schema.

Update the Student  model with the following code:

The preceding code limits names to no more than 50 characters. The StringLength  attribute doesn't prevent a

user from entering white space for a name. The RegularExpression attribute is used to apply restrictions to the

input. For example, the following code requires the first character to be upper case and the remaining characters

to be alphabetical:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.stringlengthattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.regularexpressionattribute


[RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]

Run the app:

Navigate to the Students page.

Select Create NewCreate New , and enter a name longer than 50 characters.

Select CreateCreate, client-side validation shows an error message.

In SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  (SSOX), open the Student table designer by double-clicking the StudentStudent table.

The preceding image shows the schema for the Student  table. The name fields have type nvarchar(MAX)

because migrations has not been run on the DB. When migrations are run later in this tutorial, the name fields



The Column attributeThe Column attribute

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        [StringLength(50)]
        public string LastName { get; set; }
        [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
        [Column("FirstName")]
        public string FirstMidName { get; set; }
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

SqlException: Invalid column name 'FirstName'.

Add-Migration ColumnFirstName
Update-Database

become nvarchar(50) .

Attributes can control how classes and properties are mapped to the database. In this section, the Column

attribute is used to map the name of the FirstMidName  property to "FirstName" in the DB.

When the DB is created, property names on the model are used for column names (except when the Column

attribute is used).

The Student  model uses FirstMidName  for the first-name field because the field might also contain a middle

name.

Update the Student.cs file with the following highlighted code:

With the preceding change, Student.FirstMidName  in the app maps to the FirstName  column of the Student

table.

The addition of the Column  attribute changes the model backing the SchoolContext . The model backing the 

SchoolContext  no longer matches the database. If the app is run before applying migrations, the following

exception is generated:

To update the DB:

Build the project.

Open a command window in the project folder. Enter the following commands to create a new migration and

update the DB:

Visual Studio

Visual Studio Code



An operation was scaffolded that may result in the loss of data.
Please review the migration for accuracy.

NOTENOTE

Student entity update

The migrations add ColumnFirstName  command generates the following warning message:

The warning is generated because the name fields are now limited to 50 characters. If a name in the DB had more

than 50 characters, the 51 to last character would be lost.

Test the app.

Open the Student table in SSOX:

Before migration was applied, the name columns were of type nvarchar(MAX). The name columns are now 

nvarchar(50) . The column name has changed from FirstMidName  to FirstName .

In the following section, building the app at some stages generates compiler errors. The instructions specify when to build

the app.

Update Models/Student.cs with the following code:

https://docs.microsoft.com/en-us/sql/t-sql/data-types/nchar-and-nvarchar-transact-sql


using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        [Required]
        [StringLength(50)]
        [Display(Name = "Last Name")]
        public string LastName { get; set; }
        [Required]
        [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
        [Column("FirstName")]
        [Display(Name = "First Name")]
        public string FirstMidName { get; set; }
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Enrollment Date")]
        public DateTime EnrollmentDate { get; set; }
        [Display(Name = "Full Name")]
        public string FullName
        {
            get
            {
                return LastName + ", " + FirstMidName;
            }
        }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

The Required attributeThe Required attribute

[Display(Name = "Last Name")]
[StringLength(50, MinimumLength=1)]
public string LastName { get; set; }

The Display attributeThe Display attribute

The FullName calculated propertyThe FullName calculated property

Create the Instructor Entity

The Required  attribute makes the name properties required fields. The Required  attribute isn't needed for non-

nullable types such as value types ( DateTime , int , double , etc.). Types that can't be null are automatically

treated as required fields.

The Required  attribute could be replaced with a minimum length parameter in the StringLength  attribute:

The Display  attribute specifies that the caption for the text boxes should be "First Name", "Last Name", "Full

Name", and "Enrollment Date." The default captions had no space dividing the words, for example "Lastname."

FullName  is a calculated property that returns a value that's created by concatenating two other properties. 

FullName  cannot be set, it has only a get accessor. No FullName  column is created in the database.



using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Instructor
    {
        public int ID { get; set; }

        [Required]
        [Display(Name = "Last Name")]
        [StringLength(50)]
        public string LastName { get; set; }

        [Required]
        [Column("FirstName")]
        [Display(Name = "First Name")]
        [StringLength(50)]
        public string FirstMidName { get; set; }

        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Hire Date")]
        public DateTime HireDate { get; set; }

        [Display(Name = "Full Name")]
        public string FullName
        {
            get { return LastName + ", " + FirstMidName; }
        }

        public ICollection<CourseAssignment> CourseAssignments { get; set; }
        public OfficeAssignment OfficeAssignment { get; set; }
    }
}

[DataType(DataType.Date),Display(Name = "Hire Date"),DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", 
ApplyFormatInEditMode = true)]

The CourseAssignments and OfficeAssignment navigation propertiesThe CourseAssignments and OfficeAssignment navigation properties

Create Models/Instructor.cs with the following code:

Multiple attributes can be on one line. The HireDate  attributes could be written as follows:

The CourseAssignments  and OfficeAssignment  properties are navigation properties.

An instructor can teach any number of courses, so CourseAssignments  is defined as a collection.



public ICollection<CourseAssignment> CourseAssignments { get; set; }

public OfficeAssignment OfficeAssignment { get; set; }

Create the OfficeAssignment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class OfficeAssignment
    {
        [Key]
        public int InstructorID { get; set; }
        [StringLength(50)]
        [Display(Name = "Office Location")]
        public string Location { get; set; }

        public Instructor Instructor { get; set; }
    }
}

The Key attributeThe Key attribute

If a navigation property holds multiple entities:

It must be a list type where the entries can be added, deleted, and updated.

Navigation property types include:

ICollection<T>

List<T>

HashSet<T>

If ICollection<T>  is specified, EF Core creates a HashSet<T>  collection by default.

The CourseAssignment  entity is explained in the section on many-to-many relationships.

Contoso University business rules state that an instructor can have at most one office. The OfficeAssignment

property holds a single OfficeAssignment  entity. OfficeAssignment  is null if no office is assigned.

Create Models/OfficeAssignment.cs with the following code:

The [Key]  attribute is used to identify a property as the primary key (PK) when the property name is something

other than classnameID or ID.

There's a one-to-zero-or-one relationship between the Instructor  and OfficeAssignment  entities. An office

assignment only exists in relation to the instructor it's assigned to. The OfficeAssignment  PK is also its foreign key



[Key]
public int InstructorID { get; set; }

The Instructor navigation propertyThe Instructor navigation property

[Required]
public Instructor Instructor { get; set; }

Modify the Course Entity

(FK) to the Instructor  entity. EF Core can't automatically recognize InstructorID  as the PK of OfficeAssignment

because:

InstructorID  doesn't follow the ID or classnameID naming convention.

Therefore, the Key  attribute is used to identify InstructorID  as the PK:

By default, EF Core treats the key as non-database-generated because the column is for an identifying

relationship.

The OfficeAssignment  navigation property for the Instructor  entity is nullable because:

Reference types (such as classes are nullable).

An instructor might not have an office assignment.

The OfficeAssignment  entity has a non-nullable Instructor  navigation property because:

InstructorID  is non-nullable.

An office assignment can't exist without an instructor.

When an Instructor  entity has a related OfficeAssignment  entity, each entity has a reference to the other one in

its navigation property.

The [Required]  attribute could be applied to the Instructor  navigation property:

The preceding code specifies that there must be a related instructor. The preceding code is unnecessary because

the InstructorID  foreign key (which is also the PK) is non-nullable.

Update Models/Course.cs with the following code:



using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Course
    {
        [DatabaseGenerated(DatabaseGeneratedOption.None)]
        [Display(Name = "Number")]
        public int CourseID { get; set; }

        [StringLength(50, MinimumLength = 3)]
        public string Title { get; set; }

        [Range(0, 5)]
        public int Credits { get; set; }

        public int DepartmentID { get; set; }

        public Department Department { get; set; }
        public ICollection<Enrollment> Enrollments { get; set; }
        public ICollection<CourseAssignment> CourseAssignments { get; set; }
    }
}

The DatabaseGenerated attributeThe DatabaseGenerated attribute

[DatabaseGenerated(DatabaseGeneratedOption.None)]
[Display(Name = "Number")]
public int CourseID { get; set; }

The Course  entity has a foreign key (FK) property DepartmentID . DepartmentID  points to the related Department

entity. The Course  entity has a Department  navigation property.

EF Core doesn't require a FK property for a data model when the model has a navigation property for a related

entity.

EF Core automatically creates FKs in the database wherever they're needed. EF Core creates shadow properties

for automatically created FKs. Having the FK in the data model can make updates simpler and more efficient. For

example, consider a model where the FK property DepartmentID  is not included. When a course entity is fetched

to edit:

The Department  entity is null if it's not explicitly loaded.

To update the course entity, the Department  entity must first be fetched.

When the FK property DepartmentID  is included in the data model, there's no need to fetch the Department  entity

before an update.

The [DatabaseGenerated(DatabaseGeneratedOption.None)]  attribute specifies that the PK is provided by the

application rather than generated by the database.

By default, EF Core assumes that PK values are generated by the DB. DB generated PK values is generally the best

approach. For Course  entities, the user specifies the PK. For example, a course number such as a 1000 series for

the math department, a 2000 series for the English department.

The DatabaseGenerated  attribute can also be used to generate default values. For example, the DB can

automatically generate a date field to record the date a row was created or updated. For more information, see

Generated Properties.

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties
https://docs.microsoft.com/en-us/ef/core/modeling/generated-properties


Foreign key and navigation propertiesForeign key and navigation properties

public int DepartmentID { get; set; }
public Department Department { get; set; }

public ICollection<Enrollment> Enrollments { get; set; }

public ICollection<CourseAssignment> CourseAssignments { get; set; }

Create the Department entity

The foreign key (FK) properties and navigation properties in the Course  entity reflect the following relationships:

A course is assigned to one department, so there's a DepartmentID  FK and a Department  navigation property.

A course can have any number of students enrolled in it, so the Enrollments  navigation property is a collection:

A course may be taught by multiple instructors, so the CourseAssignments  navigation property is a collection:

CourseAssignment  is explained later.

Create Models/Department.cs with the following code:



using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Department
    {
        public int DepartmentID { get; set; }

        [StringLength(50, MinimumLength = 3)]
        public string Name { get; set; }

        [DataType(DataType.Currency)]
        [Column(TypeName = "money")]
        public decimal Budget { get; set; }

        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Start Date")]
        public DateTime StartDate { get; set; }

        public int? InstructorID { get; set; }

        public Instructor Administrator { get; set; }
        public ICollection<Course> Courses { get; set; }
    }
}

The Column attributeThe Column attribute

[Column(TypeName="money")]
public decimal Budget { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int? InstructorID { get; set; }
public Instructor Administrator { get; set; }

Previously the Column  attribute was used to change column name mapping. In the code for the Department

entity, the Column  attribute is used to change SQL data type mapping. The Budget  column is defined using the

SQL Server money type in the DB:

Column mapping is generally not required. EF Core generally chooses the appropriate SQL Server data type

based on the CLR type for the property. The CLR decimal  type maps to a SQL Server decimal  type. Budget  is

for currency, and the money data type is more appropriate for currency.

The FK and navigation properties reflect the following relationships:

A department may or may not have an administrator.

An administrator is always an instructor. Therefore the InstructorID  property is included as the FK to the 

Instructor  entity.

The navigation property is named Administrator  but holds an Instructor  entity:

The question mark (?) in the preceding code specifies the property is nullable.

A department may have many courses, so there's a Courses navigation property:



public ICollection<Course> Courses { get; set; }

Update the Enrollment entity

Note: By convention, EF Core enables cascade delete for non-nullable FKs and for many-to-many relationships.

Cascading delete can result in circular cascade delete rules. Circular cascade delete rules causes an exception

when a migration is added.

For example, if the Department.InstructorID  property was defined as non-nullable:

modelBuilder.Entity<Department>()
    .HasOne(d => d.Administrator)
    .WithMany()
    .OnDelete(DeleteBehavior.Restrict)

EF Core configures a cascade delete rule to delete the department when the instructor is deleted.

Deleting the department when the instructor is deleted isn't the intended behavior.

The following fluent API would set a restrict rule instead of cascade.

The preceding code disables cascade delete on the department-instructor relationship.

An enrollment record is for one course taken by one student.

Update Models/Enrollment.cs with the following code:



using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public enum Grade
    {
        A, B, C, D, F
    }

    public class Enrollment
    {
        public int EnrollmentID { get; set; }
        public int CourseID { get; set; }
        public int StudentID { get; set; }
        [DisplayFormat(NullDisplayText = "No grade")]
        public Grade? Grade { get; set; }

        public Course Course { get; set; }
        public Student Student { get; set; }
    }
}

Foreign key and navigation propertiesForeign key and navigation properties

public int CourseID { get; set; }
public Course Course { get; set; }

public int StudentID { get; set; }
public Student Student { get; set; }

Many-to-Many Relationships

The FK properties and navigation properties reflect the following relationships:

An enrollment record is for one course, so there's a CourseID  FK property and a Course  navigation property:

An enrollment record is for one student, so there's a StudentID  FK property and a Student  navigation property:

There's a many-to-many relationship between the Student  and Course  entities. The Enrollment  entity functions

as a many-to-many join table with payload in the database. "With payload" means that the Enrollment  table

contains additional data besides FKs for the joined tables (in this case, the PK and Grade ).

The following illustration shows what these relationships look like in an entity diagram. (This diagram was

generated using EF Power Tools for EF 6.x. Creating the diagram isn't part of the tutorial.)

https://marketplace.visualstudio.com/items?itemName=ErikEJ.EntityFramework6PowerToolsCommunityEdition


The CourseAssignment entity

Each relationship line has a 1 at one end and an asterisk (*) at the other, indicating a one-to-many relationship.

If the Enrollment  table didn't include grade information, it would only need to contain the two FKs ( CourseID

and StudentID ). A many-to-many join table without payload is sometimes called a pure join table (PJT).

The Instructor  and Course  entities have a many-to-many relationship using a pure join table.

Note: EF 6.x supports implicit join tables for many-to-many relationships, but EF Core doesn't. For more

information, see Many-to-many relationships in EF Core 2.0.

Create Models/CourseAssignment.cs with the following code:

https://blog.oneunicorn.com/2017/09/25/many-to-many-relationships-in-ef-core-2-0-part-1-the-basics/


using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class CourseAssignment
    {
        public int InstructorID { get; set; }
        public int CourseID { get; set; }
        public Instructor Instructor { get; set; }
        public Course Course { get; set; }
    }
}

Instructor-to-CoursesInstructor-to-Courses

Composite keyComposite key

The Instructor-to-Courses many-to-many relationship:

Requires a join table that must be represented by an entity set.

Is a pure join table (table without payload).

It's common to name a join entity EntityName1EntityName2 . For example, the Instructor-to-Courses join table

using this pattern is CourseInstructor . However, we recommend using a name that describes the relationship.

Data models start out simple and grow. No-payload joins (PJTs) frequently evolve to include payload. By starting

with a descriptive entity name, the name doesn't need to change when the join table changes. Ideally, the join

entity would have its own natural (possibly single word) name in the business domain. For example, Books and

Customers could be linked with a join entity called Ratings. For the Instructor-to-Courses many-to-many

relationship, CourseAssignment  is preferred over CourseInstructor .



Update the DB context

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Models
{
    public class SchoolContext : DbContext
    {
        public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
        {
        }

        public DbSet<Course> Courses { get; set; }
        public DbSet<Enrollment> Enrollment { get; set; }
        public DbSet<Student> Student { get; set; }
        public DbSet<Department> Departments { get; set; }
        public DbSet<Instructor> Instructors { get; set; }
        public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
        public DbSet<CourseAssignment> CourseAssignments { get; set; }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Course>().ToTable("Course");
            modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
            modelBuilder.Entity<Student>().ToTable("Student");
            modelBuilder.Entity<Department>().ToTable("Department");
            modelBuilder.Entity<Instructor>().ToTable("Instructor");
            modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
            modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");

            modelBuilder.Entity<CourseAssignment>()
                .HasKey(c => new { c.CourseID, c.InstructorID });
        }
    }
}

Fluent API alternative to attributes

FKs are not nullable. The two FKs in CourseAssignment  ( InstructorID  and CourseID ) together uniquely identify

each row of the CourseAssignment  table. CourseAssignment  doesn't require a dedicated PK. The InstructorID  and

CourseID  properties function as a composite PK. The only way to specify composite PKs to EF Core is with the

fluent API. The next section shows how to configure the composite PK.

The composite key ensures:

Multiple rows are allowed for one course.

Multiple rows are allowed for one instructor.

Multiple rows for the same instructor and course isn't allowed.

The Enrollment  join entity defines its own PK, so duplicates of this sort are possible. To prevent such duplicates:

Add a unique index on the FK fields, or

Configure Enrollment  with a primary composite key similar to CourseAssignment . For more information, see

Indexes.

Add the following highlighted code to Data/SchoolContext.cs:

The preceding code adds the new entities and configures the CourseAssignment  entity's composite PK.

The OnModelCreating  method in the preceding code uses the fluent API to configure EF Core behavior. The API is

https://docs.microsoft.com/en-us/ef/core/modeling/indexes


protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    modelBuilder.Entity<Blog>()
        .Property(b => b.Url)
        .IsRequired();
}

Entity Diagram Showing Relationships

called "fluent" because it's often used by stringing a series of method calls together into a single statement. The

following code is an example of the fluent API:

In this tutorial, the fluent API is used only for DB mapping that can't be done with attributes. However, the fluent

API can specify most of the formatting, validation, and mapping rules that can be done with attributes.

Some attributes such as MinimumLength  can't be applied with the fluent API. MinimumLength  doesn't change the

schema, it only applies a minimum length validation rule.

Some developers prefer to use the fluent API exclusively so that they can keep their entity classes "clean."

Attributes and the fluent API can be mixed. There are some configurations that can only be done with the fluent

API (specifying a composite PK). There are some configurations that can only be done with attributes (

MinimumLength ). The recommended practice for using fluent API or attributes:

Choose one of these two approaches.

Use the chosen approach consistently as much as possible.

Some of the attributes used in the this tutorial are used for :

Validation only (for example, MinimumLength ).

EF Core configuration only (for example, HasKey ).

Validation and EF Core configuration (for example, [StringLength(50)] ).

For more information about attributes vs. fluent API, see Methods of configuration.

The following illustration shows the diagram that EF Power Tools create for the completed School model.

https://docs.microsoft.com/en-us/ef/core/modeling/#use-fluent-api-to-configure-a-model
https://docs.microsoft.com/en-us/ef/core/modeling/


Seed the DB with Test Data

using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data
{
    public static class DbInitializer
    {
        public static void Initialize(SchoolContext context)
        {
            //context.Database.EnsureCreated();

The preceding diagram shows:

Several one-to-many relationship lines (1 to *).

The one-to-zero-or-one relationship line (1 to 0..1) between the Instructor  and OfficeAssignment  entities.

The zero-or-one-to-many relationship line (0..1 to *) between the Instructor  and Department  entities.

Update the code in Data/DbInitializer.cs:



            // Look for any students.
            if (context.Student.Any())
            {
                return;   // DB has been seeded
            }

            var students = new Student[]
            {
                new Student { FirstMidName = "Carson",   LastName = "Alexander",
                    EnrollmentDate = DateTime.Parse("2010-09-01") },
                new Student { FirstMidName = "Meredith", LastName = "Alonso",
                    EnrollmentDate = DateTime.Parse("2012-09-01") },
                new Student { FirstMidName = "Arturo",   LastName = "Anand",
                    EnrollmentDate = DateTime.Parse("2013-09-01") },
                new Student { FirstMidName = "Gytis",    LastName = "Barzdukas",
                    EnrollmentDate = DateTime.Parse("2012-09-01") },
                new Student { FirstMidName = "Yan",      LastName = "Li",
                    EnrollmentDate = DateTime.Parse("2012-09-01") },
                new Student { FirstMidName = "Peggy",    LastName = "Justice",
                    EnrollmentDate = DateTime.Parse("2011-09-01") },
                new Student { FirstMidName = "Laura",    LastName = "Norman",
                    EnrollmentDate = DateTime.Parse("2013-09-01") },
                new Student { FirstMidName = "Nino",     LastName = "Olivetto",
                    EnrollmentDate = DateTime.Parse("2005-09-01") }
            };

            foreach (Student s in students)
            {
                context.Student.Add(s);
            }
            context.SaveChanges();

            var instructors = new Instructor[]
            {
                new Instructor { FirstMidName = "Kim",     LastName = "Abercrombie",
                    HireDate = DateTime.Parse("1995-03-11") },
                new Instructor { FirstMidName = "Fadi",    LastName = "Fakhouri",
                    HireDate = DateTime.Parse("2002-07-06") },
                new Instructor { FirstMidName = "Roger",   LastName = "Harui",
                    HireDate = DateTime.Parse("1998-07-01") },
                new Instructor { FirstMidName = "Candace", LastName = "Kapoor",
                    HireDate = DateTime.Parse("2001-01-15") },
                new Instructor { FirstMidName = "Roger",   LastName = "Zheng",
                    HireDate = DateTime.Parse("2004-02-12") }
            };

            foreach (Instructor i in instructors)
            {
                context.Instructors.Add(i);
            }
            context.SaveChanges();

            var departments = new Department[]
            {
                new Department { Name = "English",     Budget = 350000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Abercrombie").ID },
                new Department { Name = "Mathematics", Budget = 100000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Fakhouri").ID },
                new Department { Name = "Engineering", Budget = 350000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Harui").ID },
                new Department { Name = "Economics",   Budget = 100000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Kapoor").ID }
            };

            foreach (Department d in departments)



            foreach (Department d in departments)
            {
                context.Departments.Add(d);
            }
            context.SaveChanges();

            var courses = new Course[]
            {
                new Course {CourseID = 1050, Title = "Chemistry",      Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "Engineering").DepartmentID
                },
                new Course {CourseID = 4022, Title = "Microeconomics", Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "Economics").DepartmentID
                },
                new Course {CourseID = 4041, Title = "Macroeconomics", Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "Economics").DepartmentID
                },
                new Course {CourseID = 1045, Title = "Calculus",       Credits = 4,
                    DepartmentID = departments.Single( s => s.Name == "Mathematics").DepartmentID
                },
                new Course {CourseID = 3141, Title = "Trigonometry",   Credits = 4,
                    DepartmentID = departments.Single( s => s.Name == "Mathematics").DepartmentID
                },
                new Course {CourseID = 2021, Title = "Composition",    Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "English").DepartmentID
                },
                new Course {CourseID = 2042, Title = "Literature",     Credits = 4,
                    DepartmentID = departments.Single( s => s.Name == "English").DepartmentID
                },
            };

            foreach (Course c in courses)
            {
                context.Courses.Add(c);
            }
            context.SaveChanges();

            var officeAssignments = new OfficeAssignment[]
            {
                new OfficeAssignment {
                    InstructorID = instructors.Single( i => i.LastName == "Fakhouri").ID,
                    Location = "Smith 17" },
                new OfficeAssignment {
                    InstructorID = instructors.Single( i => i.LastName == "Harui").ID,
                    Location = "Gowan 27" },
                new OfficeAssignment {
                    InstructorID = instructors.Single( i => i.LastName == "Kapoor").ID,
                    Location = "Thompson 304" },
            };

            foreach (OfficeAssignment o in officeAssignments)
            {
                context.OfficeAssignments.Add(o);
            }
            context.SaveChanges();

            var courseInstructors = new CourseAssignment[]
            {
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Harui").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Microeconomics" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
                    },



                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Macroeconomics" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Calculus" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Trigonometry" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Harui").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Composition" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Literature" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
                    },
            };

            foreach (CourseAssignment ci in courseInstructors)
            {
                context.CourseAssignments.Add(ci);
            }
            context.SaveChanges();

            var enrollments = new Enrollment[]
            {
                new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alexander").ID,
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID,
                    Grade = Grade.A
                },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alexander").ID,
                    CourseID = courses.Single(c => c.Title == "Microeconomics" ).CourseID,
                    Grade = Grade.C
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alexander").ID,
                    CourseID = courses.Single(c => c.Title == "Macroeconomics" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                        StudentID = students.Single(s => s.LastName == "Alonso").ID,
                    CourseID = courses.Single(c => c.Title == "Calculus" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                        StudentID = students.Single(s => s.LastName == "Alonso").ID,
                    CourseID = courses.Single(c => c.Title == "Trigonometry" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alonso").ID,
                    CourseID = courses.Single(c => c.Title == "Composition" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Anand").ID,
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Anand").ID,
                    CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
                    Grade = Grade.B
                    },



                    },
                new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Barzdukas").ID,
                    CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Li").ID,
                    CourseID = courses.Single(c => c.Title == "Composition").CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Justice").ID,
                    CourseID = courses.Single(c => c.Title == "Literature").CourseID,
                    Grade = Grade.B
                    }
            };

            foreach (Enrollment e in enrollments)
            {
                var enrollmentInDataBase = context.Enrollment.Where(
                    s =>
                            s.Student.ID == e.StudentID &&
                            s.Course.CourseID == e.CourseID).SingleOrDefault();
                if (enrollmentInDataBase == null)
                {
                    context.Enrollment.Add(e);
                }
            }
            context.SaveChanges();
        }
    }
}

Add a migration

Add-Migration ComplexDataModel

An operation was scaffolded that may result in the loss of data.
Please review the migration for accuracy.
Done. To undo this action, use 'ef migrations remove'

The ALTER TABLE statement conflicted with the FOREIGN KEY constraint 
"FK_dbo.Course_dbo.Department_DepartmentID". The conflict occurred in
database "ContosoUniversity", table "dbo.Department", column 'DepartmentID'.

The preceding code provides seed data for the new entities. Most of this code creates new entity objects and

loads sample data. The sample data is used for testing. See Enrollments  and CourseAssignments  for examples of

how many-to-many join tables can be seeded.

Build the project.

Visual Studio

Visual Studio Code

The preceding command displays a warning about possible data loss.

If the database update  command is run, the following error is produced:



Apply the migration

Drop and re-create the databaseDrop and re-create the database

Drop-Database
Update-Database

Now that you have an existing database, you need to think about how to apply future changes to it. This tutorial

shows two approaches:

Drop and re-create the database

Apply the migration to the existing database. While this method is more complex and time-consuming, it's the

preferred approach for real-world, production environments. NoteNote: This is an optional section of the tutorial.

You can do the drop and re-create steps and skip this section. If you do want to follow the steps in this section,

don't do the drop and re-create steps.

 

The code in the updated DbInitializer  adds seed data for the new entities. To force EF Core to create a new DB,

drop and update the DB:

Visual Studio

Visual Studio Code

In the Package Manager ConsolePackage Manager Console (PMC), run the following command:

Run Get-Help about_EntityFrameworkCore  from the PMC to get help information.

Run the app. Running the app runs the DbInitializer.Initialize  method. The DbInitializer.Initialize

populates the new DB.

Open the DB in SSOX:

If SSOX was opened previously, click the RefreshRefresh button.

Expand the TablesTables  node. The created tables are displayed.

Examine the CourseAssignmentCourseAssignment table:

Right-click the CourseAssignmentCourseAssignment table and select View DataView Data.

Verify the CourseAssignmentCourseAssignment table contains data.



Apply the migration to the existing databaseApply the migration to the existing database

migrationBuilder.AddColumn<int>(
    name: "DepartmentID",
    table: "Course",
    type: "int",
    nullable: false,
    defaultValue: 0);

Fix the foreign key constraintsFix the foreign key constraints

 

This section is optional. These steps work only if you skipped the preceding Drop and re-create the database

section.

When migrations are run with existing data, there may be FK constraints that are not satisfied with the existing

data. With production data, steps must be taken to migrate the existing data. This section provides an example of

fixing FK constraint violations. Don't make these code changes without a backup. Don't make these code changes

if you completed the previous section and updated the database.

The {timestamp}_ComplexDataModel.cs file contains the following code:

The preceding code adds a non-nullable DepartmentID  FK to the Course  table. The DB from the previous tutorial

contains rows in Course , so that table cannot be updated by migrations.

To make the ComplexDataModel  migration work with existing data:

Change the code to give the new column ( DepartmentID ) a default value.

Create a fake department named "Temp" to act as the default department.

Update the ComplexDataModel  classes Up  method:

Open the {timestamp}_ComplexDataModel.cs file.

Comment out the line of code that adds the DepartmentID  column to the Course  table.



migrationBuilder.AlterColumn<string>(
    name: "Title",
    table: "Course",
    maxLength: 50,
    nullable: true,
    oldClrType: typeof(string),
    oldNullable: true);
            
//migrationBuilder.AddColumn<int>(
//    name: "DepartmentID",
//    table: "Course",
//    nullable: false,
//    defaultValue: 0);

migrationBuilder.CreateTable(
    name: "Department",
    columns: table => new
    {
        DepartmentID = table.Column<int>(type: "int", nullable: false)
            .Annotation("SqlServer:ValueGenerationStrategy", 
SqlServerValueGenerationStrategy.IdentityColumn),
        Budget = table.Column<decimal>(type: "money", nullable: false),
        InstructorID = table.Column<int>(type: "int", nullable: true),
        Name = table.Column<string>(type: "nvarchar(50)", maxLength: 50, nullable: true),
        StartDate = table.Column<DateTime>(type: "datetime2", nullable: false)
    },
    constraints: table =>
    {
        table.PrimaryKey("PK_Department", x => x.DepartmentID);
        table.ForeignKey(
            name: "FK_Department_Instructor_InstructorID",
            column: x => x.InstructorID,
            principalTable: "Instructor",
            principalColumn: "ID",
            onDelete: ReferentialAction.Restrict);
    });

 migrationBuilder.Sql("INSERT INTO dbo.Department (Name, Budget, StartDate) VALUES ('Temp', 0.00, 
GETDATE())");
// Default value for FK points to department created above, with
// defaultValue changed to 1 in following AddColumn statement.

migrationBuilder.AddColumn<int>(
    name: "DepartmentID",
    table: "Course",
    nullable: false,
    defaultValue: 1);

Additional resources

Add the following highlighted code. The new code goes after the .CreateTable( name: "Department"  block:

With the preceding changes, existing Course  rows will be related to the "Temp" department after the 

ComplexDataModel  Up  method runs.

A production app would:

Include code or scripts to add Department  rows and related Course  rows to the new Department  rows.

Not use the "Temp" department or the default value for Course.DepartmentID .

The next tutorial covers related data.



YouTube version of this tutorial(Part 1)

YouTube version of this tutorial(Part 2)

 P R E V I O U SP R E V I O U S N E X TN E X T

https://www.youtube.com/watch?v=0n2f0ObgCoA
https://www.youtube.com/watch?v=Je0Z5K1TNmY


Part 6, Razor Pages with EF Core in ASP.NET Core -
Read Related Data
9/22/2020 • 28 minutes to read • Edit Online

By Tom Dykstra, Jon P Smith, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you

created by following the tutorial.

This tutorial shows how to read and display related data. Related data is data that EF Core loads into navigation

properties.

The following illustrations show the completed pages for this tutorial:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/read-related-data.md
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


Eager, explicit, and lazy loading
There are several ways that EF Core can load related data into the navigation properties of an entity:

Eager loading. Eager loading is when a query for one type of entity also loads related entities. When an

entity is read, its related data is retrieved. This typically results in a single join query that retrieves all of

the data that's needed. EF Core will issue multiple queries for some types of eager loading. Issuing

multiple queries can be more efficient than a giant single query. Eager loading is specified with the 

Include  and ThenInclude  methods.

Eager loading sends multiple queries when a collection navigation is included:

One query for the main query

One query for each collection "edge" in the load tree.

Separate queries with Load : The data can be retrieved in separate queries, and EF Core "fixes up" the

navigation properties. "Fixes up" means that EF Core automatically populates the navigation properties.

https://docs.microsoft.com/en-us/ef/core/querying/related-data#eager-loading


Create Course pages

Separate queries with Load  is more like explicit loading than eager loading.

Note:Note: EF Core automatically fixes up navigation properties to any other entities that were previously

loaded into the context instance. Even if the data for a navigation property is not explicitly included, the

property may still be populated if some or all of the related entities were previously loaded.

Explicit loading. When the entity is first read, related data isn't retrieved. Code must be written to retrieve

the related data when it's needed. Explicit loading with separate queries results in multiple queries sent to

the database. With explicit loading, the code specifies the navigation properties to be loaded. Use the 

Load  method to do explicit loading. For example:

Lazy loading. When the entity is first read, related data isn't retrieved. The first time a navigation property

is accessed, the data required for that navigation property is automatically retrieved. A query is sent to the

database each time a navigation property is accessed for the first time. Lazy loading can hurt

performance, for example when developers use N+1 patterns, loading a parent and enumerating through

children.

The Course  entity includes a navigation property that contains the related Department  entity.

https://docs.microsoft.com/en-us/ef/core/querying/related-data#explicit-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading


Scaffold Course pagesScaffold Course pages

Display the department nameDisplay the department name

To display the name of the assigned department for a course:

Load the related Department  entity into the Course.Department  navigation property.

Get the name from the Department  entity's Name  property.

 

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold Student pages with the following exceptions:

Create a Pages/Courses folder.

Use Course  for the model class.

Use the existing context class instead of creating a new one.

Open Pages/Courses/Index.cshtml.cs and examine the OnGetAsync  method. The scaffolding engine

specified eager loading for the Department  navigation property. The Include  method specifies eager

loading.

Run the app and select the CoursesCourses  link. The department column displays the DepartmentID , which isn't

useful.

Update Pages/Courses/Index.cshtml.cs with the following code:



using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
    public class IndexModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public IndexModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        public IList<Course> Courses { get; set; }

        public async Task OnGetAsync()
        {
            Courses = await _context.Courses
                .Include(c => c.Department)
                .AsNoTracking()
                .ToListAsync();
        }
    }
}

The preceding code changes the Course  property to Courses  and adds AsNoTracking . AsNoTracking  improves

performance because the entities returned are not tracked. The entities don't need to be tracked because they're

not updated in the current context.

Update Pages/Courses/Index.cshtml with the following code.



@page
@model ContosoUniversity.Pages.Courses.IndexModel

@{
    ViewData["Title"] = "Courses";
}

<h1>Courses</h1>

<p>
    <a asp-page="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
            <th>
                @Html.DisplayNameFor(model => model.Courses[0].CourseID)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Courses[0].Title)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Courses[0].Credits)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Courses[0].Department)
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
@foreach (var item in Model.Courses)
{
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.CourseID)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.Title)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.Credits)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.Department.Name)
            </td>
            <td>
                <a asp-page="./Edit" asp-route-id="@item.CourseID">Edit</a> |
                <a asp-page="./Details" asp-route-id="@item.CourseID">Details</a> |
                <a asp-page="./Delete" asp-route-id="@item.CourseID">Delete</a>
            </td>
        </tr>
}
    </tbody>
</table>

The following changes have been made to the scaffolded code:

Changed the Course  property name to Courses .

Added a NumberNumber  column that shows the CourseID  property value. By default, primary keys aren't

scaffolded because normally they're meaningless to end users. However, in this case the primary key is

meaningful.

Changed the Depar tmentDepar tment column to display the department name. The code displays the Name  property



Loading related data with SelectLoading related data with Select

public IList<CourseViewModel> CourseVM { get; set; }

public async Task OnGetAsync()
{
    CourseVM = await _context.Courses
            .Select(p => new CourseViewModel
            {
                CourseID = p.CourseID,
                Title = p.Title,
                Credits = p.Credits,
                DepartmentName = p.Department.Name
            }).ToListAsync();
}

public class CourseViewModel
{
    public int CourseID { get; set; }
    public string Title { get; set; }
    public int Credits { get; set; }
    public string DepartmentName { get; set; }
}

@Html.DisplayFor(modelItem => item.Department.Name)

of the Department  entity that's loaded into the Department  navigation property:

Run the app and select the CoursesCourses  tab to see the list with department names.

 

The OnGetAsync  method loads related data with the Include  method. The Select  method is an alternative that

loads only the related data needed. For single items, like the Department.Name  it uses a SQL INNER JOIN. For

collections, it uses another database access, but so does the Include  operator on collections.

The following code loads related data with the Select  method:

The preceding code doesn't return any entity types, therefore no tracking is done. For more information about

the EF tracking, see Tracking vs. No-Tracking Queries.

The CourseViewModel :

See IndexSelect.cshtml and IndexSelect.cshtml.cs for a complete example.

https://docs.microsoft.com/en-us/ef/core/querying/tracking
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu30snapshots/6-related/Pages/Courses/IndexSelect.cshtml
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu30snapshots/6-related/Pages/Courses/IndexSelect.cshtml.cs


Create Instructor pages

Create a view modelCreate a view model

This section scaffolds Instructor pages and adds related Courses and Enrollments to the Instructors Index page.

 

This page reads and displays related data in the following ways:

The list of instructors displays related data from the OfficeAssignment  entity (Office in the preceding image).

The Instructor  and OfficeAssignment  entities are in a one-to-zero-or-one relationship. Eager loading is used

for the OfficeAssignment  entities. Eager loading is typically more efficient when the related data needs to be

displayed. In this case, office assignments for the instructors are displayed.

When the user selects an instructor, related Course  entities are displayed. The Instructor  and Course

entities are in a many-to-many relationship. Eager loading is used for the Course  entities and their related 

Department  entities. In this case, separate queries might be more efficient because only courses for the

selected instructor are needed. This example shows how to use eager loading for navigation properties in

entities that are in navigation properties.

When the user selects a course, related data from the Enrollments  entity is displayed. In the preceding image,

student name and grade are displayed. The Course  and Enrollment  entities are in a one-to-many

relationship.

The instructors page shows data from three different tables. A view model is needed that includes three

properties representing the three tables.



using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
    public class InstructorIndexData
    {
        public IEnumerable<Instructor> Instructors { get; set; }
        public IEnumerable<Course> Courses { get; set; }
        public IEnumerable<Enrollment> Enrollments { get; set; }
    }
}

Scaffold Instructor pagesScaffold Instructor pages

Create SchoolViewModels/InstructorIndexData.cs with the following code:

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold the student pages with the following exceptions:

Create a Pages/Instructors folder.

Use Instructor  for the model class.

Use the existing context class instead of creating a new one.

To see what the scaffolded page looks like before you update it, run the app and navigate to the Instructors page.

Update Pages/Instructors/Index.cshtml.cs with the following code:



using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels;  // Add VM
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
    public class IndexModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public IndexModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        public InstructorIndexData InstructorData { get; set; }
        public int InstructorID { get; set; }
        public int CourseID { get; set; }

        public async Task OnGetAsync(int? id, int? courseID)
        {
            InstructorData = new InstructorIndexData();
            InstructorData.Instructors = await _context.Instructors
                .Include(i => i.OfficeAssignment)                 
                .Include(i => i.CourseAssignments)
                    .ThenInclude(i => i.Course)
                        .ThenInclude(i => i.Department)
                .Include(i => i.CourseAssignments)
                    .ThenInclude(i => i.Course)
                        .ThenInclude(i => i.Enrollments)
                            .ThenInclude(i => i.Student)
                .AsNoTracking()
                .OrderBy(i => i.LastName)
                .ToListAsync();

            if (id != null)
            {
                InstructorID = id.Value;
                Instructor instructor = InstructorData.Instructors
                    .Where(i => i.ID == id.Value).Single();
                InstructorData.Courses = instructor.CourseAssignments.Select(s => s.Course);
            }

            if (courseID != null)
            {
                CourseID = courseID.Value;
                var selectedCourse = InstructorData.Courses
                    .Where(x => x.CourseID == courseID).Single();
                InstructorData.Enrollments = selectedCourse.Enrollments;
            }
        }
    }
}

The OnGetAsync  method accepts optional route data for the ID of the selected instructor.

Examine the query in the Pages/Instructors/Index.cshtml.cs file:



InstructorData.Instructors = await _context.Instructors
    .Include(i => i.OfficeAssignment)                 
    .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Department)
    .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Enrollments)
                .ThenInclude(i => i.Student)
    .AsNoTracking()
    .OrderBy(i => i.LastName)
    .ToListAsync();

if (id != null)
{
    InstructorID = id.Value;
    Instructor instructor = InstructorData.Instructors
        .Where(i => i.ID == id.Value).Single();
    InstructorData.Courses = instructor.CourseAssignments.Select(s => s.Course);
}

The code specifies eager loading for the following navigation properties:

Instructor.OfficeAssignment

Instructor.CourseAssignments

CourseAssignments.Course

Course.Department

Course.Enrollments

Enrollment.Student

Notice the repetition of Include  and ThenInclude  methods for CourseAssignments  and Course . This repetition

is necessary to specify eager loading for two navigation properties of the Course  entity.

The following code executes when an instructor is selected ( id != null ).

The selected instructor is retrieved from the list of instructors in the view model. The view model's Courses

property is loaded with the Course  entities from that instructor's CourseAssignments  navigation property.

The Where  method returns a collection. But in this case, the filter will select a single entity, so the Single

method is called to convert the collection into a single Instructor  entity. The Instructor  entity provides access

to the CourseAssignments  property. CourseAssignments  provides access to the related Course  entities.



if (courseID != null)
{
    CourseID = courseID.Value;
    var selectedCourse = InstructorData.Courses
        .Where(x => x.CourseID == courseID).Single();
    InstructorData.Enrollments = selectedCourse.Enrollments;
}

Update the instructors Index pageUpdate the instructors Index page

@page "{id:int?}"
@model ContosoUniversity.Pages.Instructors.IndexModel

@{
    ViewData["Title"] = "Instructors";
}

<h2>Instructors</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
            <th>Last Name</th>
            <th>First Name</th>

The Single  method is used on a collection when the collection has only one item. The Single  method throws

an exception if the collection is empty or if there's more than one item. An alternative is SingleOrDefault , which

returns a default value (null in this case) if the collection is empty.

The following code populates the view model's Enrollments  property when a course is selected:

Update Pages/Instructors/Index.cshtml with the following code.



            <th>Hire Date</th>
            <th>Office</th>
            <th>Courses</th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.InstructorData.Instructors)
        {
            string selectedRow = "";
            if (item.ID == Model.InstructorID)
            {
                selectedRow = "table-success";
            }
            <tr class="@selectedRow">
                <td>
                    @Html.DisplayFor(modelItem => item.LastName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.FirstMidName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.HireDate)
                </td>
                <td>
                    @if (item.OfficeAssignment != null)
                    {
                        @item.OfficeAssignment.Location
                    }
                </td>
                <td>
                    @{
                        foreach (var course in item.CourseAssignments)
                        {
                            @course.Course.CourseID @:  @course.Course.Title <br />
                        }
                    }
                </td>
                <td>
                    <a asp-page="./Index" asp-route-id="@item.ID">Select</a> |
                    <a asp-page="./Edit" asp-route-id="@item.ID">Edit</a> |
                    <a asp-page="./Details" asp-route-id="@item.ID">Details</a> |
                    <a asp-page="./Delete" asp-route-id="@item.ID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

@if (Model.InstructorData.Courses != null)
{
    <h3>Courses Taught by Selected Instructor</h3>
    <table class="table">
        <tr>
            <th></th>
            <th>Number</th>
            <th>Title</th>
            <th>Department</th>
        </tr>

        @foreach (var item in Model.InstructorData.Courses)
        {
            string selectedRow = "";
            if (item.CourseID == Model.CourseID)
            {
                selectedRow = "table-success";
            }
            <tr class="@selectedRow">
                <td>



                <td>
                    <a asp-page="./Index" asp-route-courseID="@item.CourseID">Select</a>
                </td>
                <td>
                    @item.CourseID
                </td>
                <td>
                    @item.Title
                </td>
                <td>
                    @item.Department.Name
                </td>
            </tr>
        }

    </table>
}

@if (Model.InstructorData.Enrollments != null)
{
    <h3>
        Students Enrolled in Selected Course
    </h3>
    <table class="table">
        <tr>
            <th>Name</th>
            <th>Grade</th>
        </tr>
        @foreach (var item in Model.InstructorData.Enrollments)
        {
            <tr>
                <td>
                    @item.Student.FullName
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Grade)
                </td>
            </tr>
        }
    </table>
}

The preceding code makes the following changes:

@if (item.OfficeAssignment != null)
{
    @item.OfficeAssignment.Location
}

Updates the page  directive from @page  to @page "{id:int?}" . "{id:int?}"  is a route template. The

route template changes integer query strings in the URL to route data. For example, clicking on the SelectSelect

link for an instructor with only the @page  directive produces a URL like the following:

https://localhost:5001/Instructors?id=2

When the page directive is @page "{id:int?}" , the URL is:

https://localhost:5001/Instructors/2

Adds an OfficeOffice column that displays item.OfficeAssignment.Location  only if item.OfficeAssignment  isn't

null. Because this is a one-to-zero-or-one relationship, there might not be a related OfficeAssignment

entity.

Adds a CoursesCourses  column that displays courses taught by each instructor. See Explicit line transition for



string selectedRow = "";
if (item.CourseID == Model.CourseID)
{
    selectedRow = "success";
}
<tr class="@selectedRow">

<a asp-action="Index" asp-route-id="@item.ID">Select</a> |

more about this razor syntax.

Adds code that dynamically adds class="success"  to the tr  element of the selected instructor and

course. This sets a background color for the selected row using a Bootstrap class.

Adds a new hyperlink labeled SelectSelect. This link sends the selected instructor's ID to the Index  method and

sets a background color.

Adds a table of courses for the selected Instructor.

Adds a table of student enrollments for the selected course.

Run the app and select the InstructorsInstructors  tab. The page displays the Location  (office) from the related 

OfficeAssignment  entity. If OfficeAssignment  is null, an empty table cell is displayed.

Click on the SelectSelect link for an instructor. The row style changes and courses assigned to that instructor are

displayed.

Select a course to see the list of enrolled students and their grades.



Using Single
The Single  method can pass in the Where  condition instead of calling the Where  method separately:



public async Task OnGetAsync(int? id, int? courseID)
{
    InstructorData = new InstructorIndexData();

    InstructorData.Instructors = await _context.Instructors
          .Include(i => i.OfficeAssignment)
          .Include(i => i.CourseAssignments)
            .ThenInclude(i => i.Course)
                .ThenInclude(i => i.Department)
            .Include(i => i.CourseAssignments)
                .ThenInclude(i => i.Course)
                    .ThenInclude(i => i.Enrollments)
                        .ThenInclude(i => i.Student)
          .AsNoTracking()
          .OrderBy(i => i.LastName)
          .ToListAsync();

    if (id != null)
    {
        InstructorID = id.Value;
        Instructor instructor = InstructorData.Instructors.Single(
            i => i.ID == id.Value);
        InstructorData.Courses = instructor.CourseAssignments.Select(
            s => s.Course);
    }

    if (courseID != null)
    {
        CourseID = courseID.Value;
        InstructorData.Enrollments = InstructorData.Courses.Single(
            x => x.CourseID == courseID).Enrollments;
    }
}

Explicit loading

InstructorData.Instructors = await _context.Instructors
    .Include(i => i.OfficeAssignment)                 
    .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Department)
    .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Enrollments)
                .ThenInclude(i => i.Student)
    .AsNoTracking()
    .OrderBy(i => i.LastName)
    .ToListAsync();

Use of Single  with a Where condition is a matter of personal preference. It provides no benefits over using the 

Where  method.

The current code specifies eager loading for Enrollments  and Students :

Suppose users rarely want to see enrollments in a course. In that case, an optimization would be to only load the

enrollment data if it's requested. In this section, the OnGetAsync  is updated to use explicit loading of Enrollments

and Students .

Update Pages/Instructors/Index.cshtml.cs with the following code.



using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels;  // Add VM
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
    public class IndexModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public IndexModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        public InstructorIndexData InstructorData { get; set; }
        public int InstructorID { get; set; }
        public int CourseID { get; set; }

        public async Task OnGetAsync(int? id, int? courseID)
        {
            InstructorData = new InstructorIndexData();
            InstructorData.Instructors = await _context.Instructors
                .Include(i => i.OfficeAssignment)                 
                .Include(i => i.CourseAssignments)
                    .ThenInclude(i => i.Course)
                        .ThenInclude(i => i.Department)
                //.Include(i => i.CourseAssignments)
                //    .ThenInclude(i => i.Course)
                //        .ThenInclude(i => i.Enrollments)
                //            .ThenInclude(i => i.Student)
                //.AsNoTracking()
                .OrderBy(i => i.LastName)
                .ToListAsync();

            if (id != null)
            {
                InstructorID = id.Value;
                Instructor instructor = InstructorData.Instructors
                    .Where(i => i.ID == id.Value).Single();
                InstructorData.Courses = instructor.CourseAssignments.Select(s => s.Course);
            }

            if (courseID != null)
            {
                CourseID = courseID.Value;
                var selectedCourse = InstructorData.Courses
                    .Where(x => x.CourseID == courseID).Single();
                await _context.Entry(selectedCourse).Collection(x => x.Enrollments).LoadAsync();
                foreach (Enrollment enrollment in selectedCourse.Enrollments)
                {
                    await _context.Entry(enrollment).Reference(x => x.Student).LoadAsync();
                }
                InstructorData.Enrollments = selectedCourse.Enrollments;
            }
        }
    }
}

The preceding code drops the ThenInclude method calls for enrollment and student data. If a course is selected,

the explicit loading code retrieves:

The Enrollment  entities for the selected course.



Next steps

The Student  entities for each Enrollment .

Notice that the preceding code comments out .AsNoTracking() . Navigation properties can only be explicitly

loaded for tracked entities.

Test the app. From a user's perspective, the app behaves identically to the previous version.

The next tutorial shows how to update related data.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

In this tutorial, related data is read and displayed. Related data is data that EF Core loads into navigation

properties.

If you run into problems you can't solve, download or view the completed app. Download instructions.

The following illustrations show the completed pages for this tutorial:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


Eager, explicit, and lazy Loading of related data
There are several ways that EF Core can load related data into the navigation properties of an entity:

Eager loading. Eager loading is when a query for one type of entity also loads related entities. When the

entity is read, its related data is retrieved. This typically results in a single join query that retrieves all of

the data that's needed. EF Core will issue multiple queries for some types of eager loading. Issuing

multiple queries can be more efficient than was the case for some queries in EF6 where there was a single

https://docs.microsoft.com/en-us/ef/core/querying/related-data#eager-loading


Create a Course page that displays department name

query. Eager loading is specified with the Include  and ThenInclude  methods.

Eager loading sends multiple queries when a collection navigation is included:

One query for the main query

One query for each collection "edge" in the load tree.

Separate queries with Load : The data can be retrieved in separate queries, and EF Core "fixes up" the

navigation properties. "fixes up" means that EF Core automatically populates the navigation properties.

Separate queries with Load  is more like explicit loading than eager loading.

Note: EF Core automatically fixes up navigation properties to any other entities that were previously

loaded into the context instance. Even if the data for a navigation property is not explicitly included, the

property may still be populated if some or all of the related entities were previously loaded.

Explicit loading. When the entity is first read, related data isn't retrieved. Code must be written to retrieve

the related data when it's needed. Explicit loading with separate queries results in multiple queries sent to

the DB. With explicit loading, the code specifies the navigation properties to be loaded. Use the Load

method to do explicit loading. For example:

Lazy loading. Lazy loading was added to EF Core in version 2.1. When the entity is first read, related data

isn't retrieved. The first time a navigation property is accessed, the data required for that navigation

property is automatically retrieved. A query is sent to the DB each time a navigation property is accessed

for the first time.

The Select  operator loads only the related data needed.

The Course entity includes a navigation property that contains the Department  entity. The Department  entity

contains the department that the course is assigned to.

To display the name of the assigned department in a list of courses:

Get the Name  property from the Department  entity.

The Department  entity comes from the Course.Department  navigation property.

https://docs.microsoft.com/en-us/ef/core/querying/related-data#explicit-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading


Scaffold the Course modelScaffold the Course model

public async Task OnGetAsync()
{
    Course = await _context.Courses
        .Include(c => c.Department)
        .AsNoTracking()
        .ToListAsync();
}

 

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold the student model and use Course  for the model class.

The preceding command scaffolds the Course  model. Open the project in Visual Studio.

Open Pages/Courses/Index.cshtml.cs and examine the OnGetAsync  method. The scaffolding engine specified

eager loading for the Department  navigation property. The Include  method specifies eager loading.

Run the app and select the CoursesCourses  link. The department column displays the DepartmentID , which isn't useful.

Update the OnGetAsync  method with the following code:

The preceding code adds AsNoTracking . AsNoTracking  improves performance because the entities returned are

not tracked. The entities are not tracked because they're not updated in the current context.

Update Pages/Courses/Index.cshtml with the following highlighted markup:



@page
@model ContosoUniversity.Pages.Courses.IndexModel
@{
    ViewData["Title"] = "Courses";
}

<h2>Courses</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
            <th>
                @Html.DisplayNameFor(model => model.Course[0].CourseID)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Course[0].Title)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Course[0].Credits)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Course[0].Department)
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Course)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.CourseID)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Title)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Credits)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Department.Name)
                </td>
                <td>
                    <a asp-page="./Edit" asp-route-id="@item.CourseID">Edit</a> |
                    <a asp-page="./Details" asp-route-id="@item.CourseID">Details</a> |
                    <a asp-page="./Delete" asp-route-id="@item.CourseID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

The following changes have been made to the scaffolded code:

Changed the heading from Index to Courses.

Added a NumberNumber  column that shows the CourseID  property value. By default, primary keys aren't

scaffolded because normally they're meaningless to end users. However, in this case the primary key is

meaningful.

Changed the Depar tmentDepar tment column to display the department name. The code displays the Name  property

of the Department  entity that's loaded into the Department  navigation property:



Loading related data with SelectLoading related data with Select

public async Task OnGetAsync()
{
    Course = await _context.Courses
        .Include(c => c.Department)
        .AsNoTracking()
        .ToListAsync();
}

public IList<CourseViewModel> CourseVM { get; set; }

public async Task OnGetAsync()
{
    CourseVM = await _context.Courses
            .Select(p => new CourseViewModel
            {
                CourseID = p.CourseID,
                Title = p.Title,
                Credits = p.Credits,
                DepartmentName = p.Department.Name
            }).ToListAsync();
}

@Html.DisplayFor(modelItem => item.Department.Name)

Run the app and select the CoursesCourses  tab to see the list with department names.

 

The OnGetAsync  method loads related data with the Include  method:

The Select  operator loads only the related data needed. For single items, like the Department.Name  it uses a SQL

INNER JOIN. For collections, it uses another database access, but so does the Include  operator on collections.

The following code loads related data with the Select  method:

The CourseViewModel :



public class CourseViewModel
{
    public int CourseID { get; set; }
    public string Title { get; set; }
    public int Credits { get; set; }
    public string DepartmentName { get; set; }
}

Create an Instructors page that shows Courses and Enrollments

See IndexSelect.cshtml and IndexSelect.cshtml.cs for a complete example.

In this section, the Instructors page is created.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu/Pages/Courses/IndexSelect.cshtml
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples/cu/Pages/Courses/IndexSelect.cshtml.cs


 

This page reads and displays related data in the following ways:

The list of instructors displays related data from the OfficeAssignment  entity (Office in the preceding image).

The Instructor  and OfficeAssignment  entities are in a one-to-zero-or-one relationship. Eager loading is used

for the OfficeAssignment  entities. Eager loading is typically more efficient when the related data needs to be

displayed. In this case, office assignments for the instructors are displayed.

When the user selects an instructor (Harui in the preceding image), related Course  entities are displayed. The 



Create a view model for the Instructor Index viewCreate a view model for the Instructor Index view

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
    public class InstructorIndexData
    {
        public IEnumerable<Instructor> Instructors { get; set; }
        public IEnumerable<Course> Courses { get; set; }
        public IEnumerable<Enrollment> Enrollments { get; set; }
    }
}

Scaffold the Instructor modelScaffold the Instructor model

Instructor  and Course  entities are in a many-to-many relationship. Eager loading is used for the Course

entities and their related Department  entities. In this case, separate queries might be more efficient because

only courses for the selected instructor are needed. This example shows how to use eager loading for

navigation properties in entities that are in navigation properties.

When the user selects a course (Chemistry in the preceding image), related data from the Enrollments  entity

is displayed. In the preceding image, student name and grade are displayed. The Course  and Enrollment

entities are in a one-to-many relationship.

The instructors page shows data from three different tables. A view model is created that includes the three

entities representing the three tables.

In the SchoolViewModels folder, create InstructorIndexData.cs with the following code:

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold the student model and use Instructor  for the model class.

The preceding command scaffolds the Instructor  model. Run the app and navigate to the instructors page.

Replace Pages/Instructors/Index.cshtml.cs with the following code:



using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels;  // Add VM
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
    public class IndexModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public IndexModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        public InstructorIndexData Instructor { get; set; }
        public int InstructorID { get; set; }

        public async Task OnGetAsync(int? id)
        {
            Instructor = new InstructorIndexData();
            Instructor.Instructors = await _context.Instructors
                  .Include(i => i.OfficeAssignment)
                  .Include(i => i.CourseAssignments)
                    .ThenInclude(i => i.Course)
                  .AsNoTracking()
                  .OrderBy(i => i.LastName)
                  .ToListAsync();

            if (id != null)
            {
                InstructorID = id.Value;
            }           
        }
    }
}

Instructor.Instructors = await _context.Instructors
      .Include(i => i.OfficeAssignment)
      .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
      .AsNoTracking()
      .OrderBy(i => i.LastName)
      .ToListAsync();

Update the instructors Index pageUpdate the instructors Index page

The OnGetAsync  method accepts optional route data for the ID of the selected instructor.

Examine the query in the Pages/Instructors/Index.cshtml.cs file:

The query has two includes:

OfficeAssignment : Displayed in the instructors view.

CourseAssignments : Which brings in the courses taught.

Update Pages/Instructors/Index.cshtml with the following markup:



@page "{id:int?}"
@model ContosoUniversity.Pages.Instructors.IndexModel

@{
    ViewData["Title"] = "Instructors";
}

<h2>Instructors</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
            <th>Last Name</th>
            <th>First Name</th>
            <th>Hire Date</th>
            <th>Office</th>
            <th>Courses</th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Instructor.Instructors)
        {
            string selectedRow = "";
            if (item.ID == Model.InstructorID)
            {
                selectedRow = "success";
            }
            <tr class="@selectedRow">
                <td>
                    @Html.DisplayFor(modelItem => item.LastName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.FirstMidName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.HireDate)
                </td>
                <td>
                    @if (item.OfficeAssignment != null)
                    {
                        @item.OfficeAssignment.Location
                    }
                </td>
                <td>
                    @{
                        foreach (var course in item.CourseAssignments)
                        {
                            @course.Course.CourseID @:  @course.Course.Title <br />
                        }
                    }
                </td>
                <td>
                    <a asp-page="./Index" asp-route-id="@item.ID">Select</a> |
                    <a asp-page="./Edit" asp-route-id="@item.ID">Edit</a> |
                    <a asp-page="./Details" asp-route-id="@item.ID">Details</a> |
                    <a asp-page="./Delete" asp-route-id="@item.ID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>



Add courses taught by selected instructorAdd courses taught by selected instructor

The preceding markup makes the following changes:

@if (item.OfficeAssignment != null)
{
    @item.OfficeAssignment.Location
}

string selectedRow = "";
if (item.CourseID == Model.CourseID)
{
    selectedRow = "success";
}
<tr class="@selectedRow">

<a asp-action="Index" asp-route-id="@item.ID">Select</a> |

Updates the page  directive from @page  to @page "{id:int?}" . "{id:int?}"  is a route template. The

route template changes integer query strings in the URL to route data. For example, clicking on the SelectSelect

link for an instructor with only the @page  directive produces a URL like the following:

http://localhost:1234/Instructors?id=2

When the page directive is @page "{id:int?}" , the previous URL is:

http://localhost:1234/Instructors/2

Page title is InstructorsInstructors .

Added an OfficeOffice column that displays item.OfficeAssignment.Location  only if item.OfficeAssignment  isn't

null. Because this is a one-to-zero-or-one relationship, there might not be a related OfficeAssignment

entity.

Added a CoursesCourses  column that displays courses taught by each instructor. See Explicit line transition for

more about this razor syntax.

Added code that dynamically adds class="success"  to the tr  element of the selected instructor. This sets

a background color for the selected row using a Bootstrap class.

Added a new hyperlink labeled SelectSelect. This link sends the selected instructor's ID to the Index  method

and sets a background color.

Run the app and select the InstructorsInstructors  tab. The page displays the Location  (office) from the related 

OfficeAssignment  entity. If OfficeAssignment` is null, an empty table cell is displayed.

Click on the SelectSelect link. The row style changes.

Update the OnGetAsync  method in Pages/Instructors/Index.cshtml.cs with the following code:



public async Task OnGetAsync(int? id, int? courseID)
{
    Instructor = new InstructorIndexData();
    Instructor.Instructors = await _context.Instructors
          .Include(i => i.OfficeAssignment)
          .Include(i => i.CourseAssignments)
            .ThenInclude(i => i.Course)
                .ThenInclude(i => i.Department)
          .AsNoTracking()
          .OrderBy(i => i.LastName)
          .ToListAsync();

    if (id != null)
    {
        InstructorID = id.Value;
        Instructor instructor = Instructor.Instructors.Where(
            i => i.ID == id.Value).Single();
        Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
    }

    if (courseID != null)
    {
        CourseID = courseID.Value;
        Instructor.Enrollments = Instructor.Courses.Where(
            x => x.CourseID == courseID).Single().Enrollments;
    }
}

Add public int CourseID { get; set; }



public class IndexModel : PageModel
{
    private readonly ContosoUniversity.Data.SchoolContext _context;

    public IndexModel(ContosoUniversity.Data.SchoolContext context)
    {
        _context = context;
    }

    public InstructorIndexData Instructor { get; set; }
    public int InstructorID { get; set; }
    public int CourseID { get; set; }

    public async Task OnGetAsync(int? id, int? courseID)
    {
        Instructor = new InstructorIndexData();
        Instructor.Instructors = await _context.Instructors
              .Include(i => i.OfficeAssignment)
              .Include(i => i.CourseAssignments)
                .ThenInclude(i => i.Course)
                    .ThenInclude(i => i.Department)
              .AsNoTracking()
              .OrderBy(i => i.LastName)
              .ToListAsync();

        if (id != null)
        {
            InstructorID = id.Value;
            Instructor instructor = Instructor.Instructors.Where(
                i => i.ID == id.Value).Single();
            Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
        }

        if (courseID != null)
        {
            CourseID = courseID.Value;
            Instructor.Enrollments = Instructor.Courses.Where(
                x => x.CourseID == courseID).Single().Enrollments;
        }
    }

Instructor.Instructors = await _context.Instructors
      .Include(i => i.OfficeAssignment)
      .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Department)
      .AsNoTracking()
      .OrderBy(i => i.LastName)
      .ToListAsync();

Examine the updated query:

The preceding query adds the Department  entities.

The following code executes when an instructor is selected ( id != null ). The selected instructor is retrieved

from the list of instructors in the view model. The view model's Courses  property is loaded with the Course

entities from that instructor's CourseAssignments  navigation property.



if (id != null)
{
    InstructorID = id.Value;
    Instructor instructor = Instructor.Instructors.Where(
        i => i.ID == id.Value).Single();
    Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
}

if (courseID != null)
{
    CourseID = courseID.Value;
    Instructor.Enrollments = Instructor.Courses.Where(
        x => x.CourseID == courseID).Single().Enrollments;
}

The Where  method returns a collection. In the preceding Where  method, only a single Instructor  entity is

returned. The Single  method converts the collection into a single Instructor  entity. The Instructor  entity

provides access to the CourseAssignments  property. CourseAssignments  provides access to the related Course

entities.

The Single  method is used on a collection when the collection has only one item. The Single  method throws

an exception if the collection is empty or if there's more than one item. An alternative is SingleOrDefault , which

returns a default value (null in this case) if the collection is empty. Using SingleOrDefault  on an empty collection:

Results in an exception (from trying to find a Courses  property on a null reference).

The exception message would less clearly indicate the cause of the problem.

The following code populates the view model's Enrollments  property when a course is selected:

Add the following markup to the end of the Pages/Instructors/Index.cshtml Razor Page:



                    <a asp-page="./Delete" asp-route-id="@item.ID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

@if (Model.Instructor.Courses != null)
{
    <h3>Courses Taught by Selected Instructor</h3>
    <table class="table">
        <tr>
            <th></th>
            <th>Number</th>
            <th>Title</th>
            <th>Department</th>
        </tr>

        @foreach (var item in Model.Instructor.Courses)
        {
            string selectedRow = "";
            if (item.CourseID == Model.CourseID)
            {
                selectedRow = "success";
            }
            <tr class="@selectedRow">
                <td>
                    <a asp-page="./Index" asp-route-courseID="@item.CourseID">Select</a>
                </td>
                <td>
                    @item.CourseID
                </td>
                <td>
                    @item.Title
                </td>
                <td>
                    @item.Department.Name
                </td>
            </tr>
        }

    </table>
}

Show student dataShow student data

The preceding markup displays a list of courses related to an instructor when an instructor is selected.

Test the app. Click on a SelectSelect link on the instructors page.

In this section, the app is updated to show the student data for a selected course.

Update the query in the OnGetAsync  method in Pages/Instructors/Index.cshtml.cs with the following code:



Instructor.Instructors = await _context.Instructors
      .Include(i => i.OfficeAssignment)                 
      .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Department)
        .Include(i => i.CourseAssignments)
            .ThenInclude(i => i.Course)
                .ThenInclude(i => i.Enrollments)
                    .ThenInclude(i => i.Student)
      .AsNoTracking()
      .OrderBy(i => i.LastName)
      .ToListAsync();

@if (Model.Instructor.Enrollments != null)
{
    <h3>
        Students Enrolled in Selected Course
    </h3>
    <table class="table">
        <tr>
            <th>Name</th>
            <th>Grade</th>
        </tr>
        @foreach (var item in Model.Instructor.Enrollments)
        {
            <tr>
                <td>
                    @item.Student.FullName
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Grade)
                </td>
            </tr>
        }
    </table>
}

Update Pages/Instructors/Index.cshtml. Add the following markup to the end of the file:

The preceding markup displays a list of the students who are enrolled in the selected course.

Refresh the page and select an instructor. Select a course to see the list of enrolled students and their grades.



Using Single
The Single  method can pass in the Where  condition instead of calling the Where  method separately:



public async Task OnGetAsync(int? id, int? courseID)
{
    Instructor = new InstructorIndexData();

    Instructor.Instructors = await _context.Instructors
          .Include(i => i.OfficeAssignment)
          .Include(i => i.CourseAssignments)
            .ThenInclude(i => i.Course)
                .ThenInclude(i => i.Department)
            .Include(i => i.CourseAssignments)
                .ThenInclude(i => i.Course)
                    .ThenInclude(i => i.Enrollments)
                        .ThenInclude(i => i.Student)
          .AsNoTracking()
          .OrderBy(i => i.LastName)
          .ToListAsync();

    if (id != null)
    {
        InstructorID = id.Value;
        Instructor instructor = Instructor.Instructors.Single(
            i => i.ID == id.Value);
        Instructor.Courses = instructor.CourseAssignments.Select(
            s => s.Course);
    }

    if (courseID != null)
    {
        CourseID = courseID.Value;
        Instructor.Enrollments = Instructor.Courses.Single(
            x => x.CourseID == courseID).Enrollments;
    }
}

Explicit loading

Instructor.Instructors = await _context.Instructors
      .Include(i => i.OfficeAssignment)                 
      .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Department)
        .Include(i => i.CourseAssignments)
            .ThenInclude(i => i.Course)
                .ThenInclude(i => i.Enrollments)
                    .ThenInclude(i => i.Student)
      .AsNoTracking()
      .OrderBy(i => i.LastName)
      .ToListAsync();

The preceding Single  approach provides no benefits over using Where . Some developers prefer the Single

approach style.

The current code specifies eager loading for Enrollments  and Students :

Suppose users rarely want to see enrollments in a course. In that case, an optimization would be to only load the

enrollment data if it's requested. In this section, the OnGetAsync  is updated to use explicit loading of Enrollments

and Students .

Update the OnGetAsync  with the following code:



public async Task OnGetAsync(int? id, int? courseID)
{
    Instructor = new InstructorIndexData();
    Instructor.Instructors = await _context.Instructors
          .Include(i => i.OfficeAssignment)                 
          .Include(i => i.CourseAssignments)
            .ThenInclude(i => i.Course)
                .ThenInclude(i => i.Department)
            //.Include(i => i.CourseAssignments)
            //    .ThenInclude(i => i.Course)
            //        .ThenInclude(i => i.Enrollments)
            //            .ThenInclude(i => i.Student)
         // .AsNoTracking()
          .OrderBy(i => i.LastName)
          .ToListAsync();

    if (id != null)
    {
        InstructorID = id.Value;
        Instructor instructor = Instructor.Instructors.Where(
            i => i.ID == id.Value).Single();
        Instructor.Courses = instructor.CourseAssignments.Select(s => s.Course);
    }

    if (courseID != null)
    {
        CourseID = courseID.Value;
        var selectedCourse = Instructor.Courses.Where(x => x.CourseID == courseID).Single();
        await _context.Entry(selectedCourse).Collection(x => x.Enrollments).LoadAsync();
        foreach (Enrollment enrollment in selectedCourse.Enrollments)
        {
            await _context.Entry(enrollment).Reference(x => x.Student).LoadAsync();
        }
        Instructor.Enrollments = selectedCourse.Enrollments;
    }
}

Additional resources

The preceding code drops the ThenInclude method calls for enrollment and student data. If a course is selected,

the highlighted code retrieves:

The Enrollment  entities for the selected course.

The Student  entities for each Enrollment .

Notice the preceding code comments out .AsNoTracking() . Navigation properties can only be explicitly loaded

for tracked entities.

Test the app. From a users perspective, the app behaves identically to the previous version.

The next tutorial shows how to update related data.

YouTube version of this tutorial (part1)

YouTube version of this tutorial (part2)

 P R E V I O U SP R E V I O U S N E X TN E X T

https://www.youtube.com/watch?v=PzKimUDmrvE
https://www.youtube.com/watch?v=xvDDrIHv5ko


Part 7, Razor Pages with EF Core in ASP.NET Core -
Update Related Data
9/22/2020 • 32 minutes to read • Edit Online

By Tom Dykstra, and Rick Anderson

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you

created by following the tutorial.

This tutorial shows how to update related data. The following illustrations show some of the completed pages.

 

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/update-related-data.md
https://github.com/tdykstra
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


Update the Course Create and Edit pages

Create a base class for Course Create and EditCreate a base class for Course Create and Edit

The scaffolded code for the Course Create and Edit pages has a Department drop-down list that shows

Department ID (an integer). The drop-down should show the Department name, so both of these pages need a

list of department names. To provide that list, use a base class for the Create and Edit pages.

Create a Pages/Courses/DepartmentNamePageModel.cs file with the following code:



using ContosoUniversity.Data;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace ContosoUniversity.Pages.Courses
{
    public class DepartmentNamePageModel : PageModel
    {
        public SelectList DepartmentNameSL { get; set; }

        public void PopulateDepartmentsDropDownList(SchoolContext _context,
            object selectedDepartment = null)
        {
            var departmentsQuery = from d in _context.Departments
                                   orderby d.Name // Sort by name.
                                   select d;

            DepartmentNameSL = new SelectList(departmentsQuery.AsNoTracking(),
                        "DepartmentID", "Name", selectedDepartment);
        }
    }
}

Update the Course Create page modelUpdate the Course Create page model

The preceding code creates a SelectList to contain the list of department names. If selectedDepartment  is

specified, that department is selected in the SelectList .

The Create and Edit page model classes will derive from DepartmentNamePageModel .

A Course is assigned to a Department. The base class for the Create and Edit pages provides a SelectList  for

selecting the department. The drop-down list that uses the SelectList  sets the Course.DepartmentID  foreign key

(FK) property. EF Core uses the Course.DepartmentID  FK to load the Department  navigation property.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.selectlist


Update Pages/Courses/Create.cshtml.cs with the following code:



using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
    public class CreateModel : DepartmentNamePageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public CreateModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        public IActionResult OnGet()
        {
            PopulateDepartmentsDropDownList(_context);
            return Page();
        }

        [BindProperty]
        public Course Course { get; set; }

        public async Task<IActionResult> OnPostAsync()
        {
            var emptyCourse = new Course();

            if (await TryUpdateModelAsync<Course>(
                 emptyCourse,
                 "course",   // Prefix for form value.
                 s => s.CourseID, s => s.DepartmentID, s => s.Title, s => s.Credits))
            {
                _context.Courses.Add(emptyCourse);
                await _context.SaveChangesAsync();
                return RedirectToPage("./Index");
            }

            // Select DepartmentID if TryUpdateModelAsync fails.
            PopulateDepartmentsDropDownList(_context, emptyCourse.DepartmentID);
            return Page();
        }
      }
}

Update the Course Create Razor pageUpdate the Course Create Razor page

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

The preceding code:

Derives from DepartmentNamePageModel .

Uses TryUpdateModelAsync  to prevent overposting.

Removes ViewData["DepartmentID"] . DepartmentNameSL  from the base class is a strongly typed model and will

be used by the Razor page. Strongly typed models are preferred over weakly typed. For more information, see

Weakly typed data (ViewData and ViewBag).

Update Pages/Courses/Create.cshtml with the following code:

https://github.com/MicrosoftDocs/feedback/issues/2515


@page
@model ContosoUniversity.Pages.Courses.CreateModel
@{
    ViewData["Title"] = "Create Course";
}
<h2>Create</h2>
<h4>Course</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <div class="form-group">
                <label asp-for="Course.CourseID" class="control-label"></label>
                <input asp-for="Course.CourseID" class="form-control" />
                <span asp-validation-for="Course.CourseID" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Course.Title" class="control-label"></label>
                <input asp-for="Course.Title" class="form-control" />
                <span asp-validation-for="Course.Title" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Course.Credits" class="control-label"></label>
                <input asp-for="Course.Credits" class="form-control" />
                <span asp-validation-for="Course.Credits" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Course.Department" class="control-label"></label>
                <select asp-for="Course.DepartmentID" class="form-control"
                        asp-items="@Model.DepartmentNameSL">
                    <option value="">-- Select Department --</option>
                </select>
                <span asp-validation-for="Course.DepartmentID" class="text-danger" />
            </div>
            <div class="form-group">
                <input type="submit" value="Create" class="btn btn-primary" />
            </div>
        </form>
    </div>
</div>
<div>
    <a asp-page="Index">Back to List</a>
</div>
@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

The preceding code makes the following changes:

Changes the caption from Depar tmentIDDepar tmentID to Depar tmentDepar tment.

Replaces "ViewBag.DepartmentID"  with DepartmentNameSL  (from the base class).

Adds the "Select Department" option. This change renders "Select Department" in the drop-down when no

department has been selected yet, rather than the first department.

Adds a validation message when the department isn't selected.

The Razor Page uses the Select Tag Helper:



<div class="form-group">
    <label asp-for="Course.Department" class="control-label"></label>
    <select asp-for="Course.DepartmentID" class="form-control"
            asp-items="@Model.DepartmentNameSL">
        <option value="">-- Select Department --</option>
    </select>
    <span asp-validation-for="Course.DepartmentID" class="text-danger" />
</div>

Update the Course Edit page modelUpdate the Course Edit page model

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
    public class EditModel : DepartmentNamePageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public EditModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Course Course { get; set; }

        public async Task<IActionResult> OnGetAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            Course = await _context.Courses
                .Include(c => c.Department).FirstOrDefaultAsync(m => m.CourseID == id);

            if (Course == null)
            {
                return NotFound();
            }

            // Select current DepartmentID.
            PopulateDepartmentsDropDownList(_context, Course.DepartmentID);
            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            var courseToUpdate = await _context.Courses.FindAsync(id);

            if (courseToUpdate == null)
            {
                return NotFound();
            }

Test the Create page. The Create page displays the department name rather than the department ID.

Update Pages/Courses/Edit.cshtml.cs with the following code:



            }

            if (await TryUpdateModelAsync<Course>(
                 courseToUpdate,
                 "course",   // Prefix for form value.
                   c => c.Credits, c => c.DepartmentID, c => c.Title))
            {
                await _context.SaveChangesAsync();
                return RedirectToPage("./Index");
            }

            // Select DepartmentID if TryUpdateModelAsync fails.
            PopulateDepartmentsDropDownList(_context, courseToUpdate.DepartmentID);
            return Page();
        }       
    }
}

Update the Course Edit Razor pageUpdate the Course Edit Razor page

The changes are similar to those made in the Create page model. In the preceding code, 

PopulateDepartmentsDropDownList  passes in the department ID, which selects that department in the drop-down

list.

Update Pages/Courses/Edit.cshtml with the following code:



@page
@model ContosoUniversity.Pages.Courses.EditModel

@{
    ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<h4>Course</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <input type="hidden" asp-for="Course.CourseID" />
            <div class="form-group">
                <label asp-for="Course.CourseID" class="control-label"></label>
                <div>@Html.DisplayFor(model => model.Course.CourseID)</div>
            </div>
            <div class="form-group">
                <label asp-for="Course.Title" class="control-label"></label>
                <input asp-for="Course.Title" class="form-control" />
                <span asp-validation-for="Course.Title" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Course.Credits" class="control-label"></label>
                <input asp-for="Course.Credits" class="form-control" />
                <span asp-validation-for="Course.Credits" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Course.Department" class="control-label"></label>
                <select asp-for="Course.DepartmentID" class="form-control" 
                        asp-items="@Model.DepartmentNameSL"></select>
                <span asp-validation-for="Course.DepartmentID" class="text-danger"></span>
            </div>
            <div class="form-group">
                <input type="submit" value="Save" class="btn btn-primary" />
            </div>
        </form>
    </div>
</div>

<div>
    <a asp-page="./Index">Back to List</a>
</div>

@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Update the Course Details and Delete pages

The preceding code makes the following changes:

Displays the course ID. Generally the Primary Key (PK) of an entity isn't displayed. PKs are usually meaningless

to users. In this case, the PK is the course number.

Changes the caption for the Department drop-down from Depar tmentIDDepar tmentID to Depar tmentDepar tment.

Replaces "ViewBag.DepartmentID"  with DepartmentNameSL  (from the base class).

The page contains a hidden field ( <input type="hidden"> ) for the course number. Adding a <label>  tag helper

with asp-for="Course.CourseID"  doesn't eliminate the need for the hidden field. <input type="hidden">  is

required for the course number to be included in the posted data when the user clicks SaveSave.



Update the Course page modelsUpdate the Course page models

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
    public class DeleteModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public DeleteModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Course Course { get; set; }

        public async Task<IActionResult> OnGetAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            Course = await _context.Courses
                .AsNoTracking()
                .Include(c => c.Department)
                .FirstOrDefaultAsync(m => m.CourseID == id);

            if (Course == null)
            {
                return NotFound();
            }
            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            Course = await _context.Courses.FindAsync(id);

            if (Course != null)
            {
                _context.Courses.Remove(Course);
                await _context.SaveChangesAsync();
            }

            return RedirectToPage("./Index");
        }
    }
}

AsNoTracking can improve performance when tracking isn't required.

Update Pages/Courses/Delete.cshtml.cs with the following code to add AsNoTracking :

Make the same change in the Pages/Courses/Details.cshtml.cs file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.asnotracking#microsoft_entityframeworkcore_entityframeworkqueryableextensions_asnotracking__1_system_linq_iqueryable___0__


using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
    public class DetailsModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public DetailsModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        public Course Course { get; set; }

        public async Task<IActionResult> OnGetAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            Course = await _context.Courses
                 .AsNoTracking()
                 .Include(c => c.Department)
                 .FirstOrDefaultAsync(m => m.CourseID == id);

            if (Course == null)
            {
                return NotFound();
            }
            return Page();
        }
    }
}

Update the Course Razor pagesUpdate the Course Razor pages
Update Pages/Courses/Delete.cshtml with the following code:



@page
@model ContosoUniversity.Pages.Courses.DeleteModel

@{
    ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<h3>Are you sure you want to delete this?</h3>
<div>
    <h4>Course</h4>
    <hr />
    <dl class="row">
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Course.CourseID)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Course.CourseID)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Course.Title)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Course.Title)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Course.Credits)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Course.Credits)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Course.Department)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Course.Department.Name)
        </dd>
    </dl>
    
    <form method="post">
        <input type="hidden" asp-for="Course.CourseID" />
        <input type="submit" value="Delete" class="btn btn-danger" /> |
        <a asp-page="./Index">Back to List</a>
    </form>
</div>

Make the same changes to the Details page.



@page
@model ContosoUniversity.Pages.Courses.DetailsModel

@{
    ViewData["Title"] = "Details";
}

<h2>Details</h2>

<div>
    <h4>Course</h4>
    <hr />
    <dl class="row">
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Course.CourseID)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Course.CourseID)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Course.Title)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Course.Title)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Course.Credits)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Course.Credits)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Course.Department)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Course.Department.Name)
        </dd>
    </dl>
</div>
<div>
    <a asp-page="./Edit" asp-route-id="@Model.Course.CourseID">Edit</a> |
    <a asp-page="./Index">Back to List</a>
</div>

Test the Course pages

Update the instructor Create and Edit pages

Test the create, edit, details, and delete pages.

Instructors may teach any number of courses. The following image shows the instructor Edit page with an array

of course checkboxes.



Create a class for assigned courses dataCreate a class for assigned courses data

namespace ContosoUniversity.Models.SchoolViewModels
{
    public class AssignedCourseData
    {
        public int CourseID { get; set; }
        public string Title { get; set; }
        public bool Assigned { get; set; }
    }
}

Create an Instructor page model base classCreate an Instructor page model base class

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels;
using Microsoft.AspNetCore.Mvc.RazorPages;
using System.Collections.Generic;

The checkboxes enable changes to courses an instructor is assigned to. A checkbox is displayed for every course

in the database. Courses that the instructor is assigned to are selected. The user can select or clear checkboxes to

change course assignments. If the number of courses were much greater, a different UI might work better. But the

method of managing a many-to-many relationship shown here wouldn't change. To create or delete

relationships, you manipulate a join entity.

Create SchoolViewModels/AssignedCourseData.cs with the following code:

The AssignedCourseData  class contains data to create the check boxes for courses assigned to an instructor.

Create the Pages/Instructors/InstructorCoursesPageModel.cs base class:



using System.Linq;

namespace ContosoUniversity.Pages.Instructors
{
    public class InstructorCoursesPageModel : PageModel
    {

        public List<AssignedCourseData> AssignedCourseDataList;

        public void PopulateAssignedCourseData(SchoolContext context, 
                                               Instructor instructor)
        {
            var allCourses = context.Courses;
            var instructorCourses = new HashSet<int>(
                instructor.CourseAssignments.Select(c => c.CourseID));
            AssignedCourseDataList = new List<AssignedCourseData>();
            foreach (var course in allCourses)
            {
                AssignedCourseDataList.Add(new AssignedCourseData
                {
                    CourseID = course.CourseID,
                    Title = course.Title,
                    Assigned = instructorCourses.Contains(course.CourseID)
                });
            }
        }

        public void UpdateInstructorCourses(SchoolContext context, 
            string[] selectedCourses, Instructor instructorToUpdate)
        {
            if (selectedCourses == null)
            {
                instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
                return;
            }

            var selectedCoursesHS = new HashSet<string>(selectedCourses);
            var instructorCourses = new HashSet<int>
                (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
            foreach (var course in context.Courses)
            {
                if (selectedCoursesHS.Contains(course.CourseID.ToString()))
                {
                    if (!instructorCourses.Contains(course.CourseID))
                    {
                        instructorToUpdate.CourseAssignments.Add(
                            new CourseAssignment
                            {
                                InstructorID = instructorToUpdate.ID,
                                CourseID = course.CourseID
                            });
                    }
                }
                else
                {
                    if (instructorCourses.Contains(course.CourseID))
                    {
                        CourseAssignment courseToRemove
                            = instructorToUpdate
                                .CourseAssignments
                                .SingleOrDefault(i => i.CourseID == course.CourseID);
                        context.Remove(courseToRemove);
                    }
                }
            }
        }
    }
}



if (selectedCourses == null)
{
    instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
    return;
}

if (selectedCoursesHS.Contains(course.CourseID.ToString()))
{
    if (!instructorCourses.Contains(course.CourseID))
    {
        instructorToUpdate.CourseAssignments.Add(
            new CourseAssignment
            {
                InstructorID = instructorToUpdate.ID,
                CourseID = course.CourseID
            });
    }
}

else
{
    if (instructorCourses.Contains(course.CourseID))
    {
        CourseAssignment courseToRemove
            = instructorToUpdate
                .CourseAssignments
                .SingleOrDefault(i => i.CourseID == course.CourseID);
        context.Remove(courseToRemove);
    }
}

Handle office locationHandle office location

The InstructorCoursesPageModel  is the base class you will use for the Edit and Create page models. 

PopulateAssignedCourseData  reads all Course  entities to populate AssignedCourseDataList . For each course, the

code sets the CourseID , title, and whether or not the instructor is assigned to the course. A HashSet is used for

efficient lookups.

Since the Razor page doesn't have a collection of Course entities, the model binder can't automatically update the

CourseAssignments  navigation property. Instead of using the model binder to update the CourseAssignments

navigation property, you do that in the new UpdateInstructorCourses  method. Therefore you need to exclude the 

CourseAssignments  property from model binding. This doesn't require any change to the code that calls 

TryUpdateModel  because you're using the overload with declared properties and CourseAssignments  isn't in the

include list.

If no check boxes were selected, the code in UpdateInstructorCourses  initializes the CourseAssignments  navigation

property with an empty collection and returns:

The code then loops through all courses in the database and checks each course against the ones currently

assigned to the instructor versus the ones that were selected in the page. To facilitate efficient lookups, the latter

two collections are stored in HashSet  objects.

If the check box for a course was selected but the course isn't in the Instructor.CourseAssignments  navigation

property, the course is added to the collection in the navigation property.

If the check box for a course wasn't selected, but the course is in the Instructor.CourseAssignments  navigation

property, the course is removed from the navigation property.

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.hashset-1


Update the Instructor Edit page modelUpdate the Instructor Edit page model

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
    public class EditModel : InstructorCoursesPageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public EditModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Instructor Instructor { get; set; }

        public async Task<IActionResult> OnGetAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            Instructor = await _context.Instructors
                .Include(i => i.OfficeAssignment)
                .Include(i => i.CourseAssignments).ThenInclude(i => i.Course)
                .AsNoTracking()
                .FirstOrDefaultAsync(m => m.ID == id);

            if (Instructor == null)
            {
                return NotFound();
            }
            PopulateAssignedCourseData(_context, Instructor);
            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int? id, string[] selectedCourses)
        {
            if (id == null)
            {
                return NotFound();
            }

            var instructorToUpdate = await _context.Instructors
                .Include(i => i.OfficeAssignment)
                .Include(i => i.CourseAssignments)
                    .ThenInclude(i => i.Course)
                .FirstOrDefaultAsync(s => s.ID == id);

            if (instructorToUpdate == null)
            {

Another relationship the edit page has to handle is the one-to-zero-or-one relationship that the Instructor entity

has with the OfficeAssignment  entity. The instructor edit code must handle the following scenarios:

If the user clears the office assignment, delete the OfficeAssignment  entity.

If the user enters an office assignment and it was empty, create a new OfficeAssignment  entity.

If the user changes the office assignment, update the OfficeAssignment  entity.

Update Pages/Instructors/Edit.cshtml.cs with the following code:



            {
                return NotFound();
            }

            if (await TryUpdateModelAsync<Instructor>(
                instructorToUpdate,
                "Instructor",
                i => i.FirstMidName, i => i.LastName,
                i => i.HireDate, i => i.OfficeAssignment))
            {
                if (String.IsNullOrWhiteSpace(
                    instructorToUpdate.OfficeAssignment?.Location))
                {
                    instructorToUpdate.OfficeAssignment = null;
                }
                UpdateInstructorCourses(_context, selectedCourses, instructorToUpdate);
                await _context.SaveChangesAsync();
                return RedirectToPage("./Index");
            }
            UpdateInstructorCourses(_context, selectedCourses, instructorToUpdate);
            PopulateAssignedCourseData(_context, instructorToUpdate);
            return Page();
        }
    }
}

Update the Instructor Edit Razor pageUpdate the Instructor Edit Razor page

@page
@model ContosoUniversity.Pages.Instructors.EditModel
@{
    ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Instructor</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <input type="hidden" asp-for="Instructor.ID" />
            <div class="form-group">
                <label asp-for="Instructor.LastName" class="control-label"></label>
                <input asp-for="Instructor.LastName" class="form-control" />
                <span asp-validation-for="Instructor.LastName" class="text-danger"></span>

The preceding code:

Gets the current Instructor  entity from the database using eager loading for the OfficeAssignment , 

CourseAssignment , and CourseAssignment.Course  navigation properties.

Updates the retrieved Instructor  entity with values from the model binder. TryUpdateModel  prevents

overposting.

If the office location is blank, sets Instructor.OfficeAssignment  to null. When Instructor.OfficeAssignment  is

null, the related row in the OfficeAssignment  table is deleted.

Calls PopulateAssignedCourseData  in OnGetAsync  to provide information for the checkboxes using the 

AssignedCourseData  view model class.

Calls UpdateInstructorCourses  in OnPostAsync  to apply information from the checkboxes to the Instructor

entity being edited.

Calls PopulateAssignedCourseData  and UpdateInstructorCourses  in OnPostAsync  if TryUpdateModel  fails. These

method calls restore the assigned course data entered on the page when it is redisplayed with an error

message.

Update Pages/Instructors/Edit.cshtml with the following code:



            </div>
            <div class="form-group">
                <label asp-for="Instructor.FirstMidName" class="control-label"></label>
                <input asp-for="Instructor.FirstMidName" class="form-control" />
                <span asp-validation-for="Instructor.FirstMidName" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.HireDate" class="control-label"></label>
                <input asp-for="Instructor.HireDate" class="form-control" />
                <span asp-validation-for="Instructor.HireDate" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
                <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />
                <span asp-validation-for="Instructor.OfficeAssignment.Location" class="text-danger" />
            </div>
            <div class="form-group">
                <div class="table">
                    <table>
                        <tr>
                            @{
                                int cnt = 0;

                                foreach (var course in Model.AssignedCourseDataList)
                                {
                                    if (cnt++ % 3 == 0)
                                    {
                                        @:</tr><tr>
                                    }
                                    @:<td>
                                        <input type="checkbox"
                                               name="selectedCourses"
                                               value="@course.CourseID"
                                               @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
                                               @course.CourseID @:  @course.Title
                                    @:</td>
                                }
                                @:</tr>
                            }
                    </table>
                </div>
            </div>
            <div class="form-group">
                <input type="submit" value="Save" class="btn btn-primary" />
            </div>
        </form>
    </div>
</div>

<div>
    <a asp-page="./Index">Back to List</a>
</div>

@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

The preceding code creates an HTML table that has three columns. Each column has a checkbox and a caption

containing the course number and title. The checkboxes all have the same name ("selectedCourses"). Using the

same name informs the model binder to treat them as a group. The value attribute of each checkbox is set to 

CourseID . When the page is posted, the model binder passes an array that consists of the CourseID  values for

only the checkboxes that are selected.

When the checkboxes are initially rendered, courses assigned to the instructor are selected.

Note: The approach taken here to edit instructor course data works well when there's a limited number of



Update the Instructor Create pageUpdate the Instructor Create page

courses. For collections that are much larger, a different UI and a different updating method would be more

useable and efficient.

Run the app and test the updated Instructors Edit page. Change some course assignments. The changes are

reflected on the Index page.

Update the Instructor Create page model and Razor page with code similar to the Edit page:



using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
    public class CreateModel : InstructorCoursesPageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public CreateModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        public IActionResult OnGet()
        {
            var instructor = new Instructor();
            instructor.CourseAssignments = new List<CourseAssignment>();

            // Provides an empty collection for the foreach loop
            // foreach (var course in Model.AssignedCourseDataList)
            // in the Create Razor page.
            PopulateAssignedCourseData(_context, instructor);
            return Page();
        }

        [BindProperty]
        public Instructor Instructor { get; set; }

        public async Task<IActionResult> OnPostAsync(string[] selectedCourses)
        {
            var newInstructor = new Instructor();
            if (selectedCourses != null)
            {
                newInstructor.CourseAssignments = new List<CourseAssignment>();
                foreach (var course in selectedCourses)
                {
                    var courseToAdd = new CourseAssignment
                    {
                        CourseID = int.Parse(course)
                    };
                    newInstructor.CourseAssignments.Add(courseToAdd);
                }
            }

            if (await TryUpdateModelAsync<Instructor>(
                newInstructor,
                "Instructor",
                i => i.FirstMidName, i => i.LastName,
                i => i.HireDate, i => i.OfficeAssignment))
            {
                _context.Instructors.Add(newInstructor);                
                await _context.SaveChangesAsync();
                return RedirectToPage("./Index");
            }
            PopulateAssignedCourseData(_context, newInstructor);
            return Page();
        }
    }
}

@page
@model ContosoUniversity.Pages.Instructors.CreateModel



@{
    ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Instructor</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <div class="form-group">
                <label asp-for="Instructor.LastName" class="control-label"></label>
                <input asp-for="Instructor.LastName" class="form-control" />
                <span asp-validation-for="Instructor.LastName" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.FirstMidName" class="control-label"></label>
                <input asp-for="Instructor.FirstMidName" class="form-control" />
                <span asp-validation-for="Instructor.FirstMidName" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.HireDate" class="control-label"></label>
                <input asp-for="Instructor.HireDate" class="form-control" />
                <span asp-validation-for="Instructor.HireDate" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
                <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />
                <span asp-validation-for="Instructor.OfficeAssignment.Location" class="text-danger" />
            </div>
            <div class="form-group">
                <div class="table">
                    <table>
                        <tr>
                            @{
                                int cnt = 0;

                                foreach (var course in Model.AssignedCourseDataList)
                                {
                                    if (cnt++ % 3 == 0)
                                    {
                                        @:</tr><tr>
                                    }
                                    @:<td>
                                        <input type="checkbox"
                                               name="selectedCourses"
                                               value="@course.CourseID"
                                               @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
                                               @course.CourseID @:  @course.Title
                                    @:</td>
                                }
                                @:</tr>
                            }
                    </table>
                </div>
            </div>
            <div class="form-group">
                <input type="submit" value="Create" class="btn btn-primary" />
            </div>
        </form>
    </div>
</div>

<div>
    <a asp-page="Index">Back to List</a>
</div>



@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Update the Instructor Delete page

Test the instructor Create page.

Update Pages/Instructors/Delete.cshtml.cs with the following code:



using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
    public class DeleteModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public DeleteModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Instructor Instructor { get; set; }

        public async Task<IActionResult> OnGetAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            Instructor = await _context.Instructors.FirstOrDefaultAsync(m => m.ID == id);

            if (Instructor == null)
            {
                return NotFound();
            }
            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            Instructor instructor = await _context.Instructors
                .Include(i => i.CourseAssignments)
                .SingleAsync(i => i.ID == id);

            if (instructor == null)
            {
                return RedirectToPage("./Index");
            }

            var departments = await _context.Departments
                .Where(d => d.InstructorID == id)
                .ToListAsync();
            departments.ForEach(d => d.InstructorID = null);

            _context.Instructors.Remove(instructor);

            await _context.SaveChangesAsync();
            return RedirectToPage("./Index");
        }
    }
}



Next steps

The preceding code makes the following changes:

Uses eager loading for the CourseAssignments  navigation property. CourseAssignments  must be included

or they aren't deleted when the instructor is deleted. To avoid needing to read them, configure cascade

delete in the database.

If the instructor to be deleted is assigned as administrator of any departments, removes the instructor

assignment from those departments.

Run the app and test the Delete page.

 P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

N E X TN E X T

T U TO R I A LT U TO R I A L

This tutorial demonstrates updating related data. If you run into problems you can't solve, download or view the

completed app. Download instructions.

The following illustrations shows some of the completed pages.

 

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


Create a base class to share common code

Examine and test the Create and Edit course pages. Create a new course. The department is selected by its

primary key (an integer), not its name. Edit the new course. When you have finished testing, delete the new

course.

The Courses/Create and Courses/Edit pages each need a list of department names. Create the

Pages/Courses/DepartmentNamePageModel.cshtml.cs base class for the Create and Edit pages:



using ContosoUniversity.Data;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace ContosoUniversity.Pages.Courses
{
    public class DepartmentNamePageModel : PageModel
    {
        public SelectList DepartmentNameSL { get; set; }

        public void PopulateDepartmentsDropDownList(SchoolContext _context,
            object selectedDepartment = null)
        {
            var departmentsQuery = from d in _context.Departments
                                   orderby d.Name // Sort by name.
                                   select d;

            DepartmentNameSL = new SelectList(departmentsQuery.AsNoTracking(),
                        "DepartmentID", "Name", selectedDepartment);
        }
    }
}

Customize the Courses Pages

The preceding code creates a SelectList to contain the list of department names. If selectedDepartment  is

specified, that department is selected in the SelectList .

The Create and Edit page model classes will derive from DepartmentNamePageModel .

When a new course entity is created, it must have a relationship to an existing department. To add a department

while creating a course, the base class for Create and Edit contains a drop-down list for selecting the department.

The drop-down list sets the Course.DepartmentID  foreign key (FK) property. EF Core uses the 

Course.DepartmentID  FK to load the Department  navigation property.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.selectlist


Update the Create page model with the following code:



using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
    public class CreateModel : DepartmentNamePageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public CreateModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        public IActionResult OnGet()
        {
            PopulateDepartmentsDropDownList(_context);
            return Page();
        }

        [BindProperty]
        public Course Course { get; set; }

        public async Task<IActionResult> OnPostAsync()
        {
            if (!ModelState.IsValid)
            {
                return Page();
            }

            var emptyCourse = new Course();

            if (await TryUpdateModelAsync<Course>(
                 emptyCourse,
                 "course",   // Prefix for form value.
                 s => s.CourseID, s => s.DepartmentID, s => s.Title, s => s.Credits))
            {
                _context.Courses.Add(emptyCourse);
                await _context.SaveChangesAsync();
                return RedirectToPage("./Index");
            }

            // Select DepartmentID if TryUpdateModelAsync fails.
            PopulateDepartmentsDropDownList(_context, emptyCourse.DepartmentID);
            return Page();
        }
      }
}

Update the Courses Create pageUpdate the Courses Create page

The preceding code:

Derives from DepartmentNamePageModel .

Uses TryUpdateModelAsync  to prevent overposting.

Replaces ViewData["DepartmentID"]  with DepartmentNameSL  (from the base class).

ViewData["DepartmentID"]  is replaced with the strongly typed DepartmentNameSL . Strongly typed models are

preferred over weakly typed. For more information, see Weakly typed data (ViewData and ViewBag).

Update Pages/Courses/Create.cshtml with the following code:



@page
@model ContosoUniversity.Pages.Courses.CreateModel
@{
    ViewData["Title"] = "Create Course";
}
<h2>Create</h2>
<h4>Course</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <div class="form-group">
                <label asp-for="Course.CourseID" class="control-label"></label>
                <input asp-for="Course.CourseID" class="form-control" />
                <span asp-validation-for="Course.CourseID" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Course.Title" class="control-label"></label>
                <input asp-for="Course.Title" class="form-control" />
                <span asp-validation-for="Course.Title" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Course.Credits" class="control-label"></label>
                <input asp-for="Course.Credits" class="form-control" />
                <span asp-validation-for="Course.Credits" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Course.Department" class="control-label"></label>
                <select asp-for="Course.DepartmentID" class="form-control"
                        asp-items="@Model.DepartmentNameSL">
                    <option value="">-- Select Department --</option>
                </select>
                <span asp-validation-for="Course.DepartmentID" class="text-danger" />
            </div>
            <div class="form-group">
                <input type="submit" value="Create" class="btn btn-default" />
            </div>
        </form>
    </div>
</div>
<div>
    <a asp-page="Index">Back to List</a>
</div>
@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

The preceding markup makes the following changes:

Changes the caption from Depar tmentIDDepar tmentID to Depar tmentDepar tment.

Replaces "ViewBag.DepartmentID"  with DepartmentNameSL  (from the base class).

Adds the "Select Department" option. This change renders "Select Department" rather than the first

department.

Adds a validation message when the department isn't selected.

The Razor Page uses the Select Tag Helper:



<div class="form-group">
    <label asp-for="Course.Department" class="control-label"></label>
    <select asp-for="Course.DepartmentID" class="form-control"
            asp-items="@Model.DepartmentNameSL">
        <option value="">-- Select Department --</option>
    </select>
    <span asp-validation-for="Course.DepartmentID" class="text-danger" />
</div>

Update the Courses Edit page.Update the Courses Edit page.

Test the Create page. The Create page displays the department name rather than the department ID.

Replace the code in Pages/Courses/Edit.cshtml.cs with the following code:



using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Courses
{
    public class EditModel : DepartmentNamePageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public EditModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Course Course { get; set; }

        public async Task<IActionResult> OnGetAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            Course = await _context.Courses
                .Include(c => c.Department).FirstOrDefaultAsync(m => m.CourseID == id);

            if (Course == null)
            {
                return NotFound();
            }

            // Select current DepartmentID.
            PopulateDepartmentsDropDownList(_context,Course.DepartmentID);
            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int? id)
        {
            if (!ModelState.IsValid)
            {
                return Page();
            }

            var courseToUpdate = await _context.Courses.FindAsync(id);

            if (await TryUpdateModelAsync<Course>(
                 courseToUpdate,
                 "course",   // Prefix for form value.
                   c => c.Credits, c => c.DepartmentID, c => c.Title))
            {
                await _context.SaveChangesAsync();
                return RedirectToPage("./Index");
            }

            // Select DepartmentID if TryUpdateModelAsync fails.
            PopulateDepartmentsDropDownList(_context, courseToUpdate.DepartmentID);
            return Page();
        }       
    }
}

The changes are similar to those made in the Create page model. In the preceding code, 

PopulateDepartmentsDropDownList  passes in the department ID, which select the department specified in the drop-



@page
@model ContosoUniversity.Pages.Courses.EditModel

@{
    ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<h4>Course</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <input type="hidden" asp-for="Course.CourseID" />
            <div class="form-group">
                <label asp-for="Course.CourseID" class="control-label"></label>
                <div>@Html.DisplayFor(model => model.Course.CourseID)</div>
            </div>
            <div class="form-group">
                <label asp-for="Course.Title" class="control-label"></label>
                <input asp-for="Course.Title" class="form-control" />
                <span asp-validation-for="Course.Title" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Course.Credits" class="control-label"></label>
                <input asp-for="Course.Credits" class="form-control" />
                <span asp-validation-for="Course.Credits" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Course.Department" class="control-label"></label>
                <select asp-for="Course.DepartmentID" class="form-control" 
                        asp-items="@Model.DepartmentNameSL"></select>
                <span asp-validation-for="Course.DepartmentID" class="text-danger"></span>
            </div>
            <div class="form-group">
                <input type="submit" value="Save" class="btn btn-default" />
            </div>
        </form>
    </div>
</div>

<div>
    <a asp-page="./Index">Back to List</a>
</div>

@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

down list.

Update Pages/Courses/Edit.cshtml with the following markup:

The preceding markup makes the following changes:

Displays the course ID. Generally the Primary Key (PK) of an entity isn't displayed. PKs are usually meaningless

to users. In this case, the PK is the course number.

Changes the caption from Depar tmentIDDepar tmentID to Depar tmentDepar tment.

Replaces "ViewBag.DepartmentID"  with DepartmentNameSL  (from the base class).

The page contains a hidden field ( <input type="hidden"> ) for the course number. Adding a <label>  tag helper

with asp-for="Course.CourseID"  doesn't eliminate the need for the hidden field. <input type="hidden">  is



Add AsNoTracking to the Details and Delete page models

public class DeleteModel : PageModel
{
    private readonly ContosoUniversity.Data.SchoolContext _context;

    public DeleteModel(ContosoUniversity.Data.SchoolContext context)
    {
        _context = context;
    }

    [BindProperty]
    public Course Course { get; set; }

    public async Task<IActionResult> OnGetAsync(int? id)
    {
        if (id == null)
        {
            return NotFound();
        }

        Course = await _context.Courses
            .AsNoTracking()
            .Include(c => c.Department)
            .FirstOrDefaultAsync(m => m.CourseID == id);

        if (Course == null)
        {
            return NotFound();
        }
        return Page();
    }

    public async Task<IActionResult> OnPostAsync(int? id)
    {
        if (id == null)
        {
            return NotFound();
        }

        Course = await _context.Courses
            .AsNoTracking()
            .FirstOrDefaultAsync(m => m.CourseID == id);

        if (Course != null)
        {
            _context.Courses.Remove(Course);
            await _context.SaveChangesAsync();
        }

        return RedirectToPage("./Index");
    }
}

required for the course number to be included in the posted data when the user clicks SaveSave.

Test the updated code. Create, edit, and delete a course.

AsNoTracking can improve performance when tracking isn't required. Add AsNoTracking  to the Delete and

Details page model. The following code shows the updated Delete page model:

Update the OnGetAsync  method in the Pages/Courses/Details.cshtml.cs file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entityframeworkqueryableextensions.asnotracking#microsoft_entityframeworkcore_entityframeworkqueryableextensions_asnotracking__1_system_linq_iqueryable___0__


public async Task<IActionResult> OnGetAsync(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    Course = await _context.Courses
         .AsNoTracking()
         .Include(c => c.Department)
         .FirstOrDefaultAsync(m => m.CourseID == id);

    if (Course == null)
    {
        return NotFound();
    }
    return Page();
}

Modify the Delete and Details pagesModify the Delete and Details pages
Update the Delete Razor page with the following markup:



@page
@model ContosoUniversity.Pages.Courses.DeleteModel

@{
    ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<h3>Are you sure you want to delete this?</h3>
<div>
    <h4>Course</h4>
    <hr />
    <dl class="dl-horizontal">
        <dt>
            @Html.DisplayNameFor(model => model.Course.CourseID)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Course.CourseID)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Course.Title)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Course.Title)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Course.Credits)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Course.Credits)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Course.Department)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Course.Department.DepartmentID)
        </dd>
    </dl>
    
    <form method="post">
        <input type="hidden" asp-for="Course.CourseID" />
        <input type="submit" value="Delete" class="btn btn-default" /> |
        <a asp-page="./Index">Back to List</a>
    </form>
</div>

Test the Course pagesTest the Course pages

Update the instructor pages

Add office locationAdd office location

Make the same changes to the Details page.

Test create, edit, details, and delete.

The following sections update the instructor pages.

When editing an instructor record, you may want to update the instructor's office assignment. The Instructor

entity has a one-to-zero-or-one relationship with the OfficeAssignment  entity. The instructor code must handle:

If the user clears the office assignment, delete the OfficeAssignment  entity.

If the user enters an office assignment and it was empty, create a new OfficeAssignment  entity.



public class EditModel : PageModel
{
    private readonly ContosoUniversity.Data.SchoolContext _context;

    public EditModel(ContosoUniversity.Data.SchoolContext context)
    {
        _context = context;
    }

    [BindProperty]
    public Instructor Instructor { get; set; }

    public async Task<IActionResult> OnGetAsync(int? id)
    {
        if (id == null)
        {
            return NotFound();
        }

        Instructor = await _context.Instructors
            .Include(i => i.OfficeAssignment)
            .AsNoTracking()
            .FirstOrDefaultAsync(m => m.ID == id);

        if (Instructor == null)
        {
            return NotFound();
        }
        return Page();
    }

    public async Task<IActionResult> OnPostAsync(int? id)
    {
        if (!ModelState.IsValid)
        {
            return Page();
        }

        var instructorToUpdate = await _context.Instructors
            .Include(i => i.OfficeAssignment)
            .FirstOrDefaultAsync(s => s.ID == id);

        if (await TryUpdateModelAsync<Instructor>(
            instructorToUpdate,
            "Instructor",
            i => i.FirstMidName, i => i.LastName, 
            i => i.HireDate, i => i.OfficeAssignment))
        {
            if (String.IsNullOrWhiteSpace(
                instructorToUpdate.OfficeAssignment?.Location))
            {
                instructorToUpdate.OfficeAssignment = null;
            }
            await _context.SaveChangesAsync();
        }
        return RedirectToPage("./Index");

    }
}

If the user changes the office assignment, update the OfficeAssignment  entity.

Update the instructors Edit page model with the following code:

The preceding code:



Update the instructor Edit pageUpdate the instructor Edit page

@page
@model ContosoUniversity.Pages.Instructors.EditModel
@{
    ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Instructor</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <input type="hidden" asp-for="Instructor.ID" />
            <div class="form-group">
                <label asp-for="Instructor.LastName" class="control-label"></label>
                <input asp-for="Instructor.LastName" class="form-control" />
                <span asp-validation-for="Instructor.LastName" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.FirstMidName" class="control-label"></label>
                <input asp-for="Instructor.FirstMidName" class="form-control" />
                <span asp-validation-for="Instructor.FirstMidName" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.HireDate" class="control-label"></label>
                <input asp-for="Instructor.HireDate" class="form-control" />
                <span asp-validation-for="Instructor.HireDate" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
                <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />
                <span asp-validation-for="Instructor.OfficeAssignment.Location" class="text-danger" />
            </div>
            <div class="form-group">
                <input type="submit" value="Save" class="btn btn-default" />
            </div>
        </form>
    </div>
</div>

<div>
    <a asp-page="./Index">Back to List</a>
</div>

@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Add Course assignments to the instructor Edit page

Gets the current Instructor  entity from the database using eager loading for the OfficeAssignment

navigation property.

Updates the retrieved Instructor  entity with values from the model binder. TryUpdateModel  prevents

overposting.

If the office location is blank, sets Instructor.OfficeAssignment  to null. When Instructor.OfficeAssignment  is

null, the related row in the OfficeAssignment  table is deleted.

Update Pages/Instructors/Edit.cshtml with the office location:

Verify you can change an instructors office location.

Instructors may teach any number of courses. In this section, you add the ability to change course assignments.



Add classes to support Create and Edit instructor pagesAdd classes to support Create and Edit instructor pages

namespace ContosoUniversity.Models.SchoolViewModels
{
    public class AssignedCourseData
    {
        public int CourseID { get; set; }
        public string Title { get; set; }
        public bool Assigned { get; set; }
    }
}

The following image shows the updated instructor Edit page:

Course  and Instructor  has a many-to-many relationship. To add and remove relationships, you add and

remove entities from the CourseAssignments  join entity set.

Check boxes enable changes to courses an instructor is assigned to. A check box is displayed for every course in

the database. Courses that the instructor is assigned to are checked. The user can select or clear check boxes to

change course assignments. If the number of courses were much greater :

You'd probably use a different user interface to display the courses.

The method of manipulating a join entity to create or delete relationships wouldn't change.

Create SchoolViewModels/AssignedCourseData.cs with the following code:

The AssignedCourseData  class contains data to create the check boxes for assigned courses by an instructor.



using ContosoUniversity.Data;
using ContosoUniversity.Models;
using ContosoUniversity.Models.SchoolViewModels;
using Microsoft.AspNetCore.Mvc.RazorPages;
using System.Collections.Generic;
using System.Linq;

namespace ContosoUniversity.Pages.Instructors
{
    public class InstructorCoursesPageModel : PageModel
    {

        public List<AssignedCourseData> AssignedCourseDataList;

        public void PopulateAssignedCourseData(SchoolContext context, 
                                               Instructor instructor)
        {
            var allCourses = context.Courses;
            var instructorCourses = new HashSet<int>(
                instructor.CourseAssignments.Select(c => c.CourseID));
            AssignedCourseDataList = new List<AssignedCourseData>();
            foreach (var course in allCourses)
            {
                AssignedCourseDataList.Add(new AssignedCourseData
                {
                    CourseID = course.CourseID,
                    Title = course.Title,
                    Assigned = instructorCourses.Contains(course.CourseID)
                });
            }
        }

        public void UpdateInstructorCourses(SchoolContext context, 
            string[] selectedCourses, Instructor instructorToUpdate)
        {
            if (selectedCourses == null)
            {
                instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
                return;
            }

            var selectedCoursesHS = new HashSet<string>(selectedCourses);
            var instructorCourses = new HashSet<int>
                (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
            foreach (var course in context.Courses)
            {
                if (selectedCoursesHS.Contains(course.CourseID.ToString()))
                {
                    if (!instructorCourses.Contains(course.CourseID))
                    {
                        instructorToUpdate.CourseAssignments.Add(
                            new CourseAssignment
                            {
                                InstructorID = instructorToUpdate.ID,
                                CourseID = course.CourseID
                            });
                    }
                }
                else
                {
                    if (instructorCourses.Contains(course.CourseID))
                    {
                        CourseAssignment courseToRemove
                            = instructorToUpdate
                                .CourseAssignments
                                .SingleOrDefault(i => i.CourseID == course.CourseID);

Create the Pages/Instructors/InstructorCoursesPageModel.cshtml.cs base class:



                                .SingleOrDefault(i => i.CourseID == course.CourseID);
                        context.Remove(courseToRemove);
                    }
                }
            }
        }
    }
}

Instructors Edit page modelInstructors Edit page model

The InstructorCoursesPageModel  is the base class you will use for the Edit and Create page models. 

PopulateAssignedCourseData  reads all Course  entities to populate AssignedCourseDataList . For each course, the

code sets the CourseID , title, and whether or not the instructor is assigned to the course. A HashSet is used to

create efficient lookups.

Update the instructor Edit page model with the following code:

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.hashset-1


public class EditModel : InstructorCoursesPageModel
{
    private readonly ContosoUniversity.Data.SchoolContext _context;

    public EditModel(ContosoUniversity.Data.SchoolContext context)
    {
        _context = context;
    }

    [BindProperty]
    public Instructor Instructor { get; set; }

    public async Task<IActionResult> OnGetAsync(int? id)
    {
        if (id == null)
        {
            return NotFound();
        }

        Instructor = await _context.Instructors
            .Include(i => i.OfficeAssignment)
            .Include(i => i.CourseAssignments).ThenInclude(i => i.Course)
            .AsNoTracking()
            .FirstOrDefaultAsync(m => m.ID == id);

        if (Instructor == null)
        {
            return NotFound();
        }
        PopulateAssignedCourseData(_context, Instructor);
        return Page();
    }

    public async Task<IActionResult> OnPostAsync(int? id, string[] selectedCourses)
    {
        if (!ModelState.IsValid)
        {
            return Page();
        }

        var instructorToUpdate = await _context.Instructors
            .Include(i => i.OfficeAssignment)
            .Include(i => i.CourseAssignments)
                .ThenInclude(i => i.Course)
            .FirstOrDefaultAsync(s => s.ID == id);

        if (await TryUpdateModelAsync<Instructor>(
            instructorToUpdate,
            "Instructor",
            i => i.FirstMidName, i => i.LastName,
            i => i.HireDate, i => i.OfficeAssignment))
        {
            if (String.IsNullOrWhiteSpace(
                instructorToUpdate.OfficeAssignment?.Location))
            {
                instructorToUpdate.OfficeAssignment = null;
            }
            UpdateInstructorCourses(_context, selectedCourses, instructorToUpdate);
            await _context.SaveChangesAsync();
            return RedirectToPage("./Index");
        }
        UpdateInstructorCourses(_context, selectedCourses, instructorToUpdate);
        PopulateAssignedCourseData(_context, instructorToUpdate);
        return Page();
    }
}



@page
@model ContosoUniversity.Pages.Instructors.EditModel
@{
    ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Instructor</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <input type="hidden" asp-for="Instructor.ID" />
            <div class="form-group">
                <label asp-for="Instructor.LastName" class="control-label"></label>
                <input asp-for="Instructor.LastName" class="form-control" />
                <span asp-validation-for="Instructor.LastName" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.FirstMidName" class="control-label"></label>
                <input asp-for="Instructor.FirstMidName" class="form-control" />
                <span asp-validation-for="Instructor.FirstMidName" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.HireDate" class="control-label"></label>
                <input asp-for="Instructor.HireDate" class="form-control" />
                <span asp-validation-for="Instructor.HireDate" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
                <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />
                <span asp-validation-for="Instructor.OfficeAssignment.Location" class="text-danger" />
            </div>
            <div class="form-group">
                <div class="col-md-offset-2 col-md-10">
                    <table>
                        <tr>
                            @{
                                int cnt = 0;

                                foreach (var course in Model.AssignedCourseDataList)
                                {
                                    if (cnt++ % 3 == 0)
                                    {
                                        @:</tr><tr>
                                    }
                                    @:<td>
                                        <input type="checkbox"
                                               name="selectedCourses"
                                               value="@course.CourseID"
                                               @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
                                               @course.CourseID @:  @course.Title
                                    @:</td>
                                }
                                @:</tr>
                            }
                    </table>
                </div>
            </div>
            <div class="form-group">
                <input type="submit" value="Save" class="btn btn-default" />
            </div>
        </form>
    </div>

The preceding code handles office assignment changes.

Update the instructor Razor View:



    </div>
</div>

<div>
    <a asp-page="./Index">Back to List</a>
</div>

@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

NOTENOTE

Update the instructors Create pageUpdate the instructors Create page

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
    public class CreateModel : InstructorCoursesPageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public CreateModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        public IActionResult OnGet()
        {
            var instructor = new Instructor();
            instructor.CourseAssignments = new List<CourseAssignment>();

            // Provides an empty collection for the foreach loop
            // foreach (var course in Model.AssignedCourseDataList)
            // in the Create Razor page.
            PopulateAssignedCourseData(_context, instructor);

 

When you paste the code in Visual Studio, line breaks are changed in a way that breaks the code. Press Ctrl+Z one time to

undo the automatic formatting. Ctrl+Z fixes the line breaks so that they look like what you see here. The indentation

doesn't have to be perfect, but the @:</tr><tr> , @:<td> , @:</td> , and @:</tr>  lines must each be on a single line

as shown. With the block of new code selected, press Tab three times to line up the new code with the existing code. Vote

on or review the status of this bug with this link.

The preceding code creates an HTML table that has three columns. Each column has a check box and a caption

containing the course number and title. The check boxes all have the same name ("selectedCourses"). Using the

same name informs the model binder to treat them as a group. The value attribute of each check box is set to 

CourseID . When the page is posted, the model binder passes an array that consists of the CourseID  values for

only the check boxes that are selected.

When the check boxes are initially rendered, courses assigned to the instructor have checked attributes.

Run the app and test the updated instructors Edit page. Change some course assignments. The changes are

reflected on the Index page.

Note: The approach taken here to edit instructor course data works well when there's a limited number of

courses. For collections that are much larger, a different UI and a different updating method would be more

useable and efficient.

Update the instructor Create page model with the following code:

https://developercommunity.visualstudio.com/content/problem/147795/razor-editor-malforms-pasted-markup-and-creates-in.html


            PopulateAssignedCourseData(_context, instructor);
            return Page();
        }

        [BindProperty]
        public Instructor Instructor { get; set; }

        public async Task<IActionResult> OnPostAsync(string[] selectedCourses)
        {
            if (!ModelState.IsValid)
            {
                return Page();
            }

            var newInstructor = new Instructor();
            if (selectedCourses != null)
            {
                newInstructor.CourseAssignments = new List<CourseAssignment>();
                foreach (var course in selectedCourses)
                {
                    var courseToAdd = new CourseAssignment
                    {
                        CourseID = int.Parse(course)
                    };
                    newInstructor.CourseAssignments.Add(courseToAdd);
                }
            }

            if (await TryUpdateModelAsync<Instructor>(
                newInstructor,
                "Instructor",
                i => i.FirstMidName, i => i.LastName,
                i => i.HireDate, i => i.OfficeAssignment))
            {
                _context.Instructors.Add(newInstructor);                
                await _context.SaveChangesAsync();
                return RedirectToPage("./Index");
            }
            PopulateAssignedCourseData(_context, newInstructor);
            return Page();
        }
    }
}

@page
@model ContosoUniversity.Pages.Instructors.CreateModel

@{
    ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Instructor</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <div class="form-group">
                <label asp-for="Instructor.LastName" class="control-label"></label>
                <input asp-for="Instructor.LastName" class="form-control" />
                <span asp-validation-for="Instructor.LastName" class="text-danger"></span>
            </div>

The preceding code is similar to the Pages/Instructors/Edit.cshtml.cs code.

Update the instructor Create Razor page with the following markup:



            </div>
            <div class="form-group">
                <label asp-for="Instructor.FirstMidName" class="control-label"></label>
                <input asp-for="Instructor.FirstMidName" class="form-control" />
                <span asp-validation-for="Instructor.FirstMidName" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Instructor.HireDate" class="control-label"></label>
                <input asp-for="Instructor.HireDate" class="form-control" />
                <span asp-validation-for="Instructor.HireDate" class="text-danger"></span>
            </div>
            
            <div class="form-group">
                <label asp-for="Instructor.OfficeAssignment.Location" class="control-label"></label>
                <input asp-for="Instructor.OfficeAssignment.Location" class="form-control" />
                <span asp-validation-for="Instructor.OfficeAssignment.Location" class="text-danger" />
            </div>
            <div class="form-group">
                <div class="col-md-offset-2 col-md-10">
                    <table>
                        <tr>
                            @{
                                int cnt = 0;

                                foreach (var course in Model.AssignedCourseDataList)
                                {
                                    if (cnt++ % 3 == 0)
                                    {
                                        @:</tr><tr>
                                    }
                                    @:<td>
                                        <input type="checkbox"
                                               name="selectedCourses"
                                               value="@course.CourseID"
                                               @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
                                               @course.CourseID @:  @course.Title
                                    @:</td>
                                }
                                @:</tr>
                            }
                    </table>
                </div>
            </div>
            <div class="form-group">
                <input type="submit" value="Create" class="btn btn-default" />
            </div>
        </form>
    </div>
</div>

<div>
    <a asp-page="Index">Back to List</a>
</div>

@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Update the Delete page

Test the instructor Create page.

Update the Delete page model with the following code:



using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Instructors
{
    public class DeleteModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public DeleteModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Instructor Instructor { get; set; }

        public async Task<IActionResult> OnGetAsync(int? id)
        {
            if (id == null)
            {
                return NotFound();
            }

            Instructor = await _context.Instructors.SingleAsync(m => m.ID == id);

            if (Instructor == null)
            {
                return NotFound();
            }
            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int id)
        {
            Instructor instructor = await _context.Instructors
                .Include(i => i.CourseAssignments)
                .SingleAsync(i => i.ID == id);

            var departments = await _context.Departments
                .Where(d => d.InstructorID == id)
                .ToListAsync();
            departments.ForEach(d => d.InstructorID = null);

            _context.Instructors.Remove(instructor);

            await _context.SaveChangesAsync();
            return RedirectToPage("./Index");
        }
    }
}

The preceding code makes the following changes:

Uses eager loading for the CourseAssignments  navigation property. CourseAssignments  must be included

or they aren't deleted when the instructor is deleted. To avoid needing to read them, configure cascade

delete in the database.

If the instructor to be deleted is assigned as administrator of any departments, removes the instructor

assignment from those departments.



Additional resources
YouTube version of this tutorial (Part 1)

YouTube version of this tutorial (Part 2)

 P R E V I O U SP R E V I O U S N E X TN E X T

https://www.youtube.com/watch?v=Csh6gkmwc9E
https://www.youtube.com/watch?v=mOAankB_Zgc


Part 8, Razor Pages with EF Core in ASP.NET Core -
Concurrency
9/22/2020 • 36 minutes to read • Edit Online

Concurrency conflicts

Pessimistic concurrency (locking)Pessimistic concurrency (locking)

Optimistic concurrencyOptimistic concurrency

By Rick Anderson, Tom Dykstra, and Jon P Smith

The Contoso University web app demonstrates how to create Razor Pages web apps using EF Core and Visual

Studio. For information about the tutorial series, see the first tutorial.

If you run into problems you can't solve, download the completed app and compare that code to what you

created by following the tutorial.

This tutorial shows how to handle conflicts when multiple users update an entity concurrently (at the same time).

A concurrency conflict occurs when:

A user navigates to the edit page for an entity.

Another user updates the same entity before the first user's change is written to the database.

If concurrency detection isn't enabled, whoever updates the database last overwrites the other user's changes. If

this risk is acceptable, the cost of programming for concurrency might outweigh the benefit.

One way to prevent concurrency conflicts is to use database locks. This is called pessimistic concurrency. Before

the app reads a database row that it intends to update, it requests a lock. Once a row is locked for update access,

no other users are allowed to lock the row until the first lock is released.

Managing locks has disadvantages. It can be complex to program and can cause performance problems as the

number of users increases. Entity Framework Core provides no built-in support for it, and this tutorial doesn't

show how to implement it.

Optimistic concurrency allows concurrency conflicts to happen, and then reacts appropriately when they do. For

example, Jane visits the Department edit page and changes the budget for the English department from

$350,000.00 to $0.00.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-rp/concurrency.md
https://twitter.com/RickAndMSFT
https://github.com/tdykstra
https://twitter.com/thereformedprog
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


Before Jane clicks SaveSave, John visits the same page and changes the Start Date field from 9/1/2007 to 9/1/2013.

Jane clicks SaveSave first and sees her change take effect, since the browser displays the Index page with zero as the



Conflict detection in EF Core

Budget amount.

John clicks SaveSave on an Edit page that still shows a budget of $350,000.00. What happens next is determined by

how you handle concurrency conflicts:

You can keep track of which property a user has modified and update only the corresponding columns in

the database.

In the scenario, no data would be lost. Different properties were updated by the two users. The next time

someone browses the English department, they will see both Jane's and John's changes. This method of

updating can reduce the number of conflicts that could result in data loss. This approach has some

disadvantages:

Can't avoid data loss if competing changes are made to the same property.

Is generally not practical in a web app. It requires maintaining significant state in order to keep track of

all fetched values and new values. Maintaining large amounts of state can affect app performance.

Can increase app complexity compared to concurrency detection on an entity.

You can let John's change overwrite Jane's change.

The next time someone browses the English department, they will see 9/1/2013 and the fetched

$350,000.00 value. This approach is called a Client Wins or Last in Wins scenario. (All values from the

client take precedence over what's in the data store.) If you don't do any coding for concurrency handling,

Client Wins happens automatically.

You can prevent John's change from being updated in the database. Typically, the app would:

Display an error message.

Show the current state of the data.

Allow the user to reapply the changes.

This is called a Store Wins scenario. (The data-store values take precedence over the values submitted by

the client.) You implement the Store Wins scenario in this tutorial. This method ensures that no changes

are overwritten without a user being alerted.

EF Core throws DbConcurrencyException  exceptions when it detects conflicts. The data model has to be

configured to enable conflict detection. Options for enabling conflict detection include the following:

Configure EF Core to include the original values of columns configured as concurrency tokens in the

Where clause of Update and Delete commands.

When SaveChanges  is called, the Where clause looks for the original values of any properties annotated

with the ConcurrencyCheckAttribute attribute. The update statement won't find a row to update if any of

the concurrency token properties changed since the row was first read. EF Core interprets that as a

concurrency conflict. For database tables that have many columns, this approach can result in very large

Where clauses, and can require large amounts of state. Therefore this approach is generally not

recommended, and it isn't the method used in this tutorial.

In the database table, include a tracking column that can be used to determine when a row has been

changed.

In a SQL Server database, the data type of the tracking column is rowversion . The rowversion  value is a

sequential number that's incremented each time the row is updated. In an Update or Delete command, the

Where clause includes the original value of the tracking column (the original row version number). If the

row being updated has been changed by another user, the value in the rowversion  column is different

than the original value. In that case, the Update or Delete statement can't find the row to update because

https://docs.microsoft.com/en-us/ef/core/modeling/concurrency
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.concurrencycheckattribute


Add a tracking property

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Department
    {
        public int DepartmentID { get; set; }

        [StringLength(50, MinimumLength = 3)]
        public string Name { get; set; }

        [DataType(DataType.Currency)]
        [Column(TypeName = "money")]
        public decimal Budget { get; set; }

        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Start Date")]
        public DateTime StartDate { get; set; }

        public int? InstructorID { get; set; }

        [Timestamp]
        public byte[] RowVersion { get; set; }

        public Instructor Administrator { get; set; }
        public ICollection<Course> Courses { get; set; }
    }
}

modelBuilder.Entity<Department>()
  .Property<byte[]>("RowVersion")
  .IsRowVersion();

of the Where clause. EF Core throws a concurrency exception when no rows are affected by an Update or

Delete command.

In Models/Department.cs, add a tracking property named RowVersion:

The TimestampAttribute attribute is what identifies the column as a concurrency tracking column. The fluent API

is an alternative way to specify the tracking property:

Visual Studio

Visual Studio Code

For a SQL Server database, the [Timestamp]  attribute on an entity property defined as byte array:

Causes the column to be included in DELETE and UPDATE WHERE clauses.

Sets the column type in the database to rowversion.

The database generates a sequential row version number that's incremented each time the row is updated. In an 

Update  or Delete  command, the Where  clause includes the fetched row version value. If the row being updated

has changed since it was fetched:

The current row version value doesn't match the fetched value.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.timestampattribute
https://docs.microsoft.com/en-us/sql/t-sql/data-types/rowversion-transact-sql


SET NOCOUNT ON;
UPDATE [Department] SET [Name] = @p0
WHERE [DepartmentID] = @p1 AND [RowVersion] = @p2;
SELECT [RowVersion]
FROM [Department]
WHERE @@ROWCOUNT = 1 AND [DepartmentID] = @p1;

SET NOCOUNT ON;
UPDATE [Department] SET [Name] = @p0
WHERE [DepartmentID] = @p1 AND [RowVersion] = @p2;
SELECT [RowVersion]
FROM [Department]
WHERE @@ROWCOUNT = 1 AND [DepartmentID] = @p1;

Update the databaseUpdate the database

The Update  or Delete  commands don't find a row because the Where  clause looks for the fetched row

version value.

A DbUpdateConcurrencyException  is thrown.

The following code shows a portion of the T-SQL generated by EF Core when the Department name is updated:

The preceding highlighted code shows the WHERE  clause containing RowVersion . If the database RowVersion

doesn't equal the RowVersion  parameter ( @p2 ), no rows are updated.

The following highlighted code shows the T-SQL that verifies exactly one row was updated:

@@ROWCOUNT returns the number of rows affected by the last statement. If no rows are updated, EF Core

throws a DbUpdateConcurrencyException .

Adding the RowVersion  property changes the data model, which requires a migration.

Build the project.

Visual Studio

Visual Studio Code

Add-Migration RowVersion

Run the following command in the PMC:

This command:

Creates the Migrations/{time stamp}_RowVersion.cs migration file.

Updates the Migrations/SchoolContextModelSnapshot.cs file. The update adds the following highlighted

code to the BuildModel  method:

https://docs.microsoft.com/en-us/sql/t-sql/functions/rowcount-transact-sql


Scaffold Department pages

Update the Index page

modelBuilder.Entity("ContosoUniversity.Models.Department", b =>
    {
        b.Property<int>("DepartmentID")
            .ValueGeneratedOnAdd()
            .HasAnnotation("SqlServer:ValueGenerationStrategy", 
SqlServerValueGenerationStrategy.IdentityColumn);

        b.Property<decimal>("Budget")
            .HasColumnType("money");

        b.Property<int?>("InstructorID");

        b.Property<string>("Name")
            .HasMaxLength(50);

        b.Property<byte[]>("RowVersion")
            .IsConcurrencyToken()
            .ValueGeneratedOnAddOrUpdate();

        b.Property<DateTime>("StartDate");

        b.HasKey("DepartmentID");

        b.HasIndex("InstructorID");

        b.ToTable("Department");
    });

Visual Studio

Visual Studio Code

Update-Database

Run the following command in the PMC:

 

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold Student pages with the following exceptions:

Create a Pages/Departments folder.

Use Department  for the model class.

Use the existing context class instead of creating a new one.

Build the project.

The scaffolding tool created a RowVersion  column for the Index page, but that field wouldn't be displayed in a

production app. In this tutorial, the last byte of the RowVersion  is displayed to help show how concurrency

handling works. The last byte isn't guaranteed to be unique by itself.

Update Pages\Departments\Index.cshtml page:

Replace Index with Departments.



@page
@model ContosoUniversity.Pages.Departments.IndexModel

@{
    ViewData["Title"] = "Departments";
}

<h2>Departments</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
                <th>
                    @Html.DisplayNameFor(model => model.Department[0].Name)
                </th>
                <th>
                    @Html.DisplayNameFor(model => model.Department[0].Budget)
                </th>
                <th>
                    @Html.DisplayNameFor(model => model.Department[0].StartDate)
                </th>
            <th>
                @Html.DisplayNameFor(model => model.Department[0].Administrator)
            </th>
            <th>
                RowVersion
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Department)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.Name)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Budget)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.StartDate)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Administrator.FullName)
                </td>
                <td>
                    @item.RowVersion[7]
                </td>
                <td>
                    <a asp-page="./Edit" asp-route-id="@item.DepartmentID">Edit</a> |
                    <a asp-page="./Details" asp-route-id="@item.DepartmentID">Details</a> |
                    <a asp-page="./Delete" asp-route-id="@item.DepartmentID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

Change the code containing RowVersion  to show just the last byte of the byte array.

Replace FirstMidName with FullName.

The following code shows the updated page:



Update the Edit page model

using ContosoUniversity.Data;
using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Departments
{
    public class EditModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public EditModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Department Department { get; set; }
        // Replace ViewData["InstructorID"] 
        public SelectList InstructorNameSL { get; set; }

        public async Task<IActionResult> OnGetAsync(int id)
        {
            Department = await _context.Departments
                .Include(d => d.Administrator)  // eager loading
                .AsNoTracking()                 // tracking not required
                .FirstOrDefaultAsync(m => m.DepartmentID == id);

            if (Department == null)
            {
                return NotFound();
            }

            // Use strongly typed data rather than ViewData.
            InstructorNameSL = new SelectList(_context.Instructors,
                "ID", "FirstMidName");

            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int id)
        {
            if (!ModelState.IsValid)
            {
                return Page();
            }

            var departmentToUpdate = await _context.Departments
                .Include(i => i.Administrator)
                .FirstOrDefaultAsync(m => m.DepartmentID == id);

            if (departmentToUpdate == null)
            {
                return HandleDeletedDepartment();
            }

            _context.Entry(departmentToUpdate)
                .Property("RowVersion").OriginalValue = Department.RowVersion;

            if (await TryUpdateModelAsync<Department>(

Update Pages\Departments\Edit.cshtml.cs with the following code:



            if (await TryUpdateModelAsync<Department>(
                departmentToUpdate,
                "Department",
                s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
            {
                try
                {
                    await _context.SaveChangesAsync();
                    return RedirectToPage("./Index");
                }
                catch (DbUpdateConcurrencyException ex)
                {
                    var exceptionEntry = ex.Entries.Single();
                    var clientValues = (Department)exceptionEntry.Entity;
                    var databaseEntry = exceptionEntry.GetDatabaseValues();
                    if (databaseEntry == null)
                    {
                        ModelState.AddModelError(string.Empty, "Unable to save. " +
                            "The department was deleted by another user.");
                        return Page();
                    }

                    var dbValues = (Department)databaseEntry.ToObject();
                    await setDbErrorMessage(dbValues, clientValues, _context);

                    // Save the current RowVersion so next postback
                    // matches unless an new concurrency issue happens.
                    Department.RowVersion = (byte[])dbValues.RowVersion;
                    // Clear the model error for the next postback.
                    ModelState.Remove("Department.RowVersion");
                }
            }

            InstructorNameSL = new SelectList(_context.Instructors,
                "ID", "FullName", departmentToUpdate.InstructorID);

            return Page();
        }

        private IActionResult HandleDeletedDepartment()
        {
            var deletedDepartment = new Department();
            // ModelState contains the posted data because of the deletion error
            // and will overide the Department instance values when displaying Page().
            ModelState.AddModelError(string.Empty,
                "Unable to save. The department was deleted by another user.");
            InstructorNameSL = new SelectList(_context.Instructors, "ID", "FullName", 
Department.InstructorID);
            return Page();
        }

        private async Task setDbErrorMessage(Department dbValues,
                Department clientValues, SchoolContext context)
        {

            if (dbValues.Name != clientValues.Name)
            {
                ModelState.AddModelError("Department.Name",
                    $"Current value: {dbValues.Name}");
            }
            if (dbValues.Budget != clientValues.Budget)
            {
                ModelState.AddModelError("Department.Budget",
                    $"Current value: {dbValues.Budget:c}");
            }
            if (dbValues.StartDate != clientValues.StartDate)
            {
                ModelState.AddModelError("Department.StartDate",
                    $"Current value: {dbValues.StartDate:d}");
            }



            }
            if (dbValues.InstructorID != clientValues.InstructorID)
            {
                Instructor dbInstructor = await _context.Instructors
                   .FindAsync(dbValues.InstructorID);
                ModelState.AddModelError("Department.InstructorID",
                    $"Current value: {dbInstructor?.FullName}");
            }

            ModelState.AddModelError(string.Empty,
                "The record you attempted to edit "
              + "was modified by another user after you. The "
              + "edit operation was canceled and the current values in the database "
              + "have been displayed. If you still want to edit this record, click "
              + "the Save button again.");
        }
    }
}

public async Task<IActionResult> OnPostAsync(int id)
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    var departmentToUpdate = await _context.Departments
        .Include(i => i.Administrator)
        .FirstOrDefaultAsync(m => m.DepartmentID == id);

    if (departmentToUpdate == null)
    {
        return HandleDeletedDepartment();
    }

    _context.Entry(departmentToUpdate)
        .Property("RowVersion").OriginalValue = Department.RowVersion;

The OriginalValue is updated with the rowVersion  value from the entity when it was fetched in the OnGet

method. EF Core generates a SQL UPDATE command with a WHERE clause containing the original RowVersion

value. If no rows are affected by the UPDATE command (no rows have the original RowVersion  value), a 

DbUpdateConcurrencyException  exception is thrown.

In the preceding highlighted code:

The value in Department.RowVersion  is what was in the entity when it was originally fetched in the Get request

for the Edit page. The value is provided to the OnPost  method by a hidden field in the Razor page that

displays the entity to be edited. The hidden field value is copied to Department.RowVersion  by the model

binder.

OriginalValue  is what EF Core will use in the Where clause. Before the highlighted line of code executes, 

OriginalValue  has the value that was in the database when FirstOrDefaultAsync  was called in this method,

which might be different from what was displayed on the Edit page.

The highlighted code makes sure that EF Core uses the original RowVersion  value from the displayed 

Department  entity in the SQL UPDATE statement's Where clause.

When a concurrency error happens, the following highlighted code gets the client values (the values posted to

this method) and the database values.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyentry.originalvalue#microsoft_entityframeworkcore_changetracking_propertyentry_originalvalue


if (await TryUpdateModelAsync<Department>(
    departmentToUpdate,
    "Department",
    s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
{
    try
    {
        await _context.SaveChangesAsync();
        return RedirectToPage("./Index");
    }
    catch (DbUpdateConcurrencyException ex)
    {
        var exceptionEntry = ex.Entries.Single();
        var clientValues = (Department)exceptionEntry.Entity;
        var databaseEntry = exceptionEntry.GetDatabaseValues();
        if (databaseEntry == null)
        {
            ModelState.AddModelError(string.Empty, "Unable to save. " +
                "The department was deleted by another user.");
            return Page();
        }

        var dbValues = (Department)databaseEntry.ToObject();
        await setDbErrorMessage(dbValues, clientValues, _context);

        // Save the current RowVersion so next postback
        // matches unless an new concurrency issue happens.
        Department.RowVersion = (byte[])dbValues.RowVersion;
        // Clear the model error for the next postback.
        ModelState.Remove("Department.RowVersion");
    }

The following code adds a custom error message for each column that has database values different from what

was posted to OnPostAsync :



private async Task setDbErrorMessage(Department dbValues,
        Department clientValues, SchoolContext context)
{

    if (dbValues.Name != clientValues.Name)
    {
        ModelState.AddModelError("Department.Name",
            $"Current value: {dbValues.Name}");
    }
    if (dbValues.Budget != clientValues.Budget)
    {
        ModelState.AddModelError("Department.Budget",
            $"Current value: {dbValues.Budget:c}");
    }
    if (dbValues.StartDate != clientValues.StartDate)
    {
        ModelState.AddModelError("Department.StartDate",
            $"Current value: {dbValues.StartDate:d}");
    }
    if (dbValues.InstructorID != clientValues.InstructorID)
    {
        Instructor dbInstructor = await _context.Instructors
           .FindAsync(dbValues.InstructorID);
        ModelState.AddModelError("Department.InstructorID",
            $"Current value: {dbInstructor?.FullName}");
    }

    ModelState.AddModelError(string.Empty,
        "The record you attempted to edit "
      + "was modified by another user after you. The "
      + "edit operation was canceled and the current values in the database "
      + "have been displayed. If you still want to edit this record, click "
      + "the Save button again.");
}

The following highlighted code sets the RowVersion  value to the new value retrieved from the database. The next

time the user clicks SaveSave, only concurrency errors that happen since the last display of the Edit page will be

caught.



if (await TryUpdateModelAsync<Department>(
    departmentToUpdate,
    "Department",
    s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
{
    try
    {
        await _context.SaveChangesAsync();
        return RedirectToPage("./Index");
    }
    catch (DbUpdateConcurrencyException ex)
    {
        var exceptionEntry = ex.Entries.Single();
        var clientValues = (Department)exceptionEntry.Entity;
        var databaseEntry = exceptionEntry.GetDatabaseValues();
        if (databaseEntry == null)
        {
            ModelState.AddModelError(string.Empty, "Unable to save. " +
                "The department was deleted by another user.");
            return Page();
        }

        var dbValues = (Department)databaseEntry.ToObject();
        await setDbErrorMessage(dbValues, clientValues, _context);

        // Save the current RowVersion so next postback
        // matches unless an new concurrency issue happens.
        Department.RowVersion = (byte[])dbValues.RowVersion;
        // Clear the model error for the next postback.
        ModelState.Remove("Department.RowVersion");
    }

Update the Edit pageUpdate the Edit page

The ModelState.Remove  statement is required because ModelState  has the old RowVersion  value. In the Razor

Page, the ModelState  value for a field takes precedence over the model property values when both are present.

Update Pages/Departments/Edit.cshtml with the following code:



@page "{id:int}"
@model ContosoUniversity.Pages.Departments.EditModel
@{
    ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Department</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <input type="hidden" asp-for="Department.DepartmentID" />
            <input type="hidden" asp-for="Department.RowVersion" />
            <div class="form-group">
                <label>RowVersion</label>
                @Model.Department.RowVersion[7]
            </div>
            <div class="form-group">
                <label asp-for="Department.Name" class="control-label"></label>
                <input asp-for="Department.Name" class="form-control" />
                <span asp-validation-for="Department.Name" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Department.Budget" class="control-label"></label>
                <input asp-for="Department.Budget" class="form-control" />
                <span asp-validation-for="Department.Budget" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Department.StartDate" class="control-label"></label>
                <input asp-for="Department.StartDate" class="form-control" />
                <span asp-validation-for="Department.StartDate" class="text-danger">
                </span>
            </div>
            <div class="form-group">
                <label class="control-label">Instructor</label>
                <select asp-for="Department.InstructorID" class="form-control"
                        asp-items="@Model.InstructorNameSL"></select>
                <span asp-validation-for="Department.InstructorID" class="text-danger">
                </span>
            </div>
            <div class="form-group">
                <input type="submit" value="Save" class="btn btn-primary" />
            </div>
        </form>
    </div>
</div>
<div>
    <a asp-page="./Index">Back to List</a>
</div>
@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Test concurrency conflicts with the Edit pageTest concurrency conflicts with the Edit page

The preceding code:

Updates the page  directive from @page  to @page "{id:int}" .

Adds a hidden row version. RowVersion  must be added so postback binds the value.

Displays the last byte of RowVersion  for debugging purposes.

Replaces ViewData  with the strongly-typed InstructorNameSL .

Open two browsers instances of Edit on the English department:



Run the app and select Departments.

Right-click the EditEdit hyperlink for the English department and select Open in new tabOpen in new tab.

In the first tab, click the EditEdit hyperlink for the English department.

The two browser tabs display the same information.

Change the name in the first browser tab and click SaveSave.

The browser shows the Index page with the changed value and updated rowVersion indicator. Note the updated

rowVersion indicator, it's displayed on the second postback in the other tab.

Change a different field in the second browser tab.



Click SaveSave. You see error messages for all fields that don't match the database values:



Update the Delete page model

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Departments
{
    public class DeleteModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public DeleteModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Department Department { get; set; }
        public string ConcurrencyErrorMessage { get; set; }

        public async Task<IActionResult> OnGetAsync(int id, bool? concurrencyError)
        {
            Department = await _context.Departments
                .Include(d => d.Administrator)
                .AsNoTracking()
                .FirstOrDefaultAsync(m => m.DepartmentID == id);

            if (Department == null)
            {
                 return NotFound();
            }

            if (concurrencyError.GetValueOrDefault())
            {
                ConcurrencyErrorMessage = "The record you attempted to delete "
                  + "was modified by another user after you selected delete. "
                  + "The delete operation was canceled and the current values in the "
                  + "database have been displayed. If you still want to delete this "
                  + "record, click the Delete button again.";
            }
            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int id)
        {
            try
            {
                if (await _context.Departments.AnyAsync(
                    m => m.DepartmentID == id))
                {
                    // Department.rowVersion value is from when the entity
                    // was fetched. If it doesn't match the DB, a
                    // DbUpdateConcurrencyException exception is thrown.
                    _context.Departments.Remove(Department);
                    await _context.SaveChangesAsync();

This browser window didn't intend to change the Name field. Copy and paste the current value (Languages) into

the Name field. Tab out. Client-side validation removes the error message.

Click SaveSave again. The value you entered in the second browser tab is saved. You see the saved values in the Index

page.

Update Pages/Departments/Delete.cshtml.cs with the following code:



                }
                return RedirectToPage("./Index");
            }
            catch (DbUpdateConcurrencyException)
            {
                return RedirectToPage("./Delete",
                    new { concurrencyError = true, id = id });
            }
        }
    }
}

Update the Delete pageUpdate the Delete page

The Delete page detects concurrency conflicts when the entity has changed after it was fetched. 

Department.RowVersion  is the row version when the entity was fetched. When EF Core creates the SQL DELETE

command, it includes a WHERE clause with RowVersion . If the SQL DELETE command results in zero rows

affected:

The RowVersion  in the SQL DELETE command doesn't match RowVersion  in the database.

A DbUpdateConcurrencyException exception is thrown.

OnGetAsync  is called with the concurrencyError .

Update Pages/Departments/Delete.cshtml with the following code:



@page "{id:int}"
@model ContosoUniversity.Pages.Departments.DeleteModel

@{
    ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@Model.ConcurrencyErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>
<div>
    <h4>Department</h4>
    <hr />
    <dl class="dl-horizontal">
        <dt>
            @Html.DisplayNameFor(model => model.Department.Name)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Department.Name)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Department.Budget)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Department.Budget)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Department.StartDate)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Department.StartDate)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Department.RowVersion)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Department.RowVersion[7])
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Department.Administrator)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Department.Administrator.FullName)
        </dd>
    </dl>
    
    <form method="post">
        <input type="hidden" asp-for="Department.DepartmentID" />
        <input type="hidden" asp-for="Department.RowVersion" />
        <div class="form-actions no-color">
            <input type="submit" value="Delete" class="btn btn-danger" /> |
            <a asp-page="./Index">Back to List</a>
        </div>
</form>
</div>

The preceding code makes the following changes:

Updates the page  directive from @page  to @page "{id:int}" .

Adds an error message.

Replaces FirstMidName with FullName in the AdministratorAdministrator  field.

Changes RowVersion  to display the last byte.



Test concurrency conflictsTest concurrency conflicts

Additional resources

Next steps

Concurrency conflicts

Optimistic concurrencyOptimistic concurrency

Adds a hidden row version. RowVersion  must be added so postback binds the value.

Create a test department.

Open two browsers instances of Delete on the test department:

Run the app and select Departments.

Right-click the DeleteDelete hyperlink for the test department and select Open in new tabOpen in new tab.

Click the EditEdit hyperlink for the test department.

The two browser tabs display the same information.

Change the budget in the first browser tab and click SaveSave.

The browser shows the Index page with the changed value and updated rowVersion indicator. Note the updated

rowVersion indicator, it's displayed on the second postback in the other tab.

Delete the test department from the second tab. A concurrency error is display with the current values from the

database. Clicking DeleteDelete deletes the entity, unless RowVersion  has been updated.

Concurrency Tokens in EF Core

Handle concurrency in EF Core

Debugging ASP.NET Core 2.x source

This is the last tutorial in the series. Additional topics are covered in the MVC version of this tutorial series.

P R E V I O U SP R E V I O U S

T U TO R I A LT U TO R I A L

This tutorial shows how to handle conflicts when multiple users update an entity concurrently (at the same time).

If you run into problems you can't solve, download or view the completed app. Download instructions.

A concurrency conflict occurs when:

A user navigates to the edit page for an entity.

Another user updates the same entity before the first user's change is written to the DB.

If concurrency detection isn't enabled, when concurrent updates occur :

The last update wins. That is, the last update values are saved to the DB.

The first of the current updates are lost.

Optimistic concurrency allows concurrency conflicts to happen, and then reacts appropriately when they do. For

example, Jane visits the Department edit page and changes the budget for the English department from

$350,000.00 to $0.00.

https://docs.microsoft.com/en-us/ef/core/modeling/concurrency
https://docs.microsoft.com/en-us/ef/core/saving/concurrency
https://github.com/dotnet/AspNetCore.Docs/issues/4155
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-rp/intro/samples


Before Jane clicks SaveSave, John visits the same page and changes the Start Date field from 9/1/2007 to 9/1/2013.



Handling concurrency

Jane clicks SaveSave first and sees her change when the browser displays the Index page.

John clicks SaveSave on an Edit page that still shows a budget of $350,000.00. What happens next is determined by

how you handle concurrency conflicts.

Optimistic concurrency includes the following options:

You can keep track of which property a user has modified and update only the corresponding columns in

the DB.

In the scenario, no data would be lost. Different properties were updated by the two users. The next time

someone browses the English department, they will see both Jane's and John's changes. This method of

updating can reduce the number of conflicts that could result in data loss. This approach:

Can't avoid data loss if competing changes are made to the same property.

Is generally not practical in a web app. It requires maintaining significant state in order to keep track of

all fetched values and new values. Maintaining large amounts of state can affect app performance.

Can increase app complexity compared to concurrency detection on an entity.

You can let John's change overwrite Jane's change.

The next time someone browses the English department, they will see 9/1/2013 and the fetched

$350,000.00 value. This approach is called a Client Wins or Last in Wins scenario. (All values from the

client take precedence over what's in the data store.) If you don't do any coding for concurrency handling,

Client Wins happens automatically.

You can prevent John's change from being updated in the DB. Typically, the app would:

Display an error message.

Show the current state of the data.

Allow the user to reapply the changes.

This is called a Store Wins scenario. (The data-store values take precedence over the values submitted by

the client.) You implement the Store Wins scenario in this tutorial. This method ensures that no changes

are overwritten without a user being alerted.

When a property is configured as a concurrency token:

EF Core verifies that property has not been modified after it was fetched. The check occurs when

SaveChanges or SaveChangesAsync is called.

If the property has been changed after it was fetched, a DbUpdateConcurrencyException is thrown.

https://docs.microsoft.com/en-us/ef/core/modeling/concurrency
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechanges#microsoft_entityframeworkcore_dbcontext_savechanges
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechangesasync#microsoft_entityframeworkcore_dbcontext_savechangesasync_system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbupdateconcurrencyexception


Detecting concurrency conflicts on a propertyDetecting concurrency conflicts on a property

Detecting concurrency conflicts on a rowDetecting concurrency conflicts on a row

Add a tracking property to the Department entityAdd a tracking property to the Department entity

The DB and data model must be configured to support throwing DbUpdateConcurrencyException .

Concurrency conflicts can be detected at the property level with the ConcurrencyCheck attribute. The attribute

can be applied to multiple properties on the model. For more information, see Data Annotations-

ConcurrencyCheck.

The [ConcurrencyCheck]  attribute isn't used in this tutorial.

To detect concurrency conflicts, a rowversion tracking column is added to the model. rowversion  :

Is SQL Server specific. Other databases may not provide a similar feature.

Is used to determine that an entity has not been changed since it was fetched from the DB.

The DB generates a sequential rowversion  number that's incremented each time the row is updated. In an 

Update  or Delete  command, the Where  clause includes the fetched value of rowversion . If the row being

updated has changed:

rowversion  doesn't match the fetched value.

The Update  or Delete  commands don't find a row because the Where  clause includes the fetched 

rowversion .

A DbUpdateConcurrencyException  is thrown.

In EF Core, when no rows have been updated by an Update  or Delete  command, a concurrency exception is

thrown.

In Models/Department.cs, add a tracking property named RowVersion:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.concurrencycheckattribute
https://docs.microsoft.com/en-us/ef/core/modeling/concurrency#data-annotations
https://docs.microsoft.com/en-us/sql/t-sql/data-types/rowversion-transact-sql


using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Department
    {
        public int DepartmentID { get; set; }

        [StringLength(50, MinimumLength = 3)]
        public string Name { get; set; }

        [DataType(DataType.Currency)]
        [Column(TypeName = "money")]
        public decimal Budget { get; set; }

        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Start Date")]
        public DateTime StartDate { get; set; }

        public int? InstructorID { get; set; }

        [Timestamp]
        public byte[] RowVersion { get; set; }

        public Instructor Administrator { get; set; }
        public ICollection<Course> Courses { get; set; }
    }
}

modelBuilder.Entity<Department>()
  .Property<byte[]>("RowVersion")
  .IsRowVersion();

SET NOCOUNT ON;
UPDATE [Department] SET [Name] = @p0
WHERE [DepartmentID] = @p1 AND [RowVersion] = @p2;
SELECT [RowVersion]
FROM [Department]
WHERE @@ROWCOUNT = 1 AND [DepartmentID] = @p1;

The Timestamp attribute specifies that this column is included in the Where  clause of Update  and Delete

commands. The attribute is called Timestamp  because previous versions of SQL Server used a SQL timestamp

data type before the SQL rowversion  type replaced it.

The fluent API can also specify the tracking property:

The following code shows a portion of the T-SQL generated by EF Core when the Department name is updated:

The preceding highlighted code shows the WHERE  clause containing RowVersion . If the DB RowVersion  doesn't

equal the RowVersion  parameter ( @p2 ), no rows are updated.

The following highlighted code shows the T-SQL that verifies exactly one row was updated:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.timestampattribute


SET NOCOUNT ON;
UPDATE [Department] SET [Name] = @p0
WHERE [DepartmentID] = @p1 AND [RowVersion] = @p2;
SELECT [RowVersion]
FROM [Department]
WHERE @@ROWCOUNT = 1 AND [DepartmentID] = @p1;

Update the DBUpdate the DB

dotnet ef migrations add RowVersion
dotnet ef database update

Scaffold the Departments model

Update the Departments Index pageUpdate the Departments Index page

@@ROWCOUNT returns the number of rows affected by the last statement. In no rows are updated, EF Core

throws a DbUpdateConcurrencyException .

You can see the T-SQL EF Core generates in the output window of Visual Studio.

Adding the RowVersion  property changes the DB model, which requires a migration.

Build the project. Enter the following in a command window:

The preceding commands:

Adds the Migrations/{time stamp}_RowVersion.cs migration file.

Updates the Migrations/SchoolContextModelSnapshot.cs file. The update adds the following highlighted

code to the BuildModel  method:

Runs migrations to update the DB.

 

Visual Studio

Visual Studio Code

Follow the instructions in Scaffold the student model and use Department  for the model class.

The preceding command scaffolds the Department  model. Open the project in Visual Studio.

Build the project.

The scaffolding engine created a RowVersion  column for the Index page, but that field shouldn't be displayed. In

this tutorial, the last byte of the RowVersion  is displayed to help understand concurrency. The last byte isn't

guaranteed to be unique. A real app wouldn't display RowVersion  or the last byte of RowVersion .

Update the Index page:

Replace Index with Departments.

Replace the markup containing RowVersion  with the last byte of RowVersion .

Replace FirstMidName with FullName.

The following markup shows the updated page:

https://docs.microsoft.com/en-us/sql/t-sql/functions/rowcount-transact-sql


@page
@model ContosoUniversity.Pages.Departments.IndexModel

@{
    ViewData["Title"] = "Departments";
}

<h2>Departments</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
                <th>
                    @Html.DisplayNameFor(model => model.Department[0].Name)
                </th>
                <th>
                    @Html.DisplayNameFor(model => model.Department[0].Budget)
                </th>
                <th>
                    @Html.DisplayNameFor(model => model.Department[0].StartDate)
                </th>
            <th>
                @Html.DisplayNameFor(model => model.Department[0].Administrator)
            </th>
            <th>
                RowVersion
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
@foreach (var item in Model.Department) {
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.Name)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.Budget)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.StartDate)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.Administrator.FullName)
            </td>
            <td>
                @item.RowVersion[7]
            </td>
            <td>
                <a asp-page="./Edit" asp-route-id="@item.DepartmentID">Edit</a> |
                <a asp-page="./Details" asp-route-id="@item.DepartmentID">Details</a> |
                <a asp-page="./Delete" asp-route-id="@item.DepartmentID">Delete</a>
            </td>
        </tr>
}
    </tbody>
</table>

Update the Edit page modelUpdate the Edit page model

using ContosoUniversity.Data;
using ContosoUniversity.Models;

Update Pages\Departments\Edit.cshtml.cs with the following code:



using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Departments
{
    public class EditModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

        public EditModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Department Department { get; set; }
        // Replace ViewData["InstructorID"] 
        public SelectList InstructorNameSL { get; set; }

        public async Task<IActionResult> OnGetAsync(int id)
        {
            Department = await _context.Departments
                .Include(d => d.Administrator)  // eager loading
                .AsNoTracking()                 // tracking not required
                .FirstOrDefaultAsync(m => m.DepartmentID == id);

            if (Department == null)
            {
                return NotFound();
            }

            // Use strongly typed data rather than ViewData.
            InstructorNameSL = new SelectList(_context.Instructors,
                "ID", "FirstMidName");

            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int id)
        {
            if (!ModelState.IsValid)
            {
                return Page();
            }

            var departmentToUpdate = await _context.Departments
                .Include(i => i.Administrator)
                .FirstOrDefaultAsync(m => m.DepartmentID == id);

            // null means Department was deleted by another user.
            if (departmentToUpdate == null)
            {
                return HandleDeletedDepartment();
            }

            // Update the RowVersion to the value when this entity was
            // fetched. If the entity has been updated after it was
            // fetched, RowVersion won't match the DB RowVersion and
            // a DbUpdateConcurrencyException is thrown.
            // A second postback will make them match, unless a new 
            // concurrency issue happens.
            _context.Entry(departmentToUpdate)
                .Property("RowVersion").OriginalValue = Department.RowVersion;

            if (await TryUpdateModelAsync<Department>(



            if (await TryUpdateModelAsync<Department>(
                departmentToUpdate,
                "Department",
                s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
            {
                try
                {
                    await _context.SaveChangesAsync();
                    return RedirectToPage("./Index");
                }
                catch (DbUpdateConcurrencyException ex)
                {
                    var exceptionEntry = ex.Entries.Single();
                    var clientValues = (Department)exceptionEntry.Entity;
                    var databaseEntry = exceptionEntry.GetDatabaseValues();
                    if (databaseEntry == null)
                    {
                        ModelState.AddModelError(string.Empty, "Unable to save. " +
                            "The department was deleted by another user.");
                        return Page();
                    }

                    var dbValues = (Department)databaseEntry.ToObject();
                    await setDbErrorMessage(dbValues, clientValues, _context);

                    // Save the current RowVersion so next postback
                    // matches unless an new concurrency issue happens.
                    Department.RowVersion = (byte[])dbValues.RowVersion;
                    // Must clear the model error for the next postback.
                    ModelState.Remove("Department.RowVersion");
                }
            }

            InstructorNameSL = new SelectList(_context.Instructors,
                "ID", "FullName", departmentToUpdate.InstructorID);

            return Page();
        }

        private IActionResult HandleDeletedDepartment()
        {
            var deletedDepartment = new Department();
            // ModelState contains the posted data because of the deletion error and will overide the 
Department instance values when displaying Page().
            ModelState.AddModelError(string.Empty,
                "Unable to save. The department was deleted by another user.");
            InstructorNameSL = new SelectList(_context.Instructors, "ID", "FullName", 
Department.InstructorID);
            return Page();
        }

        private async Task setDbErrorMessage(Department dbValues,
                Department clientValues, SchoolContext context)
        {

            if (dbValues.Name != clientValues.Name)
            {
                ModelState.AddModelError("Department.Name",
                    $"Current value: {dbValues.Name}");
            }
            if (dbValues.Budget != clientValues.Budget)
            {
                ModelState.AddModelError("Department.Budget",
                    $"Current value: {dbValues.Budget:c}");
            }
            if (dbValues.StartDate != clientValues.StartDate)
            {
                ModelState.AddModelError("Department.StartDate",
                    $"Current value: {dbValues.StartDate:d}");



            }
            if (dbValues.InstructorID != clientValues.InstructorID)
            {
                Instructor dbInstructor = await _context.Instructors
                   .FindAsync(dbValues.InstructorID);
                ModelState.AddModelError("Department.InstructorID",
                    $"Current value: {dbInstructor?.FullName}");
            }

            ModelState.AddModelError(string.Empty,
                "The record you attempted to edit "
              + "was modified by another user after you. The "
              + "edit operation was canceled and the current values in the database "
              + "have been displayed. If you still want to edit this record, click "
              + "the Save button again.");
        }
    }
}

public async Task<IActionResult> OnPostAsync(int id)
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    var departmentToUpdate = await _context.Departments
        .Include(i => i.Administrator)
        .FirstOrDefaultAsync(m => m.DepartmentID == id);

    // null means Department was deleted by another user.
    if (departmentToUpdate == null)
    {
        return HandleDeletedDepartment();
    }

    // Update the RowVersion to the value when this entity was
    // fetched. If the entity has been updated after it was
    // fetched, RowVersion won't match the DB RowVersion and
    // a DbUpdateConcurrencyException is thrown.
    // A second postback will make them match, unless a new 
    // concurrency issue happens.
    _context.Entry(departmentToUpdate)
        .Property("RowVersion").OriginalValue = Department.RowVersion;

To detect a concurrency issue, the OriginalValue is updated with the rowVersion  value from the entity it was

fetched. EF Core generates a SQL UPDATE command with a WHERE clause containing the original RowVersion

value. If no rows are affected by the UPDATE command (no rows have the original RowVersion  value), a 

DbUpdateConcurrencyException  exception is thrown.

In the preceding code, Department.RowVersion  is the value when the entity was fetched. OriginalValue  is the

value in the DB when FirstOrDefaultAsync  was called in this method.

The following code gets the client values (the values posted to this method) and the DB values:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.changetracking.propertyentry.originalvalue#microsoft_entityframeworkcore_changetracking_propertyentry_originalvalue


try
{
    await _context.SaveChangesAsync();
    return RedirectToPage("./Index");
}
catch (DbUpdateConcurrencyException ex)
{
    var exceptionEntry = ex.Entries.Single();
    var clientValues = (Department)exceptionEntry.Entity;
    var databaseEntry = exceptionEntry.GetDatabaseValues();
    if (databaseEntry == null)
    {
        ModelState.AddModelError(string.Empty, "Unable to save. " +
            "The department was deleted by another user.");
        return Page();
    }

    var dbValues = (Department)databaseEntry.ToObject();
    await setDbErrorMessage(dbValues, clientValues, _context);

    // Save the current RowVersion so next postback
    // matches unless an new concurrency issue happens.
    Department.RowVersion = (byte[])dbValues.RowVersion;
    // Must clear the model error for the next postback.
    ModelState.Remove("Department.RowVersion");
}

private async Task setDbErrorMessage(Department dbValues,
        Department clientValues, SchoolContext context)
{

    if (dbValues.Name != clientValues.Name)
    {
        ModelState.AddModelError("Department.Name",
            $"Current value: {dbValues.Name}");
    }
    if (dbValues.Budget != clientValues.Budget)
    {
        ModelState.AddModelError("Department.Budget",
            $"Current value: {dbValues.Budget:c}");
    }
    if (dbValues.StartDate != clientValues.StartDate)
    {
        ModelState.AddModelError("Department.StartDate",
            $"Current value: {dbValues.StartDate:d}");
    }
    if (dbValues.InstructorID != clientValues.InstructorID)
    {
        Instructor dbInstructor = await _context.Instructors
           .FindAsync(dbValues.InstructorID);
        ModelState.AddModelError("Department.InstructorID",
            $"Current value: {dbInstructor?.FullName}");
    }

    ModelState.AddModelError(string.Empty,
        "The record you attempted to edit "
      + "was modified by another user after you. The "
      + "edit operation was canceled and the current values in the database "
      + "have been displayed. If you still want to edit this record, click "
      + "the Save button again.");
}

The following code adds a custom error message for each column that has DB values different from what was

posted to OnPostAsync :



try
{
    await _context.SaveChangesAsync();
    return RedirectToPage("./Index");
}
catch (DbUpdateConcurrencyException ex)
{
    var exceptionEntry = ex.Entries.Single();
    var clientValues = (Department)exceptionEntry.Entity;
    var databaseEntry = exceptionEntry.GetDatabaseValues();
    if (databaseEntry == null)
    {
        ModelState.AddModelError(string.Empty, "Unable to save. " +
            "The department was deleted by another user.");
        return Page();
    }

    var dbValues = (Department)databaseEntry.ToObject();
    await setDbErrorMessage(dbValues, clientValues, _context);

    // Save the current RowVersion so next postback
    // matches unless an new concurrency issue happens.
    Department.RowVersion = (byte[])dbValues.RowVersion;
    // Must clear the model error for the next postback.
    ModelState.Remove("Department.RowVersion");
}

Update the Edit page

The following highlighted code sets the RowVersion  value to the new value retrieved from the DB. The next time

the user clicks SaveSave, only concurrency errors that happen since the last display of the Edit page will be caught.

The ModelState.Remove  statement is required because ModelState  has the old RowVersion  value. In the Razor

Page, the ModelState  value for a field takes precedence over the model property values when both are present.

Update Pages/Departments/Edit.cshtml with the following markup:



@page "{id:int}"
@model ContosoUniversity.Pages.Departments.EditModel
@{
    ViewData["Title"] = "Edit";
}
<h2>Edit</h2>
<h4>Department</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form method="post">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <input type="hidden" asp-for="Department.DepartmentID" />
            <input type="hidden" asp-for="Department.RowVersion" />
            <div class="form-group">
                <label>RowVersion</label>
                @Model.Department.RowVersion[7]
            </div>
            <div class="form-group">
                <label asp-for="Department.Name" class="control-label"></label>
                <input asp-for="Department.Name" class="form-control" />
                <span asp-validation-for="Department.Name" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Department.Budget" class="control-label"></label>
                <input asp-for="Department.Budget" class="form-control" />
                <span asp-validation-for="Department.Budget" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Department.StartDate" class="control-label"></label>
                <input asp-for="Department.StartDate" class="form-control" />
                <span asp-validation-for="Department.StartDate" class="text-danger">
                </span>
            </div>
            <div class="form-group">
                <label class="control-label">Instructor</label>
                <select asp-for="Department.InstructorID" class="form-control"
                        asp-items="@Model.InstructorNameSL"></select>
                <span asp-validation-for="Department.InstructorID" class="text-danger">
                </span>
            </div>
            <div class="form-group">
                <input type="submit" value="Save" class="btn btn-default" />
            </div>
        </form>
    </div>
</div>
<div>
    <a asp-page="./Index">Back to List</a>
</div>
@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Test concurrency conflicts with the Edit page

The preceding markup:

Updates the page  directive from @page  to @page "{id:int}" .

Adds a hidden row version. RowVersion  must be added so post back binds the value.

Displays the last byte of RowVersion  for debugging purposes.

Replaces ViewData  with the strongly-typed InstructorNameSL .

Open two browsers instances of Edit on the English department:



Run the app and select Departments.

Right-click the EditEdit hyperlink for the English department and select Open in new tabOpen in new tab.

In the first tab, click the EditEdit hyperlink for the English department.

The two browser tabs display the same information.

Change the name in the first browser tab and click SaveSave.

The browser shows the Index page with the changed value and updated rowVersion indicator. Note the updated

rowVersion indicator, it's displayed on the second postback in the other tab.

Change a different field in the second browser tab.



Click SaveSave. You see error messages for all fields that don't match the DB values:



This browser window didn't intend to change the Name field. Copy and paste the current value (Languages) into

the Name field. Tab out. Client-side validation removes the error message.



Update the Delete page

using ContosoUniversity.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;

namespace ContosoUniversity.Pages.Departments
{
    public class DeleteModel : PageModel
    {
        private readonly ContosoUniversity.Data.SchoolContext _context;

Click SaveSave again. The value you entered in the second browser tab is saved. You see the saved values in the Index

page.

Update the Delete page model with the following code:



        public DeleteModel(ContosoUniversity.Data.SchoolContext context)
        {
            _context = context;
        }

        [BindProperty]
        public Department Department { get; set; }
        public string ConcurrencyErrorMessage { get; set; }

        public async Task<IActionResult> OnGetAsync(int id, bool? concurrencyError)
        {
            Department = await _context.Departments
                .Include(d => d.Administrator)
                .AsNoTracking()
                .FirstOrDefaultAsync(m => m.DepartmentID == id);

            if (Department == null)
            {
                 return NotFound();
            }

            if (concurrencyError.GetValueOrDefault())
            {
                ConcurrencyErrorMessage = "The record you attempted to delete "
                  + "was modified by another user after you selected delete. "
                  + "The delete operation was canceled and the current values in the "
                  + "database have been displayed. If you still want to delete this "
                  + "record, click the Delete button again.";
            }
            return Page();
        }

        public async Task<IActionResult> OnPostAsync(int id)
        {
            try
            {
                if (await _context.Departments.AnyAsync(
                    m => m.DepartmentID == id))
                {
                    // Department.rowVersion value is from when the entity
                    // was fetched. If it doesn't match the DB, a
                    // DbUpdateConcurrencyException exception is thrown.
                    _context.Departments.Remove(Department);
                    await _context.SaveChangesAsync();
                }
                return RedirectToPage("./Index");
            }
            catch (DbUpdateConcurrencyException)
            {
                return RedirectToPage("./Delete",
                    new { concurrencyError = true, id = id });
            }
        }
    }
}

The Delete page detects concurrency conflicts when the entity has changed after it was fetched. 

Department.RowVersion  is the row version when the entity was fetched. When EF Core creates the SQL DELETE

command, it includes a WHERE clause with RowVersion . If the SQL DELETE command results in zero rows

affected:

The RowVersion  in the SQL DELETE command doesn't match RowVersion  in the DB.

A DbUpdateConcurrencyException exception is thrown.

OnGetAsync  is called with the concurrencyError .



Update the Delete pageUpdate the Delete page

@page "{id:int}"
@model ContosoUniversity.Pages.Departments.DeleteModel

@{
    ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@Model.ConcurrencyErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>
<div>
    <h4>Department</h4>
    <hr />
    <dl class="dl-horizontal">
        <dt>
            @Html.DisplayNameFor(model => model.Department.Name)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Department.Name)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Department.Budget)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Department.Budget)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Department.StartDate)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Department.StartDate)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Department.RowVersion)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Department.RowVersion[7])
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Department.Administrator)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Department.Administrator.FullName)
        </dd>
    </dl>
    
    <form method="post">
        <input type="hidden" asp-for="Department.DepartmentID" />
        <input type="hidden" asp-for="Department.RowVersion" />
        <div class="form-actions no-color">
            <input type="submit" value="Delete" class="btn btn-default" /> |
            <a asp-page="./Index">Back to List</a>
        </div>
</form>
</div>

Update Pages/Departments/Delete.cshtml with the following code:

The preceding code makes the following changes:

Updates the page  directive from @page  to @page "{id:int}" .

Adds an error message.



Test concurrency conflicts with the Delete pageTest concurrency conflicts with the Delete page

Additional resourcesAdditional resources

Replaces FirstMidName with FullName in the AdministratorAdministrator  field.

Changes RowVersion  to display the last byte.

Adds a hidden row version. RowVersion  must be added so post back binds the value.

Create a test department.

Open two browsers instances of Delete on the test department:

Run the app and select Departments.

Right-click the DeleteDelete hyperlink for the test department and select Open in new tabOpen in new tab.

Click the EditEdit hyperlink for the test department.

The two browser tabs display the same information.

Change the budget in the first browser tab and click SaveSave.

The browser shows the Index page with the changed value and updated rowVersion indicator. Note the updated

rowVersion indicator, it's displayed on the second postback in the other tab.

Delete the test department from the second tab. A concurrency error is display with the current values from the

DB. Clicking DeleteDelete deletes the entity, unless RowVersion  has been updated.

See Inheritance on how to inherit a data model.

Concurrency Tokens in EF Core

Handle concurrency in EF Core

YouTube version of this tutorial(Handling Concurrency Conflicts)

YouTube version of this tutorial(Part 2)

YouTube version of this tutorial(Part 3)

P R E V I O U SP R E V I O U S

https://docs.microsoft.com/en-us/ef/core/modeling/concurrency
https://docs.microsoft.com/en-us/ef/core/saving/concurrency
https://youtu.be/EosxHTFgYps
https://www.youtube.com/watch?v=kcxERLnaGO0
https://www.youtube.com/watch?v=d4RbpfvELRs


ASP.NET Core MVC with EF Core - tutorial series
9/22/2020 • 2 minutes to read • Edit Online

This tutorial has notnot been updated to ASP.NET Core 3.0. The Razor Pages version has been updated. For

information on when this might be updated, see this GitHub issue.

This tutorial teaches ASP.NET Core MVC and Entity Framework Core with controllers and views. Razor Pages is an

alternative programming model that was introduced in ASP.NET Core 2.0. For new development, we recommend

Razor Pages over MVC with controllers and views. There is a Razor Pages version of this tutorial. Each tutorial

covers some material the other doesn't:

Some things this MVC tutorial has that the Razor Pages tutorial doesn't:

Implement inheritance in the data model

Perform raw SQL queries

Use dynamic LINQ to simplify code

Some things the Razor Pages tutorial has that this one doesn't:

Use Select method to load related data

A version available for ASP.NET Core 3.0

1. Get started

2. Create, Read, Update, and Delete operations

3. Sorting, filtering, paging, and grouping

4. Migrations

5. Create a complex data model

6. Reading related data

7. Updating related data

8. Handle concurrency conflicts

9. Inheritance

10. Advanced topics

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/index.md
https://github.com/dotnet/AspNetCore.Docs/issues/13920


Tutorial: Get started with EF Core in an ASP.NET
MVC web app
9/22/2020 • 21 minutes to read • Edit Online

Prerequisites

This tutorial has notnot been updated to ASP.NET Core 3.0. The Razor Pages version has been updated. Most of the

code changes for the ASP.NET Core 3.0 and later version of this tutorial:

Are in the Startup.cs and Program.cs files.

Can be found in the Razor Pages version.

For information on when this might be updated, see this GitHub issue.

This tutorial teaches ASP.NET Core MVC and Entity Framework Core with controllers and views. Razor Pages is an

alternative programming model that was introduced in ASP.NET Core 2.0. For new development, we recommend

Razor Pages over MVC with controllers and views. There is a Razor Pages version of this tutorial. Each tutorial

covers some material the other doesn't:

Some things this MVC tutorial has that the Razor Pages tutorial doesn't:

Implement inheritance in the data model

Perform raw SQL queries

Use dynamic LINQ to simplify code

Some things the Razor Pages tutorial has that this one doesn't:

Use Select method to load related data

A version available for ASP.NET Core 3.0

The Contoso University sample web application demonstrates how to create ASP.NET Core 2.2 MVC web

applications using Entity Framework (EF) Core 2.2 and Visual Studio 2017 or 2019.

The sample application is a web site for a fictional Contoso University. It includes functionality such as student

admission, course creation, and instructor assignments. This is the first in a series of tutorials that explain how to

build the Contoso University sample application from scratch.

In this tutorial, you:

Create an ASP.NET Core MVC web app

Set up the site style

Learn about EF Core NuGet packages

Create the data model

Create the database context

Register the context for dependency injection

Initialize the database with test data

Create a controller and views

View the database

.NET Core SDK 2.2

Visual Studio 2019 with the following workloads:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/intro.md
https://github.com/dotnet/AspNetCore.Docs/issues/13920
https://dotnet.microsoft.com/download
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019


Troubleshooting

TIPTIP

Contoso University web app

ASP.NET and web developmentASP.NET and web development workload

.NET Core cross-platform development.NET Core cross-platform development workload

If you run into a problem you can't resolve, you can generally find the solution by comparing your code to the

completed project. For a list of common errors and how to solve them, see the Troubleshooting section of the last

tutorial in the series. If you don't find what you need there, you can post a question to StackOverflow.com for

ASP.NET Core or EF Core.

This is a series of 10 tutorials, each of which builds on what is done in earlier tutorials. Consider saving a copy of the project

after each successful tutorial completion. Then if you run into problems, you can start over from the previous tutorial

instead of going back to the beginning of the whole series.

The application you'll be building in these tutorials is a simple university web site.

Users can view and update student, course, and instructor information. Here are a few of the screens you'll create.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core


Create web app
Open Visual Studio.

From the FileFile menu, select New > ProjectNew > Project.

From the left pane, select Installed > Visual C# > WebInstalled > Visual C# > Web.

Select the ASP.NET Core Web ApplicationASP.NET Core Web Application project template.

Enter ContosoUniversityContosoUniversity  as the name and click OKOK.

Wait for the New ASP.NET Core Web ApplicationNew ASP.NET Core Web Application dialog to appear.

Select .NET Core.NET Core, ASP.NET Core 2.2ASP.NET Core 2.2  and the Web Application (Model-View-Controller)Web Application (Model-View-Controller)  template.



Set up the site style

<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>@ViewData["Title"] - Contoso University</title>

    <environment include="Development">
        <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
    </environment>
    <environment exclude="Development">
        <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.1.3/css/bootstrap.min.css"
              asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
              asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute"
              crossorigin="anonymous"
              integrity="sha256-eSi1q2PG6J7g7ib17yAaWMcrr5GrtohYChqibrV7PBE="/>
    </environment>
    <link rel="stylesheet" href="~/css/site.css" />
</head>

Make sure AuthenticationAuthentication is set to No AuthenticationNo Authentication.

Select OKOK

A few simple changes will set up the site menu, layout, and home page.

Open Views/Shared/_Layout.cshtml and make the following changes:

Change each occurrence of "ContosoUniversity" to "Contoso University". There are three occurrences.

Add menu entries for AboutAbout, StudentsStudents , CoursesCourses , InstructorsInstructors , and Depar tmentsDepar tments , and delete the

PrivacyPrivacy  menu entry.

The changes are highlighted.



</head>
<body>
    <header>
        <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-
shadow mb-3">
            <div class="container">
                <a class="navbar-brand" asp-area="" asp-controller="Home" asp-action="Index">Contoso 
University</a>
                <button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-
collapse" aria-controls="navbarSupportedContent"
                        aria-expanded="false" aria-label="Toggle navigation">
                    <span class="navbar-toggler-icon"></span>
                </button>
                <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
                    <ul class="navbar-nav flex-grow-1">
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Index">Home</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="About">About</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-controller="Students" asp-
action="Index">Students</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-controller="Courses" asp-
action="Index">Courses</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-controller="Instructors" asp-
action="Index">Instructors</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-controller="Departments" asp-
action="Index">Departments</a>
                        </li>
                    </ul>
                </div>
            </div>
        </nav>
    </header>
    <div class="container">
        <partial name="_CookieConsentPartial" />
        <main role="main" class="pb-3">
            @RenderBody()
        </main>
    </div>

    <footer class="border-top footer text-muted">
        <div class="container">
            &copy; 2019 - Contoso University - <a asp-area="" asp-controller="Home" asp-
action="Privacy">Privacy</a>
        </div>
    </footer>

    <environment include="Development">
        <script src="~/lib/jquery/dist/jquery.js"></script>
        <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js"></script>
    </environment>
    <environment exclude="Development">
        <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js"
                asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
                asp-fallback-test="window.jQuery"
                crossorigin="anonymous"
                integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=">
        </script>
        <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-



        <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.1.3/js/bootstrap.bundle.min.js"
                asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"
                asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
                crossorigin="anonymous"
                integrity="sha256-E/V4cWE4qvAeO5MOhjtGtqDzPndRO1LBk8lJ/PR7CA4=">
        </script>
    </environment>
    <script src="~/js/site.js" asp-append-version="true"></script>

    @RenderSection("Scripts", required: false)
</body>
</html>

@{
    ViewData["Title"] = "Home Page";
}

<div class="jumbotron">
    <h1>Contoso University</h1>
</div>
<div class="row">
    <div class="col-md-4">
        <h2>Welcome to Contoso University</h2>
        <p>
            Contoso University is a sample application that
            demonstrates how to use Entity Framework Core in an
            ASP.NET Core MVC web application.
        </p>
    </div>
    <div class="col-md-4">
        <h2>Build it from scratch</h2>
        <p>You can build the application by following the steps in a series of tutorials.</p>
        <p><a class="btn btn-default" href="https://docs.asp.net/en/latest/data/ef-mvc/intro.html">See the 
tutorial &raquo;</a></p>
    </div>
    <div class="col-md-4">
        <h2>Download it</h2>
        <p>You can download the completed project from GitHub.</p>
        <p><a class="btn btn-default" 
href="https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-
final">See project source code &raquo;</a></p>
    </div>
</div>

In Views/Home/Index.cshtml, replace the contents of the file with the following code to replace the text about

ASP.NET and MVC with text about this application:

Press CTRL+F5 to run the project or choose Debug > Star t Without DebuggingDebug > Star t Without Debugging from the menu. You see the

home page with tabs for the pages you'll create in these tutorials.



About EF Core NuGet packages

Create the data model

To add EF Core support to a project, install the database provider that you want to target. This tutorial uses SQL

Server, and the provider package is Microsoft.EntityFrameworkCore.SqlServer. This package is included in the

Microsoft.AspNetCore.App metapackage, so you don't need to reference the package.

The EF SQL Server package and its dependencies ( Microsoft.EntityFrameworkCore  and 

Microsoft.EntityFrameworkCore.Relational ) provide runtime support for EF. You'll add a tooling package later, in

the Migrations tutorial.

For information about other database providers that are available for Entity Framework Core, see Database

providers.

Next you'll create entity classes for the Contoso University application. You'll start with the following three

entities.

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.SqlServer/
https://docs.microsoft.com/en-us/ef/core/providers/


The Student entityThe Student entity

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        public string LastName { get; set; }
        public string FirstMidName { get; set; }
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

There's a one-to-many relationship between Student  and Enrollment  entities, and there's a one-to-many

relationship between Course  and Enrollment  entities. In other words, a student can be enrolled in any number

of courses, and a course can have any number of students enrolled in it.

In the following sections you'll create a class for each one of these entities.

In the Models folder, create a class file named Student.cs and replace the template code with the following code.

The ID  property will become the primary key column of the database table that corresponds to this class. By

default, the Entity Framework interprets a property that's named ID  or classnameID  as the primary key.

The Enrollments  property is a navigation property. Navigation properties hold other entities that are related to

this entity. In this case, the Enrollments  property of a Student entity  will hold all of the Enrollment  entities that

are related to that Student  entity. In other words, if a given Student row in the database has two related

Enrollment rows (rows that contain that student's primary key value in their StudentID foreign key column), that 

Student  entity's Enrollments  navigation property will contain those two Enrollment  entities.

If a navigation property can hold multiple entities (as in many-to-many or one-to-many relationships), its type

must be a list in which entries can be added, deleted, and updated, such as ICollection<T> . You can specify 

ICollection<T>  or a type such as List<T>  or HashSet<T> . If you specify ICollection<T> , EF creates a 

HashSet<T>  collection by default.

https://docs.microsoft.com/en-us/ef/core/modeling/relationships


The Enrollment entityThe Enrollment entity

namespace ContosoUniversity.Models
{
    public enum Grade
    {
        A, B, C, D, F
    }

    public class Enrollment
    {
        public int EnrollmentID { get; set; }
        public int CourseID { get; set; }
        public int StudentID { get; set; }
        public Grade? Grade { get; set; }

        public Course Course { get; set; }
        public Student Student { get; set; }
    }
}

The Course entityThe Course entity

In the Models folder, create Enrollment.cs and replace the existing code with the following code:

The EnrollmentID  property will be the primary key; this entity uses the classnameID  pattern instead of ID  by

itself as you saw in the Student  entity. Ordinarily you would choose one pattern and use it throughout your data

model. Here, the variation illustrates that you can use either pattern. In a later tutorial, you'll see how using ID

without classname makes it easier to implement inheritance in the data model.

The Grade  property is an enum . The question mark after the Grade  type declaration indicates that the Grade

property is nullable. A grade that's null is different from a zero grade -- null means a grade isn't known or hasn't

been assigned yet.

The StudentID  property is a foreign key, and the corresponding navigation property is Student . An Enrollment

entity is associated with one Student  entity, so the property can only hold a single Student  entity (unlike the 

Student.Enrollments  navigation property you saw earlier, which can hold multiple Enrollment  entities).

The CourseID  property is a foreign key, and the corresponding navigation property is Course . An Enrollment

entity is associated with one Course  entity.

Entity Framework interprets a property as a foreign key property if it's named 

<navigation property name><primary key property name>  (for example, StudentID  for the Student  navigation

property since the Student  entity's primary key is ID ). Foreign key properties can also be named simply 

<primary key property name>  (for example, CourseID  since the Course  entity's primary key is CourseID ).



    

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Course
    {
        [DatabaseGenerated(DatabaseGeneratedOption.None)]
        public int CourseID { get; set; }
        public string Title { get; set; }
        public int Credits { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

Create the database context

In the Models folder, create Course.cs and replace the existing code with the following code:

The Enrollments  property is a navigation property. A Course  entity can be related to any number of Enrollment

entities.

We'll say more about the DatabaseGenerated  attribute in a later tutorial in this series. Basically, this attribute lets

you enter the primary key for the course rather than having the database generate it.

The main class that coordinates Entity Framework functionality for a given data model is the database context

class. You create this class by deriving from the Microsoft.EntityFrameworkCore.DbContext  class. In your code you

specify which entities are included in the data model. You can also customize certain Entity Framework behavior.

In this project, the class is named SchoolContext .

In the project folder, create a folder named Data.

In the Data folder create a new class file named SchoolContext.cs, and replace the template code with the

following code:



using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
    public class SchoolContext : DbContext
    {
        public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
        {
        }

        public DbSet<Course> Courses { get; set; }
        public DbSet<Enrollment> Enrollments { get; set; }
        public DbSet<Student> Students { get; set; }
    }
}

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
    public class SchoolContext : DbContext
    {
        public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
        {
        }

        public DbSet<Course> Courses { get; set; }
        public DbSet<Enrollment> Enrollments { get; set; }
        public DbSet<Student> Students { get; set; }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Course>().ToTable("Course");
            modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
            modelBuilder.Entity<Student>().ToTable("Student");
        }
    }
}

Register the SchoolContext

This code creates a DbSet  property for each entity set. In Entity Framework terminology, an entity set typically

corresponds to a database table, and an entity corresponds to a row in the table.

You could've omitted the DbSet<Enrollment>  and DbSet<Course>  statements and it would work the same. The

Entity Framework would include them implicitly because the Student  entity references the Enrollment  entity

and the Enrollment  entity references the Course  entity.

When the database is created, EF creates tables that have names the same as the DbSet  property names.

Property names for collections are typically plural (Students rather than Student), but developers disagree about

whether table names should be pluralized or not. For these tutorials you'll override the default behavior by

specifying singular table names in the DbContext. To do that, add the following highlighted code after the last

DbSet property.

ASP.NET Core implements dependency injection by default. Services (such as the EF database context) are

registered with dependency injection during application startup. Components that require these services (such as

MVC controllers) are provided these services via constructor parameters. You'll see the controller constructor

code that gets a context instance later in this tutorial.



public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddDbContext<SchoolContext>(options =>
        options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

    services.AddMvc();
}

using ContosoUniversity.Data;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Http;

{
  "ConnectionStrings": {
    "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity1;Trusted_Connection=True;MultipleActiveResultSets=true"
  },
  "Logging": {
    "IncludeScopes": false,
    "LogLevel": {
      "Default": "Warning"
    }
  }
}

SQL Server Express LocalDBSQL Server Express LocalDB

Initialize DB with test data

To register SchoolContext  as a service, open Startup.cs, and add the highlighted lines to the ConfigureServices

method.

The name of the connection string is passed in to the context by calling a method on a DbContextOptionsBuilder

object. For local development, the ASP.NET Core configuration system reads the connection string from the

appsettings.json file.

Add using  statements for ContosoUniversity.Data  and Microsoft.EntityFrameworkCore  namespaces, and then

build the project.

Open the appsettings.json file and add a connection string as shown in the following example.

The connection string specifies a SQL Server LocalDB database. LocalDB is a lightweight version of the SQL

Server Express Database Engine and is intended for application development, not production use. LocalDB starts

on demand and runs in user mode, so there's no complex configuration. By default, LocalDB creates .mdf

database files in the C:/Users/<user>  directory.

The Entity Framework will create an empty database for you. In this section, you write a method that's called after

the database is created in order to populate it with test data.

Here you'll use the EnsureCreated  method to automatically create the database. In a later tutorial you'll see how

to handle model changes by using Code First Migrations to change the database schema instead of dropping and

re-creating the database.



using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Data
{
    public static class DbInitializer
    {
        public static void Initialize(SchoolContext context)
        {
            context.Database.EnsureCreated();

            // Look for any students.
            if (context.Students.Any())
            {
                return;   // DB has been seeded
            }

            var students = new Student[]
            {
            new Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("2005-09-
01")},
            new Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2002-09-
01")},
            new Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2003-09-01")},
            new Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2002-09-
01")},
            new Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002-09-01")},
            new Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2001-09-01")},
            new Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2003-09-01")},
            new Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2005-09-01")}
            };
            foreach (Student s in students)
            {
                context.Students.Add(s);
            }
            context.SaveChanges();

            var courses = new Course[]
            {
            new Course{CourseID=1050,Title="Chemistry",Credits=3},
            new Course{CourseID=4022,Title="Microeconomics",Credits=3},
            new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
            new Course{CourseID=1045,Title="Calculus",Credits=4},
            new Course{CourseID=3141,Title="Trigonometry",Credits=4},
            new Course{CourseID=2021,Title="Composition",Credits=3},
            new Course{CourseID=2042,Title="Literature",Credits=4}
            };
            foreach (Course c in courses)
            {
                context.Courses.Add(c);
            }
            context.SaveChanges();

            var enrollments = new Enrollment[]
            {
            new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
            new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
            new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
            new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
            new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
            new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
            new Enrollment{StudentID=3,CourseID=1050},
            new Enrollment{StudentID=4,CourseID=1050},
            new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},

In the Data folder, create a new class file named DbInitializer.cs and replace the template code with the following

code, which causes a database to be created when needed and loads test data into the new database.



            new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
            new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
            new Enrollment{StudentID=6,CourseID=1045},
            new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
            };
            foreach (Enrollment e in enrollments)
            {
                context.Enrollments.Add(e);
            }
            context.SaveChanges();
        }
    }
}

public static void Main(string[] args)
{
     var host = CreateWebHostBuilder(args).Build();

    using (var scope = host.Services.CreateScope())
    {
        var services = scope.ServiceProvider;
        try
        {
            var context = services.GetRequiredService<SchoolContext>();
            DbInitializer.Initialize(context);
        }
        catch (Exception ex)
        {
            var logger = services.GetRequiredService<ILogger<Program>>();
            logger.LogError(ex, "An error occurred while seeding the database.");
        }
    }

    host.Run();
}

using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Data;

Create controller and views

The code checks if there are any students in the database, and if not, it assumes the database is new and needs to

be seeded with test data. It loads test data into arrays rather than List<T>  collections to optimize performance.

In Program.cs, modify the Main  method to do the following on application startup:

Get a database context instance from the dependency injection container.

Call the seed method, passing to it the context.

Dispose the context when the seed method is done.

Add using  statements:

In older tutorials, you may see similar code in the Configure  method in Startup.cs. We recommend that you use

the Configure  method only to set up the request pipeline. Application startup code belongs in the Main  method.

Now the first time you run the application, the database will be created and seeded with test data. Whenever you

change your data model, you can delete the database, update your seed method, and start afresh with a new

database the same way. In later tutorials, you'll see how to modify the database when the data model changes,

without deleting and re-creating it.



Next, you'll use the scaffolding engine in Visual Studio to add an MVC controller and views that will use EF to

query and save data.

The automatic creation of CRUD action methods and views is known as scaffolding. Scaffolding differs from code

generation in that the scaffolded code is a starting point that you can modify to suit your own requirements,

whereas you typically don't modify generated code. When you need to customize generated code, you use partial

classes or you regenerate the code when things change.

Right-click the ControllersControllers  folder in Solution ExplorerSolution Explorer  and select Add > New Scaffolded ItemAdd > New Scaffolded Item.

In the Add ScaffoldAdd Scaffold dialog box:

Select MVC controller  with views, using Entity FrameworkMVC controller  with views, using Entity Framework .

Click AddAdd. The Add MVC Controller  with views, using Entity FrameworkAdd MVC Controller  with views, using Entity Framework dialog box appears.

In Model classModel class  select StudentStudent.

In Data context classData context class  select SchoolContextSchoolContext.

Accept the default StudentsControllerStudentsController  as the name.

Click AddAdd.

When you click AddAdd, the Visual Studio scaffolding engine creates a StudentsController.cs file and a set of

views (.cshtml files) that work with the controller.

(The scaffolding engine can also create the database context for you if you don't create it manually first as you did

earlier for this tutorial. You can specify a new context class in the Add ControllerAdd Controller  box by clicking the plus sign to

the right of Data context classData context class . Visual Studio will then create your DbContext  class as well as the controller and

views.)

You'll notice that the controller takes a SchoolContext  as a constructor parameter.



namespace ContosoUniversity.Controllers
{
    public class StudentsController : Controller
    {
        private readonly SchoolContext _context;

        public StudentsController(SchoolContext context)
        {
            _context = context;
        }

public async Task<IActionResult> Index()
{
    return View(await _context.Students.ToListAsync());
}

ASP.NET Core dependency injection takes care of passing an instance of SchoolContext  into the controller. You

configured that in the Startup.cs file earlier.

The controller contains an Index  action method, which displays all students in the database. The method gets a

list of students from the Students entity set by reading the Students  property of the database context instance:

You'll learn about the asynchronous programming elements in this code later in the tutorial.

The Views/Students/Index.cshtml view displays this list in a table:



@model IEnumerable<ContosoUniversity.Models.Student>

@{
    ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
    <a asp-action="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
                <th>
                    @Html.DisplayNameFor(model => model.LastName)
                </th>
                <th>
                    @Html.DisplayNameFor(model => model.FirstMidName)
                </th>
                <th>
                    @Html.DisplayNameFor(model => model.EnrollmentDate)
                </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
@foreach (var item in Model) {
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.LastName)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.FirstMidName)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.EnrollmentDate)
            </td>
            <td>
                <a asp-action="Edit" asp-route-id="@item.ID">Edit</a> |
                <a asp-action="Details" asp-route-id="@item.ID">Details</a> |
                <a asp-action="Delete" asp-route-id="@item.ID">Delete</a>
            </td>
        </tr>
}
    </tbody>
</table>

Press CTRL+F5 to run the project or choose Debug > Star t Without DebuggingDebug > Star t Without Debugging from the menu.

Click the Students tab to see the test data that the DbInitializer.Initialize  method inserted. Depending on how

narrow your browser window is, you'll see the Students  tab link at the top of the page or you'll have to click the

navigation icon in the upper right corner to see the link.



View the database
When you started the application, the DbInitializer.Initialize  method calls EnsureCreated . EF saw that there

was no database and so it created one, then the remainder of the Initialize  method code populated the

database with data. You can use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  (SSOX) to view the database in Visual Studio.

Close the browser.

If the SSOX window isn't already open, select it from the ViewView  menu in Visual Studio.

In SSOX, click (localdb)\MSSQLLocalDB > Databases(localdb)\MSSQLLocalDB > Databases , and then click the entry for the database name that's in

the connection string in your appsettings.json file.

Expand the TablesTables  node to see the tables in your database.



Conventions

Asynchronous code

Right-click the StudentStudent table and click View DataView Data to see the columns that were created and the rows that were

inserted into the table.

The .mdf and .ldf database files are in the C:\Users\<yourusername> folder.

Because you're calling EnsureCreated  in the initializer method that runs on app start, you could now make a

change to the Student  class, delete the database, run the application again, and the database would

automatically be re-created to match your change. For example, if you add an EmailAddress  property to the 

Student  class, you'll see a new EmailAddress  column in the re-created table.

The amount of code you had to write in order for the Entity Framework to be able to create a complete database

for you is minimal because of the use of conventions, or assumptions that the Entity Framework makes.

The names of DbSet  properties are used as table names. For entities not referenced by a DbSet  property,

entity class names are used as table names.

Entity property names are used for column names.

Entity properties that are named ID or classnameID are recognized as primary key properties.

A property is interpreted as a foreign key property if it's named <navigation property name><primary

key property name> (for example, StudentID  for the Student  navigation property since the Student

entity's primary key is ID ). Foreign key properties can also be named simply <primary key property

name> (for example, EnrollmentID  since the Enrollment  entity's primary key is EnrollmentID ).

Conventional behavior can be overridden. For example, you can explicitly specify table names, as you saw earlier

in this tutorial. And you can set column names and set any property as primary key or foreign key, as you'll see in

a later tutorial in this series.



public async Task<IActionResult> Index()
{
    return View(await _context.Students.ToListAsync());
}

Get the code

Next steps

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of the available threads

might be in use. When that happens, the server can't process new requests until the threads are freed up. With

synchronous code, many threads may be tied up while they aren't actually doing any work because they're

waiting for I/O to complete. With asynchronous code, when a process is waiting for I/O to complete, its thread is

freed up for the server to use for processing other requests. As a result, asynchronous code enables server

resources to be used more efficiently, and the server is enabled to handle more traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time, but for low traffic situations the

performance hit is negligible, while for high traffic situations, the potential performance improvement is

substantial.

In the following code, the async  keyword, Task<T>  return value, await  keyword, and ToListAsync  method

make the code execute asynchronously.

The async  keyword tells the compiler to generate callbacks for parts of the method body and to

automatically create the Task<IActionResult>  object that's returned.

The return type Task<IActionResult>  represents ongoing work with a result of type IActionResult .

The await  keyword causes the compiler to split the method into two parts. The first part ends with the

operation that's started asynchronously. The second part is put into a callback method that's called when

the operation completes.

ToListAsync  is the asynchronous version of the ToList  extension method.

Some things to be aware of when you are writing asynchronous code that uses the Entity Framework:

Only statements that cause queries or commands to be sent to the database are executed asynchronously.

That includes, for example, ToListAsync , SingleOrDefaultAsync , and SaveChangesAsync . It doesn't include,

for example, statements that just change an IQueryable , such as 

var students = context.Students.Where(s => s.LastName == "Davolio") .

An EF context isn't thread safe: don't try to do multiple operations in parallel. When you call any async EF

method, always use the await  keyword.

If you want to take advantage of the performance benefits of async code, make sure that any library

packages that you're using (such as for paging), also use async if they call any Entity Framework methods

that cause queries to be sent to the database.

For more information about asynchronous programming in .NET, see Async Overview.

Download or view the completed application.

In this tutorial, you:

Created ASP.NET Core MVC web app

https://docs.microsoft.com/en-us/dotnet/articles/standard/async
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final


Set up the site style

Learned about EF Core NuGet packages

Created the data model

Created the database context

Registered the SchoolContext

Initialized DB with test data

Created controller and views

Viewed the database

In the following tutorial, you'll learn how to perform basic CRUD (create, read, update, delete) operations.

Advance to the next tutorial to learn how to perform basic CRUD (create, read, update, delete) operations.

Implement basic CRUD functionality



Tutorial: Implement CRUD Functionality - ASP.NET
MVC with EF Core
9/22/2020 • 19 minutes to read • Edit Online

NOTENOTE

Prerequisites

Customize the Details page

In the previous tutorial, you created an MVC application that stores and displays data using the Entity Framework

and SQL Server LocalDB. In this tutorial, you'll review and customize the CRUD (create, read, update, delete) code

that the MVC scaffolding automatically creates for you in controllers and views.

It's a common practice to implement the repository pattern in order to create an abstraction layer between your controller

and the data access layer. To keep these tutorials simple and focused on teaching how to use the Entity Framework itself,

they don't use repositories. For information about repositories with EF, see the last tutorial in this series.

In this tutorial, you:

Customize the Details page

Update the Create page

Update the Edit page

Update the Delete page

Close database connections

Get started with EF Core and ASP.NET Core MVC

The scaffolded code for the Students Index page left out the Enrollments  property, because that property holds a

collection. In the DetailsDetails  page, you'll display the contents of the collection in an HTML table.

In Controllers/StudentsController.cs, the action method for the Details view uses the SingleOrDefaultAsync

method to retrieve a single Student  entity. Add code that calls Include . ThenInclude , and AsNoTracking

methods, as shown in the following highlighted code.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/crud.md


public async Task<IActionResult> Details(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    var student = await _context.Students
        .Include(s => s.Enrollments)
            .ThenInclude(e => e.Course)
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.ID == id);

    if (student == null)
    {
        return NotFound();
    }

    return View(student);
}

Route dataRoute data

app.UseMvc(routes =>
{
    routes.MapRoute(
        name: "default",
        template: "{controller=Home}/{action=Index}/{id?}");
});

http://localhost:1230/Instructor/Index/1?courseID=2021

http://localhost:1230/Instructor/Index?id=1&CourseID=2021

<a asp-action="Edit" asp-route-id="@item.ID">Edit</a>

The Include  and ThenInclude  methods cause the context to load the Student.Enrollments  navigation property,

and within each enrollment the Enrollment.Course  navigation property. You'll learn more about these methods

in the read related data tutorial.

The AsNoTracking  method improves performance in scenarios where the entities returned won't be updated in

the current context's lifetime. You'll learn more about AsNoTracking  at the end of this tutorial.

The key value that's passed to the Details  method comes from route data. Route data is data that the model

binder found in a segment of the URL. For example, the default route specifies controller, action, and id segments:

In the following URL, the default route maps Instructor as the controller, Index as the action, and 1 as the id; these

are route data values.

The last part of the URL ("?courseID=2021") is a query string value. The model binder will also pass the ID value

to the Index  method id  parameter if you pass it as a query string value:

In the Index page, hyperlink URLs are created by tag helper statements in the Razor view. In the following Razor

code, the id  parameter matches the default route, so id  is added to the route data.

This generates the following HTML when item.ID  is 6:



<a href="/Students/Edit/6">Edit</a>

<a asp-action="Edit" asp-route-studentID="@item.ID">Edit</a>

<a href="/Students/Edit?studentID=6">Edit</a>

Add enrollments to the Details viewAdd enrollments to the Details view

<dt class="col-sm-2">
    @Html.DisplayNameFor(model => model.LastName)
</dt>
<dd class="col-sm-10">
    @Html.DisplayFor(model => model.LastName)
</dd>

<dt class="col-sm-2">
    @Html.DisplayNameFor(model => model.Enrollments)
</dt>
<dd class="col-sm-10">
    <table class="table">
        <tr>
            <th>Course Title</th>
            <th>Grade</th>
        </tr>
        @foreach (var item in Model.Enrollments)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.Course.Title)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Grade)
                </td>
            </tr>
        }
    </table>
</dd>

In the following Razor code, studentID  doesn't match a parameter in the default route, so it's added as a query

string.

This generates the following HTML when item.ID  is 6:

For more information about tag helpers, see Tag Helpers in ASP.NET Core.

Open Views/Students/Details.cshtml. Each field is displayed using DisplayNameFor  and DisplayFor  helpers, as

shown in the following example:

After the last field and immediately before the closing </dl>  tag, add the following code to display a list of

enrollments:

If code indentation is wrong after you paste the code, press CTRL-K-D to correct it.

This code loops through the entities in the Enrollments  navigation property. For each enrollment, it displays the

course title and the grade. The course title is retrieved from the Course entity that's stored in the Course

navigation property of the Enrollments entity.

Run the app, select the StudentsStudents  tab, and click the DetailsDetails  link for a student. You see the list of courses and



Update the Create page

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
    [Bind("EnrollmentDate,FirstMidName,LastName")] Student student)
{
    try
    {
        if (ModelState.IsValid)
        {
            _context.Add(student);
            await _context.SaveChangesAsync();
            return RedirectToAction(nameof(Index));
        }
    }
    catch (DbUpdateException /* ex */)
    {
        //Log the error (uncomment ex variable name and write a log.
        ModelState.AddModelError("", "Unable to save changes. " +
            "Try again, and if the problem persists " +
            "see your system administrator.");
    }
    return View(student);
}

grades for the selected student:

In StudentsController.cs, modify the HttpPost Create  method by adding a try-catch block and removing ID from

the Bind  attribute.

This code adds the Student entity created by the ASP.NET Core MVC model binder to the Students entity set and

then saves the changes to the database. (Model binder refers to the ASP.NET Core MVC functionality that makes

it easier for you to work with data submitted by a form; a model binder converts posted form values to CLR

types and passes them to the action method in parameters. In this case, the model binder instantiates a Student

entity for you using property values from the Form collection.)



    Security note about overpostingSecurity note about overposting

public class Student
{
    public int ID { get; set; }
    public string LastName { get; set; }
    public string FirstMidName { get; set; }
    public DateTime EnrollmentDate { get; set; }
    public string Secret { get; set; }
}

You removed ID  from the Bind  attribute because ID is the primary key value which SQL Server will set

automatically when the row is inserted. Input from the user doesn't set the ID value.

Other than the Bind  attribute, the try-catch block is the only change you've made to the scaffolded code. If an

exception that derives from DbUpdateException  is caught while the changes are being saved, a generic error

message is displayed. DbUpdateException  exceptions are sometimes caused by something external to the

application rather than a programming error, so the user is advised to try again. Although not implemented in

this sample, a production quality application would log the exception. For more information, see the Log forLog for

insightinsight section in Monitoring and Telemetry (Building Real-World Cloud Apps with Azure).

The ValidateAntiForgeryToken  attribute helps prevent cross-site request forgery (CSRF) attacks. The token is

automatically injected into the view by the FormTagHelper and is included when the form is submitted by the

user. The token is validated by the ValidateAntiForgeryToken  attribute. For more information, see Prevent Cross-

Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core.

 

The Bind  attribute that the scaffolded code includes on the Create  method is one way to protect against

overposting in create scenarios. For example, suppose the Student entity includes a Secret  property that you

don't want this web page to set.

Even if you don't have a Secret  field on the web page, a hacker could use a tool such as Fiddler, or write some

JavaScript, to post a Secret  form value. Without the Bind  attribute limiting the fields that the model binder

uses when it creates a Student instance, the model binder would pick up that Secret  form value and use it to

create the Student entity instance. Then whatever value the hacker specified for the Secret  form field would be

updated in your database. The following image shows the Fiddler tool adding the Secret  field (with the value

"OverPost") to the posted form values.

https://docs.microsoft.com/en-us/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry


Test the Create pageTest the Create page

The value "OverPost" would then be successfully added to the Secret  property of the inserted row, although

you never intended that the web page be able to set that property.

You can prevent overposting in edit scenarios by reading the entity from the database first and then calling 

TryUpdateModel , passing in an explicit allowed properties list. That's the method used in these tutorials.

An alternative way to prevent overposting that's preferred by many developers is to use view models rather than

entity classes with model binding. Include only the properties you want to update in the view model. Once the

MVC model binder has finished, copy the view model properties to the entity instance, optionally using a tool

such as AutoMapper. Use _context.Entry  on the entity instance to set its state to Unchanged , and then set 

Property("PropertyName").IsModified  to true on each entity property that's included in the view model. This

method works in both edit and create scenarios.

The code in Views/Students/Create.cshtml uses label , input , and span  (for validation messages) tag helpers

for each field.

Run the app, select the StudentsStudents  tab, and click Create NewCreate New .

Enter names and a date. Try entering an invalid date if your browser lets you do that. (Some browsers force you

to use a date picker.) Then click CreateCreate to see the error message.

This is server-side validation that you get by default; in a later tutorial you'll see how to add attributes that will

generate code for client-side validation also. The following highlighted code shows the model validation check in

the Create  method.



[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
    [Bind("EnrollmentDate,FirstMidName,LastName")] Student student)
{
    try
    {
        if (ModelState.IsValid)
        {
            _context.Add(student);
            await _context.SaveChangesAsync();
            return RedirectToAction(nameof(Index));
        }
    }
    catch (DbUpdateException /* ex */)
    {
        //Log the error (uncomment ex variable name and write a log.
        ModelState.AddModelError("", "Unable to save changes. " +
            "Try again, and if the problem persists " +
            "see your system administrator.");
    }
    return View(student);
}

Update the Edit page

Recommended HttpPost Edit code: Read and updateRecommended HttpPost Edit code: Read and update

Change the date to a valid value and click CreateCreate to see the new student appear in the IndexIndex page.

In StudentController.cs, the HttpGet Edit  method (the one without the HttpPost  attribute) uses the 

SingleOrDefaultAsync  method to retrieve the selected Student entity, as you saw in the Details  method. You

don't need to change this method.

Replace the HttpPost Edit action method with the following code.



[HttpPost, ActionName("Edit")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> EditPost(int? id)
{
    if (id == null)
    {
        return NotFound();
    }
    var studentToUpdate = await _context.Students.FirstOrDefaultAsync(s => s.ID == id);
    if (await TryUpdateModelAsync<Student>(
        studentToUpdate,
        "",
        s => s.FirstMidName, s => s.LastName, s => s.EnrollmentDate))
    {
        try
        {
            await _context.SaveChangesAsync();
            return RedirectToAction(nameof(Index));
        }
        catch (DbUpdateException /* ex */)
        {
            //Log the error (uncomment ex variable name and write a log.)
            ModelState.AddModelError("", "Unable to save changes. " +
                "Try again, and if the problem persists, " +
                "see your system administrator.");
        }
    }
    return View(studentToUpdate);
}

Alternative HttpPost Edit code: Create and attachAlternative HttpPost Edit code: Create and attach

These changes implement a security best practice to prevent overposting. The scaffolder generated a Bind

attribute and added the entity created by the model binder to the entity set with a Modified  flag. That code isn't

recommended for many scenarios because the Bind  attribute clears out any pre-existing data in fields not listed

in the Include  parameter.

The new code reads the existing entity and calls TryUpdateModel  to update fields in the retrieved entity based on

user input in the posted form data. The Entity Framework's automatic change tracking sets the Modified  flag on

the fields that are changed by form input. When the SaveChanges  method is called, the Entity Framework creates

SQL statements to update the database row. Concurrency conflicts are ignored, and only the table columns that

were updated by the user are updated in the database. (A later tutorial shows how to handle concurrency

conflicts.)

As a best practice to prevent overposting, the fields that you want to be updateable by the EditEdit page are declared

in the TryUpdateModel  parameters. (The empty string preceding the list of fields in the parameter list is for a

prefix to use with the form fields names.) Currently there are no extra fields that you're protecting, but listing the

fields that you want the model binder to bind ensures that if you add fields to the data model in the future,

they're automatically protected until you explicitly add them here.

As a result of these changes, the method signature of the HttpPost Edit  method is the same as the HttpGet 

Edit  method; therefore you've renamed the method EditPost .

The recommended HttpPost edit code ensures that only changed columns get updated and preserves data in

properties that you don't want included for model binding. However, the read-first approach requires an extra

database read, and can result in more complex code for handling concurrency conflicts. An alternative is to attach

an entity created by the model binder to the EF context and mark it as modified. (Don't update your project with

this code, it's only shown to illustrate an optional approach.)



public async Task<IActionResult> Edit(int id, [Bind("ID,EnrollmentDate,FirstMidName,LastName")] Student 
student)
{
    if (id != student.ID)
    {
        return NotFound();
    }
    if (ModelState.IsValid)
    {
        try
        {
            _context.Update(student);
            await _context.SaveChangesAsync();
            return RedirectToAction(nameof(Index));
        }
        catch (DbUpdateException /* ex */)
        {
            //Log the error (uncomment ex variable name and write a log.)
            ModelState.AddModelError("", "Unable to save changes. " +
                "Try again, and if the problem persists, " +
                "see your system administrator.");
        }
    }
    return View(student);
}

Entity StatesEntity States

You can use this approach when the web page UI includes all of the fields in the entity and can update any of

them.

The scaffolded code uses the create-and-attach approach but only catches DbUpdateConcurrencyException

exceptions and returns 404 error codes. The example shown catches any database update exception and displays

an error message.

The database context keeps track of whether entities in memory are in sync with their corresponding rows in the

database, and this information determines what happens when you call the SaveChanges  method. For example,

when you pass a new entity to the Add  method, that entity's state is set to Added . Then when you call the 

SaveChanges  method, the database context issues a SQL INSERT command.

An entity may be in one of the following states:

Added . The entity doesn't yet exist in the database. The SaveChanges  method issues an INSERT statement.

Unchanged . Nothing needs to be done with this entity by the SaveChanges  method. When you read an

entity from the database, the entity starts out with this status.

Modified . Some or all of the entity's property values have been modified. The SaveChanges  method

issues an UPDATE statement.

Deleted . The entity has been marked for deletion. The SaveChanges  method issues a DELETE statement.

Detached . The entity isn't being tracked by the database context.

In a desktop application, state changes are typically set automatically. You read an entity and make changes to

some of its property values. This causes its entity state to automatically be changed to Modified . Then when you

call SaveChanges , the Entity Framework generates a SQL UPDATE statement that updates only the actual

properties that you changed.

In a web app, the DbContext  that initially reads an entity and displays its data to be edited is disposed after a

page is rendered. When the HttpPost Edit  action method is called, a new web request is made and you have a



Test the Edit pageTest the Edit page

Update the Delete page

new instance of the DbContext . If you re-read the entity in that new context, you simulate desktop processing.

But if you don't want to do the extra read operation, you have to use the entity object created by the model

binder. The simplest way to do this is to set the entity state to Modified as is done in the alternative HttpPost Edit

code shown earlier. Then when you call SaveChanges , the Entity Framework updates all columns of the database

row, because the context has no way to know which properties you changed.

If you want to avoid the read-first approach, but you also want the SQL UPDATE statement to update only the

fields that the user actually changed, the code is more complex. You have to save the original values in some way

(such as by using hidden fields) so that they're available when the HttpPost Edit  method is called. Then you can

create a Student entity using the original values, call the Attach  method with that original version of the entity,

update the entity's values to the new values, and then call SaveChanges .

Run the app, select the StudentsStudents  tab, then click an EditEdit hyperlink.

Change some of the data and click SaveSave. The IndexIndex page opens and you see the changed data.

In StudentController.cs, the template code for the HttpGet Delete  method uses the SingleOrDefaultAsync

method to retrieve the selected Student entity, as you saw in the Details and Edit methods. However, to

implement a custom error message when the call to SaveChanges  fails, you'll add some functionality to this

method and its corresponding view.

As you saw for update and create operations, delete operations require two action methods. The method that's

called in response to a GET request displays a view that gives the user a chance to approve or cancel the delete

operation. If the user approves it, a POST request is created. When that happens, the HttpPost Delete  method is

called and then that method actually performs the delete operation.

You'll add a try-catch block to the HttpPost Delete  method to handle any errors that might occur when the

database is updated. If an error occurs, the HttpPost Delete method calls the HttpGet Delete method, passing it a



public async Task<IActionResult> Delete(int? id, bool? saveChangesError = false)
{
    if (id == null)
    {
        return NotFound();
    }

    var student = await _context.Students
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.ID == id);
    if (student == null)
    {
        return NotFound();
    }

    if (saveChangesError.GetValueOrDefault())
    {
        ViewData["ErrorMessage"] =
            "Delete failed. Try again, and if the problem persists " +
            "see your system administrator.";
    }

    return View(student);
}

The read-first approach to HttpPost DeleteThe read-first approach to HttpPost Delete

[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
    var student = await _context.Students.FindAsync(id);
    if (student == null)
    {
        return RedirectToAction(nameof(Index));
    }

    try
    {
        _context.Students.Remove(student);
        await _context.SaveChangesAsync();
        return RedirectToAction(nameof(Index));
    }
    catch (DbUpdateException /* ex */)
    {
        //Log the error (uncomment ex variable name and write a log.)
        return RedirectToAction(nameof(Delete), new { id = id, saveChangesError = true });
    }
}

parameter that indicates that an error has occurred. The HttpGet Delete method then redisplays the confirmation

page along with the error message, giving the user an opportunity to cancel or try again.

Replace the HttpGet Delete  action method with the following code, which manages error reporting.

This code accepts an optional parameter that indicates whether the method was called after a failure to save

changes. This parameter is false when the HttpGet Delete  method is called without a previous failure. When it's

called by the HttpPost Delete  method in response to a database update error, the parameter is true and an error

message is passed to the view.

Replace the HttpPost Delete  action method (named DeleteConfirmed ) with the following code, which performs

the actual delete operation and catches any database update errors.



The create-and-attach approach to HttpPost DeleteThe create-and-attach approach to HttpPost Delete

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
    try
    {
        Student studentToDelete = new Student() { ID = id };
        _context.Entry(studentToDelete).State = EntityState.Deleted;
        await _context.SaveChangesAsync();
        return RedirectToAction(nameof(Index));
    }
    catch (DbUpdateException /* ex */)
    {
        //Log the error (uncomment ex variable name and write a log.)
        return RedirectToAction(nameof(Delete), new { id = id, saveChangesError = true });
    }
}

Update the Delete viewUpdate the Delete view

<h2>Delete</h2>
<p class="text-danger">@ViewData["ErrorMessage"]</p>
<h3>Are you sure you want to delete this?</h3>

This code retrieves the selected entity, then calls the Remove  method to set the entity's status to Deleted . When 

SaveChanges  is called, a SQL DELETE command is generated.

If improving performance in a high-volume application is a priority, you could avoid an unnecessary SQL query

by instantiating a Student entity using only the primary key value and then setting the entity state to Deleted .

That's all that the Entity Framework needs in order to delete the entity. (Don't put this code in your project; it's

here just to illustrate an alternative.)

If the entity has related data that should also be deleted, make sure that cascade delete is configured in the

database. With this approach to entity deletion, EF might not realize there are related entities to be deleted.

In Views/Student/Delete.cshtml, add an error message between the h2 heading and the h3 heading, as shown in

the following example:

Run the app, select the StudentsStudents  tab, and click a DeleteDelete hyperlink:



   

Close database connections

Handle transactions

No-tracking queries

Click DeleteDelete. The Index page is displayed without the deleted student. (You'll see an example of the error

handling code in action in the concurrency tutorial.)

To free up the resources that a database connection holds, the context instance must be disposed as soon as

possible when you are done with it. The ASP.NET Core built-in dependency injection takes care of that task for

you.

In Startup.cs, you call the AddDbContext extension method to provision the DbContext  class in the ASP.NET Core

DI container. That method sets the service lifetime to Scoped  by default. Scoped  means the context object

lifetime coincides with the web request life time, and the Dispose  method will be called automatically at the end

of the web request.

By default the Entity Framework implicitly implements transactions. In scenarios where you make changes to

multiple rows or tables and then call SaveChanges , the Entity Framework automatically makes sure that either all

of your changes succeed or they all fail. If some changes are done first and then an error happens, those changes

are automatically rolled back. For scenarios where you need more control -- for example, if you want to include

operations done outside of Entity Framework in a transaction -- see Transactions.

When a database context retrieves table rows and creates entity objects that represent them, by default it keeps

track of whether the entities in memory are in sync with what's in the database. The data in memory acts as a

cache and is used when you update an entity. This caching is often unnecessary in a web application because

context instances are typically short-lived (a new one is created and disposed for each request) and the context

that reads an entity is typically disposed before that entity is used again.

You can disable tracking of entity objects in memory by calling the AsNoTracking  method. Typical scenarios in

https://github.com/aspnet/EntityFrameworkCore/blob/03bcb5122e3f577a84498545fcf130ba79a3d987/src/Microsoft.EntityFrameworkCore/EntityFrameworkServiceCollectionExtensions.cs
https://docs.microsoft.com/en-us/ef/core/saving/transactions


Get the code

Next steps

which you might want to do that include the following:

During the context lifetime you don't need to update any entities, and you don't need EF to automatically

load navigation properties with entities retrieved by separate queries. Frequently these conditions are met

in a controller's HttpGet action methods.

You are running a query that retrieves a large volume of data, and only a small portion of the returned

data will be updated. It may be more efficient to turn off tracking for the large query, and run a query later

for the few entities that need to be updated.

You want to attach an entity in order to update it, but earlier you retrieved the same entity for a different

purpose. Because the entity is already being tracked by the database context, you can't attach the entity

that you want to change. One way to handle this situation is to call AsNoTracking  on the earlier query.

For more information, see Tracking vs. No-Tracking.

Download or view the completed application.

In this tutorial, you:

Customized the Details page

Updated the Create page

Updated the Edit page

Updated the Delete page

Closed database connections

Advance to the next tutorial to learn how to expand the functionality of the IndexIndex page by adding sorting,

filtering, and paging.

Next: Sorting, filtering, and paging

https://docs.microsoft.com/en-us/ef/core/querying/tracking
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final


Tutorial: Add sorting, filtering, and paging - ASP.NET
MVC with EF Core
9/22/2020 • 14 minutes to read • Edit Online

Prerequisites

Add column sort links

In the previous tutorial, you implemented a set of web pages for basic CRUD operations for Student entities. In

this tutorial you'll add sorting, filtering, and paging functionality to the Students Index page. You'll also create a

page that does simple grouping.

The following illustration shows what the page will look like when you're done. The column headings are links

that the user can click to sort by that column. Clicking a column heading repeatedly toggles between ascending

and descending sort order.

In this tutorial, you:

Add column sort links

Add a Search box

Add paging to Students Index

Add paging to Index method

Add paging links

Create an About page

Implement CRUD Functionality

To add sorting to the Student Index page, you'll change the Index  method of the Students controller and add

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/sort-filter-page.md


Add sorting Functionality to the Index methodAdd sorting Functionality to the Index method

public async Task<IActionResult> Index(string sortOrder)
{
    ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
    ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";
    var students = from s in _context.Students
                   select s;
    switch (sortOrder)
    {
        case "name_desc":
            students = students.OrderByDescending(s => s.LastName);
            break;
        case "Date":
            students = students.OrderBy(s => s.EnrollmentDate);
            break;
        case "date_desc":
            students = students.OrderByDescending(s => s.EnrollmentDate);
            break;
        default:
            students = students.OrderBy(s => s.LastName);
            break;
    }
    return View(await students.AsNoTracking().ToListAsync());
}

code to the Student Index view.

In StudentsController.cs, replace the Index  method with the following code:

This code receives a sortOrder  parameter from the query string in the URL. The query string value is provided

by ASP.NET Core MVC as a parameter to the action method. The parameter will be a string that's either "Name" or

"Date", optionally followed by an underscore and the string "desc" to specify descending order. The default sort

order is ascending.

The first time the Index page is requested, there's no query string. The students are displayed in ascending order

by last name, which is the default as established by the fall-through case in the switch  statement. When the user

clicks a column heading hyperlink, the appropriate sortOrder  value is provided in the query string.

The two ViewData  elements (NameSortParm and DateSortParm) are used by the view to configure the column

heading hyperlinks with the appropriate query string values.



public async Task<IActionResult> Index(string sortOrder)
{
    ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
    ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";
    var students = from s in _context.Students
                   select s;
    switch (sortOrder)
    {
        case "name_desc":
            students = students.OrderByDescending(s => s.LastName);
            break;
        case "Date":
            students = students.OrderBy(s => s.EnrollmentDate);
            break;
        case "date_desc":
            students = students.OrderByDescending(s => s.EnrollmentDate);
            break;
        default:
            students = students.OrderBy(s => s.LastName);
            break;
    }
    return View(await students.AsNoTracking().ToListAsync());
}

C URREN T  SO RT  O RDERC URREN T  SO RT  O RDER L A ST  N A M E H Y P ERL IN KL A ST  N A M E H Y P ERL IN K DAT E H Y P ERL IN KDAT E H Y P ERL IN K

Last Name ascending descending ascending

Last Name descending ascending ascending

Date ascending ascending descending

Date descending ascending ascending

Add column heading hyperlinks to the Student Index viewAdd column heading hyperlinks to the Student Index view

These are ternary statements. The first one specifies that if the sortOrder  parameter is null or empty,

NameSortParm should be set to "name_desc"; otherwise, it should be set to an empty string. These two

statements enable the view to set the column heading hyperlinks as follows:

The method uses LINQ to Entities to specify the column to sort by. The code creates an IQueryable  variable

before the switch statement, modifies it in the switch statement, and calls the ToListAsync  method after the 

switch  statement. When you create and modify IQueryable  variables, no query is sent to the database. The

query isn't executed until you convert the IQueryable  object into a collection by calling a method such as 

ToListAsync . Therefore, this code results in a single query that's not executed until the return View  statement.

This code could get verbose with a large number of columns. The last tutorial in this series shows how to write

code that lets you pass the name of the OrderBy  column in a string variable.

Replace the code in Views/Students/Index.cshtml, with the following code to add column heading hyperlinks. The

changed lines are highlighted.



@model IEnumerable<ContosoUniversity.Models.Student>

@{
    ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
    <a asp-action="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
                <th>
                    <a asp-action="Index" asp-route-
sortOrder="@ViewData["NameSortParm"]">@Html.DisplayNameFor(model => model.LastName)</a>
                </th>
                <th>
                    @Html.DisplayNameFor(model => model.FirstMidName)
                </th>
                <th>
                    <a asp-action="Index" asp-route-
sortOrder="@ViewData["DateSortParm"]">@Html.DisplayNameFor(model => model.EnrollmentDate)</a>
                </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
@foreach (var item in Model) {
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.LastName)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.FirstMidName)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.EnrollmentDate)
            </td>
            <td>
                <a asp-action="Edit" asp-route-id="@item.ID">Edit</a> |
                <a asp-action="Details" asp-route-id="@item.ID">Details</a> |
                <a asp-action="Delete" asp-route-id="@item.ID">Delete</a>
            </td>
        </tr>
}
    </tbody>
</table>

This code uses the information in ViewData  properties to set up hyperlinks with the appropriate query string

values.

Run the app, select the StudentsStudents  tab, and click the Last NameLast Name and Enrollment DateEnrollment Date column headings to verify

that sorting works.



Add a Search box

Add filtering functionality to the Index methodAdd filtering functionality to the Index method

public async Task<IActionResult> Index(string sortOrder, string searchString)
{
    ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
    ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";
    ViewData["CurrentFilter"] = searchString;

    var students = from s in _context.Students
                   select s;
    if (!String.IsNullOrEmpty(searchString))
    {
        students = students.Where(s => s.LastName.Contains(searchString)
                               || s.FirstMidName.Contains(searchString));
    }
    switch (sortOrder)
    {
        case "name_desc":
            students = students.OrderByDescending(s => s.LastName);
            break;
        case "Date":
            students = students.OrderBy(s => s.EnrollmentDate);
            break;
        case "date_desc":
            students = students.OrderByDescending(s => s.EnrollmentDate);
            break;
        default:
            students = students.OrderBy(s => s.LastName);
            break;
    }
    return View(await students.AsNoTracking().ToListAsync());
}

To add filtering to the Students Index page, you'll add a text box and a submit button to the view and make

corresponding changes in the Index  method. The text box will let you enter a string to search for in the first

name and last name fields.

In StudentsController.cs, replace the Index  method with the following code (the changes are highlighted).



NOTENOTE

Add a Search Box to the Student Index ViewAdd a Search Box to the Student Index View

<p>
    <a asp-action="Create">Create New</a>
</p>

<form asp-action="Index" method="get">
    <div class="form-actions no-color">
        <p>
            Find by name: <input type="text" name="SearchString" value="@ViewData["CurrentFilter"]" />
            <input type="submit" value="Search" class="btn btn-default" /> |
            <a asp-action="Index">Back to Full List</a>
        </p>
    </div>
</form>

<table class="table">

You've added a searchString  parameter to the Index  method. The search string value is received from a text

box that you'll add to the Index view. You've also added to the LINQ statement a where clause that selects only

students whose first name or last name contains the search string. The statement that adds the where clause is

executed only if there's a value to search for.

Here you are calling the Where  method on an IQueryable  object, and the filter will be processed on the server. In some

scenarios you might be calling the Where  method as an extension method on an in-memory collection. (For example,

suppose you change the reference to _context.Students  so that instead of an EF DbSet  it references a repository

method that returns an IEnumerable  collection.) The result would normally be the same but in some cases may be

different.

For example, the .NET Framework implementation of the Contains  method performs a case-sensitive comparison by

default, but in SQL Server this is determined by the collation setting of the SQL Server instance. That setting defaults to

case-insensitive. You could call the ToUpper  method to make the test explicitly case-insensitive: Where(s =>

s.LastName.ToUpper().Contains(searchString.ToUpper()). That would ensure that results stay the same if you change the

code later to use a repository which returns an IEnumerable  collection instead of an IQueryable  object. (When you call

the Contains  method on an IEnumerable  collection, you get the .NET Framework implementation; when you call it on

an IQueryable  object, you get the database provider implementation.) However, there's a performance penalty for this

solution. The ToUpper  code would put a function in the WHERE clause of the TSQL SELECT statement. That would prevent

the optimizer from using an index. Given that SQL is mostly installed as case-insensitive, it's best to avoid the ToUpper

code until you migrate to a case-sensitive data store.

In Views/Student/Index.cshtml, add the highlighted code immediately before the opening table tag in order to

create a caption, a text box, and a SearchSearch button.

This code uses the <form>  tag helper to add the search text box and button. By default, the <form>  tag helper

submits form data with a POST, which means that parameters are passed in the HTTP message body and not in

the URL as query strings. When you specify HTTP GET, the form data is passed in the URL as query strings, which

enables users to bookmark the URL. The W3C guidelines recommend that you should use GET when the action

doesn't result in an update.

Run the app, select the StudentsStudents  tab, enter a search string, and click Search to verify that filtering is working.



http://localhost:5813/Students?SearchString=an

Add paging to Students Index

Notice that the URL contains the search string.

If you bookmark this page, you'll get the filtered list when you use the bookmark. Adding method="get"  to the 

form  tag is what caused the query string to be generated.

At this stage, if you click a column heading sort link you'll lose the filter value that you entered in the SearchSearch box.

You'll fix that in the next section.

To add paging to the Students Index page, you'll create a PaginatedList  class that uses Skip  and Take

statements to filter data on the server instead of always retrieving all rows of the table. Then you'll make

additional changes in the Index  method and add paging buttons to the Index  view. The following illustration

shows the paging buttons.



In the project folder, create PaginatedList.cs , and then replace the template code with the following code.



using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity
{
    public class PaginatedList<T> : List<T>
    {
        public int PageIndex { get; private set; }
        public int TotalPages { get; private set; }

        public PaginatedList(List<T> items, int count, int pageIndex, int pageSize)
        {
            PageIndex = pageIndex;
            TotalPages = (int)Math.Ceiling(count / (double)pageSize);

            this.AddRange(items);
        }

        public bool HasPreviousPage
        {
            get
            {
                return (PageIndex > 1);
            }
        }

        public bool HasNextPage
        {
            get
            {
                return (PageIndex < TotalPages);
            }
        }

        public static async Task<PaginatedList<T>> CreateAsync(IQueryable<T> source, int pageIndex, int 
pageSize)
        {
            var count = await source.CountAsync();
            var items = await source.Skip((pageIndex - 1) * pageSize).Take(pageSize).ToListAsync();
            return new PaginatedList<T>(items, count, pageIndex, pageSize);
        }
    }
}

Add paging to Index method

The CreateAsync  method in this code takes page size and page number and applies the appropriate Skip  and 

Take  statements to the IQueryable . When ToListAsync  is called on the IQueryable , it will return a List

containing only the requested page. The properties HasPreviousPage  and HasNextPage  can be used to enable or

disable PreviousPrevious  and NextNext paging buttons.

A CreateAsync  method is used instead of a constructor to create the PaginatedList<T>  object because

constructors can't run asynchronous code.

In StudentsController.cs, replace the Index  method with the following code.



public async Task<IActionResult> Index(
    string sortOrder,
    string currentFilter,
    string searchString,
    int? pageNumber)
{
    ViewData["CurrentSort"] = sortOrder;
    ViewData["NameSortParm"] = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";
    ViewData["DateSortParm"] = sortOrder == "Date" ? "date_desc" : "Date";

    if (searchString != null)
    {
        pageNumber = 1;
    }
    else
    {
        searchString = currentFilter;
    }

    ViewData["CurrentFilter"] = searchString;

    var students = from s in _context.Students
                   select s;
    if (!String.IsNullOrEmpty(searchString))
    {
        students = students.Where(s => s.LastName.Contains(searchString)
                               || s.FirstMidName.Contains(searchString));
    }
    switch (sortOrder)
    {
        case "name_desc":
            students = students.OrderByDescending(s => s.LastName);
            break;
        case "Date":
            students = students.OrderBy(s => s.EnrollmentDate);
            break;
        case "date_desc":
            students = students.OrderByDescending(s => s.EnrollmentDate);
            break;
        default:
            students = students.OrderBy(s => s.LastName);
            break;
    }

    int pageSize = 3;
    return View(await PaginatedList<Student>.CreateAsync(students.AsNoTracking(), pageNumber ?? 1, 
pageSize));
}

public async Task<IActionResult> Index(
    string sortOrder,
    string currentFilter,
    string searchString,
    int? pageNumber)

This code adds a page number parameter, a current sort order parameter, and a current filter parameter to the

method signature.

The first time the page is displayed, or if the user hasn't clicked a paging or sorting link, all the parameters will be

null. If a paging link is clicked, the page variable will contain the page number to display.

The ViewData  element named CurrentSort provides the view with the current sort order, because this must be

included in the paging links in order to keep the sort order the same while paging.



if (searchString != null)
{
    pageNumber = 1;
}
else
{
    searchString = currentFilter;
}

return View(await PaginatedList<Student>.CreateAsync(students.AsNoTracking(), pageNumber ?? 1, pageSize));

Add paging links

@model PaginatedList<ContosoUniversity.Models.Student>

@{
    ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
    <a asp-action="Create">Create New</a>
</p>

<form asp-action="Index" method="get">
    <div class="form-actions no-color">
        <p>
            Find by name: <input type="text" name="SearchString" value="@ViewData["CurrentFilter"]" />
            <input type="submit" value="Search" class="btn btn-default" /> |
            <a asp-action="Index">Back to Full List</a>
        </p>
    </div>
</form>

<table class="table">
    <thead>
        <tr>
            <th>
                <a asp-action="Index" asp-route-sortOrder="@ViewData["NameSortParm"]" asp-route-
currentFilter="@ViewData["CurrentFilter"]">Last Name</a>
            </th>
            <th>
                First Name

The ViewData  element named CurrentFilter provides the view with the current filter string. This value must be

included in the paging links in order to maintain the filter settings during paging, and it must be restored to the

text box when the page is redisplayed.

If the search string is changed during paging, the page has to be reset to 1, because the new filter can result in

different data to display. The search string is changed when a value is entered in the text box and the Submit

button is pressed. In that case, the searchString  parameter isn't null.

At the end of the Index  method, the PaginatedList.CreateAsync  method converts the student query to a single

page of students in a collection type that supports paging. That single page of students is then passed to the view.

The PaginatedList.CreateAsync  method takes a page number. The two question marks represent the null-

coalescing operator. The null-coalescing operator defines a default value for a nullable type; the expression 

(pageNumber ?? 1)  means return the value of pageNumber  if it has a value, or return 1 if pageNumber  is null.

In Views/Students/Index.cshtml, replace the existing code with the following code. The changes are highlighted.



                First Name
            </th>
            <th>
                <a asp-action="Index" asp-route-sortOrder="@ViewData["DateSortParm"]" asp-route-
currentFilter="@ViewData["CurrentFilter"]">Enrollment Date</a>
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.LastName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.FirstMidName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.EnrollmentDate)
                </td>
                <td>
                    <a asp-action="Edit" asp-route-id="@item.ID">Edit</a> |
                    <a asp-action="Details" asp-route-id="@item.ID">Details</a> |
                    <a asp-action="Delete" asp-route-id="@item.ID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

@{
    var prevDisabled = !Model.HasPreviousPage ? "disabled" : "";
    var nextDisabled = !Model.HasNextPage ? "disabled" : "";
}

<a asp-action="Index"
   asp-route-sortOrder="@ViewData["CurrentSort"]"
   asp-route-pageNumber="@(Model.PageIndex - 1)"
   asp-route-currentFilter="@ViewData["CurrentFilter"]"
   class="btn btn-default @prevDisabled">
    Previous
</a>
<a asp-action="Index"
   asp-route-sortOrder="@ViewData["CurrentSort"]"
   asp-route-pageNumber="@(Model.PageIndex + 1)"
   asp-route-currentFilter="@ViewData["CurrentFilter"]"
   class="btn btn-default @nextDisabled">
    Next
</a>

<a asp-action="Index" asp-route-sortOrder="@ViewData["DateSortParm"]" asp-route-currentFilter 
="@ViewData["CurrentFilter"]">Enrollment Date</a>

The @model  statement at the top of the page specifies that the view now gets a PaginatedList<T>  object instead

of a List<T>  object.

The column header links use the query string to pass the current search string to the controller so that the user

can sort within filter results:

The paging buttons are displayed by tag helpers:



<a asp-action="Index"
   asp-route-sortOrder="@ViewData["CurrentSort"]"
   asp-route-pageNumber="@(Model.PageIndex - 1)"
   asp-route-currentFilter="@ViewData["CurrentFilter"]"
   class="btn btn-default @prevDisabled">
   Previous
</a>

Create an About page

Create the view modelCreate the view model

Run the app and go to the Students page.

Click the paging links in different sort orders to make sure paging works. Then enter a search string and try

paging again to verify that paging also works correctly with sorting and filtering.

For the Contoso University website's AboutAbout page, you'll display how many students have enrolled for each

enrollment date. This requires grouping and simple calculations on the groups. To accomplish this, you'll do the

following:

Create a view model class for the data that you need to pass to the view.

Create the About method in the Home controller.

Create the About view.

Create a SchoolViewModels folder in the Models folder.

In the new folder, add a class file EnrollmentDateGroup.cs and replace the template code with the following code:



using System;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models.SchoolViewModels
{
    public class EnrollmentDateGroup
    {
        [DataType(DataType.Date)]
        public DateTime? EnrollmentDate { get; set; }

        public int StudentCount { get; set; }
    }
}

Modify the Home ControllerModify the Home Controller

using Microsoft.EntityFrameworkCore;
using ContosoUniversity.Data;
using ContosoUniversity.Models.SchoolViewModels;

public class HomeController : Controller
{
    private readonly SchoolContext _context;

    public HomeController(SchoolContext context)
    {
        _context = context;
    }

public async Task<ActionResult> About()
{
    IQueryable<EnrollmentDateGroup> data = 
        from student in _context.Students
        group student by student.EnrollmentDate into dateGroup
        select new EnrollmentDateGroup()
        {
            EnrollmentDate = dateGroup.Key,
            StudentCount = dateGroup.Count()
        };
    return View(await data.AsNoTracking().ToListAsync());
}

Create the About ViewCreate the About View

In HomeController.cs, add the following using statements at the top of the file:

Add a class variable for the database context immediately after the opening curly brace for the class, and get an

instance of the context from ASP.NET Core DI:

Add an About  method with the following code:

The LINQ statement groups the student entities by enrollment date, calculates the number of entities in each

group, and stores the results in a collection of EnrollmentDateGroup  view model objects.

Add a Views/Home/About.cshtml file with the following code:



@model IEnumerable<ContosoUniversity.Models.SchoolViewModels.EnrollmentDateGroup>

@{
    ViewData["Title"] = "Student Body Statistics";
}

<h2>Student Body Statistics</h2>

<table>
    <tr>
        <th>
            Enrollment Date
        </th>
        <th>
            Students
        </th>
    </tr>

    @foreach (var item in Model)
    {
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.EnrollmentDate)
            </td>
            <td>
                @item.StudentCount
            </td>
        </tr>
    }
</table>

Get the code

Next steps

Run the app and go to the About page. The count of students for each enrollment date is displayed in a table.

Download or view the completed application.

In this tutorial, you:

Added column sort links

Added a Search box

Added paging to Students Index

Added paging to Index method

Added paging links

Created an About page

Advance to the next tutorial to learn how to handle data model changes by using migrations.

Next: Handle data model changes

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final


Tutorial: Using the migrations feature - ASP.NET
MVC with EF Core
9/22/2020 • 7 minutes to read • Edit Online

Prerequisites

About migrations

Change the connection string

{
  "ConnectionStrings": {
    "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity2;Trusted_Connection=True;MultipleActiveResultSets=true"
  },

In this tutorial, you start using the EF Core migrations feature for managing data model changes. In later

tutorials, you'll add more migrations as you change the data model.

In this tutorial, you:

Learn about migrations

Change the connection string

Create an initial migration

Examine Up and Down methods

Learn about the data model snapshot

Apply the migration

Sorting, filtering, and paging

When you develop a new application, your data model changes frequently, and each time the model changes,

it gets out of sync with the database. You started these tutorials by configuring the Entity Framework to create

the database if it doesn't exist. Then each time you change the data model -- add, remove, or change entity

classes or change your DbContext class -- you can delete the database and EF creates a new one that matches

the model, and seeds it with test data.

This method of keeping the database in sync with the data model works well until you deploy the application

to production. When the application is running in production it's usually storing data that you want to keep,

and you don't want to lose everything each time you make a change such as adding a new column. The EF

Core Migrations feature solves this problem by enabling EF to update the database schema instead of creating

a new database.

To work with migrations, you can use the Package Manager ConsolePackage Manager Console (PMC) or the CLI. These tutorials show

how to use CLI commands. Information about the PMC is at the end of this tutorial.

In the appsettings.json file, change the name of the database in the connection string to ContosoUniversity2 or

some other name that you haven't used on the computer you're using.

This change sets up the project so that the first migration will create a new database. This isn't required to get

started with migrations, but you'll see later why it's a good idea.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/migrations.md


NOTENOTE

dotnet ef database drop

Create an initial migration

dotnet tool install --global dotnet-ef
dotnet ef migrations add InitialCreate

As an alternative to changing the database name, you can delete the database. Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer

(SSOX) or the database drop  CLI command:

The following section explains how to run CLI commands.

Save your changes and build the project. Then open a command window and navigate to the project folder.

Here's a quick way to do that:

In Solution ExplorerSolution Explorer , right-click the project and choose Open Folder in File ExplorerOpen Folder in File Explorer  from the

context menu.

Enter "cmd" in the address bar and press Enter.

Enter the following command in the command window:



info: Microsoft.EntityFrameworkCore.Infrastructure[10403]
      Entity Framework Core 2.2.0-rtm-35687 initialized 'SchoolContext' using provider 
'Microsoft.EntityFrameworkCore.SqlServer' with options: None
Done. To undo this action, use 'ef migrations remove'

Examine Up and Down methods

public partial class InitialCreate : Migration
{
    protected override void Up(MigrationBuilder migrationBuilder)
    {
        migrationBuilder.CreateTable(
            name: "Course",
            columns: table => new
            {
                CourseID = table.Column<int>(nullable: false),
                Credits = table.Column<int>(nullable: false),
                Title = table.Column<string>(nullable: true)
            },
            constraints: table =>
            {
                table.PrimaryKey("PK_Course", x => x.CourseID);
            });

        // Additional code not shown
    }

    protected override void Down(MigrationBuilder migrationBuilder)
    {
        migrationBuilder.DropTable(
            name: "Enrollment");
        // Additional code not shown
    }
}

dotnet tool install --global dotnet-ef  installs dotnet ef  as a global tool.

In the preceding commands, output similar to the following is displayed:

If you see an error message "cannot access the file ... ContosoUniversity.dll because it is being used by another

process.", find the IIS Express icon in the Windows System Tray, and right-click it, then click

ContosoUniversity > Stop S iteContosoUniversity > Stop S ite.

When you executed the migrations add  command, EF generated the code that will create the database from

scratch. This code is in the Migrations folder, in the file named <timestamp>_InitialCreate.cs. The Up  method

of the InitialCreate  class creates the database tables that correspond to the data model entity sets, and the 

Down  method deletes them, as shown in the following example.

Migrations calls the Up  method to implement the data model changes for a migration. When you enter a

command to roll back the update, Migrations calls the Down  method.

This code is for the initial migration that was created when you entered the migrations add InitialCreate

command. The migration name parameter ("InitialCreate" in the example) is used for the file name and can be

whatever you want. It's best to choose a word or phrase that summarizes what is being done in the migration.

For example, you might name a later migration "AddDepartmentTable".

If you created the initial migration when the database already exists, the database creation code is generated

but it doesn't have to run because the database already matches the data model. When you deploy the app to

another environment where the database doesn't exist yet, this code will run to create your database, so it's a

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet


The data model snapshot

Apply the migration

dotnet ef database update

info: Microsoft.EntityFrameworkCore.Infrastructure[10403]
      Entity Framework Core 2.2.0-rtm-35687 initialized 'SchoolContext' using provider 
'Microsoft.EntityFrameworkCore.SqlServer' with options: None
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
      Executed DbCommand (274ms) [Parameters=[], CommandType='Text', CommandTimeout='60']
      CREATE DATABASE [ContosoUniversity2];
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
      Executed DbCommand (60ms) [Parameters=[], CommandType='Text', CommandTimeout='60']
      IF SERVERPROPERTY('EngineEdition') <> 5
      BEGIN
          ALTER DATABASE [ContosoUniversity2] SET READ_COMMITTED_SNAPSHOT ON;
      END;
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
      Executed DbCommand (15ms) [Parameters=[], CommandType='Text', CommandTimeout='30']
      CREATE TABLE [__EFMigrationsHistory] (
          [MigrationId] nvarchar(150) NOT NULL,
          [ProductVersion] nvarchar(32) NOT NULL,
          CONSTRAINT [PK___EFMigrationsHistory] PRIMARY KEY ([MigrationId])
      );

<logs omitted for brevity>

info: Microsoft.EntityFrameworkCore.Database.Command[20101]
      Executed DbCommand (3ms) [Parameters=[], CommandType='Text', CommandTimeout='30']
      INSERT INTO [__EFMigrationsHistory] ([MigrationId], [ProductVersion])
      VALUES (N'20190327172701_InitialCreate', N'2.2.0-rtm-35687');
Done.

good idea to test it first. That's why you changed the name of the database in the connection string earlier --

so that migrations can create a new one from scratch.

Migrations creates a snapshot of the current database schema in Migrations/SchoolContextModelSnapshot.cs.

When you add a migration, EF determines what changed by comparing the data model to the snapshot file.

Use the dotnet ef migrations remove command to remove a migration. dotnet ef migrations remove  deletes

the migration and ensures the snapshot is correctly reset. If dotnet ef migrations remove  fails, use 

dotnet ef migrations remove -v  to get more information on the failure.

See EF Core Migrations in Team Environments for more information about how the snapshot file is used.

In the command window, enter the following command to create the database and tables in it.

The output from the command is similar to the migrations add  command, except that you see logs for the

SQL commands that set up the database. Most of the logs are omitted in the following sample output. If you

prefer not to see this level of detail in log messages, you can change the log level in the

appsettings.Development.json file. For more information, see Logging in .NET Core and ASP.NET Core.

Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  to inspect the database as you did in the first tutorial. You'll notice the

addition of an __EFMigrationsHistory table that keeps track of which migrations have been applied to the

database. View the data in that table and you'll see one row for the first migration. (The last log in the

preceding CLI output example shows the INSERT statement that creates this row.)

Run the application to verify that everything still works the same as before.

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet#dotnet-ef-migrations-remove
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/teams


Compare CLI and PMC

Get the code

Next step

   

The EF tooling for managing migrations is available from .NET Core CLI commands or from PowerShell

cmdlets in the Visual Studio Package Manager ConsolePackage Manager Console (PMC) window. This tutorial shows how to use the

CLI, but you can use the PMC if you prefer.

The EF commands for the PMC commands are in the Microsoft.EntityFrameworkCore.Tools package. This

package is included in the Microsoft.AspNetCore.App metapackage, so you don't need to add a package

reference if your app has a package reference for Microsoft.AspNetCore.App .

Impor tant:Impor tant: This isn't the same package as the one you install for the CLI by editing the .csproj file. The name

of this one ends in Tools , unlike the CLI package name which ends in Tools.DotNet .

For more information about the CLI commands, see .NET Core CLI.

For more information about the PMC commands, see Package Manager Console (Visual Studio).

Download or view the completed application.

In this tutorial, you:

Learned about migrations

Learned about NuGet migration packages

Changed the connection string

Created an initial migration

Examined Up and Down methods

Learned about the data model snapshot

Applied the migration

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Tools
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final


Advance to the next tutorial to begin looking at more advanced topics about expanding the data model. Along

the way you'll create and apply additional migrations.

Create and apply additional migrations



Tutorial: Create a complex data model - ASP.NET
MVC with EF Core
9/22/2020 • 30 minutes to read • Edit Online

In the previous tutorials, you worked with a simple data model that was composed of three entities. In this

tutorial, you'll add more entities and relationships and you'll customize the data model by specifying formatting,

validation, and database mapping rules.

When you're finished, the entity classes will make up the completed data model that's shown in the following

illustration:

In this tutorial, you:

Customize the Data model

Make changes to Student entity

Create Instructor entity

Create OfficeAssignment entity

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/complex-data-model.md


Prerequisites

Customize the Data model

The DataType attributeThe DataType attribute

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        public string LastName { get; set; }
        public string FirstMidName { get; set; }
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

Modify Course entity

Create Department entity

Modify Enrollment entity

Update the database context

Seed database with test data

Add a migration

Change the connection string

Update the database

Using EF Core migrations

In this section you'll see how to customize the data model by using attributes that specify formatting, validation,

and database mapping rules. Then in several of the following sections you'll create the complete School data

model by adding attributes to the classes you already created and creating new classes for the remaining entity

types in the model.

For student enrollment dates, all of the web pages currently display the time along with the date, although all

you care about for this field is the date. By using data annotation attributes, you can make one code change that

will fix the display format in every view that shows the data. To see an example of how to do that, you'll add an

attribute to the EnrollmentDate  property in the Student  class.

In Models/Student.cs, add a using  statement for the System.ComponentModel.DataAnnotations  namespace and

add DataType  and DisplayFormat  attributes to the EnrollmentDate  property, as shown in the following example:

The DataType  attribute is used to specify a data type that's more specific than the database intrinsic type. In this

case we only want to keep track of the date, not the date and time. The DataType  Enumeration provides for

many data types, such as Date, Time, PhoneNumber, Currency, EmailAddress, and more. The DataType  attribute

can also enable the application to automatically provide type-specific features. For example, a mailto:  link can

be created for DataType.EmailAddress , and a date selector can be provided for DataType.Date  in browsers that

support HTML5. The DataType  attribute emits HTML 5 data-  (pronounced data dash) attributes that HTML 5

browsers can understand. The DataType  attributes don't provide any validation.



[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]

The StringLength attributeThe StringLength attribute

DataType.Date  doesn't specify the format of the date that's displayed. By default, the data field is displayed

according to the default formats based on the server's CultureInfo.

The DisplayFormat  attribute is used to explicitly specify the date format:

The ApplyFormatInEditMode  setting specifies that the formatting should also be applied when the value is

displayed in a text box for editing. (You might not want that for some fields -- for example, for currency values,

you might not want the currency symbol in the text box for editing.)

You can use the DisplayFormat  attribute by itself, but it's generally a good idea to use the DataType  attribute

also. The DataType  attribute conveys the semantics of the data as opposed to how to render it on a screen, and

provides the following benefits that you don't get with DisplayFormat :

The browser can enable HTML5 features (for example to show a calendar control, the locale-appropriate

currency symbol, email links, some client-side input validation, etc.).

By default, the browser will render data using the correct format based on your locale.

For more information, see the <input> tag helper documentation.

Run the app, go to the Students Index page and notice that times are no longer displayed for the enrollment

dates. The same will be true for any view that uses the Student model.

You can also specify data validation rules and validation error messages using attributes. The StringLength

attribute sets the maximum length in the database and provides client side and server side validation for

ASP.NET Core MVC. You can also specify the minimum string length in this attribute, but the minimum value has

no impact on the database schema.

Suppose you want to ensure that users don't enter more than 50 characters for a name. To add this limitation,

add StringLength  attributes to the LastName  and FirstMidName  properties, as shown in the following example:



using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        [StringLength(50)]
        public string LastName { get; set; }
        [StringLength(50)]
        public string FirstMidName { get; set; }
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

[RegularExpression(@"^[A-Z]+[a-zA-Z]*$")]

dotnet ef migrations add MaxLengthOnNames

dotnet ef database update

The Column attributeThe Column attribute

The StringLength  attribute won't prevent a user from entering white space for a name. You can use the 

RegularExpression  attribute to apply restrictions to the input. For example, the following code requires the first

character to be upper case and the remaining characters to be alphabetical:

The MaxLength  attribute provides functionality similar to the StringLength  attribute but doesn't provide client

side validation.

The database model has now changed in a way that requires a change in the database schema. You'll use

migrations to update the schema without losing any data that you may have added to the database by using the

application UI.

Save your changes and build the project. Then open the command window in the project folder and enter the

following commands:

The migrations add  command warns that data loss may occur, because the change makes the maximum length

shorter for two columns. Migrations creates a file named <timeStamp>_MaxLengthOnNames.cs. This file

contains code in the Up  method that will update the database to match the current data model. The 

database update  command ran that code.

The timestamp prefixed to the migrations file name is used by Entity Framework to order the migrations. You can

create multiple migrations before running the update-database command, and then all of the migrations are

applied in the order in which they were created.

Run the app, select the StudentsStudents  tab, click Create NewCreate New , and try to enter either name longer than 50 characters.

The application should prevent you from doing this.

You can also use attributes to control how your classes and properties are mapped to the database. Suppose you

had used the name FirstMidName  for the first-name field because the field might also contain a middle name.



using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        [StringLength(50)]
        public string LastName { get; set; }
        [StringLength(50)]
        [Column("FirstName")]
        public string FirstMidName { get; set; }
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

dotnet ef migrations add ColumnFirstName

dotnet ef database update

But you want the database column to be named FirstName , because users who will be writing ad-hoc queries

against the database are accustomed to that name. To make this mapping, you can use the Column  attribute.

The Column  attribute specifies that when the database is created, the column of the Student  table that maps to

the FirstMidName  property will be named FirstName . In other words, when your code refers to 

Student.FirstMidName , the data will come from or be updated in the FirstName  column of the Student  table. If

you don't specify column names, they're given the same name as the property name.

In the Student.cs file, add a using  statement for System.ComponentModel.DataAnnotations.Schema  and add the

column name attribute to the FirstMidName  property, as shown in the following highlighted code:

The addition of the Column  attribute changes the model backing the SchoolContext , so it won't match the

database.

Save your changes and build the project. Then open the command window in the project folder and enter the

following commands to create another migration:

In SQL Ser ver Object ExplorerSQL Ser ver Object Explorer , open the Student table designer by double-clicking the StudentStudent table.



NOTENOTE

Changes to Student entity

Before you applied the first two migrations, the name columns were of type nvarchar(MAX). They're now

nvarchar(50) and the column name has changed from FirstMidName to FirstName.

If you try to compile before you finish creating all of the entity classes in the following sections, you might get compiler

errors.

In Models/Student.cs, replace the code you added earlier with the following code. The changes are highlighted.



using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Student
    {
        public int ID { get; set; }
        [Required]
        [StringLength(50)]
        [Display(Name = "Last Name")]
        public string LastName { get; set; }
        [Required]
        [StringLength(50)]
        [Column("FirstName")]
        [Display(Name = "First Name")]
        public string FirstMidName { get; set; }
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Enrollment Date")]
        public DateTime EnrollmentDate { get; set; }
        [Display(Name = "Full Name")]
        public string FullName
        {
            get
            {
                return LastName + ", " + FirstMidName;
            }
        }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

The Required attributeThe Required attribute

[Display(Name = "Last Name")]
[Required]
[StringLength(50, MinimumLength=2)]
public string LastName { get; set; }

The Display attributeThe Display attribute

The FullName calculated propertyThe FullName calculated property

Create Instructor entity

The Required  attribute makes the name properties required fields. The Required  attribute isn't needed for non-

nullable types such as value types (DateTime, int, double, float, etc.). Types that can't be null are automatically

treated as required fields.

The Required  attribute must be used with MinimumLength  for the MinimumLength  to be enforced.

The Display  attribute specifies that the caption for the text boxes should be "First Name", "Last Name", "Full

Name", and "Enrollment Date" instead of the property name in each instance (which has no space dividing the

words).

FullName  is a calculated property that returns a value that's created by concatenating two other properties.

Therefore it has only a get accessor, and no FullName  column will be generated in the database.



using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Instructor
    {
        public int ID { get; set; }

        [Required]
        [Display(Name = "Last Name")]
        [StringLength(50)]
        public string LastName { get; set; }

        [Required]
        [Column("FirstName")]
        [Display(Name = "First Name")]
        [StringLength(50)]
        public string FirstMidName { get; set; }

        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Hire Date")]
        public DateTime HireDate { get; set; }

        [Display(Name = "Full Name")]
        public string FullName
        {
            get { return LastName + ", " + FirstMidName; }
        }

        public ICollection<CourseAssignment> CourseAssignments { get; set; }
        public OfficeAssignment OfficeAssignment { get; set; }
    }
}

[DataType(DataType.Date),Display(Name = "Hire Date"),DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", 
ApplyFormatInEditMode = true)]

The CourseAssignments and OfficeAssignment navigation propertiesThe CourseAssignments and OfficeAssignment navigation properties

Create Models/Instructor.cs, replacing the template code with the following code:

Notice that several properties are the same in the Student and Instructor entities. In the Implementing

Inheritance tutorial later in this series, you'll refactor this code to eliminate the redundancy.

You can put multiple attributes on one line, so you could also write the HireDate  attributes as follows:

The CourseAssignments  and OfficeAssignment  properties are navigation properties.



public ICollection<CourseAssignment> CourseAssignments { get; set; }

public OfficeAssignment OfficeAssignment { get; set; }

Create OfficeAssignment entity

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class OfficeAssignment
    {
        [Key]
        public int InstructorID { get; set; }
        [StringLength(50)]
        [Display(Name = "Office Location")]
        public string Location { get; set; }

        public Instructor Instructor { get; set; }
    }
}

The Key attributeThe Key attribute

[Key]
public int InstructorID { get; set; }

An instructor can teach any number of courses, so CourseAssignments  is defined as a collection.

If a navigation property can hold multiple entities, its type must be a list in which entries can be added, deleted,

and updated. You can specify ICollection<T>  or a type such as List<T>  or HashSet<T> . If you specify 

ICollection<T> , EF creates a HashSet<T>  collection by default.

The reason why these are CourseAssignment  entities is explained below in the section about many-to-many

relationships.

Contoso University business rules state that an instructor can only have at most one office, so the 

OfficeAssignment  property holds a single OfficeAssignment entity (which may be null if no office is assigned).

Create Models/OfficeAssignment.cs with the following code:

There's a one-to-zero-or-one relationship between the Instructor and the OfficeAssignment entities. An office

assignment only exists in relation to the instructor it's assigned to, and therefore its primary key is also its

foreign key to the Instructor entity. But the Entity Framework can't automatically recognize InstructorID as the

primary key of this entity because its name doesn't follow the ID or classnameID naming convention. Therefore,

the Key  attribute is used to identify it as the key:



The Instructor navigation propertyThe Instructor navigation property

Modify Course entity

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Course
    {
        [DatabaseGenerated(DatabaseGeneratedOption.None)]
        [Display(Name = "Number")]
        public int CourseID { get; set; }

        [StringLength(50, MinimumLength = 3)]
        public string Title { get; set; }

        [Range(0, 5)]
        public int Credits { get; set; }

        public int DepartmentID { get; set; }

        public Department Department { get; set; }
        public ICollection<Enrollment> Enrollments { get; set; }
        public ICollection<CourseAssignment> CourseAssignments { get; set; }
    }
}

You can also use the Key  attribute if the entity does have its own primary key but you want to name the

property something other than classnameID or ID.

By default, EF treats the key as non-database-generated because the column is for an identifying relationship.

The Instructor entity has a nullable OfficeAssignment  navigation property (because an instructor might not have

an office assignment), and the OfficeAssignment entity has a non-nullable Instructor  navigation property

(because an office assignment can't exist without an instructor -- InstructorID  is non-nullable). When an

Instructor entity has a related OfficeAssignment entity, each entity will have a reference to the other one in its

navigation property.

You could put a [Required]  attribute on the Instructor navigation property to specify that there must be a

related instructor, but you don't have to do that because the InstructorID  foreign key (which is also the key to

this table) is non-nullable.

In Models/Course.cs, replace the code you added earlier with the following code. The changes are highlighted.

The course entity has a foreign key property DepartmentID  which points to the related Department entity and it

has a Department  navigation property.



The DatabaseGenerated attributeThe DatabaseGenerated attribute

[DatabaseGenerated(DatabaseGeneratedOption.None)]
[Display(Name = "Number")]
public int CourseID { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

public int DepartmentID { get; set; }
public Department Department { get; set; }

public ICollection<Enrollment> Enrollments { get; set; }

public ICollection<CourseAssignment> CourseAssignments { get; set; }

Create Department entity

The Entity Framework doesn't require you to add a foreign key property to your data model when you have a

navigation property for a related entity. EF automatically creates foreign keys in the database wherever they're

needed and creates shadow properties for them. But having the foreign key in the data model can make updates

simpler and more efficient. For example, when you fetch a course entity to edit, the Department entity is null if

you don't load it, so when you update the course entity, you would have to first fetch the Department entity.

When the foreign key property DepartmentID  is included in the data model, you don't need to fetch the

Department entity before you update.

The DatabaseGenerated  attribute with the None  parameter on the CourseID  property specifies that primary key

values are provided by the user rather than generated by the database.

By default, Entity Framework assumes that primary key values are generated by the database. That's what you

want in most scenarios. However, for Course entities, you'll use a user-specified course number such as a 1000

series for one department, a 2000 series for another department, and so on.

The DatabaseGenerated  attribute can also be used to generate default values, as in the case of database columns

used to record the date a row was created or updated. For more information, see Generated Properties.

The foreign key properties and navigation properties in the Course entity reflect the following relationships:

A course is assigned to one department, so there's a DepartmentID  foreign key and a Department  navigation

property for the reasons mentioned above.

A course can have any number of students enrolled in it, so the Enrollments  navigation property is a collection:

A course may be taught by multiple instructors, so the CourseAssignments  navigation property is a collection (the

type CourseAssignment  is explained later):

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties
https://docs.microsoft.com/en-us/ef/core/modeling/generated-properties


using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Department
    {
        public int DepartmentID { get; set; }

        [StringLength(50, MinimumLength = 3)]
        public string Name { get; set; }

        [DataType(DataType.Currency)]
        [Column(TypeName = "money")]
        public decimal Budget { get; set; }

        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Start Date")]
        public DateTime StartDate { get; set; }

        public int? InstructorID { get; set; }

        public Instructor Administrator { get; set; }
        public ICollection<Course> Courses { get; set; }
    }
}

The Column attributeThe Column attribute

[Column(TypeName="money")]
public decimal Budget { get; set; }

Foreign key and navigation propertiesForeign key and navigation properties

Create Models/Department.cs with the following code:

Earlier you used the Column  attribute to change column name mapping. In the code for the Department entity,

the Column  attribute is being used to change SQL data type mapping so that the column will be defined using

the SQL Server money type in the database:

Column mapping is generally not required, because the Entity Framework chooses the appropriate SQL Server

data type based on the CLR type that you define for the property. The CLR decimal  type maps to a SQL Server 

decimal  type. But in this case you know that the column will be holding currency amounts, and the money data

type is more appropriate for that.

The foreign key and navigation properties reflect the following relationships:



public int? InstructorID { get; set; }
public Instructor Administrator { get; set; }

public ICollection<Course> Courses { get; set; }

NOTENOTE

modelBuilder.Entity<Department>()
   .HasOne(d => d.Administrator)
   .WithMany()
   .OnDelete(DeleteBehavior.Restrict)

Modify Enrollment entity

A department may or may not have an administrator, and an administrator is always an instructor. Therefore the 

InstructorID  property is included as the foreign key to the Instructor entity, and a question mark is added after

the int  type designation to mark the property as nullable. The navigation property is named Administrator

but holds an Instructor entity:

A department may have many courses, so there's a Courses navigation property:

By convention, the Entity Framework enables cascade delete for non-nullable foreign keys and for many-to-many

relationships. This can result in circular cascade delete rules, which will cause an exception when you try to add a

migration. For example, if you didn't define the Department.InstructorID property as nullable, EF would configure a

cascade delete rule to delete the department when you delete the instructor, which isn't what you want to have happen. If

your business rules required the InstructorID  property to be non-nullable, you would have to use the following fluent

API statement to disable cascade delete on the relationship:

In Models/Enrollment.cs, replace the code you added earlier with the following code:



   

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public enum Grade
    {
        A, B, C, D, F
    }

    public class Enrollment
    {
        public int EnrollmentID { get; set; }
        public int CourseID { get; set; }
        public int StudentID { get; set; }
        [DisplayFormat(NullDisplayText = "No grade")]
        public Grade? Grade { get; set; }

        public Course Course { get; set; }
        public Student Student { get; set; }
    }
}

Foreign key and navigation propertiesForeign key and navigation properties

public int CourseID { get; set; }
public Course Course { get; set; }

public int StudentID { get; set; }
public Student Student { get; set; }

Many-to-Many relationships

The foreign key properties and navigation properties reflect the following relationships:

An enrollment record is for a single course, so there's a CourseID  foreign key property and a Course  navigation

property:

An enrollment record is for a single student, so there's a StudentID  foreign key property and a Student

navigation property:

There's a many-to-many relationship between the Student and Course entities, and the Enrollment entity

functions as a many-to-many join table with payload in the database. "With payload" means that the Enrollment

table contains additional data besides foreign keys for the joined tables (in this case, a primary key and a Grade

property).

The following illustration shows what these relationships look like in an entity diagram. (This diagram was

generated using the Entity Framework Power Tools for EF 6.x; creating the diagram isn't part of the tutorial, it's

just being used here as an illustration.)



The CourseAssignment entity

Each relationship line has a 1 at one end and an asterisk (*) at the other, indicating a one-to-many relationship.

If the Enrollment table didn't include grade information, it would only need to contain the two foreign keys

CourseID and StudentID. In that case, it would be a many-to-many join table without payload (or a pure join

table) in the database. The Instructor and Course entities have that kind of many-to-many relationship, and your

next step is to create an entity class to function as a join table without payload.

(EF 6.x supports implicit join tables for many-to-many relationships, but EF Core doesn't. For more information,

see the discussion in the EF Core GitHub repository.)

Create Models/CourseAssignment.cs with the following code:

https://github.com/aspnet/EntityFramework/issues/1368


using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class CourseAssignment
    {
        public int InstructorID { get; set; }
        public int CourseID { get; set; }
        public Instructor Instructor { get; set; }
        public Course Course { get; set; }
    }
}

Join entity namesJoin entity names

Composite keyComposite key

Update the database context

A join table is required in the database for the Instructor-to-Courses many-to-many relationship, and it has to be

represented by an entity set. It's common to name a join entity EntityName1EntityName2 , which in this case would

be CourseInstructor . However, we recommend that you choose a name that describes the relationship. Data

models start out simple and grow, with no-payload joins frequently getting payloads later. If you start with a

descriptive entity name, you won't have to change the name later. Ideally, the join entity would have its own

natural (possibly single word) name in the business domain. For example, Books and Customers could be linked

through Ratings. For this relationship, CourseAssignment  is a better choice than CourseInstructor .

Since the foreign keys are not nullable and together uniquely identify each row of the table, there's no need for a

separate primary key. The InstructorID and CourseID properties should function as a composite primary key. The

only way to identify composite primary keys to EF is by using the fluent API (it can't be done by using attributes).

You'll see how to configure the composite primary key in the next section.

The composite key ensures that while you can have multiple rows for one course, and multiple rows for one

instructor, you can't have multiple rows for the same instructor and course. The Enrollment  join entity defines its

own primary key, so duplicates of this sort are possible. To prevent such duplicates, you could add a unique

index on the foreign key fields, or configure Enrollment  with a primary composite key similar to 

CourseAssignment . For more information, see Indexes.

Add the following highlighted code to the Data/SchoolContext.cs file:

https://docs.microsoft.com/en-us/ef/core/modeling/indexes


using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
    public class SchoolContext : DbContext
    {
        public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
        {
        }

        public DbSet<Course> Courses { get; set; }
        public DbSet<Enrollment> Enrollments { get; set; }
        public DbSet<Student> Students { get; set; }
        public DbSet<Department> Departments { get; set; }
        public DbSet<Instructor> Instructors { get; set; }
        public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
        public DbSet<CourseAssignment> CourseAssignments { get; set; }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Course>().ToTable("Course");
            modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
            modelBuilder.Entity<Student>().ToTable("Student");
            modelBuilder.Entity<Department>().ToTable("Department");
            modelBuilder.Entity<Instructor>().ToTable("Instructor");
            modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
            modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");

            modelBuilder.Entity<CourseAssignment>()
                .HasKey(c => new { c.CourseID, c.InstructorID });
        }
    }
}

About a fluent API alternative

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    modelBuilder.Entity<Blog>()
        .Property(b => b.Url)
        .IsRequired();
}

This code adds the new entities and configures the CourseAssignment entity's composite primary key.

The code in the OnModelCreating  method of the DbContext  class uses the fluent API to configure EF behavior.

The API is called "fluent" because it's often used by stringing a series of method calls together into a single

statement, as in this example from the EF Core documentation:

In this tutorial, you're using the fluent API only for database mapping that you can't do with attributes. However,

you can also use the fluent API to specify most of the formatting, validation, and mapping rules that you can do

by using attributes. Some attributes such as MinimumLength  can't be applied with the fluent API. As mentioned

previously, MinimumLength  doesn't change the schema, it only applies a client and server side validation rule.

Some developers prefer to use the fluent API exclusively so that they can keep their entity classes "clean." You

can mix attributes and fluent API if you want, and there are a few customizations that can only be done by using

fluent API, but in general the recommended practice is to choose one of these two approaches and use that

consistently as much as possible. If you do use both, note that wherever there's a conflict, Fluent API overrides

attributes.

https://docs.microsoft.com/en-us/ef/core/modeling/#use-fluent-api-to-configure-a-model


Entity Diagram Showing Relationships

Seed database with test data

using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using ContosoUniversity.Models;

namespace ContosoUniversity.Data

For more information about attributes vs. fluent API, see Methods of configuration.

The following illustration shows the diagram that the Entity Framework Power Tools create for the completed

School model.

Besides the one-to-many relationship lines (1 to *), you can see here the one-to-zero-or-one relationship line (1

to 0..1) between the Instructor and OfficeAssignment entities and the zero-or-one-to-many relationship line (0..1

to *) between the Instructor and Department entities.

Replace the code in the Data/DbInitializer.cs file with the following code in order to provide seed data for the new

entities you've created.

https://docs.microsoft.com/en-us/ef/core/modeling/


namespace ContosoUniversity.Data
{
    public static class DbInitializer
    {
        public static void Initialize(SchoolContext context)
        {
            //context.Database.EnsureCreated();

            // Look for any students.
            if (context.Students.Any())
            {
                return;   // DB has been seeded
            }

            var students = new Student[]
            {
                new Student { FirstMidName = "Carson",   LastName = "Alexander",
                    EnrollmentDate = DateTime.Parse("2010-09-01") },
                new Student { FirstMidName = "Meredith", LastName = "Alonso",
                    EnrollmentDate = DateTime.Parse("2012-09-01") },
                new Student { FirstMidName = "Arturo",   LastName = "Anand",
                    EnrollmentDate = DateTime.Parse("2013-09-01") },
                new Student { FirstMidName = "Gytis",    LastName = "Barzdukas",
                    EnrollmentDate = DateTime.Parse("2012-09-01") },
                new Student { FirstMidName = "Yan",      LastName = "Li",
                    EnrollmentDate = DateTime.Parse("2012-09-01") },
                new Student { FirstMidName = "Peggy",    LastName = "Justice",
                    EnrollmentDate = DateTime.Parse("2011-09-01") },
                new Student { FirstMidName = "Laura",    LastName = "Norman",
                    EnrollmentDate = DateTime.Parse("2013-09-01") },
                new Student { FirstMidName = "Nino",     LastName = "Olivetto",
                    EnrollmentDate = DateTime.Parse("2005-09-01") }
            };

            foreach (Student s in students)
            {
                context.Students.Add(s);
            }
            context.SaveChanges();

            var instructors = new Instructor[]
            {
                new Instructor { FirstMidName = "Kim",     LastName = "Abercrombie",
                    HireDate = DateTime.Parse("1995-03-11") },
                new Instructor { FirstMidName = "Fadi",    LastName = "Fakhouri",
                    HireDate = DateTime.Parse("2002-07-06") },
                new Instructor { FirstMidName = "Roger",   LastName = "Harui",
                    HireDate = DateTime.Parse("1998-07-01") },
                new Instructor { FirstMidName = "Candace", LastName = "Kapoor",
                    HireDate = DateTime.Parse("2001-01-15") },
                new Instructor { FirstMidName = "Roger",   LastName = "Zheng",
                    HireDate = DateTime.Parse("2004-02-12") }
            };

            foreach (Instructor i in instructors)
            {
                context.Instructors.Add(i);
            }
            context.SaveChanges();

            var departments = new Department[]
            {
                new Department { Name = "English",     Budget = 350000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Abercrombie").ID },
                new Department { Name = "Mathematics", Budget = 100000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Fakhouri").ID },
                new Department { Name = "Engineering", Budget = 350000,
                    StartDate = DateTime.Parse("2007-09-01"),



                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Harui").ID },
                new Department { Name = "Economics",   Budget = 100000,
                    StartDate = DateTime.Parse("2007-09-01"),
                    InstructorID  = instructors.Single( i => i.LastName == "Kapoor").ID }
            };

            foreach (Department d in departments)
            {
                context.Departments.Add(d);
            }
            context.SaveChanges();

            var courses = new Course[]
            {
                new Course {CourseID = 1050, Title = "Chemistry",      Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "Engineering").DepartmentID
                },
                new Course {CourseID = 4022, Title = "Microeconomics", Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "Economics").DepartmentID
                },
                new Course {CourseID = 4041, Title = "Macroeconomics", Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "Economics").DepartmentID
                },
                new Course {CourseID = 1045, Title = "Calculus",       Credits = 4,
                    DepartmentID = departments.Single( s => s.Name == "Mathematics").DepartmentID
                },
                new Course {CourseID = 3141, Title = "Trigonometry",   Credits = 4,
                    DepartmentID = departments.Single( s => s.Name == "Mathematics").DepartmentID
                },
                new Course {CourseID = 2021, Title = "Composition",    Credits = 3,
                    DepartmentID = departments.Single( s => s.Name == "English").DepartmentID
                },
                new Course {CourseID = 2042, Title = "Literature",     Credits = 4,
                    DepartmentID = departments.Single( s => s.Name == "English").DepartmentID
                },
            };

            foreach (Course c in courses)
            {
                context.Courses.Add(c);
            }
            context.SaveChanges();

            var officeAssignments = new OfficeAssignment[]
            {
                new OfficeAssignment {
                    InstructorID = instructors.Single( i => i.LastName == "Fakhouri").ID,
                    Location = "Smith 17" },
                new OfficeAssignment {
                    InstructorID = instructors.Single( i => i.LastName == "Harui").ID,
                    Location = "Gowan 27" },
                new OfficeAssignment {
                    InstructorID = instructors.Single( i => i.LastName == "Kapoor").ID,
                    Location = "Thompson 304" },
            };

            foreach (OfficeAssignment o in officeAssignments)
            {
                context.OfficeAssignments.Add(o);
            }
            context.SaveChanges();

            var courseInstructors = new CourseAssignment[]
            {
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Kapoor").ID
                    },
                new CourseAssignment {



                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Harui").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Microeconomics" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Macroeconomics" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Zheng").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Calculus" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Fakhouri").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Trigonometry" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Harui").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Composition" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
                    },
                new CourseAssignment {
                    CourseID = courses.Single(c => c.Title == "Literature" ).CourseID,
                    InstructorID = instructors.Single(i => i.LastName == "Abercrombie").ID
                    },
            };

            foreach (CourseAssignment ci in courseInstructors)
            {
                context.CourseAssignments.Add(ci);
            }
            context.SaveChanges();

            var enrollments = new Enrollment[]
            {
                new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alexander").ID,
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID,
                    Grade = Grade.A
                },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alexander").ID,
                    CourseID = courses.Single(c => c.Title == "Microeconomics" ).CourseID,
                    Grade = Grade.C
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alexander").ID,
                    CourseID = courses.Single(c => c.Title == "Macroeconomics" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                        StudentID = students.Single(s => s.LastName == "Alonso").ID,
                    CourseID = courses.Single(c => c.Title == "Calculus" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                        StudentID = students.Single(s => s.LastName == "Alonso").ID,
                    CourseID = courses.Single(c => c.Title == "Trigonometry" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Alonso").ID,
                    CourseID = courses.Single(c => c.Title == "Composition" ).CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Anand").ID,



                    StudentID = students.Single(s => s.LastName == "Anand").ID,
                    CourseID = courses.Single(c => c.Title == "Chemistry" ).CourseID
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Anand").ID,
                    CourseID = courses.Single(c => c.Title == "Microeconomics").CourseID,
                    Grade = Grade.B
                    },
                new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Barzdukas").ID,
                    CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Li").ID,
                    CourseID = courses.Single(c => c.Title == "Composition").CourseID,
                    Grade = Grade.B
                    },
                    new Enrollment {
                    StudentID = students.Single(s => s.LastName == "Justice").ID,
                    CourseID = courses.Single(c => c.Title == "Literature").CourseID,
                    Grade = Grade.B
                    }
            };

            foreach (Enrollment e in enrollments)
            {
                var enrollmentInDataBase = context.Enrollments.Where(
                    s =>
                            s.Student.ID == e.StudentID &&
                            s.Course.CourseID == e.CourseID).SingleOrDefault();
                if (enrollmentInDataBase == null)
                {
                    context.Enrollments.Add(e);
                }
            }
            context.SaveChanges();
        }
    }
}

Add a migration

dotnet ef migrations add ComplexDataModel

An operation was scaffolded that may result in the loss of data. Please review the migration for accuracy.
Done. To undo this action, use 'ef migrations remove'

As you saw in the first tutorial, most of this code simply creates new entity objects and loads sample data into

properties as required for testing. Notice how the many-to-many relationships are handled: the code creates

relationships by creating entities in the Enrollments  and CourseAssignment  join entity sets.

Save your changes and build the project. Then open the command window in the project folder and enter the 

migrations add  command (don't do the update-database command yet):

You get a warning about possible data loss.

If you tried to run the database update  command at this point (don't do it yet), you would get the following

error :

The ALTER TABLE statement conflicted with the FOREIGN KEY constraint



"FK_dbo.Course_dbo.Department_DepartmentID". The conflict occurred in database "ContosoUniversity",

table "dbo.Department", column 'DepartmentID'.

Sometimes when you execute migrations with existing data, you need to insert stub data into the database to

satisfy foreign key constraints. The generated code in the Up  method adds a non-nullable DepartmentID foreign

key to the Course table. If there are already rows in the Course table when the code runs, the AddColumn

operation fails because SQL Server doesn't know what value to put in the column that can't be null. For this

tutorial you'll run the migration on a new database, but in a production application you'd have to make the

migration handle existing data, so the following directions show an example of how to do that.

To make this migration work with existing data you have to change the code to give the new column a default

value, and create a stub department named "Temp" to act as the default department. As a result, existing Course

rows will all be related to the "Temp" department after the Up  method runs.

migrationBuilder.AlterColumn<string>(
    name: "Title",
    table: "Course",
    maxLength: 50,
    nullable: true,
    oldClrType: typeof(string),
    oldNullable: true);
            
//migrationBuilder.AddColumn<int>(
//    name: "DepartmentID",
//    table: "Course",
//    nullable: false,
//    defaultValue: 0);

Open the {timestamp}_ComplexDataModel.cs file.

Comment out the line of code that adds the DepartmentID column to the Course table.

Add the following highlighted code after the code that creates the Department table:



Change the connection string

{
  "ConnectionStrings": {
    "DefaultConnection": "Server=
(localdb)\\mssqllocaldb;Database=ContosoUniversity3;Trusted_Connection=True;MultipleActiveResultSets=true"
  },

migrationBuilder.CreateTable(
    name: "Department",
    columns: table => new
    {
        DepartmentID = table.Column<int>(nullable: false)
            .Annotation("SqlServer:ValueGenerationStrategy", 
SqlServerValueGenerationStrategy.IdentityColumn),
        Budget = table.Column<decimal>(type: "money", nullable: false),
        InstructorID = table.Column<int>(nullable: true),
        Name = table.Column<string>(maxLength: 50, nullable: true),
        StartDate = table.Column<DateTime>(nullable: false)
    },
    constraints: table =>
    {
        table.PrimaryKey("PK_Department", x => x.DepartmentID);
        table.ForeignKey(
            name: "FK_Department_Instructor_InstructorID",
            column: x => x.InstructorID,
            principalTable: "Instructor",
            principalColumn: "ID",
            onDelete: ReferentialAction.Restrict);
    });

migrationBuilder.Sql("INSERT INTO dbo.Department (Name, Budget, StartDate) VALUES ('Temp', 0.00, 
GETDATE())");
// Default value for FK points to department created above, with
// defaultValue changed to 1 in following AddColumn statement.

migrationBuilder.AddColumn<int>(
    name: "DepartmentID",
    table: "Course",
    nullable: false,
    defaultValue: 1);

In a production application, you would write code or scripts to add Department rows and relate Course rows to

the new Department rows. You would then no longer need the "Temp" department or the default value on the

Course.DepartmentID column.

Save your changes and build the project.

You now have new code in the DbInitializer  class that adds seed data for the new entities to an empty

database. To make EF create a new empty database, change the name of the database in the connection string in

appsettings.json to ContosoUniversity3 or some other name that you haven't used on the computer you're using.

Save your change to appsettings.json.



NOTENOTE

dotnet ef database drop

Update the database

dotnet ef database update

As an alternative to changing the database name, you can delete the database. Use SQL Ser ver Object ExplorerSQL Ser ver Object Explorer

(SSOX) or the database drop  CLI command:

After you have changed the database name or deleted the database, run the database update  command in the

command window to execute the migrations.

Run the app to cause the DbInitializer.Initialize  method to run and populate the new database.

Open the database in SSOX as you did earlier, and expand the TablesTables  node to see that all of the tables have been

created. (If you still have SSOX open from the earlier time, click the RefreshRefresh button.)

Run the app to trigger the initializer code that seeds the database.

Right-click the CourseAssignmentCourseAssignment table and select View DataView Data to verify that it has data in it.



Get the code

Next steps

Download or view the completed application.

In this tutorial, you:

Customized the Data model

Made changes to Student entity

Created Instructor entity

Created OfficeAssignment entity

Modified Course entity

Created Department entity

Modified Enrollment entity

Updated the database context

Seeded database with test data

Added a migration

Changed the connection string

Updated the database

Advance to the next tutorial to learn more about how to access related data.

Next: Access related data

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final


Tutorial: Read related data - ASP.NET MVC with EF
Core
9/22/2020 • 14 minutes to read • Edit Online

In the previous tutorial, you completed the School data model. In this tutorial, you'll read and display related data

-- that is, data that the Entity Framework loads into navigation properties.

The following illustrations show the pages that you'll work with.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/read-related-data.md


Prerequisites

Learn how to load related data

In this tutorial, you:

Learn how to load related data

Create a Courses page

Create an Instructors page

Learn about explicit loading

Create a complex data model

There are several ways that Object-Relational Mapping (ORM) software such as Entity Framework can load

related data into the navigation properties of an entity:

Eager loading. When the entity is read, related data is retrieved along with it. This typically results in a



Performance considerationsPerformance considerations

Create a Courses page

single join query that retrieves all of the data that's needed. You specify eager loading in Entity Framework

Core by using the Include  and ThenInclude  methods.

You can retrieve some of the data in separate queries, and EF "fixes up" the navigation properties. That is,

EF automatically adds the separately retrieved entities where they belong in navigation properties of

previously retrieved entities. For the query that retrieves related data, you can use the Load  method

instead of a method that returns a list or object, such as ToList  or Single .

Explicit loading. When the entity is first read, related data isn't retrieved. You write code that retrieves the

related data if it's needed. As in the case of eager loading with separate queries, explicit loading results in

multiple queries sent to the database. The difference is that with explicit loading, the code specifies the

navigation properties to be loaded. In Entity Framework Core 1.1 you can use the Load  method to do

explicit loading. For example:

Lazy loading. When the entity is first read, related data isn't retrieved. However, the first time you attempt

to access a navigation property, the data required for that navigation property is automatically retrieved.

A query is sent to the database each time you try to get data from a navigation property for the first time.

Entity Framework Core 1.0 doesn't support lazy loading.

If you know you need related data for every entity retrieved, eager loading often offers the best performance,

because a single query sent to the database is typically more efficient than separate queries for each entity

retrieved. For example, suppose that each department has ten related courses. Eager loading of all related data

would result in just a single ( join) query and a single round trip to the database. A separate query for courses for

each department would result in eleven round trips to the database. The extra round trips to the database are

especially detrimental to performance when latency is high.

On the other hand, in some scenarios separate queries is more efficient. Eager loading of all related data in one

query might cause a very complex join to be generated, which SQL Server can't process efficiently. Or if you

need to access an entity's navigation properties only for a subset of a set of the entities you're processing,

separate queries might perform better because eager loading of everything up front would retrieve more data

than you need. If performance is critical, it's best to test performance both ways in order to make the best choice.



public async Task<IActionResult> Index()
{
    var courses = _context.Courses
        .Include(c => c.Department)
        .AsNoTracking();
    return View(await courses.ToListAsync());
}

The Course entity includes a navigation property that contains the Department entity of the department that the

course is assigned to. To display the name of the assigned department in a list of courses, you need to get the

Name property from the Department entity that's in the Course.Department  navigation property.

Create a controller named CoursesController for the Course entity type, using the same options for the MVCMVC

Controller  with views, using Entity FrameworkController  with views, using Entity Framework scaffolder that you did earlier for the Students controller, as

shown in the following illustration:

Open CoursesController.cs and examine the Index  method. The automatic scaffolding has specified eager

loading for the Department  navigation property by using the Include  method.

Replace the Index  method with the following code that uses a more appropriate name for the IQueryable  that

returns Course entities ( courses  instead of schoolContext ):

Open Views/Courses/Index.cshtml and replace the template code with the following code. The changes are

highlighted:



@model IEnumerable<ContosoUniversity.Models.Course>

@{
    ViewData["Title"] = "Courses";
}

<h2>Courses</h2>

<p>
    <a asp-action="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
            <th>
                @Html.DisplayNameFor(model => model.CourseID)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Title)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Credits)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Department)
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.CourseID)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Title)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Credits)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Department.Name)
                </td>
                <td>
                    <a asp-action="Edit" asp-route-id="@item.CourseID">Edit</a> |
                    <a asp-action="Details" asp-route-id="@item.CourseID">Details</a> |
                    <a asp-action="Delete" asp-route-id="@item.CourseID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

You've made the following changes to the scaffolded code:

Changed the heading from Index to Courses.

Added a NumberNumber  column that shows the CourseID  property value. By default, primary keys aren't

scaffolded because normally they're meaningless to end users. However, in this case the primary key is

meaningful and you want to show it.

Changed the Depar tmentDepar tment column to display the department name. The code displays the Name

property of the Department entity that's loaded into the Department  navigation property:



Create an Instructors page

@Html.DisplayFor(modelItem => item.Department.Name)

Run the app and select the CoursesCourses  tab to see the list with department names.

In this section, you'll create a controller and view for the Instructor entity in order to display the Instructors page:



This page reads and displays related data in the following ways:

The list of instructors displays related data from the OfficeAssignment entity. The Instructor and

OfficeAssignment entities are in a one-to-zero-or-one relationship. You'll use eager loading for the

OfficeAssignment entities. As explained earlier, eager loading is typically more efficient when you need the

related data for all retrieved rows of the primary table. In this case, you want to display office assignments

for all displayed instructors.

When the user selects an instructor, related Course entities are displayed. The Instructor and Course

entities are in a many-to-many relationship. You'll use eager loading for the Course entities and their

related Department entities. In this case, separate queries might be more efficient because you need

courses only for the selected instructor. However, this example shows how to use eager loading for

navigation properties within entities that are themselves in navigation properties.

When the user selects a course, related data from the Enrollments entity set is displayed. The Course and

Enrollment entities are in a one-to-many relationship. You'll use separate queries for Enrollment entities

and their related Student entities.



Create a view model for the Instructor Index viewCreate a view model for the Instructor Index view

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
    public class InstructorIndexData
    {
        public IEnumerable<Instructor> Instructors { get; set; }
        public IEnumerable<Course> Courses { get; set; }
        public IEnumerable<Enrollment> Enrollments { get; set; }
    }
}

Create the Instructor controller and viewsCreate the Instructor controller and views

using ContosoUniversity.Models.SchoolViewModels;

The Instructors page shows data from three different tables. Therefore, you'll create a view model that includes

three properties, each holding the data for one of the tables.

In the SchoolViewModels folder, create InstructorIndexData.cs and replace the existing code with the following

code:

Create an Instructors controller with EF read/write actions as shown in the following illustration:

Open InstructorsController.cs and add a using statement for the ViewModels namespace:

Replace the Index method with the following code to do eager loading of related data and put it in the view

model.



public async Task<IActionResult> Index(int? id, int? courseID)
{
    var viewModel = new InstructorIndexData();
    viewModel.Instructors = await _context.Instructors
          .Include(i => i.OfficeAssignment)
          .Include(i => i.CourseAssignments)
            .ThenInclude(i => i.Course)
                .ThenInclude(i => i.Enrollments)
                    .ThenInclude(i => i.Student)
          .Include(i => i.CourseAssignments)
            .ThenInclude(i => i.Course)
                .ThenInclude(i => i.Department)
          .AsNoTracking()
          .OrderBy(i => i.LastName)
          .ToListAsync();
    
    if (id != null)
    {
        ViewData["InstructorID"] = id.Value;
        Instructor instructor = viewModel.Instructors.Where(
            i => i.ID == id.Value).Single();
        viewModel.Courses = instructor.CourseAssignments.Select(s => s.Course);
    }

    if (courseID != null)
    {
        ViewData["CourseID"] = courseID.Value;
        viewModel.Enrollments = viewModel.Courses.Where(
            x => x.CourseID == courseID).Single().Enrollments;
    }

    return View(viewModel);
}

viewModel.Instructors = await _context.Instructors
      .Include(i => i.OfficeAssignment)
      .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Enrollments)
                .ThenInclude(i => i.Student)
      .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Department)
      .AsNoTracking()
      .OrderBy(i => i.LastName)
      .ToListAsync();

The method accepts optional route data ( id ) and a query string parameter ( courseID ) that provide the ID

values of the selected instructor and selected course. The parameters are provided by the SelectSelect hyperlinks on

the page.

The code begins by creating an instance of the view model and putting in it the list of instructors. The code

specifies eager loading for the Instructor.OfficeAssignment  and the Instructor.CourseAssignments  navigation

properties. Within the CourseAssignments  property, the Course  property is loaded, and within that, the 

Enrollments  and Department  properties are loaded, and within each Enrollment  entity the Student  property is

loaded.

Since the view always requires the OfficeAssignment entity, it's more efficient to fetch that in the same query.

Course entities are required when an instructor is selected in the web page, so a single query is better than

multiple queries only if the page is displayed more often with a course selected than without.

The code repeats CourseAssignments  and Course  because you need two properties from Course . The first string



viewModel.Instructors = await _context.Instructors
      .Include(i => i.OfficeAssignment)
      .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Enrollments)
                .ThenInclude(i => i.Student)
      .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Department)
      .AsNoTracking()
      .OrderBy(i => i.LastName)
      .ToListAsync();

viewModel.Instructors = await _context.Instructors
      .Include(i => i.OfficeAssignment)
      .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Enrollments)
                .ThenInclude(i => i.Student)
      .Include(i => i.CourseAssignments)
        .ThenInclude(i => i.Course)
            .ThenInclude(i => i.Department)
      .AsNoTracking()
      .OrderBy(i => i.LastName)
      .ToListAsync();

if (id != null)
{
    ViewData["InstructorID"] = id.Value;
    Instructor instructor = viewModel.Instructors.Where(
        i => i.ID == id.Value).Single();
    viewModel.Courses = instructor.CourseAssignments.Select(s => s.Course);
}

of ThenInclude  calls gets CourseAssignment.Course , Course.Enrollments , and Enrollment.Student .

At that point in the code, another ThenInclude  would be for navigation properties of Student , which you don't

need. But calling Include  starts over with Instructor  properties, so you have to go through the chain again,

this time specifying Course.Department  instead of Course.Enrollments .

The following code executes when an instructor was selected. The selected instructor is retrieved from the list of

instructors in the view model. The view model's Courses  property is then loaded with the Course entities from

that instructor's CourseAssignments  navigation property.

The Where  method returns a collection, but in this case the criteria passed to that method result in only a single

Instructor entity being returned. The Single  method converts the collection into a single Instructor entity, which

gives you access to that entity's CourseAssignments  property. The CourseAssignments  property contains 

CourseAssignment  entities, from which you want only the related Course  entities.

You use the Single  method on a collection when you know the collection will have only one item. The Single

method throws an exception if the collection passed to it's empty or if there's more than one item. An alternative

is SingleOrDefault , which returns a default value (null in this case) if the collection is empty. However, in this

case that would still result in an exception (from trying to find a Courses  property on a null reference), and the

exception message would less clearly indicate the cause of the problem. When you call the Single  method, you

can also pass in the Where condition instead of calling the Where  method separately:



.Single(i => i.ID == id.Value)

.Where(i => i.ID == id.Value).Single()

if (courseID != null)
{
    ViewData["CourseID"] = courseID.Value;
    viewModel.Enrollments = viewModel.Courses.Where(
        x => x.CourseID == courseID).Single().Enrollments;
}

Modify the Instructor Index viewModify the Instructor Index view

Instead of:

Next, if a course was selected, the selected course is retrieved from the list of courses in the view model. Then the

view model's Enrollments  property is loaded with the Enrollment entities from that course's Enrollments

navigation property.

In Views/Instructors/Index.cshtml, replace the template code with the following code. The changes are

highlighted.



@model ContosoUniversity.Models.SchoolViewModels.InstructorIndexData

@{
    ViewData["Title"] = "Instructors";
}

<h2>Instructors</h2>

<p>
    <a asp-action="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
            <th>Last Name</th>
            <th>First Name</th>
            <th>Hire Date</th>
            <th>Office</th>
            <th>Courses</th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Instructors)
        {
            string selectedRow = "";
            if (item.ID == (int?)ViewData["InstructorID"])
            {
                selectedRow = "success";
            }
            <tr class="@selectedRow">
                <td>
                    @Html.DisplayFor(modelItem => item.LastName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.FirstMidName)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.HireDate)
                </td>
                <td>
                    @if (item.OfficeAssignment != null)
                    {
                        @item.OfficeAssignment.Location
                    }
                </td>
                <td>
                    @{
                        foreach (var course in item.CourseAssignments)
                        {
                            @course.Course.CourseID @:  @course.Course.Title <br />
                        }
                    }
                </td>
                <td>
                    <a asp-action="Index" asp-route-id="@item.ID">Select</a> |
                    <a asp-action="Edit" asp-route-id="@item.ID">Edit</a> |
                    <a asp-action="Details" asp-route-id="@item.ID">Details</a> |
                    <a asp-action="Delete" asp-route-id="@item.ID">Delete</a>
                </td>
            </tr>
           }
    </tbody>
</table>

You've made the following changes to the existing code:



@if (item.OfficeAssignment != null)
{
    @item.OfficeAssignment.Location
}

string selectedRow = "";
if (item.ID == (int?)ViewData["InstructorID"])
{
    selectedRow = "success";
}
<tr class="@selectedRow">

<a asp-action="Index" asp-route-id="@item.ID">Select</a> |

Changed the model class to InstructorIndexData .

Changed the page title from IndexIndex to InstructorsInstructors .

Added an OfficeOffice column that displays item.OfficeAssignment.Location  only if item.OfficeAssignment

isn't null. (Because this is a one-to-zero-or-one relationship, there might not be a related

OfficeAssignment entity.)

Added a CoursesCourses  column that displays courses taught by each instructor. For more information, see the

Explicit line transition section of the Razor syntax article.

Added code that dynamically adds class="success"  to the tr  element of the selected instructor. This sets

a background color for the selected row using a Bootstrap class.

Added a new hyperlink labeled SelectSelect immediately before the other links in each row, which causes the

selected instructor's ID to be sent to the Index  method.

Run the app and select the InstructorsInstructors  tab. The page displays the Location property of related

OfficeAssignment entities and an empty table cell when there's no related OfficeAssignment entity.

In the Views/Instructors/Index.cshtml file, after the closing table element (at the end of the file), add the following

code. This code displays a list of courses related to an instructor when an instructor is selected.



@if (Model.Courses != null)
{
    <h3>Courses Taught by Selected Instructor</h3>
    <table class="table">
        <tr>
            <th></th>
            <th>Number</th>
            <th>Title</th>
            <th>Department</th>
        </tr>

        @foreach (var item in Model.Courses)
        {
            string selectedRow = "";
            if (item.CourseID == (int?)ViewData["CourseID"])
            {
                selectedRow = "success";
            }
            <tr class="@selectedRow">
                <td>
                    @Html.ActionLink("Select", "Index", new { courseID = item.CourseID })
                </td>
                <td>
                    @item.CourseID
                </td>
                <td>
                    @item.Title
                </td>
                <td>
                    @item.Department.Name
                </td>
            </tr>
        }

    </table>
}

This code reads the Courses  property of the view model to display a list of courses. It also provides a SelectSelect

hyperlink that sends the ID of the selected course to the Index  action method.

Refresh the page and select an instructor. Now you see a grid that displays courses assigned to the selected

instructor, and for each course you see the name of the assigned department.



@if (Model.Enrollments != null)
{
    <h3>
        Students Enrolled in Selected Course
    </h3>
    <table class="table">
        <tr>
            <th>Name</th>
            <th>Grade</th>
        </tr>
        @foreach (var item in Model.Enrollments)
        {
            <tr>
                <td>
                    @item.Student.FullName
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Grade)
                </td>
            </tr>
        }
    </table>
}

After the code block you just added, add the following code. This displays a list of the students who are enrolled

in a course when that course is selected.

This code reads the Enrollments property of the view model in order to display a list of students enrolled in the

course.

Refresh the page again and select an instructor. Then select a course to see the list of enrolled students and their



About explicit loading

grades.

When you retrieved the list of instructors in InstructorsController.cs, you specified eager loading for the 

CourseAssignments  navigation property.

Suppose you expected users to only rarely want to see enrollments in a selected instructor and course. In that

case, you might want to load the enrollment data only if it's requested. To see an example of how to do explicit

loading, replace the Index  method with the following code, which removes eager loading for Enrollments and

loads that property explicitly. The code changes are highlighted.



public async Task<IActionResult> Index(int? id, int? courseID)
{
    var viewModel = new InstructorIndexData();
    viewModel.Instructors = await _context.Instructors
          .Include(i => i.OfficeAssignment)
          .Include(i => i.CourseAssignments)
            .ThenInclude(i => i.Course)
                .ThenInclude(i => i.Department)
          .OrderBy(i => i.LastName)
          .ToListAsync();

    if (id != null)
    {
        ViewData["InstructorID"] = id.Value;
        Instructor instructor = viewModel.Instructors.Where(
            i => i.ID == id.Value).Single();
        viewModel.Courses = instructor.CourseAssignments.Select(s => s.Course);
    }

    if (courseID != null)
    {
        ViewData["CourseID"] = courseID.Value;
        var selectedCourse = viewModel.Courses.Where(x => x.CourseID == courseID).Single();
        await _context.Entry(selectedCourse).Collection(x => x.Enrollments).LoadAsync();
        foreach (Enrollment enrollment in selectedCourse.Enrollments)
        {
            await _context.Entry(enrollment).Reference(x => x.Student).LoadAsync();
        }
        viewModel.Enrollments = selectedCourse.Enrollments;
    }

    return View(viewModel);
}

Get the code

Next steps

The new code drops the ThenInclude method calls for enrollment data from the code that retrieves instructor

entities. It also drops AsNoTracking . If an instructor and course are selected, the highlighted code retrieves

Enrollment entities for the selected course, and Student entities for each Enrollment.

Run the app, go to the Instructors Index page now and you'll see no difference in what's displayed on the page,

although you've changed how the data is retrieved.

Download or view the completed application.

In this tutorial, you:

Learned how to load related data

Created a Courses page

Created an Instructors page

Learned about explicit loading

Advance to the next tutorial to learn how to update related data.

Update related data

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final


Tutorial: Update related data - ASP.NET MVC with EF
Core
9/22/2020 • 18 minutes to read • Edit Online

In the previous tutorial you displayed related data; in this tutorial you'll update related data by updating foreign

key fields and navigation properties.

The following illustrations show some of the pages that you'll work with.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/update-related-data.md


Prerequisites

Customize Courses pages

In this tutorial, you:

Customize Courses pages

Add Instructors Edit page

Add courses to Edit page

Update Delete page

Add office location and courses to Create page

Read related data

When a new course entity is created, it must have a relationship to an existing department. To facilitate this, the

scaffolded code includes controller methods and Create and Edit views that include a drop-down list for selecting

the department. The drop-down list sets the Course.DepartmentID  foreign key property, and that's all the Entity

Framework needs in order to load the Department  navigation property with the appropriate Department entity.

You'll use the scaffolded code, but change it slightly to add error handling and sort the drop-down list.

In CoursesController.cs, delete the four Create and Edit methods and replace them with the following code:



public IActionResult Create()
{
    PopulateDepartmentsDropDownList();
    return View();
}

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create([Bind("CourseID,Credits,DepartmentID,Title")] Course course)
{
    if (ModelState.IsValid)
    {
        _context.Add(course);
        await _context.SaveChangesAsync();
        return RedirectToAction(nameof(Index));
    }
    PopulateDepartmentsDropDownList(course.DepartmentID);
    return View(course);
}

public async Task<IActionResult> Edit(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    var course = await _context.Courses
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.CourseID == id);
    if (course == null)
    {
        return NotFound();
    }
    PopulateDepartmentsDropDownList(course.DepartmentID);
    return View(course);
}



[HttpPost, ActionName("Edit")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> EditPost(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    var courseToUpdate = await _context.Courses
        .FirstOrDefaultAsync(c => c.CourseID == id);

    if (await TryUpdateModelAsync<Course>(courseToUpdate,
        "",
        c => c.Credits, c => c.DepartmentID, c => c.Title))
    {
        try
        {
            await _context.SaveChangesAsync();
        }
        catch (DbUpdateException /* ex */)
        {
            //Log the error (uncomment ex variable name and write a log.)
            ModelState.AddModelError("", "Unable to save changes. " +
                "Try again, and if the problem persists, " +
                "see your system administrator.");
        }
        return RedirectToAction(nameof(Index));
    }
    PopulateDepartmentsDropDownList(courseToUpdate.DepartmentID);
    return View(courseToUpdate);
}

private void PopulateDepartmentsDropDownList(object selectedDepartment = null)
{
    var departmentsQuery = from d in _context.Departments
                           orderby d.Name
                           select d;
    ViewBag.DepartmentID = new SelectList(departmentsQuery.AsNoTracking(), "DepartmentID", "Name", 
selectedDepartment);
}

public IActionResult Create()
{
    PopulateDepartmentsDropDownList();
    return View();
}

After the Edit  HttpPost method, create a new method that loads department info for the drop-down list.

The PopulateDepartmentsDropDownList  method gets a list of all departments sorted by name, creates a SelectList

collection for a drop-down list, and passes the collection to the view in ViewBag . The method accepts the optional 

selectedDepartment  parameter that allows the calling code to specify the item that will be selected when the

drop-down list is rendered. The view will pass the name "DepartmentID" to the <select>  tag helper, and the

helper then knows to look in the ViewBag  object for a SelectList  named "DepartmentID".

The HttpGet Create  method calls the PopulateDepartmentsDropDownList  method without setting the selected item,

because for a new course the department isn't established yet:

The HttpGet Edit  method sets the selected item, based on the ID of the department that's already assigned to



public async Task<IActionResult> Edit(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    var course = await _context.Courses
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.CourseID == id);
    if (course == null)
    {
        return NotFound();
    }
    PopulateDepartmentsDropDownList(course.DepartmentID);
    return View(course);
}

Add .AsNoTracking to Details and Delete methodsAdd .AsNoTracking to Details and Delete methods

public async Task<IActionResult> Details(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    var course = await _context.Courses
        .Include(c => c.Department)
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.CourseID == id);
    if (course == null)
    {
        return NotFound();
    }

    return View(course);
}

the course being edited:

The HttpPost methods for both Create  and Edit  also include code that sets the selected item when they

redisplay the page after an error. This ensures that when the page is redisplayed to show the error message,

whatever department was selected stays selected.

To optimize performance of the Course Details and Delete pages, add AsNoTracking  calls in the Details  and

HttpGet Delete  methods.



public async Task<IActionResult> Delete(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    var course = await _context.Courses
        .Include(c => c.Department)
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.CourseID == id);
    if (course == null)
    {
        return NotFound();
    }

    return View(course);
}

Modify the Course viewsModify the Course views

<div class="form-group">
    <label asp-for="Department" class="control-label"></label>
    <select asp-for="DepartmentID" class="form-control" asp-items="ViewBag.DepartmentID">
        <option value="">-- Select Department --</option>
    </select>
    <span asp-validation-for="DepartmentID" class="text-danger" />

<div class="form-group">
    <label asp-for="CourseID" class="control-label"></label>
    <div>@Html.DisplayFor(model => model.CourseID)</div>
</div>

In Views/Courses/Create.cshtml, add a "Select Department" option to the Depar tmentDepar tment drop-down list, change

the caption from Depar tmentIDDepar tmentID to Depar tmentDepar tment, and add a validation message.

In Views/Courses/Edit.cshtml, make the same change for the Department field that you just did in Create.cshtml.

Also in Views/Courses/Edit.cshtml, add a course number field before the TitleTitle field. Because the course number is

the primary key, it's displayed, but it can't be changed.

There's already a hidden field ( <input type="hidden"> ) for the course number in the Edit view. Adding a <label>

tag helper doesn't eliminate the need for the hidden field because it doesn't cause the course number to be

included in the posted data when the user clicks SaveSave on the EditEdit page.

In Views/Courses/Delete.cshtml, add a course number field at the top and change department ID to department

name.



@model ContosoUniversity.Models.Course

@{
    ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<h3>Are you sure you want to delete this?</h3>
<div>
    <h4>Course</h4>
    <hr />
    <dl class="row">
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.CourseID)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.CourseID)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Title)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Title)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Credits)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Credits)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Department)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Department.Name)
        </dd>
    </dl>
    
    <form asp-action="Delete">
        <div class="form-actions no-color">
            <input type="submit" value="Delete" class="btn btn-default" /> |
            <a asp-action="Index">Back to List</a>
        </div>
    </form>
</div>

Test the Course pagesTest the Course pages

In Views/Courses/Details.cshtml, make the same change that you just did for Delete.cshtml.

Run the app, select the CoursesCourses  tab, click Create NewCreate New , and enter data for a new course:



Click CreateCreate. The Courses Index page is displayed with the new course added to the list. The department name in

the Index page list comes from the navigation property, showing that the relationship was established correctly.

Click EditEdit on a course in the Courses Index page.



Add Instructors Edit page

Update the Instructors controllerUpdate the Instructors controller

Change data on the page and click SaveSave. The Courses Index page is displayed with the updated course data.

When you edit an instructor record, you want to be able to update the instructor's office assignment. The

Instructor entity has a one-to-zero-or-one relationship with the OfficeAssignment entity, which means your code

has to handle the following situations:

If the user clears the office assignment and it originally had a value, delete the OfficeAssignment entity.

If the user enters an office assignment value and it originally was empty, create a new OfficeAssignment

entity.

If the user changes the value of an office assignment, change the value in an existing OfficeAssignment

entity.

In InstructorsController.cs, change the code in the HttpGet Edit  method so that it loads the Instructor entity's 

OfficeAssignment  navigation property and calls AsNoTracking :



public async Task<IActionResult> Edit(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    var instructor = await _context.Instructors
        .Include(i => i.OfficeAssignment)
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.ID == id);
    if (instructor == null)
    {
        return NotFound();
    }
    return View(instructor);
}

[HttpPost, ActionName("Edit")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> EditPost(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    var instructorToUpdate = await _context.Instructors
        .Include(i => i.OfficeAssignment)
        .FirstOrDefaultAsync(s => s.ID == id);

    if (await TryUpdateModelAsync<Instructor>(
        instructorToUpdate,
        "",
        i => i.FirstMidName, i => i.LastName, i => i.HireDate, i => i.OfficeAssignment))
    {
        if (String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment?.Location))
        {
            instructorToUpdate.OfficeAssignment = null;
        }
        try
        {
            await _context.SaveChangesAsync();
        }
        catch (DbUpdateException /* ex */)
        {
            //Log the error (uncomment ex variable name and write a log.)
            ModelState.AddModelError("", "Unable to save changes. " +
                "Try again, and if the problem persists, " +
                "see your system administrator.");
        }
        return RedirectToAction(nameof(Index));
    }
    return View(instructorToUpdate);
}

Replace the HttpPost Edit  method with the following code to handle office assignment updates:

The code does the following:

Changes the method name to EditPost  because the signature is now the same as the HttpGet Edit

method (the ActionName  attribute specifies that the /Edit/  URL is still used).

Gets the current Instructor entity from the database using eager loading for the OfficeAssignment



Update the Instructor Edit viewUpdate the Instructor Edit view

<div class="form-group">
    <label asp-for="OfficeAssignment.Location" class="control-label"></label>
    <input asp-for="OfficeAssignment.Location" class="form-control" />
    <span asp-validation-for="OfficeAssignment.Location" class="text-danger" />
</div>

if (await TryUpdateModelAsync<Instructor>(
    instructorToUpdate,
    "",
    i => i.FirstMidName, i => i.LastName, i => i.HireDate, i => i.OfficeAssignment))

if (String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment?.Location))
{
    instructorToUpdate.OfficeAssignment = null;
}

navigation property. This is the same as what you did in the HttpGet Edit  method.

Updates the retrieved Instructor entity with values from the model binder. The TryUpdateModel  overload

enables you to declare the properties you want to include. This prevents over-posting, as explained in the

second tutorial.

If the office location is blank, sets the Instructor.OfficeAssignment property to null so that the related row

in the OfficeAssignment table will be deleted.

Saves the changes to the database.

In Views/Instructors/Edit.cshtml, add a new field for editing the office location, at the end before the SaveSave button:

Run the app, select the InstructorsInstructors  tab, and then click EditEdit on an instructor. Change the Office LocationOffice Location and

click SaveSave.



Add courses to Edit page
Instructors may teach any number of courses. Now you'll enhance the Instructor Edit page by adding the ability to

change course assignments using a group of check boxes, as shown in the following screen shot:



Update the Instructors controllerUpdate the Instructors controller

The relationship between the Course and Instructor entities is many-to-many. To add and remove relationships,

you add and remove entities to and from the CourseAssignments join entity set.

The UI that enables you to change which courses an instructor is assigned to is a group of check boxes. A check

box for every course in the database is displayed, and the ones that the instructor is currently assigned to are

selected. The user can select or clear check boxes to change course assignments. If the number of courses were

much greater, you would probably want to use a different method of presenting the data in the view, but you'd

use the same method of manipulating a join entity to create or delete relationships.

To provide data to the view for the list of check boxes, you'll use a view model class.

Create AssignedCourseData.cs in the SchoolViewModels folder and replace the existing code with the following

code:



using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace ContosoUniversity.Models.SchoolViewModels
{
    public class AssignedCourseData
    {
        public int CourseID { get; set; }
        public string Title { get; set; }
        public bool Assigned { get; set; }
    }
}

public async Task<IActionResult> Edit(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    var instructor = await _context.Instructors
        .Include(i => i.OfficeAssignment)
        .Include(i => i.CourseAssignments).ThenInclude(i => i.Course)
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.ID == id);
    if (instructor == null)
    {
        return NotFound();
    }
    PopulateAssignedCourseData(instructor);
    return View(instructor);
}

private void PopulateAssignedCourseData(Instructor instructor)
{
    var allCourses = _context.Courses;
    var instructorCourses = new HashSet<int>(instructor.CourseAssignments.Select(c => c.CourseID));
    var viewModel = new List<AssignedCourseData>();
    foreach (var course in allCourses)
    {
        viewModel.Add(new AssignedCourseData
        {
            CourseID = course.CourseID,
            Title = course.Title,
            Assigned = instructorCourses.Contains(course.CourseID)
        });
    }
    ViewData["Courses"] = viewModel;
}

In InstructorsController.cs, replace the HttpGet Edit  method with the following code. The changes are

highlighted.

The code adds eager loading for the Courses  navigation property and calls the new PopulateAssignedCourseData

method to provide information for the check box array using the AssignedCourseData  view model class.

The code in the PopulateAssignedCourseData  method reads through all Course entities in order to load a list of

courses using the view model class. For each course, the code checks whether the course exists in the instructor's 

Courses  navigation property. To create efficient lookup when checking whether a course is assigned to the

instructor, the courses assigned to the instructor are put into a HashSet  collection. The Assigned  property is set



[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int? id, string[] selectedCourses)
{
    if (id == null)
    {
        return NotFound();
    }

    var instructorToUpdate = await _context.Instructors
        .Include(i => i.OfficeAssignment)
        .Include(i => i.CourseAssignments)
            .ThenInclude(i => i.Course)
        .FirstOrDefaultAsync(m => m.ID == id);

    if (await TryUpdateModelAsync<Instructor>(
        instructorToUpdate,
        "",
        i => i.FirstMidName, i => i.LastName, i => i.HireDate, i => i.OfficeAssignment))
    {
        if (String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment?.Location))
        {
            instructorToUpdate.OfficeAssignment = null;
        }
        UpdateInstructorCourses(selectedCourses, instructorToUpdate);
        try
        {
            await _context.SaveChangesAsync();
        }
        catch (DbUpdateException /* ex */)
        {
            //Log the error (uncomment ex variable name and write a log.)
            ModelState.AddModelError("", "Unable to save changes. " +
                "Try again, and if the problem persists, " +
                "see your system administrator.");
        }
        return RedirectToAction(nameof(Index));
    }
    UpdateInstructorCourses(selectedCourses, instructorToUpdate);
    PopulateAssignedCourseData(instructorToUpdate);
    return View(instructorToUpdate);
}

to true for courses the instructor is assigned to. The view will use this property to determine which check boxes

must be displayed as selected. Finally, the list is passed to the view in ViewData .

Next, add the code that's executed when the user clicks SaveSave. Replace the EditPost  method with the following

code, and add a new method that updates the Courses  navigation property of the Instructor entity.



private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
    if (selectedCourses == null)
    {
        instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
        return;
    }

    var selectedCoursesHS = new HashSet<string>(selectedCourses);
    var instructorCourses = new HashSet<int>
        (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
    foreach (var course in _context.Courses)
    {
        if (selectedCoursesHS.Contains(course.CourseID.ToString()))
        {
            if (!instructorCourses.Contains(course.CourseID))
            {
                instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID = 
instructorToUpdate.ID, CourseID = course.CourseID });
            }
        }
        else
        {

            if (instructorCourses.Contains(course.CourseID))
            {
                CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.FirstOrDefault(i => 
i.CourseID == course.CourseID);
                _context.Remove(courseToRemove);
            }
        }
    }
}

The method signature is now different from the HttpGet Edit  method, so the method name changes from 

EditPost  back to Edit .

Since the view doesn't have a collection of Course entities, the model binder can't automatically update the 

CourseAssignments  navigation property. Instead of using the model binder to update the CourseAssignments

navigation property, you do that in the new UpdateInstructorCourses  method. Therefore, you need to exclude the 

CourseAssignments  property from model binding. This doesn't require any change to the code that calls 

TryUpdateModel  because you're using the overload that requires explicit approval and CourseAssignments  isn't in

the include list.

If no check boxes were selected, the code in UpdateInstructorCourses  initializes the CourseAssignments  navigation

property with an empty collection and returns:



private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
    if (selectedCourses == null)
    {
        instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
        return;
    }

    var selectedCoursesHS = new HashSet<string>(selectedCourses);
    var instructorCourses = new HashSet<int>
        (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
    foreach (var course in _context.Courses)
    {
        if (selectedCoursesHS.Contains(course.CourseID.ToString()))
        {
            if (!instructorCourses.Contains(course.CourseID))
            {
                instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID = 
instructorToUpdate.ID, CourseID = course.CourseID });
            }
        }
        else
        {

            if (instructorCourses.Contains(course.CourseID))
            {
                CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.FirstOrDefault(i => 
i.CourseID == course.CourseID);
                _context.Remove(courseToRemove);
            }
        }
    }
}

The code then loops through all courses in the database and checks each course against the ones currently

assigned to the instructor versus the ones that were selected in the view. To facilitate efficient lookups, the latter

two collections are stored in HashSet  objects.

If the check box for a course was selected but the course isn't in the Instructor.CourseAssignments  navigation

property, the course is added to the collection in the navigation property.



private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
    if (selectedCourses == null)
    {
        instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
        return;
    }

    var selectedCoursesHS = new HashSet<string>(selectedCourses);
    var instructorCourses = new HashSet<int>
        (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
    foreach (var course in _context.Courses)
    {
        if (selectedCoursesHS.Contains(course.CourseID.ToString()))
        {
            if (!instructorCourses.Contains(course.CourseID))
            {
                instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID = 
instructorToUpdate.ID, CourseID = course.CourseID });
            }
        }
        else
        {

            if (instructorCourses.Contains(course.CourseID))
            {
                CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.FirstOrDefault(i => 
i.CourseID == course.CourseID);
                _context.Remove(courseToRemove);
            }
        }
    }
}

If the check box for a course wasn't selected, but the course is in the Instructor.CourseAssignments  navigation

property, the course is removed from the navigation property.



private void UpdateInstructorCourses(string[] selectedCourses, Instructor instructorToUpdate)
{
    if (selectedCourses == null)
    {
        instructorToUpdate.CourseAssignments = new List<CourseAssignment>();
        return;
    }

    var selectedCoursesHS = new HashSet<string>(selectedCourses);
    var instructorCourses = new HashSet<int>
        (instructorToUpdate.CourseAssignments.Select(c => c.Course.CourseID));
    foreach (var course in _context.Courses)
    {
        if (selectedCoursesHS.Contains(course.CourseID.ToString()))
        {
            if (!instructorCourses.Contains(course.CourseID))
            {
                instructorToUpdate.CourseAssignments.Add(new CourseAssignment { InstructorID = 
instructorToUpdate.ID, CourseID = course.CourseID });
            }
        }
        else
        {

            if (instructorCourses.Contains(course.CourseID))
            {
                CourseAssignment courseToRemove = instructorToUpdate.CourseAssignments.FirstOrDefault(i => 
i.CourseID == course.CourseID);
                _context.Remove(courseToRemove);
            }
        }
    }
}

Update the Instructor viewsUpdate the Instructor views

NOTENOTE

In Views/Instructors/Edit.cshtml, add a CoursesCourses  field with an array of check boxes by adding the following code

immediately after the div  elements for the OfficeOffice field and before the div  element for the SaveSave button.

   

When you paste the code in Visual Studio, line breaks might be changed in a way that breaks the code. If the code looks

different after pasting, press Ctrl+Z one time to undo the automatic formatting. This will fix the line breaks so that they

look like what you see here. The indentation doesn't have to be perfect, but the @:</tr><tr> , @:<td> , @:</td> , and 

@:</tr>  lines must each be on a single line as shown or you'll get a runtime error. With the block of new code selected,

press Tab three times to line up the new code with the existing code. This problem is fixed in Visual Studio 2019.



<div class="form-group">
    <div class="col-md-offset-2 col-md-10">
        <table>
            <tr>
                @{
                    int cnt = 0;
                    List<ContosoUniversity.Models.SchoolViewModels.AssignedCourseData> courses = 
ViewBag.Courses;

                    foreach (var course in courses)
                    {
                        if (cnt++ % 3 == 0)
                        {
                            @:</tr><tr>
                        }
                        @:<td>
                            <input type="checkbox"
                                   name="selectedCourses"
                                   value="@course.CourseID"
                                   @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
                                   @course.CourseID @:  @course.Title
                        @:</td>
                    }
                    @:</tr>
                }
        </table>
    </div>
</div>

This code creates an HTML table that has three columns. In each column is a check box followed by a caption that

consists of the course number and title. The check boxes all have the same name ("selectedCourses"), which

informs the model binder that they're to be treated as a group. The value attribute of each check box is set to the

value of CourseID . When the page is posted, the model binder passes an array to the controller that consists of

the CourseID  values for only the check boxes which are selected.

When the check boxes are initially rendered, those that are for courses assigned to the instructor have checked

attributes, which selects them (displays them checked).

Run the app, select the InstructorsInstructors  tab, and click EditEdit on an instructor to see the EditEdit page.



NOTENOTE

Update Delete page

Change some course assignments and click Save. The changes you make are reflected on the Index page.

The approach taken here to edit instructor course data works well when there's a limited number of courses. For collections

that are much larger, a different UI and a different updating method would be required.

In InstructorsController.cs, delete the DeleteConfirmed  method and insert the following code in its place.



[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
    Instructor instructor = await _context.Instructors
        .Include(i => i.CourseAssignments)
        .SingleAsync(i => i.ID == id);

    var departments = await _context.Departments
        .Where(d => d.InstructorID == id)
        .ToListAsync();
    departments.ForEach(d => d.InstructorID = null);

    _context.Instructors.Remove(instructor);

    await _context.SaveChangesAsync();
    return RedirectToAction(nameof(Index));
}

Add office location and courses to Create page

This code makes the following changes:

Does eager loading for the CourseAssignments  navigation property. You have to include this or EF won't

know about related CourseAssignment  entities and won't delete them. To avoid needing to read them here

you could configure cascade delete in the database.

If the instructor to be deleted is assigned as administrator of any departments, removes the instructor

assignment from those departments.

In InstructorsController.cs, delete the HttpGet and HttpPost Create  methods, and then add the following code in

their place:



public IActionResult Create()
{
    var instructor = new Instructor();
    instructor.CourseAssignments = new List<CourseAssignment>();
    PopulateAssignedCourseData(instructor);
    return View();
}

// POST: Instructors/Create
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create([Bind("FirstMidName,HireDate,LastName,OfficeAssignment")] Instructor 
instructor, string[] selectedCourses)
{
    if (selectedCourses != null)
    {
        instructor.CourseAssignments = new List<CourseAssignment>();
        foreach (var course in selectedCourses)
        {
            var courseToAdd = new CourseAssignment { InstructorID = instructor.ID, CourseID = 
int.Parse(course) };
            instructor.CourseAssignments.Add(courseToAdd);
        }
    }
    if (ModelState.IsValid)
    {
        _context.Add(instructor);
        await _context.SaveChangesAsync();
        return RedirectToAction(nameof(Index));
    }
    PopulateAssignedCourseData(instructor);
    return View(instructor);
}

instructor.CourseAssignments = new List<CourseAssignment>();

This code is similar to what you saw for the Edit  methods except that initially no courses are selected. The

HttpGet Create  method calls the PopulateAssignedCourseData  method not because there might be courses

selected but in order to provide an empty collection for the foreach  loop in the view (otherwise the view code

would throw a null reference exception).

The HttpPost Create  method adds each selected course to the CourseAssignments  navigation property before it

checks for validation errors and adds the new instructor to the database. Courses are added even if there are

model errors so that when there are model errors (for an example, the user keyed an invalid date), and the page is

redisplayed with an error message, any course selections that were made are automatically restored.

Notice that in order to be able to add courses to the CourseAssignments  navigation property you have to initialize

the property as an empty collection:

As an alternative to doing this in controller code, you could do it in the Instructor model by changing the property

getter to automatically create the collection if it doesn't exist, as shown in the following example:



private ICollection<CourseAssignment> _courseAssignments;
public ICollection<CourseAssignment> CourseAssignments
{
    get
    {
        return _courseAssignments ?? (_courseAssignments = new List<CourseAssignment>());
    }
    set
    {
        _courseAssignments = value;
    }
}

<div class="form-group">
    <label asp-for="OfficeAssignment.Location" class="control-label"></label>
    <input asp-for="OfficeAssignment.Location" class="form-control" />
    <span asp-validation-for="OfficeAssignment.Location" class="text-danger" />
</div>

<div class="form-group">
    <div class="col-md-offset-2 col-md-10">
        <table>
            <tr>
                @{
                    int cnt = 0;
                    List<ContosoUniversity.Models.SchoolViewModels.AssignedCourseData> courses = 
ViewBag.Courses;

                    foreach (var course in courses)
                    {
                        if (cnt++ % 3 == 0)
                        {
                            @:</tr><tr>
                        }
                        @:<td>
                            <input type="checkbox"
                                   name="selectedCourses"
                                   value="@course.CourseID"
                                   @(Html.Raw(course.Assigned ? "checked=\"checked\"" : "")) />
                                   @course.CourseID @:  @course.Title
                            @:</td>
                    }
                    @:</tr>
                }
        </table>
    </div>
</div>

Handling Transactions

If you modify the CourseAssignments  property in this way, you can remove the explicit property initialization code

in the controller.

In Views/Instructor/Create.cshtml, add an office location text box and check boxes for courses before the Submit

button. As in the case of the Edit page, fix the formatting if Visual Studio reformats the code when you paste it.

Test by running the app and creating an instructor.

As explained in the CRUD tutorial, the Entity Framework implicitly implements transactions. For scenarios where

you need more control -- for example, if you want to include operations done outside of Entity Framework in a

transaction -- see Transactions.

https://docs.microsoft.com/en-us/ef/core/saving/transactions


Get the code

Next steps

Download or view the completed application.

In this tutorial, you:

Customized Courses pages

Added Instructors Edit page

Added courses to Edit page

Updated Delete page

Added office location and courses to Create page

Advance to the next tutorial to learn how to handle concurrency conflicts.

Handle concurrency conflicts

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final


Tutorial: Handle concurrency - ASP.NET MVC with EF
Core
9/22/2020 • 18 minutes to read • Edit Online

In earlier tutorials, you learned how to update data. This tutorial shows how to handle conflicts when multiple

users update the same entity at the same time.

You'll create web pages that work with the Department entity and handle concurrency errors. The following

illustrations show the Edit and Delete pages, including some messages that are displayed if a concurrency conflict

occurs.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/concurrency.md


Prerequisites

Concurrency conflicts

In this tutorial, you:

Learn about concurrency conflicts

Add a tracking property

Create Departments controller and views

Update Index view

Update Edit methods

Update Edit view

Test concurrency conflicts

Update the Delete page

Update Details and Create views

Update related data

A concurrency conflict occurs when one user displays an entity's data in order to edit it, and then another user

updates the same entity's data before the first user's change is written to the database. If you don't enable the

detection of such conflicts, whoever updates the database last overwrites the other user's changes. In many

applications, this risk is acceptable: if there are few users, or few updates, or if isn't really critical if some changes

are overwritten, the cost of programming for concurrency might outweigh the benefit. In that case, you don't

have to configure the application to handle concurrency conflicts.



Pessimistic concurrency (locking)Pessimistic concurrency (locking)

Optimistic ConcurrencyOptimistic Concurrency

If your application does need to prevent accidental data loss in concurrency scenarios, one way to do that is to use

database locks. This is called pessimistic concurrency. For example, before you read a row from a database, you

request a lock for read-only or for update access. If you lock a row for update access, no other users are allowed

to lock the row either for read-only or update access, because they would get a copy of data that's in the process

of being changed. If you lock a row for read-only access, others can also lock it for read-only access but not for

update.

Managing locks has disadvantages. It can be complex to program. It requires significant database management

resources, and it can cause performance problems as the number of users of an application increases. For these

reasons, not all database management systems support pessimistic concurrency. Entity Framework Core provides

no built-in support for it, and this tutorial doesn't show you how to implement it.

The alternative to pessimistic concurrency is optimistic concurrency. Optimistic concurrency means allowing

concurrency conflicts to happen, and then reacting appropriately if they do. For example, Jane visits the

Department Edit page and changes the Budget amount for the English department from $350,000.00 to $0.00.

Before Jane clicks SaveSave, John visits the same page and changes the Start Date field from 9/1/2007 to 9/1/2013.



Jane clicks SaveSave first and sees her change when the browser returns to the Index page.

Then John clicks SaveSave on an Edit page that still shows a budget of $350,000.00. What happens next is determined

by how you handle concurrency conflicts.

Some of the options include the following:

You can keep track of which property a user has modified and update only the corresponding columns in

the database.

In the example scenario, no data would be lost, because different properties were updated by the two

users. The next time someone browses the English department, they will see both Jane's and John's

changes -- a start date of 9/1/2013 and a budget of zero dollars. This method of updating can reduce the

number of conflicts that could result in data loss, but it can't avoid data loss if competing changes are



Detecting concurrency conflictsDetecting concurrency conflicts

made to the same property of an entity. Whether the Entity Framework works this way depends on how

you implement your update code. It's often not practical in a web application, because it can require that

you maintain large amounts of state in order to keep track of all original property values for an entity as

well as new values. Maintaining large amounts of state can affect application performance because it either

requires server resources or must be included in the web page itself (for example, in hidden fields) or in a

cookie.

You can let John's change overwrite Jane's change.

The next time someone browses the English department, they will see 9/1/2013 and the restored

$350,000.00 value. This is called a Client Wins or Last in Wins scenario. (All values from the client take

precedence over what's in the data store.) As noted in the introduction to this section, if you don't do any

coding for concurrency handling, this will happen automatically.

You can prevent John's change from being updated in the database.

Typically, you would display an error message, show him the current state of the data, and allow him to

reapply his changes if he still wants to make them. This is called a Store Wins scenario. (The data-store

values take precedence over the values submitted by the client.) You'll implement the Store Wins scenario

in this tutorial. This method ensures that no changes are overwritten without a user being alerted to what's

happening.

You can resolve conflicts by handling DbConcurrencyException  exceptions that the Entity Framework throws. In

order to know when to throw these exceptions, the Entity Framework must be able to detect conflicts. Therefore,

you must configure the database and the data model appropriately. Some options for enabling conflict detection

include the following:

In the database table, include a tracking column that can be used to determine when a row has been

changed. You can then configure the Entity Framework to include that column in the Where clause of SQL

Update or Delete commands.

The data type of the tracking column is typically rowversion . The rowversion  value is a sequential number

that's incremented each time the row is updated. In an Update or Delete command, the Where clause

includes the original value of the tracking column (the original row version) . If the row being updated has

been changed by another user, the value in the rowversion  column is different than the original value, so

the Update or Delete statement can't find the row to update because of the Where clause. When the Entity

Framework finds that no rows have been updated by the Update or Delete command (that is, when the

number of affected rows is zero), it interprets that as a concurrency conflict.

Configure the Entity Framework to include the original values of every column in the table in the Where

clause of Update and Delete commands.

As in the first option, if anything in the row has changed since the row was first read, the Where clause

won't return a row to update, which the Entity Framework interprets as a concurrency conflict. For

database tables that have many columns, this approach can result in very large Where clauses, and can

require that you maintain large amounts of state. As noted earlier, maintaining large amounts of state can

affect application performance. Therefore this approach is generally not recommended, and it isn't the

method used in this tutorial.

If you do want to implement this approach to concurrency, you have to mark all non-primary-key

properties in the entity you want to track concurrency for by adding the ConcurrencyCheck  attribute to

them. That change enables the Entity Framework to include all columns in the SQL Where clause of Update

and Delete statements.

In the remainder of this tutorial you'll add a rowversion  tracking property to the Department entity, create a



Add a tracking property

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Department
    {
        public int DepartmentID { get; set; }

        [StringLength(50, MinimumLength = 3)]
        public string Name { get; set; }

        [DataType(DataType.Currency)]
        [Column(TypeName = "money")]
        public decimal Budget { get; set; }

        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Start Date")]
        public DateTime StartDate { get; set; }

        public int? InstructorID { get; set; }

        [Timestamp]
        public byte[] RowVersion { get; set; }

        public Instructor Administrator { get; set; }
        public ICollection<Course> Courses { get; set; }
    }
}

modelBuilder.Entity<Department>()
    .Property(p => p.RowVersion).IsConcurrencyToken();

dotnet ef migrations add RowVersion

dotnet ef database update

Create Departments controller and views

controller and views, and test to verify that everything works correctly.

In Models/Department.cs, add a tracking property named RowVersion:

The Timestamp  attribute specifies that this column will be included in the Where clause of Update and Delete

commands sent to the database. The attribute is called Timestamp  because previous versions of SQL Server used

a SQL timestamp  data type before the SQL rowversion  replaced it. The .NET type for rowversion  is a byte array.

If you prefer to use the fluent API, you can use the IsConcurrencyToken  method (in Data/SchoolContext.cs) to

specify the tracking property, as shown in the following example:

By adding a property you changed the database model, so you need to do another migration.

Save your changes and build the project, and then enter the following commands in the command window:



ViewData["InstructorID"] = new SelectList(_context.Instructors, "ID", "FullName", department.InstructorID);

Update Index view

Scaffold a Departments controller and views as you did earlier for Students, Courses, and Instructors.

In the DepartmentsController.cs file, change all four occurrences of "FirstMidName" to "FullName" so that the

department administrator drop-down lists will contain the full name of the instructor rather than just the last

name.

The scaffolding engine created a RowVersion column in the Index view, but that field shouldn't be displayed.

Replace the code in Views/Departments/Index.cshtml with the following code.



@model IEnumerable<ContosoUniversity.Models.Department>

@{
    ViewData["Title"] = "Departments";
}

<h2>Departments</h2>

<p>
    <a asp-action="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
            <th>
                @Html.DisplayNameFor(model => model.Name)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Budget)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.StartDate)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Administrator)
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.Name)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Budget)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.StartDate)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Administrator.FullName)
                </td>
                <td>
                    <a asp-action="Edit" asp-route-id="@item.DepartmentID">Edit</a> |
                    <a asp-action="Details" asp-route-id="@item.DepartmentID">Details</a> |
                    <a asp-action="Delete" asp-route-id="@item.DepartmentID">Delete</a>
                </td>
            </tr>
        }
    </tbody>
</table>

Update Edit methods

This changes the heading to "Departments", deletes the RowVersion column, and shows full name instead of first

name for the administrator.

In both the HttpGet Edit  method and the Details  method, add AsNoTracking . In the HttpGet Edit  method,

add eager loading for the Administrator.



var department = await _context.Departments
    .Include(i => i.Administrator)
    .AsNoTracking()
    .FirstOrDefaultAsync(m => m.DepartmentID == id);

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int? id, byte[] rowVersion)
{
    if (id == null)
    {
        return NotFound();
    }

    var departmentToUpdate = await _context.Departments.Include(i => i.Administrator).FirstOrDefaultAsync(m 
=> m.DepartmentID == id);

    if (departmentToUpdate == null)
    {
        Department deletedDepartment = new Department();
        await TryUpdateModelAsync(deletedDepartment);
        ModelState.AddModelError(string.Empty,
            "Unable to save changes. The department was deleted by another user.");
        ViewData["InstructorID"] = new SelectList(_context.Instructors, "ID", "FullName", 
deletedDepartment.InstructorID);
        return View(deletedDepartment);
    }

    _context.Entry(departmentToUpdate).Property("RowVersion").OriginalValue = rowVersion;

    if (await TryUpdateModelAsync<Department>(
        departmentToUpdate,
        "",
        s => s.Name, s => s.StartDate, s => s.Budget, s => s.InstructorID))
    {
        try
        {
            await _context.SaveChangesAsync();
            return RedirectToAction(nameof(Index));
        }
        catch (DbUpdateConcurrencyException ex)
        {
            var exceptionEntry = ex.Entries.Single();
            var clientValues = (Department)exceptionEntry.Entity;
            var databaseEntry = exceptionEntry.GetDatabaseValues();
            if (databaseEntry == null)
            {
                ModelState.AddModelError(string.Empty,
                    "Unable to save changes. The department was deleted by another user.");
            }
            else
            {
                var databaseValues = (Department)databaseEntry.ToObject();

                if (databaseValues.Name != clientValues.Name)
                {
                    ModelState.AddModelError("Name", $"Current value: {databaseValues.Name}");
                }
                if (databaseValues.Budget != clientValues.Budget)
                {
                    ModelState.AddModelError("Budget", $"Current value: {databaseValues.Budget:c}");
                }
                if (databaseValues.StartDate != clientValues.StartDate)
                {

Replace the existing code for the HttpPost Edit  method with the following code:



                    ModelState.AddModelError("StartDate", $"Current value: {databaseValues.StartDate:d}");
                }
                if (databaseValues.InstructorID != clientValues.InstructorID)
                {
                    Instructor databaseInstructor = await _context.Instructors.FirstOrDefaultAsync(i => i.ID 
== databaseValues.InstructorID);
                    ModelState.AddModelError("InstructorID", $"Current value: 
{databaseInstructor?.FullName}");
                }

                ModelState.AddModelError(string.Empty, "The record you attempted to edit "
                        + "was modified by another user after you got the original value. The "
                        + "edit operation was canceled and the current values in the database "
                        + "have been displayed. If you still want to edit this record, click "
                        + "the Save button again. Otherwise click the Back to List hyperlink.");
                departmentToUpdate.RowVersion = (byte[])databaseValues.RowVersion;
                ModelState.Remove("RowVersion");
            }
        }
    }
    ViewData["InstructorID"] = new SelectList(_context.Instructors, "ID", "FullName", 
departmentToUpdate.InstructorID);
    return View(departmentToUpdate);
}

_context.Entry(departmentToUpdate).Property("RowVersion").OriginalValue = rowVersion;

var exceptionEntry = ex.Entries.Single();

var clientValues = (Department)exceptionEntry.Entity;
var databaseEntry = exceptionEntry.GetDatabaseValues();

The code begins by trying to read the department to be updated. If the FirstOrDefaultAsync  method returns null,

the department was deleted by another user. In that case the code uses the posted form values to create a

department entity so that the Edit page can be redisplayed with an error message. As an alternative, you wouldn't

have to re-create the department entity if you display only an error message without redisplaying the department

fields.

The view stores the original RowVersion  value in a hidden field, and this method receives that value in the 

rowVersion  parameter. Before you call SaveChanges , you have to put that original RowVersion  property value in

the OriginalValues  collection for the entity.

Then when the Entity Framework creates a SQL UPDATE command, that command will include a WHERE clause

that looks for a row that has the original RowVersion  value. If no rows are affected by the UPDATE command (no

rows have the original RowVersion  value), the Entity Framework throws a DbUpdateConcurrencyException

exception.

The code in the catch block for that exception gets the affected Department entity that has the updated values

from the Entries  property on the exception object.

The Entries  collection will have just one EntityEntry  object. You can use that object to get the new values

entered by the user and the current database values.

The code adds a custom error message for each column that has database values different from what the user

entered on the Edit page (only one field is shown here for brevity).



var databaseValues = (Department)databaseEntry.ToObject();

if (databaseValues.Name != clientValues.Name)
{
    ModelState.AddModelError("Name", $"Current value: {databaseValues.Name}");

departmentToUpdate.RowVersion = (byte[])databaseValues.RowVersion;
ModelState.Remove("RowVersion");

Update Edit view

Finally, the code sets the RowVersion  value of the departmentToUpdate  to the new value retrieved from the

database. This new RowVersion  value will be stored in the hidden field when the Edit page is redisplayed, and the

next time the user clicks SaveSave, only concurrency errors that happen since the redisplay of the Edit page will be

caught.

The ModelState.Remove  statement is required because ModelState  has the old RowVersion  value. In the view, the 

ModelState  value for a field takes precedence over the model property values when both are present.

In Views/Departments/Edit.cshtml, make the following changes:

Add a hidden field to save the RowVersion  property value, immediately following the hidden field for the 

DepartmentID  property.

Add a "Select Administrator" option to the drop-down list.



@model ContosoUniversity.Models.Department

@{
    ViewData["Title"] = "Edit";
}

<h2>Edit</h2>

<h4>Department</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form asp-action="Edit">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <input type="hidden" asp-for="DepartmentID" />
            <input type="hidden" asp-for="RowVersion" />
            <div class="form-group">
                <label asp-for="Name" class="control-label"></label>
                <input asp-for="Name" class="form-control" />
                <span asp-validation-for="Name" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Budget" class="control-label"></label>
                <input asp-for="Budget" class="form-control" />
                <span asp-validation-for="Budget" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="StartDate" class="control-label"></label>
                <input asp-for="StartDate" class="form-control" />
                <span asp-validation-for="StartDate" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="InstructorID" class="control-label"></label>
                <select asp-for="InstructorID" class="form-control" asp-items="ViewBag.InstructorID">
                    <option value="">-- Select Administrator --</option>
                </select>
                <span asp-validation-for="InstructorID" class="text-danger"></span>
            </div>
            <div class="form-group">
                <input type="submit" value="Save" class="btn btn-default" />
            </div>
        </form>
    </div>
</div>

<div>
    <a asp-action="Index">Back to List</a>
</div>

@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Test concurrency conflicts
Run the app and go to the Departments Index page. Right-click the EditEdit hyperlink for the English department and

select Open in new tabOpen in new tab, then click the EditEdit hyperlink for the English department. The two browser tabs now

display the same information.

Change a field in the first browser tab and click SaveSave.



The browser shows the Index page with the changed value.

Change a field in the second browser tab.



Click SaveSave. You see an error message:



Update the Delete page

Update the Delete methods in the Departments controllerUpdate the Delete methods in the Departments controller

Click SaveSave again. The value you entered in the second browser tab is saved. You see the saved values when the

Index page appears.

For the Delete page, the Entity Framework detects concurrency conflicts caused by someone else editing the

department in a similar manner. When the HttpGet Delete  method displays the confirmation view, the view

includes the original RowVersion  value in a hidden field. That value is then available to the HttpPost Delete

method that's called when the user confirms the deletion. When the Entity Framework creates the SQL DELETE

command, it includes a WHERE clause with the original RowVersion  value. If the command results in zero rows

affected (meaning the row was changed after the Delete confirmation page was displayed), a concurrency

exception is thrown, and the HttpGet Delete  method is called with an error flag set to true in order to redisplay

the confirmation page with an error message. It's also possible that zero rows were affected because the row was

deleted by another user, so in that case no error message is displayed.

In DepartmentsController.cs, replace the HttpGet Delete  method with the following code:



public async Task<IActionResult> Delete(int? id, bool? concurrencyError)
{
    if (id == null)
    {
        return NotFound();
    }

    var department = await _context.Departments
        .Include(d => d.Administrator)
        .AsNoTracking()
        .FirstOrDefaultAsync(m => m.DepartmentID == id);
    if (department == null)
    {
        if (concurrencyError.GetValueOrDefault())
        {
            return RedirectToAction(nameof(Index));
        }
        return NotFound();
    }

    if (concurrencyError.GetValueOrDefault())
    {
        ViewData["ConcurrencyErrorMessage"] = "The record you attempted to delete "
            + "was modified by another user after you got the original values. "
            + "The delete operation was canceled and the current values in the "
            + "database have been displayed. If you still want to delete this "
            + "record, click the Delete button again. Otherwise "
            + "click the Back to List hyperlink.";
    }

    return View(department);
}

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Delete(Department department)
{
    try
    {
        if (await _context.Departments.AnyAsync(m => m.DepartmentID == department.DepartmentID))
        {
            _context.Departments.Remove(department);
            await _context.SaveChangesAsync();
        }
        return RedirectToAction(nameof(Index));
    }
    catch (DbUpdateConcurrencyException /* ex */)
    {
        //Log the error (uncomment ex variable name and write a log.)
        return RedirectToAction(nameof(Delete), new { concurrencyError = true, id = department.DepartmentID 
});
    }
}

The method accepts an optional parameter that indicates whether the page is being redisplayed after a

concurrency error. If this flag is true and the department specified no longer exists, it was deleted by another user.

In that case, the code redirects to the Index page. If this flag is true and the Department does exist, it was changed

by another user. In that case, the code sends an error message to the view using ViewData .

Replace the code in the HttpPost Delete  method (named DeleteConfirmed ) with the following code:

In the scaffolded code that you just replaced, this method accepted only a record ID:



public async Task<IActionResult> DeleteConfirmed(int id)

public async Task<IActionResult> Delete(Department department)

Update the Delete viewUpdate the Delete view

You've changed this parameter to a Department entity instance created by the model binder. This gives EF access

to the RowVersion property value in addition to the record key.

You have also changed the action method name from DeleteConfirmed  to Delete . The scaffolded code used the

name DeleteConfirmed  to give the HttpPost method a unique signature. (The CLR requires overloaded methods

to have different method parameters.) Now that the signatures are unique, you can stick with the MVC

convention and use the same name for the HttpPost and HttpGet delete methods.

If the department is already deleted, the AnyAsync  method returns false and the application just goes back to the

Index method.

If a concurrency error is caught, the code redisplays the Delete confirmation page and provides a flag that

indicates it should display a concurrency error message.

In Views/Departments/Delete.cshtml, replace the scaffolded code with the following code that adds an error

message field and hidden fields for the DepartmentID and RowVersion properties. The changes are highlighted.



@model ContosoUniversity.Models.Department

@{
    ViewData["Title"] = "Delete";
}

<h2>Delete</h2>

<p class="text-danger">@ViewData["ConcurrencyErrorMessage"]</p>

<h3>Are you sure you want to delete this?</h3>
<div>
    <h4>Department</h4>
    <hr />
    <dl class="row">
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Name)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Name)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Budget)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Budget)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.StartDate)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.StartDate)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Administrator)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Administrator.FullName)
        </dd>
    </dl>
    
    <form asp-action="Delete">
        <input type="hidden" asp-for="DepartmentID" />
        <input type="hidden" asp-for="RowVersion" />
        <div class="form-actions no-color">
            <input type="submit" value="Delete" class="btn btn-default" /> |
            <a asp-action="Index">Back to List</a>
        </div>
    </form>
</div>

This makes the following changes:

Adds an error message between the h2  and h3  headings.

Replaces FirstMidName with FullName in the AdministratorAdministrator  field.

Removes the RowVersion field.

Adds a hidden field for the RowVersion  property.

Run the app and go to the Departments Index page. Right-click the DeleteDelete hyperlink for the English department

and select Open in new tabOpen in new tab, then in the first tab click the EditEdit hyperlink for the English department.

In the first window, change one of the values, and click SaveSave:



In the second tab, click DeleteDelete. You see the concurrency error message, and the Department values are refreshed

with what's currently in the database.



Update Details and Create views

If you click DeleteDelete again, you're redirected to the Index page, which shows that the department has been deleted.

You can optionally clean up scaffolded code in the Details and Create views.

Replace the code in Views/Departments/Details.cshtml to delete the RowVersion column and show the full name

of the Administrator.



@model ContosoUniversity.Models.Department

@{
    ViewData["Title"] = "Details";
}

<h2>Details</h2>

<div>
    <h4>Department</h4>
    <hr />
    <dl class="row">
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Name)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Name)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Budget)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Budget)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.StartDate)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.StartDate)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Administrator)
        </dt>
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Administrator.FullName)
        </dd>
    </dl>
</div>
<div>
    <a asp-action="Edit" asp-route-id="@Model.DepartmentID">Edit</a> |
    <a asp-action="Index">Back to List</a>
</div>

Replace the code in Views/Departments/Create.cshtml to add a Select option to the drop-down list.



@model ContosoUniversity.Models.Department

@{
    ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Department</h4>
<hr />
<div class="row">
    <div class="col-md-4">
        <form asp-action="Create">
            <div asp-validation-summary="ModelOnly" class="text-danger"></div>
            <div class="form-group">
                <label asp-for="Name" class="control-label"></label>
                <input asp-for="Name" class="form-control" />
                <span asp-validation-for="Name" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Budget" class="control-label"></label>
                <input asp-for="Budget" class="form-control" />
                <span asp-validation-for="Budget" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="StartDate" class="control-label"></label>
                <input asp-for="StartDate" class="form-control" />
                <span asp-validation-for="StartDate" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="InstructorID" class="control-label"></label>
                <select asp-for="InstructorID" class="form-control" asp-items="ViewBag.InstructorID">
                    <option value="">-- Select Administrator --</option>
                </select>
            </div>
            <div class="form-group">
                <input type="submit" value="Create" class="btn btn-default" />
            </div>
        </form>
    </div>
</div>

<div>
    <a asp-action="Index">Back to List</a>
</div>

@section Scripts {
    @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

Get the code

Additional resources

Next steps

Download or view the completed application.

For more information about how to handle concurrency in EF Core, see Concurrency conflicts.

In this tutorial, you:

Learned about concurrency conflicts

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final
https://docs.microsoft.com/en-us/ef/core/saving/concurrency


Added a tracking property

Created Departments controller and views

Updated Index view

Updated Edit methods

Updated Edit view

Tested concurrency conflicts

Updated the Delete page

Updated Details and Create views

Advance to the next tutorial to learn how to implement table-per-hierarchy inheritance for the Instructor and

Student entities.

Next: Implement table-per-hierarchy inheritance



Tutorial: Implement inheritance - ASP.NET MVC with
EF Core
9/22/2020 • 8 minutes to read • Edit Online

Prerequisites

Map inheritance to database

In the previous tutorial, you handled concurrency exceptions. This tutorial will show you how to implement

inheritance in the data model.

In object-oriented programming, you can use inheritance to facilitate code reuse. In this tutorial, you'll change

the Instructor  and Student  classes so that they derive from a Person  base class which contains properties

such as LastName  that are common to both instructors and students. You won't add or change any web pages,

but you'll change some of the code and those changes will be automatically reflected in the database.

In this tutorial, you:

Map inheritance to database

Create the Person class

Update Instructor and Student

Add Person to the model

Create and update migrations

Test the implementation

Handle Concurrency

The Instructor  and Student  classes in the School data model have several properties that are identical:

Suppose you want to eliminate the redundant code for the properties that are shared by the Instructor  and 

Student  entities. Or you want to write a service that can format names without caring whether the name came

from an instructor or a student. You could create a Person  base class that contains only those shared

properties, then make the Instructor  and Student  classes inherit from that base class, as shown in the

following illustration:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/inheritance.md


WARNINGWARNING

There are several ways this inheritance structure could be represented in the database. You could have a Person

table that includes information about both students and instructors in a single table. Some of the columns could

apply only to instructors (HireDate), some only to students (EnrollmentDate), some to both (LastName,

FirstName). Typically, you'd have a discriminator column to indicate which type each row represents. For

example, the discriminator column might have "Instructor" for instructors and "Student" for students.

This pattern of generating an entity inheritance structure from a single database table is called table-per-

hierarchy (TPH) inheritance.

An alternative is to make the database look more like the inheritance structure. For example, you could have

only the name fields in the Person table and have separate Instructor and Student tables with the date fields.

Table Per Type (TPT) is not supported by EF Core 3.x, however it is has been implemented in EF Core 5.0.

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-5.0/plan


TIPTIP

Create the Person class

This pattern of making a database table for each entity class is called table per type (TPT) inheritance.

Yet another option is to map all non-abstract types to individual tables. All properties of a class, including

inherited properties, map to columns of the corresponding table. This pattern is called Table-per-Concrete Class

(TPC) inheritance. If you implemented TPC inheritance for the Person, Student, and Instructor classes as shown

earlier, the Student and Instructor tables would look no different after implementing inheritance than they did

before.

TPC and TPH inheritance patterns generally deliver better performance than TPT inheritance patterns, because

TPT patterns can result in complex join queries.

This tutorial demonstrates how to implement TPH inheritance. TPH is the only inheritance pattern that the Entity

Framework Core supports. What you'll do is create a Person  class, change the Instructor  and Student  classes

to derive from Person , add the new class to the DbContext , and create a migration.

Consider saving a copy of the project before making the following changes. Then if you run into problems and need to

start over, it will be easier to start from the saved project instead of reversing steps done for this tutorial or going back to

the beginning of the whole series.

In the Models folder, create Person.cs and replace the template code with the following code:



using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public abstract class Person
    {
        public int ID { get; set; }

        [Required]
        [StringLength(50)]
        [Display(Name = "Last Name")]
        public string LastName { get; set; }
        [Required]
        [StringLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
        [Column("FirstName")]
        [Display(Name = "First Name")]
        public string FirstMidName { get; set; }

        [Display(Name = "Full Name")]
        public string FullName
        {
            get
            {
                return LastName + ", " + FirstMidName;
            }
        }
    }
}

Update Instructor and Student

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Instructor : Person
    {
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Hire Date")]
        public DateTime HireDate { get; set; }

        public ICollection<CourseAssignment> CourseAssignments { get; set; }
        public OfficeAssignment OfficeAssignment { get; set; }
    }
}

In Instructor.cs, derive the Instructor class from the Person class and remove the key and name fields. The code

will look like the following example:

Make the same changes in Student.cs.



using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
    public class Student : Person
    {
        [DataType(DataType.Date)]
        [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
        [Display(Name = "Enrollment Date")]
        public DateTime EnrollmentDate { get; set; }

        public ICollection<Enrollment> Enrollments { get; set; }
    }
}

Add Person to the model

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
    public class SchoolContext : DbContext
    {
        public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
        {
        }

        public DbSet<Course> Courses { get; set; }
        public DbSet<Enrollment> Enrollments { get; set; }
        public DbSet<Student> Students { get; set; }
        public DbSet<Department> Departments { get; set; }
        public DbSet<Instructor> Instructors { get; set; }
        public DbSet<OfficeAssignment> OfficeAssignments { get; set; }
        public DbSet<CourseAssignment> CourseAssignments { get; set; }
        public DbSet<Person> People { get; set; }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Course>().ToTable("Course");
            modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
            modelBuilder.Entity<Student>().ToTable("Student");
            modelBuilder.Entity<Department>().ToTable("Department");
            modelBuilder.Entity<Instructor>().ToTable("Instructor");
            modelBuilder.Entity<OfficeAssignment>().ToTable("OfficeAssignment");
            modelBuilder.Entity<CourseAssignment>().ToTable("CourseAssignment");
            modelBuilder.Entity<Person>().ToTable("Person");

            modelBuilder.Entity<CourseAssignment>()
                .HasKey(c => new { c.CourseID, c.InstructorID });
        }
    }
}

Add the Person entity type to SchoolContext.cs. The new lines are highlighted.

This is all that the Entity Framework needs in order to configure table-per-hierarchy inheritance. As you'll see,

when the database is updated, it will have a Person table in place of the Student and Instructor tables.



Create and update migrations

dotnet ef migrations add Inheritance

protected override void Up(MigrationBuilder migrationBuilder)
{
    migrationBuilder.DropForeignKey(
        name: "FK_Enrollment_Student_StudentID",
        table: "Enrollment");

    migrationBuilder.DropIndex(name: "IX_Enrollment_StudentID", table: "Enrollment");

    migrationBuilder.RenameTable(name: "Instructor", newName: "Person");
    migrationBuilder.AddColumn<DateTime>(name: "EnrollmentDate", table: "Person", nullable: true);
    migrationBuilder.AddColumn<string>(name: "Discriminator", table: "Person", nullable: false, maxLength: 
128, defaultValue: "Instructor");
    migrationBuilder.AlterColumn<DateTime>(name: "HireDate", table: "Person", nullable: true);
    migrationBuilder.AddColumn<int>(name: "OldId", table: "Person", nullable: true);

    // Copy existing Student data into new Person table.
    migrationBuilder.Sql("INSERT INTO dbo.Person (LastName, FirstName, HireDate, EnrollmentDate, 
Discriminator, OldId) SELECT LastName, FirstName, null AS HireDate, EnrollmentDate, 'Student' AS 
Discriminator, ID AS OldId FROM dbo.Student");
    // Fix up existing relationships to match new PK's.
    migrationBuilder.Sql("UPDATE dbo.Enrollment SET StudentId = (SELECT ID FROM dbo.Person WHERE OldId = 
Enrollment.StudentId AND Discriminator = 'Student')");

    // Remove temporary key
    migrationBuilder.DropColumn(name: "OldID", table: "Person");

    migrationBuilder.DropTable(
        name: "Student");

    migrationBuilder.CreateIndex(
         name: "IX_Enrollment_StudentID",
         table: "Enrollment",
         column: "StudentID");

    migrationBuilder.AddForeignKey(
        name: "FK_Enrollment_Person_StudentID",
        table: "Enrollment",
        column: "StudentID",
        principalTable: "Person",
        principalColumn: "ID",
        onDelete: ReferentialAction.Cascade);
}

Save your changes and build the project. Then open the command window in the project folder and enter the

following command:

Don't run the database update  command yet. That command will result in lost data because it will drop the

Instructor table and rename the Student table to Person. You need to provide custom code to preserve existing

data.

Open Migrations/<timestamp>_Inheritance.cs and replace the Up  method with the following code:

This code takes care of the following database update tasks:

Removes foreign key constraints and indexes that point to the Student table.

Renames the Instructor table as Person and makes changes needed for it to store Student data:

Adds nullable EnrollmentDate for students.



dotnet ef database update

NOTENOTE

Test the implementation

Adds Discriminator column to indicate whether a row is for a student or an instructor.

Makes HireDate nullable since student rows won't have hire dates.

Adds a temporary field that will be used to update foreign keys that point to students. When you copy

students into the Person table they will get new primary key values.

Copies data from the Student table into the Person table. This causes students to get assigned new

primary key values.

Fixes foreign key values that point to students.

Re-creates foreign key constraints and indexes, now pointing them to the Person table.

(If you had used GUID instead of integer as the primary key type, the student primary key values wouldn't have

to change, and several of these steps could have been omitted.)

Run the database update  command:

(In a production system you would make corresponding changes to the Down  method in case you ever had to

use that to go back to the previous database version. For this tutorial you won't be using the Down  method.)

It's possible to get other errors when making schema changes in a database that has existing data. If you get migration

errors that you can't resolve, you can either change the database name in the connection string or delete the database.

With a new database, there's no data to migrate, and the update-database command is more likely to complete without

errors. To delete the database, use SSOX or run the database drop  CLI command.

Run the app and try various pages. Everything works the same as it did before.

In SQL Ser ver Object ExplorerSQL Ser ver Object Explorer , expand Data Connections/SchoolContextData Connections/SchoolContext and then TablesTables , and you see

that the Student and Instructor tables have been replaced by a Person table. Open the Person table designer and

you see that it has all of the columns that used to be in the Student and Instructor tables.



Get the code

Additional resources

Next steps

Right-click the Person table, and then click Show Table DataShow Table Data to see the discriminator column.

Download or view the completed application.

For more information about inheritance in Entity Framework Core, see Inheritance.

In this tutorial, you:

Mapped inheritance to database

Created the Person class

Updated Instructor and Student

Added Person to the model

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final
https://docs.microsoft.com/en-us/ef/core/modeling/inheritance


Created and update migrations

Tested the implementation

Advance to the next tutorial to learn how to handle a variety of relatively advanced Entity Framework scenarios.

Next: Advanced topics



Tutorial: Learn about advanced scenarios - ASP.NET
MVC with EF Core
9/22/2020 • 13 minutes to read • Edit Online

Prerequisites

Perform raw SQL queries

Call a query to return entities

In the previous tutorial, you implemented table-per-hierarchy inheritance. This tutorial introduces several topics

that are useful to be aware of when you go beyond the basics of developing ASP.NET Core web applications that

use Entity Framework Core.

In this tutorial, you:

Perform raw SQL queries

Call a query to return entities

Call a query to return other types

Call an update query

Examine SQL queries

Create an abstraction layer

Learn about Automatic change detection

Learn about EF Core source code and development plans

Learn how to use dynamic LINQ to simplify code

Implement Inheritance

One of the advantages of using the Entity Framework is that it avoids tying your code too closely to a particular

method of storing data. It does this by generating SQL queries and commands for you, which also frees you from

having to write them yourself. But there are exceptional scenarios when you need to run specific SQL queries that

you have manually created. For these scenarios, the Entity Framework Code First API includes methods that

enable you to pass SQL commands directly to the database. You have the following options in EF Core 1.0:

Use the DbSet.FromSql  method for queries that return entity types. The returned objects must be of the

type expected by the DbSet  object, and they're automatically tracked by the database context unless you

turn tracking off.

Use the Database.ExecuteSqlCommand  for non-query commands.

If you need to run a query that returns types that aren't entities, you can use ADO.NET with the database

connection provided by EF. The returned data isn't tracked by the database context, even if you use this method to

retrieve entity types.

As is always true when you execute SQL commands in a web application, you must take precautions to protect

your site against SQL injection attacks. One way to do that is to use parameterized queries to make sure that

strings submitted by a web page can't be interpreted as SQL commands. In this tutorial you'll use parameterized

queries when integrating user input into a query.

The DbSet<TEntity>  class provides a method that you can use to execute a query that returns an entity of type 

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/ef-mvc/advanced.md


public async Task<IActionResult> Details(int? id)
{
    if (id == null)
    {
        return NotFound();
    }

    string query = "SELECT * FROM Department WHERE DepartmentID = {0}";
    var department = await _context.Departments
        .FromSql(query, id)
        .Include(d => d.Administrator)
        .AsNoTracking()
        .FirstOrDefaultAsync();

    if (department == null)
    {
        return NotFound();
    }

    return View(department);
}

Call a query to return other types

TEntity . To see how this works you'll change the code in the Details  method of the Department controller.

In DepartmentsController.cs, in the Details  method, replace the code that retrieves a department with a 

FromSql  method call, as shown in the following highlighted code:

To verify that the new code works correctly, select the Depar tmentsDepar tments  tab and then DetailsDetails  for one of the

departments.

Earlier you created a student statistics grid for the About page that showed the number of students for each

enrollment date. You got the data from the Students entity set ( _context.Students ) and used LINQ to project the

results into a list of EnrollmentDateGroup  view model objects. Suppose you want to write the SQL itself rather

than using LINQ. To do that you need to run a SQL query that returns something other than entity objects. In EF

Core 1.0, one way to do that is write ADO.NET code and get the database connection from EF.

In HomeController.cs, replace the About  method with the following code:



public async Task<ActionResult> About()
{
    List<EnrollmentDateGroup> groups = new List<EnrollmentDateGroup>();
    var conn = _context.Database.GetDbConnection();
    try
    {
        await conn.OpenAsync();
        using (var command = conn.CreateCommand())
        {
            string query = "SELECT EnrollmentDate, COUNT(*) AS StudentCount "
                + "FROM Person "
                + "WHERE Discriminator = 'Student' "
                + "GROUP BY EnrollmentDate";
            command.CommandText = query;
            DbDataReader reader = await command.ExecuteReaderAsync();

            if (reader.HasRows)
            {
                while (await reader.ReadAsync())
                {
                    var row = new EnrollmentDateGroup { EnrollmentDate = reader.GetDateTime(0), StudentCount 
= reader.GetInt32(1) };
                    groups.Add(row);
                }
            }
            reader.Dispose();
        }
    }
    finally
    {
        conn.Close();
    }
    return View(groups);
}

using System.Data.Common;

Call an update query

Add a using statement:

Run the app and go to the About page. It displays the same data it did before.

Suppose Contoso University administrators want to perform global changes in the database, such as changing

the number of credits for every course. If the university has a large number of courses, it would be inefficient to

retrieve them all as entities and change them individually. In this section you'll implement a web page that

enables the user to specify a factor by which to change the number of credits for all courses, and you'll make the



public IActionResult UpdateCourseCredits()
{
    return View();
}

[HttpPost]
public async Task<IActionResult> UpdateCourseCredits(int? multiplier)
{
    if (multiplier != null)
    {
        ViewData["RowsAffected"] = 
            await _context.Database.ExecuteSqlCommandAsync(
                "UPDATE Course SET Credits = Credits * {0}",
                parameters: multiplier);
    }
    return View();
}

change by executing a SQL UPDATE statement. The web page will look like the following illustration:

In CoursesController.cs, add UpdateCourseCredits methods for HttpGet and HttpPost:

When the controller processes an HttpGet request, nothing is returned in ViewData["RowsAffected"] , and the view

displays an empty text box and a submit button, as shown in the preceding illustration.

When the UpdateUpdate button is clicked, the HttpPost method is called, and multiplier has the value entered in the text

box. The code then executes the SQL that updates courses and returns the number of affected rows to the view in 

ViewData . When the view gets a RowsAffected  value, it displays the number of rows updated.

In Solution ExplorerSolution Explorer , right-click the Views/Courses folder, and then click Add > New ItemAdd > New Item.

In the Add New ItemAdd New Item dialog, click ASP.NET CoreASP.NET Core under InstalledInstalled in the left pane, click Razor ViewRazor View , and name

the new view UpdateCourseCredits.cshtml.

In Views/Courses/UpdateCourseCredits.cshtml, replace the template code with the following code:



@{
    ViewBag.Title = "UpdateCourseCredits";
}

<h2>Update Course Credits</h2>

@if (ViewData["RowsAffected"] == null)
{
    <form asp-action="UpdateCourseCredits">
        <div class="form-actions no-color">
            <p>
                Enter a number to multiply every course's credits by: @Html.TextBox("multiplier")
            </p>
            <p>
                <input type="submit" value="Update" class="btn btn-default" />
            </p>
        </div>
    </form>
}
@if (ViewData["RowsAffected"] != null)
{
    <p>
        Number of rows updated: @ViewData["RowsAffected"]
    </p>
}
<div>
    @Html.ActionLink("Back to List", "Index")
</div>

Run the UpdateCourseCredits  method by selecting the CoursesCourses  tab, then adding "/UpdateCourseCredits" to the

end of the URL in the browser's address bar (for example: http://localhost:5813/Courses/UpdateCourseCredits ).

Enter a number in the text box:

Click UpdateUpdate. You see the number of rows affected:



Examine SQL queries

Microsoft.EntityFrameworkCore.Database.Command:Information: Executed DbCommand (56ms) [Parameters=
[@__id_0='?'], CommandType='Text', CommandTimeout='30']
SELECT TOP(2) [s].[ID], [s].[Discriminator], [s].[FirstName], [s].[LastName], [s].[EnrollmentDate]
FROM [Person] AS [s]
WHERE ([s].[Discriminator] = N'Student') AND ([s].[ID] = @__id_0)
ORDER BY [s].[ID]
Microsoft.EntityFrameworkCore.Database.Command:Information: Executed DbCommand (122ms) [Parameters=
[@__id_0='?'], CommandType='Text', CommandTimeout='30']
SELECT [s.Enrollments].[EnrollmentID], [s.Enrollments].[CourseID], [s.Enrollments].[Grade], [s.Enrollments].
[StudentID], [e.Course].[CourseID], [e.Course].[Credits], [e.Course].[DepartmentID], [e.Course].[Title]
FROM [Enrollment] AS [s.Enrollments]
INNER JOIN [Course] AS [e.Course] ON [s.Enrollments].[CourseID] = [e.Course].[CourseID]
INNER JOIN (
    SELECT TOP(1) [s0].[ID]
    FROM [Person] AS [s0]
    WHERE ([s0].[Discriminator] = N'Student') AND ([s0].[ID] = @__id_0)
    ORDER BY [s0].[ID]
) AS [t] ON [s.Enrollments].[StudentID] = [t].[ID]
ORDER BY [t].[ID]

Create an abstraction layer

Click Back to L istBack to L ist to see the list of courses with the revised number of credits.

Note that production code would ensure that updates always result in valid data. The simplified code shown here

could multiply the number of credits enough to result in numbers greater than 5. (The Credits  property has a 

[Range(0, 5)]  attribute.) The update query would work but the invalid data could cause unexpected results in

other parts of the system that assume the number of credits is 5 or less.

For more information about raw SQL queries, see Raw SQL Queries.

Sometimes it's helpful to be able to see the actual SQL queries that are sent to the database. Built-in logging

functionality for ASP.NET Core is automatically used by EF Core to write logs that contain the SQL for queries and

updates. In this section you'll see some examples of SQL logging.

Open StudentsController.cs and in the Details  method set a breakpoint on the if (student == null)  statement.

Run the app in debug mode, and go to the Details page for a student.

Go to the OutputOutput window showing debug output, and you see the query:

You'll notice something here that might surprise you: the SQL selects up to 2 rows ( TOP(2) ) from the Person

table. The SingleOrDefaultAsync  method doesn't resolve to 1 row on the server. Here's why:

If the query would return multiple rows, the method returns null.

To determine whether the query would return multiple rows, EF has to check if it returns at least 2.

Note that you don't have to use debug mode and stop at a breakpoint to get logging output in the OutputOutput

window. It's just a convenient way to stop the logging at the point you want to look at the output. If you don't do

that, logging continues and you have to scroll back to find the parts you're interested in.

Many developers write code to implement the repository and unit of work patterns as a wrapper around code

that works with the Entity Framework. These patterns are intended to create an abstraction layer between the

data access layer and the business logic layer of an application. Implementing these patterns can help insulate

your application from changes in the data store and can facilitate automated unit testing or test-driven

development (TDD). However, writing additional code to implement these patterns isn't always the best choice for

applications that use EF, for several reasons:

https://docs.microsoft.com/en-us/ef/core/querying/raw-sql


Automatic change detection

_context.ChangeTracker.AutoDetectChangesEnabled = false;

EF Core source code and development plans

Reverse engineer from existing database

Use dynamic LINQ to simplify code

The EF context class itself insulates your code from data-store-specific code.

The EF context class can act as a unit-of-work class for database updates that you do using EF.

EF includes features for implementing TDD without writing repository code.

For information about how to implement the repository and unit of work patterns, see the Entity Framework 5

version of this tutorial series.

Entity Framework Core implements an in-memory database provider that can be used for testing. For more

information, see Test with InMemory.

The Entity Framework determines how an entity has changed (and therefore which updates need to be sent to the

database) by comparing the current values of an entity with the original values. The original values are stored

when the entity is queried or attached. Some of the methods that cause automatic change detection are the

following:

DbContext.SaveChanges

DbContext.Entry

ChangeTracker.Entries

If you're tracking a large number of entities and you call one of these methods many times in a loop, you might

get significant performance improvements by temporarily turning off automatic change detection using the 

ChangeTracker.AutoDetectChangesEnabled  property. For example:

The Entity Framework Core source is at https://github.com/dotnet/efcore. The EF Core repository contains nightly

builds, issue tracking, feature specs, design meeting notes, and the roadmap for future development. You can file

or find bugs, and contribute.

Although the source code is open, Entity Framework Core is fully supported as a Microsoft product. The Microsoft

Entity Framework team keeps control over which contributions are accepted and tests all code changes to ensure

the quality of each release.

To reverse engineer a data model including entity classes from an existing database, use the scaffold-dbcontext

command. See the getting-started tutorial.

        

The third tutorial in this series shows how to write LINQ code by hard-coding column names in a switch

statement. With two columns to choose from, this works fine, but if you have many columns the code could get

verbose. To solve that problem, you can use the EF.Property  method to specify the name of the property as a

string. To try out this approach, replace the Index  method in the StudentsController  with the following code.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://docs.microsoft.com/en-us/ef/core/miscellaneous/testing/in-memory
https://github.com/dotnet/efcore
https://github.com/dotnet/efcore/wiki/Roadmap
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell#scaffold-dbcontext
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/existing-db


 public async Task<IActionResult> Index(
     string sortOrder,
     string currentFilter,
     string searchString,
     int? pageNumber)
 {
     ViewData["CurrentSort"] = sortOrder;
     ViewData["NameSortParm"] = 
         String.IsNullOrEmpty(sortOrder) ? "LastName_desc" : "";
     ViewData["DateSortParm"] = 
         sortOrder == "EnrollmentDate" ? "EnrollmentDate_desc" : "EnrollmentDate";

     if (searchString != null)
     {
         pageNumber = 1;
     }
     else
     {
         searchString = currentFilter;
     }

     ViewData["CurrentFilter"] = searchString;

     var students = from s in _context.Students
                    select s;
     
     if (!String.IsNullOrEmpty(searchString))
     {
         students = students.Where(s => s.LastName.Contains(searchString)
                                || s.FirstMidName.Contains(searchString));
     }

     if (string.IsNullOrEmpty(sortOrder))
     {
         sortOrder = "LastName";
     }

     bool descending = false;
     if (sortOrder.EndsWith("_desc"))
     {
         sortOrder = sortOrder.Substring(0, sortOrder.Length - 5);
         descending = true;
     }

     if (descending)
     {
         students = students.OrderByDescending(e => EF.Property<object>(e, sortOrder));
     }
     else
     {
         students = students.OrderBy(e => EF.Property<object>(e, sortOrder));
     }

     int pageSize = 3;
     return View(await PaginatedList<Student>.CreateAsync(students.AsNoTracking(), 
         pageNumber ?? 1, pageSize));
 }

Acknowledgments
Tom Dykstra and Rick Anderson (twitter @RickAndMSFT) wrote this tutorial. Rowan Miller, Diego Vega, and other

members of the Entity Framework team assisted with code reviews and helped debug issues that arose while we

were writing code for the tutorials. John Parente and Paul Goldman worked on updating the tutorial for ASP.NET

Core 2.2.



Troubleshoot common errors
ContosoUniversity.dll used by another processContosoUniversity.dll used by another process

Migration scaffolded with no code in Up and Down methodsMigration scaffolded with no code in Up and Down methods

Errors while running database updateErrors while running database update

dotnet ef database drop

Error locating SQL Server instanceError locating SQL Server instance

Get the code

    

Error message:

Cannot open '...bin\Debug\netcoreapp1.0\ContosoUniversity.dll' for writing -- 'The process cannot access the

file '...\bin\Debug\netcoreapp1.0\ContosoUniversity.dll' because it is being used by another process.

Solution:

Stop the site in IIS Express. Go to the Windows System Tray, find IIS Express and right-click its icon, select the

Contoso University site, and then click Stop S iteStop S ite.

Possible cause:

The EF CLI commands don't automatically close and save code files. If you have unsaved changes when you run

the migrations add  command, EF won't find your changes.

Solution:

Run the migrations remove  command, save your code changes and rerun the migrations add  command.

It's possible to get other errors when making schema changes in a database that has existing data. If you get

migration errors you can't resolve, you can either change the database name in the connection string or delete

the database. With a new database, there's no data to migrate, and the update-database command is much more

likely to complete without errors.

The simplest approach is to rename the database in appsettings.json. The next time you run database update , a

new database will be created.

To delete a database in SSOX, right-click the database, click DeleteDelete, and then in the Delete DatabaseDelete Database dialog box

select Close existing connectionsClose existing connections  and click OKOK.

To delete a database by using the CLI, run the database drop  CLI command:

Error Message:

A network-related or instance-specific error occurred while establishing a connection to SQL Server. The

server was not found or was not accessible. Verify that the instance name is correct and that SQL Server is

configured to allow remote connections. (provider : SQL Network Interfaces, error : 26 - Error Locating

Server/Instance Specified)

Solution:

Check the connection string. If you have manually deleted the database file, change the name of the database in

the construction string to start over with a new database.

Download or view the completed application.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/ef-mvc/intro/samples/cu-final


Additional resources

Next steps

For more information about EF Core, see the Entity Framework Core documentation. A book is also available:

Entity Framework Core in Action.

For information on how to deploy a web app, see Host and deploy ASP.NET Core.

For information about other topics related to ASP.NET Core MVC, such as authentication and authorization, see

Introduction to ASP.NET Core.

In this tutorial, you:

Performed raw SQL queries

Called a query to return entities

Called a query to return other types

Called an update query

Examined SQL queries

Created an abstraction layer

Learned about Automatic change detection

Learned about EF Core source code and development plans

Learned how to use dynamic LINQ to simplify code

This completes this series of tutorials on using the Entity Framework Core in an ASP.NET Core MVC application.

This series worked with a new database; an alternative is to reverse engineer a model from an existing database.

Tutorial: EF Core with MVC, existing database

https://docs.microsoft.com/en-us/ef/core
https://www.manning.com/books/entity-framework-core-in-action
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/existing-db?toc=/aspnet/core/toc.json&bc=/aspnet/core/breadcrumb/toc.json


ASP.NET Core and Entity Framework 6
9/22/2020 • 3 minutes to read • Edit Online

Using Entity Framework 6 with ASP.NET Core

Additional resources

Overview

Reference full framework and EF6 in the ASP.NET Core project

<PropertyGroup>
  <TargetFramework>net452</TargetFramework>
  <PreserveCompilationContext>true</PreserveCompilationContext>
  <AssemblyName>MVCCore</AssemblyName>
  <OutputType>Exe</OutputType>
  <PackageId>MVCCore</PackageId>
</PropertyGroup>

Handle connection strings

By Patrick Goode

Entity Framework Core should be used for new development. The download sample uses Entity Framework 6 (EF6),

which can be used to migrate exiting apps to ASP.NET Core.

Entity Framework - Code-Based Configuration

By Paweł Grudzień, Damien Pontifex, and Tom Dykstra

This article shows how to use Entity Framework 6 in an ASP.NET Core application.

To use Entity Framework 6, your project has to compile against .NET Framework, as Entity Framework 6 doesn't

support .NET Core. If you need cross-platform features you will need to upgrade to Entity Framework Core.

The recommended way to use Entity Framework 6 in an ASP.NET Core application is to put the EF6 context and

model classes in a class library project that targets .NET Framework. Add a reference to the class library from the

ASP.NET Core project. See the sample Visual Studio solution with EF6 and ASP.NET Core projects.

You can't put an EF6 context in an ASP.NET Core project because .NET Core projects don't support all of the

functionality that EF6 commands such as Enable-Migrations require.

Regardless of project type in which you locate your EF6 context, only EF6 command-line tools work with an EF6

context. For example, Scaffold-DbContext  is only available in Entity Framework Core. If you need to do reverse

engineering of a database into an EF6 model, see /ef/ef6/modeling/code-first/workflows/existing-database.

Your ASP.NET Core project needs to target .NET Framework and reference EF6. For example, the .csproj file of your

ASP.NET Core project will look similar to the following example (only relevant parts of the file are shown).

When creating a new project, use the ASP.NET Core Web Application (.NET Framework)ASP.NET Core Web Application (.NET Framework)  template.

The EF6 command-line tools that you'll use in the EF6 class library project require a default constructor so they can

instantiate the context. But you'll probably want to specify the connection string to use in the ASP.NET Core project,

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/data/entity-framework-6.md
https://github.com/attrib75
https://docs.microsoft.com/en-us/ef/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/entity-framework-6/3.xsample
https://docs.microsoft.com/en-us/ef/ef6
https://docs.microsoft.com/en-us/ef/ef6/fundamentals/configuring/code-based
https://github.com/pgrudzien12
https://github.com/DamienPontifex
https://github.com/tdykstra
https://docs.microsoft.com/en-us/ef/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/entity-framework-6/sample/
https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/workflows/existing-database


public class SchoolContext : DbContext
{
    public SchoolContext(string connString) : base(connString)
    {
    }

public class SchoolContextFactory : IDbContextFactory<SchoolContext>
{
    public SchoolContext Create()
    {
        return new EF6.SchoolContext("Server=
(localdb)\\mssqllocaldb;Database=EF6MVCCore;Trusted_Connection=True;MultipleActiveResultSets=true");
    }
}

Set up dependency injection in the ASP.NET Core project

public void ConfigureServices(IServiceCollection services)
{
    // Add framework services.
    services.AddMvc();
    services.AddScoped<SchoolContext>(_ => new 
SchoolContext(Configuration.GetConnectionString("DefaultConnection")));
}

public class StudentsController : Controller
{
    private readonly SchoolContext _context;

    public StudentsController(SchoolContext context)
    {
        _context = context;
    }

Sample application

in which case your context constructor must have a parameter that lets you pass in the connection string. Here's an

example.

Since your EF6 context doesn't have a parameterless constructor, your EF6 project has to provide an

implementation of /dotnet/api/system.data.entity.infrastructure.idbcontextfactory-1?view=entity-framework-6.2.0.

The EF6 command-line tools will find and use that implementation so they can instantiate the context. Here's an

example.

In this sample code, the IDbContextFactory  implementation passes in a hard-coded connection string. This is the

connection string that the command-line tools will use. You'll want to implement a strategy to ensure that the class

library uses the same connection string that the calling application uses. For example, you could get the value from

an environment variable in both projects.

In the Core project's Startup.cs file, set up the EF6 context for dependency injection (DI) in ConfigureServices . EF

context objects should be scoped for a per-request lifetime.

You can then get an instance of the context in your controllers by using DI. The code is similar to what you'd write

for an EF Core context:

For a working sample application, see the sample Visual Studio solution that accompanies this article.

https://docs.microsoft.com/en-us/dotnet/api/system.data.entity.infrastructure.idbcontextfactory-1?view=entity-framework-6.2.0
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/data/entity-framework-6/sample/


This sample can be created from scratch by the following steps in Visual Studio:

Create a solution.

AddAdd > New ProjectNew Project > WebWeb > ASP.NET Core Web ApplicationASP.NET Core Web Application

In project template selection dialog, select API and .NET Framework in dropdown

AddAdd > New ProjectNew Project > Windows DesktopWindows Desktop > Class L ibrar y (.NET Framework)Class L ibrar y (.NET Framework)

In Package Manager ConsolePackage Manager Console (PMC) for both projects, run the command 

Install-Package Entityframework .

In the class library project, create data model classes and a context class, and an implementation of 

IDbContextFactory .

In PMC for the class library project, run the commands Enable-Migrations  and Add-Migration Initial . If

you have set the ASP.NET Core project as the startup project, add -StartupProjectName EF6  to these

commands.

In the Core project, add a project reference to the class library project.

In the Core project, in Startup.cs, register the context for DI.

In the Core project, in appsettings.json, add the connection string.

In the Core project, add a controller and view(s) to verify that you can read and write data. (Note that

ASP.NET Core MVC scaffolding won't work with the EF6 context referenced from the class library.)



Host and deploy ASP.NET Core
9/22/2020 • 7 minutes to read • Edit Online

Publish to a folder

Folder contentsFolder contents

Set up a process manager

Set up a reverse proxy

Proxy server and load balancer scenarios

In general, to deploy an ASP.NET Core app to a hosting environment:

Deploy the published app to a folder on the hosting server.

Set up a process manager that starts the app when requests arrive and restarts the app after it crashes or the

server reboots.

For configuration of a reverse proxy, set up a reverse proxy to forward requests to the app.

The dotnet publish command compiles app code and copies the files required to run the app into a publish

folder. When deploying from Visual Studio, the dotnet publish  step occurs automatically before the files are

copied to the deployment destination.

The publish folder contains one or more app assembly files, dependencies, and optionally the .NET runtime.

A .NET Core app can be published as self-contained deployment or framework-dependent deployment. If the app

is self-contained, the assembly files that contain the .NET runtime are included in the publish folder. If the app is

framework-dependent, the .NET runtime files aren't included because the app has a reference to a version of

.NET that's installed on the server. The default deployment model is framework-dependent. For more

information, see .NET Core application deployment.

In addition to .exe and .dll files, the publish folder for an ASP.NET Core app typically contains configuration files,

static assets, and MVC views. For more information, see ASP.NET Core directory structure.

An ASP.NET Core app is a console app that must be started when a server boots and restarted if it crashes. To

automate starts and restarts, a process manager is required. The most common process managers for ASP.NET

Core are:

Linux

Windows

Nginx

Apache

IIS

Windows Service

If the app uses the Kestrel server, Nginx, Apache, or IIS can be used as a reverse proxy server. A reverse proxy

server receives HTTP requests from the Internet and forwards them to Kestrel.

Either configuration—with or without a reverse proxy server—is a supported hosting configuration. For more

information, see When to use Kestrel with a reverse proxy.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/index.md
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/deploying/


Use Visual Studio and MSBuild to automate deployments

Publish to Azure

Publish with MSDeploy on Windows

Internet Information Services (IIS)

Host in a web farm

Host on Docker

Perform health checks

Additional resources

Additional configuration might be required for apps hosted behind proxy servers and load balancers. Without

additional configuration, an app might not have access to the scheme (HTTP/HTTPS) and the remote IP address

where a request originated. For more information, see Configure ASP.NET Core to work with proxy servers and

load balancers.

Deployment often requires additional tasks besides copying the output from dotnet publish to a server. For

example, extra files might be required or excluded from the publish folder. Visual Studio uses MSBuild for web

deployment, and MSBuild can be customized to do many other tasks during deployment. For more information,

see Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment and the Using MSBuild and Team

Foundation Build book.

By using the Publish Web feature or built-in Git support, apps can be deployed directly from Visual Studio to the

Azure App Service. Azure DevOps Services supports continuous deployment to Azure App Service. For more

information, see DevOps with ASP.NET Core and Azure.

See Publish an ASP.NET Core app to Azure with Visual Studio for instructions on how to publish an app to Azure

using Visual Studio. An additional example is provided by Create an ASP.NET Core web app in Azure.

See Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment for instructions on how to publish

an app with a Visual Studio publish profile, including from a Windows command prompt using the dotnet

msbuild command.

For deployments to Internet Information Services (IIS) with configuration provided by the web.config file, see the

articles under Host ASP.NET Core on Windows with IIS.

For information on configuration for hosting ASP.NET Core apps in a web farm environment (for example,

deployment of multiple instances of your app for scalability), see Host ASP.NET Core in a web farm.

For more information, see Host ASP.NET Core in Docker containers.

Use Health Check Middleware to perform health checks on an app and its dependencies. For more information,

see Health checks in ASP.NET Core.

Troubleshoot and debug ASP.NET Core projects

ASP.NET Hosting

In general, to deploy an ASP.NET Core app to a hosting environment:

Deploy the published app to a folder on the hosting server.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
http://msbuildbook.com/
https://docs.microsoft.com/en-us/azure/devops/pipelines/targets/webapp
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-dotnet
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-msbuild
https://dotnet.microsoft.com/apps/aspnet/hosting


Publish to a folder

Folder contentsFolder contents

Set up a process manager

Set up a reverse proxy

Proxy server and load balancer scenarios

Use Visual Studio and MSBuild to automate deployments

Set up a process manager that starts the app when requests arrive and restarts the app after it crashes or the

server reboots.

For configuration of a reverse proxy, set up a reverse proxy to forward requests to the app.

The dotnet publish command compiles app code and copies the files required to run the app into a publish

folder. When deploying from Visual Studio, the dotnet publish  step occurs automatically before the files are

copied to the deployment destination.

The publish folder contains one or more app assembly files, dependencies, and optionally the .NET runtime.

A .NET Core app can be published as self-contained deployment or framework-dependent deployment. If the app

is self-contained, the assembly files that contain the .NET runtime are included in the publish folder. If the app is

framework-dependent, the .NET runtime files aren't included because the app has a reference to a version of

.NET that's installed on the server. The default deployment model is framework-dependent. For more

information, see .NET Core application deployment.

In addition to .exe and .dll files, the publish folder for an ASP.NET Core app typically contains configuration files,

static assets, and MVC views. For more information, see ASP.NET Core directory structure.

An ASP.NET Core app is a console app that must be started when a server boots and restarted if it crashes. To

automate starts and restarts, a process manager is required. The most common process managers for ASP.NET

Core are:

Linux

Windows

Nginx

Apache

IIS

Windows Service

If the app uses the Kestrel server, Nginx, Apache, or IIS can be used as a reverse proxy server. A reverse proxy

server receives HTTP requests from the Internet and forwards them to Kestrel.

Either configuration—with or without a reverse proxy server—is a supported hosting configuration. For more

information, see When to use Kestrel with a reverse proxy.

Additional configuration might be required for apps hosted behind proxy servers and load balancers. Without

additional configuration, an app might not have access to the scheme (HTTP/HTTPS) and the remote IP address

where a request originated. For more information, see Configure ASP.NET Core to work with proxy servers and

load balancers.

Deployment often requires additional tasks besides copying the output from dotnet publish to a server. For

example, extra files might be required or excluded from the publish folder. Visual Studio uses MSBuild for web

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/deploying/
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish


Publish to Azure

Publish with MSDeploy on Windows

Internet Information Services (IIS)

Host in a web farm

Host on Docker

Additional resources

deployment, and MSBuild can be customized to do many other tasks during deployment. For more information,

see Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment and the Using MSBuild and Team

Foundation Build book.

By using the Publish Web feature or built-in Git support, apps can be deployed directly from Visual Studio to the

Azure App Service. Azure DevOps Services supports continuous deployment to Azure App Service. For more

information, see DevOps with ASP.NET Core and Azure.

See Publish an ASP.NET Core app to Azure with Visual Studio for instructions on how to publish an app to Azure

using Visual Studio. An additional example is provided by Create an ASP.NET Core web app in Azure.

See Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment for instructions on how to publish

an app with a Visual Studio publish profile, including from a Windows command prompt using the dotnet

msbuild command.

For deployments to Internet Information Services (IIS) with configuration provided by the web.config file, see the

articles under Host ASP.NET Core on Windows with IIS.

For information on configuration for hosting ASP.NET Core apps in a web farm environment (for example,

deployment of multiple instances of your app for scalability), see Host ASP.NET Core in a web farm.

For more information, see Host ASP.NET Core in Docker containers.

Troubleshoot and debug ASP.NET Core projects

ASP.NET Hosting

http://msbuildbook.com/
https://docs.microsoft.com/en-us/azure/devops/pipelines/targets/webapp
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-dotnet
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-msbuild
https://dotnet.microsoft.com/apps/aspnet/hosting


Deploy ASP.NET Core apps to Azure App Service
9/22/2020 • 13 minutes to read • Edit Online

Useful resources

Application configuration
PlatformPlatform

Azure App Service is a Microsoft cloud computing platform service for hosting web apps, including ASP.NET Core.

App Service Documentation is the home for Azure Apps documentation, tutorials, samples, how-to guides, and

other resources. Two notable tutorials that pertain to hosting ASP.NET Core apps are:

Create an ASP.NET Core web app in Azure

Use Visual Studio to create and deploy an ASP.NET Core web app to Azure App Service on Windows.

Create an ASP.NET Core app in App Service on Linux

Use the command line to create and deploy an ASP.NET Core web app to Azure App Service on Linux.

See the ASP.NET Core on App Service Dashboard for the version of ASP.NET Core available on Azure App service.

Subscribe to the App Service Announcements repository and monitor the issues. The App Service team regularly

posts announcements and scenarios arriving in App Service.

The following articles are available in ASP.NET Core documentation:

Publish an ASP.NET Core app to Azure with Visual Studio

Learn how to publish an ASP.NET Core app to Azure App Service using Visual Studio.

Continuous deployment to Azure with Visual Studio and Git with ASP.NET Core

Learn how to create an ASP.NET Core web app using Visual Studio and deploy it to Azure App Service using Git

for continuous deployment.

Create your first pipeline

Set up a CI build for an ASP.NET Core app, then create a continuous deployment release to Azure App Service.

Azure Web App sandbox

Discover Azure App Service runtime execution limitations enforced by the Azure Apps platform.

Troubleshoot and debug ASP.NET Core projects

Understand and troubleshoot warnings and errors with ASP.NET Core projects.

The platform architecture (x86/x64) of an App Services app is set in the app's settings in the Azure Portal for apps

that are hosted on an A-series compute (Basic) or higher hosting tier. Confirm that the app's publish settings (for

example, in the Visual Studio publish profile (.pubxml)) match the setting in the app's service configuration in the

Azure Portal.

Runtimes for 64-bit (x64) and 32-bit (x86) apps are present on Azure App Service. The .NET Core SDK available

on App Service is 32-bit, but you can deploy 64-bit apps built locally using the Kudu console or the publish

process in Visual Studio. For more information, see the Publish and deploy the app section.

For apps with native dependencies, runtimes for 32-bit (x86) apps are present on Azure App Service. The .NET

Core SDK available on App Service is 32-bit.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/azure-apps/index.md
https://azure.microsoft.com/services/app-service/
https://azure.microsoft.com/
https://docs.microsoft.com/en-us/azure/app-service/
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-dotnet
https://docs.microsoft.com/en-us/azure/app-service/containers/quickstart-dotnetcore
https://aspnetcoreon.azurewebsites.net/
https://github.com/Azure/app-service-announcements/
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started-yaml
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://docs.microsoft.com/en-us/dotnet/core/sdk
https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/dotnet/core/sdk


        

PackagesPackages

Override app configuration using the Azure Portal

Proxy server and load balancer scenarios

Monitoring and logging

For more information on .NET Core framework components and distribution methods, such as information on

the .NET Core runtime and the .NET Core SDK, see About .NET Core: Composition.

Include the following NuGet packages to provide automatic logging features for apps deployed to Azure App

Service:

Microsoft.AspNetCore.AzureAppServices.HostingStartup uses IHostingStartup to provide ASP.NET Core light-

up integration with Azure App Service. The added logging features are provided by the 

Microsoft.AspNetCore.AzureAppServicesIntegration  package.

Microsoft.AspNetCore.AzureAppServicesIntegration executes AddAzureWebAppDiagnostics to add Azure App

Service diagnostics logging providers in the Microsoft.Extensions.Logging.AzureAppServices  package.

Microsoft.Extensions.Logging.AzureAppServices provides logger implementations to support Azure App

Service diagnostics logs and log streaming features.

The preceding packages aren't available from the Microsoft.AspNetCore.App metapackage. Apps that target .NET

Framework or reference the Microsoft.AspNetCore.App  metapackage must explicitly reference the individual

packages in the app's project file.

App settings in the Azure Portal permit you to set environment variables for the app. Environment variables can

be consumed by the Environment Variables Configuration Provider.

When an app setting is created or modified in the Azure Portal and the SaveSave button is selected, the Azure App is

restarted. The environment variable is available to the app after the service restarts.

When an app uses the Generic Host, environment variables are loaded into the app's configuration when

CreateDefaultBuilder is called to build the host. For more information, see .NET Generic Host and the

Environment Variables Configuration Provider.

App settings in the Azure Portal permit you to set environment variables for the app. Environment variables can

be consumed by the Environment Variables Configuration Provider.

When an app setting is created or modified in the Azure Portal and the SaveSave button is selected, the Azure App is

restarted. The environment variable is available to the app after the service restarts.

When an app uses the Web Host, environment variables are loaded into the app's configuration when

CreateDefaultBuilder is called to build the host. For more information, see ASP.NET Core Web Host and the

Environment Variables Configuration Provider.

The IIS Integration Middleware, which configures Forwarded Headers Middleware when hosting out-of-process,

and the ASP.NET Core Module are configured to forward the scheme (HTTP/HTTPS) and the remote IP address

where the request originated. Additional configuration might be required for apps hosted behind additional

proxy servers and load balancers. For more information, see Configure ASP.NET Core to work with proxy servers

and load balancers.

ASP.NET Core apps deployed to App Service automatically receive an App Service extension, ASP.NET CoreASP.NET Core

Logging IntegrationLogging Integration. The extension enables logging integration for ASP.NET Core apps on Azure App Service.

ASP.NET Core apps deployed to App Service automatically receive an App Service extension, ASP.NET CoreASP.NET Core

Logging ExtensionsLogging Extensions . The extension enables logging integration for ASP.NET Core apps on Azure App Service.

https://docs.microsoft.com/en-us/dotnet/core/about#composition
https://www.nuget.org/packages/Microsoft.AspNetCore.AzureAppServices.HostingStartup/
https://www.nuget.org/packages/Microsoft.AspNetCore.AzureAppServicesIntegration/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.azureappservicesloggerfactoryextensions.addazurewebappdiagnostics
https://www.nuget.org/packages/Microsoft.Extensions.Logging.AzureAppServices/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder


  

Data Protection key ring and deployment slots

Deploy an ASP.NET Core app that uses a .NET Core preview

Specify the .NET Core SDK Version using Azure PipelinesSpecify the .NET Core SDK Version using Azure Pipelines

Specify the .NET Core SDK versionSpecify the .NET Core SDK version

For monitoring, logging, and troubleshooting information, see the following articles:

Monitor apps in Azure App Service

Learn how to review quotas and metrics for apps and App Service plans.

Enable diagnostics logging for apps in Azure App Service

Discover how to enable and access diagnostic logging for HTTP status codes, failed requests, and web server

activity.

Handle errors in ASP.NET Core

Understand common approaches to handling errors in ASP.NET Core apps.

Troubleshoot ASP.NET Core on Azure App Service and IIS

Learn how to diagnose issues with Azure App Service deployments with ASP.NET Core apps.

Common errors reference for Azure App Service and IIS with ASP.NET Core

See the common deployment configuration errors for apps hosted by Azure App Service/IIS with troubleshooting

advice.

Data Protection keys are persisted to the %HOME%\ASP.NET\DataProtection-Keys folder. This folder is backed by

network storage and is synchronized across all machines hosting the app. Keys aren't protected at rest. This folder

supplies the key ring to all instances of an app in a single deployment slot. Separate deployment slots, such as

Staging and Production, don't share a key ring.

When swapping between deployment slots, any system using data protection won't be able to decrypt stored

data using the key ring inside the previous slot. ASP.NET Cookie Middleware uses data protection to protect its

cookies. This leads to users being signed out of an app that uses the standard ASP.NET Cookie Middleware. For a

slot-independent key ring solution, use an external key ring provider, such as:

Azure Blob Storage

Azure Key Vault

SQL store

Redis cache

                          For more information, see Key storage providers in ASP.NET Core.

To deploy an app that uses a preview release of .NET Core, see the following resources. These approaches are also

used when the runtime is available but the SDK hasn't been installed on Azure App Service.

Specify the .NET Core SDK Version using Azure Pipelines

Deploy a self-contained preview app

Use Docker with Web Apps for containers

Install the preview site extension

See the ASP.NET Core on App Service Dashboard for the version of ASP.NET Core available on Azure App service.

Use Azure App Service CI/CD scenarios to set up a continuous integration build with Azure DevOps. After the

Azure DevOps build is created, optionally configure the build to use a specific SDK version.

When using the App Service deployment center to create an Azure DevOps build, the default build pipeline

includes steps for Restore , Build , Test , and Publish . To specify the SDK version, select the Add (+)Add (+)  button in

https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log
https://aspnetcoreon.azurewebsites.net/
https://docs.microsoft.com/en-us/azure/app-service/deploy-continuous-deployment


the Agent job list to add a new step. Search for .NET Core SDK.NET Core SDK in the search bar.

Move the step into the first position in the build so that the steps following it use the specified version of the .NET

Core SDK. Specify the version of the .NET Core SDK. In this example, the SDK is set to 3.0.100 .

To publish a self-contained deployment (SCD), configure SCD in the Publish  step and provide the Runtime

Identifier (RID).

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog


  

  

                                    

Deploy a self-contained preview appDeploy a self-contained preview app

Use Docker with Web Apps for containersUse Docker with Web Apps for containers

Install the preview site extensionInstall the preview site extension

A self-contained deployment (SCD) that targets a preview runtime carries the preview runtime in the deployment.

When deploying a self-contained app:

The site in Azure App Service doesn't require the preview site extension.

The app must be published following a different approach than when publishing for a framework-dependent

deployment (FDD).

Follow the guidance in the Deploy the app self-contained section.

The Docker Hub contains the latest preview Docker images. The images can be used as a base image. Use the

image and deploy to Web Apps for Containers normally.

If a problem occurs using the preview site extension, open an dotnet/AspNetCore issue.

1. From the Azure Portal, navigate to the App Service.

2. Select the web app.

3. Type "ex" in the search box to filter for "Extensions" or scroll down the list of management tools.

4. Select ExtensionsExtensions .

5. Select AddAdd.

6. Select the ASP.NET Core {X .Y} ({x64|x86}) RuntimeASP.NET Core {X .Y} ({x64|x86}) Runtime extension from the list, where {X.Y}  is the ASP.NET

Core preview version and {x64|x86}  specifies the platform.

7. Select OKOK to accept the legal terms.

8. Select OKOK to install the extension.

When the operation completes, the latest .NET Core preview is installed. Verify the installation:

1. Select Advanced ToolsAdvanced Tools .

2. Select GoGo in Advanced ToolsAdvanced Tools .

3. Select the Debug consoleDebug console > PowerShellPowerShell  menu item.

4. At the PowerShell prompt, execute the following command. Substitute the ASP.NET Core runtime version

for {X.Y}  and the platform for {PLATFORM}  in the command:

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying#framework-dependent-deployments-fdd
https://hub.docker.com/r/microsoft/aspnetcore/
https://github.com/dotnet/AspNetCore/issues


 

NOTENOTE

Test-Path D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x64\

NOTENOTE

{
    "type": "siteextensions",
    "name": "AspNetCoreRuntime",
    "apiVersion": "2015-04-01",
    "location": "[resourceGroup().location]",
    "properties": {
        "version": "[parameters('aspnetcoreVersion')]"
    },
    "dependsOn": [
        "[resourceId('Microsoft.Web/Sites', parameters('siteName'))]"
    ]
}

Publish and deploy the app

Deploy the app framework-dependentDeploy the app framework-dependent

Test-Path D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.{PLATFORM}\

The command returns True  when the x64 preview runtime is installed.

The platform architecture (x86/x64) of an App Services app is set in the app's settings in the Azure Portal for apps that are

hosted on an A-series compute (Basic) or higher hosting tier. Confirm that the app's publish settings (for example, in the

Visual Studio publish profile (.pubxml)) match the setting in the app's service configuration in the Azure portal.

If the app is run in in-process mode and the platform architecture is configured for 64-bit (x64), the ASP.NET Core Module

uses the 64-bit preview runtime, if present. Install the ASP.NET Core {X .Y} (x64) RuntimeASP.NET Core {X .Y} (x64) Runtime extension using the Azure

Portal.

After installing the x64 preview runtime, run the following command in the Azure Kudu PowerShell command window to

verify the installation. Substitute the ASP.NET Core runtime version for {X.Y}  in the following command:

The command returns True  when the x64 preview runtime is installed.

ASP.NET Core ExtensionsASP.NET Core Extensions enables additional functionality for ASP.NET Core on Azure App Services, such as enabling

Azure logging. The extension is installed automatically when deploying from Visual Studio. If the extension isn't installed,

install it for the app.

Use the preview site extension with an ARM templateUse the preview site extension with an ARM template

If an ARM template is used to create and deploy apps, the siteextensions  resource type can be used to add the

site extension to a web app. For example:

For a 64-bit deployment:

Use a 64-bit .NET Core SDK to build a 64-bit app.

Set the PlatformPlatform to 64 Bit64 Bit in the App Service's ConfigurationConfiguration > General settingsGeneral settings . The app must use a

Basic or higher service plan to enable the choice of platform bitness.

Visual Studio



  Deploy the app self-containedDeploy the app self-contained

Protocol settings (HTTPS)

Transform web.config

Additional resources

.NET Core CLI

1. Select BuildBuild > Publish {Application Name}Publish {Application Name}  from the Visual Studio toolbar or right-click the project in

Solution ExplorerSolution Explorer  and select PublishPublish .

2. In the Pick a publish targetPick a publish target dialog, confirm that App Ser viceApp Ser vice is selected.

3. Select AdvancedAdvanced. The PublishPublish dialog opens.

4. In the PublishPublish dialog:

5. Create a new site or update an existing site by following the remaining prompts of the publish wizard.

Confirm that the ReleaseRelease configuration is selected.

Open the Deployment ModeDeployment Mode drop-down list and select Framework-DependentFramework-Dependent.

Select Por tablePor table as the Target RuntimeTarget Runtime.

If you need to remove additional files upon deployment, open File Publish OptionsFile Publish Options  and select the

check box to remove additional files at the destination.

Select SaveSave.

Use Visual Studio or the .NET Core CLI for a self-contained deployment (SCD).

Visual Studio

.NET Core CLI

1. Select BuildBuild > Publish {Application Name}Publish {Application Name}  from the Visual Studio toolbar or right-click the project in

Solution ExplorerSolution Explorer  and select PublishPublish .

2. In the Pick a publish targetPick a publish target dialog, confirm that App Ser viceApp Ser vice is selected.

3. Select AdvancedAdvanced. The PublishPublish dialog opens.

4. In the PublishPublish dialog:

5. Create a new site or update an existing site by following the remaining prompts of the publish wizard.

Confirm that the ReleaseRelease configuration is selected.

Open the Deployment ModeDeployment Mode drop-down list and select Self-ContainedSelf-Contained.

Select the target runtime from the Target RuntimeTarget Runtime drop-down list. The default is win-x86 .

If you need to remove additional files upon deployment, open File Publish OptionsFile Publish Options  and select the

check box to remove additional files at the destination.

Select SaveSave.

Secure protocol bindings allow you specify a certificate to use when responding to requests over HTTPS. Binding

requires a valid private certificate (.pfx) issued for the specific hostname. For more information, see Tutorial: Bind

an existing custom SSL certificate to Azure App Service.

If you need to transform web.config on publish (for example, set environment variables based on the

configuration, profile, or environment), see Transform web.config.

App Service overview

Azure App Service: The Best Place to Host your .NET Apps (55-minute overview video)

Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

Azure App Service diagnostics overview

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-ssl
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://channel9.msdn.com/events/dotnetConf/2017/T222
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/en-us/azure/app-service/app-service-diagnostics


Host ASP.NET Core in a web farm

Azure App Service on Windows Server uses Internet Information Services (IIS). The following topics pertain to

the underlying IIS technology:

Host ASP.NET Core on Windows with IIS

ASP.NET Core Module

IIS modules with ASP.NET Core

Windows Server - IT administrator content for current and previous releases

https://www.iis.net/
https://docs.microsoft.com/en-us/windows-server/windows-server-versions


Publish an ASP.NET Core app to Azure with Visual
Studio
9/22/2020 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Set up

Create a web app

By Rick Anderson

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

See Publish a Web app to Azure App Service using Visual Studio for Mac if you are working on macOS.

To troubleshoot an App Service deployment issue, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Open a free Azure account if you don't have one.

In the Visual Studio Start Page, select File > New > Project...File > New > Project...

Complete the New ProjectNew Project dialog:

Select ASP.NET Core Web ApplicationASP.NET Core Web Application.

Select NextNext.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/publish-to-azure-webapp-using-vs.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/visualstudio/mac/publish-app-svc?view=vsmac-2019
https://azure.microsoft.com/free/dotnet/


In the New ASP.NET Core Web ApplicationNew ASP.NET Core Web Application dialog:

Select Web ApplicationWeb Application.

Select ChangeChange under Authentication.

The Change AuthenticationChange Authentication dialog appears.

Select Individual User AccountsIndividual User Accounts .

Select OKOK to return to the New ASP.NET Core Web ApplicationNew ASP.NET Core Web Application, then select CreateCreate.



Run the app

Register a userRegister a user

Visual Studio creates the solution.

Press CTRL+F5 to run the project.

Test the Pr ivacyPrivacy  link.



Select RegisterRegister  and register a new user. You can use a fictitious email address. When you submit, the page

displays the following error :

"A database operation failed while processing the request. Applying existing migrations for Application DB

context may resolve this issue."

Select Apply MigrationsApply Migrations  and, once the page updates, refresh the page.

The app displays the email used to register the new user and a LogoutLogout link.



 Deploy the app to Azure
Right-click on the project in Solution Explorer and select Publish...Publish... .

In the PublishPublish dialog:

Select AzureAzure.

Select NextNext.

In the PublishPublish dialog:

Select Azure App Ser vice (L inux)Azure App Ser vice (L inux) .



Select NextNext.

In the PublishPublish dialog select Create a new Azure App Ser vice...Create a new Azure App Ser vice...

The Create App Ser viceCreate App Ser vice dialog appears:

The App NameApp Name, Resource GroupResource Group, and App Ser vice PlanApp Ser vice Plan entry fields are populated. You can keep these

names or change them.



Select CreateCreate.

After creation is completed the dialog is automatically closed and the PublishPublish dialog gets focus again:

The new instance that was just created is automatically selected.

Select FinishFinish .



Next you see the Publish Profile summar yPublish Profile summar y  page. Visual Studio has detected that this application requires a

SQL Server database and it's asking you to configure it. Select ConfigureConfigure.

The Configure dependencyConfigure dependency  dialog appears:

Select Azure SQL DatabaseAzure SQL Database.

Select NextNext.



In the Configure Azure SQL databaseConfigure Azure SQL database dialog select Create a SQL DatabaseCreate a SQL Database

The Create Azure SQL DatabaseCreate Azure SQL Database appears:

The Database nameDatabase name, Resource GroupResource Group, Database ser verDatabase ser ver  and App Ser vice PlanApp Ser vice Plan entry fields are

populated. You can keep these values or change them.

Enter the Database administrator usernameDatabase administrator username and Database administrator passwordDatabase administrator password for the selected



Database ser verDatabase ser ver  (note the account you use must have the necessary permissions to create the new Azure

SQL database)

Select CreateCreate.

After creation is completed the dialog is automatically closed and the Configure Azure SQL DatabaseConfigure Azure SQL Database dialog

gets focus again:

The new instance that was just created is automatically selected.

Select NextNext.



In the next step of the Configure Azure SQL DatabaseConfigure Azure SQL Database dialog:

Enter the Database connection user nameDatabase connection user name and Database connection passwordDatabase connection password fields. These are the

details your application will use to connect to the database at runtime. Best practice is to avoid using the same

details as the admin username & password used in the previous step.

Select FinishFinish .



In the Publish Profile summar yPublish Profile summar y  page select SettingsSettings :

On the SettingsSettings  page of the PublishPublish dialog:

Expand DatabasesDatabases  and check Use this connection str ing at runtimeUse this connection str ing at runtime.

Expand Entity Framework MigrationsEntity Framework Migrations  and check Apply this migration on publishApply this migration on publish .

Select SaveSave. Visual Studio returns to the PublishPublish dialog.

Click PublishPublish . Visual Studio publishes your app to Azure. When the deployment completes, the app is opened in

a browser.



Update the appUpdate the app

@page
@model IndexModel
@{
    ViewData["Title"] = "Home page";
}

<div class="text-center">
    <h1 class="display-4">Welcome</h1>
    <p>Learn about <a href="https://docs.microsoft.com/aspnet/core">building Web apps with ASP.NET 
Core</a>.</p>
    <p>Hello ASP.NET Core!</p>
</div>

Edit the Pages/Index.cshtml Razor page and change its contents. For example, you can modify the

paragraph to say "Hello ASP.NET Core!":

Select PublishPublish from the Publish Profile summar yPublish Profile summar y  page again.

After the app is published, verify the changes you made are available on Azure.



Clean upClean up
When you have finished testing the app, go to the Azure portal and delete the app.

Select Resource groupsResource groups , then select the resource group you created.

In the Resource groupsResource groups  page, select DeleteDelete.

https://portal.azure.com/


Next stepsNext steps

Additional resources

Enter the name of the resource group and select DeleteDelete. Your app and all other resources created in this

tutorial are now deleted from Azure.

Continuous deployment to Azure with Visual Studio and Git with ASP.NET Core

For Visual Studio Code, see Publish profiles.

Azure App Service

Azure resource groups

Azure SQL Database

Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment

Troubleshoot ASP.NET Core on Azure App Service and IIS

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview#resource-groups
https://docs.microsoft.com/en-us/azure/sql-database/


Continuous deployment to Azure with Visual Studio
and Git with ASP.NET Core
9/22/2020 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

Prerequisites

Create an ASP.NET Core web app

By Erik Reitan

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

This tutorial shows how to create an ASP.NET Core web app using Visual Studio and deploy it from Visual Studio

to Azure App Service using continuous deployment.

See also Create your first pipeline with Azure Pipelines, which shows how to configure a continuous delivery (CD)

workflow for Azure App Service using Azure DevOps Services. Azure Pipelines (an Azure DevOps Services

service) simplifies setting up a robust deployment pipeline to publish updates for apps hosted in Azure App

Service. The pipeline can be configured from the Azure portal to build, run tests, deploy to a staging slot, and then

deploy to production.

To complete this tutorial, a Microsoft Azure account is required. To obtain an account, activate MSDN subscriber benefits or

sign up for a free trial.

This tutorial assumes the following software is installed:

Visual Studio

.NET Core SDK 2.0 or later

Git for Windows

1. Start Visual Studio.

2. From the FileFile menu, select NewNew  > ProjectProject.

3. Select the ASP.NET Core Web ApplicationASP.NET Core Web Application project template. It appears under InstalledInstalled > TemplatesTemplates  >

Visual C#Visual C# > .NET Core.NET Core. Name the project SampleWebAppDemo . Select the Create new Git repositor yCreate new Git repositor y

option and click OKOK.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/azure-apps/azure-continuous-deployment.md
https://github.com/Erikre
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started-yaml
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://azure.microsoft.com/pricing/member-offers/credit-for-visual-studio-subscribers/?WT.mc_id=A261C142F
https://azure.microsoft.com/free/dotnet/?WT.mc_id=A261C142F
https://visualstudio.microsoft.com
https://dotnet.microsoft.com/download
https://git-scm.com/downloads


NOTENOTE

Running the web app locallyRunning the web app locally

4. In the New ASP.NET Core ProjectNew ASP.NET Core Project dialog, select the ASP.NET Core EmptyEmpty  template, then click OKOK.

The most recent release of .NET Core is 2.0.

1. Once Visual Studio finishes creating the app, run the app by selecting DebugDebug > Star t DebuggingStar t Debugging. As an

alternative, press F5F5 .

It may take time to initialize Visual Studio and the new app. Once it's complete, the browser shows the



Create a web app in the Azure Portal

running app.

2. After reviewing the running Web app, close the browser and select the "Stop Debugging" icon in the

toolbar of Visual Studio to stop the app.

The following steps create a web app in the Azure Portal:

1. Log in to the Azure Portal.

2. Select NEWNEW at the top left of the portal interface.

3. Select Web + MobileWeb + Mobile > Web AppWeb App.

https://portal.azure.com


4. In the Web AppWeb App blade, enter a unique value for the App Ser vice NameApp Ser vice Name.



NOTENOTE
The App Ser vice NameApp Ser vice Name name must be unique. The portal enforces this rule when the name is provided. If

providing a different value, substitute that value for each occurrence of SampleWebAppDemoSampleWebAppDemo in this tutorial.

Also in the Web AppWeb App blade, select an existing App Ser vice Plan/LocationApp Ser vice Plan/Location or create a new one. If creating

a new plan, select the pricing tier, location, and other options. For more information on App Service plans,

see Azure App Service plans in-depth overview.

5. Select CreateCreate. Azure will provision and start the web app.

https://docs.microsoft.com/en-us/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview


Enable Git publishing for the new web app
Git is a distributed version control system that can be used to deploy an Azure App Service web app. Web app

code is stored in a local Git repository, and the code is deployed to Azure by pushing to a remote repository.

1. Log into the Azure Portal.

2. Select App Ser vicesApp Ser vices  to view a list of the app services associated with the Azure subscription.

3. Select the web app created in the previous section of this tutorial.

4. In the DeploymentDeployment blade, select Deployment optionsDeployment options  > Choose SourceChoose Source > Local Git Repositor yLocal Git Repositor y .

5. Select OKOK.

6. If deployment credentials for publishing a web app or other App Service app haven't previously been set

up, set them up now:

Select SettingsSettings  > Deployment credentialsDeployment credentials . The Set deployment credentialsSet deployment credentials  blade is displayed.

Create a user name and password. Save the password for later use when setting up Git.

Select SaveSave.

7. In the Web AppWeb App blade, select SettingsSettings  > Proper tiesProper ties . The URL of the remote Git repository to deploy to is

https://portal.azure.com


Publish the web app to Azure App Service

shown under GIT URLGIT URL .

8. Copy the GIT URLGIT URL  value for later use in the tutorial.

In this section, create a local Git repository using Visual Studio and push from that repository to Azure to deploy

the web app. The steps involved include the following:

Add the remote repository setting using the GIT URL value, so the local repository can be deployed to Azure.

Commit project changes.

Push project changes from the local repository to the remote repository on Azure.



NOTENOTE

1. In Solution ExplorerSolution Explorer  right-click Solution 'SampleWebAppDemo'Solution 'SampleWebAppDemo'  and select CommitCommit. The TeamTeam

ExplorerExplorer  is displayed.

2. In Team ExplorerTeam Explorer , select the HomeHome (home icon) > SettingsSettings  > Repositor y SettingsRepositor y Settings .

3. In the RemotesRemotes  section of the Repositor y SettingsRepositor y Settings , select AddAdd. The Add RemoteAdd Remote dialog box is displayed.

4. Set the NameName of the remote to Azure-SampleAppAzure-SampleApp.

5. Set the value for FetchFetch to the Git URLGit URL  that copied from Azure earlier in this tutorial. Note that this is the

URL that ends with .git.git.

As an alternative, specify the remote repository from the Command WindowCommand Window by opening the CommandCommand

WindowWindow, changing to the project directory, and entering the command. Example:

git remote add Azure-SampleApp https://me@sampleapp.scm.azurewebsites.net:443/SampleApp.git

6. Select the HomeHome (home icon) > SettingsSettings  > Global SettingsGlobal Settings . Confirm that the name and email address

are set. Select UpdateUpdate if required.

7. Select HomeHome > ChangesChanges  to return to the ChangesChanges  view.

8. Enter a commit message, such as Initial Push #1Initial Push #1  and select CommitCommit. This action creates a commit locally.



Verify the Active DeploymentVerify the Active Deployment

NOTENOTE

remote: Finished successfully.
remote: Running post deployment command(s)...
remote: Deployment successful.
To https://username@samplewebappdemo01.scm.azurewebsites.net:443/SampleWebAppDemo01.git
* [new branch]      master -> master
Branch master set up to track remote branch master from Azure-SampleApp.

NOTENOTE

As an alternative, commit changes from the Command WindowCommand Window by opening the Command WindowCommand Window, changing

to the project directory, and entering the git commands. Example:

git add .

git commit -am "Initial Push #1"

9. Select HomeHome > SyncSync > ActionsActions  > Open Command PromptOpen Command Prompt. The command prompt opens to the project

directory.

10. Enter the following command in the command window:

git push -u Azure-SampleApp master

11. Enter the Azure deployment credentialsdeployment credentials  password created earlier in Azure.

This command starts the process of pushing the local project files to Azure. The output from the above

command ends with a message that the deployment was successful.

If collaboration on the project is required, consider pushing to GitHub before pushing to Azure.

Verify that the web app transfer from the local environment to Azure is successful.

In the Azure Portal, select the web app. Select DeploymentDeployment > Deployment optionsDeployment options .

https://github.com
https://portal.azure.com


Run the app in Azure

Update the web app and republish

NOTENOTE

Now that the web app is deployed to Azure, run the app.

This can be accomplished in two ways:

In the Azure Portal, locate the web app blade for the web app. Select BrowseBrowse to view the app in the default

browser.

Open a browser and enter the URL for the web app. Example: http://SampleWebAppDemo.azurewebsites.net

After making changes to the local code, republish:

await context.Response.WriteAsync("Hello World! Deploy to Azure.");

1. In Solution ExplorerSolution Explorer  of Visual Studio, open the Startup.cs file.

2. In the Configure  method, modify the Response.WriteAsync  method so that it appears as follows:

3. Save the changes to Startup.cs.

4. In Solution ExplorerSolution Explorer , right-click Solution 'SampleWebAppDemo'Solution 'SampleWebAppDemo'  and select CommitCommit. The TeamTeam

ExplorerExplorer  is displayed.

5. Enter a commit message, such as Update #2 .

6. Press the CommitCommit button to commit the project changes.

7. Select HomeHome > SyncSync > ActionsActions  > PushPush.

As an alternative, push the changes from the Command WindowCommand Window by opening the Command WindowCommand Window, changing to the

project directory, and entering a git command. Example:

git push -u Azure-SampleApp master



View the updated web app in Azure

Additional resources

View the updated web app by selecting BrowseBrowse from the web app blade in the Azure Portal or by opening a

browser and entering the URL for the web app. Example: http://SampleWebAppDemo.azurewebsites.net

Create your first pipeline with Azure Pipelines

Project Kudu

Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment

https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started-yaml
https://github.com/projectkudu/kudu/wiki


ASP.NET Core Module
9/22/2020 • 40 minutes to read • Edit Online

Hosting models
In-process hosting modelIn-process hosting model

By Tom Dykstra, Rick Strahl, Chris Ross, Rick Anderson, Sourabh Shirhatti, and Justin Kotalik

The ASP.NET Core Module is a native IIS module that plugs into the IIS pipeline to either :

Host an ASP.NET Core app inside of the IIS worker process ( w3wp.exe ), called the in-process hosting model.

Forward web requests to a backend ASP.NET Core app running the Kestrel server, called the out-of-process

hosting model.

Supported Windows versions:

Windows 7 or later

Windows Server 2012 R2 or later

When hosting in-process, the module uses an in-process server implementation for IIS, called IIS HTTP Server (

IISHttpServer ).

When hosting out-of-process, the module only works with Kestrel. The module doesn't function with HTTP.sys.

ASP.NET Core apps default to the in-process hosting model.

The following characteristics apply when hosting in-process:

IIS HTTP Server ( IISHttpServer ) is used instead of Kestrel server. For in-process, CreateDefaultBuilder calls

UseIIS to:

Register the IISHttpServer .

Configure the port and base path the server should listen on when running behind the ASP.NET Core

Module.

Configure the host to capture startup errors.

The requestTimeout attribute doesn't apply to in-process hosting.

Sharing an app pool among apps isn't supported. Use one app pool per app.

When using Web Deploy or manually placing an app_offline.htm file in the deployment, the app might not

shut down immediately if there's an open connection. For example, a websocket connection may delay app

shut down.

The architecture (bitness) of the app and installed runtime (x64 or x86) must match the architecture of the

app pool.

Client disconnects are detected. The HttpContext.RequestAborted cancellation token is cancelled when the

client disconnects.

In ASP.NET Core 2.2.1 or earlier, GetCurrentDirectory returns the worker directory of the process started by

IIS rather than the app's directory (for example, C:\Windows\System32\inetsrv for w3wp.exe).

For sample code that sets the app's current directory, see the CurrentDirectoryHelpers class. Call the 

SetCurrentDirectory  method. Subsequent calls to GetCurrentDirectory provide the app's directory.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/aspnet-core-module.md
https://github.com/tdykstra
https://github.com/RickStrahl
https://github.com/Tratcher
https://twitter.com/RickAndMSFT
https://twitter.com/sshirhatti
https://github.com/jkotalik
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiis
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.requestaborted
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/host-and-deploy/aspnet-core-module/samples_snapshot/3.x/CurrentDirectoryHelpers.cs
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory


Out-of-process hosting modelOut-of-process hosting model

<PropertyGroup>
  <AspNetCoreHostingModel>OutOfProcess</AspNetCoreHostingModel>
</PropertyGroup>

Hosting model changesHosting model changes

Process nameProcess name

How to install and use the ASP.NET Core Module

public void ConfigureServices(IServiceCollection services)
{
    services.AddTransient<IClaimsTransformation, ClaimsTransformer>();
    services.AddAuthentication(IISServerDefaults.AuthenticationScheme);
}

public void Configure(IApplicationBuilder app)
{
    app.UseAuthentication();
}

When hosting in-process, AuthenticateAsync isn't called internally to initialize a user. Therefore, an

IClaimsTransformation implementation used to transform claims after every authentication isn't activated by

default. When transforming claims with an IClaimsTransformation implementation, call AddAuthentication to

add authentication services:

Web Package (single-file) deployments aren't supported.

To configure an app for out-of-process hosting, set the value of the <AspNetCoreHostingModel>  property to 

OutOfProcess  in the project file (.csproj):

In-process hosting is set with InProcess , which is the default value.

The value of <AspNetCoreHostingModel>  is case insensitive, so inprocess  and outofprocess  are valid values.

Kestrel server is used instead of IIS HTTP Server ( IISHttpServer ).

For out-of-process, CreateDefaultBuilder calls UseIISIntegration to:

Configure the port and base path the server should listen on when running behind the ASP.NET Core Module.

Configure the host to capture startup errors.

If the hostingModel  setting is changed in the web.config file (explained in the Configuration with web.config

section), the module recycles the worker process for IIS.

For IIS Express, the module doesn't recycle the worker process but instead triggers a graceful shutdown of the

current IIS Express process. The next request to the app spawns a new IIS Express process.

Process.GetCurrentProcess().ProcessName  reports w3wp / iisexpress  (in-process) or dotnet  (out-of-process).

Many native modules, such as Windows Authentication, remain active. To learn more about IIS modules active with

the ASP.NET Core Module, see IIS modules with ASP.NET Core.

The ASP.NET Core Module can also:

Set environment variables for the worker process.

Log stdout output to file storage for troubleshooting startup issues.

Forward Windows authentication tokens.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationservice.authenticateasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iclaimstransformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iclaimstransformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-enterprise/deploying-web-packages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiisintegration


Configuration with web.config

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <handlers>
        <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModuleV2" resourceType="Unspecified" />
      </handlers>
      <aspNetCore processPath="dotnet"
                  arguments=".\MyApp.dll"
                  stdoutLogEnabled="false"
                  stdoutLogFile=".\logs\stdout"
                  hostingModel="inprocess" />
    </system.webServer>
  </location>
</configuration>

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <handlers>
        <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModuleV2" resourceType="Unspecified" />
      </handlers>
      <aspNetCore processPath=".\MyApp.exe"
                  stdoutLogEnabled="false"
                  stdoutLogFile=".\logs\stdout"
                  hostingModel="inprocess" />
    </system.webServer>
  </location>
</configuration>

Attributes of the aspNetCore elementAttributes of the aspNetCore element

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

arguments

For instructions on how to install the ASP.NET Core Module, see Install the .NET Core Hosting Bundle.

The ASP.NET Core Module is configured with the aspNetCore  section of the system.webServer  node in the site's

web.config file.

The following web.config file is published for a framework-dependent deployment and configures the ASP.NET Core

Module to handle site requests:

The following web.config is published for a self-contained deployment:

The InheritInChildApplications property is set to false  to indicate that the settings specified within the <location>

element aren't inherited by apps that reside in a subdirectory of the app.

When an app is deployed to Azure App Service, the stdoutLogFile  path is set to \\?\%home%\LogFiles\stdout . The

path saves stdout logs to the LogFiles folder, which is a location automatically created by the service.

For information on IIS sub-application configuration, see Host ASP.NET Core on Windows with IIS.

Optional string attribute.

Arguments to the executable
specified in processPathprocessPath.

https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.sectioninformation.inheritinchildapplications
https://docs.microsoft.com/en-us/iis/manage/managing-your-configuration-settings/understanding-iis-configuration-delegation#the-concept-of-location
https://azure.microsoft.com/services/app-service/


disableStartUpErrorPage false

forwardWindowsAuthToken true

hostingModel InProcess

inprocess

processesPerApplication Default: 1

Min: 1

Max: 100 †

processPath

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional Boolean attribute.

If true, the 502.5 - Process502.5 - Process
FailureFailure page is suppressed, and the
502 status code page configured in
the web.config takes precedence.

Optional Boolean attribute.

If true, the token is forwarded to
the child process listening on
%ASPNETCORE_PORT% as a header
'MS-ASPNETCORE-
WINAUTHTOKEN' per request. It's
the responsibility of that process to
call CloseHandle on this token per
request.

Optional string attribute.

Specifies the hosting model as in-
process ( InProcess / inprocess )

or out-of-process ( OutOfProcess /

outofprocess ).

Optional integer attribute.

Specifies the number of instances of
the process specified in the
processPathprocessPath setting that can be
spun up per app.

†For in-process hosting, the value is
limited to 1 .

Setting processesPerApplication

is discouraged. This attribute will be
removed in a future release.

Required string attribute.

Path to the executable that launches
a process listening for HTTP
requests. Relative paths are
supported. If the path begins with 
. , the path is considered to be

relative to the site root.



rapidFailsPerMinute Default: 10

Min: 0

Max: 100

requestTimeout Default: 00:02:00

Min: 00:00:00

Max: 360:00:00

shutdownTimeLimit Default: 10

Min: 0

Max: 600

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional integer attribute.

Specifies the number of times the
process specified in processPathprocessPath is
allowed to crash per minute. If this
limit is exceeded, the module stops
launching the process for the
remainder of the minute.

Not supported with in-process
hosting.

Optional timespan attribute.

Specifies the duration for which the
ASP.NET Core Module waits for a
response from the process listening
on %ASPNETCORE_PORT%.

In versions of the ASP.NET Core
Module that shipped with the
release of ASP.NET Core 2.1 or later,
the requestTimeout  is specified in

hours, minutes, and seconds.

Doesn't apply to in-process hosting.
For in-process hosting, the module
waits for the app to process the
request.

Valid values for minutes and
seconds segments of the string are
in the range 0-59. Use of 6060  in the
value for minutes or seconds results
in a 500 - Internal Server Error.

Optional integer attribute.

Duration in seconds that the
module waits for the executable to
gracefully shutdown when the
app_offline.htm file is detected.



startupTimeLimit Default: 120

Min: 0

Max: 3600

stdoutLogEnabled false

stdoutLogFile aspnetcore-stdout

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Set environment variablesSet environment variables

Optional integer attribute.

Duration in seconds that the
module waits for the executable to
start a process listening on the
port. If this time limit is exceeded,
the module kills the process.

When hosting in-process: The
process is notnot  restarted and does
notnot  use the rapidFailsPerMinuterapidFailsPerMinute
setting.

When hosting out-of-process: The
module attempts to relaunch the
process when it receives a new
request and continues to attempt
to restart the process on
subsequent incoming requests
unless the app fails to start
rapidFailsPerMinuterapidFailsPerMinute number of
times in the last rolling minute.

A value of 0 (zero) is notnot  considered
an infinite timeout.

Optional Boolean attribute.

If true, stdoutstdout  and stderrstderr  for the
process specified in processPathprocessPath
are redirected to the file specified in
stdoutLogFilestdoutLogFile.

Optional string attribute.

Specifies the relative or absolute file
path for which stdoutstdout  and stderrstderr
from the process specified in
processPathprocessPath are logged. Relative
paths are relative to the root of the
site. Any path starting with .  are

relative to the site root and all other
paths are treated as absolute paths.
Any folders provided in the path are
created by the module when the log
file is created. Using underscore
delimiters, a timestamp, process ID,
and file extension (.log) are added to
the last segment of the
stdoutLogFilestdoutLogFile path. If 
.\logs\stdout  is supplied as a

value, an example stdout log is
saved as
stdout_20180205194132_1934.log
in the logs folder when saved on
2/5/2018 at 19:41:32 with a
process ID of 1934.

Environment variables can be specified for the process in the processPath  attribute. Specify an environment



<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout"
      hostingModel="inprocess">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
    <environmentVariable name="CONFIG_DIR" value="f:\application_config" />
  </environmentVariables>
</aspNetCore>

NOTENOTE

<PropertyGroup>
  <EnvironmentName>Development</EnvironmentName>
</PropertyGroup>

WARNINGWARNING

app_offline.htm

Start-up error page

variable with the <environmentVariable>  child element of an <environmentVariables>  collection element.

Environment variables set in this section take precedence over system environment variables.

The following example sets two environment variables in web.config. ASPNETCORE_ENVIRONMENT  configures the app's

environment to Development . A developer may temporarily set this value in the web.config file in order to force the

Developer Exception Page to load when debugging an app exception. CONFIG_DIR  is an example of a user-defined

environment variable, where the developer has written code that reads the value on startup to form a path for

loading the app's configuration file.

An alternative to setting the environment directly in web.config is to include the <EnvironmentName>  property in the publish

profile (.pubxml) or project file. This approach sets the environment in web.config when the project is published:

Only set the ASPNETCORE_ENVIRONMENT  environment variable to Development  on staging and testing servers that aren't

accessible to untrusted networks, such as the Internet.

If a file with the name app_offline.htm is detected in the root directory of an app, the ASP.NET Core Module attempts

to gracefully shutdown the app and stop processing incoming requests. If the app is still running after the number

of seconds defined in shutdownTimeLimit , the ASP.NET Core Module kills the running process.

While the app_offline.htm file is present, the ASP.NET Core Module responds to requests by sending back the

contents of the app_offline.htm file. When the app_offline.htm file is removed, the next request starts the app.

When using the out-of-process hosting model, the app might not shut down immediately if there's an open

connection. For example, a websocket connection may delay app shut down.

Both in-process and out-of-process hosting produce custom error pages when they fail to start the app.

If the ASP.NET Core Module fails to find either the in-process or out-of-process request handler, a 500.0 - In-

Process/Out-Of-Process Handler Load Failure status code page appears.

For in-process hosting if the ASP.NET Core Module fails to start the app, a 500.30 - Start Failure status code page

appears.



Log creation and redirection

<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="true"
    stdoutLogFile=".\logs\stdout"
    hostingModel="inprocess">
</aspNetCore>

Enhanced diagnostic logs

For out-of-process hosting if the ASP.NET Core Module fails to launch the backend process or the backend process

starts but fails to listen on the configured port, a 502.5 - Process Failure status code page appears.

To suppress this page and revert to the default IIS 5xx status code page, use the disableStartUpErrorPage  attribute.

For more information on configuring custom error messages, see HTTP Errors <httpErrors>.

The ASP.NET Core Module redirects stdout and stderr console output to disk if the stdoutLogEnabled  and 

stdoutLogFile  attributes of the aspNetCore  element are set. Any folders in the stdoutLogFile  path are created by

the module when the log file is created. The app pool must have write access to the location where the logs are

written (use IIS AppPool\<app_pool_name>  to provide write permission).

Logs aren't rotated, unless process recycling/restart occurs. It's the responsibility of the hoster to limit the disk

space the logs consume.

Using the stdout log is only recommended for troubleshooting app startup issues when hosting on IIS or when

using development-time support for IIS with Visual Studio, not while debugging locally and running the app with IIS

Express.

Don't use the stdout log for general app logging purposes. For routine logging in an ASP.NET Core app, use a

logging library that limits log file size and rotates logs. For more information, see third-party logging providers.

A timestamp and file extension are added automatically when the log file is created. The log file name is composed

by appending the timestamp, process ID, and file extension (.log) to the last segment of the stdoutLogFile  path

(typically stdout) delimited by underscores. If the stdoutLogFile  path ends with stdout, a log for an app with a PID

of 1934 created on 2/5/2018 at 19:42:32 has the file name stdout_20180205194132_1934.log.

If stdoutLogEnabled  is false, errors that occur on app startup are captured and emitted to the event log up to 30 KB.

After startup, all additional logs are discarded.

The following sample aspNetCore  element configures stdout logging at the relative path .\log\ . Confirm that the

AppPool user identity has permission to write to the path provided.

When publishing an app for Azure App Service deployment, the Web SDK sets the stdoutLogFile  value to 

\\?\%home%\LogFiles\stdout . The %home  environment variable is predefined for apps hosted by Azure App Service.

To create logging filter rules, see the Configuration and Log filtering sections of the ASP.NET Core logging

documentation.

For more information on path formats, see File path formats on Windows systems.

The ASP.NET Core Module is configurable to provide enhanced diagnostics logs. Add the <handlerSettings>

element to the <aspNetCore>  element in web.config. Setting the debugLevel  to TRACE  exposes a higher fidelity of

diagnostic information:

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/httperrors/
https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats


<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="false"
    stdoutLogFile="\\?\%home%\LogFiles\stdout"
    hostingModel="inprocess">
  <handlerSettings>
    <handlerSetting name="debugFile" value=".\logs\aspnetcore-debug.log" />
    <handlerSetting name="debugLevel" value="FILE,TRACE" />
  </handlerSettings>
</aspNetCore>

WARNINGWARNING

Modify the stack size

Any folders in the path (logs in the preceding example) are created by the module when the log file is created. The

app pool must have write access to the location where the logs are written (use IIS AppPool\<app_pool_name>  to

provide write permission).

Debug level ( debugLevel ) values can include both the level and the location.

Levels (in order from least to most verbose):

ERROR

WARNING

INFO

TRACE

Locations (multiple locations are permitted):

CONSOLE

EVENTLOG

FILE

The handler settings can also be provided via environment variables:

ASPNETCORE_MODULE_DEBUG_FILE : Path to the debug log file. (Default: aspnetcore-debug.log)

ASPNETCORE_MODULE_DEBUG : Debug level setting.

Do notnot  leave debug logging enabled in the deployment for longer than required to troubleshoot an issue. The size of the log

isn't limited. Leaving the debug log enabled can exhaust the available disk space and crash the server or app service.

See Configuration with web.config for an example of the aspNetCore  element in the web.config file.

Only applies when using the in-process hosting model.

Configure the managed stack size using the stackSize  setting in bytes in web.config. The default size is 1048576

bytes (1 MB).



<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="false"
    stdoutLogFile="\\?\%home%\LogFiles\stdout"
    hostingModel="inprocess">
  <handlerSettings>
    <handlerSetting name="stackSize" value="2097152" />
  </handlerSettings>
</aspNetCore>

Proxy configuration uses HTTP protocol and a pairing token

ASP.NET Core Module with an IIS Shared Configuration

dotnet-hosting-{VERSION}.exe OPT_NO_SHARED_CONFIG_CHECK=1

Module version and Hosting Bundle installer logs

Only applies to out-of-process hosting.

The proxy created between the ASP.NET Core Module and Kestrel uses the HTTP protocol. There's no risk of

eavesdropping the traffic between the module and Kestrel from a location off of the server.

A pairing token is used to guarantee that the requests received by Kestrel were proxied by IIS and didn't come from

some other source. The pairing token is created and set into an environment variable ( ASPNETCORE_TOKEN ) by the

module. The pairing token is also set into a header ( MS-ASPNETCORE-TOKEN ) on every proxied request. IIS Middleware

checks each request it receives to confirm that the pairing token header value matches the environment variable

value. If the token values are mismatched, the request is logged and rejected. The pairing token environment

variable and the traffic between the module and Kestrel aren't accessible from a location off of the server. Without

knowing the pairing token value, an attacker can't submit requests that bypass the check in the IIS Middleware.

The ASP.NET Core Module installer runs with the privileges of the TrustedInstallerTrustedInstaller  account. Because the local

system account doesn't have modify permission for the share path used by the IIS Shared Configuration, the

installer throws an access denied error when attempting to configure the module settings in the

applicationHost.config file on the share.

When using an IIS Shared Configuration on the same machine as the IIS installation, run the ASP.NET Core Hosting

Bundle installer with the OPT_NO_SHARED_CONFIG_CHECK  parameter set to 1 :

When the path to the shared configuration isn't on the same machine as the IIS installation, follow these steps:

1. Disable the IIS Shared Configuration.

2. Run the installer.

3. Export the updated applicationHost.config file to the share.

4. Re-enable the IIS Shared Configuration.

To determine the version of the installed ASP.NET Core Module:

1. On the hosting system, navigate to %windir%\System32\inetsrv.

2. Locate the aspnetcore.dll file.

3. Right-click the file and select Proper tiesProper ties  from the contextual menu.

4. Select the DetailsDetails  tab. The File versionFile version and Product versionProduct version represent the installed version of the module.

The Hosting Bundle installer logs for the module are found at C:\Users\%UserName%\AppData\Local\Temp. The file



Module, schema, and configuration file locations
ModuleModule

SchemaSchema

ConfigurationConfiguration

is named dd_DotNetCoreWinSvrHosting__<timestamp>_000_AspNetCoreModule_x64.log.

IIS  (x86/amd64):IIS  (x86/amd64):

%windir%\System32\inetsrv\aspnetcore.dll

%windir%\SysWOW64\inetsrv\aspnetcore.dll

%ProgramFiles%\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll

%ProgramFiles(x86)%\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll

IIS  Express (x86/amd64):IIS  Express (x86/amd64):

%ProgramFiles%\IIS Express\aspnetcore.dll

%ProgramFiles(x86)%\IIS Express\aspnetcore.dll

%ProgramFiles%\IIS Express\Asp.Net Core Module\V2\aspnetcorev2.dll

%ProgramFiles(x86)%\IIS Express\Asp.Net Core Module\V2\aspnetcorev2.dll

IISIIS

%windir%\System32\inetsrv\config\schema\aspnetcore_schema.xml

%windir%\System32\inetsrv\config\schema\aspnetcore_schema_v2.xml

IIS  ExpressIIS  Express

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema.xml

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema_v2.xml

IISIIS

%windir%\System32\inetsrv\config\applicationHost.config

IIS  ExpressIIS  Express

Visual Studio: {APPLICATION ROOT}\.vs\config\applicationHost.config

iisexpress.exe CLI: %USERPROFILE%\Documents\IISExpress\config\applicationhost.config

The files can be found by searching for aspnetcore in the applicationHost.config file.

The ASP.NET Core Module is a native IIS module that plugs into the IIS pipeline to either :

Host an ASP.NET Core app inside of the IIS worker process ( w3wp.exe ), called the in-process hosting model.

Forward web requests to a backend ASP.NET Core app running the Kestrel server, called the out-of-process

hosting model.

Supported Windows versions:

Windows 7 or later

Windows Server 2008 R2 or later



Hosting models
In-process hosting modelIn-process hosting model

<PropertyGroup>
  <AspNetCoreHostingModel>InProcess</AspNetCoreHostingModel>
</PropertyGroup>

When hosting in-process, the module uses an in-process server implementation for IIS, called IIS HTTP Server (

IISHttpServer ).

When hosting out-of-process, the module only works with Kestrel. The module doesn't function with HTTP.sys.

To configure an app for in-process hosting, add the <AspNetCoreHostingModel>  property to the app's project file with

a value of InProcess  (out-of-process hosting is set with OutOfProcess ):

The in-process hosting model isn't supported for ASP.NET Core apps that target the .NET Framework.

The value of <AspNetCoreHostingModel>  is case insensitive, so inprocess  and outofprocess  are valid values.

If the <AspNetCoreHostingModel>  property isn't present in the file, the default value is OutOfProcess .

The following characteristics apply when hosting in-process:

IIS HTTP Server ( IISHttpServer ) is used instead of Kestrel server. For in-process, CreateDefaultBuilder calls

UseIIS to:

Register the IISHttpServer .

Configure the port and base path the server should listen on when running behind the ASP.NET Core

Module.

Configure the host to capture startup errors.

The requestTimeout attribute doesn't apply to in-process hosting.

Sharing an app pool among apps isn't supported. Use one app pool per app.

When using Web Deploy or manually placing an app_offline.htm file in the deployment, the app might not

shut down immediately if there's an open connection. For example, a websocket connection may delay app

shut down.

The architecture (bitness) of the app and installed runtime (x64 or x86) must match the architecture of the

app pool.

Client disconnects are detected. The HttpContext.RequestAborted cancellation token is cancelled when the

client disconnects.

In ASP.NET Core 2.2.1 or earlier, GetCurrentDirectory returns the worker directory of the process started by

IIS rather than the app's directory (for example, C:\Windows\System32\inetsrv for w3wp.exe).

For sample code that sets the app's current directory, see the CurrentDirectoryHelpers class. Call the 

SetCurrentDirectory  method. Subsequent calls to GetCurrentDirectory provide the app's directory.

When hosting in-process, AuthenticateAsync isn't called internally to initialize a user. Therefore, an

IClaimsTransformation implementation used to transform claims after every authentication isn't activated by

default. When transforming claims with an IClaimsTransformation implementation, call AddAuthentication to

add authentication services:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiis
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.requestaborted
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/host-and-deploy/aspnet-core-module/samples_snapshot/2.x/CurrentDirectoryHelpers.cs
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationservice.authenticateasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iclaimstransformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iclaimstransformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication


Out-of-process hosting modelOut-of-process hosting model

<PropertyGroup>
  <AspNetCoreHostingModel>OutOfProcess</AspNetCoreHostingModel>
</PropertyGroup>

Hosting model changesHosting model changes

Process nameProcess name

How to install and use the ASP.NET Core Module

Configuration with web.config

public void ConfigureServices(IServiceCollection services)
{
    services.AddTransient<IClaimsTransformation, ClaimsTransformer>();
    services.AddAuthentication(IISServerDefaults.AuthenticationScheme);
}

public void Configure(IApplicationBuilder app)
{
    app.UseAuthentication();
}

To configure an app for out-of-process hosting, use either of the following approaches in the project file:

Don't specify the <AspNetCoreHostingModel>  property. If the <AspNetCoreHostingModel>  property isn't present in

the file, the default value is OutOfProcess .

Set the value of the <AspNetCoreHostingModel>  property to OutOfProcess  (in-process hosting is set with 

InProcess ):

The value is case insensitive, so inprocess  and outofprocess  are valid values.

Kestrel server is used instead of IIS HTTP Server ( IISHttpServer ).

For out-of-process, CreateDefaultBuilder calls UseIISIntegration to:

Configure the port and base path the server should listen on when running behind the ASP.NET Core Module.

Configure the host to capture startup errors.

If the hostingModel  setting is changed in the web.config file (explained in the Configuration with web.config

section), the module recycles the worker process for IIS.

For IIS Express, the module doesn't recycle the worker process but instead triggers a graceful shutdown of the

current IIS Express process. The next request to the app spawns a new IIS Express process.

Process.GetCurrentProcess().ProcessName  reports w3wp / iisexpress  (in-process) or dotnet  (out-of-process).

Many native modules, such as Windows Authentication, remain active. To learn more about IIS modules active with

the ASP.NET Core Module, see IIS modules with ASP.NET Core.

The ASP.NET Core Module can also:

Set environment variables for the worker process.

Log stdout output to file storage for troubleshooting startup issues.

Forward Windows authentication tokens.

For instructions on how to install the ASP.NET Core Module, see Install the .NET Core Hosting Bundle.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiisintegration


<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <handlers>
        <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModuleV2" resourceType="Unspecified" />
      </handlers>
      <aspNetCore processPath="dotnet"
                  arguments=".\MyApp.dll"
                  stdoutLogEnabled="false"
                  stdoutLogFile=".\logs\stdout"
                  hostingModel="inprocess" />
    </system.webServer>
  </location>
</configuration>

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <handlers>
        <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModuleV2" resourceType="Unspecified" />
      </handlers>
      <aspNetCore processPath=".\MyApp.exe"
                  stdoutLogEnabled="false"
                  stdoutLogFile=".\logs\stdout"
                  hostingModel="inprocess" />
    </system.webServer>
  </location>
</configuration>

Attributes of the aspNetCore elementAttributes of the aspNetCore element

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

arguments

The ASP.NET Core Module is configured with the aspNetCore  section of the system.webServer  node in the site's

web.config file.

The following web.config file is published for a framework-dependent deployment and configures the ASP.NET Core

Module to handle site requests:

The following web.config is published for a self-contained deployment:

The InheritInChildApplications property is set to false  to indicate that the settings specified within the <location>

element aren't inherited by apps that reside in a subdirectory of the app.

When an app is deployed to Azure App Service, the stdoutLogFile  path is set to \\?\%home%\LogFiles\stdout . The

path saves stdout logs to the LogFiles folder, which is a location automatically created by the service.

For information on IIS sub-application configuration, see Host ASP.NET Core on Windows with IIS.

Optional string attribute.

Arguments to the executable
specified in processPathprocessPath.

https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.sectioninformation.inheritinchildapplications
https://docs.microsoft.com/en-us/iis/manage/managing-your-configuration-settings/understanding-iis-configuration-delegation#the-concept-of-location
https://azure.microsoft.com/services/app-service/


disableStartUpErrorPage false

forwardWindowsAuthToken true

hostingModel OutOfProcess

outofprocess

processesPerApplication Default: 1

Min: 1

Max: 100 †

processPath

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional Boolean attribute.

If true, the 502.5 - Process502.5 - Process
FailureFailure page is suppressed, and the
502 status code page configured in
the web.config takes precedence.

Optional Boolean attribute.

If true, the token is forwarded to
the child process listening on
%ASPNETCORE_PORT% as a header
'MS-ASPNETCORE-
WINAUTHTOKEN' per request. It's
the responsibility of that process to
call CloseHandle on this token per
request.

Optional string attribute.

Specifies the hosting model as in-
process ( InProcess / inprocess )

or out-of-process ( OutOfProcess /

outofprocess ).

Optional integer attribute.

Specifies the number of instances of
the process specified in the
processPathprocessPath setting that can be
spun up per app.

†For in-process hosting, the value is
limited to 1 .

Setting processesPerApplication

is discouraged. This attribute will be
removed in a future release.

Required string attribute.

Path to the executable that launches
a process listening for HTTP
requests. Relative paths are
supported. If the path begins with 
. , the path is considered to be

relative to the site root.



rapidFailsPerMinute Default: 10

Min: 0

Max: 100

requestTimeout Default: 00:02:00

Min: 00:00:00

Max: 360:00:00

shutdownTimeLimit Default: 10

Min: 0

Max: 600

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional integer attribute.

Specifies the number of times the
process specified in processPathprocessPath is
allowed to crash per minute. If this
limit is exceeded, the module stops
launching the process for the
remainder of the minute.

Not supported with in-process
hosting.

Optional timespan attribute.

Specifies the duration for which the
ASP.NET Core Module waits for a
response from the process listening
on %ASPNETCORE_PORT%.

In versions of the ASP.NET Core
Module that shipped with the
release of ASP.NET Core 2.1 or later,
the requestTimeout  is specified in

hours, minutes, and seconds.

Doesn't apply to in-process hosting.
For in-process hosting, the module
waits for the app to process the
request.

Valid values for minutes and
seconds segments of the string are
in the range 0-59. Use of 6060  in the
value for minutes or seconds results
in a 500 - Internal Server Error.

Optional integer attribute.

Duration in seconds that the
module waits for the executable to
gracefully shutdown when the
app_offline.htm file is detected.



startupTimeLimit Default: 120

Min: 0

Max: 3600

stdoutLogEnabled false

stdoutLogFile aspnetcore-stdout

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Setting environment variablesSetting environment variables

Optional integer attribute.

Duration in seconds that the
module waits for the executable to
start a process listening on the
port. If this time limit is exceeded,
the module kills the process.

When hosting in-process: The
process is notnot  restarted and does
notnot  use the rapidFailsPerMinuterapidFailsPerMinute
setting.

When hosting out-of-process: The
module attempts to relaunch the
process when it receives a new
request and continues to attempt
to restart the process on
subsequent incoming requests
unless the app fails to start
rapidFailsPerMinuterapidFailsPerMinute number of
times in the last rolling minute.

A value of 0 (zero) is notnot  considered
an infinite timeout.

Optional Boolean attribute.

If true, stdoutstdout  and stderrstderr  for the
process specified in processPathprocessPath
are redirected to the file specified in
stdoutLogFilestdoutLogFile.

Optional string attribute.

Specifies the relative or absolute file
path for which stdoutstdout  and stderrstderr
from the process specified in
processPathprocessPath are logged. Relative
paths are relative to the root of the
site. Any path starting with .  are

relative to the site root and all other
paths are treated as absolute paths.
Any folders provided in the path are
created by the module when the log
file is created. Using underscore
delimiters, a timestamp, process ID,
and file extension (.log) are added to
the last segment of the
stdoutLogFilestdoutLogFile path. If 
.\logs\stdout  is supplied as a

value, an example stdout log is
saved as
stdout_20180205194132_1934.log
in the logs folder when saved on
2/5/2018 at 19:41:32 with a
process ID of 1934.



<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout"
      hostingModel="inprocess">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
    <environmentVariable name="CONFIG_DIR" value="f:\application_config" />
  </environmentVariables>
</aspNetCore>

NOTENOTE

<PropertyGroup>
  <EnvironmentName>Development</EnvironmentName>
</PropertyGroup>

WARNINGWARNING

app_offline.htm

Start-up error page

Environment variables can be specified for the process in the processPath  attribute. Specify an environment

variable with the <environmentVariable>  child element of an <environmentVariables>  collection element.

Environment variables set in this section take precedence over system environment variables.

The following example sets two environment variables. ASPNETCORE_ENVIRONMENT  configures the app's environment

to Development . A developer may temporarily set this value in the web.config file in order to force the Developer

Exception Page to load when debugging an app exception. CONFIG_DIR  is an example of a user-defined environment

variable, where the developer has written code that reads the value on startup to form a path for loading the app's

configuration file.

An alternative to setting the environment directly in web.config is to include the <EnvironmentName>  property in the publish

profile (.pubxml) or project file. This approach sets the environment in web.config when the project is published:

Only set the ASPNETCORE_ENVIRONMENT  environment variable to Development  on staging and testing servers that aren't

accessible to untrusted networks, such as the Internet.

If a file with the name app_offline.htm is detected in the root directory of an app, the ASP.NET Core Module attempts

to gracefully shutdown the app and stop processing incoming requests. If the app is still running after the number

of seconds defined in shutdownTimeLimit , the ASP.NET Core Module kills the running process.

While the app_offline.htm file is present, the ASP.NET Core Module responds to requests by sending back the

contents of the app_offline.htm file. When the app_offline.htm file is removed, the next request starts the app.

When using the out-of-process hosting model, the app might not shut down immediately if there's an open

connection. For example, a websocket connection may delay app shut down.

Both in-process and out-of-process hosting produce custom error pages when they fail to start the app.

If the ASP.NET Core Module fails to find either the in-process or out-of-process request handler, a 500.0 - In-

Process/Out-Of-Process Handler Load Failure status code page appears.

For in-process hosting if the ASP.NET Core Module fails to start the app, a 500.30 - Start Failure status code page



Log creation and redirection

<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="true"
    stdoutLogFile=".\logs\stdout"
    hostingModel="inprocess">
</aspNetCore>

Enhanced diagnostic logs

appears.

For out-of-process hosting if the ASP.NET Core Module fails to launch the backend process or the backend process

starts but fails to listen on the configured port, a 502.5 - Process Failure status code page appears.

To suppress this page and revert to the default IIS 5xx status code page, use the disableStartUpErrorPage  attribute.

For more information on configuring custom error messages, see HTTP Errors <httpErrors>.

The ASP.NET Core Module redirects stdout and stderr console output to disk if the stdoutLogEnabled  and 

stdoutLogFile  attributes of the aspNetCore  element are set. Any folders in the stdoutLogFile  path are created by

the module when the log file is created. The app pool must have write access to the location where the logs are

written (use IIS AppPool\<app_pool_name>  to provide write permission).

Logs aren't rotated, unless process recycling/restart occurs. It's the responsibility of the hoster to limit the disk

space the logs consume.

Using the stdout log is only recommended for troubleshooting app startup issues when hosting on IIS or when

using development-time support for IIS with Visual Studio, not while debugging locally and running the app with IIS

Express.

Don't use the stdout log for general app logging purposes. For routine logging in an ASP.NET Core app, use a

logging library that limits log file size and rotates logs. For more information, see third-party logging providers.

A timestamp and file extension are added automatically when the log file is created. The log file name is composed

by appending the timestamp, process ID, and file extension (.log) to the last segment of the stdoutLogFile  path

(typically stdout) delimited by underscores. If the stdoutLogFile  path ends with stdout, a log for an app with a PID

of 1934 created on 2/5/2018 at 19:42:32 has the file name stdout_20180205194132_1934.log.

If stdoutLogEnabled  is false, errors that occur on app startup are captured and emitted to the event log up to 30 KB.

After startup, all additional logs are discarded.

The following sample aspNetCore  element configures stdout logging at the relative path .\log\ . Confirm that the

AppPool user identity has permission to write to the path provided.

When publishing an app for Azure App Service deployment, the Web SDK sets the stdoutLogFile  value to 

\\?\%home%\LogFiles\stdout . The %home  environment variable is predefined for apps hosted by Azure App Service.

For more information on path formats, see File path formats on Windows systems.

The ASP.NET Core Module is configurable to provide enhanced diagnostics logs. Add the <handlerSettings>

element to the <aspNetCore>  element in web.config. Setting the debugLevel  to TRACE  exposes a higher fidelity of

diagnostic information:

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/httperrors/
https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats


<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="false"
    stdoutLogFile="\\?\%home%\LogFiles\stdout"
    hostingModel="inprocess">
  <handlerSettings>
    <handlerSetting name="debugFile" value=".\logs\aspnetcore-debug.log" />
    <handlerSetting name="debugLevel" value="FILE,TRACE" />
  </handlerSettings>
</aspNetCore>

WARNINGWARNING

Proxy configuration uses HTTP protocol and a pairing token

Folders in the path provided to the <handlerSetting>  value (logs in the preceding example) aren't created by the

module automatically and should pre-exist in the deployment. The app pool must have write access to the location

where the logs are written (use IIS AppPool\<app_pool_name>  to provide write permission).

Debug level ( debugLevel ) values can include both the level and the location.

Levels (in order from least to most verbose):

ERROR

WARNING

INFO

TRACE

Locations (multiple locations are permitted):

CONSOLE

EVENTLOG

FILE

The handler settings can also be provided via environment variables:

ASPNETCORE_MODULE_DEBUG_FILE : Path to the debug log file. (Default: aspnetcore-debug.log)

ASPNETCORE_MODULE_DEBUG : Debug level setting.

Do notnot  leave debug logging enabled in the deployment for longer than required to troubleshoot an issue. The size of the log

isn't limited. Leaving the debug log enabled can exhaust the available disk space and crash the server or app service.

See Configuration with web.config for an example of the aspNetCore  element in the web.config file.

Only applies to out-of-process hosting.

The proxy created between the ASP.NET Core Module and Kestrel uses the HTTP protocol. There's no risk of

eavesdropping the traffic between the module and Kestrel from a location off of the server.

A pairing token is used to guarantee that the requests received by Kestrel were proxied by IIS and didn't come from

some other source. The pairing token is created and set into an environment variable ( ASPNETCORE_TOKEN ) by the

module. The pairing token is also set into a header ( MS-ASPNETCORE-TOKEN ) on every proxied request. IIS Middleware

checks each request it receives to confirm that the pairing token header value matches the environment variable

value. If the token values are mismatched, the request is logged and rejected. The pairing token environment

variable and the traffic between the module and Kestrel aren't accessible from a location off of the server. Without

knowing the pairing token value, an attacker can't submit requests that bypass the check in the IIS Middleware.



ASP.NET Core Module with an IIS Shared Configuration

dotnet-hosting-{VERSION}.exe OPT_NO_SHARED_CONFIG_CHECK=1

Module version and Hosting Bundle installer logs

Module, schema, and configuration file locations
ModuleModule

SchemaSchema

The ASP.NET Core Module installer runs with the privileges of the TrustedInstallerTrustedInstaller  account. Because the local

system account doesn't have modify permission for the share path used by the IIS Shared Configuration, the

installer throws an access denied error when attempting to configure the module settings in the

applicationHost.config file on the share.

When using an IIS Shared Configuration on the same machine as the IIS installation, run the ASP.NET Core Hosting

Bundle installer with the OPT_NO_SHARED_CONFIG_CHECK  parameter set to 1 :

When the path to the shared configuration isn't on the same machine as the IIS installation, follow these steps:

1. Disable the IIS Shared Configuration.

2. Run the installer.

3. Export the updated applicationHost.config file to the share.

4. Re-enable the IIS Shared Configuration.

To determine the version of the installed ASP.NET Core Module:

1. On the hosting system, navigate to %windir%\System32\inetsrv.

2. Locate the aspnetcore.dll file.

3. Right-click the file and select Proper tiesProper ties  from the contextual menu.

4. Select the DetailsDetails  tab. The File versionFile version and Product versionProduct version represent the installed version of the module.

The Hosting Bundle installer logs for the module are found at C:\Users\%UserName%\AppData\Local\Temp. The file

is named dd_DotNetCoreWinSvrHosting__<timestamp>_000_AspNetCoreModule_x64.log.

IIS  (x86/amd64):IIS  (x86/amd64):

%windir%\System32\inetsrv\aspnetcore.dll

%windir%\SysWOW64\inetsrv\aspnetcore.dll

%ProgramFiles%\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll

%ProgramFiles(x86)%\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll

IIS  Express (x86/amd64):IIS  Express (x86/amd64):

%ProgramFiles%\IIS Express\aspnetcore.dll

%ProgramFiles(x86)%\IIS Express\aspnetcore.dll

%ProgramFiles%\IIS Express\Asp.Net Core Module\V2\aspnetcorev2.dll

%ProgramFiles(x86)%\IIS Express\Asp.Net Core Module\V2\aspnetcorev2.dll

IISIIS



ConfigurationConfiguration

%windir%\System32\inetsrv\config\schema\aspnetcore_schema.xml

%windir%\System32\inetsrv\config\schema\aspnetcore_schema_v2.xml

IIS  ExpressIIS  Express

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema.xml

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema_v2.xml

IISIIS

%windir%\System32\inetsrv\config\applicationHost.config

IIS  ExpressIIS  Express

Visual Studio: {APPLICATION ROOT}\.vs\config\applicationHost.config

iisexpress.exe CLI: %USERPROFILE%\Documents\IISExpress\config\applicationhost.config

The files can be found by searching for aspnetcore in the applicationHost.config file.

The ASP.NET Core Module is a native IIS module that plugs into the IIS pipeline to forward web requests to backend

ASP.NET Core apps.

Supported Windows versions:

Windows 7 or later

Windows Server 2008 R2 or later

The module only works with Kestrel. The module is incompatible with HTTP.sys.

Because ASP.NET Core apps run in a process separate from the IIS worker process, the module also handles process

management. The module starts the process for the ASP.NET Core app when the first request arrives and restarts

the app if it crashes. This is essentially the same behavior as seen with ASP.NET 4.x apps that run in-process in IIS

that are managed by the Windows Process Activation Service (WAS).

The following diagram illustrates the relationship between IIS, the ASP.NET Core Module, and an app:

Requests arrive from the web to the kernel-mode HTTP.sys driver. The driver routes the requests to IIS on the

website's configured port, usually 80 (HTTP) or 443 (HTTPS). The module forwards the requests to Kestrel on a

random port for the app, which isn't port 80 or 443.

The module specifies the port via an environment variable at startup, and the IIS Integration Middleware configures

the server to listen on http://localhost:{port} . Additional checks are performed, and requests that don't originate

from the module are rejected. The module doesn't support HTTPS forwarding, so requests are forwarded over HTTP

even if received by IIS over HTTPS.

After Kestrel picks up the request from the module, the request is pushed into the ASP.NET Core middleware

pipeline. The middleware pipeline handles the request and passes it on as an HttpContext  instance to the app's

logic. Middleware added by IIS Integration updates the scheme, remote IP, and pathbase to account for forwarding

the request to Kestrel. The app's response is passed back to IIS, which pushes it back out to the HTTP client that

initiated the request.

https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was


How to install and use the ASP.NET Core Module

Configuration with web.config

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <system.webServer>
    <handlers>
      <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModule" resourceType="Unspecified" />
    </handlers>
    <aspNetCore processPath="dotnet"
                arguments=".\MyApp.dll"
                stdoutLogEnabled="false"
                stdoutLogFile=".\logs\stdout" />
  </system.webServer>
</configuration>

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <system.webServer>
    <handlers>
      <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModule" resourceType="Unspecified" />
    </handlers>
    <aspNetCore processPath=".\MyApp.exe"
                stdoutLogEnabled="false"
                stdoutLogFile=".\logs\stdout" />
  </system.webServer>
</configuration>

Attributes of the aspNetCore elementAttributes of the aspNetCore element

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Many native modules, such as Windows Authentication, remain active. To learn more about IIS modules active with

the ASP.NET Core Module, see IIS modules with ASP.NET Core.

The ASP.NET Core Module can also:

Set environment variables for the worker process.

Log stdout output to file storage for troubleshooting startup issues.

Forward Windows authentication tokens.

For instructions on how to install the ASP.NET Core Module, see Install the .NET Core Hosting Bundle.

The ASP.NET Core Module is configured with the aspNetCore  section of the system.webServer  node in the site's

web.config file.

The following web.config file is published for a framework-dependent deployment and configures the ASP.NET Core

Module to handle site requests:

The following web.config is published for a self-contained deployment:

When an app is deployed to Azure App Service, the stdoutLogFile  path is set to \\?\%home%\LogFiles\stdout . The

path saves stdout logs to the LogFiles folder, which is a location automatically created by the service.

For information on IIS sub-application configuration, see Host ASP.NET Core on Windows with IIS.

https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#self-contained-deployments-scd
https://azure.microsoft.com/services/app-service/


arguments

disableStartUpErrorPage false

forwardWindowsAuthToken true

processesPerApplication Default: 1

Min: 1

Max: 100

processPath

rapidFailsPerMinute Default: 10

Min: 0

Max: 100

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional string attribute.

Arguments to the executable
specified in processPathprocessPath.

Optional Boolean attribute.

If true, the 502.5 - Process502.5 - Process
FailureFailure page is suppressed, and the
502 status code page configured in
the web.config takes precedence.

Optional Boolean attribute.

If true, the token is forwarded to
the child process listening on
%ASPNETCORE_PORT% as a header
'MS-ASPNETCORE-
WINAUTHTOKEN' per request. It's
the responsibility of that process to
call CloseHandle on this token per
request.

Optional integer attribute.

Specifies the number of instances of
the process specified in the
processPathprocessPath setting that can be
spun up per app.

Setting processesPerApplication

is discouraged. This attribute will be
removed in a future release.

Required string attribute.

Path to the executable that launches
a process listening for HTTP
requests. Relative paths are
supported. If the path begins with 
. , the path is considered to be

relative to the site root.

Optional integer attribute.

Specifies the number of times the
process specified in processPathprocessPath is
allowed to crash per minute. If this
limit is exceeded, the module stops
launching the process for the
remainder of the minute.



requestTimeout Default: 00:02:00

Min: 00:00:00

Max: 360:00:00

shutdownTimeLimit Default: 10

Min: 0

Max: 600

startupTimeLimit Default: 120

Min: 0

Max: 3600

stdoutLogEnabled false

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional timespan attribute.

Specifies the duration for which the
ASP.NET Core Module waits for a
response from the process listening
on %ASPNETCORE_PORT%.

In versions of the ASP.NET Core
Module that shipped with the
release of ASP.NET Core 2.1 or later,
the requestTimeout  is specified in

hours, minutes, and seconds.

Optional integer attribute.

Duration in seconds that the
module waits for the executable to
gracefully shutdown when the
app_offline.htm file is detected.

Optional integer attribute.

Duration in seconds that the
module waits for the executable to
start a process listening on the
port. If this time limit is exceeded,
the module kills the process. The
module attempts to relaunch the
process when it receives a new
request and continues to attempt
to restart the process on
subsequent incoming requests
unless the app fails to start
rapidFailsPerMinuterapidFailsPerMinute number of
times in the last rolling minute.

A value of 0 (zero) is notnot  considered
an infinite timeout.

Optional Boolean attribute.

If true, stdoutstdout  and stderrstderr  for the
process specified in processPathprocessPath
are redirected to the file specified in
stdoutLogFilestdoutLogFile.



stdoutLogFile aspnetcore-stdout

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Setting environment variablesSetting environment variables

WARNINGWARNING

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile="\\?\%home%\LogFiles\stdout">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
    <environmentVariable name="CONFIG_DIR" value="f:\application_config" />
  </environmentVariables>
</aspNetCore>

Optional string attribute.

Specifies the relative or absolute file
path for which stdoutstdout  and stderrstderr
from the process specified in
processPathprocessPath are logged. Relative
paths are relative to the root of the
site. Any path starting with .  are

relative to the site root and all other
paths are treated as absolute paths.
Any folders provided in the path
must exist in order for the module
to create the log file. Using
underscore delimiters, a timestamp,
process ID, and file extension (.log)
are added to the last segment of
the stdoutLogFilestdoutLogFile path. If 
.\logs\stdout  is supplied as a

value, an example stdout log is
saved as
stdout_20180205194132_1934.log
in the logs folder when saved on
2/5/2018 at 19:41:32 with a
process ID of 1934.

Environment variables can be specified for the process in the processPath  attribute. Specify an environment

variable with the <environmentVariable>  child element of an <environmentVariables>  collection element.

Environment variables set in this section conflict with system environment variables set with the same name. If an

environment variable is set in both the web.config file and at the system level in Windows, the value from the web.config file

becomes appended to the system environment variable value (for example, 

ASPNETCORE_ENVIRONMENT: Development;Development ), which prevents the app from starting.

The following example sets two environment variables. ASPNETCORE_ENVIRONMENT  configures the app's environment

to Development . A developer may temporarily set this value in the web.config file in order to force the Developer

Exception Page to load when debugging an app exception. CONFIG_DIR  is an example of a user-defined environment

variable, where the developer has written code that reads the value on startup to form a path for loading the app's

configuration file.



WARNINGWARNING

app_offline.htm

Start-up error page

Log creation and redirection

Only set the ASPNETCORE_ENVIRONMENT  environment variable to Development  on staging and testing servers that aren't

accessible to untrusted networks, such as the Internet.

If a file with the name app_offline.htm is detected in the root directory of an app, the ASP.NET Core Module attempts

to gracefully shutdown the app and stop processing incoming requests. If the app is still running after the number

of seconds defined in shutdownTimeLimit , the ASP.NET Core Module kills the running process.

While the app_offline.htm file is present, the ASP.NET Core Module responds to requests by sending back the

contents of the app_offline.htm file. When the app_offline.htm file is removed, the next request starts the app.

If the ASP.NET Core Module fails to launch the backend process or the backend process starts but fails to listen on

the configured port, a 502.5 - Process Failure status code page appears. To suppress this page and revert to the

default IIS 502 status code page, use the disableStartUpErrorPage  attribute. For more information on configuring

custom error messages, see HTTP Errors <httpErrors>.

The ASP.NET Core Module redirects stdout and stderr console output to disk if the stdoutLogEnabled  and 

stdoutLogFile  attributes of the aspNetCore  element are set. Any folders in the stdoutLogFile  path are created by

the module when the log file is created. The app pool must have write access to the location where the logs are

written (use IIS AppPool\<app_pool_name>  to provide write permission).

Logs aren't rotated, unless process recycling/restart occurs. It's the responsibility of the hoster to limit the disk

space the logs consume.

Using the stdout log is only recommended for troubleshooting app startup issues when hosting on IIS or when

using development-time support for IIS with Visual Studio, not while debugging locally and running the app with IIS

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/httperrors/


<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="true"
    stdoutLogFile=".\logs\stdout">
</aspNetCore>

Proxy configuration uses HTTP protocol and a pairing token

ASP.NET Core Module with an IIS Shared Configuration

Module version and Hosting Bundle installer logs

Express.

Don't use the stdout log for general app logging purposes. For routine logging in an ASP.NET Core app, use a

logging library that limits log file size and rotates logs. For more information, see third-party logging providers.

A timestamp and file extension are added automatically when the log file is created. The log file name is composed

by appending the timestamp, process ID, and file extension (.log) to the last segment of the stdoutLogFile  path

(typically stdout) delimited by underscores. If the stdoutLogFile  path ends with stdout, a log for an app with a PID

of 1934 created on 2/5/2018 at 19:42:32 has the file name stdout_20180205194132_1934.log.

The following sample aspNetCore  element configures stdout logging at the relative path .\log\ . Confirm that the

AppPool user identity has permission to write to the path provided.

When publishing an app for Azure App Service deployment, the Web SDK sets the stdoutLogFile  value to 

\\?\%home%\LogFiles\stdout . The %home  environment variable is predefined for apps hosted by Azure App Service.

To create logging filter rules, see the Configuration and Log filtering sections of the ASP.NET Core logging

documentation.

For more information on path formats, see File path formats on Windows systems.

The proxy created between the ASP.NET Core Module and Kestrel uses the HTTP protocol. There's no risk of

eavesdropping the traffic between the module and Kestrel from a location off of the server.

A pairing token is used to guarantee that the requests received by Kestrel were proxied by IIS and didn't come from

some other source. The pairing token is created and set into an environment variable ( ASPNETCORE_TOKEN ) by the

module. The pairing token is also set into a header ( MS-ASPNETCORE-TOKEN ) on every proxied request. IIS Middleware

checks each request it receives to confirm that the pairing token header value matches the environment variable

value. If the token values are mismatched, the request is logged and rejected. The pairing token environment

variable and the traffic between the module and Kestrel aren't accessible from a location off of the server. Without

knowing the pairing token value, an attacker can't submit requests that bypass the check in the IIS Middleware.

The ASP.NET Core Module installer runs with the privileges of the TrustedInstallerTrustedInstaller  account. Because the local

system account doesn't have modify permission for the share path used by the IIS Shared Configuration, the

installer throws an access denied error when attempting to configure the module settings in the

applicationHost.config file on the share.

When using an IIS Shared Configuration, follow these steps:

1. Disable the IIS Shared Configuration.

2. Run the installer.

3. Export the updated applicationHost.config file to the share.

4. Re-enable the IIS Shared Configuration.

https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats


Module, schema, and configuration file locations
ModuleModule

SchemaSchema

ConfigurationConfiguration

Additional resources

To determine the version of the installed ASP.NET Core Module:

1. On the hosting system, navigate to %windir%\System32\inetsrv.

2. Locate the aspnetcore.dll file.

3. Right-click the file and select Proper tiesProper ties  from the contextual menu.

4. Select the DetailsDetails  tab. The File versionFile version and Product versionProduct version represent the installed version of the module.

The Hosting Bundle installer logs for the module are found at C:\Users\%UserName%\AppData\Local\Temp. The file

is named dd_DotNetCoreWinSvrHosting__<timestamp>_000_AspNetCoreModule_x64.log.

IIS  (x86/amd64):IIS  (x86/amd64):

%windir%\System32\inetsrv\aspnetcore.dll

%windir%\SysWOW64\inetsrv\aspnetcore.dll

IIS  Express (x86/amd64):IIS  Express (x86/amd64):

%ProgramFiles%\IIS Express\aspnetcore.dll

%ProgramFiles(x86)%\IIS Express\aspnetcore.dll

IISIIS

%windir%\System32\inetsrv\config\schema\aspnetcore_schema.xml

IIS  ExpressIIS  Express

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema.xml

IISIIS

%windir%\System32\inetsrv\config\applicationHost.config

IIS  ExpressIIS  Express

Visual Studio: {APPLICATION ROOT}\.vs\config\applicationHost.config

iisexpress.exe CLI: %USERPROFILE%\Documents\IISExpress\config\applicationhost.config

The files can be found by searching for aspnetcore in the applicationHost.config file.

Host ASP.NET Core on Windows with IIS

Deploy ASP.NET Core apps to Azure App Service

ASP.NET Core Module reference source (master branch): Use the BranchBranch drop down list to select a specific

release (for example, release/3.1 ).

IIS modules with ASP.NET Core

https://github.com/dotnet/aspnetcore/tree/master/src/Servers/IIS/AspNetCoreModuleV2


Troubleshoot ASP.NET Core on Azure App Service
and IIS
9/22/2020 • 59 minutes to read • Edit Online

App startup errors

403.14 Forbidden403.14 Forbidden

The Web server is configured to not list the contents of this directory.

By Justin Kotalik

This article provides information on common app startup errors and instructions on how to diagnose errors when

an app is deployed to Azure App Service or IIS:

App startup errors

Explains common startup HTTP status code scenarios.

Troubleshoot on Azure App Service

Provides troubleshooting advice for apps deployed to Azure App Service.

Troubleshoot on IIS

Provides troubleshooting advice for apps deployed to IIS or running on IIS Express locally. The guidance applies to

both Windows Server and Windows desktop deployments.

Clear package caches

Explains what to do when incoherent packages break an app when performing major upgrades or changing

package versions.

Additional resources

Lists additional troubleshooting topics.

In Visual Studio, an ASP.NET Core project defaults to IIS Express hosting during debugging. A 502.5 - Process Failure

or a 500.30 - Start Failure that occurs when debugging locally can be diagnosed using the advice in this topic.

The app fails to start. The following error is logged:

The error is usually caused by a broken deployment on the hosting system, which includes any of the following

scenarios:

The app is deployed to the wrong folder on the hosting system.

The deployment process failed to move all of the app's files and folders to the deployment folder on the hosting

system.

The web.config file is missing from the deployment, or the web.config file contents are malformed.

Perform the following steps:

1. Delete all of the files and folders from the deployment folder on the hosting system.

2. Redeploy the contents of the app's publish folder to the hosting system using your normal method of

deployment, such as Visual Studio, PowerShell, or manual deployment:

Confirm that the web.config file is present in the deployment and that its contents are correct.

When hosting on Azure App Service, confirm that the app is deployed to the D:\home\site\wwwroot  folder.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis.md
https://github.com/jkotalik
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview


500 Internal Server Error500 Internal Server Error

500.0 In-Process Handler Load Failure500.0 In-Process Handler Load Failure

500.30 In-Process Startup Failure500.30 In-Process Startup Failure

500.31 ANCM Failed to Find Native Dependencies500.31 ANCM Failed to Find Native Dependencies

The specified framework 'Microsoft.NETCore.App', version '3.0.0' was not found.
  - The following frameworks were found:
      2.2.1 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview5-27626-15 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview6-27713-13 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview6-27714-15 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview6-27723-08 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]

3. Confirm that all of the app's files and folders are deployed by comparing the deployment on the hosting system

to the contents of the project's publish folder.

When the app is hosted by IIS, confirm that the app is deployed to the IIS Physical pathPhysical path shown in IISIIS

ManagerManager 's Basic SettingsBasic Settings .

For more information on the layout of a published ASP.NET Core app, see ASP.NET Core directory structure. For

more information on the web.config file, see ASP.NET Core Module.

The app starts, but an error prevents the server from fulfilling the request.

This error occurs within the app's code during startup or while creating a response. The response may contain no

content, or the response may appear as a 500 Internal Server Error in the browser. The Application Event Log

usually states that the app started normally. From the server's perspective, that's correct. The app did start, but it

can't generate a valid response. Run the app at a command prompt on the server or enable the ASP.NET Core

Module stdout log to troubleshoot the problem.

The worker process fails. The app doesn't start.

An unknown error occurred loading ASP.NET Core Module components. Take one of the following actions:

Contact Microsoft Support (select Developer ToolsDeveloper Tools  then ASP.NET CoreASP.NET Core).

Ask a question on Stack Overflow.

File an issue on our GitHub repository.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the .NET Core CLR in-process, but it fails to start. The cause of a process

startup failure can usually be determined from entries in the Application Event Log and the ASP.NET Core Module

stdout log.

Common failure conditions:

The app is misconfigured due to targeting a version of the ASP.NET Core shared framework that isn't present.

Check which versions of the ASP.NET Core shared framework are installed on the target machine.

Using Azure Key Vault, lack of permissions to the Key Vault. Check the access policies in the targeted Key Vault to

ensure that the correct permissions are granted.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the .NET Core runtime in-process, but it fails to start. The most common

cause of this startup failure is when the Microsoft.NETCore.App  or Microsoft.AspNetCore.App  runtime isn't installed.

If the app is deployed to target ASP.NET Core 3.0 and that version doesn't exist on the machine, this error occurs. An

example error message follows:

The error message lists all the installed .NET Core versions and the version requested by the app. To fix this error,

https://support.microsoft.com/oas/default.aspx?prid=15832
https://github.com/dotnet/AspNetCore


500.32 ANCM Failed to Load dll500.32 ANCM Failed to Load dll

500.33 ANCM Request Handler Load Failure500.33 ANCM Request Handler Load Failure

500.34 ANCM Mixed Hosting Models Not Supported500.34 ANCM Mixed Hosting Models Not Supported

500.35 ANCM Multiple In-Process Applications in same Process500.35 ANCM Multiple In-Process Applications in same Process

500.36 ANCM Out-Of-Process Handler Load Failure500.36 ANCM Out-Of-Process Handler Load Failure

500.37 ANCM Failed to Start Within Startup Time Limit500.37 ANCM Failed to Start Within Startup Time Limit

500.38 ANCM Application DLL Not Found500.38 ANCM Application DLL Not Found

either :

Install the appropriate version of .NET Core on the machine.

Change the app to target a version of .NET Core that's present on the machine.

Publish the app as a self-contained deployment.

When running in development (the ASPNETCORE_ENVIRONMENT  environment variable is set to Development ), the

specific error is written to the HTTP response. The cause of a process startup failure is also found in the Application

Event Log.

The worker process fails. The app doesn't start.

The most common cause for this error is that the app is published for an incompatible processor architecture. If the

worker process is running as a 32-bit app and the app was published to target 64-bit, this error occurs.

To fix this error, either :

Republish the app for the same processor architecture as the worker process.

Publish the app as a framework-dependent deployment.

The worker process fails. The app doesn't start.

The app didn't reference the Microsoft.AspNetCore.App  framework. Only apps targeting the 

Microsoft.AspNetCore.App  framework can be hosted by the ASP.NET Core Module.

To fix this error, confirm that the app is targeting the Microsoft.AspNetCore.App  framework. Check the 

.runtimeconfig.json  to verify the framework targeted by the app.

The worker process can't run both an in-process app and an out-of-process app in the same process.

To fix this error, run apps in separate IIS application pools.

The worker process can't run multiple in-process apps in the same process.

To fix this error, run apps in separate IIS application pools.

The out-of-process request handler, aspnetcorev2_outofprocess.dll, isn't next to the aspnetcorev2.dll file. This

indicates a corrupted installation of the ASP.NET Core Module.

To fix this error, repair the installation of the .NET Core Hosting Bundle (for IIS) or Visual Studio (for IIS Express).

ANCM failed to start within the provided startup time limit. By default, the timeout is 120 seconds.

This error can occur when starting a large number of apps on the same machine. Check for CPU/Memory usage

spikes on the server during startup. You may need to stagger the startup process of multiple apps.

ANCM failed to locate the application DLL, which should be next to the executable.

This error occurs when hosting an app packaged as a single-file executable using the in-process hosting model. The

in-process model requires that the ANCM load the .NET Core app into the existing IIS process. This scenario isn't

supported by the single-file deployment model. Use oneone of the following approaches in the app's project file to fix

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-executables-fde
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0#single-file-executables


502.5 Process Failure502.5 Process Failure

Failed to start application (ErrorCode '0x800700c1')Failed to start application (ErrorCode '0x800700c1')

EventID: 1010
Source: IIS AspNetCore Module V2
Failed to start application '/LM/W3SVC/6/ROOT/', ErrorCode '0x800700c1'.

Connection resetConnection reset

Default startup limitsDefault startup limits

Troubleshoot on Azure App Service

this error :

1. Disable single-file publishing by setting the PublishSingleFile  MSBuild property to false .

2. Switch to the out-of-process hosting model by setting the AspNetCoreHostingModel  MSBuild property to 

OutOfProcess .

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. The cause of a process startup

failure can usually be determined from entries in the Application Event Log and the ASP.NET Core Module stdout

log.

A common failure condition is the app is misconfigured due to targeting a version of the ASP.NET Core shared

framework that isn't present. Check which versions of the ASP.NET Core shared framework are installed on the

target machine. The shared framework is the set of assemblies (.dll files) that are installed on the machine and

referenced by a metapackage such as Microsoft.AspNetCore.App . The metapackage reference can specify a

minimum required version. For more information, see The shared framework.

The 502.5 Process Failure error page is returned when a hosting or app misconfiguration causes the worker process

to fail:

The app failed to start because the app's assembly (.dll) couldn't be loaded.

This error occurs when there's a bitness mismatch between the published app and the w3wp/iisexpress process.

Confirm that the app pool's 32-bit setting is correct:

1. Select the app pool in IIS Manager's Application PoolsApplication Pools .

2. Select Advanced SettingsAdvanced Settings  under Edit Application PoolEdit Application Pool  in the ActionsActions  panel.

3. Set Enable 32-Bit ApplicationsEnable 32-Bit Applications :

If deploying a 32-bit (x86) app, set the value to True .

If deploying a 64-bit (x64) app, set the value to False .

Confirm that there isn't a conflict between a <Platform>  MSBuild property in the project file and the published

bitness of the app.

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal Ser ver Error500 Internal Ser ver Error  when

an error occurs. This often happens when an error occurs during the serialization of complex objects for a response.

This type of error appears as a connection reset error on the client. Application logging can help troubleshoot these

types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at the default

value, an app may take up to two minutes to start before the module logs a process failure. For information on

configuring the module, see Attributes of the aspNetCore element.

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/


IMPORTANTIMPORTANT

Application Event Log (Azure App Service)Application Event Log (Azure App Service)

Run the app in the Kudu consoleRun the app in the Kudu console

Test a 32-bit (x86) appTest a 32-bit (x86) app

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

To access the Application Event Log, use the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal:

1. In the Azure portal, open the app in App Ser vicesApp Ser vices .

2. Select Diagnose and solve problemsDiagnose and solve problems .

3. Select the Diagnostic ToolsDiagnostic Tools  heading.

4. Under Suppor t ToolsSuppor t Tools , select the Application EventsApplication Events  button.

5. Examine the latest error provided by the IIS AspNetCoreModule or IIS AspNetCoreModule V2 entry in the

SourceSource column.

An alternative to using the Diagnose and solve problemsDiagnose and solve problems blade is to examine the Application Event Log file

directly using Kudu:

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the LogFilesLogFiles  folder.

4. Select the pencil icon next to the eventlog.xml file.

5. Examine the log. Scroll to the bottom of the log to see the most recent events.

Many startup errors don't produce useful information in the Application Event Log. You can run the app in the Kudu

Remote Execution Console to discover the error :

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

Current releaseCurrent release

1. cd d:\home\site\wwwroot

2. Run the app:

dotnet .\{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

If the app is a framework-dependent deployment:

If the app is a self-contained deployment:

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x86) Runtime site extension.

https://github.com/projectkudu/kudu/wiki
https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


Test a 64-bit (x64) appTest a 64-bit (x64) app

ASP.NET Core Module stdout log (Azure App Service)ASP.NET Core Module stdout log (Azure App Service)

WARNINGWARNING

ASP.NET Core Module debug log (Azure App Service)ASP.NET Core Module debug log (Azure App Service)

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x32  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Current releaseCurrent release

If the app is a 64-bit (x64) framework-dependent deployment:

If the app is a self-contained deployment:

1. cd D:\Program Files\dotnet

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

1. cd D:\home\site\wwwroot

2. Run the app: {ASSEMBLY NAME}.exe

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x64) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x64  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created. Only use stdout logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

The ASP.NET Core Module stdout log often records useful error messages not found in the Application Event Log. To

enable and view stdout logs:

1. In the Azure Portal, navigate to the web app.

2. In the App Ser viceApp Ser vice blade, enter kudukudu in the search box.

3. Select Advanced ToolsAdvanced Tools  > GoGo.

4. Select Debug console > CMDDebug console > CMD.

5. Navigate to site/wwwroot

6. Select the pencil icon to edit the web.config file.

7. In the <aspNetCore />  element, set stdoutLogEnabled="true"  and select SaveSave.

Disable stdout logging when troubleshooting is complete by setting stdoutLogEnabled="false" .

For more information, see ASP.NET Core Module.

The ASP.NET Core Module debug log provides additional, deeper logging from the ASP.NET Core Module. To enable

and view stdout logs:

1. To enable the enhanced diagnostic log, perform either of the following:

Follow the instructions in Enhanced diagnostic logs to configure the app for an enhanced diagnostic

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

Slow or hanging app (Azure App Service)Slow or hanging app (Azure App Service)

Monitoring bladesMonitoring blades

2. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

3. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

4. Open the folders to the path sitesite > wwwrootwwwroot. If you didn't supply a path for the aspnetcore-debug.log file, the

file appears in the list. If you supplied a path, navigate to the location of the log file.

5. Open the log file with the pencil button next to the file name.

logging. Redeploy the app.

Add the <handlerSettings>  shown in Enhanced diagnostic logs to the live app's web.config file using the

Kudu console:

a. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

b. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

c. Open the folders to the path sitesite > wwwrootwwwroot. Edit the web.config file by selecting the pencil

button. Add the <handlerSettings>  section as shown in Enhanced diagnostic logs. Select the SaveSave

button.

Disable debug logging when troubleshooting is complete:

To disable the enhanced debug log, perform either of the following:

Remove the <handlerSettings>  from the web.config file locally and redeploy the app.

Use the Kudu console to edit the web.config file and remove the <handlerSettings>  section. Save the file.

For more information, see ASP.NET Core Module.

Failure to disable the debug log can lead to app or server failure. There's no limit on log file size. Only use debug logging to

troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

When an app responds slowly or hangs on a request, see the following articles:

Troubleshoot slow web app performance issues in Azure App Service

Use Crash Diagnoser Site Extension to Capture Dump for Intermittent Exception issues or performance issues on

Azure Web App

Monitoring blades provide an alternative troubleshooting experience to the methods described earlier in the topic.

These blades can be used to diagnose 500-series errors.

Confirm that the ASP.NET Core Extensions are installed. If the extensions aren't installed, install them manually:

1. In the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  blade section, select the ExtensionsExtensions  blade.

2. The ASP.NET Core ExtensionsASP.NET Core Extensions  should appear in the list.

3. If the extensions aren't installed, select the AddAdd button.

4. Choose the ASP.NET Core ExtensionsASP.NET Core Extensions  from the list.

5. Select OKOK to accept the legal terms.

6. Select OKOK on the Add extensionAdd extension blade.

7. An informational pop-up message indicates when the extensions are successfully installed.

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://blogs.msdn.microsoft.com/asiatech/2015/12/28/use-crash-diagnoser-site-extension-to-capture-dump-for-intermittent-exception-issues-or-performance-issues-on-azure-web-app/


WARNINGWARNING

Troubleshoot on IIS
Application Event Log (IIS)Application Event Log (IIS)

Run the app at a command promptRun the app at a command prompt

If stdout logging isn't enabled, follow these steps:

1. In the Azure portal, select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select the Go→Go→

button. The Kudu console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the folders to the path sitesite > wwwrootwwwroot and scroll down to reveal the web.config file at the bottom of the

list.

4. Click the pencil icon next to the web.config file.

5. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: \\?\%home%\LogFiles\stdout .

6. Select SaveSave to save the updated web.config file.

Proceed to activate diagnostic logging:

1. In the Azure portal, select the Diagnostics logsDiagnostics logs  blade.

2. Select the OnOn switch for Application Logging (Filesystem)Application Logging (Filesystem)  and Detailed error messagesDetailed error messages . Select the SaveSave

button at the top of the blade.

3. To include failed request tracing, also known as Failed Request Event Buffering (FREB) logging, select the OnOn

switch for Failed request tracingFailed request tracing.

4. Select the Log streamLog stream blade, which is listed immediately under the Diagnostics logsDiagnostics logs  blade in the portal.

5. Make a request to the app.

6. Within the log stream data, the cause of the error is indicated.

Be sure to disable stdout logging when troubleshooting is complete.

To view the failed request tracing logs (FREB logs):

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Select Failed Request Tracing LogsFailed Request Tracing Logs  from the SUPPORT TOOLSSUPPORT TOOLS  area of the sidebar.

See Failed request traces section of the Enable diagnostics logging for web apps in Azure App Service topic and the

Application performance FAQs for Web Apps in Azure: How do I turn on failed request tracing? for more

information.

For more information, see Enable diagnostics logging for web apps in Azure App Service.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

Access the Application Event Log:

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app. Errors have a value of IIS AspNetCore Module or IIS Express

AspNetCore Module in the Source column.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#failed-request-traces
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq#how-do-i-turn-on-failed-request-tracing
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log


Framework-dependent deploymentFramework-dependent deployment

Self-contained deploymentSelf-contained deployment

ASP.NET Core Module stdout log (IIS)ASP.NET Core Module stdout log (IIS)

Many startup errors don't produce useful information in the Application Event Log. You can find the cause of some

errors by running the app at a command prompt on the hosting system.

If the app is a framework-dependent deployment:

1. At a command prompt, navigate to the deployment folder and run the app by executing the app's assembly with

dotnet.exe. In the following command, substitute the name of the app's assembly for <assembly_name>: 

dotnet .\<assembly_name>.dll .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

If the app is a self-contained deployment:

1. At a command prompt, navigate to the deployment folder and run the app's executable. In the following

command, substitute the name of the app's assembly for <assembly_name>: <assembly_name>.exe .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

To enable and view stdout logs:

1. Navigate to the site's deployment folder on the hosting system.

2. If the logs folder isn't present, create the folder. For instructions on how to enable MSBuild to create the logs

folder in the deployment automatically, see the Directory structure topic.

3. Edit the web.config file. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to point to the

logs folder (for example, .\logs\stdout ). stdout  in the path is the log file name prefix. A timestamp, process id,

and file extension are added automatically when the log is created. Using stdout  as the file name prefix, a

typical log file is named stdout_20180205184032_5412.log.

4. Ensure your application pool's identity has write permissions to the logs folder.

5. Save the updated web.config file.

6. Make a request to the app.

7. Navigate to the logs folder. Find and open the most recent stdout log.

8. Study the log for errors.

Disable stdout logging when troubleshooting is complete:

1. Edit the web.config file.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Save the file.

For more information, see ASP.NET Core Module.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

ASP.NET Core Module debug log (IIS)ASP.NET Core Module debug log (IIS)

<aspNetCore ...>
  <handlerSettings>
    <handlerSetting name="debugLevel" value="file" />
    <handlerSetting name="debugFile" value="c:\temp\ancm.log" />
  </handlerSettings>
</aspNetCore>

Enable the Developer Exception PageEnable the Developer Exception Page

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout"
      hostingModel="InProcess">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
  </environmentVariables>
</aspNetCore>

Obtain data from an appObtain data from an app

Slow or hanging app (IIS)Slow or hanging app (IIS)

App crashes or encounters an exceptionApp crashes or encounters an exception

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

Add the following handler settings to the app's web.config file to enable ASP.NET Core Module debug log:

Confirm that the path specified for the log exists and that the app pool's identity has write permissions to the

location.

For more information, see ASP.NET Core Module.

The ASPNETCORE_ENVIRONMENT  environment variable can be added to web.config to run the app in the Development

environment. As long as the environment isn't overridden in app startup by UseEnvironment  on the host builder,

setting the environment variable allows the Developer Exception Page to appear when the app is run.

Setting the environment variable for ASPNETCORE_ENVIRONMENT  is only recommended for use on staging and testing

servers that aren't exposed to the Internet. Remove the environment variable from the web.config file after

troubleshooting. For information on setting environment variables in web.config, see environmentVariables child

element of aspNetCore.

If an app is capable of responding to requests, obtain request, connection, and additional data from the app using

terminal inline middleware. For more information and sample code, see Troubleshoot and debug ASP.NET Core

projects.

A crash dump is a snapshot of the system's memory and can help determine the cause of an app crash, startup

failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

1. Create a folder to hold crash dump files at c:\dumps . The app pool must have write access to the folder.

https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting


WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Clear package caches

2. Run the EnableDumps PowerShell script:

.\EnableDumps w3wp.exe c:\dumps

.\EnableDumps dotnet.exe c:\dumps

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

.\DisableDumps w3wp.exe

.\DisableDumps dotnet.exe

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The PowerShell

script configures WER to collect up to five dumps per app.

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see User-Mode

Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-Mode Dump File.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the development machine or

changing package versions within the app. In some cases, incoherent packages may break an app when performing

major upgrades. Most of these issues can be fixed by following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the command 

nuget locals all -clear . nuget.exe isn't a bundled install with the Windows desktop operating system and

must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/EnableDumps.ps1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/DisableDumps.ps1
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads


Additional resources

Azure documentationAzure documentation

Visual Studio documentationVisual Studio documentation

Visual Studio Code documentationVisual Studio Code documentation

App startup errors

403.14 Forbidden403.14 Forbidden

Troubleshoot and debug ASP.NET Core projects

Common errors reference for Azure App Service and IIS with ASP.NET Core

Handle errors in ASP.NET Core

ASP.NET Core Module

Application Insights for ASP.NET Core

Remote debugging web apps section of Troubleshoot a web app in Azure App Service using Visual Studio

Azure App Service diagnostics overview

How to: Monitor Apps in Azure App Service

Troubleshoot a web app in Azure App Service using Visual Studio

Troubleshoot HTTP errors of "502 bad gateway" and "503 service unavailable" in your Azure web apps

Troubleshoot slow web app performance issues in Azure App Service

Application performance FAQs for Web Apps in Azure

Azure Web App sandbox (App Service runtime execution limitations)

Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

Remote Debug ASP.NET Core on IIS in Azure in Visual Studio 2017

Remote Debug ASP.NET Core on a Remote IIS Computer in Visual Studio 2017

Learn to debug using Visual Studio

Debugging with Visual Studio Code

This article provides information on common app startup errors and instructions on how to diagnose errors when

an app is deployed to Azure App Service or IIS:

App startup errors

Explains common startup HTTP status code scenarios.

Troubleshoot on Azure App Service

Provides troubleshooting advice for apps deployed to Azure App Service.

Troubleshoot on IIS

Provides troubleshooting advice for apps deployed to IIS or running on IIS Express locally. The guidance applies to

both Windows Server and Windows desktop deployments.

Clear package caches

Explains what to do when incoherent packages break an app when performing major upgrades or changing

package versions.

Additional resources

Lists additional troubleshooting topics.

In Visual Studio, an ASP.NET Core project defaults to IIS Express hosting during debugging. A 502.5 - Process Failure

or a 500.30 - Start Failure that occurs when debugging locally can be diagnosed using the advice in this topic.

The app fails to start. The following error is logged:

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/en-us/azure/app-service/app-service-diagnostics
https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-http-502-http-503
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-aspnet-on-a-remote-iis-computer
https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger
https://code.visualstudio.com/docs/editor/debugging
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview


The Web server is configured to not list the contents of this directory.

500 Internal Server Error500 Internal Server Error

500.0 In-Process Handler Load Failure500.0 In-Process Handler Load Failure

500.0 Out-Of-Process Handler Load Failure500.0 Out-Of-Process Handler Load Failure

502.5 Process Failure502.5 Process Failure

The error is usually caused by a broken deployment on the hosting system, which includes any of the following

scenarios:

The app is deployed to the wrong folder on the hosting system.

The deployment process failed to move all of the app's files and folders to the deployment folder on the hosting

system.

The web.config file is missing from the deployment, or the web.config file contents are malformed.

Perform the following steps:

1. Delete all of the files and folders from the deployment folder on the hosting system.

2. Redeploy the contents of the app's publish folder to the hosting system using your normal method of

deployment, such as Visual Studio, PowerShell, or manual deployment:

3. Confirm that all of the app's files and folders are deployed by comparing the deployment on the hosting system

to the contents of the project's publish folder.

Confirm that the web.config file is present in the deployment and that its contents are correct.

When hosting on Azure App Service, confirm that the app is deployed to the D:\home\site\wwwroot  folder.

When the app is hosted by IIS, confirm that the app is deployed to the IIS Physical pathPhysical path shown in IISIIS

ManagerManager 's Basic SettingsBasic Settings .

For more information on the layout of a published ASP.NET Core app, see ASP.NET Core directory structure. For

more information on the web.config file, see ASP.NET Core Module.

The app starts, but an error prevents the server from fulfilling the request.

This error occurs within the app's code during startup or while creating a response. The response may contain no

content, or the response may appear as a 500 Internal Server Error in the browser. The Application Event Log

usually states that the app started normally. From the server's perspective, that's correct. The app did start, but it

can't generate a valid response. Run the app at a command prompt on the server or enable the ASP.NET Core

Module stdout log to troubleshoot the problem.

The worker process fails. The app doesn't start.

The ASP.NET Core Module fails to find the .NET Core CLR and find the in-process request handler

(aspnetcorev2_inprocess.dll). Check that:

The app targets either the Microsoft.AspNetCore.Server.IIS NuGet package or the Microsoft.AspNetCore.App

metapackage.

The version of the ASP.NET Core shared framework that the app targets is installed on the target machine.

The worker process fails. The app doesn't start.

The ASP.NET Core Module fails to find the out-of-process hosting request handler. Make sure the

aspnetcorev2_outofprocess.dll is present in a subfolder next to aspnetcorev2.dll.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. The cause of a process startup

failure can usually be determined from entries in the Application Event Log and the ASP.NET Core Module stdout

https://www.nuget.org/packages/Microsoft.AspNetCore.Server.IIS


Failed to start application (ErrorCode '0x800700c1')Failed to start application (ErrorCode '0x800700c1')

EventID: 1010
Source: IIS AspNetCore Module V2
Failed to start application '/LM/W3SVC/6/ROOT/', ErrorCode '0x800700c1'.

Connection resetConnection reset

Default startup limitsDefault startup limits

Troubleshoot on Azure App Service

IMPORTANTIMPORTANT

Application Event Log (Azure App Service)Application Event Log (Azure App Service)

log.

A common failure condition is the app is misconfigured due to targeting a version of the ASP.NET Core shared

framework that isn't present. Check which versions of the ASP.NET Core shared framework are installed on the

target machine. The shared framework is the set of assemblies (.dll files) that are installed on the machine and

referenced by a metapackage such as Microsoft.AspNetCore.App . The metapackage reference can specify a

minimum required version. For more information, see The shared framework.

The 502.5 Process Failure error page is returned when a hosting or app misconfiguration causes the worker process

to fail:

The app failed to start because the app's assembly (.dll) couldn't be loaded.

This error occurs when there's a bitness mismatch between the published app and the w3wp/iisexpress process.

Confirm that the app pool's 32-bit setting is correct:

1. Select the app pool in IIS Manager's Application PoolsApplication Pools .

2. Select Advanced SettingsAdvanced Settings  under Edit Application PoolEdit Application Pool  in the ActionsActions  panel.

3. Set Enable 32-Bit ApplicationsEnable 32-Bit Applications :

If deploying a 32-bit (x86) app, set the value to True .

If deploying a 64-bit (x64) app, set the value to False .

Confirm that there isn't a conflict between a <Platform>  MSBuild property in the project file and the published

bitness of the app.

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal Ser ver Error500 Internal Ser ver Error  when

an error occurs. This often happens when an error occurs during the serialization of complex objects for a response.

This type of error appears as a connection reset error on the client. Application logging can help troubleshoot these

types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at the default

value, an app may take up to two minutes to start before the module logs a process failure. For information on

configuring the module, see Attributes of the aspNetCore element.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

To access the Application Event Log, use the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal:

1. In the Azure portal, open the app in App Ser vicesApp Ser vices .

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/


Run the app in the Kudu consoleRun the app in the Kudu console

Test a 32-bit (x86) appTest a 32-bit (x86) app

Test a 64-bit (x64) appTest a 64-bit (x64) app

2. Select Diagnose and solve problemsDiagnose and solve problems .

3. Select the Diagnostic ToolsDiagnostic Tools  heading.

4. Under Suppor t ToolsSuppor t Tools , select the Application EventsApplication Events  button.

5. Examine the latest error provided by the IIS AspNetCoreModule or IIS AspNetCoreModule V2 entry in the

SourceSource column.

An alternative to using the Diagnose and solve problemsDiagnose and solve problems blade is to examine the Application Event Log file

directly using Kudu:

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the LogFilesLogFiles  folder.

4. Select the pencil icon next to the eventlog.xml file.

5. Examine the log. Scroll to the bottom of the log to see the most recent events.

Many startup errors don't produce useful information in the Application Event Log. You can run the app in the Kudu

Remote Execution Console to discover the error :

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

Current releaseCurrent release

1. cd d:\home\site\wwwroot

2. Run the app:

dotnet .\{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

If the app is a framework-dependent deployment:

If the app is a self-contained deployment:

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x86) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x32  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Current releaseCurrent release

If the app is a 64-bit (x64) framework-dependent deployment:

1. cd D:\Program Files\dotnet

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

https://github.com/projectkudu/kudu/wiki
https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd


ASP.NET Core Module stdout log (Azure App Service)ASP.NET Core Module stdout log (Azure App Service)

WARNINGWARNING

ASP.NET Core Module debug log (Azure App Service)ASP.NET Core Module debug log (Azure App Service)

If the app is a self-contained deployment:

1. cd D:\home\site\wwwroot

2. Run the app: {ASSEMBLY NAME}.exe

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x64) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x64  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

The ASP.NET Core Module stdout log often records useful error messages not found in the Application Event Log. To

enable and view stdout logs:

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Under SELECT PROBLEM CATEGORYSELECT PROBLEM CATEGORY, select the Web App DownWeb App Down button.

3. Under Suggested SolutionsSuggested Solutions  > Enable Stdout Log RedirectionEnable Stdout Log Redirection, select the button to Open Kudu ConsoleOpen Kudu Console

to edit Web.Configto edit Web.Config.

4. In the Kudu Diagnostic ConsoleDiagnostic Console, open the folders to the path sitesite > wwwrootwwwroot. Scroll down to reveal the

web.config file at the bottom of the list.

5. Click the pencil icon next to the web.config file.

6. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: \\?\%home%\LogFiles\stdout .

7. Select SaveSave to save the updated web.config file.

8. Make a request to the app.

9. Return to the Azure portal. Select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select the

Go→Go→ button. The Kudu console opens in a new browser tab or window.

10. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

11. Select the LogFilesLogFiles  folder.

12. Inspect the ModifiedModified column and select the pencil icon to edit the stdout log with the latest modification date.

13. When the log file opens, the error is displayed.

Disable stdout logging when troubleshooting is complete:

1. In the Kudu Diagnostic ConsoleDiagnostic Console, return to the path sitesite > wwwrootwwwroot to reveal the web.config file. Open the

web.configweb.config file again by selecting the pencil icon.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Select SaveSave to save the file.

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created. Only use stdout logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

Slow or hanging app (Azure App Service)Slow or hanging app (Azure App Service)

Monitoring bladesMonitoring blades

The ASP.NET Core Module debug log provides additional, deeper logging from the ASP.NET Core Module. To enable

and view stdout logs:

1. To enable the enhanced diagnostic log, perform either of the following:

2. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

3. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

4. Open the folders to the path sitesite > wwwrootwwwroot. If you didn't supply a path for the aspnetcore-debug.log file, the

file appears in the list. If you supplied a path, navigate to the location of the log file.

5. Open the log file with the pencil button next to the file name.

Follow the instructions in Enhanced diagnostic logs to configure the app for an enhanced diagnostic

logging. Redeploy the app.

Add the <handlerSettings>  shown in Enhanced diagnostic logs to the live app's web.config file using the

Kudu console:

a. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

b. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

c. Open the folders to the path sitesite > wwwrootwwwroot. Edit the web.config file by selecting the pencil

button. Add the <handlerSettings>  section as shown in Enhanced diagnostic logs. Select the SaveSave

button.

Disable debug logging when troubleshooting is complete:

To disable the enhanced debug log, perform either of the following:

Remove the <handlerSettings>  from the web.config file locally and redeploy the app.

Use the Kudu console to edit the web.config file and remove the <handlerSettings>  section. Save the file.

For more information, see ASP.NET Core Module.

Failure to disable the debug log can lead to app or server failure. There's no limit on log file size. Only use debug logging to

troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

When an app responds slowly or hangs on a request, see the following articles:

Troubleshoot slow web app performance issues in Azure App Service

Use Crash Diagnoser Site Extension to Capture Dump for Intermittent Exception issues or performance issues on

Azure Web App

Monitoring blades provide an alternative troubleshooting experience to the methods described earlier in the topic.

These blades can be used to diagnose 500-series errors.

Confirm that the ASP.NET Core Extensions are installed. If the extensions aren't installed, install them manually:

1. In the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  blade section, select the ExtensionsExtensions  blade.

2. The ASP.NET Core ExtensionsASP.NET Core Extensions  should appear in the list.

3. If the extensions aren't installed, select the AddAdd button.

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://blogs.msdn.microsoft.com/asiatech/2015/12/28/use-crash-diagnoser-site-extension-to-capture-dump-for-intermittent-exception-issues-or-performance-issues-on-azure-web-app/


WARNINGWARNING

Troubleshoot on IIS
Application Event Log (IIS)Application Event Log (IIS)

4. Choose the ASP.NET Core ExtensionsASP.NET Core Extensions  from the list.

5. Select OKOK to accept the legal terms.

6. Select OKOK on the Add extensionAdd extension blade.

7. An informational pop-up message indicates when the extensions are successfully installed.

If stdout logging isn't enabled, follow these steps:

1. In the Azure portal, select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select the Go→Go→

button. The Kudu console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the folders to the path sitesite > wwwrootwwwroot and scroll down to reveal the web.config file at the bottom of the

list.

4. Click the pencil icon next to the web.config file.

5. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: \\?\%home%\LogFiles\stdout .

6. Select SaveSave to save the updated web.config file.

Proceed to activate diagnostic logging:

1. In the Azure portal, select the Diagnostics logsDiagnostics logs  blade.

2. Select the OnOn switch for Application Logging (Filesystem)Application Logging (Filesystem)  and Detailed error messagesDetailed error messages . Select the SaveSave

button at the top of the blade.

3. To include failed request tracing, also known as Failed Request Event Buffering (FREB) logging, select the OnOn

switch for Failed request tracingFailed request tracing.

4. Select the Log streamLog stream blade, which is listed immediately under the Diagnostics logsDiagnostics logs  blade in the portal.

5. Make a request to the app.

6. Within the log stream data, the cause of the error is indicated.

Be sure to disable stdout logging when troubleshooting is complete.

To view the failed request tracing logs (FREB logs):

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Select Failed Request Tracing LogsFailed Request Tracing Logs  from the SUPPORT TOOLSSUPPORT TOOLS  area of the sidebar.

See Failed request traces section of the Enable diagnostics logging for web apps in Azure App Service topic and the

Application performance FAQs for Web Apps in Azure: How do I turn on failed request tracing? for more

information.

For more information, see Enable diagnostics logging for web apps in Azure App Service.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

Access the Application Event Log:

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#failed-request-traces
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq#how-do-i-turn-on-failed-request-tracing
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log


Run the app at a command promptRun the app at a command prompt

Framework-dependent deploymentFramework-dependent deployment

Self-contained deploymentSelf-contained deployment

ASP.NET Core Module stdout log (IIS)ASP.NET Core Module stdout log (IIS)

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app. Errors have a value of IIS AspNetCore Module or IIS Express

AspNetCore Module in the Source column.

Many startup errors don't produce useful information in the Application Event Log. You can find the cause of some

errors by running the app at a command prompt on the hosting system.

If the app is a framework-dependent deployment:

1. At a command prompt, navigate to the deployment folder and run the app by executing the app's assembly with

dotnet.exe. In the following command, substitute the name of the app's assembly for <assembly_name>: 

dotnet .\<assembly_name>.dll .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

If the app is a self-contained deployment:

1. At a command prompt, navigate to the deployment folder and run the app's executable. In the following

command, substitute the name of the app's assembly for <assembly_name>: <assembly_name>.exe .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

To enable and view stdout logs:

1. Navigate to the site's deployment folder on the hosting system.

2. If the logs folder isn't present, create the folder. For instructions on how to enable MSBuild to create the logs

folder in the deployment automatically, see the Directory structure topic.

3. Edit the web.config file. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to point to the

logs folder (for example, .\logs\stdout ). stdout  in the path is the log file name prefix. A timestamp, process id,

and file extension are added automatically when the log is created. Using stdout  as the file name prefix, a

typical log file is named stdout_20180205184032_5412.log.

4. Ensure your application pool's identity has write permissions to the logs folder.

5. Save the updated web.config file.

6. Make a request to the app.

7. Navigate to the logs folder. Find and open the most recent stdout log.

8. Study the log for errors.

Disable stdout logging when troubleshooting is complete:

1. Edit the web.config file.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Save the file.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

ASP.NET Core Module debug log (IIS)ASP.NET Core Module debug log (IIS)

<aspNetCore ...>
  <handlerSettings>
    <handlerSetting name="debugLevel" value="file" />
    <handlerSetting name="debugFile" value="c:\temp\ancm.log" />
  </handlerSettings>
</aspNetCore>

Enable the Developer Exception PageEnable the Developer Exception Page

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout"
      hostingModel="InProcess">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
  </environmentVariables>
</aspNetCore>

Obtain data from an appObtain data from an app

Slow or hanging app (IIS)Slow or hanging app (IIS)

App crashes or encounters an exceptionApp crashes or encounters an exception

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

Add the following handler settings to the app's web.config file to enable ASP.NET Core Module debug log:

Confirm that the path specified for the log exists and that the app pool's identity has write permissions to the

location.

For more information, see ASP.NET Core Module.

The ASPNETCORE_ENVIRONMENT  environment variable can be added to web.config to run the app in the Development

environment. As long as the environment isn't overridden in app startup by UseEnvironment  on the host builder,

setting the environment variable allows the Developer Exception Page to appear when the app is run.

Setting the environment variable for ASPNETCORE_ENVIRONMENT  is only recommended for use on staging and testing

servers that aren't exposed to the Internet. Remove the environment variable from the web.config file after

troubleshooting. For information on setting environment variables in web.config, see environmentVariables child

element of aspNetCore.

If an app is capable of responding to requests, obtain request, connection, and additional data from the app using

terminal inline middleware. For more information and sample code, see Troubleshoot and debug ASP.NET Core

projects.

A crash dump is a snapshot of the system's memory and can help determine the cause of an app crash, startup

failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting


WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Clear package caches

1. Create a folder to hold crash dump files at c:\dumps . The app pool must have write access to the folder.

2. Run the EnableDumps PowerShell script:

.\EnableDumps w3wp.exe c:\dumps

.\EnableDumps dotnet.exe c:\dumps

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

.\DisableDumps w3wp.exe

.\DisableDumps dotnet.exe

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The PowerShell

script configures WER to collect up to five dumps per app.

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see User-Mode

Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-Mode Dump File.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the development machine or

changing package versions within the app. In some cases, incoherent packages may break an app when performing

major upgrades. Most of these issues can be fixed by following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the command 

nuget locals all -clear . nuget.exe isn't a bundled install with the Windows desktop operating system and

must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/EnableDumps.ps1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/DisableDumps.ps1
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads


Additional resources

Azure documentationAzure documentation

Visual Studio documentationVisual Studio documentation

Visual Studio Code documentationVisual Studio Code documentation

App startup errors

403.14 Forbidden403.14 Forbidden

Troubleshoot and debug ASP.NET Core projects

Common errors reference for Azure App Service and IIS with ASP.NET Core

Handle errors in ASP.NET Core

ASP.NET Core Module

Application Insights for ASP.NET Core

Remote debugging web apps section of Troubleshoot a web app in Azure App Service using Visual Studio

Azure App Service diagnostics overview

How to: Monitor Apps in Azure App Service

Troubleshoot a web app in Azure App Service using Visual Studio

Troubleshoot HTTP errors of "502 bad gateway" and "503 service unavailable" in your Azure web apps

Troubleshoot slow web app performance issues in Azure App Service

Application performance FAQs for Web Apps in Azure

Azure Web App sandbox (App Service runtime execution limitations)

Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

Remote Debug ASP.NET Core on IIS in Azure in Visual Studio 2017

Remote Debug ASP.NET Core on a Remote IIS Computer in Visual Studio 2017

Learn to debug using Visual Studio

Debugging with Visual Studio Code

This article provides information on common app startup errors and instructions on how to diagnose errors when

an app is deployed to Azure App Service or IIS:

App startup errors

Explains common startup HTTP status code scenarios.

Troubleshoot on Azure App Service

Provides troubleshooting advice for apps deployed to Azure App Service.

Troubleshoot on IIS

Provides troubleshooting advice for apps deployed to IIS or running on IIS Express locally. The guidance applies to

both Windows Server and Windows desktop deployments.

Clear package caches

Explains what to do when incoherent packages break an app when performing major upgrades or changing

package versions.

Additional resources

Lists additional troubleshooting topics.

In Visual Studio, an ASP.NET Core project defaults to IIS Express hosting during debugging. A 502.5 Process Failure

that occurs when debugging locally can be diagnosed using the advice in this topic.

The app fails to start. The following error is logged:

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/en-us/azure/app-service/app-service-diagnostics
https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-http-502-http-503
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-aspnet-on-a-remote-iis-computer
https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger
https://code.visualstudio.com/docs/editor/debugging
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview


The Web server is configured to not list the contents of this directory.

500 Internal Server Error500 Internal Server Error

502.5 Process Failure502.5 Process Failure

Failed to start application (ErrorCode '0x800700c1')Failed to start application (ErrorCode '0x800700c1')

The error is usually caused by a broken deployment on the hosting system, which includes any of the following

scenarios:

The app is deployed to the wrong folder on the hosting system.

The deployment process failed to move all of the app's files and folders to the deployment folder on the hosting

system.

The web.config file is missing from the deployment, or the web.config file contents are malformed.

Perform the following steps:

1. Delete all of the files and folders from the deployment folder on the hosting system.

2. Redeploy the contents of the app's publish folder to the hosting system using your normal method of

deployment, such as Visual Studio, PowerShell, or manual deployment:

3. Confirm that all of the app's files and folders are deployed by comparing the deployment on the hosting system

to the contents of the project's publish folder.

Confirm that the web.config file is present in the deployment and that its contents are correct.

When hosting on Azure App Service, confirm that the app is deployed to the D:\home\site\wwwroot  folder.

When the app is hosted by IIS, confirm that the app is deployed to the IIS Physical pathPhysical path shown in IISIIS

ManagerManager 's Basic SettingsBasic Settings .

For more information on the layout of a published ASP.NET Core app, see ASP.NET Core directory structure. For

more information on the web.config file, see ASP.NET Core Module.

The app starts, but an error prevents the server from fulfilling the request.

This error occurs within the app's code during startup or while creating a response. The response may contain no

content, or the response may appear as a 500 Internal Server Error in the browser. The Application Event Log

usually states that the app started normally. From the server's perspective, that's correct. The app did start, but it

can't generate a valid response. Run the app at a command prompt on the server or enable the ASP.NET Core

Module stdout log to troubleshoot the problem.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. The cause of a process startup

failure can usually be determined from entries in the Application Event Log and the ASP.NET Core Module stdout

log.

A common failure condition is the app is misconfigured due to targeting a version of the ASP.NET Core shared

framework that isn't present. Check which versions of the ASP.NET Core shared framework are installed on the

target machine. The shared framework is the set of assemblies (.dll files) that are installed on the machine and

referenced by a metapackage such as Microsoft.AspNetCore.App . The metapackage reference can specify a

minimum required version. For more information, see The shared framework.

The 502.5 Process Failure error page is returned when a hosting or app misconfiguration causes the worker process

to fail:

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/


EventID: 1010
Source: IIS AspNetCore Module V2
Failed to start application '/LM/W3SVC/6/ROOT/', ErrorCode '0x800700c1'.

Connection resetConnection reset

Default startup limitsDefault startup limits

Troubleshoot on Azure App Service

IMPORTANTIMPORTANT

Application Event Log (Azure App Service)Application Event Log (Azure App Service)

The app failed to start because the app's assembly (.dll) couldn't be loaded.

This error occurs when there's a bitness mismatch between the published app and the w3wp/iisexpress process.

Confirm that the app pool's 32-bit setting is correct:

1. Select the app pool in IIS Manager's Application PoolsApplication Pools .

2. Select Advanced SettingsAdvanced Settings  under Edit Application PoolEdit Application Pool  in the ActionsActions  panel.

3. Set Enable 32-Bit ApplicationsEnable 32-Bit Applications :

If deploying a 32-bit (x86) app, set the value to True .

If deploying a 64-bit (x64) app, set the value to False .

Confirm that there isn't a conflict between a <Platform>  MSBuild property in the project file and the published

bitness of the app.

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal Ser ver Error500 Internal Ser ver Error  when

an error occurs. This often happens when an error occurs during the serialization of complex objects for a response.

This type of error appears as a connection reset error on the client. Application logging can help troubleshoot these

types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at the default

value, an app may take up to two minutes to start before the module logs a process failure. For information on

configuring the module, see Attributes of the aspNetCore element.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

To access the Application Event Log, use the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal:

1. In the Azure portal, open the app in App Ser vicesApp Ser vices .

2. Select Diagnose and solve problemsDiagnose and solve problems .

3. Select the Diagnostic ToolsDiagnostic Tools  heading.

4. Under Suppor t ToolsSuppor t Tools , select the Application EventsApplication Events  button.

5. Examine the latest error provided by the IIS AspNetCoreModule or IIS AspNetCoreModule V2 entry in the

SourceSource column.

An alternative to using the Diagnose and solve problemsDiagnose and solve problems blade is to examine the Application Event Log file

directly using Kudu:

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

https://github.com/projectkudu/kudu/wiki


Run the app in the Kudu consoleRun the app in the Kudu console

Test a 32-bit (x86) appTest a 32-bit (x86) app

Test a 64-bit (x64) appTest a 64-bit (x64) app

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the LogFilesLogFiles  folder.

4. Select the pencil icon next to the eventlog.xml file.

5. Examine the log. Scroll to the bottom of the log to see the most recent events.

Many startup errors don't produce useful information in the Application Event Log. You can run the app in the Kudu

Remote Execution Console to discover the error :

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu console opens in a

new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

Current releaseCurrent release

1. cd d:\home\site\wwwroot

2. Run the app:

dotnet .\{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

If the app is a framework-dependent deployment:

If the app is a self-contained deployment:

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x86) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x32  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Current releaseCurrent release

If the app is a 64-bit (x64) framework-dependent deployment:

If the app is a self-contained deployment:

1. cd D:\Program Files\dotnet

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

1. cd D:\home\site\wwwroot

2. Run the app: {ASSEMBLY NAME}.exe

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x64) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x64  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


ASP.NET Core Module stdout log (Azure App Service)ASP.NET Core Module stdout log (Azure App Service)

WARNINGWARNING

Slow or hanging app (Azure App Service)Slow or hanging app (Azure App Service)

Monitoring bladesMonitoring blades

The console output from the app, showing any errors, is piped to the Kudu console.

The ASP.NET Core Module stdout log often records useful error messages not found in the Application Event Log. To

enable and view stdout logs:

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Under SELECT PROBLEM CATEGORYSELECT PROBLEM CATEGORY, select the Web App DownWeb App Down button.

3. Under Suggested SolutionsSuggested Solutions  > Enable Stdout Log RedirectionEnable Stdout Log Redirection, select the button to Open Kudu ConsoleOpen Kudu Console

to edit Web.Configto edit Web.Config.

4. In the Kudu Diagnostic ConsoleDiagnostic Console, open the folders to the path sitesite > wwwrootwwwroot. Scroll down to reveal the

web.config file at the bottom of the list.

5. Click the pencil icon next to the web.config file.

6. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: \\?\%home%\LogFiles\stdout .

7. Select SaveSave to save the updated web.config file.

8. Make a request to the app.

9. Return to the Azure portal. Select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select the

Go→Go→ button. The Kudu console opens in a new browser tab or window.

10. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

11. Select the LogFilesLogFiles  folder.

12. Inspect the ModifiedModified column and select the pencil icon to edit the stdout log with the latest modification date.

13. When the log file opens, the error is displayed.

Disable stdout logging when troubleshooting is complete:

1. In the Kudu Diagnostic ConsoleDiagnostic Console, return to the path sitesite > wwwrootwwwroot to reveal the web.config file. Open the

web.configweb.config file again by selecting the pencil icon.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Select SaveSave to save the file.

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created. Only use stdout logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

When an app responds slowly or hangs on a request, see the following articles:

Troubleshoot slow web app performance issues in Azure App Service

Use Crash Diagnoser Site Extension to Capture Dump for Intermittent Exception issues or performance issues on

Azure Web App

Monitoring blades provide an alternative troubleshooting experience to the methods described earlier in the topic.

These blades can be used to diagnose 500-series errors.

Confirm that the ASP.NET Core Extensions are installed. If the extensions aren't installed, install them manually:

1. In the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  blade section, select the ExtensionsExtensions  blade.

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://blogs.msdn.microsoft.com/asiatech/2015/12/28/use-crash-diagnoser-site-extension-to-capture-dump-for-intermittent-exception-issues-or-performance-issues-on-azure-web-app/


WARNINGWARNING

Troubleshoot on IIS
Application Event Log (IIS)Application Event Log (IIS)

2. The ASP.NET Core ExtensionsASP.NET Core Extensions  should appear in the list.

3. If the extensions aren't installed, select the AddAdd button.

4. Choose the ASP.NET Core ExtensionsASP.NET Core Extensions  from the list.

5. Select OKOK to accept the legal terms.

6. Select OKOK on the Add extensionAdd extension blade.

7. An informational pop-up message indicates when the extensions are successfully installed.

If stdout logging isn't enabled, follow these steps:

1. In the Azure portal, select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select the Go→Go→

button. The Kudu console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the folders to the path sitesite > wwwrootwwwroot and scroll down to reveal the web.config file at the bottom of the

list.

4. Click the pencil icon next to the web.config file.

5. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: \\?\%home%\LogFiles\stdout .

6. Select SaveSave to save the updated web.config file.

Proceed to activate diagnostic logging:

1. In the Azure portal, select the Diagnostics logsDiagnostics logs  blade.

2. Select the OnOn switch for Application Logging (Filesystem)Application Logging (Filesystem)  and Detailed error messagesDetailed error messages . Select the SaveSave

button at the top of the blade.

3. To include failed request tracing, also known as Failed Request Event Buffering (FREB) logging, select the OnOn

switch for Failed request tracingFailed request tracing.

4. Select the Log streamLog stream blade, which is listed immediately under the Diagnostics logsDiagnostics logs  blade in the portal.

5. Make a request to the app.

6. Within the log stream data, the cause of the error is indicated.

Be sure to disable stdout logging when troubleshooting is complete.

To view the failed request tracing logs (FREB logs):

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Select Failed Request Tracing LogsFailed Request Tracing Logs  from the SUPPORT TOOLSSUPPORT TOOLS  area of the sidebar.

See Failed request traces section of the Enable diagnostics logging for web apps in Azure App Service topic and the

Application performance FAQs for Web Apps in Azure: How do I turn on failed request tracing? for more

information.

For more information, see Enable diagnostics logging for web apps in Azure App Service.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

Access the Application Event Log:

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#failed-request-traces
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq#how-do-i-turn-on-failed-request-tracing
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log


Run the app at a command promptRun the app at a command prompt

Framework-dependent deploymentFramework-dependent deployment

Self-contained deploymentSelf-contained deployment

ASP.NET Core Module stdout log (IIS)ASP.NET Core Module stdout log (IIS)

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app. Errors have a value of IIS AspNetCore Module or IIS Express

AspNetCore Module in the Source column.

Many startup errors don't produce useful information in the Application Event Log. You can find the cause of some

errors by running the app at a command prompt on the hosting system.

If the app is a framework-dependent deployment:

1. At a command prompt, navigate to the deployment folder and run the app by executing the app's assembly with

dotnet.exe. In the following command, substitute the name of the app's assembly for <assembly_name>: 

dotnet .\<assembly_name>.dll .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

If the app is a self-contained deployment:

1. At a command prompt, navigate to the deployment folder and run the app's executable. In the following

command, substitute the name of the app's assembly for <assembly_name>: <assembly_name>.exe .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where Kestrel listens.

Using the default host and post, make a request to http://localhost:5000/ . If the app responds normally at the

Kestrel endpoint address, the problem is more likely related to the hosting configuration and less likely within

the app.

To enable and view stdout logs:

1. Navigate to the site's deployment folder on the hosting system.

2. If the logs folder isn't present, create the folder. For instructions on how to enable MSBuild to create the logs

folder in the deployment automatically, see the Directory structure topic.

3. Edit the web.config file. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to point to the

logs folder (for example, .\logs\stdout ). stdout  in the path is the log file name prefix. A timestamp, process id,

and file extension are added automatically when the log is created. Using stdout  as the file name prefix, a

typical log file is named stdout_20180205184032_5412.log.

4. Ensure your application pool's identity has write permissions to the logs folder.

5. Save the updated web.config file.

6. Make a request to the app.

7. Navigate to the logs folder. Find and open the most recent stdout log.

8. Study the log for errors.

Disable stdout logging when troubleshooting is complete:

1. Edit the web.config file.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

Enable the Developer Exception PageEnable the Developer Exception Page

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
  </environmentVariables>
</aspNetCore>

Obtain data from an appObtain data from an app

Slow or hanging app (IIS)Slow or hanging app (IIS)

App crashes or encounters an exceptionApp crashes or encounters an exception

3. Save the file.

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the number of log files

created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

The ASPNETCORE_ENVIRONMENT  environment variable can be added to web.config to run the app in the Development

environment. As long as the environment isn't overridden in app startup by UseEnvironment  on the host builder,

setting the environment variable allows the Developer Exception Page to appear when the app is run.

Setting the environment variable for ASPNETCORE_ENVIRONMENT  is only recommended for use on staging and testing

servers that aren't exposed to the Internet. Remove the environment variable from the web.config file after

troubleshooting. For information on setting environment variables in web.config, see environmentVariables child

element of aspNetCore.

If an app is capable of responding to requests, obtain request, connection, and additional data from the app using

terminal inline middleware. For more information and sample code, see Troubleshoot and debug ASP.NET Core

projects.

A crash dump is a snapshot of the system's memory and can help determine the cause of an app crash, startup

failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

1. Create a folder to hold crash dump files at c:\dumps . The app pool must have write access to the folder.

2. Run the EnableDumps PowerShell script:

.\EnableDumps w3wp.exe c:\dumps

.\EnableDumps dotnet.exe c:\dumps

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/EnableDumps.ps1


WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Clear package caches

Additional resources

Azure documentationAzure documentation

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

.\DisableDumps w3wp.exe

.\DisableDumps dotnet.exe

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The PowerShell

script configures WER to collect up to five dumps per app.

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see User-Mode

Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-Mode Dump File.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the development machine or

changing package versions within the app. In some cases, incoherent packages may break an app when performing

major upgrades. Most of these issues can be fixed by following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the command 

nuget locals all -clear . nuget.exe isn't a bundled install with the Windows desktop operating system and

must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

Troubleshoot and debug ASP.NET Core projects

Common errors reference for Azure App Service and IIS with ASP.NET Core

Handle errors in ASP.NET Core

ASP.NET Core Module

Application Insights for ASP.NET Core

Remote debugging web apps section of Troubleshoot a web app in Azure App Service using Visual Studio

Azure App Service diagnostics overview

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/DisableDumps.ps1
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/en-us/azure/app-service/app-service-diagnostics


Visual Studio documentationVisual Studio documentation

Visual Studio Code documentationVisual Studio Code documentation

How to: Monitor Apps in Azure App Service

Troubleshoot a web app in Azure App Service using Visual Studio

Troubleshoot HTTP errors of "502 bad gateway" and "503 service unavailable" in your Azure web apps

Troubleshoot slow web app performance issues in Azure App Service

Application performance FAQs for Web Apps in Azure

Azure Web App sandbox (App Service runtime execution limitations)

Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

Remote Debug ASP.NET Core on IIS in Azure in Visual Studio 2017

Remote Debug ASP.NET Core on a Remote IIS Computer in Visual Studio 2017

Learn to debug using Visual Studio

Debugging with Visual Studio Code

https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-http-502-http-503
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-aspnet-on-a-remote-iis-computer
https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger
https://code.visualstudio.com/docs/editor/debugging


Common errors reference for Azure App Service and
IIS with ASP.NET Core
9/22/2020 • 22 minutes to read • Edit Online

IMPORTANTIMPORTANT

OS upgrade removed the 32-bit ASP.NET Core Module

Missing site extension, 32-bit (x86) and 64-bit (x64) site extensions
installed, or wrong process bitness set

This topic describes common errors and provides troubleshooting advice for specific errors when hosting ASP.NET

Core apps on Azure Apps Service and IIS.

For general troubleshooting guidance, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Collect the following information:

Browser behavior (status code and error message)

Application Event Log entries

ASP.NET Core Module stdout and debug log entries

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS

1. Select Star tStar t on the WindowsWindows menu, type Event Viewer, and press EnterEnter .

2. After the Event ViewerEvent Viewer  opens, expand Windows LogsWindows Logs  > ApplicationApplication in the sidebar.

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS: Follow the instructions in the Log creation and redirection and Enhanced diagnostic logs sections of

the ASP.NET Core Module topic.

Compare error information to the following common errors. If a match is found, follow the troubleshooting advice.

The list of errors in this topic isn't exhaustive. If you encounter an error not listed here, open a new issue using the

Content feedbackContent feedback button at the bottom of this topic with detailed instructions on how to reproduce the error.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

Application Log:Application Log: The Module DLL C:\WINDOWS\system32\inetsr v\aspnetcore.dllC:\WINDOWS\system32\inetsr v\aspnetcore.dll  failed to load. The data is

the error.

Troubleshooting:

Non-OS files in the C:\Windows\SysWOW64\inetsr vC:\Windows\SysWOW64\inetsr v  directory aren't preserved during an OS upgrade. If the

ASP.NET Core Module is installed prior to an OS upgrade and then any app pool is run in 32-bit mode after an OS

upgrade, this issue is encountered. After an OS upgrade, repair the ASP.NET Core Module. See Install the .NET Core

Hosting bundle. Select RepairRepair  when the installer is run.

Applies to apps hosted by Azure App Services.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/azure-iis-errors-reference.md


An x86 app is deployed but the app pool isn't enabled for 32-bit apps

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any native

dependencies. Could not find inprocess request handler. Captured output from invoking hostfxr : It was not

possible to find any compatible framework version. The specified framework 'Microsoft.AspNetCore.App',

version '{VERSION}-preview-*' was not found. Failed to start application '/LM/W3SVC/1416782824/ROOT',

ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: It was not possible to find any compatible framework version. The

specified framework 'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Invoking hostfxr to find the inprocess request handler failed without

finding any native dependencies. This most likely means the app is misconfigured, please check the versions

of Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the application and are

installed on the machine. Failed HRESULT returned: 0x8000ffff. Could not find inprocess request handler. It

was not possible to find any compatible framework version. The specified framework

'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found.

Troubleshooting:

If running the app on a preview runtime, install either the 32-bit (x86) oror  64-bit (x64) site extension that

matches the bitness of the app and the app's runtime version. Don't install both extensions or multipleDon't install both extensions or multiple

runtime versions of the extension.runtime versions of the extension.

ASP.NET Core {RUNTIME VERSION} (x86) Runtime

ASP.NET Core {RUNTIME VERSION} (x64) Runtime

Restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and both the 32-bit (x86) and 64-bit (x64) site extensions are

installed, uninstall the site extension that doesn't match the bitness of the app. After removing the site

extension, restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and the site extension's bitness matches that of the app, confirm that

the preview site extension's runtime version matches the app's runtime version.

Confirm that the app's PlatformPlatform in Application SettingsApplication Settings  matches the bitness of the app.

For more information, see Deploy ASP.NET Core apps to Azure App Service.

Browser :Browser : HTTP Error 500.30 - ANCM In-Process Start Failure

Application Log:Application Log: Application '/LM/W3SVC/5/ROOT' with physical root '{PATH}' hit unexpected managed

exception, exception code = '0xe0434352'. Please check the stderr logs for more information. Application

'/LM/W3SVC/5/ROOT' with physical root '{PATH}' failed to load clr and managed application. CLR worker

thread exited prematurely

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Failed HRESULT returned: 0x8007023e

This scenario is trapped by the SDK when publishing a self-contained app. The SDK produces an error if the RID

doesn't match the platform target (for example, win10-x64  RID with <PlatformTarget>x86</PlatformTarget>  in the

project file).

Troubleshooting:



Platform conflicts with RID

URI endpoint wrong or stopped website

CoreWebEngine or W3SVC server features disabled

Incorrect website physical path or app missing

For an x86 framework-dependent deployment ( <PlatformTarget>x86</PlatformTarget> ), enable the IIS app pool for

32-bit apps. In IIS Manager, open the app pool's Advanced SettingsAdvanced Settings  and set Enable 32-Bit ApplicationsEnable 32-Bit Applications  to TrueTrue.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

failed to start process with commandline '"C:{PATH}{ASSEMBLY}.{exe|dll}" ', ErrorCode = '0x80004005 : ff.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: Unhandled Exception: System.BadImageFormatException: Could not

load file or assembly '{ASSEMBLY}.dll'. An attempt was made to load a program with an incorrect format.

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

If this exception occurs for an Azure Apps deployment when upgrading an app and deploying newer

assemblies, manually delete all files from the prior deployment. Lingering incompatible assemblies can result

in a System.BadImageFormatException  exception when deploying an upgraded app.

Browser :Browser : ERR_CONNECTION_REFUSED --OR----OR-- Unable to connect

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

Confirm the correct URI endpoint for the app is in use. Check the bindings.

Confirm that the IIS website isn't in the Stopped state.

OS Exception:OS Exception: The IIS 7.0 CoreWebEngine and W3SVC features must be installed to use the ASP.NET Core Module.

Troubleshooting:

Confirm that the proper role and features are enabled. See IIS Configuration.

Browser :Browser : 403 Forbidden - Access is denied --OR----OR-- 403.14 Forbidden - The Web server is configured to not

list the contents of this directory.

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

Check the IIS website Basic SettingsBasic Settings  and the physical app folder. Confirm that the app is in the folder at the IIS



Incorrect role, ASP.NET Core Module not installed, or incorrect
permissions

Incorrect processPath, missing PATH variable, Hosting Bundle not
installed, system/IIS not restarted, VC++ Redistributable not installed,
or dotnet.exe access violation

website Physical pathPhysical path.

Browser :Browser : 500.19 Internal Server Error - The requested page cannot be accessed because the related

configuration data for the page is invalid. --OR----OR-- This page can't be displayed

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

<section name="aspNetCore" overrideModeDefault="Allow" />

Confirm that the proper role is enabled. See IIS Configuration.

Open Programs & FeaturesPrograms & Features  or Apps & featuresApps & features  and confirm that Windows Ser ver HostingWindows Ser ver Hosting is

installed. If Windows Ser ver HostingWindows Ser ver Hosting isn't present in the list of installed programs, download and install

the .NET Core Hosting Bundle.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

Make sure that the Application PoolApplication Pool  > Process ModelProcess Model  > IdentityIdentity  is set to ApplicationPoolIdentityApplicationPoolIdentity  or

the custom identity has the correct permissions to access the app's deployment folder.

If you uninstalled the ASP.NET Core Hosting Bundle and installed an earlier version of the hosting bundle, the

applicationHost.config file doesn't include a section for the ASP.NET Core Module. Open

applicationHost.config at %windir%/System32/inetsrv/config and find the 

<configuration><configSections><sectionGroup name="system.webServer">  section group. If the section for the

ASP.NET Core Module is missing from the section group, add the section element:

Alternatively, install the latest version of the ASP.NET Core Hosting Bundle. The latest version is backwards-

compatible with supported ASP.NET Core apps.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

failed to start process with commandline '"{...}" ', ErrorCode = '0x80070002 : 0. Application '{PATH}' wasn't

able to start. Executable was not found at '{PATH}'. Failed to start application '/LM/W3SVC/2/ROOT',

ErrorCode '0x8007023e'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Event Log: 'Application '{PATH}' wasn't able to start. Executable was

not found at '{PATH}'. Failed HRESULT returned: 0x8007023e

Troubleshooting:

https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer


Incorrect arguments of <aspNetCore> element

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Check the processPath attribute on the <aspNetCore>  element in web.config to confirm that it's dotnet  for a

framework-dependent deployment (FDD) or .\{ASSEMBLY}.exe  for a self-contained deployment (SCD).

For an FDD, dotnet.exe might not be accessible via the PATH settings. Confirm that C:\Program Files\dotnet\

exists in the System PATH settings.

For an FDD, dotnet.exe might not be accessible for the user identity of the app pool. Confirm that the app

pool user identity has access to the C:\Program Files\dotnet directory. Confirm that there are no deny rules

configured for the app pool user identity on the C:\Program Files\dotnet and app directories.

An FDD may have been deployed and .NET Core installed without restarting IIS. Either restart the server or

restart IIS by executing net stop was /ynet stop was /y  followed by net star t w3svcnet star t w3svc from a command prompt.

An FDD may have been deployed without installing the .NET Core runtime on the hosting system. If the .NET

Core runtime hasn't been installed, run the .NET Core Hosting Bundle installer.NET Core Hosting Bundle installer  on the system.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

If a specific runtime is required, download the runtime from the .NET Download Archives and install it on the

system. Complete the installation by restarting the system or restarting IIS by executing net stop was /ynet stop was /y

followed by net star t w3svcnet star t w3svc from a command prompt.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any native

dependencies. This most likely means the app is misconfigured, please check the versions of

Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the application and are installed

on the machine. Could not find inprocess request handler. Captured output from invoking hostfxr : Did you

mean to run dotnet SDK commands? Please install dotnet SDK from: https://go.microsoft.com/fwlink/?

LinkID=798306&clcid=0x409 Failed to start application '/LM/W3SVC/3/ROOT', ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: Did you mean to run dotnet SDK commands? Please install dotnet

SDK from: https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Invoking hostfxr to find the inprocess request handler failed without

finding any native dependencies. This most likely means the app is misconfigured, please check the versions

of Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the application and are

installed on the machine. Failed HRESULT returned: 0x8000ffff Could not find inprocess request handler.

Captured output from invoking hostfxr : Did you mean to run dotnet SDK commands? Please install dotnet

SDK from: https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409 Failed HRESULT returned:

0x8000ffff

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Examine the arguments attribute on the <aspNetCore>  element in web.config to confirm that it's either (a) 

.\{ASSEMBLY}.dll  for a framework-dependent deployment (FDD); or (b) not present, an empty string (

arguments="" ), or a list of the app's arguments ( arguments="{ARGUMENT_1}, {ARGUMENT_2}, ... {ARGUMENT_X}" )

for a self-contained deployment (SCD).

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer
https://dotnet.microsoft.com/download/archives
https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409


Missing .NET Core shared framework

Stopped Application Pool

Sub-application includes a <handlers> section

stdout log path incorrect

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any native

dependencies. This most likely means the app is misconfigured, please check the versions of

Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the application and are installed

on the machine. Could not find inprocess request handler. Captured output from invoking hostfxr : It was not

possible to find any compatible framework version. The specified framework 'Microsoft.AspNetCore.App',

version '{VERSION}' was not found.

Failed to start application '/LM/W3SVC/5/ROOT', ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: It was not possible to find any compatible framework version. The

specified framework 'Microsoft.AspNetCore.App', version '{VERSION}' was not found.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Failed HRESULT returned: 0x8000ffff

Troubleshooting:

For a framework-dependent deployment (FDD), confirm that the correct runtime installed on the system.

Browser :Browser : 503 Service Unavailable

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

Confirm that the Application Pool isn't in the Stopped state.

Browser :Browser : HTTP Error 500.19 - Internal Server Error

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The root app's log file is created and shows normal operation. The

sub-app's log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The root app's log file is created and shows normal operation. The

sub-app's log file isn't created.

Troubleshooting:

Confirm that the sub-app's web.config file doesn't include a <handlers>  section or that the sub-app doesn't inherit

the parent app's handlers.

The parent app's <system.webServer>  section of web.config is placed inside of a <location>  element. The

InheritInChildApplications property is set to false  to indicate that the settings specified within the <location>

element aren't inherited by apps that reside in a subdirectory of the parent app. For more information, see ASP.NET

Core Module.

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.sectioninformation.inheritinchildapplications
https://docs.microsoft.com/en-us/iis/manage/managing-your-configuration-settings/understanding-iis-configuration-delegation#the-concept-of-location


Application configuration general issue

Browser :Browser : The app responds normally.

Application Log:Application Log: Could not start stdout redirection in C:\Program Files\IIS\Asp.Net Core

Module\V2\aspnetcorev2.dll. Exception message: HRESULT 0x80070005 returned at

{PATH}\aspnetcoremodulev2\commonlib\fileoutputmanager.cpp:84. Could not stop stdout redirection in

C:\Program Files\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll. Exception message: HRESULT 0x80070002

returned at {PATH}. Could not start stdout redirection in {PATH}\aspnetcorev2_inprocess.dll.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module debug Log:ASP.NET Core Module debug Log: Could not start stdout redirection in C:\Program Files\IIS\Asp.Net Core

Module\V2\aspnetcorev2.dll. Exception message: HRESULT 0x80070005 returned at

{PATH}\aspnetcoremodulev2\commonlib\fileoutputmanager.cpp:84. Could not stop stdout redirection in

C:\Program Files\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll. Exception message: HRESULT 0x80070002

returned at {PATH}. Could not start stdout redirection in {PATH}\aspnetcorev2_inprocess.dll.

Troubleshooting:

The stdoutLogFile  path specified in the <aspNetCore>  element of web.config doesn't exist. For more

information, see ASP.NET Core Module: Log creation and redirection.

The app pool user doesn't have write access to the stdout log path.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure --OR----OR-- HTTP Error 500.30 - ANCM In-

Process Start Failure

Application Log:Application Log: Variable

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty or created with normal entries until

the point of the app failing.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Variable

Troubleshooting:

The process failed to start, most likely due to an app configuration or programming issue.

For more information, see the following topics:

Troubleshoot ASP.NET Core on Azure App Service and IIS

Troubleshoot and debug ASP.NET Core projects

This topic describes common errors and provides troubleshooting advice for specific errors when hosting ASP.NET

Core apps on Azure Apps Service and IIS.

For general troubleshooting guidance, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Collect the following information:

Browser behavior (status code and error message)

Application Event Log entries

ASP.NET Core Module stdout and debug log entries

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS

1. Select Star tStar t on the WindowsWindows menu, type Event Viewer, and press EnterEnter .

2. After the Event ViewerEvent Viewer  opens, expand Windows LogsWindows Logs  > ApplicationApplication in the sidebar.



IMPORTANTIMPORTANT

OS upgrade removed the 32-bit ASP.NET Core Module

Missing site extension, 32-bit (x86) and 64-bit (x64) site extensions
installed, or wrong process bitness set

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS: Follow the instructions in the Log creation and redirection and Enhanced diagnostic logs sections of

the ASP.NET Core Module topic.

Compare error information to the following common errors. If a match is found, follow the troubleshooting advice.

The list of errors in this topic isn't exhaustive. If you encounter an error not listed here, open a new issue using the

Content feedbackContent feedback button at the bottom of this topic with detailed instructions on how to reproduce the error.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET Core

preview release, see Deploy ASP.NET Core preview release to Azure App Service.

Application Log:Application Log: The Module DLL C:\WINDOWS\system32\inetsr v\aspnetcore.dllC:\WINDOWS\system32\inetsr v\aspnetcore.dll  failed to load. The data is

the error.

Troubleshooting:

Non-OS files in the C:\Windows\SysWOW64\inetsr vC:\Windows\SysWOW64\inetsr v  directory aren't preserved during an OS upgrade. If the

ASP.NET Core Module is installed prior to an OS upgrade and then any app pool is run in 32-bit mode after an OS

upgrade, this issue is encountered. After an OS upgrade, repair the ASP.NET Core Module. See Install the .NET Core

Hosting bundle. Select RepairRepair  when the installer is run.

Applies to apps hosted by Azure App Services.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any native

dependencies. Could not find inprocess request handler. Captured output from invoking hostfxr : It was not

possible to find any compatible framework version. The specified framework 'Microsoft.AspNetCore.App',

version '{VERSION}-preview-*' was not found. Failed to start application '/LM/W3SVC/1416782824/ROOT',

ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: It was not possible to find any compatible framework version. The

specified framework 'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found.

Troubleshooting:

If running the app on a preview runtime, install either the 32-bit (x86) oror  64-bit (x64) site extension that

matches the bitness of the app and the app's runtime version. Don't install both extensions or multipleDon't install both extensions or multiple

runtime versions of the extension.runtime versions of the extension.

ASP.NET Core {RUNTIME VERSION} (x86) Runtime

ASP.NET Core {RUNTIME VERSION} (x64) Runtime

Restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and both the 32-bit (x86) and 64-bit (x64) site extensions are

installed, uninstall the site extension that doesn't match the bitness of the app. After removing the site



An x86 app is deployed but the app pool isn't enabled for 32-bit apps

Platform conflicts with RID

URI endpoint wrong or stopped website

extension, restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and the site extension's bitness matches that of the app, confirm that

the preview site extension's runtime version matches the app's runtime version.

Confirm that the app's PlatformPlatform in Application SettingsApplication Settings  matches the bitness of the app.

For more information, see Deploy ASP.NET Core apps to Azure App Service.

Browser :Browser : HTTP Error 500.30 - ANCM In-Process Start Failure

Application Log:Application Log: Application '/LM/W3SVC/5/ROOT' with physical root '{PATH}' hit unexpected managed

exception, exception code = '0xe0434352'. Please check the stderr logs for more information. Application

'/LM/W3SVC/5/ROOT' with physical root '{PATH}' failed to load clr and managed application. CLR worker

thread exited prematurely

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

This scenario is trapped by the SDK when publishing a self-contained app. The SDK produces an error if the RID

doesn't match the platform target (for example, win10-x64  RID with <PlatformTarget>x86</PlatformTarget>  in the

project file).

Troubleshooting:

For an x86 framework-dependent deployment ( <PlatformTarget>x86</PlatformTarget> ), enable the IIS app pool for

32-bit apps. In IIS Manager, open the app pool's Advanced SettingsAdvanced Settings  and set Enable 32-Bit ApplicationsEnable 32-Bit Applications  to TrueTrue.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

failed to start process with commandline '"C:{PATH}{ASSEMBLY}.{exe|dll}" ', ErrorCode = '0x80004005 : ff.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: Unhandled Exception: System.BadImageFormatException: Could not

load file or assembly '{ASSEMBLY}.dll'. An attempt was made to load a program with an incorrect format.

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

If this exception occurs for an Azure Apps deployment when upgrading an app and deploying newer

assemblies, manually delete all files from the prior deployment. Lingering incompatible assemblies can result

in a System.BadImageFormatException  exception when deploying an upgraded app.

Browser :Browser : ERR_CONNECTION_REFUSED --OR----OR-- Unable to connect

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

Confirm the correct URI endpoint for the app is in use. Check the bindings.



CoreWebEngine or W3SVC server features disabled

Incorrect website physical path or app missing

Incorrect role, ASP.NET Core Module not installed, or incorrect
permissions

Confirm that the IIS website isn't in the Stopped state.

OS Exception:OS Exception: The IIS 7.0 CoreWebEngine and W3SVC features must be installed to use the ASP.NET Core Module.

Troubleshooting:

Confirm that the proper role and features are enabled. See IIS Configuration.

Browser :Browser : 403 Forbidden - Access is denied --OR----OR-- 403.14 Forbidden - The Web server is configured to not

list the contents of this directory.

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

Check the IIS website Basic SettingsBasic Settings  and the physical app folder. Confirm that the app is in the folder at the IIS

website Physical pathPhysical path.

Browser :Browser : 500.19 Internal Server Error - The requested page cannot be accessed because the related

configuration data for the page is invalid. --OR----OR-- This page can't be displayed

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

<section name="aspNetCore" overrideModeDefault="Allow" />

Confirm that the proper role is enabled. See IIS Configuration.

Open Programs & FeaturesPrograms & Features  or Apps & featuresApps & features  and confirm that Windows Ser ver HostingWindows Ser ver Hosting is

installed. If Windows Ser ver HostingWindows Ser ver Hosting isn't present in the list of installed programs, download and install

the .NET Core Hosting Bundle.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

Make sure that the Application PoolApplication Pool  > Process ModelProcess Model  > IdentityIdentity  is set to ApplicationPoolIdentityApplicationPoolIdentity  or

the custom identity has the correct permissions to access the app's deployment folder.

If you uninstalled the ASP.NET Core Hosting Bundle and installed an earlier version of the hosting bundle, the

applicationHost.config file doesn't include a section for the ASP.NET Core Module. Open

applicationHost.config at %windir%/System32/inetsrv/config and find the 

<configuration><configSections><sectionGroup name="system.webServer">  section group. If the section for the

ASP.NET Core Module is missing from the section group, add the section element:

Alternatively, install the latest version of the ASP.NET Core Hosting Bundle. The latest version is backwards-

https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer


Incorrect processPath, missing PATH variable, Hosting Bundle not
installed, system/IIS not restarted, VC++ Redistributable not installed,
or dotnet.exe access violation

Incorrect arguments of <aspNetCore> element

compatible with supported ASP.NET Core apps.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

failed to start process with commandline '"{...}" ', ErrorCode = '0x80070002 : 0.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Check the processPath attribute on the <aspNetCore>  element in web.config to confirm that it's dotnet  for a

framework-dependent deployment (FDD) or .\{ASSEMBLY}.exe  for a self-contained deployment (SCD).

For an FDD, dotnet.exe might not be accessible via the PATH settings. Confirm that C:\Program Files\dotnet\

exists in the System PATH settings.

For an FDD, dotnet.exe might not be accessible for the user identity of the app pool. Confirm that the app

pool user identity has access to the C:\Program Files\dotnet directory. Confirm that there are no deny rules

configured for the app pool user identity on the C:\Program Files\dotnet and app directories.

An FDD may have been deployed and .NET Core installed without restarting IIS. Either restart the server or

restart IIS by executing net stop was /ynet stop was /y  followed by net star t w3svcnet star t w3svc from a command prompt.

An FDD may have been deployed without installing the .NET Core runtime on the hosting system. If the .NET

Core runtime hasn't been installed, run the .NET Core Hosting Bundle installer.NET Core Hosting Bundle installer  on the system.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

If a specific runtime is required, download the runtime from the .NET Download Archives and install it on the

system. Complete the installation by restarting the system or restarting IIS by executing net stop was /ynet stop was /y

followed by net star t w3svcnet star t w3svc from a command prompt.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

failed to start process with commandline '"dotnet" .{ASSEMBLY}.dll', ErrorCode = '0x80004005 : 80008081.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The application to execute does not exist: 'PATH{ASSEMBLY}.dll'

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within the

app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Examine the arguments attribute on the <aspNetCore>  element in web.config to confirm that it's either (a) 

.\{ASSEMBLY}.dll  for a framework-dependent deployment (FDD); or (b) not present, an empty string (

arguments="" ), or a list of the app's arguments ( arguments="{ARGUMENT_1}, {ARGUMENT_2}, ... {ARGUMENT_X}" )

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer
https://dotnet.microsoft.com/download/archives


Stopped Application Pool

Sub-application includes a <handlers> section

stdout log path incorrect

Application configuration general issue

for a self-contained deployment (SCD).

Troubleshooting:

For a framework-dependent deployment (FDD), confirm that the correct runtime installed on the system.

Browser :Browser : 503 Service Unavailable

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

Confirm that the Application Pool isn't in the Stopped state.

Browser :Browser : HTTP Error 500.19 - Internal Server Error

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The root app's log file is created and shows normal operation. The

sub-app's log file isn't created.

Troubleshooting:

Confirm that the sub-app's web.config file doesn't include a <handlers>  section.

Browser :Browser : The app responds normally.

Application Log:Application Log: Warning: Could not create stdoutLogFile \?{PATH}\path_doesnt_exist\stdout_{PROCESS

ID}_{TIMESTAMP}.log, ErrorCode = -2147024893.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

The stdoutLogFile  path specified in the <aspNetCore>  element of web.config doesn't exist. For more

information, see ASP.NET Core Module: Log creation and redirection.

The app pool user doesn't have write access to the stdout log path.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:{PATH}'

created process with commandline '"C:{PATH}{ASSEMBLY}.{exe|dll}" ' but either crashed or did not respond or

did not listen on the given port '{PORT}', ErrorCode = '{ERROR CODE}'

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

Troubleshooting:

The process failed to start, most likely due to an app configuration or programming issue.



For more information, see the following topics:

Troubleshoot ASP.NET Core on Azure App Service and IIS

Troubleshoot and debug ASP.NET Core projects



DevOps with ASP.NET Core and Azure
9/22/2020 • 2 minutes to read • Edit Online

Welcome

Who this guide is for

By Cam Soper and Scott Addie

This guide is available as a downloadable PDF e-book.

Welcome to the Azure Development Lifecycle guide for .NET! This guide introduces the basic concepts of building a

development lifecycle around Azure using .NET tools and processes. After finishing this guide, you'll reap the

benefits of a mature DevOps toolchain.

You should be an experienced ASP.NET Core developer (200-300 level). You don't need to know anything about

Azure, as we'll cover that in this introduction. This guide may also be useful for DevOps engineers who are more

focused on operations than development.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/azure/devops/index.md
https://aka.ms/devopsbook
https://twitter.com/camsoper
https://twitter.com/scottaddie
https://aka.ms/devopsbook


What this guide doesn't cover

What's in this guide
Tools and downloadsTools and downloads

Deploy to App ServiceDeploy to App Service

Continuous integration and deploymentContinuous integration and deployment

Monitor and debugMonitor and debug

Next stepsNext steps

Additional introductory reading

This guide targets Windows developers. However, Linux and macOS are fully supported by .NET Core. To adapt this

guide for Linux/macOS, watch for callouts for Linux/macOS differences.

This guide is focused on an end-to-end continuous deployment experience for .NET developers. It's not an

exhaustive guide to all things Azure, and it doesn't focus extensively on .NET APIs for Azure services. The emphasis

is all around continuous integration, deployment, monitoring, and debugging. Near the end of the guide,

recommendations for next steps are offered. Included in the suggestions are Azure platform services that are

useful to ASP.NET Core developers.

Learn where to acquire the tools used in this guide.

Learn the various methods for deploying an ASP.NET Core app to Azure App Service.

Build an end-to-end continuous integration and deployment solution for your ASP.NET Core app with GitHub,

Azure DevOps Services, and Azure.

Use Azure's tools to monitor, troubleshoot, and tune your application.

Other learning paths for the ASP.NET Core developer learning Azure.

If this is your first exposure to cloud computing, these articles explain the basics.

What is Cloud Computing?

Examples of Cloud Computing

What is IaaS?

What is PaaS?

https://azure.microsoft.com/overview/what-is-cloud-computing/
https://azure.microsoft.com/overview/examples-of-cloud-computing/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-paas/


Tools and downloads
9/22/2020 • 2 minutes to read • Edit Online

Prerequisites

Recommended tools (Windows only)

Azure has several interfaces for provisioning and managing resources, such as the Azure portal, Azure CLI, Azure

PowerShell, Azure Cloud Shell, and Visual Studio. This guide takes a minimalist approach and uses the Azure Cloud

Shell whenever possible to reduce the steps required. However, the Azure portal must be used for some portions.

The following subscriptions are required:

Azure — If you don't have an account, get a free trial.

Azure DevOps Services — your Azure DevOps subscription and organization is created in Chapter 4.

GitHub — If you don't have an account, sign up for free.

The following tools are required:

dotnet --version

Git — A fundamental understanding of Git is recommended for this guide. Review the Git documentation,

specifically git remote and git push.

.NET Core SDK — Version 2.1.300 or later is required to build and run the sample app. If Visual Studio is

installed with the .NET Core cross-platform development.NET Core cross-platform development workload, the .NET Core SDK is already

installed.

Verify your .NET Core SDK installation. Open a command shell, and run the following command:

Visual Studio's robust Azure tools provide a GUI for most of the functionality described in this guide. Any

edition of Visual Studio will work, including the free Visual Studio Community Edition. The tutorials are

written to demonstrate development, deployment, and DevOps both with and without Visual Studio.

Confirm that Visual Studio has the following workloads installed:

ASP.NET and web development

Azure development

.NET Core cross-platform development

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/azure/devops/tools-and-downloads.md
https://portal.azure.com
https://docs.microsoft.com/en-us/cli/azure/
https://docs.microsoft.com/en-us/powershell/azure/overview
https://shell.azure.com/bash
https://azure.microsoft.com/free/dotnet/
https://github.com/join
https://git-scm.com/downloads
https://git-scm.com/doc
https://git-scm.com/docs/git-remote
https://git-scm.com/docs/git-push
https://dotnet.microsoft.com/download/
https://visualstudio.microsoft.com
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio


Deploy an app to App Service
9/22/2020 • 7 minutes to read • Edit Online

Download and test the app

Azure App Service is Azure's web hosting platform. Deploying a web app to Azure App Service can be done

manually or by an automated process. This section of the guide discusses deployment methods that can be

triggered manually or by script using the command line, or triggered manually using Visual Studio.

In this section, you'll accomplish the following tasks:

Download and build the sample app.

Create an Azure App Service Web App using the Azure Cloud Shell.

Deploy the sample app to Azure using Git.

Deploy a change to the app using Visual Studio.

Add a staging slot to the web app.

Deploy an update to the staging slot.

Swap the staging and production slots.

The app used in this guide is a pre-built ASP.NET Core app, Simple Feed Reader. It's a Razor Pages app that uses the 

Microsoft.SyndicationFeed.ReaderWriter  API to retrieve an RSS/Atom feed and display the news items in a list.

Feel free to review the code, but it's important to understand that there's nothing special about this app. It's just a

simple ASP.NET Core app for illustrative purposes.

From a command shell, download the code, build the project, and run it as follows.

Note: Linux/macOS users should make appropriate changes for paths, e.g., using forward slash ( / ) rather than

back slash ( \ ).

git clone https://github.com/Azure-Samples/simple-feed-reader/

cd .\simple-feed-reader\SimpleFeedReader

dotnet build

dotnet run

1. Clone the code to a folder on your local machine.

2. Change your working folder to the simple-feed-reader folder that was created.

3. Restore the packages, and build the solution.

4. Run the app.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/azure/devops/deploying-to-app-service.md
https://docs.microsoft.com/en-us/azure/app-service/
https://github.com/Azure-Samples/simple-feed-reader/


Create the Azure App Service Web App

5. Open a browser and navigate to http://localhost:5000 . The app allows you to type or paste a syndication

feed URL and view a list of news items.

6. Once you're satisfied the app is working correctly, shut it down by pressing Ctr lCtr l+CC in the command shell.

To deploy the app, you'll need to create an App Service Web App. After creation of the Web App, you'll deploy to it

from your local machine using Git.

webappname=mywebapp$RANDOM

1. Sign in to the Azure Cloud Shell. Note: When you sign in for the first time, Cloud Shell prompts to create a

storage account for configuration files. Accept the defaults or provide a unique name.

2. Use the Cloud Shell for the following steps.

a. Declare a variable to store your web app's name. The name must be unique to be used in the default URL.

Using the $RANDOM  Bash function to construct the name guarantees uniqueness and results in the format 

webappname99999 .

b. Create a resource group. Resource groups provide a means to aggregate Azure resources to be managed

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://shell.azure.com/bash


az group create --location centralus --name AzureTutorial

az appservice plan create --name $webappname --resource-group AzureTutorial --sku S1

az webapp create --name $webappname --resource-group AzureTutorial --plan $webappname

az webapp deployment user set --user-name REPLACE_WITH_USER_NAME --password REPLACE_WITH_PASSWORD

echo Git deployment URL: $(az webapp deployment source config-local-git --name $webappname --resource-
group AzureTutorial --query url --output tsv)

echo Web app URL: http://$webappname.azurewebsites.net

git remote add azure-prod GIT_DEPLOYMENT_URL

git push azure-prod master

as a group.

The az  command invokes the Azure CLI. The CLI can be run locally, but using it in the Cloud Shell saves

time and configuration.

c. Create an App Service plan in the S1 tier. An App Service plan is a grouping of web apps that share the

same pricing tier. The S1 tier isn't free, but it's required for the staging slots feature.

d. Create the web app resource using the App Service plan in the same resource group.

e. Set the deployment credentials. These deployment credentials apply to all the web apps in your

subscription. Don't use special characters in the user name.

f. Configure the web app to accept deployments from local Git and display the Git deployment URL. NoteNote

this URL for reference laterthis URL for reference later .

g. Display the web app URL. Browse to this URL to see the blank web app. Note this URL for referenceNote this URL for reference

laterlater .

3. Using a command shell on your local machine, navigate to the web app's project folder (for example, 

.\simple-feed-reader\SimpleFeedReader ). Execute the following commands to set up Git to push to the

deployment URL:

a. Add the remote URL to the local repository.

b. Push the local master branch to the azure-prod remote's master branch.

You'll be prompted for the deployment credentials you created earlier. Observe the output in the command

shell. Azure builds the ASP.NET Core app remotely.

4. In a browser, navigate to the Web app URL and note the app has been built and deployed. Additional

changes can be committed to the local Git repository with git commit . These changes are pushed to Azure

with the preceding git push  command.

https://docs.microsoft.com/en-us/cli/azure/


Deployment with Visual Studio

Note: This section applies to Windows only. Linux and macOS users should make the change described in step

2 below. Save the file, and commit the change to the local repository with git commit . Finally, push the change

with git push , as in the first section.

The app has already been deployed from the command shell. Let's use Visual Studio's integrated tools to deploy an

update to the app. Behind the scenes, Visual Studio accomplishes the same thing as the command line tooling, but

within Visual Studio's familiar UI.

1. Open SimpleFeedReader.sln in Visual Studio.

2. In Solution Explorer, open Pages\Index.cshtml. Change <h2>Simple Feed Reader</h2>  to 

<h2>Simple Feed Reader - V2</h2> .

3. Press Ctr lCtr l+ShiftShift+BB to build the app.

4. In Solution Explorer, right-click on the project and click PublishPublish .

5. Visual Studio can create a new App Service resource, but this update will be published over the existing

deployment. In the Pick a publish targetPick a publish target dialog, select App Ser viceApp Ser vice from the list on the left, and then

select Select ExistingSelect Existing. Click PublishPublish .

6. In the App Ser viceApp Ser vice dialog, confirm that the Microsoft or Organizational account used to create your Azure



Deployment slots

subscription is displayed in the upper right. If it's not, click the drop-down and add it.

7. Confirm that the correct Azure Subscr iptionSubscr iption is selected. For ViewView , select Resource GroupResource Group. Expand the

AzureTutorialAzureTutorial  resource group and then select the existing web app. Click OKOK.

Visual Studio builds and deploys the app to Azure. Browse to the web app URL. Validate that the <h2>  element

modification is live.

Deployment slots support the staging of changes without impacting the app running in production. Once the



staged version of the app is validated by a quality assurance team, the production and staging slots can be

swapped. The app in staging is promoted to production in this manner. The following steps create a staging slot,

deploy some changes to it, and swap the staging slot with production after verification.

az webapp deployment slot create --name $webappname --resource-group AzureTutorial --slot staging

echo Git deployment URL for staging: $(az webapp deployment source config-local-git --name $webappname -
-resource-group AzureTutorial --slot staging --query url --output tsv)

echo Staging web app URL: http://$webappname-staging.azurewebsites.net

git commit -a -m "upgraded to V3"

git remote add azure-staging <Git_staging_deployment_URL>

git push azure-staging master

1. Sign in to the Azure Cloud Shell, if not already signed in.

2. Create the staging slot.

a. Create a deployment slot with the name staging.

b. Configure the staging slot to use deployment from local Git and get the stagingstaging deployment URL. NoteNote

this URL for reference laterthis URL for reference later .

c. Display the staging slot's URL. Browse to the URL to see the empty staging slot. Note this URL forNote this URL for

reference laterreference later .

3. In a text editor or Visual Studio, modify Pages/Index.cshtml again so that the <h2>  element reads 

<h2>Simple Feed Reader - V3</h2>  and save the file.

4. Commit the file to the local Git repository, using either the ChangesChanges  page in Visual Studio's Team Explorer

tab, or by entering the following using the local machine's command shell:

5. Using the local machine's command shell, add the staging deployment URL as a Git remote and push the

committed changes:

a. Add the remote URL for staging to the local Git repository.

b. Push the local master branch to the azure-staging remote's master branch.

Wait while Azure builds and deploys the app.

6. To verify that V3 has been deployed to the staging slot, open two browser windows. In one window, navigate

to the original web app URL. In the other window, navigate to the staging web app URL. The production URL

serves V2 of the app. The staging URL serves V3 of the app.

https://shell.azure.com/bash


az webapp deployment slot swap --name $webappname --resource-group AzureTutorial --slot staging

7. In the Cloud Shell, swap the verified/warmed-up staging slot into production.

8. Verify that the swap occurred by refreshing the two browser windows.



Summary
In this section, the following tasks were completed:

Downloaded and built the sample app.

Created an Azure App Service Web App using the Azure Cloud Shell.

Deployed the sample app to Azure using Git.

Deployed a change to the app using Visual Studio.

Added a staging slot to the web app.

Deployed an update to the staging slot.

Swapped the staging and production slots.

In the next section, you'll learn how to build a DevOps pipeline with Azure Pipelines.



Additional reading
Web Apps overview

Build a .NET Core and SQL Database web app in Azure App Service

Configure deployment credentials for Azure App Service

Set up staging environments in Azure App Service

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-dotnetcore-sqldb
https://docs.microsoft.com/en-us/azure/app-service/app-service-deployment-credentials
https://docs.microsoft.com/en-us/azure/app-service/web-sites-staged-publishing


Continuous integration and deployment
9/22/2020 • 10 minutes to read • Edit Online

Publish the app's code to GitHub

In the previous chapter, you created a local Git repository for the Simple Feed Reader app. In this chapter, you'll

publish that code to a GitHub repository and construct an Azure DevOps Services pipeline using Azure Pipelines.

The pipeline enables continuous builds and deployments of the app. Any commit to the GitHub repository triggers

a build and a deployment to the Azure Web App's staging slot.

In this section, you'll complete the following tasks:

Publish the app's code to GitHub

Disconnect local Git deployment

Create an Azure DevOps organization

Create a team project in Azure DevOps Services

Create a build definition

Create a release pipeline

Commit changes to GitHub and automatically deploy to Azure

Examine the Azure Pipelines pipeline

git remote rename origin upstream

git remote add origin https://github.com/<GitHub_username>/simple-feed-reader/

1. Open a browser window, and navigate to https://github.com .

2. Click the ++ drop-down in the header, and select New repositor yNew repositor y :

3. Select your account in the OwnerOwner  drop-down, and enter simple-feed-reader in the Repositor y nameRepositor y name

textbox.

4. Click the Create repositor yCreate repositor y  button.

5. Open your local machine's command shell. Navigate to the directory in which the simple-feed-reader Git

repository is stored.

6. Rename the existing origin remote to upstream. Execute the following command:

7. Add a new origin remote pointing to your copy of the repository on GitHub. Execute the following

command:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/azure/devops/cicd.md


Disconnect local Git deployment

Create an Azure DevOps organization

git push -u origin master

8. Publish your local Git repository to the newly created GitHub repository. Execute the following command:

9. Open a browser window, and navigate to https://github.com/<GitHub_username>/simple-feed-reader/ .

Validate that your code appears in the GitHub repository.

Remove the local Git deployment with the following steps. Azure Pipelines (an Azure DevOps service) both replaces

and augments that functionality.

1. Open the Azure portal, and navigate to the staging (mywebapp<unique_number>/staging) Web App. The

Web App can be quickly located by entering staging in the portal's search box:

2. Click Deployment CenterDeployment Center . A new panel appears. Click DisconnectDisconnect to remove the local Git source control

configuration that was added in the previous chapter. Confirm the removal operation by clicking the YesYes

button.

3. Navigate to the mywebapp<unique_number> App Service. As a reminder, the portal's search box can be

used to quickly locate the App Service.

4. Click Deployment CenterDeployment Center . A new panel appears. Click DisconnectDisconnect to remove the local Git source control

configuration that was added in the previous chapter. Confirm the removal operation by clicking the YesYes

button.

1. Open a browser, and navigate to the Azure DevOps organization creation page.

2. Type a unique name into the Pick a memorable namePick a memorable name textbox to form the URL for accessing your Azure

DevOps organization.

3. Select the GitGit radio button, since the code is hosted in a GitHub repository.

4. Click the ContinueContinue button. After a short wait, an account and a team project, named MyFirstProject, are

created.

https://portal.azure.com/
https://go.microsoft.com/fwlink/?LinkId=307137


Configure the Azure Pipelines pipeline

Grant Azure DevOps access to the GitHub repositoryGrant Azure DevOps access to the GitHub repository

5. Open the confirmation email indicating that the Azure DevOps organization and project are ready for use.

Click the Star t your projectStar t your project button:

6. A browser opens to <account_name>.visualstudio.com. Click the MyFirstProject link to begin configuring

the project's DevOps pipeline.

There are three distinct steps to complete. Completing the steps in the following three sections results in an

operational DevOps pipeline.

1. Expand the or build code from an external repositor yor build code from an external repositor y  accordion. Click the Setup BuildSetup Build button:

2. Select the GitHubGitHub option from the Select a sourceSelect a source section:

3. Authorization is required before Azure DevOps can access your GitHub repository. Enter



Create the build definitionCreate the build definition

<GitHub_username> GitHub connection in the Connection nameConnection name textbox. For example:

4. If two-factor authentication is enabled on your GitHub account, a personal access token is required. In that

case, click the Authorize with a GitHub personal access tokenAuthorize with a GitHub personal access token link. See the official GitHub personal

access token creation instructions for help. Only the repo scope of permissions is needed. Otherwise, click

the Authorize using OAuthAuthorize using OAuth button.

5. When prompted, sign in to your GitHub account. Then select Authorize to grant access to your Azure

DevOps organization. If successful, a new service endpoint is created.

6. Click the ellipsis button next to the Repositor yRepositor y  button. Select the <GitHub_username>/simple-feed-reader

repository from the list. Click the SelectSelect button.

7. Select the master branch from the Default branch for manual and scheduled buildsDefault branch for manual and scheduled builds  drop-down. Click

the ContinueContinue button. The template selection page appears.

1. From the template selection page, enter ASP.NET Core in the search box:

2. The template search results appear. Hover over the ASP.NET CoreASP.NET Core template, and click the ApplyApply  button.

3. The TasksTasks  tab of the build definition appears. Click the Tr iggersTr iggers  tab.

4. Check the Enable continuous integrationEnable continuous integration box. Under the Branch filtersBranch filters  section, confirm that the TypeType

drop-down is set to Include. Set the Branch specificationBranch specification drop-down to master.

https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/


Create the release pipelineCreate the release pipeline

These settings cause a build to trigger when any change is pushed to the master branch of the GitHub

repository. Continuous integration is tested in the Commit changes to GitHub and automatically deploy to

Azure section.

5. Click the Save & queueSave & queue button, and select the SaveSave option:

6. The following modal dialog appears:

Use the default folder of \, and click the SaveSave button.

1. Click the ReleasesReleases  tab of your team project. Click the New pipelineNew pipeline button.



The template selection pane appears.

2. From the template selection page, enter App Service in the search box:

3. The template search results appear. Hover over the Azure App Ser vice Deployment with S lotAzure App Ser vice Deployment with S lot template,

and click the ApplyApply  button. The PipelinePipeline tab of the release pipeline appears.

4. Click the AddAdd button in the Ar tifactsAr tifacts  box. The Add ar tifactAdd ar tifact panel appears:



5. Select the BuildBuild tile from the Source typeSource type section. This type allows for the linking of the release pipeline to

the build definition.

6. Select MyFirstProject from the ProjectProject drop-down.

7. Select the build definition name, MyFirstProject-ASP.NET Core-CI, from the Source (Build definition)Source (Build definition)

drop-down.

8. Select Latest from the Default versionDefault version drop-down. This option builds the artifacts produced by the latest

run of the build definition.

9. Replace the text in the Source aliasSource alias  textbox with Drop.

10. Click the AddAdd button. The Ar tifactsAr tifacts  section updates to display the changes.

11. Click the lightning bolt icon to enable continuous deployments:

With this option enabled, a deployment occurs each time a new build is available.

12. A Continuous deployment tr iggerContinuous deployment tr igger  panel appears to the right. Click the toggle button to enable the

feature. It isn't necessary to enable the Pull request tr iggerPull request tr igger .

13. Click the AddAdd drop-down in the Build branch filtersBuild branch filters  section. Choose the Build Definition's defaultBuild Definition's default

branchbranch option. This filter causes the release to trigger only for a build from the GitHub repository's master



branch.

14. Click the SaveSave button. Click the OKOK button in the resulting SaveSave modal dialog.

15. Click the Environment 1Environment 1  box. An EnvironmentEnvironment panel appears to the right. Change the Environment 1 text

in the Environment nameEnvironment name textbox to Production.

16. Click the 1 phase, 2 tasks1 phase, 2 tasks  link in the ProductionProduction box:

The TasksTasks  tab of the environment appears.

17. Click the Deploy Azure App Ser vice to S lotDeploy Azure App Ser vice to S lot task. Its settings appear in a panel to the right.

18. Select the Azure subscription associated with the App Service from the Azure subscr iptionAzure subscr iption drop-down.

Once selected, click the AuthorizeAuthorize button.

19. Select Web App from the App typeApp type drop-down.

20. Select mywebapp/<unique_number/> from the App ser vice nameApp ser vice name drop-down.

21. Select AzureTutorial from the Resource groupResource group drop-down.

22. Select staging from the S lotS lot drop-down.

23. Click the SaveSave button.

24. Hover over the default release pipeline name. Click the pencil icon to edit it. Use MyFirstProject-ASP.NET

Core-CD as the name.

25. Click the SaveSave button.



 Commit changes to GitHub and automatically deploy to Azure

git commit -a -m "upgraded to V4"

git push origin master

1. Open SimpleFeedReader.sln in Visual Studio.

2. In Solution Explorer, open Pages\Index.cshtml. Change <h2>Simple Feed Reader - V3</h2>  to 

<h2>Simple Feed Reader - V4</h2> .

3. Press Ctr lCtr l+ShiftShift+BB to build the app.

4. Commit the file to the GitHub repository. Use either the ChangesChanges  page in Visual Studio's Team Explorer tab,

or execute the following using the local machine's command shell:

5. Push the change in the master branch to the origin remote of your GitHub repository:

The commit appears in the GitHub repository's master branch:

The build is triggered, since continuous integration is enabled in the build definition's Tr iggersTr iggers  tab:

6. Navigate to the QueuedQueued tab of the Azure PipelinesAzure Pipelines  > BuildsBuilds  page in Azure DevOps Services. The queued

build shows the branch and commit that triggered the build:

7. Once the build succeeds, a deployment to Azure occurs. Navigate to the app in the browser. Notice that the

"V4" text appears in the heading:



Examine the Azure Pipelines pipeline
Build definitionBuild definition
A build definition was created with the name MyFirstProject-ASP.NET Core-CI. Upon completion, the build produces

a .zip file including the assets to be published. The release pipeline deploys those assets to Azure.

The build definition's TasksTasks  tab lists the individual steps being used. There are five build tasks.

1. RestoreRestore — Executes the dotnet restore  command to restore the app's NuGet packages. The default

package feed used is nuget.org.

2. BuildBuild — Executes the dotnet build --configuration release  command to compile the app's code. This 

--configuration  option is used to produce an optimized version of the code, which is suitable for

deployment to a production environment. Modify the BuildConfiguration variable on the build definition's

VariablesVariables  tab if, for example, a debug configuration is needed.

3. TestTest — Executes the 

dotnet test --configuration release --logger trx --results-directory <local_path_on_build_agent>



NOTENOTE

command to run the app's unit tests. Unit tests are executed within any C# project matching the 

**/*Tests/*.csproj  glob pattern. Test results are saved in a .trx file at the location specified by the 

--results-directory  option. If any tests fail, the build fails and isn't deployed.

To verify the unit tests work, modify SimpleFeedReader.Tests\Services\NewsServiceTests.cs to purposefully break one

of the tests. For example, change Assert.True(result.Count > 0);  to Assert.False(result.Count > 0);  in the

Returns_News_Stories_Given_Valid_Uri  method. Commit and push the change to GitHub. The build is triggered

and fails. The build pipeline status changes to failedfailed. Revert the change, commit, and push again. The build succeeds.

4. PublishPublish — Executes the dotnet publish --configuration release --output <local_path_on_build_agent>

command to produce a .zip file with the artifacts to be deployed. The --output  option specifies the publish

location of the .zip file. That location is specified by passing a predefined variable named 

$(build.artifactstagingdirectory) . That variable expands to a local path, such as c:\agent_work\1\a, on the

build agent.

5. Publish Ar tifactPublish Ar tifact — Publishes the .zip file produced by the PublishPublish task. The task accepts the .zip file

location as a parameter, which is the predefined variable $(build.artifactstagingdirectory) . The .zip file is

published as a folder named drop.

Click the build definition's Summar ySummar y  link to view a history of builds with the definition:

On the resulting page, click the link corresponding to the unique build number:

A summary of this specific build is displayed. Click the Ar tifactsAr tifacts  tab, and notice the drop folder produced by the

build is listed:

https://docs.microsoft.com/en-us/azure/devops/pipelines/build/variables


Release pipelineRelease pipeline

Use the DownloadDownload and ExploreExplore links to inspect the published artifacts.

A release pipeline was created with the name MyFirstProject-ASP.NET Core-CD:

The two major components of the release pipeline are the Ar tifactsAr tifacts  and the EnvironmentsEnvironments . Clicking the box in

the Ar tifactsAr tifacts  section reveals the following panel:

The Source (Build definition)Source (Build definition)  value represents the build definition to which this release pipeline is linked. The

.zip file produced by a successful run of the build definition is provided to the Production environment for

deployment to Azure. Click the 1 phase, 2 tasks link in the Production environment box to view the release pipeline

tasks:



The release pipeline consists of two tasks: Deploy Azure App Service to Slot and Manage Azure App Service - Slot

Swap. Clicking the first task reveals the following task configuration:

The Azure subscription, service type, web app name, resource group, and deployment slot are defined in the

deployment task. The Package or folderPackage or folder  textbox holds the .zip file path to be extracted and deployed to the

staging slot of the mywebapp<unique_number> web app.

Clicking the slot swap task reveals the following task configuration:



Additional reading

The subscription, resource group, service type, web app name, and deployment slot details are provided. The SwapSwap

with Productionwith Production check box is checked. Consequently, the bits deployed to the staging slot are swapped into the

production environment.

Create your first pipeline with Azure Pipelines

Build and .NET Core project

Deploy a web app with Azure Pipelines

https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started-yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/languages/dotnet-core
https://docs.microsoft.com/en-us/azure/devops/pipelines/targets/webapp


Monitor and debug
9/22/2020 • 4 minutes to read • Edit Online

Basic monitoring and troubleshooting

Having deployed the app and built a DevOps pipeline, it's important to understand how to monitor and

troubleshoot the app.

In this section, you'll complete the following tasks:

Find basic monitoring and troubleshooting data in the Azure portal

Learn how Azure Monitor provides a deeper look at metrics across all Azure services

Connect the web app with Application Insights for app profiling

Turn on logging and learn where to download logs

Stream logs in real time

Learn where to set up alerts

Learn about remote debugging Azure App Service web apps.

App Service web apps are easily monitored in real time. The Azure portal renders metrics in easy-to-understand

charts and graphs.

1. Open the Azure portal, and then navigate to the mywebapp<unique_number> App Service.

2. The Over viewOver view  tab displays useful "at-a-glance" information, including graphs displaying recent metrics.

Http 5xxHttp 5xx: Count of server-side errors, usually exceptions in ASP.NET Core code.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/azure/devops/monitoring.md
https://portal.azure.com


Advanced monitoring

Profile with Application Insights

Data InData In : Data ingress coming into your web app.

Data OutData Out: Data egress from your web app to clients.

RequestsRequests : Count of HTTP requests.

Average Response TimeAverage Response Time: Average time for the web app to respond to HTTP requests.

Several self-service tools for troubleshooting and optimization are also found on this page.

Diagnose and solve problemsDiagnose and solve problems is a self-service troubleshooter.

Application InsightsApplication Insights  is for profiling performance and app behavior, and is discussed later in this

section.

App Ser vice AdvisorApp Ser vice Advisor  makes recommendations to tune your app experience.

Azure Monitor is the centralized service for monitoring all metrics and setting alerts across Azure services. Within

Azure Monitor, administrators can granularly track performance and identify trends. Each Azure service offers its

own set of metrics to Azure Monitor.

Application Insights is an Azure service for analyzing the performance and stability of web apps and how users use

them. The data from Application Insights is broader and deeper than that of Azure Monitor. The data can provide

developers and administrators with key information for improving apps. Application Insights can be added to an

Azure App Service resource without code changes.

1. Open the Azure portal, and then navigate to the mywebapp<unique_number> App Service.

2. From the Over viewOver view  tab, click the Application InsightsApplication Insights  tile.

https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-supported-metrics#microsoftwebsites-excluding-functions
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://portal.azure.com


3. Select the Create new resourceCreate new resource radio button. Use the default resource name, and select the location for

the Application Insights resource. The location doesn't need to match that of your web app.

4. For Runtime/FrameworkRuntime/Framework , select ASP.NET CoreASP.NET Core. Accept the default settings.

5. Select OKOK. If prompted to confirm, select ContinueContinue.

6. After the resource has been created, click the name of Application Insights resource to navigate directly to

the Application Insights page.

As the app is used, data accumulates. Select RefreshRefresh to reload the blade with new data.



Logging

Application Insights provides useful server-side information with no additional configuration. To get the most value

from Application Insights, instrument your app with the Application Insights SDK. When properly configured, the

service provides end-to-end monitoring across the web server and browser, including client-side performance. For

more information, see the Application Insights documentation.

Web server and app logs are disabled by default in Azure App Service. Enable the logs with the following steps:

1. Open the Azure portal, and navigate to the mywebapp<unique_number> App Service.

2. In the menu to the left, scroll down to the Monitor ingMonitor ing section. Select Diagnostics logsDiagnostics logs .

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://portal.azure.com


Log streaming

Alerts

3. Turn on Application Logging (Filesystem)Application Logging (Filesystem) . If prompted, click the box to install the extensions to enable

app logging in the web app.

4. Set Web ser ver loggingWeb ser ver logging to File SystemFile System.

5. Enter the Retention PeriodRetention Period in days. For example, 30.

6. Click SaveSave.

ASP.NET Core and web server (App Service) logs are generated for the web app. They can be downloaded using the

FTP/FTPS information displayed. The password is the same as the deployment credentials created earlier in this

guide. The logs can be streamed directly to your local machine with PowerShell or Azure CLI. Logs can also be

viewed in Application Insights.

App and web server logs can be streamed in real time through the portal.

1. Open the Azure portal, and navigate to the mywebapp<unique_number> App Service.

2. In the menu to the left, scroll down to the Monitor ingMonitor ing section and select Log streamLog stream.

Logs can also be streamed via Azure CLI or Azure PowerShell, including through the Cloud Shell.

Azure Monitor also provides real time alerts based on metrics, administrative events, and other criteria.

Note: Currently alerting on web app metrics is only available in the Alerts (classic) service.

The Alerts (classic) service can be found in Azure Monitor or under the Monitor ingMonitor ing section of the App Service

settings.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#download
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#how-to-view-logs-in-application-insights
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#streamlogs
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/insights-alerts-portal
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitor-quick-resource-metric-alert-portal


Live debugging

Conclusion

Additional reading

Azure App Service can be debugged remotely with Visual Studio when logs don't provide enough information.

However, remote debugging requires the app to be compiled with debug symbols. Debugging shouldn't be done in

production, except as a last resort.

In this section, you completed the following tasks:

Find basic monitoring and troubleshooting data in the Azure portal

Learn how Azure Monitor provides a deeper look at metrics across all Azure services

Connect the web app with Application Insights for app profiling

Turn on logging and learn where to download logs

Stream logs in real time

Learn where to set up alerts

Learn about remote debugging Azure App Service web apps.

Troubleshoot ASP.NET Core on Azure App Service and IIS

Common errors reference for Azure App Service and IIS with ASP.NET Core

Monitor Azure web app performance with Application Insights

Enable diagnostics logging for web apps in Azure App Service

Troubleshoot a web app in Azure App Service using Visual Studio

Create classic metric alerts in Azure Monitor for Azure services - Azure portal

https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-azure-web-apps
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/insights-alerts-portal


Next steps
9/22/2020 • 2 minutes to read • Edit Online

Storage and databases

Identity

Mobile

Web infrastructure

In this guide, you created a DevOps pipeline for an ASP.NET Core sample app. Congratulations! We hope you

enjoyed learning to publish ASP.NET Core web apps to Azure App Service and automate the continuous integration

of changes.

Beyond web hosting and DevOps, Azure has a wide array of Platform-as-a-Service (PaaS) services useful to

ASP.NET Core developers. This section gives a brief overview of some of the most commonly used services.

Redis Cache is high-throughput, low-latency data caching available as a service. It can be used for caching page

output, reducing database requests, and providing ASP.NET Core session state across multiple instances of an app.

Azure Storage is Azure's massively scalable cloud storage. Developers can take advantage of Queue Storage for

reliable message queuing, and Table Storage is a NoSQL key-value store designed for rapid development using

massive, semi-structured data sets.

Azure SQL Database provides familiar relational database functionality as a service using the Microsoft SQL Server

Engine.

Cosmos DB globally distributed, multi-model NoSQL database service. Multiple APIs are available, including SQL

API (formerly called DocumentDB), Cassandra, and MongoDB.

Azure Active Directory and Azure Active Directory B2C are both identity services. Azure Active Directory is

designed for enterprise scenarios and enables Azure AD B2B (business-to-business) collaboration, while Azure

Active Directory B2C is intended business-to-customer scenarios, including social network sign-in.

Notification Hubs is a multi-platform, scalable push-notification engine to quickly send millions of messages to

apps running on various types of devices.

Azure Container Service manages your hosted Kubernetes environment, making it quick and easy to deploy and

manage containerized apps without container orchestration expertise.

Azure Search is used to create an enterprise search solution over private, heterogenous content.

Service Fabric is a distributed systems platform that makes it easy to package, deploy, and manage scalable and

reliable microservices and containers.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/azure/devops/next-steps.md
https://docs.microsoft.com/en-us/azure/redis-cache/
https://docs.microsoft.com/en-us/azure/storage/
https://docs.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://docs.microsoft.com/en-us/azure/storage/tables/table-storage-overview
https://docs.microsoft.com/en-us/azure/sql-database/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/active-directory/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/
https://docs.microsoft.com/en-us/azure/notification-hubs/
https://docs.microsoft.com/en-us/azure/aks/
https://docs.microsoft.com/en-us/azure/search/
https://docs.microsoft.com/en-us/azure/service-fabric/


                                                                                  

Host ASP.NET Core on Windows with IIS
9/22/2020 • 76 minutes to read • Edit Online

Supported operating systems

Supported platforms

Hosting models
In-process hosting modelIn-process hosting model

For a tutorial experience on publishing an ASP.NET Core app to an IIS server, see Publish an ASP.NET Core app

to IIS.

Install the .NET Core Hosting Bundle

The following operating systems are supported:

Windows 7 or later

Windows Server 2012 R2 or later

HTTP.sys server (formerly called WebListener) doesn't work in a reverse proxy configuration with IIS. Use the

Kestrel server.

For information on hosting in Azure, see Deploy ASP.NET Core apps to Azure App Service.

For troubleshooting guidance, see Troubleshoot and debug ASP.NET Core projects.

Apps published for 32-bit (x86) or 64-bit (x64) deployment are supported. Deploy a 32-bit app with a 32-bit

(x86) .NET Core SDK unless the app:

Requires the larger virtual memory address space available to a 64-bit app.

Requires the larger IIS stack size.

Has 64-bit native dependencies.

Apps published for 32-bit (x86) must have 32-bit enabled for their IIS Application Pools. For more information,

see the Create the IIS site section.

Use a 64-bit (x64) .NET Core SDK to publish a 64-bit app. A 64-bit runtime must be present on the host

system.

Using in-process hosting, an ASP.NET Core app runs in the same process as its IIS worker process. In-process

hosting provides improved performance over out-of-process hosting because requests aren't proxied over the

loopback adapter, a network interface that returns outgoing network traffic back to the same machine. IIS

handles process management with the Windows Process Activation Service (WAS).

The ASP.NET Core Module:

Performs app initialization.

Handles the lifetime of the IIS native request.

Loads the CoreCLR.

Calls Program.Main .

The following diagram illustrates the relationship between IIS, the ASP.NET Core Module, and an app hosted

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/iis/index.md
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was
https://docs.microsoft.com/en-us/dotnet/standard/glossary#coreclr


                                                                                      Out-of-process hosting modelOut-of-process hosting model

in-process:

1. A request arrives from the web to the kernel-mode HTTP.sys driver.

2. The driver routes the native request to IIS on the website's configured port, usually 80 (HTTP) or 443

(HTTPS).

3. The ASP.NET Core Module receives the native request and passes it to IIS HTTP Server ( IISHttpServer ). IIS

HTTP Server is an in-process server implementation for IIS that converts the request from native to

managed.

After the IIS HTTP Server processes the request:

1. The request is sent to the ASP.NET Core middleware pipeline.

2. The middleware pipeline handles the request and passes it on as an HttpContext  instance to the app's

logic.

3. The app's response is passed back to IIS through IIS HTTP Server.

4. IIS sends the response to the client that initiated the request.

In-process hosting is opt-in for existing apps. The ASP.NET Core web templates use the in-process hosting

model.

CreateDefaultBuilder  adds an IServer instance by calling the UseIIS method to boot the CoreCLR and host the

app inside of the IIS worker process (w3wp.exe or iisexpress.exe). Performance tests indicate that hosting a

.NET Core app in-process delivers significantly higher request throughput compared to hosting the app out-of-

process and proxying requests to Kestrel.

Apps published as a single file executable can't be loaded by the in-process hosting model.

Because ASP.NET Core apps run in a process separate from the IIS worker process, the ASP.NET Core Module

handles process management. The module starts the process for the ASP.NET Core app when the first request

arrives and restarts the app if it shuts down or crashes. This is essentially the same behavior as seen with apps

that run in-process that are managed by the Windows Process Activation Service (WAS).

The following diagram illustrates the relationship between IIS, the ASP.NET Core Module, and an app hosted

out-of-process:

1. Requests arrive from the web to the kernel-mode HTTP.sys driver.

2. The driver routes the requests to IIS on the website's configured port. The configured port is usually 80

(HTTP) or 443 (HTTPS).

3. The module forwards the requests to Kestrel on a random port for the app. The random port isn't 80 or

443.

The ASP.NET Core Module specifies the port via an environment variable at startup. The UseIISIntegration

extension configures the server to listen on http://localhost:{PORT} . Additional checks are performed, and

requests that don't originate from the module are rejected. The module doesn't support HTTPS forwarding.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.iserver
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiis
https://docs.microsoft.com/en-us/dotnet/standard/glossary#coreclr
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiisintegration


                                        

                      

Application configuration
Enable the IISIntegration componentsEnable the IISIntegration components

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        ...

I IS optionsIIS options

services.Configure<IISServerOptions>(options => 
{
    options.AutomaticAuthentication = false;
});

O P T IO NO P T IO N DEFA ULTDEFA ULT SET T IN GSET T IN G

AutomaticAuthentication true If true , IIS Server sets the 

HttpContext.User  authenticated by

Windows Authentication. If false ,

the server only provides an identity
for HttpContext.User  and responds

to challenges when explicitly
requested by the 
AuthenticationScheme . Windows

Authentication must be enabled in IIS
for AutomaticAuthentication  to

function. For more information, see
Windows Authentication.

AuthenticationDisplayName null Sets the display name shown to users
on login pages.

AllowSynchronousIO false Whether synchronous I/O is allowed
for the HttpContext.Request  and

the HttpContext.Response .

Requests are forwarded over HTTP even if received by IIS over HTTPS.

After Kestrel picks up the request from the module, the request is forwarded into the ASP.NET Core

middleware pipeline. The middleware pipeline handles the request and passes it on as an HttpContext

instance to the app's logic. Middleware added by IIS Integration updates the scheme, remote IP, and pathbase

to account for forwarding the request to Kestrel. The app's response is passed back to IIS, which forwards it

back to the HTTP client that initiated the request.

For ASP.NET Core Module configuration guidance, see ASP.NET Core Module.

For more information on hosting, see Host in ASP.NET Core.

When building a host in CreateHostBuilder  (Program.cs), call CreateDefaultBuilder to enable IIS integration:

For more information on CreateDefaultBuilder , see .NET Generic Host.

In-process hosting modelIn-process hosting model

To configure IIS Server options, include a service configuration for IISServerOptions in ConfigureServices. The

following example disables AutomaticAuthentication:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iisserveroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup.configureservices


MaxRequestBodySize 30000000 Gets or sets the max request body
size for the HttpRequest . Note that

IIS itself has the limit 
maxAllowedContentLength  which will

be processed before the 
MaxRequestBodySize  set in the 

IISServerOptions . Changing the 

MaxRequestBodySize  won't affect

the maxAllowedContentLength . To

increase maxAllowedContentLength ,

add an entry in the web.config to set 
maxAllowedContentLength  to a

higher value. For more details, see
Configuration.

O P T IO NO P T IO N DEFA ULTDEFA ULT SET T IN GSET T IN G

services.Configure<IISOptions>(options => 
{
    options.ForwardClientCertificate = false;
});

O P T IO NO P T IO N DEFA ULTDEFA ULT SET T IN GSET T IN G

AutomaticAuthentication true If true , IIS Integration Middleware

sets the HttpContext.User

authenticated by Windows
Authentication. If false , the

middleware only provides an identity
for HttpContext.User  and responds

to challenges when explicitly
requested by the 
AuthenticationScheme . Windows

Authentication must be enabled in IIS
for AutomaticAuthentication  to

function. For more information, see
the Windows Authentication topic.

AuthenticationDisplayName null Sets the display name shown to users
on login pages.

ForwardClientCertificate true If true  and the 

MS-ASPNETCORE-CLIENTCERT  request

header is present, the 
HttpContext.Connection.ClientCertificate

is populated.

Proxy server and load balancer scenariosProxy server and load balancer scenarios

Out-of-process hosting modelOut-of-process hosting model

To configure IIS options, include a service configuration for IISOptions in ConfigureServices. The following

example prevents the app from populating HttpContext.Connection.ClientCertificate :

The IIS Integration Middleware and the ASP.NET Core Module are configured to forward the:

Scheme (HTTP/HTTPS).

Remote IP address where the request originated.

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/requestfiltering/requestlimits/#configuration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iisoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup.configureservices


  

                      

web.config fileweb.config file

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
  <IsTransformWebConfigDisabled>true</IsTransformWebConfigDisabled>
</PropertyGroup>

web.config file locationweb.config file location

Transform web.configTransform web.config

IIS configuration

The IIS Integration Middleware configures Forwarded Headers Middleware.

Additional configuration might be required for apps hosted behind additional proxy servers and load

balancers. For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

The web.config file configures the ASP.NET Core Module. Creating, transforming, and publishing the

web.config file is handled by an MSBuild target ( _TransformWebConfig ) when the project is published. This

target is present in the Web SDK targets ( Microsoft.NET.Sdk.Web ). The SDK is set at the top of the project file:

If a web.config file isn't present in the project, the file is created with the correct processPath and arguments to

configure the ASP.NET Core Module and moved to published output.

If a web.config file is present in the project, the file is transformed with the correct processPath and arguments

to configure the ASP.NET Core Module and moved to published output. The transformation doesn't modify IIS

configuration settings in the file.

The web.config file may provide additional IIS configuration settings that control active IIS modules. For

information on IIS modules that are capable of processing requests with ASP.NET Core apps, see the IIS

modules topic.

To prevent the Web SDK from transforming the web.config file, use the <IsTransformWebConfigDisabled><IsTransformWebConfigDisabled>

property in the project file:

When disabling the Web SDK from transforming the file, the processPath and arguments should be manually

set by the developer. For more information, see ASP.NET Core Module.

In order to set up the ASP.NET Core Module correctly, the web.config file must be present at the content root

path (typically the app base path) of the deployed app. This is the same location as the website physical path

provided to IIS. The web.config file is required at the root of the app to enable the publishing of multiple apps

using Web Deploy.

Sensitive files exist on the app's physical path, such as <assembly>.runtimeconfig.json, <assembly>.xml (XML

Documentation comments), and <assembly>.deps.json. When the web.config file is present and the site starts

normally, IIS doesn't serve these sensitive files if they're requested. If the web.config file is missing, incorrectly

named, or unable to configure the site for normal startup, IIS may serve sensitive files publicly.

The The web.configweb.config file must be present in the deployment at all times, correctly named, and able to file must be present in the deployment at all times, correctly named, and able to

configure the site for normal star t up. Never remove the configure the site for normal star t up. Never remove the web.configweb.config file from a production file from a production

deployment.deployment.

If you need to transform web.config on publish, see Transform web.config. You might need to transform

web.config on publish to set environment variables based on the configuration, profile, or environment.

Windows Ser ver operating systemsWindows Ser ver operating systems



Enable the Web Ser ver (IIS )Web Ser ver (IIS )  server role and establish role services.

1. Use the Add Roles and FeaturesAdd Roles and Features  wizard from the ManageManage menu or the link in Ser ver ManagerSer ver Manager . On

the Ser ver RolesSer ver Roles  step, check the box for Web Ser ver (IIS )Web Ser ver (IIS ) .

2. After the FeaturesFeatures  step, the Role ser vicesRole ser vices  step loads for Web Server (IIS). Select the IIS role services

desired or accept the default role services provided.

Windows Authentication (Optional)Windows Authentication (Optional)

To enable Windows Authentication, expand the following nodes: Web Ser verWeb Ser ver  > SecuritySecurity . Select the

Windows AuthenticationWindows Authentication feature. For more information, see Windows Authentication

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/


                                                  Install the .NET Core Hosting Bundle

<windowsAuthentication> and Configure Windows authentication.

WebSockets (Optional)WebSockets (Optional)

WebSockets is supported with ASP.NET Core 1.1 or later. To enable WebSockets, expand the following

nodes: Web Ser verWeb Ser ver  > Application DevelopmentApplication Development. Select the WebSocket ProtocolWebSocket Protocol  feature. For

more information, see WebSockets.

3. Proceed through the ConfirmationConfirmation step to install the web server role and services. A server/IIS restart

isn't required after installing the Web Ser ver (IIS )Web Ser ver (IIS )  role.

Windows desktop operating systemsWindows desktop operating systems

Enable the IIS  Management ConsoleIIS  Management Console and World Wide Web Ser vicesWorld Wide Web Ser vices .

1. Navigate to Control PanelControl Panel  > ProgramsPrograms > Programs and FeaturesPrograms and Features  > Turn Windows features onTurn Windows features on

or offor off  (left side of the screen).

2. Open the Internet Information Ser vicesInternet Information Ser vices  node. Open the Web Management ToolsWeb Management Tools  node.

3. Check the box for IIS  Management ConsoleIIS  Management Console.

4. Check the box for World Wide Web Ser vicesWorld Wide Web Ser vices .

5. Accept the default features for World Wide Web Ser vicesWorld Wide Web Ser vices  or customize the IIS features.

Windows Authentication (Optional)Windows Authentication (Optional)

To enable Windows Authentication, expand the following nodes: World Wide Web Ser vicesWorld Wide Web Ser vices  >

SecuritySecurity . Select the Windows AuthenticationWindows Authentication feature. For more information, see Windows

Authentication <windowsAuthentication> and Configure Windows authentication.

WebSockets (Optional)WebSockets (Optional)

WebSockets is supported with ASP.NET Core 1.1 or later. To enable WebSockets, expand the following

nodes: World Wide Web Ser vicesWorld Wide Web Ser vices  > Application Development FeaturesApplication Development Features . Select the WebSocketWebSocket

ProtocolProtocol  feature. For more information, see WebSockets.

6. If the IIS installation requires a restart, restart the system.

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/


IMPORTANTIMPORTANT

Direct download (current version)Direct download (current version)

Earlier versions of the installerEarlier versions of the installer

WARNINGWARNING

Install the Hosting BundleInstall the Hosting Bundle

Install the .NET Core Hosting Bundle on the hosting system. The bundle installs the .NET Core Runtime, .NET

Core Library, and the ASP.NET Core Module. The module allows ASP.NET Core apps to run behind IIS.

If the Hosting Bundle is installed before IIS, the bundle installation must be repaired. Run the Hosting Bundle installer

again after installing IIS.

If the Hosting Bundle is installed after installing the 64-bit (x64) version of .NET Core, SDKs might appear to be missing

(No .NET Core SDKs were detected). To resolve the problem, see Troubleshoot and debug ASP.NET Core projects.

Download the installer using the following link:

Current .NET Core Hosting Bundle installer (direct download)

To obtain an earlier version of the installer :

1. Navigate to the Download .NET Core page.

2. Select the desired .NET Core version.

3. In the Run apps - RuntimeRun apps - Runtime column, find the row of the .NET Core runtime version desired.

4. Download the installer using the Hosting BundleHosting Bundle link.

Some installers contain release versions that have reached their end of life (EOL) and are no longer supported by

Microsoft. For more information, see the support policy.

net stop was /y
net start w3svc

1. Run the installer on the server. The following parameters are available when running the installer from

an administrator command shell:

OPT_NO_ANCM=1 : Skip installing the ASP.NET Core Module.

OPT_NO_RUNTIME=1 : Skip installing the .NET Core runtime. Used when the server only hosts self-

contained deployments (SCD).

OPT_NO_SHAREDFX=1 : Skip installing the ASP.NET Shared Framework (ASP.NET runtime). Used when

the server only hosts self-contained deployments (SCD).

OPT_NO_X86=1 : Skip installing x86 runtimes. Use this parameter when you know that you won't be

hosting 32-bit apps. If there's any chance that you will host both 32-bit and 64-bit apps in the future,

don't use this parameter and install both runtimes.

OPT_NO_SHARED_CONFIG_CHECK=1 : Disable the check for using an IIS Shared Configuration when the

shared configuration (applicationHost.config) is on the same machine as the IIS installation. Only

available for ASP.NET Core 2.2 or later Hosting Bundler installers. For more information, see ASP.NET

Core Module.

2. Restart the system or execute the following commands in a command shell:

Restarting IIS picks up a change to the system PATH, which is an environment variable, made by the

installer.

https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


     

net stop was /y
net start w3svc

NOTENOTE

Install Web Deploy when publishing with Visual Studio

Create the IIS site

ASP.NET Core doesn't adopt roll-forward behavior for patch releases of shared framework packages. After

upgrading the shared framework by installing a new hosting bundle, restart the system or execute the

following commands in a command shell:

For information on IIS Shared Configuration, see ASP.NET Core Module with IIS Shared Configuration.

When deploying apps to servers with Web Deploy, install the latest version of Web Deploy on the server. To

install Web Deploy, use the Web Platform Installer (WebPI) or obtain an installer directly from the Microsoft

Download Center. The preferred method is to use WebPI. WebPI offers a standalone setup and a configuration

for hosting providers.

1. On the hosting system, create a folder to contain the app's published folders and files. In a following

step, the folder's path is provided to IIS as the physical path to the app. For more information on an

app's deployment folder and file layout, see ASP.NET Core directory structure.

2. In IIS Manager, open the server's node in the ConnectionsConnections  panel. Right-click the S itesSites  folder. Select

Add WebsiteAdd Website from the contextual menu.

3. Provide a S ite nameSite name and set the Physical pathPhysical path to the app's deployment folder. Provide the BindingBinding

configuration and create the website by selecting OKOK:

https://docs.microsoft.com/en-us/iis/install/installing-publishing-technologies/installing-and-configuring-web-deploy-on-iis-80-or-later
https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/download/details.aspx?id=43717


Deploy the app

WARNINGWARNING
Top-level wildcard bindings ( http://*:80/  and http://+:80 ) should notnot  be used. Top-level wildcard

bindings can open up your app to security vulnerabilities. This applies to both strong and weak wildcards. Use

explicit host names rather than wildcards. Subdomain wildcard binding (for example, *.mysub.com ) doesn't

have this security risk if you control the entire parent domain (as opposed to *.com , which is vulnerable). See

rfc7230 section-5.4 for more information.

4. Under the server's node, select Application PoolsApplication Pools .

5. Right-click the site's app pool and select Basic SettingsBasic Settings  from the contextual menu.

6. In the Edit Application PoolEdit Application Pool  window, set the .NET CLR version.NET CLR version to No Managed CodeNo Managed Code:

ASP.NET Core runs in a separate process and manages the runtime. ASP.NET Core doesn't rely on

loading the desktop CLR (.NET CLR). The Core Common Language Runtime (CoreCLR) for .NET Core is

booted to host the app in the worker process. Setting the .NET CLR version.NET CLR version to No Managed CodeNo Managed Code is

optional but recommended.

7. ASP.NET Core 2.2 or later:

For a 32-bit (x86) self-contained deployment published with a 32-bit SDK that uses the in-

process hosting model, enable the Application Pool for 32-bit. In IIS Manager, navigate to

Application PoolsApplication Pools  in the ConnectionsConnections  sidebar. Select the app's Application Pool. In the

ActionsActions  sidebar, select Advanced SettingsAdvanced Settings . Set Enable 32-Bit ApplicationsEnable 32-Bit Applications  to True .

For a 64-bit (x64) self-contained deployment that uses the in-process hosting model, disable the

app pool for 32-bit (x86) processes. In IIS Manager, navigate to Application PoolsApplication Pools  in the

ConnectionsConnections  sidebar. Select the app's Application Pool. In the ActionsActions  sidebar, select AdvancedAdvanced

SettingsSettings . Set Enable 32-Bit ApplicationsEnable 32-Bit Applications  to False .

8. Confirm the process model identity has the proper permissions.

If the default identity of the app pool (Process ModelProcess Model  > IdentityIdentity ) is changed from

ApplicationPoolIdentityApplicationPoolIdentity  to another identity, verify that the new identity has the required permissions

to access the app's folder, database, and other required resources. For example, the app pool requires

read and write access to folders where the app reads and writes files.

Windows Authentication configuration (Optional)Windows Authentication configuration (Optional)

For more information, see Configure Windows authentication.

Deploy the app to the IIS Physical pathPhysical path folder that was established in the Create the IIS site section. Web

https://tools.ietf.org/html/rfc7230#section-5.4
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy


Web Deploy with Visual StudioWeb Deploy with Visual Studio

Web Deploy outside of Visual StudioWeb Deploy outside of Visual Studio

Alternatives to Web DeployAlternatives to Web Deploy

Browse the website

Deploy is the recommended mechanism for deployment, but several options exist for moving the app from

the project's publish folder to the hosting system's deployment folder.

See the Visual Studio publish profiles for ASP.NET Core app deployment topic to learn how to create a publish

profile for use with Web Deploy. If the hosting provider provides a Publish Profile or support for creating one,

download their profile and import it using the Visual Studio PublishPublish dialog:

Web Deploy can also be used outside of Visual Studio from the command line. For more information, see Web

Deployment Tool.

Use any of several methods to move the app to the hosting system, such as manual copy, Xcopy, Robocopy, or

PowerShell.

For more information on ASP.NET Core deployment to IIS, see the Deployment resources for IIS administrators

section.

After the app is deployed to the hosting system, make a request to one of the app's public endpoints.

In the following example, the site is bound to an IIS Host nameHost name of www.mysite.com  on Por tPor t 80 . A request is

made to http://www.mysite.com :

https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/use-the-web-deployment-tool
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/xcopy
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/robocopy
https://docs.microsoft.com/en-us/powershell/


      

 

Locked deployment files

Data protection

Files in the deployment folder are locked when the app is running. Locked files can't be overwritten during

deployment. To release locked files in a deployment, stop the app pool using oneone of the following approaches:

$pathToApp = 'PATH_TO_APP'

# Stop the AppPool
New-Item -Path $pathToApp app_offline.htm

# Provide script commands here to deploy the app

# Restart the AppPool
Remove-Item -Path $pathToApp app_offline.htm

Use Web Deploy and reference Microsoft.NET.Sdk.Web  in the project file. An app_offline.htm file is

placed at the root of the web app directory. When the file is present, the ASP.NET Core Module

gracefully shuts down the app and serves the app_offline.htm file during the deployment. For more

information, see the ASP.NET Core Module configuration reference.

Manually stop the app pool in the IIS Manager on the server.

Use PowerShell to drop app_offline.htm (requires PowerShell 5 or later):

The ASP.NET Core Data Protection stack is used by several ASP.NET Core middlewares, including middleware

used in authentication. Even if Data Protection APIs aren't called by user code, data protection should be

configured with a deployment script or in user code to create a persistent cryptographic key store. If data



protection isn't configured, the keys are held in memory and discarded when the app restarts.

If the key ring is stored in memory when the app restarts:

All cookie-based authentication tokens are invalidated.

Users are required to sign in again on their next request.

Any data protected with the key ring can no longer be decrypted. This may include CSRF tokens and

ASP.NET Core MVC TempData cookies.

To configure data protection under IIS to persist the key ring, use oneone of the following approaches:

Create Data Protection Registr y KeysCreate Data Protection Registr y Keys

Data protection keys used by ASP.NET Core apps are stored in the registry external to the apps. To

persist the keys for a given app, create registry keys for the app pool.

For standalone, non-webfarm IIS installations, the Data Protection Provision-AutoGenKeys.ps1

PowerShell script can be used for each app pool used with an ASP.NET Core app. This script creates a

registry key in the HKLM registry that's accessible only to the worker process account of the app's app

pool. Keys are encrypted at rest using DPAPI with a machine-wide key.

In web farm scenarios, an app can be configured to use a UNC path to store its data protection key ring.

By default, the data protection keys aren't encrypted. Ensure that the file permissions for the network

share are limited to the Windows account the app runs under. An X509 certificate can be used to protect

keys at rest. Consider a mechanism to allow users to upload certificates: Place certificates into the user's

trusted certificate store and ensure they're available on all machines where the user's app runs. See

Configure ASP.NET Core Data Protection for details.

Configure the IIS  Application Pool to load the user profileConfigure the IIS  Application Pool to load the user profile

This setting is in the Process ModelProcess Model  section under the Advanced SettingsAdvanced Settings  for the app pool. Set LoadLoad

User ProfileUser Profile to True . When set to True , keys are stored in the user profile directory and protected

using DPAPI with a key specific to the user account. Keys are persisted to the

%LOCALAPPDATA%/ASP.NET/DataProtection-Keys folder.

The app pool's setProfileEnvironment attribute must also be enabled. The default value of 

setProfileEnvironment  is true . In some scenarios (for example, Windows OS), setProfileEnvironment

is set to false . If keys aren't stored in the user profile directory as expected:

1. Navigate to the %windir%/system32/inetsrv/config folder.

2. Open the applicationHost.config file.

3. Locate the <system.applicationHost><applicationPools><applicationPoolDefaults><processModel>

element.

4. Confirm that the setProfileEnvironment  attribute isn't present, which defaults the value to true , or

explicitly set the attribute's value to true .

Use the file system as a key r ing storeUse the file system as a key r ing store

Adjust the app code to use the file system as a key ring store. Use an X509 certificate to protect the key

ring and ensure the certificate is a trusted certificate. If the certificate is self-signed, place the certificate

in the Trusted Root store.

When using IIS in a web farm:

Use a file share that all machines can access.

Deploy an X509 certificate to each machine. Configure data protection in code.

Set a machine-wide policy for data protectionSet a machine-wide policy for data protection

The data protection system has limited support for setting a default machine-wide policy for all apps

https://github.com/dotnet/AspNetCore/blob/master/src/DataProtection/Provision-AutoGenKeys.ps1
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/processmodel#configuration


             

Virtual Directories

Sub-applications

Configuration of IIS with web.config

that consume the Data Protection APIs. For more information, see ASP.NET Core Data Protection.

IIS Virtual Directories aren't supported with ASP.NET Core apps. An app can be hosted as a sub-application.

An ASP.NET Core app can be hosted as an IIS sub-application (sub-app). The sub-app's path becomes part of

the root app's URL.

Static asset links within the sub-app should use tilde-slash ( ~/ ) notation. Tilde-slash notation triggers a Tag

Helper to prepend the sub-app's pathbase to the rendered relative link. For a sub-app at /subapp_path , an

image linked with src="~/image.png"  is rendered as src="/subapp_path/image.png" . The root app's Static File

Middleware doesn't process the static file request. The request is processed by the sub-app's Static File

Middleware.

If a static asset's src  attribute is set to an absolute path (for example, src="/image.png" ), the link is rendered

without the sub-app's pathbase. The root app's Static File Middleware attempts to serve the asset from the

root app's web root, which results in a 404 - Not Found response unless the static asset is available from the

root app.

To host an ASP.NET Core app as a sub-app under another ASP.NET Core app:

1. Establish an app pool for the sub-app. Set the .NET CLR Version.NET CLR Version to No Managed CodeNo Managed Code because the

Core Common Language Runtime (CoreCLR) for .NET Core is booted to host the app in the worker

process, not the desktop CLR (.NET CLR).

2. Add the root site in IIS Manager with the sub-app in a folder under the root site.

3. Right-click the sub-app folder in IIS Manager and select Conver t to ApplicationConver t to Application.

4. In the Add ApplicationAdd Application dialog, use the SelectSelect button for the Application PoolApplication Pool  to assign the app pool

that you created for the sub-app. Select OKOK.

The assignment of a separate app pool to the sub-app is a requirement when using the in-process hosting

model.

For more information on the in-process hosting model and configuring the ASP.NET Core Module, see ASP.NET

Core Module.

IIS configuration is influenced by the <system.webServer>  section of web.config for IIS scenarios that are

functional for ASP.NET Core apps with the ASP.NET Core Module. For example, IIS configuration is functional

for dynamic compression. If IIS is configured at the server level to use dynamic compression, the 

<urlCompression>  element in the app's web.config file can disable it for an ASP.NET Core app.

For more information, see the following topics:

Configuration reference for <system.webServer>

ASP.NET Core Module

IIS modules with ASP.NET Core

To set environment variables for individual apps running in isolated app pools (supported for IIS 10.0 or later),

see the AppCmd.exe command section of the Environment Variables <environmentVariables> topic in the IIS

reference documentation.

https://docs.microsoft.com/en-us/iis/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#virtual-directories
https://docs.microsoft.com/en-us/iis/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#applications
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/environmentvariables/#appcmdexe


 

Configuration sections of web.config

Application Pools

Application Pool Identity

Configuration sections of ASP.NET 4.x apps in web.config aren't used by ASP.NET Core apps for configuration:

<system.web>

<appSettings>

<connectionStrings>

<location>

ASP.NET Core apps are configured using other configuration providers. For more information, see

Configuration.

App pool isolation is determined by the hosting model:

In-process hosting: Apps are required to run in separate app pools.

Out-of-process hosting: We recommend isolating the apps from each other by running each app in its own

app pool.

The IIS Add WebsiteAdd Website dialog defaults to a single app pool per app. When a S ite nameSite name is provided, the text is

automatically transferred to the Application poolApplication pool  textbox. A new app pool is created using the site name

when the site is added.

An app pool identity account allows an app to run under a unique account without having to create and

manage domains or local accounts. On IIS 8.0 or later, the IIS Admin Worker Process (WAS) creates a virtual

account with the name of the new app pool and runs the app pool's worker processes under this account by

default. In the IIS Management Console under Advanced SettingsAdvanced Settings  for the app pool, ensure that the IdentityIdentity

is set to use ApplicationPoolIdentityApplicationPoolIdentity :



      

ICACLS C:\sites\MyWebApp /grant "IIS AppPool\DefaultAppPool":F

HTTP/2 support

The IIS management process creates a secure identifier with the name of the app pool in the Windows Security

System. Resources can be secured using this identity. However, this identity isn't a real user account and

doesn't show up in the Windows User Management Console.

If the IIS worker process requires elevated access to the app, modify the Access Control List (ACL) for the

directory containing the app:

1. Open Windows Explorer and navigate to the directory.

2. Right-click on the directory and select Proper tiesProper ties .

3. Under the SecuritySecurity  tab, select the EditEdit button and then the AddAdd button.

4. Select the LocationsLocations  button and make sure the system is selected.

5. Enter IIS  AppPool\<app_pool_name>IIS AppPool\<app_pool_name> in Enter the object names to selectEnter the object names to select area. Select the CheckCheck

NamesNames button. For the DefaultAppPool check the names using IIS  AppPool\DefaultAppPoolIIS  AppPool\DefaultAppPool . When

the Check NamesCheck Names  button is selected, a value of DefaultAppPoolDefaultAppPool  is indicated in the object names area.

It isn't possible to enter the app pool name directly into the object names area. Use the IIS  AppPool\IIS  AppPool\

<app_pool_name><app_pool_name> format when checking for the object name.

6. Select OKOK.

7. Read & execute permissions should be granted by default. Provide additional permissions as needed.

Access can also be granted at a command prompt using the ICACLSICACLS  tool. Using the DefaultAppPool as an

example, the following command is used:

For more information, see the icacls topic.

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls


  

    

CORS preflight requests

Application Initialization Module and Idle Timeout

Application Initialization ModuleApplication Initialization Module

HTTP/2 is supported with ASP.NET Core in the following IIS deployment scenarios:

In-process

Out-of-process

Windows Server 2016/Windows 10 or later ; IIS 10 or later

TLS 1.2 or later connection

Windows Server 2016/Windows 10 or later ; IIS 10 or later

Public-facing edge server connections use HTTP/2, but the reverse proxy connection to the Kestrel

server uses HTTP/1.1.

TLS 1.2 or later connection

For an in-process deployment when an HTTP/2 connection is established, HttpRequest.Protocol reports 

HTTP/2 . For an out-of-process deployment when an HTTP/2 connection is established, HttpRequest.Protocol

reports HTTP/1.1 .

For more information on the in-process and out-of-process hosting models, see ASP.NET Core Module.

HTTP/2 is enabled by default. Connections fall back to HTTP/1.1 if an HTTP/2 connection isn't established. For

more information on HTTP/2 configuration with IIS deployments, see HTTP/2 on IIS.

This section only applies to ASP.NET Core apps that target the .NET Framework.

For an ASP.NET Core app that targets the .NET Framework, OPTIONS requests aren't passed to the app by

default in IIS. To learn how to configure the app's IIS handlers in web.config to pass OPTIONS requests, see

Enable cross-origin requests in ASP.NET Web API 2: How CORS Works.

When hosted in IIS by the ASP.NET Core Module version 2:

Application Initialization Module: App's hosted in-process or out-of-process can be configured to start

automatically on a worker process restart or server restart.

Idle Timeout: App's hosted in-process can be configured not to timeout during periods of inactivity.

Applies to apps hosted in-process and out-of-process.

IIS Application Initialization is an IIS feature that sends an HTTP request to the app when the app pool starts or

is recycled. The request triggers the app to start. By default, IIS issues a request to the app's root URL ( / ) to

initialize the app (see the additional resources for more details on configuration).

Confirm that the IIS Application Initialization role feature in enabled:

On Windows 7 or later desktop systems when using IIS locally:

1. Navigate to Control PanelControl Panel  > ProgramsPrograms > Programs and FeaturesPrograms and Features  > Turn Windows features on orTurn Windows features on or

offoff  (left side of the screen).

2. Open Internet Information Ser vicesInternet Information Ser vices  > World Wide Web Ser vicesWorld Wide Web Ser vices  > Application DevelopmentApplication Development

FeaturesFeatures .

3. Select the check box for Application InitializationApplication Initialization.

On Windows Server 2008 R2 or later :

1. Open the Add Roles and Features WizardAdd Roles and Features Wizard.

2. In the Select role ser vicesSelect role ser vices  panel, open the Application DevelopmentApplication Development node.

https://httpwg.org/specs/rfc7540.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol
https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-10/http2-on-iis
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api#how-cors-works
https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-8/iis-80-application-initialization


    

    

   

Idle TimeoutIdle Timeout

Application Initialization Module and Idle Timeout additional resourcesApplication Initialization Module and Idle Timeout additional resources

Deployment resources for IIS administrators

3. Select the check box for Application InitializationApplication Initialization.

Use either of the following approaches to enable the Application Initialization Module for the site:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <applicationInitialization doAppInitAfterRestart="true" />
    </system.webServer>
  </location>
</configuration>

Using IIS Manager :

1. Select Application PoolsApplication Pools  in the ConnectionsConnections  panel.

2. Right-click the app's app pool in the list and select Advanced SettingsAdvanced Settings .

3. The default Star t ModeStar t Mode is OnDemandOnDemand. Set the Star t ModeStar t Mode to AlwaysRunningAlwaysRunning. Select OKOK.

4. Open the S itesSites  node in the ConnectionsConnections  panel.

5. Right-click the app and select Manage WebsiteManage Website > Advanced SettingsAdvanced Settings .

6. The default Preload EnabledPreload Enabled setting is FalseFalse. Set Preload EnabledPreload Enabled to TrueTrue. Select OKOK.

Using web.config, add the <applicationInitialization>  element with doAppInitAfterRestart  set to 

true  to the <system.webServer>  elements in the app's web.config file:

Only applies to apps hosted in-process.

To prevent the app from idling, set the app pool's idle timeout using IIS Manager :

1. Select Application PoolsApplication Pools  in the ConnectionsConnections  panel.

2. Right-click the app's app pool in the list and select Advanced SettingsAdvanced Settings .

3. The default Idle Time-out (minutes)Idle Time-out (minutes)  is 2020  minutes. Set the Idle Time-out (minutes)Idle Time-out (minutes)  to 00  (zero). Select

OKOK.

4. Recycle the worker process.

To prevent apps hosted out-of-process from timing out, use either of the following approaches:

Ping the app from an external service in order to keep it running.

If the app only hosts background services, avoid IIS hosting and use a Windows Service to host the ASP.NET

Core app.

IIS 8.0 Application Initialization

Application Initialization <applicationInitialization>.

Process Model Settings for an Application Pool <processModel>.

IIS documentation

Getting Started with the IIS Manager in IIS

.NET Core application deployment

ASP.NET Core Module

ASP.NET Core directory structure

IIS modules with ASP.NET Core

Troubleshoot ASP.NET Core on Azure App Service and IIS

https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-8/iis-80-application-initialization
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/applicationinitialization/
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/processmodel
https://docs.microsoft.com/en-us/iis
https://docs.microsoft.com/en-us/iis/get-started/getting-started-with-iis/getting-started-with-the-iis-manager-in-iis-7-and-iis-8
https://docs.microsoft.com/en-us/dotnet/core/deploying/


Additional resources

Supported operating systems

Supported platforms

Hosting models
In-process hosting modelIn-process hosting model

Common errors reference for Azure App Service and IIS with ASP.NET Core

Troubleshoot and debug ASP.NET Core projects

Introduction to ASP.NET Core

The Official Microsoft IIS Site

Windows Server technical content library

HTTP/2 on IIS

Transform web.config

For a tutorial experience on publishing an ASP.NET Core app to an IIS server, see Publish an ASP.NET Core app

to IIS.

Install the .NET Core Hosting Bundle

The following operating systems are supported:

Windows 7 or later

Windows Server 2008 R2 or later

HTTP.sys server (formerly called WebListener) doesn't work in a reverse proxy configuration with IIS. Use the

Kestrel server.

For information on hosting in Azure, see Deploy ASP.NET Core apps to Azure App Service.

For troubleshooting guidance, see Troubleshoot and debug ASP.NET Core projects.

Apps published for 32-bit (x86) or 64-bit (x64) deployment are supported. Deploy a 32-bit app with a 32-bit

(x86) .NET Core SDK unless the app:

Requires the larger virtual memory address space available to a 64-bit app.

Requires the larger IIS stack size.

Has 64-bit native dependencies.

Use a 64-bit (x64) .NET Core SDK to publish a 64-bit app. A 64-bit runtime must be present on the host

system.

Using in-process hosting, an ASP.NET Core app runs in the same process as its IIS worker process. In-process

hosting provides improved performance over out-of-process hosting because:

Requests aren't proxied over the loopback adapter. A loopback adapter is a network interface that returns

outgoing network traffic back to the same machine.

IIS handles process management with the Windows Process Activation Service (WAS).

The ASP.NET Core Module:

Performs app initialization.

Loads the CoreCLR.

https://www.iis.net/
https://docs.microsoft.com/en-us/windows-server/windows-server
https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-10/http2-on-iis
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was
https://docs.microsoft.com/en-us/dotnet/standard/glossary#coreclr


Out-of-process hosting modelOut-of-process hosting model

Handles the lifetime of the IIS native request.

Calls Program.Main .

The in-process hosting model isn't supported for ASP.NET Core apps that target the .NET Framework.

The following diagram illustrates the relationship between IIS, the ASP.NET Core Module, and an app hosted

in-process:

A request arrives from the web to the kernel-mode HTTP.sys driver. The driver routes the native request to IIS

on the website's configured port, usually 80 (HTTP) or 443 (HTTPS). The ASP.NET Core Module receives the

native request and passes it to IIS HTTP Server ( IISHttpServer ). IIS HTTP Server is an in-process server

implementation for IIS that converts the request from native to managed.

After the IIS HTTP Server processes the request, the request is pushed into the ASP.NET Core middleware

pipeline. The middleware pipeline handles the request and passes it on as an HttpContext  instance to the

app's logic. The app's response is passed back to IIS through IIS HTTP Server. IIS sends the response to the

client that initiated the request.

In-process hosting is opt-in for existing apps, but dotnet new templates default to the in-process hosting

model for all IIS and IIS Express scenarios.

CreateDefaultBuilder  adds an IServer instance by calling the UseIIS method to boot the CoreCLR and host the

app inside of the IIS worker process (w3wp.exe or iisexpress.exe). Performance tests indicate that hosting a

.NET Core app in-process delivers significantly higher request throughput compared to hosting the app out-of-

process and proxying requests to Kestrel server.

Because ASP.NET Core apps run in a process separate from the IIS worker process, the ASP.NET Core Module

handles process management. The module starts the process for the ASP.NET Core app when the first request

arrives and restarts the app if it shuts down or crashes. This is essentially the same behavior as seen with apps

that run in-process that are managed by the Windows Process Activation Service (WAS).

The following diagram illustrates the relationship between IIS, the ASP.NET Core Module, and an app hosted

out-of-process:

Requests arrive from the web to the kernel-mode HTTP.sys driver. The driver routes the requests to IIS on the

website's configured port, usually 80 (HTTP) or 443 (HTTPS). The module forwards the requests to Kestrel on a

random port for the app, which isn't port 80 or 443.

The module specifies the port via an environment variable at startup, and the UseIISIntegration extension

configures the server to listen on http://localhost:{PORT} . Additional checks are performed, and requests

that don't originate from the module are rejected. The module doesn't support HTTPS forwarding, so requests

are forwarded over HTTP even if received by IIS over HTTPS.

After Kestrel picks up the request from the module, the request is pushed into the ASP.NET Core middleware

pipeline. The middleware pipeline handles the request and passes it on as an HttpContext  instance to the

app's logic. Middleware added by IIS Integration updates the scheme, remote IP, and pathbase to account for

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.iserver
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiis
https://docs.microsoft.com/en-us/dotnet/standard/glossary#coreclr
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiisintegration


Application configuration
Enable the IISIntegration componentsEnable the IISIntegration components

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        ...

I IS optionsIIS options

services.Configure<IISServerOptions>(options => 
{
    options.AutomaticAuthentication = false;
});

O P T IO NO P T IO N DEFA ULTDEFA ULT SET T IN GSET T IN G

AutomaticAuthentication true If true , IIS Server sets the 

HttpContext.User  authenticated by

Windows Authentication. If false ,

the server only provides an identity
for HttpContext.User  and responds

to challenges when explicitly
requested by the 
AuthenticationScheme . Windows

Authentication must be enabled in IIS
for AutomaticAuthentication  to

function. For more information, see
Windows Authentication.

AuthenticationDisplayName null Sets the display name shown to users
on login pages.

services.Configure<IISOptions>(options => 
{
    options.ForwardClientCertificate = false;
});

forwarding the request to Kestrel. The app's response is passed back to IIS, which pushes it back out to the

HTTP client that initiated the request.

For ASP.NET Core Module configuration guidance, see ASP.NET Core Module.

For more information on hosting, see Host in ASP.NET Core.

When building a host in CreateWebHostBuilder  (Program.cs), call CreateDefaultBuilder to enable IIS integration:

For more information on CreateDefaultBuilder , see ASP.NET Core Web Host.

In-process hosting modelIn-process hosting model

To configure IIS Server options, include a service configuration for IISServerOptions in ConfigureServices. The

following example disables AutomaticAuthentication:

Out-of-process hosting modelOut-of-process hosting model

To configure IIS options, include a service configuration for IISOptions in ConfigureServices. The following

example prevents the app from populating HttpContext.Connection.ClientCertificate :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iisserveroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup.configureservices
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iisoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup.configureservices


O P T IO NO P T IO N DEFA ULTDEFA ULT SET T IN GSET T IN G

AutomaticAuthentication true If true , IIS Integration Middleware

sets the HttpContext.User

authenticated by Windows
Authentication. If false , the

middleware only provides an identity
for HttpContext.User  and responds

to challenges when explicitly
requested by the 
AuthenticationScheme . Windows

Authentication must be enabled in IIS
for AutomaticAuthentication  to

function. For more information, see
the Windows Authentication topic.

AuthenticationDisplayName null Sets the display name shown to users
on login pages.

ForwardClientCertificate true If true  and the 

MS-ASPNETCORE-CLIENTCERT  request

header is present, the 
HttpContext.Connection.ClientCertificate

is populated.

Proxy server and load balancer scenariosProxy server and load balancer scenarios

web.config fileweb.config file

<Project Sdk="Microsoft.NET.Sdk.Web">

The IIS Integration Middleware, which configures Forwarded Headers Middleware, and the ASP.NET Core

Module are configured to forward the scheme (HTTP/HTTPS) and the remote IP address where the request

originated. Additional configuration might be required for apps hosted behind additional proxy servers and

load balancers. For more information, see Configure ASP.NET Core to work with proxy servers and load

balancers.

The web.config file configures the ASP.NET Core Module. Creating, transforming, and publishing the

web.config file is handled by an MSBuild target ( _TransformWebConfig ) when the project is published. This

target is present in the Web SDK targets ( Microsoft.NET.Sdk.Web ). The SDK is set at the top of the project file:

If a web.config file isn't present in the project, the file is created with the correct processPath and arguments to

configure the ASP.NET Core Module and moved to published output.

If a web.config file is present in the project, the file is transformed with the correct processPath and arguments

to configure the ASP.NET Core Module and moved to published output. The transformation doesn't modify IIS

configuration settings in the file.

The web.config file may provide additional IIS configuration settings that control active IIS modules. For

information on IIS modules that are capable of processing requests with ASP.NET Core apps, see the IIS

modules topic.

To prevent the Web SDK from transforming the web.config file, use the <IsTransformWebConfigDisabled><IsTransformWebConfigDisabled>

property in the project file:



<PropertyGroup>
  <IsTransformWebConfigDisabled>true</IsTransformWebConfigDisabled>
</PropertyGroup>

web.config file locationweb.config file location

Transform web.configTransform web.config

IIS configuration

When disabling the Web SDK from transforming the file, the processPath and arguments should be manually

set by the developer. For more information, see ASP.NET Core Module.

In order to set up the ASP.NET Core Module correctly, the web.config file must be present at the content root

path (typically the app base path) of the deployed app. This is the same location as the website physical path

provided to IIS. The web.config file is required at the root of the app to enable the publishing of multiple apps

using Web Deploy.

Sensitive files exist on the app's physical path, such as <assembly>.runtimeconfig.json, <assembly>.xml (XML

Documentation comments), and <assembly>.deps.json. When the web.config file is present and the site starts

normally, IIS doesn't serve these sensitive files if they're requested. If the web.config file is missing, incorrectly

named, or unable to configure the site for normal startup, IIS may serve sensitive files publicly.

The The web.configweb.config file must be present in the deployment at all times, correctly named, and able to file must be present in the deployment at all times, correctly named, and able to

configure the site for normal star t up. Never remove the configure the site for normal star t up. Never remove the web.configweb.config file from a production file from a production

deployment.deployment.

If you need to transform web.config on publish (for example, set environment variables based on the

configuration, profile, or environment), see Transform web.config.

Windows Ser ver operating systemsWindows Ser ver operating systems

Enable the Web Ser ver (IIS )Web Ser ver (IIS )  server role and establish role services.

1. Use the Add Roles and FeaturesAdd Roles and Features  wizard from the ManageManage menu or the link in Ser ver ManagerSer ver Manager . On

the Ser ver RolesSer ver Roles  step, check the box for Web Ser ver (IIS )Web Ser ver (IIS ) .



2. After the FeaturesFeatures  step, the Role ser vicesRole ser vices  step loads for Web Server (IIS). Select the IIS role services

desired or accept the default role services provided.

Windows Authentication (Optional)Windows Authentication (Optional)

To enable Windows Authentication, expand the following nodes: Web Ser verWeb Ser ver  > SecuritySecurity . Select the

Windows AuthenticationWindows Authentication feature. For more information, see Windows Authentication

<windowsAuthentication> and Configure Windows authentication.

WebSockets (Optional)WebSockets (Optional)

WebSockets is supported with ASP.NET Core 1.1 or later. To enable WebSockets, expand the following

nodes: Web Ser verWeb Ser ver  > Application DevelopmentApplication Development. Select the WebSocket ProtocolWebSocket Protocol  feature. For

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/


Install the .NET Core Hosting Bundle

more information, see WebSockets.

3. Proceed through the ConfirmationConfirmation step to install the web server role and services. A server/IIS restart

isn't required after installing the Web Ser ver (IIS )Web Ser ver (IIS )  role.

Windows desktop operating systemsWindows desktop operating systems

Enable the IIS  Management ConsoleIIS  Management Console and World Wide Web Ser vicesWorld Wide Web Ser vices .

1. Navigate to Control PanelControl Panel  > ProgramsPrograms > Programs and FeaturesPrograms and Features  > Turn Windows features onTurn Windows features on

or offor off  (left side of the screen).

2. Open the Internet Information Ser vicesInternet Information Ser vices  node. Open the Web Management ToolsWeb Management Tools  node.

3. Check the box for IIS  Management ConsoleIIS  Management Console.

4. Check the box for World Wide Web Ser vicesWorld Wide Web Ser vices .

5. Accept the default features for World Wide Web Ser vicesWorld Wide Web Ser vices  or customize the IIS features.

Windows Authentication (Optional)Windows Authentication (Optional)

To enable Windows Authentication, expand the following nodes: World Wide Web Ser vicesWorld Wide Web Ser vices  >

SecuritySecurity . Select the Windows AuthenticationWindows Authentication feature. For more information, see Windows

Authentication <windowsAuthentication> and Configure Windows authentication.

WebSockets (Optional)WebSockets (Optional)

WebSockets is supported with ASP.NET Core 1.1 or later. To enable WebSockets, expand the following

nodes: World Wide Web Ser vicesWorld Wide Web Ser vices  > Application Development FeaturesApplication Development Features . Select the WebSocketWebSocket

ProtocolProtocol  feature. For more information, see WebSockets.

6. If the IIS installation requires a restart, restart the system.

Install the .NET Core Hosting Bundle on the hosting system. The bundle installs the .NET Core Runtime, .NET

Core Library, and the ASP.NET Core Module. The module allows ASP.NET Core apps to run behind IIS.

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/


IMPORTANTIMPORTANT

DownloadDownload

WARNINGWARNING

Install the Hosting BundleInstall the Hosting Bundle

If the Hosting Bundle is installed before IIS, the bundle installation must be repaired. Run the Hosting Bundle installer

again after installing IIS.

If the Hosting Bundle is installed after installing the 64-bit (x64) version of .NET Core, SDKs might appear to be missing

(No .NET Core SDKs were detected). To resolve the problem, see Troubleshoot and debug ASP.NET Core projects.

1. Navigate to the Download .NET Core page.

2. Select the desired .NET Core version.

3. In the Run apps - RuntimeRun apps - Runtime column, find the row of the .NET Core runtime version desired.

4. Download the installer using the Hosting BundleHosting Bundle link.

Some installers contain release versions that have reached their end of life (EOL) and are no longer supported by

Microsoft. For more information, see the support policy.

net stop was /y
net start w3svc

1. Run the installer on the server. The following parameters are available when running the installer from

an administrator command shell:

OPT_NO_ANCM=1 : Skip installing the ASP.NET Core Module.

OPT_NO_RUNTIME=1 : Skip installing the .NET Core runtime. Used when the server only hosts self-

contained deployments (SCD).

OPT_NO_SHAREDFX=1 : Skip installing the ASP.NET Shared Framework (ASP.NET runtime). Used when

the server only hosts self-contained deployments (SCD).

OPT_NO_X86=1 : Skip installing x86 runtimes. Use this parameter when you know that you won't be

hosting 32-bit apps. If there's any chance that you will host both 32-bit and 64-bit apps in the future,

don't use this parameter and install both runtimes.

OPT_NO_SHARED_CONFIG_CHECK=1 : Disable the check for using an IIS Shared Configuration when the

shared configuration (applicationHost.config) is on the same machine as the IIS installation. Only

available for ASP.NET Core 2.2 or later Hosting Bundler installers. For more information, see ASP.NET

Core Module.

2. Restart the system or execute the following commands in a command shell:

Restarting IIS picks up a change to the system PATH, which is an environment variable, made by the

installer.

It isn't necessary to manually stop individual sites in IIS when installing the Hosting Bundle. Hosted apps (IIS

sites) restart when IIS restarts. Apps start up again when they receive their first request, including from the

Application Initialization Module.

ASP.NET Core adopts roll-forward behavior for patch releases of shared framework packages. When apps

hosted by IIS restart with IIS, the apps load with the latest patch releases of their referenced packages when

they receive their first request. If IIS isn't restarted, apps restart and exhibit roll-forward behavior when their

worker processes are recycled and they receive their first request.

https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


NOTENOTE

Install Web Deploy when publishing with Visual Studio

Create the IIS site

For information on IIS Shared Configuration, see ASP.NET Core Module with IIS Shared Configuration.

When deploying apps to servers with Web Deploy, install the latest version of Web Deploy on the server. To

install Web Deploy, use the Web Platform Installer (WebPI) or obtain an installer directly from the Microsoft

Download Center. The preferred method is to use WebPI. WebPI offers a standalone setup and a configuration

for hosting providers.

1. On the hosting system, create a folder to contain the app's published folders and files. In a following

step, the folder's path is provided to IIS as the physical path to the app. For more information on an

app's deployment folder and file layout, see ASP.NET Core directory structure.

2. In IIS Manager, open the server's node in the ConnectionsConnections  panel. Right-click the S itesSites  folder. Select

Add WebsiteAdd Website from the contextual menu.

3. Provide a S ite nameSite name and set the Physical pathPhysical path to the app's deployment folder. Provide the BindingBinding

configuration and create the website by selecting OKOK:

https://docs.microsoft.com/en-us/iis/install/installing-publishing-technologies/installing-and-configuring-web-deploy-on-iis-80-or-later
https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/download/details.aspx?id=43717


Deploy the app

Web Deploy with Visual StudioWeb Deploy with Visual Studio

WARNINGWARNING
Top-level wildcard bindings ( http://*:80/  and http://+:80 ) should notnot  be used. Top-level wildcard

bindings can open up your app to security vulnerabilities. This applies to both strong and weak wildcards. Use

explicit host names rather than wildcards. Subdomain wildcard binding (for example, *.mysub.com ) doesn't

have this security risk if you control the entire parent domain (as opposed to *.com , which is vulnerable). See

rfc7230 section-5.4 for more information.

4. Under the server's node, select Application PoolsApplication Pools .

5. Right-click the site's app pool and select Basic SettingsBasic Settings  from the contextual menu.

6. In the Edit Application PoolEdit Application Pool  window, set the .NET CLR version.NET CLR version to No Managed CodeNo Managed Code:

ASP.NET Core runs in a separate process and manages the runtime. ASP.NET Core doesn't rely on

loading the desktop CLR (.NET CLR)—the Core Common Language Runtime (CoreCLR) for .NET Core is

booted to host the app in the worker process. Setting the .NET CLR version.NET CLR version to No Managed CodeNo Managed Code is

optional but recommended.

7. ASP.NET Core 2.2 or later: For a 64-bit (x64) self-contained deployment that uses the in-process hosting

model, disable the app pool for 32-bit (x86) processes.

In the ActionsActions  sidebar of IIS Manager > Application PoolsApplication Pools , select Set Application Pool DefaultsSet Application Pool Defaults  or

Advanced SettingsAdvanced Settings . Locate Enable 32-Bit ApplicationsEnable 32-Bit Applications  and set the value to False . This setting

doesn't affect apps deployed for out-of-process hosting.

8. Confirm the process model identity has the proper permissions.

If the default identity of the app pool (Process ModelProcess Model  > IdentityIdentity ) is changed from

ApplicationPoolIdentityApplicationPoolIdentity  to another identity, verify that the new identity has the required permissions

to access the app's folder, database, and other required resources. For example, the app pool requires

read and write access to folders where the app reads and writes files.

Windows Authentication configuration (Optional)Windows Authentication configuration (Optional)

For more information, see Configure Windows authentication.

Deploy the app to the IIS Physical pathPhysical path folder that was established in the Create the IIS site section. Web

Deploy is the recommended mechanism for deployment, but several options exist for moving the app from

the project's publish folder to the hosting system's deployment folder.

See the Visual Studio publish profiles for ASP.NET Core app deployment topic to learn how to create a publish

https://tools.ietf.org/html/rfc7230#section-5.4
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy


Web Deploy outside of Visual StudioWeb Deploy outside of Visual Studio

Alternatives to Web DeployAlternatives to Web Deploy

Browse the website

profile for use with Web Deploy. If the hosting provider provides a Publish Profile or support for creating one,

download their profile and import it using the Visual Studio PublishPublish dialog:

Web Deploy can also be used outside of Visual Studio from the command line. For more information, see Web

Deployment Tool.

Use any of several methods to move the app to the hosting system, such as manual copy, Xcopy, Robocopy, or

PowerShell.

For more information on ASP.NET Core deployment to IIS, see the Deployment resources for IIS administrators

section.

After the app is deployed to the hosting system, make a request to one of the app's public endpoints.

In the following example, the site is bound to an IIS Host nameHost name of www.mysite.com  on Por tPor t 80 . A request is

made to http://www.mysite.com :

https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/use-the-web-deployment-tool
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/xcopy
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/robocopy
https://docs.microsoft.com/en-us/powershell/


Locked deployment files

Data protection

Files in the deployment folder are locked when the app is running. Locked files can't be overwritten during

deployment. To release locked files in a deployment, stop the app pool using oneone of the following approaches:

$pathToApp = 'PATH_TO_APP'

# Stop the AppPool
New-Item -Path $pathToApp app_offline.htm

# Provide script commands here to deploy the app

# Restart the AppPool
Remove-Item -Path $pathToApp app_offline.htm

Use Web Deploy and reference Microsoft.NET.Sdk.Web  in the project file. An app_offline.htm file is

placed at the root of the web app directory. When the file is present, the ASP.NET Core Module

gracefully shuts down the app and serves the app_offline.htm file during the deployment. For more

information, see the ASP.NET Core Module configuration reference.

Manually stop the app pool in the IIS Manager on the server.

Use PowerShell to drop app_offline.htm (requires PowerShell 5 or later):

The ASP.NET Core Data Protection stack is used by several ASP.NET Core middlewares, including middleware

used in authentication. Even if Data Protection APIs aren't called by user code, data protection should be

configured with a deployment script or in user code to create a persistent cryptographic key store. If data



protection isn't configured, the keys are held in memory and discarded when the app restarts.

If the key ring is stored in memory when the app restarts:

All cookie-based authentication tokens are invalidated.

Users are required to sign in again on their next request.

Any data protected with the key ring can no longer be decrypted. This may include CSRF tokens and

ASP.NET Core MVC TempData cookies.

To configure data protection under IIS to persist the key ring, use oneone of the following approaches:

Create Data Protection Registr y KeysCreate Data Protection Registr y Keys

Data protection keys used by ASP.NET Core apps are stored in the registry external to the apps. To

persist the keys for a given app, create registry keys for the app pool.

For standalone, non-webfarm IIS installations, the Data Protection Provision-AutoGenKeys.ps1

PowerShell script can be used for each app pool used with an ASP.NET Core app. This script creates a

registry key in the HKLM registry that's accessible only to the worker process account of the app's app

pool. Keys are encrypted at rest using DPAPI with a machine-wide key.

In web farm scenarios, an app can be configured to use a UNC path to store its data protection key ring.

By default, the data protection keys aren't encrypted. Ensure that the file permissions for the network

share are limited to the Windows account the app runs under. An X509 certificate can be used to protect

keys at rest. Consider a mechanism to allow users to upload certificates: Place certificates into the user's

trusted certificate store and ensure they're available on all machines where the user's app runs. See

Configure ASP.NET Core Data Protection for details.

Configure the IIS  Application Pool to load the user profileConfigure the IIS  Application Pool to load the user profile

This setting is in the Process ModelProcess Model  section under the Advanced SettingsAdvanced Settings  for the app pool. Set LoadLoad

User ProfileUser Profile to True . When set to True , keys are stored in the user profile directory and protected

using DPAPI with a key specific to the user account. Keys are persisted to the

%LOCALAPPDATA%/ASP.NET/DataProtection-Keys folder.

The app pool's setProfileEnvironment attribute must also be enabled. The default value of 

setProfileEnvironment  is true . In some scenarios (for example, Windows OS), setProfileEnvironment

is set to false . If keys aren't stored in the user profile directory as expected:

1. Navigate to the %windir%/system32/inetsrv/config folder.

2. Open the applicationHost.config file.

3. Locate the <system.applicationHost><applicationPools><applicationPoolDefaults><processModel>

element.

4. Confirm that the setProfileEnvironment  attribute isn't present, which defaults the value to true , or

explicitly set the attribute's value to true .

Use the file system as a key r ing storeUse the file system as a key r ing store

Adjust the app code to use the file system as a key ring store. Use an X509 certificate to protect the key

ring and ensure the certificate is a trusted certificate. If the certificate is self-signed, place the certificate

in the Trusted Root store.

When using IIS in a web farm:

Use a file share that all machines can access.

Deploy an X509 certificate to each machine. Configure data protection in code.

Set a machine-wide policy for data protectionSet a machine-wide policy for data protection

The data protection system has limited support for setting a default machine-wide policy for all apps

https://github.com/dotnet/AspNetCore/blob/master/src/DataProtection/Provision-AutoGenKeys.ps1
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/processmodel#configuration


Virtual Directories

Sub-applications

Configuration of IIS with web.config

that consume the Data Protection APIs. For more information, see ASP.NET Core Data Protection.

IIS Virtual Directories aren't supported with ASP.NET Core apps. An app can be hosted as a sub-application.

An ASP.NET Core app can be hosted as an IIS sub-application (sub-app). The sub-app's path becomes part of

the root app's URL.

Static asset links within the sub-app should use tilde-slash ( ~/ ) notation. Tilde-slash notation triggers a Tag

Helper to prepend the sub-app's pathbase to the rendered relative link. For a sub-app at /subapp_path , an

image linked with src="~/image.png"  is rendered as src="/subapp_path/image.png" . The root app's Static File

Middleware doesn't process the static file request. The request is processed by the sub-app's Static File

Middleware.

If a static asset's src  attribute is set to an absolute path (for example, src="/image.png" ), the link is rendered

without the sub-app's pathbase. The root app's Static File Middleware attempts to serve the asset from the

root app's web root, which results in a 404 - Not Found response unless the static asset is available from the

root app.

To host an ASP.NET Core app as a sub-app under another ASP.NET Core app:

1. Establish an app pool for the sub-app. Set the .NET CLR Version.NET CLR Version to No Managed CodeNo Managed Code because the

Core Common Language Runtime (CoreCLR) for .NET Core is booted to host the app in the worker

process, not the desktop CLR (.NET CLR).

2. Add the root site in IIS Manager with the sub-app in a folder under the root site.

3. Right-click the sub-app folder in IIS Manager and select Conver t to ApplicationConver t to Application.

4. In the Add ApplicationAdd Application dialog, use the SelectSelect button for the Application PoolApplication Pool  to assign the app pool

that you created for the sub-app. Select OKOK.

The assignment of a separate app pool to the sub-app is a requirement when using the in-process hosting

model.

For more information on the in-process hosting model and configuring the ASP.NET Core Module, see ASP.NET

Core Module.

IIS configuration is influenced by the <system.webServer>  section of web.config for IIS scenarios that are

functional for ASP.NET Core apps with the ASP.NET Core Module. For example, IIS configuration is functional

for dynamic compression. If IIS is configured at the server level to use dynamic compression, the 

<urlCompression>  element in the app's web.config file can disable it for an ASP.NET Core app.

For more information, see the following topics:

Configuration reference for <system.webServer>

ASP.NET Core Module

IIS modules with ASP.NET Core

To set environment variables for individual apps running in isolated app pools (supported for IIS 10.0 or later),

see the AppCmd.exe command section of the Environment Variables <environmentVariables> topic in the IIS

reference documentation.

https://docs.microsoft.com/en-us/iis/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#virtual-directories
https://docs.microsoft.com/en-us/iis/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#applications
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/environmentvariables/#appcmdexe


Configuration sections of web.config

Application Pools

Application Pool Identity

Configuration sections of ASP.NET 4.x apps in web.config aren't used by ASP.NET Core apps for configuration:

<system.web>

<appSettings>

<connectionStrings>

<location>

ASP.NET Core apps are configured using other configuration providers. For more information, see

Configuration.

App pool isolation is determined by the hosting model:

In-process hosting: Apps are required to run in separate app pools.

Out-of-process hosting: We recommend isolating the apps from each other by running each app in its own

app pool.

The IIS Add WebsiteAdd Website dialog defaults to a single app pool per app. When a S ite nameSite name is provided, the text is

automatically transferred to the Application poolApplication pool  textbox. A new app pool is created using the site name

when the site is added.

An app pool identity account allows an app to run under a unique account without having to create and

manage domains or local accounts. On IIS 8.0 or later, the IIS Admin Worker Process (WAS) creates a virtual

account with the name of the new app pool and runs the app pool's worker processes under this account by

default. In the IIS Management Console under Advanced SettingsAdvanced Settings  for the app pool, ensure that the IdentityIdentity

is set to use ApplicationPoolIdentityApplicationPoolIdentity :



ICACLS C:\sites\MyWebApp /grant "IIS AppPool\DefaultAppPool":F

HTTP/2 support

The IIS management process creates a secure identifier with the name of the app pool in the Windows Security

System. Resources can be secured using this identity. However, this identity isn't a real user account and

doesn't show up in the Windows User Management Console.

If the IIS worker process requires elevated access to the app, modify the Access Control List (ACL) for the

directory containing the app:

1. Open Windows Explorer and navigate to the directory.

2. Right-click on the directory and select Proper tiesProper ties .

3. Under the SecuritySecurity  tab, select the EditEdit button and then the AddAdd button.

4. Select the LocationsLocations  button and make sure the system is selected.

5. Enter IIS  AppPool\<app_pool_name>IIS AppPool\<app_pool_name> in Enter the object names to selectEnter the object names to select area. Select the CheckCheck

NamesNames button. For the DefaultAppPool check the names using IIS  AppPool\DefaultAppPoolIIS  AppPool\DefaultAppPool . When

the Check NamesCheck Names  button is selected, a value of DefaultAppPoolDefaultAppPool  is indicated in the object names area.

It isn't possible to enter the app pool name directly into the object names area. Use the IIS  AppPool\IIS  AppPool\

<app_pool_name><app_pool_name> format when checking for the object name.

6. Select OKOK.

7. Read & execute permissions should be granted by default. Provide additional permissions as needed.

Access can also be granted at a command prompt using the ICACLSICACLS  tool. Using the DefaultAppPool as an

example, the following command is used:

For more information, see the icacls topic.

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls


CORS preflight requests

Application Initialization Module and Idle Timeout

Application Initialization ModuleApplication Initialization Module

HTTP/2 is supported with ASP.NET Core in the following IIS deployment scenarios:

In-process

Out-of-process

Windows Server 2016/Windows 10 or later ; IIS 10 or later

TLS 1.2 or later connection

Windows Server 2016/Windows 10 or later ; IIS 10 or later

Public-facing edge server connections use HTTP/2, but the reverse proxy connection to the Kestrel

server uses HTTP/1.1.

TLS 1.2 or later connection

For an in-process deployment when an HTTP/2 connection is established, HttpRequest.Protocol reports 

HTTP/2 . For an out-of-process deployment when an HTTP/2 connection is established, HttpRequest.Protocol

reports HTTP/1.1 .

For more information on the in-process and out-of-process hosting models, see ASP.NET Core Module.

HTTP/2 is enabled by default. Connections fall back to HTTP/1.1 if an HTTP/2 connection isn't established. For

more information on HTTP/2 configuration with IIS deployments, see HTTP/2 on IIS.

This section only applies to ASP.NET Core apps that target the .NET Framework.

For an ASP.NET Core app that targets the .NET Framework, OPTIONS requests aren't passed to the app by

default in IIS. To learn how to configure the app's IIS handlers in web.config to pass OPTIONS requests, see

Enable cross-origin requests in ASP.NET Web API 2: How CORS Works.

When hosted in IIS by the ASP.NET Core Module version 2:

Application Initialization Module: App's hosted in-process or out-of-process can be configured to start

automatically on a worker process restart or server restart.

Idle Timeout: App's hosted in-process can be configured not to timeout during periods of inactivity.

Applies to apps hosted in-process and out-of-process.

IIS Application Initialization is an IIS feature that sends an HTTP request to the app when the app pool starts or

is recycled. The request triggers the app to start. By default, IIS issues a request to the app's root URL ( / ) to

initialize the app (see the additional resources for more details on configuration).

Confirm that the IIS Application Initialization role feature in enabled:

On Windows 7 or later desktop systems when using IIS locally:

1. Navigate to Control PanelControl Panel  > ProgramsPrograms > Programs and FeaturesPrograms and Features  > Turn Windows features on orTurn Windows features on or

offoff  (left side of the screen).

2. Open Internet Information Ser vicesInternet Information Ser vices  > World Wide Web Ser vicesWorld Wide Web Ser vices  > Application DevelopmentApplication Development

FeaturesFeatures .

3. Select the check box for Application InitializationApplication Initialization.

On Windows Server 2008 R2 or later :

1. Open the Add Roles and Features WizardAdd Roles and Features Wizard.

2. In the Select role ser vicesSelect role ser vices  panel, open the Application DevelopmentApplication Development node.

https://httpwg.org/specs/rfc7540.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol
https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-10/http2-on-iis
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api#how-cors-works
https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-8/iis-80-application-initialization


Idle TimeoutIdle Timeout

Application Initialization Module and Idle Timeout additional resourcesApplication Initialization Module and Idle Timeout additional resources

Deployment resources for IIS administrators

3. Select the check box for Application InitializationApplication Initialization.

Use either of the following approaches to enable the Application Initialization Module for the site:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <applicationInitialization doAppInitAfterRestart="true" />
    </system.webServer>
  </location>
</configuration>

Using IIS Manager :

1. Select Application PoolsApplication Pools  in the ConnectionsConnections  panel.

2. Right-click the app's app pool in the list and select Advanced SettingsAdvanced Settings .

3. The default Star t ModeStar t Mode is OnDemandOnDemand. Set the Star t ModeStar t Mode to AlwaysRunningAlwaysRunning. Select OKOK.

4. Open the S itesSites  node in the ConnectionsConnections  panel.

5. Right-click the app and select Manage WebsiteManage Website > Advanced SettingsAdvanced Settings .

6. The default Preload EnabledPreload Enabled setting is FalseFalse. Set Preload EnabledPreload Enabled to TrueTrue. Select OKOK.

Using web.config, add the <applicationInitialization>  element with doAppInitAfterRestart  set to 

true  to the <system.webServer>  elements in the app's web.config file:

Only applies to apps hosted in-process.

To prevent the app from idling, set the app pool's idle timeout using IIS Manager :

1. Select Application PoolsApplication Pools  in the ConnectionsConnections  panel.

2. Right-click the app's app pool in the list and select Advanced SettingsAdvanced Settings .

3. The default Idle Time-out (minutes)Idle Time-out (minutes)  is 2020  minutes. Set the Idle Time-out (minutes)Idle Time-out (minutes)  to 00  (zero). Select

OKOK.

4. Recycle the worker process.

To prevent apps hosted out-of-process from timing out, use either of the following approaches:

Ping the app from an external service in order to keep it running.

If the app only hosts background services, avoid IIS hosting and use a Windows Service to host the ASP.NET

Core app.

IIS 8.0 Application Initialization

Application Initialization <applicationInitialization>.

Process Model Settings for an Application Pool <processModel>.

IIS documentation

Getting Started with the IIS Manager in IIS

.NET Core application deployment

ASP.NET Core Module

ASP.NET Core directory structure

IIS modules with ASP.NET Core

Troubleshoot ASP.NET Core on Azure App Service and IIS

https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-8/iis-80-application-initialization
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/applicationinitialization/
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/processmodel
https://docs.microsoft.com/en-us/iis
https://docs.microsoft.com/en-us/iis/get-started/getting-started-with-iis/getting-started-with-the-iis-manager-in-iis-7-and-iis-8
https://docs.microsoft.com/en-us/dotnet/core/deploying/


Additional resources

Supported operating systems

Supported platforms

Common errors reference for Azure App Service and IIS with ASP.NET Core

Troubleshoot and debug ASP.NET Core projects

Introduction to ASP.NET Core

The Official Microsoft IIS Site

Windows Server technical content library

HTTP/2 on IIS

Transform web.config

For a tutorial experience on publishing an ASP.NET Core app to an IIS server, see Publish an ASP.NET Core app

to IIS.

Install the .NET Core Hosting Bundle

The following operating systems are supported:

Windows 7 or later

Windows Server 2008 R2 or later

HTTP.sys server (formerly called WebListener) doesn't work in a reverse proxy configuration with IIS. Use the

Kestrel server.

For information on hosting in Azure, see Deploy ASP.NET Core apps to Azure App Service.

For troubleshooting guidance, see Troubleshoot and debug ASP.NET Core projects.

Apps published for 32-bit (x86) or 64-bit (x64) deployment are supported. Deploy a 32-bit app with a 32-bit

(x86) .NET Core SDK unless the app:

Requires the larger virtual memory address space available to a 64-bit app.

Requires the larger IIS stack size.

Has 64-bit native dependencies.

Use a 64-bit (x64) .NET Core SDK to publish a 64-bit app. A 64-bit runtime must be present on the host

system.

ASP.NET Core ships with Kestrel server, a default, cross-platform HTTP server.

When using IIS or IIS Express, the app runs in a process separate from the IIS worker process (out-of-process)

with the Kestrel server.

Because ASP.NET Core apps run in a process separate from the IIS worker process, the module handles process

management. The module starts the process for the ASP.NET Core app when the first request arrives and

restarts the app if it shuts down or crashes. This is essentially the same behavior as seen with apps that run in-

process that are managed by the Windows Process Activation Service (WAS).

The following diagram illustrates the relationship between IIS, the ASP.NET Core Module, and an app hosted

out-of-process:

https://www.iis.net/
https://docs.microsoft.com/en-us/windows-server/windows-server
https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-10/http2-on-iis
https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/introduction-to-iis-architecture
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was


Application configuration
Enable the IISIntegration componentsEnable the IISIntegration components

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        ...

I IS optionsIIS options

O P T IO NO P T IO N DEFA ULTDEFA ULT SET T IN GSET T IN G

Requests arrive from the web to the kernel-mode HTTP.sys driver. The driver routes the requests to IIS on the

website's configured port, usually 80 (HTTP) or 443 (HTTPS). The module forwards the requests to Kestrel on a

random port for the app, which isn't port 80 or 443.

The module specifies the port via an environment variable at startup, and the IIS Integration Middleware

configures the server to listen on http://localhost:{port} . Additional checks are performed, and requests

that don't originate from the module are rejected. The module doesn't support HTTPS forwarding, so requests

are forwarded over HTTP even if received by IIS over HTTPS.

After Kestrel picks up the request from the module, the request is pushed into the ASP.NET Core middleware

pipeline. The middleware pipeline handles the request and passes it on as an HttpContext  instance to the

app's logic. Middleware added by IIS Integration updates the scheme, remote IP, and pathbase to account for

forwarding the request to Kestrel. The app's response is passed back to IIS, which pushes it back out to the

HTTP client that initiated the request.

CreateDefaultBuilder  configures Kestrel server as the web server and enables IIS Integration by configuring

the base path and port for the ASP.NET Core Module.

The ASP.NET Core Module generates a dynamic port to assign to the backend process. CreateDefaultBuilder

calls the UseIISIntegration method. UseIISIntegration  configures Kestrel to listen on the dynamic port at the

localhost IP address ( 127.0.0.1 ). If the dynamic port is 1234, Kestrel listens at 127.0.0.1:1234 . This

configuration replaces other URL configurations provided by:

UseUrls

Kestrel's Listen API

Configuration (or command-line --urls option)

Calls to UseUrls  or Kestrel's Listen  API aren't required when using the module. If UseUrls  or Listen  is

called, Kestrel listens on the port specified only when running the app without IIS.

For ASP.NET Core Module configuration guidance, see ASP.NET Core Module.

For more information on hosting, see Host in ASP.NET Core.

When building a host in CreateWebHostBuilder  (Program.cs), call CreateDefaultBuilder to enable IIS integration:

For more information on CreateDefaultBuilder , see ASP.NET Core Web Host.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiisintegration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder


AutomaticAuthentication true If true , IIS Server sets the 

HttpContext.User  authenticated by

Windows Authentication. If false ,

the server only provides an identity
for HttpContext.User  and responds

to challenges when explicitly
requested by the 
AuthenticationScheme . Windows

Authentication must be enabled in IIS
for AutomaticAuthentication  to

function. For more information, see
Windows Authentication.

AuthenticationDisplayName null Sets the display name shown to users
on login pages.

O P T IO NO P T IO N DEFA ULTDEFA ULT SET T IN GSET T IN G

services.Configure<IISOptions>(options => 
{
    options.ForwardClientCertificate = false;
});

O P T IO NO P T IO N DEFA ULTDEFA ULT SET T IN GSET T IN G

AutomaticAuthentication true If true , IIS Integration Middleware

sets the HttpContext.User

authenticated by Windows
Authentication. If false , the

middleware only provides an identity
for HttpContext.User  and responds

to challenges when explicitly
requested by the 
AuthenticationScheme . Windows

Authentication must be enabled in IIS
for AutomaticAuthentication  to

function. For more information, see
the Windows Authentication topic.

AuthenticationDisplayName null Sets the display name shown to users
on login pages.

ForwardClientCertificate true If true  and the 

MS-ASPNETCORE-CLIENTCERT  request

header is present, the 
HttpContext.Connection.ClientCertificate

is populated.

Proxy server and load balancer scenariosProxy server and load balancer scenarios

To configure IIS options, include a service configuration for IISOptions in ConfigureServices. The following

example prevents the app from populating HttpContext.Connection.ClientCertificate :

The IIS Integration Middleware, which configures Forwarded Headers Middleware, and the ASP.NET Core

Module are configured to forward the scheme (HTTP/HTTPS) and the remote IP address where the request

originated. Additional configuration might be required for apps hosted behind additional proxy servers and

load balancers. For more information, see Configure ASP.NET Core to work with proxy servers and load

balancers.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iisoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.istartup.configureservices


web.config fileweb.config file

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
  <IsTransformWebConfigDisabled>true</IsTransformWebConfigDisabled>
</PropertyGroup>

web.config file locationweb.config file location

Transform web.configTransform web.config

IIS configuration

The web.config file configures the ASP.NET Core Module. Creating, transforming, and publishing the

web.config file is handled by an MSBuild target ( _TransformWebConfig ) when the project is published. This

target is present in the Web SDK targets ( Microsoft.NET.Sdk.Web ). The SDK is set at the top of the project file:

If a web.config file isn't present in the project, the file is created with the correct processPath and arguments to

configure the ASP.NET Core Module and moved to published output.

If a web.config file is present in the project, the file is transformed with the correct processPath and arguments

to configure the ASP.NET Core Module and moved to published output. The transformation doesn't modify IIS

configuration settings in the file.

The web.config file may provide additional IIS configuration settings that control active IIS modules. For

information on IIS modules that are capable of processing requests with ASP.NET Core apps, see the IIS

modules topic.

To prevent the Web SDK from transforming the web.config file, use the <IsTransformWebConfigDisabled><IsTransformWebConfigDisabled>

property in the project file:

When disabling the Web SDK from transforming the file, the processPath and arguments should be manually

set by the developer. For more information, see ASP.NET Core Module.

In order to set up the ASP.NET Core Module correctly, the web.config file must be present at the content root

path (typically the app base path) of the deployed app. This is the same location as the website physical path

provided to IIS. The web.config file is required at the root of the app to enable the publishing of multiple apps

using Web Deploy.

Sensitive files exist on the app's physical path, such as <assembly>.runtimeconfig.json, <assembly>.xml (XML

Documentation comments), and <assembly>.deps.json. When the web.config file is present and the site starts

normally, IIS doesn't serve these sensitive files if they're requested. If the web.config file is missing, incorrectly

named, or unable to configure the site for normal startup, IIS may serve sensitive files publicly.

The The web.configweb.config file must be present in the deployment at all times, correctly named, and able to file must be present in the deployment at all times, correctly named, and able to

configure the site for normal star t up. Never remove the configure the site for normal star t up. Never remove the web.configweb.config file from a production file from a production

deployment.deployment.

If you need to transform web.config on publish (for example, set environment variables based on the

configuration, profile, or environment), see Transform web.config.

Windows Ser ver operating systemsWindows Ser ver operating systems

Enable the Web Ser ver (IIS )Web Ser ver (IIS )  server role and establish role services.

1. Use the Add Roles and FeaturesAdd Roles and Features  wizard from the ManageManage menu or the link in Ser ver ManagerSer ver Manager . On

the Ser ver RolesSer ver Roles  step, check the box for Web Ser ver (IIS )Web Ser ver (IIS ) .



2. After the FeaturesFeatures  step, the Role ser vicesRole ser vices  step loads for Web Server (IIS). Select the IIS role services

desired or accept the default role services provided.

Windows Authentication (Optional)Windows Authentication (Optional)

To enable Windows Authentication, expand the following nodes: Web Ser verWeb Ser ver  > SecuritySecurity . Select the

Windows AuthenticationWindows Authentication feature. For more information, see Windows Authentication

<windowsAuthentication> and Configure Windows authentication.

WebSockets (Optional)WebSockets (Optional)

WebSockets is supported with ASP.NET Core 1.1 or later. To enable WebSockets, expand the following

nodes: Web Ser verWeb Ser ver  > Application DevelopmentApplication Development. Select the WebSocket ProtocolWebSocket Protocol  feature. For

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/


Install the .NET Core Hosting Bundle

more information, see WebSockets.

3. Proceed through the ConfirmationConfirmation step to install the web server role and services. A server/IIS restart

isn't required after installing the Web Ser ver (IIS )Web Ser ver (IIS )  role.

Windows desktop operating systemsWindows desktop operating systems

Enable the IIS  Management ConsoleIIS  Management Console and World Wide Web Ser vicesWorld Wide Web Ser vices .

1. Navigate to Control PanelControl Panel  > ProgramsPrograms > Programs and FeaturesPrograms and Features  > Turn Windows features onTurn Windows features on

or offor off  (left side of the screen).

2. Open the Internet Information Ser vicesInternet Information Ser vices  node. Open the Web Management ToolsWeb Management Tools  node.

3. Check the box for IIS  Management ConsoleIIS  Management Console.

4. Check the box for World Wide Web Ser vicesWorld Wide Web Ser vices .

5. Accept the default features for World Wide Web Ser vicesWorld Wide Web Ser vices  or customize the IIS features.

Windows Authentication (Optional)Windows Authentication (Optional)

To enable Windows Authentication, expand the following nodes: World Wide Web Ser vicesWorld Wide Web Ser vices  >

SecuritySecurity . Select the Windows AuthenticationWindows Authentication feature. For more information, see Windows

Authentication <windowsAuthentication> and Configure Windows authentication.

WebSockets (Optional)WebSockets (Optional)

WebSockets is supported with ASP.NET Core 1.1 or later. To enable WebSockets, expand the following

nodes: World Wide Web Ser vicesWorld Wide Web Ser vices  > Application Development FeaturesApplication Development Features . Select the WebSocketWebSocket

ProtocolProtocol  feature. For more information, see WebSockets.

6. If the IIS installation requires a restart, restart the system.

Install the .NET Core Hosting Bundle on the hosting system. The bundle installs the .NET Core Runtime, .NET

Core Library, and the ASP.NET Core Module. The module allows ASP.NET Core apps to run behind IIS.

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/


IMPORTANTIMPORTANT

DownloadDownload

WARNINGWARNING

Install the Hosting BundleInstall the Hosting Bundle

If the Hosting Bundle is installed before IIS, the bundle installation must be repaired. Run the Hosting Bundle installer

again after installing IIS.

If the Hosting Bundle is installed after installing the 64-bit (x64) version of .NET Core, SDKs might appear to be missing

(No .NET Core SDKs were detected). To resolve the problem, see Troubleshoot and debug ASP.NET Core projects.

1. Navigate to the Download .NET Core page.

2. Select the desired .NET Core version.

3. In the Run apps - RuntimeRun apps - Runtime column, find the row of the .NET Core runtime version desired.

4. Download the installer using the Hosting BundleHosting Bundle link.

Some installers contain release versions that have reached their end of life (EOL) and are no longer supported by

Microsoft. For more information, see the support policy.

net stop was /y
net start w3svc

1. Run the installer on the server. The following parameters are available when running the installer from

an administrator command shell:

OPT_NO_ANCM=1 : Skip installing the ASP.NET Core Module.

OPT_NO_RUNTIME=1 : Skip installing the .NET Core runtime. Used when the server only hosts self-

contained deployments (SCD).

OPT_NO_SHAREDFX=1 : Skip installing the ASP.NET Shared Framework (ASP.NET runtime). Used when

the server only hosts self-contained deployments (SCD).

OPT_NO_X86=1 : Skip installing x86 runtimes. Use this parameter when you know that you won't be

hosting 32-bit apps. If there's any chance that you will host both 32-bit and 64-bit apps in the future,

don't use this parameter and install both runtimes.

OPT_NO_SHARED_CONFIG_CHECK=1 : Disable the check for using an IIS Shared Configuration when the

shared configuration (applicationHost.config) is on the same machine as the IIS installation. Only

available for ASP.NET Core 2.2 or later Hosting Bundler installers. For more information, see ASP.NET

Core Module.

2. Restart the system or execute the following commands in a command shell:

Restarting IIS picks up a change to the system PATH, which is an environment variable, made by the

installer.

It isn't necessary to manually stop individual sites in IIS when installing the Hosting Bundle. Hosted apps (IIS

sites) restart when IIS restarts. Apps start up again when they receive their first request, including from the

Application Initialization Module.

ASP.NET Core adopts roll-forward behavior for patch releases of shared framework packages. When apps

hosted by IIS restart with IIS, the apps load with the latest patch releases of their referenced packages when

they receive their first request. If IIS isn't restarted, apps restart and exhibit roll-forward behavior when their

worker processes are recycled and they receive their first request.

https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


NOTENOTE

Install Web Deploy when publishing with Visual Studio

Create the IIS site

For information on IIS Shared Configuration, see ASP.NET Core Module with IIS Shared Configuration.

When deploying apps to servers with Web Deploy, install the latest version of Web Deploy on the server. To

install Web Deploy, use the Web Platform Installer (WebPI) or obtain an installer directly from the Microsoft

Download Center. The preferred method is to use WebPI. WebPI offers a standalone setup and a configuration

for hosting providers.

1. On the hosting system, create a folder to contain the app's published folders and files. In a following

step, the folder's path is provided to IIS as the physical path to the app. For more information on an

app's deployment folder and file layout, see ASP.NET Core directory structure.

2. In IIS Manager, open the server's node in the ConnectionsConnections  panel. Right-click the S itesSites  folder. Select

Add WebsiteAdd Website from the contextual menu.

3. Provide a S ite nameSite name and set the Physical pathPhysical path to the app's deployment folder. Provide the BindingBinding

configuration and create the website by selecting OKOK:

https://docs.microsoft.com/en-us/iis/install/installing-publishing-technologies/installing-and-configuring-web-deploy-on-iis-80-or-later
https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/download/details.aspx?id=43717


Deploy the app

Web Deploy with Visual StudioWeb Deploy with Visual Studio

WARNINGWARNING
Top-level wildcard bindings ( http://*:80/  and http://+:80 ) should notnot  be used. Top-level wildcard

bindings can open up your app to security vulnerabilities. This applies to both strong and weak wildcards. Use

explicit host names rather than wildcards. Subdomain wildcard binding (for example, *.mysub.com ) doesn't

have this security risk if you control the entire parent domain (as opposed to *.com , which is vulnerable). See

rfc7230 section-5.4 for more information.

4. Under the server's node, select Application PoolsApplication Pools .

5. Right-click the site's app pool and select Basic SettingsBasic Settings  from the contextual menu.

6. In the Edit Application PoolEdit Application Pool  window, set the .NET CLR version.NET CLR version to No Managed CodeNo Managed Code:

ASP.NET Core runs in a separate process and manages the runtime. ASP.NET Core doesn't rely on

loading the desktop CLR (.NET CLR)—the Core Common Language Runtime (CoreCLR) for .NET Core is

booted to host the app in the worker process. Setting the .NET CLR version.NET CLR version to No Managed CodeNo Managed Code is

optional but recommended.

7. ASP.NET Core 2.2 or later: For a 64-bit (x64) self-contained deployment that uses the in-process hosting

model, disable the app pool for 32-bit (x86) processes.

In the ActionsActions  sidebar of IIS Manager > Application PoolsApplication Pools , select Set Application Pool DefaultsSet Application Pool Defaults  or

Advanced SettingsAdvanced Settings . Locate Enable 32-Bit ApplicationsEnable 32-Bit Applications  and set the value to False . This setting

doesn't affect apps deployed for out-of-process hosting.

8. Confirm the process model identity has the proper permissions.

If the default identity of the app pool (Process ModelProcess Model  > IdentityIdentity ) is changed from

ApplicationPoolIdentityApplicationPoolIdentity  to another identity, verify that the new identity has the required permissions

to access the app's folder, database, and other required resources. For example, the app pool requires

read and write access to folders where the app reads and writes files.

Windows Authentication configuration (Optional)Windows Authentication configuration (Optional)

For more information, see Configure Windows authentication.

Deploy the app to the IIS Physical pathPhysical path folder that was established in the Create the IIS site section. Web

Deploy is the recommended mechanism for deployment, but several options exist for moving the app from

the project's publish folder to the hosting system's deployment folder.

See the Visual Studio publish profiles for ASP.NET Core app deployment topic to learn how to create a publish

https://tools.ietf.org/html/rfc7230#section-5.4
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy


Web Deploy outside of Visual StudioWeb Deploy outside of Visual Studio

Alternatives to Web DeployAlternatives to Web Deploy

Browse the website

profile for use with Web Deploy. If the hosting provider provides a Publish Profile or support for creating one,

download their profile and import it using the Visual Studio PublishPublish dialog:

Web Deploy can also be used outside of Visual Studio from the command line. For more information, see Web

Deployment Tool.

Use any of several methods to move the app to the hosting system, such as manual copy, Xcopy, Robocopy, or

PowerShell.

For more information on ASP.NET Core deployment to IIS, see the Deployment resources for IIS administrators

section.

After the app is deployed to the hosting system, make a request to one of the app's public endpoints.

In the following example, the site is bound to an IIS Host nameHost name of www.mysite.com  on Por tPor t 80 . A request is

made to http://www.mysite.com :

https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/use-the-web-deployment-tool
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/xcopy
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/robocopy
https://docs.microsoft.com/en-us/powershell/


Locked deployment files

Data protection

Files in the deployment folder are locked when the app is running. Locked files can't be overwritten during

deployment. To release locked files in a deployment, stop the app pool using oneone of the following approaches:

$pathToApp = 'PATH_TO_APP'

# Stop the AppPool
New-Item -Path $pathToApp app_offline.htm

# Provide script commands here to deploy the app

# Restart the AppPool
Remove-Item -Path $pathToApp app_offline.htm

Use Web Deploy and reference Microsoft.NET.Sdk.Web  in the project file. An app_offline.htm file is

placed at the root of the web app directory. When the file is present, the ASP.NET Core Module

gracefully shuts down the app and serves the app_offline.htm file during the deployment. For more

information, see the ASP.NET Core Module configuration reference.

Manually stop the app pool in the IIS Manager on the server.

Use PowerShell to drop app_offline.htm (requires PowerShell 5 or later):

The ASP.NET Core Data Protection stack is used by several ASP.NET Core middlewares, including middleware

used in authentication. Even if Data Protection APIs aren't called by user code, data protection should be

configured with a deployment script or in user code to create a persistent cryptographic key store. If data



protection isn't configured, the keys are held in memory and discarded when the app restarts.

If the key ring is stored in memory when the app restarts:

All cookie-based authentication tokens are invalidated.

Users are required to sign in again on their next request.

Any data protected with the key ring can no longer be decrypted. This may include CSRF tokens and

ASP.NET Core MVC TempData cookies.

To configure data protection under IIS to persist the key ring, use oneone of the following approaches:

Create Data Protection Registr y KeysCreate Data Protection Registr y Keys

Data protection keys used by ASP.NET Core apps are stored in the registry external to the apps. To

persist the keys for a given app, create registry keys for the app pool.

For standalone, non-webfarm IIS installations, the Data Protection Provision-AutoGenKeys.ps1

PowerShell script can be used for each app pool used with an ASP.NET Core app. This script creates a

registry key in the HKLM registry that's accessible only to the worker process account of the app's app

pool. Keys are encrypted at rest using DPAPI with a machine-wide key.

In web farm scenarios, an app can be configured to use a UNC path to store its data protection key ring.

By default, the data protection keys aren't encrypted. Ensure that the file permissions for the network

share are limited to the Windows account the app runs under. An X509 certificate can be used to protect

keys at rest. Consider a mechanism to allow users to upload certificates: Place certificates into the user's

trusted certificate store and ensure they're available on all machines where the user's app runs. See

Configure ASP.NET Core Data Protection for details.

Configure the IIS  Application Pool to load the user profileConfigure the IIS  Application Pool to load the user profile

This setting is in the Process ModelProcess Model  section under the Advanced SettingsAdvanced Settings  for the app pool. Set LoadLoad

User ProfileUser Profile to True . When set to True , keys are stored in the user profile directory and protected

using DPAPI with a key specific to the user account. Keys are persisted to the

%LOCALAPPDATA%/ASP.NET/DataProtection-Keys folder.

The app pool's setProfileEnvironment attribute must also be enabled. The default value of 

setProfileEnvironment  is true . In some scenarios (for example, Windows OS), setProfileEnvironment

is set to false . If keys aren't stored in the user profile directory as expected:

1. Navigate to the %windir%/system32/inetsrv/config folder.

2. Open the applicationHost.config file.

3. Locate the <system.applicationHost><applicationPools><applicationPoolDefaults><processModel>

element.

4. Confirm that the setProfileEnvironment  attribute isn't present, which defaults the value to true , or

explicitly set the attribute's value to true .

Use the file system as a key r ing storeUse the file system as a key r ing store

Adjust the app code to use the file system as a key ring store. Use an X509 certificate to protect the key

ring and ensure the certificate is a trusted certificate. If the certificate is self-signed, place the certificate

in the Trusted Root store.

When using IIS in a web farm:

Use a file share that all machines can access.

Deploy an X509 certificate to each machine. Configure data protection in code.

Set a machine-wide policy for data protectionSet a machine-wide policy for data protection

The data protection system has limited support for setting a default machine-wide policy for all apps

https://github.com/dotnet/AspNetCore/blob/master/src/DataProtection/Provision-AutoGenKeys.ps1
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/processmodel#configuration


Virtual Directories

Sub-applications

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <system.webServer>
    <aspNetCore processPath="dotnet" 
      arguments=".\MyApp.dll" 
      stdoutLogEnabled="false" 
      stdoutLogFile=".\logs\stdout" />
  </system.webServer>
</configuration>

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <system.webServer>
    <handlers>
      <remove name="aspNetCore" />
    </handlers>
    <aspNetCore processPath="dotnet" 
      arguments=".\MyApp.dll" 
      stdoutLogEnabled="false" 
      stdoutLogFile=".\logs\stdout" />
  </system.webServer>
</configuration>

that consume the Data Protection APIs. For more information, see ASP.NET Core Data Protection.

IIS Virtual Directories aren't supported with ASP.NET Core apps. An app can be hosted as a sub-application.

An ASP.NET Core app can be hosted as an IIS sub-application (sub-app). The sub-app's path becomes part of

the root app's URL.

A sub-app shouldn't include the ASP.NET Core Module as a handler. If the module is added as a handler in a

sub-app's web.config file, a 500.19 Internal Server Error referencing the faulty config file is received when

attempting to browse the sub-app.

The following example shows a published web.config file for an ASP.NET Core sub-app:

When hosting a non-ASP.NET Core sub-app underneath an ASP.NET Core app, explicitly remove the inherited

handler in the sub-app's web.config file:

Static asset links within the sub-app should use tilde-slash ( ~/ ) notation. Tilde-slash notation triggers a Tag

Helper to prepend the sub-app's pathbase to the rendered relative link. For a sub-app at /subapp_path , an

image linked with src="~/image.png"  is rendered as src="/subapp_path/image.png" . The root app's Static File

Middleware doesn't process the static file request. The request is processed by the sub-app's Static File

Middleware.

If a static asset's src  attribute is set to an absolute path (for example, src="/image.png" ), the link is rendered

without the sub-app's pathbase. The root app's Static File Middleware attempts to serve the asset from the

root app's web root, which results in a 404 - Not Found response unless the static asset is available from the

root app.

To host an ASP.NET Core app as a sub-app under another ASP.NET Core app:

1. Establish an app pool for the sub-app. Set the .NET CLR Version.NET CLR Version to No Managed CodeNo Managed Code because the

Core Common Language Runtime (CoreCLR) for .NET Core is booted to host the app in the worker

process, not the desktop CLR (.NET CLR).

https://docs.microsoft.com/en-us/iis/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#virtual-directories
https://docs.microsoft.com/en-us/iis/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#applications


Configuration of IIS with web.config

Configuration sections of web.config

Application Pools

Application Pool Identity

2. Add the root site in IIS Manager with the sub-app in a folder under the root site.

3. Right-click the sub-app folder in IIS Manager and select Conver t to ApplicationConver t to Application.

4. In the Add ApplicationAdd Application dialog, use the SelectSelect button for the Application PoolApplication Pool  to assign the app pool

that you created for the sub-app. Select OKOK.

The assignment of a separate app pool to the sub-app is a requirement when using the in-process hosting

model.

For more information on the in-process hosting model and configuring the ASP.NET Core Module, see ASP.NET

Core Module.

IIS configuration is influenced by the <system.webServer>  section of web.config for IIS scenarios that are

functional for ASP.NET Core apps with the ASP.NET Core Module. For example, IIS configuration is functional

for dynamic compression. If IIS is configured at the server level to use dynamic compression, the 

<urlCompression>  element in the app's web.config file can disable it for an ASP.NET Core app.

For more information, see the following topics:

Configuration reference for <system.webServer>

ASP.NET Core Module

IIS modules with ASP.NET Core

To set environment variables for individual apps running in isolated app pools (supported for IIS 10.0 or later),

see the AppCmd.exe command section of the Environment Variables <environmentVariables> topic in the IIS

reference documentation.

Configuration sections of ASP.NET 4.x apps in web.config aren't used by ASP.NET Core apps for configuration:

<system.web>

<appSettings>

<connectionStrings>

<location>

ASP.NET Core apps are configured using other configuration providers. For more information, see

Configuration.

When hosting multiple websites on a server, we recommend isolating the apps from each other by running

each app in its own app pool. The IIS Add WebsiteAdd Website dialog defaults to this configuration. When a S ite nameSite name is

provided, the text is automatically transferred to the Application poolApplication pool  textbox. A new app pool is created

using the site name when the site is added.

An app pool identity account allows an app to run under a unique account without having to create and

manage domains or local accounts. On IIS 8.0 or later, the IIS Admin Worker Process (WAS) creates a virtual

account with the name of the new app pool and runs the app pool's worker processes under this account by

default. In the IIS Management Console under Advanced SettingsAdvanced Settings  for the app pool, ensure that the IdentityIdentity

is set to use ApplicationPoolIdentityApplicationPoolIdentity :

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/environmentvariables/#appcmdexe


The IIS management process creates a secure identifier with the name of the app pool in the Windows Security

System. Resources can be secured using this identity. However, this identity isn't a real user account and

doesn't show up in the Windows User Management Console.

If the IIS worker process requires elevated access to the app, modify the Access Control List (ACL) for the

directory containing the app:

1. Open Windows Explorer and navigate to the directory.

2. Right-click on the directory and select Proper tiesProper ties .

3. Under the SecuritySecurity  tab, select the EditEdit button and then the AddAdd button.

4. Select the LocationsLocations  button and make sure the system is selected.

5. Enter IIS  AppPool\<app_pool_name>IIS AppPool\<app_pool_name> in Enter the object names to selectEnter the object names to select area. Select the CheckCheck

NamesNames button. For the DefaultAppPool check the names using IIS  AppPool\DefaultAppPoolIIS  AppPool\DefaultAppPool . When

the Check NamesCheck Names  button is selected, a value of DefaultAppPoolDefaultAppPool  is indicated in the object names area.

It isn't possible to enter the app pool name directly into the object names area. Use the IIS  AppPool\IIS  AppPool\

<app_pool_name><app_pool_name> format when checking for the object name.

6. Select OKOK.



ICACLS C:\sites\MyWebApp /grant "IIS AppPool\DefaultAppPool":F

HTTP/2 support

CORS preflight requests

Deployment resources for IIS administrators

7. Read & execute permissions should be granted by default. Provide additional permissions as needed.

Access can also be granted at a command prompt using the ICACLSICACLS  tool. Using the DefaultAppPool as an

example, the following command is used:

For more information, see the icacls topic.

HTTP/2 is supported for out-of-process deployments that meet the following base requirements:

Windows Server 2016/Windows 10 or later ; IIS 10 or later

Public-facing edge server connections use HTTP/2, but the reverse proxy connection to the Kestrel server

uses HTTP/1.1.

Target framework: Not applicable to out-of-process deployments, since the HTTP/2 connection is handled

entirely by IIS.

TLS 1.2 or later connection

If an HTTP/2 connection is established, HttpRequest.Protocol reports HTTP/1.1 .

HTTP/2 is enabled by default. Connections fall back to HTTP/1.1 if an HTTP/2 connection isn't established. For

more information on HTTP/2 configuration with IIS deployments, see HTTP/2 on IIS.

This section only applies to ASP.NET Core apps that target the .NET Framework.

For an ASP.NET Core app that targets the .NET Framework, OPTIONS requests aren't passed to the app by

default in IIS. To learn how to configure the app's IIS handlers in web.config to pass OPTIONS requests, see

Enable cross-origin requests in ASP.NET Web API 2: How CORS Works.

IIS documentation

Getting Started with the IIS Manager in IIS

.NET Core application deployment

ASP.NET Core Module

ASP.NET Core directory structure

IIS modules with ASP.NET Core

Troubleshoot ASP.NET Core on Azure App Service and IIS

Common errors reference for Azure App Service and IIS with ASP.NET Core

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls
https://httpwg.org/specs/rfc7540.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol
https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-10/http2-on-iis
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api#how-cors-works
https://docs.microsoft.com/en-us/iis
https://docs.microsoft.com/en-us/iis/get-started/getting-started-with-iis/getting-started-with-the-iis-manager-in-iis-7-and-iis-8
https://docs.microsoft.com/en-us/dotnet/core/deploying/


Additional resources
Troubleshoot and debug ASP.NET Core projects

Introduction to ASP.NET Core

The Official Microsoft IIS Site

Windows Server technical content library

HTTP/2 on IIS

Transform web.config

https://www.iis.net/
https://docs.microsoft.com/en-us/windows-server/windows-server
https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-10/http2-on-iis


Publish an ASP.NET Core app to IIS
9/22/2020 • 5 minutes to read • Edit Online

Prerequisites

WARNINGWARNING

Install the .NET Core Hosting Bundle

Create the IIS site

This tutorial shows how to host an ASP.NET Core app on an IIS server.

This tutorial covers the following subjects:

Install the .NET Core Hosting Bundle on Windows Server.

Create an IIS site in IIS Manager.

Deploy an ASP.NET Core app.

.NET Core SDK installed on the development machine.

Windows Server configured with the Web Ser ver (IIS )Web Ser ver (IIS )  server role. If your server isn't configured to host

websites with IIS, follow the guidance in the IIS configuration section of the Host ASP.NET Core on Windows

with IIS article and then return to this tutorial.

I IS configuration and website security involve concepts that aren't covered by this tutorial.I IS configuration and website security involve concepts that aren't covered by this tutorial.  Consult the IIS

guidance in the Microsoft IIS documentation and the ASP.NET Core article on hosting with IIS before hosting production

apps on IIS.

Important scenarios for IIS hosting not covered by this tutorial include:

Creation of a registry hive for ASP.NET Core Data Protection

Configuration of the app pool's Access Control List (ACL)

To focus on IIS deployment concepts, this tutorial deploys an app without HTTPS security configured in IIS. For more

information on hosting an app enabled for HTTPS protocol, see the security topics in the Additional resources section of

this article. Further guidance for hosting ASP.NET Core apps is provided in the Host ASP.NET Core on Windows with IIS

article.

Install the .NET Core Hosting Bundle on the IIS server. The bundle installs the .NET Core Runtime, .NET Core

Library, and the ASP.NET Core Module. The module allows ASP.NET Core apps to run behind IIS.

Download the installer using the following link:

Current .NET Core Hosting Bundle installer (direct download)

1. Run the installer on the IIS server.

2. Restart the server or execute net stop was /ynet stop was /y  followed by net star t w3svcnet star t w3svc in a command shell.

1. On the IIS server, create a folder to contain the app's published folders and files. In a following step, the

folder's path is provided to IIS as the physical path to the app.

2. In IIS Manager, open the server's node in the ConnectionsConnections  panel. Right-click the S itesSites  folder. Select AddAdd

WebsiteWebsite from the contextual menu.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/publish-to-iis.md
https://docs.microsoft.com/en-us/dotnet/core/sdk
https://www.iis.net/
https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer


 

Create an ASP.NET Core Razor Pages app

Publish and deploy the app

Browse the website

Next steps

Additional resources
Articles in the ASP.NET Core documentation setArticles in the ASP.NET Core documentation set

3. Provide a S ite nameSite name and set the Physical pathPhysical path to the app's deployment folder that you created. Provide

the BindingBinding configuration and create the website by selecting OKOK.

Follow the Get started with ASP.NET Core tutorial to create a Razor Pages app.

Publish an app means to produce a compiled app that can be hosted by a server. Deploy an app means to move

the published app to a hosting system. The publish step is handled by the .NET Core SDK, while the deployment

step can be handled by a variety of approaches. This tutorial adopts the folder deployment approach, where:

The app is published to a folder.

The folder's contents are moved to the IIS site's folder (the Physical pathPhysical path to the site in IIS Manager).

Visual Studio

.NET Core CLI

Visual Studio for Mac

1. Right-click on the project in Solution ExplorerSolution Explorer  and select PublishPublish .

2. In the Pick a publish targetPick a publish target dialog, select the FolderFolder  publish option.

3. Set the Folder or File ShareFolder or File Share path.

If you created a folder for the IIS site that's available on the development machine as a network share,

provide the path to the share. The current user must have write access to publish to the share.

If you're unable to deploy directly to the IIS site folder on the IIS server, publish to a folder on

removeable media and physically move the published app to the IIS site folder on the server, which is

the site's Physical pathPhysical path in IIS Manager. Move the contents of the bin/Release/{TARGET

FRAMEWORK}/publish folder to the IIS site folder on the server, which is the site's Physical pathPhysical path in IIS

Manager.

The app is accessible in a browser after it receives the first request. Make a request to the app at the endpoint

binding that you established in IIS Manager for the site.

In this tutorial, you learned how to:

Install the .NET Core Hosting Bundle on Windows Server.

Create an IIS site in IIS Manager.

Deploy an ASP.NET Core app.

To learn more about hosting ASP.NET Core apps on IIS, see the IIS Overview article:

Host ASP.NET Core on Windows with IIS

ASP.NET Core Module

ASP.NET Core directory structure

Troubleshoot ASP.NET Core on Azure App Service and IIS

https://docs.microsoft.com/en-us/dotnet/core/sdk


Articles pertaining to ASP.NET Core app deploymentArticles pertaining to ASP.NET Core app deployment

Articles on IIS HTTPS configurationArticles on IIS HTTPS configuration

Articles on IIS and Windows ServerArticles on IIS and Windows Server

Enforce HTTPS in ASP.NET Core

Publish an ASP.NET Core app to Azure with Visual Studio

Publish an ASP.NET Core app to Azure with Visual Studio Code

Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment

Publish a Web app to a folder using Visual Studio for Mac

Configuring SSL in IIS Manager

How to Set Up SSL on IIS

The Official Microsoft IIS Site

Windows Server technical content library

https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vscode
https://docs.microsoft.com/en-us/visualstudio/mac/publish-folder
https://docs.microsoft.com/en-us/iis/manage/configuring-security/configuring-ssl-in-iis-manager
https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis
https://www.iis.net/
https://docs.microsoft.com/en-us/windows-server/windows-server


 

                  

ASP.NET Core Module
9/22/2020 • 40 minutes to read • Edit Online

Hosting models
In-process hosting modelIn-process hosting model

By Tom Dykstra, Rick Strahl, Chris Ross, Rick Anderson, Sourabh Shirhatti, and Justin

Kotalik

The ASP.NET Core Module is a native IIS module that plugs into the IIS pipeline to either :

Host an ASP.NET Core app inside of the IIS worker process ( w3wp.exe ), called the in-

process hosting model.

Forward web requests to a backend ASP.NET Core app running the Kestrel server,

called the out-of-process hosting model.

Supported Windows versions:

Windows 7 or later

Windows Server 2012 R2 or later

When hosting in-process, the module uses an in-process server implementation for IIS,

called IIS HTTP Server ( IISHttpServer ).

When hosting out-of-process, the module only works with Kestrel. The module doesn't

function with HTTP.sys.

ASP.NET Core apps default to the in-process hosting model.

The following characteristics apply when hosting in-process:

IIS HTTP Server ( IISHttpServer ) is used instead of Kestrel server. For in-process,

CreateDefaultBuilder calls UseIIS to:

Register the IISHttpServer .

Configure the port and base path the server should listen on when running

behind the ASP.NET Core Module.

Configure the host to capture startup errors.

The requestTimeout attribute doesn't apply to in-process hosting.

Sharing an app pool among apps isn't supported. Use one app pool per app.

When using Web Deploy or manually placing an app_offline.htm file in the

deployment, the app might not shut down immediately if there's an open

connection. For example, a websocket connection may delay app shut down.

The architecture (bitness) of the app and installed runtime (x64 or x86) must match

the architecture of the app pool.

Client disconnects are detected. The HttpContext.RequestAborted cancellation

token is cancelled when the client disconnects.

In ASP.NET Core 2.2.1 or earlier, GetCurrentDirectory returns the worker directory

of the process started by IIS rather than the app's directory (for example,

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/aspnet-core-module.md
https://github.com/tdykstra
https://github.com/RickStrahl
https://github.com/Tratcher
https://twitter.com/RickAndMSFT
https://twitter.com/sshirhatti
https://github.com/jkotalik
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiis
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.requestaborted
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory


                    Out-of-process hosting modelOut-of-process hosting model

<PropertyGroup>
  <AspNetCoreHostingModel>OutOfProcess</AspNetCoreHostingModel>
</PropertyGroup>

Hosting model changesHosting model changes

Process nameProcess name

public void ConfigureServices(IServiceCollection services)
{
    services.AddTransient<IClaimsTransformation, ClaimsTransformer>();
    services.AddAuthentication(IISServerDefaults.AuthenticationScheme);
}

public void Configure(IApplicationBuilder app)
{
    app.UseAuthentication();
}

C:\Windows\System32\inetsrv for w3wp.exe).

For sample code that sets the app's current directory, see the

CurrentDirectoryHelpers class. Call the SetCurrentDirectory  method. Subsequent

calls to GetCurrentDirectory provide the app's directory.

When hosting in-process, AuthenticateAsync isn't called internally to initialize a

user. Therefore, an IClaimsTransformation implementation used to transform

claims after every authentication isn't activated by default. When transforming

claims with an IClaimsTransformation implementation, call AddAuthentication to

add authentication services:

Web Package (single-file) deployments aren't supported.

To configure an app for out-of-process hosting, set the value of the 

<AspNetCoreHostingModel>  property to OutOfProcess  in the project file (.csproj):

In-process hosting is set with InProcess , which is the default value.

The value of <AspNetCoreHostingModel>  is case insensitive, so inprocess  and 

outofprocess  are valid values.

Kestrel server is used instead of IIS HTTP Server ( IISHttpServer ).

For out-of-process, CreateDefaultBuilder calls UseIISIntegration to:

Configure the port and base path the server should listen on when running behind the

ASP.NET Core Module.

Configure the host to capture startup errors.

If the hostingModel  setting is changed in the web.config file (explained in the

Configuration with web.config section), the module recycles the worker process for IIS.

For IIS Express, the module doesn't recycle the worker process but instead triggers a

graceful shutdown of the current IIS Express process. The next request to the app spawns

a new IIS Express process.

Process.GetCurrentProcess().ProcessName  reports w3wp / iisexpress  (in-process) or 

dotnet  (out-of-process).

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/host-and-deploy/aspnet-core-module/samples_snapshot/3.x/CurrentDirectoryHelpers.cs
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationservice.authenticateasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iclaimstransformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iclaimstransformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-enterprise/deploying-web-packages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiisintegration


                            

How to install and use the ASP.NET Core Module

Configuration with web.config

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <handlers>
        <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModuleV2" 
resourceType="Unspecified" />
      </handlers>
      <aspNetCore processPath="dotnet"
                  arguments=".\MyApp.dll"
                  stdoutLogEnabled="false"
                  stdoutLogFile=".\logs\stdout"
                  hostingModel="inprocess" />
    </system.webServer>
  </location>
</configuration>

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <handlers>
        <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModuleV2" 
resourceType="Unspecified" />
      </handlers>
      <aspNetCore processPath=".\MyApp.exe"
                  stdoutLogEnabled="false"
                  stdoutLogFile=".\logs\stdout"
                  hostingModel="inprocess" />
    </system.webServer>
  </location>
</configuration>

Many native modules, such as Windows Authentication, remain active. To learn more

about IIS modules active with the ASP.NET Core Module, see IIS modules with ASP.NET

Core.

The ASP.NET Core Module can also:

Set environment variables for the worker process.

Log stdout output to file storage for troubleshooting startup issues.

Forward Windows authentication tokens.

For instructions on how to install the ASP.NET Core Module, see Install the .NET Core

Hosting Bundle.

The ASP.NET Core Module is configured with the aspNetCore  section of the 

system.webServer  node in the site's web.config file.

The following web.config file is published for a framework-dependent deployment and

configures the ASP.NET Core Module to handle site requests:

The following web.config is published for a self-contained deployment:

The InheritInChildApplications property is set to false  to indicate that the settings

https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.sectioninformation.inheritinchildapplications


                                            Attributes of the aspNetCore elementAttributes of the aspNetCore element

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

arguments

disableStartUpErrorPage false

forwardWindowsAuthToken true

hostingModel InProcess

inprocess

specified within the <location> element aren't inherited by apps that reside in a

subdirectory of the app.

When an app is deployed to Azure App Service, the stdoutLogFile  path is set to 

\\?\%home%\LogFiles\stdout . The path saves stdout logs to the LogFiles folder, which is a

location automatically created by the service.

For information on IIS sub-application configuration, see Host ASP.NET Core on Windows

with IIS.

Optional string attribute.

Arguments to the
executable specified in
processPathprocessPath.

Optional Boolean
attribute.

If true, the 502.5 -502.5 -
Process FailureProcess Failure page is
suppressed, and the 502
status code page
configured in the
web.config takes
precedence.

Optional Boolean
attribute.

If true, the token is
forwarded to the child
process listening on
%ASPNETCORE_PORT% as
a header 'MS-
ASPNETCORE-
WINAUTHTOKEN' per
request. It's the
responsibility of that
process to call
CloseHandle on this token
per request.

Optional string attribute.

Specifies the hosting
model as in-process (
InProcess / inprocess )

or out-of-process (
OutOfProcess /

outofprocess ).

https://docs.microsoft.com/en-us/iis/manage/managing-your-configuration-settings/understanding-iis-configuration-delegation#the-concept-of-location
https://azure.microsoft.com/services/app-service/


processesPerApplication Default: 1

Min: 1

Max: 100 †

processPath

rapidFailsPerMinute Default: 10

Min: 0

Max: 100

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional integer attribute.

Specifies the number of
instances of the process
specified in the
processPathprocessPath setting that
can be spun up per app.

†For in-process hosting,
the value is limited to 1 .

Setting 
processesPerApplication

is discouraged. This
attribute will be removed
in a future release.

Required string attribute.

Path to the executable
that launches a process
listening for HTTP
requests. Relative paths
are supported. If the path
begins with . , the path

is considered to be
relative to the site root.

Optional integer attribute.

Specifies the number of
times the process
specified in processPathprocessPath
is allowed to crash per
minute. If this limit is
exceeded, the module
stops launching the
process for the remainder
of the minute.

Not supported with in-
process hosting.



requestTimeout Default: 00:02:00

Min: 00:00:00

Max: 360:00:00

shutdownTimeLimit Default: 10

Min: 0

Max: 600

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional timespan
attribute.

Specifies the duration for
which the ASP.NET Core
Module waits for a
response from the process
listening on
%ASPNETCORE_PORT%.

In versions of the ASP.NET
Core Module that shipped
with the release of
ASP.NET Core 2.1 or later,
the requestTimeout  is

specified in hours,
minutes, and seconds.

Doesn't apply to in-
process hosting. For in-
process hosting, the
module waits for the app
to process the request.

Valid values for minutes
and seconds segments of
the string are in the range
0-59. Use of 6060  in the
value for minutes or
seconds results in a 500 -
Internal Server Error.

Optional integer attribute.

Duration in seconds that
the module waits for the
executable to gracefully
shutdown when the
app_offline.htm file is
detected.



startupTimeLimit Default: 120

Min: 0

Max: 3600

stdoutLogEnabled false

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional integer attribute.

Duration in seconds that
the module waits for the
executable to start a
process listening on the
port. If this time limit is
exceeded, the module kills
the process.

When hosting in-process:
The process is notnot
restarted and does notnot
use the
rapidFailsPerMinuterapidFailsPerMinute
setting.

When hosting out-of-
process: The module
attempts to relaunch the
process when it receives a
new request and
continues to attempt to
restart the process on
subsequent incoming
requests unless the app
fails to start
rapidFailsPerMinuterapidFailsPerMinute
number of times in the
last rolling minute.

A value of 0 (zero) is notnot
considered an infinite
timeout.

Optional Boolean
attribute.

If true, stdoutstdout  and
stderrstderr  for the process
specified in processPathprocessPath
are redirected to the file
specified in
stdoutLogFilestdoutLogFile.



stdoutLogFile aspnetcore-stdout

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Set environment variablesSet environment variables

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout"
      hostingModel="inprocess">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
    <environmentVariable name="CONFIG_DIR" value="f:\application_config" />
  </environmentVariables>
</aspNetCore>

Optional string attribute.

Specifies the relative or
absolute file path for
which stdoutstdout  and stderrstderr
from the process specified
in processPathprocessPath are
logged. Relative paths are
relative to the root of the
site. Any path starting
with .  are relative to the

site root and all other
paths are treated as
absolute paths. Any
folders provided in the
path are created by the
module when the log file
is created. Using
underscore delimiters, a
timestamp, process ID,
and file extension (.log)
are added to the last
segment of the
stdoutLogFilestdoutLogFile path. If 
.\logs\stdout  is

supplied as a value, an
example stdout log is
saved as
stdout_20180205194132
_1934.log in the logs
folder when saved on
2/5/2018 at 19:41:32 with
a process ID of 1934.

Environment variables can be specified for the process in the processPath  attribute.

Specify an environment variable with the <environmentVariable>  child element of an 

<environmentVariables>  collection element. Environment variables set in this section take

precedence over system environment variables.

The following example sets two environment variables in web.config. 

ASPNETCORE_ENVIRONMENT  configures the app's environment to Development . A developer

may temporarily set this value in the web.config file in order to force the Developer

Exception Page to load when debugging an app exception. CONFIG_DIR  is an example of a

user-defined environment variable, where the developer has written code that reads the

value on startup to form a path for loading the app's configuration file.



       

                                                          

NOTENOTE

<PropertyGroup>
  <EnvironmentName>Development</EnvironmentName>
</PropertyGroup>

WARNINGWARNING

app_offline.htm

Start-up error page

Log creation and redirection

An alternative to setting the environment directly in web.config is to include the 

<EnvironmentName>  property in the publish profile (.pubxml) or project file. This approach sets

the environment in web.config when the project is published:

Only set the ASPNETCORE_ENVIRONMENT  environment variable to Development  on staging and

testing servers that aren't accessible to untrusted networks, such as the Internet.

If a file with the name app_offline.htm is detected in the root directory of an app, the

ASP.NET Core Module attempts to gracefully shutdown the app and stop processing

incoming requests. If the app is still running after the number of seconds defined in 

shutdownTimeLimit , the ASP.NET Core Module kills the running process.

While the app_offline.htm file is present, the ASP.NET Core Module responds to requests

by sending back the contents of the app_offline.htm file. When the app_offline.htm file is

removed, the next request starts the app.

When using the out-of-process hosting model, the app might not shut down immediately

if there's an open connection. For example, a websocket connection may delay app shut

down.

Both in-process and out-of-process hosting produce custom error pages when they fail to

start the app.

If the ASP.NET Core Module fails to find either the in-process or out-of-process request

handler, a 500.0 - In-Process/Out-Of-Process Handler Load Failure status code page

appears.

For in-process hosting if the ASP.NET Core Module fails to start the app, a 500.30 - Start

Failure status code page appears.

For out-of-process hosting if the ASP.NET Core Module fails to launch the backend

process or the backend process starts but fails to listen on the configured port, a 502.5 -

Process Failure status code page appears.

To suppress this page and revert to the default IIS 5xx status code page, use the 

disableStartUpErrorPage  attribute. For more information on configuring custom error

messages, see HTTP Errors <httpErrors>.

The ASP.NET Core Module redirects stdout and stderr console output to disk if the 

stdoutLogEnabled  and stdoutLogFile  attributes of the aspNetCore  element are set. Any

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/httperrors/


                                                             

<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="true"
    stdoutLogFile=".\logs\stdout"
    hostingModel="inprocess">
</aspNetCore>

Enhanced diagnostic logs

folders in the stdoutLogFile  path are created by the module when the log file is created.

The app pool must have write access to the location where the logs are written (use 

IIS AppPool\<app_pool_name>  to provide write permission).

Logs aren't rotated, unless process recycling/restart occurs. It's the responsibility of the

hoster to limit the disk space the logs consume.

Using the stdout log is only recommended for troubleshooting app startup issues when

hosting on IIS or when using development-time support for IIS with Visual Studio, not

while debugging locally and running the app with IIS Express.

Don't use the stdout log for general app logging purposes. For routine logging in an

ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

A timestamp and file extension are added automatically when the log file is created. The

log file name is composed by appending the timestamp, process ID, and file extension

(.log) to the last segment of the stdoutLogFile  path (typically stdout) delimited by

underscores. If the stdoutLogFile  path ends with stdout, a log for an app with a PID of

1934 created on 2/5/2018 at 19:42:32 has the file name

stdout_20180205194132_1934.log.

If stdoutLogEnabled  is false, errors that occur on app startup are captured and emitted to

the event log up to 30 KB. After startup, all additional logs are discarded.

The following sample aspNetCore  element configures stdout logging at the relative path 

.\log\ . Confirm that the AppPool user identity has permission to write to the path

provided.

When publishing an app for Azure App Service deployment, the Web SDK sets the 

stdoutLogFile  value to \\?\%home%\LogFiles\stdout . The %home  environment variable is

predefined for apps hosted by Azure App Service.

To create logging filter rules, see the Configuration and Log filtering sections of the

ASP.NET Core logging documentation.

For more information on path formats, see File path formats on Windows systems.

The ASP.NET Core Module is configurable to provide enhanced diagnostics logs. Add the 

<handlerSettings>  element to the <aspNetCore>  element in web.config. Setting the 

debugLevel  to TRACE  exposes a higher fidelity of diagnostic information:

https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats


<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="false"
    stdoutLogFile="\\?\%home%\LogFiles\stdout"
    hostingModel="inprocess">
  <handlerSettings>
    <handlerSetting name="debugFile" value=".\logs\aspnetcore-debug.log" />
    <handlerSetting name="debugLevel" value="FILE,TRACE" />
  </handlerSettings>
</aspNetCore>

WARNINGWARNING

Modify the stack size

Any folders in the path (logs in the preceding example) are created by the module when

the log file is created. The app pool must have write access to the location where the logs

are written (use IIS AppPool\<app_pool_name>  to provide write permission).

Debug level ( debugLevel ) values can include both the level and the location.

Levels (in order from least to most verbose):

ERROR

WARNING

INFO

TRACE

Locations (multiple locations are permitted):

CONSOLE

EVENTLOG

FILE

The handler settings can also be provided via environment variables:

ASPNETCORE_MODULE_DEBUG_FILE : Path to the debug log file. (Default: aspnetcore-

debug.log)

ASPNETCORE_MODULE_DEBUG : Debug level setting.

Do notnot  leave debug logging enabled in the deployment for longer than required to

troubleshoot an issue. The size of the log isn't limited. Leaving the debug log enabled can

exhaust the available disk space and crash the server or app service.

See Configuration with web.config for an example of the aspNetCore  element in the

web.config file.

Only applies when using the in-process hosting model.

Configure the managed stack size using the stackSize  setting in bytes in web.config. The

default size is 1048576  bytes (1 MB).



            

<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="false"
    stdoutLogFile="\\?\%home%\LogFiles\stdout"
    hostingModel="inprocess">
  <handlerSettings>
    <handlerSetting name="stackSize" value="2097152" />
  </handlerSettings>
</aspNetCore>

Proxy configuration uses HTTP protocol and a pairing
token

ASP.NET Core Module with an IIS Shared Configuration

dotnet-hosting-{VERSION}.exe OPT_NO_SHARED_CONFIG_CHECK=1

Module version and Hosting Bundle installer logs

Only applies to out-of-process hosting.

The proxy created between the ASP.NET Core Module and Kestrel uses the HTTP protocol.

There's no risk of eavesdropping the traffic between the module and Kestrel from a

location off of the server.

A pairing token is used to guarantee that the requests received by Kestrel were proxied by

IIS and didn't come from some other source. The pairing token is created and set into an

environment variable ( ASPNETCORE_TOKEN ) by the module. The pairing token is also set

into a header ( MS-ASPNETCORE-TOKEN ) on every proxied request. IIS Middleware checks

each request it receives to confirm that the pairing token header value matches the

environment variable value. If the token values are mismatched, the request is logged and

rejected. The pairing token environment variable and the traffic between the module and

Kestrel aren't accessible from a location off of the server. Without knowing the pairing

token value, an attacker can't submit requests that bypass the check in the IIS Middleware.

The ASP.NET Core Module installer runs with the privileges of the TrustedInstallerTrustedInstaller

account. Because the local system account doesn't have modify permission for the share

path used by the IIS Shared Configuration, the installer throws an access denied error

when attempting to configure the module settings in the applicationHost.config file on

the share.

When using an IIS Shared Configuration on the same machine as the IIS installation, run

the ASP.NET Core Hosting Bundle installer with the OPT_NO_SHARED_CONFIG_CHECK

parameter set to 1 :

When the path to the shared configuration isn't on the same machine as the IIS

installation, follow these steps:

1. Disable the IIS Shared Configuration.

2. Run the installer.

3. Export the updated applicationHost.config file to the share.

4. Re-enable the IIS Shared Configuration.

To determine the version of the installed ASP.NET Core Module:



Module, schema, and configuration file locations
ModuleModule

SchemaSchema

ConfigurationConfiguration

1. On the hosting system, navigate to %windir%\System32\inetsrv.

2. Locate the aspnetcore.dll file.

3. Right-click the file and select Proper tiesProper ties  from the contextual menu.

4. Select the DetailsDetails  tab. The File versionFile version and Product versionProduct version represent the installed

version of the module.

The Hosting Bundle installer logs for the module are found at

C:\Users\%UserName%\AppData\Local\Temp. The file is named

dd_DotNetCoreWinSvrHosting__<timestamp>_000_AspNetCoreModule_x64.log.

IIS  (x86/amd64):IIS  (x86/amd64):

%windir%\System32\inetsrv\aspnetcore.dll

%windir%\SysWOW64\inetsrv\aspnetcore.dll

%ProgramFiles%\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll

%ProgramFiles(x86)%\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll

IIS  Express (x86/amd64):IIS  Express (x86/amd64):

%ProgramFiles%\IIS Express\aspnetcore.dll

%ProgramFiles(x86)%\IIS Express\aspnetcore.dll

%ProgramFiles%\IIS Express\Asp.Net Core Module\V2\aspnetcorev2.dll

%ProgramFiles(x86)%\IIS Express\Asp.Net Core Module\V2\aspnetcorev2.dll

IISIIS

%windir%\System32\inetsrv\config\schema\aspnetcore_schema.xml

%windir%\System32\inetsrv\config\schema\aspnetcore_schema_v2.xml

IIS  ExpressIIS  Express

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema.xml

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema_v2.xml

IISIIS

%windir%\System32\inetsrv\config\applicationHost.config

IIS  ExpressIIS  Express

Visual Studio: {APPLICATION ROOT}\.vs\config\applicationHost.config

iisexpress.exe CLI:

%USERPROFILE%\Documents\IISExpress\config\applicationhost.config

The files can be found by searching for aspnetcore in the applicationHost.config file.

The ASP.NET Core Module is a native IIS module that plugs into the IIS pipeline to either :



Hosting models
In-process hosting modelIn-process hosting model

<PropertyGroup>
  <AspNetCoreHostingModel>InProcess</AspNetCoreHostingModel>
</PropertyGroup>

Host an ASP.NET Core app inside of the IIS worker process ( w3wp.exe ), called the in-

process hosting model.

Forward web requests to a backend ASP.NET Core app running the Kestrel server,

called the out-of-process hosting model.

Supported Windows versions:

Windows 7 or later

Windows Server 2008 R2 or later

When hosting in-process, the module uses an in-process server implementation for IIS,

called IIS HTTP Server ( IISHttpServer ).

When hosting out-of-process, the module only works with Kestrel. The module doesn't

function with HTTP.sys.

To configure an app for in-process hosting, add the <AspNetCoreHostingModel>  property to

the app's project file with a value of InProcess  (out-of-process hosting is set with 

OutOfProcess ):

The in-process hosting model isn't supported for ASP.NET Core apps that target the .NET

Framework.

The value of <AspNetCoreHostingModel>  is case insensitive, so inprocess  and 

outofprocess  are valid values.

If the <AspNetCoreHostingModel>  property isn't present in the file, the default value is 

OutOfProcess .

The following characteristics apply when hosting in-process:

IIS HTTP Server ( IISHttpServer ) is used instead of Kestrel server. For in-process,

CreateDefaultBuilder calls UseIIS to:

Register the IISHttpServer .

Configure the port and base path the server should listen on when running

behind the ASP.NET Core Module.

Configure the host to capture startup errors.

The requestTimeout attribute doesn't apply to in-process hosting.

Sharing an app pool among apps isn't supported. Use one app pool per app.

When using Web Deploy or manually placing an app_offline.htm file in the

deployment, the app might not shut down immediately if there's an open

connection. For example, a websocket connection may delay app shut down.

The architecture (bitness) of the app and installed runtime (x64 or x86) must match

the architecture of the app pool.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiis
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy


Out-of-process hosting modelOut-of-process hosting model

<PropertyGroup>
  <AspNetCoreHostingModel>OutOfProcess</AspNetCoreHostingModel>
</PropertyGroup>

Hosting model changesHosting model changes

public void ConfigureServices(IServiceCollection services)
{
    services.AddTransient<IClaimsTransformation, ClaimsTransformer>();
    services.AddAuthentication(IISServerDefaults.AuthenticationScheme);
}

public void Configure(IApplicationBuilder app)
{
    app.UseAuthentication();
}

Client disconnects are detected. The HttpContext.RequestAborted cancellation

token is cancelled when the client disconnects.

In ASP.NET Core 2.2.1 or earlier, GetCurrentDirectory returns the worker directory

of the process started by IIS rather than the app's directory (for example,

C:\Windows\System32\inetsrv for w3wp.exe).

For sample code that sets the app's current directory, see the

CurrentDirectoryHelpers class. Call the SetCurrentDirectory  method. Subsequent

calls to GetCurrentDirectory provide the app's directory.

When hosting in-process, AuthenticateAsync isn't called internally to initialize a

user. Therefore, an IClaimsTransformation implementation used to transform

claims after every authentication isn't activated by default. When transforming

claims with an IClaimsTransformation implementation, call AddAuthentication to

add authentication services:

To configure an app for out-of-process hosting, use either of the following approaches in

the project file:

Don't specify the <AspNetCoreHostingModel>  property. If the <AspNetCoreHostingModel>

property isn't present in the file, the default value is OutOfProcess .

Set the value of the <AspNetCoreHostingModel>  property to OutOfProcess  (in-process

hosting is set with InProcess ):

The value is case insensitive, so inprocess  and outofprocess  are valid values.

Kestrel server is used instead of IIS HTTP Server ( IISHttpServer ).

For out-of-process, CreateDefaultBuilder calls UseIISIntegration to:

Configure the port and base path the server should listen on when running behind the

ASP.NET Core Module.

Configure the host to capture startup errors.

If the hostingModel  setting is changed in the web.config file (explained in the

Configuration with web.config section), the module recycles the worker process for IIS.

For IIS Express, the module doesn't recycle the worker process but instead triggers a

graceful shutdown of the current IIS Express process. The next request to the app spawns

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.requestaborted
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/host-and-deploy/aspnet-core-module/samples_snapshot/2.x/CurrentDirectoryHelpers.cs
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationservice.authenticateasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iclaimstransformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iclaimstransformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiisintegration


Process nameProcess name

How to install and use the ASP.NET Core Module

Configuration with web.config

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <handlers>
        <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModuleV2" 
resourceType="Unspecified" />
      </handlers>
      <aspNetCore processPath="dotnet"
                  arguments=".\MyApp.dll"
                  stdoutLogEnabled="false"
                  stdoutLogFile=".\logs\stdout"
                  hostingModel="inprocess" />
    </system.webServer>
  </location>
</configuration>

a new IIS Express process.

Process.GetCurrentProcess().ProcessName  reports w3wp / iisexpress  (in-process) or 

dotnet  (out-of-process).

Many native modules, such as Windows Authentication, remain active. To learn more

about IIS modules active with the ASP.NET Core Module, see IIS modules with ASP.NET

Core.

The ASP.NET Core Module can also:

Set environment variables for the worker process.

Log stdout output to file storage for troubleshooting startup issues.

Forward Windows authentication tokens.

For instructions on how to install the ASP.NET Core Module, see Install the .NET Core

Hosting Bundle.

The ASP.NET Core Module is configured with the aspNetCore  section of the 

system.webServer  node in the site's web.config file.

The following web.config file is published for a framework-dependent deployment and

configures the ASP.NET Core Module to handle site requests:

The following web.config is published for a self-contained deployment:

https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#self-contained-deployments-scd


<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <handlers>
        <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModuleV2" 
resourceType="Unspecified" />
      </handlers>
      <aspNetCore processPath=".\MyApp.exe"
                  stdoutLogEnabled="false"
                  stdoutLogFile=".\logs\stdout"
                  hostingModel="inprocess" />
    </system.webServer>
  </location>
</configuration>

Attributes of the aspNetCore elementAttributes of the aspNetCore element

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

arguments

disableStartUpErrorPage false

The InheritInChildApplications property is set to false  to indicate that the settings

specified within the <location> element aren't inherited by apps that reside in a

subdirectory of the app.

When an app is deployed to Azure App Service, the stdoutLogFile  path is set to 

\\?\%home%\LogFiles\stdout . The path saves stdout logs to the LogFiles folder, which is a

location automatically created by the service.

For information on IIS sub-application configuration, see Host ASP.NET Core on Windows

with IIS.

Optional string attribute.

Arguments to the
executable specified in
processPathprocessPath.

Optional Boolean
attribute.

If true, the 502.5 -502.5 -
Process FailureProcess Failure page is
suppressed, and the 502
status code page
configured in the
web.config takes
precedence.

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.sectioninformation.inheritinchildapplications
https://docs.microsoft.com/en-us/iis/manage/managing-your-configuration-settings/understanding-iis-configuration-delegation#the-concept-of-location
https://azure.microsoft.com/services/app-service/


forwardWindowsAuthToken true

hostingModel OutOfProcess

outofprocess

processesPerApplication Default: 1

Min: 1

Max: 100 †

processPath

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional Boolean
attribute.

If true, the token is
forwarded to the child
process listening on
%ASPNETCORE_PORT% as
a header 'MS-
ASPNETCORE-
WINAUTHTOKEN' per
request. It's the
responsibility of that
process to call
CloseHandle on this token
per request.

Optional string attribute.

Specifies the hosting
model as in-process (
InProcess / inprocess )

or out-of-process (
OutOfProcess /

outofprocess ).

Optional integer attribute.

Specifies the number of
instances of the process
specified in the
processPathprocessPath setting that
can be spun up per app.

†For in-process hosting,
the value is limited to 1 .

Setting 
processesPerApplication

is discouraged. This
attribute will be removed
in a future release.

Required string attribute.

Path to the executable
that launches a process
listening for HTTP
requests. Relative paths
are supported. If the path
begins with . , the path

is considered to be
relative to the site root.



rapidFailsPerMinute Default: 10

Min: 0

Max: 100

requestTimeout Default: 00:02:00

Min: 00:00:00

Max: 360:00:00

shutdownTimeLimit Default: 10

Min: 0

Max: 600

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional integer attribute.

Specifies the number of
times the process
specified in processPathprocessPath
is allowed to crash per
minute. If this limit is
exceeded, the module
stops launching the
process for the remainder
of the minute.

Not supported with in-
process hosting.

Optional timespan
attribute.

Specifies the duration for
which the ASP.NET Core
Module waits for a
response from the process
listening on
%ASPNETCORE_PORT%.

In versions of the ASP.NET
Core Module that shipped
with the release of
ASP.NET Core 2.1 or later,
the requestTimeout  is

specified in hours,
minutes, and seconds.

Doesn't apply to in-
process hosting. For in-
process hosting, the
module waits for the app
to process the request.

Valid values for minutes
and seconds segments of
the string are in the range
0-59. Use of 6060  in the
value for minutes or
seconds results in a 500 -
Internal Server Error.

Optional integer attribute.

Duration in seconds that
the module waits for the
executable to gracefully
shutdown when the
app_offline.htm file is
detected.



startupTimeLimit Default: 120

Min: 0

Max: 3600

stdoutLogEnabled false

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional integer attribute.

Duration in seconds that
the module waits for the
executable to start a
process listening on the
port. If this time limit is
exceeded, the module kills
the process.

When hosting in-process:
The process is notnot
restarted and does notnot
use the
rapidFailsPerMinuterapidFailsPerMinute
setting.

When hosting out-of-
process: The module
attempts to relaunch the
process when it receives a
new request and
continues to attempt to
restart the process on
subsequent incoming
requests unless the app
fails to start
rapidFailsPerMinuterapidFailsPerMinute
number of times in the
last rolling minute.

A value of 0 (zero) is notnot
considered an infinite
timeout.

Optional Boolean
attribute.

If true, stdoutstdout  and
stderrstderr  for the process
specified in processPathprocessPath
are redirected to the file
specified in
stdoutLogFilestdoutLogFile.



                                                                    

stdoutLogFile aspnetcore-stdout

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Setting environment variablesSetting environment variables

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout"
      hostingModel="inprocess">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
    <environmentVariable name="CONFIG_DIR" value="f:\application_config" />
  </environmentVariables>
</aspNetCore>

Optional string attribute.

Specifies the relative or
absolute file path for
which stdoutstdout  and stderrstderr
from the process specified
in processPathprocessPath are
logged. Relative paths are
relative to the root of the
site. Any path starting
with .  are relative to the

site root and all other
paths are treated as
absolute paths. Any
folders provided in the
path are created by the
module when the log file
is created. Using
underscore delimiters, a
timestamp, process ID,
and file extension (.log)
are added to the last
segment of the
stdoutLogFilestdoutLogFile path. If 
.\logs\stdout  is

supplied as a value, an
example stdout log is
saved as
stdout_20180205194132
_1934.log in the logs
folder when saved on
2/5/2018 at 19:41:32 with
a process ID of 1934.

Environment variables can be specified for the process in the processPath  attribute.

Specify an environment variable with the <environmentVariable>  child element of an 

<environmentVariables>  collection element. Environment variables set in this section take

precedence over system environment variables.

The following example sets two environment variables. ASPNETCORE_ENVIRONMENT

configures the app's environment to Development . A developer may temporarily set this

value in the web.config file in order to force the Developer Exception Page to load when

debugging an app exception. CONFIG_DIR  is an example of a user-defined environment

variable, where the developer has written code that reads the value on startup to form a

path for loading the app's configuration file.



NOTENOTE

<PropertyGroup>
  <EnvironmentName>Development</EnvironmentName>
</PropertyGroup>

WARNINGWARNING

app_offline.htm

Start-up error page

Log creation and redirection

An alternative to setting the environment directly in web.config is to include the 

<EnvironmentName>  property in the publish profile (.pubxml) or project file. This approach sets

the environment in web.config when the project is published:

Only set the ASPNETCORE_ENVIRONMENT  environment variable to Development  on staging and

testing servers that aren't accessible to untrusted networks, such as the Internet.

If a file with the name app_offline.htm is detected in the root directory of an app, the

ASP.NET Core Module attempts to gracefully shutdown the app and stop processing

incoming requests. If the app is still running after the number of seconds defined in 

shutdownTimeLimit , the ASP.NET Core Module kills the running process.

While the app_offline.htm file is present, the ASP.NET Core Module responds to requests

by sending back the contents of the app_offline.htm file. When the app_offline.htm file is

removed, the next request starts the app.

When using the out-of-process hosting model, the app might not shut down immediately

if there's an open connection. For example, a websocket connection may delay app shut

down.

Both in-process and out-of-process hosting produce custom error pages when they fail to

start the app.

If the ASP.NET Core Module fails to find either the in-process or out-of-process request

handler, a 500.0 - In-Process/Out-Of-Process Handler Load Failure status code page

appears.

For in-process hosting if the ASP.NET Core Module fails to start the app, a 500.30 - Start

Failure status code page appears.

For out-of-process hosting if the ASP.NET Core Module fails to launch the backend

process or the backend process starts but fails to listen on the configured port, a 502.5 -

Process Failure status code page appears.

To suppress this page and revert to the default IIS 5xx status code page, use the 

disableStartUpErrorPage  attribute. For more information on configuring custom error

messages, see HTTP Errors <httpErrors>.

The ASP.NET Core Module redirects stdout and stderr console output to disk if the 

stdoutLogEnabled  and stdoutLogFile  attributes of the aspNetCore  element are set. Any

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/httperrors/


<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="true"
    stdoutLogFile=".\logs\stdout"
    hostingModel="inprocess">
</aspNetCore>

Enhanced diagnostic logs

folders in the stdoutLogFile  path are created by the module when the log file is created.

The app pool must have write access to the location where the logs are written (use 

IIS AppPool\<app_pool_name>  to provide write permission).

Logs aren't rotated, unless process recycling/restart occurs. It's the responsibility of the

hoster to limit the disk space the logs consume.

Using the stdout log is only recommended for troubleshooting app startup issues when

hosting on IIS or when using development-time support for IIS with Visual Studio, not

while debugging locally and running the app with IIS Express.

Don't use the stdout log for general app logging purposes. For routine logging in an

ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

A timestamp and file extension are added automatically when the log file is created. The

log file name is composed by appending the timestamp, process ID, and file extension

(.log) to the last segment of the stdoutLogFile  path (typically stdout) delimited by

underscores. If the stdoutLogFile  path ends with stdout, a log for an app with a PID of

1934 created on 2/5/2018 at 19:42:32 has the file name

stdout_20180205194132_1934.log.

If stdoutLogEnabled  is false, errors that occur on app startup are captured and emitted to

the event log up to 30 KB. After startup, all additional logs are discarded.

The following sample aspNetCore  element configures stdout logging at the relative path 

.\log\ . Confirm that the AppPool user identity has permission to write to the path

provided.

When publishing an app for Azure App Service deployment, the Web SDK sets the 

stdoutLogFile  value to \\?\%home%\LogFiles\stdout . The %home  environment variable is

predefined for apps hosted by Azure App Service.

For more information on path formats, see File path formats on Windows systems.

The ASP.NET Core Module is configurable to provide enhanced diagnostics logs. Add the 

<handlerSettings>  element to the <aspNetCore>  element in web.config. Setting the 

debugLevel  to TRACE  exposes a higher fidelity of diagnostic information:

https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats


<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="false"
    stdoutLogFile="\\?\%home%\LogFiles\stdout"
    hostingModel="inprocess">
  <handlerSettings>
    <handlerSetting name="debugFile" value=".\logs\aspnetcore-debug.log" />
    <handlerSetting name="debugLevel" value="FILE,TRACE" />
  </handlerSettings>
</aspNetCore>

WARNINGWARNING

Proxy configuration uses HTTP protocol and a pairing
token

Folders in the path provided to the <handlerSetting>  value (logs in the preceding

example) aren't created by the module automatically and should pre-exist in the

deployment. The app pool must have write access to the location where the logs are

written (use IIS AppPool\<app_pool_name>  to provide write permission).

Debug level ( debugLevel ) values can include both the level and the location.

Levels (in order from least to most verbose):

ERROR

WARNING

INFO

TRACE

Locations (multiple locations are permitted):

CONSOLE

EVENTLOG

FILE

The handler settings can also be provided via environment variables:

ASPNETCORE_MODULE_DEBUG_FILE : Path to the debug log file. (Default: aspnetcore-

debug.log)

ASPNETCORE_MODULE_DEBUG : Debug level setting.

Do notnot  leave debug logging enabled in the deployment for longer than required to

troubleshoot an issue. The size of the log isn't limited. Leaving the debug log enabled can

exhaust the available disk space and crash the server or app service.

See Configuration with web.config for an example of the aspNetCore  element in the

web.config file.

Only applies to out-of-process hosting.

The proxy created between the ASP.NET Core Module and Kestrel uses the HTTP protocol.

There's no risk of eavesdropping the traffic between the module and Kestrel from a

location off of the server.

A pairing token is used to guarantee that the requests received by Kestrel were proxied by



ASP.NET Core Module with an IIS Shared Configuration

dotnet-hosting-{VERSION}.exe OPT_NO_SHARED_CONFIG_CHECK=1

Module version and Hosting Bundle installer logs

Module, schema, and configuration file locations
ModuleModule

IIS and didn't come from some other source. The pairing token is created and set into an

environment variable ( ASPNETCORE_TOKEN ) by the module. The pairing token is also set

into a header ( MS-ASPNETCORE-TOKEN ) on every proxied request. IIS Middleware checks

each request it receives to confirm that the pairing token header value matches the

environment variable value. If the token values are mismatched, the request is logged and

rejected. The pairing token environment variable and the traffic between the module and

Kestrel aren't accessible from a location off of the server. Without knowing the pairing

token value, an attacker can't submit requests that bypass the check in the IIS Middleware.

The ASP.NET Core Module installer runs with the privileges of the TrustedInstallerTrustedInstaller

account. Because the local system account doesn't have modify permission for the share

path used by the IIS Shared Configuration, the installer throws an access denied error

when attempting to configure the module settings in the applicationHost.config file on

the share.

When using an IIS Shared Configuration on the same machine as the IIS installation, run

the ASP.NET Core Hosting Bundle installer with the OPT_NO_SHARED_CONFIG_CHECK

parameter set to 1 :

When the path to the shared configuration isn't on the same machine as the IIS

installation, follow these steps:

1. Disable the IIS Shared Configuration.

2. Run the installer.

3. Export the updated applicationHost.config file to the share.

4. Re-enable the IIS Shared Configuration.

To determine the version of the installed ASP.NET Core Module:

1. On the hosting system, navigate to %windir%\System32\inetsrv.

2. Locate the aspnetcore.dll file.

3. Right-click the file and select Proper tiesProper ties  from the contextual menu.

4. Select the DetailsDetails  tab. The File versionFile version and Product versionProduct version represent the installed

version of the module.

The Hosting Bundle installer logs for the module are found at

C:\Users\%UserName%\AppData\Local\Temp. The file is named

dd_DotNetCoreWinSvrHosting__<timestamp>_000_AspNetCoreModule_x64.log.

IIS  (x86/amd64):IIS  (x86/amd64):

%windir%\System32\inetsrv\aspnetcore.dll

%windir%\SysWOW64\inetsrv\aspnetcore.dll



SchemaSchema

ConfigurationConfiguration

%ProgramFiles%\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll

%ProgramFiles(x86)%\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll

IIS  Express (x86/amd64):IIS  Express (x86/amd64):

%ProgramFiles%\IIS Express\aspnetcore.dll

%ProgramFiles(x86)%\IIS Express\aspnetcore.dll

%ProgramFiles%\IIS Express\Asp.Net Core Module\V2\aspnetcorev2.dll

%ProgramFiles(x86)%\IIS Express\Asp.Net Core Module\V2\aspnetcorev2.dll

IISIIS

%windir%\System32\inetsrv\config\schema\aspnetcore_schema.xml

%windir%\System32\inetsrv\config\schema\aspnetcore_schema_v2.xml

IIS  ExpressIIS  Express

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema.xml

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema_v2.xml

IISIIS

%windir%\System32\inetsrv\config\applicationHost.config

IIS  ExpressIIS  Express

Visual Studio: {APPLICATION ROOT}\.vs\config\applicationHost.config

iisexpress.exe CLI:

%USERPROFILE%\Documents\IISExpress\config\applicationhost.config

The files can be found by searching for aspnetcore in the applicationHost.config file.

The ASP.NET Core Module is a native IIS module that plugs into the IIS pipeline to forward

web requests to backend ASP.NET Core apps.

Supported Windows versions:

Windows 7 or later

Windows Server 2008 R2 or later

The module only works with Kestrel. The module is incompatible with HTTP.sys.

Because ASP.NET Core apps run in a process separate from the IIS worker process, the

module also handles process management. The module starts the process for the

ASP.NET Core app when the first request arrives and restarts the app if it crashes. This is

essentially the same behavior as seen with ASP.NET 4.x apps that run in-process in IIS that

are managed by the Windows Process Activation Service (WAS).

The following diagram illustrates the relationship between IIS, the ASP.NET Core Module,

and an app:

https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was


How to install and use the ASP.NET Core Module

Configuration with web.config

Requests arrive from the web to the kernel-mode HTTP.sys driver. The driver routes the

requests to IIS on the website's configured port, usually 80 (HTTP) or 443 (HTTPS). The

module forwards the requests to Kestrel on a random port for the app, which isn't port

80 or 443.

The module specifies the port via an environment variable at startup, and the IIS

Integration Middleware configures the server to listen on http://localhost:{port} .

Additional checks are performed, and requests that don't originate from the module are

rejected. The module doesn't support HTTPS forwarding, so requests are forwarded over

HTTP even if received by IIS over HTTPS.

After Kestrel picks up the request from the module, the request is pushed into the

ASP.NET Core middleware pipeline. The middleware pipeline handles the request and

passes it on as an HttpContext  instance to the app's logic. Middleware added by IIS

Integration updates the scheme, remote IP, and pathbase to account for forwarding the

request to Kestrel. The app's response is passed back to IIS, which pushes it back out to

the HTTP client that initiated the request.

Many native modules, such as Windows Authentication, remain active. To learn more

about IIS modules active with the ASP.NET Core Module, see IIS modules with ASP.NET

Core.

The ASP.NET Core Module can also:

Set environment variables for the worker process.

Log stdout output to file storage for troubleshooting startup issues.

Forward Windows authentication tokens.

For instructions on how to install the ASP.NET Core Module, see Install the .NET Core

Hosting Bundle.

The ASP.NET Core Module is configured with the aspNetCore  section of the 

system.webServer  node in the site's web.config file.

The following web.config file is published for a framework-dependent deployment and

configures the ASP.NET Core Module to handle site requests:

https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#framework-dependent-deployments-fdd


<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <system.webServer>
    <handlers>
      <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModule" 
resourceType="Unspecified" />
    </handlers>
    <aspNetCore processPath="dotnet"
                arguments=".\MyApp.dll"
                stdoutLogEnabled="false"
                stdoutLogFile=".\logs\stdout" />
  </system.webServer>
</configuration>

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <system.webServer>
    <handlers>
      <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModule" 
resourceType="Unspecified" />
    </handlers>
    <aspNetCore processPath=".\MyApp.exe"
                stdoutLogEnabled="false"
                stdoutLogFile=".\logs\stdout" />
  </system.webServer>
</configuration>

Attributes of the aspNetCore elementAttributes of the aspNetCore element

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

arguments

disableStartUpErrorPage false

The following web.config is published for a self-contained deployment:

When an app is deployed to Azure App Service, the stdoutLogFile  path is set to 

\\?\%home%\LogFiles\stdout . The path saves stdout logs to the LogFiles folder, which is a

location automatically created by the service.

For information on IIS sub-application configuration, see Host ASP.NET Core on Windows

with IIS.

Optional string attribute.

Arguments to the
executable specified in
processPathprocessPath.

Optional Boolean
attribute.

If true, the 502.5 -502.5 -
Process FailureProcess Failure page is
suppressed, and the 502
status code page
configured in the
web.config takes
precedence.

https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/#self-contained-deployments-scd
https://azure.microsoft.com/services/app-service/


forwardWindowsAuthToken true

processesPerApplication Default: 1

Min: 1

Max: 100

processPath

rapidFailsPerMinute Default: 10

Min: 0

Max: 100

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional Boolean
attribute.

If true, the token is
forwarded to the child
process listening on
%ASPNETCORE_PORT% as
a header 'MS-
ASPNETCORE-
WINAUTHTOKEN' per
request. It's the
responsibility of that
process to call
CloseHandle on this token
per request.

Optional integer attribute.

Specifies the number of
instances of the process
specified in the
processPathprocessPath setting that
can be spun up per app.

Setting 
processesPerApplication

is discouraged. This
attribute will be removed
in a future release.

Required string attribute.

Path to the executable
that launches a process
listening for HTTP
requests. Relative paths
are supported. If the path
begins with . , the path

is considered to be
relative to the site root.

Optional integer attribute.

Specifies the number of
times the process
specified in processPathprocessPath
is allowed to crash per
minute. If this limit is
exceeded, the module
stops launching the
process for the remainder
of the minute.



requestTimeout Default: 00:02:00

Min: 00:00:00

Max: 360:00:00

shutdownTimeLimit Default: 10

Min: 0

Max: 600

startupTimeLimit Default: 120

Min: 0

Max: 3600

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Optional timespan
attribute.

Specifies the duration for
which the ASP.NET Core
Module waits for a
response from the process
listening on
%ASPNETCORE_PORT%.

In versions of the ASP.NET
Core Module that shipped
with the release of
ASP.NET Core 2.1 or later,
the requestTimeout  is

specified in hours,
minutes, and seconds.

Optional integer attribute.

Duration in seconds that
the module waits for the
executable to gracefully
shutdown when the
app_offline.htm file is
detected.

Optional integer attribute.

Duration in seconds that
the module waits for the
executable to start a
process listening on the
port. If this time limit is
exceeded, the module kills
the process. The module
attempts to relaunch the
process when it receives a
new request and
continues to attempt to
restart the process on
subsequent incoming
requests unless the app
fails to start
rapidFailsPerMinuterapidFailsPerMinute
number of times in the
last rolling minute.

A value of 0 (zero) is notnot
considered an infinite
timeout.



stdoutLogEnabled false

stdoutLogFile aspnetcore-stdout

AT T RIB UT EAT T RIB UT E DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Setting environment variablesSetting environment variables

WARNINGWARNING

Optional Boolean
attribute.

If true, stdoutstdout  and
stderrstderr  for the process
specified in processPathprocessPath
are redirected to the file
specified in
stdoutLogFilestdoutLogFile.

Optional string attribute.

Specifies the relative or
absolute file path for
which stdoutstdout  and stderrstderr
from the process specified
in processPathprocessPath are
logged. Relative paths are
relative to the root of the
site. Any path starting
with .  are relative to the

site root and all other
paths are treated as
absolute paths. Any
folders provided in the
path must exist in order
for the module to create
the log file. Using
underscore delimiters, a
timestamp, process ID,
and file extension (.log)
are added to the last
segment of the
stdoutLogFilestdoutLogFile path. If 
.\logs\stdout  is

supplied as a value, an
example stdout log is
saved as
stdout_20180205194132
_1934.log in the logs
folder when saved on
2/5/2018 at 19:41:32 with
a process ID of 1934.

Environment variables can be specified for the process in the processPath  attribute.

Specify an environment variable with the <environmentVariable>  child element of an 

<environmentVariables>  collection element.

Environment variables set in this section conflict with system environment variables set with the

same name. If an environment variable is set in both the web.config file and at the system level

in Windows, the value from the web.config file becomes appended to the system environment

variable value (for example, ASPNETCORE_ENVIRONMENT: Development;Development ), which

prevents the app from starting.



<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile="\\?\%home%\LogFiles\stdout">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
    <environmentVariable name="CONFIG_DIR" value="f:\application_config" />
  </environmentVariables>
</aspNetCore>

WARNINGWARNING

app_offline.htm

Start-up error page

The following example sets two environment variables. ASPNETCORE_ENVIRONMENT

configures the app's environment to Development . A developer may temporarily set this

value in the web.config file in order to force the Developer Exception Page to load when

debugging an app exception. CONFIG_DIR  is an example of a user-defined environment

variable, where the developer has written code that reads the value on startup to form a

path for loading the app's configuration file.

Only set the ASPNETCORE_ENVIRONMENT  environment variable to Development  on staging and

testing servers that aren't accessible to untrusted networks, such as the Internet.

If a file with the name app_offline.htm is detected in the root directory of an app, the

ASP.NET Core Module attempts to gracefully shutdown the app and stop processing

incoming requests. If the app is still running after the number of seconds defined in 

shutdownTimeLimit , the ASP.NET Core Module kills the running process.

While the app_offline.htm file is present, the ASP.NET Core Module responds to requests

by sending back the contents of the app_offline.htm file. When the app_offline.htm file is

removed, the next request starts the app.

If the ASP.NET Core Module fails to launch the backend process or the backend process

starts but fails to listen on the configured port, a 502.5 - Process Failure status code page

appears. To suppress this page and revert to the default IIS 502 status code page, use the 

disableStartUpErrorPage  attribute. For more information on configuring custom error

messages, see HTTP Errors <httpErrors>.

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/httperrors/


Log creation and redirection

<aspNetCore processPath="dotnet"
    arguments=".\MyApp.dll"
    stdoutLogEnabled="true"
    stdoutLogFile=".\logs\stdout">
</aspNetCore>

The ASP.NET Core Module redirects stdout and stderr console output to disk if the 

stdoutLogEnabled  and stdoutLogFile  attributes of the aspNetCore  element are set. Any

folders in the stdoutLogFile  path are created by the module when the log file is created.

The app pool must have write access to the location where the logs are written (use 

IIS AppPool\<app_pool_name>  to provide write permission).

Logs aren't rotated, unless process recycling/restart occurs. It's the responsibility of the

hoster to limit the disk space the logs consume.

Using the stdout log is only recommended for troubleshooting app startup issues when

hosting on IIS or when using development-time support for IIS with Visual Studio, not

while debugging locally and running the app with IIS Express.

Don't use the stdout log for general app logging purposes. For routine logging in an

ASP.NET Core app, use a logging library that limits log file size and rotates logs. For more

information, see third-party logging providers.

A timestamp and file extension are added automatically when the log file is created. The

log file name is composed by appending the timestamp, process ID, and file extension

(.log) to the last segment of the stdoutLogFile  path (typically stdout) delimited by

underscores. If the stdoutLogFile  path ends with stdout, a log for an app with a PID of

1934 created on 2/5/2018 at 19:42:32 has the file name

stdout_20180205194132_1934.log.

The following sample aspNetCore  element configures stdout logging at the relative path 

.\log\ . Confirm that the AppPool user identity has permission to write to the path

provided.

When publishing an app for Azure App Service deployment, the Web SDK sets the 

stdoutLogFile  value to \\?\%home%\LogFiles\stdout . The %home  environment variable is



Proxy configuration uses HTTP protocol and a pairing
token

ASP.NET Core Module with an IIS Shared Configuration

Module version and Hosting Bundle installer logs

Module, schema, and configuration file locations

predefined for apps hosted by Azure App Service.

To create logging filter rules, see the Configuration and Log filtering sections of the

ASP.NET Core logging documentation.

For more information on path formats, see File path formats on Windows systems.

The proxy created between the ASP.NET Core Module and Kestrel uses the HTTP protocol.

There's no risk of eavesdropping the traffic between the module and Kestrel from a

location off of the server.

A pairing token is used to guarantee that the requests received by Kestrel were proxied by

IIS and didn't come from some other source. The pairing token is created and set into an

environment variable ( ASPNETCORE_TOKEN ) by the module. The pairing token is also set

into a header ( MS-ASPNETCORE-TOKEN ) on every proxied request. IIS Middleware checks

each request it receives to confirm that the pairing token header value matches the

environment variable value. If the token values are mismatched, the request is logged and

rejected. The pairing token environment variable and the traffic between the module and

Kestrel aren't accessible from a location off of the server. Without knowing the pairing

token value, an attacker can't submit requests that bypass the check in the IIS Middleware.

The ASP.NET Core Module installer runs with the privileges of the TrustedInstallerTrustedInstaller

account. Because the local system account doesn't have modify permission for the share

path used by the IIS Shared Configuration, the installer throws an access denied error

when attempting to configure the module settings in the applicationHost.config file on

the share.

When using an IIS Shared Configuration, follow these steps:

1. Disable the IIS Shared Configuration.

2. Run the installer.

3. Export the updated applicationHost.config file to the share.

4. Re-enable the IIS Shared Configuration.

To determine the version of the installed ASP.NET Core Module:

1. On the hosting system, navigate to %windir%\System32\inetsrv.

2. Locate the aspnetcore.dll file.

3. Right-click the file and select Proper tiesProper ties  from the contextual menu.

4. Select the DetailsDetails  tab. The File versionFile version and Product versionProduct version represent the installed

version of the module.

The Hosting Bundle installer logs for the module are found at

C:\Users\%UserName%\AppData\Local\Temp. The file is named

dd_DotNetCoreWinSvrHosting__<timestamp>_000_AspNetCoreModule_x64.log.

https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats


ModuleModule

SchemaSchema

ConfigurationConfiguration

Additional resources

IIS  (x86/amd64):IIS  (x86/amd64):

%windir%\System32\inetsrv\aspnetcore.dll

%windir%\SysWOW64\inetsrv\aspnetcore.dll

IIS  Express (x86/amd64):IIS  Express (x86/amd64):

%ProgramFiles%\IIS Express\aspnetcore.dll

%ProgramFiles(x86)%\IIS Express\aspnetcore.dll

IISIIS

%windir%\System32\inetsrv\config\schema\aspnetcore_schema.xml

IIS  ExpressIIS  Express

%ProgramFiles%\IIS Express\config\schema\aspnetcore_schema.xml

IISIIS

%windir%\System32\inetsrv\config\applicationHost.config

IIS  ExpressIIS  Express

Visual Studio: {APPLICATION ROOT}\.vs\config\applicationHost.config

iisexpress.exe CLI:

%USERPROFILE%\Documents\IISExpress\config\applicationhost.config

The files can be found by searching for aspnetcore in the applicationHost.config file.

Host ASP.NET Core on Windows with IIS

Deploy ASP.NET Core apps to Azure App Service

ASP.NET Core Module reference source (master branch): Use the BranchBranch drop down

list to select a specific release (for example, release/3.1 ).

IIS modules with ASP.NET Core

https://github.com/dotnet/aspnetcore/tree/master/src/Servers/IIS/AspNetCoreModuleV2


  

Development-time IIS support in Visual Studio for
ASP.NET Core
9/22/2020 • 8 minutes to read • Edit Online

Prerequisites

Enable IIS

Configure IIS

Enable development-time IIS support in Visual Studio

By Sourabh Shirhatti

This article describes Visual Studio support for debugging ASP.NET Core apps running with IIS on Windows

Server. This topic walks through enabling this scenario and setting up a project.

Visual Studio for Windows

ASP.NET and web developmentASP.NET and web development workload

.NET Core cross-platform development.NET Core cross-platform development workload

X.509 security certificate (for HTTPS support)

1. In Windows, navigate to Control PanelControl Panel  > ProgramsPrograms > Programs and FeaturesPrograms and Features  > Turn WindowsTurn Windows

features on or offfeatures on or off  (left side of the screen).

2. Select the Internet Information Ser vicesInternet Information Ser vices  check box. Select OKOK.

The IIS installation may require a system restart.

IIS must have a website configured with the following:

Host nameHost name: Typically, the Default Web SiteDefault Web Site is used with a Host nameHost name of localhost . However, any valid IIS

website with a unique host name works.

S ite BindingSite Binding

For apps that require HTTPS, create a binding to port 443 with a certificate. Typically, the IIS  ExpressIIS  Express

Development Cer tificateDevelopment Cer tificate is used, but any valid certificate works.

For apps that use HTTP, confirm the existence of a binding to post 80 or create a binding to port 80 for a

new site.

Use a single binding for either HTTP or HTTPS. Binding to both HTTP and HTTPS por tsBinding to both HTTP and HTTPS por ts

simultaneously isn't suppor ted.simultaneously isn't suppor ted.

1. Launch the Visual Studio installer.

2. Select ModifyModify  for the Visual Studio installation that you plan to use for IIS development-time support.

3. For the ASP.NET and web developmentASP.NET and web development workload, locate and install the Development time IISDevelopment time IIS

suppor tsuppor t component.

The component is listed in the OptionalOptional  section under Development time IIS  suppor tDevelopment time IIS  suppor t in the

Installation detailsInstallation details  panel to the right of the workloads. The component installs the ASP.NET Core Module,

which is a native IIS module required to run ASP.NET Core apps with IIS.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/iis/development-time-iis-support.md
https://twitter.com/sshirhatti
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com/downloads/


Configure the project
HTTPS redirectionHTTPS redirection

IIS launch profileIIS launch profile

For a new project that requires HTTPS, select the check box to Configure for HTTPSConfigure for HTTPS  in the Create a newCreate a new

ASP.NET Core Web ApplicationASP.NET Core Web Application window. Selecting the check box adds HTTPS Redirection and HSTS

Middleware to the app when it's created.

For an existing project that requires HTTPS, use HTTPS Redirection and HSTS Middleware in Startup.Configure .

For more information, see Enforce HTTPS in ASP.NET Core.

For a project that uses HTTP, HTTPS Redirection and HSTS Middleware aren't added to the app. No app

configuration is required.

Create a new launch profile to add development-time IIS support:

1. Right-click the project in Solution ExplorerSolution Explorer . Select Proper tiesProper ties . Open the DebugDebug tab.

2. For ProfileProfile, select the NewNew  button. Name the profile "IIS" in the popup window. Select OKOK to create the

profile.

3. For the LaunchLaunch setting, select IISIIS  from the list.

4. Select the check box for Launch browserLaunch browser  and provide the endpoint URL.

When the app requires HTTPS, use an HTTPS endpoint ( https:// ). For HTTP, use an HTTP ( http:// )

endpoint.

Provide the same host name and port as the IIS configuration specified earlier uses, typically localhost .

Provide the name of the app at the end of the URL.

For example, https://localhost/WebApplication1  (HTTPS) or http://localhost/WebApplication1  (HTTP) are

valid endpoint URLs.

5. In the Environment var iablesEnvironment var iables  section, select the AddAdd button. Provide an environment variable with a

NameName of ASPNETCORE_ENVIRONMENT  and a ValueValue of Development .

6. In the Web Ser ver SettingsWeb Ser ver Settings  area, set the App URLApp URL  to the same value used for the Launch browserLaunch browser

endpoint URL.

7. For the Hosting ModelHosting Model  setting in Visual Studio 2019 or later, select DefaultDefault to use the hosting model

used by the project. If the project sets the <AspNetCoreHostingModel>  property in its project file, the value of

the property ( InProcess  or OutOfProcess ) is used. If the property isn't present, the default hosting model

of the app is used, which is in-process. If the app requires an explicit hosting model setting different from

the app's normal hosting model, set the Hosting ModelHosting Model  to either In Process  or Out Of Process  as

needed.

8. Save the profile.

When not using Visual Studio, manually add a launch profile to the launchSettings.json file in the Properties

folder. The following example configures the profile to use the HTTPS protocol:

https://json.schemastore.org/launchsettings


{
  "iisSettings": {
    "windowsAuthentication": false,
    "anonymousAuthentication": true,
    "iis": {
      "applicationUrl": "https://localhost/WebApplication1",
      "sslPort": 0
    }
  },
  "profiles": {
    "IIS": {
      "commandName": "IIS",
      "launchBrowser": true,
      "launchUrl": "https://localhost/WebApplication1",
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      }
    }
  }
}

Run the project

NOTENOTE

Additional resources

Prerequisites

Confirm that the applicationUrl  and launchUrl  endpoints match and use the same protocol as the IIS binding

configuration, either HTTP or HTTPS.

Run Visual Studio as an administrator :

Confirm that the build configuration drop-down list is set to DebugDebug.

Set the Start Debugging button to the IISIIS  profile and select the button to start the app.

Visual Studio may prompt a restart if not running as an administrator. If prompted, restart Visual Studio.

If an untrusted development certificate is used, the browser may require you to create an exception for the

untrusted certificate.

Debugging a Release build configuration with Just My Code and compiler optimizations results in a degraded experience.

For example, break points aren't hit.

Getting Started with the IIS Manager in IIS

Enforce HTTPS in ASP.NET Core

This article describes Visual Studio support for debugging ASP.NET Core apps running with IIS on Windows

Server. This topic walks through enabling this scenario and setting up a project.

Visual Studio for Windows

ASP.NET and web developmentASP.NET and web development workload

.NET Core cross-platform development.NET Core cross-platform development workload

X.509 security certificate (for HTTPS support)

https://docs.microsoft.com/en-us/visualstudio/debugger/debugger-feature-tour
https://docs.microsoft.com/en-us/visualstudio/debugger/just-my-code
https://docs.microsoft.com/en-us/iis/get-started/getting-started-with-iis/getting-started-with-the-iis-manager-in-iis-7-and-iis-8
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com/downloads/


Enable IIS

Configure IIS

Enable development-time IIS support in Visual Studio

Configure the project
HTTPS redirectionHTTPS redirection

IIS launch profileIIS launch profile

1. In Windows, navigate to Control PanelControl Panel  > ProgramsPrograms > Programs and FeaturesPrograms and Features  > Turn WindowsTurn Windows

features on or offfeatures on or off  (left side of the screen).

2. Select the Internet Information Ser vicesInternet Information Ser vices  check box. Select OKOK.

The IIS installation may require a system restart.

IIS must have a website configured with the following:

Host nameHost name: Typically, the Default Web SiteDefault Web Site is used with a Host nameHost name of localhost . However, any valid IIS

website with a unique host name works.

S ite BindingSite Binding

For apps that require HTTPS, create a binding to port 443 with a certificate. Typically, the IIS  ExpressIIS  Express

Development Cer tificateDevelopment Cer tificate is used, but any valid certificate works.

For apps that use HTTP, confirm the existence of a binding to post 80 or create a binding to port 80 for a

new site.

Use a single binding for either HTTP or HTTPS. Binding to both HTTP and HTTPS por tsBinding to both HTTP and HTTPS por ts

simultaneously isn't suppor ted.simultaneously isn't suppor ted.

1. Launch the Visual Studio installer.

2. Select ModifyModify  for the Visual Studio installation that you plan to use for IIS development-time support.

3. For the ASP.NET and web developmentASP.NET and web development workload, locate and install the Development time IISDevelopment time IIS

suppor tsuppor t component.

The component is listed in the OptionalOptional  section under Development time IIS  suppor tDevelopment time IIS  suppor t in the

Installation detailsInstallation details  panel to the right of the workloads. The component installs the ASP.NET Core Module,

which is a native IIS module required to run ASP.NET Core apps with IIS.

For a new project that requires HTTPS, select the check box to Configure for HTTPSConfigure for HTTPS  in the Create a newCreate a new

ASP.NET Core Web ApplicationASP.NET Core Web Application window. Selecting the check box adds HTTPS Redirection and HSTS

Middleware to the app when it's created.

For an existing project that requires HTTPS, use HTTPS Redirection and HSTS Middleware in Startup.Configure .

For more information, see Enforce HTTPS in ASP.NET Core.

For a project that uses HTTP, HTTPS Redirection and HSTS Middleware aren't added to the app. No app

configuration is required.

Create a new launch profile to add development-time IIS support:

1. Right-click the project in Solution ExplorerSolution Explorer . Select Proper tiesProper ties . Open the DebugDebug tab.

2. For ProfileProfile, select the NewNew  button. Name the profile "IIS" in the popup window. Select OKOK to create the

profile.



{
  "iisSettings": {
    "windowsAuthentication": false,
    "anonymousAuthentication": true,
    "iis": {
      "applicationUrl": "https://localhost/WebApplication1",
      "sslPort": 0
    }
  },
  "profiles": {
    "IIS": {
      "commandName": "IIS",
      "launchBrowser": true,
      "launchUrl": "https://localhost/WebApplication1",
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      }
    }
  }
}

Run the project

3. For the LaunchLaunch setting, select IISIIS  from the list.

4. Select the check box for Launch browserLaunch browser  and provide the endpoint URL.

When the app requires HTTPS, use an HTTPS endpoint ( https:// ). For HTTP, use an HTTP ( http:// )

endpoint.

Provide the same host name and port as the IIS configuration specified earlier uses, typically localhost .

Provide the name of the app at the end of the URL.

For example, https://localhost/WebApplication1  (HTTPS) or http://localhost/WebApplication1  (HTTP) are

valid endpoint URLs.

5. In the Environment var iablesEnvironment var iables  section, select the AddAdd button. Provide an environment variable with a

NameName of ASPNETCORE_ENVIRONMENT  and a ValueValue of Development .

6. In the Web Ser ver SettingsWeb Ser ver Settings  area, set the App URLApp URL  to the same value used for the Launch browserLaunch browser

endpoint URL.

7. For the Hosting ModelHosting Model  setting in Visual Studio 2019 or later, select DefaultDefault to use the hosting model

used by the project. If the project sets the <AspNetCoreHostingModel>  property in its project file, the value of

the property ( InProcess  or OutOfProcess ) is used. If the property isn't present, the default hosting model

of the app is used, which is out-of-process. If the app requires an explicit hosting model setting different

from the app's normal hosting model, set the Hosting ModelHosting Model  to either In Process  or Out Of Process  as

needed.

8. Save the profile.

When not using Visual Studio, manually add a launch profile to the launchSettings.json file in the Properties

folder. The following example configures the profile to use the HTTPS protocol:

Confirm that the applicationUrl  and launchUrl  endpoints match and use the same protocol as the IIS binding

configuration, either HTTP or HTTPS.

Run Visual Studio as an administrator :

Confirm that the build configuration drop-down list is set to DebugDebug.

https://json.schemastore.org/launchsettings


NOTENOTE

Additional resources

Set the Start Debugging button to the IISIIS  profile and select the button to start the app.

Visual Studio may prompt a restart if not running as an administrator. If prompted, restart Visual Studio.

If an untrusted development certificate is used, the browser may require you to create an exception for the

untrusted certificate.

Debugging a Release build configuration with Just My Code and compiler optimizations results in a degraded experience.

For example, break points aren't hit.

Getting Started with the IIS Manager in IIS

Enforce HTTPS in ASP.NET Core

https://docs.microsoft.com/en-us/visualstudio/debugger/debugger-feature-tour
https://docs.microsoft.com/en-us/visualstudio/debugger/just-my-code
https://docs.microsoft.com/en-us/iis/get-started/getting-started-with-iis/getting-started-with-the-iis-manager-in-iis-7-and-iis-8


IIS modules with ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

Native modules

M O DUL EM O DUL E
F UN C T IO N A L  W IT H  A SP. N ET  C O REF UN C T IO N A L  W IT H  A SP. N ET  C O RE
A P P SA P P S A SP. N ET  C O RE O P T IO NA SP. N ET  C O RE O P T IO N

Anonymous AuthenticationAnonymous Authentication
AnonymousAuthenticationModule

Yes

Basic AuthenticationBasic Authentication
BasicAuthenticationModule

Yes

Client Cer tification MappingClient Cer tification Mapping
AuthenticationAuthentication
CertificateMappingAuthenticationModule

Yes

CGICGI
CgiModule

No

Configuration ValidationConfiguration Validation
ConfigurationValidationModule

Yes

HTTP ErrorsHTTP Errors
CustomErrorModule

No Status Code Pages Middleware

Custom LoggingCustom Logging
CustomLoggingModule

Yes

Default DocumentDefault Document
DefaultDocumentModule

No Default Files Middleware

Digest AuthenticationDigest Authentication
DigestAuthenticationModule

Yes

Director y BrowsingDirector y Browsing
DirectoryListingModule

No Directory Browsing Middleware

Dynamic CompressionDynamic Compression
DynamicCompressionModule

Yes Response Compression Middleware

Failed Requests TracingFailed Requests Tracing
FailedRequestsTracingModule

Yes ASP.NET Core Logging

Some of the native IIS modules and all of the IIS managed modules aren't able to process requests for ASP.NET

Core apps. In many cases, ASP.NET Core offers an alternative to the scenarios addressed by IIS native and

managed modules.

The table indicates native IIS modules that are functional with ASP.NET Core apps and the ASP.NET Core

Module.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/iis/modules.md


File CachingFile Caching
FileCacheModule

No Response Caching Middleware

HTTP CachingHTTP Caching
HttpCacheModule

No Response Caching Middleware

HTTP LoggingHTTP Logging
HttpLoggingModule

Yes ASP.NET Core Logging

HTTP RedirectionHTTP Redirection
HttpRedirectionModule

Yes URL Rewriting Middleware

HTTP TracingHTTP Tracing
TracingModule

Yes

IIS Client Cer tificate MappingIIS Client Cer tificate Mapping
AuthenticationAuthentication
IISCertificateMappingAuthenticationModule

Yes

IP and Domain RestrictionsIP and Domain Restrictions
IpRestrictionModule

Yes

ISAPI FiltersISAPI Filters
IsapiFilterModule

Yes Middleware

ISAPIISAPI
IsapiModule

Yes Middleware

Protocol Suppor tProtocol Suppor t
ProtocolSupportModule

Yes

Request FilteringRequest Filtering
RequestFilteringModule

Yes URL Rewriting Middleware IRule

Request MonitorRequest Monitor
RequestMonitorModule

Yes

URL RewritingURL Rewriting†
RewriteModule

Yes URL Rewriting Middleware

Ser ver-Side IncludesSer ver-Side Includes
ServerSideIncludeModule

No

Static CompressionStatic Compression
StaticCompressionModule

No Response Compression Middleware

Static ContentStatic Content
StaticFileModule

No Static File Middleware

Token CachingToken Caching
TokenCacheModule

Yes

M O DUL EM O DUL E
F UN C T IO N A L  W IT H  A SP. N ET  C O REF UN C T IO N A L  W IT H  A SP. N ET  C O RE
A P P SA P P S A SP. N ET  C O RE O P T IO NA SP. N ET  C O RE O P T IO N



URI CachingURI Caching
UriCacheModule

Yes

URL AuthorizationURL Authorization
UrlAuthorizationModule

Yes ASP.NET Core Identity

Windows AuthenticationWindows Authentication
WindowsAuthenticationModule

Yes

M O DUL EM O DUL E
F UN C T IO N A L  W IT H  A SP. N ET  C O REF UN C T IO N A L  W IT H  A SP. N ET  C O RE
A P P SA P P S A SP. N ET  C O RE O P T IO NA SP. N ET  C O RE O P T IO N

Managed modules

M O DUL EM O DUL E A SP. N ET  C O RE O P T IO NA SP. N ET  C O RE O P T IO N

AnonymousIdentification

DefaultAuthentication

FileAuthorization

FormsAuthentication Cookie Authentication Middleware

OutputCache Response Caching Middleware

Profile

RoleManager

ScriptModule-4.0

Session Session Middleware

UrlAuthorization

UrlMappingsModule URL Rewriting Middleware

UrlRoutingModule-4.0 ASP.NET Core Identity

WindowsAuthentication

IIS Manager application changes

†The URL Rewrite Module's isFile  and isDirectory  match types don't work with ASP.NET Core apps due to

the changes in directory structure.

Managed modules are not functional with hosted ASP.NET Core apps when the app pool's .NET CLR version is

set to No Managed CodeNo Managed Code. ASP.NET Core offers middleware alternatives in several cases.

When using IIS Manager to configure settings, the web.config file of the app is changed. If deploying an app

and including web.config, any changes made with IIS Manager are overwritten by the deployed web.config file.

If changes are made to the server's web.config file, copy the updated web.config file on the server to the local



     Disabling IIS modules

Module deactivationModule deactivation

<configuration>
  <system.webServer>
    <httpRedirect enabled="false" />
  </system.webServer>
</configuration>

Module removalModule removal

project immediately.

If an IIS module is configured at the server level that must be disabled for an app, an addition to the app's

web.config file can disable the module. Either leave the module in place and deactivate it using a configuration

setting (if available) or remove the module from the app.

Many modules offer a configuration setting that allows them to be disabled without removing the module

from the app. This is the simplest and quickest way to deactivate a module. For example, the HTTP Redirection

Module can be disabled with the <httpRedirect>  element in web.config:

For more information on disabling modules with configuration settings, follow the links in the Child Elements

section of IIS <system.webServer>.

If opting to remove a module with a setting in web.config, unlock the module and unlock the <modules>

section of web.config first:

<configuration>
 <system.webServer>
   <modules>
     <remove name="MODULE_NAME" />
   </modules>
 </system.webServer>
</configuration>

1. Unlock the module at the server level. Select the IIS server in the IIS Manager ConnectionsConnections  sidebar.

Open the ModulesModules  in the IISIIS  area. Select the module in the list. In the ActionsActions  sidebar on the right,

select UnlockUnlock . If the action entry for the module appears as LockLock , the module is already unlocked, and

no action is required. Unlock as many modules as you plan to remove from web.config later.

2. Deploy the app without a <modules>  section in web.config. If an app is deployed with a web.config

containing the <modules>  section without having unlocked the section first in the IIS Manager, the

Configuration Manager throws an exception when attempting to unlock the section. Therefore, deploy

the app without a <modules>  section.

3. Unlock the <modules>  section of web.config. In the ConnectionsConnections  sidebar, select the website in S itesSites . In

the ManagementManagement area, open the Configuration EditorConfiguration Editor . Use the navigation controls to select the 

system.webServer/modules  section. In the ActionsActions  sidebar on the right, select to UnlockUnlock the section. If

the action entry for the module section appears as Lock SectionLock Section, the module section is already

unlocked, and no action is required.

4. Add a <modules>  section to the app's local web.config file with a <remove>  element to remove the

module from the app. Add multiple <remove>  elements to remove multiple modules. If web.config

changes are made on the server, immediately make the same changes to the project's web.config file

locally. Removing a module using this approach doesn't affect the use of the module with other apps on

the server.

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/


Appcmd.exe delete module MODULE_NAME /app.name:APPLICATION_NAME

%windir%\system32\inetsrv\appcmd.exe delete module DynamicCompressionModule /app.name:"Default Web Site"

Minimum module configuration

Additional resources

In order to add or remove modules for IIS Express using web.config, modify applicationHost.config to unlock

the <modules>  section:

<section name="modules"
         allowDefinition="MachineToApplication"
         overrideModeDefault="Allow" />

<add name="CgiModule" lockItem="false" />

1. Open {APPLICATION ROOT}\.vs\config\applicationhost.config.

2. Locate the <section>  element for IIS modules and change overrideModeDefault  from Deny  to Allow :

3. Locate the <location path="" overrideMode="Allow"><system.webServer><modules>  section. For any

modules that you wish to remove, set lockItem  from true  to false . In the following example, the CGI

Module is unlocked:

4. After the <modules>  section and individual modules are unlocked, you're free to add or remove IIS

modules using the app's web.config file for running the app on IIS Express.

An IIS module can also be removed with Appcmd.exe. Provide the MODULE_NAME  and APPLICATION_NAME  in the

command:

For example, remove the DynamicCompressionModule  from the Default Web Site:

The only modules required to run an ASP.NET Core app are the Anonymous Authentication Module and the

ASP.NET Core Module.

The URI Caching Module ( UriCacheModule ) allows IIS to cache website configuration at the URL level. Without

this module, IIS must read and parse configuration on every request, even when the same URL is repeatedly

requested. Parsing the configuration every request results in a significant performance penalty. Although the

URI Caching Module isn't strictly required for a hosted ASP.NET Core app to run, we recommend that the URI

Caching Module be enabled for all ASP.NET Core deployments.

The HTTP Caching Module ( HttpCacheModule ) implements the IIS output cache and also the logic for caching

items in the HTTP.sys cache. Without this module, content is no longer cached in kernel mode, and cache

profiles are ignored. Removing the HTTP Caching Module usually has adverse effects on performance and

resource usage. Although the HTTP Caching Module isn't strictly required for a hosted ASP.NET Core app to

run, we recommend that the HTTP Caching Module be enabled for all ASP.NET Core deployments.

Introduction to IIS Architectures: Modules in IIS

IIS Modules Overview

Customizing IIS 7.0 Roles and Modules

IIS <system.webServer>

https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/introduction-to-iis-architecture#modules-in-iis
https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/iis-modules-overview
https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc627313(v=technet.10)
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/




               

Troubleshoot ASP.NET Core on Azure App
Service and IIS
9/22/2020 • 59 minutes to read • Edit Online

App startup errors

403.14 Forbidden403.14 Forbidden

The Web server is configured to not list the contents of this directory.

By Justin Kotalik

This article provides information on common app startup errors and instructions on how to

diagnose errors when an app is deployed to Azure App Service or IIS:

App startup errors

Explains common startup HTTP status code scenarios.

Troubleshoot on Azure App Service

Provides troubleshooting advice for apps deployed to Azure App Service.

Troubleshoot on IIS

Provides troubleshooting advice for apps deployed to IIS or running on IIS Express locally. The

guidance applies to both Windows Server and Windows desktop deployments.

Clear package caches

Explains what to do when incoherent packages break an app when performing major upgrades or

changing package versions.

Additional resources

Lists additional troubleshooting topics.

In Visual Studio, an ASP.NET Core project defaults to IIS Express hosting during debugging. A 502.5 -

Process Failure or a 500.30 - Start Failure that occurs when debugging locally can be diagnosed

using the advice in this topic.

The app fails to start. The following error is logged:

The error is usually caused by a broken deployment on the hosting system, which includes any of the

following scenarios:

The app is deployed to the wrong folder on the hosting system.

The deployment process failed to move all of the app's files and folders to the deployment folder

on the hosting system.

The web.config file is missing from the deployment, or the web.config file contents are

malformed.

Perform the following steps:

1. Delete all of the files and folders from the deployment folder on the hosting system.

2. Redeploy the contents of the app's publish folder to the hosting system using your normal

method of deployment, such as Visual Studio, PowerShell, or manual deployment:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis.md
https://github.com/jkotalik
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview


500 Internal Server Error500 Internal Server Error

500.0 In-Process Handler Load Failure500.0 In-Process Handler Load Failure

500.30 In-Process Startup Failure500.30 In-Process Startup Failure

500.31 ANCM Failed to Find Native Dependencies500.31 ANCM Failed to Find Native Dependencies

3. Confirm that all of the app's files and folders are deployed by comparing the deployment on the

hosting system to the contents of the project's publish folder.

Confirm that the web.config file is present in the deployment and that its contents are

correct.

When hosting on Azure App Service, confirm that the app is deployed to the 

D:\home\site\wwwroot  folder.

When the app is hosted by IIS, confirm that the app is deployed to the IIS Physical pathPhysical path

shown in IIS  ManagerIIS  Manager 's Basic SettingsBasic Settings .

For more information on the layout of a published ASP.NET Core app, see ASP.NET Core directory

structure. For more information on the web.config file, see ASP.NET Core Module.

The app starts, but an error prevents the server from fulfilling the request.

This error occurs within the app's code during startup or while creating a response. The response

may contain no content, or the response may appear as a 500 Internal Server Error in the browser.

The Application Event Log usually states that the app started normally. From the server's perspective,

that's correct. The app did start, but it can't generate a valid response. Run the app at a command

prompt on the server or enable the ASP.NET Core Module stdout log to troubleshoot the problem.

The worker process fails. The app doesn't start.

An unknown error occurred loading ASP.NET Core Module components. Take one of the following

actions:

Contact Microsoft Support (select Developer ToolsDeveloper Tools  then ASP.NET CoreASP.NET Core).

Ask a question on Stack Overflow.

File an issue on our GitHub repository.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the .NET Core CLR in-process, but it fails to start. The

cause of a process startup failure can usually be determined from entries in the Application Event

Log and the ASP.NET Core Module stdout log.

Common failure conditions:

The app is misconfigured due to targeting a version of the ASP.NET Core shared framework that

isn't present. Check which versions of the ASP.NET Core shared framework are installed on the

target machine.

Using Azure Key Vault, lack of permissions to the Key Vault. Check the access policies in the

targeted Key Vault to ensure that the correct permissions are granted.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the .NET Core runtime in-process, but it fails to start. The

most common cause of this startup failure is when the Microsoft.NETCore.App  or 

Microsoft.AspNetCore.App  runtime isn't installed. If the app is deployed to target ASP.NET Core 3.0

and that version doesn't exist on the machine, this error occurs. An example error message follows:

https://support.microsoft.com/oas/default.aspx?prid=15832
https://github.com/dotnet/AspNetCore


The specified framework 'Microsoft.NETCore.App', version '3.0.0' was not found.
  - The following frameworks were found:
      2.2.1 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview5-27626-15 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview6-27713-13 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview6-27714-15 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]
      3.0.0-preview6-27723-08 at [C:\Program Files\dotnet\x64\shared\Microsoft.NETCore.App]

500.32 ANCM Failed to Load dll500.32 ANCM Failed to Load dll

500.33 ANCM Request Handler Load Failure500.33 ANCM Request Handler Load Failure

500.34 ANCM Mixed Hosting Models Not Supported500.34 ANCM Mixed Hosting Models Not Supported

500.35 ANCM Multiple In-Process Applications in same Process500.35 ANCM Multiple In-Process Applications in same Process

500.36 ANCM Out-Of-Process Handler Load Failure500.36 ANCM Out-Of-Process Handler Load Failure

500.37 ANCM Failed to Start Within Startup Time Limit500.37 ANCM Failed to Start Within Startup Time Limit

The error message lists all the installed .NET Core versions and the version requested by the app. To

fix this error, either :

Install the appropriate version of .NET Core on the machine.

Change the app to target a version of .NET Core that's present on the machine.

Publish the app as a self-contained deployment.

When running in development (the ASPNETCORE_ENVIRONMENT  environment variable is set to 

Development ), the specific error is written to the HTTP response. The cause of a process startup

failure is also found in the Application Event Log.

The worker process fails. The app doesn't start.

The most common cause for this error is that the app is published for an incompatible processor

architecture. If the worker process is running as a 32-bit app and the app was published to target 64-

bit, this error occurs.

To fix this error, either :

Republish the app for the same processor architecture as the worker process.

Publish the app as a framework-dependent deployment.

The worker process fails. The app doesn't start.

The app didn't reference the Microsoft.AspNetCore.App  framework. Only apps targeting the 

Microsoft.AspNetCore.App  framework can be hosted by the ASP.NET Core Module.

To fix this error, confirm that the app is targeting the Microsoft.AspNetCore.App  framework. Check

the .runtimeconfig.json  to verify the framework targeted by the app.

The worker process can't run both an in-process app and an out-of-process app in the same process.

To fix this error, run apps in separate IIS application pools.

The worker process can't run multiple in-process apps in the same process.

To fix this error, run apps in separate IIS application pools.

The out-of-process request handler, aspnetcorev2_outofprocess.dll, isn't next to the aspnetcorev2.dll

file. This indicates a corrupted installation of the ASP.NET Core Module.

To fix this error, repair the installation of the .NET Core Hosting Bundle (for IIS) or Visual Studio (for

IIS Express).

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-executables-fde


500.38 ANCM Application DLL Not Found500.38 ANCM Application DLL Not Found

502.5 Process Failure502.5 Process Failure

Failed to start application (ErrorCode '0x800700c1')Failed to start application (ErrorCode '0x800700c1')

EventID: 1010
Source: IIS AspNetCore Module V2
Failed to start application '/LM/W3SVC/6/ROOT/', ErrorCode '0x800700c1'.

ANCM failed to start within the provided startup time limit. By default, the timeout is 120 seconds.

This error can occur when starting a large number of apps on the same machine. Check for

CPU/Memory usage spikes on the server during startup. You may need to stagger the startup

process of multiple apps.

ANCM failed to locate the application DLL, which should be next to the executable.

This error occurs when hosting an app packaged as a single-file executable using the in-process

hosting model. The in-process model requires that the ANCM load the .NET Core app into the

existing IIS process. This scenario isn't supported by the single-file deployment model. Use oneone of

the following approaches in the app's project file to fix this error :

1. Disable single-file publishing by setting the PublishSingleFile  MSBuild property to false .

2. Switch to the out-of-process hosting model by setting the AspNetCoreHostingModel  MSBuild

property to OutOfProcess .

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. The cause of a

process startup failure can usually be determined from entries in the Application Event Log and the

ASP.NET Core Module stdout log.

A common failure condition is the app is misconfigured due to targeting a version of the ASP.NET

Core shared framework that isn't present. Check which versions of the ASP.NET Core shared

framework are installed on the target machine. The shared framework is the set of assemblies (.dll

files) that are installed on the machine and referenced by a metapackage such as 

Microsoft.AspNetCore.App . The metapackage reference can specify a minimum required version. For

more information, see The shared framework.

The 502.5 Process Failure error page is returned when a hosting or app misconfiguration causes the

worker process to fail:

The app failed to start because the app's assembly (.dll) couldn't be loaded.

This error occurs when there's a bitness mismatch between the published app and the

w3wp/iisexpress process.

Confirm that the app pool's 32-bit setting is correct:

1. Select the app pool in IIS Manager's Application PoolsApplication Pools .

2. Select Advanced SettingsAdvanced Settings  under Edit Application PoolEdit Application Pool  in the ActionsActions  panel.

3. Set Enable 32-Bit ApplicationsEnable 32-Bit Applications :

If deploying a 32-bit (x86) app, set the value to True .

If deploying a 64-bit (x64) app, set the value to False .

Confirm that there isn't a conflict between a <Platform>  MSBuild property in the project file and the

published bitness of the app.

https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0#single-file-executables
https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/


               

Connection resetConnection reset

Default startup limitsDefault startup limits

Troubleshoot on Azure App Service

IMPORTANTIMPORTANT

Application Event Log (Azure App Service)Application Event Log (Azure App Service)

Run the app in the Kudu consoleRun the app in the Kudu console

Test a 32-bit (x86) appTest a 32-bit (x86) app

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal500 Internal

Ser ver ErrorSer ver Error  when an error occurs. This often happens when an error occurs during the

serialization of complex objects for a response. This type of error appears as a connection reset error

on the client. Application logging can help troubleshoot these types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at

the default value, an app may take up to two minutes to start before the module logs a process

failure. For information on configuring the module, see Attributes of the aspNetCore element.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an

ASP.NET Core preview release, see Deploy ASP.NET Core preview release to Azure App Service.

To access the Application Event Log, use the Diagnose and solve problemsDiagnose and solve problems blade in the Azure

portal:

1. In the Azure portal, open the app in App Ser vicesApp Ser vices .

2. Select Diagnose and solve problemsDiagnose and solve problems .

3. Select the Diagnostic ToolsDiagnostic Tools  heading.

4. Under Suppor t ToolsSuppor t Tools , select the Application EventsApplication Events  button.

5. Examine the latest error provided by the IIS AspNetCoreModule or IIS AspNetCoreModule V2

entry in the SourceSource column.

An alternative to using the Diagnose and solve problemsDiagnose and solve problems blade is to examine the Application

Event Log file directly using Kudu:

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the LogFilesLogFiles  folder.

4. Select the pencil icon next to the eventlog.xml file.

5. Examine the log. Scroll to the bottom of the log to see the most recent events.

Many startup errors don't produce useful information in the Application Event Log. You can run the

app in the Kudu Remote Execution Console to discover the error :

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

Current releaseCurrent release

1. cd d:\home\site\wwwroot

2. Run the app:

https://github.com/projectkudu/kudu/wiki
https://github.com/projectkudu/kudu/wiki


Test a 64-bit (x64) appTest a 64-bit (x64) app

ASP.NET Core Module stdout log (Azure App Service)ASP.NET Core Module stdout log (Azure App Service)

WARNINGWARNING

dotnet .\{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

If the app is a framework-dependent deployment:

If the app is a self-contained deployment:

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x86) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x32  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Current releaseCurrent release

If the app is a 64-bit (x64) framework-dependent deployment:

If the app is a self-contained deployment:

1. cd D:\Program Files\dotnet

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

1. cd D:\home\site\wwwroot

2. Run the app: {ASSEMBLY NAME}.exe

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x64) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x64  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the

number of log files created. Only use stdout logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and

rotates logs. For more information, see third-party logging providers.

The ASP.NET Core Module stdout log often records useful error messages not found in the

Application Event Log. To enable and view stdout logs:

1. In the Azure Portal, navigate to the web app.

2. In the App Ser viceApp Ser vice blade, enter kudukudu in the search box.

3. Select Advanced ToolsAdvanced Tools  > GoGo.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


ASP.NET Core Module debug log (Azure App Service)ASP.NET Core Module debug log (Azure App Service)

WARNINGWARNING

Slow or hanging app (Azure App Service)Slow or hanging app (Azure App Service)

4. Select Debug console > CMDDebug console > CMD.

5. Navigate to site/wwwroot

6. Select the pencil icon to edit the web.config file.

7. In the <aspNetCore />  element, set stdoutLogEnabled="true"  and select SaveSave.

Disable stdout logging when troubleshooting is complete by setting stdoutLogEnabled="false" .

For more information, see ASP.NET Core Module.

The ASP.NET Core Module debug log provides additional, deeper logging from the ASP.NET Core

Module. To enable and view stdout logs:

1. To enable the enhanced diagnostic log, perform either of the following:

2. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

3. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

4. Open the folders to the path sitesite > wwwrootwwwroot. If you didn't supply a path for the aspnetcore-

debug.log file, the file appears in the list. If you supplied a path, navigate to the location of the log

file.

5. Open the log file with the pencil button next to the file name.

Follow the instructions in Enhanced diagnostic logs to configure the app for an enhanced

diagnostic logging. Redeploy the app.

Add the <handlerSettings>  shown in Enhanced diagnostic logs to the live app's web.config

file using the Kudu console:

a. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button.

The Kudu console opens in a new browser tab or window.

b. Using the navigation bar at the top of the page, open Debug consoleDebug console and select

CMDCMD.

c. Open the folders to the path sitesite > wwwrootwwwroot. Edit the web.config file by selecting

the pencil button. Add the <handlerSettings>  section as shown in Enhanced

diagnostic logs. Select the SaveSave button.

Disable debug logging when troubleshooting is complete:

To disable the enhanced debug log, perform either of the following:

Remove the <handlerSettings>  from the web.config file locally and redeploy the app.

Use the Kudu console to edit the web.config file and remove the <handlerSettings>  section. Save

the file.

For more information, see ASP.NET Core Module.

Failure to disable the debug log can lead to app or server failure. There's no limit on log file size. Only use

debug logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and

rotates logs. For more information, see third-party logging providers.

When an app responds slowly or hangs on a request, see the following articles:



Monitoring bladesMonitoring blades

Troubleshoot slow web app performance issues in Azure App Service

Use Crash Diagnoser Site Extension to Capture Dump for Intermittent Exception issues or

performance issues on Azure Web App

Monitoring blades provide an alternative troubleshooting experience to the methods described

earlier in the topic. These blades can be used to diagnose 500-series errors.

Confirm that the ASP.NET Core Extensions are installed. If the extensions aren't installed, install them

manually:

1. In the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  blade section, select the ExtensionsExtensions  blade.

2. The ASP.NET Core ExtensionsASP.NET Core Extensions  should appear in the list.

3. If the extensions aren't installed, select the AddAdd button.

4. Choose the ASP.NET Core ExtensionsASP.NET Core Extensions  from the list.

5. Select OKOK to accept the legal terms.

6. Select OKOK on the Add extensionAdd extension blade.

7. An informational pop-up message indicates when the extensions are successfully installed.

If stdout logging isn't enabled, follow these steps:

1. In the Azure portal, select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select

the Go→Go→ button. The Kudu console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the folders to the path sitesite > wwwrootwwwroot and scroll down to reveal the web.config file at the

bottom of the list.

4. Click the pencil icon next to the web.config file.

5. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: 

\\?\%home%\LogFiles\stdout .

6. Select SaveSave to save the updated web.config file.

Proceed to activate diagnostic logging:

1. In the Azure portal, select the Diagnostics logsDiagnostics logs  blade.

2. Select the OnOn switch for Application Logging (Filesystem)Application Logging (Filesystem)  and Detailed error messagesDetailed error messages .

Select the SaveSave button at the top of the blade.

3. To include failed request tracing, also known as Failed Request Event Buffering (FREB) logging,

select the OnOn switch for Failed request tracingFailed request tracing.

4. Select the Log streamLog stream blade, which is listed immediately under the Diagnostics logsDiagnostics logs  blade in

the portal.

5. Make a request to the app.

6. Within the log stream data, the cause of the error is indicated.

Be sure to disable stdout logging when troubleshooting is complete.

To view the failed request tracing logs (FREB logs):

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Select Failed Request Tracing LogsFailed Request Tracing Logs  from the SUPPORT TOOLSSUPPORT TOOLS  area of the sidebar.

See Failed request traces section of the Enable diagnostics logging for web apps in Azure App

Service topic and the Application performance FAQs for Web Apps in Azure: How do I turn on failed

request tracing? for more information.

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://blogs.msdn.microsoft.com/asiatech/2015/12/28/use-crash-diagnoser-site-extension-to-capture-dump-for-intermittent-exception-issues-or-performance-issues-on-azure-web-app/
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#failed-request-traces
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq#how-do-i-turn-on-failed-request-tracing


               

WARNINGWARNING

Troubleshoot on IIS
Application Event Log (IIS)Application Event Log (IIS)

Run the app at a command promptRun the app at a command prompt

Framework-dependent deploymentFramework-dependent deployment

Self-contained deploymentSelf-contained deployment

ASP.NET Core Module stdout log (IIS)ASP.NET Core Module stdout log (IIS)

For more information, see Enable diagnostics logging for web apps in Azure App Service.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the

number of log files created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

Access the Application Event Log:

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app. Errors have a value of IIS AspNetCore Module or

IIS Express AspNetCore Module in the Source column.

Many startup errors don't produce useful information in the Application Event Log. You can find the

cause of some errors by running the app at a command prompt on the hosting system.

If the app is a framework-dependent deployment:

1. At a command prompt, navigate to the deployment folder and run the app by executing the app's

assembly with dotnet.exe. In the following command, substitute the name of the app's assembly

for <assembly_name>: dotnet .\<assembly_name>.dll .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where

Kestrel listens. Using the default host and post, make a request to http://localhost:5000/ . If the

app responds normally at the Kestrel endpoint address, the problem is more likely related to the

hosting configuration and less likely within the app.

If the app is a self-contained deployment:

1. At a command prompt, navigate to the deployment folder and run the app's executable. In the

following command, substitute the name of the app's assembly for <assembly_name>: 

<assembly_name>.exe .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where

Kestrel listens. Using the default host and post, make a request to http://localhost:5000/ . If the

app responds normally at the Kestrel endpoint address, the problem is more likely related to the

hosting configuration and less likely within the app.

To enable and view stdout logs:

1. Navigate to the site's deployment folder on the hosting system.

2. If the logs folder isn't present, create the folder. For instructions on how to enable MSBuild to

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

ASP.NET Core Module debug log (IIS)ASP.NET Core Module debug log (IIS)

<aspNetCore ...>
  <handlerSettings>
    <handlerSetting name="debugLevel" value="file" />
    <handlerSetting name="debugFile" value="c:\temp\ancm.log" />
  </handlerSettings>
</aspNetCore>

Enable the Developer Exception PageEnable the Developer Exception Page

create the logs folder in the deployment automatically, see the Directory structure topic.

3. Edit the web.config file. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to

point to the logs folder (for example, .\logs\stdout ). stdout  in the path is the log file name

prefix. A timestamp, process id, and file extension are added automatically when the log is

created. Using stdout  as the file name prefix, a typical log file is named

stdout_20180205184032_5412.log.

4. Ensure your application pool's identity has write permissions to the logs folder.

5. Save the updated web.config file.

6. Make a request to the app.

7. Navigate to the logs folder. Find and open the most recent stdout log.

8. Study the log for errors.

Disable stdout logging when troubleshooting is complete:

1. Edit the web.config file.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Save the file.

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the

number of log files created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

Add the following handler settings to the app's web.config file to enable ASP.NET Core Module debug

log:

Confirm that the path specified for the log exists and that the app pool's identity has write

permissions to the location.

For more information, see ASP.NET Core Module.

The ASPNETCORE_ENVIRONMENT  environment variable can be added to web.config to run the app in the

Development environment. As long as the environment isn't overridden in app startup by 

UseEnvironment  on the host builder, setting the environment variable allows the Developer Exception

Page to appear when the app is run.



<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout"
      hostingModel="InProcess">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
  </environmentVariables>
</aspNetCore>

Obtain data from an appObtain data from an app

Slow or hanging app (IIS)Slow or hanging app (IIS)

App crashes or encounters an exceptionApp crashes or encounters an exception

Setting the environment variable for ASPNETCORE_ENVIRONMENT  is only recommended for use on

staging and testing servers that aren't exposed to the Internet. Remove the environment variable

from the web.config file after troubleshooting. For information on setting environment variables in

web.config, see environmentVariables child element of aspNetCore.

If an app is capable of responding to requests, obtain request, connection, and additional data from

the app using terminal inline middleware. For more information and sample code, see Troubleshoot

and debug ASP.NET Core projects.

A crash dump is a snapshot of the system's memory and can help determine the cause of an app

crash, startup failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

1. Create a folder to hold crash dump files at c:\dumps . The app pool must have write access to

the folder.

2. Run the EnableDumps PowerShell script:

.\EnableDumps w3wp.exe c:\dumps

.\EnableDumps dotnet.exe c:\dumps

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

.\DisableDumps w3wp.exe

.\DisableDumps dotnet.exe

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The

PowerShell script configures WER to collect up to five dumps per app.

https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/EnableDumps.ps1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/DisableDumps.ps1


               

               

WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Clear package caches

Additional resources

Azure documentationAzure documentation

Visual Studio documentationVisual Studio documentation

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see

User-Mode Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-

Mode Dump File.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the

development machine or changing package versions within the app. In some cases, incoherent

packages may break an app when performing major upgrades. Most of these issues can be fixed by

following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the

command nuget locals all -clear . nuget.exe isn't a bundled install with the Windows

desktop operating system and must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

Troubleshoot and debug ASP.NET Core projects

Common errors reference for Azure App Service and IIS with ASP.NET Core

Handle errors in ASP.NET Core

ASP.NET Core Module

Application Insights for ASP.NET Core

Remote debugging web apps section of Troubleshoot a web app in Azure App Service using

Visual Studio

Azure App Service diagnostics overview

How to: Monitor Apps in Azure App Service

Troubleshoot a web app in Azure App Service using Visual Studio

Troubleshoot HTTP errors of "502 bad gateway" and "503 service unavailable" in your Azure web

apps

Troubleshoot slow web app performance issues in Azure App Service

Application performance FAQs for Web Apps in Azure

Azure Web App sandbox (App Service runtime execution limitations)

Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

Remote Debug ASP.NET Core on IIS in Azure in Visual Studio 2017

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/en-us/azure/app-service/app-service-diagnostics
https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-http-502-http-503
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-azure


Visual Studio Code documentationVisual Studio Code documentation

App startup errors

403.14 Forbidden403.14 Forbidden

The Web server is configured to not list the contents of this directory.

Remote Debug ASP.NET Core on a Remote IIS Computer in Visual Studio 2017

Learn to debug using Visual Studio

Debugging with Visual Studio Code

This article provides information on common app startup errors and instructions on how to

diagnose errors when an app is deployed to Azure App Service or IIS:

App startup errors

Explains common startup HTTP status code scenarios.

Troubleshoot on Azure App Service

Provides troubleshooting advice for apps deployed to Azure App Service.

Troubleshoot on IIS

Provides troubleshooting advice for apps deployed to IIS or running on IIS Express locally. The

guidance applies to both Windows Server and Windows desktop deployments.

Clear package caches

Explains what to do when incoherent packages break an app when performing major upgrades or

changing package versions.

Additional resources

Lists additional troubleshooting topics.

In Visual Studio, an ASP.NET Core project defaults to IIS Express hosting during debugging. A 502.5 -

Process Failure or a 500.30 - Start Failure that occurs when debugging locally can be diagnosed

using the advice in this topic.

The app fails to start. The following error is logged:

The error is usually caused by a broken deployment on the hosting system, which includes any of the

following scenarios:

The app is deployed to the wrong folder on the hosting system.

The deployment process failed to move all of the app's files and folders to the deployment folder

on the hosting system.

The web.config file is missing from the deployment, or the web.config file contents are

malformed.

Perform the following steps:

1. Delete all of the files and folders from the deployment folder on the hosting system.

2. Redeploy the contents of the app's publish folder to the hosting system using your normal

method of deployment, such as Visual Studio, PowerShell, or manual deployment:

Confirm that the web.config file is present in the deployment and that its contents are

correct.

When hosting on Azure App Service, confirm that the app is deployed to the 

D:\home\site\wwwroot  folder.

https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-aspnet-on-a-remote-iis-computer
https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger
https://code.visualstudio.com/docs/editor/debugging
https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview


500 Internal Server Error500 Internal Server Error

500.0 In-Process Handler Load Failure500.0 In-Process Handler Load Failure

500.0 Out-Of-Process Handler Load Failure500.0 Out-Of-Process Handler Load Failure

502.5 Process Failure502.5 Process Failure

Failed to start application (ErrorCode '0x800700c1')Failed to start application (ErrorCode '0x800700c1')

EventID: 1010
Source: IIS AspNetCore Module V2
Failed to start application '/LM/W3SVC/6/ROOT/', ErrorCode '0x800700c1'.

3. Confirm that all of the app's files and folders are deployed by comparing the deployment on the

hosting system to the contents of the project's publish folder.

When the app is hosted by IIS, confirm that the app is deployed to the IIS Physical pathPhysical path

shown in IIS  ManagerIIS  Manager 's Basic SettingsBasic Settings .

For more information on the layout of a published ASP.NET Core app, see ASP.NET Core directory

structure. For more information on the web.config file, see ASP.NET Core Module.

The app starts, but an error prevents the server from fulfilling the request.

This error occurs within the app's code during startup or while creating a response. The response

may contain no content, or the response may appear as a 500 Internal Server Error in the browser.

The Application Event Log usually states that the app started normally. From the server's perspective,

that's correct. The app did start, but it can't generate a valid response. Run the app at a command

prompt on the server or enable the ASP.NET Core Module stdout log to troubleshoot the problem.

The worker process fails. The app doesn't start.

The ASP.NET Core Module fails to find the .NET Core CLR and find the in-process request handler

(aspnetcorev2_inprocess.dll). Check that:

The app targets either the Microsoft.AspNetCore.Server.IIS NuGet package or the

Microsoft.AspNetCore.App metapackage.

The version of the ASP.NET Core shared framework that the app targets is installed on the target

machine.

The worker process fails. The app doesn't start.

The ASP.NET Core Module fails to find the out-of-process hosting request handler. Make sure the

aspnetcorev2_outofprocess.dll is present in a subfolder next to aspnetcorev2.dll.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. The cause of a

process startup failure can usually be determined from entries in the Application Event Log and the

ASP.NET Core Module stdout log.

A common failure condition is the app is misconfigured due to targeting a version of the ASP.NET

Core shared framework that isn't present. Check which versions of the ASP.NET Core shared

framework are installed on the target machine. The shared framework is the set of assemblies (.dll

files) that are installed on the machine and referenced by a metapackage such as 

Microsoft.AspNetCore.App . The metapackage reference can specify a minimum required version. For

more information, see The shared framework.

The 502.5 Process Failure error page is returned when a hosting or app misconfiguration causes the

worker process to fail:

https://www.nuget.org/packages/Microsoft.AspNetCore.Server.IIS
https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/


Connection resetConnection reset

Default startup limitsDefault startup limits

Troubleshoot on Azure App Service

IMPORTANTIMPORTANT

Application Event Log (Azure App Service)Application Event Log (Azure App Service)

The app failed to start because the app's assembly (.dll) couldn't be loaded.

This error occurs when there's a bitness mismatch between the published app and the

w3wp/iisexpress process.

Confirm that the app pool's 32-bit setting is correct:

1. Select the app pool in IIS Manager's Application PoolsApplication Pools .

2. Select Advanced SettingsAdvanced Settings  under Edit Application PoolEdit Application Pool  in the ActionsActions  panel.

3. Set Enable 32-Bit ApplicationsEnable 32-Bit Applications :

If deploying a 32-bit (x86) app, set the value to True .

If deploying a 64-bit (x64) app, set the value to False .

Confirm that there isn't a conflict between a <Platform>  MSBuild property in the project file and the

published bitness of the app.

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal500 Internal

Ser ver ErrorSer ver Error  when an error occurs. This often happens when an error occurs during the

serialization of complex objects for a response. This type of error appears as a connection reset error

on the client. Application logging can help troubleshoot these types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at

the default value, an app may take up to two minutes to start before the module logs a process

failure. For information on configuring the module, see Attributes of the aspNetCore element.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an

ASP.NET Core preview release, see Deploy ASP.NET Core preview release to Azure App Service.

To access the Application Event Log, use the Diagnose and solve problemsDiagnose and solve problems blade in the Azure

portal:

1. In the Azure portal, open the app in App Ser vicesApp Ser vices .

2. Select Diagnose and solve problemsDiagnose and solve problems .

3. Select the Diagnostic ToolsDiagnostic Tools  heading.

4. Under Suppor t ToolsSuppor t Tools , select the Application EventsApplication Events  button.

5. Examine the latest error provided by the IIS AspNetCoreModule or IIS AspNetCoreModule V2

entry in the SourceSource column.

An alternative to using the Diagnose and solve problemsDiagnose and solve problems blade is to examine the Application

Event Log file directly using Kudu:

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the LogFilesLogFiles  folder.

https://github.com/projectkudu/kudu/wiki


Run the app in the Kudu consoleRun the app in the Kudu console

Test a 32-bit (x86) appTest a 32-bit (x86) app

Test a 64-bit (x64) appTest a 64-bit (x64) app

4. Select the pencil icon next to the eventlog.xml file.

5. Examine the log. Scroll to the bottom of the log to see the most recent events.

Many startup errors don't produce useful information in the Application Event Log. You can run the

app in the Kudu Remote Execution Console to discover the error :

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

Current releaseCurrent release

1. cd d:\home\site\wwwroot

2. Run the app:

dotnet .\{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

If the app is a framework-dependent deployment:

If the app is a self-contained deployment:

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x86) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x32  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Current releaseCurrent release

If the app is a 64-bit (x64) framework-dependent deployment:

If the app is a self-contained deployment:

1. cd D:\Program Files\dotnet

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

1. cd D:\home\site\wwwroot

2. Run the app: {ASSEMBLY NAME}.exe

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x64) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x64  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


ASP.NET Core Module stdout log (Azure App Service)ASP.NET Core Module stdout log (Azure App Service)

WARNINGWARNING

ASP.NET Core Module debug log (Azure App Service)ASP.NET Core Module debug log (Azure App Service)

The ASP.NET Core Module stdout log often records useful error messages not found in the

Application Event Log. To enable and view stdout logs:

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Under SELECT PROBLEM CATEGORYSELECT PROBLEM CATEGORY, select the Web App DownWeb App Down button.

3. Under Suggested SolutionsSuggested Solutions  > Enable Stdout Log RedirectionEnable Stdout Log Redirection, select the button to OpenOpen

Kudu Console to edit Web.ConfigKudu Console to edit Web.Config.

4. In the Kudu Diagnostic ConsoleDiagnostic Console, open the folders to the path sitesite > wwwrootwwwroot. Scroll down to

reveal the web.config file at the bottom of the list.

5. Click the pencil icon next to the web.config file.

6. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: 

\\?\%home%\LogFiles\stdout .

7. Select SaveSave to save the updated web.config file.

8. Make a request to the app.

9. Return to the Azure portal. Select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS

area. Select the Go→Go→ button. The Kudu console opens in a new browser tab or window.

10. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

11. Select the LogFilesLogFiles  folder.

12. Inspect the ModifiedModified column and select the pencil icon to edit the stdout log with the latest

modification date.

13. When the log file opens, the error is displayed.

Disable stdout logging when troubleshooting is complete:

1. In the Kudu Diagnostic ConsoleDiagnostic Console, return to the path sitesite > wwwrootwwwroot to reveal the web.config

file. Open the web.configweb.config file again by selecting the pencil icon.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Select SaveSave to save the file.

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the

number of log files created. Only use stdout logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and

rotates logs. For more information, see third-party logging providers.

The ASP.NET Core Module debug log provides additional, deeper logging from the ASP.NET Core

Module. To enable and view stdout logs:

1. To enable the enhanced diagnostic log, perform either of the following:

Follow the instructions in Enhanced diagnostic logs to configure the app for an enhanced

diagnostic logging. Redeploy the app.

Add the <handlerSettings>  shown in Enhanced diagnostic logs to the live app's web.config

file using the Kudu console:

a. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button.

The Kudu console opens in a new browser tab or window.

b. Using the navigation bar at the top of the page, open Debug consoleDebug console and select



WARNINGWARNING

Slow or hanging app (Azure App Service)Slow or hanging app (Azure App Service)

Monitoring bladesMonitoring blades

2. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

3. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

4. Open the folders to the path sitesite > wwwrootwwwroot. If you didn't supply a path for the aspnetcore-

debug.log file, the file appears in the list. If you supplied a path, navigate to the location of the log

file.

5. Open the log file with the pencil button next to the file name.

CMDCMD.

c. Open the folders to the path sitesite > wwwrootwwwroot. Edit the web.config file by selecting

the pencil button. Add the <handlerSettings>  section as shown in Enhanced

diagnostic logs. Select the SaveSave button.

Disable debug logging when troubleshooting is complete:

To disable the enhanced debug log, perform either of the following:

Remove the <handlerSettings>  from the web.config file locally and redeploy the app.

Use the Kudu console to edit the web.config file and remove the <handlerSettings>  section. Save

the file.

For more information, see ASP.NET Core Module.

Failure to disable the debug log can lead to app or server failure. There's no limit on log file size. Only use

debug logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and

rotates logs. For more information, see third-party logging providers.

When an app responds slowly or hangs on a request, see the following articles:

Troubleshoot slow web app performance issues in Azure App Service

Use Crash Diagnoser Site Extension to Capture Dump for Intermittent Exception issues or

performance issues on Azure Web App

Monitoring blades provide an alternative troubleshooting experience to the methods described

earlier in the topic. These blades can be used to diagnose 500-series errors.

Confirm that the ASP.NET Core Extensions are installed. If the extensions aren't installed, install them

manually:

1. In the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  blade section, select the ExtensionsExtensions  blade.

2. The ASP.NET Core ExtensionsASP.NET Core Extensions  should appear in the list.

3. If the extensions aren't installed, select the AddAdd button.

4. Choose the ASP.NET Core ExtensionsASP.NET Core Extensions  from the list.

5. Select OKOK to accept the legal terms.

6. Select OKOK on the Add extensionAdd extension blade.

7. An informational pop-up message indicates when the extensions are successfully installed.

If stdout logging isn't enabled, follow these steps:

1. In the Azure portal, select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://blogs.msdn.microsoft.com/asiatech/2015/12/28/use-crash-diagnoser-site-extension-to-capture-dump-for-intermittent-exception-issues-or-performance-issues-on-azure-web-app/


WARNINGWARNING

Troubleshoot on IIS
Application Event Log (IIS)Application Event Log (IIS)

Run the app at a command promptRun the app at a command prompt

the Go→Go→ button. The Kudu console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the folders to the path sitesite > wwwrootwwwroot and scroll down to reveal the web.config file at the

bottom of the list.

4. Click the pencil icon next to the web.config file.

5. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: 

\\?\%home%\LogFiles\stdout .

6. Select SaveSave to save the updated web.config file.

Proceed to activate diagnostic logging:

1. In the Azure portal, select the Diagnostics logsDiagnostics logs  blade.

2. Select the OnOn switch for Application Logging (Filesystem)Application Logging (Filesystem)  and Detailed error messagesDetailed error messages .

Select the SaveSave button at the top of the blade.

3. To include failed request tracing, also known as Failed Request Event Buffering (FREB) logging,

select the OnOn switch for Failed request tracingFailed request tracing.

4. Select the Log streamLog stream blade, which is listed immediately under the Diagnostics logsDiagnostics logs  blade in

the portal.

5. Make a request to the app.

6. Within the log stream data, the cause of the error is indicated.

Be sure to disable stdout logging when troubleshooting is complete.

To view the failed request tracing logs (FREB logs):

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Select Failed Request Tracing LogsFailed Request Tracing Logs  from the SUPPORT TOOLSSUPPORT TOOLS  area of the sidebar.

See Failed request traces section of the Enable diagnostics logging for web apps in Azure App

Service topic and the Application performance FAQs for Web Apps in Azure: How do I turn on failed

request tracing? for more information.

For more information, see Enable diagnostics logging for web apps in Azure App Service.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the

number of log files created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

Access the Application Event Log:

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app. Errors have a value of IIS AspNetCore Module or

IIS Express AspNetCore Module in the Source column.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#failed-request-traces
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq#how-do-i-turn-on-failed-request-tracing
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log


Framework-dependent deploymentFramework-dependent deployment

Self-contained deploymentSelf-contained deployment

ASP.NET Core Module stdout log (IIS)ASP.NET Core Module stdout log (IIS)

Many startup errors don't produce useful information in the Application Event Log. You can find the

cause of some errors by running the app at a command prompt on the hosting system.

If the app is a framework-dependent deployment:

1. At a command prompt, navigate to the deployment folder and run the app by executing the app's

assembly with dotnet.exe. In the following command, substitute the name of the app's assembly

for <assembly_name>: dotnet .\<assembly_name>.dll .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where

Kestrel listens. Using the default host and post, make a request to http://localhost:5000/ . If the

app responds normally at the Kestrel endpoint address, the problem is more likely related to the

hosting configuration and less likely within the app.

If the app is a self-contained deployment:

1. At a command prompt, navigate to the deployment folder and run the app's executable. In the

following command, substitute the name of the app's assembly for <assembly_name>: 

<assembly_name>.exe .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where

Kestrel listens. Using the default host and post, make a request to http://localhost:5000/ . If the

app responds normally at the Kestrel endpoint address, the problem is more likely related to the

hosting configuration and less likely within the app.

To enable and view stdout logs:

1. Navigate to the site's deployment folder on the hosting system.

2. If the logs folder isn't present, create the folder. For instructions on how to enable MSBuild to

create the logs folder in the deployment automatically, see the Directory structure topic.

3. Edit the web.config file. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to

point to the logs folder (for example, .\logs\stdout ). stdout  in the path is the log file name

prefix. A timestamp, process id, and file extension are added automatically when the log is

created. Using stdout  as the file name prefix, a typical log file is named

stdout_20180205184032_5412.log.

4. Ensure your application pool's identity has write permissions to the logs folder.

5. Save the updated web.config file.

6. Make a request to the app.

7. Navigate to the logs folder. Find and open the most recent stdout log.

8. Study the log for errors.

Disable stdout logging when troubleshooting is complete:

1. Edit the web.config file.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Save the file.

For more information, see ASP.NET Core Module.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

ASP.NET Core Module debug log (IIS)ASP.NET Core Module debug log (IIS)

<aspNetCore ...>
  <handlerSettings>
    <handlerSetting name="debugLevel" value="file" />
    <handlerSetting name="debugFile" value="c:\temp\ancm.log" />
  </handlerSettings>
</aspNetCore>

Enable the Developer Exception PageEnable the Developer Exception Page

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout"
      hostingModel="InProcess">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
  </environmentVariables>
</aspNetCore>

Obtain data from an appObtain data from an app

Slow or hanging app (IIS)Slow or hanging app (IIS)

App crashes or encounters an exceptionApp crashes or encounters an exception

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the

number of log files created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

Add the following handler settings to the app's web.config file to enable ASP.NET Core Module debug

log:

Confirm that the path specified for the log exists and that the app pool's identity has write

permissions to the location.

For more information, see ASP.NET Core Module.

The ASPNETCORE_ENVIRONMENT  environment variable can be added to web.config to run the app in the

Development environment. As long as the environment isn't overridden in app startup by 

UseEnvironment  on the host builder, setting the environment variable allows the Developer Exception

Page to appear when the app is run.

Setting the environment variable for ASPNETCORE_ENVIRONMENT  is only recommended for use on

staging and testing servers that aren't exposed to the Internet. Remove the environment variable

from the web.config file after troubleshooting. For information on setting environment variables in

web.config, see environmentVariables child element of aspNetCore.

If an app is capable of responding to requests, obtain request, connection, and additional data from

the app using terminal inline middleware. For more information and sample code, see Troubleshoot

and debug ASP.NET Core projects.

A crash dump is a snapshot of the system's memory and can help determine the cause of an app

crash, startup failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting


WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Clear package caches

1. Create a folder to hold crash dump files at c:\dumps . The app pool must have write access to

the folder.

2. Run the EnableDumps PowerShell script:

.\EnableDumps w3wp.exe c:\dumps

.\EnableDumps dotnet.exe c:\dumps

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

.\DisableDumps w3wp.exe

.\DisableDumps dotnet.exe

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The

PowerShell script configures WER to collect up to five dumps per app.

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see

User-Mode Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-

Mode Dump File.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the

development machine or changing package versions within the app. In some cases, incoherent

packages may break an app when performing major upgrades. Most of these issues can be fixed by

following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the

command nuget locals all -clear . nuget.exe isn't a bundled install with the Windows

desktop operating system and must be obtained separately from the NuGet website.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/EnableDumps.ps1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/DisableDumps.ps1
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads


Additional resources

Azure documentationAzure documentation

Visual Studio documentationVisual Studio documentation

Visual Studio Code documentationVisual Studio Code documentation

App startup errors

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

Troubleshoot and debug ASP.NET Core projects

Common errors reference for Azure App Service and IIS with ASP.NET Core

Handle errors in ASP.NET Core

ASP.NET Core Module

Application Insights for ASP.NET Core

Remote debugging web apps section of Troubleshoot a web app in Azure App Service using

Visual Studio

Azure App Service diagnostics overview

How to: Monitor Apps in Azure App Service

Troubleshoot a web app in Azure App Service using Visual Studio

Troubleshoot HTTP errors of "502 bad gateway" and "503 service unavailable" in your Azure web

apps

Troubleshoot slow web app performance issues in Azure App Service

Application performance FAQs for Web Apps in Azure

Azure Web App sandbox (App Service runtime execution limitations)

Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

Remote Debug ASP.NET Core on IIS in Azure in Visual Studio 2017

Remote Debug ASP.NET Core on a Remote IIS Computer in Visual Studio 2017

Learn to debug using Visual Studio

Debugging with Visual Studio Code

This article provides information on common app startup errors and instructions on how to

diagnose errors when an app is deployed to Azure App Service or IIS:

App startup errors

Explains common startup HTTP status code scenarios.

Troubleshoot on Azure App Service

Provides troubleshooting advice for apps deployed to Azure App Service.

Troubleshoot on IIS

Provides troubleshooting advice for apps deployed to IIS or running on IIS Express locally. The

guidance applies to both Windows Server and Windows desktop deployments.

Clear package caches

Explains what to do when incoherent packages break an app when performing major upgrades or

changing package versions.

Additional resources

Lists additional troubleshooting topics.

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/en-us/azure/app-service/app-service-diagnostics
https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-http-502-http-503
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-aspnet-on-a-remote-iis-computer
https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger
https://code.visualstudio.com/docs/editor/debugging


403.14 Forbidden403.14 Forbidden

The Web server is configured to not list the contents of this directory.

500 Internal Server Error500 Internal Server Error

502.5 Process Failure502.5 Process Failure

In Visual Studio, an ASP.NET Core project defaults to IIS Express hosting during debugging. A 502.5

Process Failure that occurs when debugging locally can be diagnosed using the advice in this topic.

The app fails to start. The following error is logged:

The error is usually caused by a broken deployment on the hosting system, which includes any of the

following scenarios:

The app is deployed to the wrong folder on the hosting system.

The deployment process failed to move all of the app's files and folders to the deployment folder

on the hosting system.

The web.config file is missing from the deployment, or the web.config file contents are

malformed.

Perform the following steps:

1. Delete all of the files and folders from the deployment folder on the hosting system.

2. Redeploy the contents of the app's publish folder to the hosting system using your normal

method of deployment, such as Visual Studio, PowerShell, or manual deployment:

3. Confirm that all of the app's files and folders are deployed by comparing the deployment on the

hosting system to the contents of the project's publish folder.

Confirm that the web.config file is present in the deployment and that its contents are

correct.

When hosting on Azure App Service, confirm that the app is deployed to the 

D:\home\site\wwwroot  folder.

When the app is hosted by IIS, confirm that the app is deployed to the IIS Physical pathPhysical path

shown in IIS  ManagerIIS  Manager 's Basic SettingsBasic Settings .

For more information on the layout of a published ASP.NET Core app, see ASP.NET Core directory

structure. For more information on the web.config file, see ASP.NET Core Module.

The app starts, but an error prevents the server from fulfilling the request.

This error occurs within the app's code during startup or while creating a response. The response

may contain no content, or the response may appear as a 500 Internal Server Error in the browser.

The Application Event Log usually states that the app started normally. From the server's perspective,

that's correct. The app did start, but it can't generate a valid response. Run the app at a command

prompt on the server or enable the ASP.NET Core Module stdout log to troubleshoot the problem.

The worker process fails. The app doesn't start.

The ASP.NET Core Module attempts to start the worker process but it fails to start. The cause of a

process startup failure can usually be determined from entries in the Application Event Log and the

ASP.NET Core Module stdout log.

A common failure condition is the app is misconfigured due to targeting a version of the ASP.NET

Core shared framework that isn't present. Check which versions of the ASP.NET Core shared

framework are installed on the target machine. The shared framework is the set of assemblies (.dll

files) that are installed on the machine and referenced by a metapackage such as 

https://docs.microsoft.com/en-us/iis/extensions/introduction-to-iis-express/iis-express-overview


Failed to start application (ErrorCode '0x800700c1')Failed to start application (ErrorCode '0x800700c1')

EventID: 1010
Source: IIS AspNetCore Module V2
Failed to start application '/LM/W3SVC/6/ROOT/', ErrorCode '0x800700c1'.

Connection resetConnection reset

Default startup limitsDefault startup limits

Troubleshoot on Azure App Service

IMPORTANTIMPORTANT

Application Event Log (Azure App Service)Application Event Log (Azure App Service)

Microsoft.AspNetCore.App . The metapackage reference can specify a minimum required version. For

more information, see The shared framework.

The 502.5 Process Failure error page is returned when a hosting or app misconfiguration causes the

worker process to fail:

The app failed to start because the app's assembly (.dll) couldn't be loaded.

This error occurs when there's a bitness mismatch between the published app and the

w3wp/iisexpress process.

Confirm that the app pool's 32-bit setting is correct:

1. Select the app pool in IIS Manager's Application PoolsApplication Pools .

2. Select Advanced SettingsAdvanced Settings  under Edit Application PoolEdit Application Pool  in the ActionsActions  panel.

3. Set Enable 32-Bit ApplicationsEnable 32-Bit Applications :

If deploying a 32-bit (x86) app, set the value to True .

If deploying a 64-bit (x64) app, set the value to False .

Confirm that there isn't a conflict between a <Platform>  MSBuild property in the project file and the

published bitness of the app.

If an error occurs after the headers are sent, it's too late for the server to send a 500 Internal500 Internal

Ser ver ErrorSer ver Error  when an error occurs. This often happens when an error occurs during the

serialization of complex objects for a response. This type of error appears as a connection reset error

on the client. Application logging can help troubleshoot these types of errors.

The ASP.NET Core Module is configured with a default startupTimeLimit of 120 seconds. When left at

the default value, an app may take up to two minutes to start before the module logs a process

failure. For information on configuring the module, see Attributes of the aspNetCore element.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an

ASP.NET Core preview release, see Deploy ASP.NET Core preview release to Azure App Service.

To access the Application Event Log, use the Diagnose and solve problemsDiagnose and solve problems blade in the Azure

portal:

1. In the Azure portal, open the app in App Ser vicesApp Ser vices .

2. Select Diagnose and solve problemsDiagnose and solve problems .

3. Select the Diagnostic ToolsDiagnostic Tools  heading.

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/


Run the app in the Kudu consoleRun the app in the Kudu console

Test a 32-bit (x86) appTest a 32-bit (x86) app

Test a 64-bit (x64) appTest a 64-bit (x64) app

4. Under Suppor t ToolsSuppor t Tools , select the Application EventsApplication Events  button.

5. Examine the latest error provided by the IIS AspNetCoreModule or IIS AspNetCoreModule V2

entry in the SourceSource column.

An alternative to using the Diagnose and solve problemsDiagnose and solve problems blade is to examine the Application

Event Log file directly using Kudu:

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the LogFilesLogFiles  folder.

4. Select the pencil icon next to the eventlog.xml file.

5. Examine the log. Scroll to the bottom of the log to see the most recent events.

Many startup errors don't produce useful information in the Application Event Log. You can run the

app in the Kudu Remote Execution Console to discover the error :

1. Open Advanced ToolsAdvanced Tools  in the Development ToolsDevelopment Tools  area. Select the Go→Go→ button. The Kudu

console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

Current releaseCurrent release

1. cd d:\home\site\wwwroot

2. Run the app:

dotnet .\{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

If the app is a framework-dependent deployment:

If the app is a self-contained deployment:

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x86) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x32  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

Current releaseCurrent release

If the app is a 64-bit (x64) framework-dependent deployment:

If the app is a self-contained deployment:

1. cd D:\Program Files\dotnet

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

1. cd D:\home\site\wwwroot

https://github.com/projectkudu/kudu/wiki
https://github.com/projectkudu/kudu/wiki
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


ASP.NET Core Module stdout log (Azure App Service)ASP.NET Core Module stdout log (Azure App Service)

WARNINGWARNING

Slow or hanging app (Azure App Service)Slow or hanging app (Azure App Service)

2. Run the app: {ASSEMBLY NAME}.exe

The console output from the app, showing any errors, is piped to the Kudu console.

Framework-dependent deployment running on a preview releaseFramework-dependent deployment running on a preview release

Requires installing the ASP.NET Core {VERSION} (x64) Runtime site extension.

1. cd D:\home\SiteExtensions\AspNetCoreRuntime.{X.Y}.x64  ( {X.Y}  is the runtime version)

2. Run the app: dotnet \home\site\wwwroot\{ASSEMBLY NAME}.dll

The console output from the app, showing any errors, is piped to the Kudu console.

The ASP.NET Core Module stdout log often records useful error messages not found in the

Application Event Log. To enable and view stdout logs:

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Under SELECT PROBLEM CATEGORYSELECT PROBLEM CATEGORY, select the Web App DownWeb App Down button.

3. Under Suggested SolutionsSuggested Solutions  > Enable Stdout Log RedirectionEnable Stdout Log Redirection, select the button to OpenOpen

Kudu Console to edit Web.ConfigKudu Console to edit Web.Config.

4. In the Kudu Diagnostic ConsoleDiagnostic Console, open the folders to the path sitesite > wwwrootwwwroot. Scroll down to

reveal the web.config file at the bottom of the list.

5. Click the pencil icon next to the web.config file.

6. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: 

\\?\%home%\LogFiles\stdout .

7. Select SaveSave to save the updated web.config file.

8. Make a request to the app.

9. Return to the Azure portal. Select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS

area. Select the Go→Go→ button. The Kudu console opens in a new browser tab or window.

10. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

11. Select the LogFilesLogFiles  folder.

12. Inspect the ModifiedModified column and select the pencil icon to edit the stdout log with the latest

modification date.

13. When the log file opens, the error is displayed.

Disable stdout logging when troubleshooting is complete:

1. In the Kudu Diagnostic ConsoleDiagnostic Console, return to the path sitesite > wwwrootwwwroot to reveal the web.config

file. Open the web.configweb.config file again by selecting the pencil icon.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Select SaveSave to save the file.

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the

number of log files created. Only use stdout logging to troubleshoot app startup problems.

For general logging in an ASP.NET Core app after startup, use a logging library that limits log file size and

rotates logs. For more information, see third-party logging providers.



Monitoring bladesMonitoring blades

When an app responds slowly or hangs on a request, see the following articles:

Troubleshoot slow web app performance issues in Azure App Service

Use Crash Diagnoser Site Extension to Capture Dump for Intermittent Exception issues or

performance issues on Azure Web App

Monitoring blades provide an alternative troubleshooting experience to the methods described

earlier in the topic. These blades can be used to diagnose 500-series errors.

Confirm that the ASP.NET Core Extensions are installed. If the extensions aren't installed, install them

manually:

1. In the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  blade section, select the ExtensionsExtensions  blade.

2. The ASP.NET Core ExtensionsASP.NET Core Extensions  should appear in the list.

3. If the extensions aren't installed, select the AddAdd button.

4. Choose the ASP.NET Core ExtensionsASP.NET Core Extensions  from the list.

5. Select OKOK to accept the legal terms.

6. Select OKOK on the Add extensionAdd extension blade.

7. An informational pop-up message indicates when the extensions are successfully installed.

If stdout logging isn't enabled, follow these steps:

1. In the Azure portal, select the Advanced ToolsAdvanced Tools  blade in the DEVELOPMENT TOOLSDEVELOPMENT TOOLS  area. Select

the Go→Go→ button. The Kudu console opens in a new browser tab or window.

2. Using the navigation bar at the top of the page, open Debug consoleDebug console and select CMDCMD.

3. Open the folders to the path sitesite > wwwrootwwwroot and scroll down to reveal the web.config file at the

bottom of the list.

4. Click the pencil icon next to the web.config file.

5. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to: 

\\?\%home%\LogFiles\stdout .

6. Select SaveSave to save the updated web.config file.

Proceed to activate diagnostic logging:

1. In the Azure portal, select the Diagnostics logsDiagnostics logs  blade.

2. Select the OnOn switch for Application Logging (Filesystem)Application Logging (Filesystem)  and Detailed error messagesDetailed error messages .

Select the SaveSave button at the top of the blade.

3. To include failed request tracing, also known as Failed Request Event Buffering (FREB) logging,

select the OnOn switch for Failed request tracingFailed request tracing.

4. Select the Log streamLog stream blade, which is listed immediately under the Diagnostics logsDiagnostics logs  blade in

the portal.

5. Make a request to the app.

6. Within the log stream data, the cause of the error is indicated.

Be sure to disable stdout logging when troubleshooting is complete.

To view the failed request tracing logs (FREB logs):

1. Navigate to the Diagnose and solve problemsDiagnose and solve problems blade in the Azure portal.

2. Select Failed Request Tracing LogsFailed Request Tracing Logs  from the SUPPORT TOOLSSUPPORT TOOLS  area of the sidebar.

See Failed request traces section of the Enable diagnostics logging for web apps in Azure App

Service topic and the Application performance FAQs for Web Apps in Azure: How do I turn on failed

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://blogs.msdn.microsoft.com/asiatech/2015/12/28/use-crash-diagnoser-site-extension-to-capture-dump-for-intermittent-exception-issues-or-performance-issues-on-azure-web-app/
https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log#failed-request-traces
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq#how-do-i-turn-on-failed-request-tracing


WARNINGWARNING

Troubleshoot on IIS
Application Event Log (IIS)Application Event Log (IIS)

Run the app at a command promptRun the app at a command prompt

Framework-dependent deploymentFramework-dependent deployment

Self-contained deploymentSelf-contained deployment

ASP.NET Core Module stdout log (IIS)ASP.NET Core Module stdout log (IIS)

request tracing? for more information.

For more information, see Enable diagnostics logging for web apps in Azure App Service.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the

number of log files created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

Access the Application Event Log:

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app. Errors have a value of IIS AspNetCore Module or

IIS Express AspNetCore Module in the Source column.

Many startup errors don't produce useful information in the Application Event Log. You can find the

cause of some errors by running the app at a command prompt on the hosting system.

If the app is a framework-dependent deployment:

1. At a command prompt, navigate to the deployment folder and run the app by executing the app's

assembly with dotnet.exe. In the following command, substitute the name of the app's assembly

for <assembly_name>: dotnet .\<assembly_name>.dll .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where

Kestrel listens. Using the default host and post, make a request to http://localhost:5000/ . If the

app responds normally at the Kestrel endpoint address, the problem is more likely related to the

hosting configuration and less likely within the app.

If the app is a self-contained deployment:

1. At a command prompt, navigate to the deployment folder and run the app's executable. In the

following command, substitute the name of the app's assembly for <assembly_name>: 

<assembly_name>.exe .

2. The console output from the app, showing any errors, is written to the console window.

3. If the errors occur when making a request to the app, make a request to the host and port where

Kestrel listens. Using the default host and post, make a request to http://localhost:5000/ . If the

app responds normally at the Kestrel endpoint address, the problem is more likely related to the

hosting configuration and less likely within the app.

To enable and view stdout logs:

1. Navigate to the site's deployment folder on the hosting system.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-enable-diagnostic-log
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


WARNINGWARNING

Enable the Developer Exception PageEnable the Developer Exception Page

<aspNetCore processPath="dotnet"
      arguments=".\MyApp.dll"
      stdoutLogEnabled="false"
      stdoutLogFile=".\logs\stdout">
  <environmentVariables>
    <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
  </environmentVariables>
</aspNetCore>

Obtain data from an appObtain data from an app

2. If the logs folder isn't present, create the folder. For instructions on how to enable MSBuild to

create the logs folder in the deployment automatically, see the Directory structure topic.

3. Edit the web.config file. Set stdoutLogEnabledstdoutLogEnabled to true  and change the stdoutLogFilestdoutLogFile path to

point to the logs folder (for example, .\logs\stdout ). stdout  in the path is the log file name

prefix. A timestamp, process id, and file extension are added automatically when the log is

created. Using stdout  as the file name prefix, a typical log file is named

stdout_20180205184032_5412.log.

4. Ensure your application pool's identity has write permissions to the logs folder.

5. Save the updated web.config file.

6. Make a request to the app.

7. Navigate to the logs folder. Find and open the most recent stdout log.

8. Study the log for errors.

Disable stdout logging when troubleshooting is complete:

1. Edit the web.config file.

2. Set stdoutLogEnabledstdoutLogEnabled to false .

3. Save the file.

For more information, see ASP.NET Core Module.

Failure to disable the stdout log can lead to app or server failure. There's no limit on log file size or the

number of log files created.

For routine logging in an ASP.NET Core app, use a logging library that limits log file size and rotates logs. For

more information, see third-party logging providers.

The ASPNETCORE_ENVIRONMENT  environment variable can be added to web.config to run the app in the

Development environment. As long as the environment isn't overridden in app startup by 

UseEnvironment  on the host builder, setting the environment variable allows the Developer Exception

Page to appear when the app is run.

Setting the environment variable for ASPNETCORE_ENVIRONMENT  is only recommended for use on

staging and testing servers that aren't exposed to the Internet. Remove the environment variable

from the web.config file after troubleshooting. For information on setting environment variables in

web.config, see environmentVariables child element of aspNetCore.

If an app is capable of responding to requests, obtain request, connection, and additional data from

the app using terminal inline middleware. For more information and sample code, see Troubleshoot

and debug ASP.NET Core projects.



Slow or hanging app (IIS)Slow or hanging app (IIS)

App crashes or encounters an exceptionApp crashes or encounters an exception

WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Clear package caches

A crash dump is a snapshot of the system's memory and can help determine the cause of an app

crash, startup failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

1. Create a folder to hold crash dump files at c:\dumps . The app pool must have write access to

the folder.

2. Run the EnableDumps PowerShell script:

.\EnableDumps w3wp.exe c:\dumps

.\EnableDumps dotnet.exe c:\dumps

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

.\DisableDumps w3wp.exe

.\DisableDumps dotnet.exe

If the app uses the in-process hosting model, run the script for w3wp.exe:

If the app uses the out-of-process hosting model, run the script for dotnet.exe:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The

PowerShell script configures WER to collect up to five dumps per app.

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see

User-Mode Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-

Mode Dump File.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the

development machine or changing package versions within the app. In some cases, incoherent

packages may break an app when performing major upgrades. Most of these issues can be fixed by

following these instructions:

https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/EnableDumps.ps1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/troubleshoot-azure-iis/scripts/DisableDumps.ps1
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file


Additional resources

Azure documentationAzure documentation

Visual Studio documentationVisual Studio documentation

Visual Studio Code documentationVisual Studio Code documentation

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the

command nuget locals all -clear . nuget.exe isn't a bundled install with the Windows

desktop operating system and must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

Troubleshoot and debug ASP.NET Core projects

Common errors reference for Azure App Service and IIS with ASP.NET Core

Handle errors in ASP.NET Core

ASP.NET Core Module

Application Insights for ASP.NET Core

Remote debugging web apps section of Troubleshoot a web app in Azure App Service using

Visual Studio

Azure App Service diagnostics overview

How to: Monitor Apps in Azure App Service

Troubleshoot a web app in Azure App Service using Visual Studio

Troubleshoot HTTP errors of "502 bad gateway" and "503 service unavailable" in your Azure web

apps

Troubleshoot slow web app performance issues in Azure App Service

Application performance FAQs for Web Apps in Azure

Azure Web App sandbox (App Service runtime execution limitations)

Azure Friday: Azure App Service Diagnostic and Troubleshooting Experience (12-minute video)

Remote Debug ASP.NET Core on IIS in Azure in Visual Studio 2017

Remote Debug ASP.NET Core on a Remote IIS Computer in Visual Studio 2017

Learn to debug using Visual Studio

Debugging with Visual Studio Code

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug
https://docs.microsoft.com/en-us/azure/app-service/app-service-diagnostics
https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-http-502-http-503
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-troubleshoot-performance-degradation
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-availability-performance-application-issues-faq
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://channel9.msdn.com/Shows/Azure-Friday/Azure-App-Service-Diagnostic-and-Troubleshooting-Experience
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-azure
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging-aspnet-on-a-remote-iis-computer
https://docs.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger
https://code.visualstudio.com/docs/editor/debugging


Common errors reference for Azure App Service
and IIS with ASP.NET Core
9/22/2020 • 22 minutes to read • Edit Online

IMPORTANTIMPORTANT

OS upgrade removed the 32-bit ASP.NET Core Module

Missing site extension, 32-bit (x86) and 64-bit (x64) site extensions

This topic describes common errors and provides troubleshooting advice for specific errors when hosting

ASP.NET Core apps on Azure Apps Service and IIS.

For general troubleshooting guidance, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Collect the following information:

Browser behavior (status code and error message)

Application Event Log entries

ASP.NET Core Module stdout and debug log entries

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS

1. Select Star tStar t on the WindowsWindows menu, type Event Viewer, and press EnterEnter .

2. After the Event ViewerEvent Viewer  opens, expand Windows LogsWindows Logs  > ApplicationApplication in the sidebar.

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS: Follow the instructions in the Log creation and redirection and Enhanced diagnostic logs sections

of the ASP.NET Core Module topic.

Compare error information to the following common errors. If a match is found, follow the troubleshooting

advice.

The list of errors in this topic isn't exhaustive. If you encounter an error not listed here, open a new issue using

the Content feedbackContent feedback button at the bottom of this topic with detailed instructions on how to reproduce the

error.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET

Core preview release, see Deploy ASP.NET Core preview release to Azure App Service.

Application Log:Application Log: The Module DLL C:\WINDOWS\system32\inetsr v\aspnetcore.dllC:\WINDOWS\system32\inetsr v\aspnetcore.dll  failed to load. The

data is the error.

Troubleshooting:

Non-OS files in the C:\Windows\SysWOW64\inetsr vC:\Windows\SysWOW64\inetsr v  directory aren't preserved during an OS upgrade. If

the ASP.NET Core Module is installed prior to an OS upgrade and then any app pool is run in 32-bit mode after

an OS upgrade, this issue is encountered. After an OS upgrade, repair the ASP.NET Core Module. See Install the

.NET Core Hosting bundle. Select RepairRepair  when the installer is run.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/azure-iis-errors-reference.md


installed, or wrong process bitness set

An x86 app is deployed but the app pool isn't enabled for 32-bit
apps

Applies to apps hosted by Azure App Services.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any

native dependencies. Could not find inprocess request handler. Captured output from invoking hostfxr :

It was not possible to find any compatible framework version. The specified framework

'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found. Failed to start application

'/LM/W3SVC/1416782824/ROOT', ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: It was not possible to find any compatible framework version.

The specified framework 'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Invoking hostfxr to find the inprocess request handler failed

without finding any native dependencies. This most likely means the app is misconfigured, please check

the versions of Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the

application and are installed on the machine. Failed HRESULT returned: 0x8000ffff. Could not find

inprocess request handler. It was not possible to find any compatible framework version. The specified

framework 'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found.

Troubleshooting:

If running the app on a preview runtime, install either the 32-bit (x86) oror  64-bit (x64) site extension that

matches the bitness of the app and the app's runtime version. Don't install both extensions orDon't install both extensions or

multiple runtime versions of the extension.multiple runtime versions of the extension.

ASP.NET Core {RUNTIME VERSION} (x86) Runtime

ASP.NET Core {RUNTIME VERSION} (x64) Runtime

Restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and both the 32-bit (x86) and 64-bit (x64) site extensions are

installed, uninstall the site extension that doesn't match the bitness of the app. After removing the site

extension, restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and the site extension's bitness matches that of the app,

confirm that the preview site extension's runtime version matches the app's runtime version.

Confirm that the app's PlatformPlatform in Application SettingsApplication Settings  matches the bitness of the app.

For more information, see Deploy ASP.NET Core apps to Azure App Service.

Browser :Browser : HTTP Error 500.30 - ANCM In-Process Start Failure

Application Log:Application Log: Application '/LM/W3SVC/5/ROOT' with physical root '{PATH}' hit unexpected

managed exception, exception code = '0xe0434352'. Please check the stderr logs for more information.

Application '/LM/W3SVC/5/ROOT' with physical root '{PATH}' failed to load clr and managed

application. CLR worker thread exited prematurely

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Failed HRESULT returned: 0x8007023e

This scenario is trapped by the SDK when publishing a self-contained app. The SDK produces an error if the



Platform conflicts with RID

URI endpoint wrong or stopped website

CoreWebEngine or W3SVC server features disabled

Incorrect website physical path or app missing

RID doesn't match the platform target (for example, win10-x64  RID with 

<PlatformTarget>x86</PlatformTarget>  in the project file).

Troubleshooting:

For an x86 framework-dependent deployment ( <PlatformTarget>x86</PlatformTarget> ), enable the IIS app pool

for 32-bit apps. In IIS Manager, open the app pool's Advanced SettingsAdvanced Settings  and set Enable 32-BitEnable 32-Bit

ApplicationsApplications  to TrueTrue.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:

{PATH}' failed to start process with commandline '"C:{PATH}{ASSEMBLY}.{exe|dll}" ', ErrorCode =

'0x80004005 : ff.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: Unhandled Exception: System.BadImageFormatException: Could

not load file or assembly '{ASSEMBLY}.dll'. An attempt was made to load a program with an incorrect

format.

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within

the app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

If this exception occurs for an Azure Apps deployment when upgrading an app and deploying newer

assemblies, manually delete all files from the prior deployment. Lingering incompatible assemblies can

result in a System.BadImageFormatException  exception when deploying an upgraded app.

Browser :Browser : ERR_CONNECTION_REFUSED --OR----OR-- Unable to connect

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

Confirm the correct URI endpoint for the app is in use. Check the bindings.

Confirm that the IIS website isn't in the Stopped state.

OS Exception:OS Exception: The IIS 7.0 CoreWebEngine and W3SVC features must be installed to use the ASP.NET Core

Module.

Troubleshooting:

Confirm that the proper role and features are enabled. See IIS Configuration.

Browser :Browser : 403 Forbidden - Access is denied --OR----OR-- 403.14 Forbidden - The Web server is configured

to not list the contents of this directory.



Incorrect role, ASP.NET Core Module not installed, or incorrect
permissions

Incorrect processPath, missing PATH variable, Hosting Bundle not
installed, system/IIS not restarted, VC++ Redistributable not
installed, or dotnet.exe access violation

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

Check the IIS website Basic SettingsBasic Settings  and the physical app folder. Confirm that the app is in the folder at the

IIS website Physical pathPhysical path.

Browser :Browser : 500.19 Internal Server Error - The requested page cannot be accessed because the related

configuration data for the page is invalid. --OR----OR-- This page can't be displayed

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

<section name="aspNetCore" overrideModeDefault="Allow" />

Confirm that the proper role is enabled. See IIS Configuration.

Open Programs & FeaturesPrograms & Features  or Apps & featuresApps & features  and confirm that Windows Ser ver HostingWindows Ser ver Hosting is

installed. If Windows Ser ver HostingWindows Ser ver Hosting isn't present in the list of installed programs, download and

install the .NET Core Hosting Bundle.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

Make sure that the Application PoolApplication Pool  > Process ModelProcess Model  > IdentityIdentity  is set to

ApplicationPoolIdentityApplicationPoolIdentity  or the custom identity has the correct permissions to access the app's

deployment folder.

If you uninstalled the ASP.NET Core Hosting Bundle and installed an earlier version of the hosting

bundle, the applicationHost.config file doesn't include a section for the ASP.NET Core Module. Open

applicationHost.config at %windir%/System32/inetsrv/config and find the 

<configuration><configSections><sectionGroup name="system.webServer">  section group. If the section for

the ASP.NET Core Module is missing from the section group, add the section element:

Alternatively, install the latest version of the ASP.NET Core Hosting Bundle. The latest version is

backwards-compatible with supported ASP.NET Core apps.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:

https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer


Incorrect arguments of <aspNetCore> element

{PATH}' failed to start process with commandline '"{...}" ', ErrorCode = '0x80070002 : 0. Application

'{PATH}' wasn't able to start. Executable was not found at '{PATH}'. Failed to start application

'/LM/W3SVC/2/ROOT', ErrorCode '0x8007023e'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Event Log: 'Application '{PATH}' wasn't able to start. Executable

was not found at '{PATH}'. Failed HRESULT returned: 0x8007023e

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within

the app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Check the processPath attribute on the <aspNetCore>  element in web.config to confirm that it's dotnet

for a framework-dependent deployment (FDD) or .\{ASSEMBLY}.exe  for a self-contained deployment

(SCD).

For an FDD, dotnet.exe might not be accessible via the PATH settings. Confirm that C:\Program

Files\dotnet\ exists in the System PATH settings.

For an FDD, dotnet.exe might not be accessible for the user identity of the app pool. Confirm that the

app pool user identity has access to the C:\Program Files\dotnet directory. Confirm that there are no

deny rules configured for the app pool user identity on the C:\Program Files\dotnet and app directories.

An FDD may have been deployed and .NET Core installed without restarting IIS. Either restart the server

or restart IIS by executing net stop was /ynet stop was /y  followed by net star t w3svcnet star t w3svc from a command prompt.

An FDD may have been deployed without installing the .NET Core runtime on the hosting system. If the

.NET Core runtime hasn't been installed, run the .NET Core Hosting Bundle installer.NET Core Hosting Bundle installer  on the system.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

If a specific runtime is required, download the runtime from the .NET Download Archives and install it

on the system. Complete the installation by restarting the system or restarting IIS by executing netnet

stop was /ystop was /y  followed by net star t w3svcnet star t w3svc from a command prompt.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any

native dependencies. This most likely means the app is misconfigured, please check the versions of

Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the application and are

installed on the machine. Could not find inprocess request handler. Captured output from invoking

hostfxr : Did you mean to run dotnet SDK commands? Please install dotnet SDK from:

https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409 Failed to start application

'/LM/W3SVC/3/ROOT', ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: Did you mean to run dotnet SDK commands? Please install

dotnet SDK from: https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Invoking hostfxr to find the inprocess request handler failed

without finding any native dependencies. This most likely means the app is misconfigured, please check

the versions of Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the

application and are installed on the machine. Failed HRESULT returned: 0x8000ffff Could not find

inprocess request handler. Captured output from invoking hostfxr : Did you mean to run dotnet SDK

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer
https://dotnet.microsoft.com/download/archives
https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409


Missing .NET Core shared framework

Stopped Application Pool

Sub-application includes a <handlers> section

commands? Please install dotnet SDK from: https://go.microsoft.com/fwlink/?

LinkID=798306&clcid=0x409 Failed HRESULT returned: 0x8000ffff

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within

the app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Examine the arguments attribute on the <aspNetCore>  element in web.config to confirm that it's either

(a) .\{ASSEMBLY}.dll  for a framework-dependent deployment (FDD); or (b) not present, an empty

string ( arguments="" ), or a list of the app's arguments (

arguments="{ARGUMENT_1}, {ARGUMENT_2}, ... {ARGUMENT_X}" ) for a self-contained deployment (SCD).

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any

native dependencies. This most likely means the app is misconfigured, please check the versions of

Microsoft.NetCore.App and Microsoft.AspNetCore.App that are targeted by the application and are

installed on the machine. Could not find inprocess request handler. Captured output from invoking

hostfxr : It was not possible to find any compatible framework version. The specified framework

'Microsoft.AspNetCore.App', version '{VERSION}' was not found.

Failed to start application '/LM/W3SVC/5/ROOT', ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: It was not possible to find any compatible framework version.

The specified framework 'Microsoft.AspNetCore.App', version '{VERSION}' was not found.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Failed HRESULT returned: 0x8000ffff

Troubleshooting:

For a framework-dependent deployment (FDD), confirm that the correct runtime installed on the system.

Browser :Browser : 503 Service Unavailable

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The log file isn't created.

Troubleshooting:

Confirm that the Application Pool isn't in the Stopped state.

Browser :Browser : HTTP Error 500.19 - Internal Server Error

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The root app's log file is created and shows normal operation.

The sub-app's log file isn't created.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: The root app's log file is created and shows normal operation.

The sub-app's log file isn't created.

https://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409


stdout log path incorrect

Application configuration general issue

Troubleshooting:

Confirm that the sub-app's web.config file doesn't include a <handlers>  section or that the sub-app doesn't

inherit the parent app's handlers.

The parent app's <system.webServer>  section of web.config is placed inside of a <location>  element. The

InheritInChildApplications property is set to false  to indicate that the settings specified within the <location>

element aren't inherited by apps that reside in a subdirectory of the parent app. For more information, see

ASP.NET Core Module.

Browser :Browser : The app responds normally.

Application Log:Application Log: Could not start stdout redirection in C:\Program Files\IIS\Asp.Net Core

Module\V2\aspnetcorev2.dll. Exception message: HRESULT 0x80070005 returned at

{PATH}\aspnetcoremodulev2\commonlib\fileoutputmanager.cpp:84. Could not stop stdout redirection

in C:\Program Files\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll. Exception message: HRESULT

0x80070002 returned at {PATH}. Could not start stdout redirection in

{PATH}\aspnetcorev2_inprocess.dll.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

ASP.NET Core Module debug Log:ASP.NET Core Module debug Log: Could not start stdout redirection in C:\Program Files\IIS\Asp.Net

Core Module\V2\aspnetcorev2.dll. Exception message: HRESULT 0x80070005 returned at

{PATH}\aspnetcoremodulev2\commonlib\fileoutputmanager.cpp:84. Could not stop stdout redirection

in C:\Program Files\IIS\Asp.Net Core Module\V2\aspnetcorev2.dll. Exception message: HRESULT

0x80070002 returned at {PATH}. Could not start stdout redirection in

{PATH}\aspnetcorev2_inprocess.dll.

Troubleshooting:

The stdoutLogFile  path specified in the <aspNetCore>  element of web.config doesn't exist. For more

information, see ASP.NET Core Module: Log creation and redirection.

The app pool user doesn't have write access to the stdout log path.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure --OR----OR-- HTTP Error 500.30 -

ANCM In-Process Start Failure

Application Log:Application Log: Variable

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty or created with normal entries

until the point of the app failing.

ASP.NET Core Module Debug Log:ASP.NET Core Module Debug Log: Variable

Troubleshooting:

The process failed to start, most likely due to an app configuration or programming issue.

For more information, see the following topics:

Troubleshoot ASP.NET Core on Azure App Service and IIS

Troubleshoot and debug ASP.NET Core projects

https://docs.microsoft.com/en-us/dotnet/api/system.configuration.sectioninformation.inheritinchildapplications
https://docs.microsoft.com/en-us/iis/manage/managing-your-configuration-settings/understanding-iis-configuration-delegation#the-concept-of-location


IMPORTANTIMPORTANT

OS upgrade removed the 32-bit ASP.NET Core Module

Missing site extension, 32-bit (x86) and 64-bit (x64) site extensions
installed, or wrong process bitness set

This topic describes common errors and provides troubleshooting advice for specific errors when hosting

ASP.NET Core apps on Azure Apps Service and IIS.

For general troubleshooting guidance, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Collect the following information:

Browser behavior (status code and error message)

Application Event Log entries

ASP.NET Core Module stdout and debug log entries

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS

1. Select Star tStar t on the WindowsWindows menu, type Event Viewer, and press EnterEnter .

2. After the Event ViewerEvent Viewer  opens, expand Windows LogsWindows Logs  > ApplicationApplication in the sidebar.

Azure App Service: See Troubleshoot ASP.NET Core on Azure App Service and IIS.

IIS: Follow the instructions in the Log creation and redirection and Enhanced diagnostic logs sections

of the ASP.NET Core Module topic.

Compare error information to the following common errors. If a match is found, follow the troubleshooting

advice.

The list of errors in this topic isn't exhaustive. If you encounter an error not listed here, open a new issue using

the Content feedbackContent feedback button at the bottom of this topic with detailed instructions on how to reproduce the

error.

ASP.NET Core preview releases with Azure App Ser viceASP.NET Core preview releases with Azure App Ser vice

ASP.NET Core preview releases aren't deployed to Azure App Service by default. To host an app that uses an ASP.NET

Core preview release, see Deploy ASP.NET Core preview release to Azure App Service.

Application Log:Application Log: The Module DLL C:\WINDOWS\system32\inetsr v\aspnetcore.dllC:\WINDOWS\system32\inetsr v\aspnetcore.dll  failed to load. The

data is the error.

Troubleshooting:

Non-OS files in the C:\Windows\SysWOW64\inetsr vC:\Windows\SysWOW64\inetsr v  directory aren't preserved during an OS upgrade. If

the ASP.NET Core Module is installed prior to an OS upgrade and then any app pool is run in 32-bit mode after

an OS upgrade, this issue is encountered. After an OS upgrade, repair the ASP.NET Core Module. See Install the

.NET Core Hosting bundle. Select RepairRepair  when the installer is run.

Applies to apps hosted by Azure App Services.

Browser :Browser : HTTP Error 500.0 - ANCM In-Process Handler Load Failure

Application Log:Application Log: Invoking hostfxr to find the inprocess request handler failed without finding any

native dependencies. Could not find inprocess request handler. Captured output from invoking hostfxr :

It was not possible to find any compatible framework version. The specified framework

'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found. Failed to start application



An x86 app is deployed but the app pool isn't enabled for 32-bit
apps

Platform conflicts with RID

'/LM/W3SVC/1416782824/ROOT', ErrorCode '0x8000ffff'.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: It was not possible to find any compatible framework version.

The specified framework 'Microsoft.AspNetCore.App', version '{VERSION}-preview-*' was not found.

Troubleshooting:

If running the app on a preview runtime, install either the 32-bit (x86) oror  64-bit (x64) site extension that

matches the bitness of the app and the app's runtime version. Don't install both extensions orDon't install both extensions or

multiple runtime versions of the extension.multiple runtime versions of the extension.

ASP.NET Core {RUNTIME VERSION} (x86) Runtime

ASP.NET Core {RUNTIME VERSION} (x64) Runtime

Restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and both the 32-bit (x86) and 64-bit (x64) site extensions are

installed, uninstall the site extension that doesn't match the bitness of the app. After removing the site

extension, restart the app. Wait several seconds for the app to restart.

If running the app on a preview runtime and the site extension's bitness matches that of the app,

confirm that the preview site extension's runtime version matches the app's runtime version.

Confirm that the app's PlatformPlatform in Application SettingsApplication Settings  matches the bitness of the app.

For more information, see Deploy ASP.NET Core apps to Azure App Service.

Browser :Browser : HTTP Error 500.30 - ANCM In-Process Start Failure

Application Log:Application Log: Application '/LM/W3SVC/5/ROOT' with physical root '{PATH}' hit unexpected

managed exception, exception code = '0xe0434352'. Please check the stderr logs for more information.

Application '/LM/W3SVC/5/ROOT' with physical root '{PATH}' failed to load clr and managed

application. CLR worker thread exited prematurely

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

This scenario is trapped by the SDK when publishing a self-contained app. The SDK produces an error if the

RID doesn't match the platform target (for example, win10-x64  RID with 

<PlatformTarget>x86</PlatformTarget>  in the project file).

Troubleshooting:

For an x86 framework-dependent deployment ( <PlatformTarget>x86</PlatformTarget> ), enable the IIS app pool

for 32-bit apps. In IIS Manager, open the app pool's Advanced SettingsAdvanced Settings  and set Enable 32-BitEnable 32-Bit

ApplicationsApplications  to TrueTrue.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:

{PATH}' failed to start process with commandline '"C:{PATH}{ASSEMBLY}.{exe|dll}" ', ErrorCode =

'0x80004005 : ff.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: Unhandled Exception: System.BadImageFormatException: Could

not load file or assembly '{ASSEMBLY}.dll'. An attempt was made to load a program with an incorrect



URI endpoint wrong or stopped website

CoreWebEngine or W3SVC server features disabled

Incorrect website physical path or app missing

Incorrect role, ASP.NET Core Module not installed, or incorrect
permissions

format.

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within

the app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

If this exception occurs for an Azure Apps deployment when upgrading an app and deploying newer

assemblies, manually delete all files from the prior deployment. Lingering incompatible assemblies can

result in a System.BadImageFormatException  exception when deploying an upgraded app.

Browser :Browser : ERR_CONNECTION_REFUSED --OR----OR-- Unable to connect

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

Confirm the correct URI endpoint for the app is in use. Check the bindings.

Confirm that the IIS website isn't in the Stopped state.

OS Exception:OS Exception: The IIS 7.0 CoreWebEngine and W3SVC features must be installed to use the ASP.NET Core

Module.

Troubleshooting:

Confirm that the proper role and features are enabled. See IIS Configuration.

Browser :Browser : 403 Forbidden - Access is denied --OR----OR-- 403.14 Forbidden - The Web server is configured

to not list the contents of this directory.

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

Check the IIS website Basic SettingsBasic Settings  and the physical app folder. Confirm that the app is in the folder at the

IIS website Physical pathPhysical path.

Browser :Browser : 500.19 Internal Server Error - The requested page cannot be accessed because the related

configuration data for the page is invalid. --OR----OR-- This page can't be displayed

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:



Incorrect processPath, missing PATH variable, Hosting Bundle not
installed, system/IIS not restarted, VC++ Redistributable not
installed, or dotnet.exe access violation

<section name="aspNetCore" overrideModeDefault="Allow" />

Confirm that the proper role is enabled. See IIS Configuration.

Open Programs & FeaturesPrograms & Features  or Apps & featuresApps & features  and confirm that Windows Ser ver HostingWindows Ser ver Hosting is

installed. If Windows Ser ver HostingWindows Ser ver Hosting isn't present in the list of installed programs, download and

install the .NET Core Hosting Bundle.

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

Make sure that the Application PoolApplication Pool  > Process ModelProcess Model  > IdentityIdentity  is set to

ApplicationPoolIdentityApplicationPoolIdentity  or the custom identity has the correct permissions to access the app's

deployment folder.

If you uninstalled the ASP.NET Core Hosting Bundle and installed an earlier version of the hosting

bundle, the applicationHost.config file doesn't include a section for the ASP.NET Core Module. Open

applicationHost.config at %windir%/System32/inetsrv/config and find the 

<configuration><configSections><sectionGroup name="system.webServer">  section group. If the section for

the ASP.NET Core Module is missing from the section group, add the section element:

Alternatively, install the latest version of the ASP.NET Core Hosting Bundle. The latest version is

backwards-compatible with supported ASP.NET Core apps.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:

{PATH}' failed to start process with commandline '"{...}" ', ErrorCode = '0x80070002 : 0.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within

the app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Check the processPath attribute on the <aspNetCore>  element in web.config to confirm that it's dotnet

for a framework-dependent deployment (FDD) or .\{ASSEMBLY}.exe  for a self-contained deployment

(SCD).

For an FDD, dotnet.exe might not be accessible via the PATH settings. Confirm that C:\Program

Files\dotnet\ exists in the System PATH settings.

For an FDD, dotnet.exe might not be accessible for the user identity of the app pool. Confirm that the

app pool user identity has access to the C:\Program Files\dotnet directory. Confirm that there are no

deny rules configured for the app pool user identity on the C:\Program Files\dotnet and app directories.

An FDD may have been deployed and .NET Core installed without restarting IIS. Either restart the server

or restart IIS by executing net stop was /ynet stop was /y  followed by net star t w3svcnet star t w3svc from a command prompt.

An FDD may have been deployed without installing the .NET Core runtime on the hosting system. If the

.NET Core runtime hasn't been installed, run the .NET Core Hosting Bundle installer.NET Core Hosting Bundle installer  on the system.

https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


Incorrect arguments of <aspNetCore> element

Stopped Application Pool

Sub-application includes a <handlers> section

stdout log path incorrect

Current .NET Core Hosting Bundle installer (direct download)

For more information, see Install the .NET Core Hosting Bundle.

If a specific runtime is required, download the runtime from the .NET Download Archives and install it

on the system. Complete the installation by restarting the system or restarting IIS by executing netnet

stop was /ystop was /y  followed by net star t w3svcnet star t w3svc from a command prompt.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:

{PATH}' failed to start process with commandline '"dotnet" .{ASSEMBLY}.dll', ErrorCode = '0x80004005 :

80008081.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The application to execute does not exist: 'PATH{ASSEMBLY}.dll'

Troubleshooting:

Confirm that the app runs locally on Kestrel. A process failure might be the result of a problem within

the app. For more information, see Troubleshoot ASP.NET Core on Azure App Service and IIS.

Examine the arguments attribute on the <aspNetCore>  element in web.config to confirm that it's either

(a) .\{ASSEMBLY}.dll  for a framework-dependent deployment (FDD); or (b) not present, an empty

string ( arguments="" ), or a list of the app's arguments (

arguments="{ARGUMENT_1}, {ARGUMENT_2}, ... {ARGUMENT_X}" ) for a self-contained deployment (SCD).

Troubleshooting:

For a framework-dependent deployment (FDD), confirm that the correct runtime installed on the system.

Browser :Browser : 503 Service Unavailable

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

Confirm that the Application Pool isn't in the Stopped state.

Browser :Browser : HTTP Error 500.19 - Internal Server Error

Application Log:Application Log: No entry

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The root app's log file is created and shows normal operation.

The sub-app's log file isn't created.

Troubleshooting:

Confirm that the sub-app's web.config file doesn't include a <handlers>  section.

Browser :Browser : The app responds normally.

https://dotnet.microsoft.com/permalink/dotnetcore-current-windows-runtime-bundle-installer
https://dotnet.microsoft.com/download/archives


Application configuration general issue

Application Log:Application Log: Warning: Could not create stdoutLogFile \?

{PATH}\path_doesnt_exist\stdout_{PROCESS ID}_{TIMESTAMP}.log, ErrorCode = -2147024893.

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file isn't created.

Troubleshooting:

The stdoutLogFile  path specified in the <aspNetCore>  element of web.config doesn't exist. For more

information, see ASP.NET Core Module: Log creation and redirection.

The app pool user doesn't have write access to the stdout log path.

Browser :Browser : HTTP Error 502.5 - Process Failure

Application Log:Application Log: Application 'MACHINE/WEBROOT/APPHOST/{ASSEMBLY}' with physical root 'C:

{PATH}' created process with commandline '"C:{PATH}{ASSEMBLY}.{exe|dll}" ' but either crashed or did

not respond or did not listen on the given port '{PORT}', ErrorCode = '{ERROR CODE}'

ASP.NET Core Module stdout Log:ASP.NET Core Module stdout Log: The log file is created but empty.

Troubleshooting:

The process failed to start, most likely due to an app configuration or programming issue.

For more information, see the following topics:

Troubleshoot ASP.NET Core on Azure App Service and IIS

Troubleshoot and debug ASP.NET Core projects



    

   

Transform web.config
9/22/2020 • 2 minutes to read • Edit Online

Build configuration

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
  <location>
    <system.webServer>
      <aspNetCore>
        <environmentVariables xdt:Transform="InsertIfMissing">
          <environmentVariable name="Configuration_Specific" 
                               value="Configuration_Specific_Value" 
                               xdt:Locator="Match(name)" 
                               xdt:Transform="InsertIfMissing" />
        </environmentVariables>
      </aspNetCore>
    </system.webServer>
  </location>
</configuration>

dotnet publish --configuration Release

Profile

By Vijay Ramakrishnan

Transformations to the web.config file can be applied automatically when an app is published based on:

Build configuration

Profile

Environment

Custom

These transformations occur for either of the following web.config generation scenarios:

Generated automatically by the Microsoft.NET.Sdk.Web  SDK.

Provided by the developer in the content root of the app.

Build configuration transforms are run first.

Include a web.{CONFIGURATION}.config file for each build configuration (Debug|Release) requiring a web.config

transformation.

In the following example, a configuration-specific environment variable is set in web.Release.config:

The transform is applied when the configuration is set to Release:

The MSBuild property for the configuration is $(Configuration) .

Profile transformations are run second, after Build configuration transforms.

Include a web.{PROFILE}.config file for each profile configuration requiring a web.config transformation.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/iis/transform-webconfig.md
https://github.com/vijayrkn
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish#options


  

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
  <location>
    <system.webServer>
      <aspNetCore>
        <environmentVariables xdt:Transform="InsertIfMissing">
          <environmentVariable name="Profile_Specific" 
                               value="Profile_Specific_Value" 
                               xdt:Locator="Match(name)" 
                               xdt:Transform="InsertIfMissing" />
        </environmentVariables>
      </aspNetCore>
    </system.webServer>
  </location>
</configuration>

dotnet publish --configuration Release /p:PublishProfile=FolderProfile

Environment

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
  <location>
    <system.webServer>
      <aspNetCore>
        <environmentVariables xdt:Transform="InsertIfMissing">
          <environmentVariable name="Environment_Specific" 
                               value="Environment_Specific_Value" 
                               xdt:Locator="Match(name)" 
                               xdt:Transform="InsertIfMissing" />
        </environmentVariables>
      </aspNetCore>
    </system.webServer>
  </location>
</configuration>

dotnet publish --configuration Release /p:EnvironmentName=Production

In the following example, a profile-specific environment variable is set in web.FolderProfile.config for a folder

publish profile:

The transform is applied when the profile is FolderProfile:

The MSBuild property for the profile name is $(PublishProfile) .

If no profile is passed, the default profile name is FileSystemFileSystem and web.FileSystem.config is applied if the file is

present in the app's content root.

Environment transformations are run third, after Build configuration and Profile transforms.

Include a web.{ENVIRONMENT}.config file for each environment requiring a web.config transformation.

In the following example, a environment-specific environment variable is set in web.Production.config for the

Production environment:

The transform is applied when the environment is Production:

The MSBuild property for the environment is $(EnvironmentName) .



 Custom

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
  <location>
    <system.webServer>
      <aspNetCore>
        <environmentVariables xdt:Transform="InsertIfMissing">
          <environmentVariable name="Custom_Specific" 
                               value="Custom_Specific_Value" 
                               xdt:Locator="Match(name)" 
                               xdt:Transform="InsertIfMissing" />
        </environmentVariables>
      </aspNetCore>
    </system.webServer>
  </location>
</configuration>

dotnet publish --configuration Release /p:CustomTransformFileName=custom.transform

Prevent web.config transformation

dotnet publish /p:IsWebConfigTransformDisabled=true

Additional resources

When publishing from Visual Studio and using a publish profile, see Visual Studio publish profiles (.pubxml) for

ASP.NET Core app deployment.

The ASPNETCORE_ENVIRONMENT  environment variable is automatically added to the web.config file when the

environment name is specified.

Custom transformations are run last, after Build configuration, Profile, and Environment transforms.

Include a {CUSTOM_NAME}.transform file for each custom configuration requiring a web.config transformation.

In the following example, a custom transform environment variable is set in custom.transform:

The transform is applied when the CustomTransformFileName  property is passed to the dotnet publish command:

The MSBuild property for the profile name is $(CustomTransformFileName) .

To prevent transformations of the web.config file, set the MSBuild property $(IsWebConfigTransformDisabled) :

Web.config Transformation Syntax for Web Application Project Deployment

Web.config Transformation Syntax for Web Project Deployment Using Visual Studio

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/previous-versions/dd465326(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/aspnet/dd465326(v=vs.110)


    

    

Kestrel web server implementation in
ASP.NET Core
9/22/2020 • 69 minutes to read • Edit Online

HTTP/2 support

When to use Kestrel with a reverse proxy

By Tom Dykstra, Chris Ross, and Stephen Halter

Kestrel is a cross-platform web server for ASP.NET Core. Kestrel is the web server that's included

by default in ASP.NET Core project templates.

Kestrel supports the following scenarios:

HTTPS

Opaque upgrade used to enable WebSockets

Unix sockets for high performance behind Nginx

HTTP/2 (except on macOS†)

†HTTP/2 will be supported on macOS in a future release.

Kestrel is supported on all platforms and versions that .NET Core supports.

View or download sample code (how to download)

HTTP/2 is available for ASP.NET Core apps if the following base requirements are met:

Operating system†

Target framework: .NET Core 2.2 or later

Application-Layer Protocol Negotiation (ALPN) connection

TLS 1.2 or later connection

Windows Server 2016/Windows 10 or later‡

Linux with OpenSSL 1.0.2 or later (for example, Ubuntu 16.04 or later)

†HTTP/2 will be supported on macOS in a future release. ‡Kestrel has limited support for HTTP/2

on Windows Server 2012 R2 and Windows 8.1. Support is limited because the list of supported

TLS cipher suites available on these operating systems is limited. A certificate generated using

an Elliptic Curve Digital Signature Algorithm (ECDSA) may be required to secure TLS

connections.

If an HTTP/2 connection is established, HttpRequest.Protocol reports HTTP/2 .

HTTP/2 is disabled by default. For more information on configuration, see the Kestrel options

and ListenOptions.Protocols sections.

Kestrel can be used by itself or with a reverse proxy server, such as Internet Information

Services (IIS), Nginx, or Apache. A reverse proxy server receives HTTP requests from the network

and forwards them to Kestrel.

Kestrel used as an edge (Internet-facing) web server :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/servers/kestrel.md
https://github.com/tdykstra
https://github.com/Tratcher
https://twitter.com/halter73
https://github.com/aspnet/websockets
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/servers/kestrel/samples
https://httpwg.org/specs/rfc7540.html
https://tools.ietf.org/html/rfc7301#section-3
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol
https://www.iis.net/
https://nginx.org
https://httpd.apache.org/


WARNINGWARNING

Kestrel in ASP.NET Core apps

public static void Main(string[] args)
{
    CreateHostBuilder(args).Build().Run();
}

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseStartup<Startup>();
        });

Kestrel used in a reverse proxy configuration:

Either configuration, with or without a reverse proxy server, is a supported hosting

configuration.

Kestrel used as an edge server without a reverse proxy server doesn't support sharing the same

IP and port among multiple processes. When Kestrel is configured to listen on a port, Kestrel

handles all of the traffic for that port regardless of requests' Host  headers. A reverse proxy that

can share ports has the ability to forward requests to Kestrel on a unique IP and port.

Even if a reverse proxy server isn't required, using a reverse proxy server might be a good

choice.

A reverse proxy:

Can limit the exposed public surface area of the apps that it hosts.

Provide an additional layer of configuration and defense.

Might integrate better with existing infrastructure.

Simplify load balancing and secure communication (HTTPS) configuration. Only the reverse

proxy server requires an X.509 certificate, and that server can communicate with the app's

servers on the internal network using plain HTTP.

Hosting in a reverse proxy configuration requires host filtering.

ASP.NET Core project templates use Kestrel by default. In Program.cs, the

ConfigureWebHostDefaults method calls UseKestrel:

For more information on building the host, see the Set up a host and Default builder settings

sections of .NET Generic Host.

To provide additional configuration after calling ConfigureWebHostDefaults , use 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.generichostbuilderextensions.configurewebhostdefaults
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderkestrelextensions.usekestrel


        

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.ConfigureKestrel(serverOptions =>
            {
                // Set properties and call methods on options
            })
            .UseStartup<Startup>();
        });

Kestrel options

using Microsoft.AspNetCore.Server.Kestrel.Core;

{
  "Kestrel": {
    "Limits": {
      "MaxConcurrentConnections": 100,
      "MaxConcurrentUpgradedConnections": 100
    },
    "DisableStringReuse": true
  }
}

NOTENOTE

ConfigureKestrel :

The Kestrel web server has constraint configuration options that are especially useful in Internet-

facing deployments.

Set constraints on the Limits property of the KestrelServerOptions class. The Limits  property

holds an instance of the KestrelServerLimits class.

The following examples use the Microsoft.AspNetCore.Server.Kestrel.Core namespace:

In examples shown later in this article, Kestrel options are configured in C# code. Kestrel options

can also be set using a configuration provider. For example, the File Configuration Provider can

load Kestrel configuration from an appsettings.json or appsettings.{Environment}.json file:

KestrelServerOptions and endpoint configuration are configurable from configuration providers.

Remaining Kestrel configuration must be configured in C# code.

Use oneone of the following approaches:

Configure Kestrel in Startup.ConfigureServices :

1. Inject an instance of IConfiguration  into the Startup  class. The following

example assumes that the injected configuration is assigned to the Configuration

property.

2. In Startup.ConfigureServices , load the Kestrel  section of configuration into

Kestrel's configuration:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.limits#microsoft_aspnetcore_server_kestrel_core_kestrelserveroptions_limits
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions


Keep-alive timeoutKeep-alive timeout

// using Microsoft.Extensions.DependencyInjection;

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureServices((context, services) =>
        {
            services.Configure<KestrelServerOptions>(
                context.Configuration.GetSection("Kestrel"));
        })
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseStartup<Startup>();
        });

using Microsoft.Extensions.Configuration

public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.Configure<KestrelServerOptions>(
            Configuration.GetSection("Kestrel"));
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        ...
    }
}

Configure Kestrel when building the host:

In Program.cs, load the Kestrel  section of configuration into Kestrel's configuration:

Both of the preceding approaches work with any configuration provider.

KeepAliveTimeout

Gets or sets the keep-alive timeout. Defaults to 2 minutes.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.keepalivetimeout#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_keepalivetimeout
https://tools.ietf.org/html/rfc7230#section-6.5


            

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, 
        listenOptions =>
        {
            listenOptions.UseHttps("testCert.pfx", 
                "testPassword");
        });
    serverOptions.Limits.KeepAliveTimeout = 
        TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = 
        TimeSpan.FromMinutes(1);
})

Maximum client connectionsMaximum client connections

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, 
        listenOptions =>
        {
            listenOptions.UseHttps("testCert.pfx", 
                "testPassword");
        });
    serverOptions.Limits.KeepAliveTimeout = 
        TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = 
        TimeSpan.FromMinutes(1);
})

MaxConcurrentConnections MaxConcurrentUpgradedConnections

The maximum number of concurrent open TCP connections can be set for the entire app with

the following code:

There's a separate limit for connections that have been upgraded from HTTP or HTTPS to

another protocol (for example, on a WebSockets request). After a connection is upgraded, it isn't

counted against the MaxConcurrentConnections  limit.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxconcurrentconnections#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_maxconcurrentconnections
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxconcurrentupgradedconnections#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_maxconcurrentupgradedconnections


                        

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, 
        listenOptions =>
        {
            listenOptions.UseHttps("testCert.pfx", 
                "testPassword");
        });
    serverOptions.Limits.KeepAliveTimeout = 
        TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = 
        TimeSpan.FromMinutes(1);
})

Maximum request body sizeMaximum request body size

[RequestSizeLimit(100000000)]
public IActionResult MyActionMethod()

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, 
        listenOptions =>
        {
            listenOptions.UseHttps("testCert.pfx", 
                "testPassword");
        });
    serverOptions.Limits.KeepAliveTimeout = 
        TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = 
        TimeSpan.FromMinutes(1);
})

The maximum number of connections is unlimited (null) by default.

MaxRequestBodySize

The default maximum request body size is 30,000,000 bytes, which is approximately 28.6 MB.

The recommended approach to override the limit in an ASP.NET Core MVC app is to use the

RequestSizeLimitAttribute attribute on an action method:

Here's an example that shows how to configure the constraint for the app on every request:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxrequestbodysize#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute


            

app.Run(async (context) =>
{
    context.Features.Get<IHttpMaxRequestBodySizeFeature>()
        .MaxRequestBodySize = 10 * 1024;

    var minRequestRateFeature = 
        context.Features.Get<IHttpMinRequestBodyDataRateFeature>();
    var minResponseRateFeature = 
        context.Features.Get<IHttpMinResponseDataRateFeature>();

    if (minRequestRateFeature != null)
    {
        minRequestRateFeature.MinDataRate = new MinDataRate(
            bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    }

    if (minResponseRateFeature != null)
    {
        minResponseRateFeature.MinDataRate = new MinDataRate(
            bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    }

Minimum request body data rateMinimum request body data rate

Override the setting on a specific request in middleware:

An exception is thrown if the app configures the limit on a request after the app has started to

read the request. There's an IsReadOnly  property that indicates if the MaxRequestBodySize

property is in read-only state, meaning it's too late to configure the limit.

When an app is run out-of-process behind the ASP.NET Core Module, Kestrel's request body size

limit is disabled because IIS already sets the limit.

MinRequestBodyDataRate MinResponseDataRate

Kestrel checks every second if data is arriving at the specified rate in bytes/second. If the rate

drops below the minimum, the connection is timed out. The grace period is the amount of time

that Kestrel gives the client to increase its send rate up to the minimum; the rate isn't checked

during that time. The grace period helps avoid dropping connections that are initially sending

data at a slow rate due to TCP slow-start.

The default minimum rate is 240 bytes/second with a 5 second grace period.

A minimum rate also applies to the response. The code to set the request limit and the response

limit is the same except for having RequestBody  or Response  in the property and interface

names.

Here's an example that shows how to configure the minimum data rates in Program.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.minrequestbodydatarate#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_minrequestbodydatarate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.minresponsedatarate#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_minresponsedatarate


webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, 
        listenOptions =>
        {
            listenOptions.UseHttps("testCert.pfx", 
                "testPassword");
        });
    serverOptions.Limits.KeepAliveTimeout = 
        TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = 
        TimeSpan.FromMinutes(1);
})

app.Run(async (context) =>
{
    context.Features.Get<IHttpMaxRequestBodySizeFeature>()
        .MaxRequestBodySize = 10 * 1024;

    var minRequestRateFeature = 
        context.Features.Get<IHttpMinRequestBodyDataRateFeature>();
    var minResponseRateFeature = 
        context.Features.Get<IHttpMinResponseDataRateFeature>();

    if (minRequestRateFeature != null)
    {
        minRequestRateFeature.MinDataRate = new MinDataRate(
            bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    }

    if (minResponseRateFeature != null)
    {
        minResponseRateFeature.MinDataRate = new MinDataRate(
            bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    }

Override the minimum rate limits per request in middleware:

The IHttpMinResponseDataRateFeature referenced in the prior sample is not present in 

HttpContext.Features  for HTTP/2 requests because modifying rate limits on a per-request basis

is generally not supported for HTTP/2 due to the protocol's support for request multiplexing.

However, the IHttpMinRequestBodyDataRateFeature is still present HttpContext.Features  for

HTTP/2 requests, because the read rate limit can still be disabled entirely on a per-request basis

by setting IHttpMinRequestBodyDataRateFeature.MinDataRate  to null  even for an HTTP/2 request.

Attempting to read IHttpMinRequestBodyDataRateFeature.MinDataRate  or attempting to set it to a

value other than null  will result in a NotSupportedException  being thrown given an HTTP/2

request.

Server-wide rate limits configured via KestrelServerOptions.Limits  still apply to both HTTP/1.x

and HTTP/2 connections.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.features.ihttpminresponsedataratefeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.features.ihttpminrequestbodydataratefeature


Request headers timeoutRequest headers timeout

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, 
            gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, 
        listenOptions =>
        {
            listenOptions.UseHttps("testCert.pfx", 
                "testPassword");
        });
    serverOptions.Limits.KeepAliveTimeout = 
        TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = 
        TimeSpan.FromMinutes(1);
})

Maximum streams per connectionMaximum streams per connection

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.Http2.MaxStreamsPerConnection = 100;
});

Header table sizeHeader table size

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.Http2.HeaderTableSize = 4096;
});

Maximum frame sizeMaximum frame size

RequestHeadersTimeout

Gets or sets the maximum amount of time the server spends receiving request headers. Defaults

to 30 seconds.

Http2.MaxStreamsPerConnection  limits the number of concurrent request streams per HTTP/2

connection. Excess streams are refused.

The default value is 100.

The HPACK decoder decompresses HTTP headers for HTTP/2 connections. 

Http2.HeaderTableSize  limits the size of the header compression table that the HPACK decoder

uses. The value is provided in octets and must be greater than zero (0).

The default value is 4096.

Http2.MaxFrameSize  indicates the maximum allowed size of an HTTP/2 connection frame

payload received or sent by the server. The value is provided in octets and must be between

2^14 (16,384) and 2^24-1 (16,777,215).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.requestheaderstimeout#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_requestheaderstimeout


webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.Http2.MaxFrameSize = 16384;
});

Maximum request header sizeMaximum request header size

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.Http2.MaxRequestHeaderFieldSize = 8192;
});

Initial connection window sizeInitial connection window size

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.Http2.InitialConnectionWindowSize = 131072;
});

Initial stream window sizeInitial stream window size

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Limits.Http2.InitialStreamWindowSize = 98304;
});

Synchronous I/OSynchronous I/O

The default value is 2^14 (16,384).

Http2.MaxRequestHeaderFieldSize  indicates the maximum allowed size in octets of request

header values. This limit applies to both name and value in their compressed and uncompressed

representations. The value must be greater than zero (0).

The default value is 8,192.

Http2.InitialConnectionWindowSize  indicates the maximum request body data in bytes the

server buffers at one time aggregated across all requests (streams) per connection. Requests are

also limited by Http2.InitialStreamWindowSize . The value must be greater than or equal to

65,535 and less than 2^31 (2,147,483,648).

The default value is 128 KB (131,072).

Http2.InitialStreamWindowSize  indicates the maximum request body data in bytes the server

buffers at one time per request (stream). Requests are also limited by 

Http2.InitialConnectionWindowSize . The value must be greater than or equal to 65,535 and less

than 2^31 (2,147,483,648).

The default value is 96 KB (98,304).

AllowSynchronousIO controls whether synchronous I/O is allowed for the request and response.

The default value is false .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.allowsynchronousio#microsoft_aspnetcore_server_kestrel_core_kestrelserveroptions_allowsynchronousio


                            

WARNINGWARNING

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.AllowSynchronousIO = true;
})

Endpoint configuration

A large number of blocking synchronous I/O operations can lead to thread pool starvation, which

makes the app unresponsive. Only enable AllowSynchronousIO  when using a library that doesn't

support asynchronous I/O.

The following example enables synchronous I/O:

For information about other Kestrel options and limits, see:

KestrelServerOptions

KestrelServerLimits

ListenOptions

By default, ASP.NET Core binds to:

http://localhost:5000

https://localhost:5001  (when a local development certificate is present)

Specify URLs using the:

ASPNETCORE_URLS  environment variable.

--urls  command-line argument.

urls  host configuration key.

UseUrls  extension method.

The value provided using these approaches can be one or more HTTP and HTTPS endpoints

(HTTPS if a default cert is available). Configure the value as a semicolon-separated list (for

example, "Urls": "http://localhost:8000;http://localhost:8001" ).

For more information on these approaches, see Server URLs and Override configuration.

A development certificate is created:

When the .NET Core SDK is installed.

The dev-certs tool is used to create a certificate.

Some browsers require granting explicit permission to trust the local development certificate.

Project templates configure apps to run on HTTPS by default and include HTTPS redirection and

HSTS support.

Call Listen or ListenUnixSocket methods on KestrelServerOptions to configure URL prefixes and

ports for Kestrel.

UseUrls , the --urls  command-line argument, urls  host configuration key, and the 

ASPNETCORE_URLS  environment variable also work but have the limitations noted later in this

section (a default certificate must be available for HTTPS endpoint configuration).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.listenoptions
https://docs.microsoft.com/en-us/dotnet/core/sdk
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions


    

  

ConfigureEndpointDefaults(Action<ListenOptions>)ConfigureEndpointDefaults(Action<ListenOptions>)

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.ConfigureEndpointDefaults(listenOptions =>
    {
        // Configure endpoint defaults
    });
});

NOTENOTE

ConfigureHttpsDefaults(Action<HttpsConnectionAdapterOptions>)ConfigureHttpsDefaults(Action<HttpsConnectionAdapterOptions>)

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.ConfigureHttpsDefaults(listenOptions =>
    {
        // certificate is an X509Certificate2
        listenOptions.ServerCertificate = certificate;
    });
});

NOTENOTE

Configure(IConfiguration)Configure(IConfiguration)

ListenOptions.UseHttpsListenOptions.UseHttps

KestrelServerOptions  configuration:

Specifies a configuration Action  to run for each specified endpoint. Calling 

ConfigureEndpointDefaults  multiple times replaces prior Action s with the last Action

specified.

Endpoints created by calling Listen beforebefore calling ConfigureEndpointDefaults won't have the defaults

applied.

Specifies a configuration Action  to run for each HTTPS endpoint. Calling 

ConfigureHttpsDefaults  multiple times replaces prior Action s with the last Action  specified.

Endpoints created by calling Listen beforebefore calling ConfigureHttpsDefaults won't have the defaults

applied.

Creates a configuration loader for setting up Kestrel that takes an IConfiguration as input. The

configuration must be scoped to the configuration section for Kestrel.

Configure Kestrel to use HTTPS.

ListenOptions.UseHttps  extensions:

UseHttps : Configure Kestrel to use HTTPS with the default certificate. Throws an exception if

no default certificate is configured.

UseHttps(string fileName)

UseHttps(string fileName, string password)

UseHttps(string fileName, string password, Action<HttpsConnectionAdapterOptions>
configureOptions)

UseHttps(StoreName storeName, string subject)

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.configureendpointdefaults
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.configurehttpsdefaults
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration


UseHttps(StoreName storeName, string subject, bool allowInvalid)

UseHttps(StoreName storeName, string subject, bool allowInvalid, StoreLocation location)

UseHttps(StoreName storeName, string subject, bool allowInvalid, StoreLocation location,
Action<HttpsConnectionAdapterOptions> configureOptions)

UseHttps(X509Certificate2 serverCertificate)

UseHttps(X509Certificate2 serverCertificate, Action<HttpsConnectionAdapterOptions>
configureOptions)

UseHttps(Action<HttpsConnectionAdapterOptions> configureOptions)

ListenOptions.UseHttps  parameters:

filename  is the path and file name of a certificate file, relative to the directory that contains

the app's content files.

password  is the password required to access the X.509 certificate data.

configureOptions  is an Action  to configure the HttpsConnectionAdapterOptions . Returns the 

ListenOptions .

storeName  is the certificate store from which to load the certificate.

subject  is the subject name for the certificate.

allowInvalid  indicates if invalid certificates should be considered, such as self-signed

certificates.

location  is the store location to load the certificate from.

serverCertificate  is the X.509 certificate.

In production, HTTPS must be explicitly configured. At a minimum, a default certificate must be

provided.

Supported configurations described next:

No configuration

Replace the default certificate from configuration

Change the defaults in code

No configuration

Kestrel listens on http://localhost:5000  and https://localhost:5001  (if a default cert is

available).

   Replace the default certificate from configuration

CreateDefaultBuilder  calls Configure(context.Configuration.GetSection("Kestrel"))  by default

to load Kestrel configuration. A default HTTPS app settings configuration schema is available for

Kestrel. Configure multiple endpoints, including the URLs and the certificates to use, either from

a file on disk or from a certificate store.

In the following appsettings.json example:

Set AllowInvalidAllowInvalid to true  to permit the use of invalid certificates (for example, self-signed

certificates).

Any HTTPS endpoint that doesn't specify a certificate (HttpsDefaultCer tHttpsDefaultCer t in the example that

follows) falls back to the cert defined under Cer tificatesCer tificates  > DefaultDefault or the development

certificate.



{
  "Kestrel": {
    "Endpoints": {
      "Http": {
        "Url": "http://localhost:5000"
      },
      "HttpsInlineCertFile": {
        "Url": "https://localhost:5001",
        "Certificate": {
          "Path": "<path to .pfx file>",
          "Password": "<certificate password>"
        }
      },
      "HttpsInlineCertStore": {
        "Url": "https://localhost:5002",
        "Certificate": {
          "Subject": "<subject; required>",
          "Store": "<certificate store; required>",
          "Location": "<location; defaults to CurrentUser>",
          "AllowInvalid": "<true or false; defaults to false>"
        }
      },
      "HttpsDefaultCert": {
        "Url": "https://localhost:5003"
      },
      "Https": {
        "Url": "https://*:5004",
        "Certificate": {
          "Path": "<path to .pfx file>",
          "Password": "<certificate password>"
        }
      }
    },
    "Certificates": {
      "Default": {
        "Path": "<path to .pfx file>",
        "Password": "<certificate password>"
      }
    }
  }
}

"Default": {
  "Subject": "<subject; required>",
  "Store": "<cert store; required>",
  "Location": "<location; defaults to CurrentUser>",
  "AllowInvalid": "<true or false; defaults to false>"
}

An alternative to using PathPath and PasswordPassword for any certificate node is to specify the certificate

using certificate store fields. For example, the Cer tificatesCer tificates  > DefaultDefault certificate can be

specified as:

Schema notes:

Endpoints names are case-insensitive. For example, HTTPS  and Https  are valid.

The Url  parameter is required for each endpoint. The format for this parameter is the same

as the top-level Urls  configuration parameter except that it's limited to a single value.

These endpoints replace those defined in the top-level Urls  configuration rather than

adding to them. Endpoints defined in code via Listen  are cumulative with the endpoints

defined in the configuration section.



webBuilder.UseKestrel((context, serverOptions) =>
{
    serverOptions.Configure(context.Configuration.GetSection("Kestrel"))
        .Endpoint("HTTPS", listenOptions =>
        {
            listenOptions.HttpsOptions.SslProtocols = SslProtocols.Tls12;
        });
});

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.ConfigureEndpointDefaults(listenOptions =>
    {
        // Configure endpoint defaults
    });

    serverOptions.ConfigureHttpsDefaults(listenOptions =>
    {
        listenOptions.SslProtocols = SslProtocols.Tls12;
    });
});

The Certificate  section is optional. If the Certificate  section isn't specified, the defaults

defined in earlier scenarios are used. If no defaults are available, the server throws an

exception and fails to start.

The Certificate  section supports both PathPath–PasswordPassword and SubjectSubject–StoreStore certificates.

Any number of endpoints may be defined in this way so long as they don't cause port

conflicts.

options.Configure(context.Configuration.GetSection("{SECTION}"))  returns a 

KestrelConfigurationLoader  with an .Endpoint(string name, listenOptions => { })  method

that can be used to supplement a configured endpoint's settings:

KestrelServerOptions.ConfigurationLoader  can be directly accessed to continue iterating on the

existing loader, such as the one provided by CreateDefaultBuilder.

The configuration section for each endpoint is available on the options in the Endpoint

method so that custom settings may be read.

Multiple configurations may be loaded by calling 

options.Configure(context.Configuration.GetSection("{SECTION}"))  again with another

section. Only the last configuration is used, unless Load  is explicitly called on prior instances.

The metapackage doesn't call Load  so that its default configuration section may be replaced.

KestrelConfigurationLoader  mirrors the Listen  family of APIs from KestrelServerOptions

as Endpoint  overloads, so code and config endpoints may be configured in the same place.

These overloads don't use names and only consume default settings from configuration.

Change the defaults in code

ConfigureEndpointDefaults  and ConfigureHttpsDefaults  can be used to change default settings

for ListenOptions  and HttpsConnectionAdapterOptions , including overriding the default

certificate specified in the prior scenario. ConfigureEndpointDefaults  and 

ConfigureHttpsDefaults  should be called before any endpoints are configured.

Kestrel support for SNI

Server Name Indication (SNI) can be used to host multiple domains on the same IP address and

port. For SNI to function, the client sends the host name for the secure session to the server

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://tools.ietf.org/html/rfc6066#section-3


webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.ListenAnyIP(5005, listenOptions =>
    {
        listenOptions.UseHttps(httpsOptions =>
        {
            var localhostCert = CertificateLoader.LoadFromStoreCert(
                "localhost", "My", StoreLocation.CurrentUser,
                allowInvalid: true);
            var exampleCert = CertificateLoader.LoadFromStoreCert(
                "example.com", "My", StoreLocation.CurrentUser,
                allowInvalid: true);
            var subExampleCert = CertificateLoader.LoadFromStoreCert(
                "sub.example.com", "My", StoreLocation.CurrentUser,
                allowInvalid: true);
            var certs = new Dictionary<string, X509Certificate2>(
                StringComparer.OrdinalIgnoreCase);
            certs["localhost"] = localhostCert;
            certs["example.com"] = exampleCert;
            certs["sub.example.com"] = subExampleCert;

            httpsOptions.ServerCertificateSelector = (connectionContext, name) =>
            {
                if (name != null && certs.TryGetValue(name, out var cert))
                {
                    return cert;
                }

                return exampleCert;
            };
        });
    });
});

Connection loggingConnection logging

during the TLS handshake so that the server can provide the correct certificate. The client uses

the furnished certificate for encrypted communication with the server during the secure session

that follows the TLS handshake.

Kestrel supports SNI via the ServerCertificateSelector  callback. The callback is invoked once

per connection to allow the app to inspect the host name and select the appropriate certificate.

SNI support requires:

Running on target framework netcoreapp2.1  or later. On net461  or later, the callback is

invoked but the name  is always null . The name  is also null  if the client doesn't provide

the host name parameter in the TLS handshake.

All websites run on the same Kestrel instance. Kestrel doesn't support sharing an IP address

and port across multiple instances without a reverse proxy.

Call UseConnectionLogging to emit Debug level logs for byte-level communication on a

connection. Connection logging is helpful for troubleshooting problems in low-level

communication, such as during TLS encryption and behind proxies. If UseConnectionLogging  is

placed before UseHttps , encrypted traffic is logged. If UseConnectionLogging  is placed after 

UseHttps , decrypted traffic is logged.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.listenoptionsconnectionloggingextensions.useconnectionlogging


webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Listen(IPAddress.Any, 8000, listenOptions =>
    {
        listenOptions.UseConnectionLogging();
    });
});

Bind to a TCP socketBind to a TCP socket

public static void Main(string[] args)
{
    CreateHostBuilder(args).Build().Run();
}

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.ConfigureKestrel(serverOptions =>
            {
                serverOptions.Listen(IPAddress.Loopback, 5000);
                serverOptions.Listen(IPAddress.Loopback, 5001, 
                    listenOptions =>
                    {
                        listenOptions.UseHttps("testCert.pfx", 
                            "testPassword");
                    });
            })
            .UseStartup<Startup>();
        });

Bind to a Unix socketBind to a Unix socket

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.ListenUnixSocket("/tmp/kestrel-test.sock");
    serverOptions.ListenUnixSocket("/tmp/kestrel-test.sock", 
        listenOptions =>
        {
            listenOptions.UseHttps("testCert.pfx", 
                "testpassword");
        });
})

The Listen method binds to a TCP socket, and an options lambda permits X.509 certificate

configuration:

The example configures HTTPS for an endpoint with ListenOptions. Use the same API to

configure other Kestrel settings for specific endpoints.

On Windows, self-signed certificates can be created using the New-SelfSignedCertificate

PowerShell cmdlet. For an unsupported example, see UpdateIISExpressSSLForChrome.ps1.

On macOS, Linux, and Windows, certificates can be created using OpenSSL.

Listen on a Unix socket with ListenUnixSocket for improved performance with Nginx, as shown

in this example:

In the Nginx configuration file, set the server  > location  > proxy_pass  entry to 

http://unix:/tmp/{KESTREL SOCKET}:/; . {KESTREL SOCKET}  is the name of the socket provided

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.listenoptions
https://docs.microsoft.com/en-us/powershell/module/pkiclient/new-selfsignedcertificate?view=win10-ps
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/includes/make-x509-cert/UpdateIISExpressSSLForChrome.ps1
https://www.openssl.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket


Port 0Port 0

public void Configure(IApplicationBuilder app)
{
    var serverAddressesFeature = 
        app.ServerFeatures.Get<IServerAddressesFeature>();

    app.UseStaticFiles();

    app.Run(async (context) =>
    {
        context.Response.ContentType = "text/html";
        await context.Response
            .WriteAsync("<!DOCTYPE html><html lang=\"en\"><head>" +
                "<title></title></head><body><p>Hosted by Kestrel</p>");

        if (serverAddressesFeature != null)
        {
            await context.Response
                .WriteAsync("<p>Listening on the following addresses: " +
                    string.Join(", ", serverAddressesFeature.Addresses) +
                    "</p>");
        }

        await context.Response.WriteAsync("<p>Request URL: " +
            $"{context.Request.GetDisplayUrl()}<p>");
    });
}

Listening on the following addresses: http://127.0.0.1:48508

LimitationsLimitations

IIS endpoint configurationIIS endpoint configuration

to ListenUnixSocket (for example, kestrel-test.sock  in the preceding example).

Ensure that the socket is writeable by Nginx (for example, chmod go+w /tmp/kestrel-test.sock

).

When the port number 0  is specified, Kestrel dynamically binds to an available port. The

following example shows how to determine which port Kestrel actually bound at runtime:

When the app is run, the console window output indicates the dynamic port where the app can

be reached:

Configure endpoints with the following approaches:

UseUrls

--urls  command-line argument

urls  host configuration key

ASPNETCORE_URLS  environment variable

These methods are useful for making code work with servers other than Kestrel. However, be

aware of the following limitations:

HTTPS can't be used with these approaches unless a default certificate is provided in the

HTTPS endpoint configuration (for example, using KestrelServerOptions  configuration or a

configuration file as shown earlier in this topic).

When both the Listen  and UseUrls  approaches are used simultaneously, the Listen

endpoints override the UseUrls  endpoints.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useurls


            ListenOptions.ProtocolsListenOptions.Protocols

HTTPPROTOCOLS  EN UM  VA L UE EN UM  VA L UE C O N N EC T IO N  P ROTO C O L  P ERM IT T EDC O N N EC T IO N  P ROTO C O L  P ERM IT T ED

Http1 HTTP/1.1 only. Can be used with or without TLS.

Http2 HTTP/2 only. May be used without TLS only if the
client supports a Prior Knowledge mode.

Http1AndHttp2 HTTP/1.1 and HTTP/2. HTTP/2 requires the client to
select HTTP/2 in the TLS Application-Layer Protocol
Negotiation (ALPN) handshake; otherwise, the
connection defaults to HTTP/1.1.

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Listen(IPAddress.Any, 8000, listenOptions =>
    {
        listenOptions.UseHttps("testCert.pfx", "testPassword");
    });
});

When using IIS, the URL bindings for IIS override bindings are set by either Listen  or UseUrls .

For more information, see the ASP.NET Core Module topic.

The Protocols  property establishes the HTTP protocols ( HttpProtocols ) enabled on a

connection endpoint or for the server. Assign a value to the Protocols  property from the 

HttpProtocols  enum.

The default ListenOptions.Protocols  value for any endpoint is HttpProtocols.Http1AndHttp2 .

TLS restrictions for HTTP/2:

TLS version 1.2 or later

Renegotiation disabled

Compression disabled

Minimum ephemeral key exchange sizes:

Cipher suite not prohibited.

Elliptic curve Diffie-Hellman (ECDHE) [RFC4492]: 224 bits minimum

Finite field Diffie-Hellman (DHE) [ TLS12 ]: 2048 bits minimum

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256  [ TLS-ECDHE ] with the P-256 elliptic curve [ FIPS186 ] is

supported by default.

The following example permits HTTP/1.1 and HTTP/2 connections on port 8000. Connections

are secured by TLS with a supplied certificate:

Use Connection Middleware to filter TLS handshakes on a per-connection basis for specific

ciphers if required.

The following example throws NotSupportedException for any cipher algorithm that the app

doesn't support. Alternatively, define and compare ITlsHandshakeFeature.CipherAlgorithm to a

list of acceptable cipher suites.

No encryption is used with a CipherAlgorithmType.Null cipher algorithm.

https://tools.ietf.org/html/rfc7540#section-3.4
https://tools.ietf.org/html/rfc7301#section-3
https://www.ietf.org/rfc/rfc4492.txt
https://docs.microsoft.com/en-us/dotnet/api/system.notsupportedexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.connections.features.itlshandshakefeature.cipheralgorithm#microsoft_aspnetcore_connections_features_itlshandshakefeature_cipheralgorithm
https://docs.microsoft.com/en-us/dotnet/api/system.security.authentication.cipheralgorithmtype


// using System.Net;
// using Microsoft.AspNetCore.Connections;

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Listen(IPAddress.Any, 8000, listenOptions =>
    {
        listenOptions.UseHttps("testCert.pfx", "testPassword");
        listenOptions.UseTlsFilter();
    });
});

using System;
using System.Security.Authentication;
using Microsoft.AspNetCore.Connections.Features;

namespace Microsoft.AspNetCore.Connections
{
    public static class TlsFilterConnectionMiddlewareExtensions
    {
        public static IConnectionBuilder UseTlsFilter(
            this IConnectionBuilder builder)
        {
            return builder.Use((connection, next) =>
            {
                var tlsFeature = connection.Features.Get<ITlsHandshakeFeature>();

                if (tlsFeature.CipherAlgorithm == CipherAlgorithmType.Null)
                {
                    throw new NotSupportedException("Prohibited cipher: " +
                        tlsFeature.CipherAlgorithm);
                }

                return next();
            });
        }
    }
}

Connection filtering can also be configured via an IConnectionBuilder lambda:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.connections.iconnectionbuilder


// using System;
// using System.Net;
// using System.Security.Authentication;
// using Microsoft.AspNetCore.Connections;
// using Microsoft.AspNetCore.Connections.Features;

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Listen(IPAddress.Any, 8000, listenOptions =>
    {
        listenOptions.UseHttps("testCert.pfx", "testPassword");
        listenOptions.Use((context, next) =>
        {
            var tlsFeature = context.Features.Get<ITlsHandshakeFeature>();

            if (tlsFeature.CipherAlgorithm == CipherAlgorithmType.Null)
            {
                throw new NotSupportedException(
                    $"Prohibited cipher: {tlsFeature.CipherAlgorithm}");
            }

            return next();
        });
    });
});

// using System.Net.Security;
// using Microsoft.AspNetCore.Hosting;
// using Microsoft.AspNetCore.Server.Kestrel.Core;
// using Microsoft.Extensions.DependencyInjection;
// using Microsoft.Extensions.Hosting;

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.ConfigureHttpsDefaults(listenOptions =>
    {
        listenOptions.OnAuthenticate = (context, sslOptions) =>
        {
            sslOptions.CipherSuitesPolicy = new CipherSuitesPolicy(
                new[]
                {
                    TlsCipherSuite.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
                    TlsCipherSuite.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
                    // ...
                });
        };
    });
});

On Linux, CipherSuitesPolicy can be used to filter TLS handshakes on a per-connection basis:

Set the protocol from configuration

CreateDefaultBuilder  calls 

serverOptions.Configure(context.Configuration.GetSection("Kestrel"))  by default to load Kestrel

configuration.

The following appsettings.json example establishes HTTP/1.1 as the default connection protocol

for all endpoints:

https://docs.microsoft.com/en-us/dotnet/api/system.net.security.ciphersuitespolicy


   

{
  "Kestrel": {
    "EndpointDefaults": {
      "Protocols": "Http1"
    }
  }
}

{
  "Kestrel": {
    "Endpoints": {
      "HttpsDefaultCert": {
        "Url": "https://localhost:5001",
        "Protocols": "Http1"
      }
    }
  }
}

Transport configuration

URL prefixesURL prefixes

The following appsettings.json example establishes the HTTP/1.1 connection protocol for a

specific endpoint:

Protocols specified in code override values set by configuration.

For projects that require the use of Libuv (UseLibuv):

<PackageReference Include="Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv"
                   Version="{VERSION}" />

public class Program
{
     public static void Main(string[] args)
     {
         CreateHostBuilder(args).Build().Run();
     }

     public static IHostBuilder CreateHostBuilder(string[] args) =>
         Host.CreateDefaultBuilder(args)
             .ConfigureWebHostDefaults(webBuilder =>
             {
                 webBuilder.UseLibuv();
                 webBuilder.UseStartup<Startup>();
             });
}

Add a dependency for the Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv package

to the app's project file:

Call UseLibuv on the IWebHostBuilder :

When using UseUrls , --urls  command-line argument, urls  host configuration key, or 

ASPNETCORE_URLS  environment variable, the URL prefixes can be in any of the following formats.

Only HTTP URL prefixes are valid. Kestrel doesn't support HTTPS when configuring URL

bindings using UseUrls .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderlibuvextensions.uselibuv
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderlibuvextensions.uselibuv


          Host filtering

http://65.55.39.10:80/

http://[0:0:0:0:0:ffff:4137:270a]:80/

http://contoso.com:80/
http://*:80/

WARNINGWARNING

http://localhost:5000/
http://127.0.0.1:5000/
http://[::1]:5000/

IPv4 address with port number

0.0.0.0  is a special case that binds to all IPv4 addresses.

IPv6 address with port number

[::]  is the IPv6 equivalent of IPv4 0.0.0.0 .

Host name with port number

Host names, * , and + , aren't special. Anything not recognized as a valid IP address or 

localhost  binds to all IPv4 and IPv6 IPs. To bind different host names to different

ASP.NET Core apps on the same port, use HTTP.sys or a reverse proxy server, such as IIS,

Nginx, or Apache.

Hosting in a reverse proxy configuration requires host filtering.

Host localhost  name with port number or loopback IP with port number

When localhost  is specified, Kestrel attempts to bind to both IPv4 and IPv6 loopback

interfaces. If the requested port is in use by another service on either loopback interface,

Kestrel fails to start. If either loopback interface is unavailable for any other reason (most

commonly because IPv6 isn't supported), Kestrel logs a warning.

While Kestrel supports configuration based on prefixes such as http://example.com:5000 , Kestrel

largely ignores the host name. Host localhost  is a special case used for binding to loopback

addresses. Any host other than an explicit IP address binds to all public IP addresses. Host

headers aren't validated.

As a workaround, use Host Filtering Middleware. Host Filtering Middleware is provided by the

Microsoft.AspNetCore.HostFiltering package, which is implicitly provided for ASP.NET Core apps.

The middleware is added by CreateDefaultBuilder, which calls AddHostFiltering:

https://www.nuget.org/packages/Microsoft.AspNetCore.HostFiltering
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hostfilteringservicesextensions.addhostfiltering


public class Program
{
    public static void Main(string[] args)
    {
        CreateWebHostBuilder(args).Build().Run();
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .UseStartup<Startup>();
}

{
  "AllowedHosts": "example.com;localhost"
}

NOTENOTE

HTTP/2 support

Host Filtering Middleware is disabled by default. To enable the middleware, define an 

AllowedHosts  key in appsettings.json/appsettings.<EnvironmentName>.json. The value is a

semicolon-delimited list of host names without port numbers:

appsettings.json:

Forwarded Headers Middleware also has an AllowedHosts option. Forwarded Headers Middleware and

Host Filtering Middleware have similar functionality for different scenarios. Setting AllowedHosts  with

Forwarded Headers Middleware is appropriate when the Host  header isn't preserved while forwarding

requests with a reverse proxy server or load balancer. Setting AllowedHosts  with Host Filtering

Middleware is appropriate when Kestrel is used as a public-facing edge server or when the Host

header is directly forwarded.

For more information on Forwarded Headers Middleware, see Configure ASP.NET Core to work with

proxy servers and load balancers.

Kestrel is a cross-platform web server for ASP.NET Core. Kestrel is the web server that's included

by default in ASP.NET Core project templates.

Kestrel supports the following scenarios:

HTTPS

Opaque upgrade used to enable WebSockets

Unix sockets for high performance behind Nginx

HTTP/2 (except on macOS†)

†HTTP/2 will be supported on macOS in a future release.

Kestrel is supported on all platforms and versions that .NET Core supports.

View or download sample code (how to download)

HTTP/2 is available for ASP.NET Core apps if the following base requirements are met:

Operating system†

Windows Server 2016/Windows 10 or later‡

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.allowedhosts#microsoft_aspnetcore_builder_forwardedheadersoptions_allowedhosts
https://github.com/aspnet/websockets
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/servers/kestrel/samples
https://httpwg.org/specs/rfc7540.html


When to use Kestrel with a reverse proxy

Target framework: .NET Core 2.2 or later

Application-Layer Protocol Negotiation (ALPN) connection

TLS 1.2 or later connection

Linux with OpenSSL 1.0.2 or later (for example, Ubuntu 16.04 or later)

†HTTP/2 will be supported on macOS in a future release. ‡Kestrel has limited support for HTTP/2

on Windows Server 2012 R2 and Windows 8.1. Support is limited because the list of supported

TLS cipher suites available on these operating systems is limited. A certificate generated using

an Elliptic Curve Digital Signature Algorithm (ECDSA) may be required to secure TLS

connections.

If an HTTP/2 connection is established, HttpRequest.Protocol reports HTTP/2 .

HTTP/2 is disabled by default. For more information on configuration, see the Kestrel options

and ListenOptions.Protocols sections.

Kestrel can be used by itself or with a reverse proxy server, such as Internet Information

Services (IIS), Nginx, or Apache. A reverse proxy server receives HTTP requests from the network

and forwards them to Kestrel.

Kestrel used as an edge (Internet-facing) web server :

Kestrel used in a reverse proxy configuration:

Either configuration, with or without a reverse proxy server, is a supported hosting

configuration.

Kestrel used as an edge server without a reverse proxy server doesn't support sharing the same

IP and port among multiple processes. When Kestrel is configured to listen on a port, Kestrel

handles all of the traffic for that port regardless of requests' Host  headers. A reverse proxy that

can share ports has the ability to forward requests to Kestrel on a unique IP and port.

Even if a reverse proxy server isn't required, using a reverse proxy server might be a good

choice.

A reverse proxy:

Can limit the exposed public surface area of the apps that it hosts.

Provide an additional layer of configuration and defense.

Might integrate better with existing infrastructure.

Simplify load balancing and secure communication (HTTPS) configuration. Only the reverse

proxy server requires an X.509 certificate, and that server can communicate with the app's

servers on the internal network using plain HTTP.

https://tools.ietf.org/html/rfc7301#section-3
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol
https://www.iis.net/
https://nginx.org
https://httpd.apache.org/


 

WARNINGWARNING

How to use Kestrel in ASP.NET Core apps

public static void Main(string[] args)
{
    CreateWebHostBuilder(args).Build().Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>();

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            // Set properties and call methods on serverOptions
        });

public static void Main(string[] args)
{
    var host = new WebHostBuilder()
        .UseContentRoot(Directory.GetCurrentDirectory())
        .UseKestrel()
        .UseIISIntegration()
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            // Set properties and call methods on serverOptions
        })
        .Build();

    host.Run();
}

Kestrel options

Hosting in a reverse proxy configuration requires host filtering.

The Microsoft.AspNetCore.Server.Kestrel package is included in the Microsoft.AspNetCore.App

metapackage.

ASP.NET Core project templates use Kestrel by default. In Program.cs, the template code calls

CreateDefaultBuilder, which calls UseKestrel behind the scenes.

For more information on CreateDefaultBuilder  and building the host, see the Set up a host

section of ASP.NET Core Web Host.

To provide additional configuration after calling CreateDefaultBuilder , use ConfigureKestrel :

If the app doesn't call CreateDefaultBuilder  to set up the host, call UseKestrel beforebefore calling 

ConfigureKestrel :

The Kestrel web server has constraint configuration options that are especially useful in Internet-

facing deployments.

https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderkestrelextensions.usekestrel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderkestrelextensions.usekestrel


using Microsoft.AspNetCore.Server.Kestrel.Core;

{
  "Kestrel": {
    "Limits": {
      "MaxConcurrentConnections": 100,
      "MaxConcurrentUpgradedConnections": 100
    }
  }
}

Set constraints on the Limits property of the KestrelServerOptions class. The Limits  property

holds an instance of the KestrelServerLimits class.

The following examples use the Microsoft.AspNetCore.Server.Kestrel.Core namespace:

Kestrel options, which are configured in C# code in the following examples, can also be set using

a configuration provider. For example, the File Configuration Provider can load Kestrel

configuration from an appsettings.json or appsettings.{Environment}.json file:

Use oneone of the following approaches:

Configure Kestrel in Startup.ConfigureServices :

using Microsoft.Extensions.Configuration

public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.Configure<KestrelServerOptions>(
            Configuration.GetSection("Kestrel"));
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        ...
    }
}

1. Inject an instance of IConfiguration  into the Startup  class. The following

example assumes that the injected configuration is assigned to the Configuration

property.

2. In Startup.ConfigureServices , load the Kestrel  section of configuration into

Kestrel's configuration:

Configure Kestrel when building the host:

In Program.cs, load the Kestrel  section of configuration into Kestrel's configuration:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.limits#microsoft_aspnetcore_server_kestrel_core_kestrelserveroptions_limits
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core


Keep-alive timeoutKeep-alive timeout

.ConfigureKestrel((context, serverOptions) =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, listenOptions =>
    {
        listenOptions.UseHttps("testCert.pfx", "testPassword");
    });
    serverOptions.Limits.KeepAliveTimeout = TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = TimeSpan.FromMinutes(1);
});

Maximum client connectionsMaximum client connections

.ConfigureKestrel((context, serverOptions) =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, listenOptions =>
    {
        listenOptions.UseHttps("testCert.pfx", "testPassword");
    });
    serverOptions.Limits.KeepAliveTimeout = TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = TimeSpan.FromMinutes(1);
});

// using Microsoft.Extensions.DependencyInjection;

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .ConfigureServices((context, services) =>
        {
            services.Configure<KestrelServerOptions>(
                context.Configuration.GetSection("Kestrel"));
        })
        .UseStartup<Startup>();

Both of the preceding approaches work with any configuration provider.

KeepAliveTimeout

Gets or sets the keep-alive timeout. Defaults to 2 minutes.

MaxConcurrentConnections MaxConcurrentUpgradedConnections

The maximum number of concurrent open TCP connections can be set for the entire app with

the following code:

There's a separate limit for connections that have been upgraded from HTTP or HTTPS to

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.keepalivetimeout#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_keepalivetimeout
https://tools.ietf.org/html/rfc7230#section-6.5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxconcurrentconnections#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_maxconcurrentconnections
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxconcurrentupgradedconnections#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_maxconcurrentupgradedconnections


.ConfigureKestrel((context, serverOptions) =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, listenOptions =>
    {
        listenOptions.UseHttps("testCert.pfx", "testPassword");
    });
    serverOptions.Limits.KeepAliveTimeout = TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = TimeSpan.FromMinutes(1);
});

Maximum request body sizeMaximum request body size

[RequestSizeLimit(100000000)]
public IActionResult MyActionMethod()

.ConfigureKestrel((context, serverOptions) =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, listenOptions =>
    {
        listenOptions.UseHttps("testCert.pfx", "testPassword");
    });
    serverOptions.Limits.KeepAliveTimeout = TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = TimeSpan.FromMinutes(1);
});

another protocol (for example, on a WebSockets request). After a connection is upgraded, it isn't

counted against the MaxConcurrentConnections  limit.

The maximum number of connections is unlimited (null) by default.

MaxRequestBodySize

The default maximum request body size is 30,000,000 bytes, which is approximately 28.6 MB.

The recommended approach to override the limit in an ASP.NET Core MVC app is to use the

RequestSizeLimitAttribute attribute on an action method:

Here's an example that shows how to configure the constraint for the app on every request:

Override the setting on a specific request in middleware:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxrequestbodysize#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute


app.Run(async (context) =>
{
    context.Features.Get<IHttpMaxRequestBodySizeFeature>()
        .MaxRequestBodySize = 10 * 1024;

    var minRequestRateFeature = 
        context.Features.Get<IHttpMinRequestBodyDataRateFeature>();
    var minResponseRateFeature = 
        context.Features.Get<IHttpMinResponseDataRateFeature>();

    if (minRequestRateFeature != null)
    {
        minRequestRateFeature.MinDataRate = new MinDataRate(
            bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    }

    if (minResponseRateFeature != null)
    {
        minResponseRateFeature.MinDataRate = new MinDataRate(
            bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    }

Minimum request body data rateMinimum request body data rate

An exception is thrown if the app configures the limit on a request after the app has started to

read the request. There's an IsReadOnly  property that indicates if the MaxRequestBodySize

property is in read-only state, meaning it's too late to configure the limit.

When an app is run out-of-process behind the ASP.NET Core Module, Kestrel's request body size

limit is disabled because IIS already sets the limit.

MinRequestBodyDataRate MinResponseDataRate

Kestrel checks every second if data is arriving at the specified rate in bytes/second. If the rate

drops below the minimum, the connection is timed out. The grace period is the amount of time

that Kestrel gives the client to increase its send rate up to the minimum; the rate isn't checked

during that time. The grace period helps avoid dropping connections that are initially sending

data at a slow rate due to TCP slow-start.

The default minimum rate is 240 bytes/second with a 5 second grace period.

A minimum rate also applies to the response. The code to set the request limit and the response

limit is the same except for having RequestBody  or Response  in the property and interface

names.

Here's an example that shows how to configure the minimum data rates in Program.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.minrequestbodydatarate#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_minrequestbodydatarate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.minresponsedatarate#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_minresponsedatarate


.ConfigureKestrel((context, serverOptions) =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, listenOptions =>
    {
        listenOptions.UseHttps("testCert.pfx", "testPassword");
    });
    serverOptions.Limits.KeepAliveTimeout = TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = TimeSpan.FromMinutes(1);
});

app.Run(async (context) =>
{
    context.Features.Get<IHttpMaxRequestBodySizeFeature>()
        .MaxRequestBodySize = 10 * 1024;

    var minRequestRateFeature = 
        context.Features.Get<IHttpMinRequestBodyDataRateFeature>();
    var minResponseRateFeature = 
        context.Features.Get<IHttpMinResponseDataRateFeature>();

    if (minRequestRateFeature != null)
    {
        minRequestRateFeature.MinDataRate = new MinDataRate(
            bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    }

    if (minResponseRateFeature != null)
    {
        minResponseRateFeature.MinDataRate = new MinDataRate(
            bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    }

Request headers timeoutRequest headers timeout

Override the minimum rate limits per request in middleware:

Neither rate feature referenced in the prior sample are present in HttpContext.Features  for

HTTP/2 requests because modifying rate limits on a per-request basis isn't supported for

HTTP/2 due to the protocol's support for request multiplexing. Server-wide rate limits

configured via KestrelServerOptions.Limits  still apply to both HTTP/1.x and HTTP/2

connections.

RequestHeadersTimeout

Gets or sets the maximum amount of time the server spends receiving request headers. Defaults

to 30 seconds.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.requestheaderstimeout#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_requestheaderstimeout


.ConfigureKestrel((context, serverOptions) =>
{
    serverOptions.Limits.MaxConcurrentConnections = 100;
    serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
    serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
    serverOptions.Limits.MinRequestBodyDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Limits.MinResponseDataRate =
        new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    serverOptions.Listen(IPAddress.Loopback, 5000);
    serverOptions.Listen(IPAddress.Loopback, 5001, listenOptions =>
    {
        listenOptions.UseHttps("testCert.pfx", "testPassword");
    });
    serverOptions.Limits.KeepAliveTimeout = TimeSpan.FromMinutes(2);
    serverOptions.Limits.RequestHeadersTimeout = TimeSpan.FromMinutes(1);
});

Maximum streams per connectionMaximum streams per connection

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.Limits.Http2.MaxStreamsPerConnection = 100;
        });

Header table sizeHeader table size

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.Limits.Http2.HeaderTableSize = 4096;
        });

Maximum frame sizeMaximum frame size

Http2.MaxStreamsPerConnection  limits the number of concurrent request streams per HTTP/2

connection. Excess streams are refused.

The default value is 100.

The HPACK decoder decompresses HTTP headers for HTTP/2 connections. 

Http2.HeaderTableSize  limits the size of the header compression table that the HPACK decoder

uses. The value is provided in octets and must be greater than zero (0).

The default value is 4096.

Http2.MaxFrameSize  indicates the maximum size of the HTTP/2 connection frame payload to

receive. The value is provided in octets and must be between 2^14 (16,384) and 2^24-1

(16,777,215).



public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.Limits.Http2.MaxFrameSize = 16384;
        });

Maximum request header sizeMaximum request header size

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.Limits.Http2.MaxRequestHeaderFieldSize = 8192;
        });

Initial connection window sizeInitial connection window size

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.Limits.Http2.InitialConnectionWindowSize = 131072;
        });

Initial stream window sizeInitial stream window size

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.Limits.Http2.InitialStreamWindowSize = 98304;
        });

The default value is 2^14 (16,384).

Http2.MaxRequestHeaderFieldSize  indicates the maximum allowed size in octets of request

header values. This limit applies to both name and value together in their compressed and

uncompressed representations. The value must be greater than zero (0).

The default value is 8,192.

Http2.InitialConnectionWindowSize  indicates the maximum request body data in bytes the

server buffers at one time aggregated across all requests (streams) per connection. Requests are

also limited by Http2.InitialStreamWindowSize . The value must be greater than or equal to

65,535 and less than 2^31 (2,147,483,648).

The default value is 128 KB (131,072).

Http2.InitialStreamWindowSize  indicates the maximum request body data in bytes the server

buffers at one time per request (stream). Requests are also limited by 

Http2.InitialStreamWindowSize . The value must be greater than or equal to 65,535 and less than

2^31 (2,147,483,648).

The default value is 96 KB (98,304).



Synchronous I/OSynchronous I/O

WARNINGWARNING

.ConfigureKestrel((context, serverOptions) =>
{
    serverOptions.AllowSynchronousIO = true;
});

Endpoint configuration

AllowSynchronousIO controls whether synchronous I/O is allowed for the request and response.

The default value is true .

A large number of blocking synchronous I/O operations can lead to thread pool starvation, which

makes the app unresponsive. Only enable AllowSynchronousIO  when using a library that doesn't

support asynchronous I/O.

The following example enables synchronous I/O:

For information about other Kestrel options and limits, see:

KestrelServerOptions

KestrelServerLimits

ListenOptions

By default, ASP.NET Core binds to:

http://localhost:5000

https://localhost:5001  (when a local development certificate is present)

Specify URLs using the:

ASPNETCORE_URLS  environment variable.

--urls  command-line argument.

urls  host configuration key.

UseUrls  extension method.

The value provided using these approaches can be one or more HTTP and HTTPS endpoints

(HTTPS if a default cert is available). Configure the value as a semicolon-separated list (for

example, "Urls": "http://localhost:8000;http://localhost:8001" ).

For more information on these approaches, see Server URLs and Override configuration.

A development certificate is created:

When the .NET Core SDK is installed.

The dev-certs tool is used to create a certificate.

Some browsers require granting explicit permission to trust the local development certificate.

Project templates configure apps to run on HTTPS by default and include HTTPS redirection and

HSTS support.

Call Listen or ListenUnixSocket methods on KestrelServerOptions to configure URL prefixes and

ports for Kestrel.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.allowsynchronousio#microsoft_aspnetcore_server_kestrel_core_kestrelserveroptions_allowsynchronousio
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.listenoptions
https://docs.microsoft.com/en-us/dotnet/core/sdk
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions


ConfigureEndpointDefaults(Action<ListenOptions>)ConfigureEndpointDefaults(Action<ListenOptions>)

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.ConfigureEndpointDefaults(listenOptions =>
            {
                // Configure endpoint defaults
            });
        });

NOTENOTE

ConfigureHttpsDefaults(Action<HttpsConnectionAdapterOptions>)ConfigureHttpsDefaults(Action<HttpsConnectionAdapterOptions>)

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.ConfigureHttpsDefaults(listenOptions =>
            {
                // certificate is an X509Certificate2
                listenOptions.ServerCertificate = certificate;
            });
        });

NOTENOTE

Configure(IConfiguration)Configure(IConfiguration)

ListenOptions.UseHttpsListenOptions.UseHttps

UseUrls , the --urls  command-line argument, urls  host configuration key, and the 

ASPNETCORE_URLS  environment variable also work but have the limitations noted later in this

section (a default certificate must be available for HTTPS endpoint configuration).

KestrelServerOptions  configuration:

Specifies a configuration Action  to run for each specified endpoint. Calling 

ConfigureEndpointDefaults  multiple times replaces prior Action s with the last Action

specified.

Endpoints created by calling Listen beforebefore calling ConfigureEndpointDefaults won't have the defaults

applied.

Specifies a configuration Action  to run for each HTTPS endpoint. Calling 

ConfigureHttpsDefaults  multiple times replaces prior Action s with the last Action  specified.

Endpoints created by calling Listen beforebefore calling ConfigureHttpsDefaults won't have the defaults

applied.

Creates a configuration loader for setting up Kestrel that takes an IConfiguration as input. The

configuration must be scoped to the configuration section for Kestrel.

Configure Kestrel to use HTTPS.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.configureendpointdefaults
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.configurehttpsdefaults
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration


ListenOptions.UseHttps  extensions:

UseHttps : Configure Kestrel to use HTTPS with the default certificate. Throws an exception if

no default certificate is configured.

UseHttps(string fileName)

UseHttps(string fileName, string password)

UseHttps(string fileName, string password, Action<HttpsConnectionAdapterOptions>
configureOptions)

UseHttps(StoreName storeName, string subject)

UseHttps(StoreName storeName, string subject, bool allowInvalid)

UseHttps(StoreName storeName, string subject, bool allowInvalid, StoreLocation location)

UseHttps(StoreName storeName, string subject, bool allowInvalid, StoreLocation location,
Action<HttpsConnectionAdapterOptions> configureOptions)

UseHttps(X509Certificate2 serverCertificate)

UseHttps(X509Certificate2 serverCertificate, Action<HttpsConnectionAdapterOptions>
configureOptions)

UseHttps(Action<HttpsConnectionAdapterOptions> configureOptions)

ListenOptions.UseHttps  parameters:

filename  is the path and file name of a certificate file, relative to the directory that contains

the app's content files.

password  is the password required to access the X.509 certificate data.

configureOptions  is an Action  to configure the HttpsConnectionAdapterOptions . Returns the 

ListenOptions .

storeName  is the certificate store from which to load the certificate.

subject  is the subject name for the certificate.

allowInvalid  indicates if invalid certificates should be considered, such as self-signed

certificates.

location  is the store location to load the certificate from.

serverCertificate  is the X.509 certificate.

In production, HTTPS must be explicitly configured. At a minimum, a default certificate must be

provided.

Supported configurations described next:

No configuration

Replace the default certificate from configuration

Change the defaults in code

No configuration

Kestrel listens on http://localhost:5000  and https://localhost:5001  (if a default cert is

available).

 Replace the default certificate from configuration

CreateDefaultBuilder  calls Configure(context.Configuration.GetSection("Kestrel"))  by default

to load Kestrel configuration. A default HTTPS app settings configuration schema is available for

Kestrel. Configure multiple endpoints, including the URLs and the certificates to use, either from

a file on disk or from a certificate store.

In the following appsettings.json example:



{
  "Kestrel": {
    "Endpoints": {
      "Http": {
        "Url": "http://localhost:5000"
      },

      "HttpsInlineCertFile": {
        "Url": "https://localhost:5001",
        "Certificate": {
          "Path": "<path to .pfx file>",
          "Password": "<certificate password>"
        }
      },

      "HttpsInlineCertStore": {
        "Url": "https://localhost:5002",
        "Certificate": {
          "Subject": "<subject; required>",
          "Store": "<certificate store; required>",
          "Location": "<location; defaults to CurrentUser>",
          "AllowInvalid": "<true or false; defaults to false>"
        }
      },

      "HttpsDefaultCert": {
        "Url": "https://localhost:5003"
      },

      "Https": {
        "Url": "https://*:5004",
        "Certificate": {
          "Path": "<path to .pfx file>",
          "Password": "<certificate password>"
        }
      }
    },
    "Certificates": {
      "Default": {
        "Path": "<path to .pfx file>",
        "Password": "<certificate password>"
      }
    }
  }
}

"Default": {
  "Subject": "<subject; required>",
  "Store": "<cert store; required>",
  "Location": "<location; defaults to CurrentUser>",
  "AllowInvalid": "<true or false; defaults to false>"
}

Set AllowInvalidAllowInvalid to true  to permit the use of invalid certificates (for example, self-signed

certificates).

Any HTTPS endpoint that doesn't specify a certificate (HttpsDefaultCer tHttpsDefaultCer t in the example that

follows) falls back to the cert defined under Cer tificatesCer tificates  > DefaultDefault or the development

certificate.

An alternative to using PathPath and PasswordPassword for any certificate node is to specify the certificate

using certificate store fields. For example, the Cer tificatesCer tificates  > DefaultDefault certificate can be

specified as:



public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel((context, serverOptions) =>
        {
            serverOptions.Configure(context.Configuration.GetSection("Kestrel"))
                .Endpoint("HTTPS", listenOptions =>
                {
                    listenOptions.HttpsOptions.SslProtocols = SslProtocols.Tls12;
                });
        });

Schema notes:

Endpoints names are case-insensitive. For example, HTTPS  and Https  are valid.

The Url  parameter is required for each endpoint. The format for this parameter is the same

as the top-level Urls  configuration parameter except that it's limited to a single value.

These endpoints replace those defined in the top-level Urls  configuration rather than

adding to them. Endpoints defined in code via Listen  are cumulative with the endpoints

defined in the configuration section.

The Certificate  section is optional. If the Certificate  section isn't specified, the defaults

defined in earlier scenarios are used. If no defaults are available, the server throws an

exception and fails to start.

The Certificate  section supports both PathPath–PasswordPassword and SubjectSubject–StoreStore certificates.

Any number of endpoints may be defined in this way so long as they don't cause port

conflicts.

options.Configure(context.Configuration.GetSection("{SECTION}"))  returns a 

KestrelConfigurationLoader  with an .Endpoint(string name, listenOptions => { })  method

that can be used to supplement a configured endpoint's settings:

KestrelServerOptions.ConfigurationLoader  can be directly accessed to continue iterating on the

existing loader, such as the one provided by CreateDefaultBuilder.

The configuration section for each endpoint is available on the options in the Endpoint

method so that custom settings may be read.

Multiple configurations may be loaded by calling 

options.Configure(context.Configuration.GetSection("{SECTION}"))  again with another

section. Only the last configuration is used, unless Load  is explicitly called on prior instances.

The metapackage doesn't call Load  so that its default configuration section may be replaced.

KestrelConfigurationLoader  mirrors the Listen  family of APIs from KestrelServerOptions

as Endpoint  overloads, so code and config endpoints may be configured in the same place.

These overloads don't use names and only consume default settings from configuration.

Change the defaults in code

ConfigureEndpointDefaults  and ConfigureHttpsDefaults  can be used to change default settings

for ListenOptions  and HttpsConnectionAdapterOptions , including overriding the default

certificate specified in the prior scenario. ConfigureEndpointDefaults  and 

ConfigureHttpsDefaults  should be called before any endpoints are configured.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder


public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel((context, serverOptions) =>
        {
            serverOptions.ConfigureEndpointDefaults(listenOptions =>
            {
                // Configure endpoint defaults
            });

            serverOptions.ConfigureHttpsDefaults(listenOptions =>
            {
                listenOptions.SslProtocols = SslProtocols.Tls12;
            });
        });

Kestrel support for SNI

Server Name Indication (SNI) can be used to host multiple domains on the same IP address and

port. For SNI to function, the client sends the host name for the secure session to the server

during the TLS handshake so that the server can provide the correct certificate. The client uses

the furnished certificate for encrypted communication with the server during the secure session

that follows the TLS handshake.

Kestrel supports SNI via the ServerCertificateSelector  callback. The callback is invoked once

per connection to allow the app to inspect the host name and select the appropriate certificate.

SNI support requires:

Running on target framework netcoreapp2.1  or later. On net461  or later, the callback is

invoked but the name  is always null . The name  is also null  if the client doesn't provide

the host name parameter in the TLS handshake.

All websites run on the same Kestrel instance. Kestrel doesn't support sharing an IP address

and port across multiple instances without a reverse proxy.

https://tools.ietf.org/html/rfc6066#section-3


public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.ListenAnyIP(5005, listenOptions =>
            {
                listenOptions.UseHttps(httpsOptions =>
                {
                    var localhostCert = CertificateLoader.LoadFromStoreCert(
                        "localhost", "My", StoreLocation.CurrentUser,
                        allowInvalid: true);
                    var exampleCert = CertificateLoader.LoadFromStoreCert(
                        "example.com", "My", StoreLocation.CurrentUser,
                        allowInvalid: true);
                    var subExampleCert = CertificateLoader.LoadFromStoreCert(
                        "sub.example.com", "My", StoreLocation.CurrentUser,
                        allowInvalid: true);
                    var certs = new Dictionary<string, X509Certificate2>(
                        StringComparer.OrdinalIgnoreCase);
                    certs["localhost"] = localhostCert;
                    certs["example.com"] = exampleCert;
                    certs["sub.example.com"] = subExampleCert;

                    httpsOptions.ServerCertificateSelector = (connectionContext, name) =>
                    {
                        if (name != null && certs.TryGetValue(name, out var cert))
                        {
                            return cert;
                        }

                        return exampleCert;
                    };
                });
            });
        });

Connection loggingConnection logging

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Listen(IPAddress.Any, 8000, listenOptions =>
    {
        listenOptions.UseConnectionLogging();
    });
});

Bind to a TCP socketBind to a TCP socket

Call UseConnectionLogging to emit Debug level logs for byte-level communication on a

connection. Connection logging is helpful for troubleshooting problems in low-level

communication, such as during TLS encryption and behind proxies. If UseConnectionLogging  is

placed before UseHttps , encrypted traffic is logged. If UseConnectionLogging  is placed after 

UseHttps , decrypted traffic is logged.

The Listen method binds to a TCP socket, and an options lambda permits X.509 certificate

configuration:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.listenoptionsconnectionloggingextensions.useconnectionlogging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen


public static void Main(string[] args)
{
    CreateWebHostBuilder(args).Build().Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.Listen(IPAddress.Loopback, 5000);
            serverOptions.Listen(IPAddress.Loopback, 5001, listenOptions =>
            {
                listenOptions.UseHttps("testCert.pfx", "testPassword");
            });
        });

Bind to a Unix socketBind to a Unix socket

.ConfigureKestrel((context, serverOptions) =>
{
    serverOptions.ListenUnixSocket("/tmp/kestrel-test.sock");
    serverOptions.ListenUnixSocket("/tmp/kestrel-test.sock", listenOptions =>
    {
        listenOptions.UseHttps("testCert.pfx", "testpassword");
    });
});

Port 0Port 0

The example configures HTTPS for an endpoint with ListenOptions. Use the same API to

configure other Kestrel settings for specific endpoints.

On Windows, self-signed certificates can be created using the New-SelfSignedCertificate

PowerShell cmdlet. For an unsupported example, see UpdateIISExpressSSLForChrome.ps1.

On macOS, Linux, and Windows, certificates can be created using OpenSSL.

Listen on a Unix socket with ListenUnixSocket for improved performance with Nginx, as shown

in this example:

In the Nginx confiuguration file, set the server  > location  > proxy_pass  entry to 

http://unix:/tmp/{KESTREL SOCKET}:/; . {KESTREL SOCKET}  is the name of the socket provided

to ListenUnixSocket (for example, kestrel-test.sock  in the preceding example).

Ensure that the socket is writeable by Nginx (for example, chmod go+w /tmp/kestrel-test.sock

).

When the port number 0  is specified, Kestrel dynamically binds to an available port. The

following example shows how to determine which port Kestrel actually bound at runtime:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.listenoptions
https://docs.microsoft.com/en-us/powershell/module/pkiclient/new-selfsignedcertificate?view=win10-ps
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/includes/make-x509-cert/UpdateIISExpressSSLForChrome.ps1
https://www.openssl.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket


public void Configure(IApplicationBuilder app)
{
    var serverAddressesFeature = 
        app.ServerFeatures.Get<IServerAddressesFeature>();

    app.UseStaticFiles();

    app.Run(async (context) =>
    {
        context.Response.ContentType = "text/html";
        await context.Response
            .WriteAsync("<!DOCTYPE html><html lang=\"en\"><head>" +
                "<title></title></head><body><p>Hosted by Kestrel</p>");

        if (serverAddressesFeature != null)
        {
            await context.Response
                .WriteAsync("<p>Listening on the following addresses: " +
                    string.Join(", ", serverAddressesFeature.Addresses) +
                    "</p>");
        }

        await context.Response.WriteAsync("<p>Request URL: " +
            $"{context.Request.GetDisplayUrl()}<p>");
    });
}

Listening on the following addresses: http://127.0.0.1:48508

LimitationsLimitations

IIS endpoint configurationIIS endpoint configuration

ListenOptions.ProtocolsListenOptions.Protocols

When the app is run, the console window output indicates the dynamic port where the app can

be reached:

Configure endpoints with the following approaches:

UseUrls

--urls  command-line argument

urls  host configuration key

ASPNETCORE_URLS  environment variable

These methods are useful for making code work with servers other than Kestrel. However, be

aware of the following limitations:

HTTPS can't be used with these approaches unless a default certificate is provided in the

HTTPS endpoint configuration (for example, using KestrelServerOptions  configuration or a

configuration file as shown earlier in this topic).

When both the Listen  and UseUrls  approaches are used simultaneously, the Listen

endpoints override the UseUrls  endpoints.

When using IIS, the URL bindings for IIS override bindings are set by either Listen  or UseUrls .

For more information, see the ASP.NET Core Module topic.

The Protocols  property establishes the HTTP protocols ( HttpProtocols ) enabled on a

connection endpoint or for the server. Assign a value to the Protocols  property from the 

HttpProtocols  enum.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useurls


HTTPPROTOCOLS  EN UM  VA L UE EN UM  VA L UE C O N N EC T IO N  P ROTO C O L  P ERM IT T EDC O N N EC T IO N  P ROTO C O L  P ERM IT T ED

Http1 HTTP/1.1 only. Can be used with or without TLS.

Http2 HTTP/2 only. May be used without TLS only if the
client supports a Prior Knowledge mode.

Http1AndHttp2 HTTP/1.1 and HTTP/2. HTTP/2 requires a TLS and
Application-Layer Protocol Negotiation (ALPN)
connection; otherwise, the connection defaults to
HTTP/1.1.

.ConfigureKestrel((context, serverOptions) =>
{
    serverOptions.Listen(IPAddress.Any, 8000, listenOptions =>
    {
        listenOptions.Protocols = HttpProtocols.Http1AndHttp2;
        listenOptions.UseHttps("testCert.pfx", "testPassword");
    });
});

.ConfigureKestrel((context, serverOptions) =>
{
    serverOptions.Listen(IPAddress.Any, 8000, listenOptions =>
    {
        listenOptions.Protocols = HttpProtocols.Http1AndHttp2;
        listenOptions.UseHttps("testCert.pfx", "testPassword");
        listenOptions.ConnectionAdapters.Add(new TlsFilterAdapter());
    });
});

The default protocol is HTTP/1.1.

TLS restrictions for HTTP/2:

TLS version 1.2 or later

Renegotiation disabled

Compression disabled

Minimum ephemeral key exchange sizes:

Cipher suite not blocked

Elliptic curve Diffie-Hellman (ECDHE) [RFC4492]: 224 bits minimum

Finite field Diffie-Hellman (DHE) [ TLS12 ]: 2048 bits minimum

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256  [ TLS-ECDHE ] with the P-256 elliptic curve [ FIPS186 ] is

supported by default.

The following example permits HTTP/1.1 and HTTP/2 connections on port 8000. Connections

are secured by TLS with a supplied certificate:

Optionally create an IConnectionAdapter  implementation to filter TLS handshakes on a per-

connection basis for specific ciphers:

https://tools.ietf.org/html/rfc7540#section-3.4
https://tools.ietf.org/html/rfc7301#section-3
https://www.ietf.org/rfc/rfc4492.txt


private class TlsFilterAdapter : IConnectionAdapter
{
    public bool IsHttps => false;

    public Task<IAdaptedConnection> OnConnectionAsync(ConnectionAdapterContext context)
    {
        var tlsFeature = context.Features.Get<ITlsHandshakeFeature>();

        // Throw NotSupportedException for any cipher algorithm that the app doesn't
        // wish to support. Alternatively, define and compare
        // ITlsHandshakeFeature.CipherAlgorithm to a list of acceptable cipher
        // suites.
        //
        // No encryption is used with a CipherAlgorithmType.Null cipher algorithm.
        if (tlsFeature.CipherAlgorithm == CipherAlgorithmType.Null)
        {
            throw new NotSupportedException("Prohibited cipher: " + 
tlsFeature.CipherAlgorithm);
        }

        return Task.FromResult<IAdaptedConnection>(new 
AdaptedConnection(context.ConnectionStream));
    }

    private class AdaptedConnection : IAdaptedConnection
    {
        public AdaptedConnection(Stream adaptedStream)
        {
            ConnectionStream = adaptedStream;
        }

        public Stream ConnectionStream { get; }

        public void Dispose()
        {
        }
    }
}

{
  "Kestrel": {
    "EndpointDefaults": {
      "Protocols": "Http1AndHttp2"
    }
  }
}

Set the protocol from configuration

CreateDefaultBuilder calls 

serverOptions.Configure(context.Configuration.GetSection("Kestrel"))  by default to load Kestrel

configuration.

In the following appsettings.json example, a default connection protocol (HTTP/1.1 and HTTP/2)

is established for all of Kestrel's endpoints:

The following configuration file example establishes a connection protocol for a specific

endpoint:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder


{
  "Kestrel": {
    "Endpoints": {
      "HttpsDefaultCert": {
        "Url": "https://localhost:5001",
        "Protocols": "Http1AndHttp2"
      }
    }
  }
}

Transport configuration

URL prefixesURL prefixes

Protocols specified in code override values set by configuration.

With the release of ASP.NET Core 2.1, Kestrel's default transport is no longer based on Libuv but

instead based on managed sockets. This is a breaking change for ASP.NET Core 2.0 apps

upgrading to 2.1 that call UseLibuv and depend on either of the following packages:

Microsoft.AspNetCore.Server.Kestrel (direct package reference)

Microsoft.AspNetCore.App

For projects that require the use of Libuv:

<PackageReference Include="Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv"
                  Version="{VERSION}" />

public class Program
{
    public static void Main(string[] args)
    {
        CreateWebHostBuilder(args).Build().Run();
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .UseLibuv()
            .UseStartup<Startup>();
}

Add a dependency for the Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv package

to the app's project file:

Call UseLibuv:

When using UseUrls , --urls  command-line argument, urls  host configuration key, or 

ASPNETCORE_URLS  environment variable, the URL prefixes can be in any of the following formats.

Only HTTP URL prefixes are valid. Kestrel doesn't support HTTPS when configuring URL

bindings using UseUrls .

http://65.55.39.10:80/

IPv4 address with port number

0.0.0.0  is a special case that binds to all IPv4 addresses.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderlibuvextensions.uselibuv
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel/
https://www.nuget.org/packages/Microsoft.AspNetCore.App/
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderlibuvextensions.uselibuv


Host filtering

http://[0:0:0:0:0:ffff:4137:270a]:80/

http://contoso.com:80/
http://*:80/

WARNINGWARNING

http://localhost:5000/
http://127.0.0.1:5000/
http://[::1]:5000/

IPv6 address with port number

[::]  is the IPv6 equivalent of IPv4 0.0.0.0 .

Host name with port number

Host names, * , and + , aren't special. Anything not recognized as a valid IP address or 

localhost  binds to all IPv4 and IPv6 IPs. To bind different host names to different

ASP.NET Core apps on the same port, use HTTP.sys or a reverse proxy server, such as IIS,

Nginx, or Apache.

Hosting in a reverse proxy configuration requires host filtering.

Host localhost  name with port number or loopback IP with port number

When localhost  is specified, Kestrel attempts to bind to both IPv4 and IPv6 loopback

interfaces. If the requested port is in use by another service on either loopback interface,

Kestrel fails to start. If either loopback interface is unavailable for any other reason (most

commonly because IPv6 isn't supported), Kestrel logs a warning.

While Kestrel supports configuration based on prefixes such as http://example.com:5000 , Kestrel

largely ignores the host name. Host localhost  is a special case used for binding to loopback

addresses. Any host other than an explicit IP address binds to all public IP addresses. Host

headers aren't validated.

As a workaround, use Host Filtering Middleware. Host Filtering Middleware is provided by the

Microsoft.AspNetCore.HostFiltering package, which is included in the Microsoft.AspNetCore.App

metapackage (ASP.NET Core 2.1 or 2.2). The middleware is added by CreateDefaultBuilder, which

calls AddHostFiltering:

https://www.nuget.org/packages/Microsoft.AspNetCore.HostFiltering
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hostfilteringservicesextensions.addhostfiltering


public class Program
{
    public static void Main(string[] args)
    {
        CreateWebHostBuilder(args).Build().Run();
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .UseStartup<Startup>();
}

{
  "AllowedHosts": "example.com;localhost"
}

NOTENOTE

When to use Kestrel with a reverse proxy

Host Filtering Middleware is disabled by default. To enable the middleware, define an 

AllowedHosts  key in appsettings.json/appsettings.<EnvironmentName>.json. The value is a

semicolon-delimited list of host names without port numbers:

appsettings.json:

Forwarded Headers Middleware also has an AllowedHosts option. Forwarded Headers Middleware and

Host Filtering Middleware have similar functionality for different scenarios. Setting AllowedHosts  with

Forwarded Headers Middleware is appropriate when the Host  header isn't preserved while forwarding

requests with a reverse proxy server or load balancer. Setting AllowedHosts  with Host Filtering

Middleware is appropriate when Kestrel is used as a public-facing edge server or when the Host

header is directly forwarded.

For more information on Forwarded Headers Middleware, see Configure ASP.NET Core to work with

proxy servers and load balancers.

Kestrel is a cross-platform web server for ASP.NET Core. Kestrel is the web server that's included

by default in ASP.NET Core project templates.

Kestrel supports the following scenarios:

HTTPS

Opaque upgrade used to enable WebSockets

Unix sockets for high performance behind Nginx

Kestrel is supported on all platforms and versions that .NET Core supports.

View or download sample code (how to download)

Kestrel can be used by itself or with a reverse proxy server, such as Internet Information

Services (IIS), Nginx, or Apache. A reverse proxy server receives HTTP requests from the network

and forwards them to Kestrel.

Kestrel used as an edge (Internet-facing) web server :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.allowedhosts#microsoft_aspnetcore_builder_forwardedheadersoptions_allowedhosts
https://github.com/aspnet/websockets
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/servers/kestrel/samples
https://www.iis.net/
https://nginx.org
https://httpd.apache.org/


WARNINGWARNING

How to use Kestrel in ASP.NET Core apps

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            // Set properties and call methods on serverOptions
        });

Kestrel used in a reverse proxy configuration:

Either configuration, with or without a reverse proxy server, is a supported hosting

configuration.

Kestrel used as an edge server without a reverse proxy server doesn't support sharing the same

IP and port among multiple processes. When Kestrel is configured to listen on a port, Kestrel

handles all of the traffic for that port regardless of requests' Host  headers. A reverse proxy that

can share ports has the ability to forward requests to Kestrel on a unique IP and port.

Even if a reverse proxy server isn't required, using a reverse proxy server might be a good

choice.

A reverse proxy:

Can limit the exposed public surface area of the apps that it hosts.

Provide an additional layer of configuration and defense.

Might integrate better with existing infrastructure.

Simplify load balancing and secure communication (HTTPS) configuration. Only the reverse

proxy server requires an X.509 certificate, and that server can communicate with the app's

servers on the internal network using plain HTTP.

Hosting in a reverse proxy configuration requires host filtering.

The Microsoft.AspNetCore.Server.Kestrel package is included in the Microsoft.AspNetCore.App

metapackage.

ASP.NET Core project templates use Kestrel by default. In Program.cs, the template code calls

CreateDefaultBuilder, which calls UseKestrel behind the scenes.

To provide additional configuration after calling CreateDefaultBuilder , call UseKestrel:

For more information on CreateDefaultBuilder  and building the host, see the Set up a host

section of ASP.NET Core Web Host.

https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderkestrelextensions.usekestrel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderkestrelextensions.usekestrel


Kestrel options

using Microsoft.AspNetCore.Server.Kestrel.Core;

{
  "Kestrel": {
    "Limits": {
      "MaxConcurrentConnections": 100,
      "MaxConcurrentUpgradedConnections": 100
    }
  }
}

The Kestrel web server has constraint configuration options that are especially useful in Internet-

facing deployments.

Set constraints on the Limits property of the KestrelServerOptions class. The Limits  property

holds an instance of the KestrelServerLimits class.

The following examples use the Microsoft.AspNetCore.Server.Kestrel.Core namespace:

Kestrel options, which are configured in C# code in the following examples, can also be set using

a configuration provider. For example, the File Configuration Provider can load Kestrel

configuration from an appsettings.json or appsettings.{Environment}.json file:

Use oneone of the following approaches:

Configure Kestrel in Startup.ConfigureServices :

using Microsoft.Extensions.Configuration

public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.Configure<KestrelServerOptions>(
            Configuration.GetSection("Kestrel"));
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        ...
    }
}

1. Inject an instance of IConfiguration  into the Startup  class. The following

example assumes that the injected configuration is assigned to the Configuration

property.

2. In Startup.ConfigureServices , load the Kestrel  section of configuration into

Kestrel's configuration:

Configure Kestrel when building the host:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.limits#microsoft_aspnetcore_server_kestrel_core_kestrelserveroptions_limits
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core


Keep-alive timeoutKeep-alive timeout

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            serverOptions.Limits.KeepAliveTimeout = TimeSpan.FromMinutes(2);
        });

Maximum client connectionsMaximum client connections

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            serverOptions.Limits.MaxConcurrentConnections = 100;
        });

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            serverOptions.Limits.MaxConcurrentUpgradedConnections = 100;
        });

Maximum request body sizeMaximum request body size

// using Microsoft.Extensions.DependencyInjection;

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .ConfigureServices((context, services) =>
        {
            services.Configure<KestrelServerOptions>(
                context.Configuration.GetSection("Kestrel"));
        })
        .UseStartup<Startup>();

In Program.cs, load the Kestrel  section of configuration into Kestrel's configuration:

Both of the preceding approaches work with any configuration provider.

KeepAliveTimeout

Gets or sets the keep-alive timeout. Defaults to 2 minutes.

MaxConcurrentConnections MaxConcurrentUpgradedConnections

The maximum number of concurrent open TCP connections can be set for the entire app with

the following code:

There's a separate limit for connections that have been upgraded from HTTP or HTTPS to

another protocol (for example, on a WebSockets request). After a connection is upgraded, it isn't

counted against the MaxConcurrentConnections  limit.

The maximum number of connections is unlimited (null) by default.

MaxRequestBodySize

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.keepalivetimeout#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_keepalivetimeout
https://tools.ietf.org/html/rfc7230#section-6.5
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxconcurrentconnections#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_maxconcurrentconnections
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxconcurrentupgradedconnections#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_maxconcurrentupgradedconnections
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.maxrequestbodysize#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_maxrequestbodysize


[RequestSizeLimit(100000000)]
public IActionResult MyActionMethod()

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            serverOptions.Limits.MaxRequestBodySize = 10 * 1024;
        });

app.Run(async (context) =>
{
    context.Features.Get<IHttpMaxRequestBodySizeFeature>()
        .MaxRequestBodySize = 10 * 1024;

    var minRequestRateFeature = 
        context.Features.Get<IHttpMinRequestBodyDataRateFeature>();
    var minResponseRateFeature = 
        context.Features.Get<IHttpMinResponseDataRateFeature>();

    if (minRequestRateFeature != null)
    {
        minRequestRateFeature.MinDataRate = new MinDataRate(
            bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    }

    if (minResponseRateFeature != null)
    {
        minResponseRateFeature.MinDataRate = new MinDataRate(
            bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
    }

Minimum request body data rateMinimum request body data rate

The default maximum request body size is 30,000,000 bytes, which is approximately 28.6 MB.

The recommended approach to override the limit in an ASP.NET Core MVC app is to use the

RequestSizeLimitAttribute attribute on an action method:

Here's an example that shows how to configure the constraint for the app on every request:

Override the setting on a specific request in middleware:

An exception is thrown if the app configures the limit on a request after the app has started to

read the request. There's an IsReadOnly  property that indicates if the MaxRequestBodySize

property is in read-only state, meaning it's too late to configure the limit.

When an app is run out-of-process behind the ASP.NET Core Module, Kestrel's request body size

limit is disabled because IIS already sets the limit.

MinRequestBodyDataRate MinResponseDataRate

Kestrel checks every second if data is arriving at the specified rate in bytes/second. If the rate

drops below the minimum, the connection is timed out. The grace period is the amount of time

that Kestrel gives the client to increase its send rate up to the minimum; the rate isn't checked

during that time. The grace period helps avoid dropping connections that are initially sending

data at a slow rate due to TCP slow-start.

The default minimum rate is 240 bytes/second with a 5 second grace period.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.minrequestbodydatarate#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_minrequestbodydatarate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.minresponsedatarate#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_minresponsedatarate


public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            serverOptions.Limits.MinRequestBodyDataRate =
                new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
            serverOptions.Limits.MinResponseDataRate =
                new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(10));
        });

Request headers timeoutRequest headers timeout

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            serverOptions.Limits.RequestHeadersTimeout = TimeSpan.FromMinutes(1);
        });

Synchronous I/OSynchronous I/O

WARNINGWARNING

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            serverOptions.AllowSynchronousIO = false;
        });

A minimum rate also applies to the response. The code to set the request limit and the response

limit is the same except for having RequestBody  or Response  in the property and interface

names.

Here's an example that shows how to configure the minimum data rates in Program.cs:

RequestHeadersTimeout

Gets or sets the maximum amount of time the server spends receiving request headers. Defaults

to 30 seconds.

AllowSynchronousIO controls whether synchronous I/O is allowed for the request and response.

The default value is true .

A large number of blocking synchronous I/O operations can lead to thread pool starvation, which

makes the app unresponsive. Only enable AllowSynchronousIO  when using a library that doesn't

support asynchronous I/O.

The following example disables synchronous I/O:

For information about other Kestrel options and limits, see:

KestrelServerOptions

KestrelServerLimits

ListenOptions

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits.requestheaderstimeout#microsoft_aspnetcore_server_kestrel_core_kestrelserverlimits_requestheaderstimeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.allowsynchronousio#microsoft_aspnetcore_server_kestrel_core_kestrelserveroptions_allowsynchronousio
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserverlimits
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.listenoptions


Endpoint configuration

ConfigureEndpointDefaults(Action<ListenOptions>)ConfigureEndpointDefaults(Action<ListenOptions>)

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.ConfigureEndpointDefaults(listenOptions =>
            {
                // Configure endpoint defaults
            });
        });

By default, ASP.NET Core binds to:

http://localhost:5000

https://localhost:5001  (when a local development certificate is present)

Specify URLs using the:

ASPNETCORE_URLS  environment variable.

--urls  command-line argument.

urls  host configuration key.

UseUrls  extension method.

The value provided using these approaches can be one or more HTTP and HTTPS endpoints

(HTTPS if a default cert is available). Configure the value as a semicolon-separated list (for

example, "Urls": "http://localhost:8000;http://localhost:8001" ).

For more information on these approaches, see Server URLs and Override configuration.

A development certificate is created:

When the .NET Core SDK is installed.

The dev-certs tool is used to create a certificate.

Some browsers require granting explicit permission to trust the local development certificate.

Project templates configure apps to run on HTTPS by default and include HTTPS redirection and

HSTS support.

Call Listen or ListenUnixSocket methods on KestrelServerOptions to configure URL prefixes and

ports for Kestrel.

UseUrls , the --urls  command-line argument, urls  host configuration key, and the 

ASPNETCORE_URLS  environment variable also work but have the limitations noted later in this

section (a default certificate must be available for HTTPS endpoint configuration).

KestrelServerOptions  configuration:

Specifies a configuration Action  to run for each specified endpoint. Calling 

ConfigureEndpointDefaults  multiple times replaces prior Action s with the last Action

specified.

https://docs.microsoft.com/en-us/dotnet/core/sdk
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions


NOTENOTE

ConfigureHttpsDefaults(Action<HttpsConnectionAdapterOptions>)ConfigureHttpsDefaults(Action<HttpsConnectionAdapterOptions>)

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, serverOptions) =>
        {
            serverOptions.ConfigureHttpsDefaults(listenOptions =>
            {
                // certificate is an X509Certificate2
                listenOptions.ServerCertificate = certificate;
            });
        });

NOTENOTE

Configure(IConfiguration)Configure(IConfiguration)

ListenOptions.UseHttpsListenOptions.UseHttps

Endpoints created by calling Listen beforebefore calling ConfigureEndpointDefaults won't have the defaults

applied.

Specifies a configuration Action  to run for each HTTPS endpoint. Calling 

ConfigureHttpsDefaults  multiple times replaces prior Action s with the last Action  specified.

Endpoints created by calling Listen beforebefore calling ConfigureHttpsDefaults won't have the defaults

applied.

Creates a configuration loader for setting up Kestrel that takes an IConfiguration as input. The

configuration must be scoped to the configuration section for Kestrel.

Configure Kestrel to use HTTPS.

ListenOptions.UseHttps  extensions:

UseHttps : Configure Kestrel to use HTTPS with the default certificate. Throws an exception if

no default certificate is configured.

UseHttps(string fileName)

UseHttps(string fileName, string password)

UseHttps(string fileName, string password, Action<HttpsConnectionAdapterOptions>
configureOptions)

UseHttps(StoreName storeName, string subject)

UseHttps(StoreName storeName, string subject, bool allowInvalid)

UseHttps(StoreName storeName, string subject, bool allowInvalid, StoreLocation location)

UseHttps(StoreName storeName, string subject, bool allowInvalid, StoreLocation location,
Action<HttpsConnectionAdapterOptions> configureOptions)

UseHttps(X509Certificate2 serverCertificate)

UseHttps(X509Certificate2 serverCertificate, Action<HttpsConnectionAdapterOptions>
configureOptions)

UseHttps(Action<HttpsConnectionAdapterOptions> configureOptions)

ListenOptions.UseHttps  parameters:

filename  is the path and file name of a certificate file, relative to the directory that contains

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.configureendpointdefaults
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.configurehttpsdefaults
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration


the app's content files.

password  is the password required to access the X.509 certificate data.

configureOptions  is an Action  to configure the HttpsConnectionAdapterOptions . Returns the 

ListenOptions .

storeName  is the certificate store from which to load the certificate.

subject  is the subject name for the certificate.

allowInvalid  indicates if invalid certificates should be considered, such as self-signed

certificates.

location  is the store location to load the certificate from.

serverCertificate  is the X.509 certificate.

In production, HTTPS must be explicitly configured. At a minimum, a default certificate must be

provided.

Supported configurations described next:

No configuration

Replace the default certificate from configuration

Change the defaults in code

No configuration

Kestrel listens on http://localhost:5000  and https://localhost:5001  (if a default cert is

available).

 Replace the default certificate from configuration

CreateDefaultBuilder  calls Configure(context.Configuration.GetSection("Kestrel"))  by default

to load Kestrel configuration. A default HTTPS app settings configuration schema is available for

Kestrel. Configure multiple endpoints, including the URLs and the certificates to use, either from

a file on disk or from a certificate store.

In the following appsettings.json example:

Set AllowInvalidAllowInvalid to true  to permit the use of invalid certificates (for example, self-signed

certificates).

Any HTTPS endpoint that doesn't specify a certificate (HttpsDefaultCer tHttpsDefaultCer t in the example that

follows) falls back to the cert defined under Cer tificatesCer tificates  > DefaultDefault or the development

certificate.



{
  "Kestrel": {
    "Endpoints": {
      "Http": {
        "Url": "http://localhost:5000"
      },

      "HttpsInlineCertFile": {
        "Url": "https://localhost:5001",
        "Certificate": {
          "Path": "<path to .pfx file>",
          "Password": "<certificate password>"
        }
      },

      "HttpsInlineCertStore": {
        "Url": "https://localhost:5002",
        "Certificate": {
          "Subject": "<subject; required>",
          "Store": "<certificate store; required>",
          "Location": "<location; defaults to CurrentUser>",
          "AllowInvalid": "<true or false; defaults to false>"
        }
      },

      "HttpsDefaultCert": {
        "Url": "https://localhost:5003"
      },

      "Https": {
        "Url": "https://*:5004",
        "Certificate": {
          "Path": "<path to .pfx file>",
          "Password": "<certificate password>"
        }
      }
    },
    "Certificates": {
      "Default": {
        "Path": "<path to .pfx file>",
        "Password": "<certificate password>"
      }
    }
  }
}

"Default": {
  "Subject": "<subject; required>",
  "Store": "<cert store; required>",
  "Location": "<location; defaults to CurrentUser>",
  "AllowInvalid": "<true or false; defaults to false>"
}

An alternative to using PathPath and PasswordPassword for any certificate node is to specify the certificate

using certificate store fields. For example, the Cer tificatesCer tificates  > DefaultDefault certificate can be

specified as:

Schema notes:

Endpoints names are case-insensitive. For example, HTTPS  and Https  are valid.

The Url  parameter is required for each endpoint. The format for this parameter is the same

as the top-level Urls  configuration parameter except that it's limited to a single value.



public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel((context, serverOptions) =>
        {
            serverOptions.Configure(context.Configuration.GetSection("Kestrel"))
                .Endpoint("HTTPS", listenOptions =>
                {
                    listenOptions.HttpsOptions.SslProtocols = SslProtocols.Tls12;
                });
        });

These endpoints replace those defined in the top-level Urls  configuration rather than

adding to them. Endpoints defined in code via Listen  are cumulative with the endpoints

defined in the configuration section.

The Certificate  section is optional. If the Certificate  section isn't specified, the defaults

defined in earlier scenarios are used. If no defaults are available, the server throws an

exception and fails to start.

The Certificate  section supports both PathPath–PasswordPassword and SubjectSubject–StoreStore certificates.

Any number of endpoints may be defined in this way so long as they don't cause port

conflicts.

options.Configure(context.Configuration.GetSection("{SECTION}"))  returns a 

KestrelConfigurationLoader  with an .Endpoint(string name, listenOptions => { })  method

that can be used to supplement a configured endpoint's settings:

KestrelServerOptions.ConfigurationLoader  can be directly accessed to continue iterating on the

existing loader, such as the one provided by CreateDefaultBuilder.

The configuration section for each endpoint is available on the options in the Endpoint

method so that custom settings may be read.

Multiple configurations may be loaded by calling 

options.Configure(context.Configuration.GetSection("{SECTION}"))  again with another

section. Only the last configuration is used, unless Load  is explicitly called on prior instances.

The metapackage doesn't call Load  so that its default configuration section may be replaced.

KestrelConfigurationLoader  mirrors the Listen  family of APIs from KestrelServerOptions

as Endpoint  overloads, so code and config endpoints may be configured in the same place.

These overloads don't use names and only consume default settings from configuration.

Change the defaults in code

ConfigureEndpointDefaults  and ConfigureHttpsDefaults  can be used to change default settings

for ListenOptions  and HttpsConnectionAdapterOptions , including overriding the default

certificate specified in the prior scenario. ConfigureEndpointDefaults  and 

ConfigureHttpsDefaults  should be called before any endpoints are configured.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder


public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel((context, serverOptions) =>
        {
            serverOptions.ConfigureEndpointDefaults(listenOptions =>
            {
                // Configure endpoint defaults
            });

            serverOptions.ConfigureHttpsDefaults(listenOptions =>
            {
                listenOptions.SslProtocols = SslProtocols.Tls12;
            });
        });

Kestrel support for SNI

Server Name Indication (SNI) can be used to host multiple domains on the same IP address and

port. For SNI to function, the client sends the host name for the secure session to the server

during the TLS handshake so that the server can provide the correct certificate. The client uses

the furnished certificate for encrypted communication with the server during the secure session

that follows the TLS handshake.

Kestrel supports SNI via the ServerCertificateSelector  callback. The callback is invoked once

per connection to allow the app to inspect the host name and select the appropriate certificate.

SNI support requires:

Running on target framework netcoreapp2.1  or later. On net461  or later, the callback is

invoked but the name  is always null . The name  is also null  if the client doesn't provide

the host name parameter in the TLS handshake.

All websites run on the same Kestrel instance. Kestrel doesn't support sharing an IP address

and port across multiple instances without a reverse proxy.

https://tools.ietf.org/html/rfc6066#section-3


public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel((context, serverOptions) =>
        {
            serverOptions.ListenAnyIP(5005, listenOptions =>
            {
                listenOptions.UseHttps(httpsOptions =>
                {
                    var localhostCert = CertificateLoader.LoadFromStoreCert(
                        "localhost", "My", StoreLocation.CurrentUser,
                        allowInvalid: true);
                    var exampleCert = CertificateLoader.LoadFromStoreCert(
                        "example.com", "My", StoreLocation.CurrentUser,
                        allowInvalid: true);
                    var subExampleCert = CertificateLoader.LoadFromStoreCert(
                        "sub.example.com", "My", StoreLocation.CurrentUser,
                        allowInvalid: true);
                    var certs = new Dictionary<string, X509Certificate2>(
                        StringComparer.OrdinalIgnoreCase);
                    certs["localhost"] = localhostCert;
                    certs["example.com"] = exampleCert;
                    certs["sub.example.com"] = subExampleCert;

                    httpsOptions.ServerCertificateSelector = (connectionContext, name) =>
                    {
                        if (name != null && certs.TryGetValue(name, out var cert))
                        {
                            return cert;
                        }

                        return exampleCert;
                    };
                });
            });
        })
        .Build();

Connection loggingConnection logging

webBuilder.ConfigureKestrel(serverOptions =>
{
    serverOptions.Listen(IPAddress.Any, 8000, listenOptions =>
    {
        listenOptions.UseConnectionLogging();
    });
});

Bind to a TCP socketBind to a TCP socket

Call UseConnectionLogging to emit Debug level logs for byte-level communication on a

connection. Connection logging is helpful for troubleshooting problems in low-level

communication, such as during TLS encryption and behind proxies. If UseConnectionLogging  is

placed before UseHttps , encrypted traffic is logged. If UseConnectionLogging  is placed after 

UseHttps , decrypted traffic is logged.

The Listen method binds to a TCP socket, and an options lambda permits X.509 certificate

configuration:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.listenoptionsconnectionloggingextensions.useconnectionlogging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen


public static void Main(string[] args)
{
    CreateWebHostBuilder(args).Build().Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            serverOptions.Listen(IPAddress.Loopback, 5000);
            serverOptions.Listen(IPAddress.Loopback, 5001, listenOptions =>
            {
                listenOptions.UseHttps("testCert.pfx", "testPassword");
            });
        });

public static void Main(string[] args)
{
    CreateWebHostBuilder(args).Build().Run();
}

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            serverOptions.Listen(IPAddress.Loopback, 5000);
            serverOptions.Listen(IPAddress.Loopback, 5001, listenOptions =>
            {
                listenOptions.UseHttps("testCert.pfx", "testPassword");
            });
        });

Bind to a Unix socketBind to a Unix socket

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseKestrel(serverOptions =>
        {
            serverOptions.ListenUnixSocket("/tmp/kestrel-test.sock");
            serverOptions.ListenUnixSocket("/tmp/kestrel-test.sock", listenOptions =>
            {
                listenOptions.UseHttps("testCert.pfx", "testpassword");
            });
        });

The example configures HTTPS for an endpoint with ListenOptions. Use the same API to

configure other Kestrel settings for specific endpoints.

On Windows, self-signed certificates can be created using the New-SelfSignedCertificate

PowerShell cmdlet. For an unsupported example, see UpdateIISExpressSSLForChrome.ps1.

On macOS, Linux, and Windows, certificates can be created using OpenSSL.

Listen on a Unix socket with ListenUnixSocket for improved performance with Nginx, as shown

in this example:

In the Nginx confiuguration file, set the server  > location  > proxy_pass  entry to 

http://unix:/tmp/{KESTREL SOCKET}:/; . {KESTREL SOCKET}  is the name of the socket provided

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.listenoptions
https://docs.microsoft.com/en-us/powershell/module/pkiclient/new-selfsignedcertificate?view=win10-ps
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/includes/make-x509-cert/UpdateIISExpressSSLForChrome.ps1
https://www.openssl.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket


Port 0Port 0

public void Configure(IApplicationBuilder app)
{
    var serverAddressesFeature = 
        app.ServerFeatures.Get<IServerAddressesFeature>();

    app.UseStaticFiles();

    app.Run(async (context) =>
    {
        context.Response.ContentType = "text/html";
        await context.Response
            .WriteAsync("<!DOCTYPE html><html lang=\"en\"><head>" +
                "<title></title></head><body><p>Hosted by Kestrel</p>");

        if (serverAddressesFeature != null)
        {
            await context.Response
                .WriteAsync("<p>Listening on the following addresses: " +
                    string.Join(", ", serverAddressesFeature.Addresses) +
                    "</p>");
        }

        await context.Response.WriteAsync("<p>Request URL: " +
            $"{context.Request.GetDisplayUrl()}<p>");
    });
}

Listening on the following addresses: http://127.0.0.1:48508

LimitationsLimitations

IIS endpoint configurationIIS endpoint configuration

to ListenUnixSocket (for example, kestrel-test.sock  in the preceding example).

Ensure that the socket is writeable by Nginx (for example, chmod go+w /tmp/kestrel-test.sock

).

When the port number 0  is specified, Kestrel dynamically binds to an available port. The

following example shows how to determine which port Kestrel actually bound at runtime:

When the app is run, the console window output indicates the dynamic port where the app can

be reached:

Configure endpoints with the following approaches:

UseUrls

--urls  command-line argument

urls  host configuration key

ASPNETCORE_URLS  environment variable

These methods are useful for making code work with servers other than Kestrel. However, be

aware of the following limitations:

HTTPS can't be used with these approaches unless a default certificate is provided in the

HTTPS endpoint configuration (for example, using KestrelServerOptions  configuration or a

configuration file as shown earlier in this topic).

When both the Listen  and UseUrls  approaches are used simultaneously, the Listen

endpoints override the UseUrls  endpoints.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenunixsocket
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useurls


Transport configuration

URL prefixesURL prefixes

When using IIS, the URL bindings for IIS override bindings are set by either Listen  or UseUrls .

For more information, see the ASP.NET Core Module topic.

With the release of ASP.NET Core 2.1, Kestrel's default transport is no longer based on Libuv but

instead based on managed sockets. This is a breaking change for ASP.NET Core 2.0 apps

upgrading to 2.1 that call UseLibuv and depend on either of the following packages:

Microsoft.AspNetCore.Server.Kestrel (direct package reference)

Microsoft.AspNetCore.App

For projects that require the use of Libuv:

<PackageReference Include="Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv"
                  Version="{VERSION}" />

public class Program
{
    public static void Main(string[] args)
    {
        CreateWebHostBuilder(args).Build().Run();
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .UseLibuv()
            .UseStartup<Startup>();
}

Add a dependency for the Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv package

to the app's project file:

Call UseLibuv:

When using UseUrls , --urls  command-line argument, urls  host configuration key, or 

ASPNETCORE_URLS  environment variable, the URL prefixes can be in any of the following formats.

Only HTTP URL prefixes are valid. Kestrel doesn't support HTTPS when configuring URL

bindings using UseUrls .

http://65.55.39.10:80/

http://[0:0:0:0:0:ffff:4137:270a]:80/

IPv4 address with port number

0.0.0.0  is a special case that binds to all IPv4 addresses.

IPv6 address with port number

[::]  is the IPv6 equivalent of IPv4 0.0.0.0 .

Host name with port number

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderlibuvextensions.uselibuv
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel/
https://www.nuget.org/packages/Microsoft.AspNetCore.App/
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderlibuvextensions.uselibuv


Host filtering

public class Program
{
    public static void Main(string[] args)
    {
        CreateWebHostBuilder(args).Build().Run();
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .UseStartup<Startup>();
}

http://contoso.com:80/
http://*:80/

WARNINGWARNING

http://localhost:5000/
http://127.0.0.1:5000/
http://[::1]:5000/

Host names, * , and + , aren't special. Anything not recognized as a valid IP address or 

localhost  binds to all IPv4 and IPv6 IPs. To bind different host names to different

ASP.NET Core apps on the same port, use HTTP.sys or a reverse proxy server, such as IIS,

Nginx, or Apache.

Hosting in a reverse proxy configuration requires host filtering.

Host localhost  name with port number or loopback IP with port number

When localhost  is specified, Kestrel attempts to bind to both IPv4 and IPv6 loopback

interfaces. If the requested port is in use by another service on either loopback interface,

Kestrel fails to start. If either loopback interface is unavailable for any other reason (most

commonly because IPv6 isn't supported), Kestrel logs a warning.

While Kestrel supports configuration based on prefixes such as http://example.com:5000 , Kestrel

largely ignores the host name. Host localhost  is a special case used for binding to loopback

addresses. Any host other than an explicit IP address binds to all public IP addresses. Host

headers aren't validated.

As a workaround, use Host Filtering Middleware. Host Filtering Middleware is provided by the

Microsoft.AspNetCore.HostFiltering package, which is included in the Microsoft.AspNetCore.App

metapackage (ASP.NET Core 2.1 or 2.2). The middleware is added by CreateDefaultBuilder, which

calls AddHostFiltering:

Host Filtering Middleware is disabled by default. To enable the middleware, define an 

AllowedHosts  key in appsettings.json/appsettings.<EnvironmentName>.json. The value is a

semicolon-delimited list of host names without port numbers:

appsettings.json:

https://www.nuget.org/packages/Microsoft.AspNetCore.HostFiltering
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hostfilteringservicesextensions.addhostfiltering


  

{
  "AllowedHosts": "example.com;localhost"
}

NOTENOTE

HTTP/1.1 request draining

Forwarded Headers Middleware also has an AllowedHosts option. Forwarded Headers Middleware and

Host Filtering Middleware have similar functionality for different scenarios. Setting AllowedHosts  with

Forwarded Headers Middleware is appropriate when the Host  header isn't preserved while forwarding

requests with a reverse proxy server or load balancer. Setting AllowedHosts  with Host Filtering

Middleware is appropriate when Kestrel is used as a public-facing edge server or when the Host

header is directly forwarded.

For more information on Forwarded Headers Middleware, see Configure ASP.NET Core to work with

proxy servers and load balancers.

Opening HTTP connections is time consuming. For HTTPS, it's also resource intensive. Therefore,

Kestrel tries to reuse connections per the HTTP/1.1 protocol. A request body must be fully

consumed to allow the connection to be reused. The app doesn't always consume the request

body, such as a POST  requests where the server returns a redirect or 404 response. In the POST

-redirect case:

The client may already have sent part of the POST  data.

The server writes the 301 response.

The connection can't be used for a new request until the POST  data from the previous

request body has been fully read.

Kestrel tries to drain the request body. Draining the request body means reading and

discarding the data without processing it.

The draining process makes a tradoff between allowing the connection to be reused and the

time it takes to drain any remaining data:

Draining has a timeout of five seconds, which isn't configurable.

If all of the data specified by the Content-Length  or Transfer-Encoding  header hasn't been

read before the timeout, the connection is closed.

Sometimes you may want to terminate the request immediately, before or after writing the

response. For example, clients may have restrictive data caps, so limiting uploaded data might

be a priority. In such cases to terminate a request, call HttpContext.Abort from a controller, Razor

Page, or middleware.

There are caveats to calling Abort :

Creating new connections can be slow and expensive.

There's no guarantee that the client has read the response before the connection closes.

Calling Abort  should be rare and reserved for severe error cases, not common errors.

Only call Abort  when a specific problem needs to be solved. For example, call Abort

if malicious clients are trying to POST  data or when there's a bug in client code that

causes large or numerous requests.

Don't call Abort  for common error situations, such as HTTP 404 (Not Found).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.allowedhosts#microsoft_aspnetcore_builder_forwardedheadersoptions_allowedhosts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.abort


Additional resources

Calling HttpResponse.CompleteAsync before calling Abort  ensures that the server has

completed writing the response. However, client behavior isn't predictable and they may not

read the response before the connection is aborted.

This process is different for HTTP/2 because the protocol supports aborting individual request

streams without closing the connection. The five second drain timeout doesn't apply. If there's

any unread request body data after completing a response, then the server sends an HTTP/2

RST frame. Additional request body data frames are ignored.

If possible, it's better for clients to utilize the Expect: 100-continue request header and wait for

the server to respond before starting to send the request body. That gives the client an

opportunity to examine the response and abort before sending unneeded data.

When using UNIX sockets on Linux, the socket is not automatically deleted on app shut

down. For more information, see this GitHub issue.

Troubleshoot and debug ASP.NET Core projects

Enforce HTTPS in ASP.NET Core

Configure ASP.NET Core to work with proxy servers and load balancers

RFC 7230: Message Syntax and Routing (Section 5.4: Host)

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpresponse.completeasync
https://developer.mozilla.org/docs/Web/HTTP/Status/100
https://github.com/dotnet/aspnetcore/issues/14134
https://tools.ietf.org/html/rfc7230#section-5.4


HTTP.sys web server implementation in ASP.NET
Core
9/22/2020 • 37 minutes to read • Edit Online

IMPORTANTIMPORTANT

When to use HTTP.sys

By Tom Dykstra and Chris Ross

HTTP.sys is a web server for ASP.NET Core that only runs on Windows. HTTP.sys is an alternative to Kestrel

server and offers some features that Kestrel doesn't provide.

HTTP.sys isn't compatible with the ASP.NET Core Module and can't be used with IIS or IIS Express.

HTTP.sys supports the following features:

Windows Authentication

Port sharing

HTTPS with SNI

HTTP/2 over TLS (Windows 10 or later)

Direct file transmission

Response caching

WebSockets (Windows 8 or later)

Supported Windows versions:

Windows 7 or later

Windows Server 2008 R2 or later

View or download sample code (how to download)

HTTP.sys is useful for deployments where:

There's a need to expose the server directly to the Internet without using IIS.

An internal deployment requires a feature not available in Kestrel, such as Windows Authentication.

HTTP.sys is mature technology that protects against many types of attacks and provides the robustness,

security, and scalability of a full-featured web server. IIS itself runs as an HTTP listener on top of HTTP.sys.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/servers/httpsys.md
https://github.com/tdykstra
https://github.com/Tratcher
https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/introduction-to-iis-architecture#hypertext-transfer-protocol-stack-httpsys
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/servers/httpsys/samples


    HTTP/2 support

Kernel mode authentication with Kerberos

How to use HTTP.sys
Configure the ASP.NET Core app to use HTTP.sysConfigure the ASP.NET Core app to use HTTP.sys

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseHttpSys(options =>
            {
                options.AllowSynchronousIO = false;
                options.Authentication.Schemes = AuthenticationSchemes.None;
                options.Authentication.AllowAnonymous = true;
                options.MaxConnections = null;
                options.MaxRequestBodySize = 30000000;
                options.UrlPrefixes.Add("http://localhost:5005");
            });
            webBuilder.UseStartup<Startup>();
        });

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

AllowSynchronousIO Control whether synchronous
input/output is allowed for the 
HttpContext.Request.Body  and 

HttpContext.Response.Body .

false

Authentication.AllowAnonymous Allow anonymous requests. true

HTTP/2 is enabled for ASP.NET Core apps if the following base requirements are met:

Windows Server 2016/Windows 10 or later

Application-Layer Protocol Negotiation (ALPN) connection

TLS 1.2 or later connection

If an HTTP/2 connection is established, HttpRequest.Protocol reports HTTP/2 .

HTTP/2 is enabled by default. If an HTTP/2 connection isn't established, the connection falls back to

HTTP/1.1. In a future release of Windows, HTTP/2 configuration flags will be available, including the ability

to disable HTTP/2 with HTTP.sys.

HTTP.sys delegates to kernel mode authentication with the Kerberos authentication protocol. User mode

authentication isn't supported with Kerberos and HTTP.sys. The machine account must be used to decrypt

the Kerberos token/ticket that's obtained from Active Directory and forwarded by the client to the server to

authenticate the user. Register the Service Principal Name (SPN) for the host, not the user of the app.

Call the UseHttpSys extension method when building the host, specifying any required HttpSysOptions.

The following example sets options to their default values:

Additional HTTP.sys configuration is handled through registry settings.

HTTP.sys optionsHTTP.sys options

https://httpwg.org/specs/rfc7540.html
https://tools.ietf.org/html/rfc7301#section-3
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderhttpsysextensions.usehttpsys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions
https://support.microsoft.com/help/820129/http-sys-registry-settings-for-windows
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.allowsynchronousio#microsoft_aspnetcore_server_httpsys_httpsysoptions_allowsynchronousio
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationmanager.allowanonymous#microsoft_aspnetcore_server_httpsys_authenticationmanager_allowanonymous


Authentication.Schemes Specify the allowed authentication
schemes. May be modified at any
time prior to disposing the listener.
Values are provided by the
AuthenticationSchemes enum: 
Basic , Kerberos , Negotiate , 

None , and NTLM .

None

EnableResponseCaching Attempt kernel-mode caching for
responses with eligible headers. The
response may not include 
Set-Cookie , Vary , or Pragma

headers. It must include a 
Cache-Control  header that's 

public  and either a 

shared-max-age  or max-age

value, or an Expires  header.

true

MaxAccepts The maximum number of concurrent
accepts.

5 × Environment.
ProcessorCount

MaxConnections The maximum number of concurrent
connections to accept. Use -1  for

infinite. Use null  to use the

registry's machine-wide setting.

null

(machine-wide
setting)

MaxRequestBodySize See the MaxRequestBodySize
section.

30000000 bytes
(~28.6 MB)

RequestQueueLimit The maximum number of requests
that can be queued.

1000

RequestQueueMode This indicates whether the server is
responsible for creating and
configuring the request queue, or if
it should attach to an existing queue.
Most existing configuration options
do not apply when attaching to an
existing queue.

RequestQueueMode.Create

RequestQueueName The name of the HTTP.sys request
queue.

null  (Anonymous queue)

ThrowWriteExceptions Indicate if response body writes that
fail due to client disconnects should
throw exceptions or complete
normally.

false

(complete normally)

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationmanager.schemes#microsoft_aspnetcore_server_httpsys_authenticationmanager_schemes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationschemes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.enableresponsecaching#microsoft_aspnetcore_server_httpsys_httpsysoptions_enableresponsecaching
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxaccepts#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxaccepts
https://docs.microsoft.com/en-us/dotnet/api/system.environment.processorcount#system_environment_processorcount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxconnections#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxconnections
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxrequestbodysize#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.requestqueuelimit#microsoft_aspnetcore_server_httpsys_httpsysoptions_requestqueuelimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.throwwriteexceptions#microsoft_aspnetcore_server_httpsys_httpsysoptions_throwwriteexceptions


Timeouts Expose the HTTP.sys
TimeoutManager configuration,
which may also be configured in the
registry. Follow the API links to learn
more about each setting, including
default values:

UrlPrefixes Specify the UrlPrefixCollection to
register with HTTP.sys. The most
useful is UrlPrefixCollection.Add,
which is used to add a prefix to the
collection. These may be modified at
any time prior to disposing the
listener.

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

[RequestSizeLimit(100000000)]
public IActionResult MyActionMethod()

TimeoutManager.DrainEntity
Body: Time allowed for the
HTTP Server API to drain the
entity body on a Keep-Alive
connection.

TimeoutManager.EntityBody:
Time allowed for the request
entity body to arrive.

TimeoutManager.HeaderWait:
Time allowed for the HTTP
Server API to parse the
request header.

TimeoutManager.IdleConnect
ion: Time allowed for an idle
connection.

TimeoutManager.MinSendByt
esPerSecond: The minimum
send rate for the response.

TimeoutManager.RequestQue
ue: Time allowed for the
request to remain in the
request queue before the
app picks it up.

    MaxRequestBodySizeMaxRequestBodySize

The maximum allowed size of any request body in bytes. When set to null , the maximum request body

size is unlimited. This limit has no effect on upgraded connections, which are always unlimited.

The recommended method to override the limit in an ASP.NET Core MVC app for a single IActionResult  is

to use the RequestSizeLimitAttribute attribute on an action method:

An exception is thrown if the app attempts to configure the limit on a request after the app has started

reading the request. An IsReadOnly  property can be used to indicate if the MaxRequestBodySize  property is

in a read-only state, meaning it's too late to configure the limit.

If the app should override MaxRequestBodySize per-request, use the IHttpMaxRequestBodySizeFeature:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts#microsoft_aspnetcore_server_httpsys_httpsysoptions_timeouts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.drainentitybody#microsoft_aspnetcore_server_httpsys_timeoutmanager_drainentitybody
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.entitybody#microsoft_aspnetcore_server_httpsys_timeoutmanager_entitybody
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.headerwait#microsoft_aspnetcore_server_httpsys_timeoutmanager_headerwait
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.idleconnection#microsoft_aspnetcore_server_httpsys_timeoutmanager_idleconnection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.minsendbytespersecond#microsoft_aspnetcore_server_httpsys_timeoutmanager_minsendbytespersecond
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.requestqueue#microsoft_aspnetcore_server_httpsys_timeoutmanager_requestqueue
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.urlprefixcollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.urlprefixcollection.add
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxrequestbodysize#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.ihttpmaxrequestbodysizefeature


        

public void Configure(IApplicationBuilder app, IWebHostEnvironment env, 
    ILogger<Startup> logger, IServer server)
{
    app.Use(async (context, next) =>
    {
        context.Features.Get<IHttpMaxRequestBodySizeFeature>()
            .MaxRequestBodySize = 10 * 1024;

        var serverAddressesFeature = 
            app.ServerFeatures.Get<IServerAddressesFeature>();
        var addresses = string.Join(", ", serverAddressesFeature?.Addresses);

        logger.LogInformation("Addresses: {Addresses}", addresses);

        await next.Invoke();
    });

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
    }

    app.UseStaticFiles();
    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
    });
}

Configure Windows ServerConfigure Windows Server

If using Visual Studio, make sure the app isn't configured to run IIS or IIS Express.

In Visual Studio, the default launch profile is for IIS Express. To run the project as a console app, manually

change the selected profile, as shown in the following screen shot:

1. Determine the ports to open for the app and use Windows Firewall or the New-NetFirewallRule

PowerShell cmdlet to open firewall ports to allow traffic to reach HTTP.sys. In the following

commands and app configuration, port 443 is used.

2. When deploying to an Azure VM, open the ports in the Network Security Group. In the following

commands and app configuration, port 443 is used.

3. Obtain and install X.509 certificates, if required.

On Windows, create self-signed certificates using the New-SelfSignedCertificate PowerShell cmdlet.

For an unsupported example, see UpdateIISExpressSSLForChrome.ps1.

Install either self-signed or CA-signed certificates in the server's Local MachineLocal Machine > PersonalPersonal  store.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-firewall/create-an-inbound-port-rule
https://docs.microsoft.com/en-us/powershell/module/netsecurity/new-netfirewallrule
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal
https://docs.microsoft.com/en-us/powershell/module/pkiclient/new-selfsignedcertificate
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/includes/make-x509-cert/UpdateIISExpressSSLForChrome.ps1


public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseHttpSys(options =>
            {
                options.UrlPrefixes.Add("https://10.0.0.4:443");
            });
            webBuilder.UseStartup<Startup>();
        });

WARNINGWARNING

4. If the app is a framework-dependent deployment, install .NET Core, .NET Framework, or both (if the

app is a .NET Core app targeting the .NET Framework).

.NET Core.NET Core: If the app requires .NET Core, obtain and run the .NET Core Runtime.NET Core Runtime installer from

.NET Core Downloads. Don't install the full SDK on the server.

.NET Framework.NET Framework : If the app requires .NET Framework, see the .NET Framework installation

guide. Install the required .NET Framework. The installer for the latest .NET Framework is

available from the .NET Core Downloads page.

If the app is a self-contained deployment, the app includes the runtime in its deployment. No

framework installation is required on the server.

5. Configure URLs and ports in the app.

By default, ASP.NET Core binds to http://localhost:5000 . To configure URL prefixes and ports,

options include:

UseUrls

urls  command-line argument

ASPNETCORE_URLS  environment variable

UrlPrefixes

The following code example shows how to use UrlPrefixes with the server's local IP address 

10.0.0.4  on port 443:

An advantage of UrlPrefixes  is that an error message is generated immediately for improperly

formatted prefixes.

The settings in UrlPrefixes  override UseUrls / urls / ASPNETCORE_URLS  settings. Therefore, an

advantage of UseUrls , urls , and the ASPNETCORE_URLS  environment variable is that it's easier to

switch between Kestrel and HTTP.sys.

HTTP.sys uses the HTTP Server API UrlPrefix string formats.

Top-level wildcard bindings ( http://*:80/  and http://+:80 ) should notnot  be used. Top-level wildcard

bindings create app security vulnerabilities. This applies to both strong and weak wildcards. Use explicit host

names or IP addresses rather than wildcards. Subdomain wildcard binding (for example, *.mysub.com ) isn't

a security risk if you control the entire parent domain (as opposed to *.com , which is vulnerable). For more

information, see RFC 7230: Section 5.4: Host.

6. Preregister URL prefixes on the server.

The built-in tool for configuring HTTP.sys is netsh.exe. netsh.exe is used to reserve URL prefixes and

assign X.509 certificates. The tool requires administrator privileges.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/framework/install/
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useurls
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/windows/win32/http/urlprefix-strings
https://tools.ietf.org/html/rfc7230#section-5.4


netsh http add urlacl url=<URL> user=<USER>

netsh http add urlacl url=https://10.0.0.4:443/ user=Users

netsh http delete urlacl url=<URL>

netsh http add sslcert ipport=<IP>:<PORT> certhash=<THUMBPRINT> appid="{<GUID>}"

Use the netsh.exe tool to register URLs for the app:

<URL> : The fully qualified Uniform Resource Locator (URL). Don't use a wildcard binding. Use a

valid hostname or local IP address. The URL must include a trailing slash.

<USER> : Specifies the user or user-group name.

In the following example, the local IP address of the server is 10.0.0.4 :

When a URL is registered, the tool responds with URL reservation successfully added .

To delete a registered URL, use the delete urlacl  command:

7. Register X.509 certificates on the server.

Use the netsh.exe tool to register certificates for the app:

<IP> : Specifies the local IP address for the binding. Don't use a wildcard binding. Use a valid IP

address.

<PORT> : Specifies the port for the binding.

<THUMBPRINT> : The X.509 certificate thumbprint.

<GUID> : A developer-generated GUID to represent the app for informational purposes.

For reference purposes, store the GUID in the app as a package tag:

In Visual Studio:

When not using Visual Studio:

Open the app's project properties by right-clicking on the app in Solution ExplorerSolution Explorer  and

selecting Proper tiesProper ties .

Select the PackagePackage tab.

Enter the GUID that you created in the TagsTags  field.

<PropertyGroup>
  <PackageTags>9412ee86-c21b-4eb8-bd89-f650fbf44931</PackageTags>
</PropertyGroup>

Open the app's project file.

Add a <PackageTags>  property to a new or existing <PropertyGroup>  with the GUID

that you created:

In the following example:

The local IP address of the server is 10.0.0.4 .

An online random GUID generator provides the appid  value.



Proxy server and load balancer scenarios

Additional resources

netsh http add sslcert 
    ipport=10.0.0.4:443 
    certhash=b66ee04419d4ee37464ab8785ff02449980eae10 
    appid="{9412ee86-c21b-4eb8-bd89-f650fbf44931}"

netsh http delete sslcert ipport=<IP>:<PORT>

When a certificate is registered, the tool responds with SSL Certificate successfully added .

To delete a certificate registration, use the delete sslcert  command:

Reference documentation for netsh.exe:

Netsh Commands for Hypertext Transfer Protocol (HTTP)

UrlPrefix Strings

8. Run the app.

Administrator privileges aren't required to run the app when binding to localhost using HTTP (not

HTTPS) with a port number greater than 1024. For other configurations (for example, using a local

IP address or binding to port 443), run the app with administrator privileges.

The app responds at the server's public IP address. In this example, the server is reached from the

Internet at its public IP address of 104.214.79.47 .

A development certificate is used in this example. The page loads securely after bypassing the

browser's untrusted certificate warning.

For apps hosted by HTTP.sys that interact with requests from the Internet or a corporate network,

additional configuration might be required when hosting behind proxy servers and load balancers. For

more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

Enable Windows Authentication with HTTP.sys

HTTP Server API

aspnet/HttpSysServer GitHub repository (source code)

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc725882(v=ws.10)
https://docs.microsoft.com/en-us/windows/win32/http/urlprefix-strings
https://docs.microsoft.com/en-us/windows/win32/http/http-api-start-page
https://github.com/aspnet/HttpSysServer/


IMPORTANTIMPORTANT

When to use HTTP.sys

HTTP/2 support

The host

Troubleshoot and debug ASP.NET Core projects

HTTP.sys is a web server for ASP.NET Core that only runs on Windows. HTTP.sys is an alternative to Kestrel

server and offers some features that Kestrel doesn't provide.

HTTP.sys isn't compatible with the ASP.NET Core Module and can't be used with IIS or IIS Express.

HTTP.sys supports the following features:

Windows Authentication

Port sharing

HTTPS with SNI

HTTP/2 over TLS (Windows 10 or later)

Direct file transmission

Response caching

WebSockets (Windows 8 or later)

Supported Windows versions:

Windows 7 or later

Windows Server 2008 R2 or later

View or download sample code (how to download)

HTTP.sys is useful for deployments where:

There's a need to expose the server directly to the Internet without using IIS.

An internal deployment requires a feature not available in Kestrel, such as Windows Authentication.

HTTP.sys is mature technology that protects against many types of attacks and provides the robustness,

security, and scalability of a full-featured web server. IIS itself runs as an HTTP listener on top of HTTP.sys.

HTTP/2 is enabled for ASP.NET Core apps if the following base requirements are met:

Windows Server 2016/Windows 10 or later

Application-Layer Protocol Negotiation (ALPN) connection

TLS 1.2 or later connection

If an HTTP/2 connection is established, HttpRequest.Protocol reports HTTP/2 .

https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/introduction-to-iis-architecture#hypertext-transfer-protocol-stack-httpsys
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/servers/httpsys/samples
https://httpwg.org/specs/rfc7540.html
https://tools.ietf.org/html/rfc7301#section-3
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol


Kernel mode authentication with Kerberos

How to use HTTP.sys
Configure the ASP.NET Core app to use HTTP.sysConfigure the ASP.NET Core app to use HTTP.sys

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseHttpSys(options =>
            {
                options.AllowSynchronousIO = false;
                options.Authentication.Schemes = AuthenticationSchemes.None;
                options.Authentication.AllowAnonymous = true;
                options.MaxConnections = null;
                options.MaxRequestBodySize = 30000000;
                options.UrlPrefixes.Add("http://localhost:5005");
            });
            webBuilder.UseStartup<Startup>();
        });

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

AllowSynchronousIO Control whether synchronous
input/output is allowed for the 
HttpContext.Request.Body  and 

HttpContext.Response.Body .

false

Authentication.AllowAnonymous Allow anonymous requests. true

Authentication.Schemes Specify the allowed authentication
schemes. May be modified at any
time prior to disposing the listener.
Values are provided by the
AuthenticationSchemes enum: 
Basic , Kerberos , Negotiate , 

None , and NTLM .

None

HTTP/2 is enabled by default. If an HTTP/2 connection isn't established, the connection falls back to

HTTP/1.1. In a future release of Windows, HTTP/2 configuration flags will be available, including the ability

to disable HTTP/2 with HTTP.sys.

HTTP.sys delegates to kernel mode authentication with the Kerberos authentication protocol. User mode

authentication isn't supported with Kerberos and HTTP.sys. The machine account must be used to decrypt

the Kerberos token/ticket that's obtained from Active Directory and forwarded by the client to the server to

authenticate the user. Register the Service Principal Name (SPN) for the host, not the user of the app.

Call the UseHttpSys extension method when building the host, specifying any required HttpSysOptions.

The following example sets options to their default values:

Additional HTTP.sys configuration is handled through registry settings.

HTTP.sys optionsHTTP.sys options

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderhttpsysextensions.usehttpsys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions
https://support.microsoft.com/help/820129/http-sys-registry-settings-for-windows
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.allowsynchronousio#microsoft_aspnetcore_server_httpsys_httpsysoptions_allowsynchronousio
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationmanager.allowanonymous#microsoft_aspnetcore_server_httpsys_authenticationmanager_allowanonymous
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationmanager.schemes#microsoft_aspnetcore_server_httpsys_authenticationmanager_schemes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationschemes


EnableResponseCaching Attempt kernel-mode caching for
responses with eligible headers. The
response may not include 
Set-Cookie , Vary , or Pragma

headers. It must include a 
Cache-Control  header that's 

public  and either a 

shared-max-age  or max-age

value, or an Expires  header.

true

MaxAccepts The maximum number of concurrent
accepts.

5 × Environment.
ProcessorCount

MaxConnections The maximum number of concurrent
connections to accept. Use -1  for

infinite. Use null  to use the

registry's machine-wide setting.

null

(machine-wide
setting)

MaxRequestBodySize See the MaxRequestBodySize
section.

30000000 bytes
(~28.6 MB)

RequestQueueLimit The maximum number of requests
that can be queued.

1000

ThrowWriteExceptions Indicate if response body writes that
fail due to client disconnects should
throw exceptions or complete
normally.

false

(complete normally)

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.enableresponsecaching#microsoft_aspnetcore_server_httpsys_httpsysoptions_enableresponsecaching
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxaccepts#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxaccepts
https://docs.microsoft.com/en-us/dotnet/api/system.environment.processorcount#system_environment_processorcount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxconnections#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxconnections
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxrequestbodysize#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.requestqueuelimit#microsoft_aspnetcore_server_httpsys_httpsysoptions_requestqueuelimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.throwwriteexceptions#microsoft_aspnetcore_server_httpsys_httpsysoptions_throwwriteexceptions


Timeouts Expose the HTTP.sys
TimeoutManager configuration,
which may also be configured in the
registry. Follow the API links to learn
more about each setting, including
default values:

UrlPrefixes Specify the UrlPrefixCollection to
register with HTTP.sys. The most
useful is UrlPrefixCollection.Add,
which is used to add a prefix to the
collection. These may be modified at
any time prior to disposing the
listener.

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

[RequestSizeLimit(100000000)]
public IActionResult MyActionMethod()

TimeoutManager.DrainEntity
Body: Time allowed for the
HTTP Server API to drain the
entity body on a Keep-Alive
connection.

TimeoutManager.EntityBody:
Time allowed for the request
entity body to arrive.

TimeoutManager.HeaderWait:
Time allowed for the HTTP
Server API to parse the
request header.

TimeoutManager.IdleConnect
ion: Time allowed for an idle
connection.

TimeoutManager.MinSendByt
esPerSecond: The minimum
send rate for the response.

TimeoutManager.RequestQue
ue: Time allowed for the
request to remain in the
request queue before the
app picks it up.

 MaxRequestBodySizeMaxRequestBodySize

The maximum allowed size of any request body in bytes. When set to null , the maximum request body

size is unlimited. This limit has no effect on upgraded connections, which are always unlimited.

The recommended method to override the limit in an ASP.NET Core MVC app for a single IActionResult  is

to use the RequestSizeLimitAttribute attribute on an action method:

An exception is thrown if the app attempts to configure the limit on a request after the app has started

reading the request. An IsReadOnly  property can be used to indicate if the MaxRequestBodySize  property is

in a read-only state, meaning it's too late to configure the limit.

If the app should override MaxRequestBodySize per-request, use the IHttpMaxRequestBodySizeFeature:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts#microsoft_aspnetcore_server_httpsys_httpsysoptions_timeouts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.drainentitybody#microsoft_aspnetcore_server_httpsys_timeoutmanager_drainentitybody
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.entitybody#microsoft_aspnetcore_server_httpsys_timeoutmanager_entitybody
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.headerwait#microsoft_aspnetcore_server_httpsys_timeoutmanager_headerwait
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.idleconnection#microsoft_aspnetcore_server_httpsys_timeoutmanager_idleconnection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.minsendbytespersecond#microsoft_aspnetcore_server_httpsys_timeoutmanager_minsendbytespersecond
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.requestqueue#microsoft_aspnetcore_server_httpsys_timeoutmanager_requestqueue
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.urlprefixcollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.urlprefixcollection.add
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxrequestbodysize#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.ihttpmaxrequestbodysizefeature


public void Configure(IApplicationBuilder app, IWebHostEnvironment env, 
    ILogger<Startup> logger, IServer server)
{
    app.Use(async (context, next) =>
    {
        context.Features.Get<IHttpMaxRequestBodySizeFeature>()
            .MaxRequestBodySize = 10 * 1024;

        var serverAddressesFeature = 
            app.ServerFeatures.Get<IServerAddressesFeature>();
        var addresses = string.Join(", ", serverAddressesFeature?.Addresses);

        logger.LogInformation("Addresses: {Addresses}", addresses);

        await next.Invoke();
    });

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
    }

    app.UseStaticFiles();
    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
    });
}

Configure Windows ServerConfigure Windows Server

If using Visual Studio, make sure the app isn't configured to run IIS or IIS Express.

In Visual Studio, the default launch profile is for IIS Express. To run the project as a console app, manually

change the selected profile, as shown in the following screen shot:

1. Determine the ports to open for the app and use Windows Firewall or the New-NetFirewallRule

PowerShell cmdlet to open firewall ports to allow traffic to reach HTTP.sys. In the following

commands and app configuration, port 443 is used.

2. When deploying to an Azure VM, open the ports in the Network Security Group. In the following

commands and app configuration, port 443 is used.

3. Obtain and install X.509 certificates, if required.

On Windows, create self-signed certificates using the New-SelfSignedCertificate PowerShell cmdlet.

For an unsupported example, see UpdateIISExpressSSLForChrome.ps1.

Install either self-signed or CA-signed certificates in the server's Local MachineLocal Machine > PersonalPersonal  store.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-firewall/create-an-inbound-port-rule
https://docs.microsoft.com/en-us/powershell/module/netsecurity/new-netfirewallrule
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal
https://docs.microsoft.com/en-us/powershell/module/pkiclient/new-selfsignedcertificate
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/includes/make-x509-cert/UpdateIISExpressSSLForChrome.ps1


public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseHttpSys(options =>
            {
                options.UrlPrefixes.Add("https://10.0.0.4:443");
            });
            webBuilder.UseStartup<Startup>();
        });

WARNINGWARNING

4. If the app is a framework-dependent deployment, install .NET Core, .NET Framework, or both (if the

app is a .NET Core app targeting the .NET Framework).

.NET Core.NET Core: If the app requires .NET Core, obtain and run the .NET Core Runtime.NET Core Runtime installer from

.NET Core Downloads. Don't install the full SDK on the server.

.NET Framework.NET Framework : If the app requires .NET Framework, see the .NET Framework installation

guide. Install the required .NET Framework. The installer for the latest .NET Framework is

available from the .NET Core Downloads page.

If the app is a self-contained deployment, the app includes the runtime in its deployment. No

framework installation is required on the server.

5. Configure URLs and ports in the app.

By default, ASP.NET Core binds to http://localhost:5000 . To configure URL prefixes and ports,

options include:

UseUrls

urls  command-line argument

ASPNETCORE_URLS  environment variable

UrlPrefixes

The following code example shows how to use UrlPrefixes with the server's local IP address 

10.0.0.4  on port 443:

An advantage of UrlPrefixes  is that an error message is generated immediately for improperly

formatted prefixes.

The settings in UrlPrefixes  override UseUrls / urls / ASPNETCORE_URLS  settings. Therefore, an

advantage of UseUrls , urls , and the ASPNETCORE_URLS  environment variable is that it's easier to

switch between Kestrel and HTTP.sys.

HTTP.sys uses the HTTP Server API UrlPrefix string formats.

Top-level wildcard bindings ( http://*:80/  and http://+:80 ) should notnot  be used. Top-level wildcard

bindings create app security vulnerabilities. This applies to both strong and weak wildcards. Use explicit host

names or IP addresses rather than wildcards. Subdomain wildcard binding (for example, *.mysub.com ) isn't

a security risk if you control the entire parent domain (as opposed to *.com , which is vulnerable). For more

information, see RFC 7230: Section 5.4: Host.

6. Preregister URL prefixes on the server.

The built-in tool for configuring HTTP.sys is netsh.exe. netsh.exe is used to reserve URL prefixes and

assign X.509 certificates. The tool requires administrator privileges.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/framework/install/
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useurls
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/windows/win32/http/urlprefix-strings
https://tools.ietf.org/html/rfc7230#section-5.4


netsh http add urlacl url=<URL> user=<USER>

netsh http add urlacl url=https://10.0.0.4:443/ user=Users

netsh http delete urlacl url=<URL>

netsh http add sslcert ipport=<IP>:<PORT> certhash=<THUMBPRINT> appid="{<GUID>}"

Use the netsh.exe tool to register URLs for the app:

<URL> : The fully qualified Uniform Resource Locator (URL). Don't use a wildcard binding. Use a

valid hostname or local IP address. The URL must include a trailing slash.

<USER> : Specifies the user or user-group name.

In the following example, the local IP address of the server is 10.0.0.4 :

When a URL is registered, the tool responds with URL reservation successfully added .

To delete a registered URL, use the delete urlacl  command:

7. Register X.509 certificates on the server.

Use the netsh.exe tool to register certificates for the app:

<IP> : Specifies the local IP address for the binding. Don't use a wildcard binding. Use a valid IP

address.

<PORT> : Specifies the port for the binding.

<THUMBPRINT> : The X.509 certificate thumbprint.

<GUID> : A developer-generated GUID to represent the app for informational purposes.

For reference purposes, store the GUID in the app as a package tag:

In Visual Studio:

When not using Visual Studio:

Open the app's project properties by right-clicking on the app in Solution ExplorerSolution Explorer  and

selecting Proper tiesProper ties .

Select the PackagePackage tab.

Enter the GUID that you created in the TagsTags  field.

<PropertyGroup>
  <PackageTags>9412ee86-c21b-4eb8-bd89-f650fbf44931</PackageTags>
</PropertyGroup>

Open the app's project file.

Add a <PackageTags>  property to a new or existing <PropertyGroup>  with the GUID

that you created:

In the following example:

The local IP address of the server is 10.0.0.4 .

An online random GUID generator provides the appid  value.



Proxy server and load balancer scenarios

Additional resources

netsh http add sslcert 
    ipport=10.0.0.4:443 
    certhash=b66ee04419d4ee37464ab8785ff02449980eae10 
    appid="{9412ee86-c21b-4eb8-bd89-f650fbf44931}"

netsh http delete sslcert ipport=<IP>:<PORT>

When a certificate is registered, the tool responds with SSL Certificate successfully added .

To delete a certificate registration, use the delete sslcert  command:

Reference documentation for netsh.exe:

Netsh Commands for Hypertext Transfer Protocol (HTTP)

UrlPrefix Strings

8. Run the app.

Administrator privileges aren't required to run the app when binding to localhost using HTTP (not

HTTPS) with a port number greater than 1024. For other configurations (for example, using a local

IP address or binding to port 443), run the app with administrator privileges.

The app responds at the server's public IP address. In this example, the server is reached from the

Internet at its public IP address of 104.214.79.47 .

A development certificate is used in this example. The page loads securely after bypassing the

browser's untrusted certificate warning.

For apps hosted by HTTP.sys that interact with requests from the Internet or a corporate network,

additional configuration might be required when hosting behind proxy servers and load balancers. For

more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

Enable Windows Authentication with HTTP.sys

HTTP Server API

aspnet/HttpSysServer GitHub repository (source code)

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc725882(v=ws.10)
https://docs.microsoft.com/en-us/windows/win32/http/urlprefix-strings
https://docs.microsoft.com/en-us/windows/win32/http/http-api-start-page
https://github.com/aspnet/HttpSysServer/


IMPORTANTIMPORTANT

When to use HTTP.sys

HTTP/2 support

The host

Troubleshoot and debug ASP.NET Core projects

HTTP.sys is a web server for ASP.NET Core that only runs on Windows. HTTP.sys is an alternative to Kestrel

server and offers some features that Kestrel doesn't provide.

HTTP.sys isn't compatible with the ASP.NET Core Module and can't be used with IIS or IIS Express.

HTTP.sys supports the following features:

Windows Authentication

Port sharing

HTTPS with SNI

HTTP/2 over TLS (Windows 10 or later)

Direct file transmission

Response caching

WebSockets (Windows 8 or later)

Supported Windows versions:

Windows 7 or later

Windows Server 2008 R2 or later

View or download sample code (how to download)

HTTP.sys is useful for deployments where:

There's a need to expose the server directly to the Internet without using IIS.

An internal deployment requires a feature not available in Kestrel, such as Windows Authentication.

HTTP.sys is mature technology that protects against many types of attacks and provides the robustness,

security, and scalability of a full-featured web server. IIS itself runs as an HTTP listener on top of HTTP.sys.

HTTP/2 is enabled for ASP.NET Core apps if the following base requirements are met:

Windows Server 2016/Windows 10 or later

Application-Layer Protocol Negotiation (ALPN) connection

TLS 1.2 or later connection

If an HTTP/2 connection is established, HttpRequest.Protocol reports HTTP/2 .

https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/introduction-to-iis-architecture#hypertext-transfer-protocol-stack-httpsys
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/servers/httpsys/samples
https://httpwg.org/specs/rfc7540.html
https://tools.ietf.org/html/rfc7301#section-3
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol


Kernel mode authentication with Kerberos

How to use HTTP.sys
Configure the ASP.NET Core app to use HTTP.sysConfigure the ASP.NET Core app to use HTTP.sys

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseHttpSys(options =>
        {
            options.AllowSynchronousIO = true;
            options.Authentication.Schemes = AuthenticationSchemes.None;
            options.Authentication.AllowAnonymous = true;
            options.MaxConnections = null;
            options.MaxRequestBodySize = 30000000;
            options.UrlPrefixes.Add("http://localhost:5000");
        });

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

AllowSynchronousIO Control whether synchronous
input/output is allowed for the 
HttpContext.Request.Body  and 

HttpContext.Response.Body .

true

Authentication.AllowAnonymous Allow anonymous requests. true

Authentication.Schemes Specify the allowed authentication
schemes. May be modified at any
time prior to disposing the listener.
Values are provided by the
AuthenticationSchemes enum: 
Basic , Kerberos , Negotiate , 

None , and NTLM .

None

HTTP/2 is enabled by default. If an HTTP/2 connection isn't established, the connection falls back to

HTTP/1.1. In a future release of Windows, HTTP/2 configuration flags will be available, including the ability

to disable HTTP/2 with HTTP.sys.

HTTP.sys delegates to kernel mode authentication with the Kerberos authentication protocol. User mode

authentication isn't supported with Kerberos and HTTP.sys. The machine account must be used to decrypt

the Kerberos token/ticket that's obtained from Active Directory and forwarded by the client to the server to

authenticate the user. Register the Service Principal Name (SPN) for the host, not the user of the app.

A package reference in the project file isn't required when using the Microsoft.AspNetCore.App

metapackage (nuget.org). When not using the Microsoft.AspNetCore.App  metapackage, add a package

reference to Microsoft.AspNetCore.Server.HttpSys.

Call the UseHttpSys extension method when building the host, specifying any required HttpSysOptions.

The following example sets options to their default values:

Additional HTTP.sys configuration is handled through registry settings.

HTTP.sys optionsHTTP.sys options

https://www.nuget.org/packages/Microsoft.AspNetCore.App/
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.HttpSys/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderhttpsysextensions.usehttpsys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions
https://support.microsoft.com/help/820129/http-sys-registry-settings-for-windows
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.allowsynchronousio#microsoft_aspnetcore_server_httpsys_httpsysoptions_allowsynchronousio
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationmanager.allowanonymous#microsoft_aspnetcore_server_httpsys_authenticationmanager_allowanonymous
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationmanager.schemes#microsoft_aspnetcore_server_httpsys_authenticationmanager_schemes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationschemes


EnableResponseCaching Attempt kernel-mode caching for
responses with eligible headers. The
response may not include 
Set-Cookie , Vary , or Pragma

headers. It must include a 
Cache-Control  header that's 

public  and either a 

shared-max-age  or max-age

value, or an Expires  header.

true

MaxAccepts The maximum number of concurrent
accepts.

5 × Environment.
ProcessorCount

MaxConnections The maximum number of concurrent
connections to accept. Use -1  for

infinite. Use null  to use the

registry's machine-wide setting.

null

(machine-wide
setting)

MaxRequestBodySize See the MaxRequestBodySize
section.

30000000 bytes
(~28.6 MB)

RequestQueueLimit The maximum number of requests
that can be queued.

1000

ThrowWriteExceptions Indicate if response body writes that
fail due to client disconnects should
throw exceptions or complete
normally.

false

(complete normally)

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.enableresponsecaching#microsoft_aspnetcore_server_httpsys_httpsysoptions_enableresponsecaching
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxaccepts#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxaccepts
https://docs.microsoft.com/en-us/dotnet/api/system.environment.processorcount#system_environment_processorcount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxconnections#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxconnections
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxrequestbodysize#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.requestqueuelimit#microsoft_aspnetcore_server_httpsys_httpsysoptions_requestqueuelimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.throwwriteexceptions#microsoft_aspnetcore_server_httpsys_httpsysoptions_throwwriteexceptions


Timeouts Expose the HTTP.sys
TimeoutManager configuration,
which may also be configured in the
registry. Follow the API links to learn
more about each setting, including
default values:

UrlPrefixes Specify the UrlPrefixCollection to
register with HTTP.sys. The most
useful is UrlPrefixCollection.Add,
which is used to add a prefix to the
collection. These may be modified at
any time prior to disposing the
listener.

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

[RequestSizeLimit(100000000)]
public IActionResult MyActionMethod()

TimeoutManager.DrainEntity
Body: Time allowed for the
HTTP Server API to drain the
entity body on a Keep-Alive
connection.

TimeoutManager.EntityBody:
Time allowed for the request
entity body to arrive.

TimeoutManager.HeaderWait:
Time allowed for the HTTP
Server API to parse the
request header.

TimeoutManager.IdleConnect
ion: Time allowed for an idle
connection.

TimeoutManager.MinSendByt
esPerSecond: The minimum
send rate for the response.

TimeoutManager.RequestQue
ue: Time allowed for the
request to remain in the
request queue before the
app picks it up.

 MaxRequestBodySizeMaxRequestBodySize

The maximum allowed size of any request body in bytes. When set to null , the maximum request body

size is unlimited. This limit has no effect on upgraded connections, which are always unlimited.

The recommended method to override the limit in an ASP.NET Core MVC app for a single IActionResult  is

to use the RequestSizeLimitAttribute attribute on an action method:

An exception is thrown if the app attempts to configure the limit on a request after the app has started

reading the request. An IsReadOnly  property can be used to indicate if the MaxRequestBodySize  property is

in a read-only state, meaning it's too late to configure the limit.

If the app should override MaxRequestBodySize per-request, use the IHttpMaxRequestBodySizeFeature:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts#microsoft_aspnetcore_server_httpsys_httpsysoptions_timeouts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.drainentitybody#microsoft_aspnetcore_server_httpsys_timeoutmanager_drainentitybody
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.entitybody#microsoft_aspnetcore_server_httpsys_timeoutmanager_entitybody
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.headerwait#microsoft_aspnetcore_server_httpsys_timeoutmanager_headerwait
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.idleconnection#microsoft_aspnetcore_server_httpsys_timeoutmanager_idleconnection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.minsendbytespersecond#microsoft_aspnetcore_server_httpsys_timeoutmanager_minsendbytespersecond
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.requestqueue#microsoft_aspnetcore_server_httpsys_timeoutmanager_requestqueue
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.urlprefixcollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.urlprefixcollection.add
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxrequestbodysize#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.ihttpmaxrequestbodysizefeature


public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
    ILogger<Startup> logger, IServer server)
{
    app.Use(async (context, next) =>
    {
        context.Features.Get<IHttpMaxRequestBodySizeFeature>()
            .MaxRequestBodySize = 10 * 1024;

        var serverAddressesFeature = 
            app.ServerFeatures.Get<IServerAddressesFeature>();
        var addresses = string.Join(", ", serverAddressesFeature?.Addresses);

        logger.LogInformation("Addresses: {Addresses}", addresses);

        await next.Invoke();
    });

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    // Enable HTTPS Redirection Middleware when hosting the app securely.
    //app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();
    app.UseMvc();
}

Configure Windows ServerConfigure Windows Server

If using Visual Studio, make sure the app isn't configured to run IIS or IIS Express.

In Visual Studio, the default launch profile is for IIS Express. To run the project as a console app, manually

change the selected profile, as shown in the following screen shot:

1. Determine the ports to open for the app and use Windows Firewall or the New-NetFirewallRule

PowerShell cmdlet to open firewall ports to allow traffic to reach HTTP.sys. In the following

commands and app configuration, port 443 is used.

2. When deploying to an Azure VM, open the ports in the Network Security Group. In the following

commands and app configuration, port 443 is used.

3. Obtain and install X.509 certificates, if required.

On Windows, create self-signed certificates using the New-SelfSignedCertificate PowerShell cmdlet.

For an unsupported example, see UpdateIISExpressSSLForChrome.ps1.

Install either self-signed or CA-signed certificates in the server's Local MachineLocal Machine > PersonalPersonal  store.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-firewall/create-an-inbound-port-rule
https://docs.microsoft.com/en-us/powershell/module/netsecurity/new-netfirewallrule
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal
https://docs.microsoft.com/en-us/powershell/module/pkiclient/new-selfsignedcertificate
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/includes/make-x509-cert/UpdateIISExpressSSLForChrome.ps1


public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseHttpSys(options =>
        {
            options.UrlPrefixes.Add("https://10.0.0.4:443");
        });

WARNINGWARNING

4. If the app is a framework-dependent deployment, install .NET Core, .NET Framework, or both (if the

app is a .NET Core app targeting the .NET Framework).

.NET Core.NET Core: If the app requires .NET Core, obtain and run the .NET Core Runtime.NET Core Runtime installer from

.NET Core Downloads. Don't install the full SDK on the server.

.NET Framework.NET Framework : If the app requires .NET Framework, see the .NET Framework installation

guide. Install the required .NET Framework. The installer for the latest .NET Framework is

available from the .NET Core Downloads page.

If the app is a self-contained deployment, the app includes the runtime in its deployment. No

framework installation is required on the server.

5. Configure URLs and ports in the app.

By default, ASP.NET Core binds to http://localhost:5000 . To configure URL prefixes and ports,

options include:

UseUrls

urls  command-line argument

ASPNETCORE_URLS  environment variable

UrlPrefixes

The following code example shows how to use UrlPrefixes with the server's local IP address 

10.0.0.4  on port 443:

An advantage of UrlPrefixes  is that an error message is generated immediately for improperly

formatted prefixes.

The settings in UrlPrefixes  override UseUrls / urls / ASPNETCORE_URLS  settings. Therefore, an

advantage of UseUrls , urls , and the ASPNETCORE_URLS  environment variable is that it's easier to

switch between Kestrel and HTTP.sys.

HTTP.sys uses the HTTP Server API UrlPrefix string formats.

Top-level wildcard bindings ( http://*:80/  and http://+:80 ) should notnot  be used. Top-level wildcard

bindings create app security vulnerabilities. This applies to both strong and weak wildcards. Use explicit host

names or IP addresses rather than wildcards. Subdomain wildcard binding (for example, *.mysub.com ) isn't

a security risk if you control the entire parent domain (as opposed to *.com , which is vulnerable). For more

information, see RFC 7230: Section 5.4: Host.

6. Preregister URL prefixes on the server.

The built-in tool for configuring HTTP.sys is netsh.exe. netsh.exe is used to reserve URL prefixes and

assign X.509 certificates. The tool requires administrator privileges.

Use the netsh.exe tool to register URLs for the app:

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/framework/install/
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useurls
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/windows/win32/http/urlprefix-strings
https://tools.ietf.org/html/rfc7230#section-5.4


netsh http add urlacl url=<URL> user=<USER>

netsh http add urlacl url=https://10.0.0.4:443/ user=Users

netsh http delete urlacl url=<URL>

netsh http add sslcert ipport=<IP>:<PORT> certhash=<THUMBPRINT> appid="{<GUID>}"

<URL> : The fully qualified Uniform Resource Locator (URL). Don't use a wildcard binding. Use a

valid hostname or local IP address. The URL must include a trailing slash.

<USER> : Specifies the user or user-group name.

In the following example, the local IP address of the server is 10.0.0.4 :

When a URL is registered, the tool responds with URL reservation successfully added .

To delete a registered URL, use the delete urlacl  command:

7. Register X.509 certificates on the server.

Use the netsh.exe tool to register certificates for the app:

<IP> : Specifies the local IP address for the binding. Don't use a wildcard binding. Use a valid IP

address.

<PORT> : Specifies the port for the binding.

<THUMBPRINT> : The X.509 certificate thumbprint.

<GUID> : A developer-generated GUID to represent the app for informational purposes.

For reference purposes, store the GUID in the app as a package tag:

In Visual Studio:

When not using Visual Studio:

Open the app's project properties by right-clicking on the app in Solution ExplorerSolution Explorer  and

selecting Proper tiesProper ties .

Select the PackagePackage tab.

Enter the GUID that you created in the TagsTags  field.

<PropertyGroup>
  <PackageTags>9412ee86-c21b-4eb8-bd89-f650fbf44931</PackageTags>
</PropertyGroup>

Open the app's project file.

Add a <PackageTags>  property to a new or existing <PropertyGroup>  with the GUID

that you created:

In the following example:

The local IP address of the server is 10.0.0.4 .

An online random GUID generator provides the appid  value.



Proxy server and load balancer scenarios

Additional resources

netsh http add sslcert 
    ipport=10.0.0.4:443 
    certhash=b66ee04419d4ee37464ab8785ff02449980eae10 
    appid="{9412ee86-c21b-4eb8-bd89-f650fbf44931}"

netsh http delete sslcert ipport=<IP>:<PORT>

When a certificate is registered, the tool responds with SSL Certificate successfully added .

To delete a certificate registration, use the delete sslcert  command:

Reference documentation for netsh.exe:

Netsh Commands for Hypertext Transfer Protocol (HTTP)

UrlPrefix Strings

8. Run the app.

Administrator privileges aren't required to run the app when binding to localhost using HTTP (not

HTTPS) with a port number greater than 1024. For other configurations (for example, using a local

IP address or binding to port 443), run the app with administrator privileges.

The app responds at the server's public IP address. In this example, the server is reached from the

Internet at its public IP address of 104.214.79.47 .

A development certificate is used in this example. The page loads securely after bypassing the

browser's untrusted certificate warning.

For apps hosted by HTTP.sys that interact with requests from the Internet or a corporate network,

additional configuration might be required when hosting behind proxy servers and load balancers. For

more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

Enable Windows Authentication with HTTP.sys

HTTP Server API

aspnet/HttpSysServer GitHub repository (source code)

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc725882(v=ws.10)
https://docs.microsoft.com/en-us/windows/win32/http/urlprefix-strings
https://docs.microsoft.com/en-us/windows/win32/http/http-api-start-page
https://github.com/aspnet/HttpSysServer/


IMPORTANTIMPORTANT

When to use HTTP.sys

HTTP/2 support

The host

Troubleshoot and debug ASP.NET Core projects

HTTP.sys is a web server for ASP.NET Core that only runs on Windows. HTTP.sys is an alternative to Kestrel

server and offers some features that Kestrel doesn't provide.

HTTP.sys isn't compatible with the ASP.NET Core Module and can't be used with IIS or IIS Express.

HTTP.sys supports the following features:

Windows Authentication

Port sharing

HTTPS with SNI

HTTP/2 over TLS (Windows 10 or later)

Direct file transmission

Response caching

WebSockets (Windows 8 or later)

Supported Windows versions:

Windows 7 or later

Windows Server 2008 R2 or later

View or download sample code (how to download)

HTTP.sys is useful for deployments where:

There's a need to expose the server directly to the Internet without using IIS.

An internal deployment requires a feature not available in Kestrel, such as Windows Authentication.

HTTP.sys is mature technology that protects against many types of attacks and provides the robustness,

security, and scalability of a full-featured web server. IIS itself runs as an HTTP listener on top of HTTP.sys.

HTTP/2 is enabled for ASP.NET Core apps if the following base requirements are met:

Windows Server 2016/Windows 10 or later

Application-Layer Protocol Negotiation (ALPN) connection

TLS 1.2 or later connection

If an HTTP/2 connection is established, HttpRequest.Protocol reports HTTP/1.1 .

https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/introduction-to-iis-architecture#hypertext-transfer-protocol-stack-httpsys
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/servers/httpsys/samples
https://httpwg.org/specs/rfc7540.html
https://tools.ietf.org/html/rfc7301#section-3
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.protocol


Kernel mode authentication with Kerberos

How to use HTTP.sys
Configure the ASP.NET Core app to use HTTP.sysConfigure the ASP.NET Core app to use HTTP.sys

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseHttpSys(options =>
        {
            options.AllowSynchronousIO = true;
            options.Authentication.Schemes = AuthenticationSchemes.None;
            options.Authentication.AllowAnonymous = true;
            options.MaxConnections = null;
            options.MaxRequestBodySize = 30000000;
            options.UrlPrefixes.Add("http://localhost:5000");
        });

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

AllowSynchronousIO Control whether synchronous
input/output is allowed for the 
HttpContext.Request.Body  and 

HttpContext.Response.Body .

true

Authentication.AllowAnonymous Allow anonymous requests. true

Authentication.Schemes Specify the allowed authentication
schemes. May be modified at any
time prior to disposing the listener.
Values are provided by the
AuthenticationSchemes enum: 
Basic , Kerberos , Negotiate , 

None , and NTLM .

None

HTTP/2 is enabled by default. If an HTTP/2 connection isn't established, the connection falls back to

HTTP/1.1. In a future release of Windows, HTTP/2 configuration flags will be available, including the ability

to disable HTTP/2 with HTTP.sys.

HTTP.sys delegates to kernel mode authentication with the Kerberos authentication protocol. User mode

authentication isn't supported with Kerberos and HTTP.sys. The machine account must be used to decrypt

the Kerberos token/ticket that's obtained from Active Directory and forwarded by the client to the server to

authenticate the user. Register the Service Principal Name (SPN) for the host, not the user of the app.

A package reference in the project file isn't required when using the Microsoft.AspNetCore.App

metapackage (nuget.org). When not using the Microsoft.AspNetCore.App  metapackage, add a package

reference to Microsoft.AspNetCore.Server.HttpSys.

Call the UseHttpSys extension method when building the host, specifying any required HttpSysOptions.

The following example sets options to their default values:

Additional HTTP.sys configuration is handled through registry settings.

HTTP.sys optionsHTTP.sys options

https://www.nuget.org/packages/Microsoft.AspNetCore.App/
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.HttpSys/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderhttpsysextensions.usehttpsys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions
https://support.microsoft.com/help/820129/http-sys-registry-settings-for-windows
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.allowsynchronousio#microsoft_aspnetcore_server_httpsys_httpsysoptions_allowsynchronousio
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationmanager.allowanonymous#microsoft_aspnetcore_server_httpsys_authenticationmanager_allowanonymous
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationmanager.schemes#microsoft_aspnetcore_server_httpsys_authenticationmanager_schemes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.authenticationschemes


EnableResponseCaching Attempt kernel-mode caching for
responses with eligible headers. The
response may not include 
Set-Cookie , Vary , or Pragma

headers. It must include a 
Cache-Control  header that's 

public  and either a 

shared-max-age  or max-age

value, or an Expires  header.

true

MaxAccepts The maximum number of concurrent
accepts.

5 × Environment.
ProcessorCount

MaxConnections The maximum number of concurrent
connections to accept. Use -1  for

infinite. Use null  to use the

registry's machine-wide setting.

null

(machine-wide
setting)

MaxRequestBodySize See the MaxRequestBodySize
section.

30000000 bytes
(~28.6 MB)

RequestQueueLimit The maximum number of requests
that can be queued.

1000

ThrowWriteExceptions Indicate if response body writes that
fail due to client disconnects should
throw exceptions or complete
normally.

false

(complete normally)

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.enableresponsecaching#microsoft_aspnetcore_server_httpsys_httpsysoptions_enableresponsecaching
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxaccepts#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxaccepts
https://docs.microsoft.com/en-us/dotnet/api/system.environment.processorcount#system_environment_processorcount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxconnections#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxconnections
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxrequestbodysize#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.requestqueuelimit#microsoft_aspnetcore_server_httpsys_httpsysoptions_requestqueuelimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.throwwriteexceptions#microsoft_aspnetcore_server_httpsys_httpsysoptions_throwwriteexceptions


Timeouts Expose the HTTP.sys
TimeoutManager configuration,
which may also be configured in the
registry. Follow the API links to learn
more about each setting, including
default values:

UrlPrefixes Specify the UrlPrefixCollection to
register with HTTP.sys. The most
useful is UrlPrefixCollection.Add,
which is used to add a prefix to the
collection. These may be modified at
any time prior to disposing the
listener.

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

[RequestSizeLimit(100000000)]
public IActionResult MyActionMethod()

TimeoutManager.DrainEntity
Body: Time allowed for the
HTTP Server API to drain the
entity body on a Keep-Alive
connection.

TimeoutManager.EntityBody:
Time allowed for the request
entity body to arrive.

TimeoutManager.HeaderWait:
Time allowed for the HTTP
Server API to parse the
request header.

TimeoutManager.IdleConnect
ion: Time allowed for an idle
connection.

TimeoutManager.MinSendByt
esPerSecond: The minimum
send rate for the response.

TimeoutManager.RequestQue
ue: Time allowed for the
request to remain in the
request queue before the
app picks it up.

 MaxRequestBodySizeMaxRequestBodySize

The maximum allowed size of any request body in bytes. When set to null , the maximum request body

size is unlimited. This limit has no effect on upgraded connections, which are always unlimited.

The recommended method to override the limit in an ASP.NET Core MVC app for a single IActionResult  is

to use the RequestSizeLimitAttribute attribute on an action method:

An exception is thrown if the app attempts to configure the limit on a request after the app has started

reading the request. An IsReadOnly  property can be used to indicate if the MaxRequestBodySize  property is

in a read-only state, meaning it's too late to configure the limit.

If the app should override MaxRequestBodySize per-request, use the IHttpMaxRequestBodySizeFeature:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.timeouts#microsoft_aspnetcore_server_httpsys_httpsysoptions_timeouts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.drainentitybody#microsoft_aspnetcore_server_httpsys_timeoutmanager_drainentitybody
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.entitybody#microsoft_aspnetcore_server_httpsys_timeoutmanager_entitybody
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.headerwait#microsoft_aspnetcore_server_httpsys_timeoutmanager_headerwait
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.idleconnection#microsoft_aspnetcore_server_httpsys_timeoutmanager_idleconnection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.minsendbytespersecond#microsoft_aspnetcore_server_httpsys_timeoutmanager_minsendbytespersecond
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.timeoutmanager.requestqueue#microsoft_aspnetcore_server_httpsys_timeoutmanager_requestqueue
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.urlprefixcollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.urlprefixcollection.add
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requestsizelimitattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.maxrequestbodysize#microsoft_aspnetcore_server_httpsys_httpsysoptions_maxrequestbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.ihttpmaxrequestbodysizefeature


public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
    ILogger<Startup> logger, IServer server)
{
    app.Use(async (context, next) =>
    {
        context.Features.Get<IHttpMaxRequestBodySizeFeature>()
            .MaxRequestBodySize = 10 * 1024;

        var serverAddressesFeature = 
            app.ServerFeatures.Get<IServerAddressesFeature>();
        var addresses = string.Join(", ", serverAddressesFeature?.Addresses);

        logger.LogInformation("Addresses: {Addresses}", addresses);

        await next.Invoke();
    });

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    // Enable HTTPS Redirection Middleware when hosting the app securely.
    //app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();
    app.UseMvc();
}

Configure Windows ServerConfigure Windows Server

If using Visual Studio, make sure the app isn't configured to run IIS or IIS Express.

In Visual Studio, the default launch profile is for IIS Express. To run the project as a console app, manually

change the selected profile, as shown in the following screen shot:

1. Determine the ports to open for the app and use Windows Firewall or the New-NetFirewallRule

PowerShell cmdlet to open firewall ports to allow traffic to reach HTTP.sys. In the following

commands and app configuration, port 443 is used.

2. When deploying to an Azure VM, open the ports in the Network Security Group. In the following

commands and app configuration, port 443 is used.

3. Obtain and install X.509 certificates, if required.

On Windows, create self-signed certificates using the New-SelfSignedCertificate PowerShell cmdlet.

For an unsupported example, see UpdateIISExpressSSLForChrome.ps1.

Install either self-signed or CA-signed certificates in the server's Local MachineLocal Machine > PersonalPersonal  store.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-firewall/create-an-inbound-port-rule
https://docs.microsoft.com/en-us/powershell/module/netsecurity/new-netfirewallrule
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal
https://docs.microsoft.com/en-us/powershell/module/pkiclient/new-selfsignedcertificate
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/includes/make-x509-cert/UpdateIISExpressSSLForChrome.ps1


public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .UseHttpSys(options =>
        {
            options.UrlPrefixes.Add("https://10.0.0.4:443");
        });

WARNINGWARNING

4. If the app is a framework-dependent deployment, install .NET Core, .NET Framework, or both (if the

app is a .NET Core app targeting the .NET Framework).

.NET Core.NET Core: If the app requires .NET Core, obtain and run the .NET Core Runtime.NET Core Runtime installer from

.NET Core Downloads. Don't install the full SDK on the server.

.NET Framework.NET Framework : If the app requires .NET Framework, see the .NET Framework installation

guide. Install the required .NET Framework. The installer for the latest .NET Framework is

available from the .NET Core Downloads page.

If the app is a self-contained deployment, the app includes the runtime in its deployment. No

framework installation is required on the server.

5. Configure URLs and ports in the app.

By default, ASP.NET Core binds to http://localhost:5000 . To configure URL prefixes and ports,

options include:

UseUrls

urls  command-line argument

ASPNETCORE_URLS  environment variable

UrlPrefixes

The following code example shows how to use UrlPrefixes with the server's local IP address 

10.0.0.4  on port 443:

An advantage of UrlPrefixes  is that an error message is generated immediately for improperly

formatted prefixes.

The settings in UrlPrefixes  override UseUrls / urls / ASPNETCORE_URLS  settings. Therefore, an

advantage of UseUrls , urls , and the ASPNETCORE_URLS  environment variable is that it's easier to

switch between Kestrel and HTTP.sys.

HTTP.sys uses the HTTP Server API UrlPrefix string formats.

Top-level wildcard bindings ( http://*:80/  and http://+:80 ) should notnot  be used. Top-level wildcard

bindings create app security vulnerabilities. This applies to both strong and weak wildcards. Use explicit host

names or IP addresses rather than wildcards. Subdomain wildcard binding (for example, *.mysub.com ) isn't

a security risk if you control the entire parent domain (as opposed to *.com , which is vulnerable). For more

information, see RFC 7230: Section 5.4: Host.

6. Preregister URL prefixes on the server.

The built-in tool for configuring HTTP.sys is netsh.exe. netsh.exe is used to reserve URL prefixes and

assign X.509 certificates. The tool requires administrator privileges.

Use the netsh.exe tool to register URLs for the app:

https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/framework/install/
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useurls
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys.httpsysoptions.urlprefixes#microsoft_aspnetcore_server_httpsys_httpsysoptions_urlprefixes
https://docs.microsoft.com/en-us/windows/win32/http/urlprefix-strings
https://tools.ietf.org/html/rfc7230#section-5.4


netsh http add urlacl url=<URL> user=<USER>

netsh http add urlacl url=https://10.0.0.4:443/ user=Users

netsh http delete urlacl url=<URL>

netsh http add sslcert ipport=<IP>:<PORT> certhash=<THUMBPRINT> appid="{<GUID>}"

<URL> : The fully qualified Uniform Resource Locator (URL). Don't use a wildcard binding. Use a

valid hostname or local IP address. The URL must include a trailing slash.

<USER> : Specifies the user or user-group name.

In the following example, the local IP address of the server is 10.0.0.4 :

When a URL is registered, the tool responds with URL reservation successfully added .

To delete a registered URL, use the delete urlacl  command:

7. Register X.509 certificates on the server.

Use the netsh.exe tool to register certificates for the app:

<IP> : Specifies the local IP address for the binding. Don't use a wildcard binding. Use a valid IP

address.

<PORT> : Specifies the port for the binding.

<THUMBPRINT> : The X.509 certificate thumbprint.

<GUID> : A developer-generated GUID to represent the app for informational purposes.

For reference purposes, store the GUID in the app as a package tag:

In Visual Studio:

When not using Visual Studio:

Open the app's project properties by right-clicking on the app in Solution ExplorerSolution Explorer  and

selecting Proper tiesProper ties .

Select the PackagePackage tab.

Enter the GUID that you created in the TagsTags  field.

<PropertyGroup>
  <PackageTags>9412ee86-c21b-4eb8-bd89-f650fbf44931</PackageTags>
</PropertyGroup>

Open the app's project file.

Add a <PackageTags>  property to a new or existing <PropertyGroup>  with the GUID

that you created:

In the following example:

The local IP address of the server is 10.0.0.4 .

An online random GUID generator provides the appid  value.



Proxy server and load balancer scenarios

Additional resources

netsh http add sslcert 
    ipport=10.0.0.4:443 
    certhash=b66ee04419d4ee37464ab8785ff02449980eae10 
    appid="{9412ee86-c21b-4eb8-bd89-f650fbf44931}"

netsh http delete sslcert ipport=<IP>:<PORT>

When a certificate is registered, the tool responds with SSL Certificate successfully added .

To delete a certificate registration, use the delete sslcert  command:

Reference documentation for netsh.exe:

Netsh Commands for Hypertext Transfer Protocol (HTTP)

UrlPrefix Strings

8. Run the app.

Administrator privileges aren't required to run the app when binding to localhost using HTTP (not

HTTPS) with a port number greater than 1024. For other configurations (for example, using a local

IP address or binding to port 443), run the app with administrator privileges.

The app responds at the server's public IP address. In this example, the server is reached from the

Internet at its public IP address of 104.214.79.47 .

A development certificate is used in this example. The page loads securely after bypassing the

browser's untrusted certificate warning.

For apps hosted by HTTP.sys that interact with requests from the Internet or a corporate network,

additional configuration might be required when hosting behind proxy servers and load balancers. For

more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

Enable Windows Authentication with HTTP.sys

HTTP Server API

aspnet/HttpSysServer GitHub repository (source code)

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc725882(v=ws.10)
https://docs.microsoft.com/en-us/windows/win32/http/urlprefix-strings
https://docs.microsoft.com/en-us/windows/win32/http/http-api-start-page
https://github.com/aspnet/HttpSysServer/


The host

Troubleshoot and debug ASP.NET Core projects



 

 

Host ASP.NET Core in a Windows Service
9/22/2020 • 32 minutes to read • Edit Online

Prerequisites

Worker Service template

App configuration

An ASP.NET Core app can be hosted on Windows as a Windows Service without using IIS. When hosted as a

Windows Service, the app automatically starts after server reboots.

View or download sample code (how to download)

ASP.NET Core SDK 2.1 or later

PowerShell 6.2 or later

The ASP.NET Core Worker Service template provides a starting point for writing long running service apps. To use

the template as a basis for a Windows Service app:

1. Create a Worker Service app from the .NET Core template.

2. Follow the guidance in the App configuration section to update the Worker Service app so that it can run as a

Windows Service.

Visual Studio

Visual Studio for Mac

.NET Core CLI

1. Create a new project.

2. Select Worker Ser viceWorker Ser vice. Select NextNext.

3. Provide a project name in the Project nameProject name field or accept the default project name. Select CreateCreate.

4. In the Create a new Worker ser viceCreate a new Worker ser vice dialog, select CreateCreate.

The app requires a package reference for Microsoft.Extensions.Hosting.WindowsServices.

IHostBuilder.UseWindowsService  is called when building the host. If the app is running as a Windows Service, the

method:

Sets the host lifetime to WindowsServiceLifetime .

Sets the content root to AppContext.BaseDirectory. For more information, see the Current directory and

content root section.

Enables logging to the event log:

The application name is used as the default source name.

The default log level is Warning or higher for an app based on an ASP.NET Core template that calls 

CreateDefaultBuilder  to build the host.

Override the default log level with the Logging:EventLog:LogLevel:Default  key in

appsettings.json/appsettings.{Environment}.json or other configuration provider.

Only administrators can create new event sources. When an event source can't be created using the

application name, a warning is logged to the Application source and event logs are disabled.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/windows-service.md
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/host-and-deploy/windows-service/samples
https://dotnet.microsoft.com/download
https://github.com/PowerShell/PowerShell
https://www.nuget.org/packages/Microsoft.Extensions.Hosting.WindowsServices
https://docs.microsoft.com/en-us/dotnet/api/system.appcontext.basedirectory#system_appcontext_basedirectory


  

  

Host.CreateDefaultBuilder(args)
    .UseWindowsService()
    ...

Deployment type

SDKSDK

<Project Sdk="Microsoft.NET.Sdk.Web">

<Project Sdk="Microsoft.NET.Sdk.Worker">

Framework-dependent deployment (FDD)Framework-dependent deployment (FDD)

<PropertyGroup>
  <TargetFramework>netcoreapp3.0</TargetFramework>
  <IsTransformWebConfigDisabled>true</IsTransformWebConfigDisabled>
</PropertyGroup>

Self-contained deployment (SCD)Self-contained deployment (SCD)

<RuntimeIdentifier>win7-x64</RuntimeIdentifier>

In CreateHostBuilder  of Program.cs:

The following sample apps accompany this topic:

Background Worker Service Sample: A non-web app sample based on the Worker Service template that uses

hosted services for background tasks.

Web App Service Sample: A Razor Pages web app sample that runs as a Windows Service with hosted services

for background tasks.

For MVC guidance, see the articles under Overview of ASP.NET Core MVC and Migrate from ASP.NET Core 2.2 to

3.0.

For information and advice on deployment scenarios, see .NET Core application deployment.

For a web app-based service that uses the Razor Pages or MVC frameworks, specify the Web SDK in the project

file:

If the service only executes background tasks (for example, hosted services), specify the Worker SDK in the project

file:

Framework-dependent deployment (FDD) relies on the presence of a shared system-wide version of .NET Core on

the target system. When the FDD scenario is adopted following the guidance in this article, the SDK produces an

executable (.exe), called a framework-dependent executable.

If using the Web SDK, a web.config file, which is normally produced when publishing an ASP.NET Core app, is

unnecessary for a Windows Services app. To disable the creation of the web.config file, add the 

<IsTransformWebConfigDisabled>  property set to true .

Self-contained deployment (SCD) doesn't rely on the presence of a shared framework on the host system. The

runtime and the app's dependencies are deployed with the app.

A Windows Runtime Identifier (RID) is included in the <PropertyGroup>  that contains the target framework:

https://docs.microsoft.com/en-us/dotnet/core/deploying/
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog


Service user account

New-LocalUser -Name {SERVICE NAME}

powershell -Command "New-LocalUser -Name {SERVICE NAME}"

Log on as a service rights

Create and manage the Windows Service
Create a serviceCreate a service

To publish for multiple RIDs:

Provide the RIDs in a semicolon-delimited list.

Use the property name <RuntimeIdentifiers> (plural).

For more information, see .NET Core RID Catalog.

To create a user account for a service, use the New-LocalUser cmdlet from an administrative PowerShell 6

command shell.

On Windows 10 October 2018 Update (version 1809/build 10.0.17763) or later :

On Windows OS earlier than the Windows 10 October 2018 Update (version 1809/build 10.0.17763):

Provide a strong password when prompted.

Unless the -AccountExpires  parameter is supplied to the New-LocalUser cmdlet with an expiration DateTime, the

account doesn't expire.

For more information, see Microsoft.PowerShell.LocalAccounts and Service User Accounts.

An alternative approach to managing users when using Active Directory is to use Managed Service Accounts. For

more information, see Group Managed Service Accounts Overview.

To establish Log on as a service rights for a service user account:

1. Open the Local Security Policy editor by running secpol.msc.

2. Expand the Local PoliciesLocal Policies  node and select User Rights AssignmentUser Rights Assignment.

3. Open the Log on as a ser viceLog on as a ser vice policy.

4. Select Add User or GroupAdd User or Group.

5. Provide the object name (user account) using either of the following approaches:

6. Select OKOK or ApplyApply  to accept the changes.

a. Type the user account ( {DOMAIN OR COMPUTER NAME\USER} ) in the object name field and select OKOK to add

the user to the policy.

b. Select AdvancedAdvanced. Select Find NowFind Now . Select the user account from the list. Select OKOK. Select OKOK again to

add the user to the policy.

Use PowerShell commands to register a service. From an administrative PowerShell 6 command shell, execute the

following commands:

https://docs.microsoft.com/en-us/dotnet/core/tools/csproj#runtimeidentifiers
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.localaccounts/new-localuser
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/password-must-meet-complexity-requirements
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.localaccounts/new-localuser
https://docs.microsoft.com/en-us/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.localaccounts/
https://docs.microsoft.com/en-us/windows/desktop/services/service-user-accounts
https://docs.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview


$acl = Get-Acl "{EXE PATH}"
$aclRuleArgs = {DOMAIN OR COMPUTER NAME\USER}, "Read,Write,ReadAndExecute", "ContainerInherit,ObjectInherit", 
"None", "Allow"
$accessRule = New-Object System.Security.AccessControl.FileSystemAccessRule($aclRuleArgs)
$acl.SetAccessRule($accessRule)
$acl | Set-Acl "{EXE PATH}"

New-Service -Name {SERVICE NAME} -BinaryPathName {EXE FILE PATH} -Credential {DOMAIN OR COMPUTER NAME\USER} -
Description "{DESCRIPTION}" -DisplayName "{DISPLAY NAME}" -StartupType Automatic

Start a serviceStart a service

Start-Service -Name {SERVICE NAME}

Determine a service's statusDetermine a service's status

Get-Service -Name {SERVICE NAME}

Stop a serviceStop a service

Stop-Service -Name {SERVICE NAME}

Remove a serviceRemove a service

Remove-Service -Name {SERVICE NAME}

Proxy server and load balancer scenarios

{EXE PATH} : Path to the app's folder on the host (for example, d:\myservice ). Don't include the app's

executable in the path. A trailing slash isn't required.

{DOMAIN OR COMPUTER NAME\USER} : Service user account (for example, Contoso\ServiceUser ).

{SERVICE NAME} : Service name (for example, MyService ).

{EXE FILE PATH} : The app's executable path (for example, d:\myservice\myservice.exe ). Include the

executable's file name with extension.

{DESCRIPTION} : Service description (for example, My sample service ).

{DISPLAY NAME} : Service display name (for example, My Service ).

Start a service with the following PowerShell 6 command:

The command takes a few seconds to start the service.

To check the status of a service, use the following PowerShell 6 command:

The status is reported as one of the following values:

Starting

Running

Stopping

Stopped

Stop a service with the following Powershell 6 command:

After a short delay to stop a service, remove a service with the following Powershell 6 command:

Services that interact with requests from the Internet or a corporate network and are behind a proxy or load



   

Configure endpoints

NOTENOTE

Current directory and content root

Use ContentRootPath or ContentRootFileProviderUse ContentRootPath or ContentRootFileProvider

public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .UseWindowsService()
            .ConfigureAppConfiguration((hostingContext, config) =>
            {
                config.AddJsonFile("custom_settings.json");
            })
            .ConfigureServices((hostContext, services) =>
            {
                services.AddHostedService<Worker>();
            });
}

balancer might require additional configuration. For more information, see Configure ASP.NET Core to work with

proxy servers and load balancers.

By default, ASP.NET Core binds to http://localhost:5000 . Configure the URL and port by setting the 

ASPNETCORE_URLS  environment variable.

For additional URL and port configuration approaches, see the relevant server article:

Kestrel web server implementation in ASP.NET Core

HTTP.sys web server implementation in ASP.NET Core

The preceding guidance covers support for HTTPS endpoints. For example, configure the app for HTTPS when

authentication is used with a Windows Service.

Use of the ASP.NET Core HTTPS development certificate to secure a service endpoint isn't supported.

The current working directory returned by calling GetCurrentDirectory for a Windows Service is the

C:\WINDOWS\system32 folder. The system32 folder isn't a suitable location to store a service's files (for example,

settings files). Use one of the following approaches to maintain and access a service's assets and settings files.

Use IHostEnvironment.ContentRootPath or ContentRootFileProvider to locate an app's resources.

When the app runs as a service, UseWindowsService sets the ContentRootPath to AppContext.BaseDirectory.

The app's default settings files, appsettings.json and appsettings.{Environment}.json, are loaded from the app's

content root by calling CreateDefaultBuilder during host construction.

For other settings files loaded by developer code in ConfigureAppConfiguration, there's no need to call

SetBasePath. In the following example, the custom_settings.json file exists in the app's content root and is loaded

without explicitly setting a base path:

https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.contentrootpath#microsoft_extensions_hosting_ihostenvironment_contentrootpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.contentrootfileprovider#microsoft_extensions_hosting_ihostenvironment_contentrootfileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.windowsservicelifetimehostbuilderextensions.usewindowsservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.contentrootpath#microsoft_extensions_hosting_ihostenvironment_contentrootpath
https://docs.microsoft.com/en-us/dotnet/api/system.appcontext.basedirectory#system_appcontext_basedirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.fileconfigurationextensions.setbasepath


Store a service's files in a suitable location on diskStore a service's files in a suitable location on disk

Troubleshoot

Common errorsCommon errors

System and Application Event LogsSystem and Application Event Logs

Run the app at a command promptRun the app at a command prompt

Clear package cachesClear package caches

Don't attempt to use GetCurrentDirectory to obtain a resource path because a Windows Service app returns the

C:\WINDOWS\system32 folder as its current directory.

Specify an absolute path with SetBasePath when using an IConfigurationBuilder to the folder containing the files.

To troubleshoot a Windows Service app, see Troubleshoot and debug ASP.NET Core projects.

An old or pre-release version of PowerShell is in use.

The registered service doesn't use the app's publishedpublished output from the dotnet publish command. Output of

the dotnet build command isn't supported for app deployment. Published assets are found in either of the

following folders depending on the deployment type:

The service isn't in the RUNNING state.

The paths to resources that the app uses (for example, certificates) are incorrect. The base path of a Windows

Service is c:\Windows\System32.

The user doesn't have Log on as a service rights.

The user's password is expired or incorrectly passed when executing the New-Service  PowerShell command.

The app requires ASP.NET Core authentication but isn't configured for secure connections (HTTPS).

The request URL port is incorrect or not configured correctly in the app.

bin/Release/{TARGET FRAMEWORK}/publish (FDD)

bin/Release/{TARGET FRAMEWORK}/{RUNTIME IDENTIFIER}/publish (SCD)

Access the System and Application Event Logs:

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select SystemSystem to open the System Event Log. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app.

Many startup errors don't produce useful information in the event logs. You can find the cause of some errors by

running the app at a command prompt on the hosting system. To log additional detail from the app, lower the log

level or run the app in the Development environment.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the development machine or

changing package versions within the app. In some cases, incoherent packages may break an app when

performing major upgrades. Most of these issues can be fixed by following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the command 

nuget locals all -clear . nuget.exe isn't a bundled install with the Windows desktop operating system and

must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.fileconfigurationextensions.setbasepath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationbuilder
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-build
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads


Slow or hanging appSlow or hanging app

App crashes or encounters an exceptionApp crashes or encounters an exception

WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Additional resources

Prerequisites

App configuration

A crash dump is a snapshot of the system's memory and can help determine the cause of an app crash, startup

failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

.\EnableDumps {APPLICATION EXE} c:\dumps

.\DisableDumps {APPLICATION EXE}

1. Create a folder to hold crash dump files at c:\dumps .

2. Run the EnableDumps PowerShell script with the application executable name:

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The PowerShell

script configures WER to collect up to five dumps per app.

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see User-Mode

Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-Mode Dump File.

Kestrel endpoint configuration (includes HTTPS configuration and SNI support)

.NET Generic Host

Troubleshoot and debug ASP.NET Core projects

An ASP.NET Core app can be hosted on Windows as a Windows Service without using IIS. When hosted as a

Windows Service, the app automatically starts after server reboots.

View or download sample code (how to download)

ASP.NET Core SDK 2.1 or later

PowerShell 6.2 or later

The app requires package references for Microsoft.AspNetCore.Hosting.WindowsServices and

Microsoft.Extensions.Logging.EventLog.

To test and debug when running outside of a service, add code to determine if the app is running as a service or a

https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/windows-service/samples/scripts/EnableDumps.ps1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/windows-service/samples/scripts/DisableDumps.ps1
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/host-and-deploy/windows-service/samples
https://dotnet.microsoft.com/download
https://github.com/PowerShell/PowerShell
https://www.nuget.org/packages/Microsoft.AspNetCore.Hosting.WindowsServices
https://www.nuget.org/packages/Microsoft.Extensions.Logging.EventLog


public class Program
{
    public static void Main(string[] args)
    {
        var isService = !(Debugger.IsAttached || args.Contains("--console"));
        
        if (isService)
        {
            var pathToExe = Process.GetCurrentProcess().MainModule.FileName;
            var pathToContentRoot = Path.GetDirectoryName(pathToExe);
            Directory.SetCurrentDirectory(pathToContentRoot);
        }

        var builder = CreateWebHostBuilder(
            args.Where(arg => arg != "--console").ToArray());

        var host = builder.Build();

        if (isService)
        {
            // To run the app without the CustomWebHostService change the
            // next line to host.RunAsService();
            host.RunAsCustomService();
        }
        else
        {
            host.Run();
        }
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .ConfigureLogging((hostingContext, logging) =>
            {
                logging.AddEventLog();
            })
            .ConfigureAppConfiguration((context, config) =>
            {
                // Configure the app here.
            })
            .UseStartup<Startup>();
}

Deployment type

console app. Inspect if the debugger is attached or a --console  switch is present. If either condition is true (the

app isn't run as a service), call Run. If the conditions are false (the app is run as a service):

Call SetCurrentDirectory and use a path to the app's published location. Don't call GetCurrentDirectory to

obtain the path because a Windows Service app returns the C:\WINDOWS\system32 folder when

GetCurrentDirectory is called. For more information, see the Current directory and content root section. This

step is performed before the app is configured in CreateWebHostBuilder .

Call RunAsService to run the app as a service.

Because the Command-line Configuration Provider requires name-value pairs for command-line arguments, the 

--console  switch is removed from the arguments before CreateDefaultBuilder receives the arguments.

To write to the Windows Event Log, add the EventLog provider to ConfigureLogging. Set the logging level with the

Logging:LogLevel:Default  key in the appsettings.Production.json file.

In the following example from the sample app, RunAsCustomService  is called instead of RunAsService in order to

handle lifetime events within the app. For more information, see the Handle starting and stopping events section.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostextensions.run
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostwindowsserviceextensions.runasservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.configurelogging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostwindowsserviceextensions.runasservice


SDKSDK

<Project Sdk="Microsoft.NET.Sdk.Web">

<Project Sdk="Microsoft.NET.Sdk.Worker">

Framework-dependent deployment (FDD)Framework-dependent deployment (FDD)

<PropertyGroup>
  <TargetFramework>netcoreapp2.2</TargetFramework>
  <RuntimeIdentifier>win7-x64</RuntimeIdentifier>
  <SelfContained>false</SelfContained>
  <IsTransformWebConfigDisabled>true</IsTransformWebConfigDisabled>
</PropertyGroup>

Self-contained deployment (SCD)Self-contained deployment (SCD)

<RuntimeIdentifier>win7-x64</RuntimeIdentifier>

<SelfContained>true</SelfContained>

For information and advice on deployment scenarios, see .NET Core application deployment.

For a web app-based service that uses the Razor Pages or MVC frameworks, specify the Web SDK in the project

file:

If the service only executes background tasks (for example, hosted services), specify the Worker SDK in the project

file:

Framework-dependent deployment (FDD) relies on the presence of a shared system-wide version of .NET Core on

the target system. When the FDD scenario is adopted following the guidance in this article, the SDK produces an

executable (.exe), called a framework-dependent executable.

The Windows Runtime Identifier (RID) (<RuntimeIdentifier>) contains the target framework. In the following

example, the RID is set to win7-x64 . The <SelfContained>  property is set to false . These properties instruct the

SDK to generate an executable (.exe) file for Windows and an app that depends on the shared .NET Core

framework.

A web.config file, which is normally produced when publishing an ASP.NET Core app, is unnecessary for a

Windows Services app. To disable the creation of the web.config file, add the <IsTransformWebConfigDisabled>

property set to true .

Self-contained deployment (SCD) doesn't rely on the presence of a shared framework on the host system. The

runtime and the app's dependencies are deployed with the app.

A Windows Runtime Identifier (RID) is included in the <PropertyGroup>  that contains the target framework:

To publish for multiple RIDs:

Provide the RIDs in a semicolon-delimited list.

Use the property name <RuntimeIdentifiers> (plural).

For more information, see .NET Core RID Catalog.

A <SelfContained>  property is set to true :

https://docs.microsoft.com/en-us/dotnet/core/deploying/
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj#runtimeidentifier
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj#runtimeidentifiers
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog


Service user account

New-LocalUser -Name {SERVICE NAME}

powershell -Command "New-LocalUser -Name {SERVICE NAME}"

Log on as a service rights

Create and manage the Windows Service
Create a serviceCreate a service

$acl = Get-Acl "{EXE PATH}"
$aclRuleArgs = {DOMAIN OR COMPUTER NAME\USER}, "Read,Write,ReadAndExecute", "ContainerInherit,ObjectInherit", 
"None", "Allow"
$accessRule = New-Object System.Security.AccessControl.FileSystemAccessRule($aclRuleArgs)
$acl.SetAccessRule($accessRule)
$acl | Set-Acl "{EXE PATH}"

New-Service -Name {SERVICE NAME} -BinaryPathName {EXE FILE PATH} -Credential {DOMAIN OR COMPUTER NAME\USER} -
Description "{DESCRIPTION}" -DisplayName "{DISPLAY NAME}" -StartupType Automatic

To create a user account for a service, use the New-LocalUser cmdlet from an administrative PowerShell 6

command shell.

On Windows 10 October 2018 Update (version 1809/build 10.0.17763) or later :

On Windows OS earlier than the Windows 10 October 2018 Update (version 1809/build 10.0.17763):

Provide a strong password when prompted.

Unless the -AccountExpires  parameter is supplied to the New-LocalUser cmdlet with an expiration DateTime, the

account doesn't expire.

For more information, see Microsoft.PowerShell.LocalAccounts and Service User Accounts.

An alternative approach to managing users when using Active Directory is to use Managed Service Accounts. For

more information, see Group Managed Service Accounts Overview.

To establish Log on as a service rights for a service user account:

1. Open the Local Security Policy editor by running secpol.msc.

2. Expand the Local PoliciesLocal Policies  node and select User Rights AssignmentUser Rights Assignment.

3. Open the Log on as a ser viceLog on as a ser vice policy.

4. Select Add User or GroupAdd User or Group.

5. Provide the object name (user account) using either of the following approaches:

6. Select OKOK or ApplyApply  to accept the changes.

a. Type the user account ( {DOMAIN OR COMPUTER NAME\USER} ) in the object name field and select OKOK to add

the user to the policy.

b. Select AdvancedAdvanced. Select Find NowFind Now . Select the user account from the list. Select OKOK. Select OKOK again to

add the user to the policy.

Use PowerShell commands to register a service. From an administrative PowerShell 6 command shell, execute the

following commands:

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.localaccounts/new-localuser
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/password-must-meet-complexity-requirements
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.localaccounts/new-localuser
https://docs.microsoft.com/en-us/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.localaccounts/
https://docs.microsoft.com/en-us/windows/desktop/services/service-user-accounts
https://docs.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview


  

Start a serviceStart a service

Start-Service -Name {SERVICE NAME}

Determine a service's statusDetermine a service's status

Get-Service -Name {SERVICE NAME}

Stop a serviceStop a service

Stop-Service -Name {SERVICE NAME}

Remove a serviceRemove a service

Remove-Service -Name {SERVICE NAME}

Handle starting and stopping events

{EXE PATH} : Path to the app's folder on the host (for example, d:\myservice ). Don't include the app's

executable in the path. A trailing slash isn't required.

{DOMAIN OR COMPUTER NAME\USER} : Service user account (for example, Contoso\ServiceUser ).

{SERVICE NAME} : Service name (for example, MyService ).

{EXE FILE PATH} : The app's executable path (for example, d:\myservice\myservice.exe ). Include the

executable's file name with extension.

{DESCRIPTION} : Service description (for example, My sample service ).

{DISPLAY NAME} : Service display name (for example, My Service ).

Start a service with the following PowerShell 6 command:

The command takes a few seconds to start the service.

To check the status of a service, use the following PowerShell 6 command:

The status is reported as one of the following values:

Starting

Running

Stopping

Stopped

Stop a service with the following Powershell 6 command:

After a short delay to stop a service, remove a service with the following Powershell 6 command:

To handle OnStarting, OnStarted, and OnStopping events:

1. Create a class that derives from WebHostService with the OnStarting , OnStarted , and OnStopping

methods:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice.onstarting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice.onstarted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice.onstopping
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice


Proxy server and load balancer scenarios

Configure endpoints

[DesignerCategory("Code")]
internal class CustomWebHostService : WebHostService
{
    private ILogger _logger;

    public CustomWebHostService(IWebHost host) : base(host)
    {
        _logger = host.Services
            .GetRequiredService<ILogger<CustomWebHostService>>();
    }

    protected override void OnStarting(string[] args)
    {
        _logger.LogInformation("OnStarting method called.");
        base.OnStarting(args);
    }

    protected override void OnStarted()
    {
        _logger.LogInformation("OnStarted method called.");
        base.OnStarted();
    }

    protected override void OnStopping()
    {
        _logger.LogInformation("OnStopping method called.");
        base.OnStopping();
    }
}

public static class WebHostServiceExtensions
{
    public static void RunAsCustomService(this IWebHost host)
    {
        var webHostService = new CustomWebHostService(host);
        ServiceBase.Run(webHostService);
    }
}

host.RunAsCustomService();

2. Create an extension method for IWebHost that passes the CustomWebHostService  to Run:

3. In Program.Main , call the RunAsCustomService  extension method instead of RunAsService:

To see the location of RunAsService in Program.Main , refer to the code sample shown in the Deployment

type section.

Services that interact with requests from the Internet or a corporate network and are behind a proxy or load

balancer might require additional configuration. For more information, see Configure ASP.NET Core to work with

proxy servers and load balancers.

By default, ASP.NET Core binds to http://localhost:5000 . Configure the URL and port by setting the 

ASPNETCORE_URLS  environment variable.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhost
https://docs.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostwindowsserviceextensions.runasservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostwindowsserviceextensions.runasservice


NOTENOTE

Current directory and content root

Set the content root path to the app's folderSet the content root path to the app's folder

var pathToExe = Process.GetCurrentProcess().MainModule.FileName;
var pathToContentRoot = Path.GetDirectoryName(pathToExe);
Directory.SetCurrentDirectory(pathToContentRoot);

CreateWebHostBuilder(args)
    .Build()
    .RunAsService();

Store a service's files in a suitable location on diskStore a service's files in a suitable location on disk

Troubleshoot

Common errorsCommon errors

For additional URL and port configuration approaches, see the relevant server article:

Kestrel web server implementation in ASP.NET Core

HTTP.sys web server implementation in ASP.NET Core

The preceding guidance covers support for HTTPS endpoints. For example, configure the app for HTTPS when

authentication is used with a Windows Service.

Use of the ASP.NET Core HTTPS development certificate to secure a service endpoint isn't supported.

The current working directory returned by calling GetCurrentDirectory for a Windows Service is the

C:\WINDOWS\system32 folder. The system32 folder isn't a suitable location to store a service's files (for example,

settings files). Use one of the following approaches to maintain and access a service's assets and settings files.

The ContentRootPath is the same path provided to the binPath  argument when a service is created. Instead of

calling GetCurrentDirectory  to create paths to settings files, call SetCurrentDirectory with the path to the app's

content root.

In Program.Main , determine the path to the folder of the service's executable and use the path to establish the

app's content root:

Specify an absolute path with SetBasePath when using an IConfigurationBuilder to the folder containing the files.

To troubleshoot a Windows Service app, see Troubleshoot and debug ASP.NET Core projects.

An old or pre-release version of PowerShell is in use.

The registered service doesn't use the app's publishedpublished output from the dotnet publish command. Output of

the dotnet build command isn't supported for app deployment. Published assets are found in either of the

following folders depending on the deployment type:

The service isn't in the RUNNING state.

The paths to resources that the app uses (for example, certificates) are incorrect. The base path of a Windows

Service is c:\Windows\System32.

The user doesn't have Log on as a service rights.

The user's password is expired or incorrectly passed when executing the New-Service  PowerShell command.

bin/Release/{TARGET FRAMEWORK}/publish (FDD)

bin/Release/{TARGET FRAMEWORK}/{RUNTIME IDENTIFIER}/publish (SCD)

https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment.contentrootpath
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.fileconfigurationextensions.setbasepath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationbuilder
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-build


System and Application Event LogsSystem and Application Event Logs

Run the app at a command promptRun the app at a command prompt

Clear package cachesClear package caches

Slow or hanging appSlow or hanging app

App crashes or encounters an exceptionApp crashes or encounters an exception

The app requires ASP.NET Core authentication but isn't configured for secure connections (HTTPS).

The request URL port is incorrect or not configured correctly in the app.

Access the System and Application Event Logs:

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select SystemSystem to open the System Event Log. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app.

Many startup errors don't produce useful information in the event logs. You can find the cause of some errors by

running the app at a command prompt on the hosting system. To log additional detail from the app, lower the log

level or run the app in the Development environment.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the development machine or

changing package versions within the app. In some cases, incoherent packages may break an app when

performing major upgrades. Most of these issues can be fixed by following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the command 

nuget locals all -clear . nuget.exe isn't a bundled install with the Windows desktop operating system and

must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

A crash dump is a snapshot of the system's memory and can help determine the cause of an app crash, startup

failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

.\EnableDumps {APPLICATION EXE} c:\dumps

.\DisableDumps {APPLICATION EXE}

1. Create a folder to hold crash dump files at c:\dumps .

2. Run the EnableDumps PowerShell script with the application executable name:

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The PowerShell

script configures WER to collect up to five dumps per app.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads
https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/windows-service/scripts/EnableDumps.ps1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/windows-service/scripts/DisableDumps.ps1


WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Additional resources

Prerequisites

App configuration

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see User-Mode

Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-Mode Dump File.

Kestrel endpoint configuration (includes HTTPS configuration and SNI support)

ASP.NET Core Web Host

Troubleshoot and debug ASP.NET Core projects

An ASP.NET Core app can be hosted on Windows as a Windows Service without using IIS. When hosted as a

Windows Service, the app automatically starts after server reboots.

View or download sample code (how to download)

ASP.NET Core SDK 2.1 or later

PowerShell 6.2 or later

The app requires package references for Microsoft.AspNetCore.Hosting.WindowsServices and

Microsoft.Extensions.Logging.EventLog.

To test and debug when running outside of a service, add code to determine if the app is running as a service or a

console app. Inspect if the debugger is attached or a --console  switch is present. If either condition is true (the

app isn't run as a service), call Run. If the conditions are false (the app is run as a service):

Call SetCurrentDirectory and use a path to the app's published location. Don't call GetCurrentDirectory to

obtain the path because a Windows Service app returns the C:\WINDOWS\system32 folder when

GetCurrentDirectory is called. For more information, see the Current directory and content root section. This

step is performed before the app is configured in CreateWebHostBuilder .

Call RunAsService to run the app as a service.

Because the Command-line Configuration Provider requires name-value pairs for command-line arguments, the 

--console  switch is removed from the arguments before CreateDefaultBuilder receives the arguments.

To write to the Windows Event Log, add the EventLog provider to ConfigureLogging. Set the logging level with the

Logging:LogLevel:Default  key in the appsettings.Production.json file.

In the following example from the sample app, RunAsCustomService  is called instead of RunAsService in order to

handle lifetime events within the app. For more information, see the Handle starting and stopping events section.

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/host-and-deploy/windows-service/samples
https://dotnet.microsoft.com/download
https://github.com/PowerShell/PowerShell
https://www.nuget.org/packages/Microsoft.AspNetCore.Hosting.WindowsServices
https://www.nuget.org/packages/Microsoft.Extensions.Logging.EventLog
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostextensions.run
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostwindowsserviceextensions.runasservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.configurelogging
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostwindowsserviceextensions.runasservice


public class Program
{
    public static void Main(string[] args)
    {
        var isService = !(Debugger.IsAttached || args.Contains("--console"));
        
        if (isService)
        {
            var pathToExe = Process.GetCurrentProcess().MainModule.FileName;
            var pathToContentRoot = Path.GetDirectoryName(pathToExe);
            Directory.SetCurrentDirectory(pathToContentRoot);
        }

        var builder = CreateWebHostBuilder(
            args.Where(arg => arg != "--console").ToArray());

        var host = builder.Build();

        if (isService)
        {
            // To run the app without the CustomWebHostService change the
            // next line to host.RunAsService();
            host.RunAsCustomService();
        }
        else
        {
            host.Run();
        }
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .ConfigureLogging((hostingContext, logging) =>
            {
                logging.AddEventLog();
            })
            .ConfigureAppConfiguration((context, config) =>
            {
                // Configure the app here.
            })
            .UseStartup<Startup>();
}

Deployment type

SDKSDK

<Project Sdk="Microsoft.NET.Sdk.Web">

<Project Sdk="Microsoft.NET.Sdk.Worker">

Framework-dependent deployment (FDD)Framework-dependent deployment (FDD)

For information and advice on deployment scenarios, see .NET Core application deployment.

For a web app-based service that uses the Razor Pages or MVC frameworks, specify the Web SDK in the project

file:

If the service only executes background tasks (for example, hosted services), specify the Worker SDK in the project

file:

Framework-dependent deployment (FDD) relies on the presence of a shared system-wide version of .NET Core on

https://docs.microsoft.com/en-us/dotnet/core/deploying/


<PropertyGroup>
  <TargetFramework>netcoreapp2.2</TargetFramework>
  <RuntimeIdentifier>win7-x64</RuntimeIdentifier>
  <UseAppHost>true</UseAppHost>
  <SelfContained>false</SelfContained>
  <IsTransformWebConfigDisabled>true</IsTransformWebConfigDisabled>
</PropertyGroup>

Self-contained deployment (SCD)Self-contained deployment (SCD)

<RuntimeIdentifier>win7-x64</RuntimeIdentifier>

<SelfContained>true</SelfContained>

Service user account

New-LocalUser -Name {SERVICE NAME}

the target system. When the FDD scenario is adopted following the guidance in this article, the SDK produces an

executable (.exe), called a framework-dependent executable.

The Windows Runtime Identifier (RID) (<RuntimeIdentifier>) contains the target framework. In the following

example, the RID is set to win7-x64 . The <SelfContained>  property is set to false . These properties instruct the

SDK to generate an executable (.exe) file for Windows and an app that depends on the shared .NET Core

framework.

The <UseAppHost>  property is set to true . This property provides the service with an activation path (an

executable, .exe) for an FDD.

A web.config file, which is normally produced when publishing an ASP.NET Core app, is unnecessary for a

Windows Services app. To disable the creation of the web.config file, add the <IsTransformWebConfigDisabled>

property set to true .

Self-contained deployment (SCD) doesn't rely on the presence of a shared framework on the host system. The

runtime and the app's dependencies are deployed with the app.

A Windows Runtime Identifier (RID) is included in the <PropertyGroup>  that contains the target framework:

To publish for multiple RIDs:

Provide the RIDs in a semicolon-delimited list.

Use the property name <RuntimeIdentifiers> (plural).

For more information, see .NET Core RID Catalog.

A <SelfContained>  property is set to true :

To create a user account for a service, use the New-LocalUser cmdlet from an administrative PowerShell 6

command shell.

On Windows 10 October 2018 Update (version 1809/build 10.0.17763) or later :

On Windows OS earlier than the Windows 10 October 2018 Update (version 1809/build 10.0.17763):

https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj#runtimeidentifier
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj#runtimeidentifiers
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.localaccounts/new-localuser


powershell -Command "New-LocalUser -Name {SERVICE NAME}"

Log on as a service rights

Create and manage the Windows Service
Create a serviceCreate a service

$acl = Get-Acl "{EXE PATH}"
$aclRuleArgs = {DOMAIN OR COMPUTER NAME\USER}, "Read,Write,ReadAndExecute", "ContainerInherit,ObjectInherit", 
"None", "Allow"
$accessRule = New-Object System.Security.AccessControl.FileSystemAccessRule($aclRuleArgs)
$acl.SetAccessRule($accessRule)
$acl | Set-Acl "{EXE PATH}"

New-Service -Name {SERVICE NAME} -BinaryPathName {EXE FILE PATH} -Credential {DOMAIN OR COMPUTER NAME\USER} -
Description "{DESCRIPTION}" -DisplayName "{DISPLAY NAME}" -StartupType Automatic

Start a serviceStart a service

Provide a strong password when prompted.

Unless the -AccountExpires  parameter is supplied to the New-LocalUser cmdlet with an expiration DateTime, the

account doesn't expire.

For more information, see Microsoft.PowerShell.LocalAccounts and Service User Accounts.

An alternative approach to managing users when using Active Directory is to use Managed Service Accounts. For

more information, see Group Managed Service Accounts Overview.

To establish Log on as a service rights for a service user account:

1. Open the Local Security Policy editor by running secpol.msc.

2. Expand the Local PoliciesLocal Policies  node and select User Rights AssignmentUser Rights Assignment.

3. Open the Log on as a ser viceLog on as a ser vice policy.

4. Select Add User or GroupAdd User or Group.

5. Provide the object name (user account) using either of the following approaches:

6. Select OKOK or ApplyApply  to accept the changes.

a. Type the user account ( {DOMAIN OR COMPUTER NAME\USER} ) in the object name field and select OKOK to add

the user to the policy.

b. Select AdvancedAdvanced. Select Find NowFind Now . Select the user account from the list. Select OKOK. Select OKOK again to

add the user to the policy.

Use PowerShell commands to register a service. From an administrative PowerShell 6 command shell, execute the

following commands:

{EXE PATH} : Path to the app's folder on the host (for example, d:\myservice ). Don't include the app's

executable in the path. A trailing slash isn't required.

{DOMAIN OR COMPUTER NAME\USER} : Service user account (for example, Contoso\ServiceUser ).

{SERVICE NAME} : Service name (for example, MyService ).

{EXE FILE PATH} : The app's executable path (for example, d:\myservice\myservice.exe ). Include the

executable's file name with extension.

{DESCRIPTION} : Service description (for example, My sample service ).

{DISPLAY NAME} : Service display name (for example, My Service ).

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/password-must-meet-complexity-requirements
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.localaccounts/new-localuser
https://docs.microsoft.com/en-us/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.localaccounts/
https://docs.microsoft.com/en-us/windows/desktop/services/service-user-accounts
https://docs.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview


Start-Service -Name {SERVICE NAME}

Determine a service's statusDetermine a service's status

Get-Service -Name {SERVICE NAME}

Stop a serviceStop a service

Stop-Service -Name {SERVICE NAME}

Remove a serviceRemove a service

Remove-Service -Name {SERVICE NAME}

Handle starting and stopping events

Start a service with the following PowerShell 6 command:

The command takes a few seconds to start the service.

To check the status of a service, use the following PowerShell 6 command:

The status is reported as one of the following values:

Starting

Running

Stopping

Stopped

Stop a service with the following Powershell 6 command:

After a short delay to stop a service, remove a service with the following Powershell 6 command:

To handle OnStarting, OnStarted, and OnStopping events:

1. Create a class that derives from WebHostService with the OnStarting , OnStarted , and OnStopping

methods:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice.onstarting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice.onstarted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice.onstopping
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostservice


Proxy server and load balancer scenarios

Configure endpoints

[DesignerCategory("Code")]
internal class CustomWebHostService : WebHostService
{
    private ILogger _logger;

    public CustomWebHostService(IWebHost host) : base(host)
    {
        _logger = host.Services
            .GetRequiredService<ILogger<CustomWebHostService>>();
    }

    protected override void OnStarting(string[] args)
    {
        _logger.LogInformation("OnStarting method called.");
        base.OnStarting(args);
    }

    protected override void OnStarted()
    {
        _logger.LogInformation("OnStarted method called.");
        base.OnStarted();
    }

    protected override void OnStopping()
    {
        _logger.LogInformation("OnStopping method called.");
        base.OnStopping();
    }
}

public static class WebHostServiceExtensions
{
    public static void RunAsCustomService(this IWebHost host)
    {
        var webHostService = new CustomWebHostService(host);
        ServiceBase.Run(webHostService);
    }
}

host.RunAsCustomService();

2. Create an extension method for IWebHost that passes the CustomWebHostService  to Run:

3. In Program.Main , call the RunAsCustomService  extension method instead of RunAsService:

To see the location of RunAsService in Program.Main , refer to the code sample shown in the Deployment

type section.

Services that interact with requests from the Internet or a corporate network and are behind a proxy or load

balancer might require additional configuration. For more information, see Configure ASP.NET Core to work with

proxy servers and load balancers.

By default, ASP.NET Core binds to http://localhost:5000 . Configure the URL and port by setting the 

ASPNETCORE_URLS  environment variable.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhost
https://docs.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostwindowsserviceextensions.runasservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.windowsservices.webhostwindowsserviceextensions.runasservice


NOTENOTE

Current directory and content root

Set the content root path to the app's folderSet the content root path to the app's folder

var pathToExe = Process.GetCurrentProcess().MainModule.FileName;
var pathToContentRoot = Path.GetDirectoryName(pathToExe);
Directory.SetCurrentDirectory(pathToContentRoot);

CreateWebHostBuilder(args)
    .Build()
    .RunAsService();

Store a service's files in a suitable location on diskStore a service's files in a suitable location on disk

Troubleshoot

Common errorsCommon errors

For additional URL and port configuration approaches, see the relevant server article:

Kestrel web server implementation in ASP.NET Core

HTTP.sys web server implementation in ASP.NET Core

The preceding guidance covers support for HTTPS endpoints. For example, configure the app for HTTPS when

authentication is used with a Windows Service.

Use of the ASP.NET Core HTTPS development certificate to secure a service endpoint isn't supported.

The current working directory returned by calling GetCurrentDirectory for a Windows Service is the

C:\WINDOWS\system32 folder. The system32 folder isn't a suitable location to store a service's files (for example,

settings files). Use one of the following approaches to maintain and access a service's assets and settings files.

The ContentRootPath is the same path provided to the binPath  argument when a service is created. Instead of

calling GetCurrentDirectory  to create paths to settings files, call SetCurrentDirectory with the path to the app's

content root.

In Program.Main , determine the path to the folder of the service's executable and use the path to establish the

app's content root:

Specify an absolute path with SetBasePath when using an IConfigurationBuilder to the folder containing the files.

To troubleshoot a Windows Service app, see Troubleshoot and debug ASP.NET Core projects.

An old or pre-release version of PowerShell is in use.

The registered service doesn't use the app's publishedpublished output from the dotnet publish command. Output of

the dotnet build command isn't supported for app deployment. Published assets are found in either of the

following folders depending on the deployment type:

The service isn't in the RUNNING state.

The paths to resources that the app uses (for example, certificates) are incorrect. The base path of a Windows

Service is c:\Windows\System32.

The user doesn't have Log on as a service rights.

The user's password is expired or incorrectly passed when executing the New-Service  PowerShell command.

bin/Release/{TARGET FRAMEWORK}/publish (FDD)

bin/Release/{TARGET FRAMEWORK}/{RUNTIME IDENTIFIER}/publish (SCD)

https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment.contentrootpath
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setcurrentdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.fileconfigurationextensions.setbasepath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfigurationbuilder
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-build


System and Application Event LogsSystem and Application Event Logs

Run the app at a command promptRun the app at a command prompt

Clear package cachesClear package caches

Slow or hanging appSlow or hanging app

App crashes or encounters an exceptionApp crashes or encounters an exception

The app requires ASP.NET Core authentication but isn't configured for secure connections (HTTPS).

The request URL port is incorrect or not configured correctly in the app.

Access the System and Application Event Logs:

1. Open the Start menu, search for Event Viewer, and select the Event ViewerEvent Viewer  app.

2. In Event ViewerEvent Viewer , open the Windows LogsWindows Logs  node.

3. Select SystemSystem to open the System Event Log. Select ApplicationApplication to open the Application Event Log.

4. Search for errors associated with the failing app.

Many startup errors don't produce useful information in the event logs. You can find the cause of some errors by

running the app at a command prompt on the hosting system. To log additional detail from the app, lower the log

level or run the app in the Development environment.

A functioning app may fail immediately after upgrading either the .NET Core SDK on the development machine or

changing package versions within the app. In some cases, incoherent packages may break an app when

performing major upgrades. Most of these issues can be fixed by following these instructions:

1. Delete the bin and obj folders.

2. Clear the package caches by executing dotnet nuget locals all --clear from a command shell.

Clearing package caches can also be accomplished with the nuget.exe tool and executing the command 

nuget locals all -clear . nuget.exe isn't a bundled install with the Windows desktop operating system and

must be obtained separately from the NuGet website.

3. Restore and rebuild the project.

4. Delete all of the files in the deployment folder on the server prior to redeploying the app.

A crash dump is a snapshot of the system's memory and can help determine the cause of an app crash, startup

failure, or slow app.

Obtain and analyze a dump from Windows Error Reporting (WER):

.\EnableDumps {APPLICATION EXE} c:\dumps

.\DisableDumps {APPLICATION EXE}

1. Create a folder to hold crash dump files at c:\dumps .

2. Run the EnableDumps PowerShell script with the application executable name:

3. Run the app under the conditions that cause the crash to occur.

4. After the crash has occurred, run the DisableDumps PowerShell script:

After an app crashes and dump collection is complete, the app is allowed to terminate normally. The PowerShell

script configures WER to collect up to five dumps per app.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://www.nuget.org/downloads
https://www.nuget.org/downloads
https://docs.microsoft.com/en-us/windows/desktop/wer/windows-error-reporting
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/windows-service/scripts/EnableDumps.ps1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/windows-service/scripts/DisableDumps.ps1


WARNINGWARNING

App hangs, fails during startup, or runs normallyApp hangs, fails during startup, or runs normally

Analyze the dumpAnalyze the dump

Additional resources

Crash dumps might take up a large amount of disk space (up to several gigabytes each).

When an app hangs (stops responding but doesn't crash), fails during startup, or runs normally, see User-Mode

Dump Files: Choosing the Best Tool to select an appropriate tool to produce the dump.

A dump can be analyzed using several approaches. For more information, see Analyzing a User-Mode Dump File.

Kestrel endpoint configuration (includes HTTPS configuration and SNI support)

ASP.NET Core Web Host

Troubleshoot and debug ASP.NET Core projects

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/user-mode-dump-files#choosing-the-best-tool
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/analyzing-a-user-mode-dump-file


Host ASP.NET Core on Linux with Nginx
9/22/2020 • 14 minutes to read • Edit Online

NOTENOTE

Prerequisites

Publish and copy over the app

By Sourabh Shirhatti

This guide explains setting up a production-ready ASP.NET Core environment on an Ubuntu 16.04 server. These

instructions likely work with newer versions of Ubuntu, but the instructions haven't been tested with newer

versions.

For information on other Linux distributions supported by ASP.NET Core, see Prerequisites for .NET Core on

Linux.

For Ubuntu 14.04, supervisord is recommended as a solution for monitoring the Kestrel process. systemd isn't available

on Ubuntu 14.04. For Ubuntu 14.04 instructions, see the previous version of this topic.

This guide:

Places an existing ASP.NET Core app behind a reverse proxy server.

Sets up the reverse proxy server to forward requests to the Kestrel web server.

Ensures the web app runs on startup as a daemon.

Configures a process management tool to help restart the web app.

1. Access to an Ubuntu 16.04 server with a standard user account with sudo privilege.

2. Install the .NET Core runtime on the server.

3. An existing ASP.NET Core app.

a. Visit the Download .NET Core page.

b. Select the latest non-preview .NET Core version.

c. Download the latest non-preview runtime in the table under Run apps - RuntimeRun apps - Runtime.

d. Select the Linux Package manager instructionsPackage manager instructions  link and follow the Ubuntu instructions for your

version of Ubuntu.

At any point in the future after upgrading the shared framework, restart the ASP.NET Core apps hosted by the

server.

Configure the app for a framework-dependent deployment.

If the app is run locally and isn't configured to make secure connections (HTTPS), adopt either of the following

approaches:

Configure the app to handle secure local connections. For more information, see the HTTPS configuration

section.

Remove https://localhost:5001  (if present) from the applicationUrl  property in the

Properties/launchSettings.json file.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/linux-nginx.md
https://twitter.com/sshirhatti
https://docs.microsoft.com/en-us/dotnet/core/linux-prerequisites
https://github.com/dotnet/AspNetCore.Docs/blob/e9c1419175c4dd7e152df3746ba1df5935aaafd5/aspnetcore/publishing/linuxproduction.md
https://dotnet.microsoft.com/download/dotnet-core
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd


dotnet publish --configuration Release

NOTENOTE

Configure a reverse proxy server

Use a reverse proxy serverUse a reverse proxy server

// using Microsoft.AspNetCore.HttpOverrides;

app.UseForwardedHeaders(new ForwardedHeadersOptions
{
    ForwardedHeaders = ForwardedHeaders.XForwardedFor | ForwardedHeaders.XForwardedProto
});

app.UseAuthentication();

Run dotnet publish from the development environment to package an app into a directory (for example,

bin/Release/<target_framework_moniker>/publish) that can run on the server :

The app can also be published as a self-contained deployment if you prefer not to maintain the .NET Core

runtime on the server.

Copy the ASP.NET Core app to the server using a tool that integrates into the organization's workflow (for

example, SCP, SFTP). It's common to locate web apps under the var directory (for example, var/www/helloapp).

Under a production deployment scenario, a continuous integration workflow does the work of publishing the app and

copying the assets to the server.

Test the app:

1. From the command line, run the app: dotnet <app_assembly>.dll .

2. In a browser, navigate to http://<serveraddress>:<port>  to verify the app works on Linux locally.

A reverse proxy is a common setup for serving dynamic web apps. A reverse proxy terminates the HTTP request

and forwards it to the ASP.NET Core app.

Kestrel is great for serving dynamic content from ASP.NET Core. However, the web serving capabilities aren't as

feature rich as servers such as IIS, Apache, or Nginx. A reverse proxy server can offload work such as serving

static content, caching requests, compressing requests, and HTTPS termination from the HTTP server. A reverse

proxy server may reside on a dedicated machine or may be deployed alongside an HTTP server.

For the purposes of this guide, a single instance of Nginx is used. It runs on the same server, alongside the HTTP

server. Based on requirements, a different setup may be chosen.

Because requests are forwarded by reverse proxy, use the Forwarded Headers Middleware from the

Microsoft.AspNetCore.HttpOverrides package. The middleware updates the Request.Scheme , using the 

X-Forwarded-Proto  header, so that redirect URIs and other security policies work correctly.

Forwarded Headers Middleware should run before other middleware. This ordering ensures that the

middleware relying on forwarded headers information can consume the header values for processing. To run

Forwarded Headers Middleware after diagnostics and error handling middleware, see Forwarded Headers

Middleware order.

Invoke the UseForwardedHeaders method at the top of Startup.Configure  before calling other middleware.

Configure the middleware to forward the X-Forwarded-For  and X-Forwarded-Proto  headers:

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://www.nuget.org/packages/Microsoft.AspNetCore.HttpOverrides/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders


    

// using System.Net;

services.Configure<ForwardedHeadersOptions>(options =>
{
    options.KnownProxies.Add(IPAddress.Parse("10.0.0.100"));
});

Install NginxInstall Nginx

NOTENOTE

sudo service nginx start

Configure NginxConfigure Nginx

server {
    listen        80;
    server_name   example.com *.example.com;
    location / {
        proxy_pass         http://localhost:5000;
        proxy_http_version 1.1;
        proxy_set_header   Upgrade $http_upgrade;
        proxy_set_header   Connection keep-alive;
        proxy_set_header   Host $host;
        proxy_cache_bypass $http_upgrade;
        proxy_set_header   X-Forwarded-For $proxy_add_x_forwarded_for;
        proxy_set_header   X-Forwarded-Proto $scheme;
    }
}

If no ForwardedHeadersOptions are specified to the middleware, the default headers to forward are None .

Proxies running on loopback addresses (127.0.0.0/8, [::1]), including the standard localhost address (127.0.0.1),

are trusted by default. If other trusted proxies or networks within the organization handle requests between the

Internet and the web server, add them to the list of KnownProxies or KnownNetworks with

ForwardedHeadersOptions. The following example adds a trusted proxy server at IP address 10.0.0.100 to the

Forwarded Headers Middleware KnownProxies  in Startup.ConfigureServices :

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

Use apt-get  to install Nginx. The installer creates a systemd init script that runs Nginx as daemon on system

startup. Follow the installation instructions for Ubuntu at Nginx: Official Debian/Ubuntu packages.

If optional Nginx modules are required, building Nginx from source might be required.

Since Nginx was installed for the first time, explicitly start it by running:

Verify a browser displays the default landing page for Nginx. The landing page is reachable at 

http://<server_IP_address>/index.nginx-debian.html .

To configure Nginx as a reverse proxy to forward requests to your ASP.NET Core app, modify /etc/nginx/sites-

available/default. Open it in a text editor, and replace the contents with the following:

If the app is a Blazor Server app that relies on SignalR WebSockets, see Host and deploy ASP.NET Core Blazor

Server for information on how to set the Connection  header.

When no server_name  matches, Nginx uses the default server. If no default server is defined, the first server in

the configuration file is the default server. As a best practice, add a specific default server which returns a status

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownproxies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownnetworks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions
https://www.nginx.com/resources/wiki/start/topics/tutorials/install/#official-debian-ubuntu-packages


server {
    listen   80 default_server;
    # listen [::]:80 default_server deferred;
    return   444;
}

WARNINGWARNING

Monitor the app

Create the service fileCreate the service file

sudo nano /etc/systemd/system/kestrel-helloapp.service

code of 444 in your configuration file. A default server configuration example is:

With the preceding configuration file and default server, Nginx accepts public traffic on port 80 with host header 

example.com  or *.example.com . Requests not matching these hosts won't get forwarded to Kestrel. Nginx

forwards the matching requests to Kestrel at http://localhost:5000 . See How nginx processes a request for

more information. To change Kestrel's IP/port, see Kestrel: Endpoint configuration.

Failure to specify a proper server_name directive exposes your app to security vulnerabilities. Subdomain wildcard binding

(for example, *.example.com ) doesn't pose this security risk if you control the entire parent domain (as opposed to 

*.com , which is vulnerable). See rfc7230 section-5.4 for more information.

Once the Nginx configuration is established, run sudo nginx -t  to verify the syntax of the configuration files. If

the configuration file test is successful, force Nginx to pick up the changes by running sudo nginx -s reload .

To directly run the app on the server :

1. Navigate to the app's directory.

2. Run the app: dotnet <app_assembly.dll> , where app_assembly.dll  is the assembly file name of the app.

If the app runs on the server but fails to respond over the Internet, check the server's firewall and confirm that

port 80 is open. If using an Azure Ubuntu VM, add a Network Security Group (NSG) rule that enables inbound

port 80 traffic. There's no need to enable an outbound port 80 rule, as the outbound traffic is automatically

granted when the inbound rule is enabled.

When done testing the app, shut the app down with Ctrl+C  at the command prompt.

The server is setup to forward requests made to http://<serveraddress>:80  on to the ASP.NET Core app running

on Kestrel at http://127.0.0.1:5000 . However, Nginx isn't set up to manage the Kestrel process. systemd can be

used to create a service file to start and monitor the underlying web app. systemd is an init system that provides

many powerful features for starting, stopping, and managing processes.

Create the service definition file:

The following is an example service file for the app:

https://nginx.org/docs/http/request_processing.html
https://nginx.org/docs/http/server_names.html
https://tools.ietf.org/html/rfc7230#section-5.4


[Unit]
Description=Example .NET Web API App running on Ubuntu

[Service]
WorkingDirectory=/var/www/helloapp
ExecStart=/usr/bin/dotnet /var/www/helloapp/helloapp.dll
Restart=always
# Restart service after 10 seconds if the dotnet service crashes:
RestartSec=10
KillSignal=SIGINT
SyslogIdentifier=dotnet-example
User=www-data
Environment=ASPNETCORE_ENVIRONMENT=Production
Environment=DOTNET_PRINT_TELEMETRY_MESSAGE=false

[Install]
WantedBy=multi-user.target

# The default value is 90 seconds for most distributions.
TimeoutStopSec=90

systemd-escape "<value-to-escape>"

Environment=ConnectionStrings__DefaultConnection={Connection String}

In the preceding example, the user that manages the service is specified by the User  option. The user ( www-data

) must exist and have proper ownership of the app's files.

Use TimeoutStopSec  to configure the duration of time to wait for the app to shut down after it receives the initial

interrupt signal. If the app doesn't shut down in this period, SIGKILL is issued to terminate the app. Provide the

value as unitless seconds (for example, 150 ), a time span value (for example, 2min 30s ), or infinity  to disable

the timeout. TimeoutStopSec  defaults to the value of DefaultTimeoutStopSec  in the manager configuration file

(systemd-system.conf, system.conf.d, systemd-user.conf, user.conf.d). The default timeout for most distributions

is 90 seconds.

Linux has a case-sensitive file system. Setting ASPNETCORE_ENVIRONMENT to "Production" results in searching

for the configuration file appsettings.Production.json, not appsettings.production.json.

Some values (for example, SQL connection strings) must be escaped for the configuration providers to read the

environment variables. Use the following command to generate a properly escaped value for use in the

configuration file:

Colon ( : ) separators aren't supported in environment variable names. Use a double underscore ( __ ) in place

of a colon. The Environment Variables configuration provider converts double-underscores into colons when

environment variables are read into configuration. In the following example, the connection string key 

ConnectionStrings:DefaultConnection  is set into the service definition file as 

ConnectionStrings__DefaultConnection :

Colon ( : ) separators aren't supported in environment variable names. Use a double underscore ( __ ) in place

of a colon. The Environment Variables configuration provider converts double-underscores into colons when

environment variables are read into configuration. In the following example, the connection string key 

ConnectionStrings:DefaultConnection  is set into the service definition file as 

ConnectionStrings__DefaultConnection :

Save the file and enable the service.



sudo systemctl enable kestrel-helloapp.service

sudo systemctl start kestrel-helloapp.service
sudo systemctl status kestrel-helloapp.service

◝ kestrel-helloapp.service - Example .NET Web API App running on Ubuntu
    Loaded: loaded (/etc/systemd/system/kestrel-helloapp.service; enabled)
    Active: active (running) since Thu 2016-10-18 04:09:35 NZDT; 35s ago
Main PID: 9021 (dotnet)
    CGroup: /system.slice/kestrel-helloapp.service
            └─9021 /usr/local/bin/dotnet /var/www/helloapp/helloapp.dll

HTTP/1.1 200 OK
Date: Tue, 11 Oct 2016 16:22:23 GMT
Server: Kestrel
Keep-Alive: timeout=5, max=98
Connection: Keep-Alive
Transfer-Encoding: chunked

View logsView logs

sudo journalctl -fu kestrel-helloapp.service

sudo journalctl -fu kestrel-helloapp.service --since "2016-10-18" --until "2016-10-18 04:00"

Data protection

Start the service and verify that it's running.

With the reverse proxy configured and Kestrel managed through systemd, the web app is fully configured and

can be accessed from a browser on the local machine at http://localhost . It's also accessible from a remote

machine, barring any firewall that might be blocking. Inspecting the response headers, the Server  header

shows the ASP.NET Core app being served by Kestrel.

Since the web app using Kestrel is managed using systemd , all events and processes are logged to a centralized

journal. However, this journal includes all entries for all services and processes managed by systemd . To view

the kestrel-helloapp.service -specific items, use the following command:

For further filtering, time options such as --since today , --until 1 hour ago  or a combination of these can

reduce the amount of entries returned.

The ASP.NET Core Data Protection stack is used by several ASP.NET Core middlewares, including authentication

middleware (for example, cookie middleware) and cross-site request forgery (CSRF) protections. Even if Data

Protection APIs aren't called by user code, data protection should be configured to create a persistent

cryptographic key store. If data protection isn't configured, the keys are held in memory and discarded when the

app restarts.

If the key ring is stored in memory when the app restarts:

All cookie-based authentication tokens are invalidated.

Users are required to sign in again on their next request.

Any data protected with the key ring can no longer be decrypted. This may include CSRF tokens and ASP.NET

Core MVC TempData cookies.



Long request header fields

WARNINGWARNING

Secure the app
Enable AppArmorEnable AppArmor

Configure the firewallConfigure the firewall

WARNINGWARNING

sudo apt-get install ufw

sudo ufw allow 22/tcp
sudo ufw allow 80/tcp
sudo ufw allow 443/tcp

sudo ufw enable

Secure NginxSecure Nginx
Change the Nginx response nameChange the Nginx response name

To configure data protection to persist and encrypt the key ring, see:

Key storage providers in ASP.NET Core

Key encryption at rest in Windows and Azure using ASP.NET Core

Proxy server default settings typically limit request header fields to 4 K or 8 K depending on the platform. An app

may require fields longer than the default (for example, apps that use Azure Active Directory). If longer fields are

required, the proxy server's default settings require adjustment. The values to apply depend on the scenario. For

more information, see your server's documentation.

proxy_buffer_size

proxy_buffers

proxy_busy_buffers_size

large_client_header_buffers

Don't increase the default values of proxy buffers unless necessary. Increasing these values increases the risk of buffer

overrun (overflow) and Denial of Service (DoS) attacks by malicious users.

Linux Security Modules (LSM) is a framework that's part of the Linux kernel since Linux 2.6. LSM supports

different implementations of security modules. AppArmor is a LSM that implements a Mandatory Access

Control system which allows confining the program to a limited set of resources. Ensure AppArmor is enabled

and properly configured.

Close off all external ports that are not in use. Uncomplicated firewall (ufw) provides a front end for iptables  by

providing a CLI for configuring the firewall.

A firewall will prevent access to the whole system if not configured correctly. Failure to specify the correct SSH port will

effectively lock you out of the system if you are using SSH to connect to it. The default port is 22. For more information,

see the introduction to ufw and the manual.

Install ufw  and configure it to allow traffic on any ports needed.

Edit src/http/ngx_http_header_filter_module.c:

https://azure.microsoft.com/services/active-directory/
https://nginx.org/docs/http/ngx_http_proxy_module.html#proxy_buffer_size
https://nginx.org/docs/http/ngx_http_proxy_module.html#proxy_buffers
https://nginx.org/docs/http/ngx_http_proxy_module.html#proxy_busy_buffers_size
https://nginx.org/docs/http/ngx_http_core_module.html#large_client_header_buffers
https://wiki.ubuntu.com/AppArmor
https://help.ubuntu.com/community/UFW
https://manpages.ubuntu.com/manpages/bionic/man8/ufw.8.html


    

static char ngx_http_server_string[] = "Server: Web Server" CRLF;
static char ngx_http_server_full_string[] = "Server: Web Server" CRLF;

Configure optionsConfigure options

HTTPS configurationHTTPS configuration

proxy_redirect          off;
proxy_set_header        Host $host;
proxy_set_header        X-Real-IP $remote_addr;
proxy_set_header        X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header        X-Forwarded-Proto $scheme;
client_max_body_size    10m;
client_body_buffer_size 128k;
proxy_connect_timeout   90;
proxy_send_timeout      90;
proxy_read_timeout      90;
proxy_buffers           32 4k;

Configure the server with additional required modules. Consider using a web app firewall, such as ModSecurity,

to harden the app.

Configure the app for secure (HTTPS) local connectionsConfigure the app for secure (HTTPS) local connections

The dotnet run command uses the app's Properties/launchSettings.json file, which configures the app to listen

on the URLs provided by the applicationUrl  property (for example, 

https://localhost:5001;http://localhost:5000 ).

Configure the app to use a certificate in development for the dotnet run  command or development

environment (F5 or Ctrl+F5 in Visual Studio Code) using one of the following approaches:

Replace the default certificate from configuration (Recommended)

KestrelServerOptions.ConfigureHttpsDefaults

Configure the reverse proxy for secure (HTTPS) client connectionsConfigure the reverse proxy for secure (HTTPS) client connections

Configure the server to listen to HTTPS traffic on port 443  by specifying a valid certificate issued by a

trusted Certificate Authority (CA).

Harden the security by employing some of the practices depicted in the following /etc/nginx/nginx.conf

file. Examples include choosing a stronger cipher and redirecting all traffic over HTTP to HTTPS.

Adding an HTTP Strict-Transport-Security  (HSTS) header ensures all subsequent requests made by the

client are over HTTPS.

If HTTPS will be disabled in the future, use one of the following approaches:

Don't add the HSTS header.

Choose a short max-age  value.

Add the /etc/nginx/proxy.conf configuration file:

Edit the /etc/nginx/nginx.conf configuration file. The example contains both http  and server  sections in one

configuration file.

https://www.modsecurity.org/
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run


http {
    include        /etc/nginx/proxy.conf;
    limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;
    server_tokens  off;

    sendfile on;
    keepalive_timeout   29; # Adjust to the lowest possible value that makes sense for your use case.
    client_body_timeout 10; client_header_timeout 10; send_timeout 10;

    upstream helloapp{
        server localhost:5000;
    }

    server {
        listen     *:80;
        add_header Strict-Transport-Security max-age=15768000;
        return     301 https://$host$request_uri;
    }

    server {
        listen                    *:443 ssl;
        server_name               example.com;
        ssl_certificate           /etc/ssl/certs/testCert.crt;
        ssl_certificate_key       /etc/ssl/certs/testCert.key;
        ssl_protocols             TLSv1.1 TLSv1.2;
        ssl_prefer_server_ciphers on;
        ssl_ciphers               "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH";
        ssl_ecdh_curve            secp384r1;
        ssl_session_cache         shared:SSL:10m;
        ssl_session_tickets       off;
        ssl_stapling              on; #ensure your cert is capable
        ssl_stapling_verify       on; #ensure your cert is capable

        add_header Strict-Transport-Security "max-age=63072000; includeSubdomains; preload";
        add_header X-Frame-Options DENY;
        add_header X-Content-Type-Options nosniff;

        #Redirects all traffic
        location / {
            proxy_pass http://helloapp;
            limit_req  zone=one burst=10 nodelay;
        }
    }
}

NOTENOTE

Secure Nginx from clickjackingSecure Nginx from clickjacking

Blazor WebAssembly apps require a larger burst  parameter value to accommodate the larger number of requests made

by an app. For more information, see Host and deploy ASP.NET Core Blazor WebAssembly.

Clickjacking, also known as a UI redress attack, is a malicious attack where a website visitor is tricked into

clicking a link or button on a different page than they're currently visiting. Use X-FRAME-OPTIONS  to secure the

site.

To mitigate clickjacking attacks:

sudo nano /etc/nginx/nginx.conf

1. Edit the nginx.conf file:

https://blog.qualys.com/securitylabs/2015/10/20/clickjacking-a-common-implementation-mistake-that-can-put-your-websites-in-danger


MIME-type sniffingMIME-type sniffing

sudo nano /etc/nginx/nginx.conf

Additional Nginx suggestions

Additional resources

Add the line add_header X-Frame-Options "SAMEORIGIN"; .

2. Save the file.

3. Restart Nginx.

This header prevents most browsers from MIME-sniffing a response away from the declared content type, as the

header instructs the browser not to override the response content type. With the nosniff  option, if the server

says the content is "text/html", the browser renders it as "text/html".

Edit the nginx.conf file:

Add the line add_header X-Content-Type-Options "nosniff";  and save the file, then restart Nginx.

After upgrading the shared framework on the server, restart the ASP.NET Core apps hosted by the server.

Prerequisites for .NET Core on Linux

Nginx: Binary Releases: Official Debian/Ubuntu packages

Troubleshoot and debug ASP.NET Core projects

Configure ASP.NET Core to work with proxy servers and load balancers

NGINX: Using the Forwarded header

https://docs.microsoft.com/en-us/dotnet/core/linux-prerequisites
https://www.nginx.com/resources/wiki/start/topics/tutorials/install/#official-debian-ubuntu-packages
https://www.nginx.com/resources/wiki/start/topics/examples/forwarded/


Host ASP.NET Core on Linux with Apache
9/22/2020 • 13 minutes to read • Edit Online

Prerequisites

Publish and copy over the app

dotnet publish --configuration Release

NOTENOTE

By Shayne Boyer

Using this guide, learn how to set up Apache as a reverse proxy server on CentOS 7 to redirect HTTP traffic to an

ASP.NET Core web app running on Kestrel server. The mod_proxy extension and related modules create the

server's reverse proxy.

Server running CentOS 7 with a standard user account with sudo privilege.

Install the .NET Core runtime on the server.

An existing ASP.NET Core app.

1. Visit the Download .NET Core page.

2. Select the latest non-preview .NET Core version.

3. Download the latest non-preview runtime in the table under Run apps - RuntimeRun apps - Runtime.

4. Select the Linux Package manager instructionsPackage manager instructions  link and follow the CentOS instructions.

At any point in the future after upgrading the shared framework, restart the ASP.NET Core apps hosted by the

server.

Configure the app for a framework-dependent deployment.

If the app is run locally and isn't configured to make secure connections (HTTPS), adopt either of the following

approaches:

Configure the app to handle secure local connections. For more information, see the HTTPS configuration

section.

Remove https://localhost:5001  (if present) from the applicationUrl  property in the

Properties/launchSettings.json file.

Run dotnet publish from the development environment to package an app into a directory (for example,

bin/Release/<target_framework_moniker>/publish) that can run on the server :

The app can also be published as a self-contained deployment if you prefer not to maintain the .NET Core

runtime on the server.

Copy the ASP.NET Core app to the server using a tool that integrates into the organization's workflow (for

example, SCP, SFTP). It's common to locate web apps under the var directory (for example, var/www/helloapp).

Under a production deployment scenario, a continuous integration workflow does the work of publishing the app and

copying the assets to the server.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/linux-apache.md
https://github.com/spboyer
https://httpd.apache.org/
https://www.centos.org/
https://httpd.apache.org/docs/2.4/mod/mod_proxy.html
https://dotnet.microsoft.com/download/dotnet-core
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-deployments-fdd
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


Configure a proxy server

// using Microsoft.AspNetCore.HttpOverrides;

app.UseForwardedHeaders(new ForwardedHeadersOptions
{
    ForwardedHeaders = ForwardedHeaders.XForwardedFor | ForwardedHeaders.XForwardedProto
});

app.UseAuthentication();

// using System.Net;

services.Configure<ForwardedHeadersOptions>(options =>
{
    options.KnownProxies.Add(IPAddress.Parse("10.0.0.100"));
});

Install ApacheInstall Apache

sudo yum update -y

A reverse proxy is a common setup for serving dynamic web apps. The reverse proxy terminates the HTTP

request and forwards it to the ASP.NET app.

A proxy server is one which forwards client requests to another server instead of fulfilling requests itself. A

reverse proxy forwards to a fixed destination, typically on behalf of arbitrary clients. In this guide, Apache is

configured as the reverse proxy running on the same server that Kestrel is serving the ASP.NET Core app.

Because requests are forwarded by reverse proxy, use the Forwarded Headers Middleware from the

Microsoft.AspNetCore.HttpOverrides package. The middleware updates the Request.Scheme , using the 

X-Forwarded-Proto  header, so that redirect URIs and other security policies work correctly.

Any component that depends on the scheme, such as authentication, link generation, redirects, and geolocation,

must be placed after invoking the Forwarded Headers Middleware.

Forwarded Headers Middleware should run before other middleware. This ordering ensures that the middleware

relying on forwarded headers information can consume the header values for processing. To run Forwarded

Headers Middleware after diagnostics and error handling middleware, see Forwarded Headers Middleware

order.

Invoke the UseForwardedHeaders method at the top of Startup.Configure  before calling other middleware.

Configure the middleware to forward the X-Forwarded-For  and X-Forwarded-Proto  headers:

If no ForwardedHeadersOptions are specified to the middleware, the default headers to forward are None .

Proxies running on loopback addresses (127.0.0.0/8, [::1]), including the standard localhost address (127.0.0.1),

are trusted by default. If other trusted proxies or networks within the organization handle requests between the

Internet and the web server, add them to the list of KnownProxies or KnownNetworks with

ForwardedHeadersOptions. The following example adds a trusted proxy server at IP address 10.0.0.100 to the

Forwarded Headers Middleware KnownProxies  in Startup.ConfigureServices :

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

Update CentOS packages to their latest stable versions:

Install the Apache web server on CentOS with a single yum  command:

https://www.nuget.org/packages/Microsoft.AspNetCore.HttpOverrides/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownproxies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownnetworks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions


    

sudo yum -y install httpd mod_ssl

Downloading packages:
httpd-2.4.6-40.el7.centos.4.x86_64.rpm               | 2.7 MB  00:00:01
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : httpd-2.4.6-40.el7.centos.4.x86_64      1/1 
Verifying  : httpd-2.4.6-40.el7.centos.4.x86_64      1/1 

Installed:
httpd.x86_64 0:2.4.6-40.el7.centos.4

Complete!

NOTENOTE

Configure ApacheConfigure Apache

<VirtualHost *:*>
    RequestHeader set "X-Forwarded-Proto" expr=%{REQUEST_SCHEME}
</VirtualHost>

<VirtualHost *:80>
    ProxyPreserveHost On
    ProxyPass / http://127.0.0.1:5000/
    ProxyPassReverse / http://127.0.0.1:5000/
    ServerName www.example.com
    ServerAlias *.example.com
    ErrorLog ${APACHE_LOG_DIR}helloapp-error.log
    CustomLog ${APACHE_LOG_DIR}helloapp-access.log common
</VirtualHost>

WARNINGWARNING

Sample output after running the command:

In this example, the output reflects httpd.86_64 since the CentOS 7 version is 64 bit. To verify where Apache is installed,

run whereis httpd  from a command prompt.

Configuration files for Apache are located within the /etc/httpd/conf.d/  directory. Any file with the .conf

extension is processed in alphabetical order in addition to the module configuration files in 

/etc/httpd/conf.modules.d/ , which contains any configuration files necessary to load modules.

Create a configuration file, named helloapp.conf, for the app:

The VirtualHost  block can appear multiple times, in one or more files on a server. In the preceding

configuration file, Apache accepts public traffic on port 80. The domain www.example.com  is being served, and the

*.example.com  alias resolves to the same website. See Name-based virtual host support for more information.

Requests are proxied at the root to port 5000 of the server at 127.0.0.1. For bi-directional communication, 

ProxyPass  and ProxyPassReverse  are required. To change Kestrel's IP/port, see Kestrel: Endpoint configuration.

Failure to specify a proper ServerName directive in the Vir tualHostVir tualHost  block exposes your app to security vulnerabilities.

Subdomain wildcard binding (for example, *.example.com ) doesn't pose this security risk if you control the entire parent

domain (as opposed to *.com , which is vulnerable). See rfc7230 section-5.4 for more information.

https://httpd.apache.org/docs/current/vhosts/name-based.html
https://httpd.apache.org/docs/current/mod/core.html#servername
https://tools.ietf.org/html/rfc7230#section-5.4


sudo service httpd configtest

sudo systemctl restart httpd
sudo systemctl enable httpd

Monitor the app

Create the service fileCreate the service file

sudo nano /etc/systemd/system/kestrel-helloapp.service

[Unit]
Description=Example .NET Web API App running on CentOS 7

[Service]
WorkingDirectory=/var/www/helloapp
ExecStart=/usr/local/bin/dotnet /var/www/helloapp/helloapp.dll
Restart=always
# Restart service after 10 seconds if the dotnet service crashes:
RestartSec=10
KillSignal=SIGINT
SyslogIdentifier=dotnet-example
User=apache
Environment=ASPNETCORE_ENVIRONMENT=Production 

[Install]
WantedBy=multi-user.target

Logging can be configured per VirtualHost  using ErrorLog  and CustomLog  directives. ErrorLog  is the location

where the server logs errors, and CustomLog  sets the filename and format of log file. In this case, this is where

request information is logged. There's one line for each request.

Save the file and test the configuration. If everything passes, the response should be Syntax [OK] .

Restart Apache:

Apache is now setup to forward requests made to http://localhost:80  to the ASP.NET Core app running on

Kestrel at http://127.0.0.1:5000 . However, Apache isn't set up to manage the Kestrel process. Use systemd and

create a service file to start and monitor the underlying web app. systemd is an init system that provides many

powerful features for starting, stopping, and managing processes.

Create the service definition file:

An example service file for the app:

In the preceding example, the user that manages the service is specified by the User  option. The user ( apache )

must exist and have proper ownership of the app's files.

Use TimeoutStopSec  to configure the duration of time to wait for the app to shut down after it receives the initial

interrupt signal. If the app doesn't shut down in this period, SIGKILL is issued to terminate the app. Provide the

value as unitless seconds (for example, 150 ), a time span value (for example, 2min 30s ), or infinity  to disable

the timeout. TimeoutStopSec  defaults to the value of DefaultTimeoutStopSec  in the manager configuration file

(systemd-system.conf, system.conf.d, systemd-user.conf, user.conf.d). The default timeout for most distributions is

90 seconds.



# The default value is 90 seconds for most distributions.
TimeoutStopSec=90

systemd-escape "<value-to-escape>"

Environment=ConnectionStrings__DefaultConnection={Connection String}

sudo systemctl enable kestrel-helloapp.service

sudo systemctl start kestrel-helloapp.service
sudo systemctl status kestrel-helloapp.service

◝ kestrel-helloapp.service - Example .NET Web API App running on CentOS 7
    Loaded: loaded (/etc/systemd/system/kestrel-helloapp.service; enabled)
    Active: active (running) since Thu 2016-10-18 04:09:35 NZDT; 35s ago
Main PID: 9021 (dotnet)
    CGroup: /system.slice/kestrel-helloapp.service
            └─9021 /usr/local/bin/dotnet /var/www/helloapp/helloapp.dll

HTTP/1.1 200 OK
Date: Tue, 11 Oct 2016 16:22:23 GMT
Server: Kestrel
Keep-Alive: timeout=5, max=98
Connection: Keep-Alive
Transfer-Encoding: chunked

View logsView logs

Some values (for example, SQL connection strings) must be escaped for the configuration providers to read the

environment variables. Use the following command to generate a properly escaped value for use in the

configuration file:

Colon ( : ) separators aren't supported in environment variable names. Use a double underscore ( __ ) in place

of a colon. The Environment Variables configuration provider converts double-underscores into colons when

environment variables are read into configuration. In the following example, the connection string key 

ConnectionStrings:DefaultConnection  is set into the service definition file as 

ConnectionStrings__DefaultConnection :

Colon ( : ) separators aren't supported in environment variable names. Use a double underscore ( __ ) in place

of a colon. The Environment Variables configuration provider converts double-underscores into colons when

environment variables are read into configuration. In the following example, the connection string key 

ConnectionStrings:DefaultConnection  is set into the service definition file as 

ConnectionStrings__DefaultConnection :

Save the file and enable the service:

Start the service and verify that it's running:

With the reverse proxy configured and Kestrel managed through systemd, the web app is fully configured and

can be accessed from a browser on the local machine at http://localhost . Inspecting the response headers, the

Ser verSer ver  header indicates that the ASP.NET Core app is served by Kestrel:

Since the web app using Kestrel is managed using systemd, events and processes are logged to a centralized



sudo journalctl -fu kestrel-helloapp.service

sudo journalctl -fu kestrel-helloapp.service --since "2016-10-18" --until "2016-10-18 04:00"

Data protection

Secure the app
Configure firewallConfigure firewall

sudo yum install firewalld -y

sudo firewall-cmd --add-port=80/tcp --permanent
sudo firewall-cmd --add-port=443/tcp --permanent

sudo firewall-cmd --reload
sudo firewall-cmd --list-all

journal. However, this journal includes entries for all of the services and processes managed by systemd. To view

the kestrel-helloapp.service -specific items, use the following command:

For time filtering, specify time options with the command. For example, use --since today  to filter for the

current day or --until 1 hour ago  to see the previous hour's entries. For more information, see the man page

for journalctl.

The ASP.NET Core Data Protection stack is used by several ASP.NET Core middlewares, including authentication

middleware (for example, cookie middleware) and cross-site request forgery (CSRF) protections. Even if Data

Protection APIs aren't called by user code, data protection should be configured to create a persistent

cryptographic key store. If data protection isn't configured, the keys are held in memory and discarded when the

app restarts.

If the key ring is stored in memory when the app restarts:

All cookie-based authentication tokens are invalidated.

Users are required to sign in again on their next request.

Any data protected with the key ring can no longer be decrypted. This may include CSRF tokens and ASP.NET

Core MVC TempData cookies.

To configure data protection to persist and encrypt the key ring, see:

Key storage providers in ASP.NET Core

Key encryption at rest in Windows and Azure using ASP.NET Core

Firewalld is a dynamic daemon to manage the firewall with support for network zones. Ports and packet filtering

can still be managed by iptables. Firewalld should be installed by default. yum  can be used to install the package

or verify it's installed.

Use firewalld  to open only the ports needed for the app. In this case, port 80 and 443 are used. The following

commands permanently set ports 80 and 443 to open:

Reload the firewall settings. Check the available services and ports in the default zone. Options are available by

inspecting firewall-cmd -h .

https://www.unix.com/man-page/centos/1/journalctl/


    

public (default, active)
interfaces: eth0
sources: 
services: dhcpv6-client
ports: 443/tcp 80/tcp
masquerade: no
forward-ports: 
icmp-blocks: 
rich rules: 

HTTPS configurationHTTPS configuration

sudo yum install mod_ssl

sudo yum install mod_rewrite

<VirtualHost *:*>
    RequestHeader set "X-Forwarded-Proto" expr=%{REQUEST_SCHEME}
</VirtualHost>

<VirtualHost *:80>
    RewriteEngine On
    RewriteCond %{HTTPS} !=on
    RewriteRule ^/?(.*) https://%{SERVER_NAME}/$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
    ProxyPreserveHost On
    ProxyPass / http://127.0.0.1:5000/
    ProxyPassReverse / http://127.0.0.1:5000/
    ErrorLog /var/log/httpd/helloapp-error.log
    CustomLog /var/log/httpd/helloapp-access.log common
    SSLEngine on
    SSLProtocol all -SSLv2
    SSLCipherSuite ALL:!ADH:!EXPORT:!SSLv2:!RC4+RSA:+HIGH:+MEDIUM:!LOW:!RC4
    SSLCertificateFile /etc/pki/tls/certs/localhost.crt
    SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
</VirtualHost>

Configure the app for secure (HTTPS) local connectionsConfigure the app for secure (HTTPS) local connections

The dotnet run command uses the app's Properties/launchSettings.json file, which configures the app to listen

on the URLs provided by the applicationUrl  property (for example, 

https://localhost:5001;http://localhost:5000 ).

Configure the app to use a certificate in development for the dotnet run  command or development

environment (F5 or Ctrl+F5 in Visual Studio Code) using one of the following approaches:

Replace the default certificate from configuration (Recommended)

KestrelServerOptions.ConfigureHttpsDefaults

Configure the reverse proxy for secure (HTTPS) client connectionsConfigure the reverse proxy for secure (HTTPS) client connections

To configure Apache for HTTPS, the mod_ssl module is used. When the httpd module was installed, the mod_ssl

module was also installed. If it wasn't installed, use yum  to add it to the configuration.

To enforce HTTPS, install the mod_rewrite  module to enable URL rewriting:

Modify the helloapp.conf file to enable URL rewriting and secure communication on port 443:

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run


NOTENOTE

sudo service httpd configtest

sudo systemctl restart httpd

Additional Apache suggestions
Restart apps with shared framework updatesRestart apps with shared framework updates

Additional headersAdditional headers

sudo yum install mod_headers

Secure Apache from clickjacking attacksSecure Apache from clickjacking attacks

MIME-type sniffingMIME-type sniffing

sudo nano /etc/httpd/conf/httpd.conf

This example is using a locally-generated certificate. SSLCer tificateFileSSLCer tificateFile should be the primary certificate file for the

domain name. SSLCer tificateKeyFileSSLCer tificateKeyFile should be the key file generated when CSR is created. SSLCer tificateChainFileSSLCer tificateChainFile

should be the intermediate certificate file (if any) that was supplied by the certificate authority.

Save the file and test the configuration:

Restart Apache:

After upgrading the shared framework on the server, restart the ASP.NET Core apps hosted by the server.

In order to secure against malicious attacks, there are a few headers that should either be modified or added.

Ensure that the mod_headers  module is installed:

Clickjacking, also known as a UI redress attack, is a malicious attack where a website visitor is tricked into clicking

a link or button on a different page than they're currently visiting. Use X-FRAME-OPTIONS  to secure the site.

To mitigate clickjacking attacks:

sudo nano /etc/httpd/conf/httpd.conf

1. Edit the httpd.conf file:

Add the line Header append X-FRAME-OPTIONS "SAMEORIGIN" .

2. Save the file.

3. Restart Apache.

The X-Content-Type-Options  header prevents Internet Explorer from MIME-sniffing (determining a file's 

Content-Type  from the file's content). If the server sets the Content-Type  header to text/html  with the nosniff

option set, Internet Explorer renders the content as text/html  regardless of the file's content.

Edit the httpd.conf file:

Add the line Header set X-Content-Type-Options "nosniff" . Save the file. Restart Apache.

https://blog.qualys.com/securitylabs/2015/10/20/clickjacking-a-common-implementation-mistake-that-can-put-your-websites-in-danger


Load BalancingLoad Balancing

sudo yum install mod_proxy_balancer

<VirtualHost *:*>
    RequestHeader set "X-Forwarded-Proto" expr=%{REQUEST_SCHEME}
</VirtualHost>

<VirtualHost *:80>
    RewriteEngine On
    RewriteCond %{HTTPS} !=on
    RewriteRule ^/?(.*) https://%{SERVER_NAME}/$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
    ProxyPass / balancer://mycluster/ 

    ProxyPassReverse / http://127.0.0.1:5000/
    ProxyPassReverse / http://127.0.0.1:5001/

    <Proxy balancer://mycluster>
        BalancerMember http://127.0.0.1:5000
        BalancerMember http://127.0.0.1:5001 
        ProxySet lbmethod=byrequests
    </Proxy>

    <Location />
        SetHandler balancer
    </Location>
    ErrorLog /var/log/httpd/helloapp-error.log
    CustomLog /var/log/httpd/helloapp-access.log common
    SSLEngine on
    SSLProtocol all -SSLv2
    SSLCipherSuite ALL:!ADH:!EXPORT:!SSLv2:!RC4+RSA:+HIGH:+MEDIUM:!LOW:!RC4
    SSLCertificateFile /etc/pki/tls/certs/localhost.crt
    SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
</VirtualHost>

Rate LimitsRate Limits

sudo nano /etc/httpd/conf.d/ratelimit.conf

<IfModule mod_ratelimit.c>
    <Location />
        SetOutputFilter RATE_LIMIT
        SetEnv rate-limit 600
    </Location>
</IfModule>

Long request header fieldsLong request header fields

This example shows how to setup and configure Apache on CentOS 7 and Kestrel on the same instance machine.

In order to not have a single point of failure; using mod_proxy_balancer and modifying the Vir tualHostVir tualHost would

allow for managing multiple instances of the web apps behind the Apache proxy server.

In the configuration file shown below, an additional instance of the helloapp  is set up to run on port 5001. The

Proxy section is set with a balancer configuration with two members to load balance byrequests.

Using mod_ratelimit, which is included in the httpd module, the bandwidth of clients can be limited:

The example file limits bandwidth as 600 KB/sec under the root location:



WARNINGWARNING

Additional resources

Proxy server default settings typically limit request header fields to 8,190 bytes. An app may require fields longer

than the default (for example, apps that use Azure Active Directory). If longer fields are required, the proxy

server's LimitRequestFieldSize directive requires adjustment. The value to apply depends on the scenario. For

more information, see your server's documentation.

Don't increase the default value of LimitRequestFieldSize  unless necessary. Increasing the value increases the risk of

buffer overrun (overflow) and Denial of Service (DoS) attacks by malicious users.

Prerequisites for .NET Core on Linux

Troubleshoot and debug ASP.NET Core projects

Configure ASP.NET Core to work with proxy servers and load balancers

https://azure.microsoft.com/services/active-directory/
https://httpd.apache.org/docs/2.4/mod/core.html#LimitRequestFieldSize
https://docs.microsoft.com/en-us/dotnet/core/linux-prerequisites


Host ASP.NET Core in Docker containers
9/22/2020 • 2 minutes to read • Edit Online

The following articles are available for learning about hosting ASP.NET Core apps in Docker :

Introduction to Containers and Docker

See how containerization is an approach to software development in which an application or service, its

dependencies, and its configuration are packaged together as a container image. The image can be tested and

then deployed to a host.

What is Docker

Discover how Docker is an open-source project for automating the deployment of apps as portable, self-sufficient

containers that can run on the cloud or on-premises.

Docker Terminology

Learn terms and definitions for Docker technology.

Docker containers, images, and registries

Find out how Docker container images are stored in an image registry for consistent deployment across

environments.

Docker images for ASP.NET Core Learn how to build and dockerize an ASP.NET Core app. Explore Docker images

maintained by Microsoft and examine use cases.

Visual Studio Container Tools

Discover how Visual Studio supports building, debugging, and running ASP.NET Core apps targeting either .NET

Framework or .NET Core on Docker for Windows. Both Windows and Linux containers are supported.

Publish to Azure Container Registry

Find out how to use the Visual Studio Container Tools extension to deploy an ASP.NET Core app to a Docker host

on Azure using PowerShell.

Configure ASP.NET Core to work with proxy servers and load balancers

Additional configuration might be required for apps hosted behind proxy servers and load balancers. Passing

requests through a proxy often obscures information about the original request, such as the scheme and client IP.

It might be necessary to forwarded some information about the request manually to the app.

GC using Docker and small containers Discusses GC selection with small containers.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/docker/index.md
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/index
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/docker-defined
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/docker-terminology
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/docker-containers-images-registries
https://docs.microsoft.com/en-us/azure/vs-azure-tools-docker-hosting-web-apps-in-docker


Docker images for ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

ASP.NET Core Docker images

Prerequisites

This tutorial shows how to run an ASP.NET Core app in Docker containers.

In this tutorial, you:

Learn about Microsoft .NET Core Docker images

Download an ASP.NET Core sample app

Run the sample app locally

Run the sample app in Linux containers

Run the sample app in Windows containers

Build and deploy manually

For this tutorial, you download an ASP.NET Core sample app and run it in Docker containers. The sample works

with both Linux and Windows containers.

The sample Dockerfile uses the Docker multi-stage build feature to build and run in different containers. The build

and run containers are created from images that are provided in Docker Hub by Microsoft:

dotnet/core/sdk

The sample uses this image for building the app. The image contains the .NET Core SDK, which includes the

Command Line Tools (CLI). The image is optimized for local development, debugging, and unit testing. The

tools installed for development and compilation make this a relatively large image.

dotnet/core/aspnet

The sample uses this image for running the app. The image contains the ASP.NET Core runtime and libraries

and is optimized for running apps in production. Designed for speed of deployment and app startup, the

image is relatively small, so network performance from Docker Registry to Docker host is optimized. Only

the binaries and content needed to run an app are copied to the container. The contents are ready to run,

enabling the fastest time from Docker run  to app startup. Dynamic code compilation isn't needed in the

Docker model.

.NET Core 2.2 SDK

.NET Core SDK 3.0

Docker client 18.03 or later

Linux distributions

macOS

Windows

CentOS

Debian

Fedora

Ubuntu

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/docker/building-net-docker-images.md
https://docs.docker.com/engine/userguide/eng-image/multistage-build/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/debian/
https://docs.docker.com/install/linux/docker-ce/fedora/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/


Download the sample app

Run the app locally

Run in a Linux container

Run in a Windows container

Git

git clone https://github.com/dotnet/dotnet-docker

Download the sample by cloning the .NET Core Docker repository:

dotnet run

Navigate to the project folder at dotnet-docker/samples/aspnetapp/aspnetapp.

Run the following command to build and run the app locally:

Go to http://localhost:5000  in a browser to test the app.

Press Ctrl+C at the command prompt to stop the app.

docker build -t aspnetapp .
docker run -it --rm -p 5000:80 --name aspnetcore_sample aspnetapp

In the Docker client, switch to Linux containers.

Navigate to the Dockerfile folder at dotnet-docker/samples/aspnetapp.

Run the following commands to build and run the sample in Docker :

The build  command arguments:

Name the image aspnetapp.

Look for the Dockerfile in the current folder (the period at the end).

The run command arguments:

Allocate a pseudo-TTY and keep it open even if not attached. (Same effect as --interactive --tty .)

Automatically remove the container when it exits.

Map port 5000 on the local machine to port 80 in the container.

Name the container aspnetcore_sample.

Specify the aspnetapp image.

Go to http://localhost:5000  in a browser to test the app.

In the Docker client, switch to Windows containers.

Navigate to the docker file folder at dotnet-docker/samples/aspnetapp .

Run the following commands to build and run the sample in Docker :

https://git-scm.com/download
https://github.com/dotnet/dotnet-docker


Build and deploy manually

docker build -t aspnetapp .
docker run -it --rm --name aspnetcore_sample aspnetapp

For Windows containers, you need the IP address of the container (browsing to http://localhost:5000

won't work):

Ethernet adapter Ethernet:

   Connection-specific DNS Suffix  . : contoso.com
   Link-local IPv6 Address . . . . . : fe80::1967:6598:124:cfa3%4
   IPv4 Address. . . . . . . . . . . : 172.29.245.43
   Subnet Mask . . . . . . . . . . . : 255.255.240.0
   Default Gateway . . . . . . . . . : 172.29.240.1

Open up another command prompt.

Run docker ps  to see the running containers. Verify that the "aspnetcore_sample" container is there.

Run docker exec aspnetcore_sample ipconfig  to display the IP address of the container. The output

from the command looks like this example:

Copy the container IPv4 address (for example, 172.29.245.43) and paste into the browser address bar to test

the app.

In some scenarios, you might want to deploy an app to a container by copying to it the application files that are

needed at run time. This section shows how to deploy manually.

dotnet publish -c Release -o published

Navigate to the project folder at dotnet-docker/samples/aspnetapp/aspnetapp.

Run the dotnet publish command:

The command arguments:

Build the application in release mode (the default is debug mode).

Create the files in the published folder.

Run the application.

dotnet published\aspnetapp.dll

dotnet published/aspnetapp.dll

Windows:

Linux:

Browse to http://localhost:5000  to see the home page.

To use the manually published application within a Docker container, create a new Dockerfile and use the 

docker build .  command to build the container.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish


FROM mcr.microsoft.com/dotnet/core/aspnet:2.2 AS runtime
WORKDIR /app
COPY published/aspnetapp.dll ./
ENTRYPOINT ["dotnet", "aspnetapp.dll"]

The DockerfileThe Dockerfile

FROM mcr.microsoft.com/dotnet/core/sdk:2.2 AS build
WORKDIR /app

# copy csproj and restore as distinct layers
COPY *.sln .
COPY aspnetapp/*.csproj ./aspnetapp/
RUN dotnet restore

# copy everything else and build app
COPY aspnetapp/. ./aspnetapp/
WORKDIR /app/aspnetapp
RUN dotnet publish -c Release -o out

FROM mcr.microsoft.com/dotnet/core/aspnet:2.2 AS runtime
WORKDIR /app
COPY --from=build /app/aspnetapp/out ./
ENTRYPOINT ["dotnet", "aspnetapp.dll"]

FROM mcr.microsoft.com/dotnet/core/aspnet:3.0 AS runtime
WORKDIR /app
COPY published/aspnetapp.dll ./
ENTRYPOINT ["dotnet", "aspnetapp.dll"]

The DockerfileThe Dockerfile

FROM mcr.microsoft.com/dotnet/core/sdk:3.0 AS build
WORKDIR /app

# copy csproj and restore as distinct layers
COPY *.sln .
COPY aspnetapp/*.csproj ./aspnetapp/
RUN dotnet restore

# copy everything else and build app
COPY aspnetapp/. ./aspnetapp/
WORKDIR /app/aspnetapp
RUN dotnet publish -c Release -o out

FROM mcr.microsoft.com/dotnet/core/aspnet:3.0 AS runtime
WORKDIR /app
COPY --from=build /app/aspnetapp/out ./
ENTRYPOINT ["dotnet", "aspnetapp.dll"]

Here's the Dockerfile used by the docker build  command you ran earlier. It uses dotnet publish  the same way

you did in this section to build and deploy.

Here's the Dockerfile used by the docker build  command you ran earlier. It uses dotnet publish  the same way

you did in this section to build and deploy.

As noted in the preceding Dockerfile, the *.csproj  files are copied and restored as distinct layers. When the 

docker build  command builds an image, it uses a built-in cache. If the *.csproj  files haven't changed since the 

docker build  command last ran, the dotnet restore  command doesn't need to run again. Instead, the built-in

cache for the corresponding dotnet restore  layer is reused. For more information, see Best practices for writing

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#leverage-build-cache


Additional resources

Next steps

Dockerfiles.

Docker build command

Docker run command

ASP.NET Core Docker sample (The one used in this tutorial.)

Configure ASP.NET Core to work with proxy servers and load balancers

Working with Visual Studio Docker Tools

Debugging with Visual Studio Code

GC using Docker and small containers

The Git repository that contains the sample app also includes documentation. For an overview of the resources

available in the repository, see the README file. In particular, learn how to implement HTTPS:

Developing ASP.NET Core Applications with Docker over HTTPS

https://docs.docker.com/engine/reference/commandline/build
https://docs.docker.com/engine/reference/commandline/run
https://github.com/dotnet/dotnet-docker
https://code.visualstudio.com/docs/nodejs/debugging-recipes#_debug-nodejs-in-docker-containers
https://github.com/dotnet/dotnet-docker/blob/master/samples/aspnetapp/README.md
https://github.com/dotnet/dotnet-docker/blob/master/samples/run-aspnetcore-https-development.md


 

Visual Studio Container Tools with ASP.NET Core
9/22/2020 • 9 minutes to read • Edit Online

Prerequisites

Installation and setup

TIPTIP

Add a project to a Docker container

Visual Studio 2017 and later versions support building, debugging, and running containerized ASP.NET Core apps

targeting .NET Core. Both Windows and Linux containers are supported.

View or download sample code (how to download)

Docker for Windows

Visual Studio 2019 with the .NET Core cross-platform development.NET Core cross-platform development workload

For Docker installation, first review the information at Docker for Windows: What to know before you install. Next,

install Docker For Windows.

Shared DrivesShared Drives  in Docker for Windows must be configured to support volume mapping and debugging. Right-

click the System Tray's Docker icon, select SettingsSettings , and select Shared DrivesShared Drives . Select the drive where Docker

stores files. Click ApplyApply .

Visual Studio 2017 versions 15.6 and later prompt when Shared DrivesShared Drives aren't configured.

To containerize an ASP.NET Core project, the project must target .NET Core. Both Linux and Windows containers are

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/docker/visual-studio-tools-for-docker.md
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/host-and-deploy/docker/visual-studio-tools-for-docker/samples
https://docs.docker.com/docker-for-windows/install/
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://docs.docker.com/docker-for-windows/install/#what-to-know-before-you-install
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/#shared-drives


New appNew app

Existing appExisting app

Dockerfile overview

FROM mcr.microsoft.com/dotnet/core/aspnet:2.1 AS base
WORKDIR /app
EXPOSE 59518
EXPOSE 44364

FROM mcr.microsoft.com/dotnet/core/sdk:2.1 AS build
WORKDIR /src
COPY HelloDockerTools/HelloDockerTools.csproj HelloDockerTools/
RUN dotnet restore HelloDockerTools/HelloDockerTools.csproj
COPY . .
WORKDIR /src/HelloDockerTools
RUN dotnet build HelloDockerTools.csproj -c Release -o /app

FROM build AS publish
RUN dotnet publish HelloDockerTools.csproj -c Release -o /app

FROM base AS final
WORKDIR /app
COPY --from=publish /app .
ENTRYPOINT ["dotnet", "HelloDockerTools.dll"]

supported.

When adding Docker support to a project, choose either a Windows or a Linux container. The Docker host must be

running the same container type. To change the container type in the running Docker instance, right-click the

System Tray's Docker icon and choose Switch to Windows containers...Switch to Windows containers... or Switch to L inux containers...Switch to L inux containers... .

When creating a new app with the ASP.NET Core Web ApplicationASP.NET Core Web Application project templates, select the Enable DockerEnable Docker

Suppor tSuppor t check box:

If the target framework is .NET Core, the OSOS  drop-down allows for the selection of a container type.

For ASP.NET Core projects targeting .NET Core, there are two options for adding Docker support via the tooling.

Open the project in Visual Studio, and choose one of the following options:

Select Docker Suppor tDocker Suppor t from the ProjectProject menu.

Right-click the project in Solution ExplorerSolution Explorer  and select AddAdd > Docker Suppor tDocker Suppor t.

The Visual Studio Container Tools don't support adding Docker to an existing ASP.NET Core project targeting .NET

Framework.

A Dockerfile, the recipe for creating a final Docker image, is added to the project root. Refer to Dockerfile reference

for an understanding of the commands within it. This particular Dockerfile uses a multi-stage build with four

distinct, named build stages:

The preceding Dockerfile is based on the microsoft/dotnet image. This base image includes the ASP.NET Core

runtime and NuGet packages. The packages are just-in-time (JIT) compiled to improve startup performance.

When the new project dialog's Configure for HTTPSConfigure for HTTPS  check box is checked, the Dockerfile exposes two ports. One

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/userguide/eng-image/multistage-build/
https://hub.docker.com/r/microsoft/dotnet/


  

FROM microsoft/aspnetcore:2.0 AS base
WORKDIR /app
EXPOSE 80

FROM microsoft/aspnetcore-build:2.0 AS build
WORKDIR /src
COPY HelloDockerTools/HelloDockerTools.csproj HelloDockerTools/
RUN dotnet restore HelloDockerTools/HelloDockerTools.csproj
COPY . .
WORKDIR /src/HelloDockerTools
RUN dotnet build HelloDockerTools.csproj -c Release -o /app

FROM build AS publish
RUN dotnet publish HelloDockerTools.csproj -c Release -o /app

FROM base AS final
WORKDIR /app
COPY --from=publish /app .
ENTRYPOINT ["dotnet", "HelloDockerTools.dll"]

Add container orchestrator support to an app

Docker ComposeDocker Compose

port is used for HTTP traffic; the other port is used for HTTPS. If the check box isn't checked, a single port (80) is

exposed for HTTP traffic.

The preceding Dockerfile is based on the microsoft/aspnetcore image. This base image includes the ASP.NET Core

NuGet packages, which are just-in-time (JIT) compiled to improve startup performance.

Visual Studio 2017 versions 15.7 or earlier support Docker Compose as the sole container orchestration solution.

The Docker Compose artifacts are added via AddAdd > Docker Suppor tDocker Suppor t.

Visual Studio 2017 versions 15.8 or later add an orchestration solution only when instructed. Right-click the project

in Solution ExplorerSolution Explorer  and select AddAdd > Container Orchestrator Suppor tContainer Orchestrator Suppor t. The following choices are available:

Docker Compose

Service Fabric

Kubernetes/Helm

The Visual Studio Container Tools add a docker-compose project to the solution with the following files:

docker-compose.dcproj: The file representing the project. Includes a <DockerTargetOS>  element specifying the

OS to be used.

.dockerignore: Lists the file and directory patterns to exclude when generating a build context.

docker-compose.yml: The base Docker Compose file used to define the collection of images built and run with 

docker-compose build  and docker-compose run , respectively.

docker-compose.override.yml: An optional file, read by Docker Compose, with configuration overrides for

services. Visual Studio executes docker-compose -f "docker-compose.yml" -f "docker-compose.override.yml"  to

merge these files.

The docker-compose.yml file references the name of the image that's created when the project runs:

https://hub.docker.com/r/microsoft/aspnetcore/
https://docs.docker.com/compose/overview/
https://helm.sh/
https://docs.docker.com/compose/overview/


  

version: '3.4'

services:
  hellodockertools:
    image: ${DOCKER_REGISTRY}hellodockertools
    build:
      context: .
      dockerfile: HelloDockerTools/Dockerfile

Service FabricService Fabric

In the preceding example, image: hellodockertools  generates the image hellodockertools:dev  when the app runs

in DebugDebug mode. The hellodockertools:latest  image is generated when the app runs in ReleaseRelease mode.

Prefix the image name with the Docker Hub username (for example, dockerhubusername/hellodockertools ) if the

image is pushed to the registry. Alternatively, change the image name to include the private registry URL (for

example, privateregistry.domain.com/hellodockertools ) depending on the configuration.

If you want different behavior based on the build configuration (for example, Debug or Release), add

configuration-specific docker-compose files. The files should be named according to the build configuration (for

example, docker-compose.vs.debug.yml and docker-compose.vs.release.yml) and placed in the same location as

the docker-compose-override.yml file.

Using the configuration-specific override files, you can specify different configuration settings (such as

environment variables or entry points) for Debug and Release build configurations.

For Docker Compose to display an option to run in Visual Studio, the docker project must be the startup project.

In addition to the base Prerequisites, the Service Fabric orchestration solution demands the following prerequisites:

Microsoft Azure Service Fabric SDK version 2.6 or later

Visual Studio's Azure DevelopmentAzure Development workload

Service Fabric doesn't support running Linux containers in the local development cluster on Windows. If the

project is already using a Linux container, Visual Studio prompts to switch to Windows containers.

The Visual Studio Container Tools do the following tasks:

# See https://aka.ms/containerimagehelp for information on how to use Windows Server 1709 containers 
with Service Fabric.
# FROM microsoft/aspnetcore:2.0-nanoserver-1709
FROM microsoft/aspnetcore:2.0-nanoserver-sac2016
ARG source
WORKDIR /app
COPY ${source:-obj/Docker/publish} .
ENTRYPOINT ["dotnet", "HelloDockerTools.dll"]

<IsServiceFabricServiceProject>True</IsServiceFabricServiceProject>

Adds a <project_name>Application Ser vice Fabric ApplicationSer vice Fabric Application project to the solution.

Adds a Dockerfile and a .dockerignore file to the ASP.NET Core project. If a Dockerfile already exists in the

ASP.NET Core project, it's renamed to Dockerfile.original. A new Dockerfile, similar to the following, is

created:

Adds an <IsServiceFabricServiceProject>  element to the ASP.NET Core project's .csproj file:

Adds a PackageRoot folder to the ASP.NET Core project. The folder includes the service manifest and settings

https://hub.docker.com/
https://docs.microsoft.com/en-us/azure/service-fabric/
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK


Debug

REPOSITORY        TAG                     IMAGE ID      CREATED         SIZE
hellodockertools  dev                     d72ce0f1dfe7  30 seconds ago  255MB
microsoft/dotnet  2.1-aspnetcore-runtime  fcc3887985bb  6 days ago      255MB

REPOSITORY            TAG  IMAGE ID      CREATED        SIZE
hellodockertools      dev  5fafe5d1ad5b  4 minutes ago  347MB
microsoft/aspnetcore  2.0  c69d39472da9  13 days ago    347MB

NOTENOTE

for the new service.

For more information, see Deploy a .NET app in a Windows container to Azure Service Fabric.

Select DockerDocker  from the debug drop-down in the toolbar, and start debugging the app. The DockerDocker  view of the

OutputOutput window shows the following actions taking place:

The 2.1-aspnetcore-runtime tag of the microsoft/dotnet runtime image is acquired (if not already in the cache).

The image installs the ASP.NET Core and .NET Core runtimes and associated libraries. It's optimized for running

ASP.NET Core apps in production.

The ASPNETCORE_ENVIRONMENT  environment variable is set to Development  within the container.

Two dynamically assigned ports are exposed: one for HTTP and one for HTTPS. The port assigned to localhost

can be queried with the docker ps  command.

The app is copied to the container.

The default browser is launched with the debugger attached to the container using the dynamically assigned

port.

The resulting Docker image of the app is tagged as dev. The image is based on the 2.1-aspnetcore-runtime tag of

the microsoft/dotnet base image. Run the docker images  command in the Package Manager ConsolePackage Manager Console (PMC)

window. The images on the machine are displayed:

The microsoft/aspnetcore runtime image is acquired (if not already in the cache).

The ASPNETCORE_ENVIRONMENT  environment variable is set to Development  within the container.

Port 80 is exposed and mapped to a dynamically assigned port for localhost. The port is determined by the

Docker host and can be queried with the docker ps  command.

The app is copied to the container.

The default browser is launched with the debugger attached to the container using the dynamically assigned

port.

The resulting Docker image of the app is tagged as dev. The image is based on the microsoft/aspnetcore base

image. Run the docker images  command in the Package Manager ConsolePackage Manager Console (PMC) window. The images on the

machine are displayed:

The dev image lacks the app contents, as DebugDebug configurations use volume mounting to provide the iterative experience. To

push an image, use the ReleaseRelease configuration.

Run the docker ps  command in PMC. Notice the app is running using the container :

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-host-app-in-a-container


CONTAINER ID        IMAGE                  COMMAND                   CREATED             STATUS              
PORTS                   NAMES
baf9a678c88d        hellodockertools:dev   "C:\\remote_debugge..."   21 seconds ago      Up 19 seconds       
0.0.0.0:37630->80/tcp   dockercompose4642749010770307127_hellodockertools_1

Edit and continue

CONTAINER ID        IMAGE                  COMMAND                   CREATED             STATUS              
PORTS                   NAMES
baf9a678c88d        hellodockertools:dev   "C:\\remote_debugge..."   10 minutes ago      Up 10 minutes       
0.0.0.0:37630->80/tcp   dockercompose4642749010770307127_hellodockertools_1

Publish Docker images

REPOSITORY        TAG                     IMAGE ID      CREATED             SIZE
hellodockertools  latest                  e3984a64230c  About a minute ago  258MB
hellodockertools  dev                     d72ce0f1dfe7  4 minutes ago       255MB
microsoft/dotnet  2.1-sdk                 9e243db15f91  6 days ago          1.7GB
microsoft/dotnet  2.1-aspnetcore-runtime  fcc3887985bb  6 days ago          255MB

REPOSITORY                  TAG     IMAGE ID      CREATED         SIZE
hellodockertools            latest  cd28f0d4abbd  12 seconds ago  349MB
hellodockertools            dev     5fafe5d1ad5b  23 minutes ago  347MB
microsoft/aspnetcore-build  2.0     7fed40fbb647  13 days ago     2.02GB
microsoft/aspnetcore        2.0     c69d39472da9  13 days ago     347MB

NOTENOTE

Changes to static files and Razor views are automatically updated without the need for a compilation step. Make

the change, save, and refresh the browser to view the update.

Code file modifications require compilation and a restart of Kestrel within the container. After making the change,

use CTRL+F5  to perform the process and start the app within the container. The Docker container isn't rebuilt or

stopped. Run the docker ps  command in PMC. Notice the original container is still running as of 10 minutes ago:

Once the develop and debug cycle of the app is completed, the Visual Studio Container Tools assist in creating the

production image of the app. Change the configuration drop-down to ReleaseRelease and build the app. The tooling

acquires the compile/publish image from Docker Hub (if not already in the cache). An image is produced with the

latest tag, which can be pushed to the private registry or Docker Hub.

Run the docker images  command in PMC to see the list of images. Output similar to the following is displayed:

The microsoft/aspnetcore-build  and microsoft/aspnetcore  images listed in the preceding output are replaced with

microsoft/dotnet  images as of .NET Core 2.1. For more information, see the Docker repositories migration

announcement.

The docker images  command returns intermediary images with repository names and tags identified as <none> (not

listed above). These unnamed images are produced by the multi-stage build Dockerfile. They improve the efficiency of

building the final image—only the necessary layers are rebuilt when changes occur. When the intermediary images are no

longer needed, delete them using the docker rmi command.

There may be an expectation for the production or release image to be smaller in size by comparison to the dev

image. Because of the volume mapping, the debugger and app were running from the local machine and not

https://github.com/aspnet/Announcements/issues/298
https://docs.docker.com/engine/userguide/eng-image/multistage-build/
https://docs.docker.com/engine/reference/commandline/rmi/


Additional resources

within the container. The latest image has packaged the necessary app code to run the app on a host machine.

Therefore, the delta is the size of the app code.

Container development with Visual Studio

Azure Service Fabric: Prepare your development environment

Deploy a .NET app in a Windows container to Azure Service Fabric

Troubleshoot Visual Studio development with Docker

Visual Studio Container Tools GitHub repository

GC using Docker and small containers

https://docs.microsoft.com/en-us/visualstudio/containers
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-host-app-in-a-container
https://docs.microsoft.com/en-us/azure/vs-azure-tools-docker-troubleshooting-docker-errors
https://github.com/Microsoft/DockerTools


    

Configure ASP.NET Core to work with proxy
servers and load balancers
9/22/2020 • 26 minutes to read • Edit Online

Forwarded headers

H EA DERH EA DER DESC RIP T IO NDESC RIP T IO N

X-Forwarded-For Holds information about the client that initiated the
request and subsequent proxies in a chain of proxies.
This parameter may contain IP addresses (and, optionally,
port numbers). In a chain of proxy servers, the first
parameter indicates the client where the request was first
made. Subsequent proxy identifiers follow. The last proxy
in the chain isn't in the list of parameters. The last proxy's
IP address, and optionally a port number, are available as
the remote IP address at the transport layer.

X-Forwarded-Proto The value of the originating scheme (HTTP/HTTPS). The
value may also be a list of schemes if the request has
traversed multiple proxies.

X-Forwarded-Host The original value of the Host header field. Usually,
proxies don't modify the Host header. See Microsoft
Security Advisory CVE-2018-0787 for information on an
elevation-of-privileges vulnerability that affects systems
where the proxy doesn't validate or restrict Host headers
to known good values.

By Chris Ross

In the recommended configuration for ASP.NET Core, the app is hosted using IIS/ASP.NET Core Module,

Nginx, or Apache. Proxy servers, load balancers, and other network appliances often obscure information

about the request before it reaches the app:

When HTTPS requests are proxied over HTTP, the original scheme (HTTPS) is lost and must be

forwarded in a header.

Because an app receives a request from the proxy and not its true source on the Internet or corporate

network, the originating client IP address must also be forwarded in a header.

This information may be important in request processing, for example in redirects, authentication, link

generation, policy evaluation, and client geolocation.

By convention, proxies forward information in HTTP headers.

The Forwarded Headers Middleware, from the Microsoft.AspNetCore.HttpOverrides package, reads these

headers and fills in the associated fields on HttpContext.

The middleware updates:

HttpContext.Connection.RemoteIpAddress: Set using the X-Forwarded-For  header value. Additional

settings influence how the middleware sets RemoteIpAddress . For details, see the Forwarded Headers

Middleware options.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/proxy-load-balancer.md
https://github.com/Tratcher
https://github.com/aspnet/Announcements/issues/295
https://www.nuget.org/packages/Microsoft.AspNetCore.HttpOverrides/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connectioninfo.remoteipaddress#microsoft_aspnetcore_http_connectioninfo_remoteipaddress


IIS/IIS Express and ASP.NET Core Module

Other proxy server and load balancer scenarios

Forwarded Headers Middleware orderForwarded Headers Middleware order

HttpContext.Request.Scheme: Set using the X-Forwarded-Proto  header value.

HttpContext.Request.Host: Set using the X-Forwarded-Host  header value.

Forwarded Headers Middleware default settings can be configured. The default settings are:

There is only one proxy between the app and the source of the requests.

Only loopback addresses are configured for known proxies and known networks.

The forwarded headers are named X-Forwarded-For  and X-Forwarded-Proto .

Not all network appliances add the X-Forwarded-For  and X-Forwarded-Proto  headers without additional

configuration. Consult your appliance manufacturer's guidance if proxied requests don't contain these

headers when they reach the app. If the appliance uses different header names than X-Forwarded-For  and 

X-Forwarded-Proto , set the ForwardedForHeaderName and ForwardedProtoHeaderName options to

match the header names used by the appliance. For more information, see Forwarded Headers

Middleware options and Configuration for a proxy that uses different header names.

Forwarded Headers Middleware is enabled by default by IIS Integration Middleware when the app is

hosted out-of-process behind IIS and the ASP.NET Core Module. Forwarded Headers Middleware is

activated to run first in the middleware pipeline with a restricted configuration specific to the ASP.NET

Core Module due to trust concerns with forwarded headers (for example, IP spoofing). The middleware is

configured to forward the X-Forwarded-For  and X-Forwarded-Proto  headers and is restricted to a single

localhost proxy. If additional configuration is required, see the Forwarded Headers Middleware options.

Outside of using IIS Integration when hosting out-of-process, Forwarded Headers Middleware isn't

enabled by default. Forwarded Headers Middleware must be enabled for an app to process forwarded

headers with UseForwardedHeaders. After enabling the middleware if no ForwardedHeadersOptions are

specified to the middleware, the default ForwardedHeadersOptions.ForwardedHeaders are

ForwardedHeaders.None.

Configure the middleware with ForwardedHeadersOptions to forward the X-Forwarded-For  and 

X-Forwarded-Proto  headers in Startup.ConfigureServices .

      

Forwarded Headers Middleware should run before other middleware. This ordering ensures that the

middleware relying on forwarded headers information can consume the header values for processing.

Forwarded Headers Middleware can run after diagnostics and error handling, but it must be run before

calling UseHsts :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.scheme#microsoft_aspnetcore_http_httprequest_scheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.host#microsoft_aspnetcore_http_httprequest_host
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedforheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedprotoheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedprotoheadername
https://www.iplocation.net/ip-spoofing
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddControllersWithViews();
        services.Configure<ForwardedHeadersOptions>(options =>
        {
            options.ForwardedHeaders =
                ForwardedHeaders.XForwardedFor | ForwardedHeaders.XForwardedProto;
        });
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
            app.UseForwardedHeaders();
        }
        else
        {
            app.UseExceptionHandler("/Home/Error");
            app.UseForwardedHeaders();
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();

        app.UseRouting();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllerRoute(
                name: "default",
                pattern: "{controller=Home}/{action=Index}/{id?}");
        });
    }
}

Alternatively, call UseForwardedHeaders  before diagnostics:



            

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    app.UseForwardedHeaders();

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllerRoute(
            name: "default",
            pattern: "{controller=Home}/{action=Index}/{id?}");
    });
}

NOTENOTE

Nginx configuration

Apache configuration

Forwarded Headers Middleware options

If no ForwardedHeadersOptions are specified in Startup.ConfigureServices  or directly to the extension

method with UseForwardedHeaders, the default headers to forward are ForwardedHeaders.None. The

ForwardedHeaders property must be configured with the headers to forward.

To forward the X-Forwarded-For  and X-Forwarded-Proto  headers, see Host ASP.NET Core on Linux with

Nginx. For more information, see NGINX: Using the Forwarded header.

X-Forwarded-For  is added automatically (see Apache Module mod_proxy: Reverse Proxy Request

Headers). For information on how to forward the X-Forwarded-Proto  header, see Host ASP.NET Core on

Linux with Apache.

ForwardedHeadersOptions control the behavior of the Forwarded Headers Middleware. The following

example changes the default values:

Limit the number of entries in the forwarded headers to 2 .

Add a known proxy address of 127.0.10.1 .

Change the forwarded header name from the default X-Forwarded-For  to 

X-Forwarded-For-My-Custom-Header-Name .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedheaders
https://www.nginx.com/resources/wiki/start/topics/examples/forwarded/
https://httpd.apache.org/docs/2.4/mod/mod_proxy.html#x-headers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions


services.Configure<ForwardedHeadersOptions>(options =>
{
    options.ForwardLimit = 2;
    options.KnownProxies.Add(IPAddress.Parse("127.0.10.1"));
    options.ForwardedForHeaderName = "X-Forwarded-For-My-Custom-Header-Name";
});

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

AllowedHosts Restricts hosts by the X-Forwarded-Host  header to the

values provided.

The default value is an empty IList<string> .

ForwardedForHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XForwardedForHeaderName.
This option is used when the proxy/forwarder doesn't
use the X-Forwarded-For  header but uses some other

header to forward the information.

The default is X-Forwarded-For .

ForwardedHeaders Identifies which forwarders should be processed. See the
ForwardedHeaders Enum for the list of fields that apply.
Typical values assigned to this property are 
ForwardedHeaders.XForwardedFor |
ForwardedHeaders.XForwardedProto

.

The default value is ForwardedHeaders.None.

Values are compared using ordinal-ignore-case.

Port numbers must be excluded.

If the list is empty, all hosts are allowed.

A top-level wildcard *  allows all non-empty

hosts.

Subdomain wildcards are permitted but don't
match the root domain. For example, 
*.contoso.com  matches the subdomain 

foo.contoso.com  but not the root domain 

contoso.com .

Unicode host names are allowed but are
converted to Punycode for matching.

IPv6 addresses must include bounding brackets
and be in conventional form (for example, 
[ABCD:EF01:2345:6789:ABCD:EF01:2345:6789]

). IPv6 addresses aren't special-cased to check for
logical equality between different formats, and no
canonicalization is performed.

Failure to restrict the allowed hosts may allow an
attacker to spoof links generated by the service.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.allowedhosts#microsoft_aspnetcore_builder_forwardedheadersoptions_allowedhosts
https://tools.ietf.org/html/rfc3492
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc4291#section-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedforheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedforheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xforwardedforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders


ForwardedHostHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XForwardedHostHeaderName
. This option is used when the proxy/forwarder doesn't
use the X-Forwarded-Host  header but uses some other

header to forward the information.

The default is X-Forwarded-Host .

ForwardedProtoHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XForwardedProtoHeaderNam
e. This option is used when the proxy/forwarder doesn't
use the X-Forwarded-Proto  header but uses some

other header to forward the information.

The default is X-Forwarded-Proto .

ForwardLimit Limits the number of entries in the headers that are
processed. Set to null  to disable the limit, but this

should only be done if KnownProxies  or 

KnownNetworks  are configured. Setting a non- null

value is a precaution (but not a guarantee) to guard
against misconfigured proxies and malicious requests
arriving from side-channels on the network.

Forwarded Headers Middleware processes headers in
reverse order from right to left. If the default value ( 1 )

is used, only the rightmost value from the headers is
processed unless the value of ForwardLimit  is

increased.

The default is 1 .

KnownNetworks Address ranges of known networks to accept forwarded
headers from. Provide IP ranges using Classless
Interdomain Routing (CIDR) notation.

If the server is using dual-mode sockets, IPv4 addresses
are supplied in an IPv6 format (for example, 10.0.0.1

in IPv4 represented in IPv6 as ::ffff:10.0.0.1 ). See

IPAddress.MapToIPv6. Determine if this format is
required by looking at the
HttpContext.Connection.RemoteIpAddress. For more
information, see the Configuration for an IPv4 address
represented as an IPv6 address section.

The default is an IList <IPNetwork> containing a

single entry for IPAddress.Loopback .

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedhostheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedhostheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedhostheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xforwardedhostheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedprotoheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedprotoheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedprotoheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xforwardedprotoheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardlimit#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardlimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownnetworks#microsoft_aspnetcore_builder_forwardedheadersoptions_knownnetworks
https://docs.microsoft.com/en-us/dotnet/api/system.net.ipaddress.maptoipv6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connectioninfo.remoteipaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.ipnetwork


KnownProxies Addresses of known proxies to accept forwarded headers
from. Use KnownProxies  to specify exact IP address

matches.

If the server is using dual-mode sockets, IPv4 addresses
are supplied in an IPv6 format (for example, 10.0.0.1

in IPv4 represented in IPv6 as ::ffff:10.0.0.1 ). See

IPAddress.MapToIPv6. Determine if this format is
required by looking at the
HttpContext.Connection.RemoteIpAddress. For more
information, see the Configuration for an IPv4 address
represented as an IPv6 address section.

The default is an IList <IPAddress> containing a single

entry for IPAddress.IPv6Loopback .

OriginalForHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XOriginalForHeaderName.

The default is X-Original-For .

OriginalHostHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XOriginalHostHeaderName.

The default is X-Original-Host .

OriginalProtoHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XOriginalProtoHeaderName.

The default is X-Original-Proto .

RequireHeaderSymmetry Require the number of header values to be in sync
between the
ForwardedHeadersOptions.ForwardedHeaders being
processed.

The default in ASP.NET Core 1.x is true . The default in

ASP.NET Core 2.0 or later is false .

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

Scenarios and use cases
When it isn't possible to add forwarded headers and all requests are secureWhen it isn't possible to add forwarded headers and all requests are secure

app.Use((context, next) =>
{
    context.Request.Scheme = "https";
    return next();
});

In some cases, it might not be possible to add forwarded headers to the requests proxied to the app. If the

proxy is enforcing that all public external requests are HTTPS, the scheme can be manually set in 

Startup.Configure  before using any type of middleware:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownproxies#microsoft_aspnetcore_builder_forwardedheadersoptions_knownproxies
https://docs.microsoft.com/en-us/dotnet/api/system.net.ipaddress.maptoipv6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connectioninfo.remoteipaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.ipaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalforheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_originalforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalforheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xoriginalforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalhostheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_originalhostheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalhostheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xoriginalhostheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalprotoheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_originalprotoheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalprotoheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xoriginalprotoheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.requireheadersymmetry#microsoft_aspnetcore_builder_forwardedheadersoptions_requireheadersymmetry
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedheaders


    

        

Deal with path base and proxies that change the request pathDeal with path base and proxies that change the request path

app.UsePathBase("/foo");

app.Use((context, next) =>
{
    context.Request.PathBase = new PathString("/foo");
    return next();
});

app.Use((context, next) =>
{
    if (context.Request.Path.StartsWithSegments("/foo", out var remainder))
    {
        context.Request.Path = remainder;
    }

    return next();
});

Configuration for a proxy that uses different header namesConfiguration for a proxy that uses different header names

services.Configure<ForwardedHeadersOptions>(options =>
{
    options.ForwardedForHeaderName = "Header_Name_Used_By_Proxy_For_X-Forwarded-For_Header";
    options.ForwardedProtoHeaderName = "Header_Name_Used_By_Proxy_For_X-Forwarded-Proto_Header";
});

Configuration for an IPv4 address represented as an IPv6 addressConfiguration for an IPv4 address represented as an IPv6 address

This code can be disabled with an environment variable or other configuration setting in a development

or staging environment.

Some proxies pass the path intact but with an app base path that should be removed so that routing

works properly. UsePathBaseExtensions.UsePathBase middleware splits the path into HttpRequest.Path

and the app base path into HttpRequest.PathBase.

If /foo  is the app base path for a proxy path passed as /foo/api/1 , the middleware sets 

Request.PathBase  to /foo  and Request.Path  to /api/1  with the following command:

The original path and path base are reapplied when the middleware is called again in reverse. For more

information on middleware order processing, see ASP.NET Core Middleware.

If the proxy trims the path (for example, forwarding /foo/api/1  to /api/1 ), fix redirects and links by

setting the request's PathBase property:

If the proxy is adding path data, discard part of the path to fix redirects and links by using

StartsWithSegments and assigning to the Path property:

If the proxy doesn't use headers named X-Forwarded-For  and X-Forwarded-Proto  to forward the proxy

address/port and originating scheme information, set the ForwardedForHeaderName and

ForwardedProtoHeaderName options to match the header names used by the proxy:

If the server is using dual-mode sockets, IPv4 addresses are supplied in an IPv6 format (for example, 

10.0.0.1  in IPv4 represented in IPv6 as ::ffff:10.0.0.1  or ::ffff:a00:1 ). See IPAddress.MapToIPv6.

Determine if this format is required by looking at the HttpContext.Connection.RemoteIpAddress.

In the following example, a network address that supplies forwarded headers is added to the 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usepathbaseextensions.usepathbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.path#microsoft_aspnetcore_http_httprequest_path
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.pathbase#microsoft_aspnetcore_http_httprequest_pathbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.pathbase#microsoft_aspnetcore_http_httprequest_pathbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.pathstring.startswithsegments
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.path#microsoft_aspnetcore_http_httprequest_path
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedforheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedprotoheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedprotoheadername
https://docs.microsoft.com/en-us/dotnet/api/system.net.ipaddress.maptoipv6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connectioninfo.remoteipaddress


  

 

// To access IPNetwork and IPAddress, add the following namespaces:
// using System.Net;
// using Microsoft.AspNetCore.HttpOverrides;
services.Configure<ForwardedHeadersOptions>(options =>
{
    options.ForwardedHeaders =
        ForwardedHeaders.XForwardedFor | ForwardedHeaders.XForwardedProto;
    options.KnownNetworks.Add(new IPNetwork(
        IPAddress.Parse("::ffff:10.11.12.1"), 104));
});

Forward the scheme for Linux and non-IIS reverse proxies

// using Microsoft.AspNetCore.HttpOverrides;

if (string.Equals(
    Environment.GetEnvironmentVariable("ASPNETCORE_FORWARDEDHEADERS_ENABLED"), 
    "true", StringComparison.OrdinalIgnoreCase))
{
    services.Configure<ForwardedHeadersOptions>(options =>
    {
        options.ForwardedHeaders = ForwardedHeaders.XForwardedFor | 
            ForwardedHeaders.XForwardedProto;
        // Only loopback proxies are allowed by default.
        // Clear that restriction because forwarders are enabled by explicit 
        // configuration.
        options.KnownNetworks.Clear();
        options.KnownProxies.Clear();
    });
}

Certificate forwarding
AzureAzure

KnownNetworks  list in IPv6 format.

IPv4 address: 10.11.12.1/8

Converted IPv6 address: ::ffff:10.11.12.1

Converted prefix length: 104

You can also supply the address in hexadecimal format ( 10.11.12.1  represented in IPv6 as 

::ffff:0a0b:0c01 ). When converting an IPv4 address to IPv6, add 96 to the CIDR Prefix Length ( 8  in the

example) to account for the additional ::ffff:  IPv6 prefix (8 + 96 = 104).

Apps that call UseHttpsRedirection and UseHsts put a site into an infinite loop if deployed to an Azure

Linux App Service, Azure Linux virtual machine (VM), or behind any other reverse proxy besides IIS. TLS is

terminated by the reverse proxy, and Kestrel isn't made aware of the correct request scheme. OAuth and

OIDC also fail in this configuration because they generate incorrect redirects. UseIISIntegration adds and

configures Forwarded Headers Middleware when running behind IIS, but there's no matching automatic

configuration for Linux (Apache or Nginx integration).

To forward the scheme from the proxy in non-IIS scenarios, add and configure Forwarded Headers

Middleware. In Startup.ConfigureServices , use the following code:

To configure Azure App Service for certificate forwarding, see Configure TLS mutual authentication for

Azure App Service. The following guidance pertains to configuring the ASP.NET Core app.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpspolicybuilderextensions.usehttpsredirection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hstsbuilderextensions.usehsts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiisintegration
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-configure-tls-mutual-auth


app.UseCertificateForwarding();

services.AddCertificateForwarding(options =>
    options.CertificateHeader = "X-ARR-ClientCert");

Other web proxiesOther web proxies

app.UseCertificateForwarding();

services.AddCertificateForwarding(options =>
    options.CertificateHeader = "YOUR_CERTIFICATE_HEADER_NAME");

services.AddCertificateForwarding(options =>
{
    options.CertificateHeader = "YOUR_CUSTOM_HEADER_NAME";
    options.HeaderConverter = (headerValue) => 
    {
        var clientCertificate = 
           /* some conversion logic to create an X509Certificate2 */
        return clientCertificate;
    }
});

Troubleshoot

In Startup.Configure , add the following code before the call to app.UseAuthentication(); :

Configure Certificate Forwarding Middleware to specify the header name that Azure uses. In 

Startup.ConfigureServices , add the following code to configure the header from which the middleware

builds a certificate:

If a proxy is used that isn't IIS or Azure App Service's Application Request Routing (ARR), configure the

proxy to forward the certificate that it received in an HTTP header. In Startup.Configure , add the

following code before the call to app.UseAuthentication(); :

Configure the Certificate Forwarding Middleware to specify the header name. In 

Startup.ConfigureServices , add the following code to configure the header from which the middleware

builds a certificate:

If the proxy isn't base64-encoding the certificate (as is the case with Nginx), set the HeaderConverter

option. Consider the following example in Startup.ConfigureServices :

When headers aren't forwarded as expected, enable logging. If the logs don't provide sufficient

information to troubleshoot the problem, enumerate the request headers received by the server. Use

inline middleware to write request headers to an app response or log the headers.

To write the headers to the app's response, place the following terminal inline middleware immediately

after the call to UseForwardedHeaders in Startup.Configure :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders


app.Run(async (context) =>
{
    context.Response.ContentType = "text/plain";

    // Request method, scheme, and path
    await context.Response.WriteAsync(
        $"Request Method: {context.Request.Method}{Environment.NewLine}");
    await context.Response.WriteAsync(
        $"Request Scheme: {context.Request.Scheme}{Environment.NewLine}");
    await context.Response.WriteAsync(
        $"Request Path: {context.Request.Path}{Environment.NewLine}");

    // Headers
    await context.Response.WriteAsync($"Request Headers:{Environment.NewLine}");

    foreach (var header in context.Request.Headers)
    {
        await context.Response.WriteAsync($"{header.Key}: " +
            $"{header.Value}{Environment.NewLine}");
    }

    await context.Response.WriteAsync(Environment.NewLine);

    // Connection: RemoteIp
    await context.Response.WriteAsync(
        $"Request RemoteIp: {context.Connection.RemoteIpAddress}");
});

app.Use(async (context, next) =>
{
    // Request method, scheme, and path
    _logger.LogDebug("Request Method: {Method}", context.Request.Method);
    _logger.LogDebug("Request Scheme: {Scheme}", context.Request.Scheme);
    _logger.LogDebug("Request Path: {Path}", context.Request.Path);

    // Headers
    foreach (var header in context.Request.Headers)
    {
        _logger.LogDebug("Header: {Key}: {Value}", header.Key, header.Value);
    }

    // Connection: RemoteIp
    _logger.LogDebug("Request RemoteIp: {RemoteIpAddress}", 
        context.Connection.RemoteIpAddress);

    await next();
});

You can write to logs instead of the response body. Writing to logs allows the site to function normally

while debugging.

To write logs rather than to the response body:

Inject ILogger<Startup>  into the Startup  class as described in Create logs in Startup.

Place the following inline middleware immediately after the call to UseForwardedHeaders in 

Startup.Configure .

When processed, X-Forwarded-{For|Proto|Host}  values are moved to X-Original-{For|Proto|Host} . If

there are multiple values in a given header, Forwarded Headers Middleware processes headers in reverse

order from right to left. The default ForwardLimit  is 1  (one), so only the rightmost value from the

headers is processed unless the value of ForwardLimit  is increased.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders


September 20th 2018, 15:49:44.168 Unknown proxy: 10.0.0.100:54321

services.Configure<ForwardedHeadersOptions>(options =>
{
    options.KnownProxies.Add(IPAddress.Parse("10.0.0.100"));
});

IMPORTANTIMPORTANT

Additional resources

Forwarded headers

H EA DERH EA DER DESC RIP T IO NDESC RIP T IO N

X-Forwarded-For Holds information about the client that initiated the
request and subsequent proxies in a chain of proxies.
This parameter may contain IP addresses (and, optionally,
port numbers). In a chain of proxy servers, the first
parameter indicates the client where the request was first
made. Subsequent proxy identifiers follow. The last proxy
in the chain isn't in the list of parameters. The last proxy's
IP address, and optionally a port number, are available as
the remote IP address at the transport layer.

The request's original remote IP must match an entry in the KnownProxies  or KnownNetworks  lists before

forwarded headers are processed. This limits header spoofing by not accepting forwarders from

untrusted proxies. When an unknown proxy is detected, logging indicates the address of the proxy:

In the preceding example, 10.0.0.100 is a proxy server. If the server is a trusted proxy, add the server's IP

address to KnownProxies  (or add a trusted network to KnownNetworks ) in Startup.ConfigureServices . For

more information, see the Forwarded Headers Middleware options section.

Only allow trusted proxies and networks to forward headers. Otherwise, IP spoofing attacks are possible.

Host ASP.NET Core in a web farm

Microsoft Security Advisory CVE-2018-0787: ASP.NET Core Elevation Of Privilege Vulnerability

In the recommended configuration for ASP.NET Core, the app is hosted using IIS/ASP.NET Core Module,

Nginx, or Apache. Proxy servers, load balancers, and other network appliances often obscure information

about the request before it reaches the app:

When HTTPS requests are proxied over HTTP, the original scheme (HTTPS) is lost and must be

forwarded in a header.

Because an app receives a request from the proxy and not its true source on the Internet or corporate

network, the originating client IP address must also be forwarded in a header.

This information may be important in request processing, for example in redirects, authentication, link

generation, policy evaluation, and client geolocation.

By convention, proxies forward information in HTTP headers.

https://www.iplocation.net/ip-spoofing
https://github.com/aspnet/Announcements/issues/295


X-Forwarded-Proto The value of the originating scheme (HTTP/HTTPS). The
value may also be a list of schemes if the request has
traversed multiple proxies.

X-Forwarded-Host The original value of the Host header field. Usually,
proxies don't modify the Host header. See Microsoft
Security Advisory CVE-2018-0787 for information on an
elevation-of-privileges vulnerability that affects systems
where the proxy doesn't validate or restrict Host headers
to known good values.

H EA DERH EA DER DESC RIP T IO NDESC RIP T IO N

IIS/IIS Express and ASP.NET Core Module

Other proxy server and load balancer scenarios

The Forwarded Headers Middleware, from the Microsoft.AspNetCore.HttpOverrides package, reads these

headers and fills in the associated fields on HttpContext.

The middleware updates:

HttpContext.Connection.RemoteIpAddress: Set using the X-Forwarded-For  header value. Additional

settings influence how the middleware sets RemoteIpAddress . For details, see the Forwarded Headers

Middleware options.

HttpContext.Request.Scheme: Set using the X-Forwarded-Proto  header value.

HttpContext.Request.Host: Set using the X-Forwarded-Host  header value.

Forwarded Headers Middleware default settings can be configured. The default settings are:

There is only one proxy between the app and the source of the requests.

Only loopback addresses are configured for known proxies and known networks.

The forwarded headers are named X-Forwarded-For  and X-Forwarded-Proto .

Not all network appliances add the X-Forwarded-For  and X-Forwarded-Proto  headers without additional

configuration. Consult your appliance manufacturer's guidance if proxied requests don't contain these

headers when they reach the app. If the appliance uses different header names than X-Forwarded-For  and 

X-Forwarded-Proto , set the ForwardedForHeaderName and ForwardedProtoHeaderName options to

match the header names used by the appliance. For more information, see Forwarded Headers

Middleware options and Configuration for a proxy that uses different header names.

Forwarded Headers Middleware is enabled by default by IIS Integration Middleware when the app is

hosted out-of-process behind IIS and the ASP.NET Core Module. Forwarded Headers Middleware is

activated to run first in the middleware pipeline with a restricted configuration specific to the ASP.NET

Core Module due to trust concerns with forwarded headers (for example, IP spoofing). The middleware is

configured to forward the X-Forwarded-For  and X-Forwarded-Proto  headers and is restricted to a single

localhost proxy. If additional configuration is required, see the Forwarded Headers Middleware options.

Outside of using IIS Integration when hosting out-of-process, Forwarded Headers Middleware isn't

enabled by default. Forwarded Headers Middleware must be enabled for an app to process forwarded

headers with UseForwardedHeaders. After enabling the middleware if no ForwardedHeadersOptions are

specified to the middleware, the default ForwardedHeadersOptions.ForwardedHeaders are

ForwardedHeaders.None.

Configure the middleware with ForwardedHeadersOptions to forward the X-Forwarded-For  and 

https://github.com/aspnet/Announcements/issues/295
https://www.nuget.org/packages/Microsoft.AspNetCore.HttpOverrides/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connectioninfo.remoteipaddress#microsoft_aspnetcore_http_connectioninfo_remoteipaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.scheme#microsoft_aspnetcore_http_httprequest_scheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.host#microsoft_aspnetcore_http_httprequest_host
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedforheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedprotoheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedprotoheadername
https://www.iplocation.net/ip-spoofing
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions


public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc();

    services.Configure<ForwardedHeadersOptions>(options =>
    {
        options.ForwardedHeaders = 
            ForwardedHeaders.XForwardedFor | ForwardedHeaders.XForwardedProto;
    });
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    app.UseForwardedHeaders();

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
    }

    app.UseStaticFiles();
    // In ASP.NET Core 1.x, replace the following line with: app.UseIdentity();
    app.UseAuthentication();
    app.UseMvc();
}

NOTENOTE

Nginx configuration

Apache configuration

Forwarded Headers Middleware options

X-Forwarded-Proto  headers in Startup.ConfigureServices . Invoke the UseForwardedHeaders method in 

Startup.Configure  before calling other middleware:

If no ForwardedHeadersOptions are specified in Startup.ConfigureServices  or directly to the extension

method with UseForwardedHeaders, the default headers to forward are ForwardedHeaders.None. The

ForwardedHeaders property must be configured with the headers to forward.

To forward the X-Forwarded-For  and X-Forwarded-Proto  headers, see Host ASP.NET Core on Linux with

Nginx. For more information, see NGINX: Using the Forwarded header.

X-Forwarded-For  is added automatically (see Apache Module mod_proxy: Reverse Proxy Request

Headers). For information on how to forward the X-Forwarded-Proto  header, see Host ASP.NET Core on

Linux with Apache.

ForwardedHeadersOptions control the behavior of the Forwarded Headers Middleware. The following

example changes the default values:

Limit the number of entries in the forwarded headers to 2 .

Add a known proxy address of 127.0.10.1 .

Change the forwarded header name from the default X-Forwarded-For  to 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedheaders
https://www.nginx.com/resources/wiki/start/topics/examples/forwarded/
https://httpd.apache.org/docs/2.4/mod/mod_proxy.html#x-headers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions


services.Configure<ForwardedHeadersOptions>(options =>
{
    options.ForwardLimit = 2;
    options.KnownProxies.Add(IPAddress.Parse("127.0.10.1"));
    options.ForwardedForHeaderName = "X-Forwarded-For-My-Custom-Header-Name";
});

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

AllowedHosts Restricts hosts by the X-Forwarded-Host  header to the

values provided.

The default value is an empty IList<string> .

ForwardedForHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XForwardedForHeaderName.
This option is used when the proxy/forwarder doesn't
use the X-Forwarded-For  header but uses some other

header to forward the information.

The default is X-Forwarded-For .

ForwardedHeaders Identifies which forwarders should be processed. See the
ForwardedHeaders Enum for the list of fields that apply.
Typical values assigned to this property are 
ForwardedHeaders.XForwardedFor |
ForwardedHeaders.XForwardedProto

.

The default value is ForwardedHeaders.None.

X-Forwarded-For-My-Custom-Header-Name .

Values are compared using ordinal-ignore-case.

Port numbers must be excluded.

If the list is empty, all hosts are allowed.

A top-level wildcard *  allows all non-empty

hosts.

Subdomain wildcards are permitted but don't
match the root domain. For example, 
*.contoso.com  matches the subdomain 

foo.contoso.com  but not the root domain 

contoso.com .

Unicode host names are allowed but are
converted to Punycode for matching.

IPv6 addresses must include bounding brackets
and be in conventional form (for example, 
[ABCD:EF01:2345:6789:ABCD:EF01:2345:6789]

). IPv6 addresses aren't special-cased to check for
logical equality between different formats, and no
canonicalization is performed.

Failure to restrict the allowed hosts may allow an
attacker to spoof links generated by the service.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.allowedhosts#microsoft_aspnetcore_builder_forwardedheadersoptions_allowedhosts
https://tools.ietf.org/html/rfc3492
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc4291#section-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedforheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedforheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xforwardedforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheaders


ForwardedHostHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XForwardedHostHeaderName
. This option is used when the proxy/forwarder doesn't
use the X-Forwarded-Host  header but uses some other

header to forward the information.

The default is X-Forwarded-Host .

ForwardedProtoHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XForwardedProtoHeaderNam
e. This option is used when the proxy/forwarder doesn't
use the X-Forwarded-Proto  header but uses some

other header to forward the information.

The default is X-Forwarded-Proto .

ForwardLimit Limits the number of entries in the headers that are
processed. Set to null  to disable the limit, but this

should only be done if KnownProxies  or 

KnownNetworks  are configured. Setting a non- null

value is a precaution (but not a guarantee) to guard
against misconfigured proxies and malicious requests
arriving from side-channels on the network.

Forwarded Headers Middleware processes headers in
reverse order from right to left. If the default value ( 1 )

is used, only the rightmost value from the headers is
processed unless the value of ForwardLimit  is

increased.

The default is 1 .

KnownNetworks Address ranges of known networks to accept forwarded
headers from. Provide IP ranges using Classless
Interdomain Routing (CIDR) notation.

If the server is using dual-mode sockets, IPv4 addresses
are supplied in an IPv6 format (for example, 10.0.0.1

in IPv4 represented in IPv6 as ::ffff:10.0.0.1 ). See

IPAddress.MapToIPv6. Determine if this format is
required by looking at the
HttpContext.Connection.RemoteIpAddress. For more
information, see the Configuration for an IPv4 address
represented as an IPv6 address section.

The default is an IList <IPNetwork> containing a

single entry for IPAddress.Loopback .

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedhostheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedhostheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedhostheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xforwardedhostheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedprotoheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedprotoheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xforwardedprotoheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xforwardedprotoheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardlimit#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardlimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownnetworks#microsoft_aspnetcore_builder_forwardedheadersoptions_knownnetworks
https://docs.microsoft.com/en-us/dotnet/api/system.net.ipaddress.maptoipv6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connectioninfo.remoteipaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.ipnetwork


KnownProxies Addresses of known proxies to accept forwarded headers
from. Use KnownProxies  to specify exact IP address

matches.

If the server is using dual-mode sockets, IPv4 addresses
are supplied in an IPv6 format (for example, 10.0.0.1

in IPv4 represented in IPv6 as ::ffff:10.0.0.1 ). See

IPAddress.MapToIPv6. Determine if this format is
required by looking at the
HttpContext.Connection.RemoteIpAddress. For more
information, see the Configuration for an IPv4 address
represented as an IPv6 address section.

The default is an IList <IPAddress> containing a single

entry for IPAddress.IPv6Loopback .

OriginalForHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XOriginalForHeaderName.

The default is X-Original-For .

OriginalHostHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XOriginalHostHeaderName.

The default is X-Original-Host .

OriginalProtoHeaderName Use the header specified by this property instead of the
one specified by
ForwardedHeadersDefaults.XOriginalProtoHeaderName.

The default is X-Original-Proto .

RequireHeaderSymmetry Require the number of header values to be in sync
between the
ForwardedHeadersOptions.ForwardedHeaders being
processed.

The default in ASP.NET Core 1.x is true . The default in

ASP.NET Core 2.0 or later is false .

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

Scenarios and use cases
When it isn't possible to add forwarded headers and all requests are secureWhen it isn't possible to add forwarded headers and all requests are secure

app.Use((context, next) =>
{
    context.Request.Scheme = "https";
    return next();
});

In some cases, it might not be possible to add forwarded headers to the requests proxied to the app. If the

proxy is enforcing that all public external requests are HTTPS, the scheme can be manually set in 

Startup.Configure  before using any type of middleware:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.knownproxies#microsoft_aspnetcore_builder_forwardedheadersoptions_knownproxies
https://docs.microsoft.com/en-us/dotnet/api/system.net.ipaddress.maptoipv6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connectioninfo.remoteipaddress
https://docs.microsoft.com/en-us/dotnet/api/system.net.ipaddress
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalforheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_originalforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalforheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xoriginalforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalhostheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_originalhostheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalhostheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xoriginalhostheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.originalprotoheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_originalprotoheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpoverrides.forwardedheadersdefaults.xoriginalprotoheadername#microsoft_aspnetcore_httpoverrides_forwardedheadersdefaults_xoriginalprotoheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.requireheadersymmetry#microsoft_aspnetcore_builder_forwardedheadersoptions_requireheadersymmetry
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedheaders#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedheaders


Deal with path base and proxies that change the request pathDeal with path base and proxies that change the request path

app.UsePathBase("/foo");

app.Use((context, next) =>
{
    context.Request.PathBase = new PathString("/foo");
    return next();
});

app.Use((context, next) =>
{
    if (context.Request.Path.StartsWithSegments("/foo", out var remainder))
    {
        context.Request.Path = remainder;
    }

    return next();
});

Configuration for a proxy that uses different header namesConfiguration for a proxy that uses different header names

services.Configure<ForwardedHeadersOptions>(options =>
{
    options.ForwardedForHeaderName = "Header_Name_Used_By_Proxy_For_X-Forwarded-For_Header";
    options.ForwardedProtoHeaderName = "Header_Name_Used_By_Proxy_For_X-Forwarded-Proto_Header";
});

Configuration for an IPv4 address represented as an IPv6 addressConfiguration for an IPv4 address represented as an IPv6 address

This code can be disabled with an environment variable or other configuration setting in a development

or staging environment.

Some proxies pass the path intact but with an app base path that should be removed so that routing

works properly. UsePathBaseExtensions.UsePathBase middleware splits the path into HttpRequest.Path

and the app base path into HttpRequest.PathBase.

If /foo  is the app base path for a proxy path passed as /foo/api/1 , the middleware sets 

Request.PathBase  to /foo  and Request.Path  to /api/1  with the following command:

The original path and path base are reapplied when the middleware is called again in reverse. For more

information on middleware order processing, see ASP.NET Core Middleware.

If the proxy trims the path (for example, forwarding /foo/api/1  to /api/1 ), fix redirects and links by

setting the request's PathBase property:

If the proxy is adding path data, discard part of the path to fix redirects and links by using

StartsWithSegments and assigning to the Path property:

If the proxy doesn't use headers named X-Forwarded-For  and X-Forwarded-Proto  to forward the proxy

address/port and originating scheme information, set the ForwardedForHeaderName and

ForwardedProtoHeaderName options to match the header names used by the proxy:

If the server is using dual-mode sockets, IPv4 addresses are supplied in an IPv6 format (for example, 

10.0.0.1  in IPv4 represented in IPv6 as ::ffff:10.0.0.1  or ::ffff:a00:1 ). See IPAddress.MapToIPv6.

Determine if this format is required by looking at the HttpContext.Connection.RemoteIpAddress.

In the following example, a network address that supplies forwarded headers is added to the 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usepathbaseextensions.usepathbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.path#microsoft_aspnetcore_http_httprequest_path
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.pathbase#microsoft_aspnetcore_http_httprequest_pathbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.pathbase#microsoft_aspnetcore_http_httprequest_pathbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.pathstring.startswithsegments
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.path#microsoft_aspnetcore_http_httprequest_path
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedforheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedforheadername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersoptions.forwardedprotoheadername#microsoft_aspnetcore_builder_forwardedheadersoptions_forwardedprotoheadername
https://docs.microsoft.com/en-us/dotnet/api/system.net.ipaddress.maptoipv6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.connectioninfo.remoteipaddress


// To access IPNetwork and IPAddress, add the following namespaces:
// using System.Net;
// using Microsoft.AspNetCore.HttpOverrides;
services.Configure<ForwardedHeadersOptions>(options =>
{
    options.ForwardedHeaders =
        ForwardedHeaders.XForwardedFor | ForwardedHeaders.XForwardedProto;
    options.KnownNetworks.Add(new IPNetwork(
        IPAddress.Parse("::ffff:10.11.12.1"), 104));
});

Forward the scheme for Linux and non-IIS reverse proxies

// using Microsoft.AspNetCore.HttpOverrides;

if (string.Equals(
    Environment.GetEnvironmentVariable("ASPNETCORE_FORWARDEDHEADERS_ENABLED"), 
    "true", StringComparison.OrdinalIgnoreCase))
{
    services.Configure<ForwardedHeadersOptions>(options =>
    {
        options.ForwardedHeaders = ForwardedHeaders.XForwardedFor | 
            ForwardedHeaders.XForwardedProto;
        // Only loopback proxies are allowed by default.
        // Clear that restriction because forwarders are enabled by explicit 
        // configuration.
        options.KnownNetworks.Clear();
        options.KnownProxies.Clear();
    });
}

Troubleshoot

KnownNetworks  list in IPv6 format.

IPv4 address: 10.11.12.1/8

Converted IPv6 address: ::ffff:10.11.12.1

Converted prefix length: 104

You can also supply the address in hexadecimal format ( 10.11.12.1  represented in IPv6 as 

::ffff:0a0b:0c01 ). When converting an IPv4 address to IPv6, add 96 to the CIDR Prefix Length ( 8  in the

example) to account for the additional ::ffff:  IPv6 prefix (8 + 96 = 104).

Apps that call UseHttpsRedirection and UseHsts put a site into an infinite loop if deployed to an Azure

Linux App Service, Azure Linux virtual machine (VM), or behind any other reverse proxy besides IIS. TLS is

terminated by the reverse proxy, and Kestrel isn't made aware of the correct request scheme. OAuth and

OIDC also fail in this configuration because they generate incorrect redirects. UseIISIntegration adds and

configures Forwarded Headers Middleware when running behind IIS, but there's no matching automatic

configuration for Linux (Apache or Nginx integration).

To forward the scheme from the proxy in non-IIS scenarios, add and configure Forwarded Headers

Middleware. In Startup.ConfigureServices , use the following code:

When headers aren't forwarded as expected, enable logging. If the logs don't provide sufficient

information to troubleshoot the problem, enumerate the request headers received by the server. Use

inline middleware to write request headers to an app response or log the headers.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpspolicybuilderextensions.usehttpsredirection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.hstsbuilderextensions.usehsts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderiisextensions.useiisintegration


app.Run(async (context) =>
{
    context.Response.ContentType = "text/plain";

    // Request method, scheme, and path
    await context.Response.WriteAsync(
        $"Request Method: {context.Request.Method}{Environment.NewLine}");
    await context.Response.WriteAsync(
        $"Request Scheme: {context.Request.Scheme}{Environment.NewLine}");
    await context.Response.WriteAsync(
        $"Request Path: {context.Request.Path}{Environment.NewLine}");

    // Headers
    await context.Response.WriteAsync($"Request Headers:{Environment.NewLine}");

    foreach (var header in context.Request.Headers)
    {
        await context.Response.WriteAsync($"{header.Key}: " +
            $"{header.Value}{Environment.NewLine}");
    }

    await context.Response.WriteAsync(Environment.NewLine);

    // Connection: RemoteIp
    await context.Response.WriteAsync(
        $"Request RemoteIp: {context.Connection.RemoteIpAddress}");
});

app.Use(async (context, next) =>
{
    // Request method, scheme, and path
    _logger.LogDebug("Request Method: {Method}", context.Request.Method);
    _logger.LogDebug("Request Scheme: {Scheme}", context.Request.Scheme);
    _logger.LogDebug("Request Path: {Path}", context.Request.Path);

    // Headers
    foreach (var header in context.Request.Headers)
    {
        _logger.LogDebug("Header: {Key}: {Value}", header.Key, header.Value);
    }

    // Connection: RemoteIp
    _logger.LogDebug("Request RemoteIp: {RemoteIpAddress}", 
        context.Connection.RemoteIpAddress);

    await next();
});

To write the headers to the app's response, place the following terminal inline middleware immediately

after the call to UseForwardedHeaders in Startup.Configure :

You can write to logs instead of the response body. Writing to logs allows the site to function normally

while debugging.

To write logs rather than to the response body:

Inject ILogger<Startup>  into the Startup  class as described in Create logs in Startup.

Place the following inline middleware immediately after the call to UseForwardedHeaders in 

Startup.Configure .

When processed, X-Forwarded-{For|Proto|Host}  values are moved to X-Original-{For|Proto|Host} . If

there are multiple values in a given header, Forwarded Headers Middleware processes headers in reverse

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.forwardedheadersextensions.useforwardedheaders


September 20th 2018, 15:49:44.168 Unknown proxy: 10.0.0.100:54321

services.Configure<ForwardedHeadersOptions>(options =>
{
    options.KnownProxies.Add(IPAddress.Parse("10.0.0.100"));
});

IMPORTANTIMPORTANT

Additional resources

order from right to left. The default ForwardLimit  is 1  (one), so only the rightmost value from the

headers is processed unless the value of ForwardLimit  is increased.

The request's original remote IP must match an entry in the KnownProxies  or KnownNetworks  lists before

forwarded headers are processed. This limits header spoofing by not accepting forwarders from

untrusted proxies. When an unknown proxy is detected, logging indicates the address of the proxy:

In the preceding example, 10.0.0.100 is a proxy server. If the server is a trusted proxy, add the server's IP

address to KnownProxies  (or add a trusted network to KnownNetworks ) in Startup.ConfigureServices . For

more information, see the Forwarded Headers Middleware options section.

Only allow trusted proxies and networks to forward headers. Otherwise, IP spoofing attacks are possible.

Host ASP.NET Core in a web farm

Microsoft Security Advisory CVE-2018-0787: ASP.NET Core Elevation Of Privilege Vulnerability

https://www.iplocation.net/ip-spoofing
https://github.com/aspnet/Announcements/issues/295


Host ASP.NET Core in a web farm
9/22/2020 • 5 minutes to read • Edit Online

General configuration

App data

Required configuration

Data ProtectionData Protection

By Chris Ross

A web farm is a group of two or more web servers (or nodes) that host multiple instances of an app. When

requests from users arrive to a web farm, a load balancer distributes the requests to the web farm's nodes. Web

farms improve:

Reliability/availabilityReliability/availability : When one or more nodes fail, the load balancer can route requests to other

functioning nodes to continue processing requests.

Capacity/performanceCapacity/performance: Multiple nodes can process more requests than a single server. The load balancer

balances the workload by distributing requests to the nodes.

ScalabilityScalability : When more or less capacity is required, the number of active nodes can be increased or

decreased to match the workload. Web farm platform technologies, such as Azure App Service, can

automatically add or remove nodes at the request of the system administrator or automatically without

human intervention.

MaintainabilityMaintainability : Nodes of a web farm can rely on a set of shared services, which results in easier system

management. For example, the nodes of a web farm can rely upon a single database server and a common

network location for static resources, such as images and downloadable files.

This topic describes configuration and dependencies for ASP.NET core apps hosted in a web farm that rely upon

shared resources.

Host and deploy ASP.NET Core

Learn how to set up hosting environments and deploy ASP.NET Core apps. Configure a process manager on

each node of the web farm to automate app starts and restarts. Each node requires the ASP.NET Core runtime.

For more information, see the topics in the Host and deploy area of the documentation.

Configure ASP.NET Core to work with proxy servers and load balancers

Learn about configuration for apps hosted behind proxy servers and load balancers, which often obscure

important request information.

Deploy ASP.NET Core apps to Azure App Service

Azure App Service is a Microsoft cloud computing platform service for hosting web apps, including ASP.NET

Core. App Service is a fully managed platform that provides automatic scaling, load balancing, patching, and

continuous deployment.

When an app is scaled to multiple instances, there might be app state that requires sharing across nodes. If the

state is transient, consider sharing an IDistributedCache. If the shared state requires persistence, consider

storing the shared state in a database.

Data Protection and Caching require configuration for apps deployed to a web farm.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/web-farm.md
https://github.com/Tratcher
https://azure.microsoft.com/services/app-service/
https://azure.microsoft.com/services/app-service/
https://azure.microsoft.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache


CachingCaching

Dependent components

SC EN A RIOSC EN A RIO DEP EN DS O N  …DEP EN DS O N  …

Authentication Data Protection (see Configure ASP.NET Core Data
Protection).

For more information, see Use cookie authentication without
ASP.NET Core Identity and Share authentication cookies
among ASP.NET apps.

Identity Authentication and database configuration.

For more information, see Introduction to Identity on
ASP.NET Core.

Session Data Protection (encrypted cookies) (see Configure ASP.NET
Core Data Protection) and Caching (see Distributed caching
in ASP.NET Core).

For more information, see Session and state management:
Session state.

TempData Data Protection (encrypted cookies) (see Configure ASP.NET
Core Data Protection) or Session (see Session and state
management: Session state).

For more information, see Session and state management:
TempData.

Anti-forgery Data Protection (see Configure ASP.NET Core Data
Protection).

For more information, see Prevent Cross-Site Request
Forgery (XSRF/CSRF) attacks in ASP.NET Core.

Troubleshoot
Data Protection and cachingData Protection and caching

The ASP.NET Core Data Protection system is used by apps to protect data. Data Protection relies upon a set of

cryptographic keys stored in a key ring. When the Data Protection system is initialized, it applies default settings

that store the key ring locally. Under the default configuration, a unique key ring is stored on each node of the

web farm. Consequently, each web farm node can't decrypt data that's encrypted by an app on any other node.

The default configuration isn't generally appropriate for hosting apps in a web farm. An alternative to

implementing a shared key ring is to always route user requests to the same node. For more information on

Data Protection system configuration for web farm deployments, see Configure ASP.NET Core Data Protection.

In a web farm environment, the caching mechanism must share cached items across the web farm's nodes.

Caching must either rely upon a common Redis cache, a shared SQL Server database, or a custom caching

implementation that shares cached items across the web farm. For more information, see Distributed caching in

ASP.NET Core.

The following scenarios don't require additional configuration, but they depend on technologies that require

configuration for web farms.

When Data Protection or caching isn't configured for a web farm environment, intermittent errors occur when



Obtain data from apps

Additional resources

requests are processed. This occurs because nodes don't share the same resources and user requests aren't

always routed back to the same node.

Consider a user who signs into the app using cookie authentication. The user signs into the app on one web

farm node. If their next request arrives at the same node where they signed in, the app is able to decrypt the

authentication cookie and allows access to the app's resource. If their next request arrives at a different node, the

app can't decrypt the authentication cookie from the node where the user signed in, and authorization for the

requested resource fails.

When any of the following symptoms occur intermittentlyintermittently , the problem is usually traced to improper Data

Protection or caching configuration for a web farm environment:

Authentication breaks: The authentication cookie is misconfigured or can't be decrypted. OAuth (Facebook,

Microsoft, Twitter) or OpenIdConnect logins fail with the error "Correlation failed."

Authorization breaks: Identity is lost.

Session state loses data.

Cached items disappear.

TempData fails.

POSTs fail: The anti-forgery check fails.

For more information on Data Protection configuration for web farm deployments, see Configure ASP.NET Core

Data Protection. For more information on caching configuration for web farm deployments, see Distributed

caching in ASP.NET Core.

If the web farm apps are capable of responding to requests, obtain request, connection, and additional data

from the apps using terminal inline middleware. For more information and sample code, see Troubleshoot and

debug ASP.NET Core projects.

Custom Script Extension for Windows: Downloads and executes scripts on Azure virtual machines, which is

useful for post-deployment configuration and software installation.

Configure ASP.NET Core to work with proxy servers and load balancers

https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/custom-script-windows


Visual Studio publish profiles (.pubxml) for ASP.NET
Core app deployment
9/22/2020 • 13 minutes to read • Edit Online

<Project Sdk="Microsoft.NET.Sdk.Web">
    <!-- omitted for brevity -->
</Project>

Compute project items

By Sayed Ibrahim Hashimi and Rick Anderson

This document focuses on using Visual Studio 2019 or later to create and use publish profiles. The publish

profiles created with Visual Studio can be used with MSBuild and Visual Studio. For instructions on publishing

to Azure, see Publish an ASP.NET Core app to Azure with Visual Studio.

The dotnet new mvc  command produces a project file containing the following root-level <Project> element:

The preceding <Project>  element's Sdk  attribute imports the MSBuild properties and targets from

$(MSBuildSDKsPath)\Microsoft.NET.Sdk.Web\Sdk\Sdk.props and

$(MSBuildSDKsPath)\Microsoft.NET.Sdk.Web\Sdk\Sdk.targets, respectively. The default location for 

$(MSBuildSDKsPath)  (with Visual Studio 2019 Enterprise) is the %programfiles(x86)%\Microsoft Visual

Studio\2019\Enterprise\MSBuild\Sdks folder.

Microsoft.NET.Sdk.Web  (Web SDK) depends on other SDKs, including Microsoft.NET.Sdk  (.NET Core SDK) and 

Microsoft.NET.Sdk.Razor  (Razor SDK). The MSBuild properties and targets associated with each dependent

SDK are imported. Publish targets import the appropriate set of targets based on the publish method used.

When MSBuild or Visual Studio loads a project, the following high-level actions occur :

Build project

Compute files to publish

Publish files to destination

When the project is loaded, the MSBuild project items (files) are computed. The item type determines how the

file is processed. By default, .cs files are included in the Compile  item list. Files in the Compile  item list are

compiled.

The Content  item list contains files that are published in addition to the build outputs. By default, files

matching the patterns wwwroot\** , **\*.config , and **\*.json  are included in the Content  item list. For

example, the wwwroot\**  globbing pattern matches all files in the wwwroot folder and its subfolders.

The Web SDK imports the Razor SDK. As a result, files matching the patterns **\*.cshtml  and **\*.razor  are

also included in the Content  item list.

The Web SDK imports the Razor SDK. As a result, files matching the **\*.cshtml  pattern are also included in

the Content  item list.

To explicitly add a file to the publish list, add the file directly in the .csproj file as shown in the Include Files

section.

When selecting the PublishPublish button in Visual Studio or when publishing from the command line:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/visual-studio-publish-profiles.md
https://github.com/sayedihashimi
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/visualstudio/msbuild/project-element-msbuild
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-properties
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-targets
https://docs.microsoft.com/en-us/dotnet/core/project-sdk/msbuild-props
https://docs.microsoft.com/en-us/visualstudio/msbuild/common-msbuild-project-items
https://gruntjs.com/configuring-tasks#globbing-patterns


Basic command-line publishing

dotnet publish C:\Webs\Web1

dotnet new mvc
dotnet publish

C:\Webs\Web1>dotnet publish
Microsoft (R) Build Engine version {VERSION} for .NET Core
Copyright (C) Microsoft Corporation. All rights reserved.

  Restore completed in 36.81 ms for C:\Webs\Web1\Web1.csproj.
  Web1 -> C:\Webs\Web1\bin\Debug\{TARGET FRAMEWORK MONIKER}\Web1.dll
  Web1 -> C:\Webs\Web1\bin\Debug\{TARGET FRAMEWORK MONIKER}\Web1.Views.dll
  Web1 -> C:\Webs\Web1\bin\Debug\{TARGET FRAMEWORK MONIKER}\publish\

dotnet publish -c Release -o C:\MyWebs\test

The properties/items are computed (the files that are needed to build).

Visual Studio onlyVisual Studio only : NuGet packages are restored. (Restore needs to be explicit by the user on the CLI.)

The project builds.

The publish items are computed (the files that are needed to publish).

The project is published (the computed files are copied to the publish destination).

When an ASP.NET Core project references Microsoft.NET.Sdk.Web  in the project file, an app_offline.htm file is

placed at the root of the web app directory. When the file is present, the ASP.NET Core Module gracefully shuts

down the app and serves the app_offline.htm file during the deployment. For more information, see the

ASP.NET Core Module configuration reference.

Command-line publishing works on all .NET Core-supported platforms and doesn't require Visual Studio. In

the following examples, the .NET Core CLI's dotnet publish command is run from the project directory (which

contains the .csproj file). If the project folder isn't the current working directory, explicitly pass in the project file

path. For example:

Run the following commands to create and publish a web app:

The dotnet publish  command produces a variation of the following output:

The default publish folder format is bin\Debug\{TARGET FRAMEWORK MONIKER}\publish\. For example,

bin\Debug\netcoreapp2.2\publish\.

The following command specifies a Release  build and the publishing directory:

The dotnet publish  command calls MSBuild, which invokes the Publish  target. Any parameters passed to 

dotnet publish  are passed to MSBuild. The -c  and -o  parameters map to MSBuild's Configuration  and 

OutputPath  properties, respectively.

MSBuild properties can be passed using either of the following formats:

p:<NAME>=<VALUE>

/p:<NAME>=<VALUE>

For example, the following command publishes a Release  build to a network share. The network share is

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish


         

dotnet publish -c Release /p:PublishDir=//r8/release/AdminWeb

Publish profiles

specified with forward slashes (//r8/) and works on all .NET Core supported platforms.

Confirm that the published app for deployment isn't running. Files in the publish folder are locked when the

app is running. Deployment can't occur because locked files can't be copied.

This section uses Visual Studio 2019 or later to create a publishing profile. Once the profile is created,

publishing from Visual Studio or the command line is available. Publish profiles can simplify the publishing

process, and any number of profiles can exist.

Create a publish profile in Visual Studio by choosing one of the following paths:

Right-click the project in Solution ExplorerSolution Explorer  and select PublishPublish .

Select Publish {PROJECT NAME}Publish {PROJECT NAME}  from the BuildBuild menu.

The PublishPublish tab of the app capabilities page is displayed. If the project lacks a publish profile, the Pick aPick a

publish targetpublish target page is displayed. You're asked to select one of the following publish targets:

Azure App Service

Azure App Service on Linux

Azure Virtual Machines

Folder

IIS, FTP, Web Deploy (for any web server)

Import Profile

To determine the most appropriate publish target, see What publishing options are right for me.

When the FolderFolder  publish target is selected, specify a folder path to store the published assets. The default

folder path is bin\{PROJECT CONFIGURATION}\{TARGET FRAMEWORK MONIKER}\publish\. For example,

bin\Release\netcoreapp2.2\publish\. Select the Create ProfileCreate Profile button to finish.

Once a publish profile is created, the PublishPublish tab's content changes. The newly created profile appears in a

drop-down list. Below the drop-down list, select Create new profileCreate new profile to create another new profile.

Visual Studio's publish tool produces a Properties/PublishProfiles/{PROFILE NAME}.pubxml MSBuild file

describing the publish profile. The .pubxml file:

Contains publish configuration settings and is consumed by the publishing process.

Can be modified to customize the build and publish process.

When publishing to an Azure target, the .pubxml file contains your Azure subscription identifier. With that

target type, adding this file to source control is discouraged. When publishing to a non-Azure target, it's safe to

check in the .pubxml file.

Sensitive information (like the publish password) is encrypted on a per user/machine level. It's stored in the

Properties/PublishProfiles/{PROFILE NAME}.pubxml.user file. Because this file can store sensitive information, it

shouldn't be checked into source control.

For an overview of how to publish an ASP.NET Core web app, see Host and deploy ASP.NET Core. The MSBuild

tasks and targets necessary to publish an ASP.NET Core web app are open-source in the dotnet/websdk

repository.

The following commands can use folder, MSDeploy, and Kudu publish profiles. Because MSDeploy lacks cross-

https://docs.microsoft.com/en-us/visualstudio/ide/not-in-toc/web-publish-options
https://github.com/dotnet/websdk
https://github.com/projectkudu/kudu/wiki


dotnet publish WebApplication.csproj /p:PublishProfile=<FolderProfileName>

dotnet build WebApplication.csproj /p:DeployOnBuild=true /p:PublishProfile=<FolderProfileName>

dotnet publish WebApplication.csproj /p:PublishProfile=<MsDeployProfileName> /p:Password=
<DeploymentPassword>

dotnet build WebApplication.csproj /p:DeployOnBuild=true /p:PublishProfile=<MsDeployProfileName> 
/p:Password=<DeploymentPassword>

dotnet publish WebApplication.csproj /p:PublishProfile=<MsDeployPackageProfileName>

dotnet build WebApplication.csproj /p:DeployOnBuild=true /p:PublishProfile=<MsDeployPackageProfileName>

<Project>
  <PropertyGroup>
    <PublishProtocol>Kudu</PublishProtocol>
    <PublishSiteName>nodewebapp</PublishSiteName>
    <UserName>username</UserName>
    <Password>password</Password>
  </PropertyGroup>
</Project>

Folder publish example

dotnet publish /p:Configuration=Release /p:PublishProfile=FolderProfile`

dotnet build /p:DeployOnBuild=true /p:PublishProfile=FolderProfile

platform support, the following MSDeploy options are supported only on Windows.

Folder (works cross-platform):Folder (works cross-platform):

MSDeploy:MSDeploy:

MSDeploy package:MSDeploy package:

In the preceding examples:

dotnet publish  and dotnet build  support Kudu APIs to publish to Azure from any platform. Visual Studio

publish supports the Kudu APIs, but it's supported by WebSDK for cross-platform publish to Azure.

Don't pass DeployOnBuild  to the dotnet publish  command.

For more information, see Microsoft.NET.Sdk.Publish.

Add a publish profile to the project's Properties/PublishProfiles folder with the following content:

When publishing with a profile named FolderProfile, use any of the following commands:

https://github.com/dotnet/websdk#microsoftnetsdkpublish


msbuild /p:DeployOnBuild=true /p:PublishProfile=FolderProfile

<?xml version="1.0" encoding="utf-8"?>
<!--
This file is used by the publish/package process of your Web project.
You can customize the behavior of this process by editing this 
MSBuild file.
-->
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
  <PropertyGroup>
    <WebPublishMethod>FileSystem</WebPublishMethod>
    <PublishProvider>FileSystem</PublishProvider>
    <LastUsedBuildConfiguration>Release</LastUsedBuildConfiguration>
    <LastUsedPlatform>Any CPU</LastUsedPlatform>
    <SiteUrlToLaunchAfterPublish />
    <LaunchSiteAfterPublish>True</LaunchSiteAfterPublish>
    <ExcludeApp_Data>False</ExcludeApp_Data>
    <PublishFramework>netcoreapp1.1</PublishFramework>
    <ProjectGuid>c30c453c-312e-40c4-aec9-394a145dee0b</ProjectGuid>
    <publishUrl>\\r8\Release\AdminWeb</publishUrl>
    <DeleteExistingFiles>False</DeleteExistingFiles>
  </PropertyGroup>
</Project>

The .NET Core CLI's dotnet build command calls msbuild  to run the build and publish process. The 

dotnet build  and msbuild  commands are equivalent when passing in a folder profile. When calling msbuild

directly on Windows, the .NET Framework version of MSBuild is used. Calling dotnet build  on a non-folder

profile:

Invokes msbuild , which uses MSDeploy.

Results in a failure (even when running on Windows). To publish with a non-folder profile, call msbuild

directly.

The following folder publish profile was created with Visual Studio and publishes to a network share:

In the preceding example:

The <ExcludeApp_Data>  property is present merely to satisfy an XML schema requirement. The 

<ExcludeApp_Data>  property has no effect on the publish process, even if there's an App_Data folder in

the project root. The App_Data folder doesn't receive special treatment as it does in ASP.NET 4.x projects.

The <LastUsedBuildConfiguration>  property is set to Release . When publishing from Visual Studio, the

value of <LastUsedBuildConfiguration>  is set using the value when the publish process is started. 

<LastUsedBuildConfiguration>  is special and shouldn't be overridden in an imported MSBuild file. This

property can, however, be overridden from the command line using one of the following approaches.

dotnet publish /p:Configuration=Release /p:PublishProfile=FolderProfile

dotnet build -c Release /p:DeployOnBuild=true /p:PublishProfile=FolderProfile

msbuild /p:Configuration=Release /p:DeployOnBuild=true /p:PublishProfile=FolderProfile

Using the .NET Core CLI:

Using MSBuild:

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-build


  

Publish to an MSDeploy endpoint from the command line

msbuild {PATH} 
    /p:DeployOnBuild=true 
    /p:PublishProfile={PROFILE} 
    /p:Username={USERNAME} 
    /p:Password={PASSWORD}

msbuild "AzureWebApp.csproj" 
    /p:DeployOnBuild=true 
    /p:PublishProfile="AzureWebApp - Web Deploy" 
    /p:Username="$AzureWebApp" 
    /p:Password=".........."

dotnet msbuild "AzureWebApp.csproj"
    /p:DeployOnBuild=true 
    /p:PublishProfile="AzureWebApp - Web Deploy" 
    /p:Username="$AzureWebApp" 
    /p:Password=".........."

IMPORTANTIMPORTANT

Set the environment

For more information, see MSBuild: how to set the configuration property.

The following example uses an ASP.NET Core web app created by Visual Studio named AzureWebApp. An

Azure Apps publish profile is added with Visual Studio. For more information on how to create a profile, see the

Publish profiles section.

To deploy the app using a publish profile, execute the msbuild  command from a Visual Studio DeveloperDeveloper

Command PromptCommand Prompt. The command prompt is available in the Visual Studio folder of the Star tStar t menu on the

Windows taskbar. For easier access, you can add the command prompt to the ToolsTools  menu in Visual Studio. For

more information, see Developer Command Prompt for Visual Studio.

MSBuild uses the following command syntax:

{PATH} : Path to the app's project file.

{PROFILE} : Name of the publish profile.

{USERNAME} : MSDeploy username. The {USERNAME}  can be found in the publish profile.

{PASSWORD} : MSDeploy password. Obtain the {PASSWORD}  from the {PROFILE}.PublishSettings file.

Download the .PublishSettings file from either :

Solution ExplorerSolution Explorer : Select ViewView  > Cloud ExplorerCloud Explorer . Connect with your Azure subscription. Open

App Ser vicesApp Ser vices . Right-click the app. Select Download Publish ProfileDownload Publish Profile.

Azure portal: Select Get publish profileGet publish profile in the web app's Over viewOver view  panel.

The following example uses a publish profile named AzureWebApp - Web Deploy:

A publish profile can also be used with the .NET Core CLI's dotnet msbuild command from a Windows

command shell:

The dotnet msbuild  command is a cross-platform command and can compile ASP.NET Core apps on macOS and Linux.

However, MSBuild on macOS and Linux isn't capable of deploying an app to Azure or other MSDeploy endpoints.

http://sedodream.com/2012/10/27/MSBuildHowToSetTheConfigurationProperty.aspx
https://docs.microsoft.com/en-us/dotnet/framework/tools/developer-command-prompt-for-vs#run-the-command-prompt-from-inside-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-msbuild


<PropertyGroup>
  <EnvironmentName>Development</EnvironmentName>
</PropertyGroup>

Exclude files

<ItemGroup>
  <Content Update="wwwroot/content/**/*.txt" CopyToPublishDirectory="Never" />
</ItemGroup>

<ItemGroup>
  <MsDeploySkipRules Include="CustomSkipFolder">
    <ObjectName>dirPath</ObjectName>
    <AbsolutePath>wwwroot\\content</AbsolutePath>
  </MsDeploySkipRules>
</ItemGroup>

Include the <EnvironmentName>  property in the publish profile (.pubxml) or project file to set the app's

environment:

If you require web.config transformations (for example, setting environment variables based on the

configuration, profile, or environment), see Transform web.config.

When publishing ASP.NET Core web apps, the following assets are included:

Build artifacts

Folders and files matching the following globbing patterns:

**\*.config  (for example, web.config)

**\*.json  (for example, appsettings.json)

wwwroot\**

MSBuild supports globbing patterns. For example, the following <Content>  element suppresses the copying of

text (.txt) files in the wwwroot\content folder and its subfolders:

The preceding markup can be added to a publish profile or the .csproj file. When added to the .csproj file, the

rule is added to all publish profiles in the project.

The following <MsDeploySkipRules>  element excludes all files from the wwwroot\content folder :

<MsDeploySkipRules>  won't delete the skip targets from the deployment site. <Content>  targeted files and

folders are deleted from the deployment site. For example, suppose a deployed web app had the following

files:

Views/Home/About1.cshtml

Views/Home/About2.cshtml

Views/Home/About3.cshtml

If the following <MsDeploySkipRules>  elements are added, those files wouldn't be deleted on the deployment

site.

https://gruntjs.com/configuring-tasks#globbing-patterns


 

  

<ItemGroup>
  <MsDeploySkipRules Include="CustomSkipFile">
    <ObjectName>filePath</ObjectName>
    <AbsolutePath>Views\\Home\\About1.cshtml</AbsolutePath>
  </MsDeploySkipRules>

  <MsDeploySkipRules Include="CustomSkipFile">
    <ObjectName>filePath</ObjectName>
    <AbsolutePath>Views\\Home\\About2.cshtml</AbsolutePath>
  </MsDeploySkipRules>

  <MsDeploySkipRules Include="CustomSkipFile">
    <ObjectName>filePath</ObjectName>
    <AbsolutePath>Views\\Home\\About3.cshtml</AbsolutePath>
  </MsDeploySkipRules>
</ItemGroup>

<ItemGroup>
  <Content Update="Views/Home/About?.cshtml" CopyToPublishDirectory="Never" />
</ItemGroup>

MSDeployPublish:
  Starting Web deployment task from source: manifest(C:\Webs\Web1\obj\Release\{TARGET FRAMEWORK 
MONIKER}\PubTmp\Web1.SourceManifest.
  xml) to Destination: auto().
  Deleting file (Web11112\Views\Home\About1.cshtml).
  Deleting file (Web11112\Views\Home\About2.cshtml).
  Deleting file (Web11112\Views\Home\About3.cshtml).
  Updating file (Web11112\web.config).
  Updating file (Web11112\Web1.deps.json).
  Updating file (Web11112\Web1.dll).
  Updating file (Web11112\Web1.pdb).
  Updating file (Web11112\Web1.runtimeconfig.json).
  Successfully executed Web deployment task.
  Publish Succeeded.
Done Building Project "C:\Webs\Web1\Web1.csproj" (default targets).

Include files

General file inclusionGeneral file inclusion

The preceding <MsDeploySkipRules>  elements prevent the skipped files from being deployed. It won't delete

those files once they're deployed.

The following <Content>  element deletes the targeted files at the deployment site:

Using command-line deployment with the preceding <Content>  element yields a variation of the following

output:

The following sections outline different approaches for file inclusion at publish time. The General file inclusion

section uses the DotNetPublishFiles  item, which is provided by a publish targets file in the Web SDK. The

Selective file inclusion section uses the ResolvedFileToPublish  item, which is provided by a publish targets file

in the .NET Core SDK. Because the Web SDK depends on the .NET Core SDK, either item can be used in an

ASP.NET Core project.

The following example's <ItemGroup>  element demonstrates copying a folder located outside of the project

directory to a folder of the published site. Any files added to the following markup's <ItemGroup>  are included

by default.

https://docs.microsoft.com/en-us/dotnet/core/project-sdk/msbuild-props


  

<ItemGroup>
  <_CustomFiles Include="$(MSBuildProjectDirectory)/../images/**/*" />
  <DotNetPublishFiles Include="@(_CustomFiles)">
    <DestinationRelativePath>wwwroot/images/%(RecursiveDir)%(Filename)%(Extension)
</DestinationRelativePath>
  </DotNetPublishFiles>
</ItemGroup>

Selective file inclusionSelective file inclusion

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" 
         xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
  <PropertyGroup>
    <WebPublishMethod>FileSystem</WebPublishMethod>
    <PublishProvider>FileSystem</PublishProvider>
    <LastUsedBuildConfiguration>Release</LastUsedBuildConfiguration>
    <LastUsedPlatform>Any CPU</LastUsedPlatform>
    <SiteUrlToLaunchAfterPublish />
    <LaunchSiteAfterPublish>True</LaunchSiteAfterPublish>
    <ExcludeApp_Data>False</ExcludeApp_Data>
    <PublishFramework />
    <ProjectGuid>afa9f185-7ce0-4935-9da1-ab676229d68a</ProjectGuid>
    <publishUrl>bin\Release\PublishOutput</publishUrl>
    <DeleteExistingFiles>False</DeleteExistingFiles>
  </PropertyGroup>
  <ItemGroup>
    <ResolvedFileToPublish Include="..\ReadMe2.md">
      <RelativePath>wwwroot\ReadMe2.md</RelativePath>
    </ResolvedFileToPublish>

    <Content Update="wwwroot\Content\**\*" CopyToPublishDirectory="Never" />
    <Content Update="Views\Home\About2.cshtml" CopyToPublishDirectory="Never" />
  </ItemGroup>
</Project>

The preceding markup:

Can be added to the .csproj file or the publish profile. If it's added to the .csproj file, it's included in each

publish profile in the project.

Declares a _CustomFiles  item to store files matching the Include  attribute's globbing pattern. The images

folder referenced in the pattern is located outside of the project directory. A reserved property, named 

$(MSBuildProjectDirectory) , resolves to the project file's absolute path.

Provides a list of files to the DotNetPublishFiles  item. By default, the item's <DestinationRelativePath>

element is empty. The default value is overridden in the markup and uses well-known item metadata such

as %(RecursiveDir) . The inner text represents the wwwroot/images folder of the published site.

The highlighted markup in the following example demonstrates:

Copying a file located outside of the project into the published site's wwwroot folder. The file name of

ReadMe2.md is maintained.

Excluding the wwwroot\Content folder.

Excluding Views\Home\About2.cshtml.

The preceding example uses the ResolvedFileToPublish  item, whose default behavior is to always copy the files

provided in the Include  attribute to the published site. Override the default behavior by including a 

<CopyToPublishDirectory>  child element with inner text of either Never  or PreserveNewest . For example:

https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-reserved-and-well-known-properties
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-well-known-item-metadata


<ResolvedFileToPublish Include="..\ReadMe2.md">
  <RelativePath>wwwroot\ReadMe2.md</RelativePath>
  <CopyToPublishDirectory>PreserveNewest</CopyToPublishDirectory>
</ResolvedFileToPublish>

Run a target before or after publishing

<Target Name="CustomActionsBeforePublish" BeforeTargets="BeforePublish">
    <Message Text="Inside BeforePublish" Importance="high" />
  </Target>
  <Target Name="CustomActionsAfterPublish" AfterTargets="AfterPublish">
    <Message Text="Inside AfterPublish" Importance="high" />
</Target>

Publish to a server using an untrusted certificate

<PropertyGroup>
  <AllowUntrustedCertificate>True</AllowUntrustedCertificate>
</PropertyGroup>

The Kudu service

URLURL RESULTRESULT

http://mysite.azurewebsites.net/ Web App

http://mysite.scm.azurewebsites.net/ Kudu service

Additional resources

For more deployment samples, see the Web SDK README file.

The built-in BeforePublish  and AfterPublish  targets execute a target before or after the publish target. Add

the following elements to the publish profile to log console messages both before and after publishing:

Add the <AllowUntrustedCertificate>  property with a value of True  to the publish profile:

To view the files in an Azure App Service web app deployment, use the Kudu service. Append the scm  token to

the web app name. For example:

Select the Debug Console menu item to view, edit, delete, or add files.

Web Deploy (MSDeploy) simplifies deployment of web apps and websites to IIS servers.

Web SDK GitHub repository: File issues and request features for deployment.

Publish an ASP.NET Web App to an Azure VM from Visual Studio

Transform web.config

https://github.com/dotnet/sdk/tree/master/src/WebSdk
https://github.com/projectkudu/kudu/wiki/Accessing-the-kudu-service
https://github.com/projectkudu/kudu/wiki/Kudu-console
https://www.iis.net/downloads/microsoft/web-deploy
https://github.com/dotnet/websdk/issues
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/publish-web-app-from-visual-studio


ASP.NET Core directory structure
9/22/2020 • 3 minutes to read • Edit Online

A P P  T Y P EA P P  T Y P E DIREC TO RY  ST RUC T UREDIREC TO RY  ST RUC T URE

Framework-dependent Executable (FDE)

Self-contained Deployment (SCD)

The publish directory contains the app's deployable assets produced by the dotnet publish command. The

directory contains:

Application files

Configuration files

Static assets

Packages

A runtime (self-contained deployment only)

publish†

Views† MVC apps; if views aren't
precompiled

Pages† MVC or Razor Pages apps, if pages
aren't precompiled

wwwroot†

*.dll files

{ASSEMBLY NAME}.deps.json

{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}{.EXTENSION} .exe
extension on Windows, no extension on
macOS or Linux

{ASSEMBLY NAME}.pdb

{ASSEMBLY NAME}.Views.dll

{ASSEMBLY NAME}.Views.pdb

{ASSEMBLY NAME}.runtimeconfig.json

web.config (IIS deployments)

createdump (Linux createdump utility)

*.so (Linux shared object library)

*.a (macOS archive)

*.dylib (macOS dynamic library)

publish†

Views† MVC apps, if views aren't
precompiled

Pages† MVC or Razor Pages apps, if pages
aren't precompiled

wwwroot†

*.dll files

{ASSEMBLY NAME}.deps.json

{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

{ASSEMBLY NAME}.pdb

{ASSEMBLY NAME}.Views.dll

{ASSEMBLY NAME}.Views.pdb

{ASSEMBLY NAME}.runtimeconfig.json

web.config (IIS deployments)

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/directory-structure.md
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-executables-fde
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/xplat-minidump-generation.md#configurationpolicy
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


Additional resources

A P P  T Y P EA P P  T Y P E DIREC TO RY  ST RUC T UREDIREC TO RY  ST RUC T URE

Framework-dependent Executable (FDE)

†Indicates a directory

The publish directory represents the content root path, also called the application base path, of the

deployment. Whatever name is given to the publish directory of the deployed app on the server, its

location serves as the server's physical path to the hosted app.

The wwwroot directory, if present, only contains static assets.

dotnet publish

.NET Core application deployment

Target frameworks

.NET Core RID Catalog

The publish directory contains the app's deployable assets produced by the dotnet publish command. The

directory contains:

Application files

Configuration files

Static assets

Packages

A runtime (self-contained deployment only)

publish†

Views† MVC apps; if views aren't
precompiled

Pages† MVC or Razor Pages apps, if pages
aren't precompiled

wwwroot†

*.dll files

{ASSEMBLY NAME}.deps.json

{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}{.EXTENSION} .exe
extension on Windows, no extension on
macOS or Linux

{ASSEMBLY NAME}.pdb

{ASSEMBLY NAME}.Views.dll

{ASSEMBLY NAME}.Views.pdb

{ASSEMBLY NAME}.runtimeconfig.json

web.config (IIS deployments)

createdump (Linux createdump utility)

*.so (Linux shared object library)

*.a (macOS archive)

*.dylib (macOS dynamic library)

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/deploying/
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd
https://docs.microsoft.com/en-us/dotnet/core/deploying/#framework-dependent-executables-fde
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/xplat-minidump-generation.md#configurationpolicy


Self-contained Deployment (SCD)

A P P  T Y P EA P P  T Y P E DIREC TO RY  ST RUC T UREDIREC TO RY  ST RUC T URE

Additional resources

publish†

Views† MVC apps, if views aren't
precompiled

Pages† MVC or Razor Pages apps, if pages
aren't precompiled

wwwroot†

*.dll files

{ASSEMBLY NAME}.deps.json

{ASSEMBLY NAME}.dll

{ASSEMBLY NAME}.exe

{ASSEMBLY NAME}.pdb

{ASSEMBLY NAME}.Views.dll

{ASSEMBLY NAME}.Views.pdb

{ASSEMBLY NAME}.runtimeconfig.json

web.config (IIS deployments)

†Indicates a directory

The publish directory represents the content root path, also called the application base path, of the

deployment. Whatever name is given to the publish directory of the deployed app on the server, its

location serves as the server's physical path to the hosted app.

The wwwroot directory, if present, only contains static assets.

Creating a Logs folder is useful for ASP.NET Core Module enhanced debug logging. Folders in the path

provided to the <handlerSetting>  value aren't created by the module automatically and should pre-exist in

the deployment to allow the module to write the debug log.

A Logs directory can be created for the deployment using one of the following two approaches:

<Target Name="CreateLogsFolder" AfterTargets="Publish">
   <MakeDir Directories="$(PublishDir)Logs" 
            Condition="!Exists('$(PublishDir)Logs')" />
   <WriteLinesToFile File="$(PublishDir)Logs\.log" 
                     Lines="Generated file" 
                     Overwrite="True" 
                     Condition="!Exists('$(PublishDir)Logs\.log')" />
</Target>

Add the following <Target>  element to the project file:

The <MakeDir>  element creates an empty Logs folder in the published output. The element uses the 

PublishDir  property to determine the target location for creating the folder. Several deployment

methods, such as Web Deploy, skip empty folders during deployment. The <WriteLinesToFile>

element generates a file in the Logs folder, which guarantees deployment of the folder to the server.

Folder creation using this approach fails if the worker process doesn't have write access to the target

folder.

Physically create the Logs directory on the server in the deployment.

The deployment directory requires Read/Execute permissions. The Logs directory requires Read/Write

permissions. Additional directories where files are written require Read/Write permissions.

https://docs.microsoft.com/en-us/dotnet/core/deploying/#self-contained-deployments-scd


dotnet publish

.NET Core application deployment

Target frameworks

.NET Core RID Catalog

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/deploying/
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog


Health checks in ASP.NET Core
9/22/2020 • 44 minutes to read • Edit Online

Prerequisites

NOTENOTE

By Glenn Condron

ASP.NET Core offers Health Checks Middleware and libraries for reporting the health of app infrastructure

components.

Health checks are exposed by an app as HTTP endpoints. Health check endpoints can be configured for a variety

of real-time monitoring scenarios:

Health probes can be used by container orchestrators and load balancers to check an app's status. For

example, a container orchestrator may respond to a failing health check by halting a rolling deployment or

restarting a container. A load balancer might react to an unhealthy app by routing traffic away from the failing

instance to a healthy instance.

Use of memory, disk, and other physical server resources can be monitored for healthy status.

Health checks can test an app's dependencies, such as databases and external service endpoints, to confirm

availability and normal functioning.

View or download sample code (how to download)

The sample app includes examples of the scenarios described in this topic. To run the sample app for a given

scenario, use the dotnet run command from the project's folder in a command shell. See the sample app's

README.md file and the scenario descriptions in this topic for details on how to use the sample app.

Health checks are usually used with an external monitoring service or container orchestrator to check the status

of an app. Before adding health checks to an app, decide on which monitoring system to use. The monitoring

system dictates what types of health checks to create and how to configure their endpoints.

The Microsoft.AspNetCore.Diagnostics.HealthChecks package is referenced implicitly for ASP.NET Core apps. To

perform health checks using Entity Framework Core, add a package reference to the

Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore package.

The sample app provides startup code to demonstrate health checks for several scenarios. The database probe

scenario checks the health of a database connection using AspNetCore.Diagnostics.HealthChecks. The DbContext

probe scenario checks a database using an EF Core DbContext . To explore the database scenarios, the sample

app:

Creates a database and provides its connection string in the appsettings.json file.

Has the following package references in its project file:

AspNetCore.HealthChecks.SqlServer

Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore

AspNetCore.Diagnostics.HealthChecks isn't maintained or supported by Microsoft.

Another health check scenario demonstrates how to filter health checks to a management port. The sample app

requires you to create a Properties/launchSettings.json file that includes the management URL and management

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/host-and-deploy/health-checks.md
https://github.com/glennc
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/host-and-deploy/health-checks/samples
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run
https://www.nuget.org/packages/Microsoft.AspNetCore.Diagnostics.HealthChecks
https://www.nuget.org/packages/Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://www.nuget.org/packages/AspNetCore.HealthChecks.SqlServer/
https://www.nuget.org/packages/Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore/
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks


Basic health probe

public class BasicStartup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddHealthChecks();
    }

    public void Configure(IApplicationBuilder app)
    {
        app.UseRouting();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapHealthChecks("/health");
        });
    }
}

dotnet run --scenario basic

Docker exampleDocker example

HEALTHCHECK CMD curl --fail http://localhost:5000/health || exit

Create health checks

port. For more information, see the Filter by port section.

For many apps, a basic health probe configuration that reports the app's availability to process requests

(liveness) is sufficient to discover the status of the app.

The basic configuration registers health check services and calls the Health Checks Middleware to respond at a

URL endpoint with a health response. By default, no specific health checks are registered to test any particular

dependency or subsystem. The app is considered healthy if it's capable of responding at the health endpoint URL.

The default response writer writes the status (HealthStatus) as a plaintext response back to the client, indicating

either a HealthStatus.Healthy, HealthStatus.Degraded or HealthStatus.Unhealthy status.

Register health check services with AddHealthChecks in Startup.ConfigureServices . Create a health check

endpoint by calling MapHealthChecks  in Startup.Configure .

In the sample app, the health check endpoint is created at /health  (BasicStartup.cs):

To run the basic configuration scenario using the sample app, execute the following command from the project's

folder in a command shell:

Docker offers a built-in HEALTHCHECK  directive that can be used to check the status of an app that uses the basic

health check configuration:

Health checks are created by implementing the IHealthCheck interface. The CheckHealthAsync method returns a

HealthCheckResult that indicates the health as Healthy , Degraded , or Unhealthy . The result is written as a

plaintext response with a configurable status code (configuration is described in the Health check options

section). HealthCheckResult can also return optional key-value pairs.

The following ExampleHealthCheck  class demonstrates the layout of a health check. The health checks logic is

placed in the CheckHealthAsync  method. The following example sets a dummy variable, 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthcheckservicecollectionextensions.addhealthchecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheck.checkhealthasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckresult


public class ExampleHealthCheck : IHealthCheck
{
    public Task<HealthCheckResult> CheckHealthAsync(
        HealthCheckContext context,
        CancellationToken cancellationToken = default(CancellationToken))
    {
        var healthCheckResultHealthy = true;

        if (healthCheckResultHealthy)
        {
            return Task.FromResult(
                HealthCheckResult.Healthy("A healthy result."));
        }

        return Task.FromResult(
            HealthCheckResult.Unhealthy("An unhealthy result."));
    }
}

Register health check services

services.AddHealthChecks()
    .AddCheck<ExampleHealthCheck>("example_health_check");

services.AddHealthChecks()
    .AddCheck<ExampleHealthCheck>(
        "example_health_check",
        failureStatus: HealthStatus.Degraded,
        tags: new[] { "example" });

services.AddHealthChecks()
    .AddCheck("Example", () =>
        HealthCheckResult.Healthy("Example is OK!"), tags: new[] { "example" });

healthCheckResultHealthy , to true . If the value of healthCheckResultHealthy  is set to false , the

HealthCheckResult.Unhealthy status is returned.

The ExampleHealthCheck  type is added to health check services with AddCheck in Startup.ConfigureServices :

The AddCheck overload shown in the following example sets the failure status (HealthStatus) to report when the

health check reports a failure. If the failure status is set to null  (default), HealthStatus.Unhealthy is reported.

This overload is a useful scenario for library authors, where the failure status indicated by the library is enforced

by the app when a health check failure occurs if the health check implementation honors the setting.

Tags can be used to filter health checks (described further in the Filter health checks section).

AddCheck can also execute a lambda function. In the following example, the health check name is specified as 

Example  and the check always returns a healthy state:

Call AddTypeActivatedCheck to pass arguments to a health check implementation. In the following example, 

TestHealthCheckWithArgs  accepts an integer and a string for use when CheckHealthAsync is called:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckresult.unhealthy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addtypeactivatedcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheck.checkhealthasync


private class TestHealthCheckWithArgs : IHealthCheck
{
    public TestHealthCheckWithArgs(int i, string s)
    {
        I = i;
        S = s;
    }

    public int I { get; set; }

    public string S { get; set; }

    public Task<HealthCheckResult> CheckHealthAsync(HealthCheckContext context, 
        CancellationToken cancellationToken = default)
    {
        ...
    }
}

services.AddHealthChecks()
    .AddTypeActivatedCheck<TestHealthCheckWithArgs>(
        "test", 
        failureStatus: HealthStatus.Degraded, 
        tags: new[] { "example" }, 
        args: new object[] { 5, "string" });

Use Health Checks Routing

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health");
});

Require hostRequire host

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health").RequireHost("www.contoso.com:5001");
});

Require authorizationRequire authorization

TestHealthCheckWithArgs  is registered by calling AddTypeActivatedCheck  with the integer and string passed to the

implementation:

In Startup.Configure , call MapHealthChecks  on the endpoint builder with the endpoint URL or relative path:

Call RequireHost  to specify one or more permitted hosts for the health check endpoint. Hosts should be Unicode

rather than punycode and may include a port. If a collection isn't supplied, any host is accepted.

For more information, see the Filter by port section.

Call RequireAuthorization  to run Authorization Middleware on the health check request endpoint. A 

RequireAuthorization  overload accepts one or more authorization policies. If a policy isn't provided, the default

authorization policy is used.



  

            

    

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health").RequireAuthorization();
});

Enable Cross-Origin Requests (CORS)Enable Cross-Origin Requests (CORS)

Health check options

Filter health checksFilter health checks

services.AddHealthChecks()
    .AddCheck("Foo", () =>
        HealthCheckResult.Healthy("Foo is OK!"), tags: new[] { "foo_tag" })
    .AddCheck("Bar", () =>
        HealthCheckResult.Unhealthy("Bar is unhealthy!"), tags: new[] { "bar_tag" })
    .AddCheck("Baz", () =>
        HealthCheckResult.Healthy("Baz is OK!"), tags: new[] { "baz_tag" });

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health", new HealthCheckOptions()
    {
        Predicate = (check) => check.Tags.Contains("foo_tag") ||
            check.Tags.Contains("baz_tag")
    });
});

Customize the HTTP status codeCustomize the HTTP status code

Although performing health checks manually from a browser isn't a common use scenario, CORS Middleware

can be enabled by calling RequireCors  on health checks endpoints. A RequireCors  overload accepts a CORS

policy builder delegate ( CorsPolicyBuilder ) or a policy name. If a policy isn't provided, the default CORS policy is

used. For more information, see Enable Cross-Origin Requests (CORS) in ASP.NET Core.

HealthCheckOptions provide an opportunity to customize health check behavior :

Filter health checks

Customize the HTTP status code

Suppress cache headers

Customize output

By default, Health Checks Middleware runs all registered health checks. To run a subset of health checks, provide

a function that returns a boolean to the Predicate option. In the following example, the Bar  health check is

filtered out by its tag ( bar_tag ) in the function's conditional statement, where true  is only returned if the health

check's Tags property matches foo_tag  or baz_tag :

In Startup.ConfigureServices :

In Startup.Configure , the Predicate  filters out the 'Bar' health check. Only Foo and Baz execute.:

Use ResultStatusCodes to customize the mapping of health status to HTTP status codes. The following

StatusCodes assignments are the default values used by the middleware. Change the status code values to meet

your requirements.

In Startup.Configure :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions.predicate#microsoft_aspnetcore_diagnostics_healthchecks_healthcheckoptions_predicate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckregistration.tags#microsoft_extensions_diagnostics_healthchecks_healthcheckregistration_tags
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions.resultstatuscodes#microsoft_aspnetcore_diagnostics_healthchecks_healthcheckoptions_resultstatuscodes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes


    

      

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health", new HealthCheckOptions()
    {
        ResultStatusCodes =
        {
            [HealthStatus.Healthy] = StatusCodes.Status200OK,
            [HealthStatus.Degraded] = StatusCodes.Status200OK,
            [HealthStatus.Unhealthy] = StatusCodes.Status503ServiceUnavailable
        }
    });
});

Suppress cache headersSuppress cache headers

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health", new HealthCheckOptions()
    {
        AllowCachingResponses = false
    });
});

Customize outputCustomize output

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health", new HealthCheckOptions()
    {
        ResponseWriter = WriteResponse
    });
});

AllowCachingResponses controls whether the Health Checks Middleware adds HTTP headers to a probe

response to prevent response caching. If the value is false  (default), the middleware sets or overrides the 

Cache-Control , Expires , and Pragma  headers to prevent response caching. If the value is true , the middleware

doesn't modify the cache headers of the response.

In Startup.Configure :

In Startup.Configure , set the HealthCheckOptions.ResponseWriter option to a delegate for writing the response:

The default delegate writes a minimal plaintext response with the string value of HealthReport.Status. The

following custom delegates output a custom JSON response.

The first example from the sample app demonstrates how to use System.Text.Json:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions.allowcachingresponses#microsoft_aspnetcore_diagnostics_healthchecks_healthcheckoptions_allowcachingresponses
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions.responsewriter#microsoft_aspnetcore_diagnostics_healthchecks_healthcheckoptions_responsewriter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthreport.status#microsoft_extensions_diagnostics_healthchecks_healthreport_status
https://docs.microsoft.com/en-us/dotnet/api/system.text.json


private static Task WriteResponse(HttpContext context, HealthReport result)
{
    context.Response.ContentType = "application/json; charset=utf-8";

    var options = new JsonWriterOptions
    {
        Indented = true
    };

    using (var stream = new MemoryStream())
    {
        using (var writer = new Utf8JsonWriter(stream, options))
        {
            writer.WriteStartObject();
            writer.WriteString("status", result.Status.ToString());
            writer.WriteStartObject("results");
            foreach (var entry in result.Entries)
            {
                writer.WriteStartObject(entry.Key);
                writer.WriteString("status", entry.Value.Status.ToString());
                writer.WriteString("description", entry.Value.Description);
                writer.WriteStartObject("data");
                foreach (var item in entry.Value.Data)
                {
                    writer.WritePropertyName(item.Key);
                    JsonSerializer.Serialize(
                        writer, item.Value, item.Value?.GetType() ?? 
                        typeof(object));
                }
                writer.WriteEndObject();
                writer.WriteEndObject();
            }
            writer.WriteEndObject();
            writer.WriteEndObject();
        }

        var json = Encoding.UTF8.GetString(stream.ToArray());

        return context.Response.WriteAsync(json);
    }
}

private static Task WriteResponse(HttpContext context, HealthReport result)
{
    context.Response.ContentType = "application/json";

    var json = new JObject(
        new JProperty("status", result.Status.ToString()),
        new JProperty("results", new JObject(result.Entries.Select(pair =>
            new JProperty(pair.Key, new JObject(
                new JProperty("status", pair.Value.Status.ToString()),
                new JProperty("description", pair.Value.Description),
                new JProperty("data", new JObject(pair.Value.Data.Select(
                    p => new JProperty(p.Key, p.Value))))))))));

    return context.Response.WriteAsync(
        json.ToString(Formatting.Indented));
}

The second example demonstrates how to use Newtonsoft.Json:

In the sample app, comment out the SYSTEM_TEXT_JSON  preprocessor directive in CustomWriterStartup.cs to

enable the Newtonsoft.Json  version of WriteResponse .

https://www.nuget.org/packages/Newtonsoft.Json/


  Database probe

WARNINGWARNING

{
  "ConnectionStrings": {
    "DefaultConnection": "Server=
(localdb)\\MSSQLLocalDB;Database=HealthCheckSample;Trusted_Connection=True;MultipleActiveResultSets=true;Con
nectRetryCount=0"
  },
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Information"
    },
    "Console": {
      "IncludeScopes": "true"
    }
  },
  "AllowedHosts": "*"
}

services.AddHealthChecks()
    .AddSqlServer(Configuration["ConnectionStrings:DefaultConnection"]);

The health checks API doesn't provide built-in support for complex JSON return formats because the format is

specific to your choice of monitoring system. Customize the response in the preceding examples as needed. For

more information on JSON serialization with System.Text.Json , see How to serialize and deserialize JSON in

.NET.

A health check can specify a database query to run as a boolean test to indicate if the database is responding

normally.

The sample app uses AspNetCore.Diagnostics.HealthChecks, a health check library for ASP.NET Core apps, to

perform a health check on a SQL Server database. AspNetCore.Diagnostics.HealthChecks  executes a SELECT 1

query against the database to confirm the connection to the database is healthy.

When checking a database connection with a query, choose a query that returns quickly. The query approach runs the risk

of overloading the database and degrading its performance. In most cases, running a test query isn't necessary. Merely

making a successful connection to the database is sufficient. If you find it necessary to run a query, choose a simple

SELECT query, such as SELECT 1 .

Include a package reference to AspNetCore.HealthChecks.SqlServer.

Supply a valid database connection string in the appsettings.json file of the sample app. The app uses a SQL

Server database named HealthCheckSample :

Register health check services with AddHealthChecks in Startup.ConfigureServices . The sample app calls the 

AddSqlServer  method with the database's connection string (DbHealthStartup.cs):

A health check endpoint is created by calling MapHealthChecks  in Startup.Configure :

https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-how-to
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://www.nuget.org/packages/AspNetCore.HealthChecks.SqlServer/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthcheckservicecollectionextensions.addhealthchecks


  

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health");
}

dotnet run --scenario db

NOTENOTE

Entity Framework Core DbContext probe

services.AddHealthChecks()
    .AddDbContextCheck<AppDbContext>();

services.AddDbContext<AppDbContext>(options =>
{
    options.UseSqlServer(
        Configuration["ConnectionStrings:DefaultConnection"]);
});

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health");
}

To run the database probe scenario using the sample app, execute the following command from the project's

folder in a command shell:

AspNetCore.Diagnostics.HealthChecks isn't maintained or supported by Microsoft.

The DbContext  check confirms that the app can communicate with the database configured for an EF Core 

DbContext . The DbContext  check is supported in apps that:

Use Entity Framework (EF) Core.

Include a package reference to Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore.

AddDbContextCheck<TContext>  registers a health check for a DbContext . The DbContext  is supplied as the 

TContext  to the method. An overload is available to configure the failure status, tags, and a custom test query.

By default:

The DbContextHealthCheck  calls EF Core's CanConnectAsync  method. You can customize what operation is run

when checking health using AddDbContextCheck  method overloads.

The name of the health check is the name of the TContext  type.

In the sample app, AppDbContext  is provided to AddDbContextCheck  and registered as a service in 

Startup.ConfigureServices  (DbContextHealthStartup.cs):

A health check endpoint is created by calling MapHealthChecks  in Startup.Configure :

To run the DbContext  probe scenario using the sample app, confirm that the database specified by the

connection string doesn't exist in the SQL Server instance. If the database exists, delete it.

Execute the following command from the project's folder in a command shell:

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://docs.microsoft.com/en-us/ef/core/
https://www.nuget.org/packages/Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore/


dotnet run --scenario dbcontext

Unhealthy

Creating the database...
Done!
Navigate to /health to see the health status.

Healthy

Deleting the database...
Done!
Navigate to /health to see the health status.

Unhealthy

Separate readiness and liveness probes

After the app is running, check the health status by making a request to the /health  endpoint in a browser. The

database and AppDbContext  don't exist, so app provides the following response:

Trigger the sample app to create the database. Make a request to /createdatabase . The app responds:

Make a request to the /health  endpoint. The database and context exist, so app responds:

Trigger the sample app to delete the database. Make a request to /deletedatabase . The app responds:

Make a request to the /health  endpoint. The app provides an unhealthy response:

In some hosting scenarios, a pair of health checks are used that distinguish two app states:

Readiness indicates if the app is running normally but isn't ready to receive requests.

Liveness indicates if an app has crashed and must be restarted.

Consider the following example: An app must download a large configuration file before it's ready to process

requests. We don't want the app to be restarted if the initial download fails because the app can retry

downloading the file several times. We use a liveness probe to describe the liveness of the process, no additional

checks are performed. We also want to prevent requests from being sent to the app before the configuration file

download has succeeded. We use a readiness probe to indicate a "not ready" state until the download succeeds

and the app is ready to receive requests.

The sample app contains a health check to report the completion of long-running startup task in a Hosted

Service. The StartupHostedServiceHealthCheck  exposes a property, StartupTaskCompleted , that the hosted service

can set to true  when its long-running task is finished (StartupHostedServiceHealthCheck.cs):



public class StartupHostedServiceHealthCheck : IHealthCheck
{
    private volatile bool _startupTaskCompleted = false;

    public string Name => "slow_dependency_check";

    public bool StartupTaskCompleted
    {
        get => _startupTaskCompleted;
        set => _startupTaskCompleted = value;
    }

    public Task<HealthCheckResult> CheckHealthAsync(
        HealthCheckContext context, 
        CancellationToken cancellationToken = default(CancellationToken))
    {
        if (StartupTaskCompleted)
        {
            return Task.FromResult(
                HealthCheckResult.Healthy("The startup task is finished."));
        }

        return Task.FromResult(
            HealthCheckResult.Unhealthy("The startup task is still running."));
    }
}

The long-running background task is started by a Hosted Service (Services/StartupHostedService). At the

conclusion of the task, StartupHostedServiceHealthCheck.StartupTaskCompleted  is set to true :



public class StartupHostedService : IHostedService, IDisposable
{
    private readonly int _delaySeconds = 15;
    private readonly ILogger _logger;
    private readonly StartupHostedServiceHealthCheck _startupHostedServiceHealthCheck;

    public StartupHostedService(ILogger<StartupHostedService> logger, 
        StartupHostedServiceHealthCheck startupHostedServiceHealthCheck)
    {
        _logger = logger;
        _startupHostedServiceHealthCheck = startupHostedServiceHealthCheck;
    }

    public Task StartAsync(CancellationToken cancellationToken)
    {
        _logger.LogInformation("Startup Background Service is starting.");

        // Simulate the effect of a long-running startup task.
        Task.Run(async () =>
        {
            await Task.Delay(_delaySeconds * 1000);

            _startupHostedServiceHealthCheck.StartupTaskCompleted = true;

            _logger.LogInformation("Startup Background Service has started.");
        });

        return Task.CompletedTask;
    }

    public Task StopAsync(CancellationToken cancellationToken)
    {
        _logger.LogInformation("Startup Background Service is stopping.");

        return Task.CompletedTask;
    }

    public void Dispose()
    {
    }
}

services.AddHostedService<StartupHostedService>();
services.AddSingleton<StartupHostedServiceHealthCheck>();

services.AddHealthChecks()
    .AddCheck<StartupHostedServiceHealthCheck>(
        "hosted_service_startup", 
        failureStatus: HealthStatus.Degraded, 
        tags: new[] { "ready" });

services.Configure<HealthCheckPublisherOptions>(options =>
{
    options.Delay = TimeSpan.FromSeconds(2);
    options.Predicate = (check) => check.Tags.Contains("ready");
});

services.AddSingleton<IHealthCheckPublisher, ReadinessPublisher>();

The health check is registered with AddCheck in Startup.ConfigureServices  along with the hosted service.

Because the hosted service must set the property on the health check, the health check is also registered in the

service container (LivenessProbeStartup.cs):

A health check endpoint is created by calling MapHealthChecks  in Startup.Configure . In the sample app, the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addcheck


app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health/ready", new HealthCheckOptions()
    {
        Predicate = (check) => check.Tags.Contains("ready"),
    });

    endpoints.MapHealthChecks("/health/live", new HealthCheckOptions()
    {
        Predicate = (_) => false
    });
}

dotnet run --scenario liveness

Kubernetes exampleKubernetes example

health check endpoints are created at:

/health/ready  for the readiness check. The readiness check filters health checks to the health check with the 

ready  tag.

/health/live  for the liveness check. The liveness check filters out the StartupHostedServiceHealthCheck  by

returning false  in the HealthCheckOptions.Predicate (for more information, see Filter health checks)

In the following example code:

The readiness check uses all registered checks with the 'ready' tag.

The Predicate  excludes all checks and return a 200-Ok.

To run the readiness/liveness configuration scenario using the sample app, execute the following command from

the project's folder in a command shell:

In a browser, visit /health/ready  several times until 15 seconds have passed. The health check reports Unhealthy

for the first 15 seconds. After 15 seconds, the endpoint reports Healthy, which reflects the completion of the

long-running task by the hosted service.

This example also creates a Health Check Publisher (IHealthCheckPublisher implementation) that runs the first

readiness check with a two second delay. For more information, see the Health Check Publisher section.

Using separate readiness and liveness checks is useful in an environment such as Kubernetes. In Kubernetes, an

app might be required to perform time-consuming startup work before accepting requests, such as a test of the

underlying database availability. Using separate checks allows the orchestrator to distinguish whether the app is

functioning but not yet ready or if the app has failed to start. For more information on readiness and liveness

probes in Kubernetes, see Configure Liveness and Readiness Probes in the Kubernetes documentation.

The following example demonstrates a Kubernetes readiness probe configuration:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions.predicate#microsoft_aspnetcore_diagnostics_healthchecks_healthcheckoptions_predicate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://kubernetes.io/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/


spec:
  template:
  spec:
    readinessProbe:
      # an http probe
      httpGet:
        path: /health/ready
        port: 80
      # length of time to wait for a pod to initialize
      # after pod startup, before applying health checking
      initialDelaySeconds: 30
      timeoutSeconds: 1
    ports:
      - containerPort: 80

Metric-based probe with a custom response writer

public class MemoryHealthCheck : IHealthCheck
{
    private readonly IOptionsMonitor<MemoryCheckOptions> _options;

    public MemoryHealthCheck(IOptionsMonitor<MemoryCheckOptions> options)
    {
        _options = options;
    }

    public string Name => "memory_check";

    public Task<HealthCheckResult> CheckHealthAsync(
        HealthCheckContext context, 
        CancellationToken cancellationToken = default(CancellationToken))
    {
        var options = _options.Get(context.Registration.Name);

        // Include GC information in the reported diagnostics.
        var allocated = GC.GetTotalMemory(forceFullCollection: false);
        var data = new Dictionary<string, object>()
        {
            { "AllocatedBytes", allocated },
            { "Gen0Collections", GC.CollectionCount(0) },
            { "Gen1Collections", GC.CollectionCount(1) },
            { "Gen2Collections", GC.CollectionCount(2) },
        };
        var status = (allocated < options.Threshold) ? 
            HealthStatus.Healthy : context.Registration.FailureStatus;

        return Task.FromResult(new HealthCheckResult(
            status,
            description: "Reports degraded status if allocated bytes " +
                $">= {options.Threshold} bytes.",
            exception: null,
            data: data));
    }
}

The sample app demonstrates a memory health check with a custom response writer.

MemoryHealthCheck  reports a degraded status if the app uses more than a given threshold of memory (1 GB in

the sample app). The HealthCheckResult includes Garbage Collector (GC) information for the app

(MemoryHealthCheck.cs):

Register health check services with AddHealthChecks in Startup.ConfigureServices . Instead of enabling the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthcheckservicecollectionextensions.addhealthchecks


    

services.AddHealthChecks()
    .AddMemoryHealthCheck("memory");

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health", new HealthCheckOptions()
    {
        ResponseWriter = WriteResponse
    });
}

dotnet run --scenario writer

NOTENOTE

Filter by port

health check by passing it to AddCheck, the MemoryHealthCheck  is registered as a service. All IHealthCheck

registered services are available to the health check services and middleware. We recommend registering health

check services as Singleton services.

In CustomWriterStartup.cs of the sample app:

A health check endpoint is created by calling MapHealthChecks  in Startup.Configure . A WriteResponse  delegate

is provided to the <Microsoft.AspNetCore.Diagnostics.HealthChecks.HealthCheckOptions.ResponseWriter>

property to output a custom JSON response when the health check executes:

The WriteResponse  delegate formats the CompositeHealthCheckResult  into a JSON object and yields JSON output

for the health check response. For more information, see the Customize output section.

To run the metric-based probe with custom response writer output using the sample app, execute the following

command from the project's folder in a command shell:

AspNetCore.Diagnostics.HealthChecks includes metric-based health check scenarios, including disk storage and maximum

value liveness checks.

AspNetCore.Diagnostics.HealthChecks isn't maintained or supported by Microsoft.

Call RequireHost  on MapHealthChecks  with a URL pattern that specifies a port to restrict health check requests to

the port specified. This is typically used in a container environment to expose a port for monitoring services.

The sample app configures the port using the Environment Variable Configuration Provider. The port is set in the

launchSettings.json file and passed to the configuration provider via an environment variable. You must also

configure the server to listen to requests on the management port.

To use the sample app to demonstrate management port configuration, create the launchSettings.json file in a

Properties folder.

The following Properties/launchSettings.json file in the sample app isn't included in the sample app's project files

and must be created manually:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheck
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks


{
  "profiles": {
    "SampleApp": {
      "commandName": "Project",
      "commandLineArgs": "",
      "launchBrowser": true,
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development",
        "ASPNETCORE_URLS": "http://localhost:5000/;http://localhost:5001/",
        "ASPNETCORE_MANAGEMENTPORT": "5001"
      },
      "applicationUrl": "http://localhost:5000/"
    }
  }
}

endpoints.MapHealthChecks("/health")
    .RequireHost($"*:{Configuration["ManagementPort"]}");

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health/ready", new HealthCheckOptions()
    {
        Predicate = (check) => check.Tags.Contains("ready"),
    });

    endpoints.MapHealthChecks("/health/live", new HealthCheckOptions()
    {
        Predicate = (_) => false
    });
}

Register health check services with AddHealthChecks in Startup.ConfigureServices . Create a health check

endpoint by calling MapHealthChecks  in Startup.Configure .

In the sample app, a call to RequireHost  on the endpoint in Startup.Configure  specifies the management port

from configuration:

Endpoints are created in the sample app in Startup.Configure . In the following example code:

The readiness check uses all registered checks with the 'ready' tag.

The Predicate  excludes all checks and return a 200-Ok.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthcheckservicecollectionextensions.addhealthchecks


NOTENOTE

return new HostBuilder()
    .ConfigureWebHostDefaults(webBuilder =>
    {
        webBuilder.UseKestrel()
            .ConfigureKestrel(serverOptions =>
            {
                serverOptions.ListenAnyIP(5001);
            })
            .UseStartup(startupType);
    })
    .Build();

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health").RequireHost("*:5001");
});

dotnet run --scenario port

Distribute a health check library

You can avoid creating the launchSettings.json file in the sample app by setting the management port explicitly in code. In

Program.cs where the HostBuilder is created, add a call to ListenAnyIP and provide the app's management port endpoint.

In Configure  of ManagementPortStartup.cs, specify the management port with RequireHost :

Program.cs:

ManagementPortStartup.cs:

To run the management port configuration scenario using the sample app, execute the following command from

the project's folder in a command shell:

To distribute a health check as a library:

1. Write a health check that implements the IHealthCheck interface as a standalone class. The class can rely

on dependency injection (DI), type activation, and named options to access configuration data.

In the health checks logic of CheckHealthAsync :

data1  and data2  are used in the method to run the probe's health check logic.

AccessViolationException  is handled.

When an AccessViolationException occurs, the FailureStatus is returned with the HealthCheckResult to

allow users to configure the health checks failure status.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listenanyip
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheck
https://docs.microsoft.com/en-us/dotnet/api/system.accessviolationexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckregistration.failurestatus#microsoft_extensions_diagnostics_healthchecks_healthcheckregistration_failurestatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckresult


using System;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.Extensions.Diagnostics.HealthChecks;

namespace SampleApp
{
    public class ExampleHealthCheck : IHealthCheck
    {
        private readonly string _data1;
        private readonly int? _data2;

        public ExampleHealthCheck(string data1, int? data2)
        {
            _data1 = data1 ?? throw new ArgumentNullException(nameof(data1));
            _data2 = data2 ?? throw new ArgumentNullException(nameof(data2));
        }

        public async Task<HealthCheckResult> CheckHealthAsync(
            HealthCheckContext context, CancellationToken cancellationToken)
        {
            try
            {
                return HealthCheckResult.Healthy();
            }
            catch (AccessViolationException ex)
            {
                return new HealthCheckResult(
                    context.Registration.FailureStatus,
                    description: "An access violation occurred during the check.",
                    exception: ex,
                    data: null);
            }
        }
    }
}

ExampleHealthCheck(string, string, int )

2. Write an extension method with parameters that the consuming app calls in its Startup.Configure

method. In the following example, assume the following health check method signature:

The preceding signature indicates that the ExampleHealthCheck  requires additional data to process the

health check probe logic. The data is provided to the delegate used to create the health check instance

when the health check is registered with an extension method. In the following example, the caller

specifies optional:

health check name ( name ). If null , example_health_check  is used.

string data point for the health check ( data1 ).

integer data point for the health check ( data2 ). If null , 1  is used.

failure status (HealthStatus). The default is null . If null , HealthStatus.Unhealthy is reported for a

failure status.

tags ( IEnumerable<string> ).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus


  Health Check Publisher

Task PublishAsync(HealthReport report, CancellationToken cancellationToken);

using System.Collections.Generic;
using Microsoft.Extensions.Diagnostics.HealthChecks;

public static class ExampleHealthCheckBuilderExtensions
{
    const string DefaultName = "example_health_check";

    public static IHealthChecksBuilder AddExampleHealthCheck(
        this IHealthChecksBuilder builder,
        string name = default,
        string data1,
        int data2 = 1,
        HealthStatus? failureStatus = default,
        IEnumerable<string> tags = default)
    {
        return builder.Add(new HealthCheckRegistration(
            name ?? DefaultName,
            sp => new ExampleHealthCheck(data1, data2),
            failureStatus,
            tags));
    }
}

When an IHealthCheckPublisher is added to the service container, the health check system periodically executes

your health checks and calls PublishAsync  with the result. This is useful in a push-based health monitoring

system scenario that expects each process to call the monitoring system periodically in order to determine

health.

The IHealthCheckPublisher interface has a single method:

HealthCheckPublisherOptions allow you to set:

Delay: The initial delay applied after the app starts before executing IHealthCheckPublisher instances. The

delay is applied once at startup and doesn't apply to subsequent iterations. The default value is five seconds.

Period: The period of IHealthCheckPublisher execution. The default value is 30 seconds.

Predicate: If Predicate is null  (default), the health check publisher service runs all registered health checks. To

run a subset of health checks, provide a function that filters the set of checks. The predicate is evaluated each

period.

Timeout: The timeout for executing the health checks for all IHealthCheckPublisher instances. Use

InfiniteTimeSpan to execute without a timeout. The default value is 30 seconds.

In the sample app, ReadinessPublisher  is an IHealthCheckPublisher implementation. The health check status is

logged for each check at a log level of:

Information (LogInformation) if the health checks status is Healthy.

Error (LogError) if the status is either Degraded or Unhealthy.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.delay#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_delay
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.period#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_period
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.predicate#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_predicate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.predicate#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_predicate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.timeout#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_timeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/system.threading.timeout.infinitetimespan
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.loginformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus#microsoft_extensions_diagnostics_healthchecks_healthstatus_healthy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logerror
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus#microsoft_extensions_diagnostics_healthchecks_healthstatus_degraded
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus#microsoft_extensions_diagnostics_healthchecks_healthstatus_unhealthy


public class ReadinessPublisher : IHealthCheckPublisher
{
    private readonly ILogger _logger;

    public ReadinessPublisher(ILogger<ReadinessPublisher> logger)
    {
        _logger = logger;
    }

    // The following example is for demonstration purposes only. Health Checks 
    // Middleware already logs health checks results. A real-world readiness 
    // check in a production app might perform a set of more expensive or 
    // time-consuming checks to determine if other resources are responding 
    // properly.
    public Task PublishAsync(HealthReport report, 
        CancellationToken cancellationToken)
    {
        if (report.Status == HealthStatus.Healthy)
        {
            _logger.LogInformation("{Timestamp} Readiness Probe Status: {Result}", 
                DateTime.UtcNow, report.Status);
        }
        else
        {
            _logger.LogError("{Timestamp} Readiness Probe Status: {Result}", 
                DateTime.UtcNow, report.Status);
        }

        cancellationToken.ThrowIfCancellationRequested();

        return Task.CompletedTask;
    }
}

services.AddHostedService<StartupHostedService>();
services.AddSingleton<StartupHostedServiceHealthCheck>();

services.AddHealthChecks()
    .AddCheck<StartupHostedServiceHealthCheck>(
        "hosted_service_startup", 
        failureStatus: HealthStatus.Degraded, 
        tags: new[] { "ready" });

services.Configure<HealthCheckPublisherOptions>(options =>
{
    options.Delay = TimeSpan.FromSeconds(2);
    options.Predicate = (check) => check.Tags.Contains("ready");
});

services.AddSingleton<IHealthCheckPublisher, ReadinessPublisher>();

NOTENOTE

In the sample app's LivenessProbeStartup  example, the StartupHostedService  readiness check has a two second

startup delay and runs the check every 30 seconds. To activate the IHealthCheckPublisher implementation, the

sample registers ReadinessPublisher  as a singleton service in the dependency injection (DI) container :

AspNetCore.Diagnostics.HealthChecks includes publishers for several systems, including Application Insights.

AspNetCore.Diagnostics.HealthChecks isn't maintained or supported by Microsoft.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks


Restrict health checks with MapWhen

app.MapWhen(
    context => context.Request.Method == HttpMethod.Get.Method && 
        context.Request.Path.StartsWith("/api/HealthCheck"),
    builder => builder.UseHealthChecks());

app.UseEndpoints(endpoints =>
{
    endpoints.MapRazorPages();
});

Prerequisites

Use MapWhen to conditionally branch the request pipeline for health check endpoints.

In the following example, MapWhen  branches the request pipeline to activate Health Checks Middleware if a GET

request is received for the api/HealthCheck  endpoint:

For more information, see ASP.NET Core Middleware.

ASP.NET Core offers Health Checks Middleware and libraries for reporting the health of app infrastructure

components.

Health checks are exposed by an app as HTTP endpoints. Health check endpoints can be configured for a variety

of real-time monitoring scenarios:

Health probes can be used by container orchestrators and load balancers to check an app's status. For

example, a container orchestrator may respond to a failing health check by halting a rolling deployment or

restarting a container. A load balancer might react to an unhealthy app by routing traffic away from the failing

instance to a healthy instance.

Use of memory, disk, and other physical server resources can be monitored for healthy status.

Health checks can test an app's dependencies, such as databases and external service endpoints, to confirm

availability and normal functioning.

View or download sample code (how to download)

The sample app includes examples of the scenarios described in this topic. To run the sample app for a given

scenario, use the dotnet run command from the project's folder in a command shell. See the sample app's

README.md file and the scenario descriptions in this topic for details on how to use the sample app.

Health checks are usually used with an external monitoring service or container orchestrator to check the status

of an app. Before adding health checks to an app, decide on which monitoring system to use. The monitoring

system dictates what types of health checks to create and how to configure their endpoints.

Reference the Microsoft.AspNetCore.App metapackage or add a package reference to the

Microsoft.AspNetCore.Diagnostics.HealthChecks package.

The sample app provides startup code to demonstrate health checks for several scenarios. The database probe

scenario checks the health of a database connection using AspNetCore.Diagnostics.HealthChecks. The DbContext

probe scenario checks a database using an EF Core DbContext . To explore the database scenarios, the sample

app:

Creates a database and provides its connection string in the appsettings.json file.

Has the following package references in its project file:

AspNetCore.HealthChecks.SqlServer

Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mapwhenextensions.mapwhen
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/host-and-deploy/health-checks/samples
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run
https://www.nuget.org/packages/Microsoft.AspNetCore.Diagnostics.HealthChecks
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://www.nuget.org/packages/AspNetCore.HealthChecks.SqlServer/
https://www.nuget.org/packages/Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore/


NOTENOTE

Basic health probe

public class BasicStartup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddHealthChecks();
    }

    public void Configure(IApplicationBuilder app)
    {
        app.UseHealthChecks("/health");
    }
}

dotnet run --scenario basic

Docker exampleDocker example

HEALTHCHECK CMD curl --fail http://localhost:5000/health || exit

Create health checks

AspNetCore.Diagnostics.HealthChecks isn't maintained or supported by Microsoft.

Another health check scenario demonstrates how to filter health checks to a management port. The sample app

requires you to create a Properties/launchSettings.json file that includes the management URL and management

port. For more information, see the Filter by port section.

For many apps, a basic health probe configuration that reports the app's availability to process requests

(liveness) is sufficient to discover the status of the app.

The basic configuration registers health check services and calls the Health Checks Middleware to respond at a

URL endpoint with a health response. By default, no specific health checks are registered to test any particular

dependency or subsystem. The app is considered healthy if it's capable of responding at the health endpoint URL.

The default response writer writes the status (HealthStatus) as a plaintext response back to the client, indicating

either a HealthStatus.Healthy, HealthStatus.Degraded or HealthStatus.Unhealthy status.

Register health check services with AddHealthChecks in Startup.ConfigureServices . Add an endpoint for Health

Checks Middleware with UseHealthChecks in the request processing pipeline of Startup.Configure .

In the sample app, the health check endpoint is created at /health  (BasicStartup.cs):

To run the basic configuration scenario using the sample app, execute the following command from the project's

folder in a command shell:

Docker offers a built-in HEALTHCHECK  directive that can be used to check the status of an app that uses the basic

health check configuration:

Health checks are created by implementing the IHealthCheck interface. The CheckHealthAsync method returns a

HealthCheckResult that indicates the health as Healthy , Degraded , or Unhealthy . The result is written as a

plaintext response with a configurable status code (configuration is described in the Health check options

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthcheckservicecollectionextensions.addhealthchecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.healthcheckapplicationbuilderextensions.usehealthchecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheck.checkhealthasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckresult


Example health checkExample health check

public class ExampleHealthCheck : IHealthCheck
{
    public Task<HealthCheckResult> CheckHealthAsync(
        HealthCheckContext context,
        CancellationToken cancellationToken = default(CancellationToken))
    {
        var healthCheckResultHealthy = true;

        if (healthCheckResultHealthy)
        {
            return Task.FromResult(
                HealthCheckResult.Healthy("The check indicates a healthy result."));
        }

        return Task.FromResult(
            HealthCheckResult.Unhealthy("The check indicates an unhealthy result."));
    }
}

Register health check servicesRegister health check services

services.AddHealthChecks()
    .AddCheck<ExampleHealthCheck>("example_health_check");

services.AddHealthChecks()
    .AddCheck<ExampleHealthCheck>(
        "example_health_check",
        failureStatus: HealthStatus.Degraded,
        tags: new[] { "example" });

services.AddHealthChecks()
    .AddCheck("Example", () =>
        HealthCheckResult.Healthy("Example is OK!"), tags: new[] { "example" });

Use Health Checks MiddlewareUse Health Checks Middleware

section). HealthCheckResult can also return optional key-value pairs.

The following ExampleHealthCheck  class demonstrates the layout of a health check. The health checks logic is

placed in the CheckHealthAsync  method. The following example sets a dummy variable, 

healthCheckResultHealthy , to true . If the value of healthCheckResultHealthy  is set to false , the

HealthCheckResult.Unhealthy status is returned.

The ExampleHealthCheck  type is added to health check services in Startup.ConfigureServices  with AddCheck:

The AddCheck overload shown in the following example sets the failure status (HealthStatus) to report when the

health check reports a failure. If the failure status is set to null  (default), HealthStatus.Unhealthy is reported.

This overload is a useful scenario for library authors, where the failure status indicated by the library is enforced

by the app when a health check failure occurs if the health check implementation honors the setting.

Tags can be used to filter health checks (described further in the Filter health checks section).

AddCheck can also execute a lambda function. In the following Startup.ConfigureServices  example, the health

check name is specified as Example  and the check always returns a healthy state:

In Startup.Configure , call UseHealthChecks in the processing pipeline with the endpoint URL or relative path:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckresult.unhealthy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.healthcheckapplicationbuilderextensions.usehealthchecks


app.UseHealthChecks("/health");

app.UseHealthChecks("/health", port: 8000);

Health check options

Filter health checksFilter health checks

using System.Threading.Tasks;
using Microsoft.AspNetCore.Diagnostics.HealthChecks;
using Microsoft.Extensions.Diagnostics.HealthChecks;

public void ConfigureServices(IServiceCollection services)
{
    services.AddHealthChecks()
        .AddCheck("Foo", () =>
            HealthCheckResult.Healthy("Foo is OK!"), tags: new[] { "foo_tag" })
        .AddCheck("Bar", () =>
            HealthCheckResult.Unhealthy("Bar is unhealthy!"), 
                tags: new[] { "bar_tag" })
        .AddCheck("Baz", () =>
            HealthCheckResult.Healthy("Baz is OK!"), tags: new[] { "baz_tag" });
}

public void Configure(IApplicationBuilder app)
{
    app.UseHealthChecks("/health", new HealthCheckOptions()
    {
        Predicate = (check) => check.Tags.Contains("foo_tag") ||
            check.Tags.Contains("baz_tag")
    });
}

Customize the HTTP status codeCustomize the HTTP status code

If the health checks should listen on a specific port, use an overload of UseHealthChecks to set the port

(described further in the Filter by port section):

HealthCheckOptions provide an opportunity to customize health check behavior :

Filter health checks

Customize the HTTP status code

Suppress cache headers

Customize output

By default, Health Checks Middleware runs all registered health checks. To run a subset of health checks, provide

a function that returns a boolean to the Predicate option. In the following example, the Bar  health check is

filtered out by its tag ( bar_tag ) in the function's conditional statement, where true  is only returned if the health

check's Tags property matches foo_tag  or baz_tag :

Use ResultStatusCodes to customize the mapping of health status to HTTP status codes. The following

StatusCodes assignments are the default values used by the middleware. Change the status code values to meet

your requirements.

In Startup.Configure :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.healthcheckapplicationbuilderextensions.usehealthchecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions.predicate#microsoft_aspnetcore_diagnostics_healthchecks_healthcheckoptions_predicate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckregistration.tags#microsoft_extensions_diagnostics_healthchecks_healthcheckregistration_tags
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions.resultstatuscodes#microsoft_aspnetcore_diagnostics_healthchecks_healthcheckoptions_resultstatuscodes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes


//using Microsoft.AspNetCore.Diagnostics.HealthChecks;
//using Microsoft.Extensions.Diagnostics.HealthChecks;

app.UseHealthChecks("/health", new HealthCheckOptions()
{
    ResultStatusCodes =
    {
        [HealthStatus.Healthy] = StatusCodes.Status200OK,
        [HealthStatus.Degraded] = StatusCodes.Status200OK,
        [HealthStatus.Unhealthy] = StatusCodes.Status503ServiceUnavailable
    }
});

Suppress cache headersSuppress cache headers

//using Microsoft.AspNetCore.Diagnostics.HealthChecks;
//using Microsoft.Extensions.Diagnostics.HealthChecks;

app.UseHealthChecks("/health", new HealthCheckOptions()
{
    AllowCachingResponses = false
});

Customize outputCustomize output

// using Microsoft.AspNetCore.Diagnostics.HealthChecks;
// using Microsoft.Extensions.Diagnostics.HealthChecks;

app.UseHealthChecks("/health", new HealthCheckOptions()
{
    ResponseWriter = WriteResponse
});

AllowCachingResponses controls whether the Health Checks Middleware adds HTTP headers to a probe

response to prevent response caching. If the value is false  (default), the middleware sets or overrides the 

Cache-Control , Expires , and Pragma  headers to prevent response caching. If the value is true , the middleware

doesn't modify the cache headers of the response.

In Startup.Configure :

The ResponseWriter option gets or sets a delegate used to write the response. The default delegate writes a

minimal plaintext response with the string value of HealthReport.Status.

In Startup.Configure :

The default delegate writes a minimal plaintext response with the string value of HealthReport.Status. The

following custom delegate, WriteResponse , outputs a custom JSON response:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions.allowcachingresponses#microsoft_aspnetcore_diagnostics_healthchecks_healthcheckoptions_allowcachingresponses
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions.responsewriter#microsoft_aspnetcore_diagnostics_healthchecks_healthcheckoptions_responsewriter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthreport.status#microsoft_extensions_diagnostics_healthchecks_healthreport_status
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthreport.status#microsoft_extensions_diagnostics_healthchecks_healthreport_status


private static Task WriteResponse(HttpContext httpContext, HealthReport result)
{
    httpContext.Response.ContentType = "application/json";

    var json = new JObject(
        new JProperty("status", result.Status.ToString()),
        new JProperty("results", new JObject(result.Entries.Select(pair =>
            new JProperty(pair.Key, new JObject(
                new JProperty("status", pair.Value.Status.ToString()),
                new JProperty("description", pair.Value.Description),
                new JProperty("data", new JObject(pair.Value.Data.Select(
                    p => new JProperty(p.Key, p.Value))))))))));
    return httpContext.Response.WriteAsync(
        json.ToString(Formatting.Indented));
}

Database probe

WARNINGWARNING

{
  "ConnectionStrings": {
    "DefaultConnection": "Server=
(localdb)\\MSSQLLocalDB;Database=HealthCheckSample;Trusted_Connection=True;MultipleActiveResultSets=true;Con
nectRetryCount=0"
  },
  "Logging": {
    "LogLevel": {
      "Default": "Debug"
    },
    "Console": {
      "IncludeScopes": "true"
    }
  }
}

The health checks system doesn't provide built-in support for complex JSON return formats because the format

is specific to your choice of monitoring system. Feel free to customize the JObject  in the preceding example as

necessary to meet your needs.

A health check can specify a database query to run as a boolean test to indicate if the database is responding

normally.

The sample app uses AspNetCore.Diagnostics.HealthChecks, a health check library for ASP.NET Core apps, to

perform a health check on a SQL Server database. AspNetCore.Diagnostics.HealthChecks  executes a SELECT 1

query against the database to confirm the connection to the database is healthy.

When checking a database connection with a query, choose a query that returns quickly. The query approach runs the risk

of overloading the database and degrading its performance. In most cases, running a test query isn't necessary. Merely

making a successful connection to the database is sufficient. If you find it necessary to run a query, choose a simple

SELECT query, such as SELECT 1 .

Include a package reference to AspNetCore.HealthChecks.SqlServer.

Supply a valid database connection string in the appsettings.json file of the sample app. The app uses a SQL

Server database named HealthCheckSample :

Register health check services with AddHealthChecks in Startup.ConfigureServices . The sample app calls the 

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://www.nuget.org/packages/AspNetCore.HealthChecks.SqlServer/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthcheckservicecollectionextensions.addhealthchecks


public void ConfigureServices(IServiceCollection services)
{
    services.AddHealthChecks()
        .AddSqlServer(Configuration["ConnectionStrings:DefaultConnection"]);
}

app.UseHealthChecks("/health");

dotnet run --scenario db

NOTENOTE

Entity Framework Core DbContext probe

public void ConfigureServices(IServiceCollection services)
{
    services.AddHealthChecks()
        .AddDbContextCheck<AppDbContext>();

    services.AddDbContext<AppDbContext>(options =>
    {
        options.UseSqlServer(
            Configuration["ConnectionStrings:DefaultConnection"]);
    });
}

AddSqlServer  method with the database's connection string (DbHealthStartup.cs):

Call Health Checks Middleware in the app processing pipeline in Startup.Configure :

To run the database probe scenario using the sample app, execute the following command from the project's

folder in a command shell:

AspNetCore.Diagnostics.HealthChecks isn't maintained or supported by Microsoft.

The DbContext  check confirms that the app can communicate with the database configured for an EF Core 

DbContext . The DbContext  check is supported in apps that:

Use Entity Framework (EF) Core.

Include a package reference to Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore.

AddDbContextCheck<TContext>  registers a health check for a DbContext . The DbContext  is supplied as the 

TContext  to the method. An overload is available to configure the failure status, tags, and a custom test query.

By default:

The DbContextHealthCheck  calls EF Core's CanConnectAsync  method. You can customize what operation is run

when checking health using AddDbContextCheck  method overloads.

The name of the health check is the name of the TContext  type.

In the sample app, AppDbContext  is provided to AddDbContextCheck  and registered as a service in 

Startup.ConfigureServices  (DbContextHealthStartup.cs):

In the sample app, UseHealthChecks  adds the Health Checks Middleware in Startup.Configure .

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://docs.microsoft.com/en-us/ef/core/
https://www.nuget.org/packages/Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore/


app.UseHealthChecks("/health");

dotnet run --scenario dbcontext

Unhealthy

Creating the database...
Done!
Navigate to /health to see the health status.

Healthy

Deleting the database...
Done!
Navigate to /health to see the health status.

Unhealthy

Separate readiness and liveness probes

To run the DbContext  probe scenario using the sample app, confirm that the database specified by the

connection string doesn't exist in the SQL Server instance. If the database exists, delete it.

Execute the following command from the project's folder in a command shell:

After the app is running, check the health status by making a request to the /health  endpoint in a browser. The

database and AppDbContext  don't exist, so app provides the following response:

Trigger the sample app to create the database. Make a request to /createdatabase . The app responds:

Make a request to the /health  endpoint. The database and context exist, so app responds:

Trigger the sample app to delete the database. Make a request to /deletedatabase . The app responds:

Make a request to the /health  endpoint. The app provides an unhealthy response:

In some hosting scenarios, a pair of health checks are used that distinguish two app states:

Readiness indicates if the app is running normally but isn't ready to receive requests.

Liveness indicates if an app has crashed and must be restarted.

Consider the following example: An app must download a large configuration file before it's ready to process

requests. We don't want the app to be restarted if the initial download fails because the app can retry

downloading the file several times. We use a liveness probe to describe the liveness of the process, no additional

checks are performed. We also want to prevent requests from being sent to the app before the configuration file

download has succeeded. We use a readiness probe to indicate a "not ready" state until the download succeeds

and the app is ready to receive requests.

The sample app contains a health check to report the completion of long-running startup task in a Hosted

Service. The StartupHostedServiceHealthCheck  exposes a property, StartupTaskCompleted , that the hosted service



public class StartupHostedServiceHealthCheck : IHealthCheck
{
    private volatile bool _startupTaskCompleted = false;

    public string Name => "slow_dependency_check";

    public bool StartupTaskCompleted
    {
        get => _startupTaskCompleted;
        set => _startupTaskCompleted = value;
    }

    public Task<HealthCheckResult> CheckHealthAsync(
        HealthCheckContext context, 
        CancellationToken cancellationToken = default(CancellationToken))
    {
        if (StartupTaskCompleted)
        {
            return Task.FromResult(
                HealthCheckResult.Healthy("The startup task is finished."));
        }

        return Task.FromResult(
            HealthCheckResult.Unhealthy("The startup task is still running."));
    }
}

can set to true  when its long-running task is finished (StartupHostedServiceHealthCheck.cs):

The long-running background task is started by a Hosted Service (Services/StartupHostedService). At the

conclusion of the task, StartupHostedServiceHealthCheck.StartupTaskCompleted  is set to true :



public class StartupHostedService : IHostedService, IDisposable
{
    private readonly int _delaySeconds = 15;
    private readonly ILogger _logger;
    private readonly StartupHostedServiceHealthCheck _startupHostedServiceHealthCheck;

    public StartupHostedService(ILogger<StartupHostedService> logger, 
        StartupHostedServiceHealthCheck startupHostedServiceHealthCheck)
    {
        _logger = logger;
        _startupHostedServiceHealthCheck = startupHostedServiceHealthCheck;
    }

    public Task StartAsync(CancellationToken cancellationToken)
    {
        _logger.LogInformation("Startup Background Service is starting.");

        // Simulate the effect of a long-running startup task.
        Task.Run(async () =>
        {
            await Task.Delay(_delaySeconds * 1000);

            _startupHostedServiceHealthCheck.StartupTaskCompleted = true;

            _logger.LogInformation("Startup Background Service has started.");
        });

        return Task.CompletedTask;
    }

    public Task StopAsync(CancellationToken cancellationToken)
    {
        _logger.LogInformation("Startup Background Service is stopping.");

        return Task.CompletedTask;
    }

    public void Dispose()
    {
    }
}

The health check is registered with AddCheck in Startup.ConfigureServices  along with the hosted service.

Because the hosted service must set the property on the health check, the health check is also registered in the

service container (LivenessProbeStartup.cs):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addcheck


public void ConfigureServices(IServiceCollection services)
{
    services.AddHostedService<StartupHostedService>();
    services.AddSingleton<StartupHostedServiceHealthCheck>();

    services.AddHealthChecks()
        .AddCheck<StartupHostedServiceHealthCheck>(
            "hosted_service_startup", 
            failureStatus: HealthStatus.Degraded, 
            tags: new[] { "ready" });

    services.Configure<HealthCheckPublisherOptions>(options =>
    {
        options.Delay = TimeSpan.FromSeconds(2);
        options.Predicate = (check) => check.Tags.Contains("ready");
    });

    // The following workaround permits adding an IHealthCheckPublisher 
    // instance to the service container when one or more other hosted 
    // services have already been added to the app. This workaround
    // won't be required with the release of ASP.NET Core 3.0. For more 
    // information, see: https://github.com/aspnet/Extensions/issues/639.
    services.TryAddEnumerable(
        ServiceDescriptor.Singleton(typeof(IHostedService), 
            typeof(HealthCheckPublisherOptions).Assembly
                .GetType(HealthCheckServiceAssembly)));

    services.AddSingleton<IHealthCheckPublisher, ReadinessPublisher>();
}

app.UseHealthChecks("/health/ready", new HealthCheckOptions()
{
    Predicate = (check) => check.Tags.Contains("ready"), 
});

app.UseHealthChecks("/health/live", new HealthCheckOptions()
{
    Predicate = (_) => false
});

dotnet run --scenario liveness

Kubernetes exampleKubernetes example

Call Health Checks Middleware in the app processing pipeline in Startup.Configure . In the sample app, the

health check endpoints are created at /health/ready  for the readiness check and /health/live  for the liveness

check. The readiness check filters health checks to the health check with the ready  tag. The liveness check filters

out the StartupHostedServiceHealthCheck  by returning false  in the HealthCheckOptions.Predicate (for more

information, see Filter health checks):

To run the readiness/liveness configuration scenario using the sample app, execute the following command from

the project's folder in a command shell:

In a browser, visit /health/ready  several times until 15 seconds have passed. The health check reports Unhealthy

for the first 15 seconds. After 15 seconds, the endpoint reports Healthy, which reflects the completion of the

long-running task by the hosted service.

This example also creates a Health Check Publisher (IHealthCheckPublisher implementation) that runs the first

readiness check with a two second delay. For more information, see the Health Check Publisher section.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.diagnostics.healthchecks.healthcheckoptions.predicate#microsoft_aspnetcore_diagnostics_healthchecks_healthcheckoptions_predicate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher


spec:
  template:
  spec:
    readinessProbe:
      # an http probe
      httpGet:
        path: /health/ready
        port: 80
      # length of time to wait for a pod to initialize
      # after pod startup, before applying health checking
      initialDelaySeconds: 30
      timeoutSeconds: 1
    ports:
      - containerPort: 80

Metric-based probe with a custom response writer

Using separate readiness and liveness checks is useful in an environment such as Kubernetes. In Kubernetes, an

app might be required to perform time-consuming startup work before accepting requests, such as a test of the

underlying database availability. Using separate checks allows the orchestrator to distinguish whether the app is

functioning but not yet ready or if the app has failed to start. For more information on readiness and liveness

probes in Kubernetes, see Configure Liveness and Readiness Probes in the Kubernetes documentation.

The following example demonstrates a Kubernetes readiness probe configuration:

The sample app demonstrates a memory health check with a custom response writer.

MemoryHealthCheck  reports an unhealthy status if the app uses more than a given threshold of memory (1 GB in

the sample app). The HealthCheckResult includes Garbage Collector (GC) information for the app

(MemoryHealthCheck.cs):

https://kubernetes.io/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckresult


public class MemoryHealthCheck : IHealthCheck
{
    private readonly IOptionsMonitor<MemoryCheckOptions> _options;

    public MemoryHealthCheck(IOptionsMonitor<MemoryCheckOptions> options)
    {
        _options = options;
    }

    public string Name => "memory_check";

    public Task<HealthCheckResult> CheckHealthAsync(
        HealthCheckContext context, 
        CancellationToken cancellationToken = default(CancellationToken))
    {
        var options = _options.Get(context.Registration.Name);

        // Include GC information in the reported diagnostics.
        var allocated = GC.GetTotalMemory(forceFullCollection: false);
        var data = new Dictionary<string, object>()
        {
            { "AllocatedBytes", allocated },
            { "Gen0Collections", GC.CollectionCount(0) },
            { "Gen1Collections", GC.CollectionCount(1) },
            { "Gen2Collections", GC.CollectionCount(2) },
        };

        var status = (allocated < options.Threshold) ? 
            HealthStatus.Healthy : HealthStatus.Unhealthy;

        return Task.FromResult(new HealthCheckResult(
            status,
            description: "Reports degraded status if allocated bytes " +
                $">= {options.Threshold} bytes.",
            exception: null,
            data: data));
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddHealthChecks()
        .AddMemoryHealthCheck("memory");
}

Register health check services with AddHealthChecks in Startup.ConfigureServices . Instead of enabling the

health check by passing it to AddCheck, the MemoryHealthCheck  is registered as a service. All IHealthCheck

registered services are available to the health check services and middleware. We recommend registering health

check services as Singleton services.

In the sample app (CustomWriterStartup.cs):

Call Health Checks Middleware in the app processing pipeline in Startup.Configure . A WriteResponse  delegate is

provided to the ResponseWriter  property to output a custom JSON response when the health check executes:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthcheckservicecollectionextensions.addhealthchecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthchecksbuilderaddcheckextensions.addcheck
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheck


public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    app.UseHealthChecks("/health", new HealthCheckOptions()
    {
        // This custom writer formats the detailed status as JSON.
        ResponseWriter = WriteResponse
    });
}

private static Task WriteResponse(HttpContext httpContext, 
    HealthReport result)
{
    httpContext.Response.ContentType = "application/json; charset=utf-8";

    var json = new JObject(
        new JProperty("status", result.Status.ToString()),
        new JProperty("results", new JObject(result.Entries.Select(pair =>
            new JProperty(pair.Key, new JObject(
                new JProperty("status", pair.Value.Status.ToString()),
                new JProperty("description", pair.Value.Description),
                new JProperty("data", new JObject(pair.Value.Data.Select(
                    p => new JProperty(p.Key, p.Value))))))))));
    return httpContext.Response.WriteAsync(
        json.ToString(Formatting.Indented));
}

dotnet run --scenario writer

NOTENOTE

Filter by port

The WriteResponse  method formats the CompositeHealthCheckResult  into a JSON object and yields JSON output

for the health check response:

To run the metric-based probe with custom response writer output using the sample app, execute the following

command from the project's folder in a command shell:

AspNetCore.Diagnostics.HealthChecks includes metric-based health check scenarios, including disk storage and maximum

value liveness checks.

AspNetCore.Diagnostics.HealthChecks isn't maintained or supported by Microsoft.

Calling UseHealthChecks with a port restricts health check requests to the port specified. This is typically used in

a container environment to expose a port for monitoring services.

The sample app configures the port using the Environment Variable Configuration Provider. The port is set in the

launchSettings.json file and passed to the configuration provider via an environment variable. You must also

configure the server to listen to requests on the management port.

To use the sample app to demonstrate management port configuration, create the launchSettings.json file in a

Properties folder.

The following Properties/launchSettings.json file in the sample app isn't included in the sample app's project files

and must be created manually:

https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.healthcheckapplicationbuilderextensions.usehealthchecks


{
  "profiles": {
    "SampleApp": {
      "commandName": "Project",
      "commandLineArgs": "",
      "launchBrowser": true,
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development",
        "ASPNETCORE_URLS": "http://localhost:5000/;http://localhost:5001/",
        "ASPNETCORE_MANAGEMENTPORT": "5001"
      },
      "applicationUrl": "http://localhost:5000/"
    }
  }
}

public class ManagementPortStartup
{
    public ManagementPortStartup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddHealthChecks();
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        app.UseHealthChecks("/health", port: Configuration["ManagementPort"]);

        app.Run(async (context) =>
        {
            await context.Response.WriteAsync(
                "Navigate to " + 
                $"http://localhost:{Configuration["ManagementPort"]}/health " +
                "to see the health status.");
        });
    }
}

Register health check services with AddHealthChecks in Startup.ConfigureServices . The call to UseHealthChecks

specifies the management port (ManagementPortStartup.cs):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthcheckservicecollectionextensions.addhealthchecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.healthcheckapplicationbuilderextensions.usehealthchecks


NOTENOTE

return new WebHostBuilder()
    .UseConfiguration(config)
    .UseUrls("http://localhost:5000/;http://localhost:5001/")
    .ConfigureLogging(builder =>
    {
        builder.SetMinimumLevel(LogLevel.Trace);
        builder.AddConfiguration(config);
        builder.AddConsole();
    })
    .UseKestrel()
    .UseStartup(startupType)
    .Build();

app.UseHealthChecks("/health", port: 5001);

dotnet run --scenario port

Distribute a health check library

You can avoid creating the launchSettings.json file in the sample app by setting the URLs and management port explicitly

in code. In Program.cs where the WebHostBuilder is created, add a call to UseUrls and provide the app's normal response

endpoint and the management port endpoint. In ManagementPortStartup.cs where UseHealthChecks is called, specify the

management port explicitly.

Program.cs:

ManagementPortStartup.cs:

To run the management port configuration scenario using the sample app, execute the following command from

the project's folder in a command shell:

To distribute a health check as a library:

1. Write a health check that implements the IHealthCheck interface as a standalone class. The class can rely

on dependency injection (DI), type activation, and named options to access configuration data.

In the health checks logic of CheckHealthAsync :

data1  and data2  are used in the method to run the probe's health check logic.

AccessViolationException  is handled.

When an AccessViolationException occurs, the FailureStatus is returned with the HealthCheckResult to

allow users to configure the health checks failure status.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useurls
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.healthcheckapplicationbuilderextensions.usehealthchecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheck
https://docs.microsoft.com/en-us/dotnet/api/system.accessviolationexception
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckregistration.failurestatus#microsoft_extensions_diagnostics_healthchecks_healthcheckregistration_failurestatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckresult


using System;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.Extensions.Diagnostics.HealthChecks;

public class ExampleHealthCheck : IHealthCheck
{
    private readonly string _data1;
    private readonly int? _data2;

    public ExampleHealthCheck(string data1, int? data2)
    {
        _data1 = data1 ?? throw new ArgumentNullException(nameof(data1));
        _data2 = data2 ?? throw new ArgumentNullException(nameof(data2));
    }

    public async Task<HealthCheckResult> CheckHealthAsync(
        HealthCheckContext context, CancellationToken cancellationToken)
    {
        try
        {
            return HealthCheckResult.Healthy();
        }
        catch (AccessViolationException ex)
        {
            return new HealthCheckResult(
                context.Registration.FailureStatus,
                description: "An access violation occurred during the check.",
                exception: ex,
                data: null);
        }
    }
}

ExampleHealthCheck(string, string, int )

2. Write an extension method with parameters that the consuming app calls in its Startup.Configure

method. In the following example, assume the following health check method signature:

The preceding signature indicates that the ExampleHealthCheck  requires additional data to process the

health check probe logic. The data is provided to the delegate used to create the health check instance

when the health check is registered with an extension method. In the following example, the caller

specifies optional:

health check name ( name ). If null , example_health_check  is used.

string data point for the health check ( data1 ).

integer data point for the health check ( data2 ). If null , 1  is used.

failure status (HealthStatus). The default is null . If null , HealthStatus.Unhealthy is reported for a

failure status.

tags ( IEnumerable<string> ).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus


Health Check Publisher

Task PublishAsync(HealthReport report, CancellationToken cancellationToken);

WARNINGWARNING

using System.Collections.Generic;
using Microsoft.Extensions.Diagnostics.HealthChecks;

public static class ExampleHealthCheckBuilderExtensions
{
    const string DefaultName = "example_health_check";

    public static IHealthChecksBuilder AddExampleHealthCheck(
        this IHealthChecksBuilder builder,
        string name = default,
        string data1,
        int data2 = 1,
        HealthStatus? failureStatus = default,
        IEnumerable<string> tags = default)
    {
        return builder.Add(new HealthCheckRegistration(
            name ?? DefaultName,
            sp => new ExampleHealthCheck(data1, data2),
            failureStatus,
            tags));
    }
}

When an IHealthCheckPublisher is added to the service container, the health check system periodically executes

your health checks and calls PublishAsync  with the result. This is useful in a push-based health monitoring

system scenario that expects each process to call the monitoring system periodically in order to determine

health.

The IHealthCheckPublisher interface has a single method:

HealthCheckPublisherOptions allow you to set:

Delay: The initial delay applied after the app starts before executing IHealthCheckPublisher instances. The

delay is applied once at startup and doesn't apply to subsequent iterations. The default value is five seconds.

Period: The period of IHealthCheckPublisher execution. The default value is 30 seconds.

Predicate: If Predicate is null  (default), the health check publisher service runs all registered health checks. To

run a subset of health checks, provide a function that filters the set of checks. The predicate is evaluated each

period.

Timeout: The timeout for executing the health checks for all IHealthCheckPublisher instances. Use

InfiniteTimeSpan to execute without a timeout. The default value is 30 seconds.

In the ASP.NET Core 2.2 release, setting Period isn't honored by the IHealthCheckPublisher implementation; it sets the

value of Delay. This issue has been addressed in ASP.NET Core 3.0.

In the sample app, ReadinessPublisher  is an IHealthCheckPublisher implementation. The health check status is

logged for each check as either :

Information (LogInformation) if the health checks status is Healthy.

Error (LogError) if the status is either Degraded or Unhealthy.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.delay#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_delay
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.period#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_period
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.predicate#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_predicate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.predicate#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_predicate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.timeout#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_timeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/system.threading.timeout.infinitetimespan
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.period#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_period
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckpublisheroptions.delay#microsoft_extensions_diagnostics_healthchecks_healthcheckpublisheroptions_delay
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.loginformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus#microsoft_extensions_diagnostics_healthchecks_healthstatus_healthy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logerror
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus#microsoft_extensions_diagnostics_healthchecks_healthstatus_degraded
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus#microsoft_extensions_diagnostics_healthchecks_healthstatus_unhealthy


public class ReadinessPublisher : IHealthCheckPublisher
{
    private readonly ILogger _logger;

    public ReadinessPublisher(ILogger<ReadinessPublisher> logger)
    {
        _logger = logger;
    }

    // The following example is for demonstration purposes only. Health Checks 
    // Middleware already logs health checks results. A real-world readiness 
    // check in a production app might perform a set of more expensive or 
    // time-consuming checks to determine if other resources are responding 
    // properly.
    public Task PublishAsync(HealthReport report, 
        CancellationToken cancellationToken)
    {
        if (report.Status == HealthStatus.Healthy)
        {
            _logger.LogInformation("{Timestamp} Readiness Probe Status: {Result}", 
                DateTime.UtcNow, report.Status);
        }
        else
        {
            _logger.LogError("{Timestamp} Readiness Probe Status: {Result}", 
                DateTime.UtcNow, report.Status);
        }

        cancellationToken.ThrowIfCancellationRequested();

        return Task.CompletedTask;
    }
}

In the sample app's LivenessProbeStartup  example, the StartupHostedService  readiness check has a two second

startup delay and runs the check every 30 seconds. To activate the IHealthCheckPublisher implementation, the

sample registers ReadinessPublisher  as a singleton service in the dependency injection (DI) container :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher


public void ConfigureServices(IServiceCollection services)
{
    services.AddHostedService<StartupHostedService>();
    services.AddSingleton<StartupHostedServiceHealthCheck>();

    services.AddHealthChecks()
        .AddCheck<StartupHostedServiceHealthCheck>(
            "hosted_service_startup", 
            failureStatus: HealthStatus.Degraded, 
            tags: new[] { "ready" });

    services.Configure<HealthCheckPublisherOptions>(options =>
    {
        options.Delay = TimeSpan.FromSeconds(2);
        options.Predicate = (check) => check.Tags.Contains("ready");
    });

    // The following workaround permits adding an IHealthCheckPublisher 
    // instance to the service container when one or more other hosted 
    // services have already been added to the app. This workaround
    // won't be required with the release of ASP.NET Core 3.0. For more 
    // information, see: https://github.com/aspnet/Extensions/issues/639.
    services.TryAddEnumerable(
        ServiceDescriptor.Singleton(typeof(IHostedService), 
            typeof(HealthCheckPublisherOptions).Assembly
                .GetType(HealthCheckServiceAssembly)));

    services.AddSingleton<IHealthCheckPublisher, ReadinessPublisher>();
}

NOTENOTE

private const string HealthCheckServiceAssembly =
    "Microsoft.Extensions.Diagnostics.HealthChecks.HealthCheckPublisherHostedService";

services.TryAddEnumerable(
    ServiceDescriptor.Singleton(typeof(IHostedService),
        typeof(HealthCheckPublisherOptions).Assembly
            .GetType(HealthCheckServiceAssembly)));

NOTENOTE

Restrict health checks with MapWhen

The following workaround permits adding an IHealthCheckPublisher instance to the service container when one or more

other hosted services have already been added to the app. This workaround won't isn't required in ASP.NET Core 3.0.

AspNetCore.Diagnostics.HealthChecks includes publishers for several systems, including Application Insights.

AspNetCore.Diagnostics.HealthChecks isn't maintained or supported by Microsoft.

Use MapWhen to conditionally branch the request pipeline for health check endpoints.

In the following example, MapWhen  branches the request pipeline to activate Health Checks Middleware if a GET

request is received for the api/HealthCheck  endpoint:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.ihealthcheckpublisher
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mapwhenextensions.mapwhen


app.MapWhen(
    context => context.Request.Method == HttpMethod.Get.Method && 
        context.Request.Path.StartsWith("/api/HealthCheck"),
    builder => builder.UseHealthChecks());

app.UseMvc();

For more information, see ASP.NET Core Middleware.



Overview of ASP.NET Core Security
9/22/2020 • 2 minutes to read • Edit Online

ASP.NET Core security features

Authentication vs. Authorization

Common Vulnerabilities in software

ASP.NET Core enables developers to easily configure and manage security for their apps. ASP.NET Core contains

features for managing authentication, authorization, data protection, HTTPS enforcement, app secrets, XSRF/CSRF

prevention, and CORS management. These security features allow you to build robust yet secure ASP.NET Core

apps.

ASP.NET Core provides many tools and libraries to secure your apps including built-in identity providers, but you

can use third-party identity services such as Facebook, Twitter, and LinkedIn. With ASP.NET Core, you can easily

manage app secrets, which are a way to store and use confidential information without having to expose it in the

code.

Authentication is a process in which a user provides credentials that are then compared to those stored in an

operating system, database, app or resource. If they match, users authenticate successfully, and can then perform

actions that they're authorized for, during an authorization process. The authorization refers to the process that

determines what a user is allowed to do.

Another way to think of authentication is to consider it as a way to enter a space, such as a server, database, app or

resource, while authorization is which actions the user can perform to which objects inside that space (server,

database, or app).

ASP.NET Core and EF contain features that help you secure your apps and prevent security breaches. The following

list of links takes you to documentation detailing techniques to avoid the most common security vulnerabilities in

web apps:

Cross-Site Scripting (XSS) attacks

SQL injection attacks

Cross-Site Request Forgery (XSRF/CSRF) attacks

Open redirect attacks

There are more vulnerabilities that you should be aware of. For more information, see the other articles in the

Security and IdentitySecurity and Identity  section of the table of contents.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/index.md
https://docs.microsoft.com/en-us/ef/core/querying/raw-sql


  

Overview of ASP.NET Core authentication
9/22/2020 • 4 minutes to read • Edit Online

services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
    .AddJwtBearer(JwtBearerDefaults.AuthenticationScheme, options => Configuration.Bind("JwtSettings", 
options))
    .AddCookie(CookieAuthenticationDefaults.AuthenticationScheme, options => 
Configuration.Bind("CookieSettings", options));

Authentication Concepts

By Mike Rousos

Authentication is the process of determining a user's identity. Authorization is the process of determining whether a

user has access to a resource. In ASP.NET Core, authentication is handled by the IAuthenticationService , which is

used by authentication middleware. The authentication service uses registered authentication handlers to complete

authentication-related actions. Examples of authentication-related actions include:

Authenticating a user.

Responding when an unauthenticated user tries to access a restricted resource.

The registered authentication handlers and their configuration options are called "schemes".

Authentication schemes are specified by registering authentication services in Startup.ConfigureServices :

By calling a scheme-specific extension method after a call to services.AddAuthentication  (such as AddJwtBearer

or AddCookie , for example). These extension methods use AuthenticationBuilder.AddScheme to register

schemes with appropriate settings.

Less commonly, by calling AuthenticationBuilder.AddScheme directly.

For example, the following code registers authentication services and handlers for cookie and JWT bearer

authentication schemes:

The AddAuthentication  parameter JwtBearerDefaults.AuthenticationScheme  is the name of the scheme to use by

default when a specific scheme isn't requested.

If multiple schemes are used, authorization policies (or authorization attributes) can specify the authentication

scheme (or schemes) they depend on to authenticate the user. In the example above, the cookie authentication

scheme could be used by specifying its name ( CookieAuthenticationDefaults.AuthenticationScheme  by default,

though a different name could be provided when calling AddCookie ).

In some cases, the call to AddAuthentication  is automatically made by other extension methods. For example, when

using ASP.NET Core Identity, AddAuthentication  is called internally.

The Authentication middleware is added in Startup.Configure  by calling the UseAuthentication extension method

on the app's IApplicationBuilder . Calling UseAuthentication  registers the middleware which uses the previously

registered authentication schemes. Call UseAuthentication  before any middleware that depends on users being

authenticated. When using endpoint routing, the call to UseAuthentication  must go:

After UseRouting , so that route information is available for authentication decisions.

Before UseEndpoints , so that users are authenticated before accessing the endpoints.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/index.md
https://github.com/mjrousos
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder.addscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder.addscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication


Authentication schemeAuthentication scheme

Authentication handlerAuthentication handler

AuthenticateAuthenticate

ChallengeChallenge

ForbidForbid

An authentication scheme is a name which corresponds to:

An authentication handler.

Options for configuring that specific instance of the handler.

Schemes are useful as a mechanism for referring to the authentication, challenge, and forbid behaviors of the

associated handler. For example, an authorization policy can use scheme names to specify which authentication

scheme (or schemes) should be used to authenticate the user. When configuring authentication, it's common to

specify the default authentication scheme. The default scheme is used unless a resource requests a specific scheme.

It's also possible to:

Specify different default schemes to use for authenticate, challenge, and forbid actions.

Combine multiple schemes into one using policy schemes.

An authentication handler :

Is a type that implements the behavior of a scheme.

Is derived from IAuthenticationHandler or AuthenticationHandler<TOptions>.

Has the primary responsibility to authenticate users.

Based on the authentication scheme's configuration and the incoming request context, authentication handlers:

Construct AuthenticationTicket objects representing the user's identity if authentication is successful.

Return 'no result' or 'failure' if authentication is unsuccessful.

Have methods for challenge and forbid actions for when users attempt to access resources:

They are unauthorized to access (forbid).

When they are unauthenticated (challenge).

An authentication scheme's authenticate action is responsible for constructing the user's identity based on request

context. It returns an AuthenticateResult indicating whether authentication was successful and, if so, the user's

identity in an authentication ticket. See AuthenticateAsync. Authenticate examples include:

A cookie authentication scheme constructing the user's identity from cookies.

A JWT bearer scheme deserializing and validating a JWT bearer token to construct the user's identity.

An authentication challenge is invoked by Authorization when an unauthenticated user requests an endpoint that

requires authentication. An authentication challenge is issued, for example, when an anonymous user requests a

restricted resource or clicks on a login link. Authorization invokes a challenge using the specified authentication

scheme(s), or the default if none is specified. See ChallengeAsync. Authentication challenge examples include:

A cookie authentication scheme redirecting the user to a login page.

A JWT bearer scheme returning a 401 result with a www-authenticate: bearer  header.

A challenge action should let the user know what authentication mechanism to use to access the requested

resource.

An authentication scheme's forbid action is called by Authorization when an authenticated user attempts to access a

resource they are not permitted to access. See ForbidAsync. Authentication forbid examples include:

A cookie authentication scheme redirecting the user to a page indicating access was forbidden.

A JWT bearer scheme returning a 403 result.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iauthenticationhandler
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhandler-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationticket
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticateresult
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.authenticateasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.challengeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.forbidasync


Authentication providers per tenant

Additional resources

A custom authentication scheme redirecting to a page where the user can request access to the resource.

A forbid action can let the user know:

They are authenticated.

They aren't permitted to access the requested resource.

See the following links for differences between challenge and forbid:

Challenge and forbid with an operational resource handler.

Differences between challenge and forbid.

ASP.NET Core framework does not have a built-in solution for multi-tenant authentication. While it's certainly

possible for customers to write one, using the built-in features, we recommend customers to look into Orchard

Core for this purpose.

Orchard Core is:

An open-source modular and multi-tenant app framework built with ASP.NET Core.

A content management system (CMS) built on top of that app framework.

See the Orchard Core source for an example of authentication providers per tenant.

Authorize with a specific scheme in ASP.NET Core

Policy schemes in ASP.NET Core

Create an ASP.NET Core app with user data protected by authorization

Globally require authenticated users

https://www.orchardcore.net/
https://github.com/OrchardCMS/OrchardCore


Introduction to Identity on ASP.NET Core
9/22/2020 • 17 minutes to read • Edit Online

Create a Web app with authentication

By Rick Anderson

ASP.NET Core Identity:

Is an API that supports user interface (UI) login functionality.

Manages users, passwords, profile data, roles, claims, tokens, email confirmation, and more.

Users can create an account with the login information stored in Identity or they can use an external login

provider. Supported external login providers include Facebook, Google, Microsoft Account, and Twitter.

For information on how to globally require all users to be authenticated, see Require authenticated users.

The Identity source code is available on GitHub. Scaffold Identity and view the generated files to review

the template interaction with Identity.

Identity is typically configured using a SQL Server database to store user names, passwords, and profile

data. Alternatively, another persistent store can be used, for example, Azure Table Storage.

In this topic, you learn how to use Identity to register, log in, and log out a user. Note: the templates treat

username and email as the same for users. For more detailed instructions about creating apps that use

Identity, see Next Steps.

Microsoft identity platform is:

An evolution of the Azure Active Directory (Azure AD) developer platform.

Unrelated to ASP.NET Core Identity.

ASP.NET Core Identity adds user interface (UI) login functionality to ASP.NET Core web apps. To secure web

APIs and SPAs, use one of the following:

Azure Active Directory

Azure Active Directory B2C (Azure AD B2C)

IdentityServer4

IdentityServer4 is an OpenID Connect and OAuth 2.0 framework for ASP.NET Core. IdentityServer4

enables the following security features:

Authentication as a Service (AaaS)

Single sign-on/off (SSO) over multiple application types

Access control for APIs

Federation Gateway

For more information, see Welcome to IdentityServer4.

View or download the sample code (how to download).

 

Create an ASP.NET Core Web Application project with Individual User Accounts.

Visual Studio

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/identity.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore/tree/master/src/Identity
https://docs.microsoft.com/en-us/azure/active-directory/develop/
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-protect-backend-with-aad
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw
https://identityserver.io
https://docs.identityserver.io/en/latest/index.html
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authentication/identity/sample


Apply migrationsApply migrations

Test Register and LoginTest Register and Login

View the Identity databaseView the Identity database

.NET Core CLI

Select FileFile > NewNew  > ProjectProject.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application. Name the project WebApp1WebApp1  to have the same namespace

as the project download. Click OKOK.

Select an ASP.NET Core Web ApplicationWeb Application, then select Change AuthenticationChange Authentication.

Select Individual User AccountsIndividual User Accounts  and click OKOK.

The generated project provides ASP.NET Core Identity as a Razor Class Library. The Identity Razor Class

Library exposes endpoints with the Identity  area. For example:

/Identity/Account/Login

/Identity/Account/Logout

/Identity/Account/Manage

Apply the migrations to initialize the database.

Visual Studio

.NET Core CLI

Run the following command in the Package Manager Console (PMC):

PM> Update-Database

Run the app and register a user. Depending on your screen size, you might need to select the navigation

toggle button to see the RegisterRegister  and LoginLogin links.

Visual Studio

.NET Core CLI

From the ViewView  menu, select SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  (SSOX).

Navigate to (localdb)MSSQLLocalDB(SQL Ser ver 13)(localdb)MSSQLLocalDB(SQL Ser ver 13) . Right-click on dbo.AspNetUsersdbo.AspNetUsers  > ViewView

DataData:



Configure Identity servicesConfigure Identity services   

Services are added in ConfigureServices . The typical pattern is to call all the Add{Service}  methods, and

then call all the services.Configure{Service}  methods.



public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
     // options.UseSqlite(
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(options => options.SignIn.RequireConfirmedAccount = 
true)
        .AddEntityFrameworkStores<ApplicationDbContext>();
    services.AddRazorPages();

    services.Configure<IdentityOptions>(options =>
    {
        // Password settings.
        options.Password.RequireDigit = true;
        options.Password.RequireLowercase = true;
        options.Password.RequireNonAlphanumeric = true;
        options.Password.RequireUppercase = true;
        options.Password.RequiredLength = 6;
        options.Password.RequiredUniqueChars = 1;

        // Lockout settings.
        options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(5);
        options.Lockout.MaxFailedAccessAttempts = 5;
        options.Lockout.AllowedForNewUsers = true;

        // User settings.
        options.User.AllowedUserNameCharacters =
        "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-._@+";
        options.User.RequireUniqueEmail = false;
    });

    services.ConfigureApplicationCookie(options =>
    {
        // Cookie settings
        options.Cookie.HttpOnly = true;
        options.ExpireTimeSpan = TimeSpan.FromMinutes(5);

        options.LoginPath = "/Identity/Account/Login";
        options.AccessDeniedPath = "/Identity/Account/AccessDenied";
        options.SlidingExpiration = true;
    });
}

The preceding highlighted code configures Identity with default option values. Services are made

available to the app through dependency injection.

Identity is enabled by calling UseAuthentication. UseAuthentication  adds authentication middleware to

the request pipeline.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication


public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseDatabaseErrorPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
    });
}

Scaffold Register, Login, LogOut, and RegisterConfirmation

Examine RegisterExamine Register

The template-generated app doesn't use authorization. app.UseAuthorization  is included to ensure it's

added in the correct order should the app add authorization. UseRouting , UseAuthentication , 

UseAuthorization , and UseEndpoints  must be called in the order shown in the preceding code.

For more information on IdentityOptions  and Startup , see IdentityOptions and Application Startup.

Visual Studio

.NET Core CLI

Add the Register , Login , LogOut , and RegisterConfirmation  files. Follow the Scaffold identity into a

Razor project with authorization instructions to generate the code shown in this section.

When a user clicks the RegisterRegister  button on the Register  page, the RegisterModel.OnPostAsync  action is

invoked. The user is created by CreateAsync on the _userManager  object:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.usermanager-1.createasync#microsoft_aspnetcore_identity_usermanager_1_createasync__0_system_string_


public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
    returnUrl = returnUrl ?? Url.Content("~/");
    ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync())
                                          .ToList();
    if (ModelState.IsValid)
    {
        var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };
        var result = await _userManager.CreateAsync(user, Input.Password);
        if (result.Succeeded)
        {
            _logger.LogInformation("User created a new account with password.");

            var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
            code = WebEncoders.Base64UrlEncode(Encoding.UTF8.GetBytes(code));
            var callbackUrl = Url.Page(
                "/Account/ConfirmEmail",
                pageHandler: null,
                values: new { area = "Identity", userId = user.Id, code = code },
                protocol: Request.Scheme);

            await _emailSender.SendEmailAsync(Input.Email, "Confirm your email",
                $"Please confirm your account by <a 
href='{HtmlEncoder.Default.Encode(callbackUrl)}'>clicking here</a>.");

            if (_userManager.Options.SignIn.RequireConfirmedAccount)
            {
                return RedirectToPage("RegisterConfirmation", 
                                      new { email = Input.Email });
            }
            else
            {
                await _signInManager.SignInAsync(user, isPersistent: false);
                return LocalRedirect(returnUrl);
            }
        }
        foreach (var error in result.Errors)
        {
            ModelState.AddModelError(string.Empty, error.Description);
        }
    }

    // If we got this far, something failed, redisplay form
    return Page();
}

Disable default account verificationDisable default account verification 

With the default templates, the user is redirected to the Account.RegisterConfirmation  where they can

select a link to have the account confirmed. The default Account.RegisterConfirmation  is used onlyonly  for

testing, automatic account verification should be disabled in a production app.

To require a confirmed account and prevent immediate login at registration, set 

DisplayConfirmAccountLink = false  in /Areas/Identity/Pages/Account/RegisterConfirmation.cshtml.cs:



[AllowAnonymous]
public class RegisterConfirmationModel : PageModel
{
    private readonly UserManager<IdentityUser> _userManager;
    private readonly IEmailSender _sender;

    public RegisterConfirmationModel(UserManager<IdentityUser> userManager, IEmailSender sender)
    {
        _userManager = userManager;
        _sender = sender;
    }

    public string Email { get; set; }

    public bool DisplayConfirmAccountLink { get; set; }

    public string EmailConfirmationUrl { get; set; }

    public async Task<IActionResult> OnGetAsync(string email, string returnUrl = null)
    {
        if (email == null)
        {
            return RedirectToPage("/Index");
        }

        var user = await _userManager.FindByEmailAsync(email);
        if (user == null)
        {
            return NotFound($"Unable to load user with email '{email}'.");
        }

        Email = email;
        // Once you add a real email sender, you should remove this code that lets you confirm the 
account
        DisplayConfirmAccountLink = false;
        if (DisplayConfirmAccountLink)
        {
            var userId = await _userManager.GetUserIdAsync(user);
            var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
            code = WebEncoders.Base64UrlEncode(Encoding.UTF8.GetBytes(code));
            EmailConfirmationUrl = Url.Page(
                "/Account/ConfirmEmail",
                pageHandler: null,
                values: new { area = "Identity", userId = userId, code = code, returnUrl = returnUrl 
},
                protocol: Request.Scheme);
        }

        return Page();
    }
}

Log inLog in
The Login form is displayed when:

The Log inLog in link is selected.

A user attempts to access a restricted page that they aren't authorized to access oror  when they haven't

been authenticated by the system.

When the form on the Login page is submitted, the OnPostAsync  action is called. PasswordSignInAsync  is

called on the _signInManager  object.



public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
    returnUrl = returnUrl ?? Url.Content("~/");

    if (ModelState.IsValid)
    {
        // This doesn't count login failures towards account lockout
        // To enable password failures to trigger account lockout, 
        // set lockoutOnFailure: true
        var result = await _signInManager.PasswordSignInAsync(Input.Email,
                           Input.Password, Input.RememberMe, lockoutOnFailure: true);
        if (result.Succeeded)
        {
            _logger.LogInformation("User logged in.");
            return LocalRedirect(returnUrl);
        }
        if (result.RequiresTwoFactor)
        {
            return RedirectToPage("./LoginWith2fa", new
            {
                ReturnUrl = returnUrl,
                RememberMe = Input.RememberMe
            });
        }
        if (result.IsLockedOut)
        {
            _logger.LogWarning("User account locked out.");
            return RedirectToPage("./Lockout");
        }
        else
        {
            ModelState.AddModelError(string.Empty, "Invalid login attempt.");
            return Page();
        }
    }

    // If we got this far, something failed, redisplay form
    return Page();
}

Log outLog out

For information on how to make authorization decisions, see Introduction to authorization in ASP.NET

Core.

The Log outLog out link invokes the LogoutModel.OnPost  action.



using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.Extensions.Logging;
using System.Threading.Tasks;

namespace WebApp1.Areas.Identity.Pages.Account
{
    [AllowAnonymous]
    public class LogoutModel : PageModel
    {
        private readonly SignInManager<IdentityUser> _signInManager;
        private readonly ILogger<LogoutModel> _logger;

        public LogoutModel(SignInManager<IdentityUser> signInManager, ILogger<LogoutModel> logger)
        {
            _signInManager = signInManager;
            _logger = logger;
        }

        public void OnGet()
        {
        }

        public async Task<IActionResult> OnPost(string returnUrl = null)
        {
            await _signInManager.SignOutAsync();
            _logger.LogInformation("User logged out.");
            if (returnUrl != null)
            {
                return LocalRedirect(returnUrl);
            }
            else
            {
                return RedirectToPage();
            }
        }
    }
}

In the preceding code, the code return RedirectToPage();  needs to be a redirect so that the browser

performs a new request and the identity for the user gets updated.

SignOutAsync clears the user's claims stored in a cookie.

Post is specified in the Pages/Shared/_LoginPartial.cshtml:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1.signoutasync#microsoft_aspnetcore_identity_signinmanager_1_signoutasync


  

@using Microsoft.AspNetCore.Identity
@inject SignInManager<IdentityUser> SignInManager
@inject UserManager<IdentityUser> UserManager

<ul class="navbar-nav">
@if (SignInManager.IsSignedIn(User))
{
    <li class="nav-item">
        <a  class="nav-link text-dark" asp-area="Identity" asp-page="/Account/Manage/Index" 
                                              title="Manage">Hello @User.Identity.Name!</a>
    </li>
    <li class="nav-item">
        <form class="form-inline" asp-area="Identity" asp-page="/Account/Logout" 
                                  asp-route-returnUrl="@Url.Page("/", new { area = "" })" 
                                  method="post" >
            <button  type="submit" class="nav-link btn btn-link text-dark">Logout</button>
        </form>
    </li>
}
else
{
    <li class="nav-item">
        <a class="nav-link text-dark" asp-area="Identity" asp-page="/Account/Register">Register</a>
    </li>
    <li class="nav-item">
        <a class="nav-link text-dark" asp-area="Identity" asp-page="/Account/Login">Login</a>
    </li>
}
</ul>

Test Identity

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.Extensions.Logging;

namespace WebApp1.Pages
{
    [Authorize]
    public class PrivacyModel : PageModel
    {
        private readonly ILogger<PrivacyModel> _logger;

        public PrivacyModel(ILogger<PrivacyModel> logger)
        {
            _logger = logger;
        }

        public void OnGet()
        {
        }
    }
}

Explore IdentityExplore Identity

The default web project templates allow anonymous access to the home pages. To test Identity, add 

[Authorize] :

If you are signed in, sign out. Run the app and select the Pr ivacyPrivacy  link. You are redirected to the login

page.

To explore Identity in more detail:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute


 

Identity Components

Migrating to ASP.NET Core Identity

Setting password strength

AddDefaultIdentity and AddIdentity

Prevent publish of static Identity assets

<PropertyGroup>
  <ResolveStaticWebAssetsInputsDependsOn>RemoveIdentityAssets</ResolveStaticWebAssetsInputsDependsOn>
</PropertyGroup>

<Target Name="RemoveIdentityAssets">
  <ItemGroup>
    <StaticWebAsset Remove="@(StaticWebAsset)" Condition="%(SourceId) == 
'Microsoft.AspNetCore.Identity.UI'" />
  </ItemGroup>
</Target>

Next Steps

Create full identity UI source

Examine the source of each page and step through the debugger.

All the Identity-dependent NuGet packages are included in the ASP.NET Core shared framework.

The primary package for Identity is Microsoft.AspNetCore.Identity. This package contains the core set of

interfaces for ASP.NET Core Identity, and is included by 

Microsoft.AspNetCore.Identity.EntityFrameworkCore .

For more information and guidance on migrating your existing Identity store, see Migrate Authentication

and Identity.

See Configuration for a sample that sets the minimum password requirements.

AddDefaultIdentity was introduced in ASP.NET Core 2.1. Calling AddDefaultIdentity  is similar to calling

the following:

AddIdentity

AddDefaultUI

AddDefaultTokenProviders

See AddDefaultIdentity source for more information.

To prevent publishing static Identity assets (stylesheets and JavaScript files for Identity UI) to the web root,

add the following ResolveStaticWebAssetsInputsDependsOn  property and RemoveIdentityAssets  target to

the app's project file:

 

ASP.NET Core Identity source code

See this GitHub issue for information on configuring Identity using SQLite.

Configure Identity

Create an ASP.NET Core app with user data protected by authorization

Add, download, and delete user data to Identity in an ASP.NET Core project

https://www.nuget.org/packages/Microsoft.AspNetCore.Identity/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionuiextensions.adddefaultidentity
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.addidentity
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilderuiextensions.adddefaultui
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilderextensions.adddefaulttokenproviders
https://github.com/dotnet/AspNetCore/blob/release/3.1/src/Identity/UI/src/IdentityServiceCollectionUIExtensions.cs#L47-L63
https://github.com/dotnet/aspnetcore/tree/master/src/Identity
https://github.com/dotnet/AspNetCore.Docs/issues/5131


AddDefaultIdentity and AddIdentity

Create a Web app with authentication

Apply migrationsApply migrations

Enable QR Code generation for TOTP authenticator apps in ASP.NET Core

Migrate Authentication and Identity to ASP.NET Core

Account confirmation and password recovery in ASP.NET Core

Two-factor authentication with SMS in ASP.NET Core

Host ASP.NET Core in a web farm

By Rick Anderson

ASP.NET Core Identity is a membership system that adds login functionality to ASP.NET Core apps. Users

can create an account with the login information stored in Identity or they can use an external login

provider. Supported external login providers include Facebook, Google, Microsoft Account, and Twitter.

Identity can be configured using a SQL Server database to store user names, passwords, and profile data.

Alternatively, another persistent store can be used, for example, Azure Table Storage.

View or download the sample code (how to download).

In this topic, you learn how to use Identity to register, log in, and log out a user. For more detailed

instructions about creating apps that use Identity, see the Next Steps section at the end of this article.

 

AddDefaultIdentity was introduced in ASP.NET Core 2.1. Calling AddDefaultIdentity  is similar to calling

the following:

AddIdentity

AddDefaultUI

AddDefaultTokenProviders

See AddDefaultIdentity source for more information.

Create an ASP.NET Core Web Application project with Individual User Accounts.

Visual Studio

.NET Core CLI

Select FileFile > NewNew  > ProjectProject.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application. Name the project WebApp1WebApp1  to have the same namespace

as the project download. Click OKOK.

Select an ASP.NET Core Web ApplicationWeb Application, then select Change AuthenticationChange Authentication.

Select Individual User AccountsIndividual User Accounts  and click OKOK.

The generated project provides ASP.NET Core Identity as a Razor Class Library. The Identity Razor Class

Library exposes endpoints with the Identity  area. For example:

/Identity/Account/Login

/Identity/Account/Logout

/Identity/Account/Manage

Apply the migrations to initialize the database.

Visual Studio

.NET Core CLI

https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authentication/identity/sample/src/ASPNETCore-IdentityDemoComplete/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionuiextensions.adddefaultidentity
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.addidentity
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilderuiextensions.adddefaultui
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilderextensions.adddefaulttokenproviders
https://github.com/dotnet/AspNetCore/blob/release/2.1/src/Identity/UI/src/IdentityServiceCollectionUIExtensions.cs#L47-L63


Update-Database

Test Register and LoginTest Register and Login

View the Identity databaseView the Identity database

Configure Identity servicesConfigure Identity services

Run the following command in the Package Manager Console (PMC):

Run the app and register a user. Depending on your screen size, you might need to select the navigation

toggle button to see the RegisterRegister  and LoginLogin links.

Visual Studio

.NET Core CLI

From the ViewView  menu, select SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  (SSOX).

Navigate to (localdb)MSSQLLocalDB(SQL Ser ver 13)(localdb)MSSQLLocalDB(SQL Ser ver 13) . Right-click on dbo.AspNetUsersdbo.AspNetUsers  > ViewView

DataData:

 

Services are added in ConfigureServices . The typical pattern is to call all the Add{Service}  methods, and

then call all the services.Configure{Service}  methods.



public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>()
        .AddDefaultUI(UIFramework.Bootstrap4)
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.Configure<IdentityOptions>(options =>
    {
        // Password settings.
        options.Password.RequireDigit = true;
        options.Password.RequireLowercase = true;
        options.Password.RequireNonAlphanumeric = true;
        options.Password.RequireUppercase = true;
        options.Password.RequiredLength = 6;
        options.Password.RequiredUniqueChars = 1;

        // Lockout settings.
        options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(5);
        options.Lockout.MaxFailedAccessAttempts = 5;
        options.Lockout.AllowedForNewUsers = true;

        // User settings.
        options.User.AllowedUserNameCharacters =
        "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-._@+";
        options.User.RequireUniqueEmail = false;
    });

    services.ConfigureApplicationCookie(options =>
    {
        // Cookie settings
        options.Cookie.HttpOnly = true;
        options.ExpireTimeSpan = TimeSpan.FromMinutes(5);

        options.LoginPath = "/Identity/Account/Login";
        options.AccessDeniedPath = "/Identity/Account/AccessDenied";
        options.SlidingExpiration = true;
    });

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

The preceding code configures Identity with default option values. Services are made available to the app

through dependency injection.

Identity is enabled by calling UseAuthentication. UseAuthentication  adds authentication middleware to

the request pipeline.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication#microsoft_aspnetcore_builder_authappbuilderextensions_useauthentication_microsoft_aspnetcore_builder_iapplicationbuilder_


public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseDatabaseErrorPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();

    app.UseAuthentication();

    app.UseMvc();
}

Scaffold Register, Login, and LogOut

Examine RegisterExamine Register

For more information, see the IdentityOptions Class and Application Startup.

Follow the Scaffold identity into a Razor project with authorization instructions to generate the code

shown in this section.

Visual Studio

.NET Core CLI

Add the Register, Login, and LogOut files.

When a user clicks the RegisterRegister  link, the RegisterModel.OnPostAsync  action is invoked. The user is created

by CreateAsync on the _userManager  object:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.usermanager-1.createasync#microsoft_aspnetcore_identity_usermanager_1_createasync__0_system_string_


public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
    returnUrl = returnUrl ?? Url.Content("~/");
    if (ModelState.IsValid)
    {
        var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };
        var result = await _userManager.CreateAsync(user, Input.Password);
        if (result.Succeeded)
        {
            _logger.LogInformation("User created a new account with password.");

            var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
            var callbackUrl = Url.Page(
                "/Account/ConfirmEmail",
                pageHandler: null,
                values: new { userId = user.Id, code = code },
                protocol: Request.Scheme);

            await _emailSender.SendEmailAsync(Input.Email, "Confirm your email",
                $"Please confirm your account by <a 
href='{HtmlEncoder.Default.Encode(callbackUrl)}'>clicking here</a>.");

            await _signInManager.SignInAsync(user, isPersistent: false);
            return LocalRedirect(returnUrl);
        }
        foreach (var error in result.Errors)
        {
            ModelState.AddModelError(string.Empty, error.Description);
        }
    }

    // If we got this far, something failed, redisplay form
    return Page();
}

Log inLog in

If the user was created successfully, the user is logged in by the call to _signInManager.SignInAsync .

Note:Note: See account confirmation for steps to prevent immediate login at registration.

The Login form is displayed when:

The Log inLog in link is selected.

A user attempts to access a restricted page that they aren't authorized to access oror  when they haven't

been authenticated by the system.

When the form on the Login page is submitted, the OnPostAsync  action is called. PasswordSignInAsync  is

called on the _signInManager  object.



public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
    returnUrl = returnUrl ?? Url.Content("~/");

    if (ModelState.IsValid)
    {
        // This doesn't count login failures towards account lockout
        // To enable password failures to trigger account lockout, 
        // set lockoutOnFailure: true
        var result = await _signInManager.PasswordSignInAsync(Input.Email, 
            Input.Password, Input.RememberMe, lockoutOnFailure: true);
        if (result.Succeeded)
        {
            _logger.LogInformation("User logged in.");
            return LocalRedirect(returnUrl);
        }
        if (result.RequiresTwoFactor)
        {
            return RedirectToPage("./LoginWith2fa", new { ReturnUrl = returnUrl, RememberMe = 
Input.RememberMe });
        }
        if (result.IsLockedOut)
        {
            _logger.LogWarning("User account locked out.");
            return RedirectToPage("./Lockout");
        }
        else
        {
            ModelState.AddModelError(string.Empty, "Invalid login attempt.");
            return Page();
        }
    }

    // If we got this far, something failed, redisplay form
    return Page();
}

Log outLog out

For information on how to make authorization decisions, see Introduction to authorization in ASP.NET

Core.

The Log outLog out link invokes the LogoutModel.OnPost  action.



using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.Extensions.Logging;
using System.Threading.Tasks;

namespace WebApp1.Areas.Identity.Pages.Account
{
    [AllowAnonymous]
    public class LogoutModel : PageModel
    {
        private readonly SignInManager<IdentityUser> _signInManager;
        private readonly ILogger<LogoutModel> _logger;

        public LogoutModel(SignInManager<IdentityUser> signInManager, ILogger<LogoutModel> logger)
        {
            _signInManager = signInManager;
            _logger = logger;
        }

        public void OnGet()
        {
        }

        public async Task<IActionResult> OnPost(string returnUrl = null)
        {
            await _signInManager.SignOutAsync();
            _logger.LogInformation("User logged out.");
            if (returnUrl != null)
            {
                return LocalRedirect(returnUrl);
            }
            else
            {
                // This needs to be a redirect so that the browser performs a new
                // request and the identity for the user gets updated.
                return RedirectToPage();
            }
        }
    }
}

SignOutAsync clears the user's claims stored in a cookie.

Post is specified in the Pages/Shared/_LoginPartial.cshtml:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1.signoutasync#microsoft_aspnetcore_identity_signinmanager_1_signoutasync


@using Microsoft.AspNetCore.Identity
@inject SignInManager<IdentityUser> SignInManager
@inject UserManager<IdentityUser> UserManager

<ul class="navbar-nav">
    @if (SignInManager.IsSignedIn(User))
    {
        <li class="nav-item">
            <a class="nav-link text-dark" asp-area="Identity"
               asp-page="/Account/Manage/Index"
               title="Manage">Hello@User.Identity.Name!</a>
        </li>
        <li class="nav-item">
            <form class="form-inline" asp-area="Identity" asp-page="/Account/Logout" 
                   asp-route-returnUrl="@Url.Page("/", new { area = "" })" 
                   method="post">
                <button type="submit" class="nav-link btn btn-link text-dark">Logout</button>
            </form>
        </li>
    }
    else
    {
        <li class="nav-item">
            <a class="nav-link text-dark" asp-area="Identity" asp-
page="/Account/Register">Register</a>
        </li>
        <li class="nav-item">
            <a class="nav-link text-dark" asp-area="Identity" asp-page="/Account/Login">Login</a>
        </li>
    }
</ul>

Test Identity

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace WebApp1.Pages
{
    [Authorize]
    public class PrivacyModel : PageModel
    {
        public void OnGet()
        {
        }
    }
}

Explore IdentityExplore Identity

The default web project templates allow anonymous access to the home pages. To test Identity, add 

[Authorize]  to the Privacy page.

If you are signed in, sign out. Run the app and select the Pr ivacyPrivacy  link. You are redirected to the login

page.

To explore Identity in more detail:

Create full identity UI source

Examine the source of each page and step through the debugger.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute


Identity Components

Migrating to ASP.NET Core Identity

Setting password strength

Next Steps

All the Identity dependent NuGet packages are included in the Microsoft.AspNetCore.App metapackage.

The primary package for Identity is Microsoft.AspNetCore.Identity. This package contains the core set of

interfaces for ASP.NET Core Identity, and is included by 

Microsoft.AspNetCore.Identity.EntityFrameworkCore .

For more information and guidance on migrating your existing Identity store, see Migrate Authentication

and Identity.

See Configuration for a sample that sets the minimum password requirements.

See this GitHub issue for information on configuring Identity using SQLite.

Configure Identity

Create an ASP.NET Core app with user data protected by authorization

Add, download, and delete user data to Identity in an ASP.NET Core project

Enable QR Code generation for TOTP authenticator apps in ASP.NET Core

Migrate Authentication and Identity to ASP.NET Core

Account confirmation and password recovery in ASP.NET Core

Two-factor authentication with SMS in ASP.NET Core

Host ASP.NET Core in a web farm

https://www.nuget.org/packages/Microsoft.AspNetCore.Identity/
https://github.com/dotnet/AspNetCore.Docs/issues/5131


Authentication and authorization for SPAs
9/22/2020 • 11 minutes to read • Edit Online

Create an app with API authorization support

dotnet new angular -o <output_directory_name> -au Individual

dotnet new react -o <output_directory_name> -au Individual

General description of the ASP.NET Core components of the app

Startup classStartup class

ASP.NET Core 3.0 or later offers authentication in Single Page Apps (SPAs) using the support for API authorization.

ASP.NET Core Identity for authenticating and storing users is combined with IdentityServer for implementing

OpenID Connect.

An authentication parameter was added to the AngularAngular  and ReactReact project templates that is similar to the

authentication parameter in the Web Application (Model-View-Controller)Web Application (Model-View-Controller)  (MVC) and Web ApplicationWeb Application

(Razor Pages) project templates. The allowed parameter values are NoneNone and IndividualIndividual . The React.js andReact.js and

ReduxRedux project template doesn't support the authentication parameter at this time.

User authentication and authorization can be used with both Angular and React SPAs. Open a command shell, and

run the following command:

AngularAngular :

ReactReact:

The preceding command creates an ASP.NET Core app with a ClientApp directory containing the SPA.

The following sections describe additions to the project when authentication support is included:

The following code examples rely on the Microsoft.AspNetCore.ApiAuthorization.IdentityServer NuGet package.

The examples configure API authentication and authorization using the AddApiAuthorization and

AddIdentityServerJwt extension methods. Projects using the React or Angular SPA project templates with

authentication include a reference to this package.

The Startup  class has the following additions:

Inside the Startup.ConfigureServices  method:

services.AddDbContext<ApplicationDbContext>(options =>
    options.UseSqlite(Configuration.GetConnectionString("DefaultConnection")));

services.AddDefaultIdentity<ApplicationUser>()
    .AddEntityFrameworkStores<ApplicationDbContext>();

Identity with the default UI:

IdentityServer with an additional AddApiAuthorization  helper method that sets up some default

ASP.NET Core conventions on top of IdentityServer :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/identity-api-authorization.md
https://identityserver.io/
https://www.nuget.org/packages/Microsoft.AspNetCore.ApiAuthorization.IdentityServer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityserverbuilderconfigurationextensions.addapiauthorization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.apiauthorization.identityserver.apiresourcecollection.addidentityserverjwt


AddApiAuthorizationAddApiAuthorization

AddIdentityServerJwtAddIdentityServerJwt

WeatherForecastControllerWeatherForecastController

ApplicationDbContextApplicationDbContext

OidcConfigurationControllerOidcConfigurationController

services.AddIdentityServer()
    .AddApiAuthorization<ApplicationUser, ApplicationDbContext>();

services.AddAuthentication()
    .AddIdentityServerJwt();

Authentication with an additional AddIdentityServerJwt  helper method that configures the app to

validate JWT tokens produced by IdentityServer :

Inside the Startup.Configure  method:

app.UseAuthentication();

app.UseIdentityServer();

The authentication middleware that is responsible for validating the request credentials and setting

the user on the request context:

The IdentityServer middleware that exposes the OpenID Connect endpoints:

This helper method configures IdentityServer to use our supported configuration. IdentityServer is a powerful and

extensible framework for handling app security concerns. At the same time, that exposes unnecessary complexity

for the most common scenarios. Consequently, a set of conventions and configuration options is provided to you

that are considered a good starting point. Once your authentication needs change, the full power of IdentityServer

is still available to customize authentication to suit your needs.

This helper method configures a policy scheme for the app as the default authentication handler. The policy is

configured to let Identity handle all requests routed to any subpath in the Identity URL space "/Identity". The 

JwtBearerHandler  handles all other requests. Additionally, this method registers an <<ApplicationName>>API  API

resource with IdentityServer with a default scope of <<ApplicationName>>API  and configures the JWT Bearer token

middleware to validate tokens issued by IdentityServer for the app.

In the Controllers\WeatherForecastController.cs file, notice the [Authorize]  attribute applied to the class that

indicates that the user needs to be authorized based on the default policy to access the resource. The default

authorization policy happens to be configured to use the default authentication scheme, which is set up by 

AddIdentityServerJwt  to the policy scheme that was mentioned above, making the JwtBearerHandler  configured

by such helper method the default handler for requests to the app.

In the Data\ApplicationDbContext.cs file, notice the same DbContext  is used in Identity with the exception that it

extends ApiAuthorizationDbContext  (a more derived class from IdentityDbContext ) to include the schema for

IdentityServer.

To gain full control of the database schema, inherit from one of the available Identity DbContext  classes and

configure the context to include the Identity schema by calling 

builder.ConfigurePersistedGrantContext(_operationalStoreOptions.Value)  on the OnModelCreating  method.

In the Controllers\OidcConfigurationController.cs file, notice the endpoint that's provisioned to serve the OIDC



appsettings.jsonappsettings.json

"IdentityServer": {
  "Clients": {
    "angularindividualpreview3final": {
      "Profile": "IdentityServerSPA"
    }
  }
}

appsettings.Development.jsonappsettings.Development.json

"IdentityServer": {
  "Key": {
    "Type": "Development"
  }
}

General description of the Angular app

General description of the React app

parameters that the client needs to use.

In the appsettings.json file of the project root, there's a new IdentityServer  section that describes the list of

configured clients. In the following example, there's a single client. The client name corresponds to the app name

and is mapped by convention to the OAuth ClientId  parameter. The profile indicates the app type being

configured. It's used internally to drive conventions that simplify the configuration process for the server. There are

several profiles available, as explained in the Application profiles section.

In the appsettings.Development.json file of the project root, there's an IdentityServer  section that describes the

key used to sign tokens. When deploying to production, a key needs to be provisioned and deployed alongside the

app, as explained in the Deploy to production section.

The authentication and API authorization support in the Angular template resides in its own Angular module in the

ClientApp\src\api-authorization directory. The module is composed of the following elements:

3 components:

A route guard AuthorizeGuard  that can be added to routes and requires a user to be authenticated before

visiting the route.

An HTTP interceptor AuthorizeInterceptor  that attaches the access token to outgoing HTTP requests targeting

the API when the user is authenticated.

A service AuthorizeService  that handles the lower-level details of the authentication process and exposes

information about the authenticated user to the rest of the app for consumption.

An Angular module that defines routes associated with the authentication parts of the app. It exposes the login

menu component, the interceptor, the guard, and the service for consumption from the rest of the app.

login.component.ts: Handles the app's login flow.

logout.component.ts: Handles the app's logout flow.

login-menu.component.ts: A widget that displays one of the following sets of links:

User profile management and log out links when the user is authenticated.

Registration and log in links when the user isn't authenticated.

The support for authentication and API authorization in the React template resides in the

ClientApp\src\components\api-authorization directory. It's composed of the following elements:



Require authorization on a new API

Customize the API authentication handler

services.AddAuthentication()
    .AddIdentityServerJwt();

services.Configure<JwtBearerOptions>(
    IdentityServerJwtConstants.IdentityServerJwtBearerScheme,
    options =>
    {
        ...
    });

services.Configure<JwtBearerOptions>(
    IdentityServerJwtConstants.IdentityServerJwtBearerScheme,
    options =>
    {
        var onTokenValidated = options.Events.OnTokenValidated;       
        
        options.Events.OnTokenValidated = async context =>
        {
            await onTokenValidated(context);
            ...
        }
    });

4 components:

An exported authService  instance of class AuthorizeService  that handles the lower-level details of the

authentication process and exposes information about the authenticated user to the rest of the app for

consumption.

Login.js: Handles the app's login flow.

Logout.js: Handles the app's logout flow.

LoginMenu.js: A widget that displays one of the following sets of links:

AuthorizeRoute.js: A route component that requires a user to be authenticated before rendering the

component indicated in the Component  parameter.

User profile management and log out links when the user is authenticated.

Registration and log in links when the user isn't authenticated.

Now that you've seen the main components of the solution, you can take a deeper look at individual scenarios for

the app.

By default, the system is configured to easily require authorization for new APIs. To do so, create a new controller

and add the [Authorize]  attribute to the controller class or to any action within the controller.

To customize the configuration of the API's JWT handler, configure its JwtBearerOptions instance:

The API's JWT handler raises events that enable control over the authentication process using JwtBearerEvents . To

provide support for API authorization, AddIdentityServerJwt  registers its own event handlers.

To customize the handling of an event, wrap the existing event handler with additional logic as required. For

example:

In the preceding code, the OnTokenValidated  event handler is replaced with a custom implementation. This

implementation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.jwtbeareroptions


Protect a client-side route (Angular)

RouterModule.forRoot([
  // ...
  { path: 'fetch-data', component: FetchDataComponent, canActivate: [AuthorizeGuard] },
])

Authenticate API requests (Angular)

Protect a client-side route (React)

<AuthorizeRoute path='/fetch-data' component={FetchData} />

Authenticate API requests (React)

Import the authService into your componentImport the authService into your component

import authService from './api-authorization/AuthorizeService'

Retrieve and attach the access token to the responseRetrieve and attach the access token to the response

1. Calls the original implementation provided by the API authorization support.

2. Run its own custom logic.

Protecting a client-side route is done by adding the authorize guard to the list of guards to run when configuring a

route. As an example, you can see how the fetch-data  route is configured within the main app Angular module:

It's important to mention that protecting a route doesn't protect the actual endpoint (which still requires an 

[Authorize]  attribute applied to it) but that it only prevents the user from navigating to the given client-side route

when it isn't authenticated.

Authenticating requests to APIs hosted alongside the app is done automatically through the use of the HTTP client

interceptor defined by the app.

Protect a client-side route by using the AuthorizeRoute  component instead of the plain Route  component. For

example, notice how the fetch-data  route is configured within the App  component:

Protecting a route:

Doesn't protect the actual endpoint (which still requires an [Authorize]  attribute applied to it).

Only prevents the user from navigating to the given client-side route when it isn't authenticated.

Authenticating requests with React is done by first importing the authService  instance from the AuthorizeService

. The access token is retrieved from the authService  and is attached to the request as shown below. In React

components, this work is typically done in the componentDidMount  lifecycle method or as the result from some user

interaction.



   

async populateWeatherData() {
  const token = await authService.getAccessToken();
  const response = await fetch('api/SampleData/WeatherForecasts', {
    headers: !token ? {} : { 'Authorization': `Bearer ${token}` }
  });
  const data = await response.json();
  this.setState({ forecasts: data, loading: false });
}

Deploy to production

Example: Deploy to Azure App ServiceExample: Deploy to Azure App Service

"IdentityServer": {
  "Key": {
    "Type": "Store",
    "StoreName": "My",
    "StoreLocation": "CurrentUser",
    "Name": "CN=MyApplication"
  }
}

Other configuration options

To deploy the app to production, the following resources need to be provisioned:

A database to store the Identity user accounts and the IdentityServer grants.

A production certificate to use for signing tokens.

There are no specific requirements for this certificate; it can be a self-signed certificate or a certificate

provisioned through a CA authority.

It can be generated through standard tools like PowerShell or OpenSSL.

It can be installed into the certificate store on the target machines or deployed as a .pfx file with a strong

password.

This section describes deploying the app to Azure App Service using a certificate stored in the certificate store. To

modify the app to load a certificate from the certificate store, a Standard tier service plan or better is required

when you configure the app in the Azure portal in a later step.

In the app's appsettings.json file, modify the IdentityServer  section to include the key details:

The store name represents the name of the certificate store where the certificate is stored. In this case, it points

to the personal user store.

The store location represents where to load the certificate from ( CurrentUser  or LocalMachine ).

The name property on certificate corresponds with the distinguished subject for the certificate.

To deploy to Azure App Service, follow the steps in Deploy the app to Azure, which explains how to create the

necessary Azure resources and deploy the app to production.

After following the preceding instructions, the app is deployed to Azure but isn't yet functional. The certificate used

by the app must be configured in the Azure portal. Locate the thumbprint for the certificate and follow the steps

described in Load your certificates.

While these steps mention SSL, there's a Pr ivate cer tificatesPrivate cer tificates  section in the Azure portal where you can upload

the provisioned certificate to use with the app.

After configuring the app and the app's settings in the Azure portal, restart the app in the portal.

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-ssl-cert-load#load-the-certificate-in-code


  Application profilesApplication profiles

Configuration through AppSettingsConfiguration through AppSettings

"IdentityServer": {
  "Clients": {
    "MySPA": {
      "Profile": "SPA",
      "RedirectUri": "https://www.example.com/authentication/login-callback",
      "LogoutUri": "https://www.example.com/authentication/logout-callback"
    }
  }
}

"IdentityServer": {
  "Resources": {
    "MyExternalApi": {
      "Profile": "API",
      "Scopes": "a b c"
    }
  }
}

The support for API authorization builds on top of IdentityServer with a set of conventions, default values, and

enhancements to simplify the experience for SPAs. Needless to say, the full power of IdentityServer is available

behind the scenes if the ASP.NET Core integrations don't cover your scenario. The ASP.NET Core support is focused

on "first-party" apps, where all the apps are created and deployed by our organization. As such, support isn't

offered for things like consent or federation. For those scenarios, use IdentityServer and follow their

documentation.

Application profiles are predefined configurations for apps that further define their parameters. At this time, the

following profiles are supported:

IdentityServerSPA : Represents a SPA hosted alongside IdentityServer as a single unit.

SPA : Represents a SPA that isn't hosted with IdentityServer.

IdentityServerJwt : Represents an API that is hosted alongside with IdentityServer.

API : Represents an API that isn't hosted with IdentityServer.

The redirect_uri  defaults to /authentication/login-callback .

The post_logout_redirect_uri  defaults to /authentication/logout-callback .

The set of scopes includes the openid , profile , and every scope defined for the APIs in the app.

The set of allowed OIDC response types is id_token token  or each of them individually ( id_token , 

token ).

The allowed response mode is fragment .

The set of scopes includes the openid , profile , and every scope defined for the APIs in the app.

The set of allowed OIDC response types is id_token token  or each of them individually ( id_token , 

token ).

The allowed response mode is fragment .

The app is configured to have a single scope that defaults to the app name.

The app is configured to have a single scope that defaults to the app name.

Configure the apps through the configuration system by adding them to the list of Clients  or Resources .

Configure each client's redirect_uri  and post_logout_redirect_uri  property, as shown in the following example:

When configuring resources, you can configure the scopes for the resource as shown below:



Configuration through codeConfiguration through code

AddApiAuthorization<ApplicationUser, ApplicationDbContext>(options =>
{
    options.Clients.AddSPA(
        "My SPA", spa =>
        spa.WithRedirectUri("http://www.example.com/authentication/login-callback")
           .WithLogoutRedirectUri(
               "http://www.example.com/authentication/logout-callback"));

    options.ApiResources.AddApiResource("MyExternalApi", resource =>
        resource.WithScopes("a", "b", "c"));
});

Additional resources

You can also configure the clients and resources through code using an overload of AddApiAuthorization  that

takes an action to configure options.

Use the Angular project template with ASP.NET Core

Use the React project template with ASP.NET Core

Scaffold Identity in ASP.NET Core projects



Scaffold Identity in ASP.NET Core projects
9/22/2020 • 51 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
    //services.AddDbContext<ApplicationDbContext>(options =>
    //    options.UseSqlServer(
    //        Configuration.GetConnectionString("DefaultConnection")));
    //services.AddDefaultIdentity<IdentityUser>(options => options.SignIn.RequireConfirmedAccount = true)
    //    .AddEntityFrameworkStores<ApplicationDbContext>();
    services.AddControllersWithViews();
    services.AddRazorPages();
}

Scaffold Identity into an empty project

By Rick Anderson

ASP.NET Core provides ASP.NET Core Identity as a Razor Class Library. Applications that include Identity can

apply the scaffolder to selectively add the source code contained in the Identity Razor Class Library (RCL). You

might want to generate source code so you can modify the code and change the behavior. For example, you

could instruct the scaffolder to generate the code used in registration. Generated code takes precedence over

the same code in the Identity RCL. To gain full control of the UI and not use the default RCL, see the section

Create full Identity UI source.

Applications that do notnot include authentication can apply the scaffolder to add the RCL Identity package. You

have the option of selecting Identity code to be generated.

Although the scaffolder generates most of the necessary code, you need to update your project to complete the

process. This document explains the steps needed to complete an Identity scaffolding update.

We recommend using a source control system that shows file differences and allows you to back out of

changes. Inspect the changes after running the Identity scaffolder.

Services are required when using Two Factor Authentication, Account confirmation and password recovery, and

other security features with Identity. Services or service stubs aren't generated when scaffolding Identity.

Services to enable these features must be added manually. For example, see Require Email Confirmation.

When scaffolding Identity with a new data context into a project with existing individual accounts:

In Startup.ConfigureServices , remove the calls to:

AddDbContext

AddDefaultIdentity

For example, AddDbContext  and AddDefaultIdentity  are commented out in the following code:

The preceeding code comments out the code that is duplicated in Areas/Identity/IdentityHostingStartup.cs

Typically, apps that were created with individual accounts should notnot create a new data context.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/scaffold-identity.md
https://twitter.com/RickAndMSFT


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddControllersWithViews();
        services.AddRazorPages();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
            app.UseDatabaseErrorPage();
        }
        else
        {
            app.UseExceptionHandler("/Home/Error");
            app.UseHsts();
        }
        app.UseHttpsRedirection();
        app.UseStaticFiles();

        app.UseRouting();

        app.UseAuthentication();
        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllerRoute(
                name: "default",
                pattern: "{controller=Home}/{action=Index}/{id?}");
            endpoints.MapRazorPages();
        });
    }
}

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add New Scaffolded ItemAdd New Scaffolded Item dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

Select AddAdd.

Select your existing layout page, or your layout file will be overwritten with incorrect markup:

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Blazor Server apps created from the Blazor Server template ( blazorserver ) aren't configured

for Razor Pages or MVC by default. Leave the layout page entry blank.

Update the Startup  class with code similar to the following:

UseHsts  is recommended but not required. For more information, see HTTP Strict Transport Security Protocol.



Install-Package Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore
Add-Migration CreateIdentitySchema
Update-Database

Scaffold Identity into a Razor project without existing authorization

Migrations, UseAuthentication, and layoutMigrations, UseAuthentication, and layout

Install-Package Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore
Add-Migration CreateIdentitySchema
Update-Database

Enable authenticationEnable authentication

The generated Identity database code requires Entity Framework Core Migrations. Create a migration and

update the database. For example, run the following commands:

Visual Studio

.NET Core CLI

In the Visual Studio Package Manager ConsolePackage Manager Console:

The "CreateIdentitySchema" name parameter for the Add-Migration  command is arbitrary. 

"CreateIdentitySchema"  describes the migration.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add New Scaffolded ItemAdd New Scaffolded Item dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

Select AddAdd.

Select your existing layout page, or your layout file will be overwritten with incorrect markup:

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Blazor Server apps created from the Blazor Server template ( blazorserver ) aren't configured

for Razor Pages or MVC by default. Leave the layout page entry blank.

Identity is configured in Areas/Identity/IdentityHostingStartup.cs. For more information, see IHostingStartup.

  

The generated Identity database code requires Entity Framework Core Migrations. Create a migration and

update the database. For example, run the following commands:

Visual Studio

.NET Core CLI

In the Visual Studio Package Manager ConsolePackage Manager Console:

The "CreateIdentitySchema" name parameter for the Add-Migration  command is arbitrary. 

"CreateIdentitySchema"  describes the migration.

 

Update the Startup  class with code similar to the following:

https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddRazorPages();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
            app.UseDatabaseErrorPage();
        }
        else
        {
            app.UseExceptionHandler("/Error");
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();

        app.UseRouting();

        app.UseAuthentication();
        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapRazorPages();
        });
    }
}

Layout changesLayout changes

UseHsts  is recommended but not required. For more information, see HTTP Strict Transport Security Protocol.

Optional: Add the login partial ( _LoginPartial ) to the layout file:



      

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>@ViewData["Title"] - WebRP</title>
    <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
    <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
    <header>
        <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-
shadow mb-3">
            <div class="container">
                <a class="navbar-brand" asp-area="" asp-page="/Index">WebRP</a>
                <button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-
collapse" aria-controls="navbarSupportedContent"
                        aria-expanded="false" aria-label="Toggle navigation">
                    <span class="navbar-toggler-icon"></span>
                </button>
                <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
                    <partial name="_LoginPartial" />
                    <ul class="navbar-nav flex-grow-1">
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-page="/Index">Home</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-page="/Privacy">Privacy</a>
                        </li>
                    </ul>
                </div>
            </div>
        </nav>
    </header>
    <div class="container">
        <main role="main" class="pb-3">
            @RenderBody()
        </main>
    </div>

    <footer class="border-top footer text-muted">
        <div class="container">
            &copy; 2019 - WebRP - <a asp-area="" asp-page="/Privacy">Privacy</a>
        </div>
    </footer>

    <script src="~/lib/jquery/dist/jquery.min.js"></script>
    <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>
    <script src="~/js/site.js" asp-append-version="true"></script>

    @RenderSection("Scripts", required: false)
</body>
</html>

Scaffold Identity into a Razor project with authorization
Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.



Scaffold Identity into an MVC project without existing authorization

To use your existing data context, select at least one file to override. You must select at least one file to add

your data context.

To create a new user context and possibly create a custom user class for Identity:

Select your existing layout page so your layout file isn't overwritten with incorrect markup. When an

existing _Layout.cshtml file is selected, it is notnot overwritten. For example:

~/Pages/Shared/_Layout.cshtml  for Razor Pages or Blazor Server projects with existing Razor

Pages infrastructure

~/Views/Shared/_Layout.cshtml  for MVC projects or Blazor Server projects with existing MVC

infrastructure

Select your data context class.

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

Select AddAdd.

Note: If you're creating a new user context, you don't have to select a file to override.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

To use your existing data context, select at least one file to override. You must select at least one file to add

your data context.

To create a new user context and possibly create a custom user class for Identity:

Select your existing layout page, or your layout file will be overwritten with incorrect markup. When

an existing _Layout.cshtml file is selected, it is notnot overwritten. For example:

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Select your data context class.

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

Select AddAdd.

Note: If you're creating a new user context, you don't have to select a file to override.

Some Identity options are configured in Areas/Identity/IdentityHostingStartup.cs. For more information, see

IHostingStartup.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add New Scaffolded ItemAdd New Scaffolded Item dialog, select IdentityIdentity  > AddAdd.



In the Add IdentityAdd Identity  dialog, select the options you want.

Select AddAdd.

Select your existing layout page, or your layout file will be overwritten with incorrect markup:

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Blazor Server apps created from the Blazor Server template ( blazorserver ) aren't configured

for Razor Pages or MVC by default. Leave the layout page entry blank.

Optional: Add the login partial ( _LoginPartial ) to the Views/Shared/_Layout.cshtml file:



<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>@ViewData["Title"] - WebRP</title>
    <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
    <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
    <header>
        <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-
shadow mb-3">
            <div class="container">
                <a class="navbar-brand" asp-area="" asp-page="/Index">WebRP</a>
                <button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-
collapse" aria-controls="navbarSupportedContent"
                        aria-expanded="false" aria-label="Toggle navigation">
                    <span class="navbar-toggler-icon"></span>
                </button>
                <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
                    <partial name="_LoginPartial" />
                    <ul class="navbar-nav flex-grow-1">
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-page="/Index">Home</a>
                        </li>
                        <li class="nav-item">
                            <a class="nav-link text-dark" asp-area="" asp-page="/Privacy">Privacy</a>
                        </li>
                    </ul>
                </div>
            </div>
        </nav>
    </header>
    <div class="container">
        <main role="main" class="pb-3">
            @RenderBody()
        </main>
    </div>

    <footer class="border-top footer text-muted">
        <div class="container">
            &copy; 2019 - WebRP - <a asp-area="" asp-page="/Privacy">Privacy</a>
        </div>
    </footer>

    <script src="~/lib/jquery/dist/jquery.min.js"></script>
    <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>
    <script src="~/js/site.js" asp-append-version="true"></script>

    @RenderSection("Scripts", required: false)
</body>
</html>

Move the Pages/Shared/_LoginPartial.cshtml file to Views/Shared/_LoginPartial.cshtml

Identity is configured in Areas/Identity/IdentityHostingStartup.cs. For more information, see IHostingStartup.

The generated Identity database code requires Entity Framework Core Migrations. Create a migration and

update the database. For example, run the following commands:

Visual Studio

.NET Core CLI

In the Visual Studio Package Manager ConsolePackage Manager Console:

https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/


Install-Package Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore
Add-Migration CreateIdentitySchema
Update-Database

public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddControllersWithViews();
        services.AddRazorPages();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
            app.UseDatabaseErrorPage();
        }
        else
        {
            app.UseExceptionHandler("/Home/Error");
            app.UseHsts();
        }
        app.UseHttpsRedirection();
        app.UseStaticFiles();

        app.UseRouting();

        app.UseAuthentication();
        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllerRoute(
                name: "default",
                pattern: "{controller=Home}/{action=Index}/{id?}");
            endpoints.MapRazorPages();
        });
    }
}

Scaffold Identity into an MVC project with authorization

The "CreateIdentitySchema" name parameter for the Add-Migration  command is arbitrary. 

"CreateIdentitySchema"  describes the migration.

Update the Startup  class with code similar to the following:

UseHsts  is recommended but not required. For more information, see HTTP Strict Transport Security Protocol.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI



  Scaffold Identity into a Blazor Server project without existing
authorization

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

To use your existing data context, select at least one file to override. You must select at least one file to add

your data context.

To create a new user context and possibly create a custom user class for Identity:

Select your existing layout page so your layout file isn't overwritten with incorrect markup. When an

existing _Layout.cshtml file is selected, it is notnot overwritten. For example:

~/Pages/Shared/_Layout.cshtml  for Razor Pages or Blazor Server projects with existing Razor

Pages infrastructure

~/Views/Shared/_Layout.cshtml  for MVC projects or Blazor Server projects with existing MVC

infrastructure

Select your data context class.

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

Select AddAdd.

Note: If you're creating a new user context, you don't have to select a file to override.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

To use your existing data context, select at least one file to override. You must select at least one file to add

your data context.

To create a new user context and possibly create a custom user class for Identity:

Select your existing layout page, or your layout file will be overwritten with incorrect markup. When

an existing _Layout.cshtml file is selected, it is notnot overwritten. For example:

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Select your data context class.

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

Select AddAdd.

Note: If you're creating a new user context, you don't have to select a file to override.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI



MigrationsMigrations

Install-Package Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore
Add-Migration CreateIdentitySchema
Update-Database

Pass an XSRF token to the appPass an XSRF token to the app

@inject Microsoft.AspNetCore.Antiforgery.IAntiforgery Xsrf

...

var tokens = new InitialApplicationState
{
    ...

    XsrfToken = Xsrf.GetAndStoreTokens(HttpContext).RequestToken
};

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add New Scaffolded ItemAdd New Scaffolded Item dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

Select AddAdd.

Select your existing layout page, or your layout file will be overwritten with incorrect markup:

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Blazor Server apps created from the Blazor Server template ( blazorserver ) aren't configured

for Razor Pages or MVC by default. Leave the layout page entry blank.

Identity is configured in Areas/Identity/IdentityHostingStartup.cs. For more information, see IHostingStartup.

The generated Identity database code requires Entity Framework Core Migrations. Create a migration and

update the database. For example, run the following commands:

Visual Studio

.NET Core CLI

In the Visual Studio Package Manager ConsolePackage Manager Console:

The "CreateIdentitySchema" name parameter for the Add-Migration  command is arbitrary. 

"CreateIdentitySchema"  describes the migration.

Tokens can be passed to components:

When authentication tokens are provisioned and saved to the authentication cookie, they can be passed to

components.

Razor components can't use HttpContext  directly, so there's no way to obtain an anti-request forgery (XSRF)

token to POST to Identity's logout endpoint at /Identity/Account/Logout . An XSRF token can be passed to

components.

For more information, see ASP.NET Core Blazor Server additional security scenarios.

In the Pages/_Host.cshtml file, establish the token after adding it to the InitialApplicationState  and 

TokenProvider  classes:

https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/


  

@inject TokenProvider TokenProvider

...

TokenProvider.XsrfToken = InitialState.XsrfToken;

Enable authenticationEnable authentication

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages();
    services.AddServerSideBlazor();
    services.AddSingleton<WeatherForecastService>();
    services.AddScoped<TokenProvider>();
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseDatabaseErrorPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
        endpoints.MapBlazorHub();
        endpoints.MapFallbackToPage("/_Host");
    });
}

Layout and authentication flow changesLayout and authentication flow changes

Update the App  component (App.razor) to assign the InitialState.XsrfToken :

The TokenProvider  service demonstrated in the topic is used in the LoginDisplay  component in the following

Layout and authentication flow changes section.

In the Startup  class:

Confirm that Razor Pages services are added in Startup.ConfigureServices .

If using the TokenProvider, register the service.

Call UseDatabaseErrorPage  on the application builder in Startup.Configure  for the Development

environment.

Call UseAuthentication  and UseAuthorization  after UseRouting .

Add an endpoint for Razor Pages.

UseHsts  is recommended but not required. For more information, see HTTP Strict Transport Security Protocol.



@inject NavigationManager Navigation
@code {
    protected override void OnInitialized()
    {
        Navigation.NavigateTo("Identity/Account/Login?returnUrl=" +
            Uri.EscapeDataString(Navigation.Uri), true);
    }
}

@using Microsoft.AspNetCore.Components.Authorization
@inject NavigationManager Navigation
@inject TokenProvider TokenProvider

<AuthorizeView>
    <Authorized>
        <a href="Identity/Account/Manage/Index">
            Hello, @context.User.Identity.Name!
        </a>
        <form action="/Identity/Account/Logout?returnUrl=%2F" method="post">
            <button class="nav-link btn btn-link" type="submit">Logout</button>
            <input name="__RequestVerificationToken" type="hidden" 
                value="@TokenProvider.XsrfToken">
        </form>
    </Authorized>
    <NotAuthorized>
        <a href="Identity/Account/Register">Register</a>
        <a href="Identity/Account/Login">Login</a>
    </NotAuthorized>
</AuthorizeView>

<div class="top-row px-4 auth">
    <LoginDisplay />
    <a href="https://docs.microsoft.com/aspnet/" target="_blank">About</a>
</div>

Style authentication endpointsStyle authentication endpoints

Build Identity componentsBuild Identity components

Use a custom layout with Blazor app stylesUse a custom layout with Blazor app styles

Add a RedirectToLogin  component (RedirectToLogin.razor) to the app's Shared folder in the project root:

Add a LoginDisplay  component (LoginDisplay.razor) to the app's Shared folder. The TokenProvider service

provides the XSRF token for the HTML form that POSTs to Identity's logout endpoint:

In the MainLayout  component (Shared/MainLayout.razor), add the LoginDisplay  component to the top-row 

<div>  element's content:

Because Blazor Server uses Razor Pages Identity pages, the styling of the UI changes when a visitor navigates

between Identity pages and components. You have two options to address the incongruous styles:

An approach to using components for Identity instead of pages is to build Identity components. Because 

SignInManager  and UserManager  aren't supported in Razor components, use API endpoints in the Blazor Server

app to process user account actions.

The Identity pages layout and styles can be modified to produce pages that use the default Blazor theme.



NOTENOTE
The example in this section is merely a starting point for customization. Additional work is likely required for the best user

experience.

Create a new NavMenu_IdentityLayout  component (Shared/NavMenu_IdentityLayout.razor). For the markup and

code of the component, use the same content of the app's NavMenu  component (Shared/NavMenu.razor). Strip

out any NavLink s to components that can't be reached anonymously because automatic redirects in the 

RedirectToLogin  component fail for components requiring authentication or authorization.

In the Pages/Shared/Layout.cshtml file, make the following changes:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using {APPLICATION ASSEMBLY}.Shared

<base href="~/" />
<link rel="stylesheet" href="~/css/site.css" />

Add Razor directives to the top of the file to use Tag Helpers and the app's components in the Shared

folder :

Replace {APPLICATION ASSEMBLY}  with the app's assembly name.

Add a <base>  tag and Blazor stylesheet <link>  to the <head>  content:

Change the content of the <body>  tag to the following:



  Scaffold Identity into a Blazor Server project with authorization

<div class="sidebar" style="float:left">
    <component type="typeof(NavMenu_IdentityLayout)" 
        render-mode="ServerPrerendered" />
</div>

<div class="main" style="padding-left:250px">
    <div class="top-row px-4">
        @{
            var result = Engine.FindView(ViewContext, "_LoginPartial", 
                isMainPage: false);
        }
        @if (result.Success)
        {
            await Html.RenderPartialAsync("_LoginPartial");
        }
        else
        {
            throw new InvalidOperationException("The default Identity UI " +
                "layout requires a partial view '_LoginPartial'.");
        }
        <a href="https://docs.microsoft.com/aspnet/" target="_blank">About</a>
    </div>

    <div class="content px-4">
        @RenderBody()
    </div>
</div>

<script src="~/Identity/lib/jquery/dist/jquery.min.js"></script>
<script src="~/Identity/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>
<script src="~/Identity/js/site.js" asp-append-version="true"></script>
@RenderSection("Scripts", required: false)
<script src="_framework/blazor.server.js"></script>

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

To use your existing data context, select at least one file to override. You must select at least one file to add

your data context.

To create a new user context and possibly create a custom user class for Identity:

Select your existing layout page so your layout file isn't overwritten with incorrect markup. When an

existing _Layout.cshtml file is selected, it is notnot overwritten. For example:

~/Pages/Shared/_Layout.cshtml  for Razor Pages or Blazor Server projects with existing Razor

Pages infrastructure

~/Views/Shared/_Layout.cshtml  for MVC projects or Blazor Server projects with existing MVC

infrastructure

Select your data context class.

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

Select AddAdd.



    Create full Identity UI source

Note: If you're creating a new user context, you don't have to select a file to override.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

To use your existing data context, select at least one file to override. You must select at least one file to add

your data context.

To create a new user context and possibly create a custom user class for Identity:

Select your existing layout page, or your layout file will be overwritten with incorrect markup. When

an existing _Layout.cshtml file is selected, it is notnot overwritten. For example:

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Select your data context class.

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

Select AddAdd.

Note: If you're creating a new user context, you don't have to select a file to override.

Some Identity options are configured in Areas/Identity/IdentityHostingStartup.cs. For more information, see

IHostingStartup.

  

To maintain full control of the Identity UI, run the Identity scaffolder and select Overr ide all filesOverr ide all files .

The following highlighted code shows the changes to replace the default Identity UI with Identity in an ASP.NET

Core 2.1 web app. You might want to do this to have full control of the Identity UI.



public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));

    services.AddIdentity<IdentityUser, IdentityRole>()
        // services.AddDefaultIdentity<IdentityUser>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultTokenProviders();

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1)
        .AddRazorPagesOptions(options =>
        {
            options.AllowAreas = true;
            options.Conventions.AuthorizeAreaFolder("Identity", "/Account/Manage");
            options.Conventions.AuthorizeAreaPage("Identity", "/Account/Logout");
        });

    services.ConfigureApplicationCookie(options =>
    {
        options.LoginPath = $"/Identity/Account/Login";
        options.LogoutPath = $"/Identity/Account/Logout";
        options.AccessDeniedPath = $"/Identity/Account/AccessDenied";
    });

    // using Microsoft.AspNetCore.Identity.UI.Services;
    services.AddSingleton<IEmailSender, EmailSender>();
}

services.AddIdentity<IdentityUser, IdentityRole>()
    // services.AddDefaultIdentity<IdentityUser>()
    .AddEntityFrameworkStores<ApplicationDbContext>()
    .AddDefaultTokenProviders();

services.ConfigureApplicationCookie(options =>
{
    options.LoginPath = $"/Identity/Account/Login";
    options.LogoutPath = $"/Identity/Account/Logout";
    options.AccessDeniedPath = $"/Identity/Account/AccessDenied";
});

// using Microsoft.AspNetCore.Identity.UI.Services;
services.AddSingleton<IEmailSender, EmailSender>();

The default Identity is replaced in the following code:

The following code sets the LoginPath, LogoutPath, and AccessDeniedPath:

Register an IEmailSender  implementation, for example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.loginpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.logoutpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.accessdeniedpath


public class EmailSender : IEmailSender
{
    public Task SendEmailAsync(string email, string subject, string message)
    {
        return Task.CompletedTask;
    }
}

Password configuration

Disable a page

If PasswordOptions are configured in Startup.ConfigureServices , [StringLength]  attribute configuration might

be required for the Password  property in scaffolded Identity pages. InputModel  Password  properties are found

in the following files:

Areas/Identity/Pages/Account/Register.cshtml.cs

Areas/Identity/Pages/Account/ResetPassword.cshtml.cs

This sections show how to disable the register page but the approach can be used to disable any page.

To disable user registration:

dotnet aspnet-codegenerator identity -dc RPauth.Data.ApplicationDbContext --files 
"Account.Register;Account.Login;Account.RegisterConfirmation"

public class RegisterModel : PageModel
{
    public IActionResult OnGet()
    {
        return RedirectToPage("Login");
    }

    public IActionResult OnPost()
    {
        return RedirectToPage("Login");
    }
}

@page
@model RegisterModel
@{
    ViewData["Title"] = "Go to Login";
}

<h1>@ViewData["Title"]</h1>

<li class="nav-item">
    <a class="nav-link text-dark" asp-area="Identity" asp-page="/Account/Login">Login</a>
</li>

Scaffold Identity. Include Account.Register, Account.Login, and Account.RegisterConfirmation. For

example:

Update Areas/Identity/Pages/Account/Register.cshtml.cs so users can't register from this endpoint:

Update Areas/Identity/Pages/Account/Register.cshtml to be consistent with the preceding changes:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.stringlengthattribute


Use another app to add usersUse another app to add users

@*
<p>
    <a asp-page="./Register" asp-route-returnUrl="@Model.ReturnUrl">Register as a new user</a>
</p>
*@

[AllowAnonymous]
  public class RegisterConfirmationModel : PageModel
  {
      public IActionResult OnGet()
      {  
          return Page();
      }
  }

Comment out or remove the registration link from Areas/Identity/Pages/Account/Login.cshtml

Update the Areas/Identity/Pages/Account/RegisterConfirmation page.

Remove the code and links from the cshtml file.

Remove the confirmation code from the PageModel :

Provide a mechanism to add users outside the web app. Options to add users include:

A dedicated admin web app.

A console app.

The following code outlines one approach to adding users:

A list of users is read into memory.

A strong unique password is generated for each user.

The user is added to the Identity database.

The user is notified and told to change the password.



public class Program
{
    public static void Main(string[] args)
    {
        var host = CreateHostBuilder(args).Build();

        using (var scope = host.Services.CreateScope())
        {
            var services = scope.ServiceProvider;

            try
            {
                var context = services.GetRequiredService<AppDbCntx>();
                context.Database.Migrate();

                var config = host.Services.GetRequiredService<IConfiguration>();
                var userList = config.GetSection("userList").Get<List<string>>();

                SeedData.Initialize(services, userList).Wait();
            }
            catch (Exception ex)
            {
                var logger = services.GetRequiredService<ILogger<Program>>();
                logger.LogError(ex, "An error occurred adding users.");
            }
        }

        host.Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            });
}

The following code outlines adding a user :



public static async Task Initialize(IServiceProvider serviceProvider,
                                    List<string> userList)
{
    var userManager = serviceProvider.GetService<UserManager<IdentityUser>>();

    foreach (var userName in userList)
    {
        var userPassword = GenerateSecurePassword();
        var userId = await EnsureUser(userManager, userName, userPassword);

        NotifyUser(userName, userPassword);
    }
}

private static async Task<string> EnsureUser(UserManager<IdentityUser> userManager,
                                             string userName, string userPassword)
{
    var user = await userManager.FindByNameAsync(userName);

    if (user == null)
    {
        user = new IdentityUser(userName)
        {
            EmailConfirmed = true
        };
        await userManager.CreateAsync(user, userPassword);
    }

    return user.Id;
}

Prevent publish of static Identity assets

Additional resources

A similar approach can be followed for production scenarios.

To prevent publishing static Identity assets to the web root, see Introduction to Identity on ASP.NET Core.

Changes to authentication code to ASP.NET Core 2.1 and later

ASP.NET Core 2.1 and later provides ASP.NET Core Identity as a Razor Class Library. Applications that include

Identity can apply the scaffolder to selectively add the source code contained in the Identity Razor Class Library

(RCL). You might want to generate source code so you can modify the code and change the behavior. For

example, you could instruct the scaffolder to generate the code used in registration. Generated code takes

precedence over the same code in the Identity RCL. To gain full control of the UI and not use the default RCL, see

the section Create full identity UI source.

Applications that do notnot include authentication can apply the scaffolder to add the RCL Identity package. You

have the option of selecting Identity code to be generated.

Although the scaffolder generates most of the necessary code, you'll have to update your project to complete

the process. This document explains the steps needed to complete an Identity scaffolding update.

When the Identity scaffolder is run, a ScaffoldingReadme.txt file is created in the project directory. The

ScaffoldingReadme.txt file contains general instructions on what's needed to complete the Identity scaffolding

update. This document contains more complete instructions than the ScaffoldingReadme.txt file.

We recommend using a source control system that shows file differences and allows you to back out of

changes. Inspect the changes after running the Identity scaffolder.



NOTENOTE

Scaffold Identity into an empty project

public class Startup
{        
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddMvc();
    }

    // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseAuthentication();
        app.UseMvc();
    }
}

Services are required when using Two Factor Authentication, Account confirmation and password recovery, and other

security features with Identity. Services or service stubs aren't generated when scaffolding Identity. Services to enable

these features must be added manually. For example, see Require Email Confirmation.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add New Scaffolded ItemAdd New Scaffolded Item dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

Select AddAdd.

Select your existing layout page, or your layout file will be overwritten with incorrect markup:

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Blazor Server apps created from the Blazor Server template ( blazorserver ) aren't configured

for Razor Pages or MVC by default. Leave the layout page entry blank.

Add the following highlighted calls to the Startup  class:

UseHsts  is recommended but not required. For more information, see HTTP Strict Transport Security Protocol.

The generated Identity database code requires Entity Framework Core Migrations. Create a migration and

update the database. For example, run the following commands:

https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/


Install-Package Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore
Add-Migration CreateIdentitySchema
Update-Database

Scaffold Identity into a Razor project without existing authorization

Migrations, UseAuthentication, and layoutMigrations, UseAuthentication, and layout

Install-Package Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore
Add-Migration CreateIdentitySchema
Update-Database

Enable authenticationEnable authentication

Visual Studio

.NET Core CLI

In the Visual Studio Package Manager ConsolePackage Manager Console:

The "CreateIdentitySchema" name parameter for the Add-Migration  command is arbitrary. 

"CreateIdentitySchema"  describes the migration.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add New Scaffolded ItemAdd New Scaffolded Item dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

Select AddAdd.

Select your existing layout page, or your layout file will be overwritten with incorrect markup:

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Blazor Server apps created from the Blazor Server template ( blazorserver ) aren't configured

for Razor Pages or MVC by default. Leave the layout page entry blank.

Identity is configured in Areas/Identity/IdentityHostingStartup.cs. For more information, see IHostingStartup.

 

The generated Identity database code requires Entity Framework Core Migrations. Create a migration and

update the database. For example, run the following commands:

Visual Studio

.NET Core CLI

In the Visual Studio Package Manager ConsolePackage Manager Console:

The "CreateIdentitySchema" name parameter for the Add-Migration  command is arbitrary. 

"CreateIdentitySchema"  describes the migration.

 

In the Configure  method of the Startup  class, call UseAuthentication after UseStaticFiles :

https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication?view=aspnetcore-2.0#microsoft_aspnetcore_builder_authappbuilderextensions_useauthentication_microsoft_aspnetcore_builder_iapplicationbuilder_


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddMvc();
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseExceptionHandler("/Error");
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseAuthentication();

        app.UseMvc();
    }
}

Layout changesLayout changes

<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>@ViewData["Title"] - RazorNoAuth8</title>

    <environment include="Development">
        <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
        <link rel="stylesheet" href="~/css/site.css" />
    </environment>
    <environment exclude="Development">
        <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
              asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
              asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
        <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
    </environment>
</head>
<body>
    <nav class="navbar navbar-inverse navbar-fixed-top">
        <div class="container">
            <div class="navbar-header">
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
                    <span class="sr-only">Toggle navigation</span>
                    <span class="icon-bar"></span>

UseHsts  is recommended but not required. For more information, see HTTP Strict Transport Security Protocol.

Optional: Add the login partial ( _LoginPartial ) to the layout file:



                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                </button>
                <a asp-page="/Index" class="navbar-brand">RazorNoAuth8</a>
            </div>
            <div class="navbar-collapse collapse">
                <ul class="nav navbar-nav">
                    <li><a asp-page="/Index">Home</a></li>
                    <li><a asp-page="/About">About</a></li>
                    <li><a asp-page="/Contact">Contact</a></li>
                </ul>
                <partial name="_LoginPartial" />
            </div>
        </div>
    </nav>

    <partial name="_CookieConsentPartial" />

    <div class="container body-content">
        @RenderBody()
        <hr />
        <footer>
            <p>&copy; 2018 - RazorNoAuth8</p>
        </footer>
    </div>

    <environment include="Development">
        <script src="~/lib/jquery/dist/jquery.js"></script>
        <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
        <script src="~/js/site.js" asp-append-version="true"></script>
    </environment>
    <environment exclude="Development">
        <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-3.3.1.min.js"
                asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
                asp-fallback-test="window.jQuery"
                crossorigin="anonymous"
                integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
        </script>
        <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
                asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
                asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
                crossorigin="anonymous"
                integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
        </script>
        <script src="~/js/site.min.js" asp-append-version="true"></script>
    </environment>

    @RenderSection("Scripts", required: false)
</body>
</html>

Scaffold Identity into a Razor project with authorization
Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

Select your existing layout page so your layout file isn't overwritten with incorrect markup. When an

existing _Layout.cshtml file is selected, it is notnot overwritten. For example:



Scaffold Identity into an MVC project without existing authorization

To use your existing data context, select at least one file to override. You must select at least one file to add

your data context.

To create a new user context and possibly create a custom user class for Identity:

~/Pages/Shared/_Layout.cshtml  for Razor Pages or Blazor Server projects with existing Razor

Pages infrastructure

~/Views/Shared/_Layout.cshtml  for MVC projects or Blazor Server projects with existing MVC

infrastructure

Select your data context class.

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

Select AddAdd.

Note: If you're creating a new user context, you don't have to select a file to override.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

To use your existing data context, select at least one file to override. You must select at least one file to add

your data context.

To create a new user context and possibly create a custom user class for Identity:

Select your existing layout page, or your layout file will be overwritten with incorrect markup. When

an existing _Layout.cshtml file is selected, it is notnot overwritten. For example:

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Select your data context class.

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

Select AddAdd.

Note: If you're creating a new user context, you don't have to select a file to override.

Some Identity options are configured in Areas/Identity/IdentityHostingStartup.cs. For more information, see

IHostingStartup.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add New Scaffolded ItemAdd New Scaffolded Item dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

Select your existing layout page, or your layout file will be overwritten with incorrect markup:



<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>@ViewData["Title"] - MvcNoAuth3</title>

    <environment include="Development">
        <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
        <link rel="stylesheet" href="~/css/site.css" />
    </environment>
    <environment exclude="Development">
        <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/css/bootstrap.min.css"
              asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
              asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-
value="absolute" />
        <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
    </environment>
</head>
<body>
    <nav class="navbar navbar-inverse navbar-fixed-top">
        <div class="container">
            <div class="navbar-header">
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
                    <span class="sr-only">Toggle navigation</span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                </button>
                <a asp-area="" asp-controller="Home" asp-action="Index" class="navbar-brand">MvcNoAuth3</a>
            </div>
            <div class="navbar-collapse collapse">
                <ul class="nav navbar-nav">
                    <li><a asp-area="" asp-controller="Home" asp-action="Index">Home</a></li>
                    <li><a asp-area="" asp-controller="Home" asp-action="About">About</a></li>
                    <li><a asp-area="" asp-controller="Home" asp-action="Contact">Contact</a></li>
                </ul>
                <partial name="_LoginPartial" />
            </div>
        </div>
    </nav>

    <partial name="_CookieConsentPartial" />

    <div class="container body-content">
        @RenderBody()
        <hr />
        <footer>
            <p>&copy; 2018 - MvcNoAuth3</p>
        </footer>
    </div>

    <environment include="Development">
        <script src="~/lib/jquery/dist/jquery.js"></script>

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Blazor Server apps created from the Blazor Server template ( blazorserver ) aren't configured

for Razor Pages or MVC by default. Leave the layout page entry blank.

Optional: Add the login partial ( _LoginPartial ) to the Views/Shared/_Layout.cshtml file:



        <script src="~/lib/jquery/dist/jquery.js"></script>
        <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
        <script src="~/js/site.js" asp-append-version="true"></script>
    </environment>
    <environment exclude="Development">
        <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-3.3.1.min.js"
                asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
                asp-fallback-test="window.jQuery"
                crossorigin="anonymous"
                integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+Ytst4yBo/hH+8Fk">
        </script>
        <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
                asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
                asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal"
                crossorigin="anonymous"
                integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa">
        </script>
        <script src="~/js/site.min.js" asp-append-version="true"></script>
    </environment>

    @RenderSection("Scripts", required: false)
</body>
</html>

Install-Package Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore
Add-Migration CreateIdentitySchema
Update-Database

Move the Pages/Shared/_LoginPartial.cshtml file to Views/Shared/_LoginPartial.cshtml

Identity is configured in Areas/Identity/IdentityHostingStartup.cs. For more information, see IHostingStartup.

The generated Identity database code requires Entity Framework Core Migrations. Create a migration and

update the database. For example, run the following commands:

Visual Studio

.NET Core CLI

In the Visual Studio Package Manager ConsolePackage Manager Console:

The "CreateIdentitySchema" name parameter for the Add-Migration  command is arbitrary. 

"CreateIdentitySchema"  describes the migration.

Call UseAuthentication after UseStaticFiles :

https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication?view=aspnetcore-2.0#microsoft_aspnetcore_builder_authappbuilderextensions_useauthentication_microsoft_aspnetcore_builder_iapplicationbuilder_


public class Startup
{

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddMvc();
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseExceptionHandler("/Home/Error");
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseAuthentication();
        app.UseMvcWithDefaultRoute();
    }
}

Scaffold Identity into an MVC project with authorization

UseHsts  is recommended but not required. For more information, see HTTP Strict Transport Security Protocol.

Run the Identity scaffolder :

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

To use your existing data context, select at least one file to override. You must select at least one file to add

your data context.

To create a new user context and possibly create a custom user class for Identity:

Select your existing layout page so your layout file isn't overwritten with incorrect markup. When an

existing _Layout.cshtml file is selected, it is notnot overwritten. For example:

~/Pages/Shared/_Layout.cshtml  for Razor Pages or Blazor Server projects with existing Razor

Pages infrastructure

~/Views/Shared/_Layout.cshtml  for MVC projects or Blazor Server projects with existing MVC

infrastructure

Select your data context class.

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

Select AddAdd.

Note: If you're creating a new user context, you don't have to select a file to override.

Run the Identity scaffolder :



Create full Identity UI source

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, select the options you want.

To use your existing data context, select at least one file to override. You must select at least one file to add

your data context.

To create a new user context and possibly create a custom user class for Identity:

Select your existing layout page, or your layout file will be overwritten with incorrect markup. When

an existing _Layout.cshtml file is selected, it is notnot overwritten. For example:

~/Pages/Shared/_Layout.cshtml  for Razor Pages

~/Views/Shared/_Layout.cshtml  for MVC projects

Select your data context class.

Select AddAdd.

Select the ++ button to create a new Data context classData context class . Accept the default value or specify a class

(for example, MyApplication.Data.ApplicationDbContext ).

Select AddAdd.

Note: If you're creating a new user context, you don't have to select a file to override.

Delete the Pages/Shared folder and the files in that folder.

 

To maintain full control of the Identity UI, run the Identity scaffolder and select Overr ide all filesOverr ide all files .

The following highlighted code shows the changes to replace the default Identity UI with Identity in an ASP.NET

Core 2.1 web app. You might want to do this to have full control of the Identity UI.



public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));

    services.AddIdentity<IdentityUser, IdentityRole>()
        // services.AddDefaultIdentity<IdentityUser>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultTokenProviders();

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1)
        .AddRazorPagesOptions(options =>
        {
            options.AllowAreas = true;
            options.Conventions.AuthorizeAreaFolder("Identity", "/Account/Manage");
            options.Conventions.AuthorizeAreaPage("Identity", "/Account/Logout");
        });

    services.ConfigureApplicationCookie(options =>
    {
        options.LoginPath = $"/Identity/Account/Login";
        options.LogoutPath = $"/Identity/Account/Logout";
        options.AccessDeniedPath = $"/Identity/Account/AccessDenied";
    });

    // using Microsoft.AspNetCore.Identity.UI.Services;
    services.AddSingleton<IEmailSender, EmailSender>();
}

services.AddIdentity<IdentityUser, IdentityRole>()
    // services.AddDefaultIdentity<IdentityUser>()
    .AddEntityFrameworkStores<ApplicationDbContext>()
    .AddDefaultTokenProviders();

services.ConfigureApplicationCookie(options =>
{
    options.LoginPath = $"/Identity/Account/Login";
    options.LogoutPath = $"/Identity/Account/Logout";
    options.AccessDeniedPath = $"/Identity/Account/AccessDenied";
});

// using Microsoft.AspNetCore.Identity.UI.Services;
services.AddSingleton<IEmailSender, EmailSender>();

The default Identity is replaced in the following code:

The following code sets the LoginPath, LogoutPath, and AccessDeniedPath:

Register an IEmailSender  implementation, for example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.loginpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.logoutpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.accessdeniedpath


public class EmailSender : IEmailSender
{
    public Task SendEmailAsync(string email, string subject, string message)
    {
        return Task.CompletedTask;
    }
}

Password configuration

Disable register page

If PasswordOptions are configured in Startup.ConfigureServices , [StringLength]  attribute configuration might

be required for the Password  property in scaffolded Identity pages. InputModel  Password  properties are found

in the following files:

Areas/Identity/Pages/Account/Register.cshtml.cs

Areas/Identity/Pages/Account/ResetPassword.cshtml.cs

To disable user registration:

dotnet aspnet-codegenerator identity -dc RPauth.Data.ApplicationDbContext --files 
"Account.Register;Account.Login;Account.RegisterConfirmation"

public class RegisterModel : PageModel
{
    public IActionResult OnGet()
    {
        return RedirectToPage("Login");
    }

    public IActionResult OnPost()
    {
        return RedirectToPage("Login");
    }
}

@page
@model RegisterModel
@{
    ViewData["Title"] = "Go to Login";
}

<h1>@ViewData["Title"]</h1>

<li class="nav-item">
    <a class="nav-link text-dark" asp-area="Identity" asp-page="/Account/Login">Login</a>
</li>

Scaffold Identity. Include Account.Register, Account.Login, and Account.RegisterConfirmation. For

example:

Update Areas/Identity/Pages/Account/Register.cshtml.cs so users can't register from this endpoint:

Update Areas/Identity/Pages/Account/Register.cshtml to be consistent with the preceding changes:

Comment out or remove the registration link from Areas/Identity/Pages/Account/Login.cshtml

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.stringlengthattribute


@*
<p>
    <a asp-page="./Register" asp-route-returnUrl="@Model.ReturnUrl">Register as a new user</a>
</p>
*@

Use another app to add usersUse another app to add users

[AllowAnonymous]
  public class RegisterConfirmationModel : PageModel
  {
      public IActionResult OnGet()
      {  
          return Page();
      }
  }

Update the Areas/Identity/Pages/Account/RegisterConfirmation page.

Remove the code and links from the cshtml file.

Remove the confirmation code from the PageModel :

Provide a mechanism to add users outside the web app. Options to add users include:

A dedicated admin web app.

A console app.

The following code outlines one approach to adding users:

A list of users is read into memory.

A strong unique password is generated for each user.

The user is added to the Identity database.

The user is notified and told to change the password.



public class Program
{
    public static void Main(string[] args)
    {
        var host = CreateHostBuilder(args).Build();

        using (var scope = host.Services.CreateScope())
        {
            var services = scope.ServiceProvider;

            try
            {
                var context = services.GetRequiredService<AppDbCntx>();
                context.Database.Migrate();

                var config = host.Services.GetRequiredService<IConfiguration>();
                var userList = config.GetSection("userList").Get<List<string>>();

                SeedData.Initialize(services, userList).Wait();
            }
            catch (Exception ex)
            {
                var logger = services.GetRequiredService<ILogger<Program>>();
                logger.LogError(ex, "An error occurred adding users.");
            }
        }

        host.Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            });
}

The following code outlines adding a user :



public static async Task Initialize(IServiceProvider serviceProvider,
                                    List<string> userList)
{
    var userManager = serviceProvider.GetService<UserManager<IdentityUser>>();

    foreach (var userName in userList)
    {
        var userPassword = GenerateSecurePassword();
        var userId = await EnsureUser(userManager, userName, userPassword);

        NotifyUser(userName, userPassword);
    }
}

private static async Task<string> EnsureUser(UserManager<IdentityUser> userManager,
                                             string userName, string userPassword)
{
    var user = await userManager.FindByNameAsync(userName);

    if (user == null)
    {
        user = new IdentityUser(userName)
        {
            EmailConfirmed = true
        };
        await userManager.CreateAsync(user, userPassword);
    }

    return user.Id;
}

Additional resources

A similar approach can be followed for production scenarios.

Changes to authentication code to ASP.NET Core 2.1 and later



Add, download, and delete custom user data to
Identity in an ASP.NET Core project
9/22/2020 • 13 minutes to read • Edit Online

Prerequisites

Create a Razor web app

Run the Identity scaffolder

By Rick Anderson

This article shows how to:

Add custom user data to an ASP.NET Core web app.

Mark the custom user data model with the PersonalDataAttribute attribute so it's automatically available for

download and deletion. Making the data able to be downloaded and deleted helps meet GDPR requirements.

The project sample is created from a Razor Pages web app, but the instructions are similar for a ASP.NET Core MVC

web app.

View or download sample code (how to download)

.NET Core 3.0 SDK or later

.NET Core 2.2 SDK or later

Visual Studio

.NET Core CLI

From the Visual Studio FileFile menu, select NewNew  > ProjectProject. Name the project WebApp1WebApp1  if you want to it match

the namespace of the download sample code.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application > OKOK

Select ASP.NET Core 3.0ASP.NET Core 3.0  in the dropdown

Select Web ApplicationWeb Application > OKOK

Build and run the project.

From the Visual Studio FileFile menu, select NewNew  > ProjectProject. Name the project WebApp1WebApp1  if you want to it match

the namespace of the download sample code.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application > OKOK

Select ASP.NET Core 2.2ASP.NET Core 2.2  in the dropdown

Select Web ApplicationWeb Application > OKOK

Build and run the project.

Visual Studio

.NET Core CLI

From Solution ExplorerSolution Explorer , right-click on the project > AddAdd > New Scaffolded ItemNew Scaffolded Item.

From the left pane of the Add ScaffoldAdd Scaffold dialog, select IdentityIdentity  > AddAdd.

In the Add IdentityAdd Identity  dialog, the following options:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/add-user-data.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.personaldataattribute
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authentication/add-user-data
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/AspNetCore.Docs/tree/live/aspnetcore/security/authentication/add-user-data
https://github.com/dotnet/AspNetCore.Docs/tree/live/aspnetcore/security/authentication/add-user-data


Add custom user data to the Identity DB

using System;
using Microsoft.AspNetCore.Identity;

namespace WebApp1.Areas.Identity.Data
{
    public class WebApp1User : IdentityUser
    {
        [PersonalData]
        public string Name { get; set; }
        [PersonalData]
        public DateTime DOB { get; set; }
    }
}

using Microsoft.AspNetCore.Identity;
using System;

namespace WebApp1.Areas.Identity.Data
{
    public class WebApp1User : IdentityUser
    {
        [PersonalData]
        public string Name { get; set; }
        [PersonalData]
        public DateTime DOB { get; set; }
    }
}

Select AddAdd.

Select the existing layout file ~/Pages/Shared/_Layout.cshtml

Select the following files to override:

Select the ++ button to create a new Data context classData context class . Accept the type

(WebApp1.Models.WebApp1ContextWebApp1.Models.WebApp1Context if the project is named WebApp1WebApp1 ).

Select the ++ button to create a new User classUser class . Accept the type (WebApp1UserWebApp1User  if the project is named

WebApp1WebApp1 ) > AddAdd.

Account/RegisterAccount/Register

Account/Manage/IndexAccount/Manage/Index

Follow the instruction in Migrations, UseAuthentication, and layout to perform the following steps:

Create a migration and update the database.

Add UseAuthentication  to Startup.Configure .

Add <partial name="_LoginPartial" />  to the layout file.

Test the app:

Register a user

Select the new user name (next to the LogoutLogout link). You might need to expand the window or select the

navigation bar icon to show the user name and other links.

Select the Personal DataPersonal Data tab.

Select the DownloadDownload button and examined the PersonalData.json file.

Test the DeleteDelete button, which deletes the logged on user.

Update the IdentityUser  derived class with custom properties. If you named the project WebApp1, the file is

named Areas/Identity/Data/WebApp1User.cs. Update the file with the following code:



Update the Account/Manage/Index.cshtml pageUpdate the Account/Manage/Index.cshtml page

public partial class IndexModel : PageModel
{
    private readonly UserManager<WebApp1User> _userManager;
    private readonly SignInManager<WebApp1User> _signInManager;

    public IndexModel(
        UserManager<WebApp1User> userManager,
        SignInManager<WebApp1User> signInManager)
    {
        _userManager = userManager;
        _signInManager = signInManager;
    }

    public string Username { get; set; }

    [TempData]
    public string StatusMessage { get; set; }

    [BindProperty]
    public InputModel Input { get; set; }

    public class InputModel
    {
        [Required]
        [DataType(DataType.Text)]
        [Display(Name = "Full name")]
        public string Name { get; set; }

        [Required]
        [Display(Name = "Birth Date")]
        [DataType(DataType.Date)]
        public DateTime DOB { get; set; }

        [Phone]
        [Display(Name = "Phone number")]
        public string PhoneNumber { get; set; }
    }

    private async Task LoadAsync(WebApp1User user)
    {
        var userName = await _userManager.GetUserNameAsync(user);
        var phoneNumber = await _userManager.GetPhoneNumberAsync(user);

        Username = userName;

        Input = new InputModel
        {
            Name = user.Name,
            DOB = user.DOB,
            PhoneNumber = phoneNumber
        };
    }

    public async Task<IActionResult> OnGetAsync()
    {

Properties with the PersonalData attribute are:

Deleted when the Areas/Identity/Pages/Account/Manage/DeletePersonalData.cshtml Razor Page calls 

UserManager.Delete .

Included in the downloaded data by the Areas/Identity/Pages/Account/Manage/DownloadPersonalData.cshtml

Razor Page.

Update the InputModel  in Areas/Identity/Pages/Account/Manage/Index.cshtml.cs with the following highlighted

code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.personaldataattribute


    {
        var user = await _userManager.GetUserAsync(User);
        if (user == null)
        {
            return NotFound(
                $"Unable to load user with ID '{_userManager.GetUserId(User)}'.");
        }

        await LoadAsync(user);
        return Page();
    }

    public async Task<IActionResult> OnPostAsync()
    {
        var user = await _userManager.GetUserAsync(User);
        if (user == null)
        {
            return NotFound(
                $"Unable to load user with ID '{_userManager.GetUserId(User)}'.");
        }

        if (!ModelState.IsValid)
        {
            await LoadAsync(user);
            return Page();
        }

        var phoneNumber = await _userManager.GetPhoneNumberAsync(user);
        if (Input.PhoneNumber != phoneNumber)
        {
            var setPhoneResult = await _userManager.SetPhoneNumberAsync(user, 
                Input.PhoneNumber);

            if (!setPhoneResult.Succeeded)
            {
                var userId = await _userManager.GetUserIdAsync(user);
                throw new InvalidOperationException(
                    $"Unexpected error occurred setting phone number for user with ID '{userId}'.");
            }
        }
        
        if (Input.Name != user.Name)
        {
            user.Name = Input.Name;
        }

        if (Input.DOB != user.DOB)
        {
            user.DOB = Input.DOB;
        }

        await _userManager.UpdateAsync(user);

        await _signInManager.RefreshSignInAsync(user);
        StatusMessage = "Your profile has been updated";
        return RedirectToPage();
    }
}

Update the Areas/Identity/Pages/Account/Manage/Index.cshtml with the following highlighted markup:



@page
@model IndexModel
@{
    ViewData["Title"] = "Profile";
    ViewData["ActivePage"] = ManageNavPages.Index;
}

<h4>@ViewData["Title"]</h4>
<partial name="_StatusMessage" model="Model.StatusMessage" />
<div class="row">
    <div class="col-md-6">
        <form id="profile-form" method="post">
            <div asp-validation-summary="All" class="text-danger"></div>
            <div class="form-group">
                <label asp-for="Username"></label>
                <input asp-for="Username" class="form-control" disabled />
            </div>
            <div class="form-group">
                <label asp-for="Input.Name"></label>
                <input asp-for="Input.Name" class="form-control" />
            </div>
            <div class="form-group">
                <label asp-for="Input.DOB"></label>
                <input asp-for="Input.DOB" class="form-control" />
            </div>
            <div class="form-group">
                <label asp-for="Input.PhoneNumber"></label>
                <input asp-for="Input.PhoneNumber" class="form-control" />
                <span asp-validation-for="Input.PhoneNumber" 
                    class="text-danger"></span>
            </div>
            <button id="update-profile-button" type="submit" 
                class="btn btn-primary">Save</button>
        </form>
    </div>
</div>

@section Scripts {
    <partial name="_ValidationScriptsPartial" />
}

public partial class IndexModel : PageModel
{
    private readonly UserManager<WebApp1User> _userManager;
    private readonly SignInManager<WebApp1User> _signInManager;
    private readonly IEmailSender _emailSender;

    public IndexModel(
        UserManager<WebApp1User> userManager,
        SignInManager<WebApp1User> signInManager,
        IEmailSender emailSender)
    {
        _userManager = userManager;
        _signInManager = signInManager;
        _emailSender = emailSender;
    }

    public string Username { get; set; }
    public bool IsEmailConfirmed { get; set; }

    [TempData]
    public string StatusMessage { get; set; }

    [BindProperty]
    public InputModel Input { get; set; }



    public class InputModel
    {
        [Required]
        [DataType(DataType.Text)]
        [Display(Name = "Full name")]
        public string Name { get; set; }

        [Required]
        [Display(Name = "Birth Date")]
        [DataType(DataType.Date)]
        public DateTime DOB { get; set; }

        [Required]
        [EmailAddress]
        public string Email { get; set; }

        [Phone]
        [Display(Name = "Phone number")]
        public string PhoneNumber { get; set; }
    }

    public async Task<IActionResult> OnGetAsync()
    {
        var user = await _userManager.GetUserAsync(User);
        if (user == null)
        {
            return NotFound($"Unable to load user with ID '{_userManager.GetUserId(User)}'.");
        }

        var userName = await _userManager.GetUserNameAsync(user);
        var email = await _userManager.GetEmailAsync(user);
        var phoneNumber = await _userManager.GetPhoneNumberAsync(user);

        Username = userName;

        Input = new InputModel
        {
            Name = user.Name,
            DOB = user.DOB,
            Email = email,
            PhoneNumber = phoneNumber
        };

        IsEmailConfirmed = await _userManager.IsEmailConfirmedAsync(user);

        return Page();
    }

    public async Task<IActionResult> OnPostAsync()
    {
        if (!ModelState.IsValid)
        {
            return Page();
        }

        var user = await _userManager.GetUserAsync(User);
        if (user == null)
        {
            return NotFound($"Unable to load user with ID '{_userManager.GetUserId(User)}'.");
        }

        var email = await _userManager.GetEmailAsync(user);
        if (Input.Email != email)
        {
            var setEmailResult = await _userManager.SetEmailAsync(user, Input.Email);
            if (!setEmailResult.Succeeded)
            {
                var userId = await _userManager.GetUserIdAsync(user);
                throw new InvalidOperationException($"Unexpected error occurred setting email for user with ID 



'{userId}'.");
            }
        }

        if (Input.Name != user.Name)
        {
            user.Name = Input.Name;
        }

        if (Input.DOB != user.DOB)
        {
            user.DOB = Input.DOB;
        }

        var phoneNumber = await _userManager.GetPhoneNumberAsync(user);
        if (Input.PhoneNumber != phoneNumber)
        {
            var setPhoneResult = await _userManager.SetPhoneNumberAsync(user, Input.PhoneNumber);
            if (!setPhoneResult.Succeeded)
            {
                var userId = await _userManager.GetUserIdAsync(user);
                throw new InvalidOperationException($"Unexpected error occurred setting phone number for user 
with ID '{userId}'.");
            }
        }

        await _userManager.UpdateAsync(user);

        await _signInManager.RefreshSignInAsync(user);
        StatusMessage = "Your profile has been updated";
        return RedirectToPage();
    }

    public async Task<IActionResult> OnPostSendVerificationEmailAsync()
    {
        if (!ModelState.IsValid)
        {
            return Page();
        }

        var user = await _userManager.GetUserAsync(User);
        if (user == null)
        {
            return NotFound($"Unable to load user with ID '{_userManager.GetUserId(User)}'.");
        }

        var userId = await _userManager.GetUserIdAsync(user);
        var email = await _userManager.GetEmailAsync(user);
        var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
        var callbackUrl = Url.Page(
            "/Account/ConfirmEmail",
            pageHandler: null,
            values: new { userId = userId, code = code },
            protocol: Request.Scheme);
        await _emailSender.SendEmailAsync(
            email,
            "Confirm your email",
            $"Please confirm your account by <a href='{HtmlEncoder.Default.Encode(callbackUrl)}'>clicking 
here</a>.");

        StatusMessage = "Verification email sent. Please check your email.";
        return RedirectToPage();
    }
}

Update the Areas/Identity/Pages/Account/Manage/Index.cshtml with the following highlighted markup:



@page
@model IndexModel
@{
    ViewData["Title"] = "Profile";
    ViewData["ActivePage"] = ManageNavPages.Index;
}

<h4>@ViewData["Title"]</h4>
<partial name="_StatusMessage" for="StatusMessage" />
<div class="row">
    <div class="col-md-6">
        <form id="profile-form" method="post">
            <div asp-validation-summary="All" class="text-danger"></div>
            <div class="form-group">
                <label asp-for="Username"></label>
                <input asp-for="Username" class="form-control" disabled />
            </div>
            <div class="form-group">
                <label asp-for="Input.Email"></label>
                @if (Model.IsEmailConfirmed)
                {
                    <div class="input-group">
                        <input asp-for="Input.Email" class="form-control" />
                        <span class="input-group-addon" aria-hidden="true"><span class="glyphicon glyphicon-ok 
text-success"></span></span>
                    </div>
                }
                else
                {
                    <input asp-for="Input.Email" class="form-control" />
                    <button id="email-verification" type="submit" asp-page-handler="SendVerificationEmail" 
class="btn btn-link">Send verification email</button>
                }
                <span asp-validation-for="Input.Email" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Input.Name"></label>
                <input asp-for="Input.Name" class="form-control" />
            </div>
            <div class="form-group">
                <label asp-for="Input.DOB"></label>
                <input asp-for="Input.DOB" class="form-control" />
            </div>
            <div class="form-group">
                <label asp-for="Input.PhoneNumber"></label>
                <input asp-for="Input.PhoneNumber" class="form-control" />
                <span asp-validation-for="Input.PhoneNumber" class="text-danger"></span>
            </div>
            <button id="update-profile-button" type="submit" class="btn btn-primary">Save</button>
        </form>
    </div>
</div>

@section Scripts {
    <partial name="_ValidationScriptsPartial" />
}

Update the Account/Register.cshtml pageUpdate the Account/Register.cshtml page

[AllowAnonymous]
public class RegisterModel : PageModel
{
    private readonly SignInManager<WebApp1User> _signInManager;
    private readonly UserManager<WebApp1User> _userManager;
    private readonly ILogger<RegisterModel> _logger;

Update the InputModel  in Areas/Identity/Pages/Account/Register.cshtml.cs with the following highlighted code:



    private readonly ILogger<RegisterModel> _logger;
    private readonly IEmailSender _emailSender;

    public RegisterModel(
        UserManager<WebApp1User> userManager,
        SignInManager<WebApp1User> signInManager,
        ILogger<RegisterModel> logger,
        IEmailSender emailSender)
    {
        _userManager = userManager;
        _signInManager = signInManager;
        _logger = logger;
        _emailSender = emailSender;
    }

    [BindProperty]
    public InputModel Input { get; set; }

    public string ReturnUrl { get; set; }

    public IList<AuthenticationScheme> ExternalLogins { get; set; }

    public class InputModel
    {
        [Required]
        [DataType(DataType.Text)]
        [Display(Name = "Full name")]
        public string Name { get; set; }

        [Required]
        [Display(Name = "Birth Date")]
        [DataType(DataType.Date)]
        public DateTime DOB { get; set; }

        [Required]
        [EmailAddress]
        [Display(Name = "Email")]
        public string Email { get; set; }

        [Required]
        [StringLength(100, ErrorMessage = "The {0} must be at least {2} and at max {1} characters long.", 
MinimumLength = 6)]
        [DataType(DataType.Password)]
        [Display(Name = "Password")]
        public string Password { get; set; }

        [DataType(DataType.Password)]
        [Display(Name = "Confirm password")]
        [Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]
        public string ConfirmPassword { get; set; }
    }

    public async Task OnGetAsync(string returnUrl = null)
    {
        ReturnUrl = returnUrl;
        ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync()).ToList();
    }

    public async Task<IActionResult> OnPostAsync(string returnUrl = null)
    {
        returnUrl = returnUrl ?? Url.Content("~/");
        ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync()).ToList();
        if (ModelState.IsValid)
        {
            var user = new WebApp1User {
                Name = Input.Name,
                DOB = Input.DOB,
                UserName = Input.Email, 
                Email = Input.Email 



            };
            var result = await _userManager.CreateAsync(user, Input.Password);
            if (result.Succeeded)
            {
                _logger.LogInformation("User created a new account with password.");

                var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
                code = WebEncoders.Base64UrlEncode(Encoding.UTF8.GetBytes(code));
                var callbackUrl = Url.Page(
                    "/Account/ConfirmEmail",
                    pageHandler: null,
                    values: new { area = "Identity", userId = user.Id, code = code },
                    protocol: Request.Scheme);

                await _emailSender.SendEmailAsync(Input.Email, 
                    "Confirm your email",
                    $"Please confirm your account by <a 
href='{HtmlEncoder.Default.Encode(callbackUrl)}'>clicking here</a>.");

                if (_userManager.Options.SignIn.RequireConfirmedAccount)
                {
                    return RedirectToPage("RegisterConfirmation", new { email = Input.Email });
                }
                else
                {
                    await _signInManager.SignInAsync(user, isPersistent: false);
                    return LocalRedirect(returnUrl);
                }
            }
            foreach (var error in result.Errors)
            {
                ModelState.AddModelError(string.Empty, error.Description);
            }
        }

        // If we got this far, something failed, redisplay form
        return Page();
    }
}

@page
@model RegisterModel
@{
    ViewData["Title"] = "Register";
}

<h1>@ViewData["Title"]</h1>

<div class="row">
    <div class="col-md-4">
        <form asp-route-returnUrl="@Model.ReturnUrl" method="post">
            <h4>Create a new account.</h4>
            <hr />
            <div asp-validation-summary="All" class="text-danger"></div>

            <div class="form-group">
                <label asp-for="Input.Name"></label>
                <input asp-for="Input.Name" class="form-control" />
                <span asp-validation-for="Input.Name" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Input.DOB"></label>
                <input asp-for="Input.DOB" class="form-control" />
                <span asp-validation-for="Input.DOB" class="text-danger"></span>
            </div>
            

Update the Areas/Identity/Pages/Account/Register.cshtml with the following highlighted markup:



            
            <div class="form-group">
                <label asp-for="Input.Email"></label>
                <input asp-for="Input.Email" class="form-control" />
                <span asp-validation-for="Input.Email" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Input.Password"></label>
                <input asp-for="Input.Password" class="form-control" />
                <span asp-validation-for="Input.Password" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Input.ConfirmPassword"></label>
                <input asp-for="Input.ConfirmPassword" class="form-control" />
                <span asp-validation-for="Input.ConfirmPassword" class="text-danger"></span>
            </div>
            <button type="submit" class="btn btn-primary">Register</button>
        </form>
    </div>
    <div class="col-md-6 col-md-offset-2">
        <section>
            <h4>Use another service to register.</h4>
            <hr />
            @{
                if ((Model.ExternalLogins?.Count ?? 0) == 0)
                {
                    <div>
                        <p>
                            There are no external authentication services configured. See 
                             <a href="https://go.microsoft.com/fwlink/?LinkID=532715">this article</a>
                            for details on setting up this ASP.NET application to support 
                            logging in via external services.
                        </p>
                    </div>
                }
                else
                {
                    <form id="external-account" asp-page="./ExternalLogin" 
                        asp-route-returnUrl="@Model.ReturnUrl" method="post" 
                        class="form-horizontal">
                        <div>
                            <p>
                                @foreach (var provider in Model.ExternalLogins)
                                {
                                    <button type="submit" class="btn btn-primary" name="provider" 
                                        value="@provider.Name" 
                                        title="Log in using your @provider.DisplayName account">
                                            @provider.DisplayName</button>
                                }
                            </p>
                        </div>
                    </form>
                }
            }
        </section>
    </div>
</div>

@section Scripts {
    <partial name="_ValidationScriptsPartial" />
}

[AllowAnonymous]
public class RegisterModel : PageModel
{
    private readonly SignInManager<WebApp1User> _signInManager;
    private readonly UserManager<WebApp1User> _userManager;
    private readonly ILogger<RegisterModel> _logger;



    private readonly ILogger<RegisterModel> _logger;
    private readonly IEmailSender _emailSender;

    public RegisterModel(
        UserManager<WebApp1User> userManager,
        SignInManager<WebApp1User> signInManager,
        ILogger<RegisterModel> logger,
        IEmailSender emailSender)
    {
        _userManager = userManager;
        _signInManager = signInManager;
        _logger = logger;
        _emailSender = emailSender;
    }

    [BindProperty]
    public InputModel Input { get; set; }

    public string ReturnUrl { get; set; }

    public class InputModel
    {
        [Required]
        [DataType(DataType.Text)]
        [Display(Name = "Full name")]
        public string Name { get; set; }

        [Required]
        [Display(Name = "Birth Date")]
        [DataType(DataType.Date)]
        public DateTime DOB { get; set; }

        [Required]
        [EmailAddress]
        [Display(Name = "Email")]
        public string Email { get; set; }

        [Required]
        [StringLength(100, ErrorMessage = "The {0} must be at least {2} and at max {1} characters long.", 
MinimumLength = 6)]
        [DataType(DataType.Password)]
        [Display(Name = "Password")]
        public string Password { get; set; }

        [DataType(DataType.Password)]
        [Display(Name = "Confirm password")]
        [Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]
        public string ConfirmPassword { get; set; }
    }

    public void OnGet(string returnUrl = null)
    {
        ReturnUrl = returnUrl;
    }

    public async Task<IActionResult> OnPostAsync(string returnUrl = null)
    {
        returnUrl = returnUrl ?? Url.Content("~/");
        if (ModelState.IsValid)
        {
            var user = new WebApp1User {
                Name = Input.Name,
                DOB = Input.DOB,
                UserName = Input.Email,
                Email = Input.Email
            };
            var result = await _userManager.CreateAsync(user, Input.Password);
            if (result.Succeeded)
            {



                _logger.LogInformation("User created a new account with password.");

                var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
                var callbackUrl = Url.Page(
                    "/Account/ConfirmEmail",
                    pageHandler: null,
                    values: new { userId = user.Id, code = code },
                    protocol: Request.Scheme);

                await _emailSender.SendEmailAsync(Input.Email, "Confirm your email",
                    $"Please confirm your account by <a 
href='{HtmlEncoder.Default.Encode(callbackUrl)}'>clicking here</a>.");

                await _signInManager.SignInAsync(user, isPersistent: false);
                return LocalRedirect(returnUrl);
            }
            foreach (var error in result.Errors)
            {
                ModelState.AddModelError(string.Empty, error.Description);
            }
        }

        // If we got this far, something failed, redisplay form
        return Page();
    }
}

Update the Areas/Identity/Pages/Account/Register.cshtml with the following highlighted markup:



@page
@model RegisterModel
@{
    ViewData["Title"] = "Register";
}

<h1>@ViewData["Title"]</h1>

<div class="row">
    <div class="col-md-4">
        <form asp-route-returnUrl="@Model.ReturnUrl" method="post">
            <h4>Create a new account.</h4>
            <hr />
            <div asp-validation-summary="All" class="text-danger"></div>

            <div class="form-group">
                <label asp-for="Input.Name"></label>
                <input asp-for="Input.Name" class="form-control" />
                <span asp-validation-for="Input.Name" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Input.DOB"></label>
                <input asp-for="Input.DOB" class="form-control" />
                <span asp-validation-for="Input.DOB" class="text-danger"></span>
            </div>

            <div class="form-group">
                <label asp-for="Input.Email"></label>
                <input asp-for="Input.Email" class="form-control" />
                <span asp-validation-for="Input.Email" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Input.Password"></label>
                <input asp-for="Input.Password" class="form-control" />
                <span asp-validation-for="Input.Password" class="text-danger"></span>
            </div>
            <div class="form-group">
                <label asp-for="Input.ConfirmPassword"></label>
                <input asp-for="Input.ConfirmPassword" class="form-control" />
                <span asp-validation-for="Input.ConfirmPassword" class="text-danger"></span>
            </div>
            <button type="submit" class="btn btn-primary">Register</button>
        </form>
    </div>
</div>

@section Scripts {
    <partial name="_ValidationScriptsPartial" />
}

Add a migration for the custom user dataAdd a migration for the custom user data

Add-Migration CustomUserData
Update-Database

Test create, view, download, delete custom user data

Build the project.

Visual Studio

.NET Core CLI

In the Visual Studio Package Manager ConsolePackage Manager Console:



Add claims to Identity using IUserClaimsPrincipalFactory

NOTENOTE

public void ConfigureServices(IServiceCollection services)
{
 services.AddIdentity<ApplicationUser, IdentityRole>()
  .AddEntityFrameworkStores<ApplicationDbContext>()
  .AddDefaultTokenProviders();

 services.AddScoped<IUserClaimsPrincipalFactory<ApplicationUser>, 
  AdditionalUserClaimsPrincipalFactory>();

public class ApplicationUser : IdentityUser
{
 public bool IsAdmin { get; set; }
}

Test the app:

Register a new user.

View the custom user data on the /Identity/Account/Manage  page.

Download and view the users personal data from the /Identity/Account/Manage/PersonalData  page.

This section isn't an extension of the previous tutorial. To apply the following steps to the app built using the tutorial, see this

GitHub issue.

Additional claims can be added to ASP.NET Core Identity by using the IUserClaimsPrincipalFactory<T>  interface.

This class can be added to the app in the Startup.ConfigureServices  method. Add the custom implementation of

the class as follows:

The demo code uses the ApplicationUser  class. This class adds an IsAdmin  property which is used to add the

additional claim.

The AdditionalUserClaimsPrincipalFactory  implements the UserClaimsPrincipalFactory  interface. A new role claim

is added to the ClaimsPrincipal .

https://github.com/dotnet/AspNetCore.Docs/issues/18797


public class AdditionalUserClaimsPrincipalFactory 
  : UserClaimsPrincipalFactory<ApplicationUser, IdentityRole>
{
 public AdditionalUserClaimsPrincipalFactory( 
  UserManager<ApplicationUser> userManager,
  RoleManager<IdentityRole> roleManager, 
  IOptions<IdentityOptions> optionsAccessor) 
  : base(userManager, roleManager, optionsAccessor)
 {}

 public async override Task<ClaimsPrincipal> CreateAsync(ApplicationUser user)
 {
  var principal = await base.CreateAsync(user);
  var identity = (ClaimsIdentity)principal.Identity;

  var claims = new List<Claim>();
  if (user.IsAdmin)
  {
   claims.Add(new Claim(JwtClaimTypes.Role, "admin"));
  }
  else
  {
   claims.Add(new Claim(JwtClaimTypes.Role, "user"));
  }

  identity.AddClaims(claims);
  return principal;
 }
}

@using Microsoft.AspNetCore.Authorization
@inject IAuthorizationService AuthorizationService

@if ((await AuthorizationService.AuthorizeAsync(User, "IsAdmin")).Succeeded)
{
 <ul class="mr-auto navbar-nav">
  <li class="nav-item">
   <a class="nav-link" asp-controller="Admin" asp-action="Index">ADMIN</a>
  </li>
 </ul>
}

The additional claim can then be used in the app. In a Razor Page, the IAuthorizationService  instance can be used

to access the claim value.



Authentication samples for ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Run the samples

Run the samples

By Rick Anderson

The ASP.NET Core repository contains the following authentication samples in the

AspNetCore/src/Security/samples folder :

Claims transformation

Cookie authentication

Custom policy provider - IAuthorizationPolicyProvider

Dynamic authentication schemes and options

External claims

Selecting between cookie and another authentication scheme based on the request

Restricts access to static files

Select a branch. For example, release/3.1

Clone or download the ASP.NET Core repository.

Verify you have installed the .NET Core SDK version matching the clone of the ASP.NET Core repository.

Navigate to a sample in AspNetCore/src/Security/samples and run the sample with dotnet run .

The ASP.NET Core repository contains the following authentication samples in the

AspNetCore/src/Security/samples folder :

Claims transformation

Cookie authentication

Custom policy provider - IAuthorizationPolicyProvider

Dynamic authentication schemes and options

External claims

Selecting between cookie and another authentication scheme based on the request

Restricts access to static files

Select a branch. For example, release/2.1

Clone or download the ASP.NET Core repository.

Verify you have installed the .NET Core SDK version matching the clone of the ASP.NET Core repository.

Navigate to a sample in AspNetCore/src/Security/samples and run the sample with dotnet run .

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/samples.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore
https://github.com/dotnet/AspNetCore/tree/release/3.1/src/Security/samples/ClaimsTransformation
https://github.com/dotnet/AspNetCore/tree/release/3.1/src/Security/samples/Cookies
https://github.com/dotnet/AspNetCore/tree/release/3.1/src/Security/samples/CustomPolicyProvider
https://github.com/dotnet/AspNetCore/tree/release/3.1/src/Security/samples/DynamicSchemes
https://github.com/dotnet/AspNetCore/tree/release/3.1/src/Security/samples/Identity.ExternalClaims
https://github.com/dotnet/AspNetCore/tree/release/3.1/src/Security/samples/PathSchemeSelection
https://github.com/dotnet/AspNetCore/tree/release/3.1/src/Security/samples/StaticFilesAuth
https://github.com/dotnet/AspNetCore
https://github.com/dotnet/AspNetCore
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/AspNetCore
https://github.com/dotnet/AspNetCore/tree/release/2.1/src/Security/samples/ClaimsTransformation
https://github.com/dotnet/AspNetCore/tree/release/2.1/src/Security/samples/Cookies
https://github.com/dotnet/AspNetCore/tree/2.1.3/src/Security/samples/CustomPolicyProvider
https://github.com/dotnet/AspNetCore/tree/release/2.1/src/Security/samples/DynamicSchemes
https://github.com/dotnet/AspNetCore/tree/release/2.1/src/Security/samples/Identity.ExternalClaims
https://github.com/dotnet/AspNetCore/tree/release/2.1/src/Security/samples/PathSchemeSelection
https://github.com/dotnet/AspNetCore/tree/2.1.3/src/Security/samples/StaticFilesAuth
https://github.com/dotnet/AspNetCore
https://github.com/dotnet/AspNetCore
https://dotnet.microsoft.com/download/dotnet-core


 

  

Identity model customization in ASP.NET Core
9/22/2020 • 19 minutes to read • Edit Online

Identity and EF Core Migrations

The Identity model
Entity typesEntity types

EN T IT Y  T Y P EEN T IT Y  T Y P E DESC RIP T IO NDESC RIP T IO N

User Represents the user.

By Arthur Vickers

ASP.NET Core Identity provides a framework for managing and storing user accounts in ASP.NET Core apps. Identity

is added to your project when Individual User AccountsIndividual User Accounts  is selected as the authentication mechanism. By default,

Identity makes use of an Entity Framework (EF) Core data model. This article describes how to customize the

Identity model.

Before examining the model, it's useful to understand how Identity works with EF Core Migrations to create and

update a database. At the top level, the process is:

1. Define or update a data model in code.

2. Add a Migration to translate this model into changes that can be applied to the database.

3. Check that the Migration correctly represents your intentions.

4. Apply the Migration to update the database to be in sync with the model.

5. Repeat steps 1 through 4 to further refine the model and keep the database in sync.

Use one of the following approaches to add and apply Migrations:

The Package Manager ConsolePackage Manager Console (PMC) window if using Visual Studio. For more information, see EF Core PMC

tools.

The .NET Core CLI if using the command line. For more information, see EF Core .NET command line tools.

Clicking the Apply MigrationsApply Migrations  button on the error page when the app is run.

ASP.NET Core has a development-time error page handler. The handler can apply migrations when the app is run.

Production apps typically generate SQL scripts from the migrations and deploy database changes as part of a

controlled app and database deployment.

When a new app using Identity is created, steps 1 and 2 above have already been completed. That is, the initial data

model already exists, and the initial migration has been added to the project. The initial migration still needs to be

applied to the database. The initial migration can be applied via one of the following approaches:

Run Update-Database  in PMC.

Run dotnet ef database update  in a command shell.

Click the Apply MigrationsApply Migrations  button on the error page when the app is run.

Repeat the preceding steps as changes are made to the model.

The Identity model consists of the following entity types.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/customize-identity-model.md
https://github.com/ajcvickers
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/
https://docs.microsoft.com/en-us/ef/core/modeling/
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell
https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet


Role Represents a role.

UserClaim Represents a claim that a user possesses.

UserToken Represents an authentication token for a user.

UserLogin Associates a user with a login.

RoleClaim Represents a claim that's granted to all users within a role.

UserRole A join entity that associates users and roles.

EN T IT Y  T Y P EEN T IT Y  T Y P E DESC RIP T IO NDESC RIP T IO N

Entity type relationshipsEntity type relationships

Default model configurationDefault model configuration

builder.Entity<TUser>(b =>
{
    // Primary key
    b.HasKey(u => u.Id);

    // Indexes for "normalized" username and email, to allow efficient lookups
    b.HasIndex(u => u.NormalizedUserName).HasName("UserNameIndex").IsUnique();
    b.HasIndex(u => u.NormalizedEmail).HasName("EmailIndex");

    // Maps to the AspNetUsers table
    b.ToTable("AspNetUsers");

    // A concurrency token for use with the optimistic concurrency checking
    b.Property(u => u.ConcurrencyStamp).IsConcurrencyToken();

    // Limit the size of columns to use efficient database types
    b.Property(u => u.UserName).HasMaxLength(256);
    b.Property(u => u.NormalizedUserName).HasMaxLength(256);
    b.Property(u => u.Email).HasMaxLength(256);
    b.Property(u => u.NormalizedEmail).HasMaxLength(256);

    // The relationships between User and other entity types
    // Note that these relationships are configured with no navigation properties

    // Each User can have many UserClaims
    b.HasMany<TUserClaim>().WithOne().HasForeignKey(uc => uc.UserId).IsRequired();

    // Each User can have many UserLogins

The entity types are related to each other in the following ways:

Each User  can have many UserClaims .

Each User  can have many UserLogins .

Each User  can have many UserTokens .

Each Role  can have many associated RoleClaims .

Each User  can have many associated Roles , and each Role  can be associated with many Users . This is a

many-to-many relationship that requires a join table in the database. The join table is represented by the 

UserRole  entity.

Identity defines many context classes that inherit from DbContext to configure and use the model. This

configuration is done using the EF Core Code First Fluent API in the OnModelCreating method of the context class.

The default configuration is:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/ef/core/modeling/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.onmodelcreating


    // Each User can have many UserLogins
    b.HasMany<TUserLogin>().WithOne().HasForeignKey(ul => ul.UserId).IsRequired();

    // Each User can have many UserTokens
    b.HasMany<TUserToken>().WithOne().HasForeignKey(ut => ut.UserId).IsRequired();

    // Each User can have many entries in the UserRole join table
    b.HasMany<TUserRole>().WithOne().HasForeignKey(ur => ur.UserId).IsRequired();
});

builder.Entity<TUserClaim>(b =>
{
    // Primary key
    b.HasKey(uc => uc.Id);

    // Maps to the AspNetUserClaims table
    b.ToTable("AspNetUserClaims");
});

builder.Entity<TUserLogin>(b =>
{
    // Composite primary key consisting of the LoginProvider and the key to use
    // with that provider
    b.HasKey(l => new { l.LoginProvider, l.ProviderKey });

    // Limit the size of the composite key columns due to common DB restrictions
    b.Property(l => l.LoginProvider).HasMaxLength(128);
    b.Property(l => l.ProviderKey).HasMaxLength(128);

    // Maps to the AspNetUserLogins table
    b.ToTable("AspNetUserLogins");
});

builder.Entity<TUserToken>(b =>
{
    // Composite primary key consisting of the UserId, LoginProvider and Name
    b.HasKey(t => new { t.UserId, t.LoginProvider, t.Name });

    // Limit the size of the composite key columns due to common DB restrictions
    b.Property(t => t.LoginProvider).HasMaxLength(maxKeyLength);
    b.Property(t => t.Name).HasMaxLength(maxKeyLength);

    // Maps to the AspNetUserTokens table
    b.ToTable("AspNetUserTokens");
});

builder.Entity<TRole>(b =>
{
    // Primary key
    b.HasKey(r => r.Id);

    // Index for "normalized" role name to allow efficient lookups
    b.HasIndex(r => r.NormalizedName).HasName("RoleNameIndex").IsUnique();

    // Maps to the AspNetRoles table
    b.ToTable("AspNetRoles");

    // A concurrency token for use with the optimistic concurrency checking
    b.Property(r => r.ConcurrencyStamp).IsConcurrencyToken();

    // Limit the size of columns to use efficient database types
    b.Property(u => u.Name).HasMaxLength(256);
    b.Property(u => u.NormalizedName).HasMaxLength(256);

    // The relationships between Role and other entity types
    // Note that these relationships are configured with no navigation properties

    // Each Role can have many entries in the UserRole join table
    b.HasMany<TUserRole>().WithOne().HasForeignKey(ur => ur.RoleId).IsRequired();



  

    // Each Role can have many associated RoleClaims
    b.HasMany<TRoleClaim>().WithOne().HasForeignKey(rc => rc.RoleId).IsRequired();
});

builder.Entity<TRoleClaim>(b =>
{
    // Primary key
    b.HasKey(rc => rc.Id);

    // Maps to the AspNetRoleClaims table
    b.ToTable("AspNetRoleClaims");
});

builder.Entity<TUserRole>(b =>
{
    // Primary key
    b.HasKey(r => new { r.UserId, r.RoleId });

    // Maps to the AspNetUserRoles table
    b.ToTable("AspNetUserRoles");
});

Model generic typesModel generic types
Identity defines default Common Language Runtime (CLR) types for each of the entity types listed above. These

types are all prefixed with Identity:

IdentityUser

IdentityRole

IdentityUserClaim

IdentityUserToken

IdentityUserLogin

IdentityRoleClaim

IdentityUserRole

Rather than using these types directly, the types can be used as base classes for the app's own types. The 

DbContext  classes defined by Identity are generic, such that different CLR types can be used for one or more of the

entity types in the model. These generic types also allow the User  primary key (PK) data type to be changed.

When using Identity with support for roles, an IdentityDbContext class should be used. For example:

https://docs.microsoft.com/en-us/dotnet/standard/glossary#clr
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identitydbcontext


// Uses all the built-in Identity types
// Uses `string` as the key type
public class IdentityDbContext
    : IdentityDbContext<IdentityUser, IdentityRole, string>
{
}

// Uses the built-in Identity types except with a custom User type
// Uses `string` as the key type
public class IdentityDbContext<TUser>
    : IdentityDbContext<TUser, IdentityRole, string>
        where TUser : IdentityUser
{
}

// Uses the built-in Identity types except with custom User and Role types
// The key type is defined by TKey
public class IdentityDbContext<TUser, TRole, TKey> : IdentityDbContext<
    TUser, TRole, TKey, IdentityUserClaim<TKey>, IdentityUserRole<TKey>,
    IdentityUserLogin<TKey>, IdentityRoleClaim<TKey>, IdentityUserToken<TKey>>
        where TUser : IdentityUser<TKey>
        where TRole : IdentityRole<TKey>
        where TKey : IEquatable<TKey>
{
}

// No built-in Identity types are used; all are specified by generic arguments
// The key type is defined by TKey
public abstract class IdentityDbContext<
    TUser, TRole, TKey, TUserClaim, TUserRole, TUserLogin, TRoleClaim, TUserToken>
    : IdentityUserContext<TUser, TKey, TUserClaim, TUserLogin, TUserToken>
         where TUser : IdentityUser<TKey>
         where TRole : IdentityRole<TKey>
         where TKey : IEquatable<TKey>
         where TUserClaim : IdentityUserClaim<TKey>
         where TUserRole : IdentityUserRole<TKey>
         where TUserLogin : IdentityUserLogin<TKey>
         where TRoleClaim : IdentityRoleClaim<TKey>
         where TUserToken : IdentityUserToken<TKey>

It's also possible to use Identity without roles (only claims), in which case an IdentityUserContext<TUser> class

should be used:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identityusercontext-1


// Uses the built-in non-role Identity types except with a custom User type
// Uses `string` as the key type
public class IdentityUserContext<TUser>
    : IdentityUserContext<TUser, string>
        where TUser : IdentityUser
{
}

// Uses the built-in non-role Identity types except with a custom User type
// The key type is defined by TKey
public class IdentityUserContext<TUser, TKey> : IdentityUserContext<
    TUser, TKey, IdentityUserClaim<TKey>, IdentityUserLogin<TKey>,
    IdentityUserToken<TKey>>
        where TUser : IdentityUser<TKey>
        where TKey : IEquatable<TKey>
{
}

// No built-in Identity types are used; all are specified by generic arguments, with no roles
// The key type is defined by TKey
public abstract class IdentityUserContext<
    TUser, TKey, TUserClaim, TUserLogin, TUserToken> : DbContext
        where TUser : IdentityUser<TKey>
        where TKey : IEquatable<TKey>
        where TUserClaim : IdentityUserClaim<TKey>
        where TUserLogin : IdentityUserLogin<TKey>
        where TUserToken : IdentityUserToken<TKey>
{
}

Customize the model

Custom user dataCustom user data

public class ApplicationUser : IdentityUser
{
    public string CustomTag { get; set; }
}

The starting point for model customization is to derive from the appropriate context type. See the Model generic

types section. This context type is customarily called ApplicationDbContext  and is created by the ASP.NET Core

templates.

The context is used to configure the model in two ways:

Supplying entity and key types for the generic type parameters.

Overriding OnModelCreating  to modify the mapping of these types.

When overriding OnModelCreating , base.OnModelCreating  should be called first; the overriding configuration should

be called next. EF Core generally has a last-one-wins policy for configuration. For example, if the ToTable  method

for an entity type is called first with one table name and then again later with a different table name, the table name

in the second call is used.

Custom user data is supported by inheriting from IdentityUser . It's customary to name this type ApplicationUser :

Use the ApplicationUser  type as a generic argument for the context:



public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
{
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
        : base(options)
    {
    }

    protected override void OnModelCreating(ModelBuilder builder)
    {
        base.OnModelCreating(builder);
    }
}

@using Microsoft.AspNetCore.Identity
@using WebApp1.Areas.Identity.Data
@inject SignInManager<ApplicationUser> SignInManager
@inject UserManager<ApplicationUser> UserManager

services.AddIdentity<ApplicationUser>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultUI();

Change the primary key typeChange the primary key type

There's no need to override OnModelCreating  in the ApplicationDbContext  class. EF Core maps the CustomTag

property by convention. However, the database needs to be updated to create a new CustomTag  column. To create

the column, add a migration, and then update the database as described in Identity and EF Core Migrations.

Update Pages/Shared/_LoginPartial.cshtml and replace IdentityUser  with ApplicationUser :

Update Areas/Identity/IdentityHostingStartup.cs or Startup.ConfigureServices  and replace IdentityUser  with 

ApplicationUser .

In ASP.NET Core 2.1 or later, Identity is provided as a Razor Class Library. For more information, see Scaffold

Identity in ASP.NET Core projects. Consequently, the preceding code requires a call to AddDefaultUI. If the Identity

scaffolder was used to add Identity files to the project, remove the call to AddDefaultUI . For more information, see:

Scaffold Identity

Add, download, and delete custom user data to Identity

A change to the PK column's data type after the database has been created is problematic on many database

systems. Changing the PK typically involves dropping and re-creating the table. Therefore, key types should be

specified in the initial migration when the database is created.

Follow these steps to change the PK type:

1. If the database was created before the PK change, run Drop-Database  (PMC) or dotnet ef database drop

(.NET Core CLI) to delete it.

2. After confirming deletion of the database, remove the initial migration with Remove-Migration  (PMC) or 

dotnet ef migrations remove  (.NET Core CLI).

3. Update the ApplicationDbContext  class to derive from IdentityDbContext<TUser,TRole,TKey>. Specify the

new key type for TKey . For example, to use a Guid  key type:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilderuiextensions.adddefaultui
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identitydbcontext-3


public class ApplicationDbContext
    : IdentityDbContext<IdentityUser<Guid>, IdentityRole<Guid>, Guid>
{
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
        : base(options)
    {
    }
}

services.AddDefaultIdentity<IdentityUser<Guid>>()
        .AddEntityFrameworkStores<ApplicationDbContext>();

services.AddIdentity<IdentityUser<Guid>, IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultTokenProviders();

services.AddIdentity<IdentityUser<Guid>, IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext, Guid>()
        .AddDefaultTokenProviders();

using System;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

public class ApplicationUser : IdentityUser<Guid>
{
    public string CustomTag { get; set; }        
}

using System;
using Microsoft.AspNetCore.Identity;

public class ApplicationUser : IdentityUser<Guid>
{
    public string CustomTag { get; set; }
}

In the preceding code, the generic classes IdentityUser<TKey> and IdentityRole<TKey> must be specified to

use the new key type.

In the preceding code, the generic classes IdentityUser<TKey> and IdentityRole<TKey> must be specified to

use the new key type.

Startup.ConfigureServices  must be updated to use the generic user :

4. If a custom ApplicationUser  class is being used, update the class to inherit from IdentityUser . For example:

Update ApplicationDbContext  to reference the custom ApplicationUser  class:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityuser-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityrole-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identityuser-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identityrole-1


public class ApplicationDbContext
    : IdentityDbContext<ApplicationUser, IdentityRole<Guid>, Guid>
{
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
        : base(options)
    {
    }
}

services.AddIdentity<ApplicationUser>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultUI()
        .AddDefaultTokenProviders();

services.AddIdentity<ApplicationUser, IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultTokenProviders();

services.AddIdentity<ApplicationUser, IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext, Guid>()
        .AddDefaultTokenProviders();

using System;
using Microsoft.AspNetCore.Identity;

public class ApplicationRole : IdentityRole<Guid>
{
    public string Description { get; set; }
}

Register the custom database context class when adding the Identity service in Startup.ConfigureServices :

The primary key's data type is inferred by analyzing the DbContext object.

In ASP.NET Core 2.1 or later, Identity is provided as a Razor Class Library. For more information, see Scaffold

Identity in ASP.NET Core projects. Consequently, the preceding code requires a call to AddDefaultUI. If the

Identity scaffolder was used to add Identity files to the project, remove the call to AddDefaultUI .

The primary key's data type is inferred by analyzing the DbContext object.

The AddEntityFrameworkStores method accepts a TKey  type indicating the primary key's data type.

5. If a custom ApplicationRole  class is being used, update the class to inherit from IdentityRole<TKey> . For

example:

Update ApplicationDbContext  to reference the custom ApplicationRole  class. For example, the following

class references a custom ApplicationUser  and a custom ApplicationRole :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilderuiextensions.adddefaultui
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityentityframeworkbuilderextensions.addentityframeworkstores


using System;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;

public class ApplicationDbContext :
    IdentityDbContext<ApplicationUser, ApplicationRole, Guid>
{
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
        : base(options)
    {
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));

    services.AddIdentity<ApplicationUser, ApplicationRole>()
            .AddEntityFrameworkStores<ApplicationDbContext>()
            .AddDefaultUI()
            .AddDefaultTokenProviders();

    services.AddMvc()
            .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
}

using System;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;

public class ApplicationDbContext : 
    IdentityDbContext<ApplicationUser, ApplicationRole, Guid>
{
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
        : base(options)
    {
    }
}

Register the custom database context class when adding the Identity service in Startup.ConfigureServices :

The primary key's data type is inferred by analyzing the DbContext object.

In ASP.NET Core 2.1 or later, Identity is provided as a Razor Class Library. For more information, see Scaffold

Identity in ASP.NET Core projects. Consequently, the preceding code requires a call to AddDefaultUI. If the

Identity scaffolder was used to add Identity files to the project, remove the call to AddDefaultUI .

Register the custom database context class when adding the Identity service in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilderuiextensions.adddefaultui


Add navigation propertiesAdd navigation properties

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));

    services.AddIdentity<ApplicationUser, ApplicationRole>()
            .AddEntityFrameworkStores<ApplicationDbContext>()
            .AddDefaultTokenProviders();

    services.AddMvc()
        .AddRazorPagesOptions(options =>
        {
            options.Conventions.AuthorizeFolder("/Account/Manage");
            options.Conventions.AuthorizePage("/Account/Logout");
        });

    services.AddSingleton<IEmailSender, EmailSender>();
}

using System;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;

public class ApplicationDbContext : 
    IdentityDbContext<ApplicationUser, ApplicationRole, Guid>
{
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
        : base(options)
    {
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options => 
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));

    services.AddIdentity<ApplicationUser, ApplicationRole>()
            .AddEntityFrameworkStores<ApplicationDbContext, Guid>()
            .AddDefaultTokenProviders();

    services.AddMvc();

    services.AddTransient<IEmailSender, AuthMessageSender>();
    services.AddTransient<ISmsSender, AuthMessageSender>();
}

The primary key's data type is inferred by analyzing the DbContext object.

Register the custom database context class when adding the Identity service in Startup.ConfigureServices :

The AddEntityFrameworkStores method accepts a TKey  type indicating the primary key's data type.

Changing the model configuration for relationships can be more difficult than making other changes. Care must be

taken to replace the existing relationships rather than create new, additional relationships. In particular, the changed

relationship must specify the same foreign key (FK) property as the existing relationship. For example, the

relationship between Users  and UserClaims  is, by default, specified as follows:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityentityframeworkbuilderextensions.addentityframeworkstores


builder.Entity<TUser>(b =>
{
    // Each User can have many UserClaims
    b.HasMany<TUserClaim>()
     .WithOne()
     .HasForeignKey(uc => uc.UserId)
     .IsRequired();
});

public class ApplicationUser : IdentityUser
{
    public virtual ICollection<IdentityUserClaim<string>> Claims { get; set; }
}

public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
{
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
        : base(options)
    {
    }

    protected override void OnModelCreating(ModelBuilder modelBuilder)
    {
        base.OnModelCreating(modelBuilder);

        modelBuilder.Entity<ApplicationUser>(b =>
        {
            // Each User can have many UserClaims
            b.HasMany(e => e.Claims)
                .WithOne()
                .HasForeignKey(uc => uc.UserId)
                .IsRequired();
        });
    }
}

Add all User navigation propertiesAdd all User navigation properties

The FK for this relationship is specified as the UserClaim.UserId  property. HasMany  and WithOne  are called without

arguments to create the relationship without navigation properties.

Add a navigation property to ApplicationUser  that allows associated UserClaims  to be referenced from the user :

The TKey  for IdentityUserClaim<TKey>  is the type specified for the PK of users. In this case, TKey  is string

because the defaults are being used. It's notnot the PK type for the UserClaim  entity type.

Now that the navigation property exists, it must be configured in OnModelCreating :

Notice that relationship is configured exactly as it was before, only with a navigation property specified in the call to

HasMany .

The navigation properties only exist in the EF model, not the database. Because the FK for the relationship hasn't

changed, this kind of model change doesn't require the database to be updated. This can be checked by adding a

migration after making the change. The Up  and Down  methods are empty.

Using the section above as guidance, the following example configures unidirectional navigation properties for all

relationships on User :



public class ApplicationUser : IdentityUser
{
    public virtual ICollection<IdentityUserClaim<string>> Claims { get; set; }
    public virtual ICollection<IdentityUserLogin<string>> Logins { get; set; }
    public virtual ICollection<IdentityUserToken<string>> Tokens { get; set; }
    public virtual ICollection<IdentityUserRole<string>> UserRoles { get; set; }
}

public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
{
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
        : base(options)
    {
    }

    protected override void OnModelCreating(ModelBuilder modelBuilder)
    {
        base.OnModelCreating(modelBuilder);

        modelBuilder.Entity<ApplicationUser>(b =>
        {
            // Each User can have many UserClaims
            b.HasMany(e => e.Claims)
                .WithOne()
                .HasForeignKey(uc => uc.UserId)
                .IsRequired();

            // Each User can have many UserLogins
            b.HasMany(e => e.Logins)
                .WithOne()
                .HasForeignKey(ul => ul.UserId)
                .IsRequired();

            // Each User can have many UserTokens
            b.HasMany(e => e.Tokens)
                .WithOne()
                .HasForeignKey(ut => ut.UserId)
                .IsRequired();

            // Each User can have many entries in the UserRole join table
            b.HasMany(e => e.UserRoles)
                .WithOne()
                .HasForeignKey(ur => ur.UserId)
                .IsRequired();
        });
    }
}

Add User and Role navigation propertiesAdd User and Role navigation properties
Using the section above as guidance, the following example configures navigation properties for all relationships

on User and Role:



public class ApplicationUser : IdentityUser
{
    public virtual ICollection<IdentityUserClaim<string>> Claims { get; set; }
    public virtual ICollection<IdentityUserLogin<string>> Logins { get; set; }
    public virtual ICollection<IdentityUserToken<string>> Tokens { get; set; }
    public virtual ICollection<ApplicationUserRole> UserRoles { get; set; }
}

public class ApplicationRole : IdentityRole
{
    public virtual ICollection<ApplicationUserRole> UserRoles { get; set; }
}

public class ApplicationUserRole : IdentityUserRole<string>
{
    public virtual ApplicationUser User { get; set; }
    public virtual ApplicationRole Role { get; set; }
}



public class ApplicationDbContext
    : IdentityDbContext<
        ApplicationUser, ApplicationRole, string,
        IdentityUserClaim<string>, ApplicationUserRole, IdentityUserLogin<string>,
        IdentityRoleClaim<string>, IdentityUserToken<string>>
{
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
        : base(options)
    {
    }

    protected override void OnModelCreating(ModelBuilder modelBuilder)
    {
        base.OnModelCreating(modelBuilder);

        modelBuilder.Entity<ApplicationUser>(b =>
        {
            // Each User can have many UserClaims
            b.HasMany(e => e.Claims)
                .WithOne()
                .HasForeignKey(uc => uc.UserId)
                .IsRequired();

            // Each User can have many UserLogins
            b.HasMany(e => e.Logins)
                .WithOne()
                .HasForeignKey(ul => ul.UserId)
                .IsRequired();

            // Each User can have many UserTokens
            b.HasMany(e => e.Tokens)
                .WithOne()
                .HasForeignKey(ut => ut.UserId)
                .IsRequired();

            // Each User can have many entries in the UserRole join table
            b.HasMany(e => e.UserRoles)
                .WithOne(e => e.User)
                .HasForeignKey(ur => ur.UserId)
                .IsRequired();
        });

        modelBuilder.Entity<ApplicationRole>(b =>
        {
            // Each Role can have many entries in the UserRole join table
            b.HasMany(e => e.UserRoles)
                .WithOne(e => e.Role)
                .HasForeignKey(ur => ur.RoleId)
                .IsRequired();
        });

    }
}

Add all navigation propertiesAdd all navigation properties

Notes:

This example also includes the UserRole  join entity, which is needed to navigate the many-to-many relationship

from Users to Roles.

Remember to change the types of the navigation properties to reflect that Application{...}  types are now

being used instead of Identity{...}  types.

Remember to use the Application{...}  in the generic ApplicationContext  definition.

Using the section above as guidance, the following example configures navigation properties for all relationships



public class ApplicationUser : IdentityUser
{
    public virtual ICollection<ApplicationUserClaim> Claims { get; set; }
    public virtual ICollection<ApplicationUserLogin> Logins { get; set; }
    public virtual ICollection<ApplicationUserToken> Tokens { get; set; }
    public virtual ICollection<ApplicationUserRole> UserRoles { get; set; }
}

public class ApplicationRole : IdentityRole
{
    public virtual ICollection<ApplicationUserRole> UserRoles { get; set; }
    public virtual ICollection<ApplicationRoleClaim> RoleClaims { get; set; }
}

public class ApplicationUserRole : IdentityUserRole<string>
{
    public virtual ApplicationUser User { get; set; }
    public virtual ApplicationRole Role { get; set; }
}

public class ApplicationUserClaim : IdentityUserClaim<string>
{
    public virtual ApplicationUser User { get; set; }
}

public class ApplicationUserLogin : IdentityUserLogin<string>
{
    public virtual ApplicationUser User { get; set; }
}

public class ApplicationRoleClaim : IdentityRoleClaim<string>
{
    public virtual ApplicationRole Role { get; set; }
}

public class ApplicationUserToken : IdentityUserToken<string>
{
    public virtual ApplicationUser User { get; set; }
}

on all entity types:



public class ApplicationDbContext
    : IdentityDbContext<
        ApplicationUser, ApplicationRole, string,
        ApplicationUserClaim, ApplicationUserRole, ApplicationUserLogin,
        ApplicationRoleClaim, ApplicationUserToken>
{
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
        : base(options)
    {
    }

    protected override void OnModelCreating(ModelBuilder modelBuilder)
    {
        base.OnModelCreating(modelBuilder);

        modelBuilder.Entity<ApplicationUser>(b =>
        {
            // Each User can have many UserClaims
            b.HasMany(e => e.Claims)
                .WithOne(e => e.User)
                .HasForeignKey(uc => uc.UserId)
                .IsRequired();

            // Each User can have many UserLogins
            b.HasMany(e => e.Logins)
                .WithOne(e => e.User)
                .HasForeignKey(ul => ul.UserId)
                .IsRequired();

            // Each User can have many UserTokens
            b.HasMany(e => e.Tokens)
                .WithOne(e => e.User)
                .HasForeignKey(ut => ut.UserId)
                .IsRequired();

            // Each User can have many entries in the UserRole join table
            b.HasMany(e => e.UserRoles)
                .WithOne(e => e.User)
                .HasForeignKey(ur => ur.UserId)
                .IsRequired();
        });

        modelBuilder.Entity<ApplicationRole>(b =>
        {
            // Each Role can have many entries in the UserRole join table
            b.HasMany(e => e.UserRoles)
                .WithOne(e => e.Role)
                .HasForeignKey(ur => ur.RoleId)
                .IsRequired();

            // Each Role can have many associated RoleClaims
            b.HasMany(e => e.RoleClaims)
                .WithOne(e => e.Role)
                .HasForeignKey(rc => rc.RoleId)
                .IsRequired();
        });
    }
}

Use composite keysUse composite keys
The preceding sections demonstrated changing the type of key used in the Identity model. Changing the Identity

key model to use composite keys isn't supported or recommended. Using a composite key with Identity involves

changing how the Identity manager code interacts with the model. This customization is beyond the scope of this

document.



Change table/column names and facetsChange table/column names and facets

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);

    modelBuilder.Entity<IdentityUser>(b =>
    {
        b.ToTable("MyUsers");
    });

    modelBuilder.Entity<IdentityUserClaim<string>>(b =>
    {
        b.ToTable("MyUserClaims");
    });

    modelBuilder.Entity<IdentityUserLogin<string>>(b =>
    {
        b.ToTable("MyUserLogins");
    });

    modelBuilder.Entity<IdentityUserToken<string>>(b =>
    {
        b.ToTable("MyUserTokens");
    });

    modelBuilder.Entity<IdentityRole>(b =>
    {
        b.ToTable("MyRoles");
    });

    modelBuilder.Entity<IdentityRoleClaim<string>>(b =>
    {
        b.ToTable("MyRoleClaims");
    });

    modelBuilder.Entity<IdentityUserRole<string>>(b =>
    {
        b.ToTable("MyUserRoles");
    });
}

To change the names of tables and columns, call base.OnModelCreating . Then, add configuration to override any of

the defaults. For example, to change the name of all the Identity tables:

These examples use the default Identity types. If using an app type such as ApplicationUser , configure that type

instead of the default type.

The following example changes some column names:



protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);

    modelBuilder.Entity<IdentityUser>(b =>
    {
        b.Property(e => e.Email).HasColumnName("EMail");
    });

    modelBuilder.Entity<IdentityUserClaim<string>>(b =>
    {
        b.Property(e => e.ClaimType).HasColumnName("CType");
        b.Property(e => e.ClaimValue).HasColumnName("CValue");
    });
}

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);

    modelBuilder.Entity<IdentityUser>(b =>
    {
        b.Property(u => u.UserName).HasMaxLength(128);
        b.Property(u => u.NormalizedUserName).HasMaxLength(128);
        b.Property(u => u.Email).HasMaxLength(128);
        b.Property(u => u.NormalizedEmail).HasMaxLength(128);
    });

    modelBuilder.Entity<IdentityUserToken<string>>(b =>
    {
        b.Property(t => t.LoginProvider).HasMaxLength(128);
        b.Property(t => t.Name).HasMaxLength(128);
    });
}

Map to a different schemaMap to a different schema

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);

    modelBuilder.HasDefaultSchema("notdbo");
}

Lazy loadingLazy loading

Some types of database columns can be configured with certain facets (for example, the maximum string  length

allowed). The following example sets column maximum lengths for several string  properties in the model:

Schemas can behave differently across database providers. For SQL Server, the default is to create all tables in the

dbo schema. The tables can be created in a different schema. For example:

In this section, support for lazy-loading proxies in the Identity model is added. Lazy-loading is useful since it allows

navigation properties to be used without first ensuring they're loaded.

Entity types can be made suitable for lazy-loading in several ways, as described in the EF Core documentation. For

simplicity, use lazy-loading proxies, which requires:

Installation of the Microsoft.EntityFrameworkCore.Proxies package.

A call to UseLazyLoadingProxies inside AddDbContext<TContext>.

Public entity types with public virtual  navigation properties.

https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Proxies/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.proxiesextensions.uselazyloadingproxies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontext


services
    .AddDbContext<ApplicationDbContext>(
        b => b.UseSqlServer(connectionString)
              .UseLazyLoadingProxies())
    .AddDefaultIdentity<ApplicationUser>()
    .AddEntityFrameworkStores<ApplicationDbContext>();

Additional resources

The following example demonstrates calling UseLazyLoadingProxies  in Startup.ConfigureServices :

Refer to the preceding examples for guidance on adding navigation properties to the entity types.

Scaffold Identity in ASP.NET Core projects



Community OSS authentication options for ASP.NET
Core
9/22/2020 • 2 minutes to read • Edit Online

OSS authentication providers

N A M EN A M E DESC RIP T IO NDESC RIP T IO N

AspNet.Security.OpenIdConnect.Server (ASOS) ASOS is a low-level, protocol-first OpenID Connect server
framework for ASP.NET Core and OWIN/Katana.

Gluu Server Enterprise ready, open source software for identity, access
management (IAM), and single sign-on (SSO). For more
information, see the Gluu Product Documentation.

IdentityServer IdentityServer is an OpenID Connect and OAuth 2.0
framework for ASP.NET Core, officially certified by the OpenID
Foundation and under governance of the .NET Foundation.
For more information, see Welcome to IdentityServer4
(Documentation).

OpenIddict OpenIddict is an easy-to-use OpenID Connect server for
ASP.NET Core.

This page contains community-provided, open source authentication options for ASP.NET Core. This page is

periodically updated as new providers become available.

The list below is sorted alphabetically.

To add a provider, edit this page.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/community.md
https://github.com/aspnet-contrib/AspNet.Security.OpenIdConnect.Server
https://gluu.org/
https://gluu.org/docs/
https://identityserver.io/
https://identityserver4.readthedocs.io/en/latest/
https://github.com/openiddict/openiddict-core
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faspnet%2FDocs%2Fedit%2Fmaster%2Faspnetcore%2Fsecurity%2Fauthentication%2Fcommunity.md


Configure ASP.NET Core Identity
9/22/2020 • 4 minutes to read • Edit Online

Identity options

Claims IdentityClaims Identity

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

RoleClaimType Gets or sets the claim type used for a
role claim.

ClaimTypes.Role

SecurityStampClaimType Gets or sets the claim type used for the
security stamp claim.

AspNet.Identity.SecurityStamp

UserIdClaimType Gets or sets the claim type used for the
user identifier claim.

ClaimTypes.NameIdentifier

UserNameClaimType Gets or sets the claim type used for the
user name claim.

ClaimTypes.Name

LockoutLockout

ASP.NET Core Identity uses default values for settings such as password policy, lockout, and cookie configuration.

These settings can be overridden in the Startup  class.

The IdentityOptions class represents the options that can be used to configure the Identity system. 

IdentityOptions  must be set afterafter  calling AddIdentity  or AddDefaultIdentity .

IdentityOptions.ClaimsIdentity specifies the ClaimsIdentityOptions with the properties shown in the following

table.

Lockout is set in the PasswordSignInAsync method:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/identity-configuration.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityoptions.claimsidentity
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.claimsidentityoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.claimsidentityoptions.roleclaimtype
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimtypes.role
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.claimsidentityoptions.securitystampclaimtype
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.claimsidentityoptions.useridclaimtype
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimtypes.nameidentifier
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.claimsidentityoptions.usernameclaimtype
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimtypes.name
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1.passwordsigninasync#microsoft_aspnetcore_identity_signinmanager_1_passwordsigninasync_system_string_system_string_system_boolean_system_boolean_


public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
    returnUrl = returnUrl ?? Url.Content("~/");

    if (ModelState.IsValid)
    {
        var result = await _signInManager.PasswordSignInAsync(Input.Email, 
            Input.Password, Input.RememberMe, 
            lockoutOnFailure: false);
        if (result.Succeeded)
        {
            _logger.LogInformation("User logged in.");
            return LocalRedirect(returnUrl);
        }
        if (result.RequiresTwoFactor)
        {
            return RedirectToPage("./LoginWith2fa", new { ReturnUrl = returnUrl,
                Input.RememberMe });
        }
        if (result.IsLockedOut)
        {
            _logger.LogWarning("User account locked out.");
            return RedirectToPage("./Lockout");
        }
        else
        {
            ModelState.AddModelError(string.Empty, "Invalid login attempt.");
            return Page();
        }
    }

    // If we got this far, something failed, redisplay form
    return Page();
}

services.Configure<IdentityOptions>(options =>
{
    // Default Lockout settings.
    options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(5);
    options.Lockout.MaxFailedAccessAttempts = 5;
    options.Lockout.AllowedForNewUsers = true;
});

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

AllowedForNewUsers Determines if a new user can be locked
out.

true

DefaultLockoutTimeSpan The amount of time a user is locked out
when a lockout occurs.

5 minutes

The preceding code is based on the Login  Identity template.

Lockout options are set in StartUp.ConfigureServices :

The preceding code sets the IdentityOptions LockoutOptions with default values.

A successful authentication resets the failed access attempts count and resets the clock.

IdentityOptions.Lockout specifies the LockoutOptions with the properties shown in the table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityoptions.lockout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions.allowedfornewusers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions.defaultlockouttimespan


MaxFailedAccessAttempts The number of failed access attempts
until a user is locked out, if lockout is
enabled.

5

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

PasswordPassword

services.Configure<IdentityOptions>(options =>
{
    // Default Password settings.
    options.Password.RequireDigit = true;
    options.Password.RequireLowercase = true;
    options.Password.RequireNonAlphanumeric = true;
    options.Password.RequireUppercase = true;
    options.Password.RequiredLength = 6;
    options.Password.RequiredUniqueChars = 1;
});

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

RequireDigit Requires a number between 0-9 in the
password.

true

RequiredLength The minimum length of the password. 6

RequireLowercase Requires a lowercase character in the
password.

true

RequireNonAlphanumeric Requires a non-alphanumeric character
in the password.

true

RequiredUniqueChars Only applies to ASP.NET Core 2.0 or
later.

Requires the number of distinct
characters in the password.

1

RequireUppercase Requires an uppercase character in the
password.

true

Sign-inSign-in

By default, Identity requires that passwords contain an uppercase character, lowercase character, a digit, and a non-

alphanumeric character. Passwords must be at least six characters long.

Passwords are configured with:

PasswordOptions in Startup.ConfigureServices .

[StringLength]  attributes of Password  properties if Identity is scaffolded into the app. InputModel  Password

properties are found in the following files:

Areas/Identity/Pages/Account/Register.cshtml.cs

Areas/Identity/Pages/Account/ResetPassword.cshtml.cs

IdentityOptions.Password specifies the PasswordOptions with the properties shown in the table.

The following code sets SignIn  settings (to default values):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions.maxfailedaccessattempts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.stringlengthattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityoptions.password
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requiredigit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requiredlength
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requirelowercase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requirenonalphanumeric
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requireduniquechars
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions.requireuppercase


services.Configure<IdentityOptions>(options =>
{
    // Default SignIn settings.
    options.SignIn.RequireConfirmedEmail = false;
    options.SignIn.RequireConfirmedPhoneNumber = false;
});

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

RequireConfirmedEmail Requires a confirmed email to sign in. false

RequireConfirmedPhoneNumber Requires a confirmed phone number to
sign in.

false

TokensTokens

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N

AuthenticatorTokenProvider Gets or sets the AuthenticatorTokenProvider  used to

validate two-factor sign-ins with an authenticator.

ChangeEmailTokenProvider Gets or sets the ChangeEmailTokenProvider  used to

generate tokens used in email change confirmation emails.

ChangePhoneNumberTokenProvider Gets or sets the ChangePhoneNumberTokenProvider  used to

generate tokens used when changing phone numbers.

EmailConfirmationTokenProvider Gets or sets the token provider used to generate tokens used
in account confirmation emails.

PasswordResetTokenProvider Gets or sets the IUserTwoFactorTokenProvider<TUser> used
to generate tokens used in password reset emails.

ProviderMap Used to construct a User Token Provider with the key used as
the provider's name.

UserUser

services.Configure<IdentityOptions>(options =>
{
    // Default User settings.
    options.User.AllowedUserNameCharacters =
            "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-._@+";
    options.User.RequireUniqueEmail = false;

});

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

IdentityOptions.SignIn specifies the SignInOptions with the properties shown in the table.

IdentityOptions.Tokens specifies the TokenOptions with the properties shown in the table.

IdentityOptions.User specifies the UserOptions with the properties shown in the table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityoptions.signin
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinoptions.requireconfirmedemail
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinoptions.requireconfirmedphonenumber
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityoptions.tokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.tokenoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.authenticatortokenprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.changeemailtokenprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.changephonenumbertokenprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.emailconfirmationtokenprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.passwordresettokenprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iusertwofactortokenprovider-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.tokenoptions.providermap
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.tokenproviderdescriptor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityoptions.user
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.useroptions


AllowedUserNameCharacters Allowed characters in the username. abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
-._@+

RequireUniqueEmail Requires each user to have a unique
email.

false

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N DEFA ULTDEFA ULT

Cookie settingsCookie settings

services.ConfigureApplicationCookie(options =>
{
    options.AccessDeniedPath = "/Identity/Account/AccessDenied";
    options.Cookie.Name = "YourAppCookieName";
    options.Cookie.HttpOnly = true;
    options.ExpireTimeSpan = TimeSpan.FromMinutes(60);
    options.LoginPath = "/Identity/Account/Login";
    // ReturnUrlParameter requires 
    //using Microsoft.AspNetCore.Authentication.Cookies;
    options.ReturnUrlParameter = CookieAuthenticationDefaults.ReturnUrlParameter;
    options.SlidingExpiration = true;
});

Password Hasher options

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

CompatibilityMode The compatibility mode used when hashing new passwords.
Defaults to IdentityV3. The first byte of a hashed password,
called a format marker, specifies the version of the hashing
algorithm used to hash the password. When verifying a
password against a hash, the VerifyHashedPassword method
selects the correct algorithm based on the first byte. A client is
able to authenticate regardless of which version of the
algorithm was used to hash the password. Setting the
compatibility mode affects the hashing of new passwords.

IterationCount The number of iterations used when hashing passwords using
PBKDF2. This value is only used when the CompatibilityMode
is set to IdentityV3. The value must be a positive integer and
defaults to 10000 .

Configure the app's cookie in Startup.ConfigureServices . ConfigureApplicationCookie must be called afterafter  calling 

AddIdentity  or AddDefaultIdentity .

For more information, see CookieAuthenticationOptions.

PasswordHasherOptions gets and sets options for password hashing.

In the following example, the IterationCount is set to 12000  in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.useroptions.allowedusernamecharacters
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.useroptions.requireuniqueemail
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.configureapplicationcookie#microsoft_extensions_dependencyinjection_identityservicecollectionextensions_configureapplicationcookie_microsoft_extensions_dependencyinjection_iservicecollection_system_action_microsoft_aspnetcore_authentication_cookies_cookieauthenticationoptions__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordhasheroptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordhasheroptions.compatibilitymode#microsoft_aspnetcore_identity_passwordhasheroptions_compatibilitymode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordhashercompatibilitymode#microsoft_aspnetcore_identity_passwordhashercompatibilitymode_identityv3
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordhasher-1.verifyhashedpassword
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordhasheroptions.iterationcount#microsoft_aspnetcore_identity_passwordhasheroptions_iterationcount
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordhasheroptions.compatibilitymode#microsoft_aspnetcore_identity_passwordhasheroptions_compatibilitymode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordhashercompatibilitymode#microsoft_aspnetcore_identity_passwordhashercompatibilitymode_identityv3
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordhasheroptions.iterationcount#microsoft_aspnetcore_identity_passwordhasheroptions_iterationcount


// using Microsoft.AspNetCore.Identity;

services.Configure<PasswordHasherOptions>(option =>
{
    option.IterationCount = 12000;
});

Globally require all users to be authenticated
For information on how to globally require all users to be authenticated, see Require authenticated users.



Configure Windows Authentication in ASP.NET
Core
9/22/2020 • 10 minutes to read • Edit Online

NOTENOTE

Proxy and load balancer scenarios

IIS/IIS Express

services.AddAuthentication(IISDefaults.AuthenticationScheme);

Launch settings (debugger)Launch settings (debugger)

By Scott Addie

Windows Authentication (also known as Negotiate, Kerberos, or NTLM authentication) can be configured

for ASP.NET Core apps hosted with IIS, Kestrel, or HTTP.sys.

Windows Authentication (also known as Negotiate, Kerberos, or NTLM authentication) can be configured

for ASP.NET Core apps hosted with IIS or HTTP.sys.

Windows Authentication relies on the operating system to authenticate users of ASP.NET Core apps. You

can use Windows Authentication when your server runs on a corporate network using Active Directory

domain identities or Windows accounts to identify users. Windows Authentication is best suited to

intranet environments where users, client apps, and web servers belong to the same Windows domain.

Windows Authentication isn't supported with HTTP/2. Authentication challenges can be sent on HTTP/2 responses,

but the client must downgrade to HTTP/1.1 before authenticating.

Windows Authentication is a stateful scenario primarily used in an intranet, where a proxy or load

balancer doesn't usually handle traffic between clients and servers. If a proxy or load balancer is used,

Windows Authentication only works if the proxy or load balancer :

Handles the authentication.

Passes the user authentication information to the app (for example, in a request header), which acts on

the authentication information.

An alternative to Windows Authentication in environments where proxies and load balancers are used is

Active Directory Federated Services (ADFS) with OpenID Connect (OIDC).

Add authentication services by invoking AddAuthentication (Microsoft.AspNetCore.Server.IISIntegration

namespace) in Startup.ConfigureServices :

Configuration for launch settings only affects the Properties/launchSettings.json file for IIS Express and

doesn't configure IIS for Windows Authentication. Server configuration is explained in the IIS section.

The Web ApplicationWeb Application template available via Visual Studio or the .NET Core CLI can be configured to

support Windows Authentication, which updates the Properties/launchSettings.json file automatically.

Visual Studio

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/windowsauth.md
https://twitter.com/Scott_Addie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.iisintegration


  

"iisSettings": {
    "windowsAuthentication": true,
    "anonymousAuthentication": false,
    "iisExpress": {
        "applicationUrl": "http://localhost:52171/",
        "sslPort": 44308
    }
}

I ISIIS

.NET Core CLI

New projectNew project

1. Create a new project.

2. Select ASP.NET Core Web ApplicationASP.NET Core Web Application. Select NextNext.

3. Provide a name in the Project nameProject name field. Confirm the LocationLocation entry is correct or provide a location

for the project. Select CreateCreate.

4. Select ChangeChange under AuthenticationAuthentication.

5. In the Change AuthenticationChange Authentication window, select Windows AuthenticationWindows Authentication. Select OKOK.

6. Select Web ApplicationWeb Application.

7. Select CreateCreate.

Run the app. The username appears in the rendered app's user interface.

Existing projectExisting project

The project's properties enable Windows Authentication and disable Anonymous Authentication:

1. Right-click the project in Solution ExplorerSolution Explorer  and select Proper tiesProper ties .

2. Select the DebugDebug tab.

3. Clear the check box for Enable Anonymous AuthenticationEnable Anonymous Authentication.

4. Select the check box for Enable Windows AuthenticationEnable Windows Authentication.

5. Save and close the property page.

Alternatively, the properties can be configured in the iisSettings  node of the launchSettings.json file:

When modifying an existing project, confirm that the project file includes a package reference for the

Microsoft.AspNetCore.App metapackage oror  the Microsoft.AspNetCore.Authentication NuGet package.

IIS uses the ASP.NET Core Module to host ASP.NET Core apps. Windows Authentication is configured for IIS

via the web.config file. The following sections show how to:

Provide a local web.config file that activates Windows Authentication on the server when the app is

deployed.

Use the IIS Manager to configure the web.config file of an ASP.NET Core app that has already been

deployed to the server.

If you haven't already done so, enable IIS to host ASP.NET Core apps. For more information, see Host

ASP.NET Core on Windows with IIS.

Enable the IIS Role Service for Windows Authentication. For more information, see Enable Windows

Authentication in IIS Role Services (see Step 2).

IIS Integration Middleware is configured to automatically authenticate requests by default. For more

information, see Host ASP.NET Core on Windows with IIS: IIS options (AutomaticAuthentication).

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication/


The ASP.NET Core Module is configured to forward the Windows Authentication token to the app by

default. For more information, see ASP.NET Core Module configuration reference: Attributes of the

aspNetCore element.

Use eithereither  of the following approaches:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <location path="." inheritInChildApplications="false">
    <system.webServer>
      <security>
        <authentication>
          <anonymousAuthentication enabled="false" />
          <windowsAuthentication enabled="true" />
        </authentication>
      </security>
    </system.webServer>
  </location>
</configuration>

<system.webServer>
  <security>
    <authentication>
      <anonymousAuthentication enabled="false" />
      <windowsAuthentication enabled="true" />
    </authentication>
  </security>
</system.webServer>

Before publishing and deploying the project,Before publishing and deploying the project, add the following web.config file to the project

root:

When the project is published by the .NET Core SDK (without the <IsTransformWebConfigDisabled>

property set to true  in the project file), the published web.config file includes the 

<location><system.webServer><security><authentication>  section. For more information on the 

<IsTransformWebConfigDisabled>  property, see Host ASP.NET Core on Windows with IIS.

After publishing and deploying the project,After publishing and deploying the project, perform server-side configuration with the IIS

Manager :

1. In IIS Manager, select the IIS site under the S itesSites  node of the ConnectionsConnections  sidebar.

2. Double-click AuthenticationAuthentication in the IISIIS  area.

3. Select Anonymous AuthenticationAnonymous Authentication. Select DisableDisable in the ActionsActions  sidebar.

4. Select Windows AuthenticationWindows Authentication. Select EnableEnable in the ActionsActions  sidebar.

When these actions are taken, IIS Manager modifies the app's web.config file. A 

<system.webServer><security><authentication>  node is added with updated settings for 

anonymousAuthentication  and windowsAuthentication :

The <system.webServer>  section added to the web.config file by IIS Manager is outside of the app's 

<location>  section added by the .NET Core SDK when the app is published. Because the section is

added outside of the <location>  node, the settings are inherited by any sub-apps to the current

app. To prevent inheritance, move the added <security>  section inside of the 

<location><system.webServer>  section that the .NET Core SDK provided.

When IIS Manager is used to add the IIS configuration, it only affects the app's web.config file on

the server. A subsequent deployment of the app may overwrite the settings on the server if the

server's copy of web.config is replaced by the project's web.config file. Use eithereither  of the following



Kestrel

WARNINGWARNING

NOTENOTE

// using Microsoft.AspNetCore.Authentication.Negotiate;
// using Microsoft.Extensions.DependencyInjection;

services.AddAuthentication(NegotiateDefaults.AuthenticationScheme)
   .AddNegotiate();

app.UseAuthentication();

Windows environment configurationWindows environment configuration

Linux and macOS environment configurationLinux and macOS environment configuration

approaches to manage the settings:

Use IIS Manager to reset the settings in the web.config file after the file is overwritten on

deployment.

Add a web.config file to the app locally with the settings.

The Microsoft.AspNetCore.Authentication.Negotiate NuGet package can be used with Kestrel to support

Windows Authentication using Negotiate and Kerberos on Windows, Linux, and macOS.

Credentials can be persisted across requests on a connection. Negotiate authentication must not be used with

proxies unless the proxy maintains a 1:1 connection affinity (a persistent connection) with Kestrel.

The Negotiate handler detects if the underlying server supports Windows Authentication natively and if it's

enabled. If the server supports Windows Authentication but it's disabled, an error is thrown asking you to enable

the server implementation. When Windows Authentication is enabled in the server, the Negotiate handler

transparently forwards to it.

Add authentication services by invoking AddAuthentication and AddNegotiate in 

Startup.ConfigureServices :

Add Authentication Middleware by calling UseAuthentication in Startup.Configure :

For more information on middleware, see ASP.NET Core Middleware.

Anonymous requests are allowed. Use ASP.NET Core Authorization to challenge anonymous requests for

authentication.

The Microsoft.AspNetCore.Authentication.Negotiate component performs User Mode authentication.

Service Principal Names (SPNs) must be added to the user account running the service, not the machine

account. Execute setspn -S HTTP/myservername.mydomain.com myuser  in an administrative command shell.

Instructions for joining a Linux or macOS machine to a Windows domain are available in the Connect

Azure Data Studio to your SQL Server using Windows authentication - Kerberos article. The instructions

create a machine account for the Linux machine on the domain. SPNs must be added to that machine

account.

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Negotiate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.negotiateextensions.addnegotiate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Negotiate
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/sql/azure-data-studio/enable-kerberos?view=sql-server-2017#join-your-os-to-the-active-directory-domain-controller


        

NOTENOTE

NOTENOTE

HTTP.sys

services.AddAuthentication(HttpSysDefaults.AuthenticationScheme);

When following the guidance in the Connect Azure Data Studio to your SQL Server using Windows authentication

- Kerberos article, replace python-software-properties  with python3-software-properties  if needed.

Once the Linux or macOS machine is joined to the domain, additional steps are required to provide a

keytab file with the SPNs:

On the domain controller, add new web service SPNs to the machine account:

Use ktpass to generate a keytab file:

Copy the keytab file to the Linux or macOS machine.

Select the keytab file via an environment variable: export KRB5_KTNAME=/tmp/mymachine.HTTP.keytab

Invoke klist  to show the SPNs currently available for use.

setspn -S HTTP/mywebservice.mydomain.com mymachine

setspn -S HTTP/mywebservice@MYDOMAIN.COM mymachine

ktpass -princ HTTP/mywebservice.mydomain.com@MYDOMAIN.COM -pass myKeyTabFilePassword -mapuser
MYDOMAIN\mymachine$ -pType KRB5_NT_PRINCIPAL -out c:\temp\mymachine.HTTP.keytab -crypto
AES256-SHA1

Some fields must be specified in uppercase as indicated.

A keytab file contains domain access credentials and must be protected accordingly.

HTTP.sys supports Kernel Mode Windows Authentication using Negotiate, NTLM, or Basic authentication.

Add authentication services by invoking AddAuthentication (Microsoft.AspNetCore.Server.HttpSys

namespace) in Startup.ConfigureServices :

Configure the app's web host to use HTTP.sys with Windows Authentication (Program.cs). UseHttpSys is in

the Microsoft.AspNetCore.Server.HttpSys namespace.

https://docs.microsoft.com/en-us/sql/azure-data-studio/enable-kerberos?view=sql-server-2017#join-your-os-to-the-active-directory-domain-controller
https://docs.microsoft.com/en-us/archive/blogs/pie/all-you-need-to-know-about-keytab-files
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ktpass
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderhttpsysextensions.usehttpsys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.httpsys


public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>()
                    .UseHttpSys(options =>
                    {
                        options.Authentication.Schemes = 
                            AuthenticationSchemes.NTLM | 
                            AuthenticationSchemes.Negotiate;
                        options.Authentication.AllowAnonymous = false;
                    });
            });
}

public class Program
{
    public static void Main(string[] args) => 
        BuildWebHost(args).Run();

    public static IWebHost BuildWebHost(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .UseStartup<Startup>()
            .UseHttpSys(options =>
            {
                options.Authentication.Schemes = 
                    AuthenticationSchemes.NTLM | 
                    AuthenticationSchemes.Negotiate;
                options.Authentication.AllowAnonymous = false;
            })
            .Build();
}

NOTENOTE

NOTENOTE

Authorize users

HTTP.sys delegates to Kernel Mode authentication with the Kerberos authentication protocol. User Mode

authentication isn't supported with Kerberos and HTTP.sys. The machine account must be used to decrypt the

Kerberos token/ticket that's obtained from Active Directory and forwarded by the client to the server to

authenticate the user. Register the Service Principal Name (SPN) for the host, not the user of the app.

HTTP.sys isn't supported on Nano Server version 1709 or later. To use Windows Authentication and HTTP.sys with

Nano Server, use a Server Core (microsoft/windowsservercore) container. For more information on Server Core, see

What is the Server Core installation option in Windows Server?.

The configuration state of anonymous access determines the way in which the [Authorize]  and 

[AllowAnonymous]  attributes are used in the app. The following two sections explain how to handle the

disallowed and allowed configuration states of anonymous access.

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://hub.docker.com/r/microsoft/windowsservercore/
https://docs.microsoft.com/en-us/windows-server/administration/server-core/what-is-server-core


Disallow anonymous accessDisallow anonymous access

Allow anonymous accessAllow anonymous access

NOTENOTE

Impersonation

app.Run(async (context) =>
{
    try
    {
        var user = (WindowsIdentity)context.User.Identity;

        await context.Response
            .WriteAsync($"User: {user.Name}\tState: {user.ImpersonationLevel}\n");

        WindowsIdentity.RunImpersonated(user.AccessToken, () =>
        {
            var impersonatedUser = WindowsIdentity.GetCurrent();
            var message =
                $"User: {impersonatedUser.Name}\t" +
                $"State: {impersonatedUser.ImpersonationLevel}";

            var bytes = Encoding.UTF8.GetBytes(message);
            context.Response.Body.Write(bytes, 0, bytes.Length);
        });
    }
    catch (Exception e)
    {
        await context.Response.WriteAsync(e.ToString());
    }
});

Claims transformations

When Windows Authentication is enabled and anonymous access is disabled, the [Authorize]  and 

[AllowAnonymous]  attributes have no effect. If an IIS site is configured to disallow anonymous access, the

request never reaches the app. For this reason, the [AllowAnonymous]  attribute isn't applicable.

When both Windows Authentication and anonymous access are enabled, use the [Authorize]  and 

[AllowAnonymous]  attributes. The [Authorize]  attribute allows you to secure endpoints of the app which

require authentication. The [AllowAnonymous]  attribute overrides the [Authorize]  attribute in apps that

allow anonymous access. For attribute usage details, see Simple authorization in ASP.NET Core.

By default, users who lack authorization to access a page are presented with an empty HTTP 403 response. The

StatusCodePages Middleware can be configured to provide users with a better "Access Denied" experience.

ASP.NET Core doesn't implement impersonation. Apps run with the app's identity for all requests, using

app pool or process identity. If the app should perform an action on behalf of a user, use

WindowsIdentity.RunImpersonated in a terminal inline middleware in Startup.Configure . Run a single

action in this context and then close the context.

RunImpersonated  doesn't support asynchronous operations and shouldn't be used for complex scenarios.

For example, wrapping entire requests or middleware chains isn't supported or recommended.

While the Microsoft.AspNetCore.Authentication.Negotiate package enables authentication on Windows,

Linux, and macOS, impersonation is only supported on Windows.

https://docs.microsoft.com/en-us/dotnet/api/system.security.principal.windowsidentity.runimpersonated
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Negotiate


Additional resources

When hosting with IIS, AuthenticateAsync isn't called internally to initialize a user. Therefore, an

IClaimsTransformation implementation used to transform claims after every authentication isn't activated

by default. For more information and a code example that activates claims transformations, see ASP.NET

Core Module.

When hosting with IIS in-process mode, AuthenticateAsync isn't called internally to initialize a user.

Therefore, an IClaimsTransformation implementation used to transform claims after every authentication

isn't activated by default. For more information and a code example that activates claims transformations

when hosting in-process, see ASP.NET Core Module.

dotnet publish

Host ASP.NET Core on Windows with IIS

ASP.NET Core Module

Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationservice.authenticateasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iclaimstransformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationservice.authenticateasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.iclaimstransformation
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish


Custom storage providers for ASP.NET Core Identity
9/22/2020 • 9 minutes to read • Edit Online

Introduction

dotnet new mvc -au Individual

The ASP.NET Core Identity architecture

By Steve Smith

ASP.NET Core Identity is an extensible system which enables you to create a custom storage provider and connect it

to your app. This topic describes how to create a customized storage provider for ASP.NET Core Identity. It covers

the important concepts for creating your own storage provider, but isn't a step-by-step walkthrough.

View or download sample from GitHub.

By default, the ASP.NET Core Identity system stores user information in a SQL Server database using Entity

Framework Core. For many apps, this approach works well. However, you may prefer to use a different persistence

mechanism or data schema. For example:

You use Azure Table Storage or another data store.

Your database tables have a different structure.

You may wish to use a different data access approach, such as Dapper.

In each of these cases, you can write a customized provider for your storage mechanism and plug that provider into

your app.

ASP.NET Core Identity is included in project templates in Visual Studio with the "Individual User Accounts" option.

When using the .NET Core CLI, add -au Individual :

ASP.NET Core Identity consists of classes called managers and stores. Managers are high-level classes which an app

developer uses to perform operations, such as creating an Identity user. Stores are lower-level classes that specify

how entities, such as users and roles, are persisted. Stores follow the repository pattern and are closely coupled

with the persistence mechanism. Managers are decoupled from stores, which means you can replace the

persistence mechanism without changing your application code (except for configuration).

The following diagram shows how a web app interacts with the managers, while stores interact with the data access

layer.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/identity-custom-storage-providers.md
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authentication/identity-custom-storage-providers/sample/CustomIdentityProviderSample
https://docs.microsoft.com/en-us/azure/storage/
https://github.com/StackExchange/Dapper


ASP.NET Core Identity stores data types

UsersUsers

User ClaimsUser Claims

User LoginsUser Logins

RolesRoles

To create a custom storage provider, create the data source, the data access layer, and the store classes that interact

with this data access layer (the green and grey boxes in the diagram above). You don't need to customize the

managers or your app code that interacts with them (the blue boxes above).

When creating a new instance of UserManager  or RoleManager  you provide the type of the user class and pass an

instance of the store class as an argument. This approach enables you to plug your customized classes into ASP.NET

Core.

Reconfigure app to use new storage provider shows how to instantiate UserManager  and RoleManager  with a

customized store.

ASP.NET Core Identity data types are detailed in the following sections:

Registered users of your web site. The IdentityUser type may be extended or used as an example for your own

custom type. You don't need to inherit from a particular type to implement your own custom identity storage

solution.

A set of statements (or Claims) about the user that represent the user's identity. Can enable greater expression of

the user's identity than can be achieved through roles.

Information about the external authentication provider (like Facebook or a Microsoft account) to use when logging

in a user. Example

https://github.com/aspnet/identity
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnet.identity.corecompat.identityuser
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claim
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnet.identity.corecompat.identityuserlogin


The data access layer

Context classContext class

User StorageUser Storage

Role StorageRole Storage

UserClaims StorageUserClaims Storage

UserLogins StorageUserLogins Storage

UserRole StorageUserRole Storage

public async Task<IdentityResult> CreateAsync(ApplicationUser user, 
    CancellationToken cancellationToken = default(CancellationToken))
{
    cancellationToken.ThrowIfCancellationRequested();
    if (user == null) throw new ArgumentNullException(nameof(user));

    return await _usersTable.CreateAsync(user);
}

Customize the user class

Authorization groups for your site. Includes the role Id and role name (like "Admin" or "Employee"). Example

This topic assumes you are familiar with the persistence mechanism that you are going to use and how to create

entities for that mechanism. This topic doesn't provide details about how to create the repositories or data access

classes; it provides some suggestions about design decisions when working with ASP.NET Core Identity.

You have a lot of freedom when designing the data access layer for a customized store provider. You only need to

create persistence mechanisms for features that you intend to use in your app. For example, if you are not using

roles in your app, you don't need to create storage for roles or user role associations. Your technology and existing

infrastructure may require a structure that's very different from the default implementation of ASP.NET Core

Identity. In your data access layer, you provide the logic to work with the structure of your storage implementation.

The data access layer provides the logic to save the data from ASP.NET Core Identity to a data source. The data

access layer for your customized storage provider might include the following classes to store user and role

information.

Encapsulates the information to connect to your persistence mechanism and execute queries. Several data classes

require an instance of this class, typically provided through dependency injection. Example.

Stores and retrieves user information (such as user name and password hash). Example

Stores and retrieves role information (such as the role name). Example

Stores and retrieves user claim information (such as the claim type and value). Example

Stores and retrieves user login information (such as an external authentication provider). Example

Stores and retrieves which roles are assigned to which users. Example

TIP:TIP: Only implement the classes you intend to use in your app.

In the data access classes, provide code to perform data operations for your persistence mechanism. For example,

within a custom provider, you might have the following code to create a new user in the store class:

The implementation logic for creating the user is in the _usersTable.CreateAsync  method, shown below.

When implementing a storage provider, create a user class which is equivalent to the IdentityUser class.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnet.identity.corecompat.identityrole
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnet.identity.corecompat.identitydbcontext-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnet.identity.corecompat.userstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.rolestore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnet.identity.corecompat.userstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnet.identity.corecompat.userstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnet.identity.corecompat.userstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnet.identity.corecompat.identityuser


Customize the user store

Optional interfacesOptional interfaces

public async Task<IdentityResult> CreateAsync(ApplicationUser user)
{
    string sql = "INSERT INTO dbo.CustomUser " +
        "VALUES (@id, @Email, @EmailConfirmed, @PasswordHash, @UserName)";

    int rows = await _connection.ExecuteAsync(sql, new { user.Id, user.Email, user.EmailConfirmed, 
user.PasswordHash, user.UserName });

    if(rows > 0)
    {
        return IdentityResult.Success;
    }
    return IdentityResult.Failed(new IdentityError { Description = $"Could not insert user {user.Email}." });
}

Interfaces to implement when customizing user storeInterfaces to implement when customizing user store

At a minimum, your user class must include an Id  and a UserName  property.

The IdentityUser  class defines the properties that the UserManager  calls when performing requested operations.

The default type of the Id  property is a string, but you can inherit from 

IdentityUser<TKey, TUserClaim, TUserRole, TUserLogin, TUserToken>  and specify a different type. The framework

expects the storage implementation to handle data type conversions.

Create a UserStore  class that provides the methods for all data operations on the user. This class is equivalent to

the UserStore<TUser> class. In your UserStore  class, implement IUserStore<TUser>  and the optional interfaces

required. You select which optional interfaces to implement based on the functionality provided in your app.

IUserRoleStore

IUserClaimStore

IUserPasswordStore

IUserSecurityStampStore

IUserEmailStore

IUserPhoneNumberStore

IQueryableUserStore

IUserLoginStore

IUserTwoFactorStore

IUserLockoutStore

The optional interfaces inherit from IUserStore<TUser> . You can see a partially implemented sample user store in

the sample app.

Within the UserStore  class, you use the data access classes that you created to perform operations. These are

passed in using dependency injection. For example, in the SQL Server with Dapper implementation, the UserStore

class has the CreateAsync  method which uses an instance of DapperUsersTable  to insert a new record:

IUserStoreIUserStore

The IUserStore<TUser> interface is the only interface you must implement in the user store. It defines methods

for creating, updating, deleting, and retrieving users.

IUserClaimStoreIUserClaimStore

The IUserClaimStore<TUser> interface defines the methods you implement to enable user claims. It contains

methods for adding, removing and retrieving user claims.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.userstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserrolestore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserclaimstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserpasswordstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iusersecuritystampstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuseremailstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserphonenumberstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iqueryableuserstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserloginstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iusertwofactorstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserlockoutstore-1
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/identity-custom-storage-providers/sample/CustomIdentityProviderSample/CustomProvider/CustomUserStore.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserclaimstore-1


public class UserStore : IUserStore<IdentityUser>,
                         IUserClaimStore<IdentityUser>,
                         IUserLoginStore<IdentityUser>,
                         IUserRoleStore<IdentityUser>,
                         IUserPasswordStore<IdentityUser>,
                         IUserSecurityStampStore<IdentityUser>
{
    // interface implementations not shown
}

IdentityUserClaim, IdentityUserLogin, and IdentityUserRoleIdentityUserClaim, IdentityUserLogin, and IdentityUserRole

IUserLoginStoreIUserLoginStore

The IUserLoginStore<TUser> defines the methods you implement to enable external authentication providers. It

contains methods for adding, removing and retrieving user logins, and a method for retrieving a user based on

the login information.

IUserRoleStoreIUserRoleStore

The IUserRoleStore<TUser> interface defines the methods you implement to map a user to a role. It contains

methods to add, remove, and retrieve a user's roles, and a method to check if a user is assigned to a role.

IUserPasswordStoreIUserPasswordStore

The IUserPasswordStore<TUser> interface defines the methods you implement to persist hashed passwords. It

contains methods for getting and setting the hashed password, and a method that indicates whether the user

has set a password.

IUserSecurityStampStoreIUserSecurityStampStore

The IUserSecurityStampStore<TUser> interface defines the methods you implement to use a security stamp for

indicating whether the user's account information has changed. This stamp is updated when a user changes the

password, or adds or removes logins. It contains methods for getting and setting the security stamp.

IUserTwoFactorStoreIUserTwoFactorStore

The IUserTwoFactorStore<TUser> interface defines the methods you implement to support two factor

authentication. It contains methods for getting and setting whether two factor authentication is enabled for a

user.

IUserPhoneNumberStoreIUserPhoneNumberStore

The IUserPhoneNumberStore<TUser> interface defines the methods you implement to store user phone

numbers. It contains methods for getting and setting the phone number and whether the phone number is

confirmed.

IUserEmailStoreIUserEmailStore

The IUserEmailStore<TUser> interface defines the methods you implement to store user email addresses. It

contains methods for getting and setting the email address and whether the email is confirmed.

IUserLockoutStoreIUserLockoutStore

The IUserLockoutStore<TUser> interface defines the methods you implement to store information about

locking an account. It contains methods for tracking failed access attempts and lockouts.

IQuer yableUserStoreIQuer yableUserStore

The IQueryableUserStore<TUser> interface defines the members you implement to provide a queryable user

store.

You implement only the interfaces that are needed in your app. For example:

The Microsoft.AspNet.Identity.EntityFramework  namespace contains implementations of the IdentityUserClaim,

IdentityUserLogin, and IdentityUserRole classes. If you are using these features, you may want to create your own

versions of these classes and define the properties for your app. However, sometimes it's more efficient to not load

these entities into memory when performing basic operations (such as adding or removing a user's claim). Instead,

the backend store classes can execute these operations directly on the data source. For example, the 

UserStore.GetClaimsAsync  method can call the userClaimTable.FindByUserId(user.Id)  method to execute a query

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserloginstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserrolestore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserpasswordstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iusersecuritystampstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iusertwofactorstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserphonenumberstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuseremailstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iuserlockoutstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.iqueryableuserstore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identityuserclaim-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnet.identity.corecompat.identityuserlogin
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.identityuserrole-1


 

Customize the role class

using System;

namespace CustomIdentityProviderSample.CustomProvider
{
    public class ApplicationRole
    {
        public Guid Id { get; set; } = Guid.NewGuid();
        public string Name { get; set; }
    }
}

Customize the role store

Reconfigure app to use a new storage provider

on that table directly and return a list of claims.

When implementing a role storage provider, you can create a custom role type. It need not implement a particular

interface, but it must have an Id  and typically it will have a Name  property.

The following is an example role class:

You can create a RoleStore  class that provides the methods for all data operations on roles. This class is equivalent

to the RoleStore<TRole> class. In the RoleStore  class, you implement the IRoleStore<TRole>  and optionally the 

IQueryableRoleStore<TRole>  interface.

IRoleStore<TRole>IRoleStore<TRole>

The IRoleStore<TRole> interface defines the methods to implement in the role store class. It contains methods

for creating, updating, deleting, and retrieving roles.

RoleStore<TRole>RoleStore<TRole>

To customize RoleStore , create a class that implements the IRoleStore<TRole>  interface.

Once you have implemented a storage provider, you configure your app to use it. If your app used the default

provider, replace it with your custom provider.

1. Remove the Microsoft.AspNetCore.EntityFramework.Identity  NuGet package.

2. If the storage provider resides in a separate project or package, add a reference to it.

3. Replace all references to Microsoft.AspNetCore.EntityFramework.Identity  with a using statement for the

namespace of your storage provider.

4. In the ConfigureServices  method, change the AddIdentity  method to use your custom types. You can create

your own extension methods for this purpose. See IdentityServiceCollectionExtensions for an example.

5. If you are using Roles, update the RoleManager  to use your RoleStore  class.

6. Update the connection string and credentials to your app's configuration.

Example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.entityframeworkcore.rolestore-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.irolestore-1
https://github.com/aspnet/Identity/blob/rel/1.1.0/src/Microsoft.AspNetCore.Identity/IdentityServiceCollectionExtensions.cs


public void ConfigureServices(IServiceCollection services)
{
    // Add identity types
    services.AddIdentity<ApplicationUser, ApplicationRole>()
        .AddDefaultTokenProviders();

    // Identity Services
    services.AddTransient<IUserStore<ApplicationUser>, CustomUserStore>();
    services.AddTransient<IRoleStore<ApplicationRole>, CustomRoleStore>();
    string connectionString = Configuration.GetConnectionString("DefaultConnection");
    services.AddTransient<SqlConnection>(e => new SqlConnection(connectionString));
    services.AddTransient<DapperUsersTable>();

    // additional configuration
}

References
Custom Storage Providers for ASP.NET 4.x Identity

ASP.NET Core Identity: This repository includes links to community maintained store providers.

https://docs.microsoft.com/en-us/aspnet/identity/overview/extensibility/overview-of-custom-storage-providers-for-aspnet-identity
https://github.com/dotnet/AspNetCore/tree/master/src/Identity


Facebook, Google, and external provider
authentication in ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

Create a New ASP.NET Core Project

Apply migrations

Forward request information with a proxy or load balancer

By Valeriy Novytskyy and Rick Anderson

This tutorial demonstrates how to build an ASP.NET Core 3.0 app that enables users to sign in using OAuth 2.0

with credentials from external authentication providers.

Facebook, Twitter, Google, and Microsoft providers are covered in the following sections and use the starter

project created in this article. Other providers are available in third-party packages such as

AspNet.Security.OAuth.Providers and AspNet.Security.OpenId.Providers.

Enabling users to sign in with their existing credentials:

Is convenient for the users.

Shifts many of the complexities of managing the sign-in process onto a third party.

For examples of how social logins can drive traffic and customer conversions, see case studies by Facebook and

Twitter.

Visual Studio

Visual Studio Code / Visual Studio for Mac

Create a new project.

Select ASP.NET Core Web ApplicationASP.NET Core Web Application and NextNext.

Provide a Project nameProject name and confirm or change the LocationLocation. Select CreateCreate.

Select the latest version of ASP.NET Core in the drop-down (ASP.NET Core {X .Y}ASP.NET Core {X .Y} ), and then select WebWeb

ApplicationApplication.

Under AuthenticationAuthentication, select ChangeChange and set the authentication to Individual User AccountsIndividual User Accounts . Select OKOK.

In the Create a new ASP.NET Core Web ApplicationCreate a new ASP.NET Core Web Application window, select CreateCreate.

Run the app and select the RegisterRegister  link.

Enter the email and password for the new account, and then select RegisterRegister .

Follow the instructions to apply migrations.

If the app is deployed behind a proxy server or load balancer, some of the original request information might be

forwarded to the app in request headers. This information usually includes the secure request scheme ( https ),

host, and client IP address. Apps don't automatically read these request headers to discover and use the original

request information.

The scheme is used in link generation that affects the authentication flow with external providers. Losing the

secure scheme ( https ) results in the app generating incorrect insecure redirect URLs.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/social/index.md
https://github.com/01binary
https://twitter.com/RickAndMSFT
https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers
https://github.com/aspnet-contrib/AspNet.Security.OpenId.Providers
https://www.facebook.com/unsupportedbrowser
https://dev.twitter.com/resources/case-studies


Use SecretManager to store tokens assigned by login providers

IMPORTANTIMPORTANT

Setup login providers required by your application

Multiple authentication providers

services.AddAuthentication()
    .AddMicrosoftAccount(microsoftOptions => { ... })
    .AddGoogle(googleOptions => { ... })
    .AddTwitter(twitterOptions => { ... })
    .AddFacebook(facebookOptions => { ... });

Optionally set password

Use Forwarded Headers Middleware to make the original request information available to the app for request

processing.

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

Social login providers assign Application IdApplication Id and Application SecretApplication Secret tokens during the registration process.

The exact token names vary by provider. These tokens represent the credentials your app uses to access their API.

The tokens constitute the "secrets" that can be linked to your app configuration with the help of Secret Manager.

Secret Manager is a more secure alternative to storing the tokens in a configuration file, such as appsettings.json.

Secret Manager is for development purposes only. You can store and protect Azure test and production secrets with the

Azure Key Vault configuration provider.

Follow the steps in Safe storage of app secrets in development in ASP.NET Core topic to store tokens assigned by

each login provider below.

Use the following topics to configure your application to use the respective providers:

Facebook instructions

Twitter instructions

Google instructions

Microsoft instructions

Other provider instructions

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

When you register with an external login provider, you don't have a password registered with the app. This

alleviates you from creating and remembering a password for the site, but it also makes you dependent on the

external login provider. If the external login provider is unavailable, you won't be able to sign in to the web site.

To create a password and sign in using your email that you set during the sign in process with external providers:

Select the Hello <email alias>Hello <email alias> link at the top-right corner to navigate to the ManageManage view.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication


Next steps

Select CreateCreate

Set a valid password and you can use this to sign in with your email.

See this GitHub issue for information on how to customize the login buttons.

This article introduced external authentication and explained the prerequisites required to add external logins

to your ASP.NET Core app.

Reference provider-specific pages to configure logins for the providers required by your app.

You may want to persist additional data about the user and their access and refresh tokens. For more

information, see Persist additional claims and tokens from external providers in ASP.NET Core.

https://github.com/dotnet/AspNetCore.Docs/issues/10563


Google external login setup in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

Create a Google API Console project and client ID

Store the Google client ID and secret

Configure Google authentication

By Valeriy Novytskyy and Rick Anderson

This tutorial shows you how to enable users to sign in with their Google account using the ASP.NET Core 3.0

project created on the previous page.

Install Microsoft.AspNetCore.Authentication.Google.

Navigate to Integrating Google Sign-In into your web app and select Configure a projectConfigure a project.

In the Configure your OAuth clientConfigure your OAuth client dialog, select Web ser verWeb ser ver .

In the Authorized redirect URIsAuthorized redirect URIs  text entry box, set the redirect URI. For example, 

https://localhost:44312/signin-google

Save the Client IDClient ID and Client SecretClient Secret.

When deploying the site, register the new public url from the Google ConsoleGoogle Console.

Store sensitive settings such as the Google client ID and secret values with Secret Manager. For this sample, use

the following steps:

dotnet user-secrets set "Authentication:Google:ClientId" "<client-id>"
dotnet user-secrets set "Authentication:Google:ClientSecret" "<client-secret>"

1. Initialize the project for secret storage per the instructions at Enable secret storage.

2. Store the sensitive settings in the local secret store with the secret keys Authentication:Google:ClientId

and Authentication:Google:ClientSecret :

The :  separator doesn't work with environment variable hierarchical keys on all platforms. __ , the double

underscore, is:

Supported by all platforms. For example, the :  separator is not supported by Bash, but __  is.

Automatically replaced by a :

You can manage your API credentials and usage in the API Console.

Add the Google service to Startup.ConfigureServices :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/social/google-logins.md
https://github.com/01binary
https://twitter.com/RickAndMSFT
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Google
https://developers.google.com/identity/sign-in/web/sign-in
https://linuxhint.com/bash-environment-variables/
https://console.developers.google.com/apis/dashboard


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(options =>
        options.SignIn.RequireConfirmedAccount = true)
            .AddEntityFrameworkStores<ApplicationDbContext>();
    services.AddRazorPages();

    services.AddAuthentication()
        .AddGoogle(options =>
        {
            IConfigurationSection googleAuthNSection =
                Configuration.GetSection("Authentication:Google");

            options.ClientId = googleAuthNSection["ClientId"];
            options.ClientSecret = googleAuthNSection["ClientSecret"];
        });
}

Sign in with Google

Forward request information with a proxy or load balancer

Multiple authentication providers

The call to AddIdentity configures the default scheme settings. The AddAuthentication(String) overload sets the

DefaultScheme property. The AddAuthentication(Action<AuthenticationOptions>) overload allows configuring

authentication options, which can be used to set up default authentication schemes for different purposes.

Subsequent calls to AddAuthentication  override previously configured AuthenticationOptions properties.

AuthenticationBuilder extension methods that register an authentication handler may only be called once per

authentication scheme. Overloads exist that allow configuring the scheme properties, scheme name, and display

name.

Run the app and click Log inLog in . An option to sign in with Google appears.

Click the GoogleGoogle button, which redirects to Google for authentication.

After entering your Google credentials, you are redirected back to the web site.

If the app is deployed behind a proxy server or load balancer, some of the original request information might be

forwarded to the app in request headers. This information usually includes the secure request scheme ( https ),

host, and client IP address. Apps don't automatically read these request headers to discover and use the original

request information.

The scheme is used in link generation that affects the authentication flow with external providers. Losing the

secure scheme ( https ) results in the app generating incorrect insecure redirect URLs.

Use Forwarded Headers Middleware to make the original request information available to the app for request

processing.

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.addidentity
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_action_microsoft_aspnetcore_authentication_authenticationoptions__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication


services.AddAuthentication()
    .AddMicrosoftAccount(microsoftOptions => { ... })
    .AddGoogle(googleOptions => { ... })
    .AddTwitter(twitterOptions => { ... })
    .AddFacebook(facebookOptions => { ... });

Change the default callback URI

Troubleshooting

Next steps

See the GoogleOptions API reference for more information on configuration options supported by Google

authentication. This can be used to request different information about the user.

The URI segment /signin-google  is set as the default callback of the Google authentication provider. You can

change the default callback URI while configuring the Google authentication middleware via the inherited

RemoteAuthenticationOptions.CallbackPath property of the GoogleOptions class.

If the sign-in doesn't work and you aren't getting any errors, switch to development mode to make the issue

easier to debug.

If Identity isn't configured by calling services.AddIdentity  in ConfigureServices , attempting to authenticate

results in ArgumentException: The 'SignInScheme' option must be provided. The project template used in this

tutorial ensures that this is done.

If the site database has not been created by applying the initial migration, you get A database operation failed

while processing the request error. Select Apply MigrationsApply Migrations  to create the database, and refresh the page to

continue past the error.

This article showed how you can authenticate with Google. You can follow a similar approach to authenticate

with other providers listed on the previous page.

Once you publish the app to Azure, reset the ClientSecret  in the Google API Console.

Set the Authentication:Google:ClientId  and Authentication:Google:ClientSecret  as application settings in the

Azure portal. The configuration system is set up to read keys from environment variables.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.google.googleoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.callbackpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.google.googleoptions


Facebook external login setup in ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

Create the app in Facebook

By Valeriy Novytskyy and Rick Anderson

This tutorial with code examples shows how to enable your users to sign in with their Facebook account using a

sample ASP.NET Core 3.0 project created on the previous page. We start by creating a Facebook App ID by

following the official steps.

Add the Microsoft.AspNetCore.Authentication.Facebook NuGet package to the project.

Navigate to the Facebook Developers app page and sign in. If you don't already have a Facebook account,

use the S ign up for FacebookSign up for Facebook link on the login page to create one. Once you have a Facebook account,

follow the instructions to register as a Facebook Developer.

From the My AppsMy Apps  menu select Create AppCreate App to create a new App ID.

Fill out the form and tap the Create App IDCreate App ID button.

On the new App card, select Add a ProductAdd a Product. On the Facebook LoginFacebook Login card, click Set UpSet Up

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/social/facebook-logins.md
https://github.com/01binary
https://twitter.com/RickAndMSFT
https://developers.facebook.com
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Facebook
https://developers.facebook.com/apps/


The Quickstar tQuickstar t wizard launches with Choose a PlatformChoose a Platform as the first page. Bypass the wizard for now by

clicking the FaceBook LoginFaceBook Login SettingsSettings  link in the menu on the lower left:

You are presented with the Client OAuth SettingsClient OAuth Settings  page:



NOTENOTE

Store the Facebook app ID and secret

Configure Facebook Authentication

services.AddAuthentication().AddFacebook(facebookOptions =>
{
    facebookOptions.AppId = Configuration["Authentication:Facebook:AppId"];
    facebookOptions.AppSecret = Configuration["Authentication:Facebook:AppSecret"];
});

Enter your development URI with /signin-facebook appended into the Valid OAuth Redirect URIsValid OAuth Redirect URIs  field

(for example: https://localhost:44320/signin-facebook ). The Facebook authentication configured later in

this tutorial will automatically handle requests at /signin-facebook route to implement the OAuth flow.

The URI /signin-facebook is set as the default callback of the Facebook authentication provider. You can change the default

callback URI while configuring the Facebook authentication middleware via the inherited

RemoteAuthenticationOptions.CallbackPath property of the FacebookOptions class.

Click Save ChangesSave Changes .

Click SettingsSettings  > BasicBasic link in the left navigation.

On this page, make a note of your App ID  and your App Secret . You will add both into your ASP.NET Core

application in the next section:

When deploying the site you need to revisit the Facebook LoginFacebook Login setup page and register a new public

URI.

Store sensitive settings such as the Facebook app ID and secret values with Secret Manager. For this sample, use

the following steps:

dotnet user-secrets set "Authentication:Facebook:AppId" "<app-id>"
dotnet user-secrets set "Authentication:Facebook:AppSecret" "<app-secret>"

1. Initialize the project for secret storage per the instructions at Enable secret storage.

2. Store the sensitive settings in the local secret store with the secret keys Authentication:Facebook:AppId  and 

Authentication:Facebook:AppSecret :

The :  separator doesn't work with environment variable hierarchical keys on all platforms. __ , the double

underscore, is:

Supported by all platforms. For example, the :  separator is not supported by Bash, but __  is.

Automatically replaced by a :

Add the Facebook service in the ConfigureServices  method in the Startup.cs file:

The AddAuthentication(String) overload sets the DefaultScheme property. The

AddAuthentication(Action<AuthenticationOptions>) overload allows configuring authentication options, which

can be used to set up default authentication schemes for different purposes. Subsequent calls to 

AddAuthentication  override previously configured AuthenticationOptions properties.

AuthenticationBuilder extension methods that register an authentication handler may only be called once per

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.callbackpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.facebook.facebookoptions
https://linuxhint.com/bash-environment-variables/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_action_microsoft_aspnetcore_authentication_authenticationoptions__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder


Sign in with Facebook

React to cancel authorize external sign-in

services.AddAuthentication().AddFacebook(options =>
{
    options.AppId = Configuration["Authentication:Facebook:AppId"];
    options.AppSecret = Configuration["Authentication:Facebook:AppSecret"];
    options.AccessDeniedPath = "/AccessDeniedPathInfo";
});

Test AccessDeniedPathTest AccessDeniedPath

Forward request information with a proxy or load balancer

authentication scheme. Overloads exist that allow configuring the scheme properties, scheme name, and display

name.

Run the app and select Log inLog in .

Under Use another ser vice to log in.Use another ser vice to log in., select Facebook.

You are redirected to FacebookFacebook for authentication.

Enter your Facebook credentials.

You are redirected back to your site where you can set your email.

You are now logged in using your Facebook credentials:

 

AccessDeniedPath can provide a redirect path to the user agent when the user doesn't approve the requested

authorization demand.

The following code sets the AccessDeniedPath  to "/AccessDeniedPathInfo" :

We recommend the AccessDeniedPath  page contain the following information:

Remote authentication was canceled.

This app requires authentication.

To try sign-in again, select the Login link.

Navigate to facebook.com

If you are signed in, you must sign out.

Run the app and select Facebook sign-in.

Select Not nowNot now . You are redirected to the specified AccessDeniedPath  page.

If the app is deployed behind a proxy server or load balancer, some of the original request information might be

forwarded to the app in request headers. This information usually includes the secure request scheme ( https ),

host, and client IP address. Apps don't automatically read these request headers to discover and use the original

request information.

The scheme is used in link generation that affects the authentication flow with external providers. Losing the

secure scheme ( https ) results in the app generating incorrect insecure redirect URLs.

Use Forwarded Headers Middleware to make the original request information available to the app for request

processing.

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.accessdeniedpath#microsoft_aspnetcore_authentication_remoteauthenticationoptions_accessdeniedpath
https://www.facebook.com/


Multiple authentication providers

services.AddAuthentication()
    .AddMicrosoftAccount(microsoftOptions => { ... })
    .AddGoogle(googleOptions => { ... })
    .AddTwitter(twitterOptions => { ... })
    .AddFacebook(facebookOptions => { ... });

Troubleshooting

Next steps

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

See the FacebookOptions API reference for more information on configuration options supported by Facebook

authentication. Configuration options can be used to:

Request different information about the user.

Add query string arguments to customize the login experience.

ASP.NET Core 2.x only:ASP.NET Core 2.x only: If Identity isn't configured by calling services.AddIdentity  in ConfigureServices ,

attempting to authenticate will result in ArgumentException: The 'SignInScheme' option must be provided. The

project template used in this tutorial ensures that this is done.

If the site database has not been created by applying the initial migration, you get A database operation failed

while processing the request error. Tap Apply MigrationsApply Migrations  to create the database and refresh to continue past

the error.

This article showed how you can authenticate with Facebook. You can follow a similar approach to

authenticate with other providers listed on the previous page.

Once you publish your web site to Azure web app, you should reset the AppSecret  in the Facebook

developer portal.

Set the Authentication:Facebook:AppId  and Authentication:Facebook:AppSecret  as application settings in

the Azure portal. The configuration system is set up to read keys from environment variables.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.facebookoptions


Microsoft Account external login setup with ASP.NET
Core
9/22/2020 • 4 minutes to read • Edit Online

Create the app in Microsoft Developer Portal

Create client secretCreate client secret

Store the Microsoft client ID and secret

By Valeriy Novytskyy and Rick Anderson

This sample shows you how to enable users to sign in with their work, school, or personal Microsoft account

using the ASP.NET Core 3.0 project created on the previous page.

Add the Microsoft.AspNetCore.Authentication.MicrosoftAccount NuGet package to the project.

Navigate to the Azure portal - App registrations page and create or sign into a Microsoft account:

If you don't have a Microsoft account, select Create oneCreate one. After signing in, you are redirected to the AppApp

registrationsregistrations  page:

Select New registrationNew registration

Enter a NameName.

Select an option for Suppor ted account typesSuppor ted account types .

Under Redirect URIRedirect URI, enter your development URL with /signin-microsoft  appended. For example, 

https://localhost:5001/signin-microsoft . The Microsoft authentication scheme configured later in this sample

will automatically handle requests at /signin-microsoft  route to implement the OAuth flow.

Select RegisterRegister

The MicrosoftAccount  package supports App Registrations created using "Accounts in any

organizational directory" or "Accounts in any organizational directory and Microsoft accounts" options

by default.

To use other options, set AuthorizationEndpoint  and TokenEndpoint  members of 

MicrosoftAccountOptions  used to initialize the Microsoft Account authentication to the URLs displayed

on EndpointsEndpoints  page of the App Registration after it is created (available by clicking Endpoints on the

Over viewOver view  page).

In the left pane, select Cer tificates & secretsCer tificates & secrets .

Under Client secretsClient secrets , select New client secretNew client secret

Add a description for the client secret.

Select the AddAdd button.

Under Client secretsClient secrets , copy the value of the client secret.

The URI segment /signin-microsoft  is set as the default callback of the Microsoft authentication provider. You can

change the default callback URI while configuring the Microsoft authentication middleware via the inherited

RemoteAuthenticationOptions.CallbackPath property of the MicrosoftAccountOptions class.

Store sensitive settings such as the Microsoft client ID and secret values with Secret Manager. For this sample, use

the following steps:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/social/microsoft-logins.md
https://github.com/01binary
https://twitter.com/RickAndMSFT
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.MicrosoftAccount/
https://go.microsoft.com/fwlink/?linkid=2083908
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.callbackpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.microsoftaccount.microsoftaccountoptions


Configure Microsoft Account Authentication

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(options => options.SignIn.RequireConfirmedAccount = true)
        .AddEntityFrameworkStores<ApplicationDbContext>();
    services.AddRazorPages();

    services.AddAuthentication().AddMicrosoftAccount(microsoftOptions =>
    {
        microsoftOptions.ClientId = Configuration["Authentication:Microsoft:ClientId"];
        microsoftOptions.ClientSecret = Configuration["Authentication:Microsoft:ClientSecret"];
    });
}

Sign in with Microsoft Account

Multiple authentication providers

dotnet user-secrets set "Authentication:Microsoft:ClientId" "<client-id>"
dotnet user-secrets set "Authentication:Microsoft:ClientSecret" "<client-secret>"

1. Initialize the project for secret storage per the instructions at Enable secret storage.

2. Store the sensitive settings in the local secret store with the secret keys Authentication:Microsoft:ClientId

and Authentication:Microsoft:ClientSecret :

The :  separator doesn't work with environment variable hierarchical keys on all platforms. __ , the double

underscore, is:

Supported by all platforms. For example, the :  separator is not supported by Bash, but __  is.

Automatically replaced by a :

Add the Microsoft Account service to the Startup.ConfigureServices :

The AddAuthentication(String) overload sets the DefaultScheme property. The

AddAuthentication(Action<AuthenticationOptions>) overload allows configuring authentication options, which

can be used to set up default authentication schemes for different purposes. Subsequent calls to 

AddAuthentication  override previously configured AuthenticationOptions properties.

AuthenticationBuilder extension methods that register an authentication handler may only be called once per

authentication scheme. Overloads exist that allow configuring the scheme properties, scheme name, and display

name.

For more information about configuration options supported by Microsoft Account authentication, see the

MicrosoftAccountOptions API reference. This can be used to request different information about the user.

Run the app and click Log inLog in . An option to sign in with Microsoft appears. When you click on Microsoft, you are

redirected to Microsoft for authentication. After signing in with your Microsoft Account, you will be prompted to

let the app access your info:

Tap YesYes  and you will be redirected back to the web site where you can set your email.

You are now logged in using your Microsoft credentials:

https://linuxhint.com/bash-environment-variables/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_action_microsoft_aspnetcore_authentication_authenticationoptions__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.microsoftaccountoptions


services.AddAuthentication()
    .AddMicrosoftAccount(microsoftOptions => { ... })
    .AddGoogle(googleOptions => { ... })
    .AddTwitter(twitterOptions => { ... })
    .AddFacebook(facebookOptions => { ... });

Forward request information with a proxy or load balancer

Troubleshooting

Next steps

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

If the app is deployed behind a proxy server or load balancer, some of the original request information might be

forwarded to the app in request headers. This information usually includes the secure request scheme ( https ),

host, and client IP address. Apps don't automatically read these request headers to discover and use the original

request information.

The scheme is used in link generation that affects the authentication flow with external providers. Losing the

secure scheme ( https ) results in the app generating incorrect insecure redirect URLs.

Use Forwarded Headers Middleware to make the original request information available to the app for request

processing.

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

If the Microsoft Account provider redirects you to a sign in error page, note the error title and description

query string parameters directly following the #  (hashtag) in the Uri.

Although the error message seems to indicate a problem with Microsoft authentication, the most common

cause is your application Uri not matching any of the Redirect URIsRedirect URIs  specified for the WebWeb platform.

If Identity isn't configured by calling services.AddIdentity  in ConfigureServices , attempting to

authenticate will result in ArgumentException: The 'SignInScheme' option must be provided. The project

template used in this sample ensures that this is done.

If the site database has not been created by applying the initial migration, you will get A database operation

failed while processing the request error. Tap Apply MigrationsApply Migrations  to create the database and refresh to

continue past the error.

This article showed how you can authenticate with Microsoft. You can follow a similar approach to

authenticate with other providers listed on the previous page.

Once you publish your web site to Azure web app, create a new client secrets in the Microsoft Developer

Portal.

Set the Authentication:Microsoft:ClientId  and Authentication:Microsoft:ClientSecret  as application

settings in the Azure portal. The configuration system is set up to read keys from environment variables.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication


Twitter external sign-in setup with ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

Create the app in Twitter

Store the Twitter consumer API key and secret

By Valeriy Novytskyy and Rick Anderson

This sample shows how to enable users to sign in with their Twitter account using a sample ASP.NET Core 3.0

project created on the previous page.

NOTENOTE

Add the Microsoft.AspNetCore.Authentication.Twitter NuGet package to the project.

Navigate to https://apps.twitter.com/ and sign in. If you don't already have a Twitter account, use the S ignSign

up nowup now  link to create one.

Select Create an appCreate an app. Fill out the App nameApp name, Application descr iptionApplication descr iption and public WebsiteWebsite URI (this can

be temporary until you register the domain name):

Check the box next to Enable S ign in with TwitterEnable S ign in with Twitter

Microsoft.AspNetCore.Identity requires users to have an email address by default. Go to the PermissionsPermissions

tab, click the EditEdit button and check the box next to Request email address from usersRequest email address from users .

Enter your development URI with /signin-twitter  appended into the Callback URLsCallback URLs  field (for example: 

https://webapp128.azurewebsites.net/signin-twitter ). The Twitter authentication scheme configured later in

this sample will automatically handle requests at /signin-twitter  route to implement the OAuth flow.

The URI segment /signin-twitter  is set as the default callback of the Twitter authentication provider. You can

change the default callback URI while configuring the Twitter authentication middleware via the inherited

RemoteAuthenticationOptions.CallbackPath property of the TwitterOptions class.

Fill out the rest of the form and select CreateCreate. New application details are displayed:

Store sensitive settings such as the Twitter consumer API key and secret with Secret Manager. For this sample, use

the following steps:

dotnet user-secrets set "Authentication:Twitter:ConsumerAPIKey" "<consumer-api-key>"
dotnet user-secrets set "Authentication:Twitter:ConsumerSecret" "<consumer-secret>"

1. Initialize the project for secret storage per the instructions at Enable secret storage.

2. Store the sensitive settings in the local secret store with the secrets keys 

Authentication:Twitter:ConsumerKey  and Authentication:Twitter:ConsumerSecret :

The :  separator doesn't work with environment variable hierarchical keys on all platforms. __ , the double

underscore, is:

Supported by all platforms. For example, the :  separator is not supported by Bash, but __  is.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/social/twitter-logins.md
https://github.com/01binary
https://twitter.com/RickAndMSFT
https://dev.twitter.com/web/sign-in/desktop-browser
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Twitter/3.0.0
https://apps.twitter.com/
https://twitter.com/signup
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.callbackpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.twitter.twitteroptions
https://linuxhint.com/bash-environment-variables/


Configure Twitter Authentication

{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(options =>
        options.SignIn.RequireConfirmedAccount = true)
            .AddEntityFrameworkStores<ApplicationDbContext>();
    services.AddRazorPages();

    services.AddAuthentication().AddTwitter(twitterOptions =>
    {
        twitterOptions.ConsumerKey = Configuration["Authentication:Twitter:ConsumerAPIKey"];
        twitterOptions.ConsumerSecret = Configuration["Authentication:Twitter:ConsumerSecret"];
        twitterOptions.RetrieveUserDetails = true;
    });

}

Multiple authentication providers

services.AddAuthentication()
    .AddMicrosoftAccount(microsoftOptions => { ... })
    .AddGoogle(googleOptions => { ... })
    .AddTwitter(twitterOptions => { ... })
    .AddFacebook(facebookOptions => { ... });

Sign in with Twitter

Automatically replaced by a :

These tokens can be found on the Keys and Access TokensKeys and Access Tokens  tab after creating a new Twitter application:

Add the Twitter service in the ConfigureServices  method in Startup.cs file:

The AddAuthentication(String) overload sets the DefaultScheme property. The

AddAuthentication(Action<AuthenticationOptions>) overload allows configuring authentication options, which

can be used to set up default authentication schemes for different purposes. Subsequent calls to 

AddAuthentication  override previously configured AuthenticationOptions properties.

AuthenticationBuilder extension methods that register an authentication handler may only be called once per

authentication scheme. Overloads exist that allow configuring the scheme properties, scheme name, and display

name.

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

See the TwitterOptions API reference for more information on configuration options supported by Twitter

authentication. This can be used to request different information about the user.

Run the app and select Log inLog in . An option to sign in with Twitter appears:

Clicking on TwitterTwitter  redirects to Twitter for authentication:

After entering your Twitter credentials, you are redirected back to the web site where you can set your email.

You are now logged in using your Twitter credentials:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_action_microsoft_aspnetcore_authentication_authenticationoptions__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.twitteroptions


Forward request information with a proxy or load balancer

Troubleshooting

Next steps

If the app is deployed behind a proxy server or load balancer, some of the original request information might be

forwarded to the app in request headers. This information usually includes the secure request scheme ( https ),

host, and client IP address. Apps don't automatically read these request headers to discover and use the original

request information.

The scheme is used in link generation that affects the authentication flow with external providers. Losing the

secure scheme ( https ) results in the app generating incorrect insecure redirect URLs.

Use Forwarded Headers Middleware to make the original request information available to the app for request

processing.

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

ASP.NET Core 2.x only:ASP.NET Core 2.x only: If Identity isn't configured by calling services.AddIdentity  in ConfigureServices ,

attempting to authenticate will result in ArgumentException: The 'SignInScheme' option must be provided. The

project template used in this sample ensures that this is done.

If the site database has not been created by applying the initial migration, you will get A database operation

failed while processing the request error. Tap Apply MigrationsApply Migrations  to create the database and refresh to

continue past the error.

This article showed how you can authenticate with Twitter. You can follow a similar approach to

authenticate with other providers listed on the previous page.

Once you publish your web site to Azure web app, you should reset the ConsumerSecret  in the Twitter

developer portal.

Set the Authentication:Twitter:ConsumerKey  and Authentication:Twitter:ConsumerSecret  as application

settings in the Azure portal. The configuration system is set up to read keys from environment variables.



External OAuth authentication providers
9/22/2020 • 2 minutes to read • Edit Online

Multiple authentication providers

services.AddAuthentication()
    .AddMicrosoftAccount(microsoftOptions => { ... })
    .AddGoogle(googleOptions => { ... })
    .AddTwitter(twitterOptions => { ... })
    .AddFacebook(facebookOptions => { ... });

Forward request information with a proxy or load balancer

By Rick Anderson, Pranav Rastogi, and Valeriy Novytskyy

The following list includes common external OAuth authentication providers that work with ASP.NET Core apps.

Third-party NuGet packages, such as the ones maintained by aspnet-contrib, can be used to complement the

authentication providers implemented by the ASP.NET Core team.

LinkedIn (Instructions)

Instagram (Instructions)

Reddit (Instructions)

Github (Instructions)

Yahoo (Instructions)

Tumblr (Instructions)

Pinterest (Instructions)

Pocket (Instructions)

Flickr (Instructions)

Dribble (Instructions)

Vimeo (Instructions)

SoundCloud (Instructions)

VK (Instructions)

When the app requires multiple providers, chain the provider extension methods behind AddAuthentication:

If the app is deployed behind a proxy server or load balancer, some of the original request information might be

forwarded to the app in request headers. This information usually includes the secure request scheme ( https ),

host, and client IP address. Apps don't automatically read these request headers to discover and use the original

request information.

The scheme is used in link generation that affects the authentication flow with external providers. Losing the

secure scheme ( https ) results in the app generating incorrect insecure redirect URLs.

Use Forwarded Headers Middleware to make the original request information available to the app for request

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/social/other-logins.md
https://twitter.com/RickAndMSFT
https://github.com/rustd
https://github.com/01binary
https://www.nuget.org/packages?q=owners%3Aaspnet-contrib+title%3AOAuth
https://www.linkedin.com/developer/apps
https://developer.linkedin.com/docs/oauth2
https://www.instagram.com/developer/register/
https://www.instagram.com/developer/authentication/
https://www.reddit.com/login?dest=https%3A%2F%2Fwww.reddit.com%2Fprefs%2Fapps
https://github.com/reddit/reddit/wiki/OAuth2-Quick-Start-Example
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Fapplications%2Fnew
https://developer.github.com/v3/oauth/
https://login.yahoo.com/config/login?src=devnet&.done=http%3A%2F%2Fdeveloper.yahoo.com%2Fapps%2Fcreate%2F
https://developer.yahoo.com/bbauth/user.html
https://www.tumblr.com/oauth/apps
https://www.tumblr.com/docs/api/v2#auth
https://www.pinterest.com/login/?next=http%3A%2F%2Fdevsite%2Fapps%2F
https://developers.pinterest.com/docs/api/overview/?
https://getpocket.com/developer/apps/new
https://getpocket.com/developer/docs/authentication
https://www.flickr.com/services/apps/create
https://www.flickr.com/services/api/auth.oauth.html
https://dribbble.com/signup
https://developer.dribbble.com/v1/oauth/
https://vimeo.com/join
https://developer.vimeo.com/api/authentication
https://soundcloud.com/you/apps/new
https://developers.soundcloud.com/blog/we-love-oauth-2
https://vk.com/apps?act=manage
https://vk.com/pages?oid=-17680044&p=Authorizing_Sites
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication


processing.

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.



Persist additional claims and tokens from external
providers in ASP.NET Core
9/22/2020 • 16 minutes to read • Edit Online

Prerequisites

Set the client ID and client secret

An ASP.NET Core app can establish additional claims and tokens from external authentication providers, such as

Facebook, Google, Microsoft, and Twitter. Each provider reveals different information about users on its platform, but

the pattern for receiving and transforming user data into additional claims is the same.

View or download sample code (how to download)

Decide which external authentication providers to support in the app. For each provider, register the app and obtain

a client ID and client secret. For more information, see Facebook, Google, and external provider authentication in

ASP.NET Core. The sample app uses the Google authentication provider.

The OAuth authentication provider establishes a trust relationship with an app using a client ID and client secret.

Client ID and client secret values are created for the app by the external authentication provider when the app is

registered with the provider. Each external provider that the app uses must be configured independently with the

provider's client ID and client secret. For more information, see the external authentication provider topics that apply

to your scenario:

Facebook authentication

Google authentication

Microsoft authentication

Twitter authentication

Other authentication providers

OpenIdConnect

The sample app configures the Google authentication provider with a client ID and client secret provided by Google:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/social/additional-claims.md
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authentication/social/additional-claims/samples
https://github.com/Azure-Samples/active-directory-aspnetcore-webapp-openidconnect-v2


services.AddAuthentication().AddGoogle(options =>
{
    // Provide the Google Client ID
    options.ClientId = "XXXXXXXXXXXXXXX.apps.googleusercontent.com";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientId" "{Client ID}"

    // Provide the Google Client Secret
    options.ClientSecret = "{Client Secret}";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientSecret" "{Client Secret}"

    options.ClaimActions.MapJsonKey("urn:google:picture", "picture", "url");
    options.ClaimActions.MapJsonKey("urn:google:locale", "locale", "string");
    options.SaveTokens = true;

    options.Events.OnCreatingTicket = ctx =>
    {
        List<AuthenticationToken> tokens = ctx.Properties.GetTokens().ToList(); 

        tokens.Add(new AuthenticationToken()
        {
            Name = "TicketCreated", 
            Value = DateTime.UtcNow.ToString()
        });

        ctx.Properties.StoreTokens(tokens);

        return Task.CompletedTask;
    };
});

Establish the authentication scope

P RO VIDERP RO VIDER SC O P ESC O P E

Facebook https://www.facebook.com/dialog/oauth

Google https://www.googleapis.com/auth/userinfo.profile

Microsoft https://login.microsoftonline.com/common/oauth2/v2.0/authorize

Twitter https://api.twitter.com/oauth/authenticate

options.Scope.Add("https://www.googleapis.com/auth/user.birthday.read");

Map user data keys and create claims

Specify the list of permissions to retrieve from the provider by specifying the Scope. Authentication scopes for

common external providers appear in the following table.

In the sample app, Google's userinfo.profile  scope is automatically added by the framework when AddGoogle is

called on the AuthenticationBuilder. If the app requires additional scopes, add them to the options. In the following

example, the Google https://www.googleapis.com/auth/user.birthday.read  scope is added in order to retrieve a user's

birthday:

In the provider's options, specify a MapJsonKey or MapJsonSubKey for each key/subkey in the external provider's

JSON user data for the app identity to read on sign in. For more information on claim types, see ClaimTypes.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.oauthoptions.scope
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.googleextensions.addgoogle
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionmapextensions.mapjsonkey
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionmapextensions.mapjsonsubkey
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimtypes


services.AddAuthentication().AddGoogle(options =>
{
    // Provide the Google Client ID
    options.ClientId = "XXXXXXXXXXXXXXX.apps.googleusercontent.com";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientId" "{Client ID}"

    // Provide the Google Client Secret
    options.ClientSecret = "{Client Secret}";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientSecret" "{Client Secret}"

    options.ClaimActions.MapJsonKey("urn:google:picture", "picture", "url");
    options.ClaimActions.MapJsonKey("urn:google:locale", "locale", "string");
    options.SaveTokens = true;

    options.Events.OnCreatingTicket = ctx =>
    {
        List<AuthenticationToken> tokens = ctx.Properties.GetTokens().ToList(); 

        tokens.Add(new AuthenticationToken()
        {
            Name = "TicketCreated", 
            Value = DateTime.UtcNow.ToString()
        });

        ctx.Properties.StoreTokens(tokens);

        return Task.CompletedTask;
    };
});

public async Task<IActionResult> OnPostConfirmationAsync(string returnUrl = null)
{
    returnUrl = returnUrl ?? Url.Content("~/");
    // Get the information about the user from the external login provider
    var info = await _signInManager.GetExternalLoginInfoAsync();

    if (info == null)
    {
        ErrorMessage = 
            "Error loading external login information during confirmation.";

        return RedirectToPage("./Login", new { ReturnUrl = returnUrl });
    }

    if (ModelState.IsValid)
    {
        var user = new IdentityUser
        {
            UserName = Input.Email, 
            Email = Input.Email 
        };

The sample app creates locale ( urn:google:locale ) and picture ( urn:google:picture ) claims from the locale  and 

picture  keys in Google user data:

In Microsoft.AspNetCore.Identity.UI.Pages.Account.Internal.ExternalLoginModel.OnPostConfirmationAsync , an

IdentityUser ( ApplicationUser ) is signed into the app with SignInAsync. During the sign in process, the

UserManager<TUser> can store an ApplicationUser  claims for user data available from the Principal.

In the sample app, OnPostConfirmationAsync  (Account/ExternalLogin.cshtml.cs) establishes the locale (

urn:google:locale ) and picture ( urn:google:picture ) claims for the signed in ApplicationUser , including a claim for

GivenName:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityuser
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1.signinasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.usermanager-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.externallogininfo.principal
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimtypes.givenname


        var result = await _userManager.CreateAsync(user);

        if (result.Succeeded)
        {
            result = await _userManager.AddLoginAsync(user, info);

            if (result.Succeeded)
            {
                // If they exist, add claims to the user for:
                //    Given (first) name
                //    Locale
                //    Picture
                if (info.Principal.HasClaim(c => c.Type == ClaimTypes.GivenName))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst(ClaimTypes.GivenName));
                }

                if (info.Principal.HasClaim(c => c.Type == "urn:google:locale"))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst("urn:google:locale"));
                }

                if (info.Principal.HasClaim(c => c.Type == "urn:google:picture"))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst("urn:google:picture"));
                }

                // Include the access token in the properties
                var props = new AuthenticationProperties();
                props.StoreTokens(info.AuthenticationTokens);
                props.IsPersistent = true;

                await _signInManager.SignInAsync(user, props);

                _logger.LogInformation(
                    "User created an account using {Name} provider.", 
                    info.LoginProvider);

                return LocalRedirect(returnUrl);
            }
        }

        foreach (var error in result.Errors)
        {
            ModelState.AddModelError(string.Empty, error.Description);
        }
    }

    LoginProvider = info.LoginProvider;
    ReturnUrl = returnUrl;
    return Page();
}

By default, a user's claims are stored in the authentication cookie. If the authentication cookie is too large, it can

cause the app to fail because:

The browser detects that the cookie header is too long.

The overall size of the request is too large.

If a large amount of user data is required for processing user requests:

Limit the number and size of user claims for request processing to only what the app requires.

Use a custom ITicketStore for the Cookie Authentication Middleware's SessionStore to store identity across

requests. Preserve large quantities of identity information on the server while only sending a small session

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.iticketstore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.sessionstore#microsoft_aspnetcore_authentication_cookies_cookieauthenticationoptions_sessionstore


Save the access token

services.AddAuthentication().AddGoogle(options =>
{
    // Provide the Google Client ID
    options.ClientId = "XXXXXXXXXXXXXXX.apps.googleusercontent.com";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientId" "{Client ID}"

    // Provide the Google Client Secret
    options.ClientSecret = "{Client Secret}";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientSecret" "{Client Secret}"

    options.ClaimActions.MapJsonKey("urn:google:picture", "picture", "url");
    options.ClaimActions.MapJsonKey("urn:google:locale", "locale", "string");
    options.SaveTokens = true;

    options.Events.OnCreatingTicket = ctx =>
    {
        List<AuthenticationToken> tokens = ctx.Properties.GetTokens().ToList(); 

        tokens.Add(new AuthenticationToken()
        {
            Name = "TicketCreated", 
            Value = DateTime.UtcNow.ToString()
        });

        ctx.Properties.StoreTokens(tokens);

        return Task.CompletedTask;
    };
});

public async Task<IActionResult> OnPostConfirmationAsync(string returnUrl = null)
{
    returnUrl = returnUrl ?? Url.Content("~/");
    // Get the information about the user from the external login provider
    var info = await _signInManager.GetExternalLoginInfoAsync();

    if (info == null)
    {
        ErrorMessage = 
            "Error loading external login information during confirmation.";

        return RedirectToPage("./Login", new { ReturnUrl = returnUrl });
    }

    if (ModelState.IsValid)
    {
        var user = new IdentityUser
        {

identifier key to the client.

SaveTokens defines whether access and refresh tokens should be stored in the AuthenticationProperties after a

successful authorization. SaveTokens  is set to false  by default to reduce the size of the final authentication cookie.

The sample app sets the value of SaveTokens  to true  in GoogleOptions:

When OnPostConfirmationAsync  executes, store the access token (ExternalLoginInfo.AuthenticationTokens) from the

external provider in the ApplicationUser 's AuthenticationProperties .

The sample app saves the access token in OnPostConfirmationAsync  (new user registration) and OnGetCallbackAsync

(previously registered user) in Account/ExternalLogin.cshtml.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.savetokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.authentication.authenticationproperties
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.google.googleoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.externallogininfo.authenticationtokens


            UserName = Input.Email, 
            Email = Input.Email 
        };

        var result = await _userManager.CreateAsync(user);

        if (result.Succeeded)
        {
            result = await _userManager.AddLoginAsync(user, info);

            if (result.Succeeded)
            {
                // If they exist, add claims to the user for:
                //    Given (first) name
                //    Locale
                //    Picture
                if (info.Principal.HasClaim(c => c.Type == ClaimTypes.GivenName))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst(ClaimTypes.GivenName));
                }

                if (info.Principal.HasClaim(c => c.Type == "urn:google:locale"))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst("urn:google:locale"));
                }

                if (info.Principal.HasClaim(c => c.Type == "urn:google:picture"))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst("urn:google:picture"));
                }

                // Include the access token in the properties
                var props = new AuthenticationProperties();
                props.StoreTokens(info.AuthenticationTokens);
                props.IsPersistent = true;

                await _signInManager.SignInAsync(user, props);

                _logger.LogInformation(
                    "User created an account using {Name} provider.", 
                    info.LoginProvider);

                return LocalRedirect(returnUrl);
            }
        }

        foreach (var error in result.Errors)
        {
            ModelState.AddModelError(string.Empty, error.Description);
        }
    }

    LoginProvider = info.LoginProvider;
    ReturnUrl = returnUrl;
    return Page();
}

How to add additional custom tokens
To demonstrate how to add a custom token, which is stored as part of SaveTokens , the sample app adds an

AuthenticationToken with the current DateTime for an AuthenticationToken.Name of TicketCreated :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationtoken
https://docs.microsoft.com/en-us/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationtoken.name


services.AddAuthentication().AddGoogle(options =>
{
    // Provide the Google Client ID
    options.ClientId = "XXXXXXXXXXXXXXX.apps.googleusercontent.com";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientId" "{Client ID}"

    // Provide the Google Client Secret
    options.ClientSecret = "{Client Secret}";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientSecret" "{Client Secret}"

    options.ClaimActions.MapJsonKey("urn:google:picture", "picture", "url");
    options.ClaimActions.MapJsonKey("urn:google:locale", "locale", "string");
    options.SaveTokens = true;

    options.Events.OnCreatingTicket = ctx =>
    {
        List<AuthenticationToken> tokens = ctx.Properties.GetTokens().ToList(); 

        tokens.Add(new AuthenticationToken()
        {
            Name = "TicketCreated", 
            Value = DateTime.UtcNow.ToString()
        });

        ctx.Properties.StoreTokens(tokens);

        return Task.CompletedTask;
    };
});

Creating and adding claims

Removal of claim actions and claims

Sample app output

The framework provides common actions and extension methods for creating and adding claims to the collection.

For more information, see the ClaimActionCollectionMapExtensions and ClaimActionCollectionUniqueExtensions.

Users can define custom actions by deriving from ClaimAction and implementing the abstract Run method.

For more information, see Microsoft.AspNetCore.Authentication.OAuth.Claims.

ClaimActionCollection.Remove(String) removes all claim actions for the given ClaimType from the collection.

ClaimActionCollectionMapExtensions.DeleteClaim(ClaimActionCollection, String) deletes a claim of the given

ClaimType from the identity. DeleteClaim is primarily used with OpenID Connect (OIDC) to remove protocol-

generated claims.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionmapextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionuniqueextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims.claimaction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims.claimaction.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims.claimactioncollection.remove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims.claimaction.claimtype#microsoft_aspnetcore_authentication_oauth_claims_claimaction_claimtype
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionmapextensions.deleteclaim
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims.claimaction.claimtype#microsoft_aspnetcore_authentication_oauth_claims_claimaction_claimtype
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionmapextensions.deleteclaim
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-protocols-oidc


User Claims

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier
    9b342344f-7aab-43c2-1ac1-ba75912ca999
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
    someone@gmail.com
AspNet.Identity.SecurityStamp
    7D4312MOWRYYBFI1KXRPHGOSTBVWSFDE
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname
    Judy
urn:google:locale
    en
urn:google:picture
    https://lh4.googleusercontent.com/-XXXXXX/XXXXXX/XXXXXX/XXXXXX/photo.jpg

Authentication Properties

.Token.access_token
    yc23.AlvoZqz56...1lxltXV7D-ZWP9
.Token.token_type
    Bearer
.Token.expires_at
    2019-04-11T22:14:51.0000000+00:00
.Token.TicketCreated
    4/11/2019 9:14:52 PM
.TokenNames
    access_token;token_type;expires_at;TicketCreated
.persistent
.issued
    Thu, 11 Apr 2019 20:51:06 GMT
.expires
    Thu, 25 Apr 2019 20:51:06 GMT

Forward request information with a proxy or load balancer

Prerequisites

If the app is deployed behind a proxy server or load balancer, some of the original request information might be

forwarded to the app in request headers. This information usually includes the secure request scheme ( https ), host,

and client IP address. Apps don't automatically read these request headers to discover and use the original request

information.

The scheme is used in link generation that affects the authentication flow with external providers. Losing the secure

scheme ( https ) results in the app generating incorrect insecure redirect URLs.

Use Forwarded Headers Middleware to make the original request information available to the app for request

processing.

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

An ASP.NET Core app can establish additional claims and tokens from external authentication providers, such as

Facebook, Google, Microsoft, and Twitter. Each provider reveals different information about users on its platform, but

the pattern for receiving and transforming user data into additional claims is the same.

View or download sample code (how to download)

Decide which external authentication providers to support in the app. For each provider, register the app and obtain

a client ID and client secret. For more information, see Facebook, Google, and external provider authentication in

ASP.NET Core. The sample app uses the Google authentication provider.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authentication/social/additional-claims/samples


Set the client ID and client secret

services.AddAuthentication().AddGoogle(options =>
{
    // Provide the Google Client ID
    options.ClientId = "XXXXXXXXXXXXXXX.apps.googleusercontent.com";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientId" "{Client ID}"

    // Provide the Google Client Secret
    options.ClientSecret = "{Client Secret}";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientSecret" "{Client Secret}"

    options.ClaimActions.MapJsonKey("urn:google:picture", "picture", "url");
    options.ClaimActions.MapJsonKey("urn:google:locale", "locale", "string");
    options.SaveTokens = true;

    options.Events.OnCreatingTicket = ctx =>
    {
        List<AuthenticationToken> tokens = ctx.Properties.GetTokens().ToList(); 

        tokens.Add(new AuthenticationToken()
        {
            Name = "TicketCreated", 
            Value = DateTime.UtcNow.ToString()
        });

        ctx.Properties.StoreTokens(tokens);

        return Task.CompletedTask;
    };
});

Establish the authentication scope

P RO VIDERP RO VIDER SC O P ESC O P E

Facebook https://www.facebook.com/dialog/oauth

Google https://www.googleapis.com/auth/userinfo.profile

The OAuth authentication provider establishes a trust relationship with an app using a client ID and client secret.

Client ID and client secret values are created for the app by the external authentication provider when the app is

registered with the provider. Each external provider that the app uses must be configured independently with the

provider's client ID and client secret. For more information, see the external authentication provider topics that apply

to your scenario:

Facebook authentication

Google authentication

Microsoft authentication

Twitter authentication

Other authentication providers

OpenIdConnect

The sample app configures the Google authentication provider with a client ID and client secret provided by Google:

Specify the list of permissions to retrieve from the provider by specifying the Scope. Authentication scopes for

common external providers appear in the following table.

https://github.com/Azure-Samples/active-directory-aspnetcore-webapp-openidconnect-v2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.oauthoptions.scope


Microsoft https://login.microsoftonline.com/common/oauth2/v2.0/authorize

Twitter https://api.twitter.com/oauth/authenticate

P RO VIDERP RO VIDER SC O P ESC O P E

options.Scope.Add("https://www.googleapis.com/auth/user.birthday.read");

Map user data keys and create claims

services.AddAuthentication().AddGoogle(options =>
{
    // Provide the Google Client ID
    options.ClientId = "XXXXXXXXXXXXXXX.apps.googleusercontent.com";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientId" "{Client ID}"

    // Provide the Google Client Secret
    options.ClientSecret = "{Client Secret}";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientSecret" "{Client Secret}"

    options.ClaimActions.MapJsonKey("urn:google:picture", "picture", "url");
    options.ClaimActions.MapJsonKey("urn:google:locale", "locale", "string");
    options.SaveTokens = true;

    options.Events.OnCreatingTicket = ctx =>
    {
        List<AuthenticationToken> tokens = ctx.Properties.GetTokens().ToList(); 

        tokens.Add(new AuthenticationToken()
        {
            Name = "TicketCreated", 
            Value = DateTime.UtcNow.ToString()
        });

        ctx.Properties.StoreTokens(tokens);

        return Task.CompletedTask;
    };
});

In the sample app, Google's userinfo.profile  scope is automatically added by the framework when AddGoogle is

called on the AuthenticationBuilder. If the app requires additional scopes, add them to the options. In the following

example, the Google https://www.googleapis.com/auth/user.birthday.read  scope is added in order to retrieve a user's

birthday:

In the provider's options, specify a MapJsonKey or MapJsonSubKey for each key/subkey in the external provider's

JSON user data for the app identity to read on sign in. For more information on claim types, see ClaimTypes.

The sample app creates locale ( urn:google:locale ) and picture ( urn:google:picture ) claims from the locale  and 

picture  keys in Google user data:

In Microsoft.AspNetCore.Identity.UI.Pages.Account.Internal.ExternalLoginModel.OnPostConfirmationAsync , an

IdentityUser ( ApplicationUser ) is signed into the app with SignInAsync. During the sign in process, the

UserManager<TUser> can store an ApplicationUser  claims for user data available from the Principal.

In the sample app, OnPostConfirmationAsync  (Account/ExternalLogin.cshtml.cs) establishes the locale (

urn:google:locale ) and picture ( urn:google:picture ) claims for the signed in ApplicationUser , including a claim for

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.googleextensions.addgoogle
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionmapextensions.mapjsonkey
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionmapextensions.mapjsonsubkey
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimtypes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identityuser
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1.signinasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.usermanager-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.externallogininfo.principal


public async Task<IActionResult> OnPostConfirmationAsync(string returnUrl = null)
{
    returnUrl = returnUrl ?? Url.Content("~/");
    // Get the information about the user from the external login provider
    var info = await _signInManager.GetExternalLoginInfoAsync();

    if (info == null)
    {
        ErrorMessage = 
            "Error loading external login information during confirmation.";

        return RedirectToPage("./Login", new { ReturnUrl = returnUrl });
    }

    if (ModelState.IsValid)
    {
        var user = new IdentityUser
        {
            UserName = Input.Email, 
            Email = Input.Email 
        };

        var result = await _userManager.CreateAsync(user);

        if (result.Succeeded)
        {
            result = await _userManager.AddLoginAsync(user, info);

            if (result.Succeeded)
            {
                // If they exist, add claims to the user for:
                //    Given (first) name
                //    Locale
                //    Picture
                if (info.Principal.HasClaim(c => c.Type == ClaimTypes.GivenName))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst(ClaimTypes.GivenName));
                }

                if (info.Principal.HasClaim(c => c.Type == "urn:google:locale"))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst("urn:google:locale"));
                }

                if (info.Principal.HasClaim(c => c.Type == "urn:google:picture"))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst("urn:google:picture"));
                }

                // Include the access token in the properties
                var props = new AuthenticationProperties();
                props.StoreTokens(info.AuthenticationTokens);
                props.IsPersistent = true;

                await _signInManager.SignInAsync(user, props);

                _logger.LogInformation(
                    "User created an account using {Name} provider.", 
                    info.LoginProvider);

                return LocalRedirect(returnUrl);
            }
        }

GivenName:

https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimtypes.givenname


        foreach (var error in result.Errors)
        {
            ModelState.AddModelError(string.Empty, error.Description);
        }
    }

    LoginProvider = info.LoginProvider;
    ReturnUrl = returnUrl;
    return Page();
}

Save the access token

services.AddAuthentication().AddGoogle(options =>
{
    // Provide the Google Client ID
    options.ClientId = "XXXXXXXXXXXXXXX.apps.googleusercontent.com";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientId" "{Client ID}"

    // Provide the Google Client Secret
    options.ClientSecret = "{Client Secret}";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientSecret" "{Client Secret}"

    options.ClaimActions.MapJsonKey("urn:google:picture", "picture", "url");
    options.ClaimActions.MapJsonKey("urn:google:locale", "locale", "string");
    options.SaveTokens = true;

    options.Events.OnCreatingTicket = ctx =>
    {
        List<AuthenticationToken> tokens = ctx.Properties.GetTokens().ToList(); 

        tokens.Add(new AuthenticationToken()
        {
            Name = "TicketCreated", 
            Value = DateTime.UtcNow.ToString()
        });

        ctx.Properties.StoreTokens(tokens);

        return Task.CompletedTask;
    };
});

By default, a user's claims are stored in the authentication cookie. If the authentication cookie is too large, it can

cause the app to fail because:

The browser detects that the cookie header is too long.

The overall size of the request is too large.

If a large amount of user data is required for processing user requests:

Limit the number and size of user claims for request processing to only what the app requires.

Use a custom ITicketStore for the Cookie Authentication Middleware's SessionStore to store identity across

requests. Preserve large quantities of identity information on the server while only sending a small session

identifier key to the client.

SaveTokens defines whether access and refresh tokens should be stored in the AuthenticationProperties after a

successful authorization. SaveTokens  is set to false  by default to reduce the size of the final authentication cookie.

The sample app sets the value of SaveTokens  to true  in GoogleOptions:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.iticketstore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.sessionstore#microsoft_aspnetcore_authentication_cookies_cookieauthenticationoptions_sessionstore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.savetokens
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.authentication.authenticationproperties
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.google.googleoptions


public async Task<IActionResult> OnPostConfirmationAsync(string returnUrl = null)
{
    returnUrl = returnUrl ?? Url.Content("~/");
    // Get the information about the user from the external login provider
    var info = await _signInManager.GetExternalLoginInfoAsync();

    if (info == null)
    {
        ErrorMessage = 
            "Error loading external login information during confirmation.";

        return RedirectToPage("./Login", new { ReturnUrl = returnUrl });
    }

    if (ModelState.IsValid)
    {
        var user = new IdentityUser
        {
            UserName = Input.Email, 
            Email = Input.Email 
        };

        var result = await _userManager.CreateAsync(user);

        if (result.Succeeded)
        {
            result = await _userManager.AddLoginAsync(user, info);

            if (result.Succeeded)
            {
                // If they exist, add claims to the user for:
                //    Given (first) name
                //    Locale
                //    Picture
                if (info.Principal.HasClaim(c => c.Type == ClaimTypes.GivenName))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst(ClaimTypes.GivenName));
                }

                if (info.Principal.HasClaim(c => c.Type == "urn:google:locale"))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst("urn:google:locale"));
                }

                if (info.Principal.HasClaim(c => c.Type == "urn:google:picture"))
                {
                    await _userManager.AddClaimAsync(user, 
                        info.Principal.FindFirst("urn:google:picture"));
                }

                // Include the access token in the properties
                var props = new AuthenticationProperties();
                props.StoreTokens(info.AuthenticationTokens);
                props.IsPersistent = true;

                await _signInManager.SignInAsync(user, props);

                _logger.LogInformation(
                    "User created an account using {Name} provider.", 
                    info.LoginProvider);

When OnPostConfirmationAsync  executes, store the access token (ExternalLoginInfo.AuthenticationTokens) from the

external provider in the ApplicationUser 's AuthenticationProperties .

The sample app saves the access token in OnPostConfirmationAsync  (new user registration) and OnGetCallbackAsync

(previously registered user) in Account/ExternalLogin.cshtml.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.externallogininfo.authenticationtokens


                return LocalRedirect(returnUrl);
            }
        }

        foreach (var error in result.Errors)
        {
            ModelState.AddModelError(string.Empty, error.Description);
        }
    }

    LoginProvider = info.LoginProvider;
    ReturnUrl = returnUrl;
    return Page();
}

How to add additional custom tokens

services.AddAuthentication().AddGoogle(options =>
{
    // Provide the Google Client ID
    options.ClientId = "XXXXXXXXXXXXXXX.apps.googleusercontent.com";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientId" "{Client ID}"

    // Provide the Google Client Secret
    options.ClientSecret = "{Client Secret}";
    // Register with User Secrets using:
    // dotnet user-secrets set "Authentication:Google:ClientSecret" "{Client Secret}"

    options.ClaimActions.MapJsonKey("urn:google:picture", "picture", "url");
    options.ClaimActions.MapJsonKey("urn:google:locale", "locale", "string");
    options.SaveTokens = true;

    options.Events.OnCreatingTicket = ctx =>
    {
        List<AuthenticationToken> tokens = ctx.Properties.GetTokens().ToList(); 

        tokens.Add(new AuthenticationToken()
        {
            Name = "TicketCreated", 
            Value = DateTime.UtcNow.ToString()
        });

        ctx.Properties.StoreTokens(tokens);

        return Task.CompletedTask;
    };
});

Creating and adding claims

Removal of claim actions and claims

To demonstrate how to add a custom token, which is stored as part of SaveTokens , the sample app adds an

AuthenticationToken with the current DateTime for an AuthenticationToken.Name of TicketCreated :

The framework provides common actions and extension methods for creating and adding claims to the collection.

For more information, see the ClaimActionCollectionMapExtensions and ClaimActionCollectionUniqueExtensions.

Users can define custom actions by deriving from ClaimAction and implementing the abstract Run method.

For more information, see Microsoft.AspNetCore.Authentication.OAuth.Claims.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationtoken
https://docs.microsoft.com/en-us/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationtoken.name
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionmapextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionuniqueextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims.claimaction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims.claimaction.run
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims


Sample app output

User Claims

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier
    9b342344f-7aab-43c2-1ac1-ba75912ca999
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
    someone@gmail.com
AspNet.Identity.SecurityStamp
    7D4312MOWRYYBFI1KXRPHGOSTBVWSFDE
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname
    Judy
urn:google:locale
    en
urn:google:picture
    https://lh4.googleusercontent.com/-XXXXXX/XXXXXX/XXXXXX/XXXXXX/photo.jpg

Authentication Properties

.Token.access_token
    yc23.AlvoZqz56...1lxltXV7D-ZWP9
.Token.token_type
    Bearer
.Token.expires_at
    2019-04-11T22:14:51.0000000+00:00
.Token.TicketCreated
    4/11/2019 9:14:52 PM
.TokenNames
    access_token;token_type;expires_at;TicketCreated
.persistent
.issued
    Thu, 11 Apr 2019 20:51:06 GMT
.expires
    Thu, 25 Apr 2019 20:51:06 GMT

Forward request information with a proxy or load balancer

Additional resources

ClaimActionCollection.Remove(String) removes all claim actions for the given ClaimType from the collection.

ClaimActionCollectionMapExtensions.DeleteClaim(ClaimActionCollection, String) deletes a claim of the given

ClaimType from the identity. DeleteClaim is primarily used with OpenID Connect (OIDC) to remove protocol-

generated claims.

If the app is deployed behind a proxy server or load balancer, some of the original request information might be

forwarded to the app in request headers. This information usually includes the secure request scheme ( https ), host,

and client IP address. Apps don't automatically read these request headers to discover and use the original request

information.

The scheme is used in link generation that affects the authentication flow with external providers. Losing the secure

scheme ( https ) results in the app generating incorrect insecure redirect URLs.

Use Forwarded Headers Middleware to make the original request information available to the app for request

processing.

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

dotnet/AspNetCore engineering SocialSample app: The linked sample app is on the dotnet/AspNetCore GitHub

repo's master  engineering branch. The master  branch contains code under active development for the next

release of ASP.NET Core. To see a version of the sample app for a released version of ASP.NET Core, use the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims.claimactioncollection.remove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims.claimaction.claimtype#microsoft_aspnetcore_authentication_oauth_claims_claimaction_claimtype
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionmapextensions.deleteclaim
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.oauth.claims.claimaction.claimtype#microsoft_aspnetcore_authentication_oauth_claims_claimaction_claimtype
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.claimactioncollectionmapextensions.deleteclaim
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-protocols-oidc
https://github.com/dotnet/AspNetCore/tree/master/src/Security/Authentication/samples/SocialSample
https://github.com/dotnet/AspNetCore


BranchBranch drop down list to select a release branch (for example release/{X.Y} ).



Policy schemes in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

public class AuthenticationSchemeOptions
{
    /// <summary>
    /// If set, this specifies a default scheme that authentication handlers should 
    /// forward all authentication operations to, by default. The default forwarding 
    /// logic checks in this order:
    /// 1. The most specific ForwardAuthenticate/Challenge/Forbid/SignIn/SignOut 
    /// 2. The ForwardDefaultSelector
    /// 3. ForwardDefault
    /// The first non null result is used as the target scheme to forward to.
    /// </summary>
    public string ForwardDefault { get; set; }

    /// <summary>
    /// If set, this specifies the target scheme that this scheme should forward 
    /// AuthenticateAsync calls to. For example:
    /// Context.AuthenticateAsync("ThisScheme") => 
    ///                Context.AuthenticateAsync("ForwardAuthenticateValue");
    /// Set the target to the current scheme to disable forwarding and allow 
    /// normal processing.
    /// </summary>
    public string ForwardAuthenticate { get; set; }

    /// <summary>
    /// If set, this specifies the target scheme that this scheme should forward 
    /// ChallengeAsync calls to. For example:
    /// Context.ChallengeAsync("ThisScheme") =>
    ///                         Context.ChallengeAsync("ForwardChallengeValue");
    /// Set the target to the current scheme to disable forwarding and allow normal
    /// processing.
    /// </summary>
    public string ForwardChallenge { get; set; }

    /// <summary>
    /// If set, this specifies the target scheme that this scheme should forward 
    /// ForbidAsync calls to.For example:
    /// Context.ForbidAsync("ThisScheme") 
    ///                               => Context.ForbidAsync("ForwardForbidValue");
    /// Set the target to the current scheme to disable forwarding and allow normal 
    /// processing.
    /// </summary>
    public string ForwardForbid { get; set; }

    /// <summary>

Authentication policy schemes make it easier to have a single logical authentication scheme potentially use

multiple approaches. For example, a policy scheme might use Google authentication for challenges, and cookie

authentication for everything else. Authentication policy schemes make it:

Easy to forward any authentication action to another scheme.

Forward dynamically based on the request.

All authentication schemes that use derived AuthenticationSchemeOptions and the associated

AuthenticationHandler<TOptions>:

Are automatically policy schemes in ASP.NET Core 2.1 and later.

Can be enabled via configuring the scheme's options.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/policyschemes.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationschemeoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhandler-1


    /// If set, this specifies the target scheme that this scheme should forward 
    /// SignInAsync calls to. For example:
    /// Context.SignInAsync("ThisScheme") => 
    ///                                Context.SignInAsync("ForwardSignInValue");
    /// Set the target to the current scheme to disable forwarding and allow normal 
    /// processing.
    /// </summary>
    public string ForwardSignIn { get; set; }

    /// <summary>
    /// If set, this specifies the target scheme that this scheme should forward 
    /// SignOutAsync calls to. For example:
    /// Context.SignOutAsync("ThisScheme") => 
    ///                              Context.SignOutAsync("ForwardSignOutValue");
    /// Set the target to the current scheme to disable forwarding and allow normal 
    /// processing.
    /// </summary>
    public string ForwardSignOut { get; set; }

    /// <summary>
    /// Used to select a default scheme for the current request that authentication
    /// handlers should forward all authentication operations to by default. The 
    /// default forwarding checks in this order:
    /// 1. The most specific ForwardAuthenticate/Challenge/Forbid/SignIn/SignOut
    /// 2. The ForwardDefaultSelector
    /// 3. ForwardDefault. 
    /// The first non null result will be used as the target scheme to forward to.
    /// </summary>
    public Func<HttpContext, string> ForwardDefaultSelector { get; set; }
}

Examples

public void ConfigureServices(IServiceCollection services)
{
    services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
       .AddCookie(options => options.ForwardChallenge = "Google")
       .AddGoogle(options => { });
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
        .AddCookie(options =>
        {
            // For example, can foward any requests that start with /api 
            // to the api scheme.
            options.ForwardDefaultSelector = ctx => 
               ctx.Request.Path.StartsWithSegments("/api") ? "Api" : null;
        })
        .AddYourApiAuth("Api");
}

The following example shows a higher level scheme that combines lower level schemes. Google authentication is

used for challenges, and cookie authentication is used for everything else:

The following example enables dynamic selection of schemes on a per request basis. That is, how to mix cookies

and API authentication:



Authenticate users with WS-Federation in ASP.NET
Core
9/22/2020 • 4 minutes to read • Edit Online

Register the app with Active Directory
Active Directory Federation ServicesActive Directory Federation Services

This tutorial demonstrates how to enable users to sign in with a WS-Federation authentication provider like Active

Directory Federation Services (ADFS) or Azure Active Directory (AAD). It uses the ASP.NET Core sample app

described in Facebook, Google, and external provider authentication.

For ASP.NET Core apps, WS-Federation support is provided by Microsoft.AspNetCore.Authentication.WsFederation.

This component is ported from Microsoft.Owin.Security.WsFederation and shares many of that component's

mechanics. However, the components differ in a couple of important ways.

By default, the new middleware:

Doesn't allow unsolicited logins. This feature of the WS-Federation protocol is vulnerable to XSRF attacks.

However, it can be enabled with the AllowUnsolicitedLogins  option.

Doesn't check every form post for sign-in messages. Only requests to the CallbackPath  are checked for sign-

ins. CallbackPath  defaults to /signin-wsfed  but can be changed via the inherited

RemoteAuthenticationOptions.CallbackPath property of the WsFederationOptions class. This path can be shared

with other authentication providers by enabling the SkipUnrecognizedRequests option.

Open the server's Add Relying Par ty Trust WizardAdd Relying Par ty Trust Wizard from the ADFS Management console:

Choose to enter data manually:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/ws-federation.md
https://docs.microsoft.com/en-us/azure/active-directory/
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.WsFederation
https://www.nuget.org/packages/Microsoft.Owin.Security.WsFederation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.callbackpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.wsfederation.wsfederationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.wsfederation.wsfederationoptions.skipunrecognizedrequests


Enter a display name for the relying party. The name isn't important to the ASP.NET Core app.

Microsoft.AspNetCore.Authentication.WsFederation lacks support for token encryption, so don't configure a

token encryption certificate:

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.WsFederation


NOTENOTE

Enable support for WS-Federation Passive protocol, using the app's URL. Verify the port is correct for the app:

This must be an HTTPS URL. IIS Express can provide a self-signed certificate when hosting the app during development.

Kestrel requires manual certificate configuration. See the Kestrel documentation for more details.

Click NextNext through the rest of the wizard and CloseClose at the end.

ASP.NET Core Identity requires a Name IDName ID claim. Add one from the Edit Claim RulesEdit Claim Rules  dialog:



In the Add Transform Claim Rule WizardAdd Transform Claim Rule Wizard, leave the default Send LDAP Attr ibutes as ClaimsSend LDAP Attr ibutes as Claims  template

selected, and click NextNext. Add a rule mapping the SAM-Account-NameSAM-Account-Name LDAP attribute to the Name IDName ID

outgoing claim:



Azure Active DirectoryAzure Active Directory

Click FinishFinish > OKOK in the Edit Claim RulesEdit Claim Rules  window.

Navigate to the AAD tenant's app registrations blade. Click New application registrationNew application registration:

Enter a name for the app registration. This isn't important to the ASP.NET Core app.

Enter the URL the app listens on as the S ign-on URLSign-on URL :



Click EndpointsEndpoints  and note the Federation Metadata DocumentFederation Metadata Document URL. This is the WS-Federation middleware's 

MetadataAddress :

Navigate to the new app registration. Click Expose an APIExpose an API. Click Application ID URI SetSet > SaveSave. Make note of

the Application ID URIApplication ID URI. This is the WS-Federation middleware's Wtrealm :



Use WS-Federation without ASP.NET Core Identity
The WS-Federation middleware can be used without Identity. For example:



public void ConfigureServices(IServiceCollection services)
{
    services.AddAuthentication(sharedOptions =>
    {
        sharedOptions.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
        sharedOptions.DefaultChallengeScheme = WsFederationDefaults.AuthenticationScheme;
    })
     .AddWsFederation(options =>
     {
         options.Wtrealm = Configuration["wsfed:realm"];
         options.MetadataAddress = Configuration["wsfed:metadata"];
     })
     .AddCookie();

    services.AddControllersWithViews();
    services.AddRazorPages();
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseDatabaseErrorPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }
    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllerRoute(
            name: "default",
            pattern: "{controller=Home}/{action=Index}/{id?}");
        endpoints.MapRazorPages();
    });
}



public void ConfigureServices(IServiceCollection services)
{
    services.AddAuthentication(sharedOptions =>
    {
        sharedOptions.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
        sharedOptions.DefaultSignInScheme = CookieAuthenticationDefaults.AuthenticationScheme;
        sharedOptions.DefaultChallengeScheme = WsFederationDefaults.AuthenticationScheme;
    })
    .AddWsFederation(options =>
    {
        options.Wtrealm = Configuration["wsfed:realm"];
        options.MetadataAddress = Configuration["wsfed:metadata"];
    })
    .AddCookie();

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseDatabaseErrorPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();

    app.UseAuthentication();

    app.UseMvc(routes =>
    {
        routes.MapRoute(
            name: "default",
            template: "{controller=Home}/{action=Index}/{id?}");
    });
}

Add WS-Federation as an external login provider for ASP.NET Core
Identity

Add a dependency on Microsoft.AspNetCore.Authentication.WsFederation to the project.

Add WS-Federation to Startup.ConfigureServices :

https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.WsFederation


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(options => options.SignIn.RequireConfirmedAccount = true)
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddAuthentication()
        .AddWsFederation(options =>
        {
            // MetadataAddress represents the Active Directory instance used to authenticate users.
            options.MetadataAddress = "https://<ADFS FQDN or AAD tenant>/FederationMetadata/2007-
06/FederationMetadata.xml";

            // Wtrealm is the app's identifier in the Active Directory instance.
            // For ADFS, use the relying party's identifier, its WS-Federation Passive protocol URL:
            options.Wtrealm = "https://localhost:44307/";

            // For AAD, use the Application ID URI from the app registration's Overview blade:
            options.Wtrealm = "api://bbd35166-7c13-49f3-8041-9551f2847b69";
        });

    services.AddControllersWithViews();
    services.AddRazorPages();
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>()
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddAuthentication()
        .AddWsFederation(options =>
        {
            // MetadataAddress represents the Active Directory instance used to authenticate users.
            options.MetadataAddress = "https://<ADFS FQDN or AAD tenant>/FederationMetadata/2007-
06/FederationMetadata.xml";

            // Wtrealm is the app's identifier in the Active Directory instance.
            // For ADFS, use the relying party's identifier, its WS-Federation Passive protocol URL:
            options.Wtrealm = "https://localhost:44307/";

            // For AAD, use the Application ID URI from the app registration's Overview blade:
            options.Wtrealm = "api://bbd35166-7c13-49f3-8041-9551f2847b69";
        });

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
}

The AddAuthentication(String) overload sets the DefaultScheme property. The

AddAuthentication(Action<AuthenticationOptions>) overload allows configuring authentication options, which can

be used to set up default authentication schemes for different purposes. Subsequent calls to AddAuthentication

override previously configured AuthenticationOptions properties.

AuthenticationBuilder extension methods that register an authentication handler may only be called once per

authentication scheme. Overloads exist that allow configuring the scheme properties, scheme name, and display

name.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_action_microsoft_aspnetcore_authentication_authenticationoptions__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationbuilder


Log in with WS-FederationLog in with WS-Federation
Browse to the app and click the Log inLog in link in the nav header. There's an option to log in with WsFederation: 

With ADFS as the provider, the button redirects to an ADFS sign-in page: 

With Azure Active Directory as the provider, the button redirects to an AAD sign-in page: 



A successful sign-in for a new user redirects to the app's user registration page: 



Account confirmation and password recovery in
ASP.NET Core
9/22/2020 • 15 minutes to read • Edit Online

Prerequisites

Create and test a web app with authentication

dotnet new webapp -au Individual -uld -o WebPWrecover
cd WebPWrecover
dotnet run

Configure an email providerConfigure an email provider

public class AuthMessageSenderOptions
{
    public string SendGridUser { get; set; }
    public string SendGridKey { get; set; }
}

Configure SendGrid user secretsConfigure SendGrid user secrets

By Rick Anderson, Ponant, and Joe Audette

This tutorial shows how to build an ASP.NET Core app with email confirmation and password reset. This tutorial is

notnot a beginning topic. You should be familiar with:

ASP.NET Core

Authentication

Entity Framework Core

.NET Core 3.0 SDK or later

Run the following commands to create a web app with authentication.

Run the app, select the RegisterRegister  link, and register a user. Once registered, you are redirected to the to 

/Identity/Account/RegisterConfirmation  page which contains a link to simulate email confirmation:

Select the Click here to confirm your account  link.

Select the LoginLogin link and sign-in with the same credentials.

Select the Hello YourEmail@provider.com!  link, which redirects you to the 

/Identity/Account/Manage/PersonalData  page.

Select the Personal dataPersonal data tab on the left, and then select DeleteDelete.

In this tutorial, SendGrid is used to send email. You need a SendGrid account and key to send email. You can use

other email providers. We recommend you use SendGrid or another email service to send email. SMTP is difficult

to secure and set up correctly.

The SendGrid account may require adding a Sender.

Create a class to fetch the secure email key. For this sample, create Services/AuthMessageSenderOptions.cs:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/accconfirm.md
https://twitter.com/RickAndMSFT
https://github.com/Ponant
https://twitter.com/joeaudette
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://sendgrid.com
https://sendgrid.com/docs/ui/sending-email/senders/


dotnet user-secrets set SendGridUser RickAndMSFT
dotnet user-secrets set SendGridKey <key>

Successfully saved SendGridUser = RickAndMSFT to the secret store.

{
  "SendGridUser": "RickAndMSFT",
  "SendGridKey": "<key removed>"
}

Install SendGridInstall SendGrid

Install-Package SendGrid

Implement IEmailSenderImplement IEmailSender

Set the SendGridUser  and SendGridKey  with the secret-manager tool. For example:

On Windows, Secret Manager stores keys/value pairs in a secrets.json file in the 

%APPDATA%/Microsoft/UserSecrets/<WebAppName-userSecretsId>  directory.

The contents of the secrets.json file aren't encrypted. The following markup shows the secrets.json file. The 

SendGridKey  value has been removed.

For more information, see the Options pattern and configuration.

This tutorial shows how to add email notifications through SendGrid, but you can send email using SMTP and

other mechanisms.

Install the SendGrid  NuGet package:

Visual Studio

.NET Core CLI

From the Package Manager Console, enter the following command:

See Get Started with SendGrid for Free to register for a free SendGrid account.

To Implement IEmailSender , create Services/EmailSender.cs with code similar to the following:

https://sendgrid.com/
https://sendgrid.com/free/


using Microsoft.AspNetCore.Identity.UI.Services;
using Microsoft.Extensions.Options;
using SendGrid;
using SendGrid.Helpers.Mail;
using System.Threading.Tasks;

namespace WebPWrecover.Services
{
    public class EmailSender : IEmailSender
    {
        public EmailSender(IOptions<AuthMessageSenderOptions> optionsAccessor)
        {
            Options = optionsAccessor.Value;
        }

        public AuthMessageSenderOptions Options { get; } //set only via Secret Manager

        public Task SendEmailAsync(string email, string subject, string message)
        {
            return Execute(Options.SendGridKey, subject, message, email);
        }

        public Task Execute(string apiKey, string subject, string message, string email)
        {
            var client = new SendGridClient(apiKey);
            var msg = new SendGridMessage()
            {
                From = new EmailAddress("Joe@contoso.com", Options.SendGridUser),
                Subject = subject,
                PlainTextContent = message,
                HtmlContent = message
            };
            msg.AddTo(new EmailAddress(email));

            // Disable click tracking.
            // See https://sendgrid.com/docs/User_Guide/Settings/tracking.html
            msg.SetClickTracking(false, false);

            return client.SendEmailAsync(msg);
        }
    }
}

Configure startup to support emailConfigure startup to support email
Add the following code to the ConfigureServices  method in the Startup.cs file:

Add EmailSender  as a transient service.

Register the AuthMessageSenderOptions  configuration instance.



public void ConfigureServices(IServiceCollection services)
{

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(
                  options => options.SignIn.RequireConfirmedAccount = true)
        .AddEntityFrameworkStores<ApplicationDbContext>();

    // requires
    // using Microsoft.AspNetCore.Identity.UI.Services;
    // using WebPWrecover.Services;
    services.AddTransient<IEmailSender, EmailSender>();
    services.Configure<AuthMessageSenderOptions>(Configuration);

    services.AddRazorPages();
}

Scaffold RegisterConfirmation

Disable default account verificationDisable default account verification

Follow the instructions for Scaffold Identity and scaffold RegisterConfirmation .

 

With the default templates, the user is redirected to the Account.RegisterConfirmation  where they can select a link

to have the account confirmed. The default Account.RegisterConfirmation  is used onlyonly  for testing, automatic

account verification should be disabled in a production app.

To require a confirmed account and prevent immediate login at registration, set 

DisplayConfirmAccountLink = false  in /Areas/Identity/Pages/Account/RegisterConfirmation.cshtml.cs:



[AllowAnonymous]
public class RegisterConfirmationModel : PageModel
{
    private readonly UserManager<IdentityUser> _userManager;
    private readonly IEmailSender _sender;

    public RegisterConfirmationModel(UserManager<IdentityUser> userManager, IEmailSender sender)
    {
        _userManager = userManager;
        _sender = sender;
    }

    public string Email { get; set; }

    public bool DisplayConfirmAccountLink { get; set; }

    public string EmailConfirmationUrl { get; set; }

    public async Task<IActionResult> OnGetAsync(string email, string returnUrl = null)
    {
        if (email == null)
        {
            return RedirectToPage("/Index");
        }

        var user = await _userManager.FindByEmailAsync(email);
        if (user == null)
        {
            return NotFound($"Unable to load user with email '{email}'.");
        }

        Email = email;
        // Once you add a real email sender, you should remove this code that lets you confirm the account
        DisplayConfirmAccountLink = false;
        if (DisplayConfirmAccountLink)
        {
            var userId = await _userManager.GetUserIdAsync(user);
            var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
            code = WebEncoders.Base64UrlEncode(Encoding.UTF8.GetBytes(code));
            EmailConfirmationUrl = Url.Page(
                "/Account/ConfirmEmail",
                pageHandler: null,
                values: new { area = "Identity", userId = userId, code = code, returnUrl = returnUrl },
                protocol: Request.Scheme);
        }

        return Page();
    }
}

Register, confirm email, and reset password

Test password resetTest password reset

Run the web app, and test the account confirmation and password recovery flow.

Run the app and register a new user

Check your email for the account confirmation link. See Debug email if you don't get the email.

Click the link to confirm your email.

Sign in with your email and password.

Sign out.

If you're signed in, select LogoutLogout.



Resend email confirmation

Change email and activity timeoutChange email and activity timeout

services.ConfigureApplicationCookie(o => {
    o.ExpireTimeSpan = TimeSpan.FromDays(5);
    o.SlidingExpiration = true;
});

Change all data protection token lifespansChange all data protection token lifespans

public void ConfigureServices(IServiceCollection services)
{

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(
                  options => options.SignIn.RequireConfirmedAccount = true)
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.Configure<DataProtectionTokenProviderOptions>(o =>
       o.TokenLifespan = TimeSpan.FromHours(3));

    services.AddTransient<IEmailSender, EmailSender>();
    services.Configure<AuthMessageSenderOptions>(Configuration);

    services.AddRazorPages();
}

Change the email token lifespanChange the email token lifespan

Select the Log inLog in link and select the Forgot your password?Forgot your password? link.

Enter the email you used to register the account.

An email with a link to reset your password is sent. Check your email and click the link to reset your password.

After your password has been successfully reset, you can sign in with your email and new password.

 

In ASP.NET Core 5.0 and later, select the Resend email confirmationResend email confirmation link on the LoginLogin page.

The default inactivity timeout is 14 days. The following code sets the inactivity timeout to 5 days:

The following code changes all data protection tokens timeout period to 3 hours:

The built in Identity user tokens (see AspNetCore/src/Identity/Extensions.Core/src/TokenOptions.cs )have a one

day timeout.

The default token lifespan of the Identity user tokens is one day. This section shows how to change the email

token lifespan.

Add a custom DataProtectorTokenProvider<TUser> and DataProtectionTokenProviderOptions:

https://github.com/dotnet/AspNetCore/blob/v2.2.2/src/Identity/Extensions.Core/src/TokenOptions.cs
https://github.com/dotnet/AspNetCore/blob/v2.2.2/src/Identity/Core/src/DataProtectionTokenProviderOptions.cs
https://github.com/dotnet/AspNetCore/blob/v2.2.2/src/Identity/Extensions.Core/src/TokenOptions.cs
https://github.com/dotnet/AspNetCore/blob/v2.2.2/src/Identity/Core/src/DataProtectionTokenProviderOptions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.dataprotectortokenprovider-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.dataprotectiontokenprovideroptions


public class CustomEmailConfirmationTokenProvider<TUser>
                                       : DataProtectorTokenProvider<TUser> where TUser : class
{
    public CustomEmailConfirmationTokenProvider(IDataProtectionProvider dataProtectionProvider,
        IOptions<EmailConfirmationTokenProviderOptions> options,
        ILogger<DataProtectorTokenProvider<TUser>> logger)
                                          : base(dataProtectionProvider, options, logger)
    {

    }
}
public class EmailConfirmationTokenProviderOptions : DataProtectionTokenProviderOptions
{
    public EmailConfirmationTokenProviderOptions()
    {
        Name = "EmailDataProtectorTokenProvider";
        TokenLifespan = TimeSpan.FromHours(4);
    }
}

public void ConfigureServices(IServiceCollection services)
{

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(config =>
    {
        config.SignIn.RequireConfirmedEmail = true;
        config.Tokens.ProviderMap.Add("CustomEmailConfirmation",
            new TokenProviderDescriptor(
                typeof(CustomEmailConfirmationTokenProvider<IdentityUser>)));
        config.Tokens.EmailConfirmationTokenProvider = "CustomEmailConfirmation";
      }).AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddTransient<CustomEmailConfirmationTokenProvider<IdentityUser>>();

    services.AddTransient<IEmailSender, EmailSender>();
    services.Configure<AuthMessageSenderOptions>(Configuration);

    services.AddRazorPages();
}

Debug emailDebug email

Add the custom provider to the service container :

  

If you can't get email working:

Set a breakpoint in EmailSender.Execute  to verify SendGridClient.SendEmailAsync  is called.

Create a console app to send email using similar code to EmailSender.Execute .

Review the Email Activity page.

Check your spam folder.

Try another email alias on a different email provider (Microsoft, Yahoo, Gmail, etc.)

Try sending to different email accounts.

A security best practiceA security best practice is to notnot use production secrets in test and development. If you publish the app to

Azure, set the SendGrid secrets as application settings in the Azure Web App portal. The configuration system is

set up to read keys from environment variables.

https://sendgrid.com/docs/Integrate/Code_Examples/v2_Mail/csharp.html
https://sendgrid.com/docs/User_Guide/email_activity.html


Combine social and local login accounts
To complete this section, you must first enable an external authentication provider. See Facebook, Google, and

external provider authentication.

You can combine local and social accounts by clicking on your email link. In the following sequence,

"RickAndMSFT@gmail.com" is first created as a local login; however, you can create the account as a social login

first, then add a local login.

Click on the ManageManage link. Note the 0 external (social logins) associated with this account.

Click the link to another login service and accept the app requests. In the following image, Facebook is the

external authentication provider :



Enable account confirmation after a site has users

Prerequisites

Create a web app and scaffold Identity

dotnet new webapp -au Individual -uld -o WebPWrecover
cd WebPWrecover
dotnet add package Microsoft.VisualStudio.Web.CodeGeneration.Design
dotnet tool install -g dotnet-aspnet-codegenerator
dotnet aspnet-codegenerator identity -dc WebPWrecover.Data.ApplicationDbContext --files 
"Account.Register;Account.Login;Account.Logout;Account.ConfirmEmail"
dotnet ef database drop -f
dotnet ef database update
dotnet run

NOTENOTE

Test new user registration

The two accounts have been combined. You are able to sign in with either account. You might want your users to

add local accounts in case their social login authentication service is down, or more likely they've lost access to

their social account.

Enabling account confirmation on a site with users locks out all the existing users. Existing users are locked out

because their accounts aren't confirmed. To work around existing user lockout, use one of the following

approaches:

Update the database to mark all existing users as being confirmed.

Confirm existing users. For example, batch-send emails with confirmation links.

.NET Core 2.2 SDK or later

Run the following commands to create a web app with authentication.

If PasswordOptions are configured in Startup.ConfigureServices , [StringLength]  attribute configuration might be

required for the Password  property in scaffolded Identity pages. An InputModel  Password  property is found in the 

Areas/Identity/Pages/Account/Register.cshtml.cs  file after scaffolding Identity.

Run the app, select the RegisterRegister  link, and register a user. At this point, the only validation on the email is with the 

[EmailAddress]  attribute. After submitting the registration, you are logged into the app. Later in the tutorial, the

code is updated so new users can't sign in until their email is validated.

https://dotnet.microsoft.com/download/dotnet-core
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.passwordoptions
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.stringlengthattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.emailaddressattribute


    

View the Identity databaseView the Identity database

Require email confirmation

Visual Studio

.NET Core CLI

From the ViewView  menu, select SQL Ser ver Object ExplorerSQL Ser ver Object Explorer  (SSOX).

Navigate to (localdb)MSSQLLocalDB(SQL Ser ver 13)(localdb)MSSQLLocalDB(SQL Ser ver 13) . Right-click on dbo.AspNetUsersdbo.AspNetUsers  > View DataView Data:

Note the table's EmailConfirmed  field is False .

You might want to use this email again in the next step when the app sends a confirmation email. Right-click on

the row and select DeleteDelete. Deleting the email alias makes it easier in the following steps.

  

It's a best practice to confirm the email of a new user registration. Email confirmation helps to verify they're not

impersonating someone else (that is, they haven't registered with someone else's email). Suppose you had a

discussion forum, and you wanted to prevent "yli@example.com" from registering as "nolivetto@contoso.com".

Without email confirmation, "nolivetto@contoso.com" could receive unwanted email from your app. Suppose the

user accidentally registered as "ylo@example.com" and hadn't noticed the misspelling of "yli". They wouldn't be

able to use password recovery because the app doesn't have their correct email. Email confirmation provides

limited protection from bots. Email confirmation doesn't provide protection from malicious users with many

email accounts.

You generally want to prevent new users from posting any data to your web site before they have a confirmed

email.

Update Startup.ConfigureServices  to require a confirmed email:



public void ConfigureServices(IServiceCollection services)
{

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));

    services.AddDefaultIdentity<IdentityUser>(config =>
    {
        config.SignIn.RequireConfirmedEmail = true;
    })
        .AddDefaultUI(UIFramework.Bootstrap4)
        .AddEntityFrameworkStores<ApplicationDbContext>();

    // requires
    // using Microsoft.AspNetCore.Identity.UI.Services;
    // using WebPWrecover.Services;
    services.AddTransient<IEmailSender, EmailSender>();
    services.Configure<AuthMessageSenderOptions>(Configuration);

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

Configure email providerConfigure email provider

public class AuthMessageSenderOptions
{
    public string SendGridUser { get; set; }
    public string SendGridKey { get; set; }
}

Configure SendGrid user secretsConfigure SendGrid user secrets

C:/WebAppl>dotnet user-secrets set SendGridUser RickAndMSFT
info: Successfully saved SendGridUser = RickAndMSFT to the secret store.

{
  "SendGridUser": "RickAndMSFT",
  "SendGridKey": "<key removed>"
}

config.SignIn.RequireConfirmedEmail = true;  prevents registered users from logging in until their email is

confirmed.

In this tutorial, SendGrid is used to send email. You need a SendGrid account and key to send email. You can use

other email providers. ASP.NET Core 2.x includes System.Net.Mail , which allows you to send email from your app.

We recommend you use SendGrid or another email service to send email. SMTP is difficult to secure and set up

correctly.

Create a class to fetch the secure email key. For this sample, create Services/AuthMessageSenderOptions.cs:

Set the SendGridUser  and SendGridKey  with the secret-manager tool. For example:

On Windows, Secret Manager stores keys/value pairs in a secrets.json file in the 

%APPDATA%/Microsoft/UserSecrets/<WebAppName-userSecretsId>  directory.

The contents of the secrets.json file aren't encrypted. The following markup shows the secrets.json file. The 

SendGridKey  value has been removed.

For more information, see the Options pattern and configuration.

https://sendgrid.com


Install SendGridInstall SendGrid

Install-Package SendGrid

Implement IEmailSenderImplement IEmailSender

using Microsoft.AspNetCore.Identity.UI.Services;
using Microsoft.Extensions.Options;
using SendGrid;
using SendGrid.Helpers.Mail;
using System.Threading.Tasks;

namespace WebPWrecover.Services
{
    public class EmailSender : IEmailSender
    {
        public EmailSender(IOptions<AuthMessageSenderOptions> optionsAccessor)
        {
            Options = optionsAccessor.Value;
        }

        public AuthMessageSenderOptions Options { get; } //set only via Secret Manager

        public Task SendEmailAsync(string email, string subject, string message)
        {
            return Execute(Options.SendGridKey, subject, message, email);
        }

        public Task Execute(string apiKey, string subject, string message, string email)
        {
            var client = new SendGridClient(apiKey);
            var msg = new SendGridMessage()
            {
                From = new EmailAddress("Joe@contoso.com", "Joe Smith"),
                Subject = subject,
                PlainTextContent = message,
                HtmlContent = message
            };
            msg.AddTo(new EmailAddress(email));

            // Disable click tracking.
            // See https://sendgrid.com/docs/User_Guide/Settings/tracking.html
            msg.SetClickTracking(false, false);

            return client.SendEmailAsync(msg);
        }
    }
}

Configure startup to support emailConfigure startup to support email

This tutorial shows how to add email notifications through SendGrid, but you can send email using SMTP and

other mechanisms.

Install the SendGrid  NuGet package:

Visual Studio

.NET Core CLI

From the Package Manager Console, enter the following command:

See Get Started with SendGrid for Free to register for a free SendGrid account.

To Implement IEmailSender , create Services/EmailSender.cs with code similar to the following:

https://sendgrid.com/
https://sendgrid.com/free/


public void ConfigureServices(IServiceCollection services)
{

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));

    services.AddDefaultIdentity<IdentityUser>(config =>
    {
        config.SignIn.RequireConfirmedEmail = true;
    })
        .AddDefaultUI(UIFramework.Bootstrap4)
        .AddEntityFrameworkStores<ApplicationDbContext>();

    // requires
    // using Microsoft.AspNetCore.Identity.UI.Services;
    // using WebPWrecover.Services;
    services.AddTransient<IEmailSender, EmailSender>();
    services.Configure<AuthMessageSenderOptions>(Configuration);

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

Enable account confirmation and password recovery

await _signInManager.SignInAsync(user, isPersistent: false);

Add the following code to the ConfigureServices  method in the Startup.cs file:

Add EmailSender  as a transient service.

Register the AuthMessageSenderOptions  configuration instance.

The template has the code for account confirmation and password recovery. Find the OnPostAsync  method in

Areas/Identity/Pages/Account/Register.cshtml.cs.

Prevent newly registered users from being automatically signed in by commenting out the following line:

The complete method is shown with the changed line highlighted:



public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
    returnUrl = returnUrl ?? Url.Content("~/");
    if (ModelState.IsValid)
    {
        var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };
        var result = await _userManager.CreateAsync(user, Input.Password);
        if (result.Succeeded)
        {
            _logger.LogInformation("User created a new account with password.");

            var code = await _userManager.GenerateEmailConfirmationTokenAsync(user);
            var callbackUrl = Url.Page(
                "/Account/ConfirmEmail",
                pageHandler: null,
                values: new { userId = user.Id, code = code },
                protocol: Request.Scheme);

            await _emailSender.SendEmailAsync(Input.Email, "Confirm your email",
                $"Please confirm your account by <a href='{HtmlEncoder.Default.Encode(callbackUrl)}'>clicking 
here</a>.");

            //await _signInManager.SignInAsync(user, isPersistent: false);
            return LocalRedirect(returnUrl);
        }
        foreach (var error in result.Errors)
        {
            ModelState.AddModelError(string.Empty, error.Description);
        }
    }

    // If we got this far, something failed, redisplay form
    return Page();
}

Register, confirm email, and reset password

View the manage pageView the manage page

Run the web app, and test the account confirmation and password recovery flow.

Run the app and register a new user

Check your email for the account confirmation link. See Debug email if you don't get the email.

Click the link to confirm your email.

Sign in with your email and password.

Sign out.

Select your user name in the browser : 



Test password resetTest password reset

Change email and activity timeout

services.ConfigureApplicationCookie(o => {
    o.ExpireTimeSpan = TimeSpan.FromDays(5);
    o.SlidingExpiration = true;
});

Change all data protection token lifespansChange all data protection token lifespans

The manage page is displayed with the ProfileProfile tab selected. The EmailEmail  shows a check box indicating the email

has been confirmed.

If you're signed in, select LogoutLogout.

Select the Log inLog in link and select the Forgot your password?Forgot your password? link.

Enter the email you used to register the account.

An email with a link to reset your password is sent. Check your email and click the link to reset your password.

After your password has been successfully reset, you can sign in with your email and new password.

The default inactivity timeout is 14 days. The following code sets the inactivity timeout to 5 days:

The following code changes all data protection tokens timeout period to 3 hours:



public void ConfigureServices(IServiceCollection services)
{

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));

    services.AddDefaultIdentity<IdentityUser>(config =>
    {
        config.SignIn.RequireConfirmedEmail = true;
    })
        .AddDefaultUI(UIFramework.Bootstrap4)
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.Configure<DataProtectionTokenProviderOptions>(o =>
                o.TokenLifespan = TimeSpan.FromHours(3));

    services.AddTransient<IEmailSender, EmailSender>();
    services.Configure<AuthMessageSenderOptions>(Configuration);

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

Change the email token lifespanChange the email token lifespan

public class CustomEmailConfirmationTokenProvider<TUser> 
                                       : DataProtectorTokenProvider<TUser> where TUser : class
{
    public CustomEmailConfirmationTokenProvider(IDataProtectionProvider dataProtectionProvider,
        IOptions<EmailConfirmationTokenProviderOptions> options) 
                                                        : base(dataProtectionProvider, options)
    {

    }
}
public class EmailConfirmationTokenProviderOptions : DataProtectionTokenProviderOptions
{
    public EmailConfirmationTokenProviderOptions()
    {
        Name = "EmailDataProtectorTokenProvider";
        TokenLifespan = TimeSpan.FromHours(4);
    }
}

The built in Identity user tokens (see AspNetCore/src/Identity/Extensions.Core/src/TokenOptions.cs )have a one

day timeout.

The default token lifespan of the Identity user tokens is one day. This section shows how to change the email

token lifespan.

Add a custom DataProtectorTokenProvider<TUser> and DataProtectionTokenProviderOptions:

Add the custom provider to the service container :

https://github.com/dotnet/AspNetCore/blob/v2.2.2/src/Identity/Extensions.Core/src/TokenOptions.cs
https://github.com/dotnet/AspNetCore/blob/v2.2.2/src/Identity/Core/src/DataProtectionTokenProviderOptions.cs
https://github.com/dotnet/AspNetCore/blob/v2.2.2/src/Identity/Extensions.Core/src/TokenOptions.cs
https://github.com/dotnet/AspNetCore/blob/v2.2.2/src/Identity/Core/src/DataProtectionTokenProviderOptions.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.dataprotectortokenprovider-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.dataprotectiontokenprovideroptions


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));

    services.AddDefaultIdentity<IdentityUser>(config =>
    {
        config.SignIn.RequireConfirmedEmail = true;
        config.Tokens.ProviderMap.Add("CustomEmailConfirmation",
            new TokenProviderDescriptor(
                typeof(CustomEmailConfirmationTokenProvider<IdentityUser>)));
        config.Tokens.EmailConfirmationTokenProvider = "CustomEmailConfirmation";                
    })
        .AddDefaultUI(UIFramework.Bootstrap4)
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddTransient<CustomEmailConfirmationTokenProvider<IdentityUser>>();
    services.AddTransient<IEmailSender, EmailSender>();            
    services.Configure<AuthMessageSenderOptions>(Configuration); // For SendGrid key.

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

Resend email confirmationResend email confirmation

Debug emailDebug email

Combine social and local login accounts

See this GitHub issue.

 

If you can't get email working:

Set a breakpoint in EmailSender.Execute  to verify SendGridClient.SendEmailAsync  is called.

Create a console app to send email using similar code to EmailSender.Execute .

Review the Email Activity page.

Check your spam folder.

Try another email alias on a different email provider (Microsoft, Yahoo, Gmail, etc.)

Try sending to different email accounts.

A security best practiceA security best practice is to notnot use production secrets in test and development. If you publish the app to

Azure, you can set the SendGrid secrets as application settings in the Azure Web App portal. The configuration

system is set up to read keys from environment variables.

To complete this section, you must first enable an external authentication provider. See Facebook, Google, and

external provider authentication.

You can combine local and social accounts by clicking on your email link. In the following sequence,

"RickAndMSFT@gmail.com" is first created as a local login; however, you can create the account as a social login

first, then add a local login.

https://github.com/dotnet/AspNetCore/issues/5410
https://sendgrid.com/docs/Integrate/Code_Examples/v2_Mail/csharp.html
https://sendgrid.com/docs/User_Guide/email_activity.html


Click on the ManageManage link. Note the 0 external (social logins) associated with this account.

Click the link to another login service and accept the app requests. In the following image, Facebook is the

external authentication provider :



Enable account confirmation after a site has users

The two accounts have been combined. You are able to sign in with either account. You might want your users to

add local accounts in case their social login authentication service is down, or more likely they've lost access to

their social account.

Enabling account confirmation on a site with users locks out all the existing users. Existing users are locked out

because their accounts aren't confirmed. To work around existing user lockout, use one of the following

approaches:

Update the database to mark all existing users as being confirmed.

Confirm existing users. For example, batch-send emails with confirmation links.



Enable QR Code generation for TOTP authenticator
apps in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Adding QR Codes to the 2FA configuration page

@section Scripts {
    @await Html.PartialAsync("_ValidationScriptsPartial")
}

QR Codes requires ASP.NET Core 2.0 or later.

ASP.NET Core ships with support for authenticator applications for individual authentication. Two factor

authentication (2FA) authenticator apps, using a Time-based One-time Password Algorithm (TOTP), are the

industry recommended approach for 2FA. 2FA using TOTP is preferred to SMS 2FA. An authenticator app provides

a 6 to 8 digit code which users must enter after confirming their username and password. Typically an

authenticator app is installed on a smart phone.

The ASP.NET Core web app templates support authenticators, but don't provide support for QRCode generation.

QRCode generators ease the setup of 2FA. This document will guide you through adding QR Code generation to

the 2FA configuration page.

Two factor authentication does not happen using an external authentication provider, such as Google or Facebook.

External logins are protected by whatever mechanism the external login provider provides. Consider, for example,

the Microsoft authentication provider requires a hardware key or another 2FA approach. If the default templates

enforced "local" 2FA then users would be required to satisfy two 2FA approaches, which is not a commonly used

scenario.

These instructions use qrcode.js from the https://davidshimjs.github.io/qrcodejs/ repo.

Download the qrcode.js javascript library to the wwwroot\lib  folder in your project.

Follow the instructions in Scaffold Identity to generate

/Areas/Identity/Pages/Account/Manage/EnableAuthenticator.cshtml.

In /Areas/Identity/Pages/Account/Manage/EnableAuthenticator.cshtml, locate the Scripts  section at the end

of the file:

In Pages/Account/Manage/EnableAuthenticator.cshtml (Razor Pages) or

Views/Manage/EnableAuthenticator.cshtml (MVC), locate the Scripts  section at the end of the file:

Update the Scripts  section to add a reference to the qrcodejs  library you added and a call to generate the

QR Code. It should look as follows:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/identity-enable-qrcodes.md
https://wikipedia.org/wiki/QR_code
https://davidshimjs.github.io/qrcodejs/
https://davidshimjs.github.io/qrcodejs/


@section Scripts {
    @await Html.PartialAsync("_ValidationScriptsPartial")

    <script type="text/javascript" src="~/lib/qrcode.js"></script>
    <script type="text/javascript">
        new QRCode(document.getElementById("qrCode"),
            {
                text: "@Html.Raw(Model.AuthenticatorUri)",
                width: 150,
                height: 150
            });
    </script>
}

Change the site name in the QR Code

private string GenerateQrCodeUri(string email, string unformattedKey)
{
    return string.Format(
        AuthenticatorUriFormat,
        _urlEncoder.Encode("Razor Pages"),
        _urlEncoder.Encode(email),
        unformattedKey);
}

Using a different QR Code library

TOTP client and server time skew

Delete the paragraph which links you to these instructions.

Run your app and ensure that you can scan the QR code and validate the code the authenticator proves.

The site name in the QR Code is taken from the project name you choose when initially creating your project. You

can change it by looking for the GenerateQrCodeUri(string email, string unformattedKey)  method in the

/Areas/Identity/Pages/Account/Manage/EnableAuthenticator.cshtml.cs.

The site name in the QR Code is taken from the project name you choose when initially creating your project. You

can change it by looking for the GenerateQrCodeUri(string email, string unformattedKey)  method in the

Pages/Account/Manage/EnableAuthenticator.cshtml.cs (Razor Pages) file or the Controllers/ManageController.cs

(MVC) file.

The default code from the template looks as follows:

The second parameter in the call to string.Format  is your site name, taken from your solution name. It can be

changed to any value, but it must always be URL encoded.

You can replace the QR Code library with your preferred library. The HTML contains a qrCode  element into which

you can place a QR Code by whatever mechanism your library provides.

The correctly formatted URL for the QR Code is available in the:

AuthenticatorUri  property of the model.

data-url  property in the qrCodeData  element.

TOTP (Time-based One-Time Password) authentication depends on both the server and authenticator device

having an accurate time. Tokens only last for 30 seconds. If TOTP 2FA logins are failing, check that the server time

is accurate, and preferably synchronized to an accurate NTP service.





Two-factor authentication with SMS in ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

WARNINGWARNING

Create a new ASP.NET Core project

Create an SMS accountCreate an SMS account

Figuring out SMS Provider credentialsFiguring out SMS Provider credentials

Specifying SenderID / OriginatorSpecifying SenderID / Originator

Provide credentials for the SMS serviceProvide credentials for the SMS service

By Rick Anderson and Swiss-Devs

Two factor authentication (2FA) authenticator apps, using a Time-based One-time Password Algorithm (TOTP), are the

industry recommended approach for 2FA. 2FA using TOTP is preferred to SMS 2FA. For more information, see Enable QR

Code generation for TOTP authenticator apps in ASP.NET Core for ASP.NET Core 2.0 and later.

This tutorial shows how to set up two-factor authentication (2FA) using SMS. Instructions are given for twilio and

ASPSMS, but you can use any other SMS provider. We recommend you complete Account Confirmation and

Password Recovery before starting this tutorial.

View or download sample code. How to download.

Create a new ASP.NET Core web app named Web2FA  with individual user accounts. Follow the instructions in

Enforce HTTPS in ASP.NET Core to set up and require HTTPS.

Create an SMS account, for example, from twilio or ASPSMS. Record the authentication credentials (for twilio:

accountSid and authToken, for ASPSMS: Userkey and Password).

Twilio:Twilio:

From the Dashboard tab of your Twilio account, copy the Account S IDAccount S ID and Auth tokenAuth token.

ASPSMS:ASPSMS:

From your account settings, navigate to UserkeyUserkey  and copy it together with your PasswordPassword.

We will later store these values in with the secret-manager tool within the keys SMSAccountIdentification  and 

SMSAccountPassword .

Twilio:Twilio: From the Numbers tab, copy your Twilio phone numberphone number .

ASPSMS:ASPSMS: Within the Unlock Originators Menu, unlock one or more Originators or choose an alphanumeric

Originator (Not supported by all networks).

We will later store this value with the secret-manager tool within the key SMSAccountFrom .

We'll use the Options pattern to access the user account and key settings.

Create a class to fetch the secure SMS key. For this sample, the SMSoptions  class is created in the

Services/SMSoptions.cs file.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/2fa.md
https://twitter.com/RickAndMSFT
https://github.com/Swiss-Devs
https://www.twilio.com/
https://www.aspsms.com/asp.net/identity/core/testcredits/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authentication/2fa/sample/Web2FA
https://www.twilio.com/
https://www.aspsms.com/asp.net/identity/core/testcredits/


namespace Web2FA.Services
{
    public class SMSoptions
    {
        public string SMSAccountIdentification { get; set; }
        public string SMSAccountPassword { get; set; }
        public string SMSAccountFrom { get; set; }
    }
}

C:/Web2FA/src/WebApp1>dotnet user-secrets set SMSAccountIdentification 12345
info: Successfully saved SMSAccountIdentification = 12345 to the secret store.

Set the SMSAccountIdentification , SMSAccountPassword  and SMSAccountFrom  with the secret-manager tool. For

example:

Add the NuGet package for the SMS provider. From the Package Manager Console (PMC) run:

Twilio:Twilio:

Install-Package Twilio

ASPSMS:ASPSMS:

Install-Package ASPSMS

Add code in the Services/MessageServices.cs file to enable SMS. Use either the Twilio or the ASPSMS section:

Twilio:Twilio:



using Microsoft.Extensions.Options;
using System.Threading.Tasks;
using Twilio;
using Twilio.Rest.Api.V2010.Account;
using Twilio.Types;

namespace Web2FA.Services
{
    // This class is used by the application to send Email and SMS
    // when you turn on two-factor authentication in ASP.NET Identity.
    // For more details see this link https://go.microsoft.com/fwlink/?LinkID=532713
    public class AuthMessageSender : IEmailSender, ISmsSender
    {
        public AuthMessageSender(IOptions<SMSoptions> optionsAccessor)
        {
            Options = optionsAccessor.Value;
        }

        public SMSoptions Options { get; }  // set only via Secret Manager

        public Task SendEmailAsync(string email, string subject, string message)
        {
            // Plug in your email service here to send an email.
            return Task.FromResult(0);
        }

        public Task SendSmsAsync(string number, string message)
        {
            // Plug in your SMS service here to send a text message.
            // Your Account SID from twilio.com/console
            var accountSid = Options.SMSAccountIdentification;
            // Your Auth Token from twilio.com/console
            var authToken = Options.SMSAccountPassword;

            TwilioClient.Init(accountSid, authToken);

            return MessageResource.CreateAsync(
              to: new PhoneNumber(number),
              from: new PhoneNumber(Options.SMSAccountFrom),
              body: message);
        }
    }
}

ASPSMS:ASPSMS:



using Microsoft.Extensions.Options;
using System.Threading.Tasks;

namespace Web2FA.Services
{
    // This class is used by the application to send Email and SMS
    // when you turn on two-factor authentication in ASP.NET Identity.
    // For more details see this link https://go.microsoft.com/fwlink/?LinkID=532713
    public class AuthMessageSender : IEmailSender, ISmsSender
    {
        public AuthMessageSender(IOptions<SMSoptions> optionsAccessor)
        {
            Options = optionsAccessor.Value;
        }

        public SMSoptions Options { get; }  // set only via Secret Manager

        public Task SendEmailAsync(string email, string subject, string message)
        {
            // Plug in your email service here to send an email.
            return Task.FromResult(0);
        }

        public Task SendSmsAsync(string number, string message)
        {
            ASPSMS.SMS SMSSender = new ASPSMS.SMS();

            SMSSender.Userkey = Options.SMSAccountIdentification;
            SMSSender.Password = Options.SMSAccountPassword;
            SMSSender.Originator = Options.SMSAccountFrom;

            SMSSender.AddRecipient(number);
            SMSSender.MessageData = message;

            SMSSender.SendTextSMS();

            return Task.FromResult(0);
        }
    }
}

Configure startup to use Configure startup to use SMSoptions

    // Add application services.
    services.AddTransient<IEmailSender, AuthMessageSender>();
    services.AddTransient<ISmsSender, AuthMessageSender>();
    services.Configure<SMSoptions>(Configuration);
}

Enable two-factor authenticationEnable two-factor authentication

Log in with two-factor authentication

Add SMSoptions  to the service container in the ConfigureServices  method in the Startup.cs:

Open the Views/Manage/Index.cshtml Razor view file and remove the comment characters (so no markup is

commented out).

Run the app and register a new user



Tap on your user name, which activates the Index  action method in Manage controller. Then tap the phone

number AddAdd link.

Add a phone number that will receive the verification code, and tap Send ver ification codeSend ver ification code.



You will get a text message with the verification code. Enter it and tap SubmitSubmit

If you don't get a text message, see twilio log page.

The Manage view shows your phone number was added successfully.



Test two-factor authenticationTest two-factor authentication

Tap EnableEnable to enable two-factor authentication.

Log off.

Log in.

The user account has enabled two-factor authentication, so you have to provide the second factor of

authentication . In this tutorial you have enabled phone verification. The built in templates also allow you to

set up email as the second factor. You can set up additional second factors for authentication such as QR



codes. Tap SubmitSubmit.

Enter the code you get in the SMS message.

Clicking on the Remember this browserRemember this browser  check box will exempt you from needing to use 2FA to log on

when using the same device and browser. Enabling 2FA and clicking on Remember this browserRemember this browser  will

provide you with strong 2FA protection from malicious users trying to access your account, as long as they

don't have access to your device. You can do this on any private device you regularly use. By setting

Remember this browserRemember this browser , you get the added security of 2FA from devices you don't regularly use, and you

get the convenience on not having to go through 2FA on your own devices.



Account lockout for protecting against brute force attacks

public void ConfigureServices(IServiceCollection services)
{
    // Add framework services.
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

    services.AddIdentity<ApplicationUser, IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultTokenProviders();

    services.AddMvc();

    services.Configure<IdentityOptions>(options =>
    {
        options.Lockout.MaxFailedAccessAttempts = 10;
        options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(10);
    });

    // Add application services.
    services.AddTransient<IEmailSender, AuthMessageSender>();
    services.AddTransient<ISmsSender, AuthMessageSender>();
    services.Configure<SMSoptions>(Configuration);
}

var result = await _signInManager.PasswordSignInAsync(
                 Input.Email, Input.Password, Input.RememberMe, lockoutOnFailure: true);

Account lockout is recommended with 2FA. Once a user signs in through a local account or social account, each

failed attempt at 2FA is stored. If the maximum failed access attempts is reached, the user is locked out (default: 5

minute lockout after 5 failed access attempts). A successful authentication resets the failed access attempts count

and resets the clock. The maximum failed access attempts and lockout time can be set with

MaxFailedAccessAttempts and DefaultLockoutTimeSpan. The following configures account lockout for 10 minutes

after 10 failed access attempts:

Confirm that PasswordSignInAsync sets lockoutOnFailure  to true :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions.maxfailedaccessattempts
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.lockoutoptions.defaultlockouttimespan
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1.passwordsigninasync


Use cookie authentication without ASP.NET Core
Identity
9/22/2020 • 14 minutes to read • Edit Online

Configuration

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
    .AddCookie();

By Rick Anderson

ASP.NET Core Identity is a complete, full-featured authentication provider for creating and maintaining logins.

However, a cookie-based authentication provider without ASP.NET Core Identity can be used. For more

information, see Introduction to Identity on ASP.NET Core.

View or download sample code (how to download)

For demonstration purposes in the sample app, the user account for the hypothetical user, Maria Rodriguez, is

hardcoded into the app. Use the EmailEmail  address maria.rodriguez@contoso.com  and any password to sign in the user.

The user is authenticated in the AuthenticateUser  method in the Pages/Account/Login.cshtml.cs file. In a real-

world example, the user would be authenticated against a database.

If the app doesn't use the Microsoft.AspNetCore.App metapackage, create a package reference in the project file

for the Microsoft.AspNetCore.Authentication.Cookies package.

In the Startup.ConfigureServices  method, create the Authentication Middleware services with the

AddAuthentication and AddCookie methods:

AuthenticationScheme passed to AddAuthentication  sets the default authentication scheme for the app. 

AuthenticationScheme  is useful when there are multiple instances of cookie authentication and you want to

authorize with a specific scheme. Setting the AuthenticationScheme  to

CookieAuthenticationDefaults.AuthenticationScheme provides a value of "Cookies" for the scheme. You can supply

any string value that distinguishes the scheme.

The app's authentication scheme is different from the app's cookie authentication scheme. When a cookie

authentication scheme isn't provided to AddCookie, it uses CookieAuthenticationDefaults.AuthenticationScheme

("Cookies").

The authentication cookie's IsEssential property is set to true  by default. Authentication cookies are allowed when

a site visitor hasn't consented to data collection. For more information, see General Data Protection Regulation

(GDPR) support in ASP.NET Core.

In Startup.Configure , call UseAuthentication  and UseAuthorization  to set the HttpContext.User  property and run

Authorization Middleware for requests. Call the UseAuthentication  and UseAuthorization  methods before calling 

UseEndpoints :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/cookie.md
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authentication/cookie/samples
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Cookies/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.cookieextensions.addcookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationdefaults.authenticationscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationdefaults.authenticationscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.cookieextensions.addcookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.isessential#microsoft_aspnetcore_http_cookiebuilder_isessential


app.UseAuthentication();
app.UseAuthorization();

app.UseEndpoints(endpoints =>
{
    endpoints.MapControllers();
    endpoints.MapRazorPages();
});

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
    .AddCookie(options =>
    {
        ...
    });

Cookie Policy Middleware

app.UseCookiePolicy(cookiePolicyOptions);

var cookiePolicyOptions = new CookiePolicyOptions
{
    MinimumSameSitePolicy = SameSiteMode.Strict,
};

M IN IM UM SA M ESIT EP O L IC YM IN IM UM SA M ESIT EP O L IC Y C O O KIE . SA M ESIT EC O O KIE . SA M ESIT E
RESULTA N T  C O O KIE . SA M ESIT ERESULTA N T  C O O KIE . SA M ESIT E
SET T IN GSET T IN G

SameSiteMode.None SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Lax SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Lax
SameSiteMode.Lax
SameSiteMode.Strict

The CookieAuthenticationOptions class is used to configure the authentication provider options.

Set CookieAuthenticationOptions  in the service configuration for authentication in the Startup.ConfigureServices

method:

Cookie Policy Middleware enables cookie policy capabilities. Adding the middleware to the app processing

pipeline is order sensitive—it only affects downstream components registered in the pipeline.

Use CookiePolicyOptions provided to the Cookie Policy Middleware to control global characteristics of cookie

processing and hook into cookie processing handlers when cookies are appended or deleted.

The default MinimumSameSitePolicy value is SameSiteMode.Lax  to permit OAuth2 authentication. To strictly

enforce a same-site policy of SameSiteMode.Strict , set the MinimumSameSitePolicy . Although this setting breaks

OAuth2 and other cross-origin authentication schemes, it elevates the level of cookie security for other types of

apps that don't rely on cross-origin request processing.

The Cookie Policy Middleware setting for MinimumSameSitePolicy  can affect the setting of Cookie.SameSite  in 

CookieAuthenticationOptions  settings according to the matrix below.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cookiepolicy.cookiepolicymiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.minimumsamesitepolicy#microsoft_aspnetcore_builder_cookiepolicyoptions_minimumsamesitepolicy


SameSiteMode.Strict SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Strict
SameSiteMode.Strict
SameSiteMode.Strict

M IN IM UM SA M ESIT EP O L IC YM IN IM UM SA M ESIT EP O L IC Y C O O KIE . SA M ESIT EC O O KIE . SA M ESIT E
RESULTA N T  C O O KIE . SA M ESIT ERESULTA N T  C O O KIE . SA M ESIT E
SET T IN GSET T IN G

Create an authentication cookie

var claims = new List<Claim>
{
    new Claim(ClaimTypes.Name, user.Email),
    new Claim("FullName", user.FullName),
    new Claim(ClaimTypes.Role, "Administrator"),
};

var claimsIdentity = new ClaimsIdentity(
    claims, CookieAuthenticationDefaults.AuthenticationScheme);

var authProperties = new AuthenticationProperties
{
    //AllowRefresh = <bool>,
    // Refreshing the authentication session should be allowed.

    //ExpiresUtc = DateTimeOffset.UtcNow.AddMinutes(10),
    // The time at which the authentication ticket expires. A 
    // value set here overrides the ExpireTimeSpan option of 
    // CookieAuthenticationOptions set with AddCookie.

    //IsPersistent = true,
    // Whether the authentication session is persisted across 
    // multiple requests. When used with cookies, controls
    // whether the cookie's lifetime is absolute (matching the
    // lifetime of the authentication ticket) or session-based.

    //IssuedUtc = <DateTimeOffset>,
    // The time at which the authentication ticket was issued.

    //RedirectUri = <string>
    // The full path or absolute URI to be used as an http 
    // redirect response value.
};

await HttpContext.SignInAsync(
    CookieAuthenticationDefaults.AuthenticationScheme, 
    new ClaimsPrincipal(claimsIdentity), 
    authProperties);

To create a cookie holding user information, construct a ClaimsPrincipal. The user information is serialized and

stored in the cookie.

Create a ClaimsIdentity with any required Claims and call SignInAsync to sign in the user :

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

SignInAsync  creates an encrypted cookie and adds it to the current response. If AuthenticationScheme  isn't

specified, the default scheme is used.

RedirectUri is only used on a few specific paths by default, for example, the login path and logout paths. For more

information see the CookieAuthenticationHandler source.

https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsidentity
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claim
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signinasync
https://github.com/MicrosoftDocs/feedback/issues/2515
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationproperties.redirecturi#microsoft_aspnetcore_authentication_authenticationproperties_redirecturi
https://github.com/dotnet/aspnetcore/blob/f2e6e6ff334176540ef0b3291122e359c2106d1a/src/Security/Authentication/Cookies/src/CookieAuthenticationHandler.cs#L334


Sign out

await HttpContext.SignOutAsync(
    CookieAuthenticationDefaults.AuthenticationScheme);

React to back-end changes

var claims = new List<Claim>
{
    new Claim(ClaimTypes.Name, user.Email),
    new Claim("LastChanged", {Database Value})
};

var claimsIdentity = new ClaimsIdentity(
    claims, 
    CookieAuthenticationDefaults.AuthenticationScheme);

await HttpContext.SignInAsync(
    CookieAuthenticationDefaults.AuthenticationScheme, 
    new ClaimsPrincipal(claimsIdentity));

ValidatePrincipal(CookieValidatePrincipalContext)

ASP.NET Core's Data Protection system is used for encryption. For an app hosted on multiple machines, load

balancing across apps, or using a web farm, configure data protection to use the same key ring and app identifier.

To sign out the current user and delete their cookie, call SignOutAsync:

If CookieAuthenticationDefaults.AuthenticationScheme  (or "Cookies") isn't used as the scheme (for example,

"ContosoCookie"), supply the scheme used when configuring the authentication provider. Otherwise, the default

scheme is used.

When the browser closes it automatically deletes session based cookies (non-persistent cookies), but no cookies

are cleared when an individual tab is closed. The server is not notified of tab or browser close events.

Once a cookie is created, the cookie is the single source of identity. If a user account is disabled in back-end

systems:

The app's cookie authentication system continues to process requests based on the authentication cookie.

The user remains signed into the app as long as the authentication cookie is valid.

The ValidatePrincipal event can be used to intercept and override validation of the cookie identity. Validating the

cookie on every request mitigates the risk of revoked users accessing the app.

One approach to cookie validation is based on keeping track of when the user database changes. If the database

hasn't been changed since the user's cookie was issued, there's no need to re-authenticate the user if their cookie

is still valid. In the sample app, the database is implemented in IUserRepository  and stores a LastChanged  value.

When a user is updated in the database, the LastChanged  value is set to the current time.

In order to invalidate a cookie when the database changes based on the LastChanged  value, create the cookie with

a LastChanged  claim containing the current LastChanged  value from the database:

To implement an override for the ValidatePrincipal  event, write a method with the following signature in a class

that derives from CookieAuthenticationEvents:

The following is an example implementation of CookieAuthenticationEvents :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signoutasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationevents.validateprincipal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationevents


using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authentication;
using Microsoft.AspNetCore.Authentication.Cookies;

public class CustomCookieAuthenticationEvents : CookieAuthenticationEvents
{
    private readonly IUserRepository _userRepository;

    public CustomCookieAuthenticationEvents(IUserRepository userRepository)
    {
        // Get the database from registered DI services.
        _userRepository = userRepository;
    }

    public override async Task ValidatePrincipal(CookieValidatePrincipalContext context)
    {
        var userPrincipal = context.Principal;

        // Look for the LastChanged claim.
        var lastChanged = (from c in userPrincipal.Claims
                           where c.Type == "LastChanged"
                           select c.Value).FirstOrDefault();

        if (string.IsNullOrEmpty(lastChanged) ||
            !_userRepository.ValidateLastChanged(lastChanged))
        {
            context.RejectPrincipal();

            await context.HttpContext.SignOutAsync(
                CookieAuthenticationDefaults.AuthenticationScheme);
        }
    }
}

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
    .AddCookie(options =>
    {
        options.EventsType = typeof(CustomCookieAuthenticationEvents);
    });

services.AddScoped<CustomCookieAuthenticationEvents>();

WARNINGWARNING

Persistent cookies

Register the events instance during cookie service registration in the Startup.ConfigureServices  method. Provide

a scoped service registration for your CustomCookieAuthenticationEvents  class:

Consider a situation in which the user's name is updated—a decision that doesn't affect security in any way. If you

want to non-destructively update the user principal, call context.ReplacePrincipal  and set the 

context.ShouldRenew  property to true .

The approach described here is triggered on every request. Validating authentication cookies for all users on every request

can result in a large performance penalty for the app.

You may want the cookie to persist across browser sessions. This persistence should only be enabled with explicit

user consent with a "Remember Me" check box on sign in or a similar mechanism.



// using Microsoft.AspNetCore.Authentication;

await HttpContext.SignInAsync(
    CookieAuthenticationDefaults.AuthenticationScheme,
    new ClaimsPrincipal(claimsIdentity),
    new AuthenticationProperties
    {
        IsPersistent = true
    });

Absolute cookie expiration

// using Microsoft.AspNetCore.Authentication;

await HttpContext.SignInAsync(
    CookieAuthenticationDefaults.AuthenticationScheme,
    new ClaimsPrincipal(claimsIdentity),
    new AuthenticationProperties
    {
        IsPersistent = true,
        ExpiresUtc = DateTime.UtcNow.AddMinutes(20)
    });

Configuration

The following code snippet creates an identity and corresponding cookie that survives through browser closures.

Any sliding expiration settings previously configured are honored. If the cookie expires while the browser is closed,

the browser clears the cookie once it's restarted.

Set IsPersistent to true  in AuthenticationProperties:

An absolute expiration time can be set with ExpiresUtc. To create a persistent cookie, IsPersistent  must also be

set. Otherwise, the cookie is created with a session-based lifetime and could expire either before or after the

authentication ticket that it holds. When ExpiresUtc  is set, it overrides the value of the ExpireTimeSpan option of

CookieAuthenticationOptions, if set.

The following code snippet creates an identity and corresponding cookie that lasts for 20 minutes. This ignores

any sliding expiration settings previously configured.

ASP.NET Core Identity is a complete, full-featured authentication provider for creating and maintaining logins.

However, a cookie-based authentication provider without ASP.NET Core Identity can be used. For more

information, see Introduction to Identity on ASP.NET Core.

View or download sample code (how to download)

For demonstration purposes in the sample app, the user account for the hypothetical user, Maria Rodriguez, is

hardcoded into the app. Use the EmailEmail  address maria.rodriguez@contoso.com  and any password to sign in the user.

The user is authenticated in the AuthenticateUser  method in the Pages/Account/Login.cshtml.cs file. In a real-

world example, the user would be authenticated against a database.

If the app doesn't use the Microsoft.AspNetCore.App metapackage, create a package reference in the project file

for the Microsoft.AspNetCore.Authentication.Cookies package.

In the Startup.ConfigureServices  method, create the Authentication Middleware service with the

AddAuthentication and AddCookie methods:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationproperties.ispersistent#microsoft_aspnetcore_authentication_authenticationproperties_ispersistent
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationproperties
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationproperties.expiresutc#microsoft_aspnetcore_authentication_authenticationproperties_expiresutc
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions.expiretimespan#microsoft_aspnetcore_authentication_cookies_cookieauthenticationoptions_expiretimespan
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authentication/cookie/samples
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Cookies/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.cookieextensions.addcookie


services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
    .AddCookie();

app.UseAuthentication();

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
    .AddCookie(options =>
    {
        ...
    });

Cookie Policy Middleware

app.UseCookiePolicy(cookiePolicyOptions);

AuthenticationScheme passed to AddAuthentication  sets the default authentication scheme for the app. 

AuthenticationScheme  is useful when there are multiple instances of cookie authentication and you want to

authorize with a specific scheme. Setting the AuthenticationScheme  to

CookieAuthenticationDefaults.AuthenticationScheme provides a value of "Cookies" for the scheme. You can supply

any string value that distinguishes the scheme.

The app's authentication scheme is different from the app's cookie authentication scheme. When a cookie

authentication scheme isn't provided to AddCookie, it uses CookieAuthenticationDefaults.AuthenticationScheme

("Cookies").

The authentication cookie's IsEssential property is set to true  by default. Authentication cookies are allowed when

a site visitor hasn't consented to data collection. For more information, see General Data Protection Regulation

(GDPR) support in ASP.NET Core.

In the Startup.Configure  method, call the UseAuthentication  method to invoke the Authentication Middleware

that sets the HttpContext.User  property. Call the UseAuthentication  method before calling 

UseMvcWithDefaultRoute  or UseMvc :

The CookieAuthenticationOptions class is used to configure the authentication provider options.

Set CookieAuthenticationOptions  in the service configuration for authentication in the Startup.ConfigureServices

method:

Cookie Policy Middleware enables cookie policy capabilities. Adding the middleware to the app processing

pipeline is order sensitive—it only affects downstream components registered in the pipeline.

Use CookiePolicyOptions provided to the Cookie Policy Middleware to control global characteristics of cookie

processing and hook into cookie processing handlers when cookies are appended or deleted.

The default MinimumSameSitePolicy value is SameSiteMode.Lax  to permit OAuth2 authentication. To strictly

enforce a same-site policy of SameSiteMode.Strict , set the MinimumSameSitePolicy . Although this setting breaks

OAuth2 and other cross-origin authentication schemes, it elevates the level of cookie security for other types of

apps that don't rely on cross-origin request processing.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationdefaults.authenticationscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationdefaults.authenticationscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.cookieextensions.addcookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.isessential#microsoft_aspnetcore_http_cookiebuilder_isessential
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cookiepolicy.cookiepolicymiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.minimumsamesitepolicy#microsoft_aspnetcore_builder_cookiepolicyoptions_minimumsamesitepolicy


var cookiePolicyOptions = new CookiePolicyOptions
{
    MinimumSameSitePolicy = SameSiteMode.Strict,
};

M IN IM UM SA M ESIT EP O L IC YM IN IM UM SA M ESIT EP O L IC Y C O O KIE . SA M ESIT EC O O KIE . SA M ESIT E
RESULTA N T  C O O KIE . SA M ESIT ERESULTA N T  C O O KIE . SA M ESIT E
SET T IN GSET T IN G

SameSiteMode.None SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Lax SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Lax
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Strict SameSiteMode.None
SameSiteMode.Lax
SameSiteMode.Strict

SameSiteMode.Strict
SameSiteMode.Strict
SameSiteMode.Strict

Create an authentication cookie

The Cookie Policy Middleware setting for MinimumSameSitePolicy  can affect the setting of Cookie.SameSite  in 

CookieAuthenticationOptions  settings according to the matrix below.

To create a cookie holding user information, construct a ClaimsPrincipal. The user information is serialized and

stored in the cookie.

Create a ClaimsIdentity with any required Claims and call SignInAsync to sign in the user :

https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsidentity
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claim
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signinasync


var claims = new List<Claim>
{
    new Claim(ClaimTypes.Name, user.Email),
    new Claim("FullName", user.FullName),
    new Claim(ClaimTypes.Role, "Administrator"),
};

var claimsIdentity = new ClaimsIdentity(
    claims, CookieAuthenticationDefaults.AuthenticationScheme);

var authProperties = new AuthenticationProperties
{
    //AllowRefresh = <bool>,
    // Refreshing the authentication session should be allowed.

    //ExpiresUtc = DateTimeOffset.UtcNow.AddMinutes(10),
    // The time at which the authentication ticket expires. A 
    // value set here overrides the ExpireTimeSpan option of 
    // CookieAuthenticationOptions set with AddCookie.

    //IsPersistent = true,
    // Whether the authentication session is persisted across 
    // multiple requests. When used with cookies, controls
    // whether the cookie's lifetime is absolute (matching the
    // lifetime of the authentication ticket) or session-based.

    //IssuedUtc = <DateTimeOffset>,
    // The time at which the authentication ticket was issued.

    //RedirectUri = <string>
    // The full path or absolute URI to be used as an http 
    // redirect response value.
};

await HttpContext.SignInAsync(
    CookieAuthenticationDefaults.AuthenticationScheme, 
    new ClaimsPrincipal(claimsIdentity), 
    authProperties);

Sign out

await HttpContext.SignOutAsync(
    CookieAuthenticationDefaults.AuthenticationScheme);

React to back-end changes

SignInAsync  creates an encrypted cookie and adds it to the current response. If AuthenticationScheme  isn't

specified, the default scheme is used.

ASP.NET Core's Data Protection system is used for encryption. For an app hosted on multiple machines, load

balancing across apps, or using a web farm, configure data protection to use the same key ring and app identifier.

To sign out the current user and delete their cookie, call SignOutAsync:

If CookieAuthenticationDefaults.AuthenticationScheme  (or "Cookies") isn't used as the scheme (for example,

"ContosoCookie"), supply the scheme used when configuring the authentication provider. Otherwise, the default

scheme is used.

Once a cookie is created, the cookie is the single source of identity. If a user account is disabled in back-end

systems:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signoutasync


var claims = new List<Claim>
{
    new Claim(ClaimTypes.Name, user.Email),
    new Claim("LastChanged", {Database Value})
};

var claimsIdentity = new ClaimsIdentity(
    claims, 
    CookieAuthenticationDefaults.AuthenticationScheme);

await HttpContext.SignInAsync(
    CookieAuthenticationDefaults.AuthenticationScheme, 
    new ClaimsPrincipal(claimsIdentity));

ValidatePrincipal(CookieValidatePrincipalContext)

The app's cookie authentication system continues to process requests based on the authentication cookie.

The user remains signed into the app as long as the authentication cookie is valid.

The ValidatePrincipal event can be used to intercept and override validation of the cookie identity. Validating the

cookie on every request mitigates the risk of revoked users accessing the app.

One approach to cookie validation is based on keeping track of when the user database changes. If the database

hasn't been changed since the user's cookie was issued, there's no need to re-authenticate the user if their cookie

is still valid. In the sample app, the database is implemented in IUserRepository  and stores a LastChanged  value.

When a user is updated in the database, the LastChanged  value is set to the current time.

In order to invalidate a cookie when the database changes based on the LastChanged  value, create the cookie with

a LastChanged  claim containing the current LastChanged  value from the database:

To implement an override for the ValidatePrincipal  event, write a method with the following signature in a class

that derives from CookieAuthenticationEvents:

The following is an example implementation of CookieAuthenticationEvents :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationevents.validateprincipal
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationevents


using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authentication;
using Microsoft.AspNetCore.Authentication.Cookies;

public class CustomCookieAuthenticationEvents : CookieAuthenticationEvents
{
    private readonly IUserRepository _userRepository;

    public CustomCookieAuthenticationEvents(IUserRepository userRepository)
    {
        // Get the database from registered DI services.
        _userRepository = userRepository;
    }

    public override async Task ValidatePrincipal(CookieValidatePrincipalContext context)
    {
        var userPrincipal = context.Principal;

        // Look for the LastChanged claim.
        var lastChanged = (from c in userPrincipal.Claims
                           where c.Type == "LastChanged"
                           select c.Value).FirstOrDefault();

        if (string.IsNullOrEmpty(lastChanged) ||
            !_userRepository.ValidateLastChanged(lastChanged))
        {
            context.RejectPrincipal();

            await context.HttpContext.SignOutAsync(
                CookieAuthenticationDefaults.AuthenticationScheme);
        }
    }
}

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
    .AddCookie(options =>
    {
        options.EventsType = typeof(CustomCookieAuthenticationEvents);
    });

services.AddScoped<CustomCookieAuthenticationEvents>();

WARNINGWARNING

Persistent cookies

Register the events instance during cookie service registration in the Startup.ConfigureServices  method. Provide

a scoped service registration for your CustomCookieAuthenticationEvents  class:

Consider a situation in which the user's name is updated—a decision that doesn't affect security in any way. If you

want to non-destructively update the user principal, call context.ReplacePrincipal  and set the 

context.ShouldRenew  property to true .

The approach described here is triggered on every request. Validating authentication cookies for all users on every request

can result in a large performance penalty for the app.

You may want the cookie to persist across browser sessions. This persistence should only be enabled with explicit

user consent with a "Remember Me" check box on sign in or a similar mechanism.



// using Microsoft.AspNetCore.Authentication;

await HttpContext.SignInAsync(
    CookieAuthenticationDefaults.AuthenticationScheme,
    new ClaimsPrincipal(claimsIdentity),
    new AuthenticationProperties
    {
        IsPersistent = true
    });

Absolute cookie expiration

// using Microsoft.AspNetCore.Authentication;

await HttpContext.SignInAsync(
    CookieAuthenticationDefaults.AuthenticationScheme,
    new ClaimsPrincipal(claimsIdentity),
    new AuthenticationProperties
    {
        IsPersistent = true,
        ExpiresUtc = DateTime.UtcNow.AddMinutes(20)
    });

Additional resources

The following code snippet creates an identity and corresponding cookie that survives through browser closures.

Any sliding expiration settings previously configured are honored. If the cookie expires while the browser is closed,

the browser clears the cookie once it's restarted.

Set IsPersistent to true  in AuthenticationProperties:

An absolute expiration time can be set with ExpiresUtc. To create a persistent cookie, IsPersistent  must also be

set. Otherwise, the cookie is created with a session-based lifetime and could expire either before or after the

authentication ticket that it holds. When ExpiresUtc  is set, it overrides the value of the ExpireTimeSpan option of

CookieAuthenticationOptions, if set.

The following code snippet creates an identity and corresponding cookie that lasts for 20 minutes. This ignores

any sliding expiration settings previously configured.

Authorize with a specific scheme in ASP.NET Core

Claims-based authorization in ASP.NET Core

Policy-based role checks

Host ASP.NET Core in a web farm

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationproperties.ispersistent#microsoft_aspnetcore_authentication_authenticationproperties_ispersistent
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationproperties
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationproperties.expiresutc#microsoft_aspnetcore_authentication_authenticationproperties_expiresutc
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookieauthenticationoptions.expiretimespan#microsoft_aspnetcore_builder_cookieauthenticationoptions_expiretimespan
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookieauthenticationoptions


Use social sign-in provider authentication without
ASP.NET Core Identity
9/22/2020 • 4 minutes to read • Edit Online

Configuration

public void ConfigureServices(IServiceCollection services)
{
    // requires
    // using Microsoft.AspNetCore.Authentication.Cookies;
    // using Microsoft.AspNetCore.Authentication.Google;
    // NuGet package Microsoft.AspNetCore.Authentication.Google
    services
        .AddAuthentication(options =>
        {
            options.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
            options.DefaultChallengeScheme = GoogleDefaults.AuthenticationScheme;
        })
        .AddCookie()
        .AddGoogle(options =>
        {
            options.ClientId = Configuration["Authentication:Google:ClientId"];
            options.ClientSecret = Configuration["Authentication:Google:ClientSecret"];
        });

    services.AddRazorPages();
}

By Kirk Larkin and Rick Anderson

Facebook, Google, and external provider authentication in ASP.NET Core describes how to enable users to sign in

using OAuth 2.0 with credentials from external authentication providers. The approach described in that topic

includes ASP.NET Core Identity as an authentication provider.

This sample demonstrates how to use an external authentication provider withoutwithout ASP.NET Core Identity. This is

useful for apps that don't require all of the features of ASP.NET Core Identity, but still require integration with a

trusted external authentication provider.

This sample uses Google authentication for authenticating users. Using Google authentication shifts many of the

complexities of managing the sign-in process to Google. To integrate with a different external authentication

provider, see the following topics:

Facebook authentication

Microsoft authentication

Twitter authentication

Other providers

In the ConfigureServices  method, configure the app's authentication schemes with the AddAuthentication,

AddCookie, and AddGoogle methods:

The call to AddAuthentication sets the app's DefaultScheme. The DefaultScheme  is the default scheme used by the

following HttpContext  authentication extension methods:

AuthenticateAsync

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/social/social-without-identity.md
https://twitter.com/serpent5
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.cookieextensions.addcookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.googleextensions.addgoogle
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme#microsoft_aspnetcore_authentication_authenticationoptions_defaultscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.authenticateasync


app.UseRouting();

app.UseAuthentication();
app.UseAuthorization();

app.UseEndpoints(endpoints =>
{
    endpoints.MapRazorPages();
});

Apply authorization

[Authorize]
public class PrivacyModel : PageModel
{
    
}

Sign out

public class IndexModel : PageModel
{
    public async Task<IActionResult> OnPostLogoutAsync()
    {
        await HttpContext.SignOutAsync();
        return RedirectToPage();
    }
}

ChallengeAsync

ForbidAsync

SignInAsync

SignOutAsync

Setting the app's DefaultScheme  to CookieAuthenticationDefaults.AuthenticationScheme ("Cookies") configures the

app to use Cookies as the default scheme for these extension methods. Setting the app's DefaultChallengeScheme

to GoogleDefaults.AuthenticationScheme ("Google") configures the app to use Google as the default scheme for

calls to ChallengeAsync . DefaultChallengeScheme  overrides DefaultScheme . See AuthenticationOptions for

additional properties that override DefaultScheme  when set.

In Startup.Configure , call UseAuthentication  and UseAuthorization  between calling UseRouting  and 

UseEndpoints . This sets the HttpContext.User  property and runs the Authorization Middleware for requests:

To learn more about authentication schemes, see Authentication Concepts. To learn more about cookie

authentication, see Use cookie authentication without ASP.NET Core Identity.

Test the app's authentication configuration by applying the AuthorizeAttribute  attribute to a controller, action, or

page. The following code limits access to the Privacy page to users that have been authenticated:

To sign out the current user and delete their cookie, call SignOutAsync. The following code adds a Logout  page

handler to the Index page:

Notice that the call to SignOutAsync  does not specify an authentication scheme. The app's DefaultScheme  of 

CookieAuthenticationDefaults.AuthenticationScheme  is used as a fall back.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.challengeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.forbidasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signinasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signoutasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationdefaults.authenticationscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultchallengescheme#microsoft_aspnetcore_authentication_authenticationoptions_defaultchallengescheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.google.googledefaults.authenticationscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signoutasync


Additional resources

Configuration

services
    .AddAuthentication(options =>
    {
        options.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
        options.DefaultChallengeScheme = GoogleDefaults.AuthenticationScheme;
    })
    .AddCookie()
    .AddGoogle(options =>
    {
        options.ClientId = Configuration["Authentication:Google:ClientId"];
        options.ClientSecret = Configuration["Authentication:Google:ClientSecret"];
    });

Simple authorization in ASP.NET Core

Persist additional claims and tokens from external providers in ASP.NET Core

Facebook, Google, and external provider authentication in ASP.NET Core describes how to enable users to sign in

using OAuth 2.0 with credentials from external authentication providers. The approach described in that topic

includes ASP.NET Core Identity as an authentication provider.

This sample demonstrates how to use an external authentication provider withoutwithout ASP.NET Core Identity. This is

useful for apps that don't require all of the features of ASP.NET Core Identity, but still require integration with a

trusted external authentication provider.

This sample uses Google authentication for authenticating users. Using Google authentication shifts many of the

complexities of managing the sign-in process to Google. To integrate with a different external authentication

provider, see the following topics:

Facebook authentication

Microsoft authentication

Twitter authentication

Other providers

In the ConfigureServices  method, configure the app's authentication schemes with the AddAuthentication , 

AddCookie , and AddGoogle  methods:

The call to AddAuthentication sets the app's DefaultScheme. The DefaultScheme  is the default scheme used by the

following HttpContext  authentication extension methods:

AuthenticateAsync

ChallengeAsync

ForbidAsync

SignInAsync

SignOutAsync

Setting the app's DefaultScheme  to CookieAuthenticationDefaults.AuthenticationScheme ("Cookies") configures the

app to use Cookies as the default scheme for these extension methods. Setting the app's DefaultChallengeScheme

to GoogleDefaults.AuthenticationScheme ("Google") configures the app to use Google as the default scheme for

calls to ChallengeAsync . DefaultChallengeScheme  overrides DefaultScheme . See AuthenticationOptions for

additional properties that override DefaultScheme  when set.

In the Configure  method, call the UseAuthentication  method to invoke the Authentication Middleware that sets

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication#microsoft_extensions_dependencyinjection_authenticationservicecollectionextensions_addauthentication_microsoft_extensions_dependencyinjection_iservicecollection_system_action_microsoft_aspnetcore_authentication_authenticationoptions__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultscheme#microsoft_aspnetcore_authentication_authenticationoptions_defaultscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.authenticateasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.challengeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.forbidasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signinasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signoutasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.cookieauthenticationdefaults.authenticationscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions.defaultchallengescheme#microsoft_aspnetcore_authentication_authenticationoptions_defaultchallengescheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.google.googledefaults.authenticationscheme
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationoptions


app.UseAuthentication();

Apply authorization

[Authorize]
public class PrivacyModel : PageModel
{
    
}

Sign out

public class IndexModel : PageModel
{
    public async Task<IActionResult> OnPostLogoutAsync()
    {
        await HttpContext.SignOutAsync();
        return RedirectToPage();
    }
}

Additional resources

the HttpContext.User  property. Call the UseAuthentication  method before calling UseMvcWithDefaultRoute  or 

UseMvc :

To learn more about authentication schemes, see Authentication Concepts. To learn more about cookie

authentication, see Use cookie authentication without ASP.NET Core Identity.

Test the app's authentication configuration by applying the AuthorizeAttribute  attribute to a controller, action, or

page. The following code limits access to the Privacy page to users that have been authenticated:

To sign out the current user and delete their cookie, call SignOutAsync. The following code adds a Logout  page

handler to the Index page:

Notice that the call to SignOutAsync  does not specify an authentication scheme. The app's DefaultScheme  of 

CookieAuthenticationDefaults.AuthenticationScheme  is used as a fall back.

Simple authorization in ASP.NET Core

Persist additional claims and tokens from external providers in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationhttpcontextextensions.signoutasync


Azure Active Directory with ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Application Scenarios

Samples

These tutorials and samples demonstrate authentication in ASP.NET Core using Microsoft identity platform and

Azure Active Directory. For additional tutorials and samples using ASP.NET Core with Azure AD, see Microsoft

identity platform.

Quickstart: Add sign-in with Microsoft to an ASP.NET Core web app

Web app that signs in users

Web app that calls web APIs

Protected web API

Web API that calls other web APIs

Web app that signs in users with Azure AD B2C

Enable your ASP.NET Core app to sign-in users and call web APIs using Azure AD V2:

See this associated video

Calling an ASP.NET Core 2.0 Web API from a WPF application using Azure AD V2:

See this associated video

An ASP.NET Core web API with Azure AD B2C

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/azure-active-directory/index.md
https://docs.microsoft.com/en-us/azure/active-directory/develop/
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v2-aspnet-core-webapp
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-web-app-sign-user-overview?tabs=aspnetcore
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-web-app-call-api-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-protected-web-api-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-web-api-call-api-overview
https://docs.microsoft.com/en-us/samples/azure-samples/active-directory-aspnetcore-webapp-openidconnect-v2/enable-webapp-signin/
https://channel9.msdn.com/Events/Build/2018/THR5001
https://docs.microsoft.com/en-us/samples/azure-samples/active-directory-dotnet-native-aspnetcore-v2/calling-an-aspnet-core-web-api-from-a-wpf-application-using-azure-ad-v2/
https://channel9.msdn.com/Events/Build/2018/THR5000
https://azure.microsoft.com/resources/samples/active-directory-b2c-dotnetcore-webapi/


Cloud authentication with Azure Active Directory
B2C in ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

TIPTIP

Prerequisites

Create the Azure Active Directory B2C tenant

Register the app in Azure AD B2C

SET T IN GSET T IN G VA L UEVA L UE N OT ESN OT ES

NameName <app name> Enter a NameName for the app that
describes your app to consumers.

By Cam Soper

Azure Active Directory B2C (Azure AD B2C) is a cloud identity management solution for web and mobile apps.

The service provides authentication for apps hosted in the cloud and on-premises. Authentication types include

individual accounts, social network accounts, and federated enterprise accounts. Additionally, Azure AD B2C can

provide multi-factor authentication with minimal configuration.

Azure Active Directory (Azure AD) and Azure AD B2C are separate product offerings. An Azure AD tenant represents an

organization, while an Azure AD B2C tenant represents a collection of identities to be used with relying party applications.

To learn more, see Azure AD B2C: Frequently asked questions (FAQ).

In this tutorial, learn how to:

Create an Azure Active Directory B2C tenant

Register an app in Azure AD B2C

Use Visual Studio to create an ASP.NET Core web app configured to use the Azure AD B2C tenant for

authentication

Configure policies controlling the behavior of the Azure AD B2C tenant

The following are required for this walkthrough:

Microsoft Azure subscription

Visual Studio 2019

Create an Azure Active Directory B2C tenant as described in the documentation. When prompted, associating the

tenant with an Azure subscription is optional for this tutorial.

In the newly created Azure AD B2C tenant, register your app using the steps in the documentation under the

Register a web appRegister a web app section. Stop at the Create a web app client secretCreate a web app client secret section. A client secret isn't required

for this tutorial.

Use the following values:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/azure-ad-b2c.md
https://twitter.com/camsoper
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-overview
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-faqs
https://azure.microsoft.com/free/dotnet/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-get-started
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-register-applications#register-a-web-application


Include web app / web APIInclude web app / web API Yes

Allow implicit flowAllow implicit flow Yes

Reply URLReply URL https://localhost:44300/signin-
oidc

Reply URLs are endpoints where Azure
AD B2C returns any tokens that your
app requests. Visual Studio provides
the Reply URL to use. For now, enter 
https://localhost:44300/signin-
oidc

to complete the form.

App ID URIApp ID URI Leave blank Not required for this tutorial.

Include native clientInclude native client No

SET T IN GSET T IN G VA L UEVA L UE N OT ESN OT ES

WARNINGWARNING

Create an ASP.NET Core app in Visual Studio

If setting up a non-localhost Reply URL, be aware of the constraints on what is allowed in the Reply URL list.

After the app is registered, the list of apps in the tenant is displayed. Select the app that was just registered. Select

the CopyCopy  icon to the right of the Application IDApplication ID field to copy it to the clipboard.

Nothing more can be configured in the Azure AD B2C tenant at this time, but leave the browser window open.

There is more configuration after the ASP.NET Core app is created.

The Visual Studio Web Application template can be configured to use the Azure AD B2C tenant for authentication.

In Visual Studio:

1. Create a new ASP.NET Core Web Application.

2. Select Web ApplicationWeb Application from the list of templates.

3. Select the Change AuthenticationChange Authentication button.

https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-register-applications#register-a-web-application


SET T IN GSET T IN G VA L UEVA L UE

Domain NameDomain Name <the domain name of your B2C tenant>

Application IDApplication ID <paste the Application ID from the clipboard>

4. In the Change AuthenticationChange Authentication dialog, select Individual User AccountsIndividual User Accounts , and then select Connect to anConnect to an

existing user store in the cloudexisting user store in the cloud in the dropdown.

5. Complete the form with the following values:



Finish the B2C app registration

TIPTIP

Configure policies

WARNINGWARNING

Configure the underlying OpenIdConnectOptions/JwtBearer/Cookie
options

Callback PathCallback Path <use the default value>

Sign-up or sign-in policySign-up or sign-in policy B2C_1_SiUpIn

Reset password policyReset password policy B2C_1_SSPR

Edit profile policyEdit profile policy <leave blank>

SET T IN GSET T IN G VA L UEVA L UE

Select the CopyCopy  link next to Reply URIReply URI to copy the Reply URI to the clipboard. Select OKOK to close the

Change AuthenticationChange Authentication dialog. Select OKOK to create the web app.

Return to the browser window with the B2C app properties still open. Change the temporary Reply URLReply URL

specified earlier to the value copied from Visual Studio. Select SaveSave at the top of the window.

If you didn't copy the Reply URL, use the HTTPS address from the Debug tab in the web project properties, and append the

CallbackPathCallbackPath value from appsettings.json.

Use the steps in the Azure AD B2C documentation to create a sign-up or sign-in policy, and then create a

password reset policy. Use the example values provided in the documentation for Identity providersIdentity providers , S ign-upSign-up

attr ibutesattr ibutes , and Application claimsApplication claims . Using the Run nowRun now  button to test the policies as described in the

documentation is optional.

Ensure the policy names are exactly as described in the documentation, as those policies were used in the ChangeChange

AuthenticationAuthentication dialog in Visual Studio. The policy names can be verified in appsettings.json.

To configure the underlying options directly, use the appropriate scheme constant in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-policies#user-flow-versions
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-policies#user-flow-versions


services.Configure<OpenIdConnectOptions>(
    AzureAD[B2C]Defaults.OpenIdScheme, options => 
    {
        // Omitted for brevity
    });

services.Configure<CookieAuthenticationOptions>(
    AzureAD[B2C]Defaults.CookieScheme, options => 
    {
        // Omitted for brevity
    });

services.Configure<JwtBearerOptions>(
    AzureAD[B2C]Defaults.JwtBearerAuthenticationScheme, options => 
    {
        // Omitted for brevity
    });

Run the app
In Visual Studio, press F5F5  to build and run the app. After the web app launches, select AcceptAccept to accept the use of

cookies (if prompted), and then select S ign inSign in .

The browser redirects to the Azure AD B2C tenant. Sign in with an existing account (if one was created testing the

policies) or select S ign up nowSign up now  to create a new account. The Forgot your password?Forgot your password? link is used to reset a

forgotten password.



Next steps

After successfully signing in, the browser redirects to the web app.



In this tutorial, you learned how to:

Create an Azure Active Directory B2C tenant

Register an app in Azure AD B2C

Use Visual Studio to create an ASP.NET Core Web Application configured to use the Azure AD B2C tenant for

authentication

Configure policies controlling the behavior of the Azure AD B2C tenant

Now that the ASP.NET Core app is configured to use Azure AD B2C for authentication, the Authorize attribute can

be used to secure your app. Continue developing your app by learning to:

Customize the Azure AD B2C user interface.

Configure password complexity requirements.

Enable multi-factor authentication.

Configure additional identity providers, such as Microsoft, Facebook, Google, Amazon, Twitter, and others.

Use the Azure AD Graph API to retrieve additional user information, such as group membership, from the

Azure AD B2C tenant.

How to secure a Web API built with ASP.NET Core using the Azure AD B2C.

Tutorial: Grant access to an ASP.NET web API using Azure Active Directory B2C.

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-ui-customization
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-password-complexity
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-mfa
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-msa-app
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-fb-app
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-goog-app
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-amzn-app
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-twitter-app
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-devquickstarts-graph-dotnet
https://github.com/Azure-Samples/active-directory-aspnetcore-webapp-openidconnect-v2/tree/master/4-WebApp-your-API/4-2-B2C
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-web-api-dotnet


Articles based on ASP.NET Core projects created with
individual user accounts
9/22/2020 • 2 minutes to read • Edit Online

dotnet new mvc -au Individual
dotnet new webapp -au Individual

dotnet new mvc -au Individual
dotnet new razor -au Individual

No Authentication

Windows Authentication

dotnet new webapp authentication options

O P T IO NO P T IO N T Y P E O F  A UT H EN T IC AT IO NT Y P E O F  A UT H EN T IC AT IO N L IN K  F O R M O RE IN F O RM AT IO NL IN K  F O R M O RE IN F O RM AT IO N

None No authentication

Individual Individual authentication Introduction to Identity on ASP.NET
Core

IndividualB2C Cloud-hosted individual authentication
with Azure AD B2C

Azure AD B2C

ASP.NET Core Identity is included in project templates in Visual Studio with the "Individual User Accounts" option.

The authentication templates are available in .NET Core CLI with -au Individual :

See this GitHub issue for web API authentication.

 

Authentication is specified in the .NET Core CLI with the -au  option. In Visual Studio, the Change AuthenticationChange Authentication

dialog is available for new web applications. The default for new web apps in Visual Studio is No AuthenticationNo Authentication.

Projects created with no authentication:

Don't contain web pages and UI to sign in and sign out.

Don't contain authentication code.

 

Windows Authentication is specified for new web apps in the .NET Core CLI with the -au Windows  option. In Visual

Studio, the Change AuthenticationChange Authentication dialog provides the Windows AuthenticationWindows Authentication options.

If Windows Authentication is selected, the app is configured to use the Windows Authentication IIS module.

Windows Authentication is intended for Intranet web sites.

The following table shows the authentication options available for new web apps:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/individual.md
https://github.com/dotnet/AspNetCore/issues/5833
https://docs.microsoft.com/en-us/azure/active-directory-b2c/


SingleOrg Organizational authentication for a
single tenant

Azure AD

MultiOrg Organizational authentication for
multiple tenants

Azure AD

Windows Windows authentication Windows Authentication

O P T IO NO P T IO N T Y P E O F  A UT H EN T IC AT IO NT Y P E O F  A UT H EN T IC AT IO N L IN K  F O R M O RE IN F O RM AT IO NL IN K  F O R M O RE IN F O RM AT IO N

Visual Studio new webapp authentication options

O P T IO NO P T IO N T Y P E O F  A UT H EN T IC AT IO NT Y P E O F  A UT H EN T IC AT IO N L IN K  F O R M O RE IN F O RM AT IO NL IN K  F O R M O RE IN F O RM AT IO N

None No authentication

Individual User Accounts / Store user
accounts in-app

Individual authentication Introduction to Identity on ASP.NET
Core

Individual User Accounts / Connect to
an existing user store in the cloud

Cloud-hosted individual authentication
with Azure AD B2C

Azure AD B2C

Work or School Cloud / Single Org Organizational authentication for a
single tenant

Azure AD

Work or School Cloud / Multiple Org Organizational authentication for
multiple tenants

Azure AD

Windows Windows authentication Windows Authentication

Additional resources

The following table shows the authentication options available when creating a new web app with Visual Studio:

The following articles show how to use the code generated in ASP.NET Core templates that use individual user

accounts:

Account confirmation and password recovery in ASP.NET Core

Create an ASP.NET Core app with user data protected by authorization

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v2-aspnet-core-webapp
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v2-aspnet-core-webapp
https://docs.microsoft.com/en-us/azure/active-directory-b2c/
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v2-aspnet-core-webapp
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v2-aspnet-core-webapp


Configure certificate authentication in ASP.NET Core
9/22/2020 • 13 minutes to read • Edit Online

Proxy and load balancer scenarios

Get started

Microsoft.AspNetCore.Authentication.Certificate  contains an implementation similar to Certificate Authentication

for ASP.NET Core. Certificate authentication happens at the TLS level, long before it ever gets to ASP.NET Core.

More accurately, this is an authentication handler that validates the certificate and then gives you an event where

you can resolve that certificate to a ClaimsPrincipal .

Configure your server for certificate authentication, be it IIS, Kestrel, Azure Web Apps, or whatever else you're

using.

Certificate authentication is a stateful scenario primarily used where a proxy or load balancer doesn't handle traffic

between clients and servers. If a proxy or load balancer is used, certificate authentication only works if the proxy or

load balancer :

Handles the authentication.

Passes the user authentication information to the app (for example, in a request header), which acts on the

authentication information.

An alternative to certificate authentication in environments where proxies and load balancers are used is Active

Directory Federated Services (ADFS) with OpenID Connect (OIDC).

Acquire an HTTPS certificate, apply it, and configure your server to require certificates.

In your web app, add a reference to the Microsoft.AspNetCore.Authentication.Certificate package. Then in the 

Startup.ConfigureServices  method, call 

services.AddAuthentication(CertificateAuthenticationDefaults.AuthenticationScheme).AddCertificate(...);  with

your options, providing a delegate for OnCertificateValidated  to do any supplementary validation on the client

certificate sent with requests. Turn that information into a ClaimsPrincipal  and set it on the context.Principal

property.

If authentication fails, this handler returns a 403 (Forbidden)  response rather a 401 (Unauthorized) , as you might

expect. The reasoning is that the authentication should happen during the initial TLS connection. By the time it

reaches the handler, it's too late. There's no way to upgrade the connection from an anonymous connection to one

with a certificate.

Also add app.UseAuthentication();  in the Startup.Configure  method. Otherwise, the HttpContext.User  will not

be set to ClaimsPrincipal  created from the certificate. For example:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/certauth.md
https://tools.ietf.org/html/rfc5246#section-7.4.4
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Certificate


public void ConfigureServices(IServiceCollection services)
{
    services.AddAuthentication(
        CertificateAuthenticationDefaults.AuthenticationScheme)
        .AddCertificate()
        // Adding an ICertificateValidationCache results in certificate auth caching the results.
        // The default implementation uses a memory cache.
        .AddCertificateCache();

    // All other service configuration
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    app.UseAuthentication();

    // All other app configuration
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddAuthentication(
        CertificateAuthenticationDefaults.AuthenticationScheme)
        .AddCertificate();

    // All other service configuration
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    app.UseAuthentication();

    // All other app configuration
}

Configure certificate validation

AllowedCertificateTypes = Chained, SelfSigned, or All (Chained | SelfSigned)AllowedCertificateTypes = Chained, SelfSigned, or All (Chained | SelfSigned)

ValidateCertificateUseValidateCertificateUse

ValidateValidityPeriodValidateValidityPeriod

The preceding example demonstrates the default way to add certificate authentication. The handler constructs a

user principal using the common certificate properties.

The CertificateAuthenticationOptions  handler has some built-in validations that are the minimum validations you

should perform on a certificate. Each of these settings is enabled by default.

Default value: CertificateTypes.Chained

This check validates that only the appropriate certificate type is allowed. If the app is using self-signed certificates,

this option needs to be set to CertificateTypes.All  or CertificateTypes.SelfSigned .

Default value: true

This check validates that the certificate presented by the client has the Client Authentication extended key use

(EKU), or no EKUs at all. As the specifications say, if no EKU is specified, then all EKUs are deemed valid.

Default value: true

This check validates that the certificate is within its validity period. On each request, the handler ensures that a

certificate that was valid when it was presented hasn't expired during its current session.



RevocationFlagRevocationFlag

RevocationModeRevocationMode

Can I configure my app to require a certificate only on certain paths?Can I configure my app to require a certificate only on certain paths?

Handler events

Default value: X509RevocationFlag.ExcludeRoot

A flag that specifies which certificates in the chain are checked for revocation.

Revocation checks are only performed when the certificate is chained to a root certificate.

Default value: X509RevocationMode.Online

A flag that specifies how revocation checks are performed.

Specifying an online check can result in a long delay while the certificate authority is contacted.

Revocation checks are only performed when the certificate is chained to a root certificate.

This isn't possible. Remember the certificate exchange is done that the start of the HTTPS conversation, it's done by

the server before the first request is received on that connection so it's not possible to scope based on any request

fields.

The handler has two events:

OnAuthenticationFailed : Called if an exception happens during authentication and allows you to react.

OnCertificateValidated : Called after the certificate has been validated, passed validation and a default principal

has been created. This event allows you to perform your own validation and augment or replace the principal.

For examples include:

Determining if the certificate is known to your services.

Constructing your own principal. Consider the following example in Startup.ConfigureServices :



services.AddAuthentication(
    CertificateAuthenticationDefaults.AuthenticationScheme)
    .AddCertificate(options =>
    {
        options.Events = new CertificateAuthenticationEvents
        {
            OnCertificateValidated = context =>
            {
                var claims = new[]
                {
                    new Claim(
                        ClaimTypes.NameIdentifier, 
                        context.ClientCertificate.Subject,
                        ClaimValueTypes.String, 
                        context.Options.ClaimsIssuer),
                    new Claim(ClaimTypes.Name,
                        context.ClientCertificate.Subject,
                        ClaimValueTypes.String, 
                        context.Options.ClaimsIssuer)
                };

                context.Principal = new ClaimsPrincipal(
                    new ClaimsIdentity(claims, context.Scheme.Name));
                context.Success();

                return Task.CompletedTask;
            }
        };
    });

If you find the inbound certificate doesn't meet your extra validation, call context.Fail("failure reason")  with a

failure reason.

For real functionality, you'll probably want to call a service registered in dependency injection that connects to a

database or other type of user store. Access your service by using the context passed into your delegate. Consider

the following example in Startup.ConfigureServices :



    

services.AddAuthentication(
    CertificateAuthenticationDefaults.AuthenticationScheme)
    .AddCertificate(options =>
    {
        options.Events = new CertificateAuthenticationEvents
        {
            OnCertificateValidated = context =>
            {
                var validationService =
                    context.HttpContext.RequestServices
                        .GetService<ICertificateValidationService>();
                
                if (validationService.ValidateCertificate(
                    context.ClientCertificate))
                {
                    var claims = new[]
                    {
                        new Claim(
                            ClaimTypes.NameIdentifier, 
                            context.ClientCertificate.Subject, 
                            ClaimValueTypes.String, 
                            context.Options.ClaimsIssuer),
                        new Claim(
                            ClaimTypes.Name, 
                            context.ClientCertificate.Subject, 
                            ClaimValueTypes.String, 
                            context.Options.ClaimsIssuer)
                    };

                    context.Principal = new ClaimsPrincipal(
                        new ClaimsIdentity(claims, context.Scheme.Name));
                    context.Success();
                }                     

                return Task.CompletedTask;
            }
        };
    });

Configure your server to require certificates
KestrelKestrel

Conceptually, the validation of the certificate is an authorization concern. Adding a check on, for example, an issuer

or thumbprint in an authorization policy, rather than inside OnCertificateValidated , is perfectly acceptable.

In Program.cs, configure Kestrel as follows:



public static void Main(string[] args)
{
    CreateHostBuilder(args).Build().Run();
}

public static IHostBuilder CreateHostBuilder(string[] args)
{
    return Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseStartup<Startup>();
            webBuilder.ConfigureKestrel(o =>
            {
                o.ConfigureHttpsDefaults(o => 
      o.ClientCertificateMode = 
          ClientCertificateMode.RequireCertificate);
            });
        });
}

NOTENOTE

I ISIIS

Azure and custom web proxiesAzure and custom web proxies

Use certificate authentication in Azure Web AppsUse certificate authentication in Azure Web Apps

NOTENOTE

Use certificate authentication in custom web proxiesUse certificate authentication in custom web proxies

Endpoints created by calling Listen beforebefore calling ConfigureHttpsDefaults won't have the defaults applied.

Complete the following steps in IIS Manager :

1. Select your site from the ConnectionsConnections  tab.

2. Double-click the SSL SettingsSSL Settings  option in the Features ViewFeatures View  window.

3. Check the Require SSLRequire SSL  checkbox, and select the RequireRequire radio button in the Client cer tificatesClient cer tificates  section.

See the host and deploy documentation for how to configure the certificate forwarding middleware.

No forwarding configuration is required for Azure. This is already setup in the certificate forwarding middleware.

This requires that the CertificateForwardingMiddleware is present.

The AddCertificateForwarding  method is used to specify:

The client header name.

How the certificate is to be loaded (using the HeaderConverter  property).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.listen
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.kestrelserveroptions.configurehttpsdefaults


public void ConfigureServices(IServiceCollection services)
{
    services.AddCertificateForwarding(options =>
    {
        options.CertificateHeader = "X-SSL-CERT";
        options.HeaderConverter = (headerValue) =>
        {
            X509Certificate2 clientCertificate = null;
     
            if(!string.IsNullOrWhiteSpace(headerValue))
            {
                byte[] bytes = StringToByteArray(headerValue);
                clientCertificate = new X509Certificate2(bytes);
            }

            return clientCertificate;
        };
    });
}

private static byte[] StringToByteArray(string hex)
{
    int NumberChars = hex.Length;
    byte[] bytes = new byte[NumberChars / 2];

    for (int i = 0; i < NumberChars; i += 2)
    {
        bytes[i / 2] = Convert.ToByte(hex.Substring(i, 2), 16);
    }

    return bytes;
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    ...

    app.UseRouting();

    app.UseCertificateForwarding();
    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
    });
}

In custom web proxies, the certificate is passed as a custom request header, for example X-SSL-CERT . To use it,

configure certificate forwarding in Startup.ConfigureServices :

The Startup.Configure  method then adds the middleware. UseCertificateForwarding  is called before the calls to 

UseAuthentication  and UseAuthorization :

A separate class can be used to implement validation logic. Because the same self-signed certificate is used in this

example, ensure that only your certificate can be used. Validate that the thumbprints of both the client certificate

and the server certificate match, otherwise any certificate can be used and will be enough to authenticate. This

would be used inside the AddCertificate  method. You could also validate the subject or the issuer here if you're

using intermediate or child certificates.



using System.IO;
using System.Security.Cryptography.X509Certificates;

namespace AspNetCoreCertificateAuthApi
{
    public class MyCertificateValidationService
    {
        public bool ValidateCertificate(X509Certificate2 clientCertificate)
        {
            // Do not hardcode passwords in production code
            // Use thumbprint or key vault
            var cert = new X509Certificate2(
                Path.Combine("sts_dev_cert.pfx"), "1234");

            if (clientCertificate.Thumbprint == cert.Thumbprint)
            {
                return true;
            }

            return false;
        }
    }
}

Implement an HttpClient using a certificate and the HttpClientHandlerImplement an HttpClient using a certificate and the HttpClientHandler

private async Task<JsonDocument> GetApiDataUsingHttpClientHandler()
{
    var cert = new X509Certificate2(Path.Combine(_environment.ContentRootPath, "sts_dev_cert.pfx"), "1234");
    var handler = new HttpClientHandler();
    handler.ClientCertificates.Add(cert);
    var client = new HttpClient(handler);
     
    var request = new HttpRequestMessage()
    {
        RequestUri = new Uri("https://localhost:44379/api/values"),
        Method = HttpMethod.Get,
    };
    var response = await client.SendAsync(request);
    if (response.IsSuccessStatusCode)
    {
        var responseContent = await response.Content.ReadAsStringAsync();
        var data = JsonDocument.Parse(responseContent);
        return data;
    }
 
    throw new ApplicationException($"Status code: {response.StatusCode}, Error: {response.ReasonPhrase}");
}

Implement an HttpClient using a certificate and a named HttpClient from IHttpClientFactoryImplement an HttpClient using a certificate and a named HttpClient from IHttpClientFactory

The HttpClientHandler  could be added directly in the constructor of the HttpClient  class. Care should be taken

when creating instances of the HttpClient . The HttpClient  will then send the certificate with each request.

In the following example, a client certificate is added to a HttpClientHandler  using the ClientCertificates

property from the handler. This handler can then be used in a named instance of an HttpClient  using the 

ConfigurePrimaryHttpMessageHandler  method. This is setup in Startup.ConfigureServices :



var clientCertificate = 
    new X509Certificate2(
      Path.Combine(_environment.ContentRootPath, "sts_dev_cert.pfx"), "1234");
 
var handler = new HttpClientHandler();
handler.ClientCertificates.Add(clientCertificate);
 
services.AddHttpClient("namedClient", c =>
{
}).ConfigurePrimaryHttpMessageHandler(() => handler);

private readonly IHttpClientFactory _clientFactory;
 
public ApiService(IHttpClientFactory clientFactory)
{
    _clientFactory = clientFactory;
}
 
private async Task<JsonDocument> GetApiDataWithNamedClient()
{
    var client = _clientFactory.CreateClient("namedClient");
 
    var request = new HttpRequestMessage()
    {
        RequestUri = new Uri("https://localhost:44379/api/values"),
        Method = HttpMethod.Get,
    };
    var response = await client.SendAsync(request);
    if (response.IsSuccessStatusCode)
    {
        var responseContent = await response.Content.ReadAsStringAsync();
        var data = JsonDocument.Parse(responseContent);
        return data;
    }
 
    throw new ApplicationException($"Status code: {response.StatusCode}, Error: {response.ReasonPhrase}");
}

Create certificates in PowerShellCreate certificates in PowerShell

Create root CACreate root CA

The IHttpClientFactory  can then be used to get the named instance with the handler and the certificate. The 

CreateClient  method with the name of the client defined in the Startup  class is used to get the instance. The

HTTP request can be sent using the client as required.

If the correct certificate is sent to the server, the data is returned. If no certificate or the wrong certificate is sent, an

HTTP 403 status code is returned.

Creating the certificates is the hardest part in setting up this flow. A root certificate can be created using the 

New-SelfSignedCertificate  PowerShell cmdlet. When creating the certificate, use a strong password. It's important

to add the KeyUsageProperty  parameter and the KeyUsage  parameter as shown.



New-SelfSignedCertificate -DnsName "root_ca_dev_damienbod.com", "root_ca_dev_damienbod.com" -CertStoreLocation 
"cert:\LocalMachine\My" -NotAfter (Get-Date).AddYears(20) -FriendlyName "root_ca_dev_damienbod.com" -
KeyUsageProperty All -KeyUsage CertSign, CRLSign, DigitalSignature

$mypwd = ConvertTo-SecureString -String "1234" -Force -AsPlainText

Get-ChildItem -Path cert:\localMachine\my\"The thumbprint..." | Export-PfxCertificate -FilePath 
C:\git\root_ca_dev_damienbod.pfx -Password $mypwd

Export-Certificate -Cert cert:\localMachine\my\"The thumbprint..." -FilePath root_ca_dev_damienbod.crt

NOTENOTE

Install in the trusted rootInstall in the trusted root

Intermediate certificateIntermediate certificate

$mypwd = ConvertTo-SecureString -String "1234" -Force -AsPlainText

$parentcert = ( Get-ChildItem -Path cert:\LocalMachine\My\"The thumbprint of the root..." )

New-SelfSignedCertificate -certstorelocation cert:\localmachine\my -dnsname "intermediate_dev_damienbod.com" -
Signer $parentcert -NotAfter (Get-Date).AddYears(20) -FriendlyName "intermediate_dev_damienbod.com" -
KeyUsageProperty All -KeyUsage CertSign, CRLSign, DigitalSignature -TextExtension @("2.5.29.19=
{text}CA=1&pathlength=1")

Get-ChildItem -Path cert:\localMachine\my\"The thumbprint..." | Export-PfxCertificate -FilePath 
C:\git\AspNetCoreCertificateAuth\Certs\intermediate_dev_damienbod.pfx -Password $mypwd

Export-Certificate -Cert cert:\localMachine\my\"The thumbprint..." -FilePath intermediate_dev_damienbod.crt

Create child certificate from intermediate certificateCreate child certificate from intermediate certificate

The -DnsName  parameter value must match the deployment target of the app. For example, "localhost" for development.

The root certificate needs to be trusted on your host system. A root certificate which was not created by a

certificate authority won't be trusted by default. The following link explains how this can be accomplished on

Windows:

https://social.msdn.microsoft.com/Forums/SqlServer/5ed119ef-1704-4be4-8a4f-ef11de7c8f34/a-certificate-

chain-processed-but-terminated-in-a-root-certificate-which-is-not-trusted-by-the

An intermediate certificate can now be created from the root certificate. This isn't required for all use cases, but

you might need to create many certificates or need to activate or disable groups of certificates. The TextExtension

parameter is required to set the path length in the basic constraints of the certificate.

The intermediate certificate can then be added to the trusted intermediate certificate in the Windows host system.

A child certificate can be created from the intermediate certificate. This is the end entity and doesn't need to create

more child certificates.

https://social.msdn.microsoft.com/Forums/SqlServer/5ed119ef-1704-4be4-8a4f-ef11de7c8f34/a-certificate-chain-processed-but-terminated-in-a-root-certificate-which-is-not-trusted-by-the


$parentcert = ( Get-ChildItem -Path cert:\LocalMachine\My\"The thumbprint from the Intermediate 
certificate..." )

New-SelfSignedCertificate -certstorelocation cert:\localmachine\my -dnsname "child_a_dev_damienbod.com" -
Signer $parentcert -NotAfter (Get-Date).AddYears(20) -FriendlyName "child_a_dev_damienbod.com"

$mypwd = ConvertTo-SecureString -String "1234" -Force -AsPlainText

Get-ChildItem -Path cert:\localMachine\my\"The thumbprint..." | Export-PfxCertificate -FilePath 
C:\git\AspNetCoreCertificateAuth\Certs\child_a_dev_damienbod.pfx -Password $mypwd

Export-Certificate -Cert cert:\localMachine\my\"The thumbprint..." -FilePath child_a_dev_damienbod.crt

Create child certificate from root certificateCreate child certificate from root certificate

$rootcert = ( Get-ChildItem -Path cert:\LocalMachine\My\"The thumbprint from the root cert..." )

New-SelfSignedCertificate -certstorelocation cert:\localmachine\my -dnsname "child_a_dev_damienbod.com" -
Signer $rootcert -NotAfter (Get-Date).AddYears(20) -FriendlyName "child_a_dev_damienbod.com"

$mypwd = ConvertTo-SecureString -String "1234" -Force -AsPlainText

Get-ChildItem -Path cert:\localMachine\my\"The thumbprint..." | Export-PfxCertificate -FilePath 
C:\git\AspNetCoreCertificateAuth\Certs\child_a_dev_damienbod.pfx -Password $mypwd

Export-Certificate -Cert cert:\localMachine\my\"The thumbprint..." -FilePath child_a_dev_damienbod.crt

Example root - intermediate certificate - certificateExample root - intermediate certificate - certificate

A child certificate can also be created from the root certificate directly.



$mypwdroot = ConvertTo-SecureString -String "1234" -Force -AsPlainText
$mypwd = ConvertTo-SecureString -String "1234" -Force -AsPlainText

New-SelfSignedCertificate -DnsName "root_ca_dev_damienbod.com", "root_ca_dev_damienbod.com" -CertStoreLocation 
"cert:\LocalMachine\My" -NotAfter (Get-Date).AddYears(20) -FriendlyName "root_ca_dev_damienbod.com" -
KeyUsageProperty All -KeyUsage CertSign, CRLSign, DigitalSignature

Get-ChildItem -Path cert:\localMachine\my\0C89639E4E2998A93E423F919B36D4009A0F9991 | Export-PfxCertificate -
FilePath C:\git\root_ca_dev_damienbod.pfx -Password $mypwdroot

Export-Certificate -Cert cert:\localMachine\my\0C89639E4E2998A93E423F919B36D4009A0F9991 -FilePath 
root_ca_dev_damienbod.crt

$rootcert = ( Get-ChildItem -Path cert:\LocalMachine\My\0C89639E4E2998A93E423F919B36D4009A0F9991 )

New-SelfSignedCertificate -certstorelocation cert:\localmachine\my -dnsname "child_a_dev_damienbod.com" -
Signer $rootcert -NotAfter (Get-Date).AddYears(20) -FriendlyName "child_a_dev_damienbod.com" -KeyUsageProperty 
All -KeyUsage CertSign, CRLSign, DigitalSignature -TextExtension @("2.5.29.19={text}CA=1&pathlength=1")

Get-ChildItem -Path cert:\localMachine\my\BA9BF91ED35538A01375EFC212A2F46104B33A44 | Export-PfxCertificate -
FilePath C:\git\AspNetCoreCertificateAuth\Certs\child_a_dev_damienbod.pfx -Password $mypwd

Export-Certificate -Cert cert:\localMachine\my\BA9BF91ED35538A01375EFC212A2F46104B33A44 -FilePath 
child_a_dev_damienbod.crt

$parentcert = ( Get-ChildItem -Path cert:\LocalMachine\My\BA9BF91ED35538A01375EFC212A2F46104B33A44 )

New-SelfSignedCertificate -certstorelocation cert:\localmachine\my -dnsname "child_b_from_a_dev_damienbod.com" 
-Signer $parentcert -NotAfter (Get-Date).AddYears(20) -FriendlyName "child_b_from_a_dev_damienbod.com" 

Get-ChildItem -Path cert:\localMachine\my\141594A0AE38CBBECED7AF680F7945CD51D8F28A | Export-PfxCertificate -
FilePath C:\git\AspNetCoreCertificateAuth\Certs\child_b_from_a_dev_damienbod.pfx -Password $mypwd

Export-Certificate -Cert cert:\localMachine\my\141594A0AE38CBBECED7AF680F7945CD51D8F28A -FilePath 
child_b_from_a_dev_damienbod.crt

When using the root, intermediate, or child certificates, the certificates can be validated using the Thumbprint or

PublicKey as required.



using System.Collections.Generic;
using System.IO;
using System.Security.Cryptography.X509Certificates;

namespace AspNetCoreCertificateAuthApi
{
    public class MyCertificateValidationService 
    {
        public bool ValidateCertificate(X509Certificate2 clientCertificate)
        {
            return CheckIfThumbprintIsValid(clientCertificate);
        }

        private bool CheckIfThumbprintIsValid(X509Certificate2 clientCertificate)
        {
            var listOfValidThumbprints = new List<string>
            {
                "141594A0AE38CBBECED7AF680F7945CD51D8F28A",
                "0C89639E4E2998A93E423F919B36D4009A0F9991",
                "BA9BF91ED35538A01375EFC212A2F46104B33A44"
            };

            if (listOfValidThumbprints.Contains(clientCertificate.Thumbprint))
            {
                return true;
            }

            return false;
        }
    }
}

Certificate validation caching

public void ConfigureServices(IServiceCollection services)
{
    services.AddAuthentication(
        CertificateAuthenticationDefaults.AuthenticationScheme)
            .AddCertificate()
            .AddCertificateCache(options =>
            {
                options.CacheSize = 1024;
                options.CacheEntryExpiration = TimeSpan.FromMinutes(2);
            });
}

Optional client certificates

 

ASP.NET Core 5.0 and later versions support the ability to enable caching of validation results. The caching

dramatically improves performance of certificate authentication, as validation is an expensive operation.

By default, certificate authentication disables caching. To enable caching, call AddCertificateCache  in 

Startup.ConfigureServices :

The default caching implementation stores results in memory. You can provide your own cache by implementing 

ICertificateValidationCache  and registering it with dependency injection. For example, 

services.AddSingleton<ICertificateValidationCache, YourCache>() .

This section provides information for apps that must protect a subset of the app with a certificate. For example, a

Razor Page or controller in the app might require client certificates. This presents challenges as client certificates:



Are a TLS feature, not an HTTP feature.

Are negotiated per-connection and must be be negotiated at the start of the connection before any HTTP data

is available. At the start of the connection, only the Server Name Indication (SNI)† is known. The client and

server certificates are negotiated prior to the first request on a connection and requests generally aren't able to

renegotiate.

TLS renegotiation was an old way to implement optional client certificates. This is no longer recommended

because:

In HTTP/1.1, renegotiating during a POST request could cause a deadlock where the request body filled up the

TCP window and the renegotiation packets can't be received.

HTTP/2 explicitly prohibits renegotiation.

TLS 1.3 has removed support for renegotiation.

ASP.NET Core 5 preview 7 and later adds more convenient support for optional client certificates. For more

information, see the Optional certificates sample.

The following approach supports optional client certificates:

Set up binding for the domain and subdomain:

For requests to the web app that require a client certificate and don't have one:

For example, set up bindings on contoso.com  and myClient.contoso.com . The contoso.com  host doesn't

require a client certificate but myClient.contoso.com  does.

For more information, see:

Kestrel:

IIS

Http.Sys: Configure Windows Server

ListenOptions.UseHttps

ClientCertificateMode

Note Kestrel does not currently support multiple TLS configurations on one binding, you'll

need two bindings with unique IPs or ports. See

https://github.com/dotnet/runtime/issues/31097

Hosting IIS

Configure security on IIS

Redirect to the same page using the client certificate protected subdomain.

For example, redirect to myClient.contoso.com/requestedPage . Because the request to 

myClient.contoso.com/requestedPage  is a different hostname than contoso.com/requestedPage , the client

establishes a different connection and the client certificate is provided.

For more information, see Introduction to authorization in ASP.NET Core.

Leave questions, comments, and other feedback on optional client certificates in this GitHub discussion issue.

† Server Name Indication (SNI) is a TLS extension to include a virtual domain as a part of SSL negotiation. This

effectively means the virtual domain name, or a hostname, can be used to identify the network end point.

https://tools.ietf.org/html/rfc7540#section-9.2.1
https://tools.ietf.org/html/rfc8740#section-1
https://github.com/dotnet/aspnetcore/tree/9ce4a970a21bace3fb262da9591ed52359309592/src/Security/Authentication/Certificate/samples/Certificate.Optional.Sample
https://docs.microsoft.com/en-us/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.https.httpsconnectionadapteroptions.clientcertificatemode#microsoft_aspnetcore_server_kestrel_https_httpsconnectionadapteroptions_clientcertificatemode
https://github.com/dotnet/runtime/issues/31097
https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis#configure-ssl-settings-2
https://github.com/dotnet/AspNetCore.Docs/issues/18720


Multi-factor authentication in ASP.NET Core
9/22/2020 • 11 minutes to read • Edit Online

MFA, 2FA

MFA TOTP (Time-based One-time Password Algorithm)MFA TOTP (Time-based One-time Password Algorithm)

MFA FIDO2 or passwordlessMFA FIDO2 or passwordless

MFA SMSMFA SMS

By Damien Bowden

Multi-factor authentication (MFA) is a process in which a user is requested during a sign-in event for additional

forms of identification. This prompt could be to enter a code from a cellphone, use a FIDO2 key, or to provide a

fingerprint scan. When you require a second form of authentication, security is enhanced. The additional factor isn't

easily obtained or duplicated by an attacker.

This article covers the following areas:

What is MFA and what MFA flows are recommended

Configure MFA for administration pages using ASP.NET Core Identity

Send MFA sign-in requirement to OpenID Connect server

Force ASP.NET Core OpenID Connect client to require MFA

MFA requires at least two or more types of proof for an identity like something you know, something you possess,

or biometric validation for the user to authenticate.

Two-factor authentication (2FA) is like a subset of MFA, but the difference being that MFA can require two or more

factors to prove the identity.

MFA using TOTP is a supported implementation using ASP.NET Core Identity. This can be used together with any

compliant authenticator app, including:

Microsoft Authenticator App

Google Authenticator App

See the following link for implementation details:

Enable QR Code generation for TOTP authenticator apps in ASP.NET Core

FIDO2 is currently:

The most secure way of achieving MFA.

The only MFA flow that protects against phishing attacks.

At present, ASP.NET Core doesn't support FIDO2 directly. FIDO2 can be used for MFA or passwordless flows.

Azure Active Directory provides support for FIDO2 and passwordless flows. For more information, see

Passwordless authentication options for Azure Active Directory.

MFA with SMS increases security massively compared with password authentication (single factor). However, using

SMS as a second factor is no longer recommended. Too many known attack vectors exist for this type of

implementation.

NIST guidelines

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authentication/mfa.md
https://github.com/damienbod
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-authentication-passwordless
https://pages.nist.gov/800-63-3/sp800-63b.html


Configure MFA for administration pages using ASP.NET Core Identity

Extend the login with an MFA claimExtend the login with an MFA claim

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlite(
            Configuration.GetConnectionString("DefaultConnection")));
    
    services.AddIdentity<IdentityUser, IdentityRole>(
            options => options.SignIn.RequireConfirmedAccount = false)
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultTokenProviders();

    services.AddSingleton<IEmailSender, EmailSender>();
    services.AddScoped<IUserClaimsPrincipalFactory<IdentityUser>, 
        AdditionalUserClaimsPrincipalFactory>();

    services.AddAuthorization(options =>
        options.AddPolicy("TwoFactorEnabled",
            x => x.RequireClaim("amr", "mfa")));

    services.AddRazorPages();
}

MFA could be forced on users to access sensitive pages within an ASP.NET Core Identity app. This could be useful

for apps where different levels of access exist for the different identities. For example, users might be able to view

the profile data using a password login, but an administrator would be required to use MFA to access the

administrative pages.

The demo code is setup using ASP.NET Core with Identity and Razor Pages. The AddIdentity  method is used

instead of AddDefaultIdentity  one, so an IUserClaimsPrincipalFactory  implementation can be used to add claims

to the identity after a successful login.

The AdditionalUserClaimsPrincipalFactory  class adds the amr  claim to the user claims only after a successful login.

The claim's value is read from the database. The claim is added here because the user should only access the higher

protected view if the identity has logged in with MFA. If the database view is read from the database directly instead

of using the claim, it's possible to access the view without MFA directly after activating the MFA.



using Microsoft.AspNetCore.Identity;
using Microsoft.Extensions.Options;
using System.Collections.Generic;
using System.Security.Claims;
using System.Threading.Tasks;

namespace IdentityStandaloneMfa
{
    public class AdditionalUserClaimsPrincipalFactory : 
        UserClaimsPrincipalFactory<IdentityUser, IdentityRole>
    {
        public AdditionalUserClaimsPrincipalFactory( 
            UserManager<IdentityUser> userManager,
            RoleManager<IdentityRole> roleManager, 
            IOptions<IdentityOptions> optionsAccessor) 
            : base(userManager, roleManager, optionsAccessor)
        {
        }

        public async override Task<ClaimsPrincipal> CreateAsync(IdentityUser user)
        {
            var principal = await base.CreateAsync(user);
            var identity = (ClaimsIdentity)principal.Identity;

            var claims = new List<Claim>();

            if (user.TwoFactorEnabled)
            {
                claims.Add(new Claim("amr", "mfa"));
            }
            else
            {
                claims.Add(new Claim("amr", "pwd"));
            }

            identity.AddClaims(claims);
            return principal;
        }
    }
}

@{
    Layout = "/Pages/Shared/_Layout.cshtml";
}

@{
    Layout = "_Layout.cshtml";
}

Validate the MFA requirement in the administration pageValidate the MFA requirement in the administration page

Because the Identity service setup changed in the Startup  class, the layouts of the Identity need to be updated.

Scaffold the Identity pages into the app. Define the layout in the Identity/Account/Manage/_Layout.cshtml file.

Also assign the layout for all the manage pages from the Identity pages:

The administration Razor Page validates that the user has logged in using MFA. In the OnGet  method, the identity is

used to access the user claims. The amr  claim is checked for the value mfa . If the identity is missing this claim or is

false , the page redirects to the Enable MFA page. This is possible because the user has logged in already, but

without MFA.



using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace IdentityStandaloneMfa
{
    public class AdminModel : PageModel
    {
        public IActionResult OnGet()
        {
            var claimTwoFactorEnabled = 
                User.Claims.FirstOrDefault(t => t.Type == "amr");

            if (claimTwoFactorEnabled != null && 
                "mfa".Equals(claimTwoFactorEnabled.Value))
            {
                // You logged in with MFA, do the administrative stuff
            }
            else
            {
                return Redirect(
                    "/Identity/Account/Manage/TwoFactorAuthentication");
            }

            return Page();
        }
    }
}

UI logic to toggle user login informationUI logic to toggle user login information

services.AddAuthorization(options =>
    options.AddPolicy("TwoFactorEnabled",
        x => x.RequireClaim("amr", "mfa")));

@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Identity
@inject SignInManager<IdentityUser> SignInManager
@inject UserManager<IdentityUser> UserManager
@inject IAuthorizationService AuthorizationService

An authorization policy was added at startup. The policy requires the amr  claim with the value mfa .

This policy can then be used in the _Layout  view to show or hide the AdminAdmin menu with the warning:

If the identity has logged in using MFA, the AdminAdmin menu is displayed without the tooltip warning. When the user

has logged in without MFA, the Admin (Not Enabled)Admin (Not Enabled)  menu is displayed along with the tooltip that informs the

user (explaining the warning).



@if (SignInManager.IsSignedIn(User))
{
    @if ((AuthorizationService.AuthorizeAsync(User, "TwoFactorEnabled")).Result.Succeeded)
    {
        <li class="nav-item">
            <a class="nav-link text-dark" asp-area="" asp-page="/Admin">Admin</a>
        </li>
    }
    else
    {
        <li class="nav-item">
            <a class="nav-link text-dark" asp-area="" asp-page="/Admin" 
               id="tooltip-demo"  
               data-toggle="tooltip" 
               data-placement="bottom" 
               title="MFA is NOT enabled. This is required for the Admin Page. If you have activated MFA, then 
logout, login again.">
                Admin (Not Enabled)
            </a>
        </li>
    }
}

If the user logs in without MFA, the warning is displayed:

The user is redirected to the MFA enable view when clicking the AdminAdmin link:



Send MFA sign-in requirement to OpenID Connect server

NOTENOTE

OpenID Connect ASP.NET Core clientOpenID Connect ASP.NET Core client

The acr_values  parameter can be used to pass the mfa  required value from the client to the server in an

authentication request.

The acr_values  parameter needs to be handled on the OpenID Connect server for this to work.

The ASP.NET Core Razor Pages OpenID Connect client app uses the AddOpenIdConnect  method to login to the

OpenID Connect server. The acr_values  parameter is set with the mfa  value and sent with the authentication

request. The OpenIdConnectEvents  is used to add this.

For recommended acr_values  parameter values, see Authentication Method Reference Values.

https://tools.ietf.org/html/draft-ietf-oauth-amr-values-08


public void ConfigureServices(IServiceCollection services)
{
    services.AddAuthentication(options =>
    {
        options.DefaultScheme =
            CookieAuthenticationDefaults.AuthenticationScheme;
        options.DefaultChallengeScheme =
            OpenIdConnectDefaults.AuthenticationScheme;
    })
    .AddCookie()
    .AddOpenIdConnect(options =>
    {
        options.SignInScheme =
            CookieAuthenticationDefaults.AuthenticationScheme;
        options.Authority = "<OpenID Connect server URL>";
        options.RequireHttpsMetadata = true;
        options.ClientId = "<OpenID Connect client ID>";
        options.ClientSecret = "<>";
        // Code with PKCE can also be used here
        options.ResponseType = "code id_token";
        options.Scope.Add("profile");
        options.Scope.Add("offline_access");
        options.SaveTokens = true;
        options.Events = new OpenIdConnectEvents
        {
            OnRedirectToIdentityProvider = context =>
            {
                context.ProtocolMessage.SetParameter("acr_values", "mfa");
                return Task.FromResult(0);
            }
        };
    });

Example OpenID Connect IdentityServer 4 server with ASP.NET Core IdentityExample OpenID Connect IdentityServer 4 server with ASP.NET Core Identity

@{
    ViewData["Title"] = "ErrorEnable2FA";
}

<h1>The client application requires you to have MFA enabled. Enable this, try login again.</h1>

<br />

You can enable MFA to login here:

<br />

<a asp-controller="Manage" asp-action="TwoFactorAuthentication">Enable MFA</a>

On the OpenID Connect server, which is implemented using ASP.NET Core Identity with MVC views, a new view

named ErrorEnable2FA.cshtml is created. The view:

Displays if the Identity comes from an app that requires MFA but the user hasn't activated this in Identity.

Informs the user and adds a link to activate this.

In the Login  method, the IIdentityServerInteractionService  interface implementation _interaction  is used to

access the OpenID Connect request parameters. The acr_values  parameter is accessed using the AcrValues

property. As the client sent this with mfa  set, this can then be checked.

If MFA is required, and the user in ASP.NET Core Identity has MFA enabled, then the login continues. When the user

has no MFA enabled, the user is redirected to the custom view ErrorEnable2FA.cshtml. Then ASP.NET Core Identity

signs the user in.



//
// POST: /Account/Login
[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Login(LoginInputModel model)
{
    var returnUrl = model.ReturnUrl;
    var context = 
        await _interaction.GetAuthorizationContextAsync(returnUrl);
    var requires2Fa = 
        context?.AcrValues.Count(t => t.Contains("mfa")) >= 1;

    var user = await _userManager.FindByNameAsync(model.Email);
    if (user != null && !user.TwoFactorEnabled && requires2Fa)
    {
        return RedirectToAction(nameof(ErrorEnable2FA));
    }

    // code omitted for brevity

The ExternalLoginCallback  method works like the local Identity login. The AcrValues  property is checked for the 

mfa  value. If the mfa  value is present, MFA is forced before the login completes (for example, redirected to the 

ErrorEnable2FA  view).



//
// GET: /Account/ExternalLoginCallback
[HttpGet]
[AllowAnonymous]
public async Task<IActionResult> ExternalLoginCallback(
    string returnUrl = null,
    string remoteError = null)
{
    var context =
        await _interaction.GetAuthorizationContextAsync(returnUrl);
    var requires2Fa =
        context?.AcrValues.Count(t => t.Contains("mfa")) >= 1;

    if (remoteError != null)
    {
        ModelState.AddModelError(
            string.Empty,
            _sharedLocalizer["EXTERNAL_PROVIDER_ERROR", 
            remoteError]);
        return View(nameof(Login));
    }
    var info = await _signInManager.GetExternalLoginInfoAsync();

    if (info == null)
    {
        return RedirectToAction(nameof(Login));
    }

    var email = info.Principal.FindFirstValue(ClaimTypes.Email);

    if (!string.IsNullOrEmpty(email))
    {
        var user = await _userManager.FindByNameAsync(email);
        if (user != null && !user.TwoFactorEnabled && requires2Fa)
        {
            return RedirectToAction(nameof(ErrorEnable2FA));
        }
    }

    // Sign in the user with this external login provider if the user already has a login.
    var result = await _signInManager
        .ExternalLoginSignInAsync(
            info.LoginProvider, 
            info.ProviderKey, 
            isPersistent: 
            false);

    // code omitted for brevity

If the user is already logged in, the client app:

Still validates the amr  claim.

Can set up the MFA with a link to the ASP.NET Core Identity view.



Force ASP.NET Core OpenID Connect client to require MFA

using Microsoft.AspNetCore.Authorization;
 
namespace AspNetCoreRequireMfaOidc
{
    public class RequireMfa : IAuthorizationRequirement{}
}

This example shows how an ASP.NET Core Razor Page app, which uses OpenID Connect to sign in, can require that

users have authenticated using MFA.

To validate the MFA requirement, an IAuthorizationRequirement  requirement is created. This will be added to the

pages using a policy that requires MFA.

An AuthorizationHandler  is implemented that will use the amr  claim and check for the value mfa . The amr  is

returned in the id_token  of a successful authentication and can have many different values as defined in the

Authentication Method Reference Values specification.

The returned value depends on how the identity authenticated and on the OpenID Connect server implementation.

The AuthorizationHandler  uses the RequireMfa  requirement and validates the amr  claim. The OpenID Connect

server can be implemented using IdentityServer4 with ASP.NET Core Identity. When a user logs in using TOTP, the 

amr  claim is returned with an MFA value. If using a different OpenID Connect server implementation or a different

MFA type, the amr  claim will, or can, have a different value. The code must be extended to accept this as well.

https://tools.ietf.org/html/draft-ietf-oauth-amr-values-08


using Microsoft.AspNetCore.Authorization;
using System;
using System.Linq;
using System.Threading.Tasks;

namespace AspNetCoreRequireMfaOidc
{
    public class RequireMfaHandler : AuthorizationHandler<RequireMfa>
    {
        protected override Task HandleRequirementAsync(
            AuthorizationHandlerContext context, 
            RequireMfa requirement)
        {
            if (context == null)
                throw new ArgumentNullException(nameof(context));
            if (requirement == null)
                throw new ArgumentNullException(nameof(requirement));

            var amrClaim =
                context.User.Claims.FirstOrDefault(t => t.Type == "amr");

            if (amrClaim != null && amrClaim.Value == Amr.Mfa)
            {
                context.Succeed(requirement);
            }

            return Task.CompletedTask;
        }
    }
}

In the Startup.ConfigureServices  method, the AddOpenIdConnect  method is used as the default challenge scheme.

The authorization handler, which is used to check the amr  claim, is added to the Inversion of Control container. A

policy is then created which adds the RequireMfa  requirement.



public void ConfigureServices(IServiceCollection services)
{
    services.ConfigureApplicationCookie(options =>
        options.Cookie.SecurePolicy =
            CookieSecurePolicy.Always);

    services.AddSingleton<IAuthorizationHandler, RequireMfaHandler>();

    services.AddAuthentication(options =>
    {
        options.DefaultScheme =
            CookieAuthenticationDefaults.AuthenticationScheme;
        options.DefaultChallengeScheme =
            OpenIdConnectDefaults.AuthenticationScheme;
    })
    .AddCookie()
    .AddOpenIdConnect(options =>
    {
        options.SignInScheme =
            CookieAuthenticationDefaults.AuthenticationScheme;
        options.Authority = "https://localhost:44352";
        options.RequireHttpsMetadata = true;
        options.ClientId = "AspNetCoreRequireMfaOidc";
        options.ClientSecret = "AspNetCoreRequireMfaOidcSecret";
        options.ResponseType = "code id_token";
        options.Scope.Add("profile");
        options.Scope.Add("offline_access");
        options.SaveTokens = true;
    });

    services.AddAuthorization(options =>
    {
        options.AddPolicy("RequireMfa", policyIsAdminRequirement =>
        {
            policyIsAdminRequirement.Requirements.Add(new RequireMfa());
        });
    });

    services.AddRazorPages();
}

This policy is then used in the Razor page as required. The policy could be added globally for the entire app as well.



using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.Extensions.Logging;

namespace AspNetCoreRequireMfaOidc.Pages
{
    [Authorize(Policy= "RequireMfa")]
    public class IndexModel : PageModel
    {
        private readonly ILogger<IndexModel> _logger;

        public IndexModel(ILogger<IndexModel> logger)
        {
            _logger = logger;
        }

        public void OnGet()
        {
        }
    }
}

@page
@model AspNetCoreRequireMfaOidc.AccessDeniedModel
@{
    ViewData["Title"] = "AccessDenied";
    Layout = "~/Pages/Shared/_Layout.cshtml";
}

<h1>AccessDenied</h1>

You require MFA to login here

<a href="https://localhost:44352/Manage/TwoFactorAuthentication">Enable MFA</a>

If the user authenticates without MFA, the amr  claim will probably have a pwd  value. The request won't be

authorized to access the page. Using the default values, the user will be redirected to the Account/AccessDenied

page. This behavior can be changed or you can implement your own custom logic here. In this example, a link is

added so that the valid user can set up MFA for their account.

Now only users that authenticate with MFA can access the page or website. If different MFA types are used or if 2FA

is okay, the amr  claim will have different values and needs to be processed correctly. Different OpenID Connect

servers also return different values for this claim and might not follow the Authentication Method Reference Values

specification.

When logging in without MFA (for example, using just a password):

The amr  has the pwd  value:

https://tools.ietf.org/html/draft-ietf-oauth-amr-values-08


Access is denied:

Alternatively, logging in using OTP with Identity:



Additional resources
Enable QR Code generation for TOTP authenticator apps in ASP.NET Core

Passwordless authentication options for Azure Active Directory

FIDO2 .NET library for FIDO2 / WebAuthn Attestation and Assertion using .NET

WebAuthn Awesome

https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-authentication-passwordless
https://github.com/abergs/fido2-net-lib
https://github.com/herrjemand/awesome-webauthn


Introduction to authorization in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Authorization types

Namespaces

 Authorization refers to the process that determines what a user is able to do. For example, an administrative user

is allowed to create a document library, add documents, edit documents, and delete them. A non-administrative

user working with the library is only authorized to read the documents.

Authorization is orthogonal and independent from authentication. However, authorization requires an

authentication mechanism. Authentication is the process of ascertaining who a user is. Authentication may create

one or more identities for the current user.

For more information about authentication in ASP.NET Core, see Overview of ASP.NET Core Authentication.

ASP.NET Core authorization provides a simple, declarative role and a rich policy-based model. Authorization is

expressed in requirements, and handlers evaluate a user's claims against requirements. Imperative checks can be

based on simple policies or policies which evaluate both the user identity and properties of the resource that the

user is attempting to access.

Authorization components, including the AuthorizeAttribute  and AllowAnonymousAttribute  attributes, are found

in the Microsoft.AspNetCore.Authorization  namespace.

Consult the documentation on simple authorization.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/introduction.md


Create an ASP.NET Core web app with user data
protected by authorization
9/22/2020 • 39 minutes to read • Edit Online

By Rick Anderson and Joe Audette

See this pdf

This tutorial shows how to create an ASP.NET Core web app with user data protected by authorization. It displays a

list of contacts that authenticated (registered) users have created. There are three security groups:

Registered usersRegistered users  can view all the approved data and can edit/delete their own data.

ManagersManagers  can approve or reject contact data. Only approved contacts are visible to users.

AdministratorsAdministrators  can approve/reject and edit/delete any data.

The images in this document don't exactly match the latest templates.

In the following image, user Rick ( rick@example.com ) is signed in. Rick can only view approved contacts and

EditEdit/DeleteDelete/Create NewCreate New  links for his contacts. Only the last record, created by Rick, displays EditEdit and DeleteDelete

links. Other users won't see the last record until a manager or administrator changes the status to "Approved".

In the following image, manager@contoso.com  is signed in and in the manager's role:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/secure-data.md
https://twitter.com/RickAndMSFT
https://twitter.com/joeaudette
https://webpifeed.blob.core.windows.net/webpifeed/Partners/asp.net_repo_pdf_July16_18.pdf


The following image shows the managers details view of a contact:

The ApproveApprove and RejectReject buttons are only displayed for managers and administrators.

In the following image, admin@contoso.com  is signed in and in the administrator's role:



public class Contact
{
    public int ContactId { get; set; }
    public string Name { get; set; }
    public string Address { get; set; }
    public string City { get; set; }
    public string State { get; set; }
    public string Zip { get; set; }
    [DataType(DataType.EmailAddress)]
    public string Email { get; set; }
}

Prerequisites

The administrator has all privileges. She can read/edit/delete any contact and change the status of contacts.

The app was created by scaffolding the following Contact  model:

The sample contains the following authorization handlers:

ContactIsOwnerAuthorizationHandler : Ensures that a user can only edit their data.

ContactManagerAuthorizationHandler : Allows managers to approve or reject contacts.

ContactAdministratorsAuthorizationHandler : Allows administrators to approve or reject contacts and to

edit/delete contacts.

This tutorial is advanced. You should be familiar with:

ASP.NET Core

Authentication



The starter and completed app

The starter appThe starter app

Secure user data

Tie the contact data to the userTie the contact data to the user

public class Contact
{
    public int ContactId { get; set; }

    // user ID from AspNetUser table.
    public string OwnerID { get; set; }

    public string Name { get; set; }
    public string Address { get; set; }
    public string City { get; set; }
    public string State { get; set; }
    public string Zip { get; set; }
    [DataType(DataType.EmailAddress)]
    public string Email { get; set; }

    public ContactStatus Status { get; set; }
}

public enum ContactStatus
{
    Submitted,
    Approved,
    Rejected
}

dotnet ef migrations add userID_Status
dotnet ef database update

Add Role services to IdentityAdd Role services to Identity

Account Confirmation and Password Recovery

Authorization

Entity Framework Core

Download the completed app. Test the completed app so you become familiar with its security features.

Download the starter app.

Run the app, tap the ContactManagerContactManager  link, and verify you can create, edit, and delete a contact.

The following sections have all the major steps to create the secure user data app. You may find it helpful to refer

to the completed project.

Use the ASP.NET Identity user ID to ensure users can edit their data, but not other users data. Add OwnerID  and 

ContactStatus  to the Contact  model:

OwnerID  is the user's ID from the AspNetUser  table in the Identity database. The Status  field determines if a

contact is viewable by general users.

Create a new migration and update the database:

Append AddRoles to add Role services:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/secure-data/samples
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/secure-data/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilder.addroles#microsoft_aspnetcore_identity_identitybuilder_addroles__1


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(
        options => options.SignIn.RequireConfirmedAccount = true)
        .AddRoles<IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>();

Require authenticated usersRequire authenticated users

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(
        options => options.SignIn.RequireConfirmedAccount = true)
        .AddRoles<IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddRazorPages();

    services.AddAuthorization(options =>
    {
        options.FallbackPolicy = new AuthorizationPolicyBuilder()
            .RequireAuthenticatedUser()
            .Build();
    });

           

Set the fallback authentication policy to require users to be authenticated:

The preceding highlighted code sets the fallback authentication policy. The fallback authentication policy requires

allall  users to be authenticated, except for Razor Pages, controllers, or action methods with an authentication

attribute. For example, Razor Pages, controllers, or action methods with [AllowAnonymous]  or 

[Authorize(PolicyName="MyPolicy")]  use the applied authentication attribute rather than the fallback

authentication policy.

The fallback authentication policy:

Is applied to all requests that do not explicitly specify an authentication policy. For requests served by endpoint

routing, this would include any endpoint that does not specify an authorization attribute. For requests served

by other middleware after the authorization middleware, such as static files, this would apply the policy to all

requests.

Setting the fallback authentication policy to require users to be authenticated protects newly added Razor Pages

and controllers. Having authentication required by default is more secure than relying on new controllers and

Razor Pages to include the [Authorize]  attribute.

The AuthorizationOptions class also contains AuthorizationOptions.DefaultPolicy. The DefaultPolicy  is the policy

used with the [Authorize]  attribute when no policy is specified. [Authorize]  doesn't contain a named policy,

unlike [Authorize(PolicyName="MyPolicy")] .

For more information on policies, see Policy-based authorization in ASP.NET Core.

An alternative way for MVC controllers and Razor Pages to require all users be authenticated is adding an

authorization filter :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationoptions.fallbackpolicy#microsoft_aspnetcore_authorization_authorizationoptions_fallbackpolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationoptions.defaultpolicy#microsoft_aspnetcore_authorization_authorizationoptions_defaultpolicy


public void ConfigureServices(IServiceCollection services)
{

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(
        options => options.SignIn.RequireConfirmedAccount = true)
        .AddRoles<IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddRazorPages();

    services.AddControllers(config =>
    {
        // using Microsoft.AspNetCore.Mvc.Authorization;
        // using Microsoft.AspNetCore.Authorization;
        var policy = new AuthorizationPolicyBuilder()
                         .RequireAuthenticatedUser()
                         .Build();
        config.Filters.Add(new AuthorizeFilter(policy));
    });

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc.RazorPages;
using Microsoft.Extensions.Logging;

namespace ContactManager.Pages
{
    [AllowAnonymous]
    public class IndexModel : PageModel
    {
        private readonly ILogger<IndexModel> _logger;

        public IndexModel(ILogger<IndexModel> logger)
        {
            _logger = logger;
        }

        public void OnGet()
        {

        }
    }
}

Configure the test accountConfigure the test account

dotnet user-secrets set SeedUserPW <PW>

The preceding code uses an authorization filter, setting the fallback policy uses endpoint routing. Setting the

fallback policy is the preferred way to require all users be authenticated.

Add AllowAnonymous to the Index  and Privacy  pages so anonymous users can get information about the site

before they register :

The SeedData  class creates two accounts: administrator and manager. Use the Secret Manager tool to set a

password for these accounts. Set the password from the project directory (the directory containing Program.cs):

If a strong password is not specified, an exception is thrown when SeedData.Initialize  is called.

Update Main  to use the test password:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.allowanonymousattribute


public class Program
{
    public static void Main(string[] args)
    {
        var host = CreateHostBuilder(args).Build();

        using (var scope = host.Services.CreateScope())
        {
            var services = scope.ServiceProvider;

            try
            {
                var context = services.GetRequiredService<ApplicationDbContext>();
                context.Database.Migrate();

                // requires using Microsoft.Extensions.Configuration;
                var config = host.Services.GetRequiredService<IConfiguration>();
                // Set password with the Secret Manager tool.
                // dotnet user-secrets set SeedUserPW <pw>

                var testUserPw = config["SeedUserPW"];

                SeedData.Initialize(services, testUserPw).Wait();
            }
            catch (Exception ex)
            {
                var logger = services.GetRequiredService<ILogger<Program>>();
                logger.LogError(ex, "An error occurred seeding the DB.");
            }
        }

        host.Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            });
}

Create the test accounts and update the contactsCreate the test accounts and update the contacts

public static async Task Initialize(IServiceProvider serviceProvider, string testUserPw)
{
    using (var context = new ApplicationDbContext(
        serviceProvider.GetRequiredService<DbContextOptions<ApplicationDbContext>>()))
    {
        // For sample purposes seed both with the same password.
        // Password is set with the following:
        // dotnet user-secrets set SeedUserPW <pw>
        // The admin user can do anything

        var adminID = await EnsureUser(serviceProvider, testUserPw, "admin@contoso.com");
        await EnsureRole(serviceProvider, adminID, Constants.ContactAdministratorsRole);

        // allowed user can create and edit contacts that they create
        var managerID = await EnsureUser(serviceProvider, testUserPw, "manager@contoso.com");
        await EnsureRole(serviceProvider, managerID, Constants.ContactManagersRole);

        SeedDB(context, adminID);
    }
}

Update the Initialize  method in the SeedData  class to create the test accounts:



private static async Task<string> EnsureUser(IServiceProvider serviceProvider,
                                            string testUserPw, string UserName)
{
    var userManager = serviceProvider.GetService<UserManager<IdentityUser>>();

    var user = await userManager.FindByNameAsync(UserName);
    if (user == null)
    {
        user = new IdentityUser {
            UserName = UserName,
            EmailConfirmed = true
        };
        await userManager.CreateAsync(user, testUserPw);
    }

    if (user == null)
    {
        throw new Exception("The password is probably not strong enough!");
    }

    return user.Id;
}

private static async Task<IdentityResult> EnsureRole(IServiceProvider serviceProvider,
                                                              string uid, string role)
{
    IdentityResult IR = null;
    var roleManager = serviceProvider.GetService<RoleManager<IdentityRole>>();

    if (roleManager == null)
    {
        throw new Exception("roleManager null");
    }

    if (!await roleManager.RoleExistsAsync(role))
    {
        IR = await roleManager.CreateAsync(new IdentityRole(role));
    }

    var userManager = serviceProvider.GetService<UserManager<IdentityUser>>();

    var user = await userManager.FindByIdAsync(uid);

    if(user == null)
    {
        throw new Exception("The testUserPw password was probably not strong enough!");
    }
    
    IR = await userManager.AddToRoleAsync(user, role);

    return IR;
}

Add the administrator user ID and ContactStatus  to the contacts. Make one of the contacts "Submitted" and one

"Rejected". Add the user ID and status to all the contacts. Only one contact is shown:



public static void SeedDB(ApplicationDbContext context, string adminID)
{
    if (context.Contact.Any())
    {
        return;   // DB has been seeded
    }

    context.Contact.AddRange(
        new Contact
        {
            Name = "Debra Garcia",
            Address = "1234 Main St",
            City = "Redmond",
            State = "WA",
            Zip = "10999",
            Email = "debra@example.com",
            Status = ContactStatus.Approved,
            OwnerID = adminID
        },

Create owner, manager, and administrator authorization handlers
Create a ContactIsOwnerAuthorizationHandler  class in the Authorization folder. The 

ContactIsOwnerAuthorizationHandler  verifies that the user acting on a resource owns the resource.



using ContactManager.Models;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Authorization.Infrastructure;
using Microsoft.AspNetCore.Identity;
using System.Threading.Tasks;

namespace ContactManager.Authorization
{
    public class ContactIsOwnerAuthorizationHandler
                : AuthorizationHandler<OperationAuthorizationRequirement, Contact>
    {
        UserManager<IdentityUser> _userManager;

        public ContactIsOwnerAuthorizationHandler(UserManager<IdentityUser> 
            userManager)
        {
            _userManager = userManager;
        }

        protected override Task
            HandleRequirementAsync(AuthorizationHandlerContext context,
                                   OperationAuthorizationRequirement requirement,
                                   Contact resource)
        {
            if (context.User == null || resource == null)
            {
                return Task.CompletedTask;
            }

            // If not asking for CRUD permission, return.

            if (requirement.Name != Constants.CreateOperationName &&
                requirement.Name != Constants.ReadOperationName   &&
                requirement.Name != Constants.UpdateOperationName &&
                requirement.Name != Constants.DeleteOperationName )
            {
                return Task.CompletedTask;
            }

            if (resource.OwnerID == _userManager.GetUserId(context.User))
            {
                context.Succeed(requirement);
            }

            return Task.CompletedTask;
        }
    }
}

Create a manager authorization handlerCreate a manager authorization handler

The ContactIsOwnerAuthorizationHandler  calls context.Succeed if the current authenticated user is the contact

owner. Authorization handlers generally:

Return context.Succeed  when the requirements are met.

Return Task.CompletedTask  when requirements aren't met. Task.CompletedTask  is not success or failure—it

allows other authorization handlers to run.

If you need to explicitly fail, return context.Fail.

The app allows contact owners to edit/delete/create their own data. ContactIsOwnerAuthorizationHandler  doesn't

need to check the operation passed in the requirement parameter.

Create a ContactManagerAuthorizationHandler  class in the Authorization folder. The 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext.succeed#microsoft_aspnetcore_authorization_authorizationhandlercontext_succeed_microsoft_aspnetcore_authorization_iauthorizationrequirement_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext.fail


using System.Threading.Tasks;
using ContactManager.Models;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Authorization.Infrastructure;
using Microsoft.AspNetCore.Identity;

namespace ContactManager.Authorization
{
    public class ContactManagerAuthorizationHandler :
        AuthorizationHandler<OperationAuthorizationRequirement, Contact>
    {
        protected override Task
            HandleRequirementAsync(AuthorizationHandlerContext context,
                                   OperationAuthorizationRequirement requirement,
                                   Contact resource)
        {
            if (context.User == null || resource == null)
            {
                return Task.CompletedTask;
            }

            // If not asking for approval/reject, return.
            if (requirement.Name != Constants.ApproveOperationName &&
                requirement.Name != Constants.RejectOperationName)
            {
                return Task.CompletedTask;
            }

            // Managers can approve or reject.
            if (context.User.IsInRole(Constants.ContactManagersRole))
            {
                context.Succeed(requirement);
            }

            return Task.CompletedTask;
        }
    }
}

Create an administrator authorization handlerCreate an administrator authorization handler

ContactManagerAuthorizationHandler  verifies the user acting on the resource is a manager. Only managers can

approve or reject content changes (new or changed).

Create a ContactAdministratorsAuthorizationHandler  class in the Authorization folder. The 

ContactAdministratorsAuthorizationHandler  verifies the user acting on the resource is an administrator.

Administrator can do all operations.



using System.Threading.Tasks;
using ContactManager.Models;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Authorization.Infrastructure;

namespace ContactManager.Authorization
{
    public class ContactAdministratorsAuthorizationHandler
                    : AuthorizationHandler<OperationAuthorizationRequirement, Contact>
    {
        protected override Task HandleRequirementAsync(
                                              AuthorizationHandlerContext context,
                                    OperationAuthorizationRequirement requirement, 
                                     Contact resource)
        {
            if (context.User == null)
            {
                return Task.CompletedTask;
            }

            // Administrators can do anything.
            if (context.User.IsInRole(Constants.ContactAdministratorsRole))
            {
                context.Succeed(requirement);
            }

            return Task.CompletedTask;
        }
    }
}

Register the authorization handlers
Services using Entity Framework Core must be registered for dependency injection using AddScoped. The 

ContactIsOwnerAuthorizationHandler  uses ASP.NET Core Identity, which is built on Entity Framework Core. Register

the handlers with the service collection so they're available to the ContactsController  through dependency

injection. Add the following code to the end of ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>(
        options => options.SignIn.RequireConfirmedAccount = true)
        .AddRoles<IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddRazorPages();

    services.AddAuthorization(options =>
    {
        options.FallbackPolicy = new AuthorizationPolicyBuilder()
            .RequireAuthenticatedUser()
            .Build();
    });

    // Authorization handlers.
    services.AddScoped<IAuthorizationHandler,
                          ContactIsOwnerAuthorizationHandler>();

    services.AddSingleton<IAuthorizationHandler,
                          ContactAdministratorsAuthorizationHandler>();

    services.AddSingleton<IAuthorizationHandler,
                          ContactManagerAuthorizationHandler>();
}

Support authorization

Review the contact operations requirements classReview the contact operations requirements class

ContactAdministratorsAuthorizationHandler  and ContactManagerAuthorizationHandler  are added as singletons.

They're singletons because they don't use EF and all the information needed is in the Context  parameter of the 

HandleRequirementAsync  method.

In this section, you update the Razor Pages and add an operations requirements class.

Review the ContactOperations  class. This class contains the requirements the app supports:



using Microsoft.AspNetCore.Authorization.Infrastructure;

namespace ContactManager.Authorization
{
    public static class ContactOperations
    {
        public static OperationAuthorizationRequirement Create =   
          new OperationAuthorizationRequirement {Name=Constants.CreateOperationName};
        public static OperationAuthorizationRequirement Read = 
          new OperationAuthorizationRequirement {Name=Constants.ReadOperationName};  
        public static OperationAuthorizationRequirement Update = 
          new OperationAuthorizationRequirement {Name=Constants.UpdateOperationName}; 
        public static OperationAuthorizationRequirement Delete = 
          new OperationAuthorizationRequirement {Name=Constants.DeleteOperationName};
        public static OperationAuthorizationRequirement Approve = 
          new OperationAuthorizationRequirement {Name=Constants.ApproveOperationName};
        public static OperationAuthorizationRequirement Reject = 
          new OperationAuthorizationRequirement {Name=Constants.RejectOperationName};
    }

    public class Constants
    {
        public static readonly string CreateOperationName = "Create";
        public static readonly string ReadOperationName = "Read";
        public static readonly string UpdateOperationName = "Update";
        public static readonly string DeleteOperationName = "Delete";
        public static readonly string ApproveOperationName = "Approve";
        public static readonly string RejectOperationName = "Reject";

        public static readonly string ContactAdministratorsRole = 
                                                              "ContactAdministrators";
        public static readonly string ContactManagersRole = "ContactManagers";
    }
}

Create a base class for the Contacts Razor PagesCreate a base class for the Contacts Razor Pages

using ContactManager.Data;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace ContactManager.Pages.Contacts
{
    public class DI_BasePageModel : PageModel
    {
        protected ApplicationDbContext Context { get; }
        protected IAuthorizationService AuthorizationService { get; }
        protected UserManager<IdentityUser> UserManager { get; }

        public DI_BasePageModel(
            ApplicationDbContext context,
            IAuthorizationService authorizationService,
            UserManager<IdentityUser> userManager) : base()
        {
            Context = context;
            UserManager = userManager;
            AuthorizationService = authorizationService;
        } 
    }
}

Create a base class that contains the services used in the contacts Razor Pages. The base class puts the

initialization code in one location:



Update the CreateModelUpdate the CreateModel

public class CreateModel : DI_BasePageModel
{
    public CreateModel(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

public async Task<IActionResult> OnPostAsync()
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    Contact.OwnerID = UserManager.GetUserId(User);

    // requires using ContactManager.Authorization;
    var isAuthorized = await AuthorizationService.AuthorizeAsync(
                                                User, Contact,
                                                ContactOperations.Create);
    if (!isAuthorized.Succeeded)
    {
        return Forbid();
    }

    Context.Contact.Add(Contact);
    await Context.SaveChangesAsync();

    return RedirectToPage("./Index");
}

Update the IndexModelUpdate the IndexModel

The preceding code:

Adds the IAuthorizationService  service to access to the authorization handlers.

Adds the Identity UserManager  service.

Add the ApplicationDbContext .

Update the create page model constructor to use the DI_BasePageModel  base class:

Update the CreateModel.OnPostAsync  method to:

Add the user ID to the Contact  model.

Call the authorization handler to verify the user has permission to create contacts.

Update the OnGetAsync  method so only approved contacts are shown to general users:



public class IndexModel : DI_BasePageModel
{
    public IndexModel(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

    public IList<Contact> Contact { get; set; }

    public async Task OnGetAsync()
    {
        var contacts = from c in Context.Contact
                       select c;

        var isAuthorized = User.IsInRole(Constants.ContactManagersRole) ||
                           User.IsInRole(Constants.ContactAdministratorsRole);

        var currentUserId = UserManager.GetUserId(User);

        // Only approved contacts are shown UNLESS you're authorized to see them
        // or you are the owner.
        if (!isAuthorized)
        {
            contacts = contacts.Where(c => c.Status == ContactStatus.Approved
                                        || c.OwnerID == currentUserId);
        }

        Contact = await contacts.ToListAsync();
    }
}

Update the EditModelUpdate the EditModel

public class EditModel : DI_BasePageModel
{
    public EditModel(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

    [BindProperty]
    public Contact Contact { get; set; }

    public async Task<IActionResult> OnGetAsync(int id)
    {
        Contact = await Context.Contact.FirstOrDefaultAsync(
                                             m => m.ContactId == id);

        if (Contact == null)
        {
            return NotFound();
        }

Add an authorization handler to verify the user owns the contact. Because resource authorization is being

validated, the [Authorize]  attribute is not enough. The app doesn't have access to the resource when attributes

are evaluated. Resource-based authorization must be imperative. Checks must be performed once the app has

access to the resource, either by loading it in the page model or by loading it within the handler itself. You

frequently access the resource by passing in the resource key.



        var isAuthorized = await AuthorizationService.AuthorizeAsync(
                                                  User, Contact,
                                                  ContactOperations.Update);
        if (!isAuthorized.Succeeded)
        {
            return Forbid();
        }

        return Page();
    }

    public async Task<IActionResult> OnPostAsync(int id)
    {
        if (!ModelState.IsValid)
        {
            return Page();
        }

        // Fetch Contact from DB to get OwnerID.
        var contact = await Context
            .Contact.AsNoTracking()
            .FirstOrDefaultAsync(m => m.ContactId == id);

        if (contact == null)
        {
            return NotFound();
        }

        var isAuthorized = await AuthorizationService.AuthorizeAsync(
                                                 User, contact,
                                                 ContactOperations.Update);
        if (!isAuthorized.Succeeded)
        {
            return Forbid();
        }

        Contact.OwnerID = contact.OwnerID;

        Context.Attach(Contact).State = EntityState.Modified;

        if (Contact.Status == ContactStatus.Approved)
        {
            // If the contact is updated after approval, 
            // and the user cannot approve,
            // set the status back to submitted so the update can be
            // checked and approved.
            var canApprove = await AuthorizationService.AuthorizeAsync(User,
                                    Contact,
                                    ContactOperations.Approve);

            if (!canApprove.Succeeded)
            {
                Contact.Status = ContactStatus.Submitted;
            }
        }

        await Context.SaveChangesAsync();

        return RedirectToPage("./Index");
    }
}

Update the DeleteModelUpdate the DeleteModel
Update the delete page model to use the authorization handler to verify the user has delete permission on the

contact.



public class DeleteModel : DI_BasePageModel
{
    public DeleteModel(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

    [BindProperty]
    public Contact Contact { get; set; }

    public async Task<IActionResult> OnGetAsync(int id)
    {
        Contact = await Context.Contact.FirstOrDefaultAsync(
                                             m => m.ContactId == id);

        if (Contact == null)
        {
            return NotFound();
        }

        var isAuthorized = await AuthorizationService.AuthorizeAsync(
                                                 User, Contact,
                                                 ContactOperations.Delete);
        if (!isAuthorized.Succeeded)
        {
            return Forbid();
        }

        return Page();
    }

    public async Task<IActionResult> OnPostAsync(int id)
    {
        var contact = await Context
            .Contact.AsNoTracking()
            .FirstOrDefaultAsync(m => m.ContactId == id);

        if (contact == null)
        {
            return NotFound();
        }

        var isAuthorized = await AuthorizationService.AuthorizeAsync(
                                                 User, contact,
                                                 ContactOperations.Delete);
        if (!isAuthorized.Succeeded)
        {
            return Forbid();
        }

        Context.Contact.Remove(contact);
        await Context.SaveChangesAsync();

        return RedirectToPage("./Index");
    }
}

Inject the authorization service into the views
Currently, the UI shows edit and delete links for contacts the user can't modify.

Inject the authorization service in the Pages/_ViewImports.cshtml file so it's available to all views:



@using Microsoft.AspNetCore.Identity
@using ContactManager
@using ContactManager.Data
@namespace ContactManager.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using ContactManager.Authorization;
@using Microsoft.AspNetCore.Authorization
@using ContactManager.Models
@inject IAuthorizationService AuthorizationService

@page
@model ContactManager.Pages.Contacts.IndexModel

@{
    ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].Name)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].Address)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].City)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].State)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].Zip)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].Email)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].Status)
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Contact)
        {
            <tr>
                <td>
                    @Html.DisplayFor(modelItem => item.Name)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Address)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.City)

The preceding markup adds several using  statements.

Update the EditEdit and DeleteDelete links in Pages/Contacts/Index.cshtml so they're only rendered for users with the

appropriate permissions:



                    @Html.DisplayFor(modelItem => item.City)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.State)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Zip)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Email)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Status)
                </td>
                <td>
                    @if ((await AuthorizationService.AuthorizeAsync(
                     User, item,
                     ContactOperations.Update)).Succeeded)
                    {
                        <a asp-page="./Edit" asp-route-id="@item.ContactId">Edit</a>
                        <text> | </text>
                    }

                    <a asp-page="./Details" asp-route-id="@item.ContactId">Details</a>

                    @if ((await AuthorizationService.AuthorizeAsync(
                     User, item,
                     ContactOperations.Delete)).Succeeded)
                    {
                        <text> | </text>
                        <a asp-page="./Delete" asp-route-id="@item.ContactId">Delete</a>
                    }
                </td>
            </tr>
        }
    </tbody>
</table>

WARNINGWARNING

Update DetailsUpdate Details

Hiding links from users that don't have permission to change data doesn't secure the app. Hiding links makes the app more

user-friendly by displaying only valid links. Users can hack the generated URLs to invoke edit and delete operations on data

they don't own. The Razor Page or controller must enforce access checks to secure the data.

Update the details view so managers can approve or reject contacts:



        @*Precedng markup omitted for brevity.*@
        <dt>
            @Html.DisplayNameFor(model => model.Contact.Email)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Contact.Email)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Contact.Status)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Contact.Status)
        </dd>
    </dl>
</div>

@if (Model.Contact.Status != ContactStatus.Approved)
{
    @if ((await AuthorizationService.AuthorizeAsync(
     User, Model.Contact, ContactOperations.Approve)).Succeeded)
    {
        <form style="display:inline;" method="post">
            <input type="hidden" name="id" value="@Model.Contact.ContactId" />
            <input type="hidden" name="status" value="@ContactStatus.Approved" />
            <button type="submit" class="btn btn-xs btn-success">Approve</button>
        </form>
    }
}

@if (Model.Contact.Status != ContactStatus.Rejected)
{
    @if ((await AuthorizationService.AuthorizeAsync(
     User, Model.Contact, ContactOperations.Reject)).Succeeded)
    {
        <form style="display:inline;" method="post">
            <input type="hidden" name="id" value="@Model.Contact.ContactId" />
            <input type="hidden" name="status" value="@ContactStatus.Rejected" />
            <button type="submit" class="btn btn-xs btn-danger">Reject</button>
        </form>
    }
}

<div>
    @if ((await AuthorizationService.AuthorizeAsync(
         User, Model.Contact,
         ContactOperations.Update)).Succeeded)
    {
        <a asp-page="./Edit" asp-route-id="@Model.Contact.ContactId">Edit</a>
        <text> | </text>
    }
    <a asp-page="./Index">Back to List</a>
</div>

Update the details page model:



public class DetailsModel : DI_BasePageModel
{
    public DetailsModel(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

    public Contact Contact { get; set; }

    public async Task<IActionResult> OnGetAsync(int id)
    {
        Contact = await Context.Contact.FirstOrDefaultAsync(m => m.ContactId == id);

        if (Contact == null)
        {
            return NotFound();
        }

        var isAuthorized = User.IsInRole(Constants.ContactManagersRole) ||
                           User.IsInRole(Constants.ContactAdministratorsRole);

        var currentUserId = UserManager.GetUserId(User);

        if (!isAuthorized
            && currentUserId != Contact.OwnerID
            && Contact.Status != ContactStatus.Approved)
        {
            return Forbid();
        }

        return Page();
    }

    public async Task<IActionResult> OnPostAsync(int id, ContactStatus status)
    {
        var contact = await Context.Contact.FirstOrDefaultAsync(
                                                  m => m.ContactId == id);

        if (contact == null)
        {
            return NotFound();
        }

        var contactOperation = (status == ContactStatus.Approved)
                                                   ? ContactOperations.Approve
                                                   : ContactOperations.Reject;

        var isAuthorized = await AuthorizationService.AuthorizeAsync(User, contact,
                                    contactOperation);
        if (!isAuthorized.Succeeded)
        {
            return Forbid();
        }
        contact.Status = status;
        Context.Contact.Update(contact);
        await Context.SaveChangesAsync();

        return RedirectToPage("./Index");
    }
}

Add or remove a user to a role



  

Differences between Challenge and Forbid

[AllowAnonymous]
public class Details2Model : DI_BasePageModel
{
    public Details2Model(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

    public Contact Contact { get; set; }

    public async Task<IActionResult> OnGetAsync(int id)
    {
        Contact = await Context.Contact.FirstOrDefaultAsync(m => m.ContactId == id);

        if (Contact == null)
        {
            return NotFound();
        }

        if (!User.Identity.IsAuthenticated)
        {
            return Challenge();
        }

        var isAuthorized = User.IsInRole(Constants.ContactManagersRole) ||
                           User.IsInRole(Constants.ContactAdministratorsRole);

        var currentUserId = UserManager.GetUserId(User);

        if (!isAuthorized
            && currentUserId != Contact.OwnerID
            && Contact.Status != ContactStatus.Approved)
        {
            return Forbid();
        }

        return Page();
    }
}

Test the completed app

See this issue for information on:

Removing privileges from a user. For example, muting a user in a chat app.

Adding privileges to a user.

  

This app sets the default policy to require authenticated users. The following code allows anonymous users.

Anonymous users are allowed to show the differences between Challenge vs Forbid.

In the preceding code:

When the user is notnot authenticated, a ChallengeResult  is returned. When a ChallengeResult  is returned, the

user is redirected to the sign-in page.

When the user is authenticated, but not authorized, a ForbidResult  is returned. When a ForbidResult  is

returned, the user is redirected to the access denied page.

https://github.com/dotnet/AspNetCore.Docs/issues/8502


USERUSER SEEDED B Y  T H E A P PSEEDED B Y  T H E A P P O P T IO N SO P T IO N S

test@example.com No Edit/delete the own data.

manager@contoso.com Yes Approve/reject and edit/delete own
data.

admin@contoso.com Yes Approve/reject and edit/delete all data.

Create the starter app

If you haven't already set a password for seeded user accounts, use the Secret Manager tool to set a password:

dotnet user-secrets set SeedUserPW <PW>

Choose a strong password: Use eight or more characters and at least one upper-case character, number,

and symbol. For example, Passw0rd!  meets the strong password requirements.

Execute the following command from the project's folder, where <PW>  is the password:

If the app has contacts:

Delete all of the records in the Contact  table.

Restart the app to seed the database.

An easy way to test the completed app is to launch three different browsers (or incognito/InPrivate sessions). In

one browser, register a new user (for example, test@example.com ). Sign in to each browser with a different user.

Verify the following operations:

Registered users can view all of the approved contact data.

Registered users can edit/delete their own data.

Managers can approve/reject contact data. The Details  view shows ApproveApprove and RejectReject buttons.

Administrators can approve/reject and edit/delete all data.

Create a contact in the administrator's browser. Copy the URL for delete and edit from the administrator contact.

Paste these links into the test user's browser to verify the test user can't perform these operations.

dotnet new webapp -o ContactManager -au Individual -uld

Create a Razor Pages app named "ContactManager"

Create the app with Individual User AccountsIndividual User Accounts .

Name it "ContactManager" so the namespace matches the namespace used in the sample.

-uld  specifies LocalDB instead of SQLite

Add Models/Contact.cs:



dotnet add package Microsoft.VisualStudio.Web.CodeGeneration.Design
dotnet tool install -g dotnet-aspnet-codegenerator
dotnet aspnet-codegenerator razorpage -m Contact -udl -dc ApplicationDbContext -outDir Pages\Contacts --
referenceScriptLibraries
dotnet ef database drop -f
dotnet ef migrations add initial
dotnet ef database update

<a class="navbar-brand" asp-area="" asp-page="/Contacts/Index">ContactManager</a>

Seed the databaseSeed the database

using ContactManager.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Linq;
using System.Threading.Tasks;

// dotnet aspnet-codegenerator razorpage -m Contact -dc ApplicationDbContext -udl -outDir Pages\Contacts --
referenceScriptLibraries

namespace ContactManager.Data
{
    public static class SeedData
    {
        public static async Task Initialize(IServiceProvider serviceProvider, string testUserPw)
        {
            using (var context = new ApplicationDbContext(
                serviceProvider.GetRequiredService<DbContextOptions<ApplicationDbContext>>()))
            {              
                SeedDB(context, "0");
            }
        }        

        public static void SeedDB(ApplicationDbContext context, string adminID)
        {
            if (context.Contact.Any())
            {

public class Contact
{
    public int ContactId { get; set; }
    public string Name { get; set; }
    public string Address { get; set; }
    public string City { get; set; }
    public string State { get; set; }
    public string Zip { get; set; }
    [DataType(DataType.EmailAddress)]
    public string Email { get; set; }
}

Scaffold the Contact  model.

Create initial migration and update the database:

If you experience a bug with the dotnet aspnet-codegenerator razorpage  command, see this GitHub issue.

Update the ContactManagerContactManager  anchor in the Pages/Shared/_Layout.cshtml file:

Test the app by creating, editing, and deleting a contact

Add the SeedData class to the Data folder :

https://github.com/aspnet/Scaffolding/issues/984
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/secure-data/samples/starter3/Data/SeedData.cs


            {
                return;   // DB has been seeded
            }

            context.Contact.AddRange(
                new Contact
                {
                    Name = "Debra Garcia",
                    Address = "1234 Main St",
                    City = "Redmond",
                    State = "WA",
                    Zip = "10999",
                    Email = "debra@example.com"
                },
                new Contact
                {
                    Name = "Thorsten Weinrich",
                    Address = "5678 1st Ave W",
                    City = "Redmond",
                    State = "WA",
                    Zip = "10999",
                    Email = "thorsten@example.com"
                },
             new Contact
             {
                 Name = "Yuhong Li",
                 Address = "9012 State st",
                 City = "Redmond",
                 State = "WA",
                 Zip = "10999",
                 Email = "yuhong@example.com"
             },
             new Contact
             {
                 Name = "Jon Orton",
                 Address = "3456 Maple St",
                 City = "Redmond",
                 State = "WA",
                 Zip = "10999",
                 Email = "jon@example.com"
             },
             new Contact
             {
                 Name = "Diliana Alexieva-Bosseva",
                 Address = "7890 2nd Ave E",
                 City = "Redmond",
                 State = "WA",
                 Zip = "10999",
                 Email = "diliana@example.com"
             }
             );
            context.SaveChanges();
        }

    }
}

Call SeedData.Initialize  from Main :



using ContactManager.Data;
using Microsoft.AspNetCore.Hosting;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using System;

namespace ContactManager
{
    public class Program
    {
        public static void Main(string[] args)
        {
            var host = CreateHostBuilder(args).Build();

            using (var scope = host.Services.CreateScope())
            {
                var services = scope.ServiceProvider;

                try
                {
                    var context = services.GetRequiredService<ApplicationDbContext>();
                    context.Database.Migrate();
                    SeedData.Initialize(services, "not used");
                }
                catch (Exception ex)
                {
                    var logger = services.GetRequiredService<ILogger<Program>>();
                    logger.LogError(ex, "An error occurred seeding the DB.");
                }
            }

            host.Run();
        }

        public static IHostBuilder CreateHostBuilder(string[] args) =>
            Host.CreateDefaultBuilder(args)
                .ConfigureWebHostDefaults(webBuilder =>
                {
                    webBuilder.UseStartup<Startup>();
                });
    }
}

Test that the app seeded the database. If there are any rows in the contact DB, the seed method doesn't run.

This tutorial shows how to create an ASP.NET Core web app with user data protected by authorization. It displays a

list of contacts that authenticated (registered) users have created. There are three security groups:

Registered usersRegistered users  can view all the approved data and can edit/delete their own data.

ManagersManagers  can approve or reject contact data. Only approved contacts are visible to users.

AdministratorsAdministrators  can approve/reject and edit/delete any data.

In the following image, user Rick ( rick@example.com ) is signed in. Rick can only view approved contacts and

EditEdit/DeleteDelete/Create NewCreate New  links for his contacts. Only the last record, created by Rick, displays EditEdit and DeleteDelete

links. Other users won't see the last record until a manager or administrator changes the status to "Approved".



In the following image, manager@contoso.com  is signed in and in the manager's role:

The following image shows the managers details view of a contact:



The ApproveApprove and RejectReject buttons are only displayed for managers and administrators.

In the following image, admin@contoso.com  is signed in and in the administrator's role:

The administrator has all privileges. She can read/edit/delete any contact and change the status of contacts.

The app was created by scaffolding the following Contact  model:



public class Contact
{
    public int ContactId { get; set; }
    public string Name { get; set; }
    public string Address { get; set; }
    public string City { get; set; }
    public string State { get; set; }
    public string Zip { get; set; }
    [DataType(DataType.EmailAddress)]
    public string Email { get; set; }
}

Prerequisites

The starter and completed app

The starter appThe starter app

Secure user data

Tie the contact data to the userTie the contact data to the user

The sample contains the following authorization handlers:

ContactIsOwnerAuthorizationHandler : Ensures that a user can only edit their data.

ContactManagerAuthorizationHandler : Allows managers to approve or reject contacts.

ContactAdministratorsAuthorizationHandler : Allows administrators to approve or reject contacts and to

edit/delete contacts.

This tutorial is advanced. You should be familiar with:

ASP.NET Core

Authentication

Account Confirmation and Password Recovery

Authorization

Entity Framework Core

Download the completed app. Test the completed app so you become familiar with its security features.

Download the starter app.

Run the app, tap the ContactManagerContactManager  link, and verify you can create, edit, and delete a contact.

The following sections have all the major steps to create the secure user data app. You may find it helpful to refer

to the completed project.

Use the ASP.NET Identity user ID to ensure users can edit their data, but not other users data. Add OwnerID  and 

ContactStatus  to the Contact  model:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/secure-data/samples
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/secure-data/samples/


public class Contact
{
    public int ContactId { get; set; }

    // user ID from AspNetUser table.
    public string OwnerID { get; set; }

    public string Name { get; set; }
    public string Address { get; set; }
    public string City { get; set; }
    public string State { get; set; }
    public string Zip { get; set; }
    [DataType(DataType.EmailAddress)]
    public string Email { get; set; }

    public ContactStatus Status { get; set; }
}

public enum ContactStatus
{
    Submitted,
    Approved,
    Rejected
}

dotnet ef migrations add userID_Status
dotnet ef database update

Add Role services to IdentityAdd Role services to Identity

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>().AddRoles<IdentityRole>()
         .AddEntityFrameworkStores<ApplicationDbContext>();

Require authenticated usersRequire authenticated users

OwnerID  is the user's ID from the AspNetUser  table in the Identity database. The Status  field determines if a

contact is viewable by general users.

Create a new migration and update the database:

Append AddRoles to add Role services:

Set the default authentication policy to require users to be authenticated:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilder.addroles#microsoft_aspnetcore_identity_identitybuilder_addroles__1


public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>().AddRoles<IdentityRole>()
         .AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddMvc(config =>
    {
        // using Microsoft.AspNetCore.Mvc.Authorization;
        // using Microsoft.AspNetCore.Authorization;
        var policy = new AuthorizationPolicyBuilder()
                         .RequireAuthenticatedUser()
                         .Build();
        config.Filters.Add(new AuthorizeFilter(policy));
    })                
       .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace ContactManager.Pages
{
    [AllowAnonymous]
    public class IndexModel : PageModel
    {
        public void OnGet()
        {

        }
    }
}

Configure the test accountConfigure the test account

dotnet user-secrets set SeedUserPW <PW>

You can opt out of authentication at the Razor Page, controller, or action method level with the [AllowAnonymous]

attribute. Setting the default authentication policy to require users to be authenticated protects newly added Razor

Pages and controllers. Having authentication required by default is more secure than relying on new controllers

and Razor Pages to include the [Authorize]  attribute.

Add AllowAnonymous to the Index, About, and Contact pages so anonymous users can get information about the

site before they register.

The SeedData  class creates two accounts: administrator and manager. Use the Secret Manager tool to set a

password for these accounts. Set the password from the project directory (the directory containing Program.cs):

If a strong password is not specified, an exception is thrown when SeedData.Initialize  is called.

Update Main  to use the test password:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.allowanonymousattribute


public class Program
{
    public static void Main(string[] args)
    {
        var host = CreateWebHostBuilder(args).Build();

        using (var scope = host.Services.CreateScope())
        {
            var services = scope.ServiceProvider;
            var context = services.GetRequiredService<ApplicationDbContext>();
            context.Database.Migrate();

            // requires using Microsoft.Extensions.Configuration;
            var config = host.Services.GetRequiredService<IConfiguration>();
            // Set password with the Secret Manager tool.
            // dotnet user-secrets set SeedUserPW <pw>

            var testUserPw = config["SeedUserPW"];
            try
            {
                SeedData.Initialize(services, testUserPw).Wait();
            }
            catch (Exception ex)
            {
                var logger = services.GetRequiredService<ILogger<Program>>();
                logger.LogError(ex.Message, "An error occurred seeding the DB.");
            }
        }

        host.Run();
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .UseStartup<Startup>();
}

Create the test accounts and update the contactsCreate the test accounts and update the contacts
Update the Initialize  method in the SeedData  class to create the test accounts:



public static async Task Initialize(IServiceProvider serviceProvider, string testUserPw)
{
    using (var context = new ApplicationDbContext(
        serviceProvider.GetRequiredService<DbContextOptions<ApplicationDbContext>>()))
    {
        // For sample purposes seed both with the same password.
        // Password is set with the following:
        // dotnet user-secrets set SeedUserPW <pw>
        // The admin user can do anything

        var adminID = await EnsureUser(serviceProvider, testUserPw, "admin@contoso.com");
        await EnsureRole(serviceProvider, adminID, Constants.ContactAdministratorsRole);

        // allowed user can create and edit contacts that they create
        var managerID = await EnsureUser(serviceProvider, testUserPw, "manager@contoso.com");
        await EnsureRole(serviceProvider, managerID, Constants.ContactManagersRole);

        SeedDB(context, adminID);
    }
}

private static async Task<string> EnsureUser(IServiceProvider serviceProvider,
                                            string testUserPw, string UserName)
{
    var userManager = serviceProvider.GetService<UserManager<IdentityUser>>();

    var user = await userManager.FindByNameAsync(UserName);
    if (user == null)
    {
        user = new IdentityUser { UserName = UserName };
        await userManager.CreateAsync(user, testUserPw);
    }

    return user.Id;
}

private static async Task<IdentityResult> EnsureRole(IServiceProvider serviceProvider,
                                                              string uid, string role)
{
    IdentityResult IR = null;
    var roleManager = serviceProvider.GetService<RoleManager<IdentityRole>>();

    if (roleManager == null)
    {
        throw new Exception("roleManager null");
    }

    if (!await roleManager.RoleExistsAsync(role))
    {
        IR = await roleManager.CreateAsync(new IdentityRole(role));
    }

    var userManager = serviceProvider.GetService<UserManager<IdentityUser>>();

    var user = await userManager.FindByIdAsync(uid);

    if(user == null)
    {
        throw new Exception("The testUserPw password was probably not strong enough!");
    }
    
    IR = await userManager.AddToRoleAsync(user, role);

    return IR;
}



public static void SeedDB(ApplicationDbContext context, string adminID)
{
    if (context.Contact.Any())
    {
        return;   // DB has been seeded
    }

    context.Contact.AddRange(
        new Contact
        {
            Name = "Debra Garcia",
            Address = "1234 Main St",
            City = "Redmond",
            State = "WA",
            Zip = "10999",
            Email = "debra@example.com",
            Status = ContactStatus.Approved,
            OwnerID = adminID
        },

Create owner, manager, and administrator authorization handlers

Add the administrator user ID and ContactStatus  to the contacts. Make one of the contacts "Submitted" and one

"Rejected". Add the user ID and status to all the contacts. Only one contact is shown:

Create an Authorization folder and create a ContactIsOwnerAuthorizationHandler  class in it. The 

ContactIsOwnerAuthorizationHandler  verifies that the user acting on a resource owns the resource.



using System.Threading.Tasks;
using ContactManager.Data;
using ContactManager.Models;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Authorization.Infrastructure;
using Microsoft.AspNetCore.Identity;

namespace ContactManager.Authorization
{
    public class ContactIsOwnerAuthorizationHandler
                : AuthorizationHandler<OperationAuthorizationRequirement, Contact>
    {
        UserManager<IdentityUser> _userManager;

        public ContactIsOwnerAuthorizationHandler(UserManager<IdentityUser> 
            userManager)
        {
            _userManager = userManager;
        }

        protected override Task
            HandleRequirementAsync(AuthorizationHandlerContext context,
                                   OperationAuthorizationRequirement requirement,
                                   Contact resource)
        {
            if (context.User == null || resource == null)
            {
                // Return Task.FromResult(0) if targeting a version of
                // .NET Framework older than 4.6:
                return Task.CompletedTask;
            }

            // If we're not asking for CRUD permission, return.

            if (requirement.Name != Constants.CreateOperationName &&
                requirement.Name != Constants.ReadOperationName   &&
                requirement.Name != Constants.UpdateOperationName &&
                requirement.Name != Constants.DeleteOperationName )
            {
                return Task.CompletedTask;
            }

            if (resource.OwnerID == _userManager.GetUserId(context.User))
            {
                context.Succeed(requirement);
            }

            return Task.CompletedTask;
        }
    }
}

The ContactIsOwnerAuthorizationHandler  calls context.Succeed if the current authenticated user is the contact

owner. Authorization handlers generally:

Return context.Succeed  when the requirements are met.

Return Task.CompletedTask  when requirements aren't met. Task.CompletedTask  is not success or failure—it

allows other authorization handlers to run.

If you need to explicitly fail, return context.Fail.

The app allows contact owners to edit/delete/create their own data. ContactIsOwnerAuthorizationHandler  doesn't

need to check the operation passed in the requirement parameter.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext.succeed#microsoft_aspnetcore_authorization_authorizationhandlercontext_succeed_microsoft_aspnetcore_authorization_iauthorizationrequirement_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext.fail


Create a manager authorization handlerCreate a manager authorization handler

using System.Threading.Tasks;
using ContactManager.Models;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Authorization.Infrastructure;
using Microsoft.AspNetCore.Identity;

namespace ContactManager.Authorization
{
    public class ContactManagerAuthorizationHandler :
        AuthorizationHandler<OperationAuthorizationRequirement, Contact>
    {
        protected override Task
            HandleRequirementAsync(AuthorizationHandlerContext context,
                                   OperationAuthorizationRequirement requirement,
                                   Contact resource)
        {
            if (context.User == null || resource == null)
            {
                return Task.CompletedTask;
            }

            // If not asking for approval/reject, return.
            if (requirement.Name != Constants.ApproveOperationName &&
                requirement.Name != Constants.RejectOperationName)
            {
                return Task.CompletedTask;
            }

            // Managers can approve or reject.
            if (context.User.IsInRole(Constants.ContactManagersRole))
            {
                context.Succeed(requirement);
            }

            return Task.CompletedTask;
        }
    }
}

Create an administrator authorization handlerCreate an administrator authorization handler

Create a ContactManagerAuthorizationHandler  class in the Authorization folder. The 

ContactManagerAuthorizationHandler  verifies the user acting on the resource is a manager. Only managers can

approve or reject content changes (new or changed).

Create a ContactAdministratorsAuthorizationHandler  class in the Authorization folder. The 

ContactAdministratorsAuthorizationHandler  verifies the user acting on the resource is an administrator.

Administrator can do all operations.



using System.Threading.Tasks;
using ContactManager.Models;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Authorization.Infrastructure;

namespace ContactManager.Authorization
{
    public class ContactAdministratorsAuthorizationHandler
                    : AuthorizationHandler<OperationAuthorizationRequirement, Contact>
    {
        protected override Task HandleRequirementAsync(
                                              AuthorizationHandlerContext context,
                                    OperationAuthorizationRequirement requirement, 
                                     Contact resource)
        {
            if (context.User == null)
            {
                return Task.CompletedTask;
            }

            // Administrators can do anything.
            if (context.User.IsInRole(Constants.ContactAdministratorsRole))
            {
                context.Succeed(requirement);
            }

            return Task.CompletedTask;
        }
    }
}

Register the authorization handlers
Services using Entity Framework Core must be registered for dependency injection using AddScoped. The 

ContactIsOwnerAuthorizationHandler  uses ASP.NET Core Identity, which is built on Entity Framework Core. Register

the handlers with the service collection so they're available to the ContactsController  through dependency

injection. Add the following code to the end of ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions


public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>().AddRoles<IdentityRole>()
         .AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddMvc(config =>
    {
        // using Microsoft.AspNetCore.Mvc.Authorization;
        // using Microsoft.AspNetCore.Authorization;
        var policy = new AuthorizationPolicyBuilder()
                         .RequireAuthenticatedUser()
                         .Build();
        config.Filters.Add(new AuthorizeFilter(policy));
    })                
       .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

    // Authorization handlers.
    services.AddScoped<IAuthorizationHandler,
                          ContactIsOwnerAuthorizationHandler>();

    services.AddSingleton<IAuthorizationHandler,
                          ContactAdministratorsAuthorizationHandler>();

    services.AddSingleton<IAuthorizationHandler,
                          ContactManagerAuthorizationHandler>();
}

Support authorization

Review the contact operations requirements classReview the contact operations requirements class

ContactAdministratorsAuthorizationHandler  and ContactManagerAuthorizationHandler  are added as singletons.

They're singletons because they don't use EF and all the information needed is in the Context  parameter of the 

HandleRequirementAsync  method.

In this section, you update the Razor Pages and add an operations requirements class.

Review the ContactOperations  class. This class contains the requirements the app supports:



using Microsoft.AspNetCore.Authorization.Infrastructure;

namespace ContactManager.Authorization
{
    public static class ContactOperations
    {
        public static OperationAuthorizationRequirement Create =   
          new OperationAuthorizationRequirement {Name=Constants.CreateOperationName};
        public static OperationAuthorizationRequirement Read = 
          new OperationAuthorizationRequirement {Name=Constants.ReadOperationName};  
        public static OperationAuthorizationRequirement Update = 
          new OperationAuthorizationRequirement {Name=Constants.UpdateOperationName}; 
        public static OperationAuthorizationRequirement Delete = 
          new OperationAuthorizationRequirement {Name=Constants.DeleteOperationName};
        public static OperationAuthorizationRequirement Approve = 
          new OperationAuthorizationRequirement {Name=Constants.ApproveOperationName};
        public static OperationAuthorizationRequirement Reject = 
          new OperationAuthorizationRequirement {Name=Constants.RejectOperationName};
    }

    public class Constants
    {
        public static readonly string CreateOperationName = "Create";
        public static readonly string ReadOperationName = "Read";
        public static readonly string UpdateOperationName = "Update";
        public static readonly string DeleteOperationName = "Delete";
        public static readonly string ApproveOperationName = "Approve";
        public static readonly string RejectOperationName = "Reject";

        public static readonly string ContactAdministratorsRole = 
                                                              "ContactAdministrators";
        public static readonly string ContactManagersRole = "ContactManagers";
    }
}

Create a base class for the Contacts Razor PagesCreate a base class for the Contacts Razor Pages

using ContactManager.Data;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc.RazorPages;

namespace ContactManager.Pages.Contacts
{
    public class DI_BasePageModel : PageModel
    {
        protected ApplicationDbContext Context { get; }
        protected IAuthorizationService AuthorizationService { get; }
        protected UserManager<IdentityUser> UserManager { get; }

        public DI_BasePageModel(
            ApplicationDbContext context,
            IAuthorizationService authorizationService,
            UserManager<IdentityUser> userManager) : base()
        {
            Context = context;
            UserManager = userManager;
            AuthorizationService = authorizationService;
        } 
    }
}

Create a base class that contains the services used in the contacts Razor Pages. The base class puts the

initialization code in one location:



Update the CreateModelUpdate the CreateModel

public class CreateModel : DI_BasePageModel
{
    public CreateModel(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

public async Task<IActionResult> OnPostAsync()
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    Contact.OwnerID = UserManager.GetUserId(User);

    // requires using ContactManager.Authorization;
    var isAuthorized = await AuthorizationService.AuthorizeAsync(
                                                User, Contact,
                                                ContactOperations.Create);
    if (!isAuthorized.Succeeded)
    {
        return new ChallengeResult();
    }

    Context.Contact.Add(Contact);
    await Context.SaveChangesAsync();

    return RedirectToPage("./Index");
}

Update the IndexModelUpdate the IndexModel

The preceding code:

Adds the IAuthorizationService  service to access to the authorization handlers.

Adds the Identity UserManager  service.

Add the ApplicationDbContext .

Update the create page model constructor to use the DI_BasePageModel  base class:

Update the CreateModel.OnPostAsync  method to:

Add the user ID to the Contact  model.

Call the authorization handler to verify the user has permission to create contacts.

Update the OnGetAsync  method so only approved contacts are shown to general users:



public class IndexModel : DI_BasePageModel
{
    public IndexModel(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

    public IList<Contact> Contact { get; set; }

    public async Task OnGetAsync()
    {
        var contacts = from c in Context.Contact
                       select c;

        var isAuthorized = User.IsInRole(Constants.ContactManagersRole) ||
                           User.IsInRole(Constants.ContactAdministratorsRole);

        var currentUserId = UserManager.GetUserId(User);

        // Only approved contacts are shown UNLESS you're authorized to see them
        // or you are the owner.
        if (!isAuthorized)
        {
            contacts = contacts.Where(c => c.Status == ContactStatus.Approved
                                        || c.OwnerID == currentUserId);
        }

        Contact = await contacts.ToListAsync();
    }
}

Update the EditModelUpdate the EditModel

public class EditModel : DI_BasePageModel
{
    public EditModel(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

    [BindProperty]
    public Contact Contact { get; set; }

    public async Task<IActionResult> OnGetAsync(int id)
    {
        Contact = await Context.Contact.FirstOrDefaultAsync(
                                             m => m.ContactId == id);

        if (Contact == null)
        {
            return NotFound();
        }

Add an authorization handler to verify the user owns the contact. Because resource authorization is being

validated, the [Authorize]  attribute is not enough. The app doesn't have access to the resource when attributes

are evaluated. Resource-based authorization must be imperative. Checks must be performed once the app has

access to the resource, either by loading it in the page model or by loading it within the handler itself. You

frequently access the resource by passing in the resource key.



        var isAuthorized = await AuthorizationService.AuthorizeAsync(
                                                  User, Contact,
                                                  ContactOperations.Update);
        if (!isAuthorized.Succeeded)
        {
            return new ChallengeResult();
        }

        return Page();
    }

    public async Task<IActionResult> OnPostAsync(int id)
    {
        if (!ModelState.IsValid)
        {
            return Page();
        }

        // Fetch Contact from DB to get OwnerID.
        var contact = await Context
            .Contact.AsNoTracking()
            .FirstOrDefaultAsync(m => m.ContactId == id);

        if (contact == null)
        {
            return NotFound();
        }

        var isAuthorized = await AuthorizationService.AuthorizeAsync(
                                                 User, contact,
                                                 ContactOperations.Update);
        if (!isAuthorized.Succeeded)
        {
            return new ChallengeResult();
        }

        Contact.OwnerID = contact.OwnerID;

        Context.Attach(Contact).State = EntityState.Modified;

        if (contact.Status == ContactStatus.Approved)
        {
            // If the contact is updated after approval, 
            // and the user cannot approve,
            // set the status back to submitted so the update can be
            // checked and approved.
            var canApprove = await AuthorizationService.AuthorizeAsync(User,
                                    contact,
                                    ContactOperations.Approve);

            if (!canApprove.Succeeded)
            {
                contact.Status = ContactStatus.Submitted;
            }
        }

        await Context.SaveChangesAsync();

        return RedirectToPage("./Index");
    }

    private bool ContactExists(int id)
    {
        return Context.Contact.Any(e => e.ContactId == id);
    }
}



Update the DeleteModelUpdate the DeleteModel

public class DeleteModel : DI_BasePageModel
{
    public DeleteModel(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

    [BindProperty]
    public Contact Contact { get; set; }

    public async Task<IActionResult> OnGetAsync(int id)
    {
        Contact = await Context.Contact.FirstOrDefaultAsync(
                                             m => m.ContactId == id);

        if (Contact == null)
        {
            return NotFound();
        }

        var isAuthorized = await AuthorizationService.AuthorizeAsync(
                                                 User, Contact,
                                                 ContactOperations.Delete);
        if (!isAuthorized.Succeeded)
        {
            return new ChallengeResult();
        }

        return Page();
    }

    public async Task<IActionResult> OnPostAsync(int id)
    {
        Contact = await Context.Contact.FindAsync(id);

        var contact = await Context
            .Contact.AsNoTracking()
            .FirstOrDefaultAsync(m => m.ContactId == id);

        if (contact == null)
        {
            return NotFound();
        }

        var isAuthorized = await AuthorizationService.AuthorizeAsync(
                                                 User, contact,
                                                 ContactOperations.Delete);
        if (!isAuthorized.Succeeded)
        {
            return new ChallengeResult();
        }

        Context.Contact.Remove(Contact);
        await Context.SaveChangesAsync();

        return RedirectToPage("./Index");
    }
}

Update the delete page model to use the authorization handler to verify the user has delete permission on the

contact.



Inject the authorization service into the views

@using Microsoft.AspNetCore.Identity
@using ContactManager
@using ContactManager.Data
@namespace ContactManager.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using ContactManager.Authorization;
@using Microsoft.AspNetCore.Authorization
@using ContactManager.Models
@inject IAuthorizationService AuthorizationService

@page
@model ContactManager.Pages.Contacts.IndexModel

@{
    ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
    <a asp-page="Create">Create New</a>
</p>
<table class="table">
    <thead>
        <tr>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].Name)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].Address)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].City)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].State)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].Zip)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].Email)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Contact[0].Status)
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
        @foreach (var item in Model.Contact)
        {
            <tr>
                <td>

Currently, the UI shows edit and delete links for contacts the user can't modify.

Inject the authorization service in the Views/_ViewImports.cshtml file so it's available to all views:

The preceding markup adds several using  statements.

Update the EditEdit and DeleteDelete links in Pages/Contacts/Index.cshtml so they're only rendered for users with the

appropriate permissions:



                    @Html.DisplayFor(modelItem => item.Name)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Address)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.City)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.State)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Zip)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Email)
                </td>
                <td>
                    @Html.DisplayFor(modelItem => item.Status)
                </td>
                <td>
                    @if ((await AuthorizationService.AuthorizeAsync(
                     User, item,
                     ContactOperations.Update)).Succeeded)
                    {
                        <a asp-page="./Edit" asp-route-id="@item.ContactId">Edit</a>
                        <text> | </text>
                    }

                    <a asp-page="./Details" asp-route-id="@item.ContactId">Details</a>

                    @if ((await AuthorizationService.AuthorizeAsync(
                     User, item,
                     ContactOperations.Delete)).Succeeded)
                    {
                        <text> | </text>
                        <a asp-page="./Delete" asp-route-id="@item.ContactId">Delete</a>
                    }
                </td>
            </tr>
        }
    </tbody>
</table>

WARNINGWARNING

Update DetailsUpdate Details

Hiding links from users that don't have permission to change data doesn't secure the app. Hiding links makes the app more

user-friendly by displaying only valid links. Users can hack the generated URLs to invoke edit and delete operations on data

they don't own. The Razor Page or controller must enforce access checks to secure the data.

Update the details view so managers can approve or reject contacts:



        @*Precedng markup omitted for brevity.*@
        <dt>
            @Html.DisplayNameFor(model => model.Contact.Email)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Contact.Email)
        </dd>
        <dt>
            @Html.DisplayNameFor(model => model.Contact.Status)
        </dt>
        <dd>
            @Html.DisplayFor(model => model.Contact.Status)
        </dd>
    </dl>
</div>

@if (Model.Contact.Status != ContactStatus.Approved)
{
    @if ((await AuthorizationService.AuthorizeAsync(
     User, Model.Contact, ContactOperations.Approve)).Succeeded)
    {
        <form style="display:inline;" method="post">
            <input type="hidden" name="id" value="@Model.Contact.ContactId" />
            <input type="hidden" name="status" value="@ContactStatus.Approved" />
            <button type="submit" class="btn btn-xs btn-success">Approve</button>
        </form>
    }
}

@if (Model.Contact.Status != ContactStatus.Rejected)
{
    @if ((await AuthorizationService.AuthorizeAsync(
     User, Model.Contact, ContactOperations.Reject)).Succeeded)
    {
        <form style="display:inline;" method="post">
            <input type="hidden" name="id" value="@Model.Contact.ContactId" />
            <input type="hidden" name="status" value="@ContactStatus.Rejected" />
            <button type="submit" class="btn btn-xs btn-success">Reject</button>
        </form>
    }
}

<div>
    @if ((await AuthorizationService.AuthorizeAsync(
         User, Model.Contact,
         ContactOperations.Update)).Succeeded)
    {
        <a asp-page="./Edit" asp-route-id="@Model.Contact.ContactId">Edit</a>
        <text> | </text>
    }
    <a asp-page="./Index">Back to List</a>
</div>

Update the details page model:



public class DetailsModel : DI_BasePageModel
{
    public DetailsModel(
        ApplicationDbContext context,
        IAuthorizationService authorizationService,
        UserManager<IdentityUser> userManager)
        : base(context, authorizationService, userManager)
    {
    }

    public Contact Contact { get; set; }

    public async Task<IActionResult> OnGetAsync(int id)
    {
        Contact = await Context.Contact.FirstOrDefaultAsync(m => m.ContactId == id);

        if (Contact == null)
        {
            return NotFound();
        }

        var isAuthorized = User.IsInRole(Constants.ContactManagersRole) ||
                           User.IsInRole(Constants.ContactAdministratorsRole);

        var currentUserId = UserManager.GetUserId(User);

        if (!isAuthorized 
            &&  currentUserId != Contact.OwnerID
            && Contact.Status != ContactStatus.Approved) 
        {
            return new ChallengeResult();
        }

        return Page();
    }

    public async Task<IActionResult> OnPostAsync(int id, ContactStatus status)
    {
        var contact = await Context.Contact.FirstOrDefaultAsync(
                                                  m => m.ContactId == id);

        if (contact == null)
        {
            return NotFound();
        }

        var contactOperation = (status == ContactStatus.Approved)
                                                   ? ContactOperations.Approve
                                                   : ContactOperations.Reject;

        var isAuthorized = await AuthorizationService.AuthorizeAsync(User, contact,
                                    contactOperation);
        if (!isAuthorized.Succeeded)
        {
            return new ChallengeResult();
        }
        contact.Status = status;
        Context.Contact.Update(contact);
        await Context.SaveChangesAsync();

        return RedirectToPage("./Index");
    }
}

Add or remove a user to a role



Test the completed app

USERUSER SEEDED B Y  T H E A P PSEEDED B Y  T H E A P P O P T IO N SO P T IO N S

test@example.com No Edit/delete the own data.

manager@contoso.com Yes Approve/reject and edit/delete own
data.

admin@contoso.com Yes Approve/reject and edit/delete all data.

Create the starter app

See this issue for information on:

Removing privileges from a user. For example, muting a user in a chat app.

Adding privileges to a user.

If you haven't already set a password for seeded user accounts, use the Secret Manager tool to set a password:

dotnet user-secrets set SeedUserPW <PW>

dotnet ef database drop -f
dotnet ef database update  

Choose a strong password: Use eight or more characters and at least one upper-case character, number,

and symbol. For example, Passw0rd!  meets the strong password requirements.

Execute the following command from the project's folder, where <PW>  is the password:

Drop and update the Database

Restart the app to seed the database.

An easy way to test the completed app is to launch three different browsers (or incognito/InPrivate sessions). In

one browser, register a new user (for example, test@example.com ). Sign in to each browser with a different user.

Verify the following operations:

Registered users can view all of the approved contact data.

Registered users can edit/delete their own data.

Managers can approve/reject contact data. The Details  view shows ApproveApprove and RejectReject buttons.

Administrators can approve/reject and edit/delete all data.

Create a contact in the administrator's browser. Copy the URL for delete and edit from the administrator contact.

Paste these links into the test user's browser to verify the test user can't perform these operations.

dotnet new webapp -o ContactManager -au Individual -uld

Create a Razor Pages app named "ContactManager"

Create the app with Individual User AccountsIndividual User Accounts .

Name it "ContactManager" so the namespace matches the namespace used in the sample.

-uld  specifies LocalDB instead of SQLite

https://github.com/dotnet/AspNetCore.Docs/issues/8502


Seed the databaseSeed the database

public class Contact
{
    public int ContactId { get; set; }
    public string Name { get; set; }
    public string Address { get; set; }
    public string City { get; set; }
    public string State { get; set; }
    public string Zip { get; set; }
    [DataType(DataType.EmailAddress)]
    public string Email { get; set; }
}

dotnet aspnet-codegenerator razorpage -m Contact -udl -dc ApplicationDbContext -outDir Pages\Contacts -
-referenceScriptLibraries
dotnet ef database drop -f
dotnet ef migrations add initial
dotnet ef database update

<a asp-page="/Contacts/Index" class="navbar-brand">ContactManager</a>

Add Models/Contact.cs:

Scaffold the Contact  model.

Create initial migration and update the database:

Update the ContactManagerContactManager  anchor in the Pages/_Layout.cshtml file:

Test the app by creating, editing, and deleting a contact

Add the SeedData class to the Data folder.

Call SeedData.Initialize  from Main :

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/secure-data/samples/starter2.1/Data/SeedData.cs


public class Program
{
    public static void Main(string[] args)
    {
        var host = CreateWebHostBuilder(args).Build();

        using (var scope = host.Services.CreateScope())
        {
            var services = scope.ServiceProvider;

            try
            {
                var context = services.GetRequiredService<ApplicationDbContext>();
                context.Database.Migrate();
                SeedData.Initialize(services, "not used");
            }
            catch (Exception ex)
            {
                var logger = services.GetRequiredService<ILogger<Program>>();
                logger.LogError(ex, "An error occurred seeding the DB.");
            }
        }

        host.Run();
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .UseStartup<Startup>();
}

Additional resourcesAdditional resources

Test that the app seeded the database. If there are any rows in the contact DB, the seed method doesn't run.

 

Build a .NET Core and SQL Database web app in Azure App Service

ASP.NET Core Authorization Lab. This lab goes into more detail on the security features introduced in this

tutorial.

Introduction to authorization in ASP.NET Core

Custom policy-based authorization

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-dotnetcore-sqldb
https://github.com/blowdart/AspNetAuthorizationWorkshop


    

Razor Pages authorization conventions in ASP.NET
Core
9/22/2020 • 6 minutes to read • Edit Online

Require authorization to access a page

services.AddRazorPages(options =>
{
    options.Conventions.AuthorizePage("/Contact");
    options.Conventions.AuthorizeFolder("/Private");
    options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
    options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
});

options.Conventions.AuthorizePage("/Contact", "AtLeast21");

NOTENOTE

Require authorization to access a folder of pages

services.AddRazorPages(options =>
{
    options.Conventions.AuthorizePage("/Contact");
    options.Conventions.AuthorizeFolder("/Private");
    options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
    options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
});

One way to control access in your Razor Pages app is to use authorization conventions at startup. These

conventions allow you to authorize users and allow anonymous users to access individual pages or folders of

pages. The conventions described in this topic automatically apply authorization filters to control access.

View or download sample code (how to download)

The sample app uses cookie authentication without ASP.NET Core Identity. The concepts and examples shown in

this topic apply equally to apps that use ASP.NET Core Identity. To use ASP.NET Core Identity, follow the guidance

in Introduction to Identity on ASP.NET Core.

Use the AuthorizePage convention to add an AuthorizeFilter to the page at the specified path:

The specified path is the View Engine path, which is the Razor Pages root relative path without an extension and

containing only forward slashes.

To specify an authorization policy, use an AuthorizePage overload:

An AuthorizeFilter can be applied to a page model class with the [Authorize]  filter attribute. For more information, see

Authorize filter attribute.

Use the AuthorizeFolder convention to add an AuthorizeFilter to all of the pages in a folder at the specified path:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/razor-pages-authorization.md
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/razor-pages-authorization/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizepage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizepage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizefolder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter


options.Conventions.AuthorizeFolder("/Private", "AtLeast21");

Require authorization to access an area page

options.Conventions.AuthorizeAreaPage("Identity", "/Manage/Accounts");

options.Conventions.AuthorizeAreaPage("Identity", "/Manage/Accounts", "AtLeast21");

Require authorization to access a folder of areas

options.Conventions.AuthorizeAreaFolder("Identity", "/Manage");

options.Conventions.AuthorizeAreaFolder("Identity", "/Manage", "AtLeast21");

Allow anonymous access to a page

services.AddRazorPages(options =>
{
    options.Conventions.AuthorizePage("/Contact");
    options.Conventions.AuthorizeFolder("/Private");
    options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
    options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
});

Allow anonymous access to a folder of pages

The specified path is the View Engine path, which is the Razor Pages root relative path.

To specify an authorization policy, use an AuthorizeFolder overload:

Use the AuthorizeAreaPage convention to add an AuthorizeFilter to the area page at the specified path:

The page name is the path of the file without an extension relative to the pages root directory for the specified

area. For example, the page name for the file Areas/Identity/Pages/Manage/Accounts.cshtml is

/Manage/Accounts.

To specify an authorization policy, use an AuthorizeAreaPage overload:

Use the AuthorizeAreaFolder convention to add an AuthorizeFilter to all of the areas in a folder at the specified

path:

The folder path is the path of the folder relative to the pages root directory for the specified area. For example,

the folder path for the files under Areas/Identity/Pages/Manage/ is /Manage.

To specify an authorization policy, use an AuthorizeAreaFolder overload:

Use the AllowAnonymousToPage convention to add an AllowAnonymousFilter to a page at the specified path:

The specified path is the View Engine path, which is the Razor Pages root relative path without an extension and

containing only forward slashes.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizefolder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizeareapage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizeareapage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizeareafolder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizeareafolder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.allowanonymoustopage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.allowanonymousfilter


services.AddRazorPages(options =>
{
    options.Conventions.AuthorizePage("/Contact");
    options.Conventions.AuthorizeFolder("/Private");
    options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
    options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
});

Note on combining authorized and anonymous access

// This works.
.AuthorizeFolder("/Private").AllowAnonymousToPage("/Private/Public")

// This doesn't work!
.AllowAnonymousToFolder("/Public").AuthorizePage("/Public/Private")

Additional resources

Require authorization to access a page

Use the AllowAnonymousToFolder convention to add an AllowAnonymousFilter to all of the pages in a folder at

the specified path:

The specified path is the View Engine path, which is the Razor Pages root relative path.

It's valid to specify that a folder of pages requires authorization and then specify that a page within that folder

allows anonymous access:

The reverse, however, isn't valid. You can't declare a folder of pages for anonymous access and then specify a

page within that folder that requires authorization:

Requiring authorization on the Private page fails. When both the AllowAnonymousFilter and AuthorizeFilter are

applied to the page, the AllowAnonymousFilter takes precedence and controls access.

Razor Pages route and app conventions in ASP.NET Core

PageConventionCollection

One way to control access in your Razor Pages app is to use authorization conventions at startup. These

conventions allow you to authorize users and allow anonymous users to access individual pages or folders of

pages. The conventions described in this topic automatically apply authorization filters to control access.

View or download sample code (how to download)

The sample app uses cookie authentication without ASP.NET Core Identity. The concepts and examples shown in

this topic apply equally to apps that use ASP.NET Core Identity. To use ASP.NET Core Identity, follow the guidance

in Introduction to Identity on ASP.NET Core.

Use the AuthorizePage convention via AddRazorPagesOptions to add an AuthorizeFilter to the page at the

specified path:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.allowanonymoustofolder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.allowanonymousfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.allowanonymousfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.allowanonymousfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/razor-pages-authorization/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizepage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter


services.AddMvc()
    .AddRazorPagesOptions(options =>
    {
        options.Conventions.AuthorizePage("/Contact");
        options.Conventions.AuthorizeFolder("/Private");
        options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
        options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

options.Conventions.AuthorizePage("/Contact", "AtLeast21");

NOTENOTE

Require authorization to access a folder of pages

services.AddMvc()
    .AddRazorPagesOptions(options =>
    {
        options.Conventions.AuthorizePage("/Contact");
        options.Conventions.AuthorizeFolder("/Private");
        options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
        options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

options.Conventions.AuthorizeFolder("/Private", "AtLeast21");

Require authorization to access an area page

options.Conventions.AuthorizeAreaPage("Identity", "/Manage/Accounts");

The specified path is the View Engine path, which is the Razor Pages root relative path without an extension and

containing only forward slashes.

To specify an authorization policy, use an AuthorizePage overload:

An AuthorizeFilter can be applied to a page model class with the [Authorize]  filter attribute. For more information, see

Authorize filter attribute.

Use the AuthorizeFolder convention via AddRazorPagesOptions to add an AuthorizeFilter to all of the pages in a

folder at the specified path:

The specified path is the View Engine path, which is the Razor Pages root relative path.

To specify an authorization policy, use an AuthorizeFolder overload:

Use the AuthorizeAreaPage convention via AddRazorPagesOptions to add an AuthorizeFilter to the area page at

the specified path:

The page name is the path of the file without an extension relative to the pages root directory for the specified

area. For example, the page name for the file Areas/Identity/Pages/Manage/Accounts.cshtml is

/Manage/Accounts.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizepage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizefolder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizefolder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizeareapage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter


options.Conventions.AuthorizeAreaPage("Identity", "/Manage/Accounts", "AtLeast21");

Require authorization to access a folder of areas

options.Conventions.AuthorizeAreaFolder("Identity", "/Manage");

options.Conventions.AuthorizeAreaFolder("Identity", "/Manage", "AtLeast21");

Allow anonymous access to a page

services.AddMvc()
    .AddRazorPagesOptions(options =>
    {
        options.Conventions.AuthorizePage("/Contact");
        options.Conventions.AuthorizeFolder("/Private");
        options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
        options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

Allow anonymous access to a folder of pages

services.AddMvc()
    .AddRazorPagesOptions(options =>
    {
        options.Conventions.AuthorizePage("/Contact");
        options.Conventions.AuthorizeFolder("/Private");
        options.Conventions.AllowAnonymousToPage("/Private/PublicPage");
        options.Conventions.AllowAnonymousToFolder("/Private/PublicPages");
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

To specify an authorization policy, use an AuthorizeAreaPage overload:

Use the AuthorizeAreaFolder convention via AddRazorPagesOptions to add an AuthorizeFilter to all of the areas

in a folder at the specified path:

The folder path is the path of the folder relative to the pages root directory for the specified area. For example,

the folder path for the files under Areas/Identity/Pages/Manage/ is /Manage.

To specify an authorization policy, use an AuthorizeAreaFolder overload:

Use the AllowAnonymousToPage convention via AddRazorPagesOptions to add an AllowAnonymousFilter to a

page at the specified path:

The specified path is the View Engine path, which is the Razor Pages root relative path without an extension and

containing only forward slashes.

Use the AllowAnonymousToFolder convention via AddRazorPagesOptions to add an AllowAnonymousFilter to all

of the pages in a folder at the specified path:

The specified path is the View Engine path, which is the Razor Pages root relative path.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizeareapage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizeareafolder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.authorizeareafolder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.allowanonymoustopage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.allowanonymousfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.pageconventioncollectionextensions.allowanonymoustofolder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcrazorpagesmvcbuilderextensions.addrazorpagesoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.allowanonymousfilter


Note on combining authorized and anonymous access

// This works.
.AuthorizeFolder("/Private").AllowAnonymousToPage("/Private/Public")

// This doesn't work!
.AllowAnonymousToFolder("/Public").AuthorizePage("/Public/Private")

Additional resources

It's valid to specify that a folder of pages that require authorization and than specify that a page within that folder

allows anonymous access:

The reverse, however, isn't valid. You can't declare a folder of pages for anonymous access and then specify a

page within that folder that requires authorization:

Requiring authorization on the Private page fails. When both the AllowAnonymousFilter and AuthorizeFilter are

applied to the page, the AllowAnonymousFilter takes precedence and controls access.

Razor Pages route and app conventions in ASP.NET Core

PageConventionCollection

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.allowanonymousfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.authorizefilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.authorization.allowanonymousfilter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.applicationmodels.pageconventioncollection


Simple authorization in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

[Authorize]
public class AccountController : Controller
{
    public ActionResult Login()
    {
    }

    public ActionResult Logout()
    {
    }
}

public class AccountController : Controller
{
   public ActionResult Login()
   {
   }

   [Authorize]
   public ActionResult Logout()
   {
   }
}

[Authorize]
public class AccountController : Controller
{
    [AllowAnonymous]
    public ActionResult Login()
    {
    }

    public ActionResult Logout()
    {
    }
}

 Authorization in ASP.NET Core is controlled with AuthorizeAttribute and its various parameters. In its simplest

form, applying the [Authorize]  attribute to a controller, action, or Razor Page, limits access to that component to

any authenticated user.

For example, the following code limits access to the AccountController  to any authenticated user.

If you want to apply authorization to an action rather than the controller, apply the AuthorizeAttribute  attribute

to the action itself:

Now only authenticated users can access the Logout  function.

You can also use the AllowAnonymous  attribute to allow access by non-authenticated users to individual actions.

For example:

This would allow only authenticated users to the AccountController , except for the Login  action, which is

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/simple.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute


WARNINGWARNING

Authorize attribute and Razor Pages

accessible by everyone, regardless of their authenticated or unauthenticated / anonymous status.

[AllowAnonymous]  bypasses all authorization statements. If you combine [AllowAnonymous]  and any [Authorize]

attribute, the [Authorize]  attributes are ignored. For example if you apply [AllowAnonymous]  at the controller level, any

[Authorize]  attributes on the same controller (or on any action within it) is ignored.

For information on how to globally require all users to be authenticated, see Require authenticated users.

    

The AuthorizeAttribute can notnot be applied to Razor Page handlers. For example, [Authorize]  can't be applied to 

OnGet , OnPost , or any other page handler. Consider using an ASP.NET Core MVC controller for pages with

different authorization requirements for different handlers.

The following two approaches can be used to apply authorization to Razor Page handler methods:

[TypeFilter(typeof(AuthorizeIndexPageHandlerFilter))]
public class IndexModel : PageModel
{
    private readonly ILogger<IndexModel> _logger;

    public IndexModel(ILogger<IndexModel> logger)
    {
        _logger = logger;
    }

    public void OnGet()
    {

    }

    public void OnPost()
    {

    }

    [AuthorizePageHandler]
    public void OnPostAuthorized()
    {

    }
}

public class AuthorizeIndexPageHandlerFilter : IAsyncPageFilter, IOrderedFilter
{
    private readonly IAuthorizationPolicyProvider policyProvider;
    private readonly IPolicyEvaluator policyEvaluator;

Use separate pages for page handlers requiring different authorization. Moved shared content into one or

more partial views. When possible, this is the recommended approach.

For content that must share a common page, write a filter that performs authorization as part of

IAsyncPageFilter.OnPageHandlerSelectionAsync. The PageHandlerAuth GitHub project demonstrates this

approach:

The AuthorizeIndexPageHandlerFilter implements the authorization filter :

The [AuthorizePageHandler] attribute is applied to the OnGet  page handler :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.iasyncpagefilter.onpagehandlerselectionasync
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/simple/samples/3.1/PageHandlerAuth
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/simple/samples/3.1/PageHandlerAuth/AuthorizeIndexPageHandlerFilter.cs
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/simple/samples/3.1/PageHandlerAuth/Pages/Index.cshtml.cs#L16


    public AuthorizeIndexPageHandlerFilter(
        IAuthorizationPolicyProvider policyProvider,
        IPolicyEvaluator policyEvaluator)
    {
        this.policyProvider = policyProvider;
        this.policyEvaluator = policyEvaluator;
    }

    // Run late in the selection pipeline
    public int Order => 10000;

    public Task OnPageHandlerExecutionAsync(PageHandlerExecutingContext context, 
PageHandlerExecutionDelegate next) => next();

    public async Task OnPageHandlerSelectionAsync(PageHandlerSelectedContext context)
    {
        var attribute = 
context.HandlerMethod?.MethodInfo?.GetCustomAttribute<AuthorizePageHandlerAttribute>();
        if (attribute is null)
        {
            return;
        }

        var policy = await AuthorizationPolicy.CombineAsync(policyProvider, new[] { attribute });
        if (policy is null)
        {
            return;
        }

        await AuthorizeAsync(context, policy);
    }

    #region AuthZ - do not change
    private async Task AuthorizeAsync(ActionContext actionContext, AuthorizationPolicy policy)
    {
        var httpContext = actionContext.HttpContext;
        var authenticateResult = await policyEvaluator.AuthenticateAsync(policy, httpContext);
        var authorizeResult = await policyEvaluator.AuthorizeAsync(policy, authenticateResult, 
httpContext, actionContext.ActionDescriptor);
        if (authorizeResult.Challenged)
        {
            if (policy.AuthenticationSchemes.Count > 0)
            {
                foreach (var scheme in policy.AuthenticationSchemes)
                {
                    await httpContext.ChallengeAsync(scheme);
                }
            }
            else
            {
                await httpContext.ChallengeAsync();
            }

            return;
        }
        else if (authorizeResult.Forbidden)
        {
            if (policy.AuthenticationSchemes.Count > 0)
            {
                foreach (var scheme in policy.AuthenticationSchemes)
                {
                    await httpContext.ForbidAsync(scheme);
                }
            }
            else
            {
                await httpContext.ForbidAsync();
            }



WARNINGWARNING

            return;
        }
    }

The PageHandlerAuth sample approach does notnot :

Compose with authorization attributes applied to the page, page model, or globally. Composing authorization attributes

results in authentication and authorization executing multiple times when you have one more AuthorizeAttribute  or 

AuthorizeFilter  instances also applied to the page.

Work in conjunction with the rest of ASP.NET Core authentication and authorization system. You must verify using this

approach works correctly for your application.

There are no plans to support the AuthorizeAttribute  on Razor Page handlers.

https://github.com/pranavkm/PageHandlerAuth


Role-based authorization in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Adding role checks

[Authorize(Roles = "Administrator")]
public class AdministrationController : Controller
{
}

[Authorize(Roles = "HRManager,Finance")]
public class SalaryController : Controller
{
}

[Authorize(Roles = "PowerUser")]
[Authorize(Roles = "ControlPanelUser")]
public class ControlPanelController : Controller
{
}

 When an identity is created it may belong to one or more roles. For example, Tracy may belong to the

Administrator and User roles whilst Scott may only belong to the User role. How these roles are created and

managed depends on the backing store of the authorization process. Roles are exposed to the developer through

the IsInRole method on the ClaimsPrincipal class.

Role-based authorization checks are declarative—the developer embeds them within their code, against a

controller or an action within a controller, specifying roles which the current user must be a member of to access

the requested resource.

For example, the following code limits access to any actions on the AdministrationController  to users who are a

member of the Administrator  role:

You can specify multiple roles as a comma separated list:

This controller would be only accessible by users who are members of the HRManager  role or the Finance  role.

If you apply multiple attributes then an accessing user must be a member of all the roles specified; the following

sample requires that a user must be a member of both the PowerUser  and ControlPanelUser  role.

You can further limit access by applying additional role authorization attributes at the action level:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/roles.md
https://docs.microsoft.com/en-us/dotnet/api/system.security.principal.genericprincipal.isinrole
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal


  

[Authorize(Roles = "Administrator, PowerUser")]
public class ControlPanelController : Controller
{
    public ActionResult SetTime()
    {
    }

    [Authorize(Roles = "Administrator")]
    public ActionResult ShutDown()
    {
    }
}

[Authorize]
public class ControlPanelController : Controller
{
    public ActionResult SetTime()
    {
    }

    [AllowAnonymous]
    public ActionResult Login()
    {
    }
}

[Authorize(Policy = "RequireAdministratorRole")]
public class UpdateModel : PageModel
{
    public ActionResult OnPost()
    {
    }
}

IMPORTANTIMPORTANT

Policy based role checks

In the previous code snippet members of the Administrator  role or the PowerUser  role can access the controller

and the SetTime  action, but only members of the Administrator  role can access the ShutDown  action.

You can also lock down a controller but allow anonymous, unauthenticated access to individual actions.

For Razor Pages, the AuthorizeAttribute  can be applied by either :

Using a convention, or

Applying the AuthorizeAttribute  to the PageModel  instance:

Filter attributes, including AuthorizeAttribute , can only be applied to PageModel and cannot be applied to specific page

handler methods.

 

Role requirements can also be expressed using the new Policy syntax, where a developer registers a policy at

startup as part of the Authorization service configuration. This normally occurs in ConfigureServices()  in your

Startup.cs file.



public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews();
    services.AddRazorPages();

    services.AddAuthorization(options =>
    {
        options.AddPolicy("RequireAdministratorRole",
             policy => policy.RequireRole("Administrator"));
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc();

    services.AddAuthorization(options =>
    {
        options.AddPolicy("RequireAdministratorRole",
             policy => policy.RequireRole("Administrator"));
    });
}

[Authorize(Policy = "RequireAdministratorRole")]
public IActionResult Shutdown()
{
    return View();
}

options.AddPolicy("ElevatedRights", policy =>
                  policy.RequireRole("Administrator", "PowerUser", "BackupAdministrator"));

Add Role services to IdentityAdd Role services to Identity

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>()
        .AddRoles<IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddControllersWithViews();
    services.AddRazorPages();
}

Policies are applied using the Policy  property on the AuthorizeAttribute  attribute:

If you want to specify multiple allowed roles in a requirement then you can specify them as parameters to the 

RequireRole  method:

This example authorizes users who belong to the Administrator , PowerUser  or BackupAdministrator  roles.

Append AddRoles to add Role services:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.identitybuilder.addroles#microsoft_aspnetcore_identity_identitybuilder_addroles__1


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));
    services.AddDefaultIdentity<IdentityUser>()
        .AddRoles<IdentityRole>()
        .AddDefaultUI(UIFramework.Bootstrap4)
        .AddEntityFrameworkStores<ApplicationDbContext>();

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}



Claims-based authorization in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

Adding claims checks

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews();
    services.AddRazorPages();

    services.AddAuthorization(options =>
    {
        options.AddPolicy("EmployeeOnly", policy => policy.RequireClaim("EmployeeNumber"));
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc();

    services.AddAuthorization(options =>
    {
        options.AddPolicy("EmployeeOnly", policy => policy.RequireClaim("EmployeeNumber"));
    });
}

 When an identity is created it may be assigned one or more claims issued by a trusted party. A claim is a name

value pair that represents what the subject is, not what the subject can do. For example, you may have a driver's

license, issued by a local driving license authority. Your driver's license has your date of birth on it. In this case the

claim name would be DateOfBirth , the claim value would be your date of birth, for example 8th June 1970  and

the issuer would be the driving license authority. Claims based authorization, at its simplest, checks the value of a

claim and allows access to a resource based upon that value. For example if you want access to a night club the

authorization process might be:

The door security officer would evaluate the value of your date of birth claim and whether they trust the issuer

(the driving license authority) before granting you access.

An identity can contain multiple claims with multiple values and can contain multiple claims of the same type.

Claim based authorization checks are declarative - the developer embeds them within their code, against a

controller or an action within a controller, specifying claims which the current user must possess, and optionally

the value the claim must hold to access the requested resource. Claims requirements are policy based, the

developer must build and register a policy expressing the claims requirements.

The simplest type of claim policy looks for the presence of a claim and doesn't check the value.

First you need to build and register the policy. This takes place as part of the Authorization service configuration,

which normally takes part in ConfigureServices()  in your Startup.cs file.

In this case the EmployeeOnly  policy checks for the presence of an EmployeeNumber  claim on the current identity.

You then apply the policy using the Policy  property on the AuthorizeAttribute  attribute to specify the policy

name;

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/claims.md


[Authorize(Policy = "EmployeeOnly")]
public IActionResult VacationBalance()
{
    return View();
}

[Authorize(Policy = "EmployeeOnly")]
public class VacationController : Controller
{
    public ActionResult VacationBalance()
    {
    }
}

[Authorize(Policy = "EmployeeOnly")]
public class VacationController : Controller
{
    public ActionResult VacationBalance()
    {
    }

    [AllowAnonymous]
    public ActionResult VacationPolicy()
    {
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews();
    services.AddRazorPages();

    services.AddAuthorization(options =>
    {
        options.AddPolicy("Founders", policy =>
                          policy.RequireClaim("EmployeeNumber", "1", "2", "3", "4", "5"));
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc();

    services.AddAuthorization(options =>
    {
        options.AddPolicy("Founders", policy =>
                          policy.RequireClaim("EmployeeNumber", "1", "2", "3", "4", "5"));
    });
}

The AuthorizeAttribute  attribute can be applied to an entire controller, in this instance only identities matching

the policy will be allowed access to any Action on the controller.

If you have a controller that's protected by the AuthorizeAttribute  attribute, but want to allow anonymous access

to particular actions you apply the AllowAnonymousAttribute  attribute.

Most claims come with a value. You can specify a list of allowed values when creating the policy. The following

example would only succeed for employees whose employee number was 1, 2, 3, 4 or 5.



Add a generic claim checkAdd a generic claim check

Multiple Policy Evaluation

[Authorize(Policy = "EmployeeOnly")]
public class SalaryController : Controller
{
    public ActionResult Payslip()
    {
    }

    [Authorize(Policy = "HumanResources")]
    public ActionResult UpdateSalary()
    {
    }
}

If the claim value isn't a single value or a transformation is required, use RequireAssertion. For more information,

see Use a func to fulfill a policy.

If you apply multiple policies to a controller or action, then all policies must pass before access is granted. For

example:

In the above example any identity which fulfills the EmployeeOnly  policy can access the Payslip  action as that

policy is enforced on the controller. However in order to call the UpdateSalary  action the identity must fulfill both

the EmployeeOnly  policy and the HumanResources  policy.

If you want more complicated policies, such as taking a date of birth claim, calculating an age from it then

checking the age is 21 or older then you need to write custom policy handlers.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationpolicybuilder.requireassertion


Policy-based authorization in ASP.NET Core
9/22/2020 • 20 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews();
    services.AddRazorPages();
    services.AddAuthorization(options =>
    {
        options.AddPolicy("AtLeast21", policy =>
            policy.Requirements.Add(new MinimumAgeRequirement(21)));
    });
}

IAuthorizationService

Underneath the covers, role-based authorization and claims-based authorization use a requirement, a

requirement handler, and a pre-configured policy. These building blocks support the expression of

authorization evaluations in code. The result is a richer, reusable, testable authorization structure.

An authorization policy consists of one or more requirements. It's registered as part of the authorization

service configuration, in the Startup.ConfigureServices  method:

In the preceding example, an "AtLeast21" policy is created. It has a single requirement—that of a minimum

age, which is supplied as a parameter to the requirement.

The primary service that determines if authorization is successful is IAuthorizationService:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/policies.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationservice


/// <summary>
/// Checks policy based permissions for a user
/// </summary>
public interface IAuthorizationService
{
    /// <summary>
    /// Checks if a user meets a specific set of requirements for the specified resource
    /// </summary>
    /// <param name="user">The user to evaluate the requirements against.</param>
    /// <param name="resource">
    /// An optional resource the policy should be checked with.
    /// If a resource is not required for policy evaluation you may pass null as the value
    /// </param>
    /// <param name="requirements">The requirements to evaluate.</param>
    /// <returns>
    /// A flag indicating whether authorization has succeeded.
    /// This value is <value>true</value> when the user fulfills the policy; 
    /// otherwise <value>false</value>.
    /// </returns>
    /// <remarks>
    /// Resource is an optional parameter and may be null. Please ensure that you check 
    /// it is not null before acting upon it.
    /// </remarks>
    Task<AuthorizationResult> AuthorizeAsync(ClaimsPrincipal user, object resource, 
                                     IEnumerable<IAuthorizationRequirement> requirements);

    /// <summary>
    /// Checks if a user meets a specific authorization policy
    /// </summary>
    /// <param name="user">The user to check the policy against.</param>
    /// <param name="resource">
    /// An optional resource the policy should be checked with.
    /// If a resource is not required for policy evaluation you may pass null as the value
    /// </param>
    /// <param name="policyName">The name of the policy to check against a specific 
    /// context.</param>
    /// <returns>
    /// A flag indicating whether authorization has succeeded.
    /// Returns a flag indicating whether the user, and optional resource has fulfilled 
    /// the policy.    
    /// <value>true</value> when the policy has been fulfilled; 
    /// otherwise <value>false</value>.
    /// </returns>
    /// <remarks>
    /// Resource is an optional parameter and may be null. Please ensure that you check
    /// it is not null before acting upon it.
    /// </remarks>
    Task<AuthorizationResult> AuthorizeAsync(
                                ClaimsPrincipal user, object resource, string policyName);
}

The preceding code highlights the two methods of the IAuthorizationService.

IAuthorizationRequirement is a marker service with no methods, and the mechanism for tracking whether

authorization is successful.

Each IAuthorizationHandler is responsible for checking if requirements are met:

https://github.com/dotnet/AspNetCore/blob/v2.2.4/src/Security/Authorization/Core/src/IAuthorizationService.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationrequirement
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationhandler


/// <summary>
/// Classes implementing this interface are able to make a decision if authorization
/// is allowed.
/// </summary>
public interface IAuthorizationHandler
{
    /// <summary>
    /// Makes a decision if authorization is allowed.
    /// </summary>
    /// <param name="context">The authorization information.</param>
    Task HandleAsync(AuthorizationHandlerContext context);
}

 context.Succeed(requirement)

public async Task<AuthorizationResult> AuthorizeAsync(ClaimsPrincipal user, 
             object resource, IEnumerable<IAuthorizationRequirement> requirements)
{
    // Create a tracking context from the authorization inputs.
    var authContext = _contextFactory.CreateContext(requirements, user, resource);

    // By default this returns an IEnumerable<IAuthorizationHandlers> from DI.
    var handlers = await _handlers.GetHandlersAsync(authContext);

    // Invoke all handlers.
    foreach (var handler in handlers)
    {
        await handler.HandleAsync(authContext);
    }

    // Check the context, by default success is when all requirements have been met.
    return _evaluator.Evaluate(authContext);
}

public void ConfigureServices(IServiceCollection services)
{
    // Add all of your handlers to DI.
    services.AddSingleton<IAuthorizationHandler, MyHandler1>();
    // MyHandler2, ...

    services.AddSingleton<IAuthorizationHandler, MyHandlerN>();

    // Configure your policies
    services.AddAuthorization(options =>
          options.AddPolicy("Something",
          policy => policy.RequireClaim("Permission", "CanViewPage", "CanViewAnything")));

    services.AddControllersWithViews();
    services.AddRazorPages();
}

The AuthorizationHandlerContext class is what the handler uses to mark whether requirements have been

met:

The following code shows the simplified (and annotated with comments) default implementation of the

authorization service:

The following code shows a typical ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext


  

  

 

Apply policies to MVC controllers

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;

[Authorize(Policy = "AtLeast21")]
public class AlcoholPurchaseController : Controller
{
    public IActionResult Index() => View();
}

Apply policies to Razor Pages

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc.RazorPages;

[Authorize(Policy = "AtLeast21")]
public class AlcoholPurchaseModel : PageModel
{
}

Requirements

using Microsoft.AspNetCore.Authorization;

public class MinimumAgeRequirement : IAuthorizationRequirement
{
    public int MinimumAge { get; }

    public MinimumAgeRequirement(int minimumAge)
    {
        MinimumAge = minimumAge;
    }
}

Use IAuthorizationService or [Authorize(Policy = "Something")]  for authorization.

If you're using Razor Pages, see Apply policies to Razor Pages in this document.

Policies are applied to controllers by using the [Authorize]  attribute with the policy name. For example:

Policies are applied to Razor Pages by using the [Authorize]  attribute with the policy name. For example:

Policies can notnot be applied at the Razor Page handler level, they must be applied to the Page.

Policies can be applied to Razor Pages by using an authorization convention.

An authorization requirement is a collection of data parameters that a policy can use to evaluate the current

user principal. In our "AtLeast21" policy, the requirement is a single parameter—the minimum age. A

requirement implements IAuthorizationRequirement, which is an empty marker interface. A parameterized

minimum age requirement could be implemented as follows:

If an authorization policy contains multiple authorization requirements, all requirements must pass in order

for the policy evaluation to succeed. In other words, multiple authorization requirements added to a single

authorization policy are treated on an ANDAND basis.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationrequirement


  

NOTENOTE

Authorization handlers

Use a handler for one requirementUse a handler for one requirement

using System;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;

public class MinimumAgeHandler : AuthorizationHandler<MinimumAgeRequirement>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
                                                   MinimumAgeRequirement requirement)
    {
        if (!context.User.HasClaim(c => c.Type == ClaimTypes.DateOfBirth &&
                                        c.Issuer == "http://contoso.com"))
        {
            //TODO: Use the following if targeting a version of
            //.NET Framework older than 4.6:
            //      return Task.FromResult(0);
            return Task.CompletedTask;
        }

        var dateOfBirth = Convert.ToDateTime(
            context.User.FindFirst(c => c.Type == ClaimTypes.DateOfBirth && 
                                        c.Issuer == "http://contoso.com").Value);

        int calculatedAge = DateTime.Today.Year - dateOfBirth.Year;
        if (dateOfBirth > DateTime.Today.AddYears(-calculatedAge))
        {
            calculatedAge--;
        }

        if (calculatedAge >= requirement.MinimumAge)
        {
            context.Succeed(requirement);
        }

        //TODO: Use the following if targeting a version of
        //.NET Framework older than 4.6:
        //      return Task.FromResult(0);
        return Task.CompletedTask;
    }
}

A requirement doesn't need to have data or properties.

  

An authorization handler is responsible for the evaluation of a requirement's properties. The authorization

handler evaluates the requirements against a provided AuthorizationHandlerContext to determine if access is

allowed.

A requirement can have multiple handlers. A handler may inherit AuthorizationHandler<TRequirement>,

where TRequirement  is the requirement to be handled. Alternatively, a handler may implement

IAuthorizationHandler to handle more than one type of requirement.

   

The following is an example of a one-to-one relationship in which a minimum age handler utilizes a single

requirement:

The preceding code determines if the current user principal has a date of birth claim which has been issued

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandler-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationhandler


Use a handler for multiple requirementsUse a handler for multiple requirements

using System.Linq;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;

public class PermissionHandler : IAuthorizationHandler
{
    public Task HandleAsync(AuthorizationHandlerContext context)
    {
        var pendingRequirements = context.PendingRequirements.ToList();

        foreach (var requirement in pendingRequirements)
        {
            if (requirement is ReadPermission)
            {
                if (IsOwner(context.User, context.Resource) ||
                    IsSponsor(context.User, context.Resource))
                {
                    context.Succeed(requirement);
                }
            }
            else if (requirement is EditPermission ||
                     requirement is DeletePermission)
            {
                if (IsOwner(context.User, context.Resource))
                {
                    context.Succeed(requirement);
                }
            }
        }

        //TODO: Use the following if targeting a version of
        //.NET Framework older than 4.6:
        //      return Task.FromResult(0);
        return Task.CompletedTask;
    }

    private bool IsOwner(ClaimsPrincipal user, object resource)
    {
        // Code omitted for brevity

        return true;
    }

    private bool IsSponsor(ClaimsPrincipal user, object resource)
    {
        // Code omitted for brevity

        return true;
    }
}

by a known and trusted Issuer. Authorization can't occur when the claim is missing, in which case a completed

task is returned. When a claim is present, the user's age is calculated. If the user meets the minimum age

defined by the requirement, authorization is deemed successful. When authorization is successful, 

context.Succeed  is invoked with the satisfied requirement as its sole parameter.

The following is an example of a one-to-many relationship in which a permission handler can handle three

different types of requirements:

The preceding code traverses PendingRequirements—a property containing requirements not marked as

successful. For a ReadPermission  requirement, the user must be either an owner or a sponsor to access the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext.pendingrequirements#microsoft_aspnetcore_authorization_authorizationhandlercontext_pendingrequirements


  Handler registrationHandler registration

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews();
    services.AddRazorPages();
    services.AddAuthorization(options =>
    {
        options.AddPolicy("AtLeast21", policy =>
            policy.Requirements.Add(new MinimumAgeRequirement(21)));
    });

    services.AddSingleton<IAuthorizationHandler, MinimumAgeHandler>();
}

What should a handler return?

NOTENOTE

Why would I want multiple handlers for a requirement?

requested resource. In the case of an EditPermission  or DeletePermission  requirement, he or she must be an

owner to access the requested resource.

   

Handlers are registered in the services collection during configuration. For example:

The preceding code registers MinimumAgeHandler  as a singleton by invoking 

services.AddSingleton<IAuthorizationHandler, MinimumAgeHandler>(); . Handlers can be registered using any of

the built-in service lifetimes.

Note that the Handle  method in the handler example returns no value. How is a status of either success or

failure indicated?

A handler indicates success by calling context.Succeed(IAuthorizationRequirement requirement) ,

passing the requirement that has been successfully validated.

A handler doesn't need to handle failures generally, as other handlers for the same requirement may

succeed.

To guarantee failure, even if other requirement handlers succeed, call context.Fail .

If a handler calls context.Succeed  or context.Fail , all other handlers are still called. This allows requirements

to produce side effects, such as logging, which takes place even if another handler has successfully validated

or failed a requirement. When set to false , the InvokeHandlersAfterFailure property (available in ASP.NET

Core 1.1 and later) short-circuits the execution of handlers when context.Fail  is called. 

InvokeHandlersAfterFailure  defaults to true , in which case all handlers are called.

Authorization handlers are called even if authentication fails.

  

In cases where you want evaluation to be on an OROR  basis, implement multiple handlers for a single

requirement. For example, Microsoft has doors which only open with key cards. If you leave your key card at

home, the receptionist prints a temporary sticker and opens the door for you. In this scenario, you'd have a

single requirement, BuildingEntry, but multiple handlers, each one examining a single requirement.

BuildingEntryRequirement.cs

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationoptions.invokehandlersafterfailure#microsoft_aspnetcore_authorization_authorizationoptions_invokehandlersafterfailure


  

using Microsoft.AspNetCore.Authorization;

public class BuildingEntryRequirement : IAuthorizationRequirement
{
}

using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;

public class BadgeEntryHandler : AuthorizationHandler<BuildingEntryRequirement>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
                                                   BuildingEntryRequirement requirement)
    {
        if (context.User.HasClaim(c => c.Type == "BadgeId" &&
                                       c.Issuer == "http://microsoftsecurity"))
        {
            context.Succeed(requirement);
        }

        //TODO: Use the following if targeting a version of
        //.NET Framework older than 4.6:
        //      return Task.FromResult(0);
        return Task.CompletedTask;
    }
}

using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;

public class TemporaryStickerHandler : AuthorizationHandler<BuildingEntryRequirement>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context, 
                                                   BuildingEntryRequirement requirement)
    {
        if (context.User.HasClaim(c => c.Type == "TemporaryBadgeId" &&
                                       c.Issuer == "https://microsoftsecurity"))
        {
            // We'd also check the expiration date on the sticker.
            context.Succeed(requirement);
        }

        //TODO: Use the following if targeting a version of
        //.NET Framework older than 4.6:
        //      return Task.FromResult(0);
        return Task.CompletedTask;
    }
}

Use a func to fulfill a policy

BadgeEntryHandler.cs

TemporaryStickerHandler.cs

Ensure that both handlers are registered. If either handler succeeds when a policy evaluates the 

BuildingEntryRequirement , the policy evaluation succeeds.



 

services.AddAuthorization(options =>
{
     options.AddPolicy("BadgeEntry", policy =>
        policy.RequireAssertion(context =>
            context.User.HasClaim(c =>
                (c.Type == "BadgeId" ||
                 c.Type == "TemporaryBadgeId") &&
                 c.Issuer == "https://microsoftsecurity")));
});

Access MVC request context in handlers

if (context.Resource is Endpoint endpoint)
{
   var actionDescriptor = endpoint.Metadata.GetMetadata<ControllerActionDescriptor>();
   ...
}

// Requires the following import:
//     using Microsoft.AspNetCore.Mvc.Filters;
if (context.Resource is AuthorizationFilterContext mvcContext)
{
    // Examine MVC-specific things like routing data.
}

Globally require all users to be authenticated

There may be situations in which fulfilling a policy is simple to express in code. It's possible to supply a 

Func<AuthorizationHandlerContext, bool>  when configuring your policy with the RequireAssertion  policy

builder.

For example, the previous BadgeEntryHandler  could be rewritten as follows:

The HandleRequirementAsync  method you implement in an authorization handler has two parameters: an 

AuthorizationHandlerContext  and the TRequirement  you are handling. Frameworks such as MVC or SignalR

are free to add any object to the Resource  property on the AuthorizationHandlerContext  to pass extra

information.

When using endpoint routing, authorization is typically handled by the Authorization Middleware. In this case,

the Resource  property is an instance of Endpoint. The endpoint can be used to probe the underlying resource

to which you're routing. For example:

The endpoint doesn't provide access to the current HttpContext . When using endpoint routing, use 

IHttpContextAcessor  to access HttpContext  inside of an authorization handler. For more information, see Use

HttpContext from custom components.

With traditional routing, or when authorization happens as part of MVC's authorization filter, the value of 

Resource  is an AuthorizationFilterContext instance. This property provides access to HttpContext , RouteData

, and everything else provided by MVC and Razor Pages.

The use of the Resource  property is framework specific. Using information in the Resource  property limits

your authorization policies to particular frameworks. You should cast the Resource  property using the is

keyword, and then confirm the cast has succeeded to ensure your code doesn't crash with an 

InvalidCastException  when run on other frameworks:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.endpoint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.authorizationfiltercontext


public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

    services.AddAuthorization(options =>
    {
        options.AddPolicy("AtLeast21", policy =>
            policy.Requirements.Add(new MinimumAgeRequirement(21)));
    });
}

IAuthorizationService

For information on how to globally require all users to be authenticated, see Require authenticated users.

Underneath the covers, role-based authorization and claims-based authorization use a requirement, a

requirement handler, and a pre-configured policy. These building blocks support the expression of

authorization evaluations in code. The result is a richer, reusable, testable authorization structure.

An authorization policy consists of one or more requirements. It's registered as part of the authorization

service configuration, in the Startup.ConfigureServices  method:

In the preceding example, an "AtLeast21" policy is created. It has a single requirement—that of a minimum

age, which is supplied as a parameter to the requirement.

The primary service that determines if authorization is successful is IAuthorizationService:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationservice


/// <summary>
/// Checks policy based permissions for a user
/// </summary>
public interface IAuthorizationService
{
    /// <summary>
    /// Checks if a user meets a specific set of requirements for the specified resource
    /// </summary>
    /// <param name="user">The user to evaluate the requirements against.</param>
    /// <param name="resource">
    /// An optional resource the policy should be checked with.
    /// If a resource is not required for policy evaluation you may pass null as the value
    /// </param>
    /// <param name="requirements">The requirements to evaluate.</param>
    /// <returns>
    /// A flag indicating whether authorization has succeeded.
    /// This value is <value>true</value> when the user fulfills the policy; 
    /// otherwise <value>false</value>.
    /// </returns>
    /// <remarks>
    /// Resource is an optional parameter and may be null. Please ensure that you check 
    /// it is not null before acting upon it.
    /// </remarks>
    Task<AuthorizationResult> AuthorizeAsync(ClaimsPrincipal user, object resource, 
                                     IEnumerable<IAuthorizationRequirement> requirements);

    /// <summary>
    /// Checks if a user meets a specific authorization policy
    /// </summary>
    /// <param name="user">The user to check the policy against.</param>
    /// <param name="resource">
    /// An optional resource the policy should be checked with.
    /// If a resource is not required for policy evaluation you may pass null as the value
    /// </param>
    /// <param name="policyName">The name of the policy to check against a specific 
    /// context.</param>
    /// <returns>
    /// A flag indicating whether authorization has succeeded.
    /// Returns a flag indicating whether the user, and optional resource has fulfilled 
    /// the policy.    
    /// <value>true</value> when the policy has been fulfilled; 
    /// otherwise <value>false</value>.
    /// </returns>
    /// <remarks>
    /// Resource is an optional parameter and may be null. Please ensure that you check
    /// it is not null before acting upon it.
    /// </remarks>
    Task<AuthorizationResult> AuthorizeAsync(
                                ClaimsPrincipal user, object resource, string policyName);
}

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

The preceding code highlights the two methods of the IAuthorizationService.

IAuthorizationRequirement is a marker service with no methods, and the mechanism for tracking whether

authorization is successful.

Each IAuthorizationHandler is responsible for checking if requirements are met:

https://github.com/MicrosoftDocs/feedback/issues/2515
https://github.com/dotnet/AspNetCore/blob/v2.2.4/src/Security/Authorization/Core/src/IAuthorizationService.cs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationrequirement
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationhandler


/// <summary>
/// Classes implementing this interface are able to make a decision if authorization
/// is allowed.
/// </summary>
public interface IAuthorizationHandler
{
    /// <summary>
    /// Makes a decision if authorization is allowed.
    /// </summary>
    /// <param name="context">The authorization information.</param>
    Task HandleAsync(AuthorizationHandlerContext context);
}

 context.Succeed(requirement)

public async Task<AuthorizationResult> AuthorizeAsync(ClaimsPrincipal user, 
             object resource, IEnumerable<IAuthorizationRequirement> requirements)
{
    // Create a tracking context from the authorization inputs.
    var authContext = _contextFactory.CreateContext(requirements, user, resource);

    // By default this returns an IEnumerable<IAuthorizationHandlers> from DI.
    var handlers = await _handlers.GetHandlersAsync(authContext);

    // Invoke all handlers.
    foreach (var handler in handlers)
    {
        await handler.HandleAsync(authContext);
    }

    // Check the context, by default success is when all requirements have been met.
    return _evaluator.Evaluate(authContext);
}

public void ConfigureServices(IServiceCollection services)
{
    // Add all of your handlers to DI.
    services.AddSingleton<IAuthorizationHandler, MyHandler1>();
    // MyHandler2, ...

    services.AddSingleton<IAuthorizationHandler, MyHandlerN>();

    // Configure your policies
    services.AddAuthorization(options =>
          options.AddPolicy("Something",
          policy => policy.RequireClaim("Permission", "CanViewPage", "CanViewAnything")));

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

The AuthorizationHandlerContext class is what the handler uses to mark whether requirements have been

met:

The following code shows the simplified (and annotated with comments) default implementation of the

authorization service:

The following code shows a typical ConfigureServices :

Use IAuthorizationService or [Authorize(Policy = "Something")]  for authorization.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationservice


Apply policies to MVC controllers

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;

[Authorize(Policy = "AtLeast21")]
public class AlcoholPurchaseController : Controller
{
    public IActionResult Index() => View();
}

Apply policies to Razor Pages

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc.RazorPages;

[Authorize(Policy = "AtLeast21")]
public class AlcoholPurchaseModel : PageModel
{
}

Requirements

using Microsoft.AspNetCore.Authorization;

public class MinimumAgeRequirement : IAuthorizationRequirement
{
    public int MinimumAge { get; }

    public MinimumAgeRequirement(int minimumAge)
    {
        MinimumAge = minimumAge;
    }
}

NOTENOTE

If you're using Razor Pages, see Apply policies to Razor Pages in this document.

Policies are applied to controllers by using the [Authorize]  attribute with the policy name. For example:

Policies are applied to Razor Pages by using the [Authorize]  attribute with the policy name. For example:

Policies can also be applied to Razor Pages by using an authorization convention.

An authorization requirement is a collection of data parameters that a policy can use to evaluate the current

user principal. In our "AtLeast21" policy, the requirement is a single parameter—the minimum age. A

requirement implements IAuthorizationRequirement, which is an empty marker interface. A parameterized

minimum age requirement could be implemented as follows:

If an authorization policy contains multiple authorization requirements, all requirements must pass in order

for the policy evaluation to succeed. In other words, multiple authorization requirements added to a single

authorization policy are treated on an ANDAND basis.

A requirement doesn't need to have data or properties.

 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationrequirement


Authorization handlers

Use a handler for one requirementUse a handler for one requirement

using System;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;

public class MinimumAgeHandler : AuthorizationHandler<MinimumAgeRequirement>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
                                                   MinimumAgeRequirement requirement)
    {
        if (!context.User.HasClaim(c => c.Type == ClaimTypes.DateOfBirth &&
                                        c.Issuer == "http://contoso.com"))
        {
            //TODO: Use the following if targeting a version of
            //.NET Framework older than 4.6:
            //      return Task.FromResult(0);
            return Task.CompletedTask;
        }

        var dateOfBirth = Convert.ToDateTime(
            context.User.FindFirst(c => c.Type == ClaimTypes.DateOfBirth && 
                                        c.Issuer == "http://contoso.com").Value);

        int calculatedAge = DateTime.Today.Year - dateOfBirth.Year;
        if (dateOfBirth > DateTime.Today.AddYears(-calculatedAge))
        {
            calculatedAge--;
        }

        if (calculatedAge >= requirement.MinimumAge)
        {
            context.Succeed(requirement);
        }

        //TODO: Use the following if targeting a version of
        //.NET Framework older than 4.6:
        //      return Task.FromResult(0);
        return Task.CompletedTask;
    }
}

An authorization handler is responsible for the evaluation of a requirement's properties. The authorization

handler evaluates the requirements against a provided AuthorizationHandlerContext to determine if access is

allowed.

A requirement can have multiple handlers. A handler may inherit AuthorizationHandler<TRequirement>,

where TRequirement  is the requirement to be handled. Alternatively, a handler may implement

IAuthorizationHandler to handle more than one type of requirement.

 

The following is an example of a one-to-one relationship in which a minimum age handler utilizes a single

requirement:

The preceding code determines if the current user principal has a date of birth claim which has been issued

by a known and trusted Issuer. Authorization can't occur when the claim is missing, in which case a completed

task is returned. When a claim is present, the user's age is calculated. If the user meets the minimum age

defined by the requirement, authorization is deemed successful. When authorization is successful, 

context.Succeed  is invoked with the satisfied requirement as its sole parameter.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandler-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationhandler


Use a handler for multiple requirementsUse a handler for multiple requirements

using System.Linq;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;

public class PermissionHandler : IAuthorizationHandler
{
    public Task HandleAsync(AuthorizationHandlerContext context)
    {
        var pendingRequirements = context.PendingRequirements.ToList();

        foreach (var requirement in pendingRequirements)
        {
            if (requirement is ReadPermission)
            {
                if (IsOwner(context.User, context.Resource) ||
                    IsSponsor(context.User, context.Resource))
                {
                    context.Succeed(requirement);
                }
            }
            else if (requirement is EditPermission ||
                     requirement is DeletePermission)
            {
                if (IsOwner(context.User, context.Resource))
                {
                    context.Succeed(requirement);
                }
            }
        }

        //TODO: Use the following if targeting a version of
        //.NET Framework older than 4.6:
        //      return Task.FromResult(0);
        return Task.CompletedTask;
    }

    private bool IsOwner(ClaimsPrincipal user, object resource)
    {
        // Code omitted for brevity

        return true;
    }

    private bool IsSponsor(ClaimsPrincipal user, object resource)
    {
        // Code omitted for brevity

        return true;
    }
}

Handler registrationHandler registration

The following is an example of a one-to-many relationship in which a permission handler can handle three

different types of requirements:

The preceding code traverses PendingRequirements—a property containing requirements not marked as

successful. For a ReadPermission  requirement, the user must be either an owner or a sponsor to access the

requested resource. In the case of an EditPermission  or DeletePermission  requirement, he or she must be an

owner to access the requested resource.

 

Handlers are registered in the services collection during configuration. For example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationhandlercontext.pendingrequirements#microsoft_aspnetcore_authorization_authorizationhandlercontext_pendingrequirements


public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

    services.AddAuthorization(options =>
    {
        options.AddPolicy("AtLeast21", policy =>
            policy.Requirements.Add(new MinimumAgeRequirement(21)));
    });

    services.AddSingleton<IAuthorizationHandler, MinimumAgeHandler>();
}

What should a handler return?

NOTENOTE

Why would I want multiple handlers for a requirement?

using Microsoft.AspNetCore.Authorization;

public class BuildingEntryRequirement : IAuthorizationRequirement
{
}

The preceding code registers MinimumAgeHandler  as a singleton by invoking 

services.AddSingleton<IAuthorizationHandler, MinimumAgeHandler>(); . Handlers can be registered using any of

the built-in service lifetimes.

Note that the Handle  method in the handler example returns no value. How is a status of either success or

failure indicated?

A handler indicates success by calling context.Succeed(IAuthorizationRequirement requirement) ,

passing the requirement that has been successfully validated.

A handler doesn't need to handle failures generally, as other handlers for the same requirement may

succeed.

To guarantee failure, even if other requirement handlers succeed, call context.Fail .

If a handler calls context.Succeed  or context.Fail , all other handlers are still called. This allows requirements

to produce side effects, such as logging, which takes place even if another handler has successfully validated

or failed a requirement. When set to false , the InvokeHandlersAfterFailure property (available in ASP.NET

Core 1.1 and later) short-circuits the execution of handlers when context.Fail  is called. 

InvokeHandlersAfterFailure  defaults to true , in which case all handlers are called.

Authorization handlers are called even if authentication fails.

 

In cases where you want evaluation to be on an OROR  basis, implement multiple handlers for a single

requirement. For example, Microsoft has doors which only open with key cards. If you leave your key card at

home, the receptionist prints a temporary sticker and opens the door for you. In this scenario, you'd have a

single requirement, BuildingEntry, but multiple handlers, each one examining a single requirement.

BuildingEntryRequirement.cs

BadgeEntryHandler.cs

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationoptions.invokehandlersafterfailure#microsoft_aspnetcore_authorization_authorizationoptions_invokehandlersafterfailure


using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;

public class BadgeEntryHandler : AuthorizationHandler<BuildingEntryRequirement>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
                                                   BuildingEntryRequirement requirement)
    {
        if (context.User.HasClaim(c => c.Type == "BadgeId" &&
                                       c.Issuer == "http://microsoftsecurity"))
        {
            context.Succeed(requirement);
        }

        //TODO: Use the following if targeting a version of
        //.NET Framework older than 4.6:
        //      return Task.FromResult(0);
        return Task.CompletedTask;
    }
}

using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using PoliciesAuthApp1.Services.Requirements;

public class TemporaryStickerHandler : AuthorizationHandler<BuildingEntryRequirement>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context, 
                                                   BuildingEntryRequirement requirement)
    {
        if (context.User.HasClaim(c => c.Type == "TemporaryBadgeId" &&
                                       c.Issuer == "https://microsoftsecurity"))
        {
            // We'd also check the expiration date on the sticker.
            context.Succeed(requirement);
        }

        //TODO: Use the following if targeting a version of
        //.NET Framework older than 4.6:
        //      return Task.FromResult(0);
        return Task.CompletedTask;
    }
}

Use a func to fulfill a policy

TemporaryStickerHandler.cs

Ensure that both handlers are registered. If either handler succeeds when a policy evaluates the 

BuildingEntryRequirement , the policy evaluation succeeds.

There may be situations in which fulfilling a policy is simple to express in code. It's possible to supply a 

Func<AuthorizationHandlerContext, bool>  when configuring your policy with the RequireAssertion  policy

builder.

For example, the previous BadgeEntryHandler  could be rewritten as follows:



services.AddAuthorization(options =>
{
     options.AddPolicy("BadgeEntry", policy =>
        policy.RequireAssertion(context =>
            context.User.HasClaim(c =>
                (c.Type == "BadgeId" ||
                 c.Type == "TemporaryBadgeId") &&
                 c.Issuer == "https://microsoftsecurity")));
});

Access MVC request context in handlers

// Requires the following import:
//     using Microsoft.AspNetCore.Mvc.Filters;
if (context.Resource is AuthorizationFilterContext mvcContext)
{
    // Examine MVC-specific things like routing data.
}

The HandleRequirementAsync  method you implement in an authorization handler has two parameters: an 

AuthorizationHandlerContext  and the TRequirement  you are handling. Frameworks such as MVC or SignalR

are free to add any object to the Resource  property on the AuthorizationHandlerContext  to pass extra

information.

For example, MVC passes an instance of AuthorizationFilterContext in the Resource  property. This property

provides access to HttpContext , RouteData , and everything else provided by MVC and Razor Pages.

The use of the Resource  property is framework specific. Using information in the Resource  property limits

your authorization policies to particular frameworks. You should cast the Resource  property using the is

keyword, and then confirm the cast has succeeded to ensure your code doesn't crash with an 

InvalidCastException  when run on other frameworks:

https://docs.microsoft.com/en-us/dotnet/api/?term=authorizationfiltercontext


Custom Authorization Policy Providers using
IAuthorizationPolicyProvider in ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

Customize policy retrieval

Parameterized authorize attribute example

By Mike Rousos

Typically when using policy-based authorization, policies are registered by calling AuthorizationOptions.AddPolicy

as part of authorization service configuration. In some scenarios, it may not be possible (or desirable) to register all

authorization policies in this way. In those cases, you can use a custom IAuthorizationPolicyProvider  to control

how authorization policies are supplied.

Examples of scenarios where a custom IAuthorizationPolicyProvider may be useful include:

Using an external service to provide policy evaluation.

Using a large range of policies (for different room numbers or ages, for example), so it doesn't make sense to

add each individual authorization policy with an AuthorizationOptions.AddPolicy  call.

Creating policies at runtime based on information in an external data source (like a database) or determining

authorization requirements dynamically through another mechanism.

View or download sample code from the AspNetCore GitHub repository. Download the dotnet/AspNetCore

repository ZIP file. Unzip the file. Navigate to the src/Security/samples/CustomPolicyProvider project folder.

ASP.NET Core apps use an implementation of the IAuthorizationPolicyProvider  interface to retrieve authorization

policies. By default, DefaultAuthorizationPolicyProvider is registered and used. DefaultAuthorizationPolicyProvider

returns policies from the AuthorizationOptions  provided in an IServiceCollection.AddAuthorization  call.

Customize this behavior by registering a different IAuthorizationPolicyProvider  implementation in the app's

dependency injection container.

The IAuthorizationPolicyProvider  interface contains three APIs:

GetPolicyAsync returns an authorization policy for a given name.

GetDefaultPolicyAsync returns the default authorization policy (the policy used for [Authorize]  attributes

without a policy specified).

GetFallbackPolicyAsync returns the fallback authorization policy (the policy used by the Authorization

Middleware when no policy is specified).

By implementing these APIs, you can customize how authorization policies are provided.

One scenario where IAuthorizationPolicyProvider  is useful is enabling custom [Authorize]  attributes whose

requirements depend on a parameter. For example, in policy-based authorization documentation, an age-based

(“AtLeast21”) policy was used as a sample. If different controller actions in an app should be made available to users

of different ages, it might be useful to have many different age-based policies. Instead of registering all the different

age-based policies that the application will need in AuthorizationOptions , you can generate the policies

dynamically with a custom IAuthorizationPolicyProvider . To make using the policies easier, you can annotate

actions with custom authorization attribute like [MinimumAgeAuthorize(20)] .

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/iauthorizationpolicyprovider.md
https://github.com/mjrousos
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationpolicyprovider
https://github.com/dotnet/aspnetcore/tree/v3.1.3/src/Security/samples/CustomPolicyProvider
https://github.com/dotnet/AspNetCore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.defaultauthorizationpolicyprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationpolicyprovider.getpolicyasync#microsoft_aspnetcore_authorization_iauthorizationpolicyprovider_getpolicyasync_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationpolicyprovider.getdefaultpolicyasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationpolicyprovider.getfallbackpolicyasync


Custom Authorization attributes

internal class MinimumAgeAuthorizeAttribute : AuthorizeAttribute
{
    const string POLICY_PREFIX = "MinimumAge";

    public MinimumAgeAuthorizeAttribute(int age) => Age = age;

    // Get or set the Age property by manipulating the underlying Policy property
    public int Age
    {
        get
        {
            if (int.TryParse(Policy.Substring(POLICY_PREFIX.Length), out var age))
            {
                return age;
            }
            return default(int);
        }
        set
        {
            Policy = $"{POLICY_PREFIX}{value.ToString()}";
        }
    }
}

[MinimumAgeAuthorize(10)]
public IActionResult RequiresMinimumAge10()

Custom IAuthorizationPolicyProvider

Authorization policies are identified by their names. The custom MinimumAgeAuthorizeAttribute  described

previously needs to map arguments into a string that can be used to retrieve the corresponding authorization

policy. You can do this by deriving from AuthorizeAttribute  and making the Age  property wrap the 

AuthorizeAttribute.Policy  property.

This attribute type has a Policy  string based on the hard-coded prefix ( "MinimumAge" ) and an integer passed in via

the constructor.

You can apply it to actions in the same way as other Authorize  attributes except that it takes an integer as a

parameter.

The custom MinimumAgeAuthorizeAttribute  makes it easy to request authorization policies for any minimum age

desired. The next problem to solve is making sure that authorization policies are available for all of those different

ages. This is where an IAuthorizationPolicyProvider  is useful.

When using MinimumAgeAuthorizationAttribute , the authorization policy names will follow the pattern 

"MinimumAge" + Age , so the custom IAuthorizationPolicyProvider  should generate authorization policies by:

Parsing the age from the policy name.

Using AuthorizationPolicyBuilder  to create a new AuthorizationPolicy

In this and following examples it will be assumed that the user is authenticated via a cookie. The 

AuthorizationPolicyBuilder  should either be constructed with at least one authorization scheme name or

always succeed. Otherwise there is no information on how to provide a challenge to the user and an exception

will be thrown.

Adding requirements to the policy based on the age with AuthorizationPolicyBuilder.AddRequirements . In other

scenarios, you might use RequireClaim , RequireRole , or RequireUserName  instead.



internal class MinimumAgePolicyProvider : IAuthorizationPolicyProvider
{
    const string POLICY_PREFIX = "MinimumAge";

    // Policies are looked up by string name, so expect 'parameters' (like age)
    // to be embedded in the policy names. This is abstracted away from developers
    // by the more strongly-typed attributes derived from AuthorizeAttribute
    // (like [MinimumAgeAuthorize()] in this sample)
    public Task<AuthorizationPolicy> GetPolicyAsync(string policyName)
    {
        if (policyName.StartsWith(POLICY_PREFIX, StringComparison.OrdinalIgnoreCase) &&
            int.TryParse(policyName.Substring(POLICY_PREFIX.Length), out var age))
        {
            var policy = new AuthorizationPolicyBuilder(CookieAuthenticationDefaults.AuthenticationScheme);
            policy.AddRequirements(new MinimumAgeRequirement(age));
            return Task.FromResult(policy.Build());
        }

        return Task.FromResult<AuthorizationPolicy>(null);
    }
}

Multiple authorization policy providers

private DefaultAuthorizationPolicyProvider BackupPolicyProvider { get; }

public MinimumAgePolicyProvider(IOptions<AuthorizationOptions> options)
{
    // ASP.NET Core only uses one authorization policy provider, so if the custom implementation
    // doesn't handle all policies it should fall back to an alternate provider.
    BackupPolicyProvider = new DefaultAuthorizationPolicyProvider(options);
}

...
return BackupPolicyProvider.GetPolicyAsync(policyName);

Default policy

When using custom IAuthorizationPolicyProvider  implementations, keep in mind that ASP.NET Core only uses one

instance of IAuthorizationPolicyProvider . If a custom provider isn't able to provide authorization policies for all

policy names that will be used, it should defer to a backup provider.

For example, consider an application that needs both custom age policies and more traditional role-based policy

retrieval. Such an app could use a custom authorization policy provider that:

Attempts to parse policy names.

Calls into a different policy provider (like DefaultAuthorizationPolicyProvider ) if the policy name doesn't contain

an age.

The example IAuthorizationPolicyProvider  implementation shown above can be updated to use the 

DefaultAuthorizationPolicyProvider  by creating a backup policy provider in its constructor (to be used in case the

policy name doesn't match its expected pattern of 'MinimumAge' + age).

Then, the GetPolicyAsync  method can be updated to use the BackupPolicyProvider  instead of returning null:

In addition to providing named authorization policies, a custom IAuthorizationPolicyProvider  needs to implement 

GetDefaultPolicyAsync  to provide an authorization policy for [Authorize]  attributes without a policy name



public Task<AuthorizationPolicy> GetDefaultPolicyAsync() => 
    Task.FromResult(new 
AuthorizationPolicyBuilder(CookieAuthenticationDefaults.AuthenticationScheme).RequireAuthenticatedUser().Build(
));

Fallback policy

public Task<AuthorizationPolicy> GetFallbackPolicyAsync() => 
    Task.FromResult<AuthorizationPolicy>(null);

Use a custom IAuthorizationPolicyProvider

specified.

In many cases, this authorization attribute only requires an authenticated user, so you can make the necessary

policy with a call to RequireAuthenticatedUser :

As with all aspects of a custom IAuthorizationPolicyProvider , you can customize this, as needed. In some cases, it

may be desirable to retrieve the default policy from a fallback IAuthorizationPolicyProvider .

A custom IAuthorizationPolicyProvider  can optionally implement GetFallbackPolicyAsync  to provide a policy

that's used when combining policies and when no policies are specified. If GetFallbackPolicyAsync  returns a non-

null policy, the returned policy is used by the Authorization Middleware when no policies are specified for the

request.

If no fallback policy is required, the provider can return null  or defer to the fallback provider :

 

To use custom policies from an IAuthorizationPolicyProvider , you mustmust:

services.AddSingleton<IAuthorizationPolicyProvider, MinimumAgePolicyProvider>();

Register the appropriate AuthorizationHandler  types with dependency injection (described in policy-based

authorization), as with all policy-based authorization scenarios.

Register the custom IAuthorizationPolicyProvider  type in the app's dependency injection service collection

in Startup.ConfigureServices  to replace the default policy provider.

A complete custom IAuthorizationPolicyProvider  sample is available in the dotnet/aspnetcore GitHub repository.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.authorizationpolicy.combine
https://github.com/dotnet/aspnetcore/tree/v3.1.3/src/Security/samples/CustomPolicyProvider


Dependency injection in requirement handlers in
ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

public class LoggingAuthorizationHandler : AuthorizationHandler<MyRequirement>
   {
       ILogger _logger;

       public LoggingAuthorizationHandler(ILoggerFactory loggerFactory)
       {
           _logger = loggerFactory.CreateLogger(this.GetType().FullName);
       }

       protected override Task HandleRequirementAsync(AuthorizationHandlerContext context, MyRequirement 
requirement)
       {
           _logger.LogInformation("Inside my handler");
           // Check if the requirement is fulfilled.
           return Task.CompletedTask;
       }
   }

services.AddSingleton<IAuthorizationHandler, LoggingAuthorizationHandler>();

NOTENOTE

 Authorization handlers must be registered in the service collection during configuration (using dependency

injection).

Suppose you had a repository of rules you wanted to evaluate inside an authorization handler and that repository

was registered in the service collection. Authorization will resolve and inject that into your constructor.

For example, if you wanted to use ASP.NET's logging infrastructure you would want to inject ILoggerFactory  into

your handler. Such a handler might look like:

You would register the handler with services.AddSingleton() :

An instance of the handler will be created when your application starts, and DI will inject the registered 

ILoggerFactory  into your constructor.

Handlers that use Entity Framework shouldn't be registered as singletons.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/dependencyinjection.md


Resource-based authorization in ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

Use imperative authorization

public class DocumentController : Controller
{
    private readonly IAuthorizationService _authorizationService;
    private readonly IDocumentRepository _documentRepository;

    public DocumentController(IAuthorizationService authorizationService,
                              IDocumentRepository documentRepository)
    {
        _authorizationService = authorizationService;
        _documentRepository = documentRepository;
    }

Task<AuthorizationResult> AuthorizeAsync(ClaimsPrincipal user,
                          object resource,
                          IEnumerable<IAuthorizationRequirement> requirements);
Task<AuthorizationResult> AuthorizeAsync(ClaimsPrincipal user,
                          object resource,
                          string policyName);

Task<bool> AuthorizeAsync(ClaimsPrincipal user,
                          object resource,
                          IEnumerable<IAuthorizationRequirement> requirements);
Task<bool> AuthorizeAsync(ClaimsPrincipal user,
                          object resource,
                          string policyName);

Authorization strategy depends upon the resource being accessed. Consider a document that has an author

property. Only the author is allowed to update the document. Consequently, the document must be retrieved from

the data store before authorization evaluation can occur.

Attribute evaluation occurs before data binding and before execution of the page handler or action that loads the

document. For these reasons, declarative authorization with an [Authorize]  attribute doesn't suffice. Instead, you

can invoke a custom authorization method—a style known as imperative authorization.

View or download sample code (how to download).

View or download sample code (how to download).

View or download sample code (how to download).

Create an ASP.NET Core app with user data protected by authorization contains a sample app that uses resource-

based authorization.

Authorization is implemented as an IAuthorizationService service and is registered in the service collection within

the Startup  class. The service is made available via dependency injection to page handlers or actions.

IAuthorizationService  has two AuthorizeAsync  method overloads: one accepting the resource and the policy

name and the other accepting the resource and a list of requirements to evaluate.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/resourcebased.md
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/resourcebased/samples/3_0
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/resourcebased/samples/2_2
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/authorization/resourcebased/samples/1_1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.iauthorizationservice


NOTENOTE

public async Task<IActionResult> OnGetAsync(Guid documentId)
{
    Document = _documentRepository.Find(documentId);

    if (Document == null)
    {
        return new NotFoundResult();
    }

    var authorizationResult = await _authorizationService
            .AuthorizeAsync(User, Document, "EditPolicy");

    if (authorizationResult.Succeeded)
    {
        return Page();
    }
    else if (User.Identity.IsAuthenticated)
    {
        return new ForbidResult();
    }
    else
    {
        return new ChallengeResult();
    }
}

[HttpGet]
public async Task<IActionResult> Edit(Guid documentId)
{
    Document document = _documentRepository.Find(documentId);

    if (document == null)
    {
        return new NotFoundResult();
    }

    if (await _authorizationService
        .AuthorizeAsync(User, document, "EditPolicy"))
    {
        return View(document);
    }
    else
    {
        return new ChallengeResult();
    }
}

Write a resource-based handler

   

In the following example, the resource to be secured is loaded into a custom Document  object. An AuthorizeAsync

overload is invoked to determine whether the current user is allowed to edit the provided document. A custom

"EditPolicy" authorization policy is factored into the decision. See Custom policy-based authorization for more on

creating authorization policies.

The following code samples assume authentication has run and set the User  property.

Writing a handler for resource-based authorization isn't much different than writing a plain requirements handler.

Create a custom requirement class, and implement a requirement handler class. For more information on creating



public class DocumentAuthorizationHandler : 
    AuthorizationHandler<SameAuthorRequirement, Document>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
                                                   SameAuthorRequirement requirement,
                                                   Document resource)
    {
        if (context.User.Identity?.Name == resource.Author)
        {
            context.Succeed(requirement);
        }

        return Task.CompletedTask;
    }
}

public class SameAuthorRequirement : IAuthorizationRequirement { }

public class DocumentAuthorizationHandler : 
    AuthorizationHandler<SameAuthorRequirement, Document>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
                                                   SameAuthorRequirement requirement,
                                                   Document resource)
    {
        if (context.User.Identity?.Name == resource.Author)
        {
            context.Succeed(requirement);
        }

        //TODO: Use the following if targeting a version of
        //.NET Framework older than 4.6:
        //      return Task.FromResult(0);
        return Task.CompletedTask;
    }
}

public class SameAuthorRequirement : IAuthorizationRequirement { }

a requirement class, see Requirements.

The handler class specifies both the requirement and resource type. For example, a handler utilizing a 

SameAuthorRequirement  and a Document  resource follows:

In the preceding example, imagine that SameAuthorRequirement  is a special case of a more generic 

SpecificAuthorRequirement  class. The SpecificAuthorRequirement  class (not shown) contains a Name  property

representing the name of the author. The Name  property could be set to the current user.

Register the requirement and handler in Startup.ConfigureServices :



services.AddControllersWithViews();
services.AddRazorPages();

services.AddAuthorization(options =>
{
    options.AddPolicy("EditPolicy", policy =>
        policy.Requirements.Add(new SameAuthorRequirement()));
});

services.AddSingleton<IAuthorizationHandler, DocumentAuthorizationHandler>();
services.AddSingleton<IAuthorizationHandler, DocumentAuthorizationCrudHandler>();
services.AddScoped<IDocumentRepository, DocumentRepository>();

services.AddMvc();

services.AddAuthorization(options =>
{
    options.AddPolicy("EditPolicy", policy =>
        policy.Requirements.Add(new SameAuthorRequirement()));
});

services.AddSingleton<IAuthorizationHandler, DocumentAuthorizationHandler>();
services.AddSingleton<IAuthorizationHandler, DocumentAuthorizationCrudHandler>();
services.AddScoped<IDocumentRepository, DocumentRepository>();

services.AddAuthorization(options =>
{
    options.AddPolicy("EditPolicy", policy =>
        policy.Requirements.Add(new SameAuthorRequirement()));
});

services.AddSingleton<IAuthorizationHandler, DocumentAuthorizationHandler>();
services.AddSingleton<IAuthorizationHandler, DocumentAuthorizationCrudHandler>();
services.AddScoped<IDocumentRepository, DocumentRepository>();

Operational requirementsOperational requirements

public static class Operations
{
    public static OperationAuthorizationRequirement Create =
        new OperationAuthorizationRequirement { Name = nameof(Create) };
    public static OperationAuthorizationRequirement Read =
        new OperationAuthorizationRequirement { Name = nameof(Read) };
    public static OperationAuthorizationRequirement Update =
        new OperationAuthorizationRequirement { Name = nameof(Update) };
    public static OperationAuthorizationRequirement Delete =
        new OperationAuthorizationRequirement { Name = nameof(Delete) };
}

If you're making decisions based on the outcomes of CRUD (Create, Read, Update, Delete) operations, use the

OperationAuthorizationRequirement helper class. This class enables you to write a single handler instead of an

individual class for each operation type. To use it, provide some operation names:

The handler is implemented as follows, using an OperationAuthorizationRequirement  requirement and a Document

resource:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authorization.infrastructure.operationauthorizationrequirement


  

public class DocumentAuthorizationCrudHandler :
    AuthorizationHandler<OperationAuthorizationRequirement, Document>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
                                                   OperationAuthorizationRequirement requirement,
                                                   Document resource)
    {
        if (context.User.Identity?.Name == resource.Author &&
            requirement.Name == Operations.Read.Name)
        {
            context.Succeed(requirement);
        }

        return Task.CompletedTask;
    }
}

public class DocumentAuthorizationCrudHandler :
    AuthorizationHandler<OperationAuthorizationRequirement, Document>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
                                                   OperationAuthorizationRequirement requirement,
                                                   Document resource)
    {
        if (context.User.Identity?.Name == resource.Author &&
            requirement.Name == Operations.Read.Name)
        {
            context.Succeed(requirement);
        }

        //TODO: Use the following if targeting a version of
        //.NET Framework older than 4.6:
        //      return Task.FromResult(0);
        return Task.CompletedTask;
    }
}

Challenge and forbid with an operational resource handler

NOTENOTE

The preceding handler validates the operation using the resource, the user's identity, and the requirement's Name

property.

This section shows how the challenge and forbid action results are processed and how challenge and forbid differ.

To call an operational resource handler, specify the operation when invoking AuthorizeAsync  in your page handler

or action. The following example determines whether the authenticated user is permitted to view the provided

document.

The following code samples assume authentication has run and set the User  property.



public async Task<IActionResult> OnGetAsync(Guid documentId)
{
    Document = _documentRepository.Find(documentId);

    if (Document == null)
    {
        return new NotFoundResult();
    }

    var authorizationResult = await _authorizationService
            .AuthorizeAsync(User, Document, Operations.Read);

    if (authorizationResult.Succeeded)
    {
        return Page();
    }
    else if (User.Identity.IsAuthenticated)
    {
        return new ForbidResult();
    }
    else
    {
        return new ChallengeResult();
    }
}

[HttpGet]
public async Task<IActionResult> View(Guid documentId)
{
    Document document = _documentRepository.Find(documentId);

    if (document == null)
    {
        return new NotFoundResult();
    }

    if (await _authorizationService
        .AuthorizeAsync(User, document, Operations.Read))
    {
        return View(document);
    }
    else
    {
        return new ChallengeResult();
    }
}

If authorization succeeds, the page for viewing the document is returned. If authorization fails but the user is

authenticated, returning ForbidResult  informs any authentication middleware that authorization failed. A 

ChallengeResult  is returned when authentication must be performed. For interactive browser clients, it may be

appropriate to redirect the user to a login page.

If authorization succeeds, the view for the document is returned. If authorization fails, returning ChallengeResult

informs any authentication middleware that authorization failed, and the middleware can take the appropriate

response. An appropriate response could be returning a 401 or 403 status code. For interactive browser clients, it

could mean redirecting the user to a login page.



View-based authorization in ASP.NET Core MVC
9/22/2020 • 2 minutes to read • Edit Online

@using Microsoft.AspNetCore.Authorization
@inject IAuthorizationService AuthorizationService

@if ((await AuthorizationService.AuthorizeAsync(User, "PolicyName")).Succeeded)
{
    <p>This paragraph is displayed because you fulfilled PolicyName.</p>
}

@if ((await AuthorizationService.AuthorizeAsync(User, Model, Operations.Edit)).Succeeded)
{
    <p><a class="btn btn-default" role="button"
        href="@Url.Action("Edit", "Document", new { id = Model.Id })">Edit</a></p>
}

WARNINGWARNING

A developer often wants to show, hide, or otherwise modify a UI based on the current user identity. You can access

the authorization service within MVC views via dependency injection. To inject the authorization service into a

Razor view, use the @inject  directive:

If you want the authorization service in every view, place the @inject  directive into the _ViewImports.cshtml file of

the Views directory. For more information, see Dependency injection into views.

Use the injected authorization service to invoke AuthorizeAsync  in exactly the same way you would check during

resource-based authorization:

In some cases, the resource will be your view model. Invoke AuthorizeAsync  in exactly the same way you would

check during resource-based authorization:

In the preceding code, the model is passed as a resource the policy evaluation should take into consideration.

Don't rely on toggling visibility of your app's UI elements as the sole authorization check. Hiding a UI element may not

completely prevent access to its associated controller action. For example, consider the button in the preceding code snippet.

A user can invoke the Edit  action method if he or she knows the relative resource URL is /Document/Edit/1. For this

reason, the Edit  action method should perform its own authorization check.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/views.md


  

Authorize with a specific scheme in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
    // Code omitted for brevity

    services.AddAuthentication()
        .AddCookie(options => {
            options.LoginPath = "/Account/Unauthorized/";
            options.AccessDeniedPath = "/Account/Forbidden/";
        })
        .AddJwtBearer(options => {
            options.Audience = "http://localhost:5001/";
            options.Authority = "http://localhost:5000/";
        });

NOTENOTE

Selecting the scheme with the Authorize attribute

[Authorize(AuthenticationSchemes = AuthSchemes)]
public class MixedController : Controller
    // Requires the following imports:
    // using Microsoft.AspNetCore.Authentication.Cookies;
    // using Microsoft.AspNetCore.Authentication.JwtBearer;
    private const string AuthSchemes =
        CookieAuthenticationDefaults.AuthenticationScheme + "," +
        JwtBearerDefaults.AuthenticationScheme;

In some scenarios, such as Single Page Applications (SPAs), it's common to use multiple authentication methods.

For example, the app may use cookie-based authentication to log in and JWT bearer authentication for JavaScript

requests. In some cases, the app may have multiple instances of an authentication handler. For example, two

cookie handlers where one contains a basic identity and one is created when a multi-factor authentication (MFA)

has been triggered. MFA may be triggered because the user requested an operation that requires extra security.

For more information on enforcing MFA when a user requests a resource that requires MFA, see the GitHub issue

Protect section with MFA.

An authentication scheme is named when the authentication service is configured during authentication. For

example:

In the preceding code, two authentication handlers have been added: one for cookies and one for bearer.

Specifying the default scheme results in the HttpContext.User  property being set to that identity. If that behavior isn't

desired, disable it by invoking the parameterless form of AddAuthentication .

At the point of authorization, the app indicates the handler to be used. Select the handler with which the app will

authorize by passing a comma-delimited list of authentication schemes to [Authorize] . The [Authorize]

attribute specifies the authentication scheme or schemes to use regardless of whether a default is configured. For

example:

In the preceding example, both the cookie and bearer handlers run and have a chance to create and append an

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/authorization/limitingidentitybyscheme.md
https://github.com/dotnet/AspNetCore.Docs/issues/15791#issuecomment-580464195


[Authorize(AuthenticationSchemes = 
    JwtBearerDefaults.AuthenticationScheme)]
public class MixedController : Controller

Selecting the scheme with policies

services.AddAuthorization(options =>
{
    options.AddPolicy("Over18", policy =>
    {
        policy.AuthenticationSchemes.Add(JwtBearerDefaults.AuthenticationScheme);
        policy.RequireAuthenticatedUser();
        policy.Requirements.Add(new MinimumAgeRequirement());
    });
});

[Authorize(Policy = "Over18")]
public class RegistrationController : Controller

Use multiple authentication schemes

public void ConfigureServices(IServiceCollection services)
{
    // Code omitted for brevity

    services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
        .AddJwtBearer(options =>
        {
            options.Audience = "https://localhost:5000/";
            options.Authority = "https://localhost:5000/identity/";
        })
        .AddJwtBearer("AzureAD", options =>
        {
            options.Audience = "https://localhost:5000/";
            options.Authority = "https://login.microsoftonline.com/eb971100-6f99-4bdc-8611-1bc8edd7f436/";
        });
}

identity for the current user. By specifying a single scheme only, the corresponding handler runs.

In the preceding code, only the handler with the "Bearer" scheme runs. Any cookie-based identities are ignored.

If you prefer to specify the desired schemes in policy, you can set the AuthenticationSchemes  collection when

adding your policy:

In the preceding example, the "Over18" policy only runs against the identity created by the "Bearer" handler. Use

the policy by setting the [Authorize]  attribute's Policy  property:

Some apps may need to support multiple types of authentication. For example, your app might authenticate users

from Azure Active Directory and from a users database. Another example is an app that authenticates users from

both Active Directory Federation Services and Azure Active Directory B2C. In this case, the app should accept a

JWT bearer token from several issuers.

Add all authentication schemes you'd like to accept. For example, the following code in Startup.ConfigureServices

adds two JWT bearer authentication schemes with different issuers:



NOTENOTE

public void ConfigureServices(IServiceCollection services)
{
    // Code omitted for brevity

    services.AddAuthorization(options =>
    {
        var defaultAuthorizationPolicyBuilder = new AuthorizationPolicyBuilder(
            JwtBearerDefaults.AuthenticationScheme,
            "AzureAD");
        defaultAuthorizationPolicyBuilder = 
            defaultAuthorizationPolicyBuilder.RequireAuthenticatedUser();
        options.DefaultPolicy = defaultAuthorizationPolicyBuilder.Build();
    });
}

Only one JWT bearer authentication is registered with the default authentication scheme 

JwtBearerDefaults.AuthenticationScheme . Additional authentication has to be registered with a unique authentication

scheme.

The next step is to update the default authorization policy to accept both authentication schemes. For example:

As the default authorization policy is overridden, it's possible to use the [Authorize]  attribute in controllers. The

controller then accepts requests with JWT issued by the first or second issuer.



ASP.NET Core Data Protection
9/22/2020 • 5 minutes to read • Edit Online

Problem statement

Design philosophy

Web applications often need to store security-sensitive data. Windows provides DPAPI for desktop

applications but this is unsuitable for web applications. The ASP.NET Core data protection stack provide a

simple, easy to use cryptographic API a developer can use to protect data, including key management and

rotation.

The ASP.NET Core data protection stack is designed to serve as the long-term replacement for the

<machineKey> element in ASP.NET 1.x - 4.x. It was designed to address many of the shortcomings of the old

cryptographic stack while providing an out-of-the-box solution for the majority of use cases modern

applications are likely to encounter.

The overall problem statement can be succinctly stated in a single sentence: I need to persist trusted

information for later retrieval, but I don't trust the persistence mechanism. In web terms, this might be written

as "I need to round-trip trusted state via an untrusted client."

The canonical example of this is an authentication cookie or bearer token. The server generates an "I am Groot

and have xyz permissions" token and hands it to the client. At some future date the client will present that

token back to the server, but the server needs some kind of assurance that the client hasn't forged the token.

Thus the first requirement: authenticity (a.k.a. integrity, tamper-proofing).

Since the persisted state is trusted by the server, we anticipate that this state might contain information that's

specific to the operating environment. This could be in the form of a file path, a permission, a handle or other

indirect reference, or some other piece of server-specific data. Such information should generally not be

disclosed to an untrusted client. Thus the second requirement: confidentiality.

Finally, since modern applications are componentized, what we've seen is that individual components will

want to take advantage of this system without regard to other components in the system. For instance, if a

bearer token component is using this stack, it should operate without interference from an anti-CSRF

mechanism that might also be using the same stack. Thus the final requirement: isolation.

We can provide further constraints in order to narrow the scope of our requirements. We assume that all

services operating within the cryptosystem are equally trusted and that the data doesn't need to be generated

or consumed outside of the services under our direct control. Furthermore, we require that operations are as

fast as possible since each request to the web service might go through the cryptosystem one or more times.

This makes symmetric cryptography ideal for our scenario, and we can discount asymmetric cryptography

until such a time that it's needed.

We started by identifying problems with the existing stack. Once we had that, we surveyed the landscape of

existing solutions and concluded that no existing solution quite had the capabilities we sought. We then

engineered a solution based on several guiding principles.

The system should offer simplicity of configuration. Ideally the system would be zero-configuration and

developers could hit the ground running. In situations where developers need to configure a specific

aspect (such as the key repository), consideration should be given to making those specific

configurations simple.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/introduction.md


 

Audience

Package layout

Offer a simple consumer-facing API. The APIs should be easy to use correctly and difficult to use

incorrectly.

Developers shouldn't learn key management principles. The system should handle algorithm selection

and key lifetime on the developer's behalf. Ideally the developer should never even have access to the

raw key material.

Keys should be protected at rest when possible. The system should figure out an appropriate default

protection mechanism and apply it automatically.

With these principles in mind we developed a simple, easy to use data protection stack.

The ASP.NET Core data protection APIs are not primarily intended for indefinite persistence of confidential

payloads. Other technologies like Windows CNG DPAPI and Azure Rights Management are more suited to the

scenario of indefinite storage, and they have correspondingly strong key management capabilities. That said,

there's nothing prohibiting a developer from using the ASP.NET Core data protection APIs for long-term

protection of confidential data.

The data protection system is divided into five main packages. Various aspects of these APIs target three main

audiences;

1. The Consumer APIs Overview target application and framework developers.

"I don't want to learn about how the stack operates or about how it's configured. I simply want to

perform some operation in as simple a manner as possible with high probability of using the APIs

successfully."

2. The configuration APIs target application developers and system administrators.

"I need to tell the data protection system that my environment requires non-default paths or settings."

3. The extensibility APIs target developers in charge of implementing custom policy. Usage of these APIs

would be limited to rare situations and experienced, security aware developers.

"I need to replace an entire component within the system because I have truly unique behavioral

requirements. I am willing to learn uncommonly-used parts of the API surface in order to build a plugin

that fulfills my requirements."

The data protection stack consists of five packages.

Microsoft.AspNetCore.DataProtection.Abstractions contains the IDataProtectionProvider and

IDataProtector interfaces to create data protection services. It also contains useful extension methods

for working with these types (for example, IDataProtector.Protect). If the data protection system is

instantiated elsewhere and you're consuming the API, reference 

Microsoft.AspNetCore.DataProtection.Abstractions .

Microsoft.AspNetCore.DataProtection contains the core implementation of the data protection system,

including core cryptographic operations, key management, configuration, and extensibility. To

instantiate the data protection system (for example, adding it to an IServiceCollection) or modifying or

extending its behavior, reference Microsoft.AspNetCore.DataProtection .

Microsoft.AspNetCore.DataProtection.Extensions contains additional APIs which developers might find

useful but which don't belong in the core package. For instance, this package contains factory methods

to instantiate the data protection system to store keys at a location on the file system without

https://docs.microsoft.com/en-us/windows/win32/seccng/cng-dpapi
https://docs.microsoft.com/en-us/rights-management/
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Abstractions/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotectionprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotector
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectioncommonextensions.protect
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicecollection
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Extensions/


Additional resources

dependency injection (see DataProtectionProvider). It also contains extension methods for limiting the

lifetime of protected payloads (see ITimeLimitedDataProtector).

Microsoft.AspNetCore.DataProtection.SystemWeb can be installed into an existing ASP.NET 4.x app to

redirect its <machineKey>  operations to use the new ASP.NET Core data protection stack. For more

information, see Replace the ASP.NET machineKey in ASP.NET Core.

Microsoft.AspNetCore.Cryptography.KeyDerivation provides an implementation of the PBKDF2

password hashing routine and can be used by systems that must handle user passwords securely. For

more information, see Hash passwords in ASP.NET Core.

Host ASP.NET Core in a web farm

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.itimelimiteddataprotector
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.SystemWeb/
https://www.nuget.org/packages/Microsoft.AspNetCore.Cryptography.KeyDerivation/


Get started with the Data Protection APIs in ASP.NET
Core
9/22/2020 • 2 minutes to read • Edit Online

 At its simplest, protecting data consists of the following steps:

1. Create a data protector from a data protection provider.

2. Call the Protect  method with the data you want to protect.

3. Call the Unprotect  method with the data you want to turn back into plain text.

Most frameworks and app models, such as ASP.NET Core or SignalR, already configure the data protection system

and add it to a service container you access via dependency injection. The following sample demonstrates

configuring a service container for dependency injection and registering the data protection stack, receiving the

data protection provider via DI, creating a protector and protecting then unprotecting data.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/using-data-protection.md


using System;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
    public static void Main(string[] args)
    {
        // add data protection services
        var serviceCollection = new ServiceCollection();
        serviceCollection.AddDataProtection();
        var services = serviceCollection.BuildServiceProvider();

        // create an instance of MyClass using the service provider
        var instance = ActivatorUtilities.CreateInstance<MyClass>(services);
        instance.RunSample();
    }

    public class MyClass
    {
        IDataProtector _protector;

        // the 'provider' parameter is provided by DI
        public MyClass(IDataProtectionProvider provider)
        {
            _protector = provider.CreateProtector("Contoso.MyClass.v1");
        }

        public void RunSample()
        {
            Console.Write("Enter input: ");
            string input = Console.ReadLine();

            // protect the payload
            string protectedPayload = _protector.Protect(input);
            Console.WriteLine($"Protect returned: {protectedPayload}");

            // unprotect the payload
            string unprotectedPayload = _protector.Unprotect(protectedPayload);
            Console.WriteLine($"Unprotect returned: {unprotectedPayload}");
        }
    }
}

/*
 * SAMPLE OUTPUT
 *
 * Enter input: Hello world!
 * Protect returned: CfDJ8ICcgQwZZhlAlTZT...OdfH66i1PnGmpCR5e441xQ
 * Unprotect returned: Hello world!
 */

When you create a protector you must provide one or more Purpose Strings. A purpose string provides isolation

between consumers. For example, a protector created with a purpose string of "green" wouldn't be able to

unprotect data provided by a protector with a purpose of "purple".



TIPTIP
Instances of IDataProtectionProvider  and IDataProtector  are thread-safe for multiple callers. It's intended that once a

component gets a reference to an IDataProtector  via a call to CreateProtector , it will use that reference for multiple

calls to Protect  and Unprotect .

A call to Unprotect  will throw CryptographicException if the protected payload cannot be verified or deciphered. Some

components may wish to ignore errors during unprotect operations; a component which reads authentication cookies might

handle this error and treat the request as if it had no cookie at all rather than fail the request outright. Components which

want this behavior should specifically catch CryptographicException instead of swallowing all exceptions.



Consumer APIs overview for ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

IDataProtectionProvider

IDataProtector

Consuming these interfaces

NOTENOTE

The IDataProtectionProvider  and IDataProtector  interfaces are the basic interfaces through which consumers use

the data protection system. They're located in the Microsoft.AspNetCore.DataProtection.Abstractions package.

The provider interface represents the root of the data protection system. It cannot directly be used to protect or

unprotect data. Instead, the consumer must get a reference to an IDataProtector  by calling 

IDataProtectionProvider.CreateProtector(purpose) , where purpose is a string that describes the intended

consumer use case. See Purpose Strings for much more information on the intent of this parameter and how to

choose an appropriate value.

The protector interface is returned by a call to CreateProtector , and it's this interface which consumers can use to

perform protect and unprotect operations.

To protect a piece of data, pass the data to the Protect  method. The basic interface defines a method which

converts byte[] -> byte[], but there's also an overload (provided as an extension method) which converts string ->

string. The security offered by the two methods is identical; the developer should choose whichever overload is

most convenient for their use case. Irrespective of the overload chosen, the value returned by the Protect method is

now protected (enciphered and tamper-proofed), and the application can send it to an untrusted client.

To unprotect a previously-protected piece of data, pass the protected data to the Unprotect  method. (There are

byte[]-based and string-based overloads for developer convenience.) If the protected payload was generated by an

earlier call to Protect  on this same IDataProtector , the Unprotect  method will return the original unprotected

payload. If the protected payload has been tampered with or was produced by a different IDataProtector , the 

Unprotect  method will throw CryptographicException.

The concept of same vs. different IDataProtector  ties back to the concept of purpose. If two IDataProtector

instances were generated from the same root IDataProtectionProvider  but via different purpose strings in the call

to IDataProtectionProvider.CreateProtector , then they're considered different protectors, and one won't be able to

unprotect payloads generated by the other.

For a DI-aware component, the intended usage is that the component takes an IDataProtectionProvider  parameter

in its constructor and that the DI system automatically provides this service when the component is instantiated.

Some applications (such as console applications or ASP.NET 4.x applications) might not be DI-aware so cannot use the

mechanism described here. For these scenarios consult the Non DI Aware Scenarios document for more information on

getting an instance of an IDataProtection  provider without going through DI.

The following sample demonstrates three concepts:

1. Add the data protection system to the service container,

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/overview.md
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Abstractions/


using System;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
    public static void Main(string[] args)
    {
        // add data protection services
        var serviceCollection = new ServiceCollection();
        serviceCollection.AddDataProtection();
        var services = serviceCollection.BuildServiceProvider();

        // create an instance of MyClass using the service provider
        var instance = ActivatorUtilities.CreateInstance<MyClass>(services);
        instance.RunSample();
    }

    public class MyClass
    {
        IDataProtector _protector;

        // the 'provider' parameter is provided by DI
        public MyClass(IDataProtectionProvider provider)
        {
            _protector = provider.CreateProtector("Contoso.MyClass.v1");
        }

        public void RunSample()
        {
            Console.Write("Enter input: ");
            string input = Console.ReadLine();

            // protect the payload
            string protectedPayload = _protector.Protect(input);
            Console.WriteLine($"Protect returned: {protectedPayload}");

            // unprotect the payload
            string unprotectedPayload = _protector.Unprotect(protectedPayload);
            Console.WriteLine($"Unprotect returned: {unprotectedPayload}");
        }
    }
}

/*
 * SAMPLE OUTPUT
 *
 * Enter input: Hello world!
 * Protect returned: CfDJ8ICcgQwZZhlAlTZT...OdfH66i1PnGmpCR5e441xQ
 * Unprotect returned: Hello world!
 */

2. Using DI to receive an instance of an IDataProtectionProvider , and

3. Creating an IDataProtector  from an IDataProtectionProvider  and using it to protect and unprotect data.

The package Microsoft.AspNetCore.DataProtection.Abstractions contains an extension method 

IServiceProvider.GetDataProtector  as a developer convenience. It encapsulates as a single operation both

retrieving an IDataProtectionProvider  from the service provider and calling 

IDataProtectionProvider.CreateProtector . The following sample demonstrates its usage.



using System;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.Extensions.DependencyInjection;
 
public class Program
{
    public static void Main(string[] args)
    {
        // add data protection services
        var serviceCollection = new ServiceCollection();
        serviceCollection.AddDataProtection();
        var services = serviceCollection.BuildServiceProvider();
 
        // get an IDataProtector from the IServiceProvider
        var protector = services.GetDataProtector("Contoso.Example.v2");
        Console.Write("Enter input: ");
        string input = Console.ReadLine();
 
        // protect the payload
        string protectedPayload = protector.Protect(input);
        Console.WriteLine($"Protect returned: {protectedPayload}");
 
        // unprotect the payload
        string unprotectedPayload = protector.Unprotect(protectedPayload);
        Console.WriteLine($"Unprotect returned: {unprotectedPayload}");
    }
}

TIPTIP
Instances of IDataProtectionProvider  and IDataProtector  are thread-safe for multiple callers. It's intended that once a

component gets a reference to an IDataProtector  via a call to CreateProtector , it will use that reference for multiple

calls to Protect  and Unprotect . A call to Unprotect  will throw CryptographicException if the protected payload cannot

be verified or deciphered. Some components may wish to ignore errors during unprotect operations; a component which

reads authentication cookies might handle this error and treat the request as if it had no cookie at all rather than fail the

request outright. Components which want this behavior should specifically catch CryptographicException instead of

swallowing all exceptions.



Purpose strings in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

TIPTIP

  Components which consume IDataProtectionProvider  must pass a unique purposes parameter to the 

CreateProtector  method. The purposes parameter is inherent to the security of the data protection system, as it

provides isolation between cryptographic consumers, even if the root cryptographic keys are the same.

When a consumer specifies a purpose, the purpose string is used along with the root cryptographic keys to derive

cryptographic subkeys unique to that consumer. This isolates the consumer from all other cryptographic

consumers in the application: no other component can read its payloads, and it cannot read any other

component's payloads. This isolation also renders infeasible entire categories of attack against the component.

In the diagram above, IDataProtector  instances A and B cannotcannot read each other's payloads, only their own.

The purpose string doesn't have to be secret. It should simply be unique in the sense that no other well-behaved

component will ever provide the same purpose string.

Using the namespace and type name of the component consuming the data protection APIs is a good rule of thumb, as in

practice this information will never conflict.

A Contoso-authored component which is responsible for minting bearer tokens might use Contoso.Security.BearerToken as

its purpose string. Or - even better - it might use Contoso.Security.BearerToken.v1 as its purpose string. Appending the

version number allows a future version to use Contoso.Security.BearerToken.v2 as its purpose, and the different versions

would be completely isolated from one another as far as payloads go.

Since the purposes parameter to CreateProtector  is a string array, the above could've been instead specified as 

[ "Contoso.Security.BearerToken", "v1" ] . This allows establishing a hierarchy of purposes and opens up the

possibility of multi-tenancy scenarios with the data protection system.

  

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/purpose-strings.md


WARNINGWARNING

NOTENOTE

Components shouldn't allow untrusted user input to be the sole source of input for the purposes chain.

For example, consider a component Contoso.Messaging.SecureMessage which is responsible for storing secure messages. If

the secure messaging component were to call CreateProtector([ username ]) , then a malicious user might create an

account with username "Contoso.Security.BearerToken" in an attempt to get the component to call 

CreateProtector([ "Contoso.Security.BearerToken" ]) , thus inadvertently causing the secure messaging system to

mint payloads that could be perceived as authentication tokens.

A better purposes chain for the messaging component would be 

CreateProtector([ "Contoso.Messaging.SecureMessage", "User: username" ]) , which provides proper isolation.

The isolation provided by and behaviors of IDataProtectionProvider , IDataProtector , and purposes are as

follows:

For a given IDataProtectionProvider  object, the CreateProtector  method will create an IDataProtector

object uniquely tied to both the IDataProtectionProvider  object which created it and the purposes

parameter which was passed into the method.

The purpose parameter must not be null. (If purposes is specified as an array, this means that the array

must not be of zero length and all elements of the array must be non-null.) An empty string purpose is

technically allowed but is discouraged.

Two purposes arguments are equivalent if and only if they contain the same strings (using an ordinal

comparer) in the same order. A single purpose argument is equivalent to the corresponding single-element

purposes array.

Two IDataProtector  objects are equivalent if and only if they're created from equivalent 

IDataProtectionProvider  objects with equivalent purposes parameters.

For a given IDataProtector  object, a call to Unprotect(protectedData)  will return the original 

unprotectedData  if and only if protectedData := Protect(unprotectedData)  for an equivalent 

IDataProtector  object.

We're not considering the case where some component intentionally chooses a purpose string which is known to conflict

with another component. Such a component would essentially be considered malicious, and this system isn't intended to

provide security guarantees in the event that malicious code is already running inside of the worker process.



Purpose hierarchy and multi-tenancy in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

WARNINGWARNING

Since an IDataProtector  is also implicitly an IDataProtectionProvider , purposes can be chained together. In this

sense, provider.CreateProtector([ "purpose1", "purpose2" ])  is equivalent to 

provider.CreateProtector("purpose1").CreateProtector("purpose2") .

This allows for some interesting hierarchical relationships through the data protection system. In the earlier

example of Contoso.Messaging.SecureMessage, the SecureMessage component can call 

provider.CreateProtector("Contoso.Messaging.SecureMessage")  once up-front and cache the result into a private 

_myProvider  field. Future protectors can then be created via calls to _myProvider.CreateProtector("User: username")

, and these protectors would be used for securing the individual messages.

This can also be flipped. Consider a single logical application which hosts multiple tenants (a CMS seems

reasonable), and each tenant can be configured with its own authentication and state management system. The

umbrella application has a single master provider, and it calls provider.CreateProtector("Tenant 1")  and 

provider.CreateProtector("Tenant 2")  to give each tenant its own isolated slice of the data protection system. The

tenants could then derive their own individual protectors based on their own needs, but no matter how hard they

try they cannot create protectors which collide with any other tenant in the system. Graphically, this is represented

as below.

This assumes the umbrella application controls which APIs are available to individual tenants and that tenants cannot execute

arbitrary code on the server. If a tenant can execute arbitrary code, they could perform private reflection to break the

isolation guarantees, or they could just read the master keying material directly and derive whatever subkeys they desire.

The data protection system actually uses a sort of multi-tenancy in its default out-of-the-box configuration. By

default master keying material is stored in the worker process account's user profile folder (or the registry, for IIS

application pool identities). But it's actually fairly common to use a single account to run multiple applications, and

thus all these applications would end up sharing the master keying material. To solve this, the data protection

system automatically inserts a unique-per-application identifier as the first element in the overall purpose chain.

This implicit purpose serves to isolate individual applications from one another by effectively treating each

application as a unique tenant within the system, and the protector creation process looks identical to the image

above.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/purpose-strings-multitenancy.md


Hash passwords in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

The data protection code base includes a package Microsoft.AspNetCore.Cryptography.KeyDerivation which

contains cryptographic key derivation functions. This package is a standalone component and has no dependencies

on the rest of the data protection system. It can be used completely independently. The source exists alongside the

data protection code base as a convenience.

The package currently offers a method KeyDerivation.Pbkdf2  which allows hashing a password using the PBKDF2

algorithm. This API is very similar to the .NET Framework's existing Rfc2898DeriveBytes type, but there are three

important distinctions:

1. The KeyDerivation.Pbkdf2  method supports consuming multiple PRFs (currently HMACSHA1 , HMACSHA256 ,

and HMACSHA512 ), whereas the Rfc2898DeriveBytes  type only supports HMACSHA1 .

2. The KeyDerivation.Pbkdf2  method detects the current operating system and attempts to choose the most

optimized implementation of the routine, providing much better performance in certain cases. (On Windows

8, it offers around 10x the throughput of Rfc2898DeriveBytes .)

3. The KeyDerivation.Pbkdf2  method requires the caller to specify all parameters (salt, PRF, and iteration

count). The Rfc2898DeriveBytes  type provides default values for these.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/password-hashing.md
https://tools.ietf.org/html/rfc2898#section-5.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rfc2898derivebytes


using System;
using System.Security.Cryptography;
using Microsoft.AspNetCore.Cryptography.KeyDerivation;
 
public class Program
{
    public static void Main(string[] args)
    {
        Console.Write("Enter a password: ");
        string password = Console.ReadLine();
 
        // generate a 128-bit salt using a secure PRNG
        byte[] salt = new byte[128 / 8];
        using (var rng = RandomNumberGenerator.Create())
        {
            rng.GetBytes(salt);
        }
        Console.WriteLine($"Salt: {Convert.ToBase64String(salt)}");
 
        // derive a 256-bit subkey (use HMACSHA1 with 10,000 iterations)
        string hashed = Convert.ToBase64String(KeyDerivation.Pbkdf2(
            password: password,
            salt: salt,
            prf: KeyDerivationPrf.HMACSHA1,
            iterationCount: 10000,
            numBytesRequested: 256 / 8));
        Console.WriteLine($"Hashed: {hashed}");
    }
}
 
/*
 * SAMPLE OUTPUT
 *
 * Enter a password: Xtw9NMgx
 * Salt: NZsP6NnmfBuYeJrrAKNuVQ==
 * Hashed: /OOoOer10+tGwTRDTrQSoeCxVTFr6dtYly7d0cPxIak=
 */

See the source code for ASP.NET Core Identity's PasswordHasher  type for a real-world use case.

https://github.com/dotnet/AspNetCore/blob/master/src/Identity/Extensions.Core/src/PasswordHasher.cs


Limit the lifetime of protected payloads in ASP.NET
Core
9/22/2020 • 2 minutes to read • Edit Online

API usage

There are scenarios where the application developer wants to create a protected payload that expires after a set

period of time. For instance, the protected payload might represent a password reset token that should only be

valid for one hour. It's certainly possible for the developer to create their own payload format that contains an

embedded expiration date, and advanced developers may wish to do this anyway, but for the majority of

developers managing these expirations can grow tedious.

To make this easier for our developer audience, the package Microsoft.AspNetCore.DataProtection.Extensions

contains utility APIs for creating payloads that automatically expire after a set period of time. These APIs hang off of

the ITimeLimitedDataProtector  type.

The ITimeLimitedDataProtector  interface is the core interface for protecting and unprotecting time-limited / self-

expiring payloads. To create an instance of an ITimeLimitedDataProtector , you'll first need an instance of a regular

IDataProtector constructed with a specific purpose. Once the IDataProtector  instance is available, call the 

IDataProtector.ToTimeLimitedDataProtector  extension method to get back a protector with built-in expiration

capabilities.

ITimeLimitedDataProtector  exposes the following API surface and extension methods:

CreateProtector(string purpose) : ITimeLimitedDataProtector - This API is similar to the existing 

IDataProtectionProvider.CreateProtector  in that it can be used to create purpose chains from a root time-

limited protector.

Protect(byte[] plaintext, DateTimeOffset expiration) : byte[]

Protect(byte[] plaintext, TimeSpan lifetime) : byte[]

Protect(byte[] plaintext) : byte[]

Protect(string plaintext, DateTimeOffset expiration) : string

Protect(string plaintext, TimeSpan lifetime) : string

Protect(string plaintext) : string

In addition to the core Protect  methods which take only the plaintext, there are new overloads which allow

specifying the payload's expiration date. The expiration date can be specified as an absolute date (via a 

DateTimeOffset ) or as a relative time (from the current system time, via a TimeSpan ). If an overload which doesn't

take an expiration is called, the payload is assumed never to expire.

Unprotect(byte[] protectedData, out DateTimeOffset expiration) : byte[]

Unprotect(byte[] protectedData) : byte[]

Unprotect(string protectedData, out DateTimeOffset expiration) : string

Unprotect(string protectedData) : string

The Unprotect  methods return the original unprotected data. If the payload hasn't yet expired, the absolute

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/limited-lifetime-payloads.md
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Extensions/


WARNINGWARNING

using System;
using System.IO;
using System.Threading;
using Microsoft.AspNetCore.DataProtection;
 
public class Program
{
    public static void Main(string[] args)
    {
        // create a protector for my application
 
        var provider = DataProtectionProvider.Create(new DirectoryInfo(@"c:\myapp-keys\"));
        var baseProtector = provider.CreateProtector("Contoso.TimeLimitedSample");
 
        // convert the normal protector into a time-limited protector
        var timeLimitedProtector = baseProtector.ToTimeLimitedDataProtector();
 
        // get some input and protect it for five seconds
        Console.Write("Enter input: ");
        string input = Console.ReadLine();
        string protectedData = timeLimitedProtector.Protect(input, lifetime: TimeSpan.FromSeconds(5));
        Console.WriteLine($"Protected data: {protectedData}");
 
        // unprotect it to demonstrate that round-tripping works properly
        string roundtripped = timeLimitedProtector.Unprotect(protectedData);
        Console.WriteLine($"Round-tripped data: {roundtripped}");
 
        // wait 6 seconds and perform another unprotect, demonstrating that the payload self-expires
        Console.WriteLine("Waiting 6 seconds...");
        Thread.Sleep(6000);
        timeLimitedProtector.Unprotect(protectedData);
    }
}
 
/*
 * SAMPLE OUTPUT
 *
 * Enter input: Hello!
 * Protected data: CfDJ8Hu5z0zwxn...nLk7Ok
 * Round-tripped data: Hello!
 * Waiting 6 seconds...
 * <<throws CryptographicException with message 'The payload expired at ...'>>

 */

expiration is returned as an optional out parameter along with the original unprotected data. If the payload is

expired, all overloads of the Unprotect method will throw CryptographicException.

It's not advised to use these APIs to protect payloads which require long-term or indefinite persistence. "Can I afford for the

protected payloads to be permanently unrecoverable after a month?" can serve as a good rule of thumb; if the answer is no

then developers should consider alternative APIs.

The sample below uses the non-DI code paths for instantiating the data protection system. To run this sample,

ensure that you have first added a reference to the Microsoft.AspNetCore.DataProtection.Extensions package.



Unprotect payloads whose keys have been revoked in
ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

IPersistedDataProtector

NOTENOTE

DangerousUnprotect(byte[] protectedData, bool ignoreRevocationErrors,
     out bool requiresMigration, out bool wasRevoked) : byte[]

  The ASP.NET Core data protection APIs are not primarily intended for indefinite persistence of confidential payloads.

Other technologies like Windows CNG DPAPI and Azure Rights Management are more suited to the scenario of

indefinite storage, and they have correspondingly strong key management capabilities. That said, there's nothing

prohibiting a developer from using the ASP.NET Core data protection APIs for long-term protection of confidential

data. Keys are never removed from the key ring, so IDataProtector.Unprotect  can always recover existing payloads

as long as the keys are available and valid.

However, an issue arises when the developer tries to unprotect data that has been protected with a revoked key, as 

IDataProtector.Unprotect  will throw an exception in this case. This might be fine for short-lived or transient

payloads (like authentication tokens), as these kinds of payloads can easily be recreated by the system, and at worst

the site visitor might be required to log in again. But for persisted payloads, having Unprotect  throw could lead to

unacceptable data loss.

To support the scenario of allowing payloads to be unprotected even in the face of revoked keys, the data

protection system contains an IPersistedDataProtector  type. To get an instance of IPersistedDataProtector , simply

get an instance of IDataProtector  in the normal fashion and try casting the IDataProtector  to 

IPersistedDataProtector .

Not all IDataProtector  instances can be cast to IPersistedDataProtector . Developers should use the C# as operator or

similar to avoid runtime exceptions caused by invalid casts, and they should be prepared to handle the failure case

appropriately.

IPersistedDataProtector  exposes the following API surface:

This API takes the protected payload (as a byte array) and returns the unprotected payload. There's no string-based

overload. The two out parameters are as follows.

requiresMigration : will be set to true if the key used to protect this payload is no longer the active default

key, e.g., the key used to protect this payload is old and a key rolling operation has since taken place. The

caller may wish to consider reprotecting the payload depending on their business needs.

wasRevoked : will be set to true if the key used to protect this payload was revoked.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/consumer-apis/dangerous-unprotect.md
https://docs.microsoft.com/en-us/windows/win32/seccng/cng-dpapi
https://docs.microsoft.com/en-us/rights-management/


WARNINGWARNING

using System;
using System.IO;
using System.Text;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.AspNetCore.DataProtection.KeyManagement;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
    public static void Main(string[] args)
    {
        var serviceCollection = new ServiceCollection();
        serviceCollection.AddDataProtection()
            // point at a specific folder and use DPAPI to encrypt keys
            .PersistKeysToFileSystem(new DirectoryInfo(@"c:\temp-keys"))
            .ProtectKeysWithDpapi();
        var services = serviceCollection.BuildServiceProvider();

        // get a protector and perform a protect operation
        var protector = services.GetDataProtector("Sample.DangerousUnprotect");
        Console.Write("Input: ");
        byte[] input = Encoding.UTF8.GetBytes(Console.ReadLine());
        var protectedData = protector.Protect(input);
        Console.WriteLine($"Protected payload: {Convert.ToBase64String(protectedData)}");

        // demonstrate that the payload round-trips properly
        var roundTripped = protector.Unprotect(protectedData);
        Console.WriteLine($"Round-tripped payload: {Encoding.UTF8.GetString(roundTripped)}");

        // get a reference to the key manager and revoke all keys in the key ring
        var keyManager = services.GetService<IKeyManager>();
        Console.WriteLine("Revoking all keys in the key ring...");
        keyManager.RevokeAllKeys(DateTimeOffset.Now, "Sample revocation.");

        // try calling Protect - this should throw
        Console.WriteLine("Calling Unprotect...");
        try
        {
            var unprotectedPayload = protector.Unprotect(protectedData);
            Console.WriteLine($"Unprotected payload: {Encoding.UTF8.GetString(unprotectedPayload)}");
        }
        catch (Exception ex)
        {
            Console.WriteLine($"{ex.GetType().Name}: {ex.Message}");
        }

        // try calling DangerousUnprotect
        Console.WriteLine("Calling DangerousUnprotect...");
        try
        {
            IPersistedDataProtector persistedProtector = protector as IPersistedDataProtector;
            if (persistedProtector == null)
            {
                throw new Exception("Can't call DangerousUnprotect.");
            }

            bool requiresMigration, wasRevoked;

Exercise extreme caution when passing ignoreRevocationErrors: true  to the DangerousUnprotect  method. If after

calling this method the wasRevoked  value is true, then the key used to protect this payload was revoked, and the payload's

authenticity should be treated as suspect. In this case, only continue operating on the unprotected payload if you have some

separate assurance that it's authentic, e.g. that it's coming from a secure database rather than being sent by an untrusted

web client.



            bool requiresMigration, wasRevoked;
            var unprotectedPayload = persistedProtector.DangerousUnprotect(
                protectedData: protectedData,
                ignoreRevocationErrors: true,
                requiresMigration: out requiresMigration,
                wasRevoked: out wasRevoked);
            Console.WriteLine($"Unprotected payload: {Encoding.UTF8.GetString(unprotectedPayload)}");
            Console.WriteLine($"Requires migration = {requiresMigration}, was revoked = {wasRevoked}");
        }
        catch (Exception ex)
        {
            Console.WriteLine($"{ex.GetType().Name}: {ex.Message}");
        }
    }
}

/*
 * SAMPLE OUTPUT
 *
 * Input: Hello!
 * Protected payload: CfDJ8LHIzUCX1ZVBn2BZ...
 * Round-tripped payload: Hello!
 * Revoking all keys in the key ring...
 * Calling Unprotect...
 * CryptographicException: The key {...} has been revoked.
 * Calling DangerousUnprotect...
 * Unprotected payload: Hello!
 * Requires migration = True, was revoked = True
 */



Data Protection configuration in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Visit these topics to learn about Data Protection configuration in ASP.NET Core:

Configure ASP.NET Core Data Protection

An overview on configuring ASP.NET Core Data Protection.

Data Protection key management and lifetime

Information on Data Protection key management and lifetime.

Data Protection machine-wide policy support

Details on setting a default machine-wide policy for all apps that use Data Protection.

Non-DI aware scenarios for Data Protection in ASP.NET Core

How to use the DataProtectionProvider concrete type to use Data Protection without going through DI-

specific code paths.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/configuration/index.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionprovider


 

Configure ASP.NET Core Data Protection
9/22/2020 • 11 minutes to read • Edit Online

WARNINGWARNING

ProtectKeysWithAzureKeyVault

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .PersistKeysToAzureBlobStorage(new Uri("<blobUriWithSasToken>"))
        .ProtectKeysWithAzureKeyVault("<keyIdentifier>", "<clientId>", "<clientSecret>");
}

When the Data Protection system is initialized, it applies default settings based on the operational

environment. These settings are generally appropriate for apps running on a single machine. There are cases

where a developer may want to change the default settings:

The app is spread across multiple machines.

For compliance reasons.

For these scenarios, the Data Protection system offers a rich configuration API.

Similar to configuration files, the data protection key ring should be protected using appropriate permissions. You can

choose to encrypt keys at rest, but this doesn't prevent attackers from creating new keys. Consequently, your app's

security is impacted. The storage location configured with Data Protection should have its access limited to the app

itself, similar to the way you would protect configuration files. For example, if you choose to store your key ring on

disk, use file system permissions. Ensure only the identity under which your web app runs has read, write, and create

access to that directory. If you use Azure Blob Storage, only the web app should have the ability to read, write, or

create new entries in the blob store, etc.

The extension method AddDataProtection returns an IDataProtectionBuilder. IDataProtectionBuilder  exposes

extension methods that you can chain together to configure Data Protection options.

The following NuGet packages are required for the Data Protection extensions used in this article:

Azure.Extensions.AspNetCore.DataProtection.Blobs

Azure.Extensions.AspNetCore.DataProtection.Keys

To store keys in Azure Key Vault, configure the system with ProtectKeysWithAzureKeyVault in the Startup

class. blobUriWithSasToken  is the full URI where the key file should be stored. The URI must contain the SAS

token as a query string parameter :

Set the key ring storage location (for example, PersistKeysToAzureBlobStorage). The location must be set

because calling ProtectKeysWithAzureKeyVault  implements an IXmlEncryptor that disables automatic data

protection settings, including the key ring storage location. The preceding example uses Azure Blob Storage to

persist the key ring. For more information, see Key storage providers: Azure Storage. You can also persist the

key ring locally with PersistKeysToFileSystem.

The keyIdentifier  is the key vault key identifier used for key encryption. For example, a key created in key

vault named dataprotection  in the contosokeyvault  has the key identifier 

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/configuration/overview.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.dataprotectionservicecollectionextensions.adddataprotection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotectionbuilder
https://www.nuget.org/packages/Azure.Extensions.AspNetCore.DataProtection.Blobs
https://www.nuget.org/packages/Azure.Extensions.AspNetCore.DataProtection.Keys
https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.protectkeyswithazurekeyvault
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.persistkeystoazureblobstorage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.xmlencryption.ixmlencryptor


 

var storageAccount = CloudStorageAccount.Parse("<storage account connection string">);
var client = storageAccount.CreateCloudBlobClient();
var container = client.GetContainerReference("<key store container name>");

var azureServiceTokenProvider = new AzureServiceTokenProvider();
var keyVaultClient = new KeyVaultClient(new KeyVaultClient.AuthenticationCallback(
        azureServiceTokenProvider.KeyVaultTokenCallback));

services.AddDataProtection()
    //This blob must already exist before the application is run
    .PersistKeysToAzureBlobStorage(container, "<key store blob name>")
    //Removing this line below for an initial run will ensure the file is created correctly
    .ProtectKeysWithAzureKeyVault(keyVaultClient, "<keyIdentifier>");

PersistKeysToFileSystem

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .PersistKeysToFileSystem(new DirectoryInfo(@"\\server\share\directory\"));
}

WARNINGWARNING

https://contosokeyvault.vault.azure.net/keys/dataprotection/ . Provide the app with Unwrap KeyUnwrap Key  and WrapWrap

KeyKey  permissions to the key vault.

ProtectKeysWithAzureKeyVault  overloads:

ProtectKeysWithAzureKeyVault(IDataProtectionBuilder, KeyVaultClient, String) permits the use of a

KeyVaultClient to enable the data protection system to use the key vault.

ProtectKeysWithAzureKeyVault(IDataProtectionBuilder, String, String, X509Certificate2) permits the use of

a ClientId  and X509Certificate to enable the data protection system to use the key vault.

ProtectKeysWithAzureKeyVault(IDataProtectionBuilder, String, String, String) permits the use of a ClientId

and ClientSecret  to enable the data protection system to use the key vault.

If the app uses the prior Azure packages ( Microsoft.AspNetCore.DataProtection.AzureStorage  and 

Microsoft.AspNetCore.DataProtection.AzureKeyVault ) and a combination of Azure Key Vault and Azure Storage

to store and protect keys, System.UriFormatException is thrown if the blob for key storage doesn't exist. The

blob can be manually created ahead of running the app in the Azure portal, or use the following procedure:

1. Remove the call to ProtectKeysWithAzureKeyVault  for the first run to create the blob in place.

2. Add the call to ProtectKeysWithAzureKeyVault  for subsequent runs.

Removing ProtectKeysWithAzureKeyVault  for the first run is advised, as it ensures that the file is created with

the proper schema and values in place.

We recommended upgrading to the Azure.Extensions.AspNetCore.DataProtection.Blobs and

Azure.Extensions.AspNetCore.DataProtection.Keys packages because the API provided automatically creates

the blob if it doesn't exist.

To store keys on a UNC share instead of at the %LOCALAPPDATA% default location, configure the system with

PersistKeysToFileSystem:

If you change the key persistence location, the system no longer automatically encrypts keys at rest, since it doesn't

know whether DPAPI is an appropriate encryption mechanism.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.protectkeyswithazurekeyvault#microsoft_aspnetcore_dataprotection_azuredataprotectionbuilderextensions_protectkeyswithazurekeyvault_microsoft_aspnetcore_dataprotection_idataprotectionbuilder_microsoft_azure_keyvault_keyvaultclient_system_string_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.keyvaultclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.protectkeyswithazurekeyvault#microsoft_aspnetcore_dataprotection_azuredataprotectionbuilderextensions_protectkeyswithazurekeyvault_microsoft_aspnetcore_dataprotection_idataprotectionbuilder_system_string_system_string_system_security_cryptography_x509certificates_x509certificate2_
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.protectkeyswithazurekeyvault#microsoft_aspnetcore_dataprotection_azuredataprotectionbuilderextensions_protectkeyswithazurekeyvault_microsoft_aspnetcore_dataprotection_idataprotectionbuilder_system_string_system_string_system_string_
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.AzureStorage
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.AzureKeyVault
https://docs.microsoft.com/en-us/dotnet/api/system.uriformatexception
https://www.nuget.org/packages/Azure.Extensions.AspNetCore.DataProtection.Blobs
https://www.nuget.org/packages/Azure.Extensions.AspNetCore.DataProtection.Keys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.persistkeystofilesystem


 

ProtectKeysWith*

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .PersistKeysToFileSystem(new DirectoryInfo(@"\\server\share\directory\"))
        .ProtectKeysWithCertificate("thumbprint");
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .PersistKeysToFileSystem(new DirectoryInfo(@"\\server\share\directory\"))
        .ProtectKeysWithCertificate(
            new X509Certificate2("certificate.pfx", "password"));
}

UnprotectKeysWithAnyCertificate

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .PersistKeysToFileSystem(new DirectoryInfo(@"\\server\share\directory\"))
        .ProtectKeysWithCertificate(
            new X509Certificate2("certificate.pfx", "password"));
        .UnprotectKeysWithAnyCertificate(
            new X509Certificate2("certificate_old_1.pfx", "password_1"),
            new X509Certificate2("certificate_old_2.pfx", "password_2"));
}

SetDefaultKeyLifetime

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .SetDefaultKeyLifetime(TimeSpan.FromDays(14));
}

SetApplicationName

You can configure the system to protect keys at rest by calling any of the ProtectKeysWith* configuration APIs.

Consider the example below, which stores keys on a UNC share and encrypts those keys at rest with a specific

X.509 certificate:

In ASP.NET Core 2.1 or later, you can provide an X509Certificate2 to ProtectKeysWithCertificate, such as a

certificate loaded from a file:

See Key Encryption At Rest for more examples and discussion on the built-in key encryption mechanisms.

In ASP.NET Core 2.1 or later, you can rotate certificates and decrypt keys at rest using an array of

X509Certificate2 certificates with UnprotectKeysWithAnyCertificate:

To configure the system to use a key lifetime of 14 days instead of the default 90 days, use

SetDefaultKeyLifetime:

By default, the Data Protection system isolates apps from one another based on their content root paths, even

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.protectkeyswithcertificate
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.unprotectkeyswithanycertificate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setdefaultkeylifetime


 

   

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .SetApplicationName("shared app name");
}

DisableAutomaticKeyGeneration

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .DisableAutomaticKeyGeneration();
}

Per-application isolation

if they're sharing the same physical key repository. This prevents the apps from understanding each other's

protected payloads.

To share protected payloads among apps:

Configure SetApplicationName in each app with the same value.

Use the same version of the Data Protection API stack across the apps. Perform eithereither  of the following in

the apps' project files:

Reference the same shared framework version via the Microsoft.AspNetCore.App metapackage.

Reference the same Data Protection package version.

You may have a scenario where you don't want an app to automatically roll keys (create new keys) as they

approach expiration. One example of this might be apps set up in a primary/secondary relationship, where

only the primary app is responsible for key management concerns and secondary apps simply have a read-

only view of the key ring. The secondary apps can be configured to treat the key ring as read-only by

configuring the system with DisableAutomaticKeyGeneration:

When the Data Protection system is provided by an ASP.NET Core host, it automatically isolates apps from

one another, even if those apps are running under the same worker process account and are using the same

master keying material. This is somewhat similar to the IsolateApps modifier from System.Web's 

<machineKey>  element.

The isolation mechanism works by considering each app on the local machine as a unique tenant, thus the

IDataProtector rooted for any given app automatically includes the app ID as a discriminator. The app's unique

ID is the app's physical path:

For apps hosted in IIS, the unique ID is the IIS physical path of the app. If an app is deployed in a web farm

environment, this value is stable assuming that the IIS environments are configured similarly across all

machines in the web farm.

For self-hosted apps running on the Kestrel server, the unique ID is the physical path to the app on disk.

The unique identifier is designed to survive resets—both of the individual app and of the machine itself.

This isolation mechanism assumes that the apps are not malicious. A malicious app can always impact any

other app running under the same worker process account. In a shared hosting environment where apps are

mutually untrusted, the hosting provider should take steps to ensure OS-level isolation between apps,

including separating the apps' underlying key repositories.

If the Data Protection system isn't provided by an ASP.NET Core host (for example, if you instantiate it via the 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setapplicationname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.disableautomatickeygeneration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotector


 

  

Changing algorithms with UseCryptographicAlgorithms

services.AddDataProtection()
    .UseCryptographicAlgorithms(
        new AuthenticatedEncryptorConfiguration()
    {
        EncryptionAlgorithm = EncryptionAlgorithm.AES_256_CBC,
        ValidationAlgorithm = ValidationAlgorithm.HMACSHA256
    });

services.AddDataProtection()
    .UseCryptographicAlgorithms(
        new AuthenticatedEncryptionSettings()
    {
        EncryptionAlgorithm = EncryptionAlgorithm.AES_256_CBC,
        ValidationAlgorithm = ValidationAlgorithm.HMACSHA256
    });

TIPTIP

Specifying custom managed algorithmsSpecifying custom managed algorithms

DataProtectionProvider  concrete type) app isolation is disabled by default. When app isolation is disabled, all

apps backed by the same keying material can share payloads as long as they provide the appropriate

purposes. To provide app isolation in this environment, call the SetApplicationName method on the

configuration object and provide a unique name for each app.

The Data Protection stack allows you to change the default algorithm used by newly-generated keys. The

simplest way to do this is to call UseCryptographicAlgorithms from the configuration callback:

The default EncryptionAlgorithm is AES-256-CBC, and the default ValidationAlgorithm is HMACSHA256. The

default policy can be set by a system administrator via a machine-wide policy, but an explicit call to 

UseCryptographicAlgorithms  overrides the default policy.

Calling UseCryptographicAlgorithms  allows you to specify the desired algorithm from a predefined built-in list.

You don't need to worry about the implementation of the algorithm. In the scenario above, the Data

Protection system attempts to use the CNG implementation of AES if running on Windows. Otherwise, it falls

back to the managed System.Security.Cryptography.Aes class.

You can manually specify an implementation via a call to UseCustomCryptographicAlgorithms.

Changing algorithms doesn't affect existing keys in the key ring. It only affects newly-generated keys.

To specify custom managed algorithms, create a ManagedAuthenticatedEncryptorConfiguration instance that

points to the implementation types:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.usecryptographicalgorithms
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.aes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.usecustomcryptographicalgorithms
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.configurationmodel.managedauthenticatedencryptorconfiguration


    

serviceCollection.AddDataProtection()
    .UseCustomCryptographicAlgorithms(
        new ManagedAuthenticatedEncryptorConfiguration()
    {
        // A type that subclasses SymmetricAlgorithm
        EncryptionAlgorithmType = typeof(Aes),

        // Specified in bits
        EncryptionAlgorithmKeySize = 256,

        // A type that subclasses KeyedHashAlgorithm
        ValidationAlgorithmType = typeof(HMACSHA256)
    });

serviceCollection.AddDataProtection()
    .UseCustomCryptographicAlgorithms(
        new ManagedAuthenticatedEncryptionSettings()
    {
        // A type that subclasses SymmetricAlgorithm
        EncryptionAlgorithmType = typeof(Aes),

        // Specified in bits
        EncryptionAlgorithmKeySize = 256,

        // A type that subclasses KeyedHashAlgorithm
        ValidationAlgorithmType = typeof(HMACSHA256)
    });

NOTENOTE

Specifying custom Windows CNG algorithmsSpecifying custom Windows CNG algorithms

To specify custom managed algorithms, create a ManagedAuthenticatedEncryptionSettings instance that

points to the implementation types:

Generally the *Type properties must point to concrete, instantiable (via a public parameterless ctor)

implementations of SymmetricAlgorithm and KeyedHashAlgorithm, though the system special-cases some

values like typeof(Aes)  for convenience.

The SymmetricAlgorithm must have a key length of ≥ 128 bits and a block size of ≥ 64 bits, and it must support CBC-

mode encryption with PKCS #7 padding. The KeyedHashAlgorithm must have a digest size of >= 128 bits, and it must

support keys of length equal to the hash algorithm's digest length. The KeyedHashAlgorithm isn't strictly required to

be HMAC.

To specify a custom Windows CNG algorithm using CBC-mode encryption with HMAC validation, create a

CngCbcAuthenticatedEncryptorConfiguration instance that contains the algorithmic information:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.managedauthenticatedencryptionsettings
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.symmetricalgorithm
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.keyedhashalgorithm
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.configurationmodel.cngcbcauthenticatedencryptorconfiguration


services.AddDataProtection()
    .UseCustomCryptographicAlgorithms(
        new CngCbcAuthenticatedEncryptorConfiguration()
    {
        // Passed to BCryptOpenAlgorithmProvider
        EncryptionAlgorithm = "AES",
        EncryptionAlgorithmProvider = null,

        // Specified in bits
        EncryptionAlgorithmKeySize = 256,

        // Passed to BCryptOpenAlgorithmProvider
        HashAlgorithm = "SHA256",
        HashAlgorithmProvider = null
    });

services.AddDataProtection()
    .UseCustomCryptographicAlgorithms(
        new CngCbcAuthenticatedEncryptionSettings()
    {
        // Passed to BCryptOpenAlgorithmProvider
        EncryptionAlgorithm = "AES",
        EncryptionAlgorithmProvider = null,

        // Specified in bits
        EncryptionAlgorithmKeySize = 256,

        // Passed to BCryptOpenAlgorithmProvider
        HashAlgorithm = "SHA256",
        HashAlgorithmProvider = null
    });

NOTENOTE

services.AddDataProtection()
    .UseCustomCryptographicAlgorithms(
        new CngGcmAuthenticatedEncryptorConfiguration()
    {
        // Passed to BCryptOpenAlgorithmProvider
        EncryptionAlgorithm = "AES",
        EncryptionAlgorithmProvider = null,

        // Specified in bits
        EncryptionAlgorithmKeySize = 256
    });

To specify a custom Windows CNG algorithm using CBC-mode encryption with HMAC validation, create a

CngCbcAuthenticatedEncryptionSettings instance that contains the algorithmic information:

The symmetric block cipher algorithm must have a key length of >= 128 bits, a block size of >= 64 bits, and it must

support CBC-mode encryption with PKCS #7 padding. The hash algorithm must have a digest size of >= 128 bits and

must support being opened with the BCRYPT_ALG_HANDLE_HMAC_FLAG flag. The *Provider properties can be set to

null to use the default provider for the specified algorithm. See the BCryptOpenAlgorithmProvider documentation for

more information.

To specify a custom Windows CNG algorithm using Galois/Counter Mode encryption with validation, create a

CngGcmAuthenticatedEncryptorConfiguration instance that contains the algorithmic information:

To specify a custom Windows CNG algorithm using Galois/Counter Mode encryption with validation, create a

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.cngcbcauthenticatedencryptionsettings
https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptopenalgorithmprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.configurationmodel.cnggcmauthenticatedencryptorconfiguration


services.AddDataProtection()
    .UseCustomCryptographicAlgorithms(
        new CngGcmAuthenticatedEncryptionSettings()
    {
        // Passed to BCryptOpenAlgorithmProvider
        EncryptionAlgorithm = "AES",
        EncryptionAlgorithmProvider = null,

        // Specified in bits
        EncryptionAlgorithmKeySize = 256
    });

NOTENOTE

Specifying other custom algorithmsSpecifying other custom algorithms

Persisting keys when hosting in a Docker container

Persisting keys with Redis

Additional resources

CngGcmAuthenticatedEncryptionSettings instance that contains the algorithmic information:

The symmetric block cipher algorithm must have a key length of >= 128 bits, a block size of exactly 128 bits, and it

must support GCM encryption. You can set the EncryptionAlgorithmProvider property to null to use the default

provider for the specified algorithm. See the BCryptOpenAlgorithmProvider documentation for more information.

Though not exposed as a first-class API, the Data Protection system is extensible enough to allow specifying

almost any kind of algorithm. For example, it's possible to keep all keys contained within a Hardware Security

Module (HSM) and to provide a custom implementation of the core encryption and decryption routines. See

IAuthenticatedEncryptor in Core cryptography extensibility for more information.

When hosting in a Docker container, keys should be maintained in either :

A folder that's a Docker volume that persists beyond the container's lifetime, such as a shared volume or a

host-mounted volume.

An external provider, such as Azure Key Vault or Redis.

Only Redis versions supporting Redis Data Persistence should be used to store keys. Azure Blob storage is

persistent and can be used to store keys. For more information, see this GitHub issue.

Non-DI aware scenarios for Data Protection in ASP.NET Core

Data Protection machine-wide policy support in ASP.NET Core

Host ASP.NET Core in a web farm

Key storage providers in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.cnggcmauthenticatedencryptionsettings
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.configurationmodel.cngcbcauthenticatedencryptorconfiguration.encryptionalgorithmprovider
https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptopenalgorithmprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.authenticatedencryption.iauthenticatedencryptor
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/
https://azure.microsoft.com/services/key-vault/
https://redis.io/
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-how-to-premium-persistence
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://github.com/dotnet/AspNetCore/issues/13476


Data Protection key management and lifetime in
ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

Key management

By Rick Anderson

The app attempts to detect its operational environment and handle key configuration on its own.

1. If the app is hosted in Azure Apps, keys are persisted to the %HOME%\ASP.NET\DataProtection-Keys folder.

This folder is backed by network storage and is synchronized across all machines hosting the app.

Keys aren't protected at rest.

The DataProtection-Keys folder supplies the key ring to all instances of an app in a single deployment

slot.

Separate deployment slots, such as Staging and Production, don't share a key ring. When you swap

between deployment slots, for example swapping Staging to Production or using A/B testing, any app

using Data Protection won't be able to decrypt stored data using the key ring inside the previous slot.

This leads to users being logged out of an app that uses the standard ASP.NET Core cookie

authentication, as it uses Data Protection to protect its cookies. If you desire slot-independent key rings,

use an external key ring provider, such as Azure Blob Storage, Azure Key Vault, a SQL store, or Redis

cache.

2. If the user profile is available, keys are persisted to the %LOCALAPPDATA%\ASP.NET\DataProtection-Keys

folder. If the operating system is Windows, the keys are encrypted at rest using DPAPI.

The app pool's setProfileEnvironment attribute must also be enabled. The default value of 

setProfileEnvironment  is true . In some scenarios (for example, Windows OS), setProfileEnvironment  is

set to false . If keys aren't stored in the user profile directory as expected:

a. Navigate to the %windir%/system32/inetsrv/config folder.

b. Open the applicationHost.config file.

c. Locate the <system.applicationHost><applicationPools><applicationPoolDefaults><processModel>  element.

d. Confirm that the setProfileEnvironment  attribute isn't present, which defaults the value to true , or

explicitly set the attribute's value to true .

3. If the app is hosted in IIS, keys are persisted to the HKLM registry in a special registry key that's ACLed only

to the worker process account. Keys are encrypted at rest using DPAPI.

4. If none of these conditions match, keys aren't persisted outside of the current process. When the process

shuts down, all generated keys are lost.

The developer is always in full control and can override how and where keys are stored. The first three options

above should provide good defaults for most apps similar to how the ASP.NET <machineKey><machineKey> auto-generation

routines worked in the past. The final, fallback option is the only scenario that requires the developer to specify

configuration upfront if they want key persistence, but this fallback only occurs in rare situations.

When hosting in a Docker container, keys should be persisted in a folder that's a Docker volume (a shared volume

or a host-mounted volume that persists beyond the container's lifetime) or in an external provider, such as Azure

Key Vault or Redis. An external provider is also useful in web farm scenarios if apps can't access a shared network

volume (see PersistKeysToFileSystem for more information).

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/configuration/default-settings.md
https://twitter.com/RickAndMSFT
https://azure.microsoft.com/services/app-service/
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/processmodel#configuration
https://azure.microsoft.com/services/key-vault/
https://redis.io/


WARNINGWARNING

Key lifetime

Default algorithms

Additional resources

If the developer overrides the rules outlined above and points the Data Protection system at a specific key repository,

automatic encryption of keys at rest is disabled. At-rest protection can be re-enabled via configuration.

Keys have a 90-day lifetime by default. When a key expires, the app automatically generates a new key and sets

the new key as the active key. As long as retired keys remain on the system, your app can decrypt any data

protected with them. See key management for more information.

The default payload protection algorithm used is AES-256-CBC for confidentiality and HMACSHA256 for

authenticity. A 512-bit master key, changed every 90 days, is used to derive the two sub-keys used for these

algorithms on a per-payload basis. See subkey derivation for more information.

Key management extensibility in ASP.NET Core

Host ASP.NET Core in a web farm



Data Protection machine-wide policy support in
ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

WARNINGWARNING

Setting default policy

VA L UEVA L UE T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N

EncryptionType string Specifies which algorithms should be
used for data protection. The value
must be CNG-CBC, CNG-GCM, or
Managed and is described in more
detail below.

DefaultKeyLifetime DWORD Specifies the lifetime for newly-
generated keys. The value is specified in
days and must be >= 7.

KeyEscrowSinks string Specifies the types that are used for
key escrow. The value is a semicolon-
delimited list of key escrow sinks, where
each element in the list is the
assembly-qualified name of a type that
implements IKeyEscrowSink.

Encryption types

By Rick Anderson

When running on Windows, the Data Protection system has limited support for setting a default machine-wide

policy for all apps that consume ASP.NET Core Data Protection. The general idea is that an administrator might

wish to change a default setting, such as the algorithms used or key lifetime, without the need to manually update

every app on the machine.

The system administrator can set default policy, but they can't enforce it. The app developer can always override any value

with one of their own choosing. The default policy only affects apps where the developer hasn't specified an explicit value

for a setting.

To set default policy, an administrator can set known values in the system registry under the following registry

key:

HKLM\SOFTWARE\Microsoft\DotNetPackages\Microsoft.AspNetCore.DataProtectionHKLM\SOFTWARE\Microsoft\DotNetPackages\Microsoft.AspNetCore.DataProtection

If you're on a 64-bit operating system and want to affect the behavior of 32-bit apps, remember to configure the

Wow6432Node equivalent of the above key.

The supported values are shown below.

If EncryptionType is CNG-CBC, the system is configured to use a CBC-mode symmetric block cipher for

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/configuration/machine-wide-policy.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.keymanagement.ikeyescrowsink


VA L UEVA L UE T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N

EncryptionAlgorithm string The name of a symmetric block cipher
algorithm understood by CNG. This
algorithm is opened in CBC mode.

EncryptionAlgorithmProvider string The name of the CNG provider
implementation that can produce the
algorithm EncryptionAlgorithm.

EncryptionAlgorithmKeySize DWORD The length (in bits) of the key to derive
for the symmetric block cipher
algorithm.

HashAlgorithm string The name of a hash algorithm
understood by CNG. This algorithm is
opened in HMAC mode.

HashAlgorithmProvider string The name of the CNG provider
implementation that can produce the
algorithm HashAlgorithm.

VA L UEVA L UE T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N

EncryptionAlgorithm string The name of a symmetric block cipher
algorithm understood by CNG. This
algorithm is opened in Galois/Counter
Mode.

EncryptionAlgorithmProvider string The name of the CNG provider
implementation that can produce the
algorithm EncryptionAlgorithm.

EncryptionAlgorithmKeySize DWORD The length (in bits) of the key to derive
for the symmetric block cipher
algorithm.

VA L UEVA L UE T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N

EncryptionAlgorithmType string The assembly-qualified name of a type
that implements SymmetricAlgorithm.

confidentiality and HMAC for authenticity with services provided by Windows CNG (see Specifying custom

Windows CNG algorithms for more details). The following additional values are supported, each of which

corresponds to a property on the CngCbcAuthenticatedEncryptionSettings type.

If EncryptionType is CNG-GCM, the system is configured to use a Galois/Counter Mode symmetric block cipher

for confidentiality and authenticity with services provided by Windows CNG (see Specifying custom Windows

CNG algorithms for more details). The following additional values are supported, each of which corresponds to a

property on the CngGcmAuthenticatedEncryptionSettings type.

If EncryptionType is Managed, the system is configured to use a managed SymmetricAlgorithm for confidentiality

and KeyedHashAlgorithm for authenticity (see Specifying custom managed algorithms for more details). The

following additional values are supported, each of which corresponds to a property on the

ManagedAuthenticatedEncryptionSettings type.



EncryptionAlgorithmKeySize DWORD The length (in bits) of the key to derive
for the symmetric encryption
algorithm.

ValidationAlgorithmType string The assembly-qualified name of a type
that implements KeyedHashAlgorithm.

VA L UEVA L UE T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N

WARNINGWARNING

If EncryptionType has any other value other than null or empty, the Data Protection system throws an exception at

startup.

When configuring a default policy setting that involves type names (EncryptionAlgorithmType, ValidationAlgorithmType,

KeyEscrowSinks), the types must be available to the app. This means that for apps running on Desktop CLR, the assemblies

that contain these types should be present in the Global Assembly Cache (GAC). For ASP.NET Core apps running on .NET

Core, the packages that contain these types should be installed.



Non-DI aware scenarios for Data Protection in
ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

By Rick Anderson

The ASP.NET Core Data Protection system is normally added to a service container and consumed by dependent

components via dependency injection (DI). However, there are cases where this isn't feasible or desired, especially

when importing the system into an existing app.

To support these scenarios, the Microsoft.AspNetCore.DataProtection.Extensions package provides a concrete type,

DataProtectionProvider, which offers a simple way to use Data Protection without relying on DI. The 

DataProtectionProvider  type implements IDataProtectionProvider. Constructing DataProtectionProvider  only

requires providing a DirectoryInfo instance to indicate where the provider's cryptographic keys should be stored,

as seen in the following code sample:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/configuration/non-di-scenarios.md
https://twitter.com/RickAndMSFT
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Extensions/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotectionprovider
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo


using System;
using System.IO;
using Microsoft.AspNetCore.DataProtection;

public class Program
{
    public static void Main(string[] args)
    {
        // Get the path to %LOCALAPPDATA%\myapp-keys
        var destFolder = Path.Combine(
            System.Environment.GetEnvironmentVariable("LOCALAPPDATA"),
            "myapp-keys");

        // Instantiate the data protection system at this folder
        var dataProtectionProvider = DataProtectionProvider.Create(
            new DirectoryInfo(destFolder));

        var protector = dataProtectionProvider.CreateProtector("Program.No-DI");
        Console.Write("Enter input: ");
        var input = Console.ReadLine();

        // Protect the payload
        var protectedPayload = protector.Protect(input);
        Console.WriteLine($"Protect returned: {protectedPayload}");

        // Unprotect the payload
        var unprotectedPayload = protector.Unprotect(protectedPayload);
        Console.WriteLine($"Unprotect returned: {unprotectedPayload}");

        Console.WriteLine();
        Console.WriteLine("Press any key...");
        Console.ReadKey();
    }
}

/*
 * SAMPLE OUTPUT
 *
 * Enter input: Hello world!
 * Protect returned: CfDJ8FWbAn6...ch3hAPm1NJA
 * Unprotect returned: Hello world!
 *
 * Press any key...
*/

By default, the DataProtectionProvider  concrete type doesn't encrypt raw key material before persisting it to the

file system. This is to support scenarios where the developer points to a network share and the Data Protection

system can't automatically deduce an appropriate at-rest key encryption mechanism.

Additionally, the DataProtectionProvider  concrete type doesn't isolate apps by default. All apps using the same key

directory can share payloads as long as their purpose parameters match.

The DataProtectionProvider constructor accepts an optional configuration callback that can be used to adjust the

behaviors of the system. The sample below demonstrates restoring isolation with an explicit call to

SetApplicationName. The sample also demonstrates configuring the system to automatically encrypt persisted

keys using Windows DPAPI. If the directory points to a UNC share, you may wish to distribute a shared certificate

across all relevant machines and to configure the system to use certificate-based encryption with a call to

ProtectKeysWithCertificate.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setapplicationname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.protectkeyswithcertificate


using System;
using System.IO;
using Microsoft.AspNetCore.DataProtection;

public class Program
{
    public static void Main(string[] args)
    {
        // Get the path to %LOCALAPPDATA%\myapp-keys
        var destFolder = Path.Combine(
            System.Environment.GetEnvironmentVariable("LOCALAPPDATA"),
            "myapp-keys");

        // Instantiate the data protection system at this folder
        var dataProtectionProvider = DataProtectionProvider.Create(
            new DirectoryInfo(destFolder),
            configuration =>
            {
                configuration.SetApplicationName("my app name");
                configuration.ProtectKeysWithDpapi();
            });

        var protector = dataProtectionProvider.CreateProtector("Program.No-DI");
        Console.Write("Enter input: ");
        var input = Console.ReadLine();

        // Protect the payload
        var protectedPayload = protector.Protect(input);
        Console.WriteLine($"Protect returned: {protectedPayload}");

        // Unprotect the payload
        var unprotectedPayload = protector.Unprotect(protectedPayload);
        Console.WriteLine($"Unprotect returned: {unprotectedPayload}");

        Console.WriteLine();
        Console.WriteLine("Press any key...");
        Console.ReadKey();
    }
}

TIPTIP
Instances of the DataProtectionProvider  concrete type are expensive to create. If an app maintains multiple instances of

this type and if they're all using the same key storage directory, app performance might degrade. If you use the 

DataProtectionProvider  type, we recommend that you create this type once and reuse it as much as possible. The 

DataProtectionProvider  type and all IDataProtector instances created from it are thread-safe for multiple callers.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.idataprotector


ASP.NET Core Data Protection extensibility APIs
9/22/2020 • 2 minutes to read • Edit Online

Core cryptography extensibility

Key management extensibility

Miscellaneous APIs

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/extensibility/index.md


Core cryptography extensibility in ASP.NET Core
9/22/2020 • 5 minutes to read • Edit Online

WARNINGWARNING

IAuthenticatedEncryptor

NOTENOTE

How to create an IAuthenticatedEncryptor

 

Types that implement any of the following interfaces should be thread-safe for multiple callers.

     

The IAuthenticatedEncr yptorIAuthenticatedEncr yptor  interface is the basic building block of the cryptographic subsystem. There's

generally one IAuthenticatedEncryptor per key, and the IAuthenticatedEncryptor instance wraps all cryptographic

key material and algorithmic information necessary to perform cryptographic operations.

As its name suggests, the type is responsible for providing authenticated encryption and decryption services. It

exposes the following two APIs.

Decrypt(ArraySegment<byte> ciphertext, ArraySegment<byte> additionalAuthenticatedData) : byte[]

Encrypt(ArraySegment<byte> plaintext, ArraySegment<byte> additionalAuthenticatedData) : byte[]

The Encrypt method returns a blob that includes the enciphered plaintext and an authentication tag. The

authentication tag must encompass the additional authenticated data (AAD), though the AAD itself need not be

recoverable from the final payload. The Decrypt method validates the authentication tag and returns the

deciphered payload. All failures (except ArgumentNullException and similar) should be homogenized to

CryptographicException.

The IAuthenticatedEncryptor instance itself doesn't actually need to contain the key material. For example, the

implementation could delegate to an HSM for all operations.

    

ASP.NET Core 2.x

ASP.NET Core 1.x

The IAuthenticatedEncr yptorFactor yIAuthenticatedEncr yptorFactor y  interface represents a type that knows how to create an

IAuthenticatedEncryptor instance. Its API is as follows.

CreateEncryptorInstance(IKey key) : IAuthenticatedEncryptor

For any given IKey instance, any authenticated encryptors created by its CreateEncryptorInstance method should

be considered equivalent, as in the below code sample.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/extensibility/core-crypto.md


// we have an IAuthenticatedEncryptorFactory instance and an IKey instance
IAuthenticatedEncryptorFactory factory = ...;
IKey key = ...;

// get an encryptor instance and perform an authenticated encryption operation
ArraySegment<byte> plaintext = new ArraySegment<byte>(Encoding.UTF8.GetBytes("plaintext"));
ArraySegment<byte> aad = new ArraySegment<byte>(Encoding.UTF8.GetBytes("AAD"));
var encryptor1 = factory.CreateEncryptorInstance(key);
byte[] ciphertext = encryptor1.Encrypt(plaintext, aad);

// get another encryptor instance and perform an authenticated decryption operation
var encryptor2 = factory.CreateEncryptorInstance(key);
byte[] roundTripped = encryptor2.Decrypt(new ArraySegment<byte>(ciphertext), aad);

// the 'roundTripped' and 'plaintext' buffers should be equivalent

IAuthenticatedEncryptorDescriptor (ASP.NET Core 2.x only)

XML Serialization

TIPTIP

 

ASP.NET Core 2.x

ASP.NET Core 1.x

The IAuthenticatedEncr yptorDescr iptorIAuthenticatedEncr yptorDescr iptor  interface represents a type that knows how to export itself to XML. Its

API is as follows.

ExportToXml() : XmlSerializedDescriptorInfo

The primary difference between IAuthenticatedEncryptor and IAuthenticatedEncryptorDescriptor is that the

descriptor knows how to create the encryptor and supply it with valid arguments. Consider an

IAuthenticatedEncryptor whose implementation relies on SymmetricAlgorithm and KeyedHashAlgorithm. The

encryptor's job is to consume these types, but it doesn't necessarily know where these types came from, so it can't

really write out a proper description of how to recreate itself if the application restarts. The descriptor acts as a

higher level on top of this. Since the descriptor knows how to create the encryptor instance (e.g., it knows how to

create the required algorithms), it can serialize that knowledge in XML form so that the encryptor instance can be

recreated after an application reset.

  The descriptor can be serialized via its ExportToXml routine. This routine returns an XmlSerializedDescriptorInfo

which contains two properties: the XElement representation of the descriptor and the Type which represents an

IAuthenticatedEncryptorDescriptorDeserializer which can be used to resurrect this descriptor given the

corresponding XElement.

The serialized descriptor may contain sensitive information such as cryptographic key material. The data protection

system has built-in support for encrypting information before it's persisted to storage. To take advantage of this,

the descriptor should mark the element which contains sensitive information with the attribute name

"requiresEncryption" (xmlns "http://schemas.asp.net/2015/03/dataProtection"), value "true".

There's a helper API for setting this attribute. Call the extension method XElement.MarkAsRequiresEncryption() located in

namespace Microsoft.AspNetCore.DataProtection.AuthenticatedEncryption.ConfigurationModel.

There can also be cases where the serialized descriptor doesn't contain sensitive information. Consider again the

case of a cryptographic key stored in an HSM. The descriptor cannot write out the key material when serializing

itself since the HSM won't expose the material in plaintext form. Instead, the descriptor might write out the key-

http://schemas.asp.net/2015/03/dataProtection


IAuthenticatedEncryptorDescriptorDeserializer

NOTENOTE

The top-level factory

wrapped version of the key (if the HSM allows export in this fashion) or the HSM's own unique identifier for the

key.

 

The IAuthenticatedEncr yptorDescr iptorDeserializerIAuthenticatedEncr yptorDescr iptorDeserializer  interface represents a type that knows how to deserialize

an IAuthenticatedEncryptorDescriptor instance from an XElement. It exposes a single method:

ImportFromXml(XElement element) : IAuthenticatedEncryptorDescriptor

The ImportFromXml method takes the XElement that was returned by

IAuthenticatedEncryptorDescriptor.ExportToXml and creates an equivalent of the original

IAuthenticatedEncryptorDescriptor.

Types which implement IAuthenticatedEncryptorDescriptorDeserializer should have one of the following two

public constructors:

.ctor(IServiceProvider)

.ctor()

The IServiceProvider passed to the constructor may be null.

ASP.NET Core 2.x

ASP.NET Core 1.x

The AlgorithmConfigurationAlgorithmConfiguration class represents a type which knows how to create

IAuthenticatedEncryptorDescriptor instances. It exposes a single API.

CreateNewDescriptor() : IAuthenticatedEncryptorDescriptor

Think of AlgorithmConfiguration as the top-level factory. The configuration serves as a template. It wraps

algorithmic information (e.g., this configuration produces descriptors with an AES-128-GCM master key), but it's

not yet associated with a specific key.

When CreateNewDescriptor is called, fresh key material is created solely for this call, and a new

IAuthenticatedEncryptorDescriptor is produced which wraps this key material and the algorithmic information

required to consume the material. The key material could be created in software (and held in memory), it could be

created and held within an HSM, and so on. The crucial point is that any two calls to CreateNewDescriptor should

never create equivalent IAuthenticatedEncryptorDescriptor instances.

The AlgorithmConfiguration type serves as the entry point for key creation routines such as automatic key rolling.

To change the implementation for all future keys, set the AuthenticatedEncryptorConfiguration property in

KeyManagementOptions.



 

Key management extensibility in ASP.NET Core
9/22/2020 • 7 minutes to read • Edit Online

Key

NOTENOTE

IKeyManager

WARNINGWARNING

XmlKeyManager

Read the key management section before reading this section, as it explains some of the fundamental concepts

behind these APIs.

WarningWarning: Types that implement any of the following interfaces should be thread-safe for multiple callers.

The IKey  interface is the basic representation of a key in cryptosystem. The term key is used here in the abstract

sense, not in the literal sense of "cryptographic key material". A key has the following properties:

Activation, creation, and expiration dates

Revocation status

Key identifier (a GUID)

Additionally, IKey  exposes a CreateEncryptor  method which can be used to create an IAuthenticatedEncryptor

instance tied to this key.

Additionally, IKey  exposes a CreateEncryptorInstance  method which can be used to create an

IAuthenticatedEncryptor instance tied to this key.

There's no API to retrieve the raw cryptographic material from an IKey  instance.

The IKeyManager  interface represents an object responsible for general key storage, retrieval, and manipulation. It

exposes three high-level operations:

Create a new key and persist it to storage.

Get all keys from storage.

Revoke one or more keys and persist the revocation information to storage.

Writing an IKeyManager  is a very advanced task, and the majority of developers shouldn't attempt it. Instead, most

developers should take advantage of the facilities offered by the XmlKeyManager class.

The XmlKeyManager  type is the in-box concrete implementation of IKeyManager . It provides several useful facilities,

including key escrow and encryption of keys at rest. Keys in this system are represented as XML elements

(specifically, XElement).

XmlKeyManager  depends on several other components in the course of fulfilling its tasks:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/extensibility/key-management.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/xelement-class-overview


AlgorithmConfiguration , which dictates the algorithms used by new keys.

IXmlRepository , which controls where keys are persisted in storage.

IXmlEncryptor  [optional], which allows encrypting keys at rest.

IKeyEscrowSink  [optional], which provides key escrow services.

IXmlRepository , which controls where keys are persisted in storage.

IXmlEncryptor  [optional], which allows encrypting keys at rest.

IKeyEscrowSink  [optional], which provides key escrow services.

Below are high-level diagrams which indicate how these components are wired together within XmlKeyManager .

Key Creation / CreateNewKey

In the implementation of CreateNewKey , the AlgorithmConfiguration  component is used to create a unique 

IAuthenticatedEncryptorDescriptor , which is then serialized as XML. If a key escrow sink is present, the raw

(unencrypted) XML is provided to the sink for long-term storage. The unencrypted XML is then run through an 

IXmlEncryptor  (if required) to generate the encrypted XML document. This encrypted document is persisted to

long-term storage via the IXmlRepository . (If no IXmlEncryptor  is configured, the unencrypted document is

persisted in the IXmlRepository .)



IXmlRepository

Key Creation / CreateNewKey

In the implementation of CreateNewKey , the IAuthenticatedEncryptorConfiguration  component is used to create a

unique IAuthenticatedEncryptorDescriptor , which is then serialized as XML. If a key escrow sink is present, the raw

(unencrypted) XML is provided to the sink for long-term storage. The unencrypted XML is then run through an 

IXmlEncryptor  (if required) to generate the encrypted XML document. This encrypted document is persisted to

long-term storage via the IXmlRepository . (If no IXmlEncryptor  is configured, the unencrypted document is

persisted in the IXmlRepository .)

Key Retrieval / GetAllKeys

In the implementation of GetAllKeys , the XML documents representing keys and revocations are read from the

underlying IXmlRepository . If these documents are encrypted, the system will automatically decrypt them. 

XmlKeyManager  creates the appropriate IAuthenticatedEncryptorDescriptorDeserializer  instances to deserialize the

documents back into IAuthenticatedEncryptorDescriptor  instances, which are then wrapped in individual IKey

instances. This collection of IKey  instances is returned to the caller.

Further information on the particular XML elements can be found in the key storage format document.

The IXmlRepository  interface represents a type that can persist XML to and retrieve XML from a backing store. It

exposes two APIs:

GetAllElements  : IReadOnlyCollection<XElement>

StoreElement(XElement element, string friendlyName)



  

services.Configure<KeyManagementOptions>(options => options.XmlRepository = new MyCustomXmlRepository());

services.AddSingleton<IXmlRepository>(new MyCustomXmlRepository());

IXmlEncryptor

services.Configure<KeyManagementOptions>(options => options.XmlEncryptor = new MyCustomXmlEncryptor());

Implementations of IXmlRepository  don't need to parse the XML passing through them. They should treat the XML

documents as opaque and let higher layers worry about generating and parsing the documents.

There are four built-in concrete types which implement IXmlRepository :

FileSystemXmlRepository

RegistryXmlRepository

AzureStorage.AzureBlobXmlRepository

RedisXmlRepository

FileSystemXmlRepository

RegistryXmlRepository

AzureStorage.AzureBlobXmlRepository

RedisXmlRepository

See the key storage providers document for more information.

Registering a custom IXmlRepository  is appropriate when using a different backing store (for example, Azure Table

Storage).

To change the default repository application-wide, register a custom IXmlRepository  instance:

The IXmlEncryptor  interface represents a type that can encrypt a plaintext XML element. It exposes a single API:

Encrypt(XElement plaintextElement) : EncryptedXmlInfo

If a serialized IAuthenticatedEncryptorDescriptor  contains any elements marked as "requires encryption", then 

XmlKeyManager  will run those elements through the configured IXmlEncryptor 's Encrypt  method, and it will

persist the enciphered element rather than the plaintext element to the IXmlRepository . The output of the Encrypt

method is an EncryptedXmlInfo  object. This object is a wrapper which contains both the resultant enciphered 

XElement  and the Type which represents an IXmlDecryptor  which can be used to decipher the corresponding

element.

There are four built-in concrete types which implement IXmlEncryptor :

CertificateXmlEncryptor

DpapiNGXmlEncryptor

DpapiXmlEncryptor

NullXmlEncryptor

See the key encryption at rest document for more information.

To change the default key-encryption-at-rest mechanism application-wide, register a custom IXmlEncryptor

instance:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.repositories.filesystemxmlrepository
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.repositories.registryxmlrepository
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.azurestorage.azureblobxmlrepository
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.stackexchangeredis.redisxmlrepository
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.repositories.filesystemxmlrepository
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.repositories.registryxmlrepository
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.azurestorage.azureblobxmlrepository
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.redisxmlrepository
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.xmlencryption.certificatexmlencryptor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.xmlencryption.dpapingxmlencryptor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.xmlencryption.dpapixmlencryptor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.xmlencryption.nullxmlencryptor


services.AddSingleton<IXmlEncryptor>(new MyCustomXmlEncryptor());

IXmlDecryptor

NOTENOTE

IKeyEscrowSink

The IXmlDecryptor  interface represents a type that knows how to decrypt an XElement  that was enciphered via an 

IXmlEncryptor . It exposes a single API:

Decrypt(XElement encryptedElement) : XElement

The Decrypt  method undoes the encryption performed by IXmlEncryptor.Encrypt . Generally, each concrete 

IXmlEncryptor  implementation will have a corresponding concrete IXmlDecryptor  implementation.

Types which implement IXmlDecryptor  should have one of the following two public constructors:

.ctor(IServiceProvider)

.ctor()

The IServiceProvider  passed to the constructor may be null.

The IKeyEscrowSink  interface represents a type that can perform escrow of sensitive information. Recall that

serialized descriptors might contain sensitive information (such as cryptographic material), and this is what led to

the introduction of the IXmlEncryptor type in the first place. However, accidents happen, and key rings can be

deleted or become corrupted.

The escrow interface provides an emergency escape hatch, allowing access to the raw serialized XML before it's

transformed by any configured IXmlEncryptor. The interface exposes a single API:

Store(Guid keyId, XElement element)

It's up to the IKeyEscrowSink  implementation to handle the provided element in a secure manner consistent with

business policy. One possible implementation could be for the escrow sink to encrypt the XML element using a

known corporate X.509 certificate where the certificate's private key has been escrowed; the 

CertificateXmlEncryptor  type can assist with this. The IKeyEscrowSink  implementation is also responsible for

persisting the provided element appropriately.

By default no escrow mechanism is enabled, though server administrators can configure this globally. It can also

be configured programmatically via the IDataProtectionBuilder.AddKeyEscrowSink  method as shown in the sample

below. The AddKeyEscrowSink  method overloads mirror the IServiceCollection.AddSingleton  and 

IServiceCollection.AddInstance  overloads, as IKeyEscrowSink  instances are intended to be singletons. If multiple 

IKeyEscrowSink  instances are registered, each one will be called during key generation, so keys can be escrowed to

multiple mechanisms simultaneously.

There's no API to read material from an IKeyEscrowSink  instance. This is consistent with the design theory of the

escrow mechanism: it's intended to make the key material accessible to a trusted authority, and since the

application is itself not a trusted authority, it shouldn't have access to its own escrowed material.

The following sample code demonstrates creating and registering an IKeyEscrowSink  where keys are escrowed

such that only members of "CONTOSODomain Admins" can recover them.



NOTENOTE

using System;
using System.IO;
using System.Xml.Linq;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.AspNetCore.DataProtection.KeyManagement;
using Microsoft.AspNetCore.DataProtection.XmlEncryption;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

public class Program
{
    public static void Main(string[] args)
    {
        var serviceCollection = new ServiceCollection();
        serviceCollection.AddDataProtection()
            .PersistKeysToFileSystem(new DirectoryInfo(@"c:\temp-keys"))
            .ProtectKeysWithDpapi()
            .AddKeyEscrowSink(sp => new MyKeyEscrowSink(sp));
        var services = serviceCollection.BuildServiceProvider();

        // get a reference to the key manager and force a new key to be generated
        Console.WriteLine("Generating new key...");
        var keyManager = services.GetService<IKeyManager>();
        keyManager.CreateNewKey(
            activationDate: DateTimeOffset.Now,
            expirationDate: DateTimeOffset.Now.AddDays(7));
    }

    // A key escrow sink where keys are escrowed such that they
    // can be read by members of the CONTOSO\Domain Admins group.
    private class MyKeyEscrowSink : IKeyEscrowSink
    {
        private readonly IXmlEncryptor _escrowEncryptor;

        public MyKeyEscrowSink(IServiceProvider services)
        {
            // Assuming I'm on a machine that's a member of the CONTOSO
            // domain, I can use the Domain Admins SID to generate an
            // encrypted payload that only they can read. Sample SID from
            // https://technet.microsoft.com/library/cc778824(v=ws.10).aspx.
            _escrowEncryptor = new DpapiNGXmlEncryptor(
                "SID=S-1-5-21-1004336348-1177238915-682003330-512",
                DpapiNGProtectionDescriptorFlags.None,
                new LoggerFactory());
        }

        public void Store(Guid keyId, XElement element)
        {
            // Encrypt the key element to the escrow encryptor.
            var encryptedXmlInfo = _escrowEncryptor.Encrypt(element);

            // A real implementation would save the escrowed key to a
            // write-only file share or some other stable storage, but
            // in this sample we'll just write it out to the console.
            Console.WriteLine($"Escrowing key {keyId}");
            Console.WriteLine(encryptedXmlInfo.EncryptedElement);

            // Note: We cannot read the escrowed key material ourselves.
            // We need to get a member of CONTOSO\Domain Admins to read
            // it for us in the event we need to recover it.
        }

To run this sample, you must be on a domain-joined Windows 8 / Windows Server 2012 machine, and the domain controller

must be Windows Server 2012 or later.



        }
    }
}

/*
 * SAMPLE OUTPUT
 *
 * Generating new key...
 * Escrowing key 38e74534-c1b8-4b43-aea1-79e856a822e5
 * <encryptedKey>
 *   <!-- This key is encrypted with Windows DPAPI-NG. -->
 *   <!-- Rule: SID=S-1-5-21-1004336348-1177238915-682003330-512 -->
 *   <value>MIIIfAYJKoZIhvcNAQcDoIIIbTCCCGkCAQ...T5rA4g==</value>
 * </encryptedKey>
 */



Miscellaneous ASP.NET Core Data Protection APIs
9/22/2020 • 2 minutes to read • Edit Online

WARNINGWARNING

ISecret

 

Types that implement any of the following interfaces should be thread-safe for multiple callers.

The ISecret  interface represents a secret value, such as cryptographic key material. It contains the following API

surface:

Length : int

Dispose() : void

WriteSecretIntoBuffer(ArraySegment<byte> buffer) : void

The WriteSecretIntoBuffer  method populates the supplied buffer with the raw secret value. The reason this API

takes the buffer as a parameter rather than returning a byte[]  directly is that this gives the caller the opportunity

to pin the buffer object, limiting secret exposure to the managed garbage collector.

The Secret  type is a concrete implementation of ISecret  where the secret value is stored in in-process memory.

On Windows platforms, the secret value is encrypted via CryptProtectMemory.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/extensibility/misc-apis.md
https://docs.microsoft.com/en-us/windows/win32/api/dpapi/nf-dpapi-cryptprotectmemory


ASP.NET Core Data Protection implementation
9/22/2020 • 2 minutes to read • Edit Online

Authenticated encryption details

Subkey Derivation and Authenticated Encryption

Context headers

Key Management

Key Storage Providers

Key Encryption At Rest

Key immutability and settings

Key Storage Format

Ephemeral data protection providers

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/implementation/index.md


Authenticated encryption details in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Protected payload format

09 F0 C9 F0 80 9C 81 0C 19 66 19 40 95 36 53 F8
AA FF EE 57 57 2F 40 4C 3F 7F CC 9D CC D9 32 3E
84 17 99 16 EC BA 1F 4A A1 18 45 1F 2D 13 7A 28
79 6B 86 9C F8 B7 84 F9 26 31 FC B1 86 0A F1 56
61 CF 14 58 D3 51 6F CF 36 50 85 82 08 2D 3F 73
5F B0 AD 9E 1A B2 AE 13 57 90 C8 F5 7C 95 4E 6A
8A AA 06 EF 43 CA 19 62 84 7C 11 B2 C8 71 9D AA
52 19 2E 5B 4C 1E 54 F0 55 BE 88 92 12 C1 4B 5E
52 C9 74 A0

 Calls to IDataProtector.Protect are authenticated encryption operations. The Protect method offers both

confidentiality and authenticity, and it's tied to the purpose chain that was used to derive this particular

IDataProtector instance from its root IDataProtectionProvider.

IDataProtector.Protect takes a byte[] plaintext parameter and produces a byte[] protected payload, whose format is

described below. (There's also an extension method overload which takes a string plaintext parameter and returns a

string protected payload. If this API is used the protected payload format will still have the below structure, but it

will be base64url-encoded.)

The protected payload format consists of three primary components:

A 32-bit magic header that identifies the version of the data protection system.

A 128-bit key id that identifies the key used to protect this particular payload.

The remainder of the protected payload is specific to the encryptor encapsulated by this key. In the example

below, the key represents an AES-256-CBC + HMACSHA256 encryptor, and the payload is further

subdivided as follows:

A 128-bit key modifier.

A 128-bit initialization vector.

48 bytes of AES-256-CBC output.

An HMACSHA256 authentication tag.

A sample protected payload is illustrated below.

From the payload format above the first 32 bits, or 4 bytes are the magic header identifying the version (09 F0 C9

F0)

The next 128 bits, or 16 bytes is the key identifier (80 9C 81 0C 19 66 19 40 95 36 53 F8 AA FF EE 57)

The remainder contains the payload and is specific to the format used.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/implementation/authenticated-encryption-details.md
https://tools.ietf.org/html/rfc4648#section-5


WARNINGWARNING
All payloads protected to a given key will begin with the same 20-byte (magic value, key id) header. Administrators can use

this fact for diagnostic purposes to approximate when a payload was generated. For example, the payload above

corresponds to key {0c819c80-6619-4019-9536-53f8aaffee57}. If after checking the key repository you find that this

specific key's activation date was 2015-01-01 and its expiration date was 2015-03-01, then it's reasonable to assume that

the payload (if not tampered with) was generated within that window, give or take a small fudge factor on either side.



  

Subkey derivation and authenticated encryption in
ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

NOTENOTE

Additional authenticated data and subkey derivation

   Most keys in the key ring will contain some form of entropy and will have algorithmic information stating "CBC-

mode encryption + HMAC validation" or "GCM encryption + validation". In these cases, we refer to the embedded

entropy as the master keying material (or KM) for this key, and we perform a key derivation function to derive the

keys that will be used for the actual cryptographic operations.

Keys are abstract, and a custom implementation might not behave as below. If the key provides its own implementation of 

IAuthenticatedEncryptor  rather than using one of our built-in factories, the mechanism described in this section no

longer applies.

  

The IAuthenticatedEncryptor  interface serves as the core interface for all authenticated encryption operations. Its 

Encrypt  method takes two buffers: plaintext and additionalAuthenticatedData (AAD). The plaintext contents flow

unchanged the call to IDataProtector.Protect , but the AAD is generated by the system and consists of three

components:

1. The 32-bit magic header 09 F0 C9 F0 that identifies this version of the data protection system.

2. The 128-bit key id.

3. A variable-length string formed from the purpose chain that created the IDataProtector  that's performing

this operation.

Because the AAD is unique for the tuple of all three components, we can use it to derive new keys from KM instead

of using KM itself in all of our cryptographic operations. For every call to IAuthenticatedEncryptor.Encrypt , the

following key derivation process takes place:

( K_E, K_H ) = SP800_108_CTR_HMACSHA512(K_M, AAD, contextHeader || keyModifier)

Here, we're calling the NIST SP800-108 KDF in Counter Mode (see NIST SP800-108, Sec. 5.1) with the following

parameters:

Key derivation key (KDK) = K_M

PRF = HMACSHA512

label = additionalAuthenticatedData

context = contextHeader || keyModifier

The context header is of variable length and essentially serves as a thumbprint of the algorithms for which we're

deriving K_E  and K_H . The key modifier is a 128-bit string randomly generated for each call to Encrypt  and

serves to ensure with overwhelming probability that KE and KH are unique for this specific authentication

encryption operation, even if all other input to the KDF is constant.

For CBC-mode encryption + HMAC validation operations, | K_E |  is the length of the symmetric block cipher key,

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/implementation/subkeyderivation.md
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf


CBC-mode encryption + HMAC validation

NOTENOTE

Galois/Counter Mode encryption + validation

and | K_H |  is the digest size of the HMAC routine. For GCM encryption + validation operations, | K_H | = 0 .

Once K_E  is generated via the above mechanism, we generate a random initialization vector and run the

symmetric block cipher algorithm to encipher the plaintext. The initialization vector and ciphertext are then run

through the HMAC routine initialized with the key K_H  to produce the MAC. This process and the return value is

represented graphically below.

output:= keyModifier || iv || E_cbc (K_E,iv,data) || HMAC(K_H, iv || E_cbc (K_E,iv,data))

The IDataProtector.Protect  implementation will prepend the magic header and key id to output before returning it to

the caller. Because the magic header and key id are implicitly part of AAD, and because the key modifier is fed as input to the

KDF, this means that every single byte of the final returned payload is authenticated by the MAC.

Once K_E  is generated via the above mechanism, we generate a random 96-bit nonce and run the symmetric

block cipher algorithm to encipher the plaintext and produce the 128-bit authentication tag.

output := keyModifier || nonce || E_gcm (K_E,nonce,data) || authTag



NOTENOTE
Even though GCM natively supports the concept of AAD, we're still feeding AAD only to the original KDF, opting to pass an

empty string into GCM for its AAD parameter. The reason for this is two-fold. First, to support agility we never want to use 

K_M  directly as the encryption key. Additionally, GCM imposes very strict uniqueness requirements on its inputs. The

probability that the GCM encryption routine is ever invoked on two or more distinct sets of input data with the same (key,

nonce) pair must not exceed 2^32. If we fix K_E  we cannot perform more than 2^32 encryption operations before we run

afoul of the 2^-32 limit. This might seem like a very large number of operations, but a high-traffic web server can go

through 4 billion requests in mere days, well within the normal lifetime for these keys. To stay compliant of the 2^-32

probability limit, we continue to use a 128-bit key modifier and 96-bit nonce, which radically extends the usable operation

count for any given K_M . For simplicity of design we share the KDF code path between CBC and GCM operations, and since

AAD is already considered in the KDF there's no need to forward it to the GCM routine.



Context headers in ASP.NET Core
9/22/2020 • 8 minutes to read • Edit Online

Background and theory

CBC-mode encryption + HMAC authentication

  

In the data protection system, a "key" means an object that can provide authenticated encryption services. Each key

is identified by a unique id (a GUID), and it carries with it algorithmic information and entropic material. It's

intended that each key carry unique entropy, but the system cannot enforce that, and we also need to account for

developers who might change the key ring manually by modifying the algorithmic information of an existing key in

the key ring. To achieve our security requirements given these cases the data protection system has a concept of

cryptographic agility, which allows securely using a single entropic value across multiple cryptographic algorithms.

Most systems which support cryptographic agility do so by including some identifying information about the

algorithm inside the payload. The algorithm's OID is generally a good candidate for this. However, one problem

that we ran into is that there are multiple ways to specify the same algorithm: "AES" (CNG) and the managed Aes,

AesManaged, AesCryptoServiceProvider, AesCng, and RijndaelManaged (given specific parameters) classes are all

actually the same thing, and we'd need to maintain a mapping of all of these to the correct OID. If a developer

wanted to provide a custom algorithm (or even another implementation of AES!), they'd have to tell us its OID. This

extra registration step makes system configuration particularly painful.

Stepping back, we decided that we were approaching the problem from the wrong direction. An OID tells you what

the algorithm is, but we don't actually care about this. If we need to use a single entropic value securely in two

different algorithms, it's not necessary for us to know what the algorithms actually are. What we actually care

about is how they behave. Any decent symmetric block cipher algorithm is also a strong pseudorandom

permutation (PRP): fix the inputs (key, chaining mode, IV, plaintext) and the ciphertext output will with

overwhelming probability be distinct from any other symmetric block cipher algorithm given the same inputs.

Similarly, any decent keyed hash function is also a strong pseudorandom function (PRF), and given a fixed input set

its output will overwhelmingly be distinct from any other keyed hash function.

We use this concept of strong PRPs and PRFs to build up a context header. This context header essentially acts as a

stable thumbprint over the algorithms in use for any given operation, and it provides the cryptographic agility

needed by the data protection system. This header is reproducible and is used later as part of the subkey derivation

process. There are two different ways to build the context header depending on the modes of operation of the

underlying algorithms.

  The context header consists of the following components:

[16 bits] The value 00 00, which is a marker meaning "CBC encryption + HMAC authentication".

[32 bits] The key length (in bytes, big-endian) of the symmetric block cipher algorithm.

[32 bits] The block size (in bytes, big-endian) of the symmetric block cipher algorithm.

[32 bits] The key length (in bytes, big-endian) of the HMAC algorithm. (Currently the key size always

matches the digest size.)

[32 bits] The digest size (in bytes, big-endian) of the HMAC algorithm.

EncCBC(K_E, IV, "") , which is the output of the symmetric block cipher algorithm given an empty string

input and where IV is an all-zero vector. The construction of K_E  is described below.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/implementation/context-headers.md
https://www.microsoft.com/research/publication/cryptographic-agility-and-its-relation-to-circular-encryption


Example: AES-192-CBC + HMACSHA256Example: AES-192-CBC + HMACSHA256

5B B6 C9 83 13 78 22 1D 8E 10 73 CA CF 65 8E B0
61 62 42 71 CB 83 21 DD A0 4A 05 00 5B AB C0 A2
49 6F A5 61 E3 E2 49 87 AA 63 55 CD 74 0A DA C4
B7 92 3D BF 59 90 00 A9

00 00 00 00 00 18 00 00 00 10 00 00 00 20 00 00
00 20 F4 74 B1 87 2B 3B 53 E4 72 1D E1 9C 08 41
DB 6F D4 79 11 84 B9 96 09 2E E1 20 2F 36 E8 60
8F A8 FB D9 8A BD FF 54 02 F2 64 B1 D7 21 15 36
22 0C

MAC(K_H, "") , which is the output of the HMAC algorithm given an empty string input. The construction of 

K_H  is described below.

Ideally, we could pass all-zero vectors for K_E  and K_H . However, we want to avoid the situation where the

underlying algorithm checks for the existence of weak keys before performing any operations (notably DES and

3DES), which precludes using a simple or repeatable pattern like an all-zero vector.

Instead, we use the NIST SP800-108 KDF in Counter Mode (see NIST SP800-108, Sec. 5.1) with a zero-length key,

label, and context and HMACSHA512 as the underlying PRF. We derive | K_E | + | K_H |  bytes of output, then

decompose the result into K_E  and K_H  themselves. Mathematically, this is represented as follows.

( K_E || K_H ) = SP800_108_CTR(prf = HMACSHA512, key = "", label = "", context = "")

As an example, consider the case where the symmetric block cipher algorithm is AES-192-CBC and the validation

algorithm is HMACSHA256. The system would generate the context header using the following steps.

First, let ( K_E || K_H ) = SP800_108_CTR(prf = HMACSHA512, key = "", label = "", context = "") , where 

| K_E | = 192 bits  and | K_H | = 256 bits  per the specified algorithms. This leads to K_E = 5BB6..21DD  and 

K_H = A04A..00A9  in the example below:

Next, compute Enc_CBC (K_E, IV, "")  for AES-192-CBC given IV = 0*  and K_E  as above.

result := F474B1872B3B53E4721DE19C0841DB6F

Next, compute MAC(K_H, "")  for HMACSHA256 given K_H  as above.

result := D4791184B996092EE1202F36E8608FA8FBD98ABDFF5402F264B1D7211536220C

This produces the full context header below:

This context header is the thumbprint of the authenticated encryption algorithm pair (AES-192-CBC encryption +

HMACSHA256 validation). The components, as described above are:

the marker (00 00)

the block cipher key length (00 00 00 18)

the block cipher block size (00 00 00 10)

the HMAC key length (00 00 00 20)

the HMAC digest size (00 00 00 20)

the block cipher PRP output (F4 74 - DB 6F)  and

the HMAC PRF output (D4 79 - end) .

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf


NOTENOTE

Example: 3DES-192-CBC + HMACSHA1Example: 3DES-192-CBC + HMACSHA1

A2 19 60 2F 83 A9 13 EA B0 61 3A 39 B8 A6 7E 22
61 D9 F8 6C 10 51 E2 BB DC 4A 00 D7 03 A2 48 3E
D1 F7 5A 34 EB 28 3E D7 D4 67 B4 64

00 00 00 00 00 18 00 00 00 08 00 00 00 14 00 00
00 14 AB B1 00 F8 1E 53 E1 0E 76 EB 18 9B 35 CF
03 46 1D DF 87 7C D9 F4 B1 B4 D6 3A 75 55

Galois/Counter Mode encryption + authentication

The CBC-mode encryption + HMAC authentication context header is built the same way regardless of whether the

algorithms implementations are provided by Windows CNG or by managed SymmetricAlgorithm and KeyedHashAlgorithm

types. This allows applications running on different operating systems to reliably produce the same context header even

though the implementations of the algorithms differ between OSes. (In practice, the KeyedHashAlgorithm doesn't have to be

a proper HMAC. It can be any keyed hash algorithm type.)

First, let ( K_E || K_H ) = SP800_108_CTR(prf = HMACSHA512, key = "", label = "", context = "") , where 

| K_E | = 192 bits  and | K_H | = 160 bits  per the specified algorithms. This leads to K_E = A219..E2BB  and 

K_H = DC4A..B464  in the example below:

Next, compute Enc_CBC (K_E, IV, "")  for 3DES-192-CBC given IV = 0*  and K_E  as above.

result := ABB100F81E53E10E

Next, compute MAC(K_H, "")  for HMACSHA1 given K_H  as above.

result := 76EB189B35CF03461DDF877CD9F4B1B4D63A7555

This produces the full context header which is a thumbprint of the authenticated encryption algorithm pair (3DES-

192-CBC encryption + HMACSHA1 validation), shown below:

The components break down as follows:

the marker (00 00)

the block cipher key length (00 00 00 18)

the block cipher block size (00 00 00 08)

the HMAC key length (00 00 00 14)

the HMAC digest size (00 00 00 14)

the block cipher PRP output (AB B1 - E1 0E)  and

the HMAC PRF output (76 EB - end) .

The context header consists of the following components:

[16 bits] The value 00 01, which is a marker meaning "GCM encryption + authentication".

[32 bits] The key length (in bytes, big-endian) of the symmetric block cipher algorithm.

[32 bits] The nonce size (in bytes, big-endian) used during authenticated encryption operations. (For our



Example: AES-256-GCMExample: AES-256-GCM

00 01 00 00 00 20 00 00 00 0C 00 00 00 10 00 00
00 10 E7 DC CE 66 DF 85 5A 32 3A 6B B7 BD 7A 59
BE 45

system, this is fixed at nonce size = 96 bits.)

[32 bits] The block size (in bytes, big-endian) of the symmetric block cipher algorithm. (For GCM, this is fixed

at block size = 128 bits.)

[32 bits] The authentication tag size (in bytes, big-endian) produced by the authenticated encryption

function. (For our system, this is fixed at tag size = 128 bits.)

[128 bits] The tag of Enc_GCM (K_E, nonce, "") , which is the output of the symmetric block cipher algorithm

given an empty string input and where nonce is a 96-bit all-zero vector.

K_E  is derived using the same mechanism as in the CBC encryption + HMAC authentication scenario. However,

since there's no K_H  in play here, we essentially have | K_H | = 0 , and the algorithm collapses to the below form.

K_E = SP800_108_CTR(prf = HMACSHA512, key = "", label = "", context = "")

First, let K_E = SP800_108_CTR(prf = HMACSHA512, key = "", label = "", context = "") , where | K_E | = 256 bits .

K_E := 22BC6F1B171C08C4AE2F27444AF8FC8B3087A90006CAEA91FDCFB47C1B8733B8

Next, compute the authentication tag of Enc_GCM (K_E, nonce, "")  for AES-256-GCM given nonce = 096  and K_E

as above.

result := E7DCCE66DF855A323A6BB7BD7A59BE45

This produces the full context header below:

The components break down as follows:

the marker (00 01)

the block cipher key length (00 00 00 20)

the nonce size (00 00 00 0C)

the block cipher block size (00 00 00 10)

the authentication tag size (00 00 00 10)  and

the authentication tag from running the block cipher (E7 DC - end) .



      

Key management in ASP.NET Core
9/22/2020 • 6 minutes to read • Edit Online

WARNINGWARNING

Default key selection

Key expiration and rolling

      The data protection system automatically manages the lifetime of master keys used to protect and unprotect

payloads. Each key can exist in one of four stages:

Created - the key exists in the key ring but has not yet been activated. The key shouldn't be used for new

Protect operations until sufficient time has elapsed that the key has had a chance to propagate to all

machines that are consuming this key ring.

Active - the key exists in the key ring and should be used for all new Protect operations.

Expired - the key has run its natural lifetime and should no longer be used for new Protect operations.

Revoked - the key is compromised and must not be used for new Protect operations.

Created, active, and expired keys may all be used to unprotect incoming payloads. Revoked keys by default may

not be used to unprotect payloads, but the application developer can override this behavior if necessary.

The developer might be tempted to delete a key from the key ring (e.g., by deleting the corresponding file from the file

system). At that point, all data protected by the key is permanently undecipherable, and there's no emergency override like

there's with revoked keys. Deleting a key is truly destructive behavior, and consequently the data protection system

exposes no first-class API for performing this operation.

When the data protection system reads the key ring from the backing repository, it will attempt to locate a

"default" key from the key ring. The default key is used for new Protect operations.

The general heuristic is that the data protection system chooses the key with the most recent activation date as

the default key. (There's a small fudge factor to allow for server-to-server clock skew.) If the key is expired or

revoked, and if the application has not disabled automatic key generation, then a new key will be generated with

immediate activation per the key expiration and rolling policy below.

The reason the data protection system generates a new key immediately rather than falling back to a different

key is that new key generation should be treated as an implicit expiration of all keys that were activated prior to

the new key. The general idea is that new keys may have been configured with different algorithms or

encryption-at-rest mechanisms than old keys, and the system should prefer the current configuration over falling

back.

There's an exception. If the application developer has disabled automatic key generation, then the data protection

system must choose something as the default key. In this fallback scenario, the system will choose the non-

revoked key with the most recent activation date, with preference given to keys that have had time to propagate

to other machines in the cluster. The fallback system may end up choosing an expired default key as a result. The

fallback system will never choose a revoked key as the default key, and if the key ring is empty or every key has

been revoked then the system will produce an error upon initialization.

 

When a key is created, it's automatically given an activation date of { now + 2 days } and an expiration date of {

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/implementation/key-management.md


services.AddDataProtection()
       // use 14-day lifetime instead of 90-day lifetime
       .SetDefaultKeyLifetime(TimeSpan.FromDays(14));

Automatic key ring refresh

WARNINGWARNING

using System;
using System.IO;
using System.Threading;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.AspNetCore.DataProtection.KeyManagement;
using Microsoft.Extensions.DependencyInjection;

public class Program
{
    public static void Main(string[] args)

now + 90 days }. The 2-day delay before activation gives the key time to propagate through the system. That is, it

allows other applications pointing at the backing store to observe the key at their next auto-refresh period, thus

maximizing the chances that when the key ring does become active it has propagated to all applications that

might need to use it.

If the default key will expire within 2 days and if the key ring doesn't already have a key that will be active upon

expiration of the default key, then the data protection system will automatically persist a new key to the key ring.

This new key has an activation date of { default key's expiration date } and an expiration date of { now + 90 days }.

This allows the system to automatically roll keys on a regular basis with no interruption of service.

There might be circumstances where a key will be created with immediate activation. One example would be

when the application hasn't run for a time and all keys in the key ring are expired. When this happens, the key is

given an activation date of { now } without the normal 2-day activation delay.

The default key lifetime is 90 days, though this is configurable as in the following example.

An administrator can also change the default system-wide, though an explicit call to SetDefaultKeyLifetime  will

override any system-wide policy. The default key lifetime cannot be shorter than 7 days.

When the data protection system initializes, it reads the key ring from the underlying repository and caches it in

memory. This cache allows Protect and Unprotect operations to proceed without hitting the backing store. The

system will automatically check the backing store for changes approximately every 24 hours or when the current

default key expires, whichever comes first.

Developers should very rarely (if ever) need to use the key management APIs directly. The data protection system will

perform automatic key management as described above.

The data protection system exposes an interface IKeyManager  that can be used to inspect and make changes to

the key ring. The DI system that provided the instance of IDataProtectionProvider  can also provide an instance of

IKeyManager  for your consumption. Alternatively, you can pull the IKeyManager  straight from the 

IServiceProvider  as in the example below.

Any operation which modifies the key ring (creating a new key explicitly or performing a revocation) will

invalidate the in-memory cache. The next call to Protect  or Unprotect  will cause the data protection system to

reread the key ring and recreate the cache.

The sample below demonstrates using the IKeyManager  interface to inspect and manipulate the key ring,

including revoking existing keys and generating a new key manually.



    public static void Main(string[] args)
    {
        var serviceCollection = new ServiceCollection();
        serviceCollection.AddDataProtection()
            // point at a specific folder and use DPAPI to encrypt keys
            .PersistKeysToFileSystem(new DirectoryInfo(@"c:\temp-keys"))
            .ProtectKeysWithDpapi();
        var services = serviceCollection.BuildServiceProvider();

        // perform a protect operation to force the system to put at least
        // one key in the key ring
        services.GetDataProtector("Sample.KeyManager.v1").Protect("payload");
        Console.WriteLine("Performed a protect operation.");
        Thread.Sleep(2000);

        // get a reference to the key manager
        var keyManager = services.GetService<IKeyManager>();

        // list all keys in the key ring
        var allKeys = keyManager.GetAllKeys();
        Console.WriteLine($"The key ring contains {allKeys.Count} key(s).");
        foreach (var key in allKeys)
        {
            Console.WriteLine($"Key {key.KeyId:B}: Created = {key.CreationDate:u}, IsRevoked = 
{key.IsRevoked}");
        }

        // revoke all keys in the key ring
        keyManager.RevokeAllKeys(DateTimeOffset.Now, reason: "Revocation reason here.");
        Console.WriteLine("Revoked all existing keys.");

        // add a new key to the key ring with immediate activation and a 1-month expiration
        keyManager.CreateNewKey(
            activationDate: DateTimeOffset.Now,
            expirationDate: DateTimeOffset.Now.AddMonths(1));
        Console.WriteLine("Added a new key.");

        // list all keys in the key ring
        allKeys = keyManager.GetAllKeys();
        Console.WriteLine($"The key ring contains {allKeys.Count} key(s).");
        foreach (var key in allKeys)
        {
            Console.WriteLine($"Key {key.KeyId:B}: Created = {key.CreationDate:u}, IsRevoked = 
{key.IsRevoked}");
        }
    }
}

/*
 * SAMPLE OUTPUT
 *
 * Performed a protect operation.
 * The key ring contains 1 key(s).
 * Key {1b948618-be1f-440b-b204-64ff5a152552}: Created = 2015-03-18 22:20:49Z, IsRevoked = False
 * Revoked all existing keys.
 * Added a new key.
 * The key ring contains 2 key(s).
 * Key {1b948618-be1f-440b-b204-64ff5a152552}: Created = 2015-03-18 22:20:49Z, IsRevoked = True
 * Key {2266fc40-e2fb-48c6-8ce2-5fde6b1493f7}: Created = 2015-03-18 22:20:51Z, IsRevoked = False
 */

Key storage

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

The data protection system has a heuristic whereby it attempts to deduce an appropriate key storage location and

https://github.com/MicrosoftDocs/feedback/issues/2515


encryption-at-rest mechanism automatically. The key persistence mechanism is also configurable by the app

developer. The following documents discuss the in-box implementations of these mechanisms:

Key storage providers in ASP.NET Core

Key encryption at rest in Windows and Azure using ASP.NET Core



  

  

Key storage providers in ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

WARNINGWARNING

File system

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .PersistKeysToFileSystem(new DirectoryInfo(@"c:\temp-keys\"));
}

Azure Storage

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .PersistKeysToAzureBlobStorage(new Uri("<blob URI including SAS token>"));
}

The data protection system employs a discovery mechanism by default to determine where cryptographic keys

should be persisted. The developer can override the default discovery mechanism and manually specify the

location.

If you specify an explicit key persistence location, the data protection system deregisters the default key encryption at rest

mechanism, so keys are no longer encrypted at rest. It's recommended that you additionally specify an explicit key

encryption mechanism for production deployments.

To configure a file system-based key repository, call the PersistKeysToFileSystem configuration routine as shown

below. Provide a DirectoryInfo pointing to the repository where keys should be stored:

The DirectoryInfo  can point to a directory on the local machine, or it can point to a folder on a network share.

If pointing to a directory on the local machine (and the scenario is that only apps on the local machine require

access to use this repository), consider using Windows DPAPI (on Windows) to encrypt the keys at rest.

Otherwise, consider using an X.509 certificate to encrypt keys at rest.

The Microsoft.AspNetCore.DataProtection.AzureStorage package allows storing data protection keys in Azure

Blob Storage. Keys can be shared across several instances of a web app. Apps can share authentication cookies

or CSRF protection across multiple servers.

To configure the Azure Blob Storage provider, call one of the PersistKeysToAzureBlobStorage overloads.

If the web app is running as an Azure service, authentication tokens can be automatically created using

Microsoft.Azure.Services.AppAuthentication.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/implementation/key-storage-providers.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.persistkeystofilesystem
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.AzureStorage/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.persistkeystoazureblobstorage
https://www.nuget.org/packages/Microsoft.Azure.Services.AppAuthentication/


var tokenProvider = new AzureServiceTokenProvider();
var token = await tokenProvider.GetAccessTokenAsync("https://storage.azure.com/");
var credentials = new StorageCredentials(new TokenCredential(token));
var storageAccount = new CloudStorageAccount(credentials, "mystorageaccount", "core.windows.net", useHttps: 
true);
var client = storageAccount.CreateCloudBlobClient();
var container = client.GetContainerReference("my-key-container");

// optional - provision the container automatically
await container.CreateIfNotExistsAsync();

services.AddDataProtection()
    .PersistKeysToAzureBlobStorage(container, "keys.xml");

Redis

public void ConfigureServices(IServiceCollection services)
{
    var redis = ConnectionMultiplexer.Connect("<URI>");
    services.AddDataProtection()
        .PersistKeysToStackExchangeRedis(redis, "DataProtection-Keys");
}

public void ConfigureServices(IServiceCollection services)
{
    var redis = ConnectionMultiplexer.Connect("<URI>");
    services.AddDataProtection()
        .PersistKeysToRedis(redis, "DataProtection-Keys");
}

Registry

See more details about configuring service-to-service authentication.

The Microsoft.AspNetCore.DataProtection.StackExchangeRedis package allows storing data protection keys in a

Redis cache. Keys can be shared across several instances of a web app. Apps can share authentication cookies or

CSRF protection across multiple servers.

The Microsoft.AspNetCore.DataProtection.Redis package allows storing data protection keys in a Redis cache.

Keys can be shared across several instances of a web app. Apps can share authentication cookies or CSRF

protection across multiple servers.

To configure on Redis, call one of the PersistKeysToStackExchangeRedis overloads:

To configure on Redis, call one of the PersistKeysToRedis overloads:

For more information, see the following topics:

StackExchange.Redis ConnectionMultiplexer

Azure Redis Cache

ASP.NET Core DataProtection samples

Only applies to Windows deployments.Only applies to Windows deployments.

Sometimes the app might not have write access to the file system. Consider a scenario where an app is running

as a virtual service account (such as w3wp.exe's app pool identity). In these cases, the administrator can

provision a registry key that's accessible by the service account identity. Call the PersistKeysToRegistry extension

https://docs.microsoft.com/en-us/azure/key-vault/service-to-service-authentication
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.StackExchangeRedis/
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Redis/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.stackexchangeredisdataprotectionbuilderextensions.persistkeystostackexchangeredis
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.redisdataprotectionbuilderextensions.persistkeystoredis
https://github.com/StackExchange/StackExchange.Redis/blob/master/docs/Basics.md
https://docs.microsoft.com/en-us/azure/redis-cache/cache-dotnet-how-to-use-azure-redis-cache#connect-to-the-cache
https://github.com/dotnet/AspNetCore/tree/2.2.0/src/DataProtection/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.persistkeystoregistry


public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .PersistKeysToRegistry(Registry.CurrentUser.OpenSubKey(@"SOFTWARE\Sample\keys"));
}

IMPORTANTIMPORTANT

Entity Framework Core

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
    });

    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("DefaultConnection")));

    // Add a DbContext to store your Database Keys
    services.AddDbContext<MyKeysContext>(options =>
        options.UseSqlServer(
            Configuration.GetConnectionString("MyKeysConnection")));

    // using Microsoft.AspNetCore.DataProtection;
    services.AddDataProtection()
        .PersistKeysToDbContext<MyKeysContext>();

    services.AddDefaultIdentity<IdentityUser>()
        .AddDefaultUI(UIFramework.Bootstrap4)
        .AddEntityFrameworkStores<ApplicationDbContext>();
    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

method as shown below. Provide a RegistryKey pointing to the location where cryptographic keys should be

stored:

We recommend using Windows DPAPI to encrypt the keys at rest.

The Microsoft.AspNetCore.DataProtection.EntityFrameworkCore package provides a mechanism for storing data

protection keys to a database using Entity Framework Core. The 

Microsoft.AspNetCore.DataProtection.EntityFrameworkCore  NuGet package must be added to the project file, it's

not part of the Microsoft.AspNetCore.App metapackage.

With this package, keys can be shared across multiple instances of a web app.

To configure the EF Core provider, call the PersistKeysToDbContext<TContext> method:

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

The generic parameter, TContext , must inherit from DbContext and implement IDataProtectionKeyContext:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.repositories.registryxmlrepository.registrykey
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.EntityFrameworkCore/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.entityframeworkcoredataprotectionextensions.persistkeystodbcontext
https://github.com/MicrosoftDocs/feedback/issues/2515
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.entityframeworkcore.idataprotectionkeycontext


using Microsoft.AspNetCore.DataProtection.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;
using WebApp1.Data;

namespace WebApp1
{
    class MyKeysContext : DbContext, IDataProtectionKeyContext
    {
        // A recommended constructor overload when using EF Core 
        // with dependency injection.
        public MyKeysContext(DbContextOptions<MyKeysContext> options) 
            : base(options) { }

        // This maps to the table that stores keys.
        public DbSet<DataProtectionKey> DataProtectionKeys { get; set; }
    }
}

Add-Migration AddDataProtectionKeys -Context MyKeysContext
Update-Database -Context MyKeysContext

P RO P ERT Y / F IEL DP RO P ERT Y / F IEL D C L R T Y P EC L R T Y P E SQ L  T Y P ESQ L  T Y P E

Id int int , PK, IDENTITY(1,1) , not null

FriendlyName string nvarchar(MAX) , null

Xml string nvarchar(MAX) , null

Custom key repository

Create the DataProtectionKeys  table.

Visual Studio

.NET Core CLI

Execute the following commands in the Package Manager ConsolePackage Manager Console (PMC) window:

MyKeysContext  is the DbContext  defined in the preceding code sample. If you're using a DbContext  with a

different name, substitute your DbContext  name for MyKeysContext .

The DataProtectionKeys  class/entity adopts the structure shown in the following table.

If the in-box mechanisms aren't appropriate, the developer can specify their own key persistence mechanism by

providing a custom IXmlRepository.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.repositories.ixmlrepository


Key encryption at rest in Windows and Azure using
ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

WARNINGWARNING

Azure Key Vault

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .PersistKeysToAzureBlobStorage(new Uri("<blobUriWithSasToken>"))
        .ProtectKeysWithAzureKeyVault("<keyIdentifier>", "<clientId>", "<clientSecret>");
}

Windows DPAPI

public void ConfigureServices(IServiceCollection services)
{
    // Only the local user account can decrypt the keys
    services.AddDataProtection()
        .ProtectKeysWithDpapi();
}

The data protection system employs a discovery mechanism by default to determine how cryptographic keys

should be encrypted at rest. The developer can override the discovery mechanism and manually specify how

keys should be encrypted at rest.

If you specify an explicit key persistence location, the data protection system deregisters the default key encryption at rest

mechanism. Consequently, keys are no longer encrypted at rest. We recommend that you specify an explicit key

encryption mechanism for production deployments. The encryption-at-rest mechanism options are described in this topic.

To store keys in Azure Key Vault, configure the system with ProtectKeysWithAzureKeyVault in the Startup  class:

For more information, see Configure ASP.NET Core Data Protection: ProtectKeysWithAzureKeyVault.

Only applies to Windows deployments.Only applies to Windows deployments.

When Windows DPAPI is used, key material is encrypted with CryptProtectData before being persisted to

storage. DPAPI is an appropriate encryption mechanism for data that's never read outside of the current

machine (though it's possible to back these keys up to Active Directory; see DPAPI and Roaming Profiles). To

configure DPAPI key-at-rest encryption, call one of the ProtectKeysWithDpapi extension methods:

If ProtectKeysWithDpapi  is called with no parameters, only the current Windows user account can decipher the

persisted key ring. You can optionally specify that any user account on the machine (not just the current user

account) be able to decipher the key ring:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/implementation/key-encryption-at-rest.md
https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.azuredataprotectionbuilderextensions.protectkeyswithazurekeyvault
https://docs.microsoft.com/en-us/windows/desktop/api/dpapi/nf-dpapi-cryptprotectdata
https://support.microsoft.com/kb/309408/#6
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.protectkeyswithdpapi


public void ConfigureServices(IServiceCollection services)
{
    // All user accounts on the machine can decrypt the keys
    services.AddDataProtection()
        .ProtectKeysWithDpapi(protectToLocalMachine: true);
}

X.509 certificate

public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .ProtectKeysWithCertificate("3BCE558E2AD3E0E34A7743EAB5AEA2A9BD2575A0");
}

Windows DPAPI-NG

public void ConfigureServices(IServiceCollection services)
{
    // Uses the descriptor rule "SID=S-1-5-21-..."
    services.AddDataProtection()
        .ProtectKeysWithDpapiNG("SID=S-1-5-21-...",
        flags: DpapiNGProtectionDescriptorFlags.None);
}

public void ConfigureServices(IServiceCollection services)
{
    // Use the descriptor rule "SID={current account SID}"
    services.AddDataProtection()
        .ProtectKeysWithDpapiNG();
}

Certificate-based encryption with Windows DPAPI-NG

If the app is spread across multiple machines, it may be convenient to distribute a shared X.509 certificate

across the machines and configure the hosted apps to use the certificate for encryption of keys at rest:

Due to .NET Framework limitations, only certificates with CAPI private keys are supported. See the content

below for possible workarounds to these limitations.

This mechanism is available only on Windows 8/Windows Ser ver 2012 or later.This mechanism is available only on Windows 8/Windows Ser ver 2012 or later.

Beginning with Windows 8, Windows OS supports DPAPI-NG (also called CNG DPAPI). For more information,

see About CNG DPAPI.

The principal is encoded as a protection descriptor rule. In the following example that calls

ProtectKeysWithDpapiNG, only the domain-joined user with the specified SID can decrypt the key ring:

There's also a parameterless overload of ProtectKeysWithDpapiNG . Use this convenience method to specify the

rule "SID={CURRENT_ACCOUNT_SID}", where CURRENT_ACCOUNT_SID is the SID of the current Windows user

account:

In this scenario, the AD domain controller is responsible for distributing the encryption keys used by the DPAPI-

NG operations. The target user can decipher the encrypted payload from any domain-joined machine (provided

that the process is running under their identity).

https://docs.microsoft.com/en-us/windows/desktop/seccng/cng-dpapi
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.protectkeyswithdpaping


public void ConfigureServices(IServiceCollection services)
{
    services.AddDataProtection()
        .ProtectKeysWithDpapiNG("CERTIFICATE=HashId:3BCE558E2...B5AEA2A9BD2575A0",
            flags: DpapiNGProtectionDescriptorFlags.None);
}

Custom key encryption

If the app is running on Windows 8.1/Windows Server 2012 R2 or later, you can use Windows DPAPI-NG to

perform certificate-based encryption. Use the rule descriptor string "CERTIFICATE=HashId:THUMBPRINT", where

THUMBPRINT is the hex-encoded SHA1 thumbprint of the certificate:

Any app pointed at this repository must be running on Windows 8.1/Windows Server 2012 R2 or later to

decipher the keys.

If the in-box mechanisms aren't appropriate, the developer can specify their own key encryption mechanism by

providing a custom IXmlEncryptor.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.xmlencryption.ixmlencryptor


Key immutability and key settings in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

TIPTIP

Once an object is persisted to the backing store, its representation is forever fixed. New data can be added to the

backing store, but existing data can never be mutated. The primary purpose of this behavior is to prevent data

corruption.

One consequence of this behavior is that once a key is written to the backing store, it's immutable. Its creation,

activation, and expiration dates can never be changed, though it can revoked by using IKeyManager . Additionally, its

underlying algorithmic information, master keying material, and encryption at rest properties are also immutable.

If the developer changes any setting that affects key persistence, those changes won't go into effect until the next

time a key is generated, either via an explicit call to IKeyManager.CreateNewKey  or via the data protection system's

own automatic key generation behavior. The settings that affect key persistence are as follows:

The default key lifetime

The key encryption at rest mechanism

The algorithmic information contained within the key

If you need these settings to kick in earlier than the next automatic key rolling time, consider making an explicit call

to IKeyManager.CreateNewKey  to force the creation of a new key. Remember to provide an explicit activation date ({

now + 2 days } is a good rule of thumb to allow time for the change to propagate) and expiration date in the call.

All applications touching the repository should specify the same settings with the IDataProtectionBuilder  extension

methods. Otherwise, the properties of the persisted key will be dependent on the particular application that invoked the key

generation routines.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/implementation/key-immutability.md


Key storage format in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

The <key> element

<?xml version="1.0" encoding="utf-8"?>
<key id="80732141-ec8f-4b80-af9c-c4d2d1ff8901" version="1">
  <creationDate>2015-03-19T23:32:02.3949887Z</creationDate>
  <activationDate>2015-03-19T23:32:02.3839429Z</activationDate>
  <expirationDate>2015-06-17T23:32:02.3839429Z</expirationDate>
  <descriptor deserializerType="{deserializerType}">
    <descriptor>
      <encryption algorithm="AES_256_CBC" />
      <validation algorithm="HMACSHA256" />
      <enc:encryptedSecret decryptorType="{decryptorType}" xmlns:enc="...">
        <encryptedKey>
          <!-- This key is encrypted with Windows DPAPI. -->
          <value>AQAAANCM...8/zeP8lcwAg==</value>
        </encryptedKey>
      </enc:encryptedSecret>
    </descriptor>
  </descriptor>
</key>

The <descriptor> element

  Objects are stored at rest in XML representation. The default directory for key storage is:

Windows: *%LOCALAPPDATA%\ASP.NET\DataProtection-Keys*

macOS / Linux: $HOME/.aspnet/DataProtection-Keys

Keys exist as top-level objects in the key repository. By convention keys have the filename key-{guid}.xmlkey-{guid}.xml , where

{guid} is the id of the key. Each such file contains a single key. The format of the file is as follows.

The <key> element contains the following attributes and child elements:

The key id. This value is treated as authoritative; the filename is simply a nicety for human readability.

The version of the <key> element, currently fixed at 1.

The key's creation, activation, and expiration dates.

A <descriptor> element, which contains information on the authenticated encryption implementation

contained within this key.

In the above example, the key's id is {80732141-ec8f-4b80-af9c-c4d2d1ff8901}, it was created and activated on

March 19, 2015, and it has a lifetime of 90 days. (Occasionally the activation date might be slightly before the

creation date as in this example. This is due to a nit in how the APIs work and is harmless in practice.)

The outer <descriptor> element contains an attribute deserializerType, which is the assembly-qualified name of a

type which implements IAuthenticatedEncryptorDescriptorDeserializer. This type is responsible for reading the

inner <descriptor> element and for parsing the information contained within.

The particular format of the <descriptor> element depends on the authenticated encryptor implementation

encapsulated by the key, and each deserializer type expects a slightly different format for this. In general, though,

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/implementation/key-storage-format.md


The <encryptedSecret> element

The <revocation> element

<?xml version="1.0" encoding="utf-8"?>
<revocation version="1">
  <revocationDate>2015-03-20T22:45:30.2616742Z</revocationDate>
  <key id="eb4fc299-8808-409d-8a34-23fc83d026c9" />
  <reason>human-readable reason</reason>
</revocation>

<?xml version="1.0" encoding="utf-8"?>
<revocation version="1">
  <revocationDate>2015-03-20T15:45:45.7366491-07:00</revocationDate>
  <!-- All keys created before the revocation date are revoked. -->
  <key id="*" />
  <reason>human-readable reason</reason>
</revocation>

this element will contain algorithmic information (names, types, OIDs, or similar) and secret key material. In the

above example, the descriptor specifies that this key wraps AES-256-CBC encryption + HMACSHA256 validation.

An <encr yptedSecret><encr yptedSecret> element which contains the encrypted form of the secret key material may be present if

encryption of secrets at rest is enabled. The attribute decryptorType  is the assembly-qualified name of a type

which implements IXmlDecryptor. This type is responsible for reading the inner <encr yptedKey><encr yptedKey> element and

decrypting it to recover the original plaintext.

As with <descriptor> , the particular format of the <encryptedSecret>  element depends on the at-rest encryption

mechanism in use. In the above example, the master key is encrypted using Windows DPAPI per the comment.

Revocations exist as top-level objects in the key repository. By convention revocations have the filename

revocation-{timestamp}.xmlrevocation-{timestamp}.xml  (for revoking all keys before a specific date) or revocation-{guid}.xmlrevocation-{guid}.xml  (for

revoking a specific key). Each file contains a single <revocation> element.

For revocations of individual keys, the file contents will be as below.

In this case, only the specified key is revoked. If the key id is "*", however, as in the below example, all keys whose

creation date is prior to the specified revocation date are revoked.

The <reason> element is never read by the system. It's simply a convenient place to store a human-readable

reason for revocation.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.xmlencryption.ixmldecryptor


Ephemeral data protection providers in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

using System;
using Microsoft.AspNetCore.DataProtection;

public class Program
{
    public static void Main(string[] args)
    {
        const string purpose = "Ephemeral.App.v1";

        // create an ephemeral provider and demonstrate that it can round-trip a payload
        var provider = new EphemeralDataProtectionProvider();
        var protector = provider.CreateProtector(purpose);
        Console.Write("Enter input: ");
        string input = Console.ReadLine();

        // protect the payload
        string protectedPayload = protector.Protect(input);
        Console.WriteLine($"Protect returned: {protectedPayload}");

        // unprotect the payload
        string unprotectedPayload = protector.Unprotect(protectedPayload);
        Console.WriteLine($"Unprotect returned: {unprotectedPayload}");

        // if I create a new ephemeral provider, it won't be able to unprotect existing
        // payloads, even if I specify the same purpose
        provider = new EphemeralDataProtectionProvider();
        protector = provider.CreateProtector(purpose);
        unprotectedPayload = protector.Unprotect(protectedPayload); // THROWS
    }
}

/*
* SAMPLE OUTPUT
*
* Enter input: Hello!
* Protect returned: CfDJ8AAAAAAAAAAAAAAAAAAAAA...uGoxWLjGKtm1SkNACQ
* Unprotect returned: Hello!
* << throws CryptographicException >>
*/

 There are scenarios where an application needs a throwaway IDataProtectionProvider . For example, the developer

might just be experimenting in a one-off console application, or the application itself is transient (it's scripted or a

unit test project). To support these scenarios the Microsoft.AspNetCore.DataProtection package includes a type 

EphemeralDataProtectionProvider . This type provides a basic implementation of IDataProtectionProvider  whose

key repository is held solely in-memory and isn't written out to any backing store.

Each instance of EphemeralDataProtectionProvider  uses its own unique master key. Therefore, if an IDataProtector

rooted at an EphemeralDataProtectionProvider  generates a protected payload, that payload can only be unprotected

by an equivalent IDataProtector  (given the same purpose chain) rooted at the same 

EphemeralDataProtectionProvider  instance.

The following sample demonstrates instantiating an EphemeralDataProtectionProvider  and using it to protect and

unprotect data.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/implementation/key-storage-ephemeral.md
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection/


Compatibility in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Replacing ASP.NET <machineKey> in ASP.NET Core

Microsoft.AspNetCore.DataProtection  3.1 not compatible with Azure function apps. For more information, see

this GitHub issue

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/compatibility/index.md
https://github.com/Azure/azure-functions-host/issues/5447


Replace the ASP.NET machineKey in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Package installation

NOTENOTE

<machineKey compatibilityMode="Framework45" dataProtectorType="..." />

TIPTIP

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="CfDJ8AWPr2EQPTBGs3L2GCZOpk...">

Package configuration

 The implementation of the <machineKey>  element in ASP.NET is replaceable. This allows most calls to ASP.NET

cryptographic routines to be routed through a replacement data protection mechanism, including the new data

protection system.

The new data protection system can only be installed into an existing ASP.NET application targeting .NET 4.5.1 or later.

Installation will fail if the application targets .NET 4.5 or lower.

To install the new data protection system into an existing ASP.NET 4.5.1+ project, install the package

Microsoft.AspNetCore.DataProtection.SystemWeb. This will instantiate the data protection system using the default

configuration settings.

When you install the package, it inserts a line into Web.config that tells ASP.NET to use it for most cryptographic

operations, including forms authentication, view state, and calls to MachineKey.Protect. The line that's inserted

reads as follows.

You can tell if the new data protection system is active by inspecting fields like __VIEWSTATE , which should begin with

"CfDJ8" as in the example below. "CfDJ8" is the base64 representation of the magic "09 F0 C9 F0" header that identifies a

payload protected by the data protection system.

The data protection system is instantiated with a default zero-setup configuration. However, since by default keys

are persisted to the local file system, this won't work for applications which are deployed in a farm. To resolve this,

you can provide configuration by creating a type which subclasses DataProtectionStartup and overrides its

ConfigureServices method.

Below is an example of a custom data protection startup type which configured both where keys are persisted and

how they're encrypted at rest. It also overrides the default app isolation policy by providing its own application

name.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/data-protection/compatibility/replacing-machinekey.md
https://blogs.msdn.microsoft.com/webdev/2012/10/23/cryptographic-improvements-in-asp-net-4-5-pt-2/
https://blogs.msdn.microsoft.com/webdev/2012/10/23/cryptographic-improvements-in-asp-net-4-5-pt-2/


using System;
using System.IO;
using Microsoft.AspNetCore.DataProtection;
using Microsoft.AspNetCore.DataProtection.SystemWeb;
using Microsoft.Extensions.DependencyInjection;

namespace DataProtectionDemo
{
    public class MyDataProtectionStartup : DataProtectionStartup
    {
        public override void ConfigureServices(IServiceCollection services)
        {
            services.AddDataProtection()
                .SetApplicationName("my-app")
                .PersistKeysToFileSystem(new DirectoryInfo(@"\\server\share\myapp-keys\"))
                .ProtectKeysWithCertificate("thumbprint");
        }
    }
}

TIPTIP

<appSettings>
  <!--
  If you want to customize the behavior of the ASP.NET Core Data Protection stack, set the
  "aspnet:dataProtectionStartupType" switch below to be the fully-qualified name of a
  type which subclasses Microsoft.AspNetCore.DataProtection.SystemWeb.DataProtectionStartup.
  -->
  <add key="aspnet:dataProtectionStartupType" value="" />
</appSettings>

<add key="aspnet:dataProtectionStartupType"
     value="DataProtectionDemo.MyDataProtectionStartup, DataProtectionDemo" />

You can also use <machineKey applicationName="my-app" ... />  in place of an explicit call to SetApplicationName. This is

a convenience mechanism to avoid forcing the developer to create a DataProtectionStartup-derived type if all they wanted

to configure was setting the application name.

To enable this custom configuration, go back to Web.config and look for the <appSettings>  element that the

package install added to the config file. It will look like the following markup:

Fill in the blank value with the assembly-qualified name of the DataProtectionStartup-derived type you just

created. If the name of the application is DataProtectionDemo, this would look like the below.

The newly-configured data protection system is now ready for use inside the application.



  

        

Safe storage of app secrets in development in
ASP.NET Core
9/22/2020 • 15 minutes to read • Edit Online

Environment variables

WARNINGWARNING

Secret Manager

By Rick Anderson, Kirk Larkin, Daniel Roth, and Scott Addie

View or download sample code (how to download)

This document explains techniques for storing and retrieving sensitive data during development of an

ASP.NET Core app on a development machine. Never store passwords or other sensitive data in source

code. Production secrets shouldn't be used for development or test. Secrets shouldn't be deployed with

the app. Instead, secrets should be made available in the production environment through a controlled

means like environment variables, Azure Key Vault, etc. You can store and protect Azure test and

production secrets with the Azure Key Vault configuration provider.

Environment variables are used to avoid storage of app secrets in code or in local configuration files.

Environment variables override configuration values for all previously specified configuration sources.

Consider an ASP.NET Core web app in which Individual User AccountsIndividual User Accounts  security is enabled. A default

database connection string is included in the project's appsettings.json file with the key 

DefaultConnection . The default connection string is for LocalDB, which runs in user mode and doesn't

require a password. During app deployment, the DefaultConnection  key value can be overridden with an

environment variable's value. The environment variable may store the complete connection string with

sensitive credentials.

Environment variables are generally stored in plain, unencrypted text. If the machine or process is compromised,

environment variables can be accessed by untrusted parties. Additional measures to prevent disclosure of user

secrets may be required.

The :  separator doesn't work with environment variable hierarchical keys on all platforms. __ , the

double underscore, is:

Supported by all platforms. For example, the :  separator is not supported by Bash, but __  is.

Automatically replaced by a :

The Secret Manager tool stores sensitive data during the development of an ASP.NET Core project. In this

context, a piece of sensitive data is an app secret. App secrets are stored in a separate location from the

project tree. The app secrets are associated with a specific project or shared across several projects. The

app secrets aren't checked into source control.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/app-secrets.md
https://twitter.com/RickAndMSFT
https://twitter.com/serpent5
https://github.com/danroth27
https://github.com/scottaddie
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/app-secrets/samples
https://linuxhint.com/bash-environment-variables/


        

WARNINGWARNING

How the Secret Manager tool works

Enable secret storage

dotnet user-secrets init

<PropertyGroup>
  <TargetFramework>netcoreapp3.1</TargetFramework>
  <UserSecretsId>79a3edd0-2092-40a2-a04d-dcb46d5ca9ed</UserSecretsId>
</PropertyGroup>

Set a secret

dotnet user-secrets set "Movies:ServiceApiKey" "12345"

The Secret Manager tool doesn't encrypt the stored secrets and shouldn't be treated as a trusted store. It's for

development purposes only. The keys and values are stored in a JSON configuration file in the user profile

directory.

The Secret Manager tool abstracts away the implementation details, such as where and how the values

are stored. You can use the tool without knowing these implementation details. The values are stored in a

JSON configuration file in a system-protected user profile folder on the local machine:

Windows

Linux / macOS

File system path:

%APPDATA%\Microsoft\UserSecrets\<user_secrets_id>\secrets.json

In the preceding file paths, replace <user_secrets_id>  with the UserSecretsId  value specified in the

.csproj file.

Don't write code that depends on the location or format of data saved with the Secret Manager tool.

These implementation details may change. For example, the secret values aren't encrypted, but could be

in the future.

The Secret Manager tool operates on project-specific configuration settings stored in your user profile.

The Secret Manager tool includes an init  command in .NET Core SDK 3.0.100 or later. To use user

secrets, run the following command in the project directory:

The preceding command adds a UserSecretsId  element within a PropertyGroup  of the .csproj file. By

default, the inner text of UserSecretsId  is a GUID. The inner text is arbitrary, but is unique to the project.

In Visual Studio, right-click the project in Solution Explorer, and select Manage User SecretsManage User Secrets  from the

context menu. This gesture adds a UserSecretsId  element, populated with a GUID, to the .csproj file.

Define an app secret consisting of a key and its value. The secret is associated with the project's 

UserSecretsId  value. For example, run the following command from the directory in which the .csproj

file exists:



dotnet user-secrets set "Movies:ServiceApiKey" "12345" --project "C:\apps\WebApp1\src\WebApp1"

JSON structure flattening in Visual StudioJSON structure flattening in Visual Studio

{
  "Movies": {
    "ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true",
    "ServiceApiKey": "12345"
  }
}

{
  "Movies:ServiceApiKey": "12345"
}

Set multiple secrets

type .\input.json | dotnet user-secrets set

Access a secret

In the preceding example, the colon denotes that Movies  is an object literal with a ServiceApiKey

property.

The Secret Manager tool can be used from other directories too. Use the --project  option to supply the

file system path at which the .csproj file exists. For example:

Visual Studio's Manage User SecretsManage User Secrets  gesture opens a secrets.json file in the text editor. Replace the

contents of secrets.json with the key-value pairs to be stored. For example:

The JSON structure is flattened after modifications via dotnet user-secrets remove  or 

dotnet user-secrets set . For example, running dotnet user-secrets remove "Movies:ConnectionString"

collapses the Movies  object literal. The modified file resembles the following:

A batch of secrets can be set by piping JSON to the set  command. In the following example, the

input.json file's contents are piped to the set  command.

Windows

Linux / macOS

Open a command shell, and execute the following command:

The ASP.NET Core Configuration API provides access to Secret Manager secrets.

The user secrets configuration source is automatically added in development mode when the project calls

CreateDefaultBuilder to initialize a new instance of the host with preconfigured defaults. 

CreateDefaultBuilder  calls AddUserSecrets when the EnvironmentName is Development:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.usersecretsconfigurationextensions.addusersecrets
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment.environmentname#microsoft_extensions_hosting_ihostenvironment_environmentname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.environmentname.development


public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseStartup<Startup>();
        });

var host = new HostBuilder()
    .ConfigureAppConfiguration((hostContext, builder) =>
    {
        // Add other providers for JSON, etc.

        if (hostContext.HostingEnvironment.IsDevelopment())
        {
            builder.AddUserSecrets<Program>();
        }
    })
    .Build();

public class Startup
{
    private string _moviesApiKey = null;

    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        _moviesApiKey = Configuration["Movies:ServiceApiKey"];
    }

    public void Configure(IApplicationBuilder app)
    {
        app.Run(async (context) =>
        {
            var result = string.IsNullOrEmpty(_moviesApiKey) ? "Null" : "Not Null";
            await context.Response.WriteAsync($"Secret is {result}");
        });
    }
}

Map secrets to a POCO

When CreateDefaultBuilder  isn't called, add the user secrets configuration source explicitly by calling

AddUserSecrets. Call AddUserSecrets  only when the app runs in the Development environment, as

shown in the following example:

User secrets can be retrieved via the Configuration  API:

Mapping an entire object literal to a POCO (a simple .NET class with properties) is useful for aggregating

related properties.

Assume the app's secrets.json file contains the following two secrets:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.usersecretsconfigurationextensions.addusersecrets


{
  "Movies:ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true",
  "Movies:ServiceApiKey": "12345"
}

var moviesConfig = Configuration.GetSection("Movies")
                                .Get<MovieSettings>();
_moviesApiKey = moviesConfig.ServiceApiKey;

public class MovieSettings
{
    public string ConnectionString { get; set; }

    public string ServiceApiKey { get; set; }
}

String replacement with secrets

{
  "ConnectionStrings": {
    "Movies": "Server=(localdb)\\mssqllocaldb;Database=Movie-1;User 
Id=johndoe;Password=pass123;MultipleActiveResultSets=true"
  }
}

dotnet user-secrets set "DbPassword" "pass123"

{
  "ConnectionStrings": {
    "Movies": "Server=(localdb)\\mssqllocaldb;Database=Movie-1;User 
Id=johndoe;MultipleActiveResultSets=true"
  }
}

To map the preceding secrets to a POCO, use the Configuration  API's object graph binding feature. The

following code binds to a custom MovieSettings  POCO and accesses the ServiceApiKey  property value:

The Movies:ConnectionString  and Movies:ServiceApiKey  secrets are mapped to the respective properties

in MovieSettings :

Storing passwords in plain text is insecure. For example, a database connection string stored in

appsettings.json may include a password for the specified user :

A more secure approach is to store the password as a secret. For example:

Remove the Password  key-value pair from the connection string in appsettings.json. For example:

The secret's value can be set on a SqlConnectionStringBuilder object's Password property to complete the

connection string:

https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder
https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder.password


public class Startup
{
    private string _connection = null;

    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        var builder = new SqlConnectionStringBuilder(
            Configuration.GetConnectionString("Movies"));
        builder.Password = Configuration["DbPassword"];
        _connection = builder.ConnectionString;
    }

    public void Configure(IApplicationBuilder app)
    {
        app.Run(async (context) =>
        {
            await context.Response.WriteAsync($"DB Connection: {_connection}");
        });
    }
}

List the secrets

{
  "Movies:ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true",
  "Movies:ServiceApiKey": "12345"
}

dotnet user-secrets list

Movies:ConnectionString = Server=(localdb)\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true
Movies:ServiceApiKey = 12345

Remove a single secret

Assume the app's secrets.json file contains the following two secrets:

Run the following command from the directory in which the .csproj file exists:

The following output appears:

In the preceding example, a colon in the key names denotes the object hierarchy within secrets.json.

Assume the app's secrets.json file contains the following two secrets:



{
  "Movies:ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true",
  "Movies:ServiceApiKey": "12345"
}

dotnet user-secrets remove "Movies:ConnectionString"

{
  "Movies": {
    "ServiceApiKey": "12345"
  }
}

Movies:ServiceApiKey = 12345

Remove all secrets

{
  "Movies:ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true",
  "Movies:ServiceApiKey": "12345"
}

dotnet user-secrets clear

{}

No secrets configured for this application.

Additional resources

Run the following command from the directory in which the .csproj file exists:

The app's secrets.json file was modified to remove the key-value pair associated with the 

MoviesConnectionString  key:

dotnet user-secrets list  displays the following message:

Assume the app's secrets.json file contains the following two secrets:

Run the following command from the directory in which the .csproj file exists:

All user secrets for the app have been deleted from the secrets.json file:

Running dotnet user-secrets list  displays the following message:

See this issue for information on accessing Secret Manager from IIS.

Configuration in ASP.NET Core

Azure Key Vault Configuration Provider in ASP.NET Core

https://github.com/dotnet/AspNetCore.Docs/issues/16328


Environment variables

WARNINGWARNING

Secret Manager

WARNINGWARNING

How the Secret Manager tool works

By Rick Anderson, Daniel Roth, and Scott Addie

View or download sample code (how to download)

This document explains techniques for storing and retrieving sensitive data during development of an

ASP.NET Core app on a development machine. Never store passwords or other sensitive data in source

code. Production secrets shouldn't be used for development or test. Secrets shouldn't be deployed with

the app. Instead, secrets should be made available in the production environment through a controlled

means like environment variables, Azure Key Vault, etc. You can store and protect Azure test and

production secrets with the Azure Key Vault configuration provider.

Environment variables are used to avoid storage of app secrets in code or in local configuration files.

Environment variables override configuration values for all previously specified configuration sources.

Consider an ASP.NET Core web app in which Individual User AccountsIndividual User Accounts  security is enabled. A default

database connection string is included in the project's appsettings.json file with the key 

DefaultConnection . The default connection string is for LocalDB, which runs in user mode and doesn't

require a password. During app deployment, the DefaultConnection  key value can be overridden with an

environment variable's value. The environment variable may store the complete connection string with

sensitive credentials.

Environment variables are generally stored in plain, unencrypted text. If the machine or process is compromised,

environment variables can be accessed by untrusted parties. Additional measures to prevent disclosure of user

secrets may be required.

The :  separator doesn't work with environment variable hierarchical keys on all platforms. __ , the

double underscore, is:

Supported by all platforms. For example, the :  separator is not supported by Bash, but __  is.

Automatically replaced by a :

The Secret Manager tool stores sensitive data during the development of an ASP.NET Core project. In this

context, a piece of sensitive data is an app secret. App secrets are stored in a separate location from the

project tree. The app secrets are associated with a specific project or shared across several projects. The

app secrets aren't checked into source control.

The Secret Manager tool doesn't encrypt the stored secrets and shouldn't be treated as a trusted store. It's for

development purposes only. The keys and values are stored in a JSON configuration file in the user profile

directory.

The Secret Manager tool abstracts away the implementation details, such as where and how the values

are stored. You can use the tool without knowing these implementation details. The values are stored in a

JSON configuration file in a system-protected user profile folder on the local machine:

https://twitter.com/RickAndMSFT
https://github.com/danroth27
https://github.com/scottaddie
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/app-secrets/samples
https://linuxhint.com/bash-environment-variables/


Enable secret storage

<PropertyGroup>
  <TargetFramework>netcoreapp2.1</TargetFramework>
  <UserSecretsId>79a3edd0-2092-40a2-a04d-dcb46d5ca9ed</UserSecretsId>
</PropertyGroup>

TIPTIP

Set a secret

dotnet user-secrets set "Movies:ServiceApiKey" "12345"

dotnet user-secrets set "Movies:ServiceApiKey" "12345" --project "C:\apps\WebApp1\src\WebApp1"

JSON structure flattening in Visual StudioJSON structure flattening in Visual Studio

Windows

Linux / macOS

File system path:

%APPDATA%\Microsoft\UserSecrets\<user_secrets_id>\secrets.json

In the preceding file paths, replace <user_secrets_id>  with the UserSecretsId  value specified in the

.csproj file.

Don't write code that depends on the location or format of data saved with the Secret Manager tool.

These implementation details may change. For example, the secret values aren't encrypted, but could be

in the future.

The Secret Manager tool operates on project-specific configuration settings stored in your user profile.

To use user secrets, define a UserSecretsId  element within a PropertyGroup  of the .csproj file. The inner

text of UserSecretsId  is arbitrary, but is unique to the project. Developers typically generate a GUID for

the UserSecretsId .

In Visual Studio, right-click the project in Solution Explorer, and select Manage User SecretsManage User Secrets  from the context

menu. This gesture adds a UserSecretsId  element, populated with a GUID, to the .csproj file.

Define an app secret consisting of a key and its value. The secret is associated with the project's 

UserSecretsId  value. For example, run the following command from the directory in which the .csproj

file exists:

In the preceding example, the colon denotes that Movies  is an object literal with a ServiceApiKey

property.

The Secret Manager tool can be used from other directories too. Use the --project  option to supply the

file system path at which the .csproj file exists. For example:

Visual Studio's Manage User SecretsManage User Secrets  gesture opens a secrets.json file in the text editor. Replace the

contents of secrets.json with the key-value pairs to be stored. For example:



{
  "Movies": {
    "ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true",
    "ServiceApiKey": "12345"
  }
}

{
  "Movies:ServiceApiKey": "12345"
}

Set multiple secrets

type .\input.json | dotnet user-secrets set

Access a secret

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>();

The JSON structure is flattened after modifications via dotnet user-secrets remove  or 

dotnet user-secrets set . For example, running dotnet user-secrets remove "Movies:ConnectionString"

collapses the Movies  object literal. The modified file resembles the following:

A batch of secrets can be set by piping JSON to the set  command. In the following example, the

input.json file's contents are piped to the set  command.

Windows

Linux / macOS

Open a command shell, and execute the following command:

The ASP.NET Core Configuration API provides access to Secret Manager secrets.

If your project targets .NET Framework, install the Microsoft.Extensions.Configuration.UserSecrets NuGet

package.

In ASP.NET Core 2.0 or later, the user secrets configuration source is automatically added in development

mode when the project calls CreateDefaultBuilder to initialize a new instance of the host with

preconfigured defaults. CreateDefaultBuilder  calls AddUserSecrets when the EnvironmentName is

Development:

When CreateDefaultBuilder  isn't called, add the user secrets configuration source explicitly by calling

AddUserSecrets in the Startup  constructor. Call AddUserSecrets  only when the app runs in the

Development environment, as shown in the following example:

https://www.nuget.org/packages/Microsoft.Extensions.Configuration.UserSecrets
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.usersecretsconfigurationextensions.addusersecrets
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.environmentname#microsoft_aspnetcore_hosting_ihostingenvironment_environmentname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.environmentname.development
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.usersecretsconfigurationextensions.addusersecrets


public Startup(IHostingEnvironment env)
{
    var builder = new ConfigurationBuilder()
        .SetBasePath(env.ContentRootPath)
        .AddJsonFile("appsettings.json", 
                     optional: false, 
                     reloadOnChange: true)
        .AddEnvironmentVariables();

    if (env.IsDevelopment())
    {
        builder.AddUserSecrets<Startup>();
    }

    Configuration = builder.Build();
}

public class Startup
{
    private string _moviesApiKey = null;

    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        _moviesApiKey = Configuration["Movies:ServiceApiKey"];
    }

    public void Configure(IApplicationBuilder app)
    {
        app.Run(async (context) =>
        {
            var result = string.IsNullOrEmpty(_moviesApiKey) ? "Null" : "Not Null";
            await context.Response.WriteAsync($"Secret is {result}");
        });
    }
}

Map secrets to a POCO

{
  "Movies:ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true",
  "Movies:ServiceApiKey": "12345"
}

User secrets can be retrieved via the Configuration  API:

Mapping an entire object literal to a POCO (a simple .NET class with properties) is useful for aggregating

related properties.

Assume the app's secrets.json file contains the following two secrets:

To map the preceding secrets to a POCO, use the Configuration  API's object graph binding feature. The

following code binds to a custom MovieSettings  POCO and accesses the ServiceApiKey  property value:



var moviesConfig = Configuration.GetSection("Movies")
                                .Get<MovieSettings>();
_moviesApiKey = moviesConfig.ServiceApiKey;

public class MovieSettings
{
    public string ConnectionString { get; set; }

    public string ServiceApiKey { get; set; }
}

String replacement with secrets

{
  "ConnectionStrings": {
    "Movies": "Server=(localdb)\\mssqllocaldb;Database=Movie-1;User 
Id=johndoe;Password=pass123;MultipleActiveResultSets=true"
  }
}

dotnet user-secrets set "DbPassword" "pass123"

{
  "ConnectionStrings": {
    "Movies": "Server=(localdb)\\mssqllocaldb;Database=Movie-1;User 
Id=johndoe;MultipleActiveResultSets=true"
  }
}

The Movies:ConnectionString  and Movies:ServiceApiKey  secrets are mapped to the respective properties

in MovieSettings :

Storing passwords in plain text is insecure. For example, a database connection string stored in

appsettings.json may include a password for the specified user :

A more secure approach is to store the password as a secret. For example:

Remove the Password  key-value pair from the connection string in appsettings.json. For example:

The secret's value can be set on a SqlConnectionStringBuilder object's Password property to complete the

connection string:

https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder
https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder.password


public class Startup
{
    private string _connection = null;

    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        var builder = new SqlConnectionStringBuilder(
            Configuration.GetConnectionString("Movies"));
        builder.Password = Configuration["DbPassword"];
        _connection = builder.ConnectionString;
    }

    public void Configure(IApplicationBuilder app)
    {
        app.Run(async (context) =>
        {
            await context.Response.WriteAsync($"DB Connection: {_connection}");
        });
    }
}

List the secrets

{
  "Movies:ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true",
  "Movies:ServiceApiKey": "12345"
}

dotnet user-secrets list

Movies:ConnectionString = Server=(localdb)\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true
Movies:ServiceApiKey = 12345

Remove a single secret

Assume the app's secrets.json file contains the following two secrets:

Run the following command from the directory in which the .csproj file exists:

The following output appears:

In the preceding example, a colon in the key names denotes the object hierarchy within secrets.json.

Assume the app's secrets.json file contains the following two secrets:



{
  "Movies:ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true",
  "Movies:ServiceApiKey": "12345"
}

dotnet user-secrets remove "Movies:ConnectionString"

{
  "Movies": {
    "ServiceApiKey": "12345"
  }
}

Movies:ServiceApiKey = 12345

Remove all secrets

{
  "Movies:ConnectionString": "Server=(localdb)\\mssqllocaldb;Database=Movie-
1;Trusted_Connection=True;MultipleActiveResultSets=true",
  "Movies:ServiceApiKey": "12345"
}

dotnet user-secrets clear

{}

No secrets configured for this application.

Additional resources

Run the following command from the directory in which the .csproj file exists:

The app's secrets.json file was modified to remove the key-value pair associated with the 

MoviesConnectionString  key:

Running dotnet user-secrets list  displays the following message:

Assume the app's secrets.json file contains the following two secrets:

Run the following command from the directory in which the .csproj file exists:

All user secrets for the app have been deleted from the secrets.json file:

Running dotnet user-secrets list  displays the following message:

See this issue for information on accessing Secret Manager from IIS.

Configuration in ASP.NET Core

Azure Key Vault Configuration Provider in ASP.NET Core

https://github.com/dotnet/AspNetCore.Docs/issues/16328




Azure Key Vault Configuration Provider in ASP.NET
Core
9/22/2020 • 29 minutes to read • Edit Online

Packages

Sample app

Secret storage in the Development environment

<PropertyGroup>
  <UserSecretsId>{GUID}</UserSecretsId>
</PropertyGroup>

By Andrew Stanton-Nurse

This document explains how to use the Microsoft Azure Key Vault Configuration Provider to load app

configuration values from Azure Key Vault secrets. Azure Key Vault is a cloud-based service that assists in

safeguarding cryptographic keys and secrets used by apps and services. Common scenarios for using Azure

Key Vault with ASP.NET Core apps include:

Controlling access to sensitive configuration data.

Meeting the requirement for FIPS 140-2 Level 2 validated Hardware Security Modules (HSM's) when

storing configuration data.

View or download sample code (how to download)

Add a package reference to the Microsoft.Extensions.Configuration.AzureKeyVault package.

The sample app runs in either of two modes determined by the #define  statement at the top of the

Program.cs file:

Certificate : Demonstrates the use of an Azure Key Vault Client ID and X.509 certificate to access secrets

stored in Azure Key Vault. This version of the sample can be run from any location, deployed to Azure App

Service or any host capable of serving an ASP.NET Core app.

Managed : Demonstrates how to use Managed identities for Azure resources to authenticate the app to

Azure Key Vault with Azure AD authentication without credentials stored in the app's code or configuration.

When using managed identities to authenticate, an Azure AD Application ID and Password (Client Secret)

aren't required. The Managed  version of the sample must be deployed to Azure. Follow the guidance in the

Use the Managed identities for Azure resources section.

For more information on how to configure a sample app using preprocessor directives ( #define ), see

Introduction to ASP.NET Core.

Set secrets locally using the Secret Manager tool. When the sample app runs on the local machine in the

Development environment, secrets are loaded from the local Secret Manager store.

The Secret Manager tool requires a <UserSecretsId>  property in the app's project file. Set the property value (

{GUID} ) to any unique GUID:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/key-vault-configuration.md
https://github.com/anurse
https://azure.microsoft.com/services/key-vault/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/key-vault-configuration/samples
https://www.nuget.org/packages/Microsoft.Extensions.Configuration.AzureKeyVault/
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview


    

dotnet user-secrets set "{SECRET NAME}" "{SECRET VALUE}"

dotnet user-secrets set "SecretName" "secret_value_1_dev"
dotnet user-secrets set "Section:SecretName" "secret_value_2_dev"

Secret storage in the Production environment with Azure Key Vault

Secrets are created as name-value pairs. Hierarchical values (configuration sections) use a :  (colon) as a

separator in ASP.NET Core configuration key names.

The Secret Manager is used from a command shell opened to the project's content root, where {SECRET NAME}

is the name and {SECRET VALUE}  is the value:

Execute the following commands in a command shell from the project's content root to set the secrets for the

sample app:

When these secrets are stored in Azure Key Vault in the Secret storage in the Production environment with

Azure Key Vault section, the _dev  suffix is changed to _prod . The suffix provides a visual cue in the app's

output indicating the source of the configuration values.

The instructions provided by the Quickstart: Set and retrieve a secret from Azure Key Vault using Azure CLI

topic are summarized here for creating an Azure Key Vault and storing secrets used by the sample app. Refer

to the topic for further details.

az group create --name "{RESOURCE GROUP NAME}" --location {LOCATION}

az keyvault create --name {KEY VAULT NAME} --resource-group "{RESOURCE GROUP NAME}" --location 
{LOCATION}

1. Open Azure Cloud shell using any one of the following methods in the Azure portal:

Select Tr y ItTr y It in the upper-right corner of a code block. Use the search string "Azure CLI" in the text

box.

Open Cloud Shell in your browser with the Launch Cloud ShellLaunch Cloud Shell  button.

Select the Cloud ShellCloud Shell  button on the menu in the upper-right corner of the Azure portal.

For more information, see Azure CLI and Overview of Azure Cloud Shell.

2. If you aren't already authenticated, sign in with the az login  command.

3. Create a resource group with the following command, where {RESOURCE GROUP NAME}  is the resource

group name for the new resource group and {LOCATION}  is the Azure region (datacenter):

4. Create a key vault in the resource group with the following command, where {KEY VAULT NAME}  is the

name for the new key vault and {LOCATION}  is the Azure region (datacenter):

5. Create secrets in the key vault as name-value pairs.

Azure Key Vault secret names are limited to alphanumeric characters and dashes. Hierarchical values

(configuration sections) use --  (two dashes) as a separator. Colons, which are normally used to delimit

a section from a subkey in ASP.NET Core configuration, aren't allowed in key vault secret names.

Therefore, two dashes are used and swapped for a colon when the secrets are loaded into the app's

configuration.

https://docs.microsoft.com/en-us/azure/key-vault/quick-create-cli
https://portal.azure.com/
https://docs.microsoft.com/en-us/cli/azure/
https://docs.microsoft.com/en-us/azure/cloud-shell/overview


Use Application ID and X.509 certificate for non-Azure-hosted apps

NOTENOTE

az keyvault secret set --vault-name {KEY VAULT NAME} --name "SecretName" --value 
"secret_value_1_prod"
az keyvault secret set --vault-name {KEY VAULT NAME} --name "Section--SecretName" --value 
"secret_value_2_prod"

The following secrets are for use with the sample app. The values include a _prod  suffix to distinguish

them from the _dev  suffix values loaded in the Development environment from User Secrets. Replace 

{KEY VAULT NAME}  with the name of the key vault that you created in the prior step:

Configure Azure AD, Azure Key Vault, and the app to use an Azure Active Directory Application ID and X.509

certificate to authenticate to a key vault when the app is hosted outside of Azurewhen the app is hosted outside of Azure. For more information,

see About keys, secrets, and certificates.

Although using an Application ID and X.509 certificate is supported for apps hosted in Azure, we recommend using

Managed identities for Azure resources when hosting an app in Azure. Managed identities don't require storing a

certificate in the app or in the development environment.

The sample app uses an Application ID and X.509 certificate when the #define  statement at the top of the

Program.cs file is set to Certificate .

1. Create a PKCS#12 archive (.pfx) certificate. Options for creating certificates include MakeCert on Windows

and OpenSSL.

2. Install the certificate into the current user's personal certificate store. Marking the key as exportable is

optional. Note the certificate's thumbprint, which is used later in this process.

3. Export the PKCS#12 archive (.pfx) certificate as a DER-encoded certificate (.cer).

4. Register the app with Azure AD (App registrationsApp registrations ).

5. Upload the DER-encoded certificate (.cer) to Azure AD:

6. Store the key vault name, Application ID, and certificate thumbprint in the app's appsettings.json file.

7. Navigate to Key vaultsKey vaults  in the Azure portal.

8. Select the key vault that you created in the Secret storage in the Production environment with Azure Key

Vault section.

9. Select Access policiesAccess policies .

10. Select Add Access PolicyAdd Access Policy .

11. Open Secret permissionsSecret permissions  and provide the app with GetGet and L istL ist permissions.

12. Select Select pr incipalSelect pr incipal  and select the registered app by name. Select the SelectSelect button.

13. Select OKOK.

14. Select SaveSave.

15. Deploy the app.

a. Select the app in Azure AD.

b. Navigate to Cer tificates & secretsCer tificates & secrets .

c. Select Upload cer tificateUpload cer tificate to upload the certificate, which contains the public key. A .cer, .pem, or

.crt certificate is acceptable.

The Certificate  sample app obtains its configuration values from IConfigurationRoot  with the same name

as the secret name:

Non-hierarchical values: The value for SecretName  is obtained with config["SecretName"] .

https://docs.microsoft.com/en-us/azure/key-vault/about-keys-secrets-and-certificates
https://docs.microsoft.com/en-us/windows/desktop/seccrypto/makecert
https://www.openssl.org/


    

// using System.Linq;
// using System.Security.Cryptography.X509Certificates;
// using Microsoft.Extensions.Configuration;

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureAppConfiguration((context, config) =>
        {
            if (context.HostingEnvironment.IsProduction())
            {
                var builtConfig = config.Build();

                using (var store = new X509Store(StoreLocation.CurrentUser))
                {
                    store.Open(OpenFlags.ReadOnly);
                    var certs = store.Certificates
                        .Find(X509FindType.FindByThumbprint,
                            builtConfig["AzureADCertThumbprint"], false);

                    config.AddAzureKeyVault(
                        $"https://{builtConfig["KeyVaultName"]}.vault.azure.net/",
                        builtConfig["AzureADApplicationId"],
                        certs.OfType<X509Certificate2>().Single());

                    store.Close();
                }
            }
        })
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseStartup<Startup>();
        });

{
  "KeyVaultName": "Key Vault Name",
  "AzureADApplicationId": "Azure AD Application ID",
  "AzureADCertThumbprint": "Azure AD Certificate Thumbprint"
}

Use Managed identities for Azure resources

Hierarchical values (sections): Use :  (colon) notation or the GetSection  extension method. Use either of

these approaches to obtain the configuration value:

config["Section:SecretName"]

config.GetSection("Section")["SecretName"]

The X.509 certificate is managed by the OS. The app calls AddAzureKeyVault with values supplied by the

appsettings.json file:

Example values:

Key vault name: contosovault

Application ID: 627e911e-43cc-61d4-992e-12db9c81b413

Certificate thumbprint: fe14593dd66b2406c5269d742d04b6e1ab03adb1

appsettings.json:

When you run the app, a webpage shows the loaded secret values. In the Development environment, secret

values load with the _dev  suffix. In the Production environment, the values load with the _prod  suffix.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvaultconfigurationextensions.addazurekeyvault


az keyvault set-policy --name {KEY VAULT NAME} --object-id {OBJECT ID} --secret-permissions get list

An app deployed to AzureAn app deployed to Azure can take advantage of Managed identities for Azure resources, which allows the

app to authenticate with Azure Key Vault using Azure AD authentication without credentials (Application ID

and Password/Client Secret) stored in the app.

The sample app uses Managed identities for Azure resources when the #define  statement at the top of the

Program.cs file is set to Managed .

Enter the vault name into the app's appsettings.json file. The sample app doesn't require an Application ID and

Password (Client Secret) when set to the Managed  version, so you can ignore those configuration entries. The

app is deployed to Azure, and Azure authenticates the app to access Azure Key Vault only using the vault name

stored in the appsettings.json file.

Deploy the sample app to Azure App Service.

An app deployed to Azure App Service is automatically registered with Azure AD when the service is created.

Obtain the Object ID from the deployment for use in the following command. The Object ID is shown in the

Azure portal on the IdentityIdentity  panel of the App Service.

Using Azure CLI and the app's Object ID, provide the app with list  and get  permissions to access the key

vault:

Restar t the appRestar t the app using Azure CLI, PowerShell, or the Azure portal.

The sample app:

Creates an instance of the AzureServiceTokenProvider  class without a connection string. When a connection

string isn't provided, the provider attempts to obtain an access token from Managed identities for Azure

resources.

A new KeyVaultClient is created with the AzureServiceTokenProvider  instance token callback.

The KeyVaultClient instance is used with a default implementation of IKeyVaultSecretManager that loads all

secret values and replaces double-dashes ( -- ) with colons ( : ) in key names.

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.keyvaultclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.keyvaultclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvault.ikeyvaultsecretmanager


// using Microsoft.Azure.KeyVault;
// using Microsoft.Azure.Services.AppAuthentication;
// using Microsoft.Extensions.Configuration.AzureKeyVault;

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureAppConfiguration((context, config) =>
        {
            if (context.HostingEnvironment.IsProduction())
            {
                var builtConfig = config.Build();

                var azureServiceTokenProvider = new AzureServiceTokenProvider();
                var keyVaultClient = new KeyVaultClient(
                    new KeyVaultClient.AuthenticationCallback(
                        azureServiceTokenProvider.KeyVaultTokenCallback));

                config.AddAzureKeyVault(
                    $"https://{builtConfig["KeyVaultName"]}.vault.azure.net/",
                    keyVaultClient,
                    new DefaultKeyVaultSecretManager());
            }
        })
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseStartup<Startup>();
        });

{
  "KeyVaultName": "Key Vault Name"
}

Configuration options

config.AddAzureKeyVault(
    new AzureKeyVaultConfigurationOptions()
    {
        ...
    });

Key vault name example value: contosovault

appsettings.json:

When you run the app, a webpage shows the loaded secret values. In the Development environment, secret

values have the _dev  suffix because they're provided by User Secrets. In the Production environment, the

values load with the _prod  suffix because they're provided by Azure Key Vault.

If you receive an Access denied  error, confirm that the app is registered with Azure AD and provided access to

the key vault. Confirm that you've restarted the service in Azure.

For information on using the provider with a managed identity and an Azure DevOps pipeline, see Create an

Azure Resource Manager service connection to a VM with a managed service identity.

AddAzureKeyVault can accept an AzureKeyVaultConfigurationOptions:

https://docs.microsoft.com/en-us/azure/devops/pipelines/library/connect-to-azure#create-an-azure-resource-manager-service-connection-to-a-vm-with-a-managed-service-identity
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvaultconfigurationextensions.addazurekeyvault
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvault.azurekeyvaultconfigurationoptions


P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N

Client KeyVaultClient to use for retrieving values.

Manager IKeyVaultSecretManager instance used to control secret
loading.

ReloadInterval Timespan  to wait between attempts at polling the key

vault for changes. The default value is null  (configuration

isn't reloaded).

Vault Key vault URI.

Use a key name prefix

WARNINGWARNING

config.AddAzureKeyVault(
    $"https://{builtConfig["KeyVaultName"]}.vault.azure.net/",
    builtConfig["AzureADApplicationId"],
    certs.OfType<X509Certificate2>().Single(),
    new PrefixKeyVaultSecretManager(versionPrefix));

AddAzureKeyVault provides an overload that accepts an implementation of IKeyVaultSecretManager, which

allows you to control how key vault secrets are converted into configuration keys. For example, you can

implement the interface to load secret values based on a prefix value you provide at app startup. This allows

you, for example, to load secrets based on the version of the app.

Don't use prefixes on key vault secrets to place secrets for multiple apps into the same key vault or to place

environmental secrets (for example, development versus production secrets) into the same vault. We recommend that

different apps and development/production environments use separate key vaults to isolate app environments for the

highest level of security.

In the following example, a secret is established in the key vault (and using the Secret Manager tool for the

Development environment) for 5000-AppSecret  (periods aren't allowed in key vault secret names). This secret

represents an app secret for version 5.0.0.0 of the app. For another version of the app, 5.1.0.0, a secret is added

to the key vault (and using the Secret Manager tool) for 5100-AppSecret . Each app version loads its versioned

secret value into its configuration as AppSecret , stripping off the version as it loads the secret.

AddAzureKeyVault is called with a custom IKeyVaultSecretManager:

The IKeyVaultSecretManager implementation reacts to the version prefixes of secrets to load the proper secret

into configuration:

Load  loads a secret when its name starts with the prefix. Other secrets aren't loaded.

GetKey :

Removes the prefix from the secret name.

Replaces two dashes in any name with the KeyDelimiter , which is the delimiter used in

configuration (usually a colon). Azure Key Vault doesn't allow a colon in secret names.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.keyvaultclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvault.ikeyvaultsecretmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvaultconfigurationextensions.addazurekeyvault
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvault.ikeyvaultsecretmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvaultconfigurationextensions.addazurekeyvault
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvault.ikeyvaultsecretmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvault.ikeyvaultsecretmanager


public class PrefixKeyVaultSecretManager : IKeyVaultSecretManager
{
    private readonly string _prefix;

    public PrefixKeyVaultSecretManager(string prefix)
    {
        _prefix = $"{prefix}-";
    }

    public bool Load(SecretItem secret)
    {
        return secret.Identifier.Name.StartsWith(_prefix);
    }

    public string GetKey(SecretBundle secret)
    {
        return secret.SecretIdentifier.Name
            .Substring(_prefix.Length)
            .Replace("--", ConfigurationPath.KeyDelimiter);
    }
}

The Load  method is called by a provider algorithm that iterates through the vault secrets to find the ones that

have the version prefix. When a version prefix is found with Load , the algorithm uses the GetKey  method to

return the configuration name of the secret name. It strips off the version prefix from the secret's name and

returns the rest of the secret name for loading into the app's configuration name-value pairs.

When this approach is implemented:

<PropertyGroup>
  <Version>5.0.0.0</Version>
</PropertyGroup>

<PropertyGroup>
  <UserSecretsId>{GUID}</UserSecretsId>
</PropertyGroup>

dotnet user-secrets set "5000-AppSecret" "5.0.0.0_secret_value_dev"
dotnet user-secrets set "5100-AppSecret" "5.1.0.0_secret_value_dev"

az keyvault secret set --vault-name {KEY VAULT NAME} --name "5000-AppSecret" --value 
"5.0.0.0_secret_value_prod"
az keyvault secret set --vault-name {KEY VAULT NAME} --name "5100-AppSecret" --value 
"5.1.0.0_secret_value_prod"

1. The app's version specified in the app's project file. In the following example, the app's version is set to 

5.0.0.0 :

2. Confirm that a <UserSecretsId>  property is present in the app's project file, where {GUID}  is a user-

supplied GUID:

Save the following secrets locally with the Secret Manager tool:

3. Secrets are saved in Azure Key Vault using the following Azure CLI commands:

4. When the app is run, the key vault secrets are loaded. The string secret for 5000-AppSecret  is matched

to the app's version specified in the app's project file ( 5.0.0.0 ).



NOTENOTE

Bind an array to a class

"Serilog": {
  "WriteTo": [
    {
      "Name": "AzureTableStorage",
      "Args": {
        "storageTableName": "logs",
        "connectionString": "DefaultEnd...ountKey=Eby8...GMGw=="
      }
    },
    {
      "Name": "AzureDocumentDB",
      "Args": {
        "endpointUrl": "https://contoso.documents.azure.com:443",
        "authorizationKey": "Eby8...GMGw=="
      }
    }
  ]
}

KEYKEY VA L UEVA L UE

Serilog--WriteTo--0--Name AzureTableStorage

Serilog--WriteTo--0--Args--storageTableName logs

5. The version, 5000  (with the dash), is stripped from the key name. Throughout the app, reading

configuration with the key AppSecret  loads the secret value.

6. If the app's version is changed in the project file to 5.1.0.0  and the app is run again, the secret value

returned is 5.1.0.0_secret_value_dev  in the Development environment and 5.1.0.0_secret_value_prod

in Production.

You can also provide your own KeyVaultClient implementation to AddAzureKeyVault. A custom client permits sharing a

single instance of the client across the app.

The provider is capable of reading configuration values into an array for binding to a POCO array.

When reading from a configuration source that allows keys to contain colon ( : ) separators, a numeric key

segment is used to distinguish the keys that make up an array ( :0: , :1: , … :{n}: ). For more information,

see Configuration: Bind an array to a class.

Azure Key Vault keys can't use a colon as a separator. The approach described in this topic uses double dashes (

-- ) as a separator for hierarchical values (sections). Array keys are stored in Azure Key Vault with double

dashes and numeric key segments ( --0-- , --1-- , … --{n}-- ).

Examine the following Serilog logging provider configuration provided by a JSON file. There are two object

literals defined in the WriteTo  array that reflect two Serilog sinks, which describe destinations for logging

output:

The configuration shown in the preceding JSON file is stored in Azure Key Vault using double dash ( -- )

notation and numeric segments:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.keyvaultclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvaultconfigurationextensions.addazurekeyvault
https://serilog.net/


Serilog--WriteTo--0--Args--connectionString DefaultEnd...ountKey=Eby8...GMGw==

Serilog--WriteTo--1--Name AzureDocumentDB

Serilog--WriteTo--1--Args--endpointUrl https://contoso.documents.azure.com:443

Serilog--WriteTo--1--Args--authorizationKey Eby8...GMGw==

KEYKEY VA L UEVA L UE

Reload secrets

Configuration.Reload();

Disabled and expired secrets

Troubleshoot

Additional resources

Secrets are cached until IConfigurationRoot.Reload()  is called. Expired, disabled, and updated secrets in the

key vault are not respected by the app until Reload  is executed.

Disabled and expired secrets throw a KeyVaultErrorException. To prevent the app from throwing, provide the

configuration using a different configuration provider or update the disabled or expired secret.

When the app fails to load configuration using the provider, an error message is written to the ASP.NET Core

Logging infrastructure. The following conditions will prevent configuration from loading:

The app or certificate isn't configured correctly in Azure Active Directory.

The key vault doesn't exist in Azure Key Vault.

The app isn't authorized to access the key vault.

The access policy doesn't include Get  and List  permissions.

In the key vault, the configuration data (name-value pair) is incorrectly named, missing, disabled, or expired.

The app has the wrong key vault name ( KeyVaultName ), Azure AD Application Id ( AzureADApplicationId ), or

Azure AD certificate thumbprint ( AzureADCertThumbprint ).

The configuration key (name) is incorrect in the app for the value you're trying to load.

When adding the access policy for the app to the key vault, the policy was created, but the SaveSave button

wasn't selected in the Access policiesAccess policies  UI.

Configuration in ASP.NET Core

Microsoft Azure: Key Vault

Microsoft Azure: Key Vault Documentation

How to generate and transfer HSM-protected keys for Azure Key Vault

KeyVaultClient Class

Quickstart: Set and retrieve a secret from Azure Key Vault by using a .NET web app

Tutorial: How to use Azure Key Vault with Azure Windows Virtual Machine in .NET

This document explains how to use the Microsoft Azure Key Vault Configuration Provider to load app

configuration values from Azure Key Vault secrets. Azure Key Vault is a cloud-based service that assists in

https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.models.keyvaulterrorexception
https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/en-us/azure/key-vault/
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-hsm-protected-keys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.keyvaultclient
https://docs.microsoft.com/en-us/azure/key-vault/quick-create-net
https://docs.microsoft.com/en-us/azure/key-vault/tutorial-net-windows-virtual-machine
https://azure.microsoft.com/services/key-vault/


Packages

Sample app

Secret storage in the Development environment

<PropertyGroup>
  <UserSecretsId>{GUID}</UserSecretsId>
</PropertyGroup>

dotnet user-secrets set "{SECRET NAME}" "{SECRET VALUE}"

safeguarding cryptographic keys and secrets used by apps and services. Common scenarios for using Azure

Key Vault with ASP.NET Core apps include:

Controlling access to sensitive configuration data.

Meeting the requirement for FIPS 140-2 Level 2 validated Hardware Security Modules (HSM's) when

storing configuration data.

View or download sample code (how to download)

Add a package reference to the Microsoft.Extensions.Configuration.AzureKeyVault package.

The sample app runs in either of two modes determined by the #define  statement at the top of the

Program.cs file:

Certificate : Demonstrates the use of an Azure Key Vault Client ID and X.509 certificate to access secrets

stored in Azure Key Vault. This version of the sample can be run from any location, deployed to Azure App

Service or any host capable of serving an ASP.NET Core app.

Managed : Demonstrates how to use Managed identities for Azure resources to authenticate the app to

Azure Key Vault with Azure AD authentication without credentials stored in the app's code or configuration.

When using managed identities to authenticate, an Azure AD Application ID and Password (Client Secret)

aren't required. The Managed  version of the sample must be deployed to Azure. Follow the guidance in the

Use the Managed identities for Azure resources section.

For more information on how to configure a sample app using preprocessor directives ( #define ), see

Introduction to ASP.NET Core.

Set secrets locally using the Secret Manager tool. When the sample app runs on the local machine in the

Development environment, secrets are loaded from the local Secret Manager store.

The Secret Manager tool requires a <UserSecretsId>  property in the app's project file. Set the property value (

{GUID} ) to any unique GUID:

Secrets are created as name-value pairs. Hierarchical values (configuration sections) use a :  (colon) as a

separator in ASP.NET Core configuration key names.

The Secret Manager is used from a command shell opened to the project's content root, where {SECRET NAME}

is the name and {SECRET VALUE}  is the value:

Execute the following commands in a command shell from the project's content root to set the secrets for the

sample app:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/key-vault-configuration/samples
https://www.nuget.org/packages/Microsoft.Extensions.Configuration.AzureKeyVault/
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview


dotnet user-secrets set "SecretName" "secret_value_1_dev"
dotnet user-secrets set "Section:SecretName" "secret_value_2_dev"

Secret storage in the Production environment with Azure Key Vault

Use Application ID and X.509 certificate for non-Azure-hosted apps

When these secrets are stored in Azure Key Vault in the Secret storage in the Production environment with

Azure Key Vault section, the _dev  suffix is changed to _prod . The suffix provides a visual cue in the app's

output indicating the source of the configuration values.

The instructions provided by the Quickstart: Set and retrieve a secret from Azure Key Vault using Azure CLI

topic are summarized here for creating an Azure Key Vault and storing secrets used by the sample app. Refer

to the topic for further details.

az group create --name "{RESOURCE GROUP NAME}" --location {LOCATION}

az keyvault create --name {KEY VAULT NAME} --resource-group "{RESOURCE GROUP NAME}" --location 
{LOCATION}

az keyvault secret set --vault-name {KEY VAULT NAME} --name "SecretName" --value 
"secret_value_1_prod"
az keyvault secret set --vault-name {KEY VAULT NAME} --name "Section--SecretName" --value 
"secret_value_2_prod"

1. Open Azure Cloud shell using any one of the following methods in the Azure portal:

Select Tr y ItTr y It in the upper-right corner of a code block. Use the search string "Azure CLI" in the text

box.

Open Cloud Shell in your browser with the Launch Cloud ShellLaunch Cloud Shell  button.

Select the Cloud ShellCloud Shell  button on the menu in the upper-right corner of the Azure portal.

For more information, see Azure CLI and Overview of Azure Cloud Shell.

2. If you aren't already authenticated, sign in with the az login  command.

3. Create a resource group with the following command, where {RESOURCE GROUP NAME}  is the resource

group name for the new resource group and {LOCATION}  is the Azure region (datacenter):

4. Create a key vault in the resource group with the following command, where {KEY VAULT NAME}  is the

name for the new key vault and {LOCATION}  is the Azure region (datacenter):

5. Create secrets in the key vault as name-value pairs.

Azure Key Vault secret names are limited to alphanumeric characters and dashes. Hierarchical values

(configuration sections) use --  (two dashes) as a separator. Colons, which are normally used to delimit

a section from a subkey in ASP.NET Core configuration, aren't allowed in key vault secret names.

Therefore, two dashes are used and swapped for a colon when the secrets are loaded into the app's

configuration.

The following secrets are for use with the sample app. The values include a _prod  suffix to distinguish

them from the _dev  suffix values loaded in the Development environment from User Secrets. Replace 

{KEY VAULT NAME}  with the name of the key vault that you created in the prior step:

https://docs.microsoft.com/en-us/azure/key-vault/quick-create-cli
https://portal.azure.com/
https://docs.microsoft.com/en-us/cli/azure/
https://docs.microsoft.com/en-us/azure/cloud-shell/overview


NOTENOTE

Configure Azure AD, Azure Key Vault, and the app to use an Azure Active Directory Application ID and X.509

certificate to authenticate to a key vault when the app is hosted outside of Azurewhen the app is hosted outside of Azure. For more information,

see About keys, secrets, and certificates.

Although using an Application ID and X.509 certificate is supported for apps hosted in Azure, we recommend using

Managed identities for Azure resources when hosting an app in Azure. Managed identities don't require storing a

certificate in the app or in the development environment.

The sample app uses an Application ID and X.509 certificate when the #define  statement at the top of the

Program.cs file is set to Certificate .

1. Create a PKCS#12 archive (.pfx) certificate. Options for creating certificates include MakeCert on Windows

and OpenSSL.

2. Install the certificate into the current user's personal certificate store. Marking the key as exportable is

optional. Note the certificate's thumbprint, which is used later in this process.

3. Export the PKCS#12 archive (.pfx) certificate as a DER-encoded certificate (.cer).

4. Register the app with Azure AD (App registrationsApp registrations ).

5. Upload the DER-encoded certificate (.cer) to Azure AD:

6. Store the key vault name, Application ID, and certificate thumbprint in the app's appsettings.json file.

7. Navigate to Key vaultsKey vaults  in the Azure portal.

8. Select the key vault that you created in the Secret storage in the Production environment with Azure Key

Vault section.

9. Select Access policiesAccess policies .

10. Select Add Access PolicyAdd Access Policy .

11. Open Secret permissionsSecret permissions  and provide the app with GetGet and L istL ist permissions.

12. Select Select pr incipalSelect pr incipal  and select the registered app by name. Select the SelectSelect button.

13. Select OKOK.

14. Select SaveSave.

15. Deploy the app.

a. Select the app in Azure AD.

b. Navigate to Cer tificates & secretsCer tificates & secrets .

c. Select Upload cer tificateUpload cer tificate to upload the certificate, which contains the public key. A .cer, .pem, or

.crt certificate is acceptable.

The Certificate  sample app obtains its configuration values from IConfigurationRoot  with the same name

as the secret name:

Non-hierarchical values: The value for SecretName  is obtained with config["SecretName"] .

Hierarchical values (sections): Use :  (colon) notation or the GetSection  extension method. Use either of

these approaches to obtain the configuration value:

config["Section:SecretName"]

config.GetSection("Section")["SecretName"]

The X.509 certificate is managed by the OS. The app calls AddAzureKeyVault with values supplied by the

appsettings.json file:

https://docs.microsoft.com/en-us/azure/key-vault/about-keys-secrets-and-certificates
https://docs.microsoft.com/en-us/windows/desktop/seccrypto/makecert
https://www.openssl.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvaultconfigurationextensions.addazurekeyvault


// using System.Linq;
// using System.Security.Cryptography.X509Certificates;
// using Microsoft.Extensions.Configuration;

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .ConfigureAppConfiguration((context, config) =>
        {
            if (context.HostingEnvironment.IsProduction())
            {
                var builtConfig = config.Build();

                using (var store = new X509Store(StoreLocation.CurrentUser))
                {
                    store.Open(OpenFlags.ReadOnly);
                    var certs = store.Certificates
                        .Find(X509FindType.FindByThumbprint,
                            builtConfig["AzureADCertThumbprint"], false);

                    config.AddAzureKeyVault(
                        $"https://{builtConfig["KeyVaultName"]}.vault.azure.net/",
                        builtConfig["AzureADApplicationId"],
                        certs.OfType<X509Certificate2>().Single());

                    store.Close();
                }
            }
        })
        .UseStartup<Startup>();

{
  "KeyVaultName": "Key Vault Name",
  "AzureADApplicationId": "Azure AD Application ID",
  "AzureADCertThumbprint": "Azure AD Certificate Thumbprint"
}

Use Managed identities for Azure resources

Example values:

Key vault name: contosovault

Application ID: 627e911e-43cc-61d4-992e-12db9c81b413

Certificate thumbprint: fe14593dd66b2406c5269d742d04b6e1ab03adb1

appsettings.json:

When you run the app, a webpage shows the loaded secret values. In the Development environment, secret

values load with the _dev  suffix. In the Production environment, the values load with the _prod  suffix.

An app deployed to AzureAn app deployed to Azure can take advantage of Managed identities for Azure resources, which allows the

app to authenticate with Azure Key Vault using Azure AD authentication without credentials (Application ID

and Password/Client Secret) stored in the app.

The sample app uses Managed identities for Azure resources when the #define  statement at the top of the

Program.cs file is set to Managed .

Enter the vault name into the app's appsettings.json file. The sample app doesn't require an Application ID and

Password (Client Secret) when set to the Managed  version, so you can ignore those configuration entries. The

app is deployed to Azure, and Azure authenticates the app to access Azure Key Vault only using the vault name

stored in the appsettings.json file.

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview


az keyvault set-policy --name {KEY VAULT NAME} --object-id {OBJECT ID} --secret-permissions get list

// using Microsoft.Azure.KeyVault;
// using Microsoft.Azure.Services.AppAuthentication;
// using Microsoft.Extensions.Configuration.AzureKeyVault;

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .ConfigureAppConfiguration((context, config) =>
        {
            if (context.HostingEnvironment.IsProduction())
            {
                var builtConfig = config.Build();

                var azureServiceTokenProvider = new AzureServiceTokenProvider();
                var keyVaultClient = new KeyVaultClient(
                    new KeyVaultClient.AuthenticationCallback(
                        azureServiceTokenProvider.KeyVaultTokenCallback));

                config.AddAzureKeyVault(
                    $"https://{builtConfig["KeyVaultName"]}.vault.azure.net/",
                    keyVaultClient,
                    new DefaultKeyVaultSecretManager());
            }
        })
        .UseStartup<Startup>();

{
  "KeyVaultName": "Key Vault Name"
}

Deploy the sample app to Azure App Service.

An app deployed to Azure App Service is automatically registered with Azure AD when the service is created.

Obtain the Object ID from the deployment for use in the following command. The Object ID is shown in the

Azure portal on the IdentityIdentity  panel of the App Service.

Using Azure CLI and the app's Object ID, provide the app with list  and get  permissions to access the key

vault:

Restar t the appRestar t the app using Azure CLI, PowerShell, or the Azure portal.

The sample app:

Creates an instance of the AzureServiceTokenProvider  class without a connection string. When a connection

string isn't provided, the provider attempts to obtain an access token from Managed identities for Azure

resources.

A new KeyVaultClient is created with the AzureServiceTokenProvider  instance token callback.

The KeyVaultClient instance is used with a default implementation of IKeyVaultSecretManager that loads all

secret values and replaces double-dashes ( -- ) with colons ( : ) in key names.

Key vault name example value: contosovault

appsettings.json:

When you run the app, a webpage shows the loaded secret values. In the Development environment, secret

values have the _dev  suffix because they're provided by User Secrets. In the Production environment, the

values load with the _prod  suffix because they're provided by Azure Key Vault.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.keyvaultclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.keyvaultclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvault.ikeyvaultsecretmanager


Use a key name prefix

WARNINGWARNING

config.AddAzureKeyVault(
    $"https://{builtConfig["KeyVaultName"]}.vault.azure.net/",
    builtConfig["AzureADApplicationId"],
    certs.OfType<X509Certificate2>().Single(),
    new PrefixKeyVaultSecretManager(versionPrefix));

If you receive an Access denied  error, confirm that the app is registered with Azure AD and provided access to

the key vault. Confirm that you've restarted the service in Azure.

For information on using the provider with a managed identity and an Azure DevOps pipeline, see Create an

Azure Resource Manager service connection to a VM with a managed service identity.

AddAzureKeyVault provides an overload that accepts an implementation of IKeyVaultSecretManager, which

allows you to control how key vault secrets are converted into configuration keys. For example, you can

implement the interface to load secret values based on a prefix value you provide at app startup. This allows

you, for example, to load secrets based on the version of the app.

Don't use prefixes on key vault secrets to place secrets for multiple apps into the same key vault or to place

environmental secrets (for example, development versus production secrets) into the same vault. We recommend that

different apps and development/production environments use separate key vaults to isolate app environments for the

highest level of security.

In the following example, a secret is established in the key vault (and using the Secret Manager tool for the

Development environment) for 5000-AppSecret  (periods aren't allowed in key vault secret names). This secret

represents an app secret for version 5.0.0.0 of the app. For another version of the app, 5.1.0.0, a secret is added

to the key vault (and using the Secret Manager tool) for 5100-AppSecret . Each app version loads its versioned

secret value into its configuration as AppSecret , stripping off the version as it loads the secret.

AddAzureKeyVault is called with a custom IKeyVaultSecretManager:

The IKeyVaultSecretManager implementation reacts to the version prefixes of secrets to load the proper secret

into configuration:

Load  loads a secret when its name starts with the prefix. Other secrets aren't loaded.

GetKey :

Removes the prefix from the secret name.

Replaces two dashes in any name with the KeyDelimiter , which is the delimiter used in

configuration (usually a colon). Azure Key Vault doesn't allow a colon in secret names.

https://docs.microsoft.com/en-us/azure/devops/pipelines/library/connect-to-azure#create-an-azure-resource-manager-service-connection-to-a-vm-with-a-managed-service-identity
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvaultconfigurationextensions.addazurekeyvault
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvault.ikeyvaultsecretmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvaultconfigurationextensions.addazurekeyvault
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvault.ikeyvaultsecretmanager
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvault.ikeyvaultsecretmanager


public class PrefixKeyVaultSecretManager : IKeyVaultSecretManager
{
    private readonly string _prefix;

    public PrefixKeyVaultSecretManager(string prefix)
    {
        _prefix = $"{prefix}-";
    }

    public bool Load(SecretItem secret)
    {
        return secret.Identifier.Name.StartsWith(_prefix);
    }

    public string GetKey(SecretBundle secret)
    {
        return secret.SecretIdentifier.Name
            .Substring(_prefix.Length)
            .Replace("--", ConfigurationPath.KeyDelimiter);
    }
}

The Load  method is called by a provider algorithm that iterates through the vault secrets to find the ones that

have the version prefix. When a version prefix is found with Load , the algorithm uses the GetKey  method to

return the configuration name of the secret name. It strips off the version prefix from the secret's name and

returns the rest of the secret name for loading into the app's configuration name-value pairs.

When this approach is implemented:

<PropertyGroup>
  <Version>5.0.0.0</Version>
</PropertyGroup>

<PropertyGroup>
  <UserSecretsId>{GUID}</UserSecretsId>
</PropertyGroup>

dotnet user-secrets set "5000-AppSecret" "5.0.0.0_secret_value_dev"
dotnet user-secrets set "5100-AppSecret" "5.1.0.0_secret_value_dev"

az keyvault secret set --vault-name {KEY VAULT NAME} --name "5000-AppSecret" --value 
"5.0.0.0_secret_value_prod"
az keyvault secret set --vault-name {KEY VAULT NAME} --name "5100-AppSecret" --value 
"5.1.0.0_secret_value_prod"

1. The app's version specified in the app's project file. In the following example, the app's version is set to 

5.0.0.0 :

2. Confirm that a <UserSecretsId>  property is present in the app's project file, where {GUID}  is a user-

supplied GUID:

Save the following secrets locally with the Secret Manager tool:

3. Secrets are saved in Azure Key Vault using the following Azure CLI commands:

4. When the app is run, the key vault secrets are loaded. The string secret for 5000-AppSecret  is matched

to the app's version specified in the app's project file ( 5.0.0.0 ).



NOTENOTE

Bind an array to a class

"Serilog": {
  "WriteTo": [
    {
      "Name": "AzureTableStorage",
      "Args": {
        "storageTableName": "logs",
        "connectionString": "DefaultEnd...ountKey=Eby8...GMGw=="
      }
    },
    {
      "Name": "AzureDocumentDB",
      "Args": {
        "endpointUrl": "https://contoso.documents.azure.com:443",
        "authorizationKey": "Eby8...GMGw=="
      }
    }
  ]
}

KEYKEY VA L UEVA L UE

Serilog--WriteTo--0--Name AzureTableStorage

Serilog--WriteTo--0--Args--storageTableName logs

5. The version, 5000  (with the dash), is stripped from the key name. Throughout the app, reading

configuration with the key AppSecret  loads the secret value.

6. If the app's version is changed in the project file to 5.1.0.0  and the app is run again, the secret value

returned is 5.1.0.0_secret_value_dev  in the Development environment and 5.1.0.0_secret_value_prod

in Production.

You can also provide your own KeyVaultClient implementation to AddAzureKeyVault. A custom client permits sharing a

single instance of the client across the app.

The provider is capable of reading configuration values into an array for binding to a POCO array.

When reading from a configuration source that allows keys to contain colon ( : ) separators, a numeric key

segment is used to distinguish the keys that make up an array ( :0: , :1: , … :{n}: ). For more information,

see Configuration: Bind an array to a class.

Azure Key Vault keys can't use a colon as a separator. The approach described in this topic uses double dashes (

-- ) as a separator for hierarchical values (sections). Array keys are stored in Azure Key Vault with double

dashes and numeric key segments ( --0-- , --1-- , … --{n}-- ).

Examine the following Serilog logging provider configuration provided by a JSON file. There are two object

literals defined in the WriteTo  array that reflect two Serilog sinks, which describe destinations for logging

output:

The configuration shown in the preceding JSON file is stored in Azure Key Vault using double dash ( -- )

notation and numeric segments:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.keyvaultclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.azurekeyvaultconfigurationextensions.addazurekeyvault
https://serilog.net/


Serilog--WriteTo--0--Args--connectionString DefaultEnd...ountKey=Eby8...GMGw==

Serilog--WriteTo--1--Name AzureDocumentDB

Serilog--WriteTo--1--Args--endpointUrl https://contoso.documents.azure.com:443

Serilog--WriteTo--1--Args--authorizationKey Eby8...GMGw==

KEYKEY VA L UEVA L UE

Reload secrets

Configuration.Reload();

Disabled and expired secrets

Troubleshoot

Additional resources

Secrets are cached until IConfigurationRoot.Reload()  is called. Expired, disabled, and updated secrets in the

key vault are not respected by the app until Reload  is executed.

Disabled and expired secrets throw a KeyVaultErrorException. To prevent the app from throwing, provide the

configuration using a different configuration provider or update the disabled or expired secret.

When the app fails to load configuration using the provider, an error message is written to the ASP.NET Core

Logging infrastructure. The following conditions will prevent configuration from loading:

The app or certificate isn't configured correctly in Azure Active Directory.

The key vault doesn't exist in Azure Key Vault.

The app isn't authorized to access the key vault.

The access policy doesn't include Get  and List  permissions.

In the key vault, the configuration data (name-value pair) is incorrectly named, missing, disabled, or expired.

The app has the wrong key vault name ( KeyVaultName ), Azure AD Application Id ( AzureADApplicationId ), or

Azure AD certificate thumbprint ( AzureADCertThumbprint ).

The configuration key (name) is incorrect in the app for the value you're trying to load.

When adding the access policy for the app to the key vault, the policy was created, but the SaveSave button

wasn't selected in the Access policiesAccess policies  UI.

Configuration in ASP.NET Core

Microsoft Azure: Key Vault

Microsoft Azure: Key Vault Documentation

How to generate and transfer HSM-protected keys for Azure Key Vault

KeyVaultClient Class

Quickstart: Set and retrieve a secret from Azure Key Vault by using a .NET web app

Tutorial: How to use Azure Key Vault with Azure Windows Virtual Machine in .NET

https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.models.keyvaulterrorexception
https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/en-us/azure/key-vault/
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-hsm-protected-keys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.keyvault.keyvaultclient
https://docs.microsoft.com/en-us/azure/key-vault/quick-create-net
https://docs.microsoft.com/en-us/azure/key-vault/tutorial-net-windows-virtual-machine


        

Enforce HTTPS in ASP.NET Core
9/22/2020 • 12 minutes to read • Edit Online

WARNINGWARNING

API projects

HSTS and API projects

WARNINGWARNING

API projects

Require HTTPS

By Rick Anderson

This document shows how to:

Require HTTPS for all requests.

Redirect all HTTP requests to HTTPS.

No API can prevent a client from sending sensitive data on the first request.

Do notnot  use RequireHttpsAttribute on Web APIs that receive sensitive information. RequireHttpsAttribute  uses

HTTP status codes to redirect browsers from HTTP to HTTPS. API clients may not understand or obey redirects from

HTTP to HTTPS. Such clients may send information over HTTP. Web APIs should either:

Not listen on HTTP.

Close the connection with status code 400 (Bad Request) and not serve the request.

The default API projects don't include HSTS because HSTS is generally a browser only instruction. Other callers, such as

phone or desktop apps, do notnot  obey the instruction. Even within browsers, a single authenticated call to an API over

HTTP has risks on insecure networks. The secure approach is to configure API projects to only listen to and respond

over HTTPS.

Do notnot  use RequireHttpsAttribute on Web APIs that receive sensitive information. RequireHttpsAttribute  uses

HTTP status codes to redirect browsers from HTTP to HTTPS. API clients may not understand or obey redirects from

HTTP to HTTPS. Such clients may send information over HTTP. Web APIs should either:

Not listen on HTTP.

Close the connection with status code 400 (Bad Request) and not serve the request.

We recommend that production ASP.NET Core web apps use:

HTTPS Redirection Middleware (UseHttpsRedirection) to redirect HTTP requests to HTTPS.

HSTS Middleware (UseHsts) to send HTTP Strict Transport Security Protocol (HSTS) headers to clients.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/enforcing-ssl.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requirehttpsattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.requirehttpsattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpspolicybuilderextensions.usehttpsredirection


NOTENOTE

UseHttpsRedirectionUseHttpsRedirection

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        // The default HSTS value is 30 days. You may want to change this for production scenarios, see 
https://aka.ms/aspnetcore-hsts.
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
    });
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();

    app.UseMvc();
}

Apps deployed in a reverse proxy configuration allow the proxy to handle connection security (HTTPS). If the proxy also

handles HTTPS redirection, there's no need to use HTTPS Redirection Middleware. If the proxy server also handles

writing HSTS headers (for example, native HSTS support in IIS 10.0 (1709) or later), HSTS Middleware isn't required by

the app. For more information, see Opt-out of HTTPS/HSTS on project creation.

The following code calls UseHttpsRedirection  in the Startup  class:

The preceding highlighted code:

Uses the default HttpsRedirectionOptions.RedirectStatusCode (Status307TemporaryRedirect).

Uses the default HttpsRedirectionOptions.HttpsPort (null) unless overridden by the ASPNETCORE_HTTPS_PORT

https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-10-version-1709/iis-10-version-1709-hsts#iis-100-version-1709-native-hsts-support
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpspolicy.httpsredirectionoptions.redirectstatuscode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes.status307temporaryredirect
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpspolicy.httpsredirectionoptions.httpsport


Port configurationPort configuration

environment variable or IServerAddressesFeature.

We recommend using temporary redirects rather than permanent redirects. Link caching can cause unstable

behavior in development environments. If you prefer to send a permanent redirect status code when the app

is in a non-Development environment, see the Configure permanent redirects in production section. We

recommend using HSTS to signal to clients that only secure resource requests should be sent to the app (only

in production).

A port must be available for the middleware to redirect an insecure request to HTTPS. If no port is available:

Redirection to HTTPS doesn't occur.

The middleware logs the warning "Failed to determine the https port for redirect."

Specify the HTTPS port using any of the following approaches:

Set HttpsRedirectionOptions.HttpsPort.

Set the https_port  host setting:

{
    "https_port": 443,
    "Logging": {
        "LogLevel": {
            "Default": "Information",
            "Microsoft": "Warning",
            "Microsoft.Hosting.Lifetime": "Information"
        }
    },
    "AllowedHosts": "*"
}

In host configuration.

By setting the ASPNETCORE_HTTPS_PORT  environment variable.

By adding a top-level entry in appsettings.json:

Indicate a port with the secure scheme using the ASPNETCORE_URLS environment variable. The

environment variable configures the server. The middleware indirectly discovers the HTTPS port via

IServerAddressesFeature. This approach doesn't work in reverse proxy deployments.

Set the https_port  host setting:

{
    "https_port": 443,
    "Logging": {
        "LogLevel": {
            "Default": "Warning"
        }
    },
    "AllowedHosts": "*"
}

In host configuration.

By setting the ASPNETCORE_HTTPS_PORT  environment variable.

By adding a top-level entry in appsettings.json:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.features.iserveraddressesfeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.features.iserveraddressesfeature


  

NOTENOTE

Edge deploymentsEdge deployments

Deployment scenariosDeployment scenarios

OptionsOptions

Indicate a port with the secure scheme using the ASPNETCORE_URLS environment variable. The

environment variable configures the server. The middleware indirectly discovers the HTTPS port via

IServerAddressesFeature. This approach doesn't work in reverse proxy deployments.

In development, set an HTTPS URL in launchsettings.json. Enable HTTPS when IIS Express is used.

Configure an HTTPS URL endpoint for a public-facing edge deployment of Kestrel server or HTTP.sys

server. Only one HTTPS por tone HTTPS por t is used by the app. The middleware discovers the port via

IServerAddressesFeature.

When an app is run in a reverse proxy configuration, IServerAddressesFeature isn't available. Set the port using one of

the other approaches described in this section.

When Kestrel or HTTP.sys is used as a public-facing edge server, Kestrel or HTTP.sys must be configured to

listen on both:

The secure port where the client is redirected (typically, 443 in production and 5001 in development).

The insecure port (typically, 80 in production and 5000 in development).

The insecure port must be accessible by the client in order for the app to receive an insecure request and

redirect the client to the secure port.

For more information, see Kestrel endpoint configuration or HTTP.sys web server implementation in ASP.NET

Core.

Any firewall between the client and server must also have communication ports open for traffic.

If requests are forwarded in a reverse proxy configuration, use Forwarded Headers Middleware before calling

HTTPS Redirection Middleware. Forwarded Headers Middleware updates the Request.Scheme , using the 

X-Forwarded-Proto  header. The middleware permits redirect URIs and other security policies to work

correctly. When Forwarded Headers Middleware isn't used, the backend app might not receive the correct

scheme and end up in a redirect loop. A common end user error message is that too many redirects have

occurred.

When deploying to Azure App Service, follow the guidance in Tutorial: Bind an existing custom SSL certificate

to Azure Web Apps.

The following highlighted code calls AddHttpsRedirection to configure middleware options:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.features.iserveraddressesfeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.features.iserveraddressesfeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.server.features.iserveraddressesfeature
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-ssl
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.httpsredirectionservicesextensions.addhttpsredirection


  

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages();

    services.AddHsts(options =>
    {
        options.Preload = true;
        options.IncludeSubDomains = true;
        options.MaxAge = TimeSpan.FromDays(60);
        options.ExcludedHosts.Add("example.com");
        options.ExcludedHosts.Add("www.example.com");
    });

    services.AddHttpsRedirection(options =>
    {
        options.RedirectStatusCode = StatusCodes.Status307TemporaryRedirect;
        options.HttpsPort = 5001;
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc();

    services.AddHsts(options =>
    {
        options.Preload = true;
        options.IncludeSubDomains = true;
        options.MaxAge = TimeSpan.FromDays(60);
        options.ExcludedHosts.Add("example.com");
        options.ExcludedHosts.Add("www.example.com");
    });

    services.AddHttpsRedirection(options =>
    {
        options.RedirectStatusCode = StatusCodes.Status307TemporaryRedirect;
        options.HttpsPort = 5001;
    });
}

Configure permanent redirects in productionConfigure permanent redirects in production

Calling AddHttpsRedirection  is only necessary to change the values of HttpsPort  or RedirectStatusCode .

The preceding highlighted code:

Sets HttpsRedirectionOptions.RedirectStatusCode to Status307TemporaryRedirect, which is the default

value. Use the fields of the StatusCodes class for assignments to RedirectStatusCode .

Sets the HTTPS port to 5001.

The middleware defaults to sending a Status307TemporaryRedirect with all redirects. If you prefer to send a

permanent redirect status code when the app is in a non-Development environment, wrap the middleware

options configuration in a conditional check for a non-Development environment.

When configuring services in Startup.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpspolicy.httpsredirectionoptions.redirectstatuscode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes.status307temporaryredirect
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes.status307temporaryredirect


                            

public void ConfigureServices(IServiceCollection services)
{
    // IWebHostEnvironment (stored in _env) is injected into the Startup class.
    if (!_env.IsDevelopment())
    {
        services.AddHttpsRedirection(options =>
        {
            options.RedirectStatusCode = StatusCodes.Status308PermanentRedirect;
            options.HttpsPort = 443;
        });
    }
}

public void ConfigureServices(IServiceCollection services)
{
    // IHostingEnvironment (stored in _env) is injected into the Startup class.
    if (!_env.IsDevelopment())
    {
        services.AddHttpsRedirection(options =>
        {
            options.RedirectStatusCode = StatusCodes.Status308PermanentRedirect;
            options.HttpsPort = 443;
        });
    }
}

HTTPS Redirection Middleware alternative approach

HTTP Strict Transport Security Protocol (HSTS)

When configuring services in Startup.cs:

An alternative to using HTTPS Redirection Middleware ( UseHttpsRedirection ) is to use URL Rewriting

Middleware ( AddRedirectToHttps ). AddRedirectToHttps  can also set the status code and port when the

redirect is executed. For more information, see URL Rewriting Middleware.

When redirecting to HTTPS without the requirement for additional redirect rules, we recommend using

HTTPS Redirection Middleware ( UseHttpsRedirection ) described in this topic.

 

Per OWASP, HTTP Strict Transport Security (HSTS) is an opt-in security enhancement that's specified by a web

app through the use of a response header. When a browser that supports HSTS receives this header :

The browser stores configuration for the domain that prevents sending any communication over HTTP.

The browser forces all communication over HTTPS.

The browser prevents the user from using untrusted or invalid certificates. The browser disables prompts

that allow a user to temporarily trust such a certificate.

Because HSTS is enforced by the client, it has some limitations:

The client must support HSTS.

HSTS requires at least one successful HTTPS request to establish the HSTS policy.

The application must check every HTTP request and redirect or reject the HTTP request.

ASP.NET Core 2.1 and later implements HSTS with the UseHsts  extension method. The following code calls 

UseHsts  when the app isn't in development mode:

https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#browser-support


public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        // The default HSTS value is 30 days. You may want to change this for production scenarios, see 
https://aka.ms/aspnetcore-hsts.
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
    });
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();

    app.UseMvc();
}

UseHsts  isn't recommended in development because the HSTS settings are highly cacheable by browsers. By

default, UseHsts  excludes the local loopback address.

For production environments that are implementing HTTPS for the first time, set the initial

HstsOptions.MaxAge to a small value using one of the TimeSpan methods. Set the value from hours to no

more than a single day in case you need to revert the HTTPS infrastructure to HTTP. After you're confident in

the sustainability of the HTTPS configuration, increase the HSTS max-age  value; a commonly used value is

one year.

The following code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.httpspolicy.hstsoptions.maxage
https://docs.microsoft.com/en-us/dotnet/api/system.timespan


 

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages();

    services.AddHsts(options =>
    {
        options.Preload = true;
        options.IncludeSubDomains = true;
        options.MaxAge = TimeSpan.FromDays(60);
        options.ExcludedHosts.Add("example.com");
        options.ExcludedHosts.Add("www.example.com");
    });

    services.AddHttpsRedirection(options =>
    {
        options.RedirectStatusCode = StatusCodes.Status307TemporaryRedirect;
        options.HttpsPort = 5001;
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc();

    services.AddHsts(options =>
    {
        options.Preload = true;
        options.IncludeSubDomains = true;
        options.MaxAge = TimeSpan.FromDays(60);
        options.ExcludedHosts.Add("example.com");
        options.ExcludedHosts.Add("www.example.com");
    });

    services.AddHttpsRedirection(options =>
    {
        options.RedirectStatusCode = StatusCodes.Status307TemporaryRedirect;
        options.HttpsPort = 5001;
    });
}

Opt-out of HTTPS/HSTS on project creation

Sets the preload parameter of the Strict-Transport-Security  header. Preload isn't part of the RFC HSTS

specification, but is supported by web browsers to preload HSTS sites on fresh install. For more

information, see https://hstspreload.org/.

Enables includeSubDomain, which applies the HSTS policy to Host subdomains.

Explicitly sets the max-age  parameter of the Strict-Transport-Security  header to 60 days. If not set,

defaults to 30 days. For more information, see the max-age directive.

Adds example.com  to the list of hosts to exclude.

UseHsts  excludes the following loopback hosts:

localhost  : The IPv4 loopback address.

127.0.0.1  : The IPv4 loopback address.

[::1]  : The IPv6 loopback address.

In some backend service scenarios where connection security is handled at the public-facing edge of the

network, configuring connection security at each node isn't required. Web apps that are generated from the

templates in Visual Studio or from the dotnet new command enable HTTPS redirection and HSTS. For

https://tools.ietf.org/html/rfc6797
https://hstspreload.org/
https://tools.ietf.org/html/rfc6797#section-6.1.2
https://tools.ietf.org/html/rfc6797#section-6.1.1
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new


deployments that don't require these scenarios, you can opt-out of HTTPS/HSTS when the app is created from

the template.

To opt-out of HTTPS/HSTS:

Visual Studio

.NET Core CLI

Uncheck the Configure for HTTPSConfigure for HTTPS  check box.

  



                                                    

  

Trust the ASP.NET Core HTTPS development certificate on Windows
and macOS

ASP.NET Core
------------
Successfully installed the ASP.NET Core HTTPS Development Certificate.
To trust the certificate run 'dotnet dev-certs https --trust' (Windows and macOS only).
For establishing trust on other platforms refer to the platform specific documentation.
For more information on configuring HTTPS see https://go.microsoft.com/fwlink/?linkid=848054.

dotnet dev-certs https --trust

dotnet dev-certs https --help

How to set up a developer certificate for Docker

Trust HTTPS certificate on Linux

Trust HTTPS certificate from Windows Subsystem for Linux

Troubleshoot certificate problems

The .NET Core SDK includes an HTTPS development certificate. The certificate is installed as part of the first-

run experience. For example, dotnet --info  produces a variation of the following output:

Installing the .NET Core SDK installs the ASP.NET Core HTTPS development certificate to the local user

certificate store. The certificate has been installed, but it's not trusted. To trust the certificate, perform the one-

time step to run the dotnet dev-certs  tool:

The following command provides help on the dev-certs  tool:

See this GitHub issue.

 

For instructions on Linux, refer to the distribution documentation.

 

The Windows Subsystem for Linux (WSL) generates an HTTPS self-signed cert. To configure the Windows

certificate store to trust the WSL certificate:

dotnet dev-certs https -ep %USERPROFILE%\.aspnet\https\aspnetapp.pfx -p <cryptic-password>

  ASPNETCORE_Kestrel__Certificates__Default__Password="<cryptic-password>" 
  ASPNETCORE_Kestrel__Certificates__Default__Path=/mnt/c/Users/user-
name/.aspnet/https/aspnetapp.pfx
  dotnet watch run

Run the following command to export the WSL-generated certificate:

In a WSL window, run the following command:

The preceding command sets the environment variables so Linux uses the Windows trusted certificate.

This section provides help when the ASP.NET Core HTTPS development certificate has been installed and

https://github.com/dotnet/AspNetCore.Docs/issues/6199


All platforms - certificate not trustedAll platforms - certificate not trusted

dotnet dev-certs https --clean
dotnet dev-certs https --trust

Docker - certificate not trustedDocker - certificate not trusted

Windows - certificate not trustedWindows - certificate not trusted

dotnet dev-certs https --clean
dotnet dev-certs https --trust

OS X - certificate not trustedOS X - certificate not trusted

dotnet dev-certs https --clean
dotnet dev-certs https --trust

I IS Express SSL certificate used with Visual StudioIIS Express SSL certificate used with Visual Studio

trusted, but you still have browser warnings that the certificate is not trusted. The ASP.NET Core HTTPS

development certificate is used by Kestrel.

Run the following commands:

Close any browser instances open. Open a new browser window to app. Certificate trust is cached by

browsers.

The preceding commands solve most browser trust issues. If the browser is still not trusting the certificate,

follow the platform-specific suggestions that follow.

Delete the C:\Users{USER}\AppData\Roaming\ASP.NET\Https folder.

Clean the solution. Delete the bin and obj folders.

Restart the development tool. For example, Visual Studio, Visual Studio Code, or Visual Studio for Mac.

Check the certificates in the certificate store. There should be a localhost  certificate with the 

ASP.NET Core HTTPS development certificate  friendly name both under 

Current User > Personal > Certificates  and 

Current User > Trusted root certification authorities > Certificates

Remove all the found certificates from both Personal and Trusted root certification authorities. Do notnot

remove the IIS Express localhost certificate.

Run the following commands:

Close any browser instances open. Open a new browser window to app.

Open KeyChain Access.

Select the System keychain.

Check for the presence of a localhost certificate.

Check that it contains a +  symbol on the icon to indicate it's trusted for all users.

Remove the certificate from the system keychain.

Run the following commands:

Close any browser instances open. Open a new browser window to app.

See HTTPS Error using IIS Express (dotnet/AspNetCore #16892) for troubleshooting certificate issues with

Visual Studio.

To fix problems with the IIS Express certificate, select RepairRepair  from the Visual Studio installer. For more

https://github.com/dotnet/AspNetCore/issues/16892


Additional information

information, see this GitHub issue.

Configure ASP.NET Core to work with proxy servers and load balancers

Host ASP.NET Core on Linux with Apache: HTTPS configuration

Host ASP.NET Core on Linux with Nginx: HTTPS configuration

How to Set Up SSL on IIS

OWASP HSTS browser support

https://github.com/dotnet/aspnetcore/issues/16892
https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet#Browser_Support


Hosting ASP.NET Core images with Docker over
HTTPS
9/22/2020 • 2 minutes to read • Edit Online

Prerequisites

Certificates

Running pre-built container images with HTTPS

Windows using Linux containersWindows using Linux containers

dotnet dev-certs https -ep %USERPROFILE%\.aspnet\https\aspnetapp.pfx -p { password here }
dotnet dev-certs https --trust

By Rick Anderson

ASP.NET Core uses HTTPS by default. HTTPS relies on certificates for trust, identity, and encryption.

This document explains how to run pre-built container images with HTTPS.

See Developing ASP.NET Core Applications with Docker over HTTPS for development scenarios.

This sample requires Docker 17.06 or later of the Docker client.

The .NET Core 2.2 SDK or later is required for some of the instructions in this document.

A certificate from a certificate authority is required for production hosting for a domain. Let's Encrypt is a certificate

authority that offers free certificates.

This document uses self-signed development certificates for hosting pre-built images over localhost . The

instructions are similar to using production certificates.

For production certs:

The dotnet dev-certs  tool is not required.

Certificates do not need to be stored in the location used in the instructions. Any location should work, although

storing certs within your site directory is not recommended.

The instructions contained in the following section volume mount certificates into containers using Docker's -v

command-line option. You could add certificates into container images with a COPY  command in a Dockerfile, but

it's not recommended. Copying certificates into an image isn't recommended for the following reasons:

It makes difficult to use the same image for testing with developer certificates.

It makes difficult to use the same image for Hosting with production certificates.

There is significant risk of certificate disclosure.

Use the following instructions for your operating system configuration.

Generate certificate and configure local machine:

In the preceding commands, replace { password here }  with a password.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/docker-https.md
https://twitter.com/RickAndMSFT
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Public_key_certificate
https://github.com/dotnet/dotnet-docker/blob/master/samples/run-aspnetcore-https-development.md
https://docs.docker.com/release-notes/docker-ce
https://www.docker.com/products/docker
https://dotnet.microsoft.com/download
https://wikipedia.org/wiki/Certificate_authority
https://blogs.msdn.microsoft.com/webdev/2017/11/29/configuring-https-in-asp-net-core-across-different-platforms/
https://letsencrypt.org/
https://en.wikipedia.org/wiki/Self-signed_certificate


docker pull mcr.microsoft.com/dotnet/core/samples:aspnetapp
docker run --rm -it -p 8000:80 -p 8001:443 -e ASPNETCORE_URLS="https://+;http://+" -e 
ASPNETCORE_HTTPS_PORT=8001 -e ASPNETCORE_Kestrel__Certificates__Default__Password="password" -e 
ASPNETCORE_Kestrel__Certificates__Default__Path=/https/aspnetapp.pfx -v %USERPROFILE%\.aspnet\https:/https/ 
mcr.microsoft.com/dotnet/core/samples:aspnetapp

macOS or LinuxmacOS or Linux

dotnet dev-certs https -ep ${HOME}/.aspnet/https/aspnetapp.pfx -p { password here }
dotnet dev-certs https --trust

docker pull mcr.microsoft.com/dotnet/core/samples:aspnetapp
docker run --rm -it -p 8000:80 -p 8001:443 -e ASPNETCORE_URLS="https://+;http://+" -e 
ASPNETCORE_HTTPS_PORT=8001 -e ASPNETCORE_Kestrel__Certificates__Default__Password="password" -e 
ASPNETCORE_Kestrel__Certificates__Default__Path=/https/aspnetapp.pfx -v ${HOME}/.aspnet/https:/https/ 
mcr.microsoft.com/dotnet/core/samples:aspnetapp

Windows using Windows containersWindows using Windows containers

dotnet dev-certs https -ep %USERPROFILE%\.aspnet\https\aspnetapp.pfx -p { password here }
dotnet dev-certs https --trust

docker pull mcr.microsoft.com/dotnet/core/samples:aspnetapp
docker run --rm -it -p 8000:80 -p 8001:443 -e ASPNETCORE_URLS="https://+;http://+" -e 
ASPNETCORE_HTTPS_PORT=8001 -e ASPNETCORE_Kestrel__Certificates__Default__Password="password" -e 
ASPNETCORE_Kestrel__Certificates__Default__Path=\https\aspnetapp.pfx -v %USERPROFILE%\.aspnet\https:C:\https\ 
mcr.microsoft.com/dotnet/core/samples:aspnetapp

Run the container image with ASP.NET Core configured for HTTPS in a command shell:

When using PowerShell, replace %USERPROFILE%  with $env:USERPROFILE .

The password must match the password used for the certificate.

Generate certificate and configure local machine:

dotnet dev-certs https --trust  is only supported on macOS and Windows. You need to trust certs on Linux in the

way that is supported by your distribution. It is likely that you need to trust the certificate in your browser.

In the preceding commands, replace { password here }  with a password.

Run the container image with ASP.NET Core configured for HTTPS:

The password must match the password used for the certificate.

Generate certificate and configure local machine:

In the preceding commands, replace { password here }  with a password. When using PowerShell, replace 

%USERPROFILE%  with $env:USERPROFILE .

Run the container image with ASP.NET Core configured for HTTPS:

The password must match the password used for the certificate. When using PowerShell, replace %USERPROFILE%

with $env:USERPROFILE .

https://docs.microsoft.com/en-us/powershell/scripting/overview
https://docs.microsoft.com/en-us/powershell/scripting/overview
https://docs.microsoft.com/en-us/powershell/scripting/overview


Hosting ASP.NET Core images with Docker Compose
over HTTPS
9/22/2020 • 2 minutes to read • Edit Online

Prerequisites

Certificates

Starting a container with https support using docker compose

Windows using Linux containersWindows using Linux containers

dotnet dev-certs https -ep %USERPROFILE%\.aspnet\https\aspnetapp.pfx -p { password here }
dotnet dev-certs https --trust

ASP.NET Core uses HTTPS by default. HTTPS relies on certificates for trust, identity, and encryption.

This document explains how to run pre-built container images with HTTPS.

See Developing ASP.NET Core Applications with Docker over HTTPS for development scenarios.

This sample requires Docker 17.06 or later of the Docker client.

The .NET Core 2.2 SDK or later is required for some of the instructions in this document.

A certificate from a certificate authority is required for production hosting for a domain. Let's Encrypt is a certificate

authority that offers free certificates.

This document uses self-signed development certificates for hosting pre-built images over localhost . The

instructions are similar to using production certificates.

For production certificates:

The dotnet dev-certs  tool is not required.

Certificates don't need to be stored in the location used in the instructions. Store the certificates in any location

outside the site directory.

The instructions contained in the following section volume mount certificates into containers using the volumes

property in docker-compose.yml. You could add certificates into container images with a COPY  command in a

Dockerfile, but it's not recommended. Copying certificates into an image isn't recommended for the following

reasons:

It makes it difficult to use the same image for testing with developer certificates.

It makes it difficult to use the same image for Hosting with production certificates.

There is significant risk of certificate disclosure.

Use the following instructions for your operating system configuration.

Generate certificate and configure local machine:

In the preceding commands, replace { password here }  with a password.

Create a docker-compose.debug.yml file with the following content:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/docker-compose-https.md
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Public_key_certificate
https://github.com/dotnet/dotnet-docker/blob/master/samples/run-aspnetcore-https-development.md
https://docs.docker.com/release-notes/docker-ce
https://www.docker.com/products/docker
https://dotnet.microsoft.com/download
https://wikipedia.org/wiki/Certificate_authority
https://blogs.msdn.microsoft.com/webdev/2017/11/29/configuring-https-in-asp-net-core-across-different-platforms/
https://letsencrypt.org/
https://wikipedia.org/wiki/Self-signed_certificate


version: '3.4'

services:
  webapp:
    image: mcr.microsoft.com/dotnet/core/samples:aspnetapp
    ports:
      - 80
      - 443
    environment:
      - ASPNETCORE_ENVIRONMENT=Development
      - ASPNETCORE_URLS=https://+:443;http://+:80
      - ASPNETCORE_Kestrel__Certificates__Default__Password=password
      - ASPNETCORE_Kestrel__Certificates__Default__Path=/https/aspnetapp.pfx
    volumes:
      - ~/.aspnet/https:/https:ro

docker-compose -f "docker-compose.debug.yml" up -d

macOS or LinuxmacOS or Linux

dotnet dev-certs https -ep ${HOME}/.aspnet/https/aspnetapp.pfx -p { password here }
dotnet dev-certs https --trust

version: '3.4'

services:
  webapp:
    image: mcr.microsoft.com/dotnet/core/samples:aspnetapp
    ports:
      - 80
      - 443
    environment:
      - ASPNETCORE_ENVIRONMENT=Development
      - ASPNETCORE_URLS=https://+:443;http://+:80
      - ASPNETCORE_Kestrel__Certificates__Default__Password=password
      - ASPNETCORE_Kestrel__Certificates__Default__Path=/https/aspnetapp.pfx
    volumes:
      - ~/.aspnet/https:/https:ro

docker-compose -f "docker-compose.debug.yml" up -d

Windows using Windows containersWindows using Windows containers

The password specified in the docker compose file must match the password used for the certificate.

Start the container with ASP.NET Core configured for HTTPS:

Generate certificate and configure local machine:

dotnet dev-certs https --trust  is only supported on macOS and Windows. You need to trust certificates on Linux

in the way that is supported by your distribution. It is likely that you need to trust the certificate in your browser.

In the preceding commands, replace { password here }  with a password.

Create a docker-compose.debug.yml file with the following content:

The password specified in the docker compose file must match the password used for the certificate.

Start the container with ASP.NET Core configured for HTTPS:



dotnet dev-certs https -ep %USERPROFILE%\.aspnet\https\aspnetapp.pfx -p { password here }
dotnet dev-certs https --trust

version: '3.4'

services:
  webapp:
    image: mcr.microsoft.com/dotnet/core/samples:aspnetapp
    ports:
      - 80
      - 443
    environment:
      - ASPNETCORE_ENVIRONMENT=Development
      - ASPNETCORE_URLS=https://+:443;http://+:80
      - ASPNETCORE_Kestrel__Certificates__Default__Password=password
      - ASPNETCORE_Kestrel__Certificates__Default__Path=C:\https\aspnetapp.pfx
    volumes:
      - ${USERPROFILE}\.aspnet\https:C:\https:ro

docker-compose -f "docker-compose.debug.yml" up -d

Generate certificate and configure local machine:

In the preceding commands, replace { password here }  with a password.

Create a docker-compose.debug.yml file with the following content:

The password specified in the docker compose file must match the password used for the certificate.

Start the container with ASP.NET Core configured for HTTPS:



EU General Data Protection Regulation (GDPR)
support in ASP.NET Core
9/22/2020 • 7 minutes to read • Edit Online

By Rick Anderson

ASP.NET Core provides APIs and templates to help meet some of the EU General Data Protection Regulation

(GDPR) requirements:

The project templates include extension points and stubbed markup that you can replace with your

privacy and cookie use policy.

The Pages/Privacy.cshtml page or Views/Home/Privacy.cshtml view provides a page to detail your site's

privacy policy.

To enable the default cookie consent feature like that found in the ASP.NET Core 2.2 templates in an ASP.NET

Core 3.0 template generated app:

Add using Microsoft.AspNetCore.Http  to the list of using directives.

Add CookiePolicyOptions to Startup.ConfigureServices  and UseCookiePolicy to Startup.Configure :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/gdpr.md
https://twitter.com/RickAndMSFT
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-does-general-data-protection-regulation-gdpr-govern_en
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyappbuilderextensions.usecookiepolicy


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.Configure<CookiePolicyOptions>(options =>
        {
            // This lambda determines whether user consent for non-essential 
            // cookies is needed for a given request.
            options.CheckConsentNeeded = context => true;
            // requires using Microsoft.AspNetCore.Http;
            options.MinimumSameSitePolicy = SameSiteMode.None;
        });

        services.AddRazorPages();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseExceptionHandler("/Error");
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseCookiePolicy();

        app.UseRouting();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapRazorPages();
        });
    }
}

Add the cookie consent partial to the _Layout.cshtml file:



        @*Previous markup removed for brevity*@
    </header>
    <div class="container">
        <partial name="_CookieConsentPartial" />
        <main role="main" class="pb-3">
            @RenderBody()
        </main>
    </div>

    <footer class="border-top footer text-muted">
        <div class="container">
            &copy; 2019 - RPCC - <a asp-area="" asp-page="/Privacy">Privacy</a>
        </div>
    </footer>

    <script src="~/lib/jquery/dist/jquery.js"></script>
    <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js"></script>
    <script src="~/js/site.js" asp-append-version="true"></script>

    @RenderSection("Scripts", required: false)
</body>
</html>

@using Microsoft.AspNetCore.Http.Features

@{
    var consentFeature = Context.Features.Get<ITrackingConsentFeature>();
    var showBanner = !consentFeature?.CanTrack ?? false;
    var cookieString = consentFeature?.CreateConsentCookie();
}

@if (showBanner)
{
    <div id="cookieConsent" class="alert alert-info alert-dismissible fade show" role="alert">
        Use this space to summarize your privacy and cookie use policy. <a asp-
page="/Privacy">Learn More</a>.
        <button type="button" class="accept-policy close" data-dismiss="alert" aria-
label="Close" data-cookie-string="@cookieString">
            <span aria-hidden="true">Accept</span>
        </button>
    </div>
    <script>
        (function () {
            var button = document.querySelector("#cookieConsent button[data-cookie-string]");
            button.addEventListener("click", function (event) {
                document.cookie = button.dataset.cookieString;
            }, false);
        })();
    </script>
}

Add the _CookieConsentPartial.cshtml file to the project:

Select the ASP.NET Core 2.2 version of this article to read about the cookie consent feature.

The project templates include extension points and stubbed markup that you can replace with your

privacy and cookie use policy.

A cookie consent feature allows you to ask for (and track) consent from your users for storing personal

information. If a user hasn't consented to data collection and the app has CheckConsentNeeded set to 

true , non-essential cookies aren't sent to the browser.

Cookies can be marked as essential. Essential cookies are sent to the browser even when the user hasn't

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.checkconsentneeded


ASP.NET Core GDPR support in template-generated code

CookiePolicyOptions and UseCookiePolicyCookiePolicyOptions and UseCookiePolicy

consented and tracking is disabled.

TempData and Session cookies aren't functional when tracking is disabled.

The Identity manage page provides a link to download and delete user data.

The sample app allows you test most of the GDPR extension points and APIs added to the ASP.NET Core 2.1

templates. See the ReadMe file for testing instructions.

View or download sample code (how to download)

Razor Pages and MVC projects created with the project templates include the following GDPR support:

CookiePolicyOptions and UseCookiePolicy are set in the Startup  class.

The _CookieConsentPartial.cshtml partial view. An AcceptAccept button is included in this file. When the user

clicks the AcceptAccept button, consent to store cookies is provided.

The Pages/Privacy.cshtml page or Views/Home/Privacy.cshtml view provides a page to detail your site's

privacy policy. The _CookieConsentPartial.cshtml file generates a link to the Privacy page.

For apps created with individual user accounts, the Manage page provides links to download and delete

personal user data.

CookiePolicyOptions are initialized in Startup.ConfigureServices :

https://github.com/dotnet/AspNetCore.Docs/tree/live/aspnetcore/security/gdpr/sample
https://github.com/dotnet/AspNetCore.Docs/tree/live/aspnetcore/security/gdpr/sample
https://github.com/dotnet/AspNetCore.Docs/tree/live/aspnetcore/security/gdpr/sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyappbuilderextensions.usecookiepolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    // This method gets called by the runtime. Use this method to add services 
    // to the container.
    public void ConfigureServices(IServiceCollection services)
    {
        services.Configure<CookiePolicyOptions>(options =>
        {
            // This lambda determines whether user consent for non-essential cookies 
            // is needed for a given request.
            options.CheckConsentNeeded = context => true;
            options.MinimumSameSitePolicy = SameSiteMode.None;
        });

        services.AddDbContext<ApplicationDbContext>(options =>
            options.UseSqlServer(
                Configuration.GetConnectionString("DefaultConnection")));
        services.AddDefaultIdentity<IdentityUser>()
            .AddEntityFrameworkStores<ApplicationDbContext>();

        // If the app uses session state, call AddSession.
        // services.AddSession();

        services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
    }

    // This method gets called by the runtime. Use this method to configure the 
    // HTTP request pipeline.
    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
            app.UseDatabaseErrorPage();
        }
        else
        {
            app.UseExceptionHandler("/Error");
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseCookiePolicy();

        app.UseAuthentication();

        // If the app uses session state, call Session Middleware after Cookie 
        // Policy Middleware and before MVC Middleware.
        // app.UseSession();

        app.UseMvc();
    }
}

UseCookiePolicy is called in Startup.Configure :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyappbuilderextensions.usecookiepolicy


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    // This method gets called by the runtime. Use this method to add services 
    // to the container.
    public void ConfigureServices(IServiceCollection services)
    {
        services.Configure<CookiePolicyOptions>(options =>
        {
            // This lambda determines whether user consent for non-essential cookies 
            // is needed for a given request.
            options.CheckConsentNeeded = context => true;
            options.MinimumSameSitePolicy = SameSiteMode.None;
        });

        services.AddDbContext<ApplicationDbContext>(options =>
            options.UseSqlServer(
                Configuration.GetConnectionString("DefaultConnection")));
        services.AddDefaultIdentity<IdentityUser>()
            .AddEntityFrameworkStores<ApplicationDbContext>();

        // If the app uses session state, call AddSession.
        // services.AddSession();

        services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
    }

    // This method gets called by the runtime. Use this method to configure the 
    // HTTP request pipeline.
    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
            app.UseDatabaseErrorPage();
        }
        else
        {
            app.UseExceptionHandler("/Error");
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseCookiePolicy();

        app.UseAuthentication();

        // If the app uses session state, call Session Middleware after Cookie 
        // Policy Middleware and before MVC Middleware.
        // app.UseSession();

        app.UseMvc();
    }
}

_CookieConsentPartial.cshtml partial view_CookieConsentPartial.cshtml partial view
The _CookieConsentPartial.cshtml partial view:



        

@using Microsoft.AspNetCore.Http.Features

@{
    var consentFeature = Context.Features.Get<ITrackingConsentFeature>();
    var showBanner = !consentFeature?.CanTrack ?? false;
    var cookieString = consentFeature?.CreateConsentCookie();
}

@if (showBanner)
{
    <nav id="cookieConsent" class="navbar navbar-default navbar-fixed-top" role="alert">
        <div class="container">
            <div class="navbar-header">
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-
target="#cookieConsent .navbar-collapse">
                    <span class="sr-only">Toggle cookie consent banner</span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                </button>
                <span class="navbar-brand"><span class="glyphicon glyphicon-info-sign" aria-
hidden="true"></span></span>
            </div>
            <div class="collapse navbar-collapse">
                <p class="navbar-text">
                    Use this space to summarize your privacy and cookie use policy.
                </p>
                <div class="navbar-right">
                    <a asp-page="/Privacy" class="btn btn-info navbar-btn">Learn More</a>
                    <button type="button" class="btn btn-default navbar-btn" data-cookie-
string="@cookieString">Accept</button>
                </div>
            </div>
        </div>
    </nav>
    <script>
        (function () {
            document.querySelector("#cookieConsent button[data-cookie-
string]").addEventListener("click", function (el) {
                document.cookie = el.target.dataset.cookieString;
                document.querySelector("#cookieConsent").classList.add("hidden");
            }, false);
        })();
    </script>
}

Essential cookies

This partial:

Obtains the state of tracking for the user. If the app is configured to require consent, the user must

consent before cookies can be tracked. If consent is required, the cookie consent panel is fixed at top of

the navigation bar created by the _Layout.cshtml file.

Provides an HTML <p>  element to summarize your privacy and cookie use policy.

Provides a link to Privacy page or view where you can detail your site's privacy policy.

If consent to store cookies hasn't been provided, only cookies marked essential are sent to the browser. The

following code makes a cookie essential:



        

public IActionResult OnPostCreateEssentialAsync()
{
    HttpContext.Response.Cookies.Append(Constants.EssentialSec, 
        DateTime.Now.Second.ToString(), 
        new CookieOptions() { IsEssential = true });

    ResponseCookies = Response.Headers[HeaderNames.SetCookie].ToString();

    return RedirectToPage("./Index");
}

TempData provider and session state cookies aren't essentialTempData provider and session state cookies aren't essential

// The TempData provider cookie is not essential. Make it essential
// so TempData is functional when tracking is disabled.
services.Configure<CookieTempDataProviderOptions>(options => {
    options.Cookie.IsEssential = true;
});

services.AddSession(options =>
{
    options.Cookie.IsEssential = true;
});

Personal data

 

The TempData provider cookie isn't essential. If tracking is disabled, the TempData provider isn't functional.

To enable the TempData provider when tracking is disabled, mark the TempData cookie as essential in 

Startup.ConfigureServices :

Session state cookies are not essential. Session state isn't functional when tracking is disabled. The

following code makes session cookies essential:

  

ASP.NET Core apps created with individual user accounts include code to download and delete personal

data.

Select the user name and then select Personal dataPersonal data:



Encryption at rest

Notes:

To generate the Account/Manage  code, see Scaffold Identity.

The DeleteDelete and DownloadDownload links only act on the default identity data. Apps that create custom user data

must be extended to delete/download the custom user data. For more information, see Add, download,

and delete custom user data to Identity.

Saved tokens for the user that are stored in the Identity database table AspNetUserTokens  are deleted

when the user is deleted via the cascading delete behavior due to the foreign key.

External provider authentication, such as Facebook and Google, isn't available before the cookie policy is

accepted.

Some databases and storage mechanisms allow for encryption at rest. Encryption at rest:

Encrypts stored data automatically.

Encrypts without configuration, programming, or other work for the software that accesses the data.

Is the easiest and safest option.

Allows the database to manage keys and encryption.

For example:

Microsoft SQL and Azure SQL provide Transparent Data Encryption (TDE).

SQL Azure encrypts the database by default

Azure Blobs, Files, Table, and Queue Storage are encrypted by default.

https://github.com/aspnet/Identity/blob/release/2.1/src/EF/IdentityUserContext.cs#L152
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://azure.microsoft.com/updates/newly-created-azure-sql-databases-encrypted-by-default/
https://azure.microsoft.com/blog/announcing-default-encryption-for-azure-blobs-files-table-and-queue-storage/


Additional resources

For databases that don't provide built-in encryption at rest, you may be able to use disk encryption to

provide the same protection. For example:

BitLocker for Windows Server

Linux:

eCryptfs

EncFS.

Microsoft.com/GDPR

GDPR - Adding a Revoke Consent Button in ASP.NET Core

https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-how-to-deploy-on-windows-server
https://launchpad.net/ecryptfs
https://github.com/vgough/encfs
https://www.microsoft.com/trustcenter/Privacy/GDPR
https://www.joeaudette.com/blog/2018/08/28/gdpr---adding-a-revoke-consent-button-in-aspnet-core


Prevent Cross-Site Request Forgery (XSRF/CSRF)
attacks in ASP.NET Core
9/22/2020 • 14 minutes to read • Edit Online

By Rick Anderson, Fiyaz Hasan, and Steve Smith

Cross-site request forgery (also known as XSRF or CSRF) is an attack against web-hosted apps whereby a

malicious web app can influence the interaction between a client browser and a web app that trusts that

browser. These attacks are possible because web browsers send some types of authentication tokens

automatically with every request to a website. This form of exploit is also known as a one-click attack or

session riding because the attack takes advantage of the user's previously authenticated session.

An example of a CSRF attack:

<h1>Congratulations! You're a Winner!</h1>
<form action="http://good-banking-site.com/api/account" method="post">
    <input type="hidden" name="Transaction" value="withdraw">
    <input type="hidden" name="Amount" value="1000000">
    <input type="submit" value="Click to collect your prize!">
</form>

1. A user signs into www.good-banking-site.com  using forms authentication. The server authenticates

the user and issues a response that includes an authentication cookie. The site is vulnerable to

attack because it trusts any request that it receives with a valid authentication cookie.

2. The user visits a malicious site, www.bad-crook-site.com .

The malicious site, www.bad-crook-site.com , contains an HTML form similar to the following:

Notice that the form's action  posts to the vulnerable site, not to the malicious site. This is the

"cross-site" part of CSRF.

3. The user selects the submit button. The browser makes the request and automatically includes the

authentication cookie for the requested domain, www.good-banking-site.com .

4. The request runs on the www.good-banking-site.com  server with the user's authentication context

and can perform any action that an authenticated user is allowed to perform.

In addition to the scenario where the user selects the button to submit the form, the malicious site could:

Run a script that automatically submits the form.

Send the form submission as an AJAX request.

Hide the form using CSS.

These alternative scenarios don't require any action or input from the user other than initially visiting the

malicious site.

Using HTTPS doesn't prevent a CSRF attack. The malicious site can send an 

https://www.good-banking-site.com/  request just as easily as it can send an insecure request.

Some attacks target endpoints that respond to GET requests, in which case an image tag can be used to

perform the action. This form of attack is common on forum sites that permit images but block JavaScript.

Apps that change state on GET requests, where variables or resources are altered, are vulnerable to

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/anti-request-forgery.md
https://twitter.com/RickAndMSFT
https://twitter.com/FiyazBinHasan
https://ardalis.com/


        

        

Authentication fundamentals

Cookie-based authenticationCookie-based authentication

Token-based authenticationToken-based authentication

Multiple apps hosted at one domainMultiple apps hosted at one domain

malicious attacks. GET requests that change state are insecure. A best practice is to neverGET requests that change state are insecure. A best practice is to never

change state on a GET request.change state on a GET request.

CSRF attacks are possible against web apps that use cookies for authentication because:

Browsers store cookies issued by a web app.

Stored cookies include session cookies for authenticated users.

Browsers send all of the cookies associated with a domain to the web app every request regardless of

how the request to app was generated within the browser.

However, CSRF attacks aren't limited to exploiting cookies. For example, Basic and Digest authentication

are also vulnerable. After a user signs in with Basic or Digest authentication, the browser automatically

sends the credentials until the session† ends.

†In this context, session refers to the client-side session during which the user is authenticated. It's

unrelated to server-side sessions or ASP.NET Core Session Middleware.

Users can guard against CSRF vulnerabilities by taking precautions:

Sign off of web apps when finished using them.

Clear browser cookies periodically.

However, CSRF vulnerabilities are fundamentally a problem with the web app, not the end user.

Cookie-based authentication is a popular form of authentication. Token-based authentication systems are

growing in popularity, especially for Single Page Applications (SPAs).

When a user authenticates using their username and password, they're issued a token, containing an

authentication ticket that can be used for authentication and authorization. The token is stored as a cookie

that accompanies every request the client makes. Generating and validating this cookie is performed by

the Cookie Authentication Middleware. The middleware serializes a user principal into an encrypted

cookie. On subsequent requests, the middleware validates the cookie, recreates the principal, and assigns

the principal to the User property of HttpContext.

When a user is authenticated, they're issued a token (not an antiforgery token). The token contains user

information in the form of claims or a reference token that points the app to user state maintained in the

app. When a user attempts to access a resource requiring authentication, the token is sent to the app with

an additional authorization header in form of Bearer token. This makes the app stateless. In each

subsequent request, the token is passed in the request for server-side validation. This token isn't

encrypted; it's encoded. On the server, the token is decoded to access its information. To send the token on

subsequent requests, store the token in the browser's local storage. Don't be concerned about CSRF

vulnerability if the token is stored in the browser's local storage. CSRF is a concern when the token is

stored in a cookie. For more information, see the GitHub issue SPA code sample adds two cookies.

Shared hosting environments are vulnerable to session hijacking, login CSRF, and other attacks.

Although example1.contoso.net  and example2.contoso.net  are different hosts, there's an implicit trust

relationship between hosts under the *.contoso.net  domain. This implicit trust relationship allows

potentially untrusted hosts to affect each other's cookies (the same-origin policies that govern AJAX

requests don't necessarily apply to HTTP cookies).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.user
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/framework/security/claims-based-identity-model
https://github.com/dotnet/AspNetCore.Docs/issues/13369


            ASP.NET Core antiforgery configuration

WARNINGWARNING

<form method="post">
    ...
</form>

Attacks that exploit trusted cookies between apps hosted on the same domain can be prevented by not

sharing domains. When each app is hosted on its own domain, there is no implicit cookie trust

relationship to exploit.

ASP.NET Core implements antiforgery using ASP.NET Core Data Protection. The data protection stack must be

configured to work in a server farm. See Configuring data protection for more information.

Antiforgery middleware is added to the Dependency injection container when one of the following APIs is

called in Startup.ConfigureServices :

AddMvc

MapRazorPages

MapControllerRoute

MapBlazorHub

Antiforgery middleware is added to the Dependency injection container when AddMvc is called in 

Startup.ConfigureServices

In ASP.NET Core 2.0 or later, the FormTagHelper injects antiforgery tokens into HTML form elements. The

following markup in a Razor file automatically generates antiforgery tokens:

Similarly, IHtmlHelper.BeginForm generates antiforgery tokens by default if the form's method isn't GET.

The automatic generation of antiforgery tokens for HTML form elements happens when the <form>  tag

contains the method="post"  attribute and either of the following are true:

The action attribute is empty ( action="" ).

The action attribute isn't supplied ( <form method="post"> ).

Automatic generation of antiforgery tokens for HTML form elements can be disabled:

<form method="post" asp-antiforgery="false">
    ...
</form>

<!form method="post">
    ...
</!form>

Explicitly disable antiforgery tokens with the asp-antiforgery  attribute:

The form element is opted-out of Tag Helpers by using the Tag Helper ! opt-out symbol:

Remove the FormTagHelper  from the view. The FormTagHelper  can be removed from a view by

adding the following directive to the Razor view:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.razorpagesendpointroutebuilderextensions.maprazorpages
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.controllerendpointroutebuilderextensions.mapcontrollerroute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.componentendpointroutebuilderextensions.mapblazorhub
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addmvc
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.rendering.ihtmlhelper.beginform


NOTENOTE

<form asp-controller="Manage" asp-action="ChangePassword" method="post">
    ...
</form>

@using (Html.BeginForm("ChangePassword", "Manage"))
{
    ...
}

<form action="/" method="post">
    @Html.AntiForgeryToken()
</form>

<input name="__RequestVerificationToken" type="hidden" value="CfDJ8NrAkS ... s2-m9Yw">

Antiforgery options

@removeTagHelper Microsoft.AspNetCore.Mvc.TagHelpers.FormTagHelper, 
Microsoft.AspNetCore.Mvc.TagHelpers

Razor Pages are automatically protected from XSRF/CSRF. For more information, see XSRF/CSRF and Razor Pages.

The most common approach to defending against CSRF attacks is to use the Synchronizer Token Pattern

(STP). STP is used when the user requests a page with form data:

1. The server sends a token associated with the current user's identity to the client.

2. The client sends back the token to the server for verification.

3. If the server receives a token that doesn't match the authenticated user's identity, the request is

rejected.

The token is unique and unpredictable. The token can also be used to ensure proper sequencing of a series

of requests (for example, ensuring the request sequence of: page 1 > page 2 > page 3). All of the forms in

ASP.NET Core MVC and Razor Pages templates generate antiforgery tokens. The following pair of view

examples generate antiforgery tokens:

Explicitly add an antiforgery token to a <form>  element without using Tag Helpers with the HTML helper 

@Html.AntiForgeryToken :

In each of the preceding cases, ASP.NET Core adds a hidden form field similar to the following:

ASP.NET Core includes three filters for working with antiforgery tokens:

ValidateAntiForgeryToken

AutoValidateAntiforgeryToken

IgnoreAntiforgeryToken

Customize antiforgery options in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.htmlhelper.antiforgerytoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validateantiforgerytokenattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.autovalidateantiforgerytokenattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.ignoreantiforgerytokenattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions


services.AddAntiforgery(options => 
{
    // Set Cookie properties using CookieBuilder properties†.
    options.FormFieldName = "AntiforgeryFieldname";
    options.HeaderName = "X-CSRF-TOKEN-HEADERNAME";
    options.SuppressXFrameOptionsHeader = false;
});

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

Cookie Determines the settings used to create the antiforgery
cookies.

FormFieldName The name of the hidden form field used by the
antiforgery system to render antiforgery tokens in views.

HeaderName The name of the header used by the antiforgery system.
If null , the system considers only form data.

SuppressXFrameOptionsHeader Specifies whether to suppress generation of the 
X-Frame-Options  header. By default, the header is

generated with a value of "SAMEORIGIN". Defaults to 
false .

services.AddAntiforgery(options => 
{
    options.CookieDomain = "contoso.com";
    options.CookieName = "X-CSRF-TOKEN-COOKIENAME";
    options.CookiePath = "Path";
    options.FormFieldName = "AntiforgeryFieldname";
    options.HeaderName = "X-CSRF-TOKEN-HEADERNAME";
    options.RequireSsl = false;
    options.SuppressXFrameOptionsHeader = false;
});

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

Cookie Determines the settings used to create the antiforgery
cookies.

CookieDomain The domain of the cookie. Defaults to null . This

property is obsolete and will be removed in a future
version. The recommended alternative is Cookie.Domain.

CookieName The name of the cookie. If not set, the system generates
a unique name beginning with the DefaultCookiePrefix
(".AspNetCore.Antiforgery."). This property is obsolete
and will be removed in a future version. The
recommended alternative is Cookie.Name.

CookiePath The path set on the cookie. This property is obsolete and
will be removed in a future version. The recommended
alternative is Cookie.Path.

†Set the antiforgery Cookie  properties using the properties of the CookieBuilder class.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.cookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.formfieldname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.headername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.suppressxframeoptionsheader
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.cookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.cookiedomain
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.cookiename
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.defaultcookieprefix
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.cookiepath


FormFieldName The name of the hidden form field used by the
antiforgery system to render antiforgery tokens in views.

HeaderName The name of the header used by the antiforgery system.
If null , the system considers only form data.

RequireSsl Specifies whether HTTPS is required by the antiforgery
system. If true , non-HTTPS requests fail. Defaults to 

false . This property is obsolete and will be removed in

a future version. The recommended alternative is to set
Cookie.SecurePolicy.

SuppressXFrameOptionsHeader Specifies whether to suppress generation of the 
X-Frame-Options  header. By default, the header is

generated with a value of "SAMEORIGIN". Defaults to 
false .

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

Configure antiforgery features with IAntiforgery

public void Configure(IApplicationBuilder app, IAntiforgery antiforgery)
{
    app.Use(next => context =>
    {
        string path = context.Request.Path.Value;

        if (
            string.Equals(path, "/", StringComparison.OrdinalIgnoreCase) ||
            string.Equals(path, "/index.html", StringComparison.OrdinalIgnoreCase))
        {
            // The request token can be sent as a JavaScript-readable cookie, 
            // and Angular uses it by default.
            var tokens = antiforgery.GetAndStoreTokens(context);
            context.Response.Cookies.Append("XSRF-TOKEN", tokens.RequestToken, 
                new CookieOptions() { HttpOnly = false });
        }

        return next(context);
    });
}

Require antiforgery validationRequire antiforgery validation

For more information, see CookieAuthenticationOptions.

IAntiforgery provides the API to configure antiforgery features. IAntiforgery  can be requested in the 

Configure  method of the Startup  class. The following example uses middleware from the app's home

page to generate an antiforgery token and send it in the response as a cookie (using the default Angular

naming convention described later in this topic):

ValidateAntiForgeryToken is an action filter that can be applied to an individual action, a controller, or

globally. Requests made to actions that have this filter applied are blocked unless the request includes a

valid antiforgery token.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.formfieldname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.headername
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.requiressl
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.suppressxframeoptionsheader
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookieauthenticationoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgery
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.validateantiforgerytokenattribute


[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> RemoveLogin(RemoveLoginViewModel account)
{
    ManageMessageId? message = ManageMessageId.Error;
    var user = await GetCurrentUserAsync();

    if (user != null)
    {
        var result = 
            await _userManager.RemoveLoginAsync(
                user, account.LoginProvider, account.ProviderKey);

        if (result.Succeeded)
        {
            await _signInManager.SignInAsync(user, isPersistent: false);
            message = ManageMessageId.RemoveLoginSuccess;
        }
    }

    return RedirectToAction(nameof(ManageLogins), new { Message = message });
}

NOTENOTE

Automatically validate antiforgery tokens for unsafe HTTP methods onlyAutomatically validate antiforgery tokens for unsafe HTTP methods only

The ValidateAntiForgeryToken  attribute requires a token for requests to the action methods it marks,

including HTTP GET requests. If the ValidateAntiForgeryToken  attribute is applied across the app's

controllers, it can be overridden with the IgnoreAntiforgeryToken  attribute.

ASP.NET Core doesn't support adding antiforgery tokens to GET requests automatically.

ASP.NET Core apps don't generate antiforgery tokens for safe HTTP methods (GET, HEAD, OPTIONS, and

TRACE). Instead of broadly applying the ValidateAntiForgeryToken  attribute and then overriding it with 

IgnoreAntiforgeryToken  attributes, the AutoValidateAntiforgeryToken attribute can be used. This attribute

works identically to the ValidateAntiForgeryToken  attribute, except that it doesn't require tokens for

requests made using the following HTTP methods:

GET

HEAD

OPTIONS

TRACE

We recommend use of AutoValidateAntiforgeryToken  broadly for non-API scenarios. This ensures POST

actions are protected by default. The alternative is to ignore antiforgery tokens by default, unless 

ValidateAntiForgeryToken  is applied to individual action methods. It's more likely in this scenario for a

POST action method to be left unprotected by mistake, leaving the app vulnerable to CSRF attacks. All

POSTs should send the antiforgery token.

APIs don't have an automatic mechanism for sending the non-cookie part of the token. The

implementation probably depends on the client code implementation. Some examples are shown below:

Class-level example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.autovalidateantiforgerytokenattribute


[Authorize]
[AutoValidateAntiforgeryToken]
public class ManageController : Controller
{

services.AddControllersWithViews(options =>
    options.Filters.Add(new AutoValidateAntiforgeryTokenAttribute()));

Override global or controller antiforgery attributesOverride global or controller antiforgery attributes

[Authorize]
[AutoValidateAntiforgeryToken]
public class ManageController : Controller
{
    [HttpPost]
    [IgnoreAntiforgeryToken]
    public async Task<IActionResult> DoSomethingSafe(SomeViewModel model)
    {
        // no antiforgery token required
    }
}

Refresh tokens after authentication

JavaScript, AJAX, and SPAs

JavaScriptJavaScript

Global example:

services.AddMvc(options => options.Filters.Add(new AutoValidateAntiforgeryTokenAttribute()));

The IgnoreAntiforgeryToken filter is used to eliminate the need for an antiforgery token for a given action

(or controller). When applied, this filter overrides ValidateAntiForgeryToken  and 

AutoValidateAntiforgeryToken  filters specified at a higher level (globally or on a controller).

Tokens should be refreshed after the user is authenticated by redirecting the user to a view or Razor Pages

page.

In traditional HTML-based apps, antiforgery tokens are passed to the server using hidden form fields. In

modern JavaScript-based apps and SPAs, many requests are made programmatically. These AJAX requests

may use other techniques (such as request headers or cookies) to send the token.

If cookies are used to store authentication tokens and to authenticate API requests on the server, CSRF is a

potential problem. If local storage is used to store the token, CSRF vulnerability might be mitigated

because values from local storage aren't sent automatically to the server with every request. Thus, using

local storage to store the antiforgery token on the client and sending the token as a request header is a

recommended approach.

Using JavaScript with views, the token can be created using a service from within the view. Inject the

Microsoft.AspNetCore.Antiforgery.IAntiforgery service into the view and call GetAndStoreTokens:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.ignoreantiforgerytokenattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgery
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgery.getandstoretokens


@{
    ViewData["Title"] = "AJAX Demo";
}
@inject Microsoft.AspNetCore.Antiforgery.IAntiforgery Xsrf
@functions{
    public string GetAntiXsrfRequestToken()
    {
        return Xsrf.GetAndStoreTokens(Context).RequestToken;
    }
}

<input type="hidden" id="RequestVerificationToken" 
       name="RequestVerificationToken" value="@GetAntiXsrfRequestToken()">

<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<div class="row">
    <p><input type="button" id="antiforgery" value="Antiforgery"></p>
    <script>
        var xhttp = new XMLHttpRequest();
        xhttp.onreadystatechange = function() {
            if (xhttp.readyState == XMLHttpRequest.DONE) {
                if (xhttp.status == 200) {
                    alert(xhttp.responseText);
                } else {
                    alert('There was an error processing the AJAX request.');
                }
            }
        };

        document.addEventListener('DOMContentLoaded', function() {
            document.getElementById("antiforgery").onclick = function () {
                xhttp.open('POST', '@Url.Action("Antiforgery", "Home")', true);
                xhttp.setRequestHeader("RequestVerificationToken", 
                    document.getElementById('RequestVerificationToken').value);
                xhttp.send();
            }
        });
    </script>
</div>

context.Response.Cookies.Append("CSRF-TOKEN", tokens.RequestToken, 
    new Microsoft.AspNetCore.Http.CookieOptions { HttpOnly = false });

services.AddAntiforgery(options => options.HeaderName = "X-CSRF-TOKEN");

This approach eliminates the need to deal directly with setting cookies from the server or reading them

from the client.

The preceding example uses JavaScript to read the hidden field value for the AJAX POST header.

JavaScript can also access tokens in cookies and use the cookie's contents to create a header with the

token's value.

Assuming the script requests to send the token in a header called X-CSRF-TOKEN , configure the antiforgery

service to look for the X-CSRF-TOKEN  header :

The following example uses JavaScript to make an AJAX request with the appropriate header :



function getCookie(cname) {
    var name = cname + "=";
    var decodedCookie = decodeURIComponent(document.cookie);
    var ca = decodedCookie.split(';');
    for(var i = 0; i <ca.length; i++) {
        var c = ca[i];
        while (c.charAt(0) == ' ') {
            c = c.substring(1);
        }
        if (c.indexOf(name) == 0) {
            return c.substring(name.length, c.length);
        }
    }
    return "";
}

var csrfToken = getCookie("CSRF-TOKEN");

var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {
    if (xhttp.readyState == XMLHttpRequest.DONE) {
        if (xhttp.status == 200) {
            alert(xhttp.responseText);
        } else {
            alert('There was an error processing the AJAX request.');
        }
    }
};
xhttp.open('POST', '/api/password/changepassword', true);
xhttp.setRequestHeader("Content-type", "application/json");
xhttp.setRequestHeader("X-CSRF-TOKEN", csrfToken);
xhttp.send(JSON.stringify({ "newPassword": "ReallySecurePassword999$$$" }));

AngularJSAngularJS
AngularJS uses a convention to address CSRF. If the server sends a cookie with the name XSRF-TOKEN , the

AngularJS $http  service adds the cookie value to a header when it sends a request to the server. This

process is automatic. The header doesn't need to be set in the client explicitly. The header name is 

X-XSRF-TOKEN . The server should detect this header and validate its contents.

For ASP.NET Core API to work with this convention in your application startup:

Configure your app to provide a token in a cookie called XSRF-TOKEN .

Configure the antiforgery service to look for a header named X-XSRF-TOKEN .



public void Configure(IApplicationBuilder app, IAntiforgery antiforgery)
{
    app.Use(next => context =>
    {
        string path = context.Request.Path.Value;

        if (
            string.Equals(path, "/", StringComparison.OrdinalIgnoreCase) ||
            string.Equals(path, "/index.html", StringComparison.OrdinalIgnoreCase))
        {
            // The request token can be sent as a JavaScript-readable cookie, 
            // and Angular uses it by default.
            var tokens = antiforgery.GetAndStoreTokens(context);
            context.Response.Cookies.Append("XSRF-TOKEN", tokens.RequestToken, 
                new CookieOptions() { HttpOnly = false });
        }

        return next(context);
    });
}

public void ConfigureServices(IServiceCollection services)
{
    // Angular's default header name for sending the XSRF token.
    services.AddAntiforgery(options => options.HeaderName = "X-XSRF-TOKEN");
}

Extend antiforgery

Additional resources

View or download sample code (how to download)

The IAntiForgeryAdditionalDataProvider type allows developers to extend the behavior of the anti-CSRF

system by round-tripping additional data in each token. The GetAdditionalData method is called each time

a field token is generated, and the return value is embedded within the generated token. An implementer

could return a timestamp, a nonce, or any other value and then call ValidateAdditionalData to validate this

data when the token is validated. The client's username is already embedded in the generated tokens, so

there's no need to include this information. If a token includes supplemental data but no 

IAntiForgeryAdditionalDataProvider  is configured, the supplemental data isn't validated.

CSRF on Open Web Application Security Project (OWASP).

Host ASP.NET Core in a web farm

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/anti-request-forgery/sample/AngularSample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgeryadditionaldataprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgeryadditionaldataprovider.getadditionaldata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgeryadditionaldataprovider.validateadditionaldata
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Main_Page


Prevent open redirect attacks in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

What is an open redirect attack?

An example attackAn example attack

A web app that redirects to a URL that's specified via the request such as the querystring or form data can

potentially be tampered with to redirect users to an external, malicious URL. This tampering is called an open

redirection attack.

Whenever your application logic redirects to a specified URL, you must verify that the redirection URL hasn't been

tampered with. ASP.NET Core has built-in functionality to help protect apps from open redirect (also known as

open redirection) attacks.

Web applications frequently redirect users to a login page when they access resources that require authentication.

The redirection typically includes a returnUrl  querystring parameter so that the user can be returned to the

originally requested URL after they have successfully logged in. After the user authenticates, they're redirected to

the URL they had originally requested.

Because the destination URL is specified in the querystring of the request, a malicious user could tamper with the

querystring. A tampered querystring could allow the site to redirect the user to an external, malicious site. This

technique is called an open redirect (or redirection) attack.

A malicious user can develop an attack intended to allow the malicious user access to a user's credentials or

sensitive information. To begin the attack, the malicious user convinces the user to click a link to your site's login

page with a returnUrl  querystring value added to the URL. For example, consider an app at contoso.com  that

includes a login page at http://contoso.com/Account/LogOn?returnUrl=/Home/About . The attack follows these steps:

1. The user clicks a malicious link to 

http://contoso.com/Account/LogOn?returnUrl=http://contoso1.com/Account/LogOn  (the second URL is

"contoso11 .com", not "contoso.com").

2. The user logs in successfully.

3. The user is redirected (by the site) to http://contoso1.com/Account/LogOn  (a malicious site that looks exactly like

real site).

4. The user logs in again (giving malicious site their credentials) and is redirected back to the real site.

The user likely believes that their first attempt to log in failed and that their second attempt is successful. The user

most likely remains unaware that their credentials are compromised.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/preventing-open-redirects.md


Protecting against open redirect attacks

LocalRedirectLocalRedirect

public IActionResult SomeAction(string redirectUrl)
{
    return LocalRedirect(redirectUrl);
}

IsLocalUrlIsLocalUrl

In addition to login pages, some sites provide redirect pages or endpoints. Imagine your app has a page with an

open redirect, /Home/Redirect . An attacker could create, for example, a link in an email that goes to 

[yoursite]/Home/Redirect?url=http://phishingsite.com/Home/Login . A typical user will look at the URL and see it

begins with your site name. Trusting that, they will click the link. The open redirect would then send the user to the

phishing site, which looks identical to yours, and the user would likely login to what they believe is your site.

When developing web applications, treat all user-provided data as untrustworthy. If your application has

functionality that redirects the user based on the contents of the URL, ensure that such redirects are only done

locally within your app (or to a known URL, not any URL that may be supplied in the querystring).

Use the LocalRedirect  helper method from the base Controller  class:

LocalRedirect  will throw an exception if a non-local URL is specified. Otherwise, it behaves just like the Redirect

method.

Use the IsLocalUrl method to test URLs before redirecting:

The following example shows how to check whether a URL is local before redirecting.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iurlhelper.islocalurl#microsoft_aspnetcore_mvc_iurlhelper_islocalurl_system_string_


private IActionResult RedirectToLocal(string returnUrl)
{
    if (Url.IsLocalUrl(returnUrl))
    {
        return Redirect(returnUrl);
    }
    else
    {
        return RedirectToAction(nameof(HomeController.Index), "Home");
    }
}

The IsLocalUrl  method protects users from being inadvertently redirected to a malicious site. You can log the

details of the URL that was provided when a non-local URL is supplied in a situation where you expected a local

URL. Logging redirect URLs may help in diagnosing redirection attacks.



Prevent Cross-Site Scripting (XSS) in ASP.NET Core
9/22/2020 • 7 minutes to read • Edit Online

Protecting your application against XSS

HTML Encoding using Razor

@{
       var untrustedInput = "<\"123\">";
   }

   @untrustedInput

By Rick Anderson

Cross-Site Scripting (XSS) is a security vulnerability which enables an attacker to place client side scripts (usually

JavaScript) into web pages. When other users load affected pages the attacker's scripts will run, enabling the

attacker to steal cookies and session tokens, change the contents of the web page through DOM manipulation or

redirect the browser to another page. XSS vulnerabilities generally occur when an application takes user input and

outputs it to a page without validating, encoding or escaping it.

At a basic level XSS works by tricking your application into inserting a <script>  tag into your rendered page, or

by inserting an On*  event into an element. Developers should use the following prevention steps to avoid

introducing XSS into their application.

1. Never put untrusted data into your HTML input, unless you follow the rest of the steps below. Untrusted

data is any data that may be controlled by an attacker, HTML form inputs, query strings, HTTP headers, even

data sourced from a database as an attacker may be able to breach your database even if they cannot

breach your application.

2. Before putting untrusted data inside an HTML element ensure it's HTML encoded. HTML encoding takes

characters such as < and changes them into a safe form like &lt;

3. Before putting untrusted data into an HTML attribute ensure it's HTML encoded. HTML attribute encoding is

a superset of HTML encoding and encodes additional characters such as " and '.

4. Before putting untrusted data into JavaScript place the data in an HTML element whose contents you

retrieve at runtime. If this isn't possible, then ensure the data is JavaScript encoded. JavaScript encoding

takes dangerous characters for JavaScript and replaces them with their hex, for example < would be

encoded as \u003C .

5. Before putting untrusted data into a URL query string ensure it's URL encoded.

The Razor engine used in MVC automatically encodes all output sourced from variables, unless you work really

hard to prevent it doing so. It uses HTML attribute encoding rules whenever you use the @ directive. As HTML

attribute encoding is a superset of HTML encoding this means you don't have to concern yourself with whether

you should use HTML encoding or HTML attribute encoding. You must ensure that you only use @ in an HTML

context, not when attempting to insert untrusted input directly into JavaScript. Tag helpers will also encode input

you use in tag parameters.

Take the following Razor view:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/cross-site-scripting.md
https://twitter.com/RickAndMSFT


&lt;&quot;123&quot;&gt;

WARNINGWARNING

JavaScript Encoding using Razor

@{
    var untrustedInput = "<script>alert(1)</script>";
}

<div id="injectedData"
     data-untrustedinput="@untrustedInput" />

<div id="scriptedWrite" />
<div id="scriptedWrite-html5" />

<script>
    var injectedData = document.getElementById("injectedData");

    // All clients
    var clientSideUntrustedInputOldStyle =
        injectedData.getAttribute("data-untrustedinput");

    // HTML 5 clients only
    var clientSideUntrustedInputHtml5 =
        injectedData.dataset.untrustedinput;

    // Put the injected, untrusted data into the scriptedWrite div tag.
    // Do NOT use document.write() on dynamically generated data as it
    // can lead to XSS.

    document.getElementById("scriptedWrite").innerText += clientSideUntrustedInputOldStyle;

    // Or you can use createElement() to dynamically create document elements
    // This time we're using textContent to ensure the data is properly encoded.
    var x = document.createElement("div");
    x.textContent = clientSideUntrustedInputHtml5;
    document.body.appendChild(x);

    // You can also use createTextNode on an element to ensure data is properly encoded.
    var y = document.createElement("div");
    y.appendChild(document.createTextNode(clientSideUntrustedInputHtml5));
    document.body.appendChild(y);

</script>

This view outputs the contents of the untrustedInput variable. This variable includes some characters which are

used in XSS attacks, namely <, " and >. Examining the source shows the rendered output encoded as:

ASP.NET Core MVC provides an HtmlString  class which isn't automatically encoded upon output. This should never be

used in combination with untrusted input as this will expose an XSS vulnerability.

There may be times you want to insert a value into JavaScript to process in your view. There are two ways to do

this. The safest way to insert values is to place the value in a data attribute of a tag and retrieve it in your

JavaScript. For example:

The preceding markup generates the following HTML:



<div id="injectedData"
     data-untrustedinput="&lt;script&gt;alert(1)&lt;/script&gt;" />

<div id="scriptedWrite" />
<div id="scriptedWrite-html5" />

<script>
    var injectedData = document.getElementById("injectedData");

    // All clients
    var clientSideUntrustedInputOldStyle =
        injectedData.getAttribute("data-untrustedinput");

    // HTML 5 clients only
    var clientSideUntrustedInputHtml5 =
        injectedData.dataset.untrustedinput;

    // Put the injected, untrusted data into the scriptedWrite div tag.
    // Do NOT use document.write() on dynamically generated data as it can
    // lead to XSS.

    document.getElementById("scriptedWrite").innerText += clientSideUntrustedInputOldStyle;

    // Or you can use createElement() to dynamically create document elements
    // This time we're using textContent to ensure the data is properly encoded.
    var x = document.createElement("div");
    x.textContent = clientSideUntrustedInputHtml5;
    document.body.appendChild(x);

    // You can also use createTextNode on an element to ensure data is properly encoded.
    var y = document.createElement("div");
    y.appendChild(document.createTextNode(clientSideUntrustedInputHtml5));
    document.body.appendChild(y);

</script>

<script>alert(1)</script>
<script>alert(1)</script>
<script>alert(1)</script>

WARNINGWARNING

Accessing encoders in code

The preceding code generates the following output:

Do NOTNOT concatenate untrusted input in JavaScript to create DOM elements or use document.write()  on dynamically

generated content.

Use one of the following approaches to prevent code from being exposed to DOM-based XSS:

createElement()  and assign property values with appropriate methods or properties such as node.textContent=  or

node.InnerText=`.

document.CreateTextNode()  and append it in the appropriate DOM location.

element.SetAttribute()

element[attribute]=

The HTML, JavaScript and URL encoders are available to your code in two ways, you can inject them via

dependency injection or you can use the default encoders contained in the System.Text.Encodings.Web  namespace.

If you use the default encoders then any you applied to character ranges to be treated as safe won't take effect -



public class HomeController : Controller
   {
       HtmlEncoder _htmlEncoder;
       JavaScriptEncoder _javaScriptEncoder;
       UrlEncoder _urlEncoder;

       public HomeController(HtmlEncoder htmlEncoder,
                             JavaScriptEncoder javascriptEncoder,
                             UrlEncoder urlEncoder)
       {
           _htmlEncoder = htmlEncoder;
           _javaScriptEncoder = javascriptEncoder;
           _urlEncoder = urlEncoder;
       }
   }

Encoding URL Parameters

var example = "\"Quoted Value with spaces and &\"";
   var encodedValue = _urlEncoder.Encode(example);

WARNINGWARNING

Customizing the Encoders

<p>This link text is in Chinese: @Html.ActionLink("汉语/漢語", "Index")</p>

the default encoders use the safest encoding rules possible.

To use the configurable encoders via DI your constructors should take an HtmlEncoder, JavaScriptEncoder and

UrlEncoder parameter as appropriate. For example;

If you want to build a URL query string with untrusted input as a value use the UrlEncoder  to encode the value.

For example,

After encoding the encodedValue variable will contain %22Quoted%20Value%20with%20spaces%20and%20%26%22 . Spaces,

quotes, punctuation and other unsafe characters will be percent encoded to their hexadecimal value, for example a

space character will become %20.

Don't use untrusted input as part of a URL path. Always pass untrusted input as a query string value.

 

By default encoders use a safe list limited to the Basic Latin Unicode range and encode all characters outside of

that range as their character code equivalents. This behavior also affects Razor TagHelper and HtmlHelper

rendering as it will use the encoders to output your strings.

The reasoning behind this is to protect against unknown or future browser bugs (previous browser bugs have

tripped up parsing based on the processing of non-English characters). If your web site makes heavy use of non-

Latin characters, such as Chinese, Cyrillic or others this is probably not the behavior you want.

You can customize the encoder safe lists to include Unicode ranges appropriate to your application during startup,

in ConfigureServices() .

For example, using the default configuration you might use a Razor HtmlHelper like so;

When you view the source of the web page you will see it has been rendered as follows, with the Chinese text



<p>This link text is in Chinese: <a href="/">&#x6C49;&#x8BED;/&#x6F22;&#x8A9E;</a></p>

services.AddSingleton<HtmlEncoder>(
     HtmlEncoder.Create(allowedRanges: new[] { UnicodeRanges.BasicLatin,
                                               UnicodeRanges.CjkUnifiedIdeographs }));

<p>This link text is in Chinese: <a href="/">汉语/漢語</a></p>

NOTENOTE

Where should encoding take place?

Validation as an XSS prevention technique

encoded;

To widen the characters treated as safe by the encoder you would insert the following line into the 

ConfigureServices()  method in startup.cs ;

This example widens the safe list to include the Unicode Range CjkUnifiedIdeographs. The rendered output would

now become

Safe list ranges are specified as Unicode code charts, not languages. The Unicode standard has a list of code charts

you can use to find the chart containing your characters. Each encoder, Html, JavaScript and Url, must be

configured separately.

Customization of the safe list only affects encoders sourced via DI. If you directly access an encoder via 

System.Text.Encodings.Web.*Encoder.Default  then the default, Basic Latin only safelist will be used.

The general accepted practice is that encoding takes place at the point of output and encoded values should never

be stored in a database. Encoding at the point of output allows you to change the use of data, for example, from

HTML to a query string value. It also enables you to easily search your data without having to encode values

before searching and allows you to take advantage of any changes or bug fixes made to encoders.

Validation can be a useful tool in limiting XSS attacks. For example, a numeric string containing only the characters

0-9 won't trigger an XSS attack. Validation becomes more complicated when accepting HTML in user input.

Parsing HTML input is difficult, if not impossible. Markdown, coupled with a parser that strips embedded HTML, is

a safer option for accepting rich input. Never rely on validation alone. Always encode untrusted input before

output, no matter what validation or sanitization has been performed.

https://unicode.org/
https://www.unicode.org/charts/index.html


Enable Cross-Origin Requests (CORS) in ASP.NET
Core
9/22/2020 • 33 minutes to read • Edit Online

Same origin

Enable CORS

By Rick Anderson and Kirk Larkin

This article shows how to enable CORS in an ASP.NET Core app.

Browser security prevents a web page from making requests to a different domain than the one that served

the web page. This restriction is called the same-origin policy. The same-origin policy prevents a malicious site

from reading sensitive data from another site. Sometimes, you might want to allow other sites to make cross-

origin requests to your app. For more information, see the Mozilla CORS article.

Cross Origin Resource Sharing (CORS):

Is a W3C standard that allows a server to relax the same-origin policy.

Is notnot a security feature, CORS relaxes security. An API is not safer by allowing CORS. For more information,

see How CORS works.

Allows a server to explicitly allow some cross-origin requests while rejecting others.

Is safer and more flexible than earlier techniques, such as JSONP.

View or download sample code (how to download)

Two URLs have the same origin if they have identical schemes, hosts, and ports (RFC 6454).

These two URLs have the same origin:

https://example.com/foo.html

https://example.com/bar.html

These URLs have different origins than the previous two URLs:

https://example.net : Different domain

https://www.example.com/foo.html : Different subdomain

http://example.com/foo.html : Different scheme

https://example.com:9000/foo.html : Different port

There are three ways to enable CORS:

In middleware using a named policy or default policy.

Using endpoint routing.

With the [EnableCors] attribute.

Using the [EnableCors] attribute with a named policy provides the finest control in limiting endpoints that

support CORS.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/cors.md
https://twitter.com/RickAndMSFT
https://twitter.com/serpent5
https://developer.mozilla.org/docs/Web/HTTP/CORS
https://www.w3.org/TR/cors/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/samples/jsonp
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/cors/3.1sample/Cors/WebAPI
https://tools.ietf.org/html/rfc6454


WARNINGWARNING

CORS with named policy and middleware

public class Startup
{
    readonly string MyAllowSpecificOrigins = "_myAllowSpecificOrigins";

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddCors(options =>
        {
            options.AddPolicy(name: MyAllowSpecificOrigins,
                              builder =>
                              {
                                  builder.WithOrigins("http://example.com",
                                                      "http://www.contoso.com");
                              });
        });

        // services.AddResponseCaching();
        services.AddControllers();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseRouting();

        app.UseCors(MyAllowSpecificOrigins);

        // app.UseResponseCaching();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllers();
        });
    }
}

UseCors must be called before UseResponseCaching when using UseResponseCaching .

Each approach is detailed in the following sections.

 

CORS Middleware handles cross-origin requests. The following code applies a CORS policy to all the app's

endpoints with the specified origins:

The preceding code:

Sets the policy name to _myAllowSpecificOrigins . The policy name is arbitrary.

Calls the UseCors extension method and specifies the _myAllowSpecificOrigins  CORS policy. UseCors  adds

the CORS middleware. The call to UseCors  must be placed after UseRouting , but before UseAuthorization .

For more information, see Middleware order.

https://docs.microsoft.com/en-us/dotnet/api/owin.corsextensions.usecors
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.responsecachingextensions.useresponsecaching
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.corsmiddlewareextensions.usecors


public class Startup
{
    readonly string MyAllowSpecificOrigins = "_myAllowSpecificOrigins";

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddCors(options =>
        {
            options.AddPolicy(name: MyAllowSpecificOrigins,
                              builder =>
                              {
                                  builder.WithOrigins("http://example.com",
                                                      "http://www.contoso.com");
                              });
        });

        // services.AddResponseCaching();
        services.AddControllers();
    }

public void ConfigureServices(IServiceCollection services)
{
    services.AddCors(options =>
    {
        options.AddPolicy(MyAllowSpecificOrigins,
                          builder =>
                          {
                              builder.WithOrigins("http://example.com",
                                                  "http://www.contoso.com")
                                                  .AllowAnyHeader()
                                                  .AllowAnyMethod();
                          });
    });

    services.AddControllers();
}

CORS with default policy and middlewareCORS with default policy and middleware

Calls AddCors with a lambda expression. The lambda takes a CorsPolicyBuilder object. Configuration

options, such as WithOrigins , are described later in this article.

Enables the _myAllowSpecificOrigins  CORS policy for all controller endpoints. See endpoint routing to

apply a CORS policy to specific endpoints.

When using Response Caching Middleware, call UseCors before UseResponseCaching.

With endpoint routing, the CORS middleware mustmust be configured to execute between the calls to UseRouting

and UseEndpoints .

See Test CORS for instructions on testing code similar to the preceding code.

The AddCors method call adds CORS services to the app's service container :

For more information, see CORS policy options in this document.

The CorsPolicyBuilder methods can be chained, as shown in the following code:

Note: The specified URL must notnot contain a trailing slash ( / ). If the URL terminates with / , the comparison

returns false  and no header is returned.

  

The following highlighted code enables the default CORS policy:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.corsservicecollectionextensions.addcors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder
https://docs.microsoft.com/en-us/dotnet/api/owin.corsextensions.usecors
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.responsecachingextensions.useresponsecaching
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccorsmvccorebuilderextensions.addcors
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder


  

public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddCors(options =>
        {
            options.AddDefaultPolicy(
                builder =>
                {
                    builder.WithOrigins("http://example.com",
                                        "http://www.contoso.com");
                });
        });

        services.AddControllers();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseRouting();

        app.UseCors();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllers();
        });
    }
}

Enable Cors with endpoint routing

The preceding code applies the default CORS policy to all controller endpoints.

        

Enabling CORS on a per-endpoint basis using RequireCors  currently does notnot support automatic preflight

requests. For more information, see this GitHub issue and Test CORS with endpoint routing and [HttpOptions].

With endpoint routing, CORS can be enabled on a per-endpoint basis using the RequireCors set of extension

methods:

https://github.com/dotnet/aspnetcore/issues/20709
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.corsendpointconventionbuilderextensions.requirecors


public class Startup
{
    readonly string MyAllowSpecificOrigins = "_myAllowSpecificOrigins";

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddCors(options =>
        {
            options.AddPolicy(name: MyAllowSpecificOrigins,
                              builder =>
                              {
                                  builder.WithOrigins("http://example.com",
                                                      "http://www.contoso.com");
                              });
        });

        services.AddControllers();
        services.AddRazorPages();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseRouting();

        app.UseCors();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapGet("/echo",
                context => context.Response.WriteAsync("echo"))
                .RequireCors(MyAllowSpecificOrigins);

            endpoints.MapControllers()
                     .RequireCors(MyAllowSpecificOrigins);

            endpoints.MapGet("/echo2",
                context => context.Response.WriteAsync("echo2"));

            endpoints.MapRazorPages();
        });
    }
}

In the preceding code:

app.UseCors  enables the CORS middleware. Because a default policy hasn't been configured, 

app.UseCors()  alone doesn't enable CORS.

The /echo  and controller endpoints allow cross-origin requests using the specified policy.

The /echo2  and Razor Pages endpoints do notnot allow cross-origin requests because no default policy was

specified.

The [DisableCors] attribute does notnot disable CORS that has been enabled by endpoint routing with 

RequireCors .

See Test CORS with endpoint routing and [HttpOptions] for instructions on testing code similar to the



Enable CORS with attributes

[Route("api/[controller]")]
[ApiController]
public class WidgetController : ControllerBase
{
    // GET api/values
    [EnableCors("AnotherPolicy")]
    [HttpGet]
    public ActionResult<IEnumerable<string>> Get()
    {
        return new string[] { "green widget", "red widget" };
    }

    // GET api/values/5
    [EnableCors("Policy1")]
    [HttpGet("{id}")]
    public ActionResult<string> Get(int id)
    {
        return id switch
        {
            1 => "green widget",
            2 => "red widget",
            _ => NotFound(),
        };
    }
}

preceding.

   

Enabling CORS with the [EnableCors] attribute and applying a named policy to only those endpoints that

require CORS provides the finest control.

The [EnableCors] attribute provides an alternative to applying CORS globally. The [EnableCors]  attribute

enables CORS for selected endpoints, rather than all endpoints:

[EnableCors]  specifies the default policy.

[EnableCors("{Policy String}")]  specifies a named policy.

The [EnableCors]  attribute can be applied to:

Razor Page PageModel

Controller

Controller action method

Different policies can be applied to controllers, page models, or action methods with the [EnableCors]

attribute. When the [EnableCors]  attribute is applied to a controller, page model, or action method, and CORS

is enabled in middleware, bothboth policies are applied. We recommend against combining policies. Use theWe recommend against combining policies. Use the

[EnableCors]  attr ibute or middleware, not both in the same app.attr ibute or middleware, not both in the same app.

The following code applies a different policy to each method:

The following code creates two CORS policies:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.enablecorsattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.enablecorsattribute


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddCors(options =>
        {
            options.AddPolicy("Policy1",
                builder =>
                {
                    builder.WithOrigins("http://example.com",
                                        "http://www.contoso.com");
                });

            options.AddPolicy("AnotherPolicy",
                builder =>
                {
                    builder.WithOrigins("http://www.contoso.com")
                                        .AllowAnyHeader()
                                        .AllowAnyMethod();
                });
        });

        services.AddControllers();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseHttpsRedirection();

        app.UseRouting();

        app.UseCors();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllers();
        });
    }
}

Disable CORSDisable CORS

For the finest control of limiting CORS requests:

Use [EnableCors("MyPolicy")]  with a named policy.

Don't define a default policy.

Don't use endpoint routing.

The code in the next section meets the preceding list.

See Test CORS for instructions on testing code similar to the preceding code.

 



public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddCors(options =>
        {
            options.AddPolicy(name: "MyPolicy",
                builder =>
                {
                    builder.WithOrigins("http://example.com",
                                        "http://www.contoso.com")
                            .WithMethods("PUT", "DELETE", "GET");
                });
        });

        services.AddControllers();
        services.AddRazorPages();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseRouting();

        app.UseCors();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllers();
            endpoints.MapRazorPages();
        });
    }
}

The [DisableCors] attribute does notnot disable CORS that has been enabled by endpoint routing.

The following code defines the CORS policy "MyPolicy" :

The following code disables CORS for the GetValues2  action:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.disablecorsattribute


  

  

[EnableCors("MyPolicy")]
[Route("api/[controller]")]
[ApiController]
public class ValuesController : ControllerBase
{
    // GET api/values
    [HttpGet]
    public IActionResult Get() =>
        ControllerContext.MyDisplayRouteInfo();

    // GET api/values/5
    [HttpGet("{id}")]
    public IActionResult Get(int id) =>
        ControllerContext.MyDisplayRouteInfo(id);

    // PUT api/values/5
    [HttpPut("{id}")]
    public IActionResult Put(int id) =>
        ControllerContext.MyDisplayRouteInfo(id);

    // GET: api/values/GetValues2
    [DisableCors]
    [HttpGet("{action}")]
    public IActionResult GetValues2() =>
        ControllerContext.MyDisplayRouteInfo();

}

CORS policy options

Set the allowed origins

The preceding code:

Doesn't enable CORS with endpoint routing.

Doesn't define a default CORS policy.

Uses [EnableCors("MyPolicy")] to enable the "MyPolicy"  CORS policy for the controller.

Disables CORS for the GetValues2  method.

See Test CORS for instructions on testing the preceding code.

  

This section describes the various options that can be set in a CORS policy:

Set the allowed origins

Set the allowed HTTP methods

Set the allowed request headers

Set the exposed response headers

Credentials in cross-origin requests

Set the preflight expiration time

AddPolicy is called in Startup.ConfigureServices . For some options, it may be helpful to read the How CORS

works section first.

AllowAnyOrigin: Allows CORS requests from all origins with any scheme ( http  or https ). AllowAnyOrigin  is

insecure because any website can make cross-origin requests to the app.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corsoptions.addpolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowanyorigin


    

    

NOTENOTE

options.AddPolicy("MyAllowSubdomainPolicy",
    builder =>
    {
        builder.WithOrigins("https://*.example.com")
            .SetIsOriginAllowedToAllowWildcardSubdomains();
    });

Set the allowed HTTP methodsSet the allowed HTTP methods

Set the allowed request headersSet the allowed request headers

options.AddPolicy("MyAllowHeadersPolicy",
    builder =>
    {
        // requires using Microsoft.Net.Http.Headers;
        builder.WithOrigins("http://example.com")
               .WithHeaders(HeaderNames.ContentType, "x-custom-header");
    });

options.AddPolicy("MyAllowAllHeadersPolicy",
    builder =>
    {
        builder.WithOrigins("https://*.example.com")
               .AllowAnyHeader();
    });

Specifying AllowAnyOrigin  and AllowCredentials  is an insecure configuration and can result in cross-site request

forgery. The CORS service returns an invalid CORS response when an app is configured with both methods.

AllowAnyOrigin  affects preflight requests and the Access-Control-Allow-Origin  header. For more information,

see the Preflight requests section.

SetIsOriginAllowedToAllowWildcardSubdomains: Sets the IsOriginAllowed property of the policy to be a

function that allows origins to match a configured wildcard domain when evaluating if the origin is allowed.

AllowAnyMethod:

Allows any HTTP method:

Affects preflight requests and the Access-Control-Allow-Methods  header. For more information, see the

Preflight requests section.

To allow specific headers to be sent in a CORS request, called author request headers, call WithHeaders and

specify the allowed headers:

To allow all author request headers, call AllowAnyHeader:

AllowAnyHeader  affects preflight requests and the Access-Control-Request-Headers header. For more

information, see the Preflight requests section.

A CORS Middleware policy match to specific headers specified by WithHeaders  is only possible when the

headers sent in Access-Control-Request-Headers  exactly match the headers stated in WithHeaders .

For instance, consider an app configured as follows:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.setisoriginallowedtoallowwildcardsubdomains
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicy.isoriginallowed
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowanymethod
https://xhr.spec.whatwg.org/#request
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.withheaders
https://www.w3.org/TR/cors/#author-request-headers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowanyheader
https://developer.mozilla.org/docs/Web/HTTP/Headers/Access-Control-Request-Method


    

    

app.UseCors(policy => policy.WithHeaders(HeaderNames.CacheControl));

Access-Control-Request-Headers: Cache-Control, Content-Language

Set the exposed response headersSet the exposed response headers

options.AddPolicy("MyExposeResponseHeadersPolicy",
    builder =>
    {
        builder.WithOrigins("https://*.example.com")
               .WithExposedHeaders("x-custom-header");
    });

Credentials in cross-origin requestsCredentials in cross-origin requests

var xhr = new XMLHttpRequest();
xhr.open('get', 'https://www.example.com/api/test');
xhr.withCredentials = true;

$.ajax({
  type: 'get',
  url: 'https://www.example.com/api/test',
  xhrFields: {
    withCredentials: true
  }
});

CORS Middleware declines a preflight request with the following request header because Content-Language

(HeaderNames.ContentLanguage) isn't listed in WithHeaders :

The app returns a 200 OK response but doesn't send the CORS headers back. Therefore, the browser doesn't

attempt the cross-origin request.

By default, the browser doesn't expose all of the response headers to the app. For more information, see W3C

Cross-Origin Resource Sharing (Terminology): Simple Response Header.

The response headers that are available by default are:

Cache-Control

Content-Language

Content-Type

Expires

Last-Modified

Pragma

The CORS specification calls these headers simple response headers. To make other headers available to the

app, call WithExposedHeaders:

Credentials require special handling in a CORS request. By default, the browser doesn't send credentials with a

cross-origin request. Credentials include cookies and HTTP authentication schemes. To send credentials with a

cross-origin request, the client must set XMLHttpRequest.withCredentials  to true .

Using XMLHttpRequest  directly:

Using jQuery:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.net.http.headers.headernames.contentlanguage
https://www.w3.org/TR/cors/#simple-response-header
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.withexposedheaders


      

fetch('https://www.example.com/api/test', {
    credentials: 'include'
});

options.AddPolicy("MyMyAllowCredentialsPolicy",
    builder =>
    {
        builder.WithOrigins("http://example.com")
               .AllowCredentials();
    });

Preflight requests

Using the Fetch API:

The server must allow the credentials. To allow cross-origin credentials, call AllowCredentials:

The HTTP response includes an Access-Control-Allow-Credentials  header, which tells the browser that the

server allows credentials for a cross-origin request.

If the browser sends credentials but the response doesn't include a valid Access-Control-Allow-Credentials

header, the browser doesn't expose the response to the app, and the cross-origin request fails.

Allowing cross-origin credentials is a security risk. A website at another domain can send a signed-in user's

credentials to the app on the user's behalf without the user's knowledge.

The CORS specification also states that setting origins to "*"  (all origins) is invalid if the 

Access-Control-Allow-Credentials  header is present.

 

For some CORS requests, the browser sends an additional OPTIONS request before making the actual request.

This request is called a preflight request. The browser can skip the preflight request if allall  the following

conditions are true:

The request method is GET, HEAD, or POST.

The app doesn't set request headers other than Accept , Accept-Language , Content-Language , Content-Type ,

or Last-Event-ID .

The Content-Type  header, if set, has one of the following values:

application/x-www-form-urlencoded

multipart/form-data

text/plain

The rule on request headers set for the client request applies to headers that the app sets by calling 

setRequestHeader  on the XMLHttpRequest  object. The CORS specification calls these headers author request

headers. The rule doesn't apply to headers the browser can set, such as User-Agent , Host , or Content-Length .

The following is an example response similar to the preflight request made from the [Put test][Put test]  button in the

Test CORS section of this document.

https://developer.mozilla.org/docs/Web/API/Fetch_API
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowcredentials
https://developer.mozilla.org/docs/Web/HTTP/Methods/OPTIONS
https://developer.mozilla.org/docs/Glossary/Preflight_request
https://www.w3.org/TR/cors/#author-request-headers


General:
Request URL: https://cors3.azurewebsites.net/api/values/5
Request Method: OPTIONS
Status Code: 204 No Content

Response Headers:
Access-Control-Allow-Methods: PUT,DELETE,GET
Access-Control-Allow-Origin: https://cors1.azurewebsites.net
Server: Microsoft-IIS/10.0
Set-Cookie: ARRAffinity=8f8...8;Path=/;HttpOnly;Domain=cors1.azurewebsites.net
Vary: Origin

Request Headers:
Accept: */*
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Access-Control-Request-Method: PUT
Connection: keep-alive
Host: cors3.azurewebsites.net
Origin: https://cors1.azurewebsites.net
Referer: https://cors1.azurewebsites.net/
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: cross-site
User-Agent: Mozilla/5.0

options.AddPolicy("MyAllowHeadersPolicy",
    builder =>
    {
        // requires using Microsoft.Net.Http.Headers;
        builder.WithOrigins("http://example.com")
               .WithHeaders(HeaderNames.ContentType, "x-custom-header");
    });

The preflight request uses the HTTP OPTIONS method. It may include the following headers:

Access-Control-Request-Method: The HTTP method that will be used for the actual request.

Access-Control-Request-Headers: A list of request headers that the app sets on the actual request. As stated

earlier, this doesn't include headers that the browser sets, such as User-Agent .

Access-Control-Allow-Methods

If the preflight request is denied, the app returns a 200 OK  response but doesn't set the CORS headers.

Therefore, the browser doesn't attempt the cross-origin request. For an example of a denied preflight request,

see the Test CORS section of this document.

Using the F12 tools, the console app shows an error similar to one of the following, depending on the browser :

Firefox: Cross-Origin Request Blocked: The Same Origin Policy disallows reading the remote resource at 

https://cors1.azurewebsites.net/api/TodoItems1/MyDelete2/5 . (Reason: CORS request did not succeed).

Learn More

Chromium based: Access to fetch at 'https://cors1.azurewebsites.net/api/TodoItems1/MyDelete2/5' from

origin 'https://cors3.azurewebsites.net' has been blocked by CORS policy: Response to preflight request

doesn't pass access control check: No 'Access-Control-Allow-Origin' header is present on the requested

resource. If an opaque response serves your needs, set the request's mode to 'no-cors' to fetch the resource

with CORS disabled.

To allow specific headers, call WithHeaders:

To allow all author request headers, call AllowAnyHeader:

https://developer.mozilla.org/docs/Web/HTTP/Methods/OPTIONS
https://developer.mozilla.org/docs/Web/HTTP/Headers/Access-Control-Request-Method
https://developer.mozilla.org/docs/Web/HTTP/Headers/Access-Control-Allow-Headers
https://developer.mozilla.org/docs/Web/HTTP/Headers/Access-Control-Allow-Methods
https://developer.mozilla.org/docs/Web/HTTP/CORS/Errors/CORSDidNotSucceed
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.withheaders
https://www.w3.org/TR/cors/#author-request-headers
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowanyheader


options.AddPolicy("MyAllowAllHeadersPolicy",
    builder =>
    {
        builder.WithOrigins("https://*.example.com")
               .AllowAnyHeader();
    });

Automatic preflight request codeAutomatic preflight request code

[HttpOptions] attribute for preflight requests[HttpOptions] attribute for preflight requests

Browsers aren't consistent in how they set Access-Control-Request-Headers . If either :

Headers are set to anything other than "*"

AllowAnyHeader is called: Include at least Accept , Content-Type , and Origin , plus any custom headers

that you want to support.

  

When the CORS policy is applied either :

Globally by calling app.UseCors  in Startup.Configure .

Using the [EnableCors]  attribute.

ASP.NET Core responds to the preflight OPTIONS request.

Enabling CORS on a per-endpoint basis using RequireCors  currently does notnot support automatic preflight

requests.

The Test CORS section of this document demonstrates this behavior.

  

When CORS is enabled with the appropriate policy, ASP.NET Core generally responds to CORS preflight

requests automatically. In some scenarios, this may not be the case. For example, using CORS with endpoint

routing.

The following code uses the [HttpOptions] attribute to create endpoints for OPTIONS requests:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicy.allowanyheader
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpoptionsattribute


    

[Route("api/[controller]")]
[ApiController]
public class TodoItems2Controller : ControllerBase
{
    // OPTIONS: api/TodoItems2/5
    [HttpOptions("{id}")]
    public IActionResult PreflightRoute(int id)
    {
        return NoContent();
    }

    // OPTIONS: api/TodoItems2 
    [HttpOptions]
    public IActionResult PreflightRoute()
    {
        return NoContent();
    }

    [HttpPut("{id}")]
    public IActionResult PutTodoItem(int id)
    {
        if (id < 1)
        {
            return BadRequest();
        }

        return ControllerContext.MyDisplayRouteInfo(id);
    }

Set the preflight expiration timeSet the preflight expiration time

options.AddPolicy("MySetPreflightExpirationPolicy",
    builder =>
    {
        builder.WithOrigins("http://example.com")
               .SetPreflightMaxAge(TimeSpan.FromSeconds(2520));
    });

How CORS works

See Test CORS with endpoint routing and [HttpOptions] for instructions on testing the preceding code.

The Access-Control-Max-Age  header specifies how long the response to the preflight request can be cached. To

set this header, call SetPreflightMaxAge:

    

This section describes what happens in a CORS request at the level of the HTTP messages.

CORS is notnot a security feature. CORS is a W3C standard that allows a server to relax the same-origin policy.

An API isn't safer by allowing CORS.

It's a way for a server to allow browsers to execute a cross-origin XHR or Fetch API request that otherwise

For example, a malicious actor could use Cross-Site Scripting (XSS) against your site and execute a

cross-site request to their CORS enabled site to steal information.

It's up to the client (browser) to enforce CORS. The server executes the request and returns the

response, it's the client that returns an error and blocks the response. For example, any of the

following tools will display the server response:

Fiddler

Postman

.NET HttpClient

A web browser by entering the URL in the address bar.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.setpreflightmaxage
https://developer.mozilla.org/docs/Web/HTTP/CORS
https://www.telerik.com/fiddler
https://www.getpostman.com/
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/console-webapiclient
https://developer.mozilla.org/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/docs/Web/API/Fetch_API


Request URL: https://cors1.azurewebsites.net/api/values
Request Method: GET
Status Code: 200 OK

Content-Encoding: gzip
Content-Type: text/plain; charset=utf-8
Server: Microsoft-IIS/10.0
Set-Cookie: ARRAffinity=8f...;Path=/;HttpOnly;Domain=cors1.azurewebsites.net
Transfer-Encoding: chunked
Vary: Accept-Encoding
X-Powered-By: ASP.NET

Accept: */*
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Connection: keep-alive
Host: cors1.azurewebsites.net
Origin: https://cors3.azurewebsites.net
Referer: https://cors3.azurewebsites.net/
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: cross-site
User-Agent: Mozilla/5.0 ...

Request URL: https://cors3.azurewebsites.net/api/TodoItems2/MyDelete2/5
Request Method: OPTIONS
Status Code: 204 No Content

would be forbidden.

Browsers without CORS can't do cross-origin requests. Before CORS, JSONP was used to circumvent

this restriction. JSONP doesn't use XHR, it uses the <script>  tag to receive the response. Scripts are

allowed to be loaded cross-origin.

The CORS specification introduced several new HTTP headers that enable cross-origin requests. If a browser

supports CORS, it sets these headers automatically for cross-origin requests. Custom JavaScript code isn't

required to enable CORS.

The PUT test button on the deployed sample

The following is an example of a cross-origin request from the Values test button to 

https://cors1.azurewebsites.net/api/values . The Origin  header :

Provides the domain of the site that's making the request.

Is required and must be different from the host.

General headersGeneral headers

Response headersResponse headers

Request headersRequest headers

In OPTIONS  requests, the server sets the Response headersResponse headers  Access-Control-Allow-Origin: {allowed origin}

header in the response. For example, the deployed sample, Delete [EnableCors] button OPTIONS  request

contains the following headers:

General headersGeneral headers

https://www.w3schools.com/js/js_json_jsonp.asp
https://www.w3.org/TR/cors/
https://cors3.azurewebsites.net/test
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/cors/3.1sample/Cors/WebAPI
https://cors3.azurewebsites.net/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/cors/3.1sample/Cors/WebAPI
https://cors1.azurewebsites.net/test?number=2


Access-Control-Allow-Headers: Content-Type,x-custom-header
Access-Control-Allow-Methods: PUT,DELETE,GET,OPTIONS
Access-Control-Allow-Origin: https://cors1.azurewebsites.net
Server: Microsoft-IIS/10.0
Set-Cookie: ARRAffinity=8f...;Path=/;HttpOnly;Domain=cors3.azurewebsites.net
Vary: Origin
X-Powered-By: ASP.NET

Accept: */*
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Access-Control-Request-Headers: content-type
Access-Control-Request-Method: DELETE
Connection: keep-alive
Host: cors3.azurewebsites.net
Origin: https://cors1.azurewebsites.net
Referer: https://cors1.azurewebsites.net/test?number=2
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: cross-site
User-Agent: Mozilla/5.0

Display OPTIONS requestsDisplay OPTIONS requests

CORS in IIS

Test CORS

Response headersResponse headers

Request headersRequest headers

In the preceding Response headersResponse headers , the server sets the Access-Control-Allow-Origin header in the response.

The https://cors1.azurewebsites.net  value of this header matches the Origin  header from the request.

If AllowAnyOrigin is called, the Access-Control-Allow-Origin: * , the wildcard value, is returned. 

AllowAnyOrigin  allows any origin.

If the response doesn't include the Access-Control-Allow-Origin  header, the cross-origin request fails.

Specifically, the browser disallows the request. Even if the server returns a successful response, the browser

doesn't make the response available to the client app.

  

By default, the Chrome and Edge browsers don't show OPTIONS requests on the network tab of the F12 tools.

To display OPTIONS requests in these browsers:

chrome://flags/#out-of-blink-cors  or edge://flags/#out-of-blink-cors

disable the flag.

restart.

Firefox shows OPTIONS requests by default.

When deploying to IIS, CORS has to run before Windows Authentication if the server isn't configured to allow

anonymous access. To support this scenario, the IIS CORS module needs to be installed and configured for the

app.

      

The sample download has code to test CORS. See how to download. The sample is an API project with Razor

Pages added:

https://developer.mozilla.org/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowanyorigin
https://www.iis.net/downloads/microsoft/iis-cors-module
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/cors/3.1sample/Cors/WebAPI


public class StartupTest2
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddCors(options =>
        {
            options.AddPolicy(name: "MyPolicy",
                builder =>
                {
                    builder.WithOrigins("http://example.com",
                        "http://www.contoso.com",
                        "https://cors1.azurewebsites.net",
                        "https://cors3.azurewebsites.net",
                        "https://localhost:44398",
                        "https://localhost:5001")
                            .WithMethods("PUT", "DELETE", "GET");
                });
        });

        services.AddControllers();
        services.AddRazorPages();
    }

    public void Configure(IApplicationBuilder app)
    {
        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseRouting();

        app.UseCors();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllers();
            endpoints.MapRazorPages();
        });
    }
}

WARNINGWARNING
WithOrigins("https://localhost:<port>");  should only be used for testing a sample app similar to the download

sample code.

The following ValuesController  provides the endpoints for testing:

https://github.com/dotnet/AspNetCore.Docs/tree/live/aspnetcore/security/cors/3.1sample/Cors


[EnableCors("MyPolicy")]
[Route("api/[controller]")]
[ApiController]
public class ValuesController : ControllerBase
{
    // GET api/values
    [HttpGet]
    public IActionResult Get() =>
        ControllerContext.MyDisplayRouteInfo();

    // GET api/values/5
    [HttpGet("{id}")]
    public IActionResult Get(int id) =>
        ControllerContext.MyDisplayRouteInfo(id);

    // PUT api/values/5
    [HttpPut("{id}")]
    public IActionResult Put(int id) =>
        ControllerContext.MyDisplayRouteInfo(id);

    // GET: api/values/GetValues2
    [DisableCors]
    [HttpGet("{action}")]
    public IActionResult GetValues2() =>
        ControllerContext.MyDisplayRouteInfo();

}

MyDisplayRouteInfo is provided by the Rick.Docs.Samples.RouteInfo NuGet package and displays route

information.

Test the preceding sample code by using one of the following approaches:

Use the deployed sample app at https://cors3.azurewebsites.net/. There is no need to download the sample.

Run the sample with dotnet run  using the default URL of https://localhost:5001 .

Run the sample from Visual Studio with the port set to 44398 for a URL of https://localhost:44398 .

Using a browser with the F12 tools:

Select the ValuesValues  button and review the headers in the NetworkNetwork tab.

Select the PUT testPUT test button. See Display OPTIONS requests for instructions on displaying the OPTIONS

request. The PUT testPUT test creates two requests, an OPTIONS preflight request and the PUT request.

Select the GetValues2 [DisableCors]  button to trigger a failed CORS request. As mentioned in the

document, the response returns 200 success, but the CORS request is not made. Select the ConsoleConsole tab

to see the CORS error. Depending on the browser, an error similar to the following is displayed:

Access to fetch at 'https://cors1.azurewebsites.net/api/values/GetValues2'  from origin 

'https://cors3.azurewebsites.net'  has been blocked by CORS policy: No 'Access-Control-Allow-Origin'

header is present on the requested resource. If an opaque response serves your needs, set the request's

mode to 'no-cors' to fetch the resource with CORS disabled.

CORS-enabled endpoints can be tested with a tool, such as curl, Fiddler, or Postman. When using a tool, the

origin of the request specified by the Origin  header must differ from the host receiving the request. If the

request isn't cross-origin based on the value of the Origin  header :

There's no need for CORS Middleware to process the request.

CORS headers aren't returned in the response.

https://github.com/Rick-Anderson/RouteInfo/blob/master/Microsoft.Docs.Samples.RouteInfo/ControllerContextExtensions.cs
https://www.nuget.org/packages/Rick.Docs.Samples.RouteInfo
https://cors3.azurewebsites.net/
https://curl.haxx.se/
https://www.telerik.com/fiddler
https://www.getpostman.com/


curl -X OPTIONS https://cors3.azurewebsites.net/api/TodoItems2/5 -i

Test CORS with endpoint routing and [HttpOptions]Test CORS with endpoint routing and [HttpOptions]

public class StartupEndPointBugTest
{
    readonly string MyPolicy = "_myPolicy";

    // .WithHeaders(HeaderNames.ContentType, "x-custom-header")
    // forces browsers to require a preflight request with GET

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddCors(options =>
        {
            options.AddPolicy(name: MyPolicy,
                builder =>
                {
                    builder.WithOrigins("http://example.com",
                                        "http://www.contoso.com",
                                        "https://cors1.azurewebsites.net",
                                        "https://cors3.azurewebsites.net",
                                        "https://localhost:44398",
                                        "https://localhost:5001")
                           .WithHeaders(HeaderNames.ContentType, "x-custom-header")
                           .WithMethods("PUT", "DELETE", "GET", "OPTIONS");
                });
        });

        services.AddControllers();
        services.AddRazorPages();
    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        app.UseHttpsRedirection();
        app.UseStaticFiles();
        app.UseRouting();

        app.UseCors();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllers().RequireCors(MyPolicy);
            endpoints.MapRazorPages();
        });
    }
}

The following command uses curl  to issue an OPTIONS request with information:

   

Enabling CORS on a per-endpoint basis using RequireCors  currently does notnot support automatic preflight

requests. Consider the following code which uses endpoint routing to enable CORS:

The following TodoItems1Controller  provides endpoints for testing:



[Route("api/[controller]")]
[ApiController]
public class TodoItems1Controller : ControllerBase
{
    // PUT: api/TodoItems1/5
    [HttpPut("{id}")]
    public IActionResult PutTodoItem(int id)
    {
        if (id < 1)
        {
            return Content($"ID = {id}");
        }

        return ControllerContext.MyDisplayRouteInfo(id);
    }

    // Delete: api/TodoItems1/5
    [HttpDelete("{id}")]
    public IActionResult MyDelete(int id) =>
        ControllerContext.MyDisplayRouteInfo(id);

    // GET: api/TodoItems1
    [HttpGet]
    public IActionResult GetTodoItems() =>
        ControllerContext.MyDisplayRouteInfo();

    [EnableCors]
    [HttpGet("{action}")]
    public IActionResult GetTodoItems2() =>
        ControllerContext.MyDisplayRouteInfo();

    // Delete: api/TodoItems1/MyDelete2/5
    [EnableCors]
    [HttpDelete("{action}/{id}")]
    public IActionResult MyDelete2(int id) =>
        ControllerContext.MyDisplayRouteInfo(id);
}

 headers: {
      "Content-Type": "x-custom-header"
 },

Test the preceding code from the test page of the deployed sample.

The Delete [EnableCors]Delete [EnableCors]  and GET [EnableCors]GET [EnableCors]  buttons succeed, because the endpoints have 

[EnableCors]  and respond to preflight requests. The other endpoints fails. The GETGET button fails, because the

JavaScript sends:

The following TodoItems2Controller  provides similar endpoints, but includes explicit code to respond to

OPTIONS requests:

https://cors1.azurewebsites.net/test?number=1
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/cors/3.1sample/Cors/WebAPI
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/cors/3.1sample/Cors/WebAPI/wwwroot/js/MyJS.js


[Route("api/[controller]")]
[ApiController]
public class TodoItems2Controller : ControllerBase
{
    // OPTIONS: api/TodoItems2/5
    [HttpOptions("{id}")]
    public IActionResult PreflightRoute(int id)
    {
        return NoContent();
    }

    // OPTIONS: api/TodoItems2 
    [HttpOptions]
    public IActionResult PreflightRoute()
    {
        return NoContent();
    }

    [HttpPut("{id}")]
    public IActionResult PutTodoItem(int id)
    {
        if (id < 1)
        {
            return BadRequest();
        }

        return ControllerContext.MyDisplayRouteInfo(id);
    }

    // [EnableCors] // Not needed as OPTIONS path provided
    [HttpDelete("{id}")]
    public IActionResult MyDelete(int id) =>
        ControllerContext.MyDisplayRouteInfo(id);

    [EnableCors]  // Rquired for this path
    [HttpGet]
    public IActionResult GetTodoItems() =>
        ControllerContext.MyDisplayRouteInfo();

    [HttpGet("{action}")]
    public IActionResult GetTodoItems2() =>
        ControllerContext.MyDisplayRouteInfo();

    [EnableCors]  // Rquired for this path
    [HttpDelete("{action}/{id}")]
    public IActionResult MyDelete2(int id) =>
        ControllerContext.MyDisplayRouteInfo(id);
}

Additional resources

Test the preceding code from the test page of the deployed sample. In the ControllerController  drop down list, select

PreflightPreflight and then Set ControllerSet Controller . All the CORS calls to the TodoItems2Controller  endpoints succeed.

Cross-Origin Resource Sharing (CORS)

Getting started with the IIS CORS module

By Rick Anderson

This article shows how to enable CORS in an ASP.NET Core app.

Browser security prevents a web page from making requests to a different domain than the one that served

the web page. This restriction is called the same-origin policy. The same-origin policy prevents a malicious site

from reading sensitive data from another site. Sometimes, you might want to allow other sites make cross-

https://cors1.azurewebsites.net/test?number=2
https://developer.mozilla.org/docs/Web/HTTP/CORS
https://blogs.iis.net/iisteam/getting-started-with-the-iis-cors-module
https://twitter.com/RickAndMSFT


Same origin

CORS with named policy and middleware

origin requests to your app. For more information, see the Mozilla CORS article.

Cross Origin Resource Sharing (CORS):

Is a W3C standard that allows a server to relax the same-origin policy.

Is notnot a security feature, CORS relaxes security. An API is not safer by allowing CORS. For more information,

see How CORS works.

Allows a server to explicitly allow some cross-origin requests while rejecting others.

Is safer and more flexible than earlier techniques, such as JSONP.

View or download sample code (how to download)

Two URLs have the same origin if they have identical schemes, hosts, and ports (RFC 6454).

These two URLs have the same origin:

https://example.com/foo.html

https://example.com/bar.html

These URLs have different origins than the previous two URLs:

https://example.net : Different domain

https://www.example.com/foo.html : Different subdomain

http://example.com/foo.html : Different scheme

https://example.com:9000/foo.html : Different port

Internet Explorer doesn't consider the port when comparing origins.

CORS Middleware handles cross-origin requests. The following code enables CORS for the entire app with the

specified origin:

https://developer.mozilla.org/docs/Web/HTTP/CORS
https://www.w3.org/TR/cors/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/samples/jsonp
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/cors/sample
https://tools.ietf.org/html/rfc6454


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    readonly string MyAllowSpecificOrigins = "_myAllowSpecificOrigins";

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddCors(options =>
        {
            options.AddPolicy(MyAllowSpecificOrigins,
            builder =>
            {
                builder.WithOrigins("http://example.com",
                                    "http://www.contoso.com");
            });
        });

        services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseHsts();
        }

        app.UseCors(MyAllowSpecificOrigins); 

        app.UseHttpsRedirection();
        app.UseMvc();
    }
}

The preceding code:

Sets the policy name to "_myAllowSpecificOrigins". The policy name is arbitrary.

Calls the UseCors extension method, which enables CORS.

Calls AddCors with a lambda expression. The lambda takes a CorsPolicyBuilder object. Configuration

options, such as WithOrigins , are described later in this article.

The AddCors method call adds CORS services to the app's service container :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.corsmiddlewareextensions.usecors
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.corsservicecollectionextensions.addcors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccorsmvccorebuilderextensions.addcors


public void ConfigureServices(IServiceCollection services)
{
    services.AddCors(options =>
    {
        options.AddPolicy(MyAllowSpecificOrigins,
        builder =>
        {
            builder.WithOrigins("http://example.com",
                                "http://www.contoso.com");
        });
    });

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddCors(options =>
    {
        options.AddPolicy(MyAllowSpecificOrigins,
        builder =>
        {
            builder.WithOrigins("http://example.com",
                                "http://www.contoso.com")
                                .AllowAnyHeader()
                                .AllowAnyMethod();
        });
    });

    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseHsts();
    }

    app.UseCors();

    app.UseHttpsRedirection();
    app.UseMvc();
}

For more information, see CORS policy options in this document .

The CorsPolicyBuilder method can chain methods, as shown in the following code:

Note: The URL must notnot contain a trailing slash ( / ). If the URL terminates with / , the comparison returns 

false  and no header is returned.

The following code applies CORS policies to all the apps endpoints via CORS Middleware:

Note: UseCors  must be called before UseMvc .

See Enable CORS in Razor Pages, controllers, and action methods to apply CORS policy at the

page/controller/action level.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder


Enable CORS with attributes

[Route("api/[controller]")]
[ApiController]
public class WidgetController : ControllerBase
{
    // GET api/values
    [EnableCors("AnotherPolicy")]
    [HttpGet]
    public ActionResult<IEnumerable<string>> Get()
    {
        return new string[] { "green widget", "red widget" };
    }

    // GET api/values/5
    [EnableCors]        // Default policy.
    [HttpGet("{id}")]
    public ActionResult<string> Get(int id)
    {
        switch (id)
        {
            case 1:
                return "green widget";
            case 2:
                return "red widget";
            default:
                return NotFound();
        }
    }
}

See Test CORS for instructions on testing code similar to the preceding code.

The [EnableCors] attribute provides an alternative to applying CORS globally. The [EnableCors]  attribute

enables CORS for selected end points, rather than all end points.

Use [EnableCors]  to specify the default policy and [EnableCors("{Policy String}")]  to specify a policy.

The [EnableCors]  attribute can be applied to:

Razor Page PageModel

Controller

Controller action method

You can apply different policies to controller/page-model/action with the [EnableCors]  attribute. When the 

[EnableCors]  attribute is applied to a controllers/page model/action method, and CORS is enabled in

middleware, bothboth policies are applied. We recommend notnot combining policies. Use the [EnableCors]  attribute

or middleware, not bothnot both. When using [EnableCors] , do notnot define a default policy.

The following code applies a different policy to each method:

The following code creates a CORS default policy and a policy named "AnotherPolicy" :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.enablecorsattribute


public class StartupMultiPolicy
{
    public StartupMultiPolicy(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddCors(options =>
        {
            options.AddDefaultPolicy(
                builder =>
                {
                   
                    builder.WithOrigins("http://example.com",
                                        "http://www.contoso.com");
                });

            options.AddPolicy("AnotherPolicy",
                builder =>
                {
                    builder.WithOrigins("http://www.contoso.com")
                                        .AllowAnyHeader()
                                        .AllowAnyMethod();
                });

        });

        services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseHsts();
        }

        app.UseHttpsRedirection();
        app.UseMvc();
    }
}

Disable CORSDisable CORS

CORS policy options

The [DisableCors] attribute disables CORS for the controller/page-model/action.

 

This section describes the various options that can be set in a CORS policy:

Set the allowed origins

Set the allowed HTTP methods

Set the allowed request headers

Set the exposed response headers

Credentials in cross-origin requests

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.disablecorsattribute


Set the allowed origins

NOTENOTE

options.AddPolicy("AllowSubdomain",
    builder =>
    {
        builder.WithOrigins("https://*.example.com")
            .SetIsOriginAllowedToAllowWildcardSubdomains();
    });

Set the allowed HTTP methodsSet the allowed HTTP methods

Set the allowed request headersSet the allowed request headers

options.AddPolicy("AllowHeaders",
    builder =>
    {
        builder.WithOrigins("http://example.com")
               .WithHeaders(HeaderNames.ContentType, "x-custom-header");
    });

options.AddPolicy("AllowAllHeaders",
    builder =>
    {
        builder.WithOrigins("http://example.com")
               .AllowAnyHeader();
    });

Set the preflight expiration time

AddPolicy is called in Startup.ConfigureServices . For some options, it may be helpful to read the How CORS

works section first.

AllowAnyOrigin: Allows CORS requests from all origins with any scheme ( http  or https ). AllowAnyOrigin  is

insecure because any website can make cross-origin requests to the app.

Specifying AllowAnyOrigin  and AllowCredentials  is an insecure configuration and can result in cross-site request

forgery. For a secure app, specify an exact list of origins if the client must authorize itself to access server resources.

AllowAnyOrigin  affects preflight requests and the Access-Control-Allow-Origin  header. For more information,

see the Preflight requests section.

SetIsOriginAllowedToAllowWildcardSubdomains: Sets the IsOriginAllowed property of the policy to be a

function that allows origins to match a configured wildcard domain when evaluating if the origin is allowed.

AllowAnyMethod:

Allows any HTTP method:

Affects preflight requests and the Access-Control-Allow-Methods  header. For more information, see the

Preflight requests section.

To allow specific headers to be sent in a CORS request, called author request headers, call WithHeaders and

specify the allowed headers:

To allow all author request headers, call AllowAnyHeader:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corsoptions.addpolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowanyorigin
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.setisoriginallowedtoallowwildcardsubdomains
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicy.isoriginallowed
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowanymethod
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.withheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowanyheader


app.UseCors(policy => policy.WithHeaders(HeaderNames.CacheControl));

Access-Control-Request-Headers: Cache-Control, Content-Language

Set the exposed response headersSet the exposed response headers

options.AddPolicy("ExposeResponseHeaders",
    builder =>
    {
        builder.WithOrigins("http://example.com")
               .WithExposedHeaders("x-custom-header");
    });

Credentials in cross-origin requestsCredentials in cross-origin requests

This setting affects preflight requests and the Access-Control-Request-Headers  header. For more information,

see the Preflight requests section.

CORS Middleware always allows four headers in the Access-Control-Request-Headers  to be sent regardless of

the values configured in CorsPolicy.Headers. This list of headers includes:

Accept

Accept-Language

Content-Language

Origin

For instance, consider an app configured as follows:

CORS Middleware responds successfully to a preflight request with the following request header because 

Content-Language  is always permitted:

By default, the browser doesn't expose all of the response headers to the app. For more information, see W3C

Cross-Origin Resource Sharing (Terminology): Simple Response Header.

The response headers that are available by default are:

Cache-Control

Content-Language

Content-Type

Expires

Last-Modified

Pragma

The CORS specification calls these headers simple response headers. To make other headers available to the

app, call WithExposedHeaders:

Credentials require special handling in a CORS request. By default, the browser doesn't send credentials with a

cross-origin request. Credentials include cookies and HTTP authentication schemes. To send credentials with a

cross-origin request, the client must set XMLHttpRequest.withCredentials  to true .

Using XMLHttpRequest  directly:

https://www.w3.org/TR/cors/#simple-response-header
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.withexposedheaders


var xhr = new XMLHttpRequest();
xhr.open('get', 'https://www.example.com/api/test');
xhr.withCredentials = true;

$.ajax({
  type: 'get',
  url: 'https://www.example.com/api/test',
  xhrFields: {
    withCredentials: true
  }
});

fetch('https://www.example.com/api/test', {
    credentials: 'include'
});

options.AddPolicy("AllowCredentials",
    builder =>
    {
        builder.WithOrigins("http://example.com")
               .AllowCredentials();
    });

Preflight requestsPreflight requests

Using jQuery:

Using the Fetch API:

The server must allow the credentials. To allow cross-origin credentials, call AllowCredentials:

The HTTP response includes an Access-Control-Allow-Credentials  header, which tells the browser that the

server allows credentials for a cross-origin request.

If the browser sends credentials but the response doesn't include a valid Access-Control-Allow-Credentials

header, the browser doesn't expose the response to the app, and the cross-origin request fails.

Allowing cross-origin credentials is a security risk. A website at another domain can send a signed-in user's

credentials to the app on the user's behalf without the user's knowledge.

The CORS specification also states that setting origins to "*"  (all origins) is invalid if the 

Access-Control-Allow-Credentials  header is present.

For some CORS requests, the browser sends an additional request before making the actual request. This

request is called a preflight request. The browser can skip the preflight request if the following conditions are

true:

The request method is GET, HEAD, or POST.

The app doesn't set request headers other than Accept , Accept-Language , Content-Language , Content-Type ,

or Last-Event-ID .

The Content-Type  header, if set, has one of the following values:

application/x-www-form-urlencoded

multipart/form-data

text/plain

The rule on request headers set for the client request applies to headers that the app sets by calling 

https://developer.mozilla.org/docs/Web/API/Fetch_API
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowcredentials


OPTIONS https://myservice.azurewebsites.net/api/test HTTP/1.1
Accept: */*
Origin: https://myclient.azurewebsites.net
Access-Control-Request-Method: PUT
Access-Control-Request-Headers: accept, x-my-custom-header
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; WOW64; Trident/6.0)
Host: myservice.azurewebsites.net
Content-Length: 0

options.AddPolicy("AllowHeaders",
    builder =>
    {
        builder.WithOrigins("http://example.com")
               .WithHeaders(HeaderNames.ContentType, "x-custom-header");
    });

options.AddPolicy("AllowAllHeaders",
    builder =>
    {
        builder.WithOrigins("http://example.com")
               .AllowAnyHeader();
    });

setRequestHeader  on the XMLHttpRequest  object. The CORS specification calls these headers author request

headers. The rule doesn't apply to headers the browser can set, such as User-Agent , Host , or Content-Length .

The following is an example of a preflight request:

The pre-flight request uses the HTTP OPTIONS method. It includes two special headers:

Access-Control-Request-Method : The HTTP method that will be used for the actual request.

Access-Control-Request-Headers : A list of request headers that the app sets on the actual request. As stated

earlier, this doesn't include headers that the browser sets, such as User-Agent .

When CORS is enabled with the appropriate policy, ASP.NET Core generally automatically responds to CORS

preflight requests. See [HttpOptions] attribute for preflight requests.

A CORS preflight request might include an Access-Control-Request-Headers  header, which indicates to the

server the headers that are sent with the actual request.

To allow specific headers, call WithHeaders:

To allow all author request headers, call AllowAnyHeader:

Browsers aren't entirely consistent in how they set Access-Control-Request-Headers . If you set headers to

anything other than "*"  (or use AllowAnyHeader), you should include at least Accept , Content-Type , and 

Origin , plus any custom headers that you want to support.

The following is an example response to the preflight request (assuming that the server allows the request):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.withheaders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowanyheader
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicy.allowanyheader


HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Length: 0
Access-Control-Allow-Origin: https://myclient.azurewebsites.net
Access-Control-Allow-Headers: x-my-custom-header
Access-Control-Allow-Methods: PUT
Date: Wed, 20 May 2015 06:33:22 GMT

Set the preflight expiration timeSet the preflight expiration time

options.AddPolicy("SetPreflightExpiration",
    builder =>
    {
        builder.WithOrigins("http://example.com")
               .SetPreflightMaxAge(TimeSpan.FromSeconds(2520));
    });

How CORS works

The response includes an Access-Control-Allow-Methods  header that lists the allowed methods and optionally

an Access-Control-Allow-Headers  header, which lists the allowed headers. If the preflight request succeeds, the

browser sends the actual request.

If the preflight request is denied, the app returns a 200 OK response but doesn't send the CORS headers back.

Therefore, the browser doesn't attempt the cross-origin request.

The Access-Control-Max-Age  header specifies how long the response to the preflight request can be cached. To

set this header, call SetPreflightMaxAge:

 

This section describes what happens in a CORS request at the level of the HTTP messages.

CORS is notnot a security feature. CORS is a W3C standard that allows a server to relax the same-origin policy.

Your API is not safer by allowing CORS.

It's a way for a server to allow browsers to execute a cross-origin XHR or Fetch API request that otherwise

would be forbidden.

For example, a malicious actor could use Prevent Cross-Site Scripting (XSS) against your site and

execute a cross-site request to their CORS enabled site to steal information.

It's up to the client (browser) to enforce CORS. The server executes the request and returns the

response, it's the client that returns an error and blocks the response. For example, any of the

following tools will display the server response:

Fiddler

Postman

.NET HttpClient

A web browser by entering the URL in the address bar.

Browsers (without CORS) can't do cross-origin requests. Before CORS, JSONP was used to

circumvent this restriction. JSONP doesn't use XHR, it uses the <script>  tag to receive the response.

Scripts are allowed to be loaded cross-origin.

The CORS specification introduced several new HTTP headers that enable cross-origin requests. If a browser

supports CORS, it sets these headers automatically for cross-origin requests. Custom JavaScript code isn't

required to enable CORS.

The following is an example of a cross-origin request. The Origin  header provides the domain of the site

that's making the request. The Origin  header is required and must be different from the host.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.setpreflightmaxage
https://developer.mozilla.org/docs/Web/HTTP/CORS
https://www.telerik.com/fiddler
https://www.getpostman.com/
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/console-webapiclient
https://developer.mozilla.org/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://www.w3schools.com/js/js_json_jsonp.asp
https://www.w3.org/TR/cors/


GET https://myservice.azurewebsites.net/api/test HTTP/1.1
Referer: https://myclient.azurewebsites.net/
Accept: */*
Accept-Language: en-US
Origin: https://myclient.azurewebsites.net
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; WOW64; Trident/6.0)
Host: myservice.azurewebsites.net

HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Type: text/plain; charset=utf-8
Access-Control-Allow-Origin: https://myclient.azurewebsites.net
Date: Wed, 20 May 2015 06:27:30 GMT
Content-Length: 12

Test message

Test CORS

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseHsts();
    }

    // Shows UseCors with CorsPolicyBuilder.
    app.UseCors(builder =>
    {
        builder.WithOrigins("http://example.com",
                            "http://www.contoso.com",
                            "https://localhost:44375",
                            "https://localhost:5001");
    });

    app.UseHttpsRedirection();
    app.UseMvc();
}

If the server allows the request, it sets the Access-Control-Allow-Origin  header in the response. The value of

this header either matches the Origin  header from the request or is the wildcard value "*" , meaning that

any origin is allowed:

If the response doesn't include the Access-Control-Allow-Origin  header, the cross-origin request fails.

Specifically, the browser disallows the request. Even if the server returns a successful response, the browser

doesn't make the response available to the client app.

 

To test CORS:

1. Create an API project. Alternatively, you can download the sample.

2. Enable CORS using one of the approaches in this document. For example:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/cors/sample/Cors


WARNINGWARNING

@page
@model IndexModel
@{
    ViewData["Title"] = "Home page";
}

<div class="text-center">
    <h1 class="display-4">CORS Test</h1>
</div>

<div>
    <input type="button" value="Test" 
           onclick="requestVal('https://<web app>.azurewebsites.net/api/values')" />
    <span id='result'></span>
</div>

<script>
    function requestVal(uri) {
        const resultSpan = document.getElementById('result');

        fetch(uri)
            .then(response => response.json())
            .then(data => resultSpan.innerText = data)
            .catch(error => resultSpan.innerText = 'See F12 Console for error');
    }
</script>

WithOrigins("https://localhost:<port>");  should only be used for testing a sample app similar to the download

sample code.

1. Create a web app project (Razor Pages or MVC). The sample uses Razor Pages. You can create the web app

in the same solution as the API project.

2. Add the following highlighted code to the Index.cshtml file:

1. In the preceding code, replace url: 'https://<web app>.azurewebsites.net/api/values/1',  with the URL

to the deployed app.

2. Deploy the API project. For example, deploy to Azure.

3. Run the Razor Pages or MVC app from the desktop and click on the TestTest button. Use the F12 tools to

review error messages.

4. Remove the localhost origin from WithOrigins  and deploy the app. Alternatively, run the client app with

a different port. For example, run from Visual Studio.

5. Test with the client app. CORS failures return an error, but the error message isn't available to JavaScript.

Use the console tab in the F12 tools to see the error. Depending on the browser, you get an error (in the

F12 tools console) similar to the following:

Using Microsoft Edge:

SEC7120: [CORS] The or igin SEC7120: [CORS] The or igin https://localhost:44375  did not find  did not find 

https://localhost:44375  in the Access-Control-Allow-Origin response header for cross- in the Access-Control-Allow-Origin response header for cross-

origin or igin resource at resource at https://webapi.azurewebsites.net/api/values/1

Using Chrome:

Access to XMLHttpRequest at Access to XMLHttpRequest at https://webapi.azurewebsites.net/api/values/1  from origin  from origin 

https://github.com/dotnet/AspNetCore.Docs/tree/live/aspnetcore/security/cors/sample/Cors


CORS in IIS

Additional resources

https://localhost:44375  has been blocked by CORS policy: No 'Access-Control-Allow- has been blocked by CORS policy: No 'Access-Control-Allow-

Origin' header is present on the requested resource.Origin' header is present on the requested resource.

CORS-enabled endpoints can be tested with a tool, such as Fiddler or Postman. When using a tool, the origin of

the request specified by the Origin  header must differ from the host receiving the request. If the request isn't

cross-origin based on the value of the Origin  header :

There's no need for CORS Middleware to process the request.

CORS headers aren't returned in the response.

When deploying to IIS, CORS has to run before Windows Authentication if the server isn't configured to allow

anonymous access. To support this scenario, the IIS CORS module needs to be installed and configured for the

app.

Cross-Origin Resource Sharing (CORS)

Getting started with the IIS CORS module

https://www.telerik.com/fiddler
https://www.getpostman.com/
https://www.iis.net/downloads/microsoft/iis-cors-module
https://developer.mozilla.org/docs/Web/HTTP/CORS
https://blogs.iis.net/iisteam/getting-started-with-the-iis-cors-module


 

Share authentication cookies among ASP.NET apps
9/22/2020 • 5 minutes to read • Edit Online

Share authentication cookies with ASP.NET Core Identity

By Rick Anderson

Websites often consist of individual web apps working together. To provide a single sign-on (SSO) experience, web

apps within a site must share authentication cookies. To support this scenario, the data protection stack allows

sharing Katana cookie authentication and ASP.NET Core cookie authentication tickets.

In the examples that follow:

The authentication cookie name is set to a common value of .AspNet.SharedCookie .

The AuthenticationType  is set to Identity.Application  either explicitly or by default.

A common app name is used to enable the data protection system to share data protection keys (

SharedCookieApp ).

Identity.Application  is used as the authentication scheme. Whatever scheme is used, it must be used

consistently within and across the shared cookie apps either as the default scheme or by explicitly setting it. The

scheme is used when encrypting and decrypting cookies, so a consistent scheme must be used across apps.

A common data protection key storage location is used.

DataProtectionProvider  requires the Microsoft.AspNetCore.DataProtection.Extensions NuGet package:

SetApplicationName sets the common app name.

In ASP.NET Core apps, PersistKeysToFileSystem is used to set the key storage location.

In .NET Framework apps, Cookie Authentication Middleware uses an implementation of

DataProtectionProvider. DataProtectionProvider  provides data protection services for the encryption

and decryption of authentication cookie payload data. The DataProtectionProvider  instance is isolated

from the data protection system used by other parts of the app.

DataProtectionProvider.Create(System.IO.DirectoryInfo, Action<IDataProtectionBuilder>) accepts a

DirectoryInfo to specify the location for data protection key storage.

In ASP.NET Core 2.x apps, reference the Microsoft.AspNetCore.App metapackage.

In .NET Framework apps, add a package reference to Microsoft.AspNetCore.DataProtection.Extensions.

When using ASP.NET Core Identity:

Data protection keys and the app name must be shared among apps. A common key storage location is

provided to the PersistKeysToFileSystem method in the following examples. Use SetApplicationName to

configure a common shared app name ( SharedCookieApp  in the following examples). For more information, see

Configure ASP.NET Core Data Protection.

Use the ConfigureApplicationCookie extension method to set up the data protection service for cookies.

The default authentication type is Identity.Application .

In Startup.ConfigureServices :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/cookie-sharing.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.persistkeystofilesystem
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionprovider.create
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Extensions/
https://www.nuget.org/packages/Microsoft.AspNetCore.DataProtection.Extensions/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setapplicationname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.persistkeystofilesystem
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.setapplicationname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.identityservicecollectionextensions.configureapplicationcookie


services.AddDataProtection()
    .PersistKeysToFileSystem("{PATH TO COMMON KEY RING FOLDER}")
    .SetApplicationName("SharedCookieApp");

services.ConfigureApplicationCookie(options => {
    options.Cookie.Name = ".AspNet.SharedCookie";
});

Share authentication cookies without ASP.NET Core Identity

services.AddDataProtection()
    .PersistKeysToFileSystem("{PATH TO COMMON KEY RING FOLDER}")
    .SetApplicationName("SharedCookieApp");

services.AddAuthentication("Identity.Application")
    .AddCookie("Identity.Application", options =>
    {
        options.Cookie.Name = ".AspNet.SharedCookie";
    });

Share cookies across different base paths

services.AddDataProtection()
    .PersistKeysToFileSystem("{PATH TO COMMON KEY RING FOLDER}")
    .SetApplicationName("SharedCookieApp");

services.ConfigureApplicationCookie(options => {
    options.Cookie.Name = ".AspNet.SharedCookie";
    options.Cookie.Path = "/";
});

Share cookies across subdomains

options.Cookie.Domain = ".contoso.com";

Encrypt data protection keys at rest

services.AddDataProtection()
    .ProtectKeysWithCertificate("{CERTIFICATE THUMBPRINT}");

When using cookies directly without ASP.NET Core Identity, configure data protection and authentication in 

Startup.ConfigureServices . In the following example, the authentication type is set to Identity.Application :

An authentication cookie uses the HttpRequest.PathBase as its default Cookie.Path. If the app's cookie must be

shared across different base paths, Path  must be overridden:

When hosting apps that share cookies across subdomains, specify a common domain in the Cookie.Domain

property. To share cookies across apps at contoso.com , such as first_subdomain.contoso.com  and 

second_subdomain.contoso.com , specify the Cookie.Domain  as .contoso.com :

For production deployments, configure the DataProtectionProvider  to encrypt keys at rest with DPAPI or an

X509Certificate. For more information, see Key encryption at rest in Windows and Azure using ASP.NET Core. In the

following example, a certificate thumbprint is provided to ProtectKeysWithCertificate:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.pathbase#microsoft_aspnetcore_http_httprequest_pathbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.path#microsoft_aspnetcore_http_cookiebuilder_path
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.domain#microsoft_aspnetcore_http_cookiebuilder_domain
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.dataprotection.dataprotectionbuilderextensions.protectkeyswithcertificate


Share authentication cookies between ASP.NET 4.x and ASP.NET Core
apps
ASP.NET 4.x apps that use Katana Cookie Authentication Middleware can be configured to generate authentication

cookies that are compatible with the ASP.NET Core Cookie Authentication Middleware. This allows upgrading a

large site's individual apps in several steps while providing a smooth SSO experience across the site.

When an app uses Katana Cookie Authentication Middleware, it calls UseCookieAuthentication  in the project's

Startup.Auth.cs file. ASP.NET 4.x web app projects created with Visual Studio 2013 and later use the Katana Cookie

Authentication Middleware by default. Although UseCookieAuthentication  is obsolete and unsupported for ASP.NET

Core apps, calling UseCookieAuthentication  in an ASP.NET 4.x app that uses Katana Cookie Authentication

Middleware is valid.

An ASP.NET 4.x app must target .NET Framework 4.5.1 or later. Otherwise, the necessary NuGet packages fail to

install.

To share authentication cookies between an ASP.NET 4.x app and an ASP.NET Core app, configure the ASP.NET Core

app as stated in the Share authentication cookies among ASP.NET Core apps section, then configure the ASP.NET 4.x

app as follows.

Confirm that the app's packages are updated to the latest releases. Install the Microsoft.Owin.Security.Interop

package into each ASP.NET 4.x app.

Locate and modify the call to UseCookieAuthentication :

Change the cookie name to match the name used by the ASP.NET Core Cookie Authentication Middleware (

.AspNet.SharedCookie  in the example).

In the following example, the authentication type is set to Identity.Application .

Provide an instance of a DataProtectionProvider  initialized to the common data protection key storage location.

Confirm that the app name is set to the common app name used by all apps that share authentication cookies (

SharedCookieApp  in the example).

If not setting http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier  and 

http://schemas.microsoft.com/accesscontrolservice/2010/07/claims/identityprovider , set UniqueClaimTypeIdentifier

to a claim that distinguishes unique users.

App_Start/Startup.Auth.cs:

https://www.nuget.org/packages/Microsoft.Owin.Security.Interop/
https://docs.microsoft.com/en-us/dotnet/api/system.web.helpers.antiforgeryconfig.uniqueclaimtypeidentifier#system_web_helpers_antiforgeryconfig_uniqueclaimtypeidentifier


app.UseCookieAuthentication(new CookieAuthenticationOptions
{
    AuthenticationType = "Identity.Application",
    CookieName = ".AspNet.SharedCookie",
    LoginPath = new PathString("/Account/Login"),
    Provider = new CookieAuthenticationProvider
    {
        OnValidateIdentity =
            SecurityStampValidator
                .OnValidateIdentity<ApplicationUserManager, ApplicationUser>(
                    validateInterval: TimeSpan.FromMinutes(30),
                    regenerateIdentity: (manager, user) =>
                        user.GenerateUserIdentityAsync(manager))
    },
    TicketDataFormat = new AspNetTicketDataFormat(
        new DataProtectorShim(
            DataProtectionProvider.Create("{PATH TO COMMON KEY RING FOLDER}",
                (builder) => { builder.SetApplicationName("SharedCookieApp"); })
            .CreateProtector(
                "Microsoft.AspNetCore.Authentication.Cookies." +
                    "CookieAuthenticationMiddleware",
                "Identity.Application",
                "v2"))),
    CookieManager = new ChunkingCookieManager()
});

System.Web.Helpers.AntiForgeryConfig.UniqueClaimTypeIdentifier =
    "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name";

public class ApplicationUser : IdentityUser
{
    public async Task<ClaimsIdentity> GenerateUserIdentityAsync(
        UserManager<ApplicationUser> manager)
    {
        // The authenticationType must match the one defined in 
        // CookieAuthenticationOptions.AuthenticationType
        var userIdentity = 
            await manager.CreateIdentityAsync(this, "Identity.Application");

        // Add custom user claims here

        return userIdentity;
    }
}

Use a common user database

When generating a user identity, the authentication type ( Identity.Application ) must match the type defined in 

AuthenticationType  set with UseCookieAuthentication  in App_Start/Startup.Auth.cs.

Models/IdentityModels.cs:

When apps use the same Identity schema (same version of Identity), confirm that the Identity system for each app

is pointed at the same user database. Otherwise, the identity system produces failures at runtime when it attempts

to match the information in the authentication cookie against the information in its database.

When the Identity schema is different among apps, usually because apps are using different Identity versions,

sharing a common database based on the latest version of Identity isn't possible without remapping and adding

columns in other app's Identity schemas. It's often more efficient to upgrade the other apps to use the latest

Identity version so that a common database can be shared by the apps.



Additional resources
Host ASP.NET Core in a web farm



Work with SameSite cookies in ASP.NET Core
9/22/2020 • 10 minutes to read • Edit Online

SameSite and Identity

SameSite test sample code

SA M P L ESA M P L E DO C UM EN TDO C UM EN T

.NET Core MVC ASP.NET Core 2.1 MVC SameSite cookie sample

.NET Core Razor Pages ASP.NET Core 2.1 Razor Pages SameSite cookie sample

SA M P L ESA M P L E DO C UM EN TDO C UM EN T

.NET Core Razor Pages ASP.NET Core 3.1 Razor Pages SameSite cookie sample

.NET Core support for the sameSite attribute

By Rick Anderson

SameSite is an IETF draft standard designed to provide some protection against cross-site request forgery (CSRF)

attacks. Originally drafted in 2016, the draft standard was updated in 2019. The updated standard is not backward

compatible with the previous standard, with the following being the most noticeable differences:

Cookies without SameSite header are treated as SameSite=Lax  by default.

SameSite=None  must be used to allow cross-site cookie use.

Cookies that assert SameSite=None  must also be marked as Secure .

Applications that use <iframe>  may experience issues with sameSite=Lax  or sameSite=Strict  cookies

because <iframe>  is treated as cross-site scenarios.

The value SameSite=None  is not allowed by the 2016 standard and causes some implementations to treat such

cookies as SameSite=Strict . See Supporting older browsers in this document.

The SameSite=Lax  setting works for most application cookies. Some forms of authentication like OpenID Connect

(OIDC) and WS-Federation default to POST based redirects. The POST based redirects trigger the SameSite

browser protections, so SameSite is disabled for these components. Most OAuth logins are not affected due to

differences in how the request flows.

Each ASP.NET Core component that emits cookies needs to decide if SameSite is appropriate.

ASP.NET Core Identity is largely unaffected by SameSite cookies except for advanced scenarios like IFrames  or 

OpenIdConnect  integration.

When using Identity , do notnot add any cookie providers or call 

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme) , Identity  takes care of that.

The following samples can be downloaded and tested:

The following sample can be downloaded and tested:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/samesite.md
https://twitter.com/RickAndMSFT
https://ietf.org/about/
https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00
https://developer.mozilla.org/docs/Web/HTML/Element/iframe
https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://openid.net/connect/
https://auth0.com/docs/protocols/ws-fed
https://oauth.net/
https://github.com/blowdart/AspNetSameSiteSamples/tree/master/AspNetCore21MVC
https://github.com/blowdart/AspNetSameSiteSamples/tree/master/AspNetCore21RazorPages
https://github.com/blowdart/AspNetSameSiteSamples/tree/master/AspNetCore31RazorPages


var cookieOptions = new CookieOptions
{
    // Set the secure flag, which Chrome's changes will require for SameSite none.
    // Note this will also require you to be running on HTTPS.
    Secure = true,

    // Set the cookie to HTTP only which is good practice unless you really do need
    // to access it client side in scripts.
    HttpOnly = true,

    // Add the SameSite attribute, this will emit the attribute with a value of none.
    // To not emit the attribute at all set
    // SameSite = (SameSiteMode)(-1)
    SameSite = SameSiteMode.None
};

// Add the cookie to the response cookie collection
Response.Cookies.Append("MyCookie", "cookieValue", cookieOptions);

December patch behavior changes

API usage with SameSite

HttpContext.Response.Cookies.Append(
                     "name", "value",
                     new CookieOptions() { SameSite = SameSiteMode.Lax });

C O M P O N EN TC O M P O N EN T C O O KIEC O O KIE DEFA ULTDEFA ULT

CookieBuilder SameSite Unspecified

Session SessionOptions.Cookie Lax

.NET Core 2.2 and later support the 2019 draft standard for SameSite since the release of updates in December

2019. Developers are able to programmatically control the value of the sameSite attribute using the 

HttpCookie.SameSite  property. Setting the SameSite  property to Strict, Lax, or None results in those values being

written on the network with the cookie. Setting it equal to (SameSiteMode)(-1)  indicates that no sameSite

attribute should be included on the network with the cookie

.NET Core 3.0 and later support the updated SameSite values and adds an extra enum value, 

SameSiteMode.Unspecified  to the SameSiteMode  enum. This new value indicates no sameSite should be sent with

the cookie.

The specific behavior change for .NET Framework and .NET Core 2.1 is how the SameSite  property interprets the 

None  value. Before the patch a value of None  meant "Do not emit the attribute at all", after the patch it means

"Emit the attribute with a value of None ". After the patch a SameSite  value of (SameSiteMode)(-1)  causes the

attribute not to be emitted.

The default SameSite value for forms authentication and session state cookies was changed from None  to Lax .

HttpContext.Response.Cookies.Append defaults to Unspecified , meaning no SameSite attribute added to the

cookie and the client will use its default behavior (Lax for new browsers, None for old ones). The following code

shows how to change the cookie SameSite value to SameSiteMode.Lax :

All ASP.NET Core components that emit cookies override the preceding defaults with settings appropriate for their

scenarios. The overridden preceding default values haven't changed.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iresponsecookies.append
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.samesite#microsoft_aspnetcore_http_cookiebuilder_samesite
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.session#microsoft_aspnetcore_http_httpcontext_session
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.sessionoptions.cookie#microsoft_aspnetcore_builder_sessionoptions_cookie


CookieTempDataProvider CookieTempDataProviderOptions.Cooki
e

Lax

IAntiforgery AntiforgeryOptions.Cookie Strict

Cookie Authentication CookieAuthenticationOptions.Cookie Lax

AddTwitter TwitterOptions.StateCookie Lax

RemoteAuthenticationHandler<TOptio
ns>

RemoteAuthenticationOptions.Correlati
onCookie

None

AddOpenIdConnect OpenIdConnectOptions.NonceCookie None

HttpContext.Response.Cookies.Append CookieOptions Unspecified

C O M P O N EN TC O M P O N EN T C O O KIEC O O KIE DEFA ULTDEFA ULT

History and changes

ASP.NET Core 3.1 and later provides the following SameSite support:

Redefines the behavior of SameSiteMode.None  to emit SameSite=None

Adds a new value SameSiteMode.Unspecified  to omit the SameSite attribute.

All cookies APIs default to Unspecified . Some components that use cookies set values more specific to their

scenarios. See the table above for examples.

In ASP.NET Core 3.0 and later the SameSite defaults were changed to avoid conflicting with inconsistent client

defaults. The following APIs have changed the default from SameSiteMode.Lax  to -1  to avoid emitting a SameSite

attribute for these cookies:

CookieOptions used with HttpContext.Response.Cookies.Append

CookieBuilder used as a factory for CookieOptions

CookiePolicyOptions.MinimumSameSitePolicy

SameSite support was first implemented in ASP.NET Core in 2.0 using the 2016 draft standard. The 2016 standard

was opt-in. ASP.NET Core opted-in by setting several cookies to Lax  by default. After encountering several issues

with authentication, most SameSite usage was disabled.

Patches were issued in November 2019 to update from the 2016 standard to the 2019 standard. The 2019 draft

of the SameSite specification:

Is notnot backwards compatible with the 2016 draft. For more information, see Supporting older browsers in this

document.

Specifies cookies are treated as SameSite=Lax  by default.

Specifies cookies that explicitly assert SameSite=None  in order to enable cross-site delivery should be marked

as Secure . None  is a new entry to opt out.

Is supported by patches issued for ASP.NET Core 2.1, 2.2, and 3.0. ASP.NET Core 3.1 has additional SameSite

support.

Is scheduled to be enabled by Chrome by default in Feb 2020. Browsers started moving to this standard in

2019.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.cookietempdataprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cookietempdataprovideroptions.cookie#microsoft_aspnetcore_mvc_cookietempdataprovideroptions_cookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.iantiforgery
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.antiforgery.antiforgeryoptions.cookie#microsoft_aspnetcore_antiforgery_antiforgeryoptions_cookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.cookieextensions.addcookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookieauthenticationoptions.cookiename#microsoft_aspnetcore_builder_cookieauthenticationoptions_cookiename
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.twitterextensions.addtwitter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.twitter.twitteroptions.statecookie#microsoft_aspnetcore_authentication_twitter_twitteroptions_statecookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationhandler-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.remoteauthenticationoptions.correlationcookie#microsoft_aspnetcore_authentication_remoteauthenticationoptions_correlationcookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.openidconnectextensions.addopenidconnect
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.openidconnect.openidconnectoptions.noncecookie#microsoft_aspnetcore_authentication_openidconnect_openidconnectoptions_noncecookie
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iresponsecookies.append
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookieoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookieoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iresponsecookies.append
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.minimumsamesitepolicy#microsoft_aspnetcore_builder_cookiepolicyoptions_minimumsamesitepolicy
https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-4.1
https://github.com/aspnet/Announcements/issues/318
https://github.com/aspnet/Announcements/issues/348
https://devblogs.microsoft.com/dotnet/net-core-November-2019/
https://github.com/aspnet/Announcements/issues/390
https://chromestatus.com/feature/5088147346030592
https://blog.chromium.org/2019/10/developers-get-ready-for-new.html


APIs impacted by the change from the 2016 SameSite draft standard
to the 2019 draft standard

Supporting older browsers

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();

    app.UseRouting();

    app.UseCookiePolicy();
    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
    });
}

Http.SameSiteMode

CookieOptions.SameSite

CookieBuilder.SameSite

CookiePolicyOptions.MinimumSameSitePolicy

Microsoft.Net.Http.Headers.SameSiteMode

Microsoft.Net.Http.Headers.SetCookieHeaderValue.SameSite

       

The 2016 SameSite standard mandated that unknown values must be treated as SameSite=Strict  values. Apps

accessed from older browsers which support the 2016 SameSite standard may break when they get a SameSite

property with a value of None . Web apps must implement browser detection if they intend to support older

browsers. ASP.NET Core doesn't implement browser detection because User-Agents values are highly volatile and

change frequently. An extension point in Microsoft.AspNetCore.CookiePolicy allows plugging in User-Agent

specific logic.

In Startup.Configure , add code that calls UseCookiePolicy before calling UseAuthentication or any method that

writes cookies:

In Startup.ConfigureServices , add code similar to the following:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.samesitemode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookieoptions.samesite#microsoft_aspnetcore_http_cookieoptions_samesite
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.cookiebuilder.samesite#microsoft_aspnetcore_http_cookiebuilder_samesite
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyoptions.minimumsamesitepolicy#microsoft_aspnetcore_builder_cookiepolicyoptions_minimumsamesitepolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.net.http.headers.samesitemode
https://docs.microsoft.com/en-us/dotnet/api/microsoft.net.http.headers.setcookieheadervalue.samesite#microsoft_net_http_headers_setcookieheadervalue_samesite
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cookiepolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.cookiepolicyappbuilderextensions.usecookiepolicy
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authappbuilderextensions.useauthentication


public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.MinimumSameSitePolicy = SameSiteMode.Unspecified;
        options.OnAppendCookie = cookieContext =>
            CheckSameSite(cookieContext.Context, cookieContext.CookieOptions);
        options.OnDeleteCookie = cookieContext =>
            CheckSameSite(cookieContext.Context, cookieContext.CookieOptions);
    });

    services.AddRazorPages();
}

private void CheckSameSite(HttpContext httpContext, CookieOptions options)
{
    if (options.SameSite == SameSiteMode.None)
    {
        var userAgent = httpContext.Request.Headers["User-Agent"].ToString();
        if (MyUserAgentDetectionLib.DisallowsSameSiteNone(userAgent))
        {
            options.SameSite = SameSiteMode.Unspecified;
        }
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.MinimumSameSitePolicy = (SameSiteMode)(-1);
        options.OnAppendCookie = cookieContext =>
            CheckSameSite(cookieContext.Context, cookieContext.CookieOptions);
        options.OnDeleteCookie = cookieContext =>
            CheckSameSite(cookieContext.Context, cookieContext.CookieOptions);
    });

    services.AddRazorPages();
}

private void CheckSameSite(HttpContext httpContext, CookieOptions options)
{
    if (options.SameSite == SameSiteMode.None)
    {
        var userAgent = httpContext.Request.Headers["User-Agent"].ToString();
        if (MyUserAgentDetectionLib.DisallowsSameSiteNone(userAgent))
        {
            options.SameSite = (SameSiteMode)(-1);
        }

    }
}

if (MyUserAgentDetectionLib.DisallowsSameSiteNone(userAgent))
{
    options.SameSite = SameSiteMode.Unspecified;
}

In the preceding sample, MyUserAgentDetectionLib.DisallowsSameSiteNone  is a user supplied library that detects if

the user agent doesn't support SameSite None :

The following code shows a sample DisallowsSameSiteNone  method:



WARNINGWARNING

public static bool DisallowsSameSiteNone(string userAgent)
{
    // Check if a null or empty string has been passed in, since this
    // will cause further interrogation of the useragent to fail.
     if (String.IsNullOrWhiteSpace(userAgent))
        return false;
    
    // Cover all iOS based browsers here. This includes:
    // - Safari on iOS 12 for iPhone, iPod Touch, iPad
    // - WkWebview on iOS 12 for iPhone, iPod Touch, iPad
    // - Chrome on iOS 12 for iPhone, iPod Touch, iPad
    // All of which are broken by SameSite=None, because they use the iOS networking
    // stack.
    if (userAgent.Contains("CPU iPhone OS 12") ||
        userAgent.Contains("iPad; CPU OS 12"))
    {
        return true;
    }

    // Cover Mac OS X based browsers that use the Mac OS networking stack. 
    // This includes:
    // - Safari on Mac OS X.
    // This does not include:
    // - Chrome on Mac OS X
    // Because they do not use the Mac OS networking stack.
    if (userAgent.Contains("Macintosh; Intel Mac OS X 10_14") &&
        userAgent.Contains("Version/") && userAgent.Contains("Safari"))
    {
        return true;
    }

    // Cover Chrome 50-69, because some versions are broken by SameSite=None, 
    // and none in this range require it.
    // Note: this covers some pre-Chromium Edge versions, 
    // but pre-Chromium Edge does not require SameSite=None.
    if (userAgent.Contains("Chrome/5") || userAgent.Contains("Chrome/6"))
    {
        return true;
    }

    return false;
}

Test apps for SameSite problems

The following code is for demonstration only:

It should not be considered complete.

It is not maintained or supported.

Apps that interact with remote sites such as through third-party login need to:

Test the interaction on multiple browsers.

Apply the CookiePolicy browser detection and mitigation discussed in this document.

Test web apps using a client version that can opt-in to the new SameSite behavior. Chrome, Firefox, and

Chromium Edge all have new opt-in feature flags that can be used for testing. After your app applies the SameSite

patches, test it with older client versions, especially Safari. For more information, see Supporting older browsers

in this document.



Test with ChromeTest with Chrome

Test with SafariTest with Safari

Test with FirefoxTest with Firefox

Test with Edge browserTest with Edge browser

Test with Edge (Chromium)Test with Edge (Chromium)

Test with ElectronTest with Electron

Additional resources

Chrome 78+ gives misleading results because it has a temporary mitigation in place. The Chrome 78+ temporary

mitigation allows cookies less than two minutes old. Chrome 76 or 77 with the appropriate test flags enabled

provides more accurate results. To test the new SameSite behavior toggle 

chrome://flags/#same-site-by-default-cookies  to EnabledEnabled. Older versions of Chrome (75 and below) are

reported to fail with the new None  setting. See Supporting older browsers in this document.

Google does not make older chrome versions available. Follow the instructions at Download Chromium to test

older versions of Chrome. Do notnot download Chrome from links provided by searching for older versions of

chrome.

Chromium 76 Win64

Chromium 74 Win64

Starting in Canary version 80.0.3975.0 , the Lax+POST temporary mitigation can be disabled for testing

purposes using the new flag --enable-features=SameSiteDefaultChecksMethodRigorously  to allow testing of sites

and services in the eventual end state of the feature where the mitigation has been removed. For more

information, see The Chromium Projects SameSite Updates

Safari 12 strictly implemented the prior draft and fails when the new None  value is in a cookie. None  is avoided

via the browser detection code Supporting older browsers in this document. Test Safari 12, Safari 13, and WebKit

based OS style logins using MSAL, ADAL or whatever library you are using. The problem is dependent on the

underlying OS version. OSX Mojave (10.14) and iOS 12 are known to have compatibility problems with the new

SameSite behavior. Upgrading the OS to OSX Catalina (10.15) or iOS 13 fixes the problem. Safari does not

currently have an opt-in flag for testing the new spec behavior.

Firefox support for the new standard can be tested on version 68+ by opting in on the about:config  page with

the feature flag network.cookie.sameSite.laxByDefault . There haven't been reports of compatibility issues with

older versions of Firefox.

Edge supports the old SameSite standard. Edge version 44 doesn't have any known compatibility problems with

the new standard.

SameSite flags are set on the edge://flags/#same-site-by-default-cookies  page. No compatibility issues were

discovered with Edge Chromium.

Versions of Electron include older versions of Chromium. For example, the version of Electron used by Teams is

Chromium 66, which exhibits the older behavior. You must perform your own compatibility testing with the

version of Electron your product uses. See Supporting older browsers in the following section.

Chromium Blog:Developers: Get Ready for New SameSite=None; Secure Cookie Settings

SameSite cookies explained

November 2019 Patches

https://www.chromium.org/getting-involved/download-chromium
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html?prefix=Win_x64/664998/
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html?prefix=Win_x64/638880/
https://www.chromium.org/updates/same-site
https://blog.chromium.org/2019/10/developers-get-ready-for-new.html
https://web.dev/samesite-cookies-explained/
https://devblogs.microsoft.com/dotnet/net-core-November-2019/


SA M P L ESA M P L E DO C UM EN TDO C UM EN T

.NET Core MVC ASP.NET Core 2.1 MVC SameSite cookie sample

.NET Core Razor Pages ASP.NET Core 2.1 Razor Pages SameSite cookie sample

SA M P L ESA M P L E DO C UM EN TDO C UM EN T

.NET Core Razor Pages ASP.NET Core 3.1 Razor Pages SameSite cookie sample

https://github.com/blowdart/AspNetSameSiteSamples/tree/master/AspNetCore21MVC
https://github.com/blowdart/AspNetSameSiteSamples/tree/master/AspNetCore21RazorPages
https://github.com/blowdart/AspNetSameSiteSamples/tree/master/AspNetCore31RazorPages


ASP.NET Core 2.1 Razor Pages SameSite cookie
sample
9/22/2020 • 3 minutes to read • Edit Online

Writing the SameSite attribute

var cookieOptions = new CookieOptions
{
    // Set the secure flag, which Chrome's changes will require for SameSite none.
    // Note this will also require you to be running on HTTPS
    Secure = true,

    // Set the cookie to HTTP only which is good practice unless you really do need
    // to access it client side in scripts.
    HttpOnly = true,

    // Add the SameSite attribute, this will emit the attribute with a value of none.
    // To not emit the attribute at all set the SameSite property to (SameSiteMode)(-1).
    SameSite = SameSiteMode.None
};

// Add the cookie to the response cookie collection
Response.Cookies.Append(CookieName, "cookieValue", cookieOptions);

Setting Cookie Authentication and Session State cookies

This sample targets .NET Framework Targeted

ASP.NET Core 2.1 has built-in support for the SameSite attribute, but it was written to the original standard. The

patched behavior changed the meaning of SameSite.None  to emit the sameSite attribute with a value of None ,

rather than not emit the value at all. If you want to not emit the value you can set the SameSite  property on a

cookie to -1.

ASP.NET Core Identity is largely unaffected by SameSite cookies except for advanced scenarios like IFrames  or 

OpenIdConnect  integration.

When using Identity , do notnot add any cookie providers or call 

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme) , Identity  takes care of that.

The following code is an example of how to write a SameSite attribute on a cookie:

Cookie authentication, session state and various other components set their sameSite options via Cookie options,

for example

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/samesite/rp21.md
https://www.owasp.org/index.php/SameSite
https://github.com/dotnet/aspnetcore/issues/8212


services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
    .AddCookie(options =>
    {
        options.Cookie.SameSite = SameSiteMode.None;
        options.Cookie.SecurePolicy = CookieSecurePolicy.Always;
        options.Cookie.IsEssential = true;
    });

services.AddSession(options =>
{
    options.Cookie.SameSite = SameSiteMode.None;
    options.Cookie.SecurePolicy = CookieSecurePolicy.Always;
    options.Cookie.IsEssential = true;
});

Run the sampleRun the sample

Intercepting cookies

In the preceding code, both cookie authentication and session state set their sameSite attribute to None , emitting

the attribute with a None  value, and also set the Secure attribute to true .

If you run the sample project, load your browser debugger on the initial page and use it to view the cookie

collection for the site. To do so in Edge and Chrome press F12  then select the Application  tab and click the site

URL under the Cookies  option in the Storage  section.

You can see from the image above that the cookie created by the sample when you click the "Create SameSite

Cookie" button has a SameSite attribute value of Lax , matching the value set in the sample code.

In order to intercept cookies, to adjust the none value according to its support in the user's browser agent you

must use the CookiePolicy  middleware. This must be placed into the http request pipeline beforebefore any

components that write cookies and configured within ConfigureServices() .

To insert it into the pipeline use app.UseCookiePolicy()  in the 

Configure(IApplicationBuilder, IHostingEnvironment)  method in your Startup.cs. For example

https://github.com/blowdart/AspNetSameSiteSamples/tree/master/AspNetCore21RazorPages
https://github.com/blowdart/AspNetSameSiteSamples/blob/master/AspNetCore21MVC/Startup.cs


public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
       app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();
    app.UseAuthentication();
    app.UseSession();

    app.UseMvc(routes =>
    {
        routes.MapRoute(
            name: "default",
            template: "{controller=Home}/{action=Index}/{id?}");
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
        options.OnAppendCookie = cookieContext =>
            CheckSameSite(cookieContext.Context, cookieContext.CookieOptions);
        options.OnDeleteCookie = cookieContext =>
            CheckSameSite(cookieContext.Context, cookieContext.CookieOptions);
    });
}

private void CheckSameSite(HttpContext httpContext, CookieOptions options)
{
    if (options.SameSite == SameSiteMode.None)
    {
        var userAgent = httpContext.Request.Headers["User-Agent"].ToString();
        if (SameSite.BrowserDetection.DisallowsSameSiteNone(userAgent))
        {
            options.SameSite = (SameSiteMode)(-1);
        }
    }
}

Then in the ConfigureServices(IServiceCollection services)  configure the cookie policy to call out to a helper class

when cookies are appended or deleted, like so;

The helper function CheckSameSite(HttpContext, CookieOptions) :

Is called when cookies are appended to the request or deleted from the request.

Checks to see if the SameSite  property is set to None .

If SameSite  is set to None  and the current user agent is known to not support the none attribute value. The

check is done using the SameSiteSupport class:

Sets SameSite  to not emit the value by setting the property to (SameSiteMode)(-1)

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/samesite/sample/snippets/SameSiteSupport.cs


Targeting .NET Framework

<PackageReference Include="Microsoft.Net.Http.Headers" Version="2.1.14" />
<PackageReference Include="Microsoft.AspNetCore.CookiePolicy" Version="2.1.14" />

More InformationMore Information

ASP.NET Core and System.Web (ASP.NET Classic) have independent implementations of SameSite. The SameSite KB

patches for .NET Framework are not required if using ASP.NET Core nor does the System.Web SameSite minimum

framework version requirement (.NET 4.7.2) apply to ASP.NET Core.

ASP.NET Core on .NET requires updating NuGet package dependencies to get the appropriate fixes.

To get the ASP.NET Core changes for .NET Framework ensure that you have a direct reference to the patched

packages and versions (2.1.14 or later 2.1 versions).

Chrome Updates ASP.NET Core SameSite Documentation ASP.NET Core 2.1 SameSite Change Announcement

https://www.chromium.org/updates/same-site
https://github.com/dotnet/aspnetcore/issues/8212


ASP.NET Core 3.1 Razor Pages SameSite cookie
sample
9/22/2020 • 3 minutes to read • Edit Online

Writing the SameSite attribute

var cookieOptions = new CookieOptions
{
    // Set the secure flag, which Chrome's changes will require for SameSite none.
    // Note this will also require you to be running on HTTPS
    Secure = true,

    // Set the cookie to HTTP only which is good practice unless you really do need
    // to access it client side in scripts.
    HttpOnly = true,

    // Add the SameSite attribute, this will emit the attribute with a value of none.
    // To not emit the attribute at all set the SameSite property to SameSiteMode.Unspecified.
    SameSite = SameSiteMode.None
};

// Add the cookie to the response cookie collection
Response.Cookies.Append(CookieName, "cookieValue", cookieOptions);

Setting Cookie Authentication and Session State cookies

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
    .AddCookie(options =>
    {
        options.Cookie.SameSite = SameSiteMode.None;
        options.Cookie.SecurePolicy = CookieSecurePolicy.Always;
        options.Cookie.IsEssential = true;
    });

services.AddSession(options =>
{
    options.Cookie.SameSite = SameSiteMode.None;
    options.Cookie.SecurePolicy = CookieSecurePolicy.Always;
    options.Cookie.IsEssential = true;
});

ASP.NET Core 3.0 has built-in support for the SameSite attribute, including a SameSiteMode  attribute value of 

Unspecified  to suppress writing the attribute.

ASP.NET Core Identity is largely unaffected by SameSite cookies except for advanced scenarios like IFrames  or 

OpenIdConnect  integration.

When using Identity , do notnot add any cookie providers or call 

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme) , Identity  takes care of that.

Following is an example of how to write a SameSite attribute on a cookie;

Cookie authentication, session state and various other components set their sameSite options via Cookie options,

for example

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/samesite/rp31.md
https://www.owasp.org/index.php/SameSite


Run the sampleRun the sample

Intercepting cookies

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
       app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();
    app.UseAuthentication();
    app.UseSession();

    app.UseMvc(routes =>
    {
        routes.MapRoute(
            name: "default",
            template: "{controller=Home}/{action=Index}/{id?}");
    });
}

In the code shown above both cookie authentication and session state set their sameSite attribute to None,

emitting the attribute with a None  value, and also set the Secure attribute to true.

If you run the sample project, load your browser debugger on the initial page and use it to view the cookie

collection for the site. To do so in Edge and Chrome press F12  then select the Application  tab and click the site

URL under the Cookies  option in the Storage  section.

You can see from the image above that the cookie created by the sample when you click the "Create SameSite

Cookie" button has a SameSite attribute value of Lax , matching the value set in the sample code.

In order to intercept cookies, to adjust the none value according to its support in the user's browser agent you

must use the CookiePolicy  middleware. This must be placed into the http request pipeline beforebefore any

components that write cookies and configured within ConfigureServices() .

To insert it into the pipeline use app.UseCookiePolicy()  in the 

Configure(IApplicationBuilder, IHostingEnvironment)  method in your Startup.cs. For example

Then in the ConfigureServices(IServiceCollection services)  configure the cookie policy to call out to a helper class

when cookies are appended or deleted, like so;

https://github.com/blowdart/AspNetSameSiteSamples/tree/master/AspNetCore31RazorPages
https://github.com/blowdart/AspNetSameSiteSamples/blob/master/AspNetCore21MVC/Startup.cs


public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
        options.OnAppendCookie = cookieContext =>
            CheckSameSite(cookieContext.Context, cookieContext.CookieOptions);
        options.OnDeleteCookie = cookieContext =>
            CheckSameSite(cookieContext.Context, cookieContext.CookieOptions);
    });
}

private void CheckSameSite(HttpContext httpContext, CookieOptions options)
{
    if (options.SameSite == SameSiteMode.None)
    {
        var userAgent = httpContext.Request.Headers["User-Agent"].ToString();
        if (SameSite.BrowserDetection.DisallowsSameSiteNone(userAgent))
        {
            options.SameSite = SameSiteMode.Unspecified;
        }
    }
}

More InformationMore Information

The helper function CheckSameSite(HttpContext, CookieOptions) :

Is called when cookies are appended to the request or deleted from the request.

Checks to see if the SameSite  property is set to None .

If SameSite  is set to None  and the current user agent is known to not support the none attribute value. The

check is done using the SameSiteSupport class:

Sets SameSite  to not emit the value by setting the property to (SameSiteMode)(-1)

Chrome Updates ASP.NET Core SameSite Documentation

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/samesite/sample/snippets/SameSiteSupport.cs
https://www.chromium.org/updates/same-site


ASP.NET Core 2.1 MVC SameSite cookie sample
9/22/2020 • 3 minutes to read • Edit Online

Writing the SameSite attribute

var cookieOptions = new CookieOptions
{
    // Set the secure flag, which Chrome's changes will require for SameSite none.
    // Note this will also require you to be running on HTTPS
    Secure = true,

    // Set the cookie to HTTP only which is good practice unless you really do need
    // to access it client side in scripts.
    HttpOnly = true,

    // Add the SameSite attribute, this will emit the attribute with a value of none.
    // To not emit the attribute at all set the SameSite property to (SameSiteMode)(-1).
    SameSite = SameSiteMode.None
};

// Add the cookie to the response cookie collection
Response.Cookies.Append(CookieName, "cookieValue", cookieOptions);

Setting Cookie Authentication and Session State cookies

ASP.NET Core 2.1 has built-in support for the SameSite attribute, but it was written to the original standard. The

patched behavior changed the meaning of SameSite.None  to emit the sameSite attribute with a value of None ,

rather than not emit the value at all. If you want to not emit the value you can set the SameSite  property on a

cookie to -1.

ASP.NET Core Identity is largely unaffected by SameSite cookies except for advanced scenarios like IFrames  or 

OpenIdConnect  integration.

When using Identity , do notnot add any cookie providers or call 

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme) , Identity  takes care of that.

Following is an example of how to write a SameSite attribute on a cookie:

Cookie authentication, session state and various other components set their sameSite options via Cookie options,

for example

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/samesite/mvc21.md
https://www.owasp.org/index.php/SameSite
https://github.com/dotnet/aspnetcore/issues/8212


services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
    .AddCookie(options =>
    {
        options.Cookie.SameSite = SameSiteMode.None;
        options.Cookie.SecurePolicy = CookieSecurePolicy.Always;
        options.Cookie.IsEssential = true;
    });

services.AddSession(options =>
{
    options.Cookie.SameSite = SameSiteMode.None;
    options.Cookie.SecurePolicy = CookieSecurePolicy.Always;
    options.Cookie.IsEssential = true;
});

Run the sampleRun the sample

Intercepting cookies

In the preceding code, both cookie authentication and session state set their sameSite attribute to None , emitting

the attribute with a None  value, and also set the Secure attribute to true.

If you run the sample project, load your browser debugger on the initial page and use it to view the cookie

collection for the site. To do so in Edge and Chrome press F12  then select the Application  tab and click the site

URL under the Cookies  option in the Storage  section.

You can see from the image above that the cookie created by the sample when you click the "Create SameSite

Cookie" button has a SameSite attribute value of Lax , matching the value set in the sample code.

In order to intercept cookies, to adjust the none value according to its support in the user's browser agent you

must use the CookiePolicy  middleware. This must be placed into the http request pipeline beforebefore any

components that write cookies and configured within ConfigureServices() .

To insert it into the pipeline use app.UseCookiePolicy()  in the 

Configure(IApplicationBuilder, IHostingEnvironment)  method in Startup.cs. For example:

https://github.com/blowdart/AspNetSameSiteSamples/tree/master/AspNetCore21MVC
https://github.com/blowdart/AspNetSameSiteSamples/blob/master/AspNetCore21MVC/Startup.cs


public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
       app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();
    app.UseAuthentication();
    app.UseSession();

    app.UseMvc(routes =>
    {
        routes.MapRoute(
            name: "default",
            template: "{controller=Home}/{action=Index}/{id?}");
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<CookiePolicyOptions>(options =>
    {
        options.CheckConsentNeeded = context => true;
        options.MinimumSameSitePolicy = SameSiteMode.None;
        options.OnAppendCookie = cookieContext =>
            CheckSameSite(cookieContext.Context, cookieContext.CookieOptions);
        options.OnDeleteCookie = cookieContext =>
            CheckSameSite(cookieContext.Context, cookieContext.CookieOptions);
    });
}

private void CheckSameSite(HttpContext httpContext, CookieOptions options)
{
    if (options.SameSite == SameSiteMode.None)
    {
        var userAgent = httpContext.Request.Headers["User-Agent"].ToString();
        if (SameSite.BrowserDetection.DisallowsSameSiteNone(userAgent))
        {
            options.SameSite = (SameSiteMode)(-1);
        }
    }
}

Then in the ConfigureServices(IServiceCollection services)  configure the cookie policy to call out to a helper class

when cookies are appended or deleted. For example:

The helper function CheckSameSite(HttpContext, CookieOptions) :

Is called when cookies are appended to the request or deleted from the request.

Checks to see if the SameSite  property is set to None .

If SameSite  is set to None  and the current user agent is known to not support the none attribute value. The

check is done using the SameSiteSupport class:

Sets SameSite  to not emit the value by setting the property to (SameSiteMode)(-1)

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/samesite/sample/snippets/SameSiteSupport.cs


Targeting .NET Framework

<PackageReference Include="Microsoft.Net.Http.Headers" Version="2.1.14" />
<PackageReference Include="Microsoft.AspNetCore.CookiePolicy" Version="2.1.14" />

More InformationMore Information

ASP.NET Core and System.Web (ASP.NET Classic) have independent implementations of SameSite. The SameSite KB

patches for .NET Framework are not required if using ASP.NET Core nor does the System.Web SameSite minimum

framework version requirement (.NET 4.7.2) apply to ASP.NET Core.

ASP.NET Core on .NET requires updating nuget package dependencies to get the appropriate fixes.

To get the ASP.NET Core changes for .NET Framework ensure that you have a direct reference to the patched

packages and versions (2.1.14 or later 2.1 versions).

Chrome Updates ASP.NET Core SameSite Documentation ASP.NET Core 2.1 SameSite Change Announcement

https://www.chromium.org/updates/same-site
https://github.com/dotnet/aspnetcore/issues/8212


Client IP safelist for ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

IP address safelist

{
  "AdminSafeList": "127.0.0.1;192.168.1.5;::1",
  "Logging": {

Middleware

app.UseMiddleware<AdminSafeListMiddleware>(Configuration["AdminSafeList"]);

By Damien Bowden and Tom Dykstra

This article shows three ways to implement an IP address safelist (also known as an allow list) in an ASP.NET Core

app. An accompanying sample app demonstrates all three approaches. You can use:

Middleware to check the remote IP address of every request.

MVC action filters to check the remote IP address of requests for specific controllers or action methods.

Razor Pages filters to check the remote IP address of requests for Razor pages.

In each case, a string containing approved client IP addresses is stored in an app setting. The middleware or filter :

Parses the string into an array.

Checks if the remote IP address exists in the array.

Access is allowed if the array contains the IP address. Otherwise, an HTTP 403 Forbidden status code is returned.

View or download sample code (how to download)

In the sample app, the IP address safelist is:

Defined by the AdminSafeList  property in the appsettings.json file.

A semicolon-delimited string that may contain both Internet Protocol version 4 (IPv4) and Internet Protocol

version 6 (IPv6) addresses.

In the preceding example, the IPv4 addresses of 127.0.0.1  and 192.168.1.5  and the IPv6 loopback address of 

::1  (compressed format for 0:0:0:0:0:0:0:1 ) are allowed.

The Startup.Configure  method adds the custom AdminSafeListMiddleware  middleware type to the app's request

pipeline. The safelist is retrieved with the .NET Core configuration provider and is passed as a constructor

parameter.

The middleware parses the string into an array and searches for the remote IP address in the array. If the remote IP

address isn't found, the middleware returns HTTP 403 Forbidden. This validation process is bypassed for HTTP GET

requests.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/security/ip-safelist.md
https://twitter.com/damien_bod
https://github.com/tdykstra
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/security/ip-safelist/samples
https://wikipedia.org/wiki/IPv4
https://wikipedia.org/wiki/IPv6


public class AdminSafeListMiddleware
{
    private readonly RequestDelegate _next;
    private readonly ILogger<AdminSafeListMiddleware> _logger;
    private readonly string _safelist;

    public AdminSafeListMiddleware(
        RequestDelegate next,
        ILogger<AdminSafeListMiddleware> logger,
        string safelist)
    {
        _safelist = safelist;
        _next = next;
        _logger = logger;
    }

    public async Task Invoke(HttpContext context)
    {
        if (context.Request.Method != HttpMethod.Get.Method)
        {
            var remoteIp = context.Connection.RemoteIpAddress;
            _logger.LogDebug("Request from Remote IP address: {RemoteIp}", remoteIp);

            string[] ip = _safelist.Split(';');

            var bytes = remoteIp.GetAddressBytes();
            var badIp = true;
            foreach (var address in ip)
            {
                var testIp = IPAddress.Parse(address);
                if (testIp.GetAddressBytes().SequenceEqual(bytes))
                {
                    badIp = false;
                    break;
                }
            }

            if (badIp)
            {
                _logger.LogWarning(
                    "Forbidden Request from Remote IP address: {RemoteIp}", remoteIp);
                context.Response.StatusCode = StatusCodes.Status403Forbidden;
                return;
            }
        }

        await _next.Invoke(context);
    }
}

Action filter
If you want safelist-driven access control for specific MVC controllers or action methods, use an action filter. For

example:



public class ClientIpCheckActionFilter : ActionFilterAttribute
{
    private readonly ILogger _logger;
    private readonly string _safelist;

    public ClientIpCheckActionFilter(string safelist, ILogger logger)
    {
        _safelist = safelist;
        _logger = logger;
    }

    public override void OnActionExecuting(ActionExecutingContext context)
    {
        var remoteIp = context.HttpContext.Connection.RemoteIpAddress;
        _logger.LogDebug("Remote IpAddress: {RemoteIp}", remoteIp);
        var ip = _safelist.Split(';');
        var badIp = true;
        
        if (remoteIp.IsIPv4MappedToIPv6)
        {
            remoteIp = remoteIp.MapToIPv4();
        }
        
        foreach (var address in ip)
        {
            var testIp = IPAddress.Parse(address);
            
            if (testIp.Equals(remoteIp))
            {
                badIp = false;
                break;
            }
        }

        if (badIp)
        {
            _logger.LogWarning("Forbidden Request from IP: {RemoteIp}", remoteIp);
            context.Result = new StatusCodeResult(StatusCodes.Status403Forbidden);
            return;
        }

        base.OnActionExecuting(context);
    }
}

services.AddScoped<ClientIpCheckActionFilter>(container =>
{
    var loggerFactory = container.GetRequiredService<ILoggerFactory>();
    var logger = loggerFactory.CreateLogger<ClientIpCheckActionFilter>();

    return new ClientIpCheckActionFilter(
        Configuration["AdminSafeList"], logger);
});

In Startup.ConfigureServices , add the action filter to the MVC filters collection. In the following example, a 

ClientIpCheckActionFilter  action filter is added. A safelist and a console logger instance are passed as constructor

parameters.



services.AddScoped<ClientIpCheckActionFilter>(_ =>
{
    var logger = _loggerFactory.CreateLogger<ClientIpCheckActionFilter>();
    
    return new ClientIpCheckActionFilter(
        Configuration["AdminSafeList"], logger);
});

[ServiceFilter(typeof(ClientIpCheckActionFilter))]
[HttpGet]
public IEnumerable<string> Get()

Razor Pages filter

The action filter can then be applied to a controller or action method with the [ServiceFilter] attribute:

In the sample app, the action filter is applied to the controller's Get  action method. When you test the app by

sending:

dbug: ClientIpSafelistComponents.Filters.ClientIpCheckActionFilter[0]
      Remote IpAddress: ::1
dbug: ClientIpAspNetCore.Controllers.ValuesController[0]
      successful HTTP GET    

An HTTP GET request, the [ServiceFilter]  attribute validates the client IP address. If access is allowed to the

Get  action method, a variation of the following console output is produced by the action filter and action

method:

An HTTP request verb other than GET, the AdminSafeListMiddleware  middleware validates the client IP

address.

If you want safelist-driven access control for a Razor Pages app, use a Razor Pages filter. For example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.servicefilterattribute


public class ClientIpCheckPageFilter : IPageFilter
{
    private readonly ILogger _logger;
    private readonly string _safelist;

    public ClientIpCheckPageFilter(
        string safelist,
        ILogger logger)
    {
        _safelist = safelist;
        _logger = logger;
    }

    public void OnPageHandlerExecuting(PageHandlerExecutingContext context)
    {
        var remoteIp = context.HttpContext.Connection.RemoteIpAddress;
        _logger.LogDebug(
            "Remote IpAddress: {RemoteIp}", remoteIp);

        string[] ip = _safelist.Split(';');

        var badIp = true;
        foreach (var address in ip)
        {
            if (remoteIp.IsIPv4MappedToIPv6)
            {
                remoteIp = remoteIp.MapToIPv4();
            }
            var testIp = IPAddress.Parse(address);
            if (testIp.Equals(remoteIp))
            {
                badIp = false;
                break;
            }
        }

        if (badIp)
        {
            _logger.LogWarning(
                "Forbidden Request from Remote IP address: {RemoteIp}", remoteIp);
            context.Result = new StatusCodeResult(StatusCodes.Status403Forbidden);
            return;
        }
    }

    public void OnPageHandlerExecuted(PageHandlerExecutedContext context)
    {
    }

    public void OnPageHandlerSelected(PageHandlerSelectedContext context)
    {
    }
}

In Startup.ConfigureServices , enable the Razor Pages filter by adding it to the MVC filters collection. In the

following example, a ClientIpCheckPageFilter  Razor Pages filter is added. A safelist and a console logger instance

are passed as constructor parameters.



services.AddRazorPages()
    .AddMvcOptions(options =>
    {
        var logger = LoggerFactory.Create(builder => builder.AddConsole())
                        .CreateLogger<ClientIpCheckPageFilter>();
        var filter = new ClientIpCheckPageFilter(
            Configuration["AdminSafeList"], logger);
        
        options.Filters.Add(filter);
    });

services.AddMvc(options =>
{
    var logger = _loggerFactory.CreateLogger<ClientIpCheckPageFilter>();
    var clientIpCheckPageFilter = new ClientIpCheckPageFilter(
        Configuration["AdminSafeList"], logger);
    
    options.Filters.Add(clientIpCheckPageFilter);
}).SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

dbug: ClientIpSafelistComponents.Filters.ClientIpCheckPageFilter[0]
      Remote IpAddress: ::1

Additional resources

When the sample app's Index Razor page is requested, the Razor Pages filter validates the client IP address. The

filter produces a variation of the following console output:

ASP.NET Core Middleware

Action filters

Filter methods for Razor Pages in ASP.NET Core



     

ASP.NET Core Performance Best Practices
9/22/2020 • 17 minutes to read • Edit Online

Cache aggressively

Understand hot code paths

Avoid blocking calls

Return IEnumerable<T> or IAsyncEnumerable<T>

By Mike Rousos

This article provides guidelines for performance best practices with ASP.NET Core.

Caching is discussed in several parts of this document. For more information, see Response caching in ASP.NET

Core.

In this document, a hot code path is defined as a code path that is frequently called and where much of the

execution time occurs. Hot code paths typically limit app scale-out and performance and are discussed in several

parts of this document.

ASP.NET Core apps should be designed to process many requests simultaneously. Asynchronous APIs allow a small

pool of threads to handle thousands of concurrent requests by not waiting on blocking calls. Rather than waiting

on a long-running synchronous task to complete, the thread can work on another request.

A common performance problem in ASP.NET Core apps is blocking calls that could be asynchronous. Many

synchronous blocking calls lead to Thread Pool starvation and degraded response times.

Do notDo not:

Block asynchronous execution by calling Task.Wait or Task.Result.

Acquire locks in common code paths. ASP.NET Core apps are most performant when architected to run code in

parallel.

Call Task.Run and immediately await it. ASP.NET Core already runs app code on normal Thread Pool threads, so

calling Task.Run only results in extra unnecessary Thread Pool scheduling. Even if the scheduled code would

block a thread, Task.Run does not prevent that.

DoDo:

Make hot code paths asynchronous.

Call data access, I/O, and long-running operations APIs asynchronously if an asynchronous API is available. Do

notnot use Task.Run to make a synchronous API asynchronous.

Make controller/Razor Page actions asynchronous. The entire call stack is asynchronous in order to benefit from

async/await patterns.

A profiler, such as PerfView, can be used to find threads frequently added to the Thread Pool. The 

Microsoft-Windows-DotNETRuntime/ThreadPoolWorkerThread/Start  event indicates a thread added to the thread pool.

Returning IEnumerable<T>  from an action results in synchronous collection iteration by the serializer. The result is

the blocking of calls and a potential for thread pool starvation. To avoid synchronous enumeration, use 

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/performance/performance-best-practices.md
https://github.com/mjrousos
https://docs.microsoft.com/en-us/archive/blogs/vancem/diagnosing-net-core-threadpool-starvation-with-perfview-why-my-service-is-not-saturating-all-cores-or-seems-to-stall
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.wait
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1.result
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.run
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.run
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://github.com/Microsoft/perfview
https://docs.microsoft.com/en-us/windows/desktop/procthread/thread-pools


Minimize large object allocations

Optimize data access and I/O

ToListAsync  before returning the enumerable.

Beginning with ASP.NET Core 3.0, IAsyncEnumerable<T>  can be used as an alternative to IEnumerable<T>  that

enumerates asynchronously. For more information, see Controller action return types.

The .NET Core garbage collector manages allocation and release of memory automatically in ASP.NET Core apps.

Automatic garbage collection generally means that developers don't need to worry about how or when memory is

freed. However, cleaning up unreferenced objects takes CPU time, so developers should minimize allocating

objects in hot code paths. Garbage collection is especially expensive on large objects (> 85 K bytes). Large objects

are stored on the large object heap and require a full (generation 2) garbage collection to clean up. Unlike

generation 0 and generation 1 collections, a generation 2 collection requires a temporary suspension of app

execution. Frequent allocation and de-allocation of large objects can cause inconsistent performance.

Recommendations:

DoDo consider caching large objects that are frequently used. Caching large objects prevents expensive

allocations.

DoDo pool buffers by using an ArrayPool<T> to store large arrays.

Do notDo not allocate many, short-lived large objects on hot code paths.

Memory issues, such as the preceding, can be diagnosed by reviewing garbage collection (GC) stats in PerfView

and examining:

Garbage collection pause time.

What percentage of the processor time is spent in garbage collection.

How many garbage collections are generation 0, 1, and 2.

For more information, see Garbage Collection and Performance.

Interactions with a data store and other remote services are often the slowest parts of an ASP.NET Core app.

Reading and writing data efficiently is critical for good performance.

Recommendations:

DoDo call all data access APIs asynchronously.

Do notDo not retrieve more data than is necessary. Write queries to return just the data that's necessary for the

current HTTP request.

DoDo consider caching frequently accessed data retrieved from a database or remote service if slightly out-of-

date data is acceptable. Depending on the scenario, use a MemoryCache or a DistributedCache. For more

information, see Response caching in ASP.NET Core.

DoDo minimize network round trips. The goal is to retrieve the required data in a single call rather than several

calls.

DoDo use no-tracking queries in Entity Framework Core when accessing data for read-only purposes. EF Core can

return the results of no-tracking queries more efficiently.

DoDo filter and aggregate LINQ queries (with .Where , .Select , or .Sum  statements, for example) so that the

filtering is performed by the database.

DoDo consider that EF Core resolves some query operators on the client, which may lead to inefficient query

execution. For more information, see Client evaluation performance issues.

Do notDo not use projection queries on collections, which can result in executing "N + 1" SQL queries. For more

information, see Optimization of correlated subqueries.

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap
https://docs.microsoft.com/en-us/dotnet/api/system.buffers.arraypool-1
https://github.com/Microsoft/perfview
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/performance
https://docs.microsoft.com/en-us/ef/core/querying/tracking#no-tracking-queries
https://docs.microsoft.com/en-us/ef/core/querying/client-eval#client-evaluation-performance-issues
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.1#optimization-of-correlated-subqueries


Pool HTTP connections with HttpClientFactory

Keep common code paths fast

Complete long-running Tasks outside of HTTP requests

Minify client assets

See EF High Performance for approaches that may improve performance in high-scale apps:

DbContext pooling

Explicitly compiled queries

We recommend measuring the impact of the preceding high-performance approaches before committing the code

base. The additional complexity of compiled queries may not justify the performance improvement.

Query issues can be detected by reviewing the time spent accessing data with Application Insights or with profiling

tools. Most databases also make statistics available concerning frequently executed queries.

Although HttpClient implements the IDisposable  interface, it's designed for reuse. Closed HttpClient  instances

leave sockets open in the TIME_WAIT  state for a short period of time. If a code path that creates and disposes of 

HttpClient  objects is frequently used, the app may exhaust available sockets. HttpClientFactory was introduced in

ASP.NET Core 2.1 as a solution to this problem. It handles pooling HTTP connections to optimize performance and

reliability.

Recommendations:

Do notDo not create and dispose of HttpClient  instances directly.

DoDo use HttpClientFactory to retrieve HttpClient  instances. For more information, see Use HttpClientFactory to

implement resilient HTTP requests.

You want all of your code to be fast. Frequently-called code paths are the most critical to optimize. These include:

Middleware components in the app's request processing pipeline, especially middleware run early in the

pipeline. These components have a large impact on performance.

Code that's executed for every request or multiple times per request. For example, custom logging,

authorization handlers, or initialization of transient services.

Recommendations:

Do notDo not use custom middleware components with long-running tasks.

DoDo use performance profiling tools, such as Visual Studio Diagnostic Tools or PerfView), to identify hot code

paths.

Most requests to an ASP.NET Core app can be handled by a controller or page model calling necessary services

and returning an HTTP response. For some requests that involve long-running tasks, it's better to make the entire

request-response process asynchronous.

Recommendations:

Do notDo not wait for long-running tasks to complete as part of ordinary HTTP request processing.

DoDo consider handling long-running requests with background services or out of process with an Azure

Function. Completing work out-of-process is especially beneficial for CPU-intensive tasks.

DoDo use real-time communication options, such as SignalR, to communicate with clients asynchronously.

ASP.NET Core apps with complex front-ends frequently serve many JavaScript, CSS, or image files. Performance of

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#explicitly-compiled-queries
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#dbcontext-pooling
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#explicitly-compiled-queries
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://docs.microsoft.com/en-us/visualstudio/profiling/profiling-feature-tour
https://github.com/Microsoft/perfview
https://docs.microsoft.com/en-us/azure/azure-functions/


Compress responses

Use the latest ASP.NET Core release

Minimize exceptions

Performance and reliability

Avoid synchronous read or write on HttpRequest/HttpResponse body

initial load requests can be improved by:

Bundling, which combines multiple files into one.

Minifying, which reduces the size of files by removing whitespace and comments.

Recommendations:

DoDo use ASP.NET Core's built-in support for bundling and minifying client assets.

DoDo consider other third-party tools, such as Webpack, for complex client asset management.

Reducing the size of the response usually increases the responsiveness of an app, often dramatically. One way to

reduce payload sizes is to compress an app's responses. For more information, see Response compression.

Each new release of ASP.NET Core includes performance improvements. Optimizations in .NET Core and ASP.NET

Core mean that newer versions generally outperform older versions. For example, .NET Core 2.1 added support for

compiled regular expressions and benefitted from Span<T>. ASP.NET Core 2.2 added support for HTTP/2. ASP.NET

Core 3.0 adds many improvements that reduce memory usage and improve throughput. If performance is a

priority, consider upgrading to the current version of ASP.NET Core.

Exceptions should be rare. Throwing and catching exceptions is slow relative to other code flow patterns. Because

of this, exceptions shouldn't be used to control normal program flow.

Recommendations:

Do notDo not use throwing or catching exceptions as a means of normal program flow, especially in hot code paths.

DoDo include logic in the app to detect and handle conditions that would cause an exception.

DoDo throw or catch exceptions for unusual or unexpected conditions.

App diagnostic tools, such as Application Insights, can help to identify common exceptions in an app that may

affect performance.

The following sections provide performance tips and known reliability problems and solutions.

All I/O in ASP.NET Core is asynchronous. Servers implement the Stream  interface, which has both synchronous

and asynchronous overloads. The asynchronous ones should be preferred to avoid blocking thread pool threads.

Blocking threads can lead to thread pool starvation.

Do not do this:Do not do this: The following example uses the ReadToEnd. It blocks the current thread to wait for the result. This

is an example of sync over async.

https://webpack.js.org/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2018/january/csharp-all-about-span-exploring-a-new-net-mainstay
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.readtoend
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md#warning-sync-over-async


public class BadStreamReaderController : Controller
{
    [HttpGet("/contoso")]
    public ActionResult<ContosoData> Get()
    {
        var json = new StreamReader(Request.Body).ReadToEnd();

        return JsonSerializer.Deserialize<ContosoData>(json);
    }
}

public class GoodStreamReaderController : Controller
{
    [HttpGet("/contoso")]
    public async Task<ActionResult<ContosoData>> Get()
    {
        var json = await new StreamReader(Request.Body).ReadToEndAsync();

        return JsonSerializer.Deserialize<ContosoData>(json);
    }

}

WARNINGWARNING

public class GoodStreamReaderController : Controller
{
    [HttpGet("/contoso")]
    public async Task<ActionResult<ContosoData>> Get()
    {
        return await JsonSerializer.DeserializeAsync<ContosoData>(Request.Body);
    }
}

Prefer ReadFormAsync over Request.Form

In the preceding code, Get  synchronously reads the entire HTTP request body into memory. If the client is slowly

uploading, the app is doing sync over async. The app does sync over async because Kestrel does NOTNOT support

synchronous reads.

Do this:Do this: The following example uses ReadToEndAsync and does not block the thread while reading.

The preceding code asynchronously reads the entire HTTP request body into memory.

If the request is large, reading the entire HTTP request body into memory could lead to an out of memory (OOM) condition.

OOM can result in a Denial Of Service. For more information, see Avoid reading large request bodies or response bodies into

memory in this document.

Do this:Do this: The following example is fully asynchronous using a non buffered request body:

The preceding code asynchronously de-serializes the request body into a C# object.

Use HttpContext.Request.ReadFormAsync  instead of HttpContext.Request.Form . HttpContext.Request.Form  can be

safely read only with the following conditions:

The form has been read by a call to ReadFormAsync , and

The cached form value is being read using HttpContext.Request.Form

https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.readtoendasync


public class BadReadController : Controller
{
    [HttpPost("/form-body")]
    public IActionResult Post()
    {
        var form =  HttpContext.Request.Form;

        Process(form["id"], form["name"]);

        return Accepted();
    }

public class GoodReadController : Controller
{
    [HttpPost("/form-body")]
    public async Task<IActionResult> Post()
    {
       var form = await HttpContext.Request.ReadFormAsync();

        Process(form["id"], form["name"]);

        return Accepted();
    }

Avoid reading large request bodies or response bodies into memory

Working with a synchronous data processing API

Do not do this:Do not do this: The following example uses HttpContext.Request.Form . HttpContext.Request.Form  uses sync over

async and can lead to thread pool starvation.

Do this:Do this: The following example uses HttpContext.Request.ReadFormAsync  to read the form body asynchronously.

  

In .NET, every object allocation greater than 85 KB ends up in the large object heap (LOH). Large objects are

expensive in two ways:

The allocation cost is high because the memory for a newly allocated large object has to be cleared. The CLR

guarantees that memory for all newly allocated objects is cleared.

LOH is collected with the rest of the heap. LOH requires a full garbage collection or Gen2 collection.

This blog post describes the problem succinctly:

When a large object is allocated, it's marked as Gen 2 object. Not Gen 0 as for small objects. The consequences

are that if you run out of memory in LOH, GC cleans up the whole managed heap, not only LOH. So it cleans up

Gen 0, Gen 1 and Gen 2 including LOH. This is called full garbage collection and is the most time-consuming

garbage collection. For many applications, it can be acceptable. But definitely not for high-performance web

servers, where few big memory buffers are needed to handle an average web request (read from a socket,

decompress, decode JSON & more).

Naively storing a large request or response body into a single byte[]  or string :

May result in quickly running out of space in the LOH.

May cause performance issues for the app because of full GCs running.

When using a serializer/de-serializer that only supports synchronous reads and writes (for example, JSON.NET):

Buffer the data into memory asynchronously before passing it into the serializer/de-serializer.

https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md#warning-sync-over-async
https://blogs.msdn.microsoft.com/maoni/2006/04/19/large-object-heap/
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#generations
https://adamsitnik.com/Array-Pool/#the-problem
https://www.newtonsoft.com/json/help/html/Introduction.htm


WARNINGWARNING

Do not store IHttpContextAccessor.HttpContext in a field

public class MyBadType
{
    private readonly HttpContext _context;
    public MyBadType(IHttpContextAccessor accessor)
    {
        _context = accessor.HttpContext;
    }

    public void CheckAdmin()
    {
        if (!_context.User.IsInRole("admin"))
        {
            throw new UnauthorizedAccessException("The current user isn't an admin");
        }
    }
}

public class MyGoodType
{
    private readonly IHttpContextAccessor _accessor;
    public MyGoodType(IHttpContextAccessor accessor)
    {
        _accessor = accessor;
    }

    public void CheckAdmin()
    {
        var context = _accessor.HttpContext;
        if (context != null && !context.User.IsInRole("admin"))
        {
            throw new UnauthorizedAccessException("The current user isn't an admin");
        }
    }
}

If the request is large, it could lead to an out of memory (OOM) condition. OOM can result in a Denial Of Service. For more

information, see Avoid reading large request bodies or response bodies into memory in this document.

ASP.NET Core 3.0 uses System.Text.Json by default for JSON serialization. System.Text.Json:

Reads and writes JSON asynchronously.

Is optimized for UTF-8 text.

Typically higher performance than Newtonsoft.Json .

The IHttpContextAccessor.HttpContext returns the HttpContext  of the active request when accessed from the

request thread. The IHttpContextAccessor.HttpContext  should notnot be stored in a field or variable.

Do not do this:Do not do this: The following example stores the HttpContext  in a field and then attempts to use it later.

The preceding code frequently captures a null or incorrect HttpContext  in the constructor.

Do this:Do this: The following example:

Stores the IHttpContextAccessor in a field.

Uses the HttpContext  field at the correct time and checks for null .

https://docs.microsoft.com/en-us/dotnet/api/system.text.json
https://docs.microsoft.com/en-us/dotnet/api/system.text.json
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor.httpcontext#microsoft_aspnetcore_http_ihttpcontextaccessor_httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor


Do not access HttpContext from multiple threads

public class AsyncBadSearchController : Controller
{       
    [HttpGet("/search")]
    public async Task<SearchResults> Get(string query)
    {
        var query1 = SearchAsync(SearchEngine.Google, query);
        var query2 = SearchAsync(SearchEngine.Bing, query);
        var query3 = SearchAsync(SearchEngine.DuckDuckGo, query);

        await Task.WhenAll(query1, query2, query3);

        var results1 = await query1;
        var results2 = await query2;
        var results3 = await query3;

        return SearchResults.Combine(results1, results2, results3);
    }       

    private async Task<SearchResults> SearchAsync(SearchEngine engine, string query)
    {
        var searchResults = _searchService.Empty();
        try
        {
            _logger.LogInformation("Starting search query from {path}.", 
                                    HttpContext.Request.Path);
            searchResults = _searchService.Search(engine, query);
            _logger.LogInformation("Finishing search query from {path}.", 
                                    HttpContext.Request.Path);
        }
        catch (Exception ex)
        {
            _logger.LogError(ex, "Failed query from {path}", 
                             HttpContext.Request.Path);
        }

        return await searchResults;
    }

HttpContext  is NOT thread-safe. Accessing HttpContext  from multiple threads in parallel can result in undefined

behavior such as hangs, crashes, and data corruption.

Do not do this:Do not do this: The following example makes three parallel requests and logs the incoming request path before

and after the outgoing HTTP request. The request path is accessed from multiple threads, potentially in parallel.

Do this:Do this: The following example copies all data from the incoming request before making the three parallel

requests.



public class AsyncGoodSearchController : Controller
{       
    [HttpGet("/search")]
    public async Task<SearchResults> Get(string query)
    {
        string path = HttpContext.Request.Path;
        var query1 = SearchAsync(SearchEngine.Google, query,
                                 path);
        var query2 = SearchAsync(SearchEngine.Bing, query, path);
        var query3 = SearchAsync(SearchEngine.DuckDuckGo, query, path);

        await Task.WhenAll(query1, query2, query3);

        var results1 = await query1;
        var results2 = await query2;
        var results3 = await query3;

        return SearchResults.Combine(results1, results2, results3);
    }

    private async Task<SearchResults> SearchAsync(SearchEngine engine, string query,
                                                  string path)
    {
        var searchResults = _searchService.Empty();
        try
        {
            _logger.LogInformation("Starting search query from {path}.",
                                   path);
            searchResults = await _searchService.SearchAsync(engine, query);
            _logger.LogInformation("Finishing search query from {path}.", path);
        }
        catch (Exception ex)
        {
            _logger.LogError(ex, "Failed query from {path}", path);
        }

        return await searchResults;
    }

Do not use the HttpContext after the request is complete
HttpContext  is only valid as long as there is an active HTTP request in the ASP.NET Core pipeline. The entire

ASP.NET Core pipeline is an asynchronous chain of delegates that executes every request. When the Task  returned

from this chain completes, the HttpContext  is recycled.

Do not do this:Do not do this: The following example uses async void  which makes the HTTP request complete when the first 

await  is reached:

Which is ALWAYSALWAYS  a bad practice in ASP.NET Core apps.

Accesses the HttpResponse  after the HTTP request is complete.

Crashes the process.



public class AsyncBadVoidController : Controller
{
    [HttpGet("/async")]
    public async void Get()
    {
        await Task.Delay(1000);

        // The following line will crash the process because of writing after the 
        // response has completed on a background thread. Notice async void Get()

        await Response.WriteAsync("Hello World");
    }
}

public class AsyncGoodTaskController : Controller
{
    [HttpGet("/async")]
    public async Task Get()
    {
        await Task.Delay(1000);

        await Response.WriteAsync("Hello World");
    }
}

Do not capture the HttpContext in background threads

[HttpGet("/fire-and-forget-1")]
public IActionResult BadFireAndForget()
{
    _ = Task.Run(async () =>
    {
        await Task.Delay(1000);

        var path = HttpContext.Request.Path;
        Log(path);
    });

    return Accepted();
}

Do this:Do this: The following example returns a Task  to the framework, so the HTTP request doesn't complete until the

action completes.

Do not do this:Do not do this: The following example shows a closure is capturing the HttpContext  from the Controller

property. This is a bad practice because the work item could:

Run outside of the request scope.

Attempt to read the wrong HttpContext .

Do this:Do this: The following example:

Copies the data required in the background task during the request.

Doesn't reference anything from the controller.



[HttpGet("/fire-and-forget-3")]
public IActionResult GoodFireAndForget()
{
    string path = HttpContext.Request.Path;
    _ = Task.Run(async () =>
    {
        await Task.Delay(1000);

        Log(path);
    });

    return Accepted();
}

Do not capture services injected into the controllers on background
threads

[HttpGet("/fire-and-forget-1")]
public IActionResult FireAndForget1([FromServices]ContosoDbContext context)
{
    _ = Task.Run(async () =>
    {
        await Task.Delay(1000);

        context.Contoso.Add(new Contoso());
        await context.SaveChangesAsync();
    });

    return Accepted();
}

Background tasks should be implemented as hosted services. For more information, see Background tasks with

hosted services.

Do not do this:Do not do this: The following example shows a closure is capturing the DbContext  from the Controller  action

parameter. This is a bad practice. The work item could run outside of the request scope. The ContosoDbContext  is

scoped to the request, resulting in an ObjectDisposedException .

Do this:Do this: The following example:

Injects an IServiceScopeFactory in order to create a scope in the background work item. IServiceScopeFactory

is a singleton.

Creates a new dependency injection scope in the background thread.

Doesn't reference anything from the controller.

Doesn't capture the ContosoDbContext  from the incoming request.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescopefactory


  

[HttpGet("/fire-and-forget-3")]
public IActionResult FireAndForget3([FromServices]IServiceScopeFactory 
                                    serviceScopeFactory)
{
    _ = Task.Run(async () =>
    {
        await Task.Delay(1000);

        using (var scope = serviceScopeFactory.CreateScope())
        {
            var context = scope.ServiceProvider.GetRequiredService<ContosoDbContext>();

            context.Contoso.Add(new Contoso());

            await context.SaveChangesAsync();                                        
        }
    });

    return Accepted();
}

[HttpGet("/fire-and-forget-3")]
public IActionResult FireAndForget3([FromServices]IServiceScopeFactory 
                                    serviceScopeFactory)
{
    _ = Task.Run(async () =>
    {
        await Task.Delay(1000);

        using (var scope = serviceScopeFactory.CreateScope())
        {
            var context = scope.ServiceProvider.GetRequiredService<ContosoDbContext>();

            context.Contoso.Add(new Contoso());

            await context.SaveChangesAsync();                                        
        }
    });

    return Accepted();
}

Do not modify the status code or headers after the response body has
started

The following highlighted code:

Creates a scope for the lifetime of the background operation and resolves services from it.

Uses ContosoDbContext  from the correct scope.

ASP.NET Core does not buffer the HTTP response body. The first time the response is written:

The headers are sent along with that chunk of the body to the client.

It's no longer possible to change response headers.

Do not do this:Do not do this: The following code tries to add response headers after the response has already started:



app.Use(async (context, next) =>
{
    await next();

    context.Response.Headers["test"] = "test value";
});

app.Use(async (context, next) =>
{
    await next();

    if (!context.Response.HasStarted)
    {
        context.Response.Headers["test"] = "test value";
    }
});

app.Use(async (context, next) =>
{
    context.Response.OnStarting(() =>
    {
        context.Response.Headers["someheader"] = "somevalue";
        return Task.CompletedTask;
    });

    await next();
});

Do not call next() if you have already started writing to the response
body

Use In-process hosting with IIS

In the preceding code, context.Response.Headers["test"] = "test value";  will throw an exception if next()  has

written to the response.

Do this:Do this: The following example checks if the HTTP response has started before modifying the headers.

Do this:Do this: The following example uses HttpResponse.OnStarting  to set the headers before the response headers are

flushed to the client.

Checking if the response has not started allows registering a callback that will be invoked just before response

headers are written. Checking if the response has not started:

Provides the ability to append or override headers just in time.

Doesn't require knowledge of the next middleware in the pipeline.

Components only expect to be called if it's possible for them to handle and manipulate the response.

Using in-process hosting, an ASP.NET Core app runs in the same process as its IIS worker process. In-process

hosting provides improved performance over out-of-process hosting because requests aren't proxied over the

loopback adapter. The loopback adapter is a network interface that returns outgoing network traffic back to the

same machine. IIS handles process management with the Windows Process Activation Service (WAS).

Projects default to the in-process hosting model in ASP.NET Core 3.0 and later.

For more information, see Host ASP.NET Core on Windows with IIS

https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/features-of-the-windows-process-activation-service-was




Memory management and garbage collection (GC) in
ASP.NET Core
9/22/2020 • 12 minutes to read • Edit Online

How garbage collection (GC) works in .NET Core

Call GC.CollectCall GC.Collect

Analyzing the memory usage of an app

By Sébastien Ros and Rick Anderson

Memory management is complex, even in a managed framework like .NET. Analyzing and understanding memory

issues can be challenging. This article:

Was motivated by many memory leak and GC not working issues. Most of these issues were caused by not

understanding how memory consumption works in .NET Core, or not understanding how it's measured.

Demonstrates problematic memory use, and suggests alternative approaches.

The GC allocates heap segments where each segment is a contiguous range of memory. Objects placed in the heap

are categorized into one of 3 generations: 0, 1, or 2. The generation determines the frequency the GC attempts to

release memory on managed objects that are no longer referenced by the app. Lower numbered generations are

GC'd more frequently.

Objects are moved from one generation to another based on their lifetime. As objects live longer, they are moved

into a higher generation. As mentioned previously, higher generations are GC'd less often. Short term lived objects

always remain in generation 0. For example, objects that are referenced during the life of a web request are short

lived. Application level singletons generally migrate to generation 2.

When an ASP.NET Core app starts, the GC:

Reserves some memory for the initial heap segments.

Commits a small portion of memory when the runtime is loaded.

The preceding memory allocations are done for performance reasons. The performance benefit comes from heap

segments in contiguous memory.

Calling GC.Collect explicitly:

Should notnot be done by production ASP.NET Core apps.

Is useful when investigating memory leaks.

When investigating, verifies the GC has removed all dangling objects from memory so memory can be

measured.

Dedicated tools can help analyzing memory usage:

Counting object references

Measuring how much impact the GC has on CPU usage

Measuring memory space used for each generation

Use the following tools to analyze memory usage:

dotnet-trace: Can be used on production machines.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/performance/memory.md
https://github.com/sebastienros
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/system.gc.collect
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace


Detecting memory issuesDetecting memory issues

Sample display memory usage app

Transient objectsTransient objects

Analyze memory usage without the Visual Studio debugger

Profile memory usage in Visual Studio

Task Manager can be used to get an idea of how much memory an ASP.NET app is using. The Task Manager

memory value:

Represents the amount of memory that is used by the ASP.NET process.

Includes the app's living objects and other memory consumers such as native memory usage.

If the Task Manager memory value increases indefinitely and never flattens out, the app has a memory leak. The

following sections demonstrate and explain several memory usage patterns.

The MemoryLeak sample app is available on GitHub. The MemoryLeak app:

Includes a diagnostic controller that gathers real-time memory and GC data for the app.

Has an Index page that displays the memory and GC data. The Index page is refreshed every second.

Contains an API controller that provides various memory load patterns.

Is not a supported tool, however, it can be used to display memory usage patterns of ASP.NET Core apps.

Run MemoryLeak. Allocated memory slowly increases until a GC occurs. Memory increases because the tool

allocates custom object to capture data. The following image shows the MemoryLeak Index page when a Gen 0 GC

occurs. The chart shows 0 RPS (Requests per second) because no API endpoints from the API controller have been

called.

The chart displays two values for the memory usage:

Allocated: the amount of memory occupied by managed objects

Working set: The set of pages in the virtual address space of the process that are currently resident in physical

memory. The working set shown is the same value Task Manager displays.

The following API creates a 10-KB String instance and returns it to the client. On each request, a new object is

https://docs.microsoft.com/en-us/visualstudio/profiling/memory-usage-without-debugging2
https://docs.microsoft.com/en-us/visualstudio/profiling/memory-usage
https://github.com/sebastienros/memoryleak
https://docs.microsoft.com/en-us/windows/win32/memory/working-set


[HttpGet("bigstring")]
public ActionResult<string> GetBigString()
{
    return new String('x', 10 * 1024);
}

allocated in memory and written to the response. Strings are stored as UTF-16 characters in .NET so each character

takes 2 bytes in memory.

The following graph is generated with a relatively small load in to show how memory allocations are impacted by

the GC.

The preceding chart shows:

4K RPS (Requests per second).

Generation 0 GC collections occur about every two seconds.

The working set is constant at approximately 500 MB.

CPU is 12%.

The memory consumption and release (through GC) is stable.

The following chart is taken at the max throughput that can be handled by the machine.



Workstation GC vs. Server GCWorkstation GC vs. Server GC

<PropertyGroup>
  <ServerGarbageCollection>true</ServerGarbageCollection>
</PropertyGroup>

The preceding chart shows:

22K RPS

Generation 0 GC collections occur several times per second.

Generation 1 collections are triggered because the app allocated significantly more memory per second.

The working set is constant at approximately 500 MB.

CPU is 33%.

The memory consumption and release (through GC) is stable.

The CPU (33%) is not over-utilized, therefore the garbage collection can keep up with a high number of

allocations.

The .NET Garbage Collector has two different modes:

Workstation GCWorkstation GC: Optimized for the desktop.

Ser ver GCSer ver GC. The default GC for ASP.NET Core apps. Optimized for the server.

The GC mode can be set explicitly in the project file or in the runtimeconfig.json file of the published app. The

following markup shows setting ServerGarbageCollection  in the project file:

Changing ServerGarbageCollection  in the project file requires the app to be rebuilt.

Note:Note: Server garbage collection is notnot available on machines with a single core. For more information, see

IsServerGC.

The following image shows the memory profile under a 5K RPS using the Workstation GC.

https://docs.microsoft.com/en-us/dotnet/api/system.runtime.gcsettings.isservergc#system_runtime_gcsettings_isservergc


GC using Docker and small containersGC using Docker and small containers

Persistent object referencesPersistent object references

private static ConcurrentBag<string> _staticStrings = new ConcurrentBag<string>();

[HttpGet("staticstring")]
public ActionResult<string> GetStaticString()
{
    var bigString = new String('x', 10 * 1024);
    _staticStrings.Add(bigString);
    return bigString;
}

The differences between this chart and the server version are significant:

The working set drops from 500 MB to 70 MB.

The GC does generation 0 collections multiple times per second instead of every two seconds.

GC drops from 300 MB to 10 MB.

On a typical web server environment, CPU usage is more important than memory, therefore the Server GC is

better. If memory utilization is high and CPU usage is relatively low, the Workstation GC might be more performant.

For example, high density hosting several web apps where memory is scarce.

      

When multiple containerized apps are running on one machine, Workstation GC might be more preformant than

Server GC. For more information, see Running with Server GC in a Small Container and Running with Server GC in

a Small Container Scenario Part 1 – Hard Limit for the GC Heap.

The GC cannot free objects that are referenced. Objects that are referenced but no longer needed result in a

memory leak. If the app frequently allocates objects and fails to free them after they are no longer needed, memory

usage will increase over time.

The following API creates a 10-KB String instance and returns it to the client. The difference with the previous

example is that this instance is referenced by a static member, which means it's never available for collection.

The preceding code:

Is an example of a typical memory leak.

With frequent calls, causes app memory to increases until the process crashes with an OutOfMemory  exception.

https://devblogs.microsoft.com/dotnet/running-with-server-gc-in-a-small-container-scenario-part-0/
https://devblogs.microsoft.com/dotnet/running-with-server-gc-in-a-small-container-scenario-part-1-hard-limit-for-the-gc-heap/


Native memoryNative memory

[HttpGet("fileprovider")]
public void GetFileProvider()
{
    var fp = new PhysicalFileProvider(TempPath);
    fp.Watch("*.*");
}

In the preceding image:

Load testing the /api/staticstring  endpoint causes a linear increase in memory.

The GC tries to free memory as the memory pressure grows, by calling a generation 2 collection.

The GC cannot free the leaked memory. Allocated and working set increase with time.

Some scenarios, such as caching, require object references to be held until memory pressure forces them to be

released. The WeakReference class can be used for this type of caching code. A WeakReference  object is collected

under memory pressures. The default implementation of IMemoryCache uses WeakReference .

Some .NET Core objects rely on native memory. Native memory can notnot be collected by the GC. The .NET object

using native memory must free it using native code.

.NET provides the IDisposable interface to let developers release native memory. Even if Dispose is not called,

correctly implemented classes call Dispose  when the finalizer runs.

Consider the following code:

PhysicalFileProvider is a managed class, so any instance will be collected at the end of the request.

The following image shows the memory profile while invoking the fileprovider  API continuously.

https://docs.microsoft.com/en-us/dotnet/api/system.weakreference
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.physicalfileprovider?view=dotnet-plat-ext-3.0


Large objects heapLarge objects heap

GCSettings.LargeObjectHeapCompactionMode = GCLargeObjectHeapCompactionMode.CompactOnce;
GC.Collect();

The preceding chart shows an obvious issue with the implementation of this class, as it keeps increasing memory

usage. This is a known problem that is being tracked in this issue.

The same leak could be happen in user code, by one of the following:

Not releasing the class correctly.

Forgetting to invoke the Dispose method of the dependent objects that should be disposed.

Frequent memory allocation/free cycles can fragment memory, especially when allocating large chunks of memory.

Objects are allocated in contiguous blocks of memory. To mitigate fragmentation, when the GC frees memory, it

tries to defragment it. This process is called compactioncompaction. Compaction involves moving objects. Moving large

objects imposes a performance penalty. For this reason the GC creates a special memory zone for large objects,

called the large object heap (LOH). Objects that are greater than 85,000 bytes (approximately 83 KB) are:

Placed on the LOH.

Not compacted.

Collected during generation 2 GCs.

When the LOH is full, the GC will trigger a generation 2 collection. Generation 2 collections:

Are inherently slow.

Additionally incur the cost of triggering a collection on all other generations.

The following code compacts the LOH immediately:

See LargeObjectHeapCompactionMode for information on compacting the LOH.

In containers using .NET Core 3.0 and later, the LOH is automatically compacted.

The following API that illustrates this behavior :

https://github.com/dotnet/aspnetcore/issues/3110
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.gcsettings.largeobjectheapcompactionmode#system_runtime_gcsettings_largeobjectheapcompactionmode


[HttpGet("loh/{size=85000}")]
public int GetLOH1(int size)
{
   return new byte[size].Length;
}

The following chart shows the memory profile of calling the /api/loh/84975  endpoint, under maximum load:

The following chart shows the memory profile of calling the /api/loh/84976  endpoint, allocating just one more

byte:

Note: The byte[]  structure has overhead bytes. That's why 84,976 bytes triggers the 85,000 limit.

Comparing the two preceding charts:

The working set is similar for both scenarios, about 450 MB.

The under LOH requests (84,975 bytes) shows mostly generation 0 collections.

The over LOH requests generate constant generation 2 collections. Generation 2 collections are expensive. More

CPU is required and throughput drops almost 50%.



HttpClientHttpClient

[HttpGet("httpclient1")]
public async Task<int> GetHttpClient1(string url)
{
    using (var httpClient = new HttpClient())
    {
        var result = await httpClient.GetAsync(url);
        return (int)result.StatusCode;
    }
}

fail: Microsoft.AspNetCore.Server.Kestrel[13]
      Connection id "0HLG70PBE1CR1", Request id "0HLG70PBE1CR1:00000031":
      An unhandled exception was thrown by the application.
System.Net.Http.HttpRequestException: Only one usage of each socket address
    (protocol/network address/port) is normally permitted --->
    System.Net.Sockets.SocketException: Only one usage of each socket address
    (protocol/network address/port) is normally permitted
   at System.Net.Http.ConnectHelper.ConnectAsync(String host, Int32 port,
    CancellationToken cancellationToken)

Temporary large objects are particularly problematic because they cause gen2 GCs.

For maximum performance, large object use should be minimized. If possible, split up large objects. For example,

Response Caching middleware in ASP.NET Core split the cache entries into blocks less than 85,000 bytes.

The following links show the ASP.NET Core approach to keeping objects under the LOH limit:

ResponseCaching/Streams/StreamUtilities.cs

ResponseCaching/MemoryResponseCache.cs

For more information, see:

Large Object Heap Uncovered

Large object heap

Incorrectly using HttpClient can result in a resource leak. System resources, such as database connections, sockets,

file handles, etc.:

Are more scarce than memory.

Are more problematic when leaked than memory.

Experienced .NET developers know to call Dispose on objects that implement IDisposable. Not disposing objects

that implement IDisposable  typically results in leaked memory or leaked system resources.

HttpClient  implements IDisposable , but should notnot be disposed on every invocation. Rather, HttpClient  should

be reused.

The following endpoint creates and disposes a new HttpClient  instance on every request:

Under load, the following error messages are logged:

Even though the HttpClient  instances are disposed, the actual network connection takes some time to be released

by the operating system. By continuously creating new connections, ports exhaustion occurs. Each client connection

requires its own client port.

One way to prevent port exhaustion is to reuse the same HttpClient  instance:

https://github.com/dotnet/AspNetCore/blob/v3.0.0/src/Middleware/ResponseCaching/src/Streams/StreamUtilities.cs#L16
https://github.com/aspnet/ResponseCaching/blob/c1cb7576a0b86e32aec990c22df29c780af29ca5/src/Microsoft.AspNetCore.ResponseCaching/Internal/MemoryResponseCache.cs#L55
https://devblogs.microsoft.com/dotnet/large-object-heap-uncovered-from-an-old-msdn-article/
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable


private static readonly HttpClient _httpClient = new HttpClient();

[HttpGet("httpclient2")]
public async Task<int> GetHttpClient2(string url)
{
    var result = await _httpClient.GetAsync(url);
    return (int)result.StatusCode;
}

Object poolingObject pooling

        [HttpGet("array/{size}")]
        public byte[] GetArray(int size)
        {
            var random = new Random();
            var array = new byte[size];
            random.NextBytes(array);

            return array;
        }

The HttpClient  instance is released when the app stops. This example shows that not every disposable resource

should be disposed after each use.

See the following for a better way to handle the lifetime of an HttpClient  instance:

HttpClient and lifetime management

HTTPClient factory blog

The previous example showed how the HttpClient  instance can be made static and reused by all requests. Reuse

prevents running out of resources.

Object pooling:

Uses the reuse pattern.

Is designed for objects that are expensive to create.

A pool is a collection of pre-initialized objects that can be reserved and released across threads. Pools can define

allocation rules such as limits, predefined sizes, or growth rate.

The NuGet package Microsoft.Extensions.ObjectPool contains classes that help to manage such pools.

The following API endpoint instantiates a byte  buffer that is filled with random numbers on each request:

The following chart display calling the preceding API with moderate load:

https://devblogs.microsoft.com/aspnet/asp-net-core-2-1-preview1-introducing-httpclient-factory/
https://www.nuget.org/packages/Microsoft.Extensions.ObjectPool/


In the preceding chart, generation 0 collections happen approximately once per second.

The preceding code can be optimized by pooling the byte  buffer by using ArrayPool<T>. A static instance is

reused across requests.

What's different with this approach is that a pooled object is returned from the API. That means:

The object is out of your control as soon as you return from the method.

You can't release the object.

To set up disposal of the object:

Encapsulate the pooled array in a disposable object.

Register the pooled object with HttpContext.Response.RegisterForDispose.

RegisterForDispose  will take care of calling Dispose on the target object so that it's only released when the HTTP

request is complete.

https://docs.microsoft.com/en-us/dotnet/api/system.buffers.arraypool-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpresponse.registerfordispose


private static ArrayPool<byte> _arrayPool = ArrayPool<byte>.Create();

private class PooledArray : IDisposable
{
    public byte[] Array { get; private set; }

    public PooledArray(int size)
    {
        Array = _arrayPool.Rent(size);
    }

    public void Dispose()
    {
        _arrayPool.Return(Array);
    }
}

[HttpGet("pooledarray/{size}")]
public byte[] GetPooledArray(int size)
{
    var pooledArray = new PooledArray(size);

    var random = new Random();
    random.NextBytes(pooledArray.Array);

    HttpContext.Response.RegisterForDispose(pooledArray);

    return pooledArray.Array;
}

Additional resources

Applying the same load as the non-pooled version results in the following chart:

The main difference is allocated bytes, and as a consequence much fewer generation 0 collections.

Garbage Collection

Understanding different GC modes with Concurrency Visualizer

Large Object Heap Uncovered

Large object heap

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://blogs.msdn.microsoft.com/seteplia/2017/01/05/understanding-different-gc-modes-with-concurrency-visualizer/
https://devblogs.microsoft.com/dotnet/large-object-heap-uncovered-from-an-old-msdn-article/
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap




Response caching in ASP.NET Core
9/22/2020 • 8 minutes to read • Edit Online

HTTP-based response caching

DIREC T IVEDIREC T IVE A C T IO NA C T IO N

public A cache may store the response.

private The response must not be stored by a shared cache. A
private cache may store and reuse the response.

max-age The client doesn't accept a response whose age is greater
than the specified number of seconds. Examples: 
max-age=60  (60 seconds), max-age=2592000  (1 month)

no-cache On requestsOn requests : A cache must not use a stored response to
satisfy the request. The origin server regenerates the
response for the client, and the middleware updates the
stored response in its cache.

On responsesOn responses : The response must not be used for a
subsequent request without validation on the origin server.

no-store On requestsOn requests : A cache must not store the request.

On responsesOn responses : A cache must not store any part of the
response.

By John Luo, Rick Anderson, and Steve Smith

View or download sample code (how to download)

Response caching reduces the number of requests a client or proxy makes to a web server. Response caching

also reduces the amount of work the web server performs to generate a response. Response caching is

controlled by headers that specify how you want client, proxy, and middleware to cache responses.

The ResponseCache attribute participates in setting response caching headers. Clients and intermediate proxies

should honor the headers for caching responses under the HTTP 1.1 Caching specification.

For server-side caching that follows the HTTP 1.1 Caching specification, use Response Caching Middleware. The

middleware can use the ResponseCacheAttribute properties to influence server-side caching behavior.

The HTTP 1.1 Caching specification describes how Internet caches should behave. The primary HTTP header used

for caching is Cache-Control, which is used to specify cache directives. The directives control caching behavior as

requests make their way from clients to servers and as responses make their way from servers back to clients.

Requests and responses move through proxy servers, and proxy servers must also conform to the HTTP 1.1

Caching specification.

Common Cache-Control  directives are shown in the following table.

Other cache headers that play a role in caching are shown in the following table.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/performance/caching/response.md
https://github.com/JunTaoLuo
https://twitter.com/RickAndMSFT
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/caching/response/samples
https://tools.ietf.org/html/rfc7234
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2.2.5
https://tools.ietf.org/html/rfc7234#section-5.2.2.6
https://tools.ietf.org/html/rfc7234#section-5.2.1.1
https://tools.ietf.org/html/rfc7234#section-5.2.1.4
https://tools.ietf.org/html/rfc7234#section-5.2.1.5


H EA DERH EA DER F UN C T IO NF UN C T IO N

Age An estimate of the amount of time in seconds since the
response was generated or successfully validated at the
origin server.

Expires The time after which the response is considered stale.

Pragma Exists for backwards compatibility with HTTP/1.0 caches for
setting no-cache  behavior. If the Cache-Control  header

is present, the Pragma  header is ignored.

Vary Specifies that a cached response must not be sent unless all
of the Vary  header fields match in both the cached

response's original request and the new request.

HTTP-based caching respects request Cache-Control directives

Other caching technology in ASP.NET Core
In-memory cachingIn-memory caching

Distributed CacheDistributed Cache

Cache Tag HelperCache Tag Helper

The HTTP 1.1 Caching specification for the Cache-Control header requires a cache to honor a valid 

Cache-Control  header sent by the client. A client can make requests with a no-cache  header value and force the

server to generate a new response for every request.

Always honoring client Cache-Control  request headers makes sense if you consider the goal of HTTP caching.

Under the official specification, caching is meant to reduce the latency and network overhead of satisfying

requests across a network of clients, proxies, and servers. It isn't necessarily a way to control the load on an

origin server.

There's no developer control over this caching behavior when using the Response Caching Middleware because

the middleware adheres to the official caching specification. Planned enhancements to the middleware are an

opportunity to configure the middleware to ignore a request's Cache-Control  header when deciding to serve a

cached response. Planned enhancements provide an opportunity to better control server load.

In-memory caching uses server memory to store cached data. This type of caching is suitable for a single server

or multiple servers using sticky sessions. Sticky sessions means that the requests from a client are always routed

to the same server for processing.

For more information, see Cache in-memory in ASP.NET Core.

Use a distributed cache to store data in memory when the app is hosted in a cloud or server farm. The cache is

shared across the servers that process requests. A client can submit a request that's handled by any server in the

group if cached data for the client is available. ASP.NET Core works with SQL Server, Redis, and NCache

distributed caches.

For more information, see Distributed caching in ASP.NET Core.

Cache the content from an MVC view or Razor Page with the Cache Tag Helper. The Cache Tag Helper uses in-

memory caching to store data.

For more information, see Cache Tag Helper in ASP.NET Core MVC.

https://tools.ietf.org/html/rfc7234#section-5.1
https://tools.ietf.org/html/rfc7234#section-5.3
https://tools.ietf.org/html/rfc7234#section-5.4
https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7234#section-5.2
https://github.com/dotnet/AspNetCore/issues/2612
https://www.nuget.org/packages/Microsoft.Extensions.Caching.StackExchangeRedis
https://www.nuget.org/packages/Alachisoft.NCache.OpenSource.SDK/


   

    

Distributed Cache Tag HelperDistributed Cache Tag Helper

ResponseCache attribute

WARNINGWARNING

REQ UESTREQ UEST RESULTRESULT

http://example.com?key1=value1 Returned from the server.

http://example.com?key1=value1 Returned from middleware.

http://example.com?key1=value2 Returned from the server.

VaryVary

[ResponseCache(VaryByHeader = "User-Agent", Duration = 30)]
public class Cache1Model : PageModel
{

Cache the content from an MVC view or Razor Page in distributed cloud or web farm scenarios with the

Distributed Cache Tag Helper. The Distributed Cache Tag Helper uses SQL Server, Redis, or NCache to store data.

For more information, see Distributed Cache Tag Helper in ASP.NET Core.

The ResponseCacheAttribute specifies the parameters necessary for setting appropriate headers in response

caching.

Disable caching for content that contains information for authenticated clients. Caching should only be enabled for

content that doesn't change based on a user's identity or whether a user is signed in.

VaryByQueryKeys varies the stored response by the values of the given list of query keys. When a single value

of *  is provided, the middleware varies responses by all request query string parameters.

Response Caching Middleware must be enabled to set the VaryByQueryKeys property. Otherwise, a runtime

exception is thrown. There isn't a corresponding HTTP header for the VaryByQueryKeys property. The property is

an HTTP feature handled by Response Caching Middleware. For the middleware to serve a cached response, the

query string and query string value must match a previous request. For example, consider the sequence of

requests and results shown in the following table.

The first request is returned by the server and cached in middleware. The second request is returned by

middleware because the query string matches the previous request. The third request isn't in the middleware

cache because the query string value doesn't match a previous request.

The ResponseCacheAttribute is used to configure and create (via IFilterFactory) a 

Microsoft.AspNetCore.Mvc.Internal.ResponseCacheFilter . The ResponseCacheFilter  performs the work of

updating the appropriate HTTP headers and features of the response. The filter :

Removes any existing headers for Vary , Cache-Control , and Pragma .

Writes out the appropriate headers based on the properties set in the ResponseCacheAttribute.

Updates the response caching HTTP feature if VaryByQueryKeys is set.

This header is only written when the VaryByHeader property is set. The property set to the Vary  property's

value. The following sample uses the VaryByHeader property:

Using the sample app, view the response headers with the browser's network tools. The following response

https://www.nuget.org/packages/Microsoft.Extensions.Caching.StackExchangeRedis
https://www.nuget.org/packages/Alachisoft.NCache.OpenSource.SDK/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.varybyquerykeys#microsoft_aspnetcore_mvc_cacheprofile_varybyquerykeys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.varybyquerykeys#microsoft_aspnetcore_mvc_cacheprofile_varybyquerykeys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.varybyquerykeys#microsoft_aspnetcore_mvc_cacheprofile_varybyquerykeys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.ifilterfactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.varybyquerykeys#microsoft_aspnetcore_mvc_cacheprofile_varybyquerykeys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.varybyheader#microsoft_aspnetcore_mvc_cacheprofile_varybyheader
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.varybyheader#microsoft_aspnetcore_mvc_cacheprofile_varybyheader


  

Cache-Control: public,max-age=30
Vary: User-Agent

NoStore and Location.NoneNoStore and Location.None

[ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, NoStore = true)]
public class Cache2Model : PageModel
{

Cache-Control: no-store,no-cache
Pragma: no-cache

Location and DurationLocation and Duration

[ResponseCache(Duration = 10, Location = ResponseCacheLocation.Any, NoStore = false)]
public class Cache3Model : PageModel
{

headers are sent with the Cache1 page response:

NoStore overrides most of the other properties. When this property is set to true , the Cache-Control  header is

set to no-store . If Location is set to None :

Cache-Control  is set to no-store,no-cache .

Pragma  is set to no-cache .

If NoStore is false  and Location is None , Cache-Control , and Pragma  are set to no-cache .

NoStore is typically set to true  for error pages. The Cache2 page in the sample app produces response headers

that instruct the client not to store the response.

The sample app returns the Cache2 page with the following headers:

To enable caching, Duration must be set to a positive value and Location must be either Any  (the default) or 

Client . The framework sets the Cache-Control  header to the location value followed by the max-age  of the

response.

Location's options of Any  and Client  translate into Cache-Control  header values of public  and private ,

respectively. As noted in the NoStore and Location.None section, setting Location to None  sets both 

Cache-Control  and Pragma  headers to no-cache .

Location.Any  ( Cache-Control  set to public ) indicates that the client or any intermediate proxy may cache the

value, including Response Caching Middleware.

Location.Client  ( Cache-Control  set to private ) indicates that only the client may cache the value. No

intermediate cache should cache the value, including Response Caching Middleware.

Cache control headers merely provide guidance to clients and intermediary proxies when and how to cache

responses. There's no guarantee that clients and proxies will honor the HTTP 1.1 Caching specification. Response

Caching Middleware always follows the caching rules laid out by the specification.

The following example shows the Cache3 page model from the sample app and the headers produced by setting

Duration and leaving the default Location value:

The sample app returns the Cache3 page with the following header :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.nostore#microsoft_aspnetcore_mvc_cacheprofile_nostore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.location#microsoft_aspnetcore_mvc_cacheprofile_location
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.nostore#microsoft_aspnetcore_mvc_cacheprofile_nostore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.location#microsoft_aspnetcore_mvc_cacheprofile_location
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.nostore#microsoft_aspnetcore_mvc_cacheprofile_nostore
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.duration#microsoft_aspnetcore_mvc_cacheprofile_duration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.location#microsoft_aspnetcore_mvc_cacheprofile_location
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.location#microsoft_aspnetcore_mvc_cacheprofile_location
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.location#microsoft_aspnetcore_mvc_cacheprofile_location
https://tools.ietf.org/html/rfc7234
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.duration#microsoft_aspnetcore_mvc_cacheprofile_duration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.cacheprofile.location#microsoft_aspnetcore_mvc_cacheprofile_location


Cache-Control: public,max-age=10

Cache profilesCache profiles

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages();
    services.AddMvc(options =>
    {
        options.CacheProfiles.Add("Default30",
            new CacheProfile()
            {
                Duration = 30
            });
    });
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc(options =>
    {
        options.CacheProfiles.Add("Default30",
            new CacheProfile()
            {
                Duration = 30
            });
    }).SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

[ResponseCache(CacheProfileName = "Default30")]
public class Cache4Model : PageModel
{

Cache-Control: public,max-age=30

Additional resources

Instead of duplicating response cache settings on many controller action attributes, cache profiles can be

configured as options when setting up MVC/Razor Pages in Startup.ConfigureServices . Values found in a

referenced cache profile are used as the defaults by the ResponseCacheAttribute and are overridden by any

properties specified on the attribute.

Set up a cache profile. The following example shows a 30 second cache profile in the sample app's 

Startup.ConfigureServices :

The sample app's Cache4 page model references the Default30  cache profile:

The ResponseCacheAttribute can be applied to:

Razor Pages: Attributes can't be applied to handler methods.

MVC controllers.

MVC action methods: Method-level attributes override the settings specified in class-level attributes.

The resulting header applied to the Cache4 page response by the Default30  cache profile:

Storing Responses in Caches

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://tools.ietf.org/html/rfc7234#section-3


Cache-Control

Cache in-memory in ASP.NET Core

Distributed caching in ASP.NET Core

Detect changes with change tokens in ASP.NET Core

Response Caching Middleware in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9


Cache in-memory in ASP.NET Core
9/22/2020 • 21 minutes to read • Edit Online

Caching basics

System.Runtime.Caching/MemoryCache

Cache guidelines

By Rick Anderson, John Luo, and Steve Smith

View or download sample code (how to download)

Caching can significantly improve the performance and scalability of an app by reducing the work required to

generate content. Caching works best with data that changes infrequently andand is expensive to generate.

Caching makes a copy of data that can be returned much faster than from the source. Apps should be written

and tested to nevernever  depend on cached data.

ASP.NET Core supports several different caches. The simplest cache is based on the IMemoryCache. 

IMemoryCache  represents a cache stored in the memory of the web server. Apps running on a server farm

(multiple servers) should ensure sessions are sticky when using the in-memory cache. Sticky sessions ensure

that subsequent requests from a client all go to the same server. For example, Azure Web apps use Application

Request Routing (ARR) to route all subsequent requests to the same server.

Non-sticky sessions in a web farm require a distributed cache to avoid cache consistency problems. For some

apps, a distributed cache can support higher scale-out than an in-memory cache. Using a distributed cache

offloads the cache memory to an external process.

The in-memory cache can store any object. The distributed cache interface is limited to byte[] . The in-

memory and distributed cache store cache items as key-value pairs.

System.Runtime.Caching/MemoryCache (NuGet package) can be used with:

.NET Standard 2.0 or later.

Any .NET implementation that targets .NET Standard 2.0 or later. For example, ASP.NET Core 2.0 or later.

.NET Framework 4.5 or later.

Microsoft.Extensions.Caching.Memory/ IMemoryCache  (described in this article) is recommended over 

System.Runtime.Caching / MemoryCache  because it's better integrated into ASP.NET Core. For example, 

IMemoryCache  works natively with ASP.NET Core dependency injection.

Use System.Runtime.Caching / MemoryCache  as a compatibility bridge when porting code from ASP.NET 4.x to

ASP.NET Core.

Code should always have a fallback option to fetch data and notnot depend on a cached value being available.

The cache uses a scarce resource, memory. Limit cache growth:

Do notnot use external input as cache keys.

Use expirations to limit cache growth.

Use SetSize, Size, and SizeLimit to limit cache size. The ASP.NET Core runtime does notnot limit cache

size based on memory pressure. It's up to the developer to limit cache size.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/performance/caching/memory.md
https://twitter.com/RickAndMSFT
https://github.com/JunTaoLuo
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/caching/memory/3.0sample
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://www.iis.net/learn/extensions/planning-for-arr
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.caching
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.caching.memorycache
https://www.nuget.org/packages/System.Runtime.Caching/
https://docs.microsoft.com/en-us/dotnet/standard/net-standard#net-implementation-support
https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/


Use IMemoryCache

WARNINGWARNING

public class HomeController : Controller
{
    private IMemoryCache _cache;

    public HomeController(IMemoryCache memoryCache)
    {
        _cache = memoryCache;
    }

public static class CacheKeys
{
    public static string Entry { get { return "_Entry"; } }
    public static string CallbackEntry { get { return "_Callback"; } }
    public static string CallbackMessage { get { return "_CallbackMessage"; } }
    public static string Parent { get { return "_Parent"; } }
    public static string Child { get { return "_Child"; } }
    public static string DependentMessage { get { return "_DependentMessage"; } }
    public static string DependentCTS { get { return "_DependentCTS"; } }
    public static string Ticks { get { return "_Ticks"; } }
    public static string CancelMsg { get { return "_CancelMsg"; } }
    public static string CancelTokenSource { get { return "_CancelTokenSource"; } }
}

Using a shared memory cache from Dependency Injection and calling SetSize , Size , or SizeLimit  to limit cache

size can cause the app to fail. When a size limit is set on a cache, all entries must specify a size when being added. This

can lead to issues since developers may not have full control on what uses the shared cache. For example, Entity

Framework Core uses the shared cache and does not specify a size. If an app sets a cache size limit and uses EF Core, the

app throws an InvalidOperationException . When using SetSize , Size , or SizeLimit  to limit cache, create a

cache singleton for caching. For more information and an example, see Use SetSize, Size, and SizeLimit to limit cache size.

A shared cache is one shared by other frameworks or libraries. For example, EF Core uses the shared cache and does not

specify a size.

In-memory caching is a service that's referenced from an app using Dependency Injection. Request the 

IMemoryCache  instance in the constructor :

The following code uses TryGetValue to check if a time is in the cache. If a time isn't cached, a new entry is

created and added to the cache with Set. The CacheKeys  class is part of the download sample.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.imemorycache.trygetvalue?view=aspnetcore-2.0#microsoft_extensions_caching_memory_imemorycache_trygetvalue_system_object_system_object__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.set?view=aspnetcore-2.0#microsoft_extensions_caching_memory_cacheextensions_set__1_microsoft_extensions_caching_memory_imemorycache_system_object___0_microsoft_extensions_caching_memory_memorycacheentryoptions_


public IActionResult CacheTryGetValueSet()
{
    DateTime cacheEntry;

    // Look for cache key.
    if (!_cache.TryGetValue(CacheKeys.Entry, out cacheEntry))
    {
        // Key not in cache, so get data.
        cacheEntry = DateTime.Now;

        // Set cache options.
        var cacheEntryOptions = new MemoryCacheEntryOptions()
            // Keep in cache for this time, reset time if accessed.
            .SetSlidingExpiration(TimeSpan.FromSeconds(3));

        // Save data in cache.
        _cache.Set(CacheKeys.Entry, cacheEntry, cacheEntryOptions);
    }

    return View("Cache", cacheEntry);
}

@model DateTime?

<div>
    <h2>Actions</h2>
    <ul>
        <li><a asp-controller="Home" asp-action="CacheTryGetValueSet">TryGetValue and Set</a></li>
        <li><a asp-controller="Home" asp-action="CacheGet">Get</a></li>
        <li><a asp-controller="Home" asp-action="CacheGetOrCreate">GetOrCreate</a></li>
        <li><a asp-controller="Home" asp-
action="CacheGetOrCreateAsynchronous">CacheGetOrCreateAsynchronous</a></li>
        <li><a asp-controller="Home" asp-action="CacheRemove">Remove</a></li>
        <li><a asp-controller="Home" asp-action="CacheGetOrCreateAbs">CacheGetOrCreateAbs</a></li>
        <li><a asp-controller="Home" asp-action="CacheGetOrCreateAbsSliding">CacheGetOrCreateAbsSliding</a>
</li>

    </ul>
</div>

<h3>Current Time: @DateTime.Now.TimeOfDay.ToString()</h3>
<h3>Cached Time: @(Model == null ? "No cached entry found" : Model.Value.TimeOfDay.ToString())</h3>

The current time and the cached time are displayed:

The cached DateTime  value remains in the cache while there are requests within the timeout period.

The following code uses GetOrCreate and GetOrCreateAsync to cache data.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.getorcreate#microsoft_extensions_caching_memory_cacheextensions_getorcreate__1_microsoft_extensions_caching_memory_imemorycache_system_object_system_func_microsoft_extensions_caching_memory_icacheentry___0__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.getorcreateasync#microsoft_extensions_caching_memory_cacheextensions_getorcreateasync__1_microsoft_extensions_caching_memory_imemorycache_system_object_system_func_microsoft_extensions_caching_memory_icacheentry_system_threading_tasks_task___0___


public IActionResult CacheGetOrCreate()
{
    var cacheEntry = _cache.GetOrCreate(CacheKeys.Entry, entry =>
    {
        entry.SlidingExpiration = TimeSpan.FromSeconds(3);
        return DateTime.Now;
    });

    return View("Cache", cacheEntry);
}

public async Task<IActionResult> CacheGetOrCreateAsynchronous()
{
    var cacheEntry = await
        _cache.GetOrCreateAsync(CacheKeys.Entry, entry =>
        {
            entry.SlidingExpiration = TimeSpan.FromSeconds(3);
            return Task.FromResult(DateTime.Now);
        });

    return View("Cache", cacheEntry);
}

public IActionResult CacheGet()
{
    var cacheEntry = _cache.Get<DateTime?>(CacheKeys.Entry);
    return View("Cache", cacheEntry);
}

public IActionResult CacheGetOrCreateAbs()
{
    var cacheEntry = _cache.GetOrCreate(CacheKeys.Entry, entry =>
    {
        entry.AbsoluteExpirationRelativeToNow = TimeSpan.FromSeconds(10);
        return DateTime.Now;
    });

    return View("Cache", cacheEntry);
}

The following code calls Get to fetch the cached time:

The following code gets or creates a cached item with absolute expiration:

A cached item set with a sliding expiration only is at risk of becoming stale. If it's accessed more frequently than

the sliding expiration interval, the item will never expire. Combine a sliding expiration with an absolute

expiration to guarantee that the item expires once its absolute expiration time passes. The absolute expiration

sets an upper bound to how long the item can be cached while still allowing the item to expire earlier if it isn't

requested within the sliding expiration interval. When both absolute and sliding expiration are specified, the

expirations are logically ORed. If either the sliding expiration interval or the absolute expiration time pass, the

item is evicted from the cache.

The following code gets or creates a cached item with both sliding and absolute expiration:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.get#microsoft_extensions_caching_memory_cacheextensions_get__1_microsoft_extensions_caching_memory_imemorycache_system_object_


public IActionResult CacheGetOrCreateAbsSliding()
{
    var cacheEntry = _cache.GetOrCreate(CacheKeys.Entry, entry =>
    {
        entry.SetSlidingExpiration(TimeSpan.FromSeconds(3));
        entry.AbsoluteExpirationRelativeToNow = TimeSpan.FromSeconds(20);
        return DateTime.Now;
    });

    return View("Cache", cacheEntry);
}

MemoryCacheEntryOptions

public IActionResult CreateCallbackEntry()
{
    var cacheEntryOptions = new MemoryCacheEntryOptions()
        // Pin to cache.
        .SetPriority(CacheItemPriority.NeverRemove)
        // Add eviction callback
        .RegisterPostEvictionCallback(callback: EvictionCallback, state: this);

    _cache.Set(CacheKeys.CallbackEntry, DateTime.Now, cacheEntryOptions);

    return RedirectToAction("GetCallbackEntry");
}

public IActionResult GetCallbackEntry()
{
    return View("Callback", new CallbackViewModel
    {
        CachedTime = _cache.Get<DateTime?>(CacheKeys.CallbackEntry),
        Message = _cache.Get<string>(CacheKeys.CallbackMessage)
    });
}

public IActionResult RemoveCallbackEntry()
{
    _cache.Remove(CacheKeys.CallbackEntry);
    return RedirectToAction("GetCallbackEntry");
}

private static void EvictionCallback(object key, object value,
    EvictionReason reason, object state)
{
    var message = $"Entry was evicted. Reason: {reason}.";
    ((HomeController)state)._cache.Set(CacheKeys.CallbackMessage, message);
}

Use SetSize, Size, and SizeLimit to limit cache size

The preceding code guarantees the data will not be cached longer than the absolute time.

GetOrCreate, GetOrCreateAsync, and Get are extension methods in the CacheExtensions class. These methods

extend the capability of IMemoryCache.

The following sample:

Sets a sliding expiration time. Requests that access this cached item will reset the sliding expiration clock.

Sets the cache priority to CacheItemPriority.NeverRemove.

Sets a PostEvictionDelegate that will be called after the entry is evicted from the cache. The callback is run

on a different thread from the code that removes the item from the cache.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.getorcreate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.getorcreateasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.get
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheitempriority#microsoft_extensions_caching_memory_cacheitempriority_neverremove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.postevictiondelegate


    Use SetSize, Size, and SizeLimit to limit cache size

// using Microsoft.Extensions.Caching.Memory;
public class MyMemoryCache 
{
    public MemoryCache Cache { get; set; }
    public MyMemoryCache()
    {
        Cache = new MemoryCache(new MemoryCacheOptions
        {
            SizeLimit = 1024
        });
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages();
    services.AddSingleton<MyMemoryCache>();
}

A MemoryCache  instance may optionally specify and enforce a size limit. The cache size limit does not have a

defined unit of measure because the cache has no mechanism to measure the size of entries. If the cache size

limit is set, all entries must specify size. The ASP.NET Core runtime does not limit cache size based on memory

pressure. It's up to the developer to limit cache size. The size specified is in units the developer chooses.

For example:

If the web app was primarily caching strings, each cache entry size could be the string length.

The app could specify the size of all entries as 1, and the size limit is the count of entries.

If SizeLimit isn't set, the cache grows without bound. The ASP.NET Core runtime doesn't trim the cache when

system memory is low. Apps must be architected to:

Limit cache growth.

Call Compact or Remove when available memory is limited:

The following code creates a unitless fixed size MemoryCache accessible by dependency injection:

SizeLimit  does not have units. Cached entries must specify size in whatever units they deem most appropriate

if the cache size limit has been set. All users of a cache instance should use the same unit system. An entry will

not be cached if the sum of the cached entry sizes exceeds the value specified by SizeLimit . If no cache size

limit is set, the cache size set on the entry will be ignored.

The following code registers MyMemoryCache  with the dependency injection container.

MyMemoryCache  is created as an independent memory cache for components that are aware of this size limited

cache and know how to set cache entry size appropriately.

The following code uses MyMemoryCache :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheoptions.sizelimit#microsoft_extensions_caching_memory_memorycacheoptions_sizelimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycache.compact
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycache.remove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycache


public class SetSize : PageModel
{
    private MemoryCache _cache;
    public static readonly string MyKey = "_MyKey";

    public SetSize(MyMemoryCache memoryCache)
    {
        _cache = memoryCache.Cache;
    }

    [TempData]
    public string DateTime_Now { get; set; }

    public IActionResult OnGet()
    {
        if (!_cache.TryGetValue(MyKey, out string cacheEntry))
        {
            // Key not in cache, so get data.
            cacheEntry = DateTime.Now.TimeOfDay.ToString();

            var cacheEntryOptions = new MemoryCacheEntryOptions()
                // Set cache entry size by extension method.
                .SetSize(1)
                // Keep in cache for this time, reset time if accessed.
                .SetSlidingExpiration(TimeSpan.FromSeconds(3));

            // Set cache entry size via property.
            // cacheEntryOptions.Size = 1;

            // Save data in cache.
            _cache.Set(MyKey, cacheEntry, cacheEntryOptions);
        }

        DateTime_Now = cacheEntry;

        return RedirectToPage("./Index");
    }
}

The size of the cache entry can be set by Size or the SetSize extension methods:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryoptions.size#microsoft_extensions_caching_memory_memorycacheentryoptions_size
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryextensions.setsize


public IActionResult OnGet()
{
    if (!_cache.TryGetValue(MyKey, out string cacheEntry))
    {
        // Key not in cache, so get data.
        cacheEntry = DateTime.Now.TimeOfDay.ToString();

        var cacheEntryOptions = new MemoryCacheEntryOptions()
            // Set cache entry size by extension method.
            .SetSize(1)
            // Keep in cache for this time, reset time if accessed.
            .SetSlidingExpiration(TimeSpan.FromSeconds(3));

        // Set cache entry size via property.
        // cacheEntryOptions.Size = 1;

        // Save data in cache.
        _cache.Set(MyKey, cacheEntry, cacheEntryOptions);
    }

    DateTime_Now = cacheEntry;

    return RedirectToPage("./Index");
}

MemoryCache.CompactMemoryCache.Compact

_cache.Remove(MyKey);

// Remove 33% of cached items.
_cache.Compact(.33);   
cache_size = _cache.Count;

Cache dependencies

MemoryCache.Compact  attempts to remove the specified percentage of the cache in the following order :

All expired items.

Items by priority. Lowest priority items are removed first.

Least recently used objects.

Items with the earliest absolute expiration.

Items with the earliest sliding expiration.

Pinned items with priority NeverRemove are never removed. The following code removes a cache item and

calls Compact :

See Compact source on GitHub for more information.

The following sample shows how to expire a cache entry if a dependent entry expires. A

CancellationChangeToken is added to the cached item. When Cancel  is called on the CancellationTokenSource ,

both cache entries are evicted.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheitempriority#microsoft_extensions_caching_memory_cacheitempriority_neverremove
https://github.com/dotnet/extensions/blob/v3.0.0-preview8.19405.4/src/Caching/Memory/src/MemoryCache.cs#L382-L393
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.cancellationchangetoken


public IActionResult CreateDependentEntries()
{
    var cts = new CancellationTokenSource();
    _cache.Set(CacheKeys.DependentCTS, cts);

    using (var entry = _cache.CreateEntry(CacheKeys.Parent))
    {
        // expire this entry if the dependant entry expires.
        entry.Value = DateTime.Now;
        entry.RegisterPostEvictionCallback(DependentEvictionCallback, this);

        _cache.Set(CacheKeys.Child,
            DateTime.Now,
            new CancellationChangeToken(cts.Token));
    }

    return RedirectToAction("GetDependentEntries");
}

public IActionResult GetDependentEntries()
{
    return View("Dependent", new DependentViewModel
    {
        ParentCachedTime = _cache.Get<DateTime?>(CacheKeys.Parent),
        ChildCachedTime = _cache.Get<DateTime?>(CacheKeys.Child),
        Message = _cache.Get<string>(CacheKeys.DependentMessage)
    });
}

public IActionResult RemoveChildEntry()
{
    _cache.Get<CancellationTokenSource>(CacheKeys.DependentCTS).Cancel();
    return RedirectToAction("GetDependentEntries");
}

private static void DependentEvictionCallback(object key, object value,
    EvictionReason reason, object state)
{
    var message = $"Parent entry was evicted. Reason: {reason}.";
    ((HomeController)state)._cache.Set(CacheKeys.DependentMessage, message);
}

Additional notes

Using a CancellationTokenSource allows multiple cache entries to be evicted as a group. With the using

pattern in the code above, cache entries created inside the using  block will inherit triggers and expiration

settings.

Expiration doesn't happen in the background. There is no timer that actively scans the cache for expired

items. Any activity on the cache ( Get , Set , Remove ) can trigger a background scan for expired items. A

timer on the CancellationTokenSource  (CancelAfter) also removes the entry and trigger a scan for expired

items. The following example uses CancellationTokenSource(TimeSpan) for the registered token. When this

token fires it removes the entry immediately and fires the eviction callbacks:

https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource
https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource.cancelafter
https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource.-ctor


public IActionResult CacheAutoExpiringTryGetValueSet()
{
    DateTime cacheEntry;

    if (!_cache.TryGetValue(CacheKeys.Entry, out cacheEntry))
    {
        cacheEntry = DateTime.Now;

        var cts = new CancellationTokenSource(TimeSpan.FromSeconds(10));

        var cacheEntryOptions = new MemoryCacheEntryOptions()
            .AddExpirationToken(new CancellationChangeToken(cts.Token));

        _cache.Set(CacheKeys.Entry, cacheEntry, cacheEntryOptions);
    }

    return View("Cache", cacheEntry);
}

Background cache update

Additional resources

Caching basics

When using a callback to repopulate a cache item:

Multiple requests can find the cached key value empty because the callback hasn't completed.

This can result in several threads repopulating the cached item.

When one cache entry is used to create another, the child copies the parent entry's expiration tokens and

time-based expiration settings. The child isn't expired by manual removal or updating of the parent

entry.

Use PostEvictionCallbacks to set the callbacks that will be fired after the cache entry is evicted from the

cache.

For most apps, IMemoryCache  is enabled. For example, calling AddMvc , AddControllersWithViews , 

AddRazorPages , AddMvcCore().AddRazorViewEngine , and many other Add{Service}  methods in 

ConfigureServices , enables IMemoryCache . For apps that are not calling one of the preceding 

Add{Service}  methods, it may be necessary to call AddMemoryCache in ConfigureServices .

Use a background service such as IHostedService to update the cache. The background service can recompute

the entries and then assign them to the cache only when they’re ready.

Distributed caching in ASP.NET Core

Detect changes with change tokens in ASP.NET Core

Response caching in ASP.NET Core

Response Caching Middleware in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core

By Rick Anderson, John Luo, and Steve Smith

View or download sample code (how to download)

Caching can significantly improve the performance and scalability of an app by reducing the work required to

generate content. Caching works best with data that changes infrequently. Caching makes a copy of data that

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.icacheentry.postevictioncallbacks#microsoft_extensions_caching_memory_icacheentry_postevictioncallbacks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.memorycacheservicecollectionextensions.addmemorycache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://twitter.com/RickAndMSFT
https://github.com/JunTaoLuo
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/caching/memory/sample


System.Runtime.Caching/MemoryCache

Cache guidelines

Using IMemoryCache

WARNINGWARNING

can be returned much faster than from the original source. Code should be written and tested to nevernever  depend

on cached data.

ASP.NET Core supports several different caches. The simplest cache is based on the IMemoryCache, which

represents a cache stored in the memory of the web server. Apps that run on a server farm (multiple servers)

should ensure that sessions are sticky when using the in-memory cache. Sticky sessions ensure that later

requests from a client all go to the same server. For example, Azure Web apps use Application Request Routing

(ARR) to route all requests from a user agent to the same server.

Non-sticky sessions in a web farm require a distributed cache to avoid cache consistency problems. For some

apps, a distributed cache can support higher scale-out than an in-memory cache. Using a distributed cache

offloads the cache memory to an external process.

The in-memory cache can store any object. The distributed cache interface is limited to byte[] . The in-

memory and distributed cache store cache items as key-value pairs.

System.Runtime.Caching/MemoryCache (NuGet package) can be used with:

.NET Standard 2.0 or later.

Any .NET implementation that targets .NET Standard 2.0 or later. For example, ASP.NET Core 2.0 or later.

.NET Framework 4.5 or later.

Microsoft.Extensions.Caching.Memory/ IMemoryCache  (described in this article) is recommended over 

System.Runtime.Caching / MemoryCache  because it's better integrated into ASP.NET Core. For example, 

IMemoryCache  works natively with ASP.NET Core dependency injection.

Use System.Runtime.Caching / MemoryCache  as a compatibility bridge when porting code from ASP.NET 4.x to

ASP.NET Core.

Code should always have a fallback option to fetch data and notnot depend on a cached value being available.

The cache uses a scarce resource, memory. Limit cache growth:

Do notnot use external input as cache keys.

Use expirations to limit cache growth.

Use SetSize, Size, and SizeLimit to limit cache size. The ASP.NET Core runtime does not limit cache

size based on memory pressure. It's up to the developer to limit cache size.

Using a shared memory cache from Dependency Injection and calling SetSize , Size , or SizeLimit  to limit cache

size can cause the app to fail. When a size limit is set on a cache, all entries must specify a size when being added. This

can lead to issues since developers may not have full control on what uses the shared cache. For example, Entity

Framework Core uses the shared cache and does not specify a size. If an app sets a cache size limit and uses EF Core, the

app throws an InvalidOperationException . When using SetSize , Size , or SizeLimit  to limit cache, create a

cache singleton for caching. For more information and an example, see Use SetSize, Size, and SizeLimit to limit cache size.

In-memory caching is a service that's referenced from your app using Dependency Injection. Call 

AddMemoryCache  in ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://www.iis.net/learn/extensions/planning-for-arr
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.caching
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.caching.memorycache
https://www.nuget.org/packages/System.Runtime.Caching/
https://docs.microsoft.com/en-us/dotnet/standard/net-standard#net-implementation-support
https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/


using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.DependencyInjection;

public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddMemoryCache();

        services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
    }

    public void Configure(IApplicationBuilder app)
    {
        app.UseMvcWithDefaultRoute();
    }
}

public class HomeController : Controller
{
    private IMemoryCache _cache;

    public HomeController(IMemoryCache memoryCache)
    {
        _cache = memoryCache;
    }

public static class CacheKeys
{
    public static string Entry { get { return "_Entry"; } }
    public static string CallbackEntry { get { return "_Callback"; } }
    public static string CallbackMessage { get { return "_CallbackMessage"; } }
    public static string Parent { get { return "_Parent"; } }
    public static string Child { get { return "_Child"; } }
    public static string DependentMessage { get { return "_DependentMessage"; } }
    public static string DependentCTS { get { return "_DependentCTS"; } }
    public static string Ticks { get { return "_Ticks"; } }
    public static string CancelMsg { get { return "_CancelMsg"; } }
    public static string CancelTokenSource { get { return "_CancelTokenSource"; } }
}

Request the IMemoryCache  instance in the constructor :

IMemoryCache  requires NuGet package Microsoft.Extensions.Caching.Memory, which is available in the

Microsoft.AspNetCore.App metapackage.

The following code uses TryGetValue to check if a time is in the cache. If a time isn't cached, a new entry is

created and added to the cache with Set.

https://www.nuget.org/packages/Microsoft.Extensions.Caching.Memory/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.imemorycache.trygetvalue?view=aspnetcore-2.0#microsoft_extensions_caching_memory_imemorycache_trygetvalue_system_object_system_object__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.set?view=aspnetcore-2.0#microsoft_extensions_caching_memory_cacheextensions_set__1_microsoft_extensions_caching_memory_imemorycache_system_object___0_microsoft_extensions_caching_memory_memorycacheentryoptions_


public IActionResult CacheTryGetValueSet()
{
    DateTime cacheEntry;

    // Look for cache key.
    if (!_cache.TryGetValue(CacheKeys.Entry, out cacheEntry))
    {
        // Key not in cache, so get data.
        cacheEntry = DateTime.Now;

        // Set cache options.
        var cacheEntryOptions = new MemoryCacheEntryOptions()
            // Keep in cache for this time, reset time if accessed.
            .SetSlidingExpiration(TimeSpan.FromSeconds(3));

        // Save data in cache.
        _cache.Set(CacheKeys.Entry, cacheEntry, cacheEntryOptions);
    }

    return View("Cache", cacheEntry);
}

@model DateTime?

<div>
    <h2>Actions</h2>
    <ul>
        <li><a asp-controller="Home" asp-action="CacheTryGetValueSet">TryGetValue and Set</a></li>
        <li><a asp-controller="Home" asp-action="CacheGet">Get</a></li>
        <li><a asp-controller="Home" asp-action="CacheGetOrCreate">GetOrCreate</a></li>
        <li><a asp-controller="Home" asp-action="CacheGetOrCreateAsync">GetOrCreateAsync</a></li>
        <li><a asp-controller="Home" asp-action="CacheRemove">Remove</a></li>
    </ul>
</div>

<h3>Current Time: @DateTime.Now.TimeOfDay.ToString()</h3>
<h3>Cached Time: @(Model == null ? "No cached entry found" : Model.Value.TimeOfDay.ToString())</h3>

The current time and the cached time are displayed:

The cached DateTime  value remains in the cache while there are requests within the timeout period. The

following image shows the current time and an older time retrieved from the cache:



public IActionResult CacheGetOrCreate()
{
    var cacheEntry = _cache.GetOrCreate(CacheKeys.Entry, entry =>
    {
        entry.SlidingExpiration = TimeSpan.FromSeconds(3);
        return DateTime.Now;
    });

    return View("Cache", cacheEntry);
}

public async Task<IActionResult> CacheGetOrCreateAsync()
{
    var cacheEntry = await
        _cache.GetOrCreateAsync(CacheKeys.Entry, entry =>
    {
        entry.SlidingExpiration = TimeSpan.FromSeconds(3);
        return Task.FromResult(DateTime.Now);
    });

    return View("Cache", cacheEntry);
}

public IActionResult CacheGet()
{
    var cacheEntry = _cache.Get<DateTime?>(CacheKeys.Entry);
    return View("Cache", cacheEntry);
}

MemoryCacheEntryOptions

The following code uses GetOrCreate and GetOrCreateAsync to cache data.

The following code calls Get to fetch the cached time:

GetOrCreate , GetOrCreateAsync, and Get are extension methods part of the CacheExtensions class that

extends the capability of IMemoryCache. See IMemoryCache methods and CacheExtensions methods for a

description of other cache methods.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.getorcreate#microsoft_extensions_caching_memory_cacheextensions_getorcreate__1_microsoft_extensions_caching_memory_imemorycache_system_object_system_func_microsoft_extensions_caching_memory_icacheentry___0__
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.getorcreateasync#microsoft_extensions_caching_memory_cacheextensions_getorcreateasync__1_microsoft_extensions_caching_memory_imemorycache_system_object_system_func_microsoft_extensions_caching_memory_icacheentry_system_threading_tasks_task___0___
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.get#microsoft_extensions_caching_memory_cacheextensions_get__1_microsoft_extensions_caching_memory_imemorycache_system_object_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.getorcreate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.getorcreateasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions.get#microsoft_extensions_caching_memory_cacheextensions_get__1_microsoft_extensions_caching_memory_imemorycache_system_object_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheextensions


public IActionResult CreateCallbackEntry()
{
    var cacheEntryOptions = new MemoryCacheEntryOptions()
        // Pin to cache.
        .SetPriority(CacheItemPriority.NeverRemove)
        // Add eviction callback
        .RegisterPostEvictionCallback(callback: EvictionCallback, state: this);

    _cache.Set(CacheKeys.CallbackEntry, DateTime.Now, cacheEntryOptions);

    return RedirectToAction("GetCallbackEntry");
}

public IActionResult GetCallbackEntry()
{
    return View("Callback", new CallbackViewModel
    {
        CachedTime = _cache.Get<DateTime?>(CacheKeys.CallbackEntry),
        Message = _cache.Get<string>(CacheKeys.CallbackMessage)
    });
}

public IActionResult RemoveCallbackEntry()
{
    _cache.Remove(CacheKeys.CallbackEntry);
    return RedirectToAction("GetCallbackEntry");
}

private static void EvictionCallback(object key, object value,
    EvictionReason reason, object state)
{
    var message = $"Entry was evicted. Reason: {reason}.";
    ((HomeController)state)._cache.Set(CacheKeys.CallbackMessage, message);
}

Use SetSize, Size, and SizeLimit to limit cache size

The following sample:

Sets a sliding expiration time. Requests that access this cached item will reset the sliding expiration clock.

Sets the cache priority to CacheItemPriority.NeverRemove .

Sets a PostEvictionDelegate that will be called after the entry is evicted from the cache. The callback is run

on a different thread from the code that removes the item from the cache.

A MemoryCache  instance may optionally specify and enforce a size limit. The cache size limit does not have a

defined unit of measure because the cache has no mechanism to measure the size of entries. If the cache size

limit is set, all entries must specify size. The ASP.NET Core runtime does not limit cache size based on memory

pressure. It's up to the developer to limit cache size. The size specified is in units the developer chooses.

For example:

If the web app was primarily caching strings, each cache entry size could be the string length.

The app could specify the size of all entries as 1, and the size limit is the count of entries.

If SizeLimit is not set, the cache grows without bound. The ASP.NET Core runtime does not trim the cache when

system memory is low. Apps much be architected to:

Limit cache growth.

Call Compact or Remove when available memory is limited:

The following code creates a unitless fixed size MemoryCache accessible by dependency injection:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.postevictiondelegate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheoptions.sizelimit#microsoft_extensions_caching_memory_memorycacheoptions_sizelimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycache.compact
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycache.remove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycache


// using Microsoft.Extensions.Caching.Memory;
public class MyMemoryCache 
{
    public MemoryCache Cache { get; set; }
    public MyMemoryCache()
    {
        Cache = new MemoryCache(new MemoryCacheOptions
        {
            SizeLimit = 1024
        });
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_1);

    services.AddSingleton<MyMemoryCache>();
}

SizeLimit  does not have units. Cached entries must specify size in whatever units they deem most appropriate

if the cache size limit has been set. All users of a cache instance should use the same unit system. An entry will

not be cached if the sum of the cached entry sizes exceeds the value specified by SizeLimit . If no cache size

limit is set, the cache size set on the entry will be ignored.

The following code registers MyMemoryCache  with the dependency injection container.

MyMemoryCache  is created as an independent memory cache for components that are aware of this size limited

cache and know how to set cache entry size appropriately.

The following code uses MyMemoryCache :



public class AboutModel : PageModel
{
    private MemoryCache _cache;
    public static readonly string MyKey = "_MyKey";

    public AboutModel(MyMemoryCache memoryCache)
    {
        _cache = memoryCache.Cache;
    }

    [TempData]
    public string DateTime_Now { get; set; }

    public IActionResult OnGet()
    {
        if (!_cache.TryGetValue(MyKey, out string cacheEntry))
        {
            // Key not in cache, so get data.
            cacheEntry = DateTime.Now.TimeOfDay.ToString();

            var cacheEntryOptions = new MemoryCacheEntryOptions() 
                // Set cache entry size by extension method.
                .SetSize(1) 
                // Keep in cache for this time, reset time if accessed.
                .SetSlidingExpiration(TimeSpan.FromSeconds(3));

            // Set cache entry size via property.
            // cacheEntryOptions.Size = 1;

            // Save data in cache.
            _cache.Set(MyKey, cacheEntry, cacheEntryOptions);
        }

        DateTime_Now = cacheEntry;

        return RedirectToPage("./Index");
    }
}

The size of the cache entry can be set by Size or the SetSize extension method:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryoptions.size?view=aspnetcore-2.1#microsoft_extensions_caching_memory_memorycacheentryoptions_size
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryextensions.setsize?view=aspnetcore-2.0#microsoft_extensions_caching_memory_memorycacheentryextensions_setsize_microsoft_extensions_caching_memory_memorycacheentryoptions_system_int64_


public IActionResult OnGet()
{
    if (!_cache.TryGetValue(MyKey, out string cacheEntry))
    {
        // Key not in cache, so get data.
        cacheEntry = DateTime.Now.TimeOfDay.ToString();

        var cacheEntryOptions = new MemoryCacheEntryOptions() 
            // Set cache entry size by extension method.
            .SetSize(1) 
            // Keep in cache for this time, reset time if accessed.
            .SetSlidingExpiration(TimeSpan.FromSeconds(3));

        // Set cache entry size via property.
        // cacheEntryOptions.Size = 1;

        // Save data in cache.
        _cache.Set(MyKey, cacheEntry, cacheEntryOptions);
    }

    DateTime_Now = cacheEntry;

    return RedirectToPage("./Index");
}

MemoryCache.CompactMemoryCache.Compact

_cache.Remove(MyKey);

// Remove 33% of cached items.
_cache.Compact(.33);   
cache_size = _cache.Count;

Cache dependencies

MemoryCache.Compact  attempts to remove the specified percentage of the cache in the following order :

All expired items.

Items by priority. Lowest priority items are removed first.

Least recently used objects.

Items with the earliest absolute expiration.

Items with the earliest sliding expiration.

Pinned items with priority NeverRemove are never removed.

See Compact source on GitHub for more information.

The following sample shows how to expire a cache entry if a dependent entry expires. A

CancellationChangeToken is added to the cached item. When Cancel  is called on the CancellationTokenSource ,

both cache entries are evicted.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.cacheitempriority#microsoft_extensions_caching_memory_cacheitempriority_neverremove
https://github.com/dotnet/extensions/blob/v3.0.0-preview8.19405.4/src/Caching/Memory/src/MemoryCache.cs#L382-L393
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.cancellationchangetoken


public IActionResult CreateDependentEntries()
{
    var cts = new CancellationTokenSource();
    _cache.Set(CacheKeys.DependentCTS, cts);

    using (var entry = _cache.CreateEntry(CacheKeys.Parent))
    {
        // expire this entry if the dependant entry expires.
        entry.Value = DateTime.Now;
        entry.RegisterPostEvictionCallback(DependentEvictionCallback, this);

        _cache.Set(CacheKeys.Child,
            DateTime.Now,
            new CancellationChangeToken(cts.Token));
    }

    return RedirectToAction("GetDependentEntries");
}

public IActionResult GetDependentEntries()
{
    return View("Dependent", new DependentViewModel
    {
        ParentCachedTime = _cache.Get<DateTime?>(CacheKeys.Parent),
        ChildCachedTime = _cache.Get<DateTime?>(CacheKeys.Child),
        Message = _cache.Get<string>(CacheKeys.DependentMessage)
    });
}

public IActionResult RemoveChildEntry()
{
    _cache.Get<CancellationTokenSource>(CacheKeys.DependentCTS).Cancel();
    return RedirectToAction("GetDependentEntries");
}

private static void DependentEvictionCallback(object key, object value,
    EvictionReason reason, object state)
{
    var message = $"Parent entry was evicted. Reason: {reason}.";
    ((HomeController)state)._cache.Set(CacheKeys.DependentMessage, message);
}

Additional notes

Background cache update

Using a CancellationTokenSource  allows multiple cache entries to be evicted as a group. With the using

pattern in the code above, cache entries created inside the using  block will inherit triggers and expiration

settings.

When using a callback to repopulate a cache item:

Multiple requests can find the cached key value empty because the callback hasn't completed.

This can result in several threads repopulating the cached item.

When one cache entry is used to create another, the child copies the parent entry's expiration tokens and

time-based expiration settings. The child isn't expired by manual removal or updating of the parent

entry.

Use PostEvictionCallbacks to set the callbacks that will be fired after the cache entry is evicted from the

cache.

Use a background service such as IHostedService to update the cache. The background service can recompute

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.icacheentry.postevictioncallbacks#microsoft_extensions_caching_memory_icacheentry_postevictioncallbacks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice


Additional resources

the entries and then assign them to the cache only when they’re ready.

Distributed caching in ASP.NET Core

Detect changes with change tokens in ASP.NET Core

Response caching in ASP.NET Core

Response Caching Middleware in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core



Distributed caching in ASP.NET Core
9/22/2020 • 20 minutes to read • Edit Online

Prerequisites

IDistributedCache interface

Establish distributed caching services

By Mohsin Nasir and Steve Smith

A distributed cache is a cache shared by multiple app servers, typically maintained as an external service to

the app servers that access it. A distributed cache can improve the performance and scalability of an ASP.NET

Core app, especially when the app is hosted by a cloud service or a server farm.

A distributed cache has several advantages over other caching scenarios where cached data is stored on

individual app servers.

When cached data is distributed, the data:

Is coherent (consistent) across requests to multiple servers.

Survives server restarts and app deployments.

Doesn't use local memory.

Distributed cache configuration is implementation specific. This article describes how to configure SQL Server

and Redis distributed caches. Third party implementations are also available, such as NCache (NCache on

GitHub). Regardless of which implementation is selected, the app interacts with the cache using the

IDistributedCache interface.

View or download sample code (how to download)

To use a SQL Server distributed cache, add a package reference to the Microsoft.Extensions.Caching.SqlServer

package.

To use a Redis distributed cache, add a package reference to the

Microsoft.Extensions.Caching.StackExchangeRedis package.

To use NCache distributed cache, add a package reference to the

NCache.Microsoft.Extensions.Caching.OpenSource package.

The IDistributedCache interface provides the following methods to manipulate items in the distributed cache

implementation:

Get, GetAsync: Accepts a string key and retrieves a cached item as a byte[]  array if found in the cache.

Set, SetAsync: Adds an item (as byte[]  array) to the cache using a string key.

Refresh, RefreshAsync: Refreshes an item in the cache based on its key, resetting its sliding expiration

timeout (if any).

Remove, RemoveAsync: Removes a cache item based on its string key.

Register an implementation of IDistributedCache in Startup.ConfigureServices . Framework-provided

implementations described in this topic include:

Distributed Memory Cache

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/performance/caching/distributed.md
https://github.com/mohsinnasir
https://ardalis.com/
http://www.alachisoft.com/ncache/aspnet-core-idistributedcache-ncache.html
https://github.com/Alachisoft/NCache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/caching/distributed/samples/
https://www.nuget.org/packages/Microsoft.Extensions.Caching.SqlServer
https://www.nuget.org/packages/Microsoft.Extensions.Caching.StackExchangeRedis
https://www.nuget.org/packages/NCache.Microsoft.Extensions.Caching.OpenSource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.get
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.getasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.set
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.setasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.refresh
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.refreshasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.remove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.removeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache


      

      

Distributed Memory CacheDistributed Memory Cache

services.AddDistributedMemoryCache();

Distributed SQL Server CacheDistributed SQL Server Cache

dotnet sql-cache create "Data Source=(localdb)\MSSQLLocalDB;Initial Catalog=DistCache;Integrated 
Security=True;" dbo TestCache

Table and index were created successfully.

Distributed SQL Server cache

Distributed Redis cache

Distributed NCache cache

The Distributed Memory Cache (AddDistributedMemoryCache) is a framework-provided implementation of

IDistributedCache that stores items in memory. The Distributed Memory Cache isn't an actual distributed

cache. Cached items are stored by the app instance on the server where the app is running.

The Distributed Memory Cache is a useful implementation:

In development and testing scenarios.

When a single server is used in production and memory consumption isn't an issue. Implementing the

Distributed Memory Cache abstracts cached data storage. It allows for implementing a true distributed

caching solution in the future if multiple nodes or fault tolerance become necessary.

The sample app makes use of the Distributed Memory Cache when the app is run in the Development

environment in Startup.ConfigureServices :

The Distributed SQL Server Cache implementation (AddDistributedSqlServerCache) allows the distributed

cache to use a SQL Server database as its backing store. To create a SQL Server cached item table in a SQL

Server instance, you can use the sql-cache  tool. The tool creates a table with the name and schema that you

specify.

Create a table in SQL Server by running the sql-cache create  command. Provide the SQL Server instance (

Data Source ), database ( Initial Catalog ), schema (for example, dbo ), and table name (for example, 

TestCache ):

A message is logged to indicate that the tool was successful:

The table created by the sql-cache  tool has the following schema:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.memorycacheservicecollectionextensions.adddistributedmemorycache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.sqlservercachingservicesextensions.adddistributedsqlservercache


      

      

NOTENOTE

services.AddDistributedSqlServerCache(options =>
{
    options.ConnectionString = 
        _config["DistCache_ConnectionString"];
    options.SchemaName = "dbo";
    options.TableName = "TestCache";
});

NOTENOTE

Distributed Redis CacheDistributed Redis Cache

Distributed NCache CacheDistributed NCache Cache

Use the distributed cache

An app should manipulate cache values using an instance of IDistributedCache, not a SqlServerCache.

The sample app implements SqlServerCache in a non-Development environment in 

Startup.ConfigureServices :

A ConnectionString (and optionally, SchemaName and TableName) are typically stored outside of source control (for

example, stored by the Secret Manager or in appsettings.json/appsettings.{ENVIRONMENT}.json files). The connection

string may contain credentials that should be kept out of source control systems.

Redis is an open source in-memory data store, which is often used as a distributed cache. You can configure

an Azure Redis Cache for an Azure-hosted ASP.NET Core app, and use an Azure Redis Cache for local

development.

An app configures the cache implementation using a RedisCache instance (AddStackExchangeRedisCache).

For more information, see Azure Cache for Redis.

See this GitHub issue for a discussion on alternative approaches to a local Redis cache.

NCache is an open source in-memory distributed cache developed natively in .NET and .NET Core. NCache

works both locally and configured as a distributed cache cluster for an ASP.NET Core app running in Azure or

on other hosting platforms.

To install and configure NCache on your local machine, see NCache Getting Started Guide for Windows.

To configure NCache:

services.AddNCacheDistributedCache(configuration =>    
{        
    configuration.CacheName = "demoClusteredCache";
    configuration.EnableLogs = true;
    configuration.ExceptionsEnabled = true;
});

1. Install NCache open source NuGet.

2. Configure the cache cluster in client.ncconf.

3. Add the following code to Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercacheoptions.connectionstring
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercacheoptions.schemaname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercacheoptions.tablename
https://redis.io/
https://azure.microsoft.com/services/cache/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.stackexchangeredis.rediscache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.stackexchangerediscacheservicecollectionextensions.addstackexchangerediscache
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://github.com/dotnet/AspNetCore.Docs/issues/19542
https://github.com/Alachisoft/NCache
https://www.alachisoft.com/resources/docs/ncache-oss/getting-started-guide-windows/
https://www.nuget.org/packages/Alachisoft.NCache.OpenSource.SDK/
https://www.alachisoft.com/resources/docs/ncache-oss/admin-guide/client-config.html


public void Configure(IApplicationBuilder app, IWebHostEnvironment env, 
    IHostApplicationLifetime lifetime, IDistributedCache cache)
{
    lifetime.ApplicationStarted.Register(() =>
    {
        var currentTimeUTC = DateTime.UtcNow.ToString();
        byte[] encodedCurrentTimeUTC = Encoding.UTF8.GetBytes(currentTimeUTC);
        var options = new DistributedCacheEntryOptions()
            .SetSlidingExpiration(TimeSpan.FromSeconds(20));
        cache.Set("cachedTimeUTC", encodedCurrentTimeUTC, options);
    });

public class IndexModel : PageModel
{
    private readonly IDistributedCache _cache;

    public IndexModel(IDistributedCache cache)
    {
        _cache = cache;
    }

    public string CachedTimeUTC { get; set; }

    public async Task OnGetAsync()
    {
        CachedTimeUTC = "Cached Time Expired";
        var encodedCachedTimeUTC = await _cache.GetAsync("cachedTimeUTC");

        if (encodedCachedTimeUTC != null)
        {
            CachedTimeUTC = Encoding.UTF8.GetString(encodedCachedTimeUTC);
        }
    }

    public async Task<IActionResult> OnPostResetCachedTime()
    {
        var currentTimeUTC = DateTime.UtcNow.ToString();
        byte[] encodedCurrentTimeUTC = Encoding.UTF8.GetBytes(currentTimeUTC);
        var options = new DistributedCacheEntryOptions()
            .SetSlidingExpiration(TimeSpan.FromSeconds(20));
        await _cache.SetAsync("cachedTimeUTC", encodedCurrentTimeUTC, options);

        return RedirectToPage();
    }
}

To use the IDistributedCache interface, request an instance of IDistributedCache from any constructor in the

app. The instance is provided by dependency injection (DI).

When the sample app starts, IDistributedCache is injected into Startup.Configure . The current time is cached

using IHostApplicationLifetime (for more information, see Generic Host: IHostApplicationLifetime):

The sample app injects IDistributedCache into the IndexModel  for use by the Index page.

Each time the Index page is loaded, the cache is checked for the cached time in OnGetAsync . If the cached time

hasn't expired, the time is displayed. If 20 seconds have elapsed since the last time the cached time was

accessed (the last time this page was loaded), the page displays Cached Time Expired.

Immediately update the cached time to the current time by selecting the Reset Cached TimeReset Cached Time button. The

button triggers the OnPostResetCachedTime  handler method.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache


NOTENOTE

Recommendations

Additional resources

There's no need to use a Singleton or Scoped lifetime for IDistributedCache instances (at least for the built-in

implementations).

You can also create an IDistributedCache instance wherever you might need one instead of using DI, but creating an

instance in code can make your code harder to test and violates the Explicit Dependencies Principle.

When deciding which implementation of IDistributedCache is best for your app, consider the following:

Existing infrastructure

Performance requirements

Cost

Team experience

Caching solutions usually rely on in-memory storage to provide fast retrieval of cached data, but memory is a

limited resource and costly to expand. Only store commonly used data in a cache.

Generally, a Redis cache provides higher throughput and lower latency than a SQL Server cache. However,

benchmarking is usually required to determine the performance characteristics of caching strategies.

When SQL Server is used as a distributed cache backing store, use of the same database for the cache and the

app's ordinary data storage and retrieval can negatively impact the performance of both. We recommend

using a dedicated SQL Server instance for the distributed cache backing store.

Redis Cache on Azure

SQL Database on Azure

ASP.NET Core IDistributedCache Provider for NCache in Web Farms (NCache on GitHub)

Cache in-memory in ASP.NET Core

Detect changes with change tokens in ASP.NET Core

Response caching in ASP.NET Core

Response Caching Middleware in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core

Host ASP.NET Core in a web farm

A distributed cache is a cache shared by multiple app servers, typically maintained as an external service to

the app servers that access it. A distributed cache can improve the performance and scalability of an ASP.NET

Core app, especially when the app is hosted by a cloud service or a server farm.

A distributed cache has several advantages over other caching scenarios where cached data is stored on

individual app servers.

When cached data is distributed, the data:

Is coherent (consistent) across requests to multiple servers.

Survives server restarts and app deployments.

Doesn't use local memory.

Distributed cache configuration is implementation specific. This article describes how to configure SQL Server

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/
https://docs.microsoft.com/en-us/azure/sql-database/
http://www.alachisoft.com/ncache/aspnet-core-idistributedcache-ncache.html
https://github.com/Alachisoft/NCache


Prerequisites

IDistributedCache interface

Establish distributed caching services

Distributed Memory CacheDistributed Memory Cache

and Redis distributed caches. Third party implementations are also available, such as NCache (NCache on

GitHub). Regardless of which implementation is selected, the app interacts with the cache using the

IDistributedCache interface.

View or download sample code (how to download)

To use a SQL Server distributed cache, reference the Microsoft.AspNetCore.App metapackage or add a

package reference to the Microsoft.Extensions.Caching.SqlServer package.

To use a Redis distributed cache, reference the Microsoft.AspNetCore.App metapackage and add a package

reference to the Microsoft.Extensions.Caching.StackExchangeRedis package. The Redis package isn't included

in the Microsoft.AspNetCore.App  package, so you must reference the Redis package separately in your project

file.

To use NCache distributed cache, reference the Microsoft.AspNetCore.App metapackage and add a package

reference to the NCache.Microsoft.Extensions.Caching.OpenSource package. The NCache package isn't

included in the Microsoft.AspNetCore.App  package, so you must reference the NCache package separately in

your project file.

The IDistributedCache interface provides the following methods to manipulate items in the distributed cache

implementation:

Get, GetAsync: Accepts a string key and retrieves a cached item as a byte[]  array if found in the cache.

Set, SetAsync: Adds an item (as byte[]  array) to the cache using a string key.

Refresh, RefreshAsync: Refreshes an item in the cache based on its key, resetting its sliding expiration

timeout (if any).

Remove, RemoveAsync: Removes a cache item based on its string key.

Register an implementation of IDistributedCache in Startup.ConfigureServices . Framework-provided

implementations described in this topic include:

Distributed Memory Cache

Distributed SQL Server cache

Distributed Redis cache

Distributed NCache cache

The Distributed Memory Cache (AddDistributedMemoryCache) is a framework-provided implementation of

IDistributedCache that stores items in memory. The Distributed Memory Cache isn't an actual distributed

cache. Cached items are stored by the app instance on the server where the app is running.

The Distributed Memory Cache is a useful implementation:

In development and testing scenarios.

When a single server is used in production and memory consumption isn't an issue. Implementing the

Distributed Memory Cache abstracts cached data storage. It allows for implementing a true distributed

caching solution in the future if multiple nodes or fault tolerance become necessary.

The sample app makes use of the Distributed Memory Cache when the app is run in the Development

http://www.alachisoft.com/ncache/aspnet-core-idistributedcache-ncache.html
https://github.com/Alachisoft/NCache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/caching/distributed/samples/
https://www.nuget.org/packages/Microsoft.Extensions.Caching.SqlServer
https://www.nuget.org/packages/Microsoft.Extensions.Caching.StackExchangeRedis
https://www.nuget.org/packages/NCache.Microsoft.Extensions.Caching.OpenSource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.get
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.getasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.set
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.setasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.refresh
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.refreshasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.remove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.removeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.memorycacheservicecollectionextensions.adddistributedmemorycache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache


services.AddDistributedMemoryCache();

Distributed SQL Server CacheDistributed SQL Server Cache

dotnet sql-cache create "Data Source=(localdb)\MSSQLLocalDB;Initial Catalog=DistCache;Integrated 
Security=True;" dbo TestCache

Table and index were created successfully.

NOTENOTE

services.AddDistributedSqlServerCache(options =>
{
    options.ConnectionString = 
        _config["DistCache_ConnectionString"];
    options.SchemaName = "dbo";
    options.TableName = "TestCache";
});

environment in Startup.ConfigureServices :

The Distributed SQL Server Cache implementation (AddDistributedSqlServerCache) allows the distributed

cache to use a SQL Server database as its backing store. To create a SQL Server cached item table in a SQL

Server instance, you can use the sql-cache  tool. The tool creates a table with the name and schema that you

specify.

Create a table in SQL Server by running the sql-cache create  command. Provide the SQL Server instance (

Data Source ), database ( Initial Catalog ), schema (for example, dbo ), and table name (for example, 

TestCache ):

A message is logged to indicate that the tool was successful:

The table created by the sql-cache  tool has the following schema:

An app should manipulate cache values using an instance of IDistributedCache, not a SqlServerCache.

The sample app implements SqlServerCache in a non-Development environment in 

Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.sqlservercachingservicesextensions.adddistributedsqlservercache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercache


NOTENOTE

Distributed Redis CacheDistributed Redis Cache

services.AddStackExchangeRedisCache(options =>
{
    options.Configuration = "localhost";
    options.InstanceName = "SampleInstance";
});

Distributed NCache CacheDistributed NCache Cache

Use the distributed cache

A ConnectionString (and optionally, SchemaName and TableName) are typically stored outside of source control (for

example, stored by the Secret Manager or in appsettings.json/appsettings.{ENVIRONMENT}.json files). The connection

string may contain credentials that should be kept out of source control systems.

Redis is an open source in-memory data store, which is often used as a distributed cache. You can use Redis

locally, and you can configure an Azure Redis Cache for an Azure-hosted ASP.NET Core app.

An app configures the cache implementation using a RedisCache instance (AddStackExchangeRedisCache) in a

non-Development environment in Startup.ConfigureServices :

To install Redis on your local machine:

1. Install the Chocolatey Redis package.

2. Run redis-server  from a command prompt.

NCache is an open source in-memory distributed cache developed natively in .NET and .NET Core. NCache

works both locally and configured as a distributed cache cluster for an ASP.NET Core app running in Azure or

on other hosting platforms.

To install and configure NCache on your local machine, see NCache Getting Started Guide for Windows.

To configure NCache:

services.AddNCacheDistributedCache(configuration =>    
{        
    configuration.CacheName = "demoClusteredCache";
    configuration.EnableLogs = true;
    configuration.ExceptionsEnabled = true;
});

1. Install NCache open source NuGet.

2. Configure the cache cluster in client.ncconf.

3. Add the following code to Startup.ConfigureServices :

To use the IDistributedCache interface, request an instance of IDistributedCache from any constructor in the

app. The instance is provided by dependency injection (DI).

When the sample app starts, IDistributedCache is injected into Startup.Configure . The current time is cached

using IApplicationLifetime (for more information, see Web Host: IApplicationLifetime interface):

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercacheoptions.connectionstring
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercacheoptions.schemaname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercacheoptions.tablename
https://redis.io/
https://azure.microsoft.com/services/cache/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.stackexchangeredis.rediscache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.stackexchangerediscacheservicecollectionextensions.addstackexchangerediscache
https://chocolatey.org/packages/redis-64/
https://github.com/Alachisoft/NCache
https://www.alachisoft.com/resources/docs/ncache-oss/getting-started-guide-windows/
https://www.nuget.org/packages/Alachisoft.NCache.OpenSource.SDK/
https://www.alachisoft.com/resources/docs/ncache-oss/admin-guide/client-config.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime


public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
    IApplicationLifetime lifetime, IDistributedCache cache)
{
    lifetime.ApplicationStarted.Register(() =>
    {
        var currentTimeUTC = DateTime.UtcNow.ToString();
        byte[] encodedCurrentTimeUTC = Encoding.UTF8.GetBytes(currentTimeUTC);
        var options = new DistributedCacheEntryOptions()
            .SetSlidingExpiration(TimeSpan.FromSeconds(20));
        cache.Set("cachedTimeUTC", encodedCurrentTimeUTC, options);
    });

public class IndexModel : PageModel
{
    private readonly IDistributedCache _cache;

    public IndexModel(IDistributedCache cache)
    {
        _cache = cache;
    }

    public string CachedTimeUTC { get; set; }

    public async Task OnGetAsync()
    {
        CachedTimeUTC = "Cached Time Expired";
        var encodedCachedTimeUTC = await _cache.GetAsync("cachedTimeUTC");

        if (encodedCachedTimeUTC != null)
        {
            CachedTimeUTC = Encoding.UTF8.GetString(encodedCachedTimeUTC);
        }
    }

    public async Task<IActionResult> OnPostResetCachedTime()
    {
        var currentTimeUTC = DateTime.UtcNow.ToString();
        byte[] encodedCurrentTimeUTC = Encoding.UTF8.GetBytes(currentTimeUTC);
        var options = new DistributedCacheEntryOptions()
            .SetSlidingExpiration(TimeSpan.FromSeconds(20));
        await _cache.SetAsync("cachedTimeUTC", encodedCurrentTimeUTC, options);

        return RedirectToPage();
    }
}

The sample app injects IDistributedCache into the IndexModel  for use by the Index page.

Each time the Index page is loaded, the cache is checked for the cached time in OnGetAsync . If the cached time

hasn't expired, the time is displayed. If 20 seconds have elapsed since the last time the cached time was

accessed (the last time this page was loaded), the page displays Cached Time Expired.

Immediately update the cached time to the current time by selecting the Reset Cached TimeReset Cached Time button. The

button triggers the OnPostResetCachedTime  handler method.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache


NOTENOTE

Recommendations

Additional resources

There's no need to use a Singleton or Scoped lifetime for IDistributedCache instances (at least for the built-in

implementations).

You can also create an IDistributedCache instance wherever you might need one instead of using DI, but creating an

instance in code can make your code harder to test and violates the Explicit Dependencies Principle.

When deciding which implementation of IDistributedCache is best for your app, consider the following:

Existing infrastructure

Performance requirements

Cost

Team experience

Caching solutions usually rely on in-memory storage to provide fast retrieval of cached data, but memory is a

limited resource and costly to expand. Only store commonly used data in a cache.

Generally, a Redis cache provides higher throughput and lower latency than a SQL Server cache. However,

benchmarking is usually required to determine the performance characteristics of caching strategies.

When SQL Server is used as a distributed cache backing store, use of the same database for the cache and the

app's ordinary data storage and retrieval can negatively impact the performance of both. We recommend

using a dedicated SQL Server instance for the distributed cache backing store.

Redis Cache on Azure

SQL Database on Azure

ASP.NET Core IDistributedCache Provider for NCache in Web Farms (NCache on GitHub)

Cache in-memory in ASP.NET Core

Detect changes with change tokens in ASP.NET Core

Response caching in ASP.NET Core

Response Caching Middleware in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core

Host ASP.NET Core in a web farm

A distributed cache is a cache shared by multiple app servers, typically maintained as an external service to

the app servers that access it. A distributed cache can improve the performance and scalability of an ASP.NET

Core app, especially when the app is hosted by a cloud service or a server farm.

A distributed cache has several advantages over other caching scenarios where cached data is stored on

individual app servers.

When cached data is distributed, the data:

Is coherent (consistent) across requests to multiple servers.

Survives server restarts and app deployments.

Doesn't use local memory.

Distributed cache configuration is implementation specific. This article describes how to configure SQL Server

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/
https://docs.microsoft.com/en-us/azure/sql-database/
http://www.alachisoft.com/ncache/aspnet-core-idistributedcache-ncache.html
https://github.com/Alachisoft/NCache


Prerequisites

IDistributedCache interface

Establish distributed caching services

Distributed Memory CacheDistributed Memory Cache

and Redis distributed caches. Third party implementations are also available, such as NCache (NCache on

GitHub). Regardless of which implementation is selected, the app interacts with the cache using the

IDistributedCache interface.

View or download sample code (how to download)

To use a SQL Server distributed cache, reference the Microsoft.AspNetCore.App metapackage or add a

package reference to the Microsoft.Extensions.Caching.SqlServer package.

To use a Redis distributed cache, reference the Microsoft.AspNetCore.App metapackage and add a package

reference to the Microsoft.Extensions.Caching.Redis package. The Redis package isn't included in the 

Microsoft.AspNetCore.App  package, so you must reference the Redis package separately in your project file.

To use NCache distributed cache, reference the Microsoft.AspNetCore.App metapackage and add a package

reference to the NCache.Microsoft.Extensions.Caching.OpenSource package. The NCache package isn't

included in the Microsoft.AspNetCore.App  package, so you must reference the NCache package separately in

your project file.

The IDistributedCache interface provides the following methods to manipulate items in the distributed cache

implementation:

Get, GetAsync: Accepts a string key and retrieves a cached item as a byte[]  array if found in the cache.

Set, SetAsync: Adds an item (as byte[]  array) to the cache using a string key.

Refresh, RefreshAsync: Refreshes an item in the cache based on its key, resetting its sliding expiration

timeout (if any).

Remove, RemoveAsync: Removes a cache item based on its string key.

Register an implementation of IDistributedCache in Startup.ConfigureServices . Framework-provided

implementations described in this topic include:

Distributed Memory Cache

Distributed SQL Server cache

Distributed Redis cache

Distributed NCache cache

The Distributed Memory Cache (AddDistributedMemoryCache) is a framework-provided implementation of

IDistributedCache that stores items in memory. The Distributed Memory Cache isn't an actual distributed

cache. Cached items are stored by the app instance on the server where the app is running.

The Distributed Memory Cache is a useful implementation:

In development and testing scenarios.

When a single server is used in production and memory consumption isn't an issue. Implementing the

Distributed Memory Cache abstracts cached data storage. It allows for implementing a true distributed

caching solution in the future if multiple nodes or fault tolerance become necessary.

The sample app makes use of the Distributed Memory Cache when the app is run in the Development

environment in Startup.ConfigureServices :

http://www.alachisoft.com/ncache/aspnet-core-idistributedcache-ncache.html
https://github.com/Alachisoft/NCache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/caching/distributed/samples/
https://www.nuget.org/packages/Microsoft.Extensions.Caching.SqlServer
https://www.nuget.org/packages/Microsoft.Extensions.Caching.Redis
https://www.nuget.org/packages/NCache.Microsoft.Extensions.Caching.OpenSource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.get
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.getasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.set
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.setasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.refresh
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.refreshasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.remove
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache.removeasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.memorycacheservicecollectionextensions.adddistributedmemorycache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache


services.AddDistributedMemoryCache();

Distributed SQL Server CacheDistributed SQL Server Cache

dotnet sql-cache create "Data Source=(localdb)\MSSQLLocalDB;Initial Catalog=DistCache;Integrated 
Security=True;" dbo TestCache

Table and index were created successfully.

NOTENOTE

services.AddDistributedSqlServerCache(options =>
{
    options.ConnectionString = 
        _config["DistCache_ConnectionString"];
    options.SchemaName = "dbo";
    options.TableName = "TestCache";
});

NOTENOTE

The Distributed SQL Server Cache implementation (AddDistributedSqlServerCache) allows the distributed

cache to use a SQL Server database as its backing store. To create a SQL Server cached item table in a SQL

Server instance, you can use the sql-cache  tool. The tool creates a table with the name and schema that you

specify.

Create a table in SQL Server by running the sql-cache create  command. Provide the SQL Server instance (

Data Source ), database ( Initial Catalog ), schema (for example, dbo ), and table name (for example, 

TestCache ):

A message is logged to indicate that the tool was successful:

The table created by the sql-cache  tool has the following schema:

An app should manipulate cache values using an instance of IDistributedCache, not a SqlServerCache.

The sample app implements SqlServerCache in a non-Development environment in 

Startup.ConfigureServices :

A ConnectionString (and optionally, SchemaName and TableName) are typically stored outside of source control (for

example, stored by the Secret Manager or in appsettings.json/appsettings.{ENVIRONMENT}.json files). The connection

string may contain credentials that should be kept out of source control systems.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.sqlservercachingservicesextensions.adddistributedsqlservercache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercacheoptions.connectionstring
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercacheoptions.schemaname
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.sqlserver.sqlservercacheoptions.tablename


Distributed Redis CacheDistributed Redis Cache

services.AddDistributedRedisCache(options =>
{
    options.Configuration = "localhost";
    options.InstanceName = "SampleInstance";
});

Distributed NCache CacheDistributed NCache Cache

Use the distributed cache

public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
    IApplicationLifetime lifetime, IDistributedCache cache)
{
    lifetime.ApplicationStarted.Register(() =>
    {
        var currentTimeUTC = DateTime.UtcNow.ToString();
        byte[] encodedCurrentTimeUTC = Encoding.UTF8.GetBytes(currentTimeUTC);
        var options = new DistributedCacheEntryOptions()
            .SetSlidingExpiration(TimeSpan.FromSeconds(20));
        cache.Set("cachedTimeUTC", encodedCurrentTimeUTC, options);
    });

Redis is an open source in-memory data store, which is often used as a distributed cache. You can use Redis

locally, and you can configure an Azure Redis Cache for an Azure-hosted ASP.NET Core app.

An app configures the cache implementation using a RedisCache instance (AddDistributedRedisCache):

To install Redis on your local machine:

1. Install the Chocolatey Redis package.

2. Run redis-server  from a command prompt.

NCache is an open source in-memory distributed cache developed natively in .NET and .NET Core. NCache

works both locally and configured as a distributed cache cluster for an ASP.NET Core app running in Azure or

on other hosting platforms.

To install and configure NCache on your local machine, see NCache Getting Started Guide for Windows.

To configure NCache:

services.AddNCacheDistributedCache(configuration =>    
{        
    configuration.CacheName = "demoClusteredCache";
    configuration.EnableLogs = true;
    configuration.ExceptionsEnabled = true;
});

1. Install NCache open source NuGet.

2. Configure the cache cluster in client.ncconf.

3. Add the following code to Startup.ConfigureServices :

To use the IDistributedCache interface, request an instance of IDistributedCache from any constructor in the

app. The instance is provided by dependency injection (DI).

When the sample app starts, IDistributedCache is injected into Startup.Configure . The current time is cached

using IApplicationLifetime (for more information, see Web Host: IApplicationLifetime interface):

https://redis.io/
https://azure.microsoft.com/services/cache/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.redis.rediscache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.rediscacheservicecollectionextensions.adddistributedrediscache
https://chocolatey.org/packages/redis-64/
https://github.com/Alachisoft/NCache
https://www.alachisoft.com/resources/docs/ncache-oss/getting-started-guide-windows/
https://www.nuget.org/packages/Alachisoft.NCache.OpenSource.SDK/
https://www.alachisoft.com/resources/docs/ncache-oss/admin-guide/client-config.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime


public class IndexModel : PageModel
{
    private readonly IDistributedCache _cache;

    public IndexModel(IDistributedCache cache)
    {
        _cache = cache;
    }

    public string CachedTimeUTC { get; set; }

    public async Task OnGetAsync()
    {
        CachedTimeUTC = "Cached Time Expired";
        var encodedCachedTimeUTC = await _cache.GetAsync("cachedTimeUTC");

        if (encodedCachedTimeUTC != null)
        {
            CachedTimeUTC = Encoding.UTF8.GetString(encodedCachedTimeUTC);
        }
    }

    public async Task<IActionResult> OnPostResetCachedTime()
    {
        var currentTimeUTC = DateTime.UtcNow.ToString();
        byte[] encodedCurrentTimeUTC = Encoding.UTF8.GetBytes(currentTimeUTC);
        var options = new DistributedCacheEntryOptions()
            .SetSlidingExpiration(TimeSpan.FromSeconds(20));
        await _cache.SetAsync("cachedTimeUTC", encodedCurrentTimeUTC, options);

        return RedirectToPage();
    }
}

NOTENOTE

Recommendations

The sample app injects IDistributedCache into the IndexModel  for use by the Index page.

Each time the Index page is loaded, the cache is checked for the cached time in OnGetAsync . If the cached time

hasn't expired, the time is displayed. If 20 seconds have elapsed since the last time the cached time was

accessed (the last time this page was loaded), the page displays Cached Time Expired.

Immediately update the cached time to the current time by selecting the Reset Cached TimeReset Cached Time button. The

button triggers the OnPostResetCachedTime  handler method.

There's no need to use a Singleton or Scoped lifetime for IDistributedCache instances (at least for the built-in

implementations).

You can also create an IDistributedCache instance wherever you might need one instead of using DI, but creating an

instance in code can make your code harder to test and violates the Explicit Dependencies Principle.

When deciding which implementation of IDistributedCache is best for your app, consider the following:

Existing infrastructure

Performance requirements

Cost

Team experience

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache


Additional resources

Caching solutions usually rely on in-memory storage to provide fast retrieval of cached data, but memory is a

limited resource and costly to expand. Only store commonly used data in a cache.

Generally, a Redis cache provides higher throughput and lower latency than a SQL Server cache. However,

benchmarking is usually required to determine the performance characteristics of caching strategies.

When SQL Server is used as a distributed cache backing store, use of the same database for the cache and the

app's ordinary data storage and retrieval can negatively impact the performance of both. We recommend

using a dedicated SQL Server instance for the distributed cache backing store.

Redis Cache on Azure

SQL Database on Azure

ASP.NET Core IDistributedCache Provider for NCache in Web Farms (NCache on GitHub)

Cache in-memory in ASP.NET Core

Detect changes with change tokens in ASP.NET Core

Response caching in ASP.NET Core

Response Caching Middleware in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core

Host ASP.NET Core in a web farm

https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/
https://docs.microsoft.com/en-us/azure/sql-database/
http://www.alachisoft.com/ncache/aspnet-core-idistributedcache-ncache.html
https://github.com/Alachisoft/NCache


Response Caching Middleware in ASP.NET Core
9/22/2020 • 14 minutes to read • Edit Online

Configuration

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCaching();
    services.AddRazorPages();
}

By John Luo

This article explains how to configure Response Caching Middleware in an ASP.NET Core app. The middleware

determines when responses are cacheable, stores responses, and serves responses from cache. For an

introduction to HTTP caching and the [ResponseCache]  attribute, see Response Caching.

View or download sample code (how to download)

Response Caching Middleware is implicitly available for ASP.NET Core apps via the shared framework.

In Startup.ConfigureServices , add the Response Caching Middleware to the service collection:

Configure the app to use the middleware with the UseResponseCaching extension method, which adds the

middleware to the request processing pipeline in Startup.Configure :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/performance/caching/middleware.md
https://github.com/JunTaoLuo
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/caching/middleware/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.responsecachingextensions.useresponsecaching


public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
    }

    app.UseStaticFiles();
    app.UseRouting();
    // UseCors must be called before UseResponseCaching
    // app.UseCors("myAllowSpecificOrigins");

    app.UseResponseCaching();

    app.Use(async (context, next) =>
    {
        context.Response.GetTypedHeaders().CacheControl = 
            new Microsoft.Net.Http.Headers.CacheControlHeaderValue()
            {
                Public = true,
                MaxAge = TimeSpan.FromSeconds(10)
            };
        context.Response.Headers[Microsoft.Net.Http.Headers.HeaderNames.Vary] = 
            new string[] { "Accept-Encoding" };

        await next();
    });

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
    });
}

WARNINGWARNING
UseCors must be called before UseResponseCaching when using CORS middleware.

The sample app adds headers to control caching on subsequent requests:

Cache-Control: Caches cacheable responses for up to 10 seconds.

Vary: Configures the middleware to serve a cached response only if the Accept-Encoding header of

subsequent requests matches that of the original request.

https://docs.microsoft.com/en-us/dotnet/api/owin.corsextensions.usecors
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.responsecachingextensions.useresponsecaching
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7231#section-5.3.4


// using Microsoft.AspNetCore.Http;

app.Use(async (context, next) =>
{
    context.Response.GetTypedHeaders().CacheControl = 
        new Microsoft.Net.Http.Headers.CacheControlHeaderValue()
        {
            Public = true,
            MaxAge = TimeSpan.FromSeconds(10)
        };
    context.Response.Headers[Microsoft.Net.Http.Headers.HeaderNames.Vary] = 
        new string[] { "Accept-Encoding" };

    await next();
});

WARNINGWARNING

Options

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

MaximumBodySize The largest cacheable size for the response body in bytes.
The default value is 64 * 1024 * 1024  (64 MB).

SizeLimit The size limit for the response cache middleware in bytes.
The default value is 100 * 1024 * 1024  (100 MB).

UseCaseSensitivePaths Determines if responses are cached on case-sensitive paths.
The default value is false .

services.AddResponseCaching(options =>
{
    options.MaximumBodySize = 1024;
    options.UseCaseSensitivePaths = true;
});

The preceding headers are not written to the response and are overridden when a controller, action, or Razor

Page:

Has a [ResponseCache] attribute. This applies even if a property isn't set. For example, omitting the

VaryByHeader property will cause the corresponding header to be removed from the response.

Response Caching Middleware only caches server responses that result in a 200 (OK) status code. Any other

responses, including error pages, are ignored by the middleware.

Responses containing content for authenticated clients must be marked as not cacheable to prevent the middleware

from storing and serving those responses. See Conditions for caching for details on how the middleware determines if a

response is cacheable.

Response caching options are shown in the following table.

The following example configures the middleware to:

Cache responses with a body size smaller than or equal to 1,024 bytes.

Store the responses by case-sensitive paths. For example, /page1  and /Page1  are stored separately.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingoptions.maximumbodysize#microsoft_aspnetcore_responsecaching_responsecachingoptions_maximumbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingoptions.sizelimit#microsoft_aspnetcore_responsecaching_responsecachingoptions_sizelimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingoptions.usecasesensitivepaths#microsoft_aspnetcore_responsecaching_responsecachingoptions_usecasesensitivepaths


VaryByQueryKeys

var responseCachingFeature = context.HttpContext.Features.Get<IResponseCachingFeature>();

if (responseCachingFeature != null)
{
    responseCachingFeature.VaryByQueryKeys = new[] { "MyKey" };
}

HTTP headers used by Response Caching Middleware

H EA DERH EA DER DETA IL SDETA IL S

Authorization The response isn't cached if the header exists.

Cache-Control The middleware only considers caching responses marked
with the public  cache directive. Control caching with the

following parameters:

†If no limit is specified to max-stale , the middleware takes

no action.
‡ proxy-revalidate  has the same effect as 

must-revalidate .

For more information, see RFC 7231: Request Cache-
Control Directives.

Pragma A Pragma: no-cache  header in the request produces the

same effect as Cache-Control: no-cache . This header is

overridden by the relevant directives in the 
Cache-Control  header, if present. Considered for

backward compatibility with HTTP/1.0.

When using MVC / web API controllers or Razor Pages page models, the [ResponseCache]  attribute specifies

the parameters necessary for setting the appropriate headers for response caching. The only parameter of the 

[ResponseCache]  attribute that strictly requires the middleware is VaryByQueryKeys, which doesn't

correspond to an actual HTTP header. For more information, see Response caching in ASP.NET Core.

When not using the [ResponseCache]  attribute, response caching can be varied with VaryByQueryKeys . Use the

ResponseCachingFeature directly from the HttpContext.Features:

Using a single value equal to *  in VaryByQueryKeys  varies the cache by all request query parameters.

The following table provides information on HTTP headers that affect response caching.

max-age

max-stale†

min-fresh

must-revalidate

no-cache

no-store

only-if-cached

private

public

s-maxage

proxy-revalidate‡

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute.varybyquerykeys#microsoft_aspnetcore_mvc_responsecacheattribute_varybyquerykeys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingfeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.features#microsoft_aspnetcore_http_httpcontext_features
https://tools.ietf.org/html/rfc7234#section-5.2.1


Set-Cookie The response isn't cached if the header exists. Any
middleware in the request processing pipeline that sets one
or more cookies prevents the Response Caching
Middleware from caching the response (for example, the
cookie-based TempData provider).

Vary The Vary  header is used to vary the cached response by

another header. For example, cache responses by encoding
by including the Vary: Accept-Encoding  header, which

caches responses for requests with headers 
Accept-Encoding: gzip  and 

Accept-Encoding: text/plain  separately. A response

with a header value of *  is never stored.

Expires A response deemed stale by this header isn't stored or
retrieved unless overridden by other Cache-Control

headers.

If-None-Match The full response is served from cache if the value isn't *

and the ETag  of the response doesn't match any of the

values provided. Otherwise, a 304 (Not Modified) response
is served.

If-Modified-Since If the If-None-Match  header isn't present, a full response

is served from cache if the cached response date is newer
than the value provided. Otherwise, a 304 - Not Modified
response is served.

Date When serving from cache, the Date  header is set by the

middleware if it wasn't provided on the original response.

Content-Length When serving from cache, the Content-Length  header is

set by the middleware if it wasn't provided on the original
response.

Age The Age  header sent in the original response is ignored.

The middleware computes a new value when serving a
cached response.

H EA DERH EA DER DETA IL SDETA IL S

Caching respects request Cache-Control directives
The middleware respects the rules of the HTTP 1.1 Caching specification. The rules require a cache to honor a

valid Cache-Control  header sent by the client. Under the specification, a client can make requests with a 

no-cache  header value and force the server to generate a new response for every request. Currently, there's

no developer control over this caching behavior when using the middleware because the middleware adheres

to the official caching specification.

For more control over caching behavior, explore other caching features of ASP.NET Core. See the following

topics:

Cache in-memory in ASP.NET Core

Distributed caching in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core

https://tools.ietf.org/html/rfc7234#section-5.2


    

Troubleshooting

Conditions for cachingConditions for caching

NOTENOTE

Additional resources

If caching behavior isn't as expected, confirm that responses are cacheable and capable of being served from

the cache. Examine the request's incoming headers and the response's outgoing headers. Enable logging to

help with debugging.

When testing and troubleshooting caching behavior, a browser may set request headers that affect caching in

undesirable ways. For example, a browser may set the Cache-Control  header to no-cache  or max-age=0  when

refreshing a page. The following tools can explicitly set request headers and are preferred for testing caching:

Fiddler

Postman

The request must result in a server response with a 200 (OK) status code.

The request method must be GET or HEAD.

In Startup.Configure , Response Caching Middleware must be placed before middleware that require

caching. For more information, see ASP.NET Core Middleware.

The Authorization  header must not be present.

Cache-Control  header parameters must be valid, and the response must be marked public  and not

marked private .

The Pragma: no-cache  header must not be present if the Cache-Control  header isn't present, as the 

Cache-Control  header overrides the Pragma  header when present.

The Set-Cookie  header must not be present.

Vary  header parameters must be valid and not equal to * .

The Content-Length  header value (if set) must match the size of the response body.

The IHttpSendFileFeature isn't used.

The response must not be stale as specified by the Expires  header and the max-age  and s-maxage  cache

directives.

Response buffering must be successful. The size of the response must be smaller than the configured or

default SizeLimit. The body size of the response must be smaller than the configured or default

MaximumBodySize.

The response must be cacheable according to the RFC 7234 specifications. For example, the no-store

directive must not exist in request or response header fields. See Section 3: Storing Responses in Caches of

RFC 7234 for details.

The Antiforgery system for generating secure tokens to prevent Cross-Site Request Forgery (CSRF) attacks sets the 

Cache-Control  and Pragma  headers to no-cache  so that responses aren't cached. For information on how to

disable antiforgery tokens for HTML form elements, see Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in

ASP.NET Core.

App startup in ASP.NET Core

ASP.NET Core Middleware

Cache in-memory in ASP.NET Core

Distributed caching in ASP.NET Core

Detect changes with change tokens in ASP.NET Core

https://www.telerik.com/fiddler
https://www.getpostman.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.ihttpsendfilefeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingoptions.sizelimit#microsoft_aspnetcore_responsecaching_responsecachingoptions_sizelimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingoptions.maximumbodysize#microsoft_aspnetcore_responsecaching_responsecachingoptions_maximumbodysize
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7234


Configuration

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCaching();
    services.AddMvc()
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
    }

    app.UseStaticFiles();

    app.UseResponseCaching();

    app.Use(async (context, next) =>
    {
        context.Response.GetTypedHeaders().CacheControl = 
            new Microsoft.Net.Http.Headers.CacheControlHeaderValue()
            {
                Public = true,
                MaxAge = TimeSpan.FromSeconds(10)
            };
        context.Response.Headers[Microsoft.Net.Http.Headers.HeaderNames.Vary] = 
            new string[] { "Accept-Encoding" };

        await next();
    });

    app.UseMvc();
}

Response caching in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core

This article explains how to configure Response Caching Middleware in an ASP.NET Core app. The middleware

determines when responses are cacheable, stores responses, and serves responses from cache. For an

introduction to HTTP caching and the [ResponseCache]  attribute, see Response Caching.

View or download sample code (how to download)

Use the Microsoft.AspNetCore.App metapackage or add a package reference to the

Microsoft.AspNetCore.ResponseCaching package.

In Startup.ConfigureServices , add the Response Caching Middleware to the service collection:

Configure the app to use the middleware with the UseResponseCaching extension method, which adds the

middleware to the request processing pipeline in Startup.Configure :

The sample app adds headers to control caching on subsequent requests:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/caching/middleware/samples
https://www.nuget.org/packages/Microsoft.AspNetCore.ResponseCaching/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.responsecachingextensions.useresponsecaching


// using Microsoft.AspNetCore.Http;

app.Use(async (context, next) =>
{
    context.Response.GetTypedHeaders().CacheControl = 
        new Microsoft.Net.Http.Headers.CacheControlHeaderValue()
        {
            Public = true,
            MaxAge = TimeSpan.FromSeconds(10)
        };
    context.Response.Headers[Microsoft.Net.Http.Headers.HeaderNames.Vary] = 
        new string[] { "Accept-Encoding" };

    await next();
});

WARNINGWARNING

Options

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

MaximumBodySize The largest cacheable size for the response body in bytes.
The default value is 64 * 1024 * 1024  (64 MB).

SizeLimit The size limit for the response cache middleware in bytes.
The default value is 100 * 1024 * 1024  (100 MB).

UseCaseSensitivePaths Determines if responses are cached on case-sensitive paths.
The default value is false .

Cache-Control: Caches cacheable responses for up to 10 seconds.

Vary: Configures the middleware to serve a cached response only if the Accept-Encoding header of

subsequent requests matches that of the original request.

The preceding headers are not written to the response and are overridden when a controller, action, or Razor

Page:

Has a [ResponseCache] attribute. This applies even if a property isn't set. For example, omitting the

VaryByHeader property will cause the corresponding header to be removed from the response.

Response Caching Middleware only caches server responses that result in a 200 (OK) status code. Any other

responses, including error pages, are ignored by the middleware.

Responses containing content for authenticated clients must be marked as not cacheable to prevent the middleware

from storing and serving those responses. See Conditions for caching for details on how the middleware determines if a

response is cacheable.

Response caching options are shown in the following table.

The following example configures the middleware to:

Cache responses with a body size smaller than or equal to 1,024 bytes.

Store the responses by case-sensitive paths. For example, /page1  and /Page1  are stored separately.

https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7231#section-5.3.4
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingoptions.maximumbodysize#microsoft_aspnetcore_responsecaching_responsecachingoptions_maximumbodysize
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingoptions.sizelimit#microsoft_aspnetcore_responsecaching_responsecachingoptions_sizelimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingoptions.usecasesensitivepaths#microsoft_aspnetcore_responsecaching_responsecachingoptions_usecasesensitivepaths


services.AddResponseCaching(options =>
{
    options.MaximumBodySize = 1024;
    options.UseCaseSensitivePaths = true;
});

VaryByQueryKeys

var responseCachingFeature = context.HttpContext.Features.Get<IResponseCachingFeature>();

if (responseCachingFeature != null)
{
    responseCachingFeature.VaryByQueryKeys = new[] { "MyKey" };
}

HTTP headers used by Response Caching Middleware

H EA DERH EA DER DETA IL SDETA IL S

Authorization The response isn't cached if the header exists.

Cache-Control The middleware only considers caching responses marked
with the public  cache directive. Control caching with the

following parameters:

†If no limit is specified to max-stale , the middleware takes

no action.
‡ proxy-revalidate  has the same effect as 

must-revalidate .

For more information, see RFC 7231: Request Cache-
Control Directives.

When using MVC / web API controllers or Razor Pages page models, the [ResponseCache]  attribute specifies

the parameters necessary for setting the appropriate headers for response caching. The only parameter of the 

[ResponseCache]  attribute that strictly requires the middleware is VaryByQueryKeys, which doesn't

correspond to an actual HTTP header. For more information, see Response caching in ASP.NET Core.

When not using the [ResponseCache]  attribute, response caching can be varied with VaryByQueryKeys . Use the

ResponseCachingFeature directly from the HttpContext.Features:

Using a single value equal to *  in VaryByQueryKeys  varies the cache by all request query parameters.

The following table provides information on HTTP headers that affect response caching.

max-age

max-stale†

min-fresh

must-revalidate

no-cache

no-store

only-if-cached

private

public

s-maxage

proxy-revalidate‡

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.responsecacheattribute.varybyquerykeys#microsoft_aspnetcore_mvc_responsecacheattribute_varybyquerykeys
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingfeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.features#microsoft_aspnetcore_http_httpcontext_features
https://tools.ietf.org/html/rfc7234#section-5.2.1


Pragma A Pragma: no-cache  header in the request produces the

same effect as Cache-Control: no-cache . This header is

overridden by the relevant directives in the 
Cache-Control  header, if present. Considered for

backward compatibility with HTTP/1.0.

Set-Cookie The response isn't cached if the header exists. Any
middleware in the request processing pipeline that sets one
or more cookies prevents the Response Caching
Middleware from caching the response (for example, the
cookie-based TempData provider).

Vary The Vary  header is used to vary the cached response by

another header. For example, cache responses by encoding
by including the Vary: Accept-Encoding  header, which

caches responses for requests with headers 
Accept-Encoding: gzip  and 

Accept-Encoding: text/plain  separately. A response

with a header value of *  is never stored.

Expires A response deemed stale by this header isn't stored or
retrieved unless overridden by other Cache-Control

headers.

If-None-Match The full response is served from cache if the value isn't *

and the ETag  of the response doesn't match any of the

values provided. Otherwise, a 304 (Not Modified) response
is served.

If-Modified-Since If the If-None-Match  header isn't present, a full response

is served from cache if the cached response date is newer
than the value provided. Otherwise, a 304 - Not Modified
response is served.

Date When serving from cache, the Date  header is set by the

middleware if it wasn't provided on the original response.

Content-Length When serving from cache, the Content-Length  header is

set by the middleware if it wasn't provided on the original
response.

Age The Age  header sent in the original response is ignored.

The middleware computes a new value when serving a
cached response.

H EA DERH EA DER DETA IL SDETA IL S

Caching respects request Cache-Control directives
The middleware respects the rules of the HTTP 1.1 Caching specification. The rules require a cache to honor a

valid Cache-Control  header sent by the client. Under the specification, a client can make requests with a 

no-cache  header value and force the server to generate a new response for every request. Currently, there's

no developer control over this caching behavior when using the middleware because the middleware adheres

to the official caching specification.

For more control over caching behavior, explore other caching features of ASP.NET Core. See the following

https://tools.ietf.org/html/rfc7234#section-5.2


Troubleshooting

Conditions for cachingConditions for caching

NOTENOTE

Additional resources

topics:

Cache in-memory in ASP.NET Core

Distributed caching in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core

If caching behavior isn't as expected, confirm that responses are cacheable and capable of being served from

the cache. Examine the request's incoming headers and the response's outgoing headers. Enable logging to

help with debugging.

When testing and troubleshooting caching behavior, a browser may set request headers that affect caching in

undesirable ways. For example, a browser may set the Cache-Control  header to no-cache  or max-age=0  when

refreshing a page. The following tools can explicitly set request headers and are preferred for testing caching:

Fiddler

Postman

The request must result in a server response with a 200 (OK) status code.

The request method must be GET or HEAD.

In Startup.Configure , Response Caching Middleware must be placed before middleware that require

caching. For more information, see ASP.NET Core Middleware.

The Authorization  header must not be present.

Cache-Control  header parameters must be valid, and the response must be marked public  and not

marked private .

The Pragma: no-cache  header must not be present if the Cache-Control  header isn't present, as the 

Cache-Control  header overrides the Pragma  header when present.

The Set-Cookie  header must not be present.

Vary  header parameters must be valid and not equal to * .

The Content-Length  header value (if set) must match the size of the response body.

The IHttpSendFileFeature isn't used.

The response must not be stale as specified by the Expires  header and the max-age  and s-maxage  cache

directives.

Response buffering must be successful. The size of the response must be smaller than the configured or

default SizeLimit. The body size of the response must be smaller than the configured or default

MaximumBodySize.

The response must be cacheable according to the RFC 7234 specifications. For example, the no-store

directive must not exist in request or response header fields. See Section 3: Storing Responses in Caches of

RFC 7234 for details.

The Antiforgery system for generating secure tokens to prevent Cross-Site Request Forgery (CSRF) attacks sets the 

Cache-Control  and Pragma  headers to no-cache  so that responses aren't cached. For information on how to

disable antiforgery tokens for HTML form elements, see Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in

ASP.NET Core.

https://www.telerik.com/fiddler
https://www.getpostman.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.features.ihttpsendfilefeature
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingoptions.sizelimit#microsoft_aspnetcore_responsecaching_responsecachingoptions_sizelimit
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecaching.responsecachingoptions.maximumbodysize#microsoft_aspnetcore_responsecaching_responsecachingoptions_maximumbodysize
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7234


App startup in ASP.NET Core

ASP.NET Core Middleware

Cache in-memory in ASP.NET Core

Distributed caching in ASP.NET Core

Detect changes with change tokens in ASP.NET Core

Response caching in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core



Object reuse with ObjectPool in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

Concepts

How to use ObjectPool

By Steve Gordon, Ryan Nowak, and Günther Foidl

Microsoft.Extensions.ObjectPool is part of the ASP.NET Core infrastructure that supports keeping a group of objects

in memory for reuse rather than allowing the objects to be garbage collected.

You might want to use the object pool if the objects that are being managed are:

Expensive to allocate/initialize.

Represent some limited resource.

Used predictably and frequently.

For example, the ASP.NET Core framework uses the object pool in some places to reuse StringBuilder instances. 

StringBuilder  allocates and manages its own buffers to hold character data. ASP.NET Core regularly uses 

StringBuilder  to implement features, and reusing them provides a performance benefit.

Object pooling doesn't always improve performance:

Unless the initialization cost of an object is high, it's usually slower to get the object from the pool.

Objects managed by the pool aren't de-allocated until the pool is de-allocated.

Use object pooling only after collecting performance data using realistic scenarios for your app or library.

WARNING: The WARNING: The ObjectPool  doesn't implement  doesn't implement IDisposable . We don't recommend using it with types. We don't recommend using it with types

that need disposal.that need disposal. ObjectPool  in ASP.NET Core 3.0 and later supports IDisposable .

NOTE: The ObjectPool doesn't place a limit on the number of objects that it will allocate, it places aNOTE: The ObjectPool doesn't place a limit on the number of objects that it will allocate, it places a

limit on the number of objects it will retain.limit on the number of objects it will retain.

ObjectPool<T> - the basic object pool abstraction. Used to get and return objects.

PooledObjectPolicy<T> - implement this to customize how an object is created and how it is reset when returned to

the pool. This can be passed into an object pool that you construct directly.... OR

Create acts as a factory for creating object pools.

The ObjectPool can be used in an app in multiple ways:

Instantiating a pool.

Registering a pool in Dependency injection (DI) as an instance.

Registering the ObjectPoolProvider<>  in DI and using it as a factory.

Call Get to get an object and Return to return the object. There's no requirement that you return every object. If you

don't return an object, it will be garbage collected.

When DefaultObjectPoolProvider is used and T  implements IDisposable :

Items that are notnot returned to the pool will be disposed.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/performance/ObjectPool.md
https://twitter.com/stevejgordon
https://github.com/rynowak
https://github.com/gfoidl
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.objectpool
https://docs.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.objectpool.objectpool-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.objectpool.pooledobjectpolicy-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.objectpool.objectpoolprovider.create
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.objectpool.objectpool-1.get
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.objectpool.objectpool-1.return
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.objectpool.defaultobjectpoolprovider


ObjectPool sample

public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.TryAddSingleton<ObjectPoolProvider, DefaultObjectPoolProvider>();

        services.TryAddSingleton<ObjectPool<StringBuilder>>(serviceProvider =>
        {
            var provider = serviceProvider.GetRequiredService<ObjectPoolProvider>();
            var policy = new StringBuilderPooledObjectPolicy();
            return provider.Create(policy);
        });

        services.AddWebEncoders();
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        
        // Test using /?firstname=Steve&lastName=Gordon&day=28&month=9
        app.UseMiddleware<BirthdayMiddleware>(); 
    }
}

When the pool gets disposed by DI, all items in the pool are disposed.

NOTE: After the pool is disposed:

Calling Get  throws a ObjectDisposedException .

return  disposes the given item.

The following code:

Adds ObjectPoolProvider  to the Dependency injection (DI) container.

Adds and configures ObjectPool<StringBuilder>  to the DI container.

Adds the BirthdayMiddleware .

The following code implements BirthdayMiddleware



public class BirthdayMiddleware
{
    private readonly RequestDelegate _next;

    public BirthdayMiddleware(RequestDelegate next)
    {
        _next = next;
    }

    public async Task InvokeAsync(HttpContext context, 
                                  ObjectPool<StringBuilder> builderPool)
    {
        if (context.Request.Query.TryGetValue("firstName", out var firstName) &&
            context.Request.Query.TryGetValue("lastName", out var lastName) && 
            context.Request.Query.TryGetValue("month", out var month) &&                 
            context.Request.Query.TryGetValue("day", out var day) &&
            int.TryParse(month, out var monthOfYear) &&
            int.TryParse(day, out var dayOfMonth))
        {                
            var now = DateTime.UtcNow; // Ignoring timezones.

            // Request a StringBuilder from the pool.
            var stringBuilder = builderPool.Get();

            try
            {
                stringBuilder.Append("Hi ")
                    .Append(firstName).Append(" ").Append(lastName).Append(". ");

                var encoder = context.RequestServices.GetRequiredService<HtmlEncoder>();

                if (now.Day == dayOfMonth && now.Month == monthOfYear)
                {
                    stringBuilder.Append("Happy birthday!!!");

                    var html = encoder.Encode(stringBuilder.ToString());
                    await context.Response.WriteAsync(html);
                }
                else
                {
                    var thisYearsBirthday = new DateTime(now.Year, monthOfYear, 
                                                                    dayOfMonth);

                    int daysUntilBirthday = thisYearsBirthday > now 
                        ? (thisYearsBirthday - now).Days 
                        : (thisYearsBirthday.AddYears(1) - now).Days;

                    stringBuilder.Append("There are ")
                        .Append(daysUntilBirthday).Append(" days until your birthday!");

                    var html = encoder.Encode(stringBuilder.ToString());
                    await context.Response.WriteAsync(html);
                }
            }
            finally // Ensure this runs even if the main code throws.
            {
                // Return the StringBuilder to the pool.
                builderPool.Return(stringBuilder); 
            }

            return;
        }

        await _next(context);
    }
}



If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

https://github.com/MicrosoftDocs/feedback/issues/2515


Response compression in ASP.NET Core
9/22/2020 • 27 minutes to read • Edit Online

When to use Response Compression Middleware

Response compression

ACCEPT-ENCODING  H EA DER VA L UES H EA DER VA L UES M IDDL EWA RE SUP P O RT EDM IDDL EWA RE SUP P O RT ED DESC RIP T IO NDESC RIP T IO N

br Yes (default) Brotli compressed data format

deflate No DEFLATE compressed data format

exi No W3C Efficient XML Interchange

gzip Yes Gzip file format

Network bandwidth is a limited resource. Reducing the size of the response usually increases the responsiveness

of an app, often dramatically. One way to reduce payload sizes is to compress an app's responses.

View or download sample code (how to download)

Use server-based response compression technologies in IIS, Apache, or Nginx. The performance of the

middleware probably won't match that of the server modules. HTTP.sys server server and Kestrel server don't

currently offer built-in compression support.

Use Response Compression Middleware when you're:

Unable to use the following server-based compression technologies:

Hosting directly on:

IIS Dynamic Compression module

Apache mod_deflate module

Nginx Compression and Decompression

HTTP.sys server (formerly called WebListener)

Kestrel server

Usually, any response not natively compressed can benefit from response compression. Responses not natively

compressed typically include: CSS, JavaScript, HTML, XML, and JSON. You shouldn't compress natively

compressed assets, such as PNG files. If you attempt to further compress a natively compressed response, any

small additional reduction in size and transmission time will likely be overshadowed by the time it took to process

the compression. Don't compress files smaller than about 150-1000 bytes (depending on the file's content and

the efficiency of compression). The overhead of compressing small files may produce a compressed file larger

than the uncompressed file.

When a client can process compressed content, the client must inform the server of its capabilities by sending the 

Accept-Encoding  header with the request. When a server sends compressed content, it must include information

in the Content-Encoding  header on how the compressed response is encoded. Content encoding designations

supported by the middleware are shown in the following table.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/performance/response-compression.md
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/response-compression/samples
https://www.iis.net/overview/reliability/dynamiccachingandcompression
https://httpd.apache.org/docs/current/mod/mod_deflate.html
https://www.nginx.com/resources/admin-guide/compression-and-decompression/
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/id/draft-varga-netconf-exi-capability-00.html
https://tools.ietf.org/html/rfc1952


identity Yes "No encoding" identifier: The response
must not be encoded.

pack200-gzip No Network Transfer Format for Java
Archives

* Yes Any available content encoding not
explicitly requested

ACCEPT-ENCODING  H EA DER VA L UES H EA DER VA L UES M IDDL EWA RE SUP P O RT EDM IDDL EWA RE SUP P O RT ED DESC RIP T IO NDESC RIP T IO N

H EA DERH EA DER RO L ERO L E

Accept-Encoding Sent from the client to the server to indicate the content
encoding schemes acceptable to the client.

Content-Encoding Sent from the server to the client to indicate the encoding of
the content in the payload.

Content-Length When compression occurs, the Content-Length  header is

removed, since the body content changes when the response
is compressed.

Content-MD5 When compression occurs, the Content-MD5  header is

removed, since the body content has changed and the hash
is no longer valid.

Content-Type Specifies the MIME type of the content. Every response
should specify its Content-Type . The middleware checks this

value to determine if the response should be compressed.
The middleware specifies a set of default MIME types that it
can encode, but you can replace or add MIME types.

Vary When sent by the server with a value of Accept-Encoding

to clients and proxies, the Vary  header indicates to the

client or proxy that it should cache (vary) responses based on
the value of the Accept-Encoding  header of the request.

The result of returning content with the 
Vary: Accept-Encoding  header is that both compressed

and uncompressed responses are cached separately.

For more information, see the IANA Official Content Coding List.

The middleware allows you to add additional compression providers for custom Accept-Encoding  header values.

For more information, see Custom Providers below.

The middleware is capable of reacting to quality value (qvalue, q ) weighting when sent by the client to prioritize

compression schemes. For more information, see RFC 7231: Accept-Encoding.

Compression algorithms are subject to a tradeoff between compression speed and the effectiveness of the

compression. Effectiveness in this context refers to the size of the output after compression. The smallest size is

achieved by the most optimal compression.

The headers involved in requesting, sending, caching, and receiving compressed content are described in the table

below.

Explore the features of the Response Compression Middleware with the sample app. The sample illustrates:

https://jcp.org/aboutJava/communityprocess/review/jsr200/index.html
https://www.iana.org/assignments/http-parameters/http-parameters.xml#http-content-coding-registry
https://tools.ietf.org/html/rfc7231#section-5.3.4
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/response-compression/samples


Package

Configuration

public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddResponseCompression();
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        app.UseResponseCompression();
    }
}

The compression of app responses using Gzip and custom compression providers.

How to add a MIME type to the default list of MIME types for compression.

Response Compression Middleware is provided by the Microsoft.AspNetCore.ResponseCompression package,

which is implicitly included in ASP.NET Core apps.

The following code shows how to enable the Response Compression Middleware for default MIME types and

compression providers (Brotli and Gzip):

Notes:

app.UseResponseCompression  must be called before any middleware that compresses responses. For more

information, see ASP.NET Core Middleware.

Use a tool such as Fiddler, Firebug, or Postman to set the Accept-Encoding  request header and study the

response headers, size, and body.

Submit a request to the sample app without the Accept-Encoding  header and observe that the response is

uncompressed. The Content-Encoding  and Vary  headers aren't present on the response.

Submit a request to the sample app with the Accept-Encoding: br  header (Brotli compression) and observe that

the response is compressed. The Content-Encoding  and Vary  headers are present on the response.

https://www.nuget.org/packages/Microsoft.AspNetCore.ResponseCompression/
https://www.telerik.com/fiddler
https://getfirebug.com/
https://www.getpostman.com/


        

Providers
Brotli Compression ProviderBrotli Compression Provider

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression();
}

Use the BrotliCompressionProvider to compress responses with the Brotli compressed data format.

If no compression providers are explicitly added to the CompressionProviderCollection:

The Brotli Compression Provider is added by default to the array of compression providers along with the Gzip

compression provider.

Compression defaults to Brotli compression when the Brotli compressed data format is supported by the

client. If Brotli isn't supported by the client, compression defaults to Gzip when the client supports Gzip

compression.

The Brotli Compression Provider must be added when any compression providers are explicitly added:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.brotlicompressionprovider
https://tools.ietf.org/html/rfc7932
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.compressionprovidercollection


          

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

C O M P RESSIO N  L EVELC O M P RESSIO N  L EVEL DESC RIP T IO NDESC RIP T IO N

CompressionLevel.Fastest Compression should complete as quickly as possible, even if
the resulting output isn't optimally compressed.

CompressionLevel.NoCompression No compression should be performed.

CompressionLevel.Optimal Responses should be optimally compressed, even if the
compression takes more time to complete.

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression();

    services.Configure<BrotliCompressionProviderOptions>(options => 
    {
        options.Level = CompressionLevel.Fastest;
    });
}

Gzip Compression ProviderGzip Compression Provider

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression();
}

Set the compression level with BrotliCompressionProviderOptions. The Brotli Compression Provider defaults to

the fastest compression level (CompressionLevel.Fastest), which might not produce the most efficient

compression. If the most efficient compression is desired, configure the middleware for optimal compression.

Use the GzipCompressionProvider to compress responses with the Gzip file format.

If no compression providers are explicitly added to the CompressionProviderCollection:

The Gzip Compression Provider is added by default to the array of compression providers along with the Brotli

Compression Provider.

Compression defaults to Brotli compression when the Brotli compressed data format is supported by the

client. If Brotli isn't supported by the client, compression defaults to Gzip when the client supports Gzip

compression.

The Gzip Compression Provider must be added when any compression providers are explicitly added:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.brotlicompressionprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.gzipcompressionprovider
https://tools.ietf.org/html/rfc1952
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.compressionprovidercollection


      

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

C O M P RESSIO N  L EVELC O M P RESSIO N  L EVEL DESC RIP T IO NDESC RIP T IO N

CompressionLevel.Fastest Compression should complete as quickly as possible, even if
the resulting output isn't optimally compressed.

CompressionLevel.NoCompression No compression should be performed.

CompressionLevel.Optimal Responses should be optimally compressed, even if the
compression takes more time to complete.

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression();

    services.Configure<GzipCompressionProviderOptions>(options => 
    {
        options.Level = CompressionLevel.Fastest;
    });
}

Custom providersCustom providers

Set the compression level with GzipCompressionProviderOptions. The Gzip Compression Provider defaults to the

fastest compression level (CompressionLevel.Fastest), which might not produce the most efficient compression. If

the most efficient compression is desired, configure the middleware for optimal compression.

Create custom compression implementations with ICompressionProvider. The EncodingName represents the

content encoding that this ICompressionProvider  produces. The middleware uses this information to choose the

provider based on the list specified in the Accept-Encoding  header of the request.

Using the sample app, the client submits a request with the Accept-Encoding: mycustomcompression  header. The

middleware uses the custom compression implementation and returns the response with a 

Content-Encoding: mycustomcompression  header. The client must be able to decompress the custom encoding in

order for a custom compression implementation to work.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.gzipcompressionprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.icompressionprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.icompressionprovider.encodingname


   

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

public class CustomCompressionProvider : ICompressionProvider
{
    public string EncodingName => "mycustomcompression";
    public bool SupportsFlush => true;

    public Stream CreateStream(Stream outputStream)
    {
        // Create a custom compression stream wrapper here
        return outputStream;
    }
}

MIME types

Submit a request to the sample app with the Accept-Encoding: mycustomcompression  header and observe the

response headers. The Vary  and Content-Encoding  headers are present on the response. The response body (not

shown) isn't compressed by the sample. There isn't a compression implementation in the 

CustomCompressionProvider  class of the sample. However, the sample shows where you would implement such a

compression algorithm.

The middleware specifies a default set of MIME types for compression:

application/javascript

application/json

application/xml

text/css



   

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

Compression with secure protocol

Adding the Vary header

Middleware issue when behind an Nginx reverse proxy

Working with IIS dynamic compression

Troubleshooting

text/html

text/json

text/plain

text/xml

Replace or append MIME types with the Response Compression Middleware options. Note that wildcard MIME

types, such as text/*  aren't supported. The sample app adds a MIME type for image/svg+xml  and compresses

and serves the ASP.NET Core banner image (banner.svg).

Compressed responses over secure connections can be controlled with the EnableForHttps  option, which is

disabled by default. Using compression with dynamically generated pages can lead to security problems such as

the CRIME and BREACH attacks.

When compressing responses based on the Accept-Encoding  header, there are potentially multiple compressed

versions of the response and an uncompressed version. In order to instruct client and proxy caches that multiple

versions exist and should be stored, the Vary  header is added with an Accept-Encoding  value. In ASP.NET Core

2.0 or later, the middleware adds the Vary  header automatically when the response is compressed.

When a request is proxied by Nginx, the Accept-Encoding  header is removed. Removal of the Accept-Encoding

header prevents the middleware from compressing the response. For more information, see NGINX: Compression

and Decompression. This issue is tracked by Figure out pass-through compression for Nginx

(aspnet/BasicMiddleware #123).

If you have an active IIS Dynamic Compression Module configured at the server level that you would like to

disable for an app, disable the module with an addition to the web.config file. For more information, see Disabling

IIS modules.

Use a tool like Fiddler, Firebug, or Postman, which allow you to set the Accept-Encoding  request header and study

the response headers, size, and body. By default, Response Compression Middleware compresses responses that

meet the following conditions:

The Accept-Encoding  header is present with a value of br , gzip , * , or custom encoding that matches a

https://wikipedia.org/wiki/CRIME_(security_exploit)
https://wikipedia.org/wiki/BREACH_(security_exploit)
https://www.nginx.com/resources/admin-guide/compression-and-decompression/
https://github.com/aspnet/BasicMiddleware/issues/123
https://www.telerik.com/fiddler
https://getfirebug.com/
https://www.getpostman.com/


Additional resources

When to use Response Compression Middleware

Response compression

custom compression provider that you've established. The value must not be identity  or have a quality value

(qvalue, q ) setting of 0 (zero).

The MIME type ( Content-Type ) must be set and must match a MIME type configured on the

ResponseCompressionOptions.

The request must not include the Content-Range  header.

The request must use insecure protocol (http), unless secure protocol (https) is configured in the Response

Compression Middleware options. Note the danger described above when enabling secure content

compression.

App startup in ASP.NET Core

ASP.NET Core Middleware

Mozilla Developer Network: Accept-Encoding

RFC 7231 Section 3.1.2.1: Content Codings

RFC 7230 Section 4.2.3: Gzip Coding

GZIP file format specification version 4.3

Network bandwidth is a limited resource. Reducing the size of the response usually increases the responsiveness

of an app, often dramatically. One way to reduce payload sizes is to compress an app's responses.

View or download sample code (how to download)

Use server-based response compression technologies in IIS, Apache, or Nginx. The performance of the

middleware probably won't match that of the server modules. HTTP.sys server server and Kestrel server don't

currently offer built-in compression support.

Use Response Compression Middleware when you're:

Unable to use the following server-based compression technologies:

Hosting directly on:

IIS Dynamic Compression module

Apache mod_deflate module

Nginx Compression and Decompression

HTTP.sys server (formerly called WebListener)

Kestrel server

Usually, any response not natively compressed can benefit from response compression. Responses not natively

compressed typically include: CSS, JavaScript, HTML, XML, and JSON. You shouldn't compress natively

compressed assets, such as PNG files. If you attempt to further compress a natively compressed response, any

small additional reduction in size and transmission time will likely be overshadowed by the time it took to process

the compression. Don't compress files smaller than about 150-1000 bytes (depending on the file's content and

the efficiency of compression). The overhead of compressing small files may produce a compressed file larger

than the uncompressed file.

When a client can process compressed content, the client must inform the server of its capabilities by sending the 

Accept-Encoding  header with the request. When a server sends compressed content, it must include information

in the Content-Encoding  header on how the compressed response is encoded. Content encoding designations

supported by the middleware are shown in the following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.responsecompressionoptions
https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Encoding
https://tools.ietf.org/html/rfc7231#section-3.1.2.1
https://tools.ietf.org/html/rfc7230#section-4.2.3
https://www.ietf.org/rfc/rfc1952.txt
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/response-compression/samples
https://www.iis.net/overview/reliability/dynamiccachingandcompression
https://httpd.apache.org/docs/current/mod/mod_deflate.html
https://www.nginx.com/resources/admin-guide/compression-and-decompression/


ACCEPT-ENCODING  H EA DER VA L UES H EA DER VA L UES M IDDL EWA RE SUP P O RT EDM IDDL EWA RE SUP P O RT ED DESC RIP T IO NDESC RIP T IO N

br Yes (default) Brotli compressed data format

deflate No DEFLATE compressed data format

exi No W3C Efficient XML Interchange

gzip Yes Gzip file format

identity Yes "No encoding" identifier: The response
must not be encoded.

pack200-gzip No Network Transfer Format for Java
Archives

* Yes Any available content encoding not
explicitly requested

H EA DERH EA DER RO L ERO L E

Accept-Encoding Sent from the client to the server to indicate the content
encoding schemes acceptable to the client.

Content-Encoding Sent from the server to the client to indicate the encoding of
the content in the payload.

Content-Length When compression occurs, the Content-Length  header is

removed, since the body content changes when the response
is compressed.

Content-MD5 When compression occurs, the Content-MD5  header is

removed, since the body content has changed and the hash
is no longer valid.

Content-Type Specifies the MIME type of the content. Every response
should specify its Content-Type . The middleware checks this

value to determine if the response should be compressed.
The middleware specifies a set of default MIME types that it
can encode, but you can replace or add MIME types.

For more information, see the IANA Official Content Coding List.

The middleware allows you to add additional compression providers for custom Accept-Encoding  header values.

For more information, see Custom Providers below.

The middleware is capable of reacting to quality value (qvalue, q ) weighting when sent by the client to prioritize

compression schemes. For more information, see RFC 7231: Accept-Encoding.

Compression algorithms are subject to a tradeoff between compression speed and the effectiveness of the

compression. Effectiveness in this context refers to the size of the output after compression. The smallest size is

achieved by the most optimal compression.

The headers involved in requesting, sending, caching, and receiving compressed content are described in the table

below.

https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/id/draft-varga-netconf-exi-capability-00.html
https://tools.ietf.org/html/rfc1952
https://jcp.org/aboutJava/communityprocess/review/jsr200/index.html
https://www.iana.org/assignments/http-parameters/http-parameters.xml#http-content-coding-registry
https://tools.ietf.org/html/rfc7231#section-5.3.4


Vary When sent by the server with a value of Accept-Encoding

to clients and proxies, the Vary  header indicates to the

client or proxy that it should cache (vary) responses based on
the value of the Accept-Encoding  header of the request.

The result of returning content with the 
Vary: Accept-Encoding  header is that both compressed

and uncompressed responses are cached separately.

H EA DERH EA DER RO L ERO L E

Package

Configuration

public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddResponseCompression();
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        app.UseResponseCompression();
    }
}

Explore the features of the Response Compression Middleware with the sample app. The sample illustrates:

The compression of app responses using Gzip and custom compression providers.

How to add a MIME type to the default list of MIME types for compression.

To include the middleware in a project, add a reference to the Microsoft.AspNetCore.App metapackage, which

includes the Microsoft.AspNetCore.ResponseCompression package.

The following code shows how to enable the Response Compression Middleware for default MIME types and

compression providers (Brotli and Gzip):

Notes:

app.UseResponseCompression  must be called before any middleware that compresses responses. For more

information, see ASP.NET Core Middleware.

Use a tool such as Fiddler, Firebug, or Postman to set the Accept-Encoding  request header and study the

response headers, size, and body.

Submit a request to the sample app without the Accept-Encoding  header and observe that the response is

uncompressed. The Content-Encoding  and Vary  headers aren't present on the response.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/response-compression/samples
https://www.nuget.org/packages/Microsoft.AspNetCore.ResponseCompression/
https://www.telerik.com/fiddler
https://getfirebug.com/
https://www.getpostman.com/


Providers
Brotli Compression ProviderBrotli Compression Provider

Submit a request to the sample app with the Accept-Encoding: br  header (Brotli compression) and observe that

the response is compressed. The Content-Encoding  and Vary  headers are present on the response.

Use the BrotliCompressionProvider to compress responses with the Brotli compressed data format.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.brotlicompressionprovider
https://tools.ietf.org/html/rfc7932


public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression();
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

C O M P RESSIO N  L EVELC O M P RESSIO N  L EVEL DESC RIP T IO NDESC RIP T IO N

CompressionLevel.Fastest Compression should complete as quickly as possible, even if
the resulting output isn't optimally compressed.

CompressionLevel.NoCompression No compression should be performed.

CompressionLevel.Optimal Responses should be optimally compressed, even if the
compression takes more time to complete.

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression();

    services.Configure<BrotliCompressionProviderOptions>(options => 
    {
        options.Level = CompressionLevel.Fastest;
    });
}

Gzip Compression ProviderGzip Compression Provider

If no compression providers are explicitly added to the CompressionProviderCollection:

The Brotli Compression Provider is added by default to the array of compression providers along with the Gzip

compression provider.

Compression defaults to Brotli compression when the Brotli compressed data format is supported by the

client. If Brotli isn't supported by the client, compression defaults to Gzip when the client supports Gzip

compression.

The Brotli Compression Provider must be added when any compression providers are explicitly added:

Set the compression level with BrotliCompressionProviderOptions. The Brotli Compression Provider defaults to

the fastest compression level (CompressionLevel.Fastest), which might not produce the most efficient

compression. If the most efficient compression is desired, configure the middleware for optimal compression.

Use the GzipCompressionProvider to compress responses with the Gzip file format.

If no compression providers are explicitly added to the CompressionProviderCollection:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.compressionprovidercollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.brotlicompressionprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.gzipcompressionprovider
https://tools.ietf.org/html/rfc1952
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.compressionprovidercollection


public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression();
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

C O M P RESSIO N  L EVELC O M P RESSIO N  L EVEL DESC RIP T IO NDESC RIP T IO N

CompressionLevel.Fastest Compression should complete as quickly as possible, even if
the resulting output isn't optimally compressed.

CompressionLevel.NoCompression No compression should be performed.

CompressionLevel.Optimal Responses should be optimally compressed, even if the
compression takes more time to complete.

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression();

    services.Configure<GzipCompressionProviderOptions>(options => 
    {
        options.Level = CompressionLevel.Fastest;
    });
}

Custom providersCustom providers

The Gzip Compression Provider is added by default to the array of compression providers along with the Brotli

Compression Provider.

Compression defaults to Brotli compression when the Brotli compressed data format is supported by the

client. If Brotli isn't supported by the client, compression defaults to Gzip when the client supports Gzip

compression.

The Gzip Compression Provider must be added when any compression providers are explicitly added:

Set the compression level with GzipCompressionProviderOptions. The Gzip Compression Provider defaults to the

fastest compression level (CompressionLevel.Fastest), which might not produce the most efficient compression. If

the most efficient compression is desired, configure the middleware for optimal compression.

Create custom compression implementations with ICompressionProvider. The EncodingName represents the

content encoding that this ICompressionProvider  produces. The middleware uses this information to choose the

provider based on the list specified in the Accept-Encoding  header of the request.

Using the sample app, the client submits a request with the Accept-Encoding: mycustomcompression  header. The

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.gzipcompressionprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.icompressionprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.icompressionprovider.encodingname


public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

public class CustomCompressionProvider : ICompressionProvider
{
    public string EncodingName => "mycustomcompression";
    public bool SupportsFlush => true;

    public Stream CreateStream(Stream outputStream)
    {
        // Create a custom compression stream wrapper here
        return outputStream;
    }
}

MIME types

middleware uses the custom compression implementation and returns the response with a 

Content-Encoding: mycustomcompression  header. The client must be able to decompress the custom encoding in

order for a custom compression implementation to work.

Submit a request to the sample app with the Accept-Encoding: mycustomcompression  header and observe the

response headers. The Vary  and Content-Encoding  headers are present on the response. The response body (not

shown) isn't compressed by the sample. There isn't a compression implementation in the 

CustomCompressionProvider  class of the sample. However, the sample shows where you would implement such a

compression algorithm.

The middleware specifies a default set of MIME types for compression:

application/javascript



public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

Compression with secure protocol

Adding the Vary header

Middleware issue when behind an Nginx reverse proxy

Working with IIS dynamic compression

Troubleshooting

application/json

application/xml

text/css

text/html

text/json

text/plain

text/xml

Replace or append MIME types with the Response Compression Middleware options. Note that wildcard MIME

types, such as text/*  aren't supported. The sample app adds a MIME type for image/svg+xml  and compresses

and serves the ASP.NET Core banner image (banner.svg).

Compressed responses over secure connections can be controlled with the EnableForHttps  option, which is

disabled by default. Using compression with dynamically generated pages can lead to security problems such as

the CRIME and BREACH attacks.

When compressing responses based on the Accept-Encoding  header, there are potentially multiple compressed

versions of the response and an uncompressed version. In order to instruct client and proxy caches that multiple

versions exist and should be stored, the Vary  header is added with an Accept-Encoding  value. In ASP.NET Core

2.0 or later, the middleware adds the Vary  header automatically when the response is compressed.

When a request is proxied by Nginx, the Accept-Encoding  header is removed. Removal of the Accept-Encoding

header prevents the middleware from compressing the response. For more information, see NGINX: Compression

and Decompression. This issue is tracked by Figure out pass-through compression for Nginx

(aspnet/BasicMiddleware #123).

If you have an active IIS Dynamic Compression Module configured at the server level that you would like to

disable for an app, disable the module with an addition to the web.config file. For more information, see Disabling

IIS modules.

Use a tool like Fiddler, Firebug, or Postman, which allow you to set the Accept-Encoding  request header and study

https://wikipedia.org/wiki/CRIME_(security_exploit)
https://wikipedia.org/wiki/BREACH_(security_exploit)
https://www.nginx.com/resources/admin-guide/compression-and-decompression/
https://github.com/aspnet/BasicMiddleware/issues/123
https://www.telerik.com/fiddler
https://getfirebug.com/
https://www.getpostman.com/


Additional resources

When to use Response Compression Middleware

Response compression

the response headers, size, and body. By default, Response Compression Middleware compresses responses that

meet the following conditions:

The Accept-Encoding  header is present with a value of br , gzip , * , or custom encoding that matches a

custom compression provider that you've established. The value must not be identity  or have a quality value

(qvalue, q ) setting of 0 (zero).

The MIME type ( Content-Type ) must be set and must match a MIME type configured on the

ResponseCompressionOptions.

The request must not include the Content-Range  header.

The request must use insecure protocol (http), unless secure protocol (https) is configured in the Response

Compression Middleware options. Note the danger described above when enabling secure content

compression.

App startup in ASP.NET Core

ASP.NET Core Middleware

Mozilla Developer Network: Accept-Encoding

RFC 7231 Section 3.1.2.1: Content Codings

RFC 7230 Section 4.2.3: Gzip Coding

GZIP file format specification version 4.3

Network bandwidth is a limited resource. Reducing the size of the response usually increases the responsiveness

of an app, often dramatically. One way to reduce payload sizes is to compress an app's responses.

View or download sample code (how to download)

Use server-based response compression technologies in IIS, Apache, or Nginx. The performance of the

middleware probably won't match that of the server modules. HTTP.sys server server and Kestrel server don't

currently offer built-in compression support.

Use Response Compression Middleware when you're:

Unable to use the following server-based compression technologies:

Hosting directly on:

IIS Dynamic Compression module

Apache mod_deflate module

Nginx Compression and Decompression

HTTP.sys server (formerly called WebListener)

Kestrel server

Usually, any response not natively compressed can benefit from response compression. Responses not natively

compressed typically include: CSS, JavaScript, HTML, XML, and JSON. You shouldn't compress natively

compressed assets, such as PNG files. If you attempt to further compress a natively compressed response, any

small additional reduction in size and transmission time will likely be overshadowed by the time it took to process

the compression. Don't compress files smaller than about 150-1000 bytes (depending on the file's content and

the efficiency of compression). The overhead of compressing small files may produce a compressed file larger

than the uncompressed file.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.responsecompressionoptions
https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Encoding
https://tools.ietf.org/html/rfc7231#section-3.1.2.1
https://tools.ietf.org/html/rfc7230#section-4.2.3
https://www.ietf.org/rfc/rfc1952.txt
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/response-compression/samples
https://www.iis.net/overview/reliability/dynamiccachingandcompression
https://httpd.apache.org/docs/current/mod/mod_deflate.html
https://www.nginx.com/resources/admin-guide/compression-and-decompression/


ACCEPT-ENCODING  H EA DER VA L UES H EA DER VA L UES M IDDL EWA RE SUP P O RT EDM IDDL EWA RE SUP P O RT ED DESC RIP T IO NDESC RIP T IO N

br No Brotli compressed data format

deflate No DEFLATE compressed data format

exi No W3C Efficient XML Interchange

gzip Yes (default) Gzip file format

identity Yes "No encoding" identifier: The response
must not be encoded.

pack200-gzip No Network Transfer Format for Java
Archives

* Yes Any available content encoding not
explicitly requested

H EA DERH EA DER RO L ERO L E

Accept-Encoding Sent from the client to the server to indicate the content
encoding schemes acceptable to the client.

Content-Encoding Sent from the server to the client to indicate the encoding of
the content in the payload.

Content-Length When compression occurs, the Content-Length  header is

removed, since the body content changes when the response
is compressed.

Content-MD5 When compression occurs, the Content-MD5  header is

removed, since the body content has changed and the hash
is no longer valid.

When a client can process compressed content, the client must inform the server of its capabilities by sending the 

Accept-Encoding  header with the request. When a server sends compressed content, it must include information

in the Content-Encoding  header on how the compressed response is encoded. Content encoding designations

supported by the middleware are shown in the following table.

For more information, see the IANA Official Content Coding List.

The middleware allows you to add additional compression providers for custom Accept-Encoding  header values.

For more information, see Custom Providers below.

The middleware is capable of reacting to quality value (qvalue, q ) weighting when sent by the client to prioritize

compression schemes. For more information, see RFC 7231: Accept-Encoding.

Compression algorithms are subject to a tradeoff between compression speed and the effectiveness of the

compression. Effectiveness in this context refers to the size of the output after compression. The smallest size is

achieved by the most optimal compression.

The headers involved in requesting, sending, caching, and receiving compressed content are described in the table

below.

https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/id/draft-varga-netconf-exi-capability-00.html
https://tools.ietf.org/html/rfc1952
https://jcp.org/aboutJava/communityprocess/review/jsr200/index.html
https://www.iana.org/assignments/http-parameters/http-parameters.xml#http-content-coding-registry
https://tools.ietf.org/html/rfc7231#section-5.3.4


Content-Type Specifies the MIME type of the content. Every response
should specify its Content-Type . The middleware checks this

value to determine if the response should be compressed.
The middleware specifies a set of default MIME types that it
can encode, but you can replace or add MIME types.

Vary When sent by the server with a value of Accept-Encoding

to clients and proxies, the Vary  header indicates to the

client or proxy that it should cache (vary) responses based on
the value of the Accept-Encoding  header of the request.

The result of returning content with the 
Vary: Accept-Encoding  header is that both compressed

and uncompressed responses are cached separately.

H EA DERH EA DER RO L ERO L E

Package

Configuration

public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddResponseCompression();
    }

    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        app.UseResponseCompression();
    }
}

Explore the features of the Response Compression Middleware with the sample app. The sample illustrates:

The compression of app responses using Gzip and custom compression providers.

How to add a MIME type to the default list of MIME types for compression.

To include the middleware in a project, add a reference to the Microsoft.AspNetCore.App metapackage, which

includes the Microsoft.AspNetCore.ResponseCompression package.

The following code shows how to enable the Response Compression Middleware for default MIME types and the

Gzip Compression Provider:

Notes:

app.UseResponseCompression  must be called before any middleware that compresses responses. For more

information, see ASP.NET Core Middleware.

Use a tool such as Fiddler, Firebug, or Postman to set the Accept-Encoding  request header and study the

response headers, size, and body.

Submit a request to the sample app without the Accept-Encoding  header and observe that the response is

uncompressed. The Content-Encoding  and Vary  headers aren't present on the response.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/performance/response-compression/samples
https://www.nuget.org/packages/Microsoft.AspNetCore.ResponseCompression/
https://www.telerik.com/fiddler
https://getfirebug.com/
https://www.getpostman.com/


Providers
Gzip Compression ProviderGzip Compression Provider

Submit a request to the sample app with the Accept-Encoding: gzip  header and observe that the response is

compressed. The Content-Encoding  and Vary  headers are present on the response.

Use the GzipCompressionProvider to compress responses with the Gzip file format.

If no compression providers are explicitly added to the CompressionProviderCollection:

The Gzip Compression Provider is added by default to the array of compression providers.

Compression defaults to Gzip when the client supports Gzip compression.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.gzipcompressionprovider
https://tools.ietf.org/html/rfc1952
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.compressionprovidercollection


public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression();
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

C O M P RESSIO N  L EVELC O M P RESSIO N  L EVEL DESC RIP T IO NDESC RIP T IO N

CompressionLevel.Fastest Compression should complete as quickly as possible, even if
the resulting output isn't optimally compressed.

CompressionLevel.NoCompression No compression should be performed.

CompressionLevel.Optimal Responses should be optimally compressed, even if the
compression takes more time to complete.

public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression();

    services.Configure<GzipCompressionProviderOptions>(options => 
    {
        options.Level = CompressionLevel.Fastest;
    });
}

Custom providersCustom providers

The Gzip Compression Provider must be added when any compression providers are explicitly added:

Set the compression level with GzipCompressionProviderOptions. The Gzip Compression Provider defaults to the

fastest compression level (CompressionLevel.Fastest), which might not produce the most efficient compression. If

the most efficient compression is desired, configure the middleware for optimal compression.

Create custom compression implementations with ICompressionProvider. The EncodingName represents the

content encoding that this ICompressionProvider  produces. The middleware uses this information to choose the

provider based on the list specified in the Accept-Encoding  header of the request.

Using the sample app, the client submits a request with the Accept-Encoding: mycustomcompression  header. The

middleware uses the custom compression implementation and returns the response with a 

Content-Encoding: mycustomcompression  header. The client must be able to decompress the custom encoding in

order for a custom compression implementation to work.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.gzipcompressionprovideroptions
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.compressionlevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.icompressionprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.icompressionprovider.encodingname


public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

public class CustomCompressionProvider : ICompressionProvider
{
    public string EncodingName => "mycustomcompression";
    public bool SupportsFlush => true;

    public Stream CreateStream(Stream outputStream)
    {
        // Create a custom compression stream wrapper here
        return outputStream;
    }
}

MIME types

Submit a request to the sample app with the Accept-Encoding: mycustomcompression  header and observe the

response headers. The Vary  and Content-Encoding  headers are present on the response. The response body (not

shown) isn't compressed by the sample. There isn't a compression implementation in the 

CustomCompressionProvider  class of the sample. However, the sample shows where you would implement such a

compression algorithm.

The middleware specifies a default set of MIME types for compression:

application/javascript

application/json

application/xml

text/css



public void ConfigureServices(IServiceCollection services)
{
    services.AddResponseCompression(options =>
    {
        options.Providers.Add<BrotliCompressionProvider>();
        options.Providers.Add<GzipCompressionProvider>();
        options.Providers.Add<CustomCompressionProvider>();
        options.MimeTypes = 
            ResponseCompressionDefaults.MimeTypes.Concat(
                new[] { "image/svg+xml" });
    });
}

Compression with secure protocol

Adding the Vary header

Middleware issue when behind an Nginx reverse proxy

Working with IIS dynamic compression

Troubleshooting

text/html

text/json

text/plain

text/xml

Replace or append MIME types with the Response Compression Middleware options. Note that wildcard MIME

types, such as text/*  aren't supported. The sample app adds a MIME type for image/svg+xml  and compresses

and serves the ASP.NET Core banner image (banner.svg).

Compressed responses over secure connections can be controlled with the EnableForHttps  option, which is

disabled by default. Using compression with dynamically generated pages can lead to security problems such as

the CRIME and BREACH attacks.

When compressing responses based on the Accept-Encoding  header, there are potentially multiple compressed

versions of the response and an uncompressed version. In order to instruct client and proxy caches that multiple

versions exist and should be stored, the Vary  header is added with an Accept-Encoding  value. In ASP.NET Core

2.0 or later, the middleware adds the Vary  header automatically when the response is compressed.

When a request is proxied by Nginx, the Accept-Encoding  header is removed. Removal of the Accept-Encoding

header prevents the middleware from compressing the response. For more information, see NGINX: Compression

and Decompression. This issue is tracked by Figure out pass-through compression for Nginx

(aspnet/BasicMiddleware #123).

If you have an active IIS Dynamic Compression Module configured at the server level that you would like to

disable for an app, disable the module with an addition to the web.config file. For more information, see Disabling

IIS modules.

Use a tool like Fiddler, Firebug, or Postman, which allow you to set the Accept-Encoding  request header and study

the response headers, size, and body. By default, Response Compression Middleware compresses responses that

meet the following conditions:

The Accept-Encoding  header is present with a value of gzip , * , or custom encoding that matches a custom

https://wikipedia.org/wiki/CRIME_(security_exploit)
https://wikipedia.org/wiki/BREACH_(security_exploit)
https://www.nginx.com/resources/admin-guide/compression-and-decompression/
https://github.com/aspnet/BasicMiddleware/issues/123
https://www.telerik.com/fiddler
https://getfirebug.com/
https://www.getpostman.com/


Additional resources

compression provider that you've established. The value must not be identity  or have a quality value (qvalue,

q ) setting of 0 (zero).

The MIME type ( Content-Type ) must be set and must match a MIME type configured on the

ResponseCompressionOptions.

The request must not include the Content-Range  header.

The request must use insecure protocol (http), unless secure protocol (https) is configured in the Response

Compression Middleware options. Note the danger described above when enabling secure content

compression.

App startup in ASP.NET Core

ASP.NET Core Middleware

Mozilla Developer Network: Accept-Encoding

RFC 7231 Section 3.1.2.1: Content Codings

RFC 7230 Section 4.2.3: Gzip Coding

GZIP file format specification version 4.3

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.responsecompression.responsecompressionoptions
https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Encoding
https://tools.ietf.org/html/rfc7231#section-3.1.2.1
https://tools.ietf.org/html/rfc7230#section-4.2.3
https://www.ietf.org/rfc/rfc1952.txt


Performance Diagnostic Tools
9/22/2020 • 2 minutes to read • Edit Online

Visual Studio Diagnostic Tools

Application Insights

PerfView

By Mike Rousos

This article lists tools for diagnosing performance issues in ASP.NET Core.

The profiling and diagnostic tools built into Visual Studio are a good place to start investigating performance

issues. These tools are powerful and convenient to use from the Visual Studio development environment. The

tooling allows analysis of CPU usage, memory usage, and performance events in ASP.NET Core apps. Being built-in

makes profiling easy at development time.

More information is available in Visual Studio documentation.

Application Insights provides in-depth performance data for your app. Application Insights automatically collects

data on response rates, failure rates, dependency response times, and more. Application Insights supports logging

custom events and metrics specific to your app.

Azure Application Insights provides multiple ways to give insights on monitored apps:

Application Map – helps spot performance bottlenecks or failure hot-spots across all components of

distributed apps.

Azure Metrics Explorer is a component of the Microsoft Azure portal that allows plotting charts, visually

correlating trends, and investigating spikes and dips in metrics' values.

Performance blade in Application Insights portal:

Shows performance details for different operations in the monitored app.

Allows drilling into a single operation to check all parts/dependencies that contribute to a long duration.

Profiler can be invoked from here to collect performance traces on-demand.

Azure Application Insights Profiler allows regular and on-demand profiling of .NET apps. Azure portal shows

captured performance traces with call stacks and hot paths. The trace files can also be downloaded for

deeper analysis using PerfView.

Application Insights can be used in a variety environments:

Optimized to work in Azure.

Works in production, development, and staging.

Works locally from Visual Studio or in other hosting environments.

For more information, see Application Insights for ASP.NET Core.

PerfView is a performance analysis tool created by the .NET team specifically for diagnosing .NET performance

issues. PerfView allows analysis of CPU usage, memory and GC behavior, performance events, and wall clock time.

You can learn more about PerfView and how to get started with PerfView video tutorials or by reading the user's

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/performance/diagnostic-tools.md
https://github.com/mjrousos
https://docs.microsoft.com/en-us/visualstudio/profiling
https://docs.microsoft.com/en-us/visualstudio/profiling/profiling-overview
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-app-map
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/metrics-getting-started
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-tutorial-performance
https://docs.microsoft.com/en-us/azure/azure-monitor/app/profiler
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-visual-studio
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net-core
https://github.com/Microsoft/perfview
https://channel9.msdn.com/Series/PerfView-Tutorial


Windows Performance Toolkit

PerfCollect

Other Third-party Performance Tools

guide available in the tool or on GitHub.

Windows Performance Toolkit (WPT) consists of two components: Windows Performance Recorder (WPR) and

Windows Performance Analyzer (WPA). The tools produce in-depth performance profiles of Windows operating

systems and apps. WPT has richer ways of visualizing data, but its data collecting is less powerful than PerfView's.

While PerfView is a useful performance analysis tool for .NET scenarios, it only runs on Windows so you can't use it

to collect traces from ASP.NET Core apps running in Linux environments.

PerfCollect is a bash script that uses native Linux profiling tools (Perf and LTTng) to collect traces on Linux that can

be analyzed by PerfView. PerfCollect is useful when performance problems show up in Linux environments where

PerfView can't be used directly. Instead, PerfCollect can collect traces from .NET Core apps that are then analyzed on

a Windows computer using PerfView.

More information about how to install and get started with PerfCollect is available on GitHub.

The following lists some third-party performance tools that are useful in performance investigation of .NET Core

applications.

MiniProfiler

dotTrace and dotMemory from JetBrains

VTune from Intel

https://github.com/Microsoft/perfview
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/linux-performance-tracing.md
https://perf.wiki.kernel.org/index.php/Main_Page
https://lttng.org/
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/linux-performance-tracing.md
https://miniprofiler.com/
https://www.jetbrains.com/profiler/
https://www.jetbrains.com/dotmemory/
https://www.jetbrains.com/
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html


ASP.NET Core load/stress testing
9/22/2020 • 2 minutes to read • Edit Online

Third-party tools

Load testing and stress testing are important to ensure a web app is performant and scalable. Their goals are

different even though they often share similar tests.

Load testsLoad tests : Test whether the app can handle a specified load of users for a certain scenario while still satisfying the

response goal. The app is run under normal conditions.

Stress testsStress tests : Test app stability when running under extreme conditions, often for a long period of time. The tests

place high user load, either spikes or gradually increasing load, on the app, or they limit the app's computing

resources.

Stress tests determine if an app under stress can recover from failure and gracefully return to expected behavior.

Under stress, the app isn't run under normal conditions.

Visual Studio 2019 announced plans to deprecate the load testing. The corresponding Azure DevOps cloud-based

load testing service has been closed.

The following list contains third-party web performance tools with various feature sets:

Apache JMeter

ApacheBench (ab)

Gatling

k6

Locust

West Wind WebSurge

Netling

Vegeta

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/test/load-tests.md
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://jmeter.apache.org/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://gatling.io/
https://k6.io
https://locust.io/
https://websurge.west-wind.com/
https://github.com/hallatore/Netling
https://github.com/tsenart/vegeta


Globalization and localization in ASP.NET Core
9/22/2020 • 52 minutes to read • Edit Online

Make the app's content localizable

using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Localization;

namespace Localization.Controllers
{
    [Route("api/[controller]")]
    public class AboutController : Controller
    {
        private readonly IStringLocalizer<AboutController> _localizer;

        public AboutController(IStringLocalizer<AboutController> localizer)
        {
            _localizer = localizer;
        }

        [HttpGet]
        public string Get()
        {
            return _localizer["About Title"];
        }
    }
}

By Rick Anderson, Damien Bowden, Bart Calixto, Nadeem Afana, and Hisham Bin Ateya

A multilingual website allows the site to reach a wider audience. ASP.NET Core provides services and

middleware for localizing into different languages and cultures.

Internationalization involves Globalization and Localization. Globalization is the process of designing apps that

support different cultures. Globalization adds support for input, display, and output of a defined set of

language scripts that relate to specific geographic areas.

Localization is the process of adapting a globalized app, which you have already processed for localizability, to

a particular culture/locale. For more information see Globalization and localization termsGlobalization and localization terms near the end of

this document.

App localization involves the following:

1. Make the app's content localizable

2. Provide localized resources for the languages and cultures you support

3. Implement a strategy to select the language/culture for each request

View or download sample code (how to download)

IStringLocalizer and IStringLocalizer<T> were architected to improve productivity when developing localized

apps. IStringLocalizer  uses the ResourceManager and ResourceReader to provide culture-specific resources

at run time. The interface has an indexer and an IEnumerable  for returning localized strings. IStringLocalizer

doesn't require storing the default language strings in a resource file. You can develop an app targeted for

localization and not need to create resource files early in development. The code below shows how to wrap the

string "About Title" for localization.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/localization.md
https://twitter.com/RickAndMSFT
https://twitter.com/damien_bod
https://twitter.com/bartmax
https://afana.me/
https://twitter.com/hishambinateya
https://docs.microsoft.com/en-us/dotnet/api/system.globalization
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/localization
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/localization/sample/3.x/Localization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer-1
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcereader


using System;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Localization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Localization;

namespace Localization.Controllers
{
    public class BookController : Controller
    {
        private readonly IHtmlLocalizer<BookController> _localizer;

        public BookController(IHtmlLocalizer<BookController> localizer)
        {
            _localizer = localizer;
        }

        public IActionResult Hello(string name)
        {
            ViewData["Message"] = _localizer["<b>Hello</b><i> {0}</i>", name];

            return View();
        }

NOTENOTE

In the preceding code, the IStringLocalizer<T>  implementation comes from Dependency Injection. If the

localized value of "About Title" isn't found, then the indexer key is returned, that is, the string "About Title". You

can leave the default language literal strings in the app and wrap them in the localizer, so that you can focus on

developing the app. You develop your app with your default language and prepare it for the localization step

without first creating a default resource file. Alternatively, you can use the traditional approach and provide a

key to retrieve the default language string. For many developers the new workflow of not having a default

language .resx file and simply wrapping the string literals can reduce the overhead of localizing an app. Other

developers will prefer the traditional work flow as it can make it easier to work with longer string literals and

make it easier to update localized strings.

Use the IHtmlLocalizer<T>  implementation for resources that contain HTML. IHtmlLocalizer  HTML encodes

arguments that are formatted in the resource string, but doesn't HTML encode the resource string itself. In the

sample highlighted below, only the value of name  parameter is HTML encoded.

Generally, only localize text, not HTML.

At the lowest level, you can get IStringLocalizerFactory  out of Dependency Injection:



{
    public class TestController : Controller
    {
        private readonly IStringLocalizer _localizer;
        private readonly IStringLocalizer _localizer2;

        public TestController(IStringLocalizerFactory factory)
        {
            var type = typeof(SharedResource);
            var assemblyName = new AssemblyName(type.GetTypeInfo().Assembly.FullName);
            _localizer = factory.Create(type);
            _localizer2 = factory.Create("SharedResource", assemblyName.Name);
        }       

        public IActionResult About()
        {
            ViewData["Message"] = _localizer["Your application description page."] 
                + " loc 2: " + _localizer2["Your application description page."];

// Dummy class to group shared resources

namespace Localization
{
    public class SharedResource
    {
    }
}

public class InfoController : Controller
{
    private readonly IStringLocalizer<InfoController> _localizer;
    private readonly IStringLocalizer<SharedResource> _sharedLocalizer;

    public InfoController(IStringLocalizer<InfoController> localizer,
                   IStringLocalizer<SharedResource> sharedLocalizer)
    {
        _localizer = localizer;
        _sharedLocalizer = sharedLocalizer;
    }

    public string TestLoc()
    {
        string msg = "Shared resx: " + _sharedLocalizer["Hello!"] +
                     " Info resx " + _localizer["Hello!"];
        return msg;
    }

View localization

The code above demonstrates each of the two factory create methods.

You can partition your localized strings by controller, area, or have just one container. In the sample app, a

dummy class named SharedResource  is used for shared resources.

Some developers use the Startup  class to contain global or shared strings. In the sample below, the 

InfoController  and the SharedResource  localizers are used:

The IViewLocalizer  service provides localized strings for a view. The ViewLocalizer  class implements this

interface and finds the resource location from the view file path. The following code shows how to use the

default implementation of IViewLocalizer :



@using Microsoft.AspNetCore.Mvc.Localization

@inject IViewLocalizer Localizer

@{
    ViewData["Title"] = Localizer["About"];
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p>@Localizer["Use this area to provide additional information."]</p>

@Localizer["<i>Hello</i> <b>{0}!</b>", UserManager.GetUserName(User)]

KEYKEY VA L UEVA L UE

<i>Hello</i> <b>{0}!</b> <i>Bonjour</i> <b>{0} !</b>

NOTENOTE

@using Microsoft.AspNetCore.Mvc.Localization
@using Localization.Services

@inject IViewLocalizer Localizer
@inject IHtmlLocalizer<SharedResource> SharedLocalizer

@{
    ViewData["Title"] = Localizer["About"];
}
<h2>@ViewData["Title"].</h2>

<h1>@SharedLocalizer["Hello!"]</h1>

DataAnnotations localization

The default implementation of IViewLocalizer  finds the resource file based on the view's file name. There's no

option to use a global shared resource file. ViewLocalizer  implements the localizer using IHtmlLocalizer , so

Razor doesn't HTML encode the localized string. You can parameterize resource strings and IViewLocalizer

will HTML encode the parameters, but not the resource string. Consider the following Razor markup:

A French resource file could contain the following:

The rendered view would contain the HTML markup from the resource file.

Generally, only localize text, not HTML.

To use a shared resource file in a view, inject IHtmlLocalizer<T> :

DataAnnotations error messages are localized with IStringLocalizer<T> . Using the option 

ResourcesPath = "Resources" , the error messages in RegisterViewModel  can be stored in either of the following

paths:

Resources/ViewModels.Account.RegisterViewModel.fr.resx

Resources/ViewModels/Account/RegisterViewModel.fr.resx



        

public class RegisterViewModel
{
    [Required(ErrorMessage = "The Email field is required.")]
    [EmailAddress(ErrorMessage = "The Email field is not a valid email address.")]
    [Display(Name = "Email")]
    public string Email { get; set; }

    [Required(ErrorMessage = "The Password field is required.")]
    [StringLength(8, ErrorMessage = "The {0} must be at least {2} characters long.", MinimumLength = 6)]
    [DataType(DataType.Password)]
    [Display(Name = "Password")]
    public string Password { get; set; }

    [DataType(DataType.Password)]
    [Display(Name = "Confirm password")]
    [Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]
    public string ConfirmPassword { get; set; }
}

Using one resource string for multiple classesUsing one resource string for multiple classes

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc()
        .AddDataAnnotationsLocalization(options => {
            options.DataAnnotationLocalizerProvider = (type, factory) =>
                factory.Create(typeof(SharedResource));
        });
}

Provide localized resources for the languages and cultures you
support
SupportedCultures and SupportedUICulturesSupportedCultures and SupportedUICultures

Resource files

In ASP.NET Core MVC 1.1.0 and higher, non-validation attributes are localized. ASP.NET Core MVC 1.0 does notnot

look up localized strings for non-validation attributes.

 

The following code shows how to use one resource string for validation attributes with multiple classes:

In the preceding code, SharedResource  is the class corresponding to the resx where your validation messages

are stored. With this approach, DataAnnotations will only use SharedResource , rather than the resource for

each class.

ASP.NET Core allows you to specify two culture values, SupportedCultures  and SupportedUICultures . The

CultureInfo object for SupportedCultures  determines the results of culture-dependent functions, such as date,

time, number, and currency formatting. SupportedCultures  also determines the sorting order of text, casing

conventions, and string comparisons. See CultureInfo.CurrentCulture for more info on how the server gets the

Culture. The SupportedUICultures  determines which translated strings (from .resx files) are looked up by the

ResourceManager. The ResourceManager  simply looks up culture-specific strings that's determined by 

CurrentUICulture . Every thread in .NET has CurrentCulture  and CurrentUICulture  objects. ASP.NET Core

inspects these values when rendering culture-dependent functions. For example, if the current thread's culture

is set to "en-US" (English, United States), DateTime.Now.ToLongDateString()  displays "Thursday, February 18,

2016", but if CurrentCulture  is set to "es-ES" (Spanish, Spain) the output will be "jueves, 18 de febrero de

2016".

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/en-us/dotnet/api/system.stringcomparer.currentculture#system_stringcomparer_currentculture
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcemanager


A resource file is a useful mechanism for separating localizable strings from code. Translated strings for the

non-default language are isolated in .resx resource files. For example, you might want to create Spanish

resource file named Welcome.es.resx containing translated strings. "es" is the language code for Spanish. To

create this resource file in Visual Studio:

1. In Solution ExplorerSolution Explorer , right click on the folder which will contain the resource file > AddAdd > New ItemNew Item.

2. In the Search installed templatesSearch installed templates  box, enter "resource" and name the file.



3. Enter the key value (native string) in the NameName column and the translated string in the ValueValue column.

Visual Studio shows the Welcome.es.resx file.



Resource file naming

RESO URC E N A M ERESO URC E N A M E DOT  O R PAT H  N A M IN GDOT  O R PAT H  N A M IN G

Resources/Controllers.HomeController.fr.resx Dot

Resources/Controllers/HomeController.fr.resx Path

Resources are named for the full type name of their class minus the assembly name. For example, a French

resource in a project whose main assembly is LocalizationWebsite.Web.dll  for the class 

LocalizationWebsite.Web.Startup  would be named Startup.fr.resx. A resource for the class 

LocalizationWebsite.Web.Controllers.HomeController  would be named Controllers.HomeController.fr.resx. If

your targeted class's namespace isn't the same as the assembly name you will need the full type name. For

example, in the sample project a resource for the type ExtraNamespace.Tools  would be named

ExtraNamespace.Tools.fr.resx.

In the sample project, the ConfigureServices  method sets the ResourcesPath  to "Resources", so the project

relative path for the home controller's French resource file is Resources/Controllers.HomeController.fr.resx.

Alternatively, you can use folders to organize resource files. For the home controller, the path would be

Resources/Controllers/HomeController.fr.resx. If you don't use the ResourcesPath  option, the .resx file would go

in the project base directory. The resource file for HomeController  would be named

Controllers.HomeController.fr.resx. The choice of using the dot or path naming convention depends on how

you want to organize your resource files.

Resource files using @inject IViewLocalizer  in Razor views follow a similar pattern. The resource file for a

view can be named using either dot naming or path naming. Razor view resource files mimic the path of their

associated view file. Assuming we set the ResourcesPath  to "Resources", the French resource file associated

with the Views/Home/About.cshtml view could be either of the following:

Resources/Views/Home/About.fr.resx

Resources/Views.Home.About.fr.resx

If you don't use the ResourcesPath  option, the .resx file for a view would be located in the same folder as the



RootNamespaceAttributeRootNamespaceAttribute

WARNINGWARNING

using System.Reflection;
using Microsoft.Extensions.Localization;

[assembly: ResourceLocation("Resource Folder Name")]
[assembly: RootNamespace("App Root Namespace")]

Culture fallback behavior

Generate resource files with Visual StudioGenerate resource files with Visual Studio

view.

The RootNamespace attribute provides the root namespace of an assembly when the root namespace of an

assembly is different than the assembly name.

This can occur when a project's name is not a valid .NET identifier. For instance my-project-name.csproj  will use the

root namespace my_project_name  and the assembly name my-project-name  leading to this error.

If the root namespace of an assembly is different than the assembly name:

Localization does not work by default.

Localization fails due to the way resources are searched for within the assembly. RootNamespace  is a build-

time value which is not available to the executing process.

If the RootNamespace  is different from the AssemblyName , include the following in AssemblyInfo.cs (with

parameter values replaced with the actual values):

The preceding code enables the successful resolution of resx files.

When searching for a resource, localization engages in "culture fallback". Starting from the requested culture, if

not found, it reverts to the parent culture of that culture. As an aside, the CultureInfo.Parent property

represents the parent culture. This usually (but not always) means removing the national signifier from the ISO.

For example, the dialect of Spanish spoken in Mexico is "es-MX". It has the parent "es"—Spanish non-specific to

any country.

Imagine your site receives a request for a "Welcome" resource using culture "fr-CA". The localization system

looks for the following resources, in order, and selects the first match:

Welcome.fr-CA.resx

Welcome.fr.resx

Welcome.resx (if the NeutralResourcesLanguage  is "fr-CA")

As an example, if you remove the ".fr" culture designator and you have the culture set to French, the default

resource file is read and strings are localized. The Resource manager designates a default or fallback resource

for when nothing meets your requested culture. If you want to just return the key when missing a resource for

the requested culture you must not have a default resource file.

If you create a resource file in Visual Studio without a culture in the file name (for example, Welcome.resx),

Visual Studio will create a C# class with a property for each string. That's usually not what you want with

ASP.NET Core. You typically don't have a default .resx resource file (a .resx file without the culture name). We

suggest you create the .resx file with a culture name (for example Welcome.fr.resx). When you create a .resx file

with a culture name, Visual Studio won't generate the class file.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.rootnamespaceattribute?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.parent


    

Add other culturesAdd other cultures

Implement a strategy to select the language/culture for each request
Configure localizationConfigure localization

services.AddLocalization(options => options.ResourcesPath = "Resources");

services.AddMvc()
    .AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix)
    .AddDataAnnotationsLocalization();

Localization middlewareLocalization middleware

var supportedCultures = new[] { "en-US", "fr" };
var localizationOptions = new RequestLocalizationOptions().SetDefaultCulture(supportedCultures[0])
    .AddSupportedCultures(supportedCultures)
    .AddSupportedUICultures(supportedCultures);

app.UseRequestLocalization(localizationOptions);

app.UseRouting();
app.UseStaticFiles();

app.UseAuthentication();

app.UseEndpoints(endpoints =>
{
    endpoints.MapControllerRoute(name: "default", pattern: "{controller=Home}/{action=Index}/{id?}");
});

Each language and culture combination (other than the default language) requires a unique resource file. You

create resource files for different cultures and locales by creating new resource files in which the ISO language

codes are part of the file name (for example, en-usen-us , fr-cafr-ca, and en-gben-gb). These ISO codes are placed between

the file name and the .resx file extension, as in Welcome.es-MX.resx (Spanish/Mexico).

Localization is configured in the Startup.ConfigureServices  method:

AddLocalization  adds the localization services to the services container. The code above also sets the

resources path to "Resources".

AddViewLocalization  adds support for localized view files. In this sample view localization is based on

the view file suffix. For example "fr" in the Index.fr.cshtml file.

AddDataAnnotationsLocalization  adds support for localized DataAnnotations  validation messages

through IStringLocalizer  abstractions.

The current culture on a request is set in the localization Middleware. The localization middleware is enabled in

the Startup.Configure  method. The localization middleware must be configured before any middleware which

might check the request culture (for example, app.UseMvcWithDefaultRoute() ).

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

UseRequestLocalization  initializes a RequestLocalizationOptions  object. On every request the list of 

RequestCultureProvider  in the RequestLocalizationOptions  is enumerated and the first provider that can

successfully determine the request culture is used. The default providers come from the 

RequestLocalizationOptions  class:

1. QueryStringRequestCultureProvider

https://github.com/MicrosoftDocs/feedback/issues/2515


QueryStringRequestCultureProviderQueryStringRequestCultureProvider

http://localhost:5000/?culture=es-MX

CookieRequestCultureProviderCookieRequestCultureProvider

c=en-UK|uic=en-US

The Accept-Language HTTP headerThe Accept-Language HTTP header

Set the Accept-Language HTTP header in IESet the Accept-Language HTTP header in IE

2. CookieRequestCultureProvider

3. AcceptLanguageHeaderRequestCultureProvider

The default list goes from most specific to least specific. Later in the article we'll see how you can change the

order and even add a custom culture provider. If none of the providers can determine the request culture, the 

DefaultRequestCulture  is used.

Some apps will use a query string to set the /dotnet/api/system.globalization.cultureinfo?view=netcore-3.1.

For apps that use the cookie or Accept-Language header approach, adding a query string to the URL is useful

for debugging and testing code. By default, the QueryStringRequestCultureProvider  is registered as the first

localization provider in the RequestCultureProvider  list. You pass the query string parameters culture  and 

ui-culture . The following example sets the specific culture (language and region) to Spanish/Mexico:

http://localhost:5000/?culture=es-MX&ui-culture=es-MX

If you only pass in one of the two ( culture  or ui-culture ), the query string provider will set both values

using the one you passed in. For example, setting just the culture will set both the Culture  and the UICulture :

Production apps will often provide a mechanism to set the culture with the ASP.NET Core culture cookie. Use

the MakeCookieValue  method to create a cookie.

The CookieRequestCultureProvider  DefaultCookieName  returns the default cookie name used to track the user's

preferred culture information. The default cookie name is .AspNetCore.Culture .

The cookie format is c=%LANGCODE%|uic=%LANGCODE% , where c  is Culture  and uic  is UICulture , for example:

If you only specify one of culture info and UI culture, the specified culture will be used for both culture info and

UI culture.

The Accept-Language header is settable in most browsers and was originally intended to specify the user's

language. This setting indicates what the browser has been set to send or has inherited from the underlying

operating system. The Accept-Language HTTP header from a browser request isn't an infallible way to detect

the user's preferred language (see Setting language preferences in a browser). A production app should

include a way for a user to customize their choice of culture.

1. From the gear icon, tap Internet OptionsInternet Options .

2. Tap LanguagesLanguages .

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo?view=netcore-3.1
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-lang-priorities.en.php


Use a custom providerUse a custom provider

private const string enUSCulture = "en-US";

services.Configure<RequestLocalizationOptions>(options =>
{
    var supportedCultures = new[]
    {
        new CultureInfo(enUSCulture),
        new CultureInfo("fr")
    };

    options.DefaultRequestCulture = new RequestCulture(culture: enUSCulture, uiCulture: enUSCulture);
    options.SupportedCultures = supportedCultures;
    options.SupportedUICultures = supportedCultures;

    options.AddInitialRequestCultureProvider(new CustomRequestCultureProvider(async context =>
    {
        // My custom request culture logic
        return new ProviderCultureResult("en");
    }));
});

Set the culture programmaticallySet the culture programmatically

3. Tap Set Language PreferencesSet Language Preferences .

4. Tap Add a languageAdd a language.

5. Add the language.

6. Tap the language, then tap Move UpMove Up.

Suppose you want to let your customers store their language and culture in your databases. You could write a

provider to look up these values for the user. The following code shows how to add a custom provider :

Use RequestLocalizationOptions  to add or remove localization providers.



@using Microsoft.AspNetCore.Builder
@using Microsoft.AspNetCore.Http.Features
@using Microsoft.AspNetCore.Localization
@using Microsoft.AspNetCore.Mvc.Localization
@using Microsoft.Extensions.Options

@inject IViewLocalizer Localizer
@inject IOptions<RequestLocalizationOptions> LocOptions

@{
    var requestCulture = Context.Features.Get<IRequestCultureFeature>();
    var cultureItems = LocOptions.Value.SupportedUICultures
        .Select(c => new SelectListItem { Value = c.Name, Text = c.DisplayName })
        .ToList();
    var returnUrl = string.IsNullOrEmpty(Context.Request.Path) ? "~/" : $"~{Context.Request.Path.Value}";
}

<div title="@Localizer["Request culture provider:"] @requestCulture?.Provider?.GetType().Name">
    <form id="selectLanguage" asp-controller="Home" 
          asp-action="SetLanguage" asp-route-returnUrl="@returnUrl" 
          method="post" class="form-horizontal" role="form">
        <label asp-for="@requestCulture.RequestCulture.UICulture.Name">@Localizer["Language:"]</label> 
<select name="culture"
          onchange="this.form.submit();"
          asp-for="@requestCulture.RequestCulture.UICulture.Name" asp-items="cultureItems">
        </select>
    </form>
</div>

<div class="container body-content" style="margin-top:60px">
    @RenderBody()
    <hr>
    <footer>
        <div class="row">
            <div class="col-md-6">
                <p>&copy; @System.DateTime.Now.Year - Localization</p>
            </div>
            <div class="col-md-6 text-right">
                @await Html.PartialAsync("_SelectLanguagePartial")
            </div>
        </div>
    </footer>
</div>

This sample Localization.Star terWebLocalization.Star terWeb project on GitHub contains UI to set the Culture . The

Views/Shared/_SelectLanguagePartial.cshtml file allows you to select the culture from the list of supported

cultures:

The Views/Shared/_SelectLanguagePartial.cshtml file is added to the footer  section of the layout file so it will

be available to all views:

The SetLanguage  method sets the culture cookie.

https://github.com/aspnet/entropy


[HttpPost]
public IActionResult SetLanguage(string culture, string returnUrl)
{
    Response.Cookies.Append(
        CookieRequestCultureProvider.DefaultCookieName,
        CookieRequestCultureProvider.MakeCookieValue(new RequestCulture(culture)),
        new CookieOptions { Expires = DateTimeOffset.UtcNow.AddYears(1) }
    );

    return LocalRedirect(returnUrl);
}

Model binding route data and query strings

Globalization and localization terms

You can't plug in the _SelectLanguagePartial.cshtml to sample code for this project. The

Localization.Star terWebLocalization.Star terWeb project on GitHub has code to flow the RequestLocalizationOptions  to a Razor

partial through the Dependency Injection container.

See Globalization behavior of model binding route data and query strings.

The process of localizing your app also requires a basic understanding of relevant character sets commonly

used in modern software development and an understanding of the issues associated with them. Although all

computers store text as numbers (codes), different systems store the same text using different numbers. The

localization process refers to translating the app user interface (UI) for a specific culture/locale.

Localizability is an intermediate process for verifying that a globalized app is ready for localization.

The RFC 4646 format for the culture name is <languagecode2>-<country/regioncode2> , where <languagecode2>

is the language code and <country/regioncode2>  is the subculture code. For example, es-CL  for Spanish

(Chile), en-US  for English (United States), and en-AU  for English (Australia). RFC 4646 is a combination of an

ISO 639 two-letter lowercase culture code associated with a language and an ISO 3166 two-letter uppercase

subculture code associated with a country or region. See /previous-versions/commerce-

server/ee825488(v=cs.20).

Internationalization is often abbreviated to "I18N". The abbreviation takes the first and last letters and the

number of letters between them, so 18 stands for the number of letters between the first "I" and the last "N".

The same applies to Globalization (G11N), and Localization (L10N).

Terms:

Globalization (G11N): The process of making an app support different languages and regions.

Localization (L10N): The process of customizing an app for a given language and region.

Internationalization (I18N): Describes both globalization and localization.

Culture: It's a language and, optionally, a region.

Neutral culture: A culture that has a specified language, but not a region. (for example "en", "es")

Specific culture: A culture that has a specified language and region. (for example "en-US", "en-GB", "es-CL")

Parent culture: The neutral culture that contains a specific culture. (for example, "en" is the parent culture of

"en-US" and "en-GB")

Locale: A locale is the same as a culture.

https://github.com/aspnet/entropy
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/localizability-review
https://www.ietf.org/rfc/rfc4646.txt
https://www.ietf.org/rfc/rfc4646.txt
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee825488(v=cs.20)


NOTENOTE

NOTENOTE

Additional resources

Make the app's content localizable

You may not be able to enter decimal commas in decimal fields. To support jQuery validation for non-English locales that

use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. See

this GitHub issue 4076 for instructions on adding decimal comma.

Prior to ASP.NET Core 3.0 web apps write one log of type LogLevel.Warning  per request if the requested culture is

unsupported. Logging one LogLevel.Warning  per request is can make large log files with redundant information. This

behavior has been changed in ASP.NET 3.0. The RequestLocalizationMiddleware  writes a log of type 

LogLevel.Debug , which reduces the size of production logs.

Troubleshoot ASP.NET Core Localization

Localization.StarterWeb project used in the article.

Globalizing and localizing .NET applications

Resources in .resx Files

Microsoft Multilingual App Toolkit

Localization & Generics

By Rick Anderson, Damien Bowden, Bart Calixto, Nadeem Afana, and Hisham Bin Ateya

A multilingual website allows the site to reach a wider audience. ASP.NET Core provides services and

middleware for localizing into different languages and cultures.

Internationalization involves Globalization and Localization. Globalization is the process of designing apps that

support different cultures. Globalization adds support for input, display, and output of a defined set of

language scripts that relate to specific geographic areas.

Localization is the process of adapting a globalized app, which you have already processed for localizability, to

a particular culture/locale. For more information see Globalization and localization termsGlobalization and localization terms near the end of

this document.

App localization involves the following:

1. Make the app's content localizable

2. Provide localized resources for the languages and cultures you support

3. Implement a strategy to select the language/culture for each request

View or download sample code (how to download)

IStringLocalizer and IStringLocalizer<T> were architected to improve productivity when developing localized

apps. IStringLocalizer  uses the ResourceManager and ResourceReader to provide culture-specific resources

at run time. The interface has an indexer and an IEnumerable  for returning localized strings. IStringLocalizer

doesn't require storing the default language strings in a resource file. You can develop an app targeted for

localization and not need to create resource files early in development. The code below shows how to wrap the

string "About Title" for localization.

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://github.com/aspnet/Entropy/tree/master/samples/Localization.StarterWeb
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/index
https://docs.microsoft.com/en-us/dotnet/framework/resources/working-with-resx-files-programmatically
https://marketplace.visualstudio.com/items?itemName=MultilingualAppToolkit.MultilingualAppToolkit-18308
http://hishambinateya.com/localization-and-generics
https://twitter.com/RickAndMSFT
https://twitter.com/damien_bod
https://twitter.com/bartmax
https://afana.me/
https://twitter.com/hishambinateya
https://docs.microsoft.com/en-us/dotnet/api/system.globalization
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/localization
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/localization/sample/Localization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer-1
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcereader


using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Localization;

namespace Localization.Controllers
{
    [Route("api/[controller]")]
    public class AboutController : Controller
    {
        private readonly IStringLocalizer<AboutController> _localizer;

        public AboutController(IStringLocalizer<AboutController> localizer)
        {
            _localizer = localizer;
        }

        [HttpGet]
        public string Get()
        {
            return _localizer["About Title"];
        }
    }
}

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Localization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Localization;

namespace Localization.Controllers
{
    public class BookController : Controller
    {
        private readonly IHtmlLocalizer<BookController> _localizer;

        public BookController(IHtmlLocalizer<BookController> localizer)
        {
            _localizer = localizer;
        }

        public IActionResult Hello(string name)
        {
            ViewData["Message"] = _localizer["<b>Hello</b><i> {0}</i>", name];

            return View();
        }

In the preceding code, the IStringLocalizer<T>  implementation comes from Dependency Injection. If the

localized value of "About Title" isn't found, then the indexer key is returned, that is, the string "About Title". You

can leave the default language literal strings in the app and wrap them in the localizer, so that you can focus on

developing the app. You develop your app with your default language and prepare it for the localization step

without first creating a default resource file. Alternatively, you can use the traditional approach and provide a

key to retrieve the default language string. For many developers the new workflow of not having a default

language .resx file and simply wrapping the string literals can reduce the overhead of localizing an app. Other

developers will prefer the traditional work flow as it can make it easier to work with longer string literals and

make it easier to update localized strings.

Use the IHtmlLocalizer<T>  implementation for resources that contain HTML. IHtmlLocalizer  HTML encodes

arguments that are formatted in the resource string, but doesn't HTML encode the resource string itself. In the

sample highlighted below, only the value of name  parameter is HTML encoded.



NOTENOTE

{
    public class TestController : Controller
    {
        private readonly IStringLocalizer _localizer;
        private readonly IStringLocalizer _localizer2;

        public TestController(IStringLocalizerFactory factory)
        {
            var type = typeof(SharedResource);
            var assemblyName = new AssemblyName(type.GetTypeInfo().Assembly.FullName);
            _localizer = factory.Create(type);
            _localizer2 = factory.Create("SharedResource", assemblyName.Name);
        }       

        public IActionResult About()
        {
            ViewData["Message"] = _localizer["Your application description page."] 
                + " loc 2: " + _localizer2["Your application description page."];

// Dummy class to group shared resources

namespace Localization
{
    public class SharedResource
    {
    }
}

public class InfoController : Controller
{
    private readonly IStringLocalizer<InfoController> _localizer;
    private readonly IStringLocalizer<SharedResource> _sharedLocalizer;

    public InfoController(IStringLocalizer<InfoController> localizer,
                   IStringLocalizer<SharedResource> sharedLocalizer)
    {
        _localizer = localizer;
        _sharedLocalizer = sharedLocalizer;
    }

    public string TestLoc()
    {
        string msg = "Shared resx: " + _sharedLocalizer["Hello!"] +
                     " Info resx " + _localizer["Hello!"];
        return msg;
    }

Generally, only localize text, not HTML.

At the lowest level, you can get IStringLocalizerFactory  out of Dependency Injection:

The code above demonstrates each of the two factory create methods.

You can partition your localized strings by controller, area, or have just one container. In the sample app, a

dummy class named SharedResource  is used for shared resources.

Some developers use the Startup  class to contain global or shared strings. In the sample below, the 

InfoController  and the SharedResource  localizers are used:



View localization

@using Microsoft.AspNetCore.Mvc.Localization

@inject IViewLocalizer Localizer

@{
    ViewData["Title"] = Localizer["About"];
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p>@Localizer["Use this area to provide additional information."]</p>

@Localizer["<i>Hello</i> <b>{0}!</b>", UserManager.GetUserName(User)]

KEYKEY VA L UEVA L UE

<i>Hello</i> <b>{0}!</b> <i>Bonjour</i> <b>{0} !</b>

NOTENOTE

@using Microsoft.AspNetCore.Mvc.Localization
@using Localization.Services

@inject IViewLocalizer Localizer
@inject IHtmlLocalizer<SharedResource> SharedLocalizer

@{
    ViewData["Title"] = Localizer["About"];
}
<h2>@ViewData["Title"].</h2>

<h1>@SharedLocalizer["Hello!"]</h1>

DataAnnotations localization

The IViewLocalizer  service provides localized strings for a view. The ViewLocalizer  class implements this

interface and finds the resource location from the view file path. The following code shows how to use the

default implementation of IViewLocalizer :

The default implementation of IViewLocalizer  finds the resource file based on the view's file name. There's no

option to use a global shared resource file. ViewLocalizer  implements the localizer using IHtmlLocalizer , so

Razor doesn't HTML encode the localized string. You can parameterize resource strings and IViewLocalizer

will HTML encode the parameters, but not the resource string. Consider the following Razor markup:

A French resource file could contain the following:

The rendered view would contain the HTML markup from the resource file.

Generally, only localize text, not HTML.

To use a shared resource file in a view, inject IHtmlLocalizer<T> :

DataAnnotations error messages are localized with IStringLocalizer<T> . Using the option 



public class RegisterViewModel
{
    [Required(ErrorMessage = "The Email field is required.")]
    [EmailAddress(ErrorMessage = "The Email field is not a valid email address.")]
    [Display(Name = "Email")]
    public string Email { get; set; }

    [Required(ErrorMessage = "The Password field is required.")]
    [StringLength(8, ErrorMessage = "The {0} must be at least {2} characters long.", MinimumLength = 6)]
    [DataType(DataType.Password)]
    [Display(Name = "Password")]
    public string Password { get; set; }

    [DataType(DataType.Password)]
    [Display(Name = "Confirm password")]
    [Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]
    public string ConfirmPassword { get; set; }
}

Using one resource string for multiple classesUsing one resource string for multiple classes

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc()
        .AddDataAnnotationsLocalization(options => {
            options.DataAnnotationLocalizerProvider = (type, factory) =>
                factory.Create(typeof(SharedResource));
        });
}

Provide localized resources for the languages and cultures you
support
SupportedCultures and SupportedUICulturesSupportedCultures and SupportedUICultures

ResourcesPath = "Resources" , the error messages in RegisterViewModel  can be stored in either of the following

paths:

Resources/ViewModels.Account.RegisterViewModel.fr.resx

Resources/ViewModels/Account/RegisterViewModel.fr.resx

In ASP.NET Core MVC 1.1.0 and higher, non-validation attributes are localized. ASP.NET Core MVC 1.0 does notnot

look up localized strings for non-validation attributes.

 

The following code shows how to use one resource string for validation attributes with multiple classes:

In the preceding code, SharedResource  is the class corresponding to the resx where your validation messages

are stored. With this approach, DataAnnotations will only use SharedResource , rather than the resource for

each class.

ASP.NET Core allows you to specify two culture values, SupportedCultures  and SupportedUICultures . The

CultureInfo object for SupportedCultures  determines the results of culture-dependent functions, such as date,

time, number, and currency formatting. SupportedCultures  also determines the sorting order of text, casing

conventions, and string comparisons. See CultureInfo.CurrentCulture for more info on how the server gets the

Culture. The SupportedUICultures  determines which translated strings (from .resx files) are looked up by the

ResourceManager. The ResourceManager  simply looks up culture-specific strings that's determined by 

CurrentUICulture . Every thread in .NET has CurrentCulture  and CurrentUICulture  objects. ASP.NET Core

inspects these values when rendering culture-dependent functions. For example, if the current thread's culture

is set to "en-US" (English, United States), DateTime.Now.ToLongDateString()  displays "Thursday, February 18,

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/en-us/dotnet/api/system.stringcomparer.currentculture#system_stringcomparer_currentculture
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcemanager


Resource files

2016", but if CurrentCulture  is set to "es-ES" (Spanish, Spain) the output will be "jueves, 18 de febrero de

2016".

A resource file is a useful mechanism for separating localizable strings from code. Translated strings for the

non-default language are isolated in .resx resource files. For example, you might want to create Spanish

resource file named Welcome.es.resx containing translated strings. "es" is the language code for Spanish. To

create this resource file in Visual Studio:

1. In Solution ExplorerSolution Explorer , right click on the folder which will contain the resource file > AddAdd > New ItemNew Item.

2. In the Search installed templatesSearch installed templates  box, enter "resource" and name the file.



3. Enter the key value (native string) in the NameName column and the translated string in the ValueValue column.

Visual Studio shows the Welcome.es.resx file.



Resource file naming

RESO URC E N A M ERESO URC E N A M E DOT  O R PAT H  N A M IN GDOT  O R PAT H  N A M IN G

Resources/Controllers.HomeController.fr.resx Dot

Resources/Controllers/HomeController.fr.resx Path

Resources are named for the full type name of their class minus the assembly name. For example, a French

resource in a project whose main assembly is LocalizationWebsite.Web.dll  for the class 

LocalizationWebsite.Web.Startup  would be named Startup.fr.resx. A resource for the class 

LocalizationWebsite.Web.Controllers.HomeController  would be named Controllers.HomeController.fr.resx. If

your targeted class's namespace isn't the same as the assembly name you will need the full type name. For

example, in the sample project a resource for the type ExtraNamespace.Tools  would be named

ExtraNamespace.Tools.fr.resx.

In the sample project, the ConfigureServices  method sets the ResourcesPath  to "Resources", so the project

relative path for the home controller's French resource file is Resources/Controllers.HomeController.fr.resx.

Alternatively, you can use folders to organize resource files. For the home controller, the path would be

Resources/Controllers/HomeController.fr.resx. If you don't use the ResourcesPath  option, the .resx file would go

in the project base directory. The resource file for HomeController  would be named

Controllers.HomeController.fr.resx. The choice of using the dot or path naming convention depends on how

you want to organize your resource files.

Resource files using @inject IViewLocalizer  in Razor views follow a similar pattern. The resource file for a

view can be named using either dot naming or path naming. Razor view resource files mimic the path of their

associated view file. Assuming we set the ResourcesPath  to "Resources", the French resource file associated

with the Views/Home/About.cshtml view could be either of the following:

Resources/Views/Home/About.fr.resx

Resources/Views.Home.About.fr.resx

If you don't use the ResourcesPath  option, the .resx file for a view would be located in the same folder as the



RootNamespaceAttributeRootNamespaceAttribute

WARNINGWARNING

using System.Reflection;
using Microsoft.Extensions.Localization;

[assembly: ResourceLocation("Resource Folder Name")]
[assembly: RootNamespace("App Root Namespace")]

Culture fallback behavior

Generate resource files with Visual StudioGenerate resource files with Visual Studio

view.

The RootNamespace attribute provides the root namespace of an assembly when the root namespace of an

assembly is different than the assembly name.

This can occur when a project's name is not a valid .NET identifier. For instance my-project-name.csproj  will use the

root namespace my_project_name  and the assembly name my-project-name  leading to this error.

If the root namespace of an assembly is different than the assembly name:

Localization does not work by default.

Localization fails due to the way resources are searched for within the assembly. RootNamespace  is a build-

time value which is not available to the executing process.

If the RootNamespace  is different from the AssemblyName , include the following in AssemblyInfo.cs (with

parameter values replaced with the actual values):

The preceding code enables the successful resolution of resx files.

When searching for a resource, localization engages in "culture fallback". Starting from the requested culture, if

not found, it reverts to the parent culture of that culture. As an aside, the CultureInfo.Parent property

represents the parent culture. This usually (but not always) means removing the national signifier from the ISO.

For example, the dialect of Spanish spoken in Mexico is "es-MX". It has the parent "es"—Spanish non-specific to

any country.

Imagine your site receives a request for a "Welcome" resource using culture "fr-CA". The localization system

looks for the following resources, in order, and selects the first match:

Welcome.fr-CA.resx

Welcome.fr.resx

Welcome.resx (if the NeutralResourcesLanguage  is "fr-CA")

As an example, if you remove the ".fr" culture designator and you have the culture set to French, the default

resource file is read and strings are localized. The Resource manager designates a default or fallback resource

for when nothing meets your requested culture. If you want to just return the key when missing a resource for

the requested culture you must not have a default resource file.

If you create a resource file in Visual Studio without a culture in the file name (for example, Welcome.resx),

Visual Studio will create a C# class with a property for each string. That's usually not what you want with

ASP.NET Core. You typically don't have a default .resx resource file (a .resx file without the culture name). We

suggest you create the .resx file with a culture name (for example Welcome.fr.resx). When you create a .resx file

with a culture name, Visual Studio won't generate the class file.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.rootnamespaceattribute?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.parent


Add other culturesAdd other cultures

Implement a strategy to select the language/culture for each request
Configure localizationConfigure localization

services.AddLocalization(options => options.ResourcesPath = "Resources");

services.AddMvc()
    .AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix)
    .AddDataAnnotationsLocalization();

Localization middlewareLocalization middleware

var supportedCultures = new[] { "en-US", "fr" };
var localizationOptions = new RequestLocalizationOptions().SetDefaultCulture(supportedCultures[0])
    .AddSupportedCultures(supportedCultures)
    .AddSupportedUICultures(supportedCultures);

app.UseRequestLocalization(localizationOptions);

app.UseRouting();
app.UseStaticFiles();

app.UseAuthentication();

app.UseEndpoints(endpoints =>
{
    endpoints.MapControllerRoute(name: "default", pattern: "{controller=Home}/{action=Index}/{id?}");
});

Each language and culture combination (other than the default language) requires a unique resource file. You

create resource files for different cultures and locales by creating new resource files in which the ISO language

codes are part of the file name (for example, en-usen-us , fr-cafr-ca, and en-gben-gb). These ISO codes are placed between

the file name and the .resx file extension, as in Welcome.es-MX.resx (Spanish/Mexico).

Localization is configured in the Startup.ConfigureServices  method:

AddLocalization  adds the localization services to the services container. The code above also sets the

resources path to "Resources".

AddViewLocalization  adds support for localized view files. In this sample view localization is based on

the view file suffix. For example "fr" in the Index.fr.cshtml file.

AddDataAnnotationsLocalization  adds support for localized DataAnnotations  validation messages

through IStringLocalizer  abstractions.

The current culture on a request is set in the localization Middleware. The localization middleware is enabled in

the Startup.Configure  method. The localization middleware must be configured before any middleware which

might check the request culture (for example, app.UseMvcWithDefaultRoute() ).

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

UseRequestLocalization  initializes a RequestLocalizationOptions  object. On every request the list of 

RequestCultureProvider  in the RequestLocalizationOptions  is enumerated and the first provider that can

successfully determine the request culture is used. The default providers come from the 

RequestLocalizationOptions  class:

1. QueryStringRequestCultureProvider

https://github.com/MicrosoftDocs/feedback/issues/2515


QueryStringRequestCultureProviderQueryStringRequestCultureProvider

http://localhost:5000/?culture=es-MX&ui-culture=es-MX

http://localhost:5000/?culture=es-MX

CookieRequestCultureProviderCookieRequestCultureProvider

c=en-UK|uic=en-US

The Accept-Language HTTP headerThe Accept-Language HTTP header

Set the Accept-Language HTTP header in IESet the Accept-Language HTTP header in IE

2. CookieRequestCultureProvider

3. AcceptLanguageHeaderRequestCultureProvider

The default list goes from most specific to least specific. Later in the article we'll see how you can change the

order and even add a custom culture provider. If none of the providers can determine the request culture, the 

DefaultRequestCulture  is used.

Some apps will use a query string to set the /dotnet/api/system.globalization.cultureinfo?view=netcore-3.1.

For apps that use the cookie or Accept-Language header approach, adding a query string to the URL is useful

for debugging and testing code. By default, the QueryStringRequestCultureProvider  is registered as the first

localization provider in the RequestCultureProvider  list. You pass the query string parameters culture  and 

ui-culture . The following example sets the specific culture (language and region) to Spanish/Mexico:

If you only pass in one of the two ( culture  or ui-culture ), the query string provider will set both values

using the one you passed in. For example, setting just the culture will set both the Culture  and the UICulture :

Production apps will often provide a mechanism to set the culture with the ASP.NET Core culture cookie. Use

the MakeCookieValue  method to create a cookie.

The CookieRequestCultureProvider  DefaultCookieName  returns the default cookie name used to track the user's

preferred culture information. The default cookie name is .AspNetCore.Culture .

The cookie format is c=%LANGCODE%|uic=%LANGCODE% , where c  is Culture  and uic  is UICulture , for example:

If you only specify one of culture info and UI culture, the specified culture will be used for both culture info and

UI culture.

The Accept-Language header is settable in most browsers and was originally intended to specify the user's

language. This setting indicates what the browser has been set to send or has inherited from the underlying

operating system. The Accept-Language HTTP header from a browser request isn't an infallible way to detect

the user's preferred language (see Setting language preferences in a browser). A production app should

include a way for a user to customize their choice of culture.

1. From the gear icon, tap Internet OptionsInternet Options .

2. Tap LanguagesLanguages .

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo?view=netcore-3.1
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-lang-priorities.en.php


Use a custom providerUse a custom provider

private const string enUSCulture = "en-US";

services.Configure<RequestLocalizationOptions>(options =>
{
    var supportedCultures = new[]
    {
        new CultureInfo(enUSCulture),
        new CultureInfo("fr")
    };

    options.DefaultRequestCulture = new RequestCulture(culture: enUSCulture, uiCulture: enUSCulture);
    options.SupportedCultures = supportedCultures;
    options.SupportedUICultures = supportedCultures;

    options.RequestCultureProviders.Insert(0, new CustomRequestCultureProvider(async context =>
    {
        // My custom request culture logic
        return new ProviderCultureResult("en");
    }));
});

Set the culture programmaticallySet the culture programmatically

3. Tap Set Language PreferencesSet Language Preferences .

4. Tap Add a languageAdd a language.

5. Add the language.

6. Tap the language, then tap Move UpMove Up.

Suppose you want to let your customers store their language and culture in your databases. You could write a

provider to look up these values for the user. The following code shows how to add a custom provider :

Use RequestLocalizationOptions  to add or remove localization providers.



@using Microsoft.AspNetCore.Builder
@using Microsoft.AspNetCore.Http.Features
@using Microsoft.AspNetCore.Localization
@using Microsoft.AspNetCore.Mvc.Localization
@using Microsoft.Extensions.Options

@inject IViewLocalizer Localizer
@inject IOptions<RequestLocalizationOptions> LocOptions

@{
    var requestCulture = Context.Features.Get<IRequestCultureFeature>();
    var cultureItems = LocOptions.Value.SupportedUICultures
        .Select(c => new SelectListItem { Value = c.Name, Text = c.DisplayName })
        .ToList();
    var returnUrl = string.IsNullOrEmpty(Context.Request.Path) ? "~/" : $"~{Context.Request.Path.Value}";
}

<div title="@Localizer["Request culture provider:"] @requestCulture?.Provider?.GetType().Name">
    <form id="selectLanguage" asp-controller="Home" 
          asp-action="SetLanguage" asp-route-returnUrl="@returnUrl" 
          method="post" class="form-horizontal" role="form">
        <label asp-for="@requestCulture.RequestCulture.UICulture.Name">@Localizer["Language:"]</label> 
<select name="culture"
          onchange="this.form.submit();"
          asp-for="@requestCulture.RequestCulture.UICulture.Name" asp-items="cultureItems">
        </select>
    </form>
</div>

<div class="container body-content" style="margin-top:60px">
    @RenderBody()
    <hr>
    <footer>
        <div class="row">
            <div class="col-md-6">
                <p>&copy; @System.DateTime.Now.Year - Localization</p>
            </div>
            <div class="col-md-6 text-right">
                @await Html.PartialAsync("_SelectLanguagePartial")
            </div>
        </div>
    </footer>
</div>

This sample Localization.Star terWebLocalization.Star terWeb project on GitHub contains UI to set the Culture . The

Views/Shared/_SelectLanguagePartial.cshtml file allows you to select the culture from the list of supported

cultures:

The Views/Shared/_SelectLanguagePartial.cshtml file is added to the footer  section of the layout file so it will

be available to all views:

The SetLanguage  method sets the culture cookie.

https://github.com/aspnet/entropy


[HttpPost]
public IActionResult SetLanguage(string culture, string returnUrl)
{
    Response.Cookies.Append(
        CookieRequestCultureProvider.DefaultCookieName,
        CookieRequestCultureProvider.MakeCookieValue(new RequestCulture(culture)),
        new CookieOptions { Expires = DateTimeOffset.UtcNow.AddYears(1) }
    );

    return LocalRedirect(returnUrl);
}

Model binding route data and query strings

Globalization and localization terms

You can't plug in the _SelectLanguagePartial.cshtml to sample code for this project. The

Localization.Star terWebLocalization.Star terWeb project on GitHub has code to flow the RequestLocalizationOptions  to a Razor

partial through the Dependency Injection container.

See Globalization behavior of model binding route data and query strings.

The process of localizing your app also requires a basic understanding of relevant character sets commonly

used in modern software development and an understanding of the issues associated with them. Although all

computers store text as numbers (codes), different systems store the same text using different numbers. The

localization process refers to translating the app user interface (UI) for a specific culture/locale.

Localizability is an intermediate process for verifying that a globalized app is ready for localization.

The RFC 4646 format for the culture name is <languagecode2>-<country/regioncode2> , where <languagecode2>

is the language code and <country/regioncode2>  is the subculture code. For example, es-CL  for Spanish

(Chile), en-US  for English (United States), and en-AU  for English (Australia). RFC 4646 is a combination of an

ISO 639 two-letter lowercase culture code associated with a language and an ISO 3166 two-letter uppercase

subculture code associated with a country or region. See /previous-versions/commerce-

server/ee825488(v=cs.20).

Internationalization is often abbreviated to "I18N". The abbreviation takes the first and last letters and the

number of letters between them, so 18 stands for the number of letters between the first "I" and the last "N".

The same applies to Globalization (G11N), and Localization (L10N).

Terms:

Globalization (G11N): The process of making an app support different languages and regions.

Localization (L10N): The process of customizing an app for a given language and region.

Internationalization (I18N): Describes both globalization and localization.

Culture: It's a language and, optionally, a region.

Neutral culture: A culture that has a specified language, but not a region. (for example "en", "es")

Specific culture: A culture that has a specified language and region. (for example "en-US", "en-GB", "es-CL")

Parent culture: The neutral culture that contains a specific culture. (for example, "en" is the parent culture of

"en-US" and "en-GB")

Locale: A locale is the same as a culture.

https://github.com/aspnet/entropy
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/localizability-review
https://www.ietf.org/rfc/rfc4646.txt
https://www.ietf.org/rfc/rfc4646.txt
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee825488(v=cs.20)


NOTENOTE

Additional resources

Make the app's content localizable

You may not be able to enter decimal commas in decimal fields. To support jQuery validation for non-English locales that

use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. See

this GitHub issue 4076 for instructions on adding decimal comma.

Troubleshoot ASP.NET Core Localization

Localization.StarterWeb project used in the article.

Globalizing and localizing .NET applications

Resources in .resx Files

Microsoft Multilingual App Toolkit

Localization & Generics

By Rick Anderson, Damien Bowden, Bart Calixto, Nadeem Afana, and Hisham Bin Ateya

A multilingual website allows the site to reach a wider audience. ASP.NET Core provides services and

middleware for localizing into different languages and cultures.

Internationalization involves Globalization and Localization. Globalization is the process of designing apps that

support different cultures. Globalization adds support for input, display, and output of a defined set of

language scripts that relate to specific geographic areas.

Localization is the process of adapting a globalized app, which you have already processed for localizability, to

a particular culture/locale. For more information see Globalization and localization termsGlobalization and localization terms near the end of

this document.

App localization involves the following:

1. Make the app's content localizable

2. Provide localized resources for the languages and cultures you support

3. Implement a strategy to select the language/culture for each request

View or download sample code (how to download)

IStringLocalizer and IStringLocalizer<T> were architected to improve productivity when developing localized

apps. IStringLocalizer  uses the ResourceManager and ResourceReader to provide culture-specific resources

at run time. The interface has an indexer and an IEnumerable  for returning localized strings. IStringLocalizer

doesn't require storing the default language strings in a resource file. You can develop an app targeted for

localization and not need to create resource files early in development. The code below shows how to wrap the

string "About Title" for localization.

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://github.com/aspnet/Entropy/tree/master/samples/Localization.StarterWeb
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/index
https://docs.microsoft.com/en-us/dotnet/framework/resources/working-with-resx-files-programmatically
https://marketplace.visualstudio.com/items?itemName=MultilingualAppToolkit.MultilingualAppToolkit-18308
http://hishambinateya.com/localization-and-generics
https://twitter.com/RickAndMSFT
https://twitter.com/damien_bod
https://twitter.com/bartmax
https://afana.me/
https://twitter.com/hishambinateya
https://docs.microsoft.com/en-us/dotnet/api/system.globalization
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/localization
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/localization/sample/2.x/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer-1
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcereader


using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Localization;

namespace Localization.Controllers
{
    [Route("api/[controller]")]
    public class AboutController : Controller
    {
        private readonly IStringLocalizer<AboutController> _localizer;

        public AboutController(IStringLocalizer<AboutController> localizer)
        {
            _localizer = localizer;
        }

        [HttpGet]
        public string Get()
        {
            return _localizer["About Title"];
        }
    }
}

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Localization;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Localization;

namespace Localization.Controllers
{
    public class BookController : Controller
    {
        private readonly IHtmlLocalizer<BookController> _localizer;

        public BookController(IHtmlLocalizer<BookController> localizer)
        {
            _localizer = localizer;
        }

        public IActionResult Hello(string name)
        {
            ViewData["Message"] = _localizer["<b>Hello</b><i> {0}</i>", name];

            return View();
        }

In the preceding code, the IStringLocalizer<T>  implementation comes from Dependency Injection. If the

localized value of "About Title" isn't found, then the indexer key is returned, that is, the string "About Title". You

can leave the default language literal strings in the app and wrap them in the localizer, so that you can focus on

developing the app. You develop your app with your default language and prepare it for the localization step

without first creating a default resource file. Alternatively, you can use the traditional approach and provide a

key to retrieve the default language string. For many developers the new workflow of not having a default

language .resx file and simply wrapping the string literals can reduce the overhead of localizing an app. Other

developers will prefer the traditional work flow as it can make it easier to work with longer string literals and

make it easier to update localized strings.

Use the IHtmlLocalizer<T>  implementation for resources that contain HTML. IHtmlLocalizer  HTML encodes

arguments that are formatted in the resource string, but doesn't HTML encode the resource string itself. In the

sample highlighted below, only the value of name  parameter is HTML encoded.



NOTENOTE

{
    public class TestController : Controller
    {
        private readonly IStringLocalizer _localizer;
        private readonly IStringLocalizer _localizer2;

        public TestController(IStringLocalizerFactory factory)
        {
            var type = typeof(SharedResource);
            var assemblyName = new AssemblyName(type.GetTypeInfo().Assembly.FullName);
            _localizer = factory.Create(type);
            _localizer2 = factory.Create("SharedResource", assemblyName.Name);
        }       

        public IActionResult About()
        {
            ViewData["Message"] = _localizer["Your application description page."] 
                + " loc 2: " + _localizer2["Your application description page."];

// Dummy class to group shared resources

namespace Localization
{
    public class SharedResource
    {
    }
}

public class InfoController : Controller
{
    private readonly IStringLocalizer<InfoController> _localizer;
    private readonly IStringLocalizer<SharedResource> _sharedLocalizer;

    public InfoController(IStringLocalizer<InfoController> localizer,
                   IStringLocalizer<SharedResource> sharedLocalizer)
    {
        _localizer = localizer;
        _sharedLocalizer = sharedLocalizer;
    }

    public string TestLoc()
    {
        string msg = "Shared resx: " + _sharedLocalizer["Hello!"] +
                     " Info resx " + _localizer["Hello!"];
        return msg;
    }

Generally, only localize text, not HTML.

At the lowest level, you can get IStringLocalizerFactory  out of Dependency Injection:

The code above demonstrates each of the two factory create methods.

You can partition your localized strings by controller, area, or have just one container. In the sample app, a

dummy class named SharedResource  is used for shared resources.

Some developers use the Startup  class to contain global or shared strings. In the sample below, the 

InfoController  and the SharedResource  localizers are used:



View localization

@using Microsoft.AspNetCore.Mvc.Localization

@inject IViewLocalizer Localizer

@{
    ViewData["Title"] = Localizer["About"];
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p>@Localizer["Use this area to provide additional information."]</p>

@Localizer["<i>Hello</i> <b>{0}!</b>", UserManager.GetUserName(User)]

KEYKEY VA L UEVA L UE

<i>Hello</i> <b>{0}!</b> <i>Bonjour</i> <b>{0} !</b>

NOTENOTE

@using Microsoft.AspNetCore.Mvc.Localization
@using Localization.Services

@inject IViewLocalizer Localizer
@inject IHtmlLocalizer<SharedResource> SharedLocalizer

@{
    ViewData["Title"] = Localizer["About"];
}
<h2>@ViewData["Title"].</h2>

<h1>@SharedLocalizer["Hello!"]</h1>

DataAnnotations localization

The IViewLocalizer  service provides localized strings for a view. The ViewLocalizer  class implements this

interface and finds the resource location from the view file path. The following code shows how to use the

default implementation of IViewLocalizer :

The default implementation of IViewLocalizer  finds the resource file based on the view's file name. There's no

option to use a global shared resource file. ViewLocalizer  implements the localizer using IHtmlLocalizer , so

Razor doesn't HTML encode the localized string. You can parameterize resource strings and IViewLocalizer

will HTML encode the parameters, but not the resource string. Consider the following Razor markup:

A French resource file could contain the following:

The rendered view would contain the HTML markup from the resource file.

Generally, only localize text, not HTML.

To use a shared resource file in a view, inject IHtmlLocalizer<T> :

DataAnnotations error messages are localized with IStringLocalizer<T> . Using the option 



public class RegisterViewModel
{
    [Required(ErrorMessage = "The Email field is required.")]
    [EmailAddress(ErrorMessage = "The Email field is not a valid email address.")]
    [Display(Name = "Email")]
    public string Email { get; set; }

    [Required(ErrorMessage = "The Password field is required.")]
    [StringLength(8, ErrorMessage = "The {0} must be at least {2} characters long.", MinimumLength = 6)]
    [DataType(DataType.Password)]
    [Display(Name = "Password")]
    public string Password { get; set; }

    [DataType(DataType.Password)]
    [Display(Name = "Confirm password")]
    [Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]
    public string ConfirmPassword { get; set; }
}

Using one resource string for multiple classesUsing one resource string for multiple classes

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc()
        .AddDataAnnotationsLocalization(options => {
            options.DataAnnotationLocalizerProvider = (type, factory) =>
                factory.Create(typeof(SharedResource));
        });
}

Provide localized resources for the languages and cultures you
support
SupportedCultures and SupportedUICulturesSupportedCultures and SupportedUICultures

ResourcesPath = "Resources" , the error messages in RegisterViewModel  can be stored in either of the following

paths:

Resources/ViewModels.Account.RegisterViewModel.fr.resx

Resources/ViewModels/Account/RegisterViewModel.fr.resx

In ASP.NET Core MVC 1.1.0 and higher, non-validation attributes are localized. ASP.NET Core MVC 1.0 does notnot

look up localized strings for non-validation attributes.

 

The following code shows how to use one resource string for validation attributes with multiple classes:

In the preceding code, SharedResource  is the class corresponding to the resx where your validation messages

are stored. With this approach, DataAnnotations will only use SharedResource , rather than the resource for

each class.

ASP.NET Core allows you to specify two culture values, SupportedCultures  and SupportedUICultures . The

CultureInfo object for SupportedCultures  determines the results of culture-dependent functions, such as date,

time, number, and currency formatting. SupportedCultures  also determines the sorting order of text, casing

conventions, and string comparisons. See CultureInfo.CurrentCulture for more info on how the server gets the

Culture. The SupportedUICultures  determines which translated strings (from .resx files) are looked up by the

ResourceManager. The ResourceManager  simply looks up culture-specific strings that's determined by 

CurrentUICulture . Every thread in .NET has CurrentCulture  and CurrentUICulture  objects. ASP.NET Core

inspects these values when rendering culture-dependent functions. For example, if the current thread's culture

is set to "en-US" (English, United States), DateTime.Now.ToLongDateString()  displays "Thursday, February 18,

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/en-us/dotnet/api/system.stringcomparer.currentculture#system_stringcomparer_currentculture
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcemanager


Resource files

2016", but if CurrentCulture  is set to "es-ES" (Spanish, Spain) the output will be "jueves, 18 de febrero de

2016".

A resource file is a useful mechanism for separating localizable strings from code. Translated strings for the

non-default language are isolated in .resx resource files. For example, you might want to create Spanish

resource file named Welcome.es.resx containing translated strings. "es" is the language code for Spanish. To

create this resource file in Visual Studio:

1. In Solution ExplorerSolution Explorer , right click on the folder which will contain the resource file > AddAdd > New ItemNew Item.

2. In the Search installed templatesSearch installed templates  box, enter "resource" and name the file.



3. Enter the key value (native string) in the NameName column and the translated string in the ValueValue column.

Visual Studio shows the Welcome.es.resx file.



Resource file naming

RESO URC E N A M ERESO URC E N A M E DOT  O R PAT H  N A M IN GDOT  O R PAT H  N A M IN G

Resources/Controllers.HomeController.fr.resx Dot

Resources/Controllers/HomeController.fr.resx Path

Resources are named for the full type name of their class minus the assembly name. For example, a French

resource in a project whose main assembly is LocalizationWebsite.Web.dll  for the class 

LocalizationWebsite.Web.Startup  would be named Startup.fr.resx. A resource for the class 

LocalizationWebsite.Web.Controllers.HomeController  would be named Controllers.HomeController.fr.resx. If

your targeted class's namespace isn't the same as the assembly name you will need the full type name. For

example, in the sample project a resource for the type ExtraNamespace.Tools  would be named

ExtraNamespace.Tools.fr.resx.

In the sample project, the ConfigureServices  method sets the ResourcesPath  to "Resources", so the project

relative path for the home controller's French resource file is Resources/Controllers.HomeController.fr.resx.

Alternatively, you can use folders to organize resource files. For the home controller, the path would be

Resources/Controllers/HomeController.fr.resx. If you don't use the ResourcesPath  option, the .resx file would go

in the project base directory. The resource file for HomeController  would be named

Controllers.HomeController.fr.resx. The choice of using the dot or path naming convention depends on how

you want to organize your resource files.

Resource files using @inject IViewLocalizer  in Razor views follow a similar pattern. The resource file for a

view can be named using either dot naming or path naming. Razor view resource files mimic the path of their

associated view file. Assuming we set the ResourcesPath  to "Resources", the French resource file associated

with the Views/Home/About.cshtml view could be either of the following:

Resources/Views/Home/About.fr.resx

Resources/Views.Home.About.fr.resx

If you don't use the ResourcesPath  option, the .resx file for a view would be located in the same folder as the



RootNamespaceAttributeRootNamespaceAttribute

WARNINGWARNING

using System.Reflection;
using Microsoft.Extensions.Localization;

[assembly: ResourceLocation("Resource Folder Name")]
[assembly: RootNamespace("App Root Namespace")]

Culture fallback behavior

Generate resource files with Visual StudioGenerate resource files with Visual Studio

view.

The RootNamespace attribute provides the root namespace of an assembly when the root namespace of an

assembly is different than the assembly name.

This can occur when a project's name is not a valid .NET identifier. For instance my-project-name.csproj  will use the

root namespace my_project_name  and the assembly name my-project-name  leading to this error.

If the root namespace of an assembly is different than the assembly name:

Localization does not work by default.

Localization fails due to the way resources are searched for within the assembly. RootNamespace  is a build-

time value which is not available to the executing process.

If the RootNamespace  is different from the AssemblyName , include the following in AssemblyInfo.cs (with

parameter values replaced with the actual values):

The preceding code enables the successful resolution of resx files.

When searching for a resource, localization engages in "culture fallback". Starting from the requested culture, if

not found, it reverts to the parent culture of that culture. As an aside, the CultureInfo.Parent property

represents the parent culture. This usually (but not always) means removing the national signifier from the ISO.

For example, the dialect of Spanish spoken in Mexico is "es-MX". It has the parent "es"—Spanish non-specific to

any country.

Imagine your site receives a request for a "Welcome" resource using culture "fr-CA". The localization system

looks for the following resources, in order, and selects the first match:

Welcome.fr-CA.resx

Welcome.fr.resx

Welcome.resx (if the NeutralResourcesLanguage  is "fr-CA")

As an example, if you remove the ".fr" culture designator and you have the culture set to French, the default

resource file is read and strings are localized. The Resource manager designates a default or fallback resource

for when nothing meets your requested culture. If you want to just return the key when missing a resource for

the requested culture you must not have a default resource file.

If you create a resource file in Visual Studio without a culture in the file name (for example, Welcome.resx),

Visual Studio will create a C# class with a property for each string. That's usually not what you want with

ASP.NET Core. You typically don't have a default .resx resource file (a .resx file without the culture name). We

suggest you create the .resx file with a culture name (for example Welcome.fr.resx). When you create a .resx file

with a culture name, Visual Studio won't generate the class file.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.rootnamespaceattribute?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.parent


Add other culturesAdd other cultures

Implement a strategy to select the language/culture for each request
Configure localizationConfigure localization

services.AddLocalization(options => options.ResourcesPath = "Resources");

services.AddMvc()
    .AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix)
    .AddDataAnnotationsLocalization();

Localization middlewareLocalization middleware

var supportedCultures = new[] { "en-US", "fr" };
var localizationOptions = new RequestLocalizationOptions().SetDefaultCulture(supportedCultures[0])
    .AddSupportedCultures(supportedCultures)
    .AddSupportedUICultures(supportedCultures);

app.UseRequestLocalization(localizationOptions);

app.UseRouting();
app.UseStaticFiles();

app.UseAuthentication();

app.UseEndpoints(endpoints =>
{
    endpoints.MapControllerRoute(name: "default", pattern: "{controller=Home}/{action=Index}/{id?}");
});

Each language and culture combination (other than the default language) requires a unique resource file. You

create resource files for different cultures and locales by creating new resource files in which the ISO language

codes are part of the file name (for example, en-usen-us , fr-cafr-ca, and en-gben-gb). These ISO codes are placed between

the file name and the .resx file extension, as in Welcome.es-MX.resx (Spanish/Mexico).

Localization is configured in the Startup.ConfigureServices  method:

AddLocalization  adds the localization services to the services container. The code above also sets the

resources path to "Resources".

AddViewLocalization  adds support for localized view files. In this sample view localization is based on

the view file suffix. For example "fr" in the Index.fr.cshtml file.

AddDataAnnotationsLocalization  adds support for localized DataAnnotations  validation messages

through IStringLocalizer  abstractions.

The current culture on a request is set in the localization Middleware. The localization middleware is enabled in

the Startup.Configure  method. The localization middleware must be configured before any middleware which

might check the request culture (for example, app.UseMvcWithDefaultRoute() ).

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

UseRequestLocalization  initializes a RequestLocalizationOptions  object. On every request the list of 

RequestCultureProvider  in the RequestLocalizationOptions  is enumerated and the first provider that can

successfully determine the request culture is used. The default providers come from the 

RequestLocalizationOptions  class:

1. QueryStringRequestCultureProvider

https://github.com/MicrosoftDocs/feedback/issues/2515


QueryStringRequestCultureProviderQueryStringRequestCultureProvider

http://localhost:5000/?culture=es-MX&ui-culture=es-MX

http://localhost:5000/?culture=es-MX

CookieRequestCultureProviderCookieRequestCultureProvider

c=en-UK|uic=en-US

The Accept-Language HTTP headerThe Accept-Language HTTP header

Set the Accept-Language HTTP header in IESet the Accept-Language HTTP header in IE

2. CookieRequestCultureProvider

3. AcceptLanguageHeaderRequestCultureProvider

The default list goes from most specific to least specific. Later in the article we'll see how you can change the

order and even add a custom culture provider. If none of the providers can determine the request culture, the 

DefaultRequestCulture  is used.

Some apps will use a query string to set the /dotnet/api/system.globalization.cultureinfo?view=netcore-3.1.

For apps that use the cookie or Accept-Language header approach, adding a query string to the URL is useful

for debugging and testing code. By default, the QueryStringRequestCultureProvider  is registered as the first

localization provider in the RequestCultureProvider  list. You pass the query string parameters culture  and 

ui-culture . The following example sets the specific culture (language and region) to Spanish/Mexico:

If you only pass in one of the two ( culture  or ui-culture ), the query string provider will set both values

using the one you passed in. For example, setting just the culture will set both the Culture  and the UICulture :

Production apps will often provide a mechanism to set the culture with the ASP.NET Core culture cookie. Use

the MakeCookieValue  method to create a cookie.

The CookieRequestCultureProvider  DefaultCookieName  returns the default cookie name used to track the user's

preferred culture information. The default cookie name is .AspNetCore.Culture .

The cookie format is c=%LANGCODE%|uic=%LANGCODE% , where c  is Culture  and uic  is UICulture , for example:

If you only specify one of culture info and UI culture, the specified culture will be used for both culture info and

UI culture.

The Accept-Language header is settable in most browsers and was originally intended to specify the user's

language. This setting indicates what the browser has been set to send or has inherited from the underlying

operating system. The Accept-Language HTTP header from a browser request isn't an infallible way to detect

the user's preferred language (see Setting language preferences in a browser). A production app should

include a way for a user to customize their choice of culture.

1. From the gear icon, tap Internet OptionsInternet Options .

2. Tap LanguagesLanguages .

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo?view=netcore-3.1
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-lang-priorities.en.php


The Content-Language HTTP headerThe Content-Language HTTP header

app.UseRequestLocalization(new RequestLocalizationOptions
{
    ApplyCurrentCultureToResponseHeaders = true
});

Use a custom providerUse a custom provider

3. Tap Set Language PreferencesSet Language Preferences .

4. Tap Add a languageAdd a language.

5. Add the language.

6. Tap the language, then tap Move UpMove Up.

The Content-Language entity header :

Is used to describe the language(s) intended for the audience.

Allows a user to differentiate according to the users' own preferred language.

Entity headers are used in both HTTP requests and responses.

The Content-Language  header can be added by setting the property ApplyCurrentCultureToResponseHeaders .

Adding the Content-Language  header :

Allows the RequestLocalizationMiddleware to set the Content-Language  header with the CurrentUICulture .

Eliminates the need to set the response header Content-Language  explicitly.

Suppose you want to let your customers store their language and culture in your databases. You could write a

provider to look up these values for the user. The following code shows how to add a custom provider :

https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Language


private const string enUSCulture = "en-US";

services.Configure<RequestLocalizationOptions>(options =>
{
    var supportedCultures = new[]
    {
        new CultureInfo(enUSCulture),
        new CultureInfo("fr")
    };

    options.DefaultRequestCulture = new RequestCulture(culture: enUSCulture, uiCulture: enUSCulture);
    options.SupportedCultures = supportedCultures;
    options.SupportedUICultures = supportedCultures;

    options.AddInitialRequestCultureProvider(new CustomRequestCultureProvider(async context =>
    {
        // My custom request culture logic
        return new ProviderCultureResult("en");
    }));
});

Set the culture programmaticallySet the culture programmatically

@using Microsoft.AspNetCore.Builder
@using Microsoft.AspNetCore.Http.Features
@using Microsoft.AspNetCore.Localization
@using Microsoft.AspNetCore.Mvc.Localization
@using Microsoft.Extensions.Options

@inject IViewLocalizer Localizer
@inject IOptions<RequestLocalizationOptions> LocOptions

@{
    var requestCulture = Context.Features.Get<IRequestCultureFeature>();
    var cultureItems = LocOptions.Value.SupportedUICultures
        .Select(c => new SelectListItem { Value = c.Name, Text = c.DisplayName })
        .ToList();
    var returnUrl = string.IsNullOrEmpty(Context.Request.Path) ? "~/" : $"~{Context.Request.Path.Value}";
}

<div title="@Localizer["Request culture provider:"] @requestCulture?.Provider?.GetType().Name">
    <form id="selectLanguage" asp-controller="Home" 
          asp-action="SetLanguage" asp-route-returnUrl="@returnUrl" 
          method="post" class="form-horizontal" role="form">
        <label asp-for="@requestCulture.RequestCulture.UICulture.Name">@Localizer["Language:"]</label> 
<select name="culture"
          onchange="this.form.submit();"
          asp-for="@requestCulture.RequestCulture.UICulture.Name" asp-items="cultureItems">
        </select>
    </form>
</div>

Use RequestLocalizationOptions  to add or remove localization providers.

This sample Localization.Star terWebLocalization.Star terWeb project on GitHub contains UI to set the Culture . The

Views/Shared/_SelectLanguagePartial.cshtml file allows you to select the culture from the list of supported

cultures:

The Views/Shared/_SelectLanguagePartial.cshtml file is added to the footer  section of the layout file so it will

be available to all views:

https://github.com/aspnet/entropy


<div class="container body-content" style="margin-top:60px">
    @RenderBody()
    <hr>
    <footer>
        <div class="row">
            <div class="col-md-6">
                <p>&copy; @System.DateTime.Now.Year - Localization</p>
            </div>
            <div class="col-md-6 text-right">
                @await Html.PartialAsync("_SelectLanguagePartial")
            </div>
        </div>
    </footer>
</div>

[HttpPost]
public IActionResult SetLanguage(string culture, string returnUrl)
{
    Response.Cookies.Append(
        CookieRequestCultureProvider.DefaultCookieName,
        CookieRequestCultureProvider.MakeCookieValue(new RequestCulture(culture)),
        new CookieOptions { Expires = DateTimeOffset.UtcNow.AddYears(1) }
    );

    return LocalRedirect(returnUrl);
}

Model binding route data and query strings

Globalization and localization terms

The SetLanguage  method sets the culture cookie.

You can't plug in the _SelectLanguagePartial.cshtml to sample code for this project. The

Localization.Star terWebLocalization.Star terWeb project on GitHub has code to flow the RequestLocalizationOptions  to a Razor

partial through the Dependency Injection container.

See Globalization behavior of model binding route data and query strings.

The process of localizing your app also requires a basic understanding of relevant character sets commonly

used in modern software development and an understanding of the issues associated with them. Although all

computers store text as numbers (codes), different systems store the same text using different numbers. The

localization process refers to translating the app user interface (UI) for a specific culture/locale.

Localizability is an intermediate process for verifying that a globalized app is ready for localization.

The RFC 4646 format for the culture name is <languagecode2>-<country/regioncode2> , where <languagecode2>

is the language code and <country/regioncode2>  is the subculture code. For example, es-CL  for Spanish

(Chile), en-US  for English (United States), and en-AU  for English (Australia). RFC 4646 is a combination of an

ISO 639 two-letter lowercase culture code associated with a language and an ISO 3166 two-letter uppercase

subculture code associated with a country or region. See /previous-versions/commerce-

server/ee825488(v=cs.20).

Internationalization is often abbreviated to "I18N". The abbreviation takes the first and last letters and the

number of letters between them, so 18 stands for the number of letters between the first "I" and the last "N".

The same applies to Globalization (G11N), and Localization (L10N).

Terms:

https://github.com/aspnet/entropy
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/localizability-review
https://www.ietf.org/rfc/rfc4646.txt
https://www.ietf.org/rfc/rfc4646.txt
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee825488(v=cs.20)


NOTENOTE

NOTENOTE

Additional resources

Globalization (G11N): The process of making an app support different languages and regions.

Localization (L10N): The process of customizing an app for a given language and region.

Internationalization (I18N): Describes both globalization and localization.

Culture: It's a language and, optionally, a region.

Neutral culture: A culture that has a specified language, but not a region. (for example "en", "es")

Specific culture: A culture that has a specified language and region. (for example "en-US", "en-GB", "es-CL")

Parent culture: The neutral culture that contains a specific culture. (for example, "en" is the parent culture of

"en-US" and "en-GB")

Locale: A locale is the same as a culture.

You may not be able to enter decimal commas in decimal fields. To support jQuery validation for non-English locales that

use a comma (",") for a decimal point, and non US-English date formats, you must take steps to globalize your app. See

this GitHub issue 4076 for instructions on adding decimal comma.

Prior to ASP.NET Core 3.0 web apps write one log of type LogLevel.Warning  per request if the requested culture is

unsupported. Logging one LogLevel.Warning  per request is can make large log files with redundant information. This

behavior has been changed in ASP.NET 3.0. The RequestLocalizationMiddleware  writes a log of type 

LogLevel.Debug , which reduces the size of production logs.

Troubleshoot ASP.NET Core Localization

Localization.StarterWeb project used in the article.

Globalizing and localizing .NET applications

Resources in .resx Files

Microsoft Multilingual App Toolkit

Localization & Generics

https://jqueryvalidation.org/
https://github.com/dotnet/AspNetCore.Docs/issues/4076#issuecomment-326590420
https://github.com/aspnet/Entropy/tree/master/samples/Localization.StarterWeb
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/index
https://docs.microsoft.com/en-us/dotnet/framework/resources/working-with-resx-files-programmatically
https://marketplace.visualstudio.com/items?itemName=MultilingualAppToolkit.MultilingualAppToolkit-18308
http://hishambinateya.com/localization-and-generics


  

Configure portable object localization in ASP.NET
Core
9/22/2020 • 13 minutes to read • Edit Online

What is a PO file?

ExampleExample

#: Services/EmailService.cs:29
msgid "Enter a comma separated list of email addresses."
msgstr "Entrez une liste d'emails séparés par une virgule."

#: Views/Email.cshtml:112
msgid "The email address is \"{0}\"."
msgid_plural "The email addresses are \"{0}\"."
msgstr[0] "L'adresse email est \"{0}\"."
msgstr[1] "Les adresses email sont \"{0}\""

By Sébastien Ros, Scott Addie and Hisham Bin Ateya

This article walks through the steps for using Portable Object (PO) files in an ASP.NET Core application with the

Orchard Core framework.

Note:Note: Orchard Core isn't a Microsoft product. Consequently, Microsoft provides no support for this feature.

View or download sample code (how to download)

PO files are distributed as text files containing the translated strings for a given language. Some advantages of

using PO files instead .resx files include:

PO files support pluralization; .resx files don't support pluralization.

PO files aren't compiled like .resx files. As such, specialized tooling and build steps aren't required.

PO files work well with collaborative online editing tools.

Here is a sample PO file containing the translation for two strings in French, including one with its plural form:

fr.po

This example uses the following syntax:

#: : A comment indicating the context of the string to be translated. The same string might be translated

differently depending on where it's being used.

msgid : The untranslated string.

msgstr : The translated string.

In the case of pluralization support, more entries can be defined.

msgid_plural : The untranslated plural string.

msgstr[0] : The translated string for the case 0.

msgstr[N] : The translated string for the case N.

The PO file specification can be found here.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/portable-object-localization.md
https://github.com/sebastienros
https://twitter.com/Scott_Addie
https://github.com/hishamco
https://github.com/OrchardCMS/OrchardCore
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/localization/sample/3.x/POLocalization
https://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/PO-Files.html


Configuring PO file support in ASP.NET Core

Referencing the packageReferencing the package

<PackageReference Include="OrchardCore.Localization.Core" Version="1.0.0-rc2-13450" />

Registering the serviceRegistering the service

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc()
        .AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix);

    services.AddPortableObjectLocalization();

    services.Configure<RequestLocalizationOptions>(options =>
        {
            var supportedCultures = new List<CultureInfo>
            {
                new CultureInfo("en-US"),
                new CultureInfo("en"),
                new CultureInfo("fr-FR"),
                new CultureInfo("fr")
            };

            options.DefaultRequestCulture = new RequestCulture("en-US");
            options.SupportedCultures = supportedCultures;
            options.SupportedUICultures = supportedCultures;
        });
}

This example is based on an ASP.NET Core MVC application generated from a Visual Studio 2017 project template.

Add a reference to the OrchardCore.Localization.Core  NuGet package. It's available on MyGet at the following

package source: https://www.myget.org/F/orchardcore-preview/api/v3/index.json

The .csproj file now contains a line similar to the following (version number may vary):

Add the required services to the ConfigureServices  method of Startup.cs:

Add the required middleware to the Configure  method of Startup.cs:

https://www.myget.org/
https://www.myget.org/F/orchardcore-preview/api/v3/index.json


public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
    }

    app.UseRouting();
    app.UseStaticFiles();

    app.UseRequestLocalization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllerRoute(name: "default", pattern: "{controller=Home}/{action=Index}/{id?}");
    });
}

@using Microsoft.AspNetCore.Mvc.Localization
@inject IViewLocalizer Localizer

<p>@Localizer["Hello world!"]</p>

Creating a PO fileCreating a PO file

msgid "Hello world!"
msgstr "Bonjour le monde!"

Testing the applicationTesting the application

Pluralization

Creating pluralization PO filesCreating pluralization PO files

Add the following code to your Razor view of choice. About.cshtml is used in this example.

An IViewLocalizer  instance is injected and used to translate the text "Hello world!".

Create a file named <culture code>.po in your application root folder. In this example, the file name is fr.po because

the French language is used:

This file stores both the string to translate and the French-translated string. Translations revert to their parent

culture, if necessary. In this example, the fr.po file is used if the requested culture is fr-FR  or fr-CA .

Run your application, and navigate to the URL /Home/About . The text Hello world!Hello world!  is displayed.

Navigate to the URL /Home/About?culture=fr-FR . The text Bonjour le monde!Bonjour le monde!  is displayed.

PO files support pluralization forms, which is useful when the same string needs to be translated differently based

on a cardinality. This task is made complicated by the fact that each language defines custom rules to select which

string to use based on the cardinality.

The Orchard Localization package provides an API to invoke these different plural forms automatically.

Add the following content to the previously mentioned fr.po file:



msgid "There is one item."
msgid_plural "There are {0} items."
msgstr[0] "Il y a un élément."
msgstr[1] "Il y a {0} éléments."

Adding a language using different pluralization formsAdding a language using different pluralization forms

msgid "Hello world!"
msgstr "Ahoj světe!!"

msgid "There is one item."
msgid_plural "There are {0} items."
msgstr[0] "Existuje jedna položka."
msgstr[1] "Existují {0} položky."
msgstr[2] "Existuje {0} položek."

var supportedCultures = new List<CultureInfo>
{
    new CultureInfo("en-US"),
    new CultureInfo("en"),
    new CultureInfo("fr-FR"),
    new CultureInfo("fr"),
    new CultureInfo("cs")
};

<p>@Localizer.Plural(1, "There is one item.", "There are {0} items.")</p>
<p>@Localizer.Plural(2, "There is one item.", "There are {0} items.")</p>
<p>@Localizer.Plural(5, "There is one item.", "There are {0} items.")</p>

There is one item.
There are 2 items.
There are 5 items.

See What is a PO file? for an explanation of what each entry in this example represents.

English and French strings were used in the previous example. English and French have only two pluralization

forms and share the same form rules, which is that a cardinality of one is mapped to the first plural form. Any other

cardinality is mapped to the second plural form.

Not all languages share the same rules. This is illustrated with the Czech language, which has three plural forms.

Create the cs.po  file as follows, and note how the pluralization needs three different translations:

To accept Czech localizations, add "cs"  to the list of supported cultures in the ConfigureServices  method:

Edit the Views/Home/About.cshtml file to render localized, plural strings for several cardinalities:

Note:Note: In a real world scenario, a variable would be used to represent the count. Here, we repeat the same code with

three different values to expose a very specific case.

Upon switching cultures, you see the following:

For /Home/About :

For /Home/About?culture=fr :



Il y a un élément.
Il y a 2 éléments.
Il y a 5 éléments.

Existuje jedna položka.
Existují 2 položky.
Existuje 5 položek.

Advanced tasks
Contextualizing stringsContextualizing strings

msgctxt "Views.Home.About"
msgid "Hello world!"
msgstr "Bonjour le monde!"

msgid "Hello world!"
msgstr "Bonjour le monde!"

Changing the location of PO filesChanging the location of PO files

services.AddPortableObjectLocalization(options => options.ResourcesPath = "Localization");

Implementing a custom logic for finding localization filesImplementing a custom logic for finding localization files

For /Home/About?culture=cs :

Note that for the Czech culture, the three translations are different. The French and English cultures share the same

construction for the two last translated strings.

Applications often contain the strings to be translated in several places. The same string may have a different

translation in certain locations within an app (Razor views or class files). A PO file supports the notion of a file

context, which can be used to categorize the string being represented. Using a file context, a string can be translated

differently, depending on the file context (or lack of a file context).

The PO localization services use the name of the full class or the view that's used when translating a string. This is

accomplished by setting the value on the msgctxt  entry.

Consider a minor addition to the previous fr.po example. A Razor view located at Views/Home/About.cshtml can be

defined as the file context by setting the reserved msgctxt  entry's value:

With the msgctxt  set as such, text translation occurs when navigating to /Home/About?culture=fr-FR . The

translation won't occur when navigating to /Home/Contact?culture=fr-FR .

When no specific entry is matched with a given file context, Orchard Core's fallback mechanism looks for an

appropriate PO file without a context. Assuming there's no specific file context defined for

Views/Home/Contact.cshtml, navigating to /Home/Contact?culture=fr-FR  loads a PO file such as:

The default location of PO files can be changed in ConfigureServices :

In this example, the PO files are loaded from the Localization folder.

When more complex logic is needed to locate PO files, the 

OrchardCore.Localization.PortableObject.ILocalizationFileLocationProvider  interface can be implemented and

registered as a service. This is useful when PO files can be stored in varying locations or when the files have to be



Using a different default pluralized languageUsing a different default pluralized language

What is a PO file?

ExampleExample

#: Services/EmailService.cs:29
msgid "Enter a comma separated list of email addresses."
msgstr "Entrez une liste d'emails séparés par une virgule."

#: Views/Email.cshtml:112
msgid "The email address is \"{0}\"."
msgid_plural "The email addresses are \"{0}\"."
msgstr[0] "L'adresse email est \"{0}\"."
msgstr[1] "Les adresses email sont \"{0}\""

found within a hierarchy of folders.

The package includes a Plural  extension method that's specific to two plural forms. For languages requiring more

plural forms, create an extension method. With an extension method, you won't need to provide any localization file

for the default language — the original strings are already available directly in the code.

You can use the more generic Plural(int count, string[] pluralForms, params object[] arguments)  overload which

accepts a string array of translations.

By Sébastien Ros and Scott Addie

This article walks through the steps for using Portable Object (PO) files in an ASP.NET Core application with the

Orchard Core framework.

Note:Note: Orchard Core isn't a Microsoft product. Consequently, Microsoft provides no support for this feature.

View or download sample code (how to download)

PO files are distributed as text files containing the translated strings for a given language. Some advantages of

using PO files instead .resx files include:

PO files support pluralization; .resx files don't support pluralization.

PO files aren't compiled like .resx files. As such, specialized tooling and build steps aren't required.

PO files work well with collaborative online editing tools.

Here is a sample PO file containing the translation for two strings in French, including one with its plural form:

fr.po

This example uses the following syntax:

#: : A comment indicating the context of the string to be translated. The same string might be translated

differently depending on where it's being used.

msgid : The untranslated string.

msgstr : The translated string.

In the case of pluralization support, more entries can be defined.

msgid_plural : The untranslated plural string.

msgstr[0] : The translated string for the case 0.

msgstr[N] : The translated string for the case N.

The PO file specification can be found here.

https://github.com/sebastienros
https://twitter.com/Scott_Addie
https://github.com/OrchardCMS/OrchardCore
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/localization/sample/2.x/POLocalization
https://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/PO-Files.html


Configuring PO file support in ASP.NET Core

Referencing the packageReferencing the package

<PackageReference Include="OrchardCore.Localization.Core" Version="1.0.0-beta1-3187" />

Registering the serviceRegistering the service

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc()
        .AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix);

    services.AddPortableObjectLocalization();

    services.Configure<RequestLocalizationOptions>(options =>
        {
            var supportedCultures = new List<CultureInfo>
            {
                new CultureInfo("en-US"),
                new CultureInfo("en"),
                new CultureInfo("fr-FR"),
                new CultureInfo("fr")
            };

            options.DefaultRequestCulture = new RequestCulture("en-US");
            options.SupportedCultures = supportedCultures;
            options.SupportedUICultures = supportedCultures;
        });
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseBrowserLink();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
    }

    app.UseStaticFiles();

    app.UseRequestLocalization();

    app.UseMvcWithDefaultRoute();
}

This example is based on an ASP.NET Core MVC application generated from a Visual Studio 2017 project template.

Add a reference to the OrchardCore.Localization.Core  NuGet package. It's available on MyGet at the following

package source: https://www.myget.org/F/orchardcore-preview/api/v3/index.json

The .csproj file now contains a line similar to the following (version number may vary):

Add the required services to the ConfigureServices  method of Startup.cs:

Add the required middleware to the Configure  method of Startup.cs:

Add the following code to your Razor view of choice. About.cshtml is used in this example.

https://www.myget.org/
https://www.myget.org/F/orchardcore-preview/api/v3/index.json


@using Microsoft.AspNetCore.Mvc.Localization
@inject IViewLocalizer Localizer

<p>@Localizer["Hello world!"]</p>

Creating a PO fileCreating a PO file

msgid "Hello world!"
msgstr "Bonjour le monde!"

Testing the applicationTesting the application

Pluralization

Creating pluralization PO filesCreating pluralization PO files

msgid "There is one item."
msgid_plural "There are {0} items."
msgstr[0] "Il y a un élément."
msgstr[1] "Il y a {0} éléments."

Adding a language using different pluralization formsAdding a language using different pluralization forms

An IViewLocalizer  instance is injected and used to translate the text "Hello world!".

Create a file named <culture code>.po in your application root folder. In this example, the file name is fr.po because

the French language is used:

This file stores both the string to translate and the French-translated string. Translations revert to their parent

culture, if necessary. In this example, the fr.po file is used if the requested culture is fr-FR  or fr-CA .

Run your application, and navigate to the URL /Home/About . The text Hello world!Hello world!  is displayed.

Navigate to the URL /Home/About?culture=fr-FR . The text Bonjour le monde!Bonjour le monde!  is displayed.

PO files support pluralization forms, which is useful when the same string needs to be translated differently based

on a cardinality. This task is made complicated by the fact that each language defines custom rules to select which

string to use based on the cardinality.

The Orchard Localization package provides an API to invoke these different plural forms automatically.

Add the following content to the previously mentioned fr.po file:

See What is a PO file? for an explanation of what each entry in this example represents.

English and French strings were used in the previous example. English and French have only two pluralization

forms and share the same form rules, which is that a cardinality of one is mapped to the first plural form. Any other

cardinality is mapped to the second plural form.

Not all languages share the same rules. This is illustrated with the Czech language, which has three plural forms.

Create the cs.po  file as follows, and note how the pluralization needs three different translations:



msgid "Hello world!"
msgstr "Ahoj světe!!"

msgid "There is one item."
msgid_plural "There are {0} items."
msgstr[0] "Existuje jedna položka."
msgstr[1] "Existují {0} položky."
msgstr[2] "Existuje {0} položek."

var supportedCultures = new List<CultureInfo>
{
    new CultureInfo("en-US"),
    new CultureInfo("en"),
    new CultureInfo("fr-FR"),
    new CultureInfo("fr"),
    new CultureInfo("cs")
};

<p>@Localizer.Plural(1, "There is one item.", "There are {0} items.")</p>
<p>@Localizer.Plural(2, "There is one item.", "There are {0} items.")</p>
<p>@Localizer.Plural(5, "There is one item.", "There are {0} items.")</p>

There is one item.
There are 2 items.
There are 5 items.

Il y a un élément.
Il y a 2 éléments.
Il y a 5 éléments.

Existuje jedna položka.
Existují 2 položky.
Existuje 5 položek.

Advanced tasks
Contextualizing stringsContextualizing strings

To accept Czech localizations, add "cs"  to the list of supported cultures in the ConfigureServices  method:

Edit the Views/Home/About.cshtml file to render localized, plural strings for several cardinalities:

Note:Note: In a real world scenario, a variable would be used to represent the count. Here, we repeat the same code with

three different values to expose a very specific case.

Upon switching cultures, you see the following:

For /Home/About :

For /Home/About?culture=fr :

For /Home/About?culture=cs :

Note that for the Czech culture, the three translations are different. The French and English cultures share the same

construction for the two last translated strings.



msgctxt "Views.Home.About"
msgid "Hello world!"
msgstr "Bonjour le monde!"

msgid "Hello world!"
msgstr "Bonjour le monde!"

Changing the location of PO filesChanging the location of PO files

services.AddPortableObjectLocalization(options => options.ResourcesPath = "Localization");

Implementing a custom logic for finding localization filesImplementing a custom logic for finding localization files

Using a different default pluralized languageUsing a different default pluralized language

Applications often contain the strings to be translated in several places. The same string may have a different

translation in certain locations within an app (Razor views or class files). A PO file supports the notion of a file

context, which can be used to categorize the string being represented. Using a file context, a string can be translated

differently, depending on the file context (or lack of a file context).

The PO localization services use the name of the full class or the view that's used when translating a string. This is

accomplished by setting the value on the msgctxt  entry.

Consider a minor addition to the previous fr.po example. A Razor view located at Views/Home/About.cshtml can be

defined as the file context by setting the reserved msgctxt  entry's value:

With the msgctxt  set as such, text translation occurs when navigating to /Home/About?culture=fr-FR . The

translation won't occur when navigating to /Home/Contact?culture=fr-FR .

When no specific entry is matched with a given file context, Orchard Core's fallback mechanism looks for an

appropriate PO file without a context. Assuming there's no specific file context defined for

Views/Home/Contact.cshtml, navigating to /Home/Contact?culture=fr-FR  loads a PO file such as:

The default location of PO files can be changed in ConfigureServices :

In this example, the PO files are loaded from the Localization folder.

When more complex logic is needed to locate PO files, the 

OrchardCore.Localization.PortableObject.ILocalizationFileLocationProvider  interface can be implemented and

registered as a service. This is useful when PO files can be stored in varying locations or when the files have to be

found within a hierarchy of folders.

The package includes a Plural  extension method that's specific to two plural forms. For languages requiring more

plural forms, create an extension method. With an extension method, you won't need to provide any localization file

for the default language — the original strings are already available directly in the code.

You can use the more generic Plural(int count, string[] pluralForms, params object[] arguments)  overload which

accepts a string array of translations.



Localization Extensibility
9/22/2020 • 2 minutes to read • Edit Online

Extensible Points in Localization APIs

Localization Culture Providers

Use CustomRequestCultureProviderUse CustomRequestCultureProvider

options.RequestCultureProviders.Insert(0, new CustomRequestCultureProvider(async context =>
{
    var currentCulture = "en";
    var segments = context.Request.Path.Value.Split(new char[] { '/' }, 
        StringSplitOptions.RemoveEmptyEntries);

    if (segments.Length > 1 && segments[0].Length == 2)
    {
        currentCulture = segments[0];
    }

    var requestCulture = new ProviderCultureResult(currentCulture);

    return Task.FromResult(requestCulture);
}));

By Hisham Bin Ateya

This article:

Lists the extensibility points on the localization APIs.

Provides instructions on how to extend ASP.NET Core app localization.

ASP.NET Core localization APIs are built to be extensible. Extensibility allows developers to customize the

localization according to their needs. For instance, OrchardCore has a POStringLocalizer . POStringLocalizer

describes in detail using Portable Object localization to use PO  files to store localization resources.

This article lists the two main extensibility points that localization APIs provide:

RequestCultureProvider

IStringLocalizer

ASP.NET Core localization APIs have four default providers that can determine the current culture of an executing

request:

QueryStringRequestCultureProvider

CookieRequestCultureProvider

AcceptLanguageHeaderRequestCultureProvider

CustomRequestCultureProvider

The preceding providers are described in detail in the Localization Middleware documentation. If the default

providers don't meet your needs, build a custom provider using one of the following approaches:

CustomRequestCultureProvider provides a custom RequestCultureProvider that uses a simple delegate to

determine the current localization culture:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/localization-extensibility.md
https://github.com/hishamco
https://github.com/orchardCMS/OrchardCore/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.localization.requestcultureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.localization.querystringrequestcultureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.localization.cookierequestcultureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.localization.acceptlanguageheaderrequestcultureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.localization.customrequestcultureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.localization.customrequestcultureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.localization.requestcultureprovider


options.AddInitialRequestCultureProvider(new CustomRequestCultureProvider(async context =>
{
    var currentCulture = "en";
    var segments = context.Request.Path.Value.Split(new char[] { '/' }, 
        StringSplitOptions.RemoveEmptyEntries);

    if (segments.Length > 1 && segments[0].Length == 2)
    {
        currentCulture = segments[0];
    }

    var requestCulture = new ProviderCultureResult(currentCulture);

    return Task.FromResult(requestCulture);
}));

Use a new implemetation of RequestCultureProviderUse a new implemetation of RequestCultureProvider

public class AppSettingsRequestCultureProvider : RequestCultureProvider
{
    public string CultureKey { get; set; } = "culture";

    public string UICultureKey { get; set; } = "ui-culture";

    public override Task<ProviderCultureResult> DetermineProviderCultureResult(HttpContext httpContext)
    {
        if (httpContext == null)
        {
            throw new ArgumentNullException();
        }

        var configuration = httpContext.RequestServices.GetService<IConfigurationRoot>();
        var culture = configuration[CultureKey];
        var uiCulture = configuration[UICultureKey];

        if (culture == null && uiCulture == null)
        {
            return Task.FromResult((ProviderCultureResult)null);
        }

        if (culture != null && uiCulture == null)
        {
            uiCulture = culture;
        }

        if (culture == null && uiCulture != null)
        {
            culture = uiCulture;
        }
        
        var providerResultCulture = new ProviderCultureResult(culture, uiCulture);

        return Task.FromResult(providerResultCulture);
    }
}

Localization resources

A new implementation of RequestCultureProvider can be created that determines the request culture information

from a custom source. For example, the custom source can be a configuration file or database.

The following example shows AppSettingsRequestCultureProvider , which extends the RequestCultureProvider to

determine the request culture information from appsettings.json:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.localization.requestcultureprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.localization.requestcultureprovider


ASP.NET Core localization provides ResourceManagerStringLocalizer. ResourceManagerStringLocalizer is an

implementation of IStringLocalizer that is uses resx  to store localization resources.

You aren't limited to using resx  files. By implementing IStringLocalized , any data source can be used.

The following example projects implement IStringLocalizer:

EFStringLocalizer

JsonStringLocalizer

SqlLocalizer

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.resourcemanagerstringlocalizer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.resourcemanagerstringlocalizer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.istringlocalizer
https://github.com/aspnet/Entropy/tree/master/samples/Localization.EntityFramework
https://github.com/hishamco/My.Extensions.Localization.Json
https://github.com/damienbod/AspNetCoreLocalization


 

Troubleshoot ASP.NET Core Localization
9/22/2020 • 2 minutes to read • Edit Online

Localization configuration issues

public void ConfigureServices(IServiceCollection services)
{
    services.AddLocalization(options => options.ResourcesPath = "Resources");

    services.AddMvc();
}

Resource file naming issues

Missing resources

Resources & Class Libraries issues

By Hisham Bin Ateya

This article provides instructions on how to diagnose ASP.NET Core app localization issues.

Localization middleware orderLocalization middleware order

The app may not localize because the localization middleware isn't ordered as expected.

To resolve this issue, ensure that localization middleware is registered before MVC middleware. Otherwise, the

localization middleware isn't applied.

Localization resources path not foundLocalization resources path not found

Suppor ted Cultures in RequestCultureProvider don't match with registered onceSuppor ted Cultures in RequestCultureProvider don't match with registered once

ASP.NET Core has predefined rules and guidelines for localization resources file naming, which are described in

detail here.

Common causes of resources not being found include:

Resource names are misspelled in either the resx  file or the localizer request.

The resource is missing from the resx  for some languages, but exists in others.

If you're still having trouble, check the localization log messages (which are at Debug  log level) for more details

about the missing resources.

Hint:Hint: When using CookieRequestCultureProvider , verify single quotes are not used with the cultures inside the

localization cookie value. For example, c='en-UK'|uic='en-US'  is an invalid cookie value, while c=en-UK|uic=en-US

is a valid.

ASP.NET Core by default provides a way to allow the class libraries to find their resource files via

ResourceLocationAttribute.

Common issues with class libraries include:

Missing the ResourceLocationAttribute  in a class library will prevent ResourceManagerStringLocalizerFactory

from discovering the resources.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/troubleshoot-aspnet-core-localization.md
https://github.com/hishamco
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.resourcelocationattribute?view=aspnetcore-2.1


 

CustomRequestCultureProvider doesn't work as expected

options.RequestCultureProviders.Insert(0, new CustomRequestCultureProvider(async context =>
    {
        // My custom request culture logic
        return new ProviderCultureResult("en");
    }));

options.AddInitialRequestCultureProvider(new CustomRequestCultureProvider(async context =>
    {
        // My custom request culture logic
        return new ProviderCultureResult("en");
    }));

Root Namespace issues

WARNINGWARNING

Resources & Build Action

Resource file naming. For more information, see Resource file naming issues section.

Changing the root namespace of the class library. For more information, see Root Namespace issues section.

The RequestLocalizationOptions  class has three default providers:

1. QueryStringRequestCultureProvider

2. CookieRequestCultureProvider

3. AcceptLanguageHeaderRequestCultureProvider

The CustomRequestCultureProvider allows you to customize how the localization culture is provided in your app.

The CustomRequestCultureProvider  is used when the default providers don't meet your requirements.

A common reason custom provider don't work properly is that it isn't the first provider in the 

RequestCultureProviders  list. To resolve this issue:

Insert the custom provider at the position 0 in the RequestCultureProviders  list as the following:

Use AddInitialRequestCultureProvider  extension method to set the custom provider as initial provider.

When the root namespace of an assembly is different than the assembly name, localization doesn't work by

default. To avoid this issue use RootNamespace, which is described in detail here

This can occur when a project's name is not a valid .NET identifier. For instance my-project-name.csproj  will use the root

namespace my_project_name  and the assembly name my-project-name  leading to this error.

If you use resource files for localization, it's important that they have an appropriate build action. They should be

Embedded ResourceEmbedded Resource, otherwise the ResourceStringLocalizer  is not able to find these resources.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.localization.customrequestcultureprovider?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.localization.rootnamespaceattribute?view=aspnetcore-2.1


Model Binding in ASP.NET Core
9/22/2020 • 31 minutes to read • Edit Online

What is Model binding

Example

[HttpGet("{id}")]
public ActionResult<Pet> GetById(int id, bool dogsOnly)

http://contoso.com/api/pets/2?DogsOnly=true

This article explains what model binding is, how it works, and how to customize its behavior.

View or download sample code (how to download).

Controllers and Razor pages work with data that comes from HTTP requests. For example,

route data may provide a record key, and posted form fields may provide values for the

properties of the model. Writing code to retrieve each of these values and convert them from

strings to .NET types would be tedious and error-prone. Model binding automates this process.

The model binding system:

Retrieves data from various sources such as route data, form fields, and query strings.

Provides the data to controllers and Razor pages in method parameters and public

properties.

Converts string data to .NET types.

Updates properties of complex types.

Suppose you have the following action method:

And the app receives a request with this URL:

Model binding goes through the following steps after the routing system selects the action

method:

Finds the first parameter of GetByID , an integer named id .

Looks through the available sources in the HTTP request and finds id  = "2" in route data.

Converts the string "2" into integer 2.

Finds the next parameter of GetByID , a boolean named dogsOnly .

Looks through the sources and finds "DogsOnly=true" in the query string. Name matching

is not case-sensitive.

Converts the string "true" into boolean true .

The framework then calls the GetById  method, passing in 2 for the id  parameter, and true

for the dogsOnly  parameter.

In the preceding example, the model binding targets are method parameters that are simple

types. Targets may also be the properties of a complex type. After each property is successfully

bound, model validation occurs for that property. The record of what data is bound to the

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/models/model-binding.md
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/model-binding/samples


Targets

[BindProperty] attribute[BindProperty] attribute

public class EditModel : InstructorsPageModel
{
    [BindProperty]
    public Instructor Instructor { get; set; }

[BindProperties] attribute[BindProperties] attribute

[BindProperties(SupportsGet = true)]
public class CreateModel : InstructorsPageModel
{
    public Instructor Instructor { get; set; }

Model binding for HTTP GET requestsModel binding for HTTP GET requests

[BindProperty(Name = "ai_user", SupportsGet = true)]
public string ApplicationInsightsCookie { get; set; }

Sources

model, and any binding or validation errors, is stored in ControllerBase.ModelState or

PageModel.ModelState. To find out if this process was successful, the app checks the

ModelState.IsValid flag.

Model binding tries to find values for the following kinds of targets:

Parameters of the controller action method that a request is routed to.

Parameters of the Razor Pages handler method that a request is routed to.

Public properties of a controller or PageModel  class, if specified by attributes.

Can be applied to a public property of a controller or PageModel  class to cause model binding

to target that property:

Available in ASP.NET Core 2.1 and later. Can be applied to a controller or PageModel  class to tell

model binding to target all public properties of the class:

By default, properties are not bound for HTTP GET requests. Typically, all you need for a GET

request is a record ID parameter. The record ID is used to look up the item in the database.

Therefore, there is no need to bind a property that holds an instance of the model. In scenarios

where you do want properties bound to data from GET requests, set the SupportsGet  property

to true :

By default, model binding gets data in the form of key-value pairs from the following sources in

an HTTP request:

1. Form fields

2. The request body (For controllers that have the [ApiController] attribute.)

3. Route data

4. Query string parameters

5. Uploaded files

For each target parameter or property, the sources are scanned in the order indicated in the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.modelstate#microsoft_aspnetcore_mvc_controllerbase_modelstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.modelstate#microsoft_aspnetcore_mvc_controllerbase_modelstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.isvalid#microsoft_aspnetcore_mvc_modelbinding_modelstatedictionary_isvalid


[FromBody] attribute[FromBody] attribute

public ActionResult<Pet> Create([FromBody] Pet pet)

public class Pet
{
    public string Name { get; set; }

    [FromQuery] // Attribute is ignored.
    public string Breed { get; set; }
}

preceding list. There are a few exceptions:

Route data and query string values are used only for simple types.

Uploaded files are bound only to target types that implement IFormFile  or 

IEnumerable<IFormFile> .

If the default source is not correct, use one of the following attributes to specify the source:

[FromQuery]  - Gets values from the query string.

[FromRoute]  - Gets values from route data.

[FromForm]  - Gets values from posted form fields.

[FromBody]  - Gets values from the request body.

[FromHeader]  - Gets values from HTTP headers.

These attributes:

public class Instructor
{
    public int ID { get; set; }

    [FromQuery(Name = "Note")]
    public string NoteFromQueryString { get; set; }

public void OnGet([FromHeader(Name = "Accept-Language")] string language)

Are added to model properties individually (not to the model class), as in the following

example:

Optionally accept a model name value in the constructor. This option is provided in case

the property name doesn't match the value in the request. For instance, the value in the

request might be a header with a hyphen in its name, as in the following example:

Apply the [FromBody]  attribute to a parameter to populate its properties from the body of an

HTTP request. The ASP.NET Core runtime delegates the responsibility of reading the body to an

input formatter. Input formatters are explained later in this article.

When [FromBody]  is applied to a complex type parameter, any binding source attributes

applied to its properties are ignored. For example, the following Create  action specifies that its

pet  parameter is populated from the body:

The Pet  class specifies that its Breed  property is populated from a query string parameter :

In the preceding example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromqueryattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromrouteattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromformattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromheaderattribute


Additional sourcesAdditional sources

services.AddRazorPages()
    .AddMvcOptions(options =>
{
    options.ValueProviderFactories.Add(new CookieValueProviderFactory());
    options.ModelMetadataDetailsProviders.Add(
        new ExcludeBindingMetadataProvider(typeof(System.Version)));
    options.ModelMetadataDetailsProviders.Add(
        new SuppressChildValidationMetadataProvider(typeof(System.Guid)));
})
.AddXmlSerializerFormatters();

No source for a model property

Type conversion errors

The [FromQuery]  attribute is ignored.

The Breed  property is not populated from a query string parameter.

Input formatters read only the body and don't understand binding source attributes. If a

suitable value is found in the body, that value is used to populate the Breed  property.

Don't apply [FromBody]  to more than one parameter per action method. Once the request

stream is read by an input formatter, it's no longer available to be read again for binding other 

[FromBody]  parameters.

Source data is provided to the model binding system by value providers. You can write and

register custom value providers that get data for model binding from other sources. For

example, you might want data from cookies or session state. To get data from a new source:

Create a class that implements IValueProvider .

Create a class that implements IValueProviderFactory .

Register the factory class in Startup.ConfigureServices .

The sample app includes a value provider and factory example that gets values from cookies.

Here's the registration code in Startup.ConfigureServices :

The code shown puts the custom value provider after all the built-in value providers. To make it

the first in the list, call Insert(0, new CookieValueProviderFactory())  instead of Add .

By default, a model state error isn't created if no value is found for a model property. The

property is set to null or a default value:

Nullable simple types are set to null .

Non-nullable value types are set to default(T) . For example, a parameter int id  is set to

0.

For complex Types, model binding creates an instance by using the default constructor,

without setting properties.

Arrays are set to Array.Empty<T>() , except that byte[]  arrays are set to null .

If model state should be invalidated when nothing is found in form fields for a model property,

use the [BindRequired]  attribute.

Note that this [BindRequired]  behavior applies to model binding from posted form data, not to

JSON or XML data in a request body. Request body data is handled by input formatters.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/models/model-binding/samples/3.x/ModelBindingSample/CookieValueProvider.cs
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/models/model-binding/samples/3.x/ModelBindingSample/CookieValueProviderFactory.cs


public IActionResult OnPost()
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    _instructorsInMemoryStore.Add(Instructor);
    return RedirectToPage("./Index");
}

Simple types

If a source is found but can't be converted into the target type, model state is flagged as invalid.

The target parameter or property is set to null or a default value, as noted in the previous

section.

In an API controller that has the [ApiController]  attribute, invalid model state results in an

automatic HTTP 400 response.

In a Razor page, redisplay the page with an error message:

Client-side validation catches most bad data that would otherwise be submitted to a Razor

Pages form. This validation makes it hard to trigger the preceding highlighted code. The sample

app includes a Submit with Invalid DateSubmit with Invalid Date button that puts bad data in the Hire DateHire Date field

and submits the form. This button shows how the code for redisplaying the page works when

data conversion errors occur.

When the page is redisplayed by the preceding code, the invalid input is not shown in the form

field. This is because the model property has been set to null or a default value. The invalid

input does appear in an error message. But if you want to redisplay the bad data in the form

field, consider making the model property a string and doing the data conversion manually.

The same strategy is recommended if you don't want type conversion errors to result in model

state errors. In that case, make the model property a string.

The simple types that the model binder can convert source strings into include the following:

Boolean

Byte, SByte

Char

DateTime

DateTimeOffset

Decimal

Double

Enum

Guid

Int16, Int32, Int64

Single

TimeSpan

UInt16, UInt32, UInt64

Uri

Version

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.booleanconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.byteconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.sbyteconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.charconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.datetimeconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.datetimeoffsetconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.decimalconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.doubleconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.enumconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.guidconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.int16converter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.int32converter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.int64converter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.singleconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.timespanconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.uint16converter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.uint32converter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.uint64converter
https://docs.microsoft.com/en-us/dotnet/api/system.uritypeconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.versionconverter


Complex types

public class Instructor
{
    public int ID { get; set; }
    public string LastName { get; set; }
    public string FirstName { get; set; }
}

Prefix = parameter namePrefix = parameter name

public IActionResult OnPost(int? id, Instructor instructorToUpdate)

Prefix = property namePrefix = property name

[BindProperty]
public Instructor Instructor { get; set; }

Custom prefixCustom prefix

public IActionResult OnPost(
    int? id, [Bind(Prefix = "Instructor")] Instructor instructorToUpdate)

Attributes for complex type targetsAttributes for complex type targets

A complex type must have a public default constructor and public writable properties to bind.

When model binding occurs, the class is instantiated using the public default constructor.

For each property of the complex type, model binding looks through the sources for the name

pattern prefix.property_name. If nothing is found, it looks for just property_name without the

prefix.

For binding to a parameter, the prefix is the parameter name. For binding to a PageModel  public

property, the prefix is the public property name. Some attributes have a Prefix  property that

lets you override the default usage of parameter or property name.

For example, suppose the complex type is the following Instructor  class:

If the model to be bound is a parameter named instructorToUpdate :

Model binding starts by looking through the sources for the key instructorToUpdate.ID . If that

isn't found, it looks for ID  without a prefix.

If the model to be bound is a property named Instructor  of the controller or PageModel  class:

Model binding starts by looking through the sources for the key Instructor.ID . If that isn't

found, it looks for ID  without a prefix.

If the model to be bound is a parameter named instructorToUpdate  and a Bind  attribute

specifies Instructor  as the prefix:

Model binding starts by looking through the sources for the key Instructor.ID . If that isn't

found, it looks for ID  without a prefix.

Several built-in attributes are available for controlling model binding of complex types:

[Bind]

[BindRequired]



    

WARNINGWARNING

[Bind] attribute[Bind] attribute

[Bind("LastName,FirstMidName,HireDate")]
public class Instructor

[HttpPost]
public IActionResult OnPost([Bind("LastName,FirstMidName,HireDate")] Instructor instructor)

[BindRequired] attribute[BindRequired] attribute

public class InstructorWithCollection
{
    public int ID { get; set; }

    [DataType(DataType.Date)]
    [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
    [Display(Name = "Hire Date")]
    [BindRequired]
    public DateTime HireDate { get; set; }

[BindNever] attribute[BindNever] attribute

[BindNever]

These attributes affect model binding when posted form data is the source of values. They do notnot

affect input formatters, which process posted JSON and XML request bodies. Input formatters are

explained later in this article.

Can be applied to a class or a method parameter. Specifies which properties of a model should

be included in model binding. [Bind]  does notnot affect input formatters.

In the following example, only the specified properties of the Instructor  model are bound

when any handler or action method is called:

In the following example, only the specified properties of the Instructor  model are bound

when the OnPost  method is called:

The [Bind]  attribute can be used to protect against overposting in create scenarios. It doesn't

work well in edit scenarios because excluded properties are set to null or a default value

instead of being left unchanged. For defense against overposting, view models are

recommended rather than the [Bind]  attribute. For more information, see Security note about

overposting.

Can only be applied to model properties, not to method parameters. Causes model binding to

add a model state error if binding cannot occur for a model's property. Here's an example:

See also the discussion of the [Required]  attribute in Model validation.

Can only be applied to model properties, not to method parameters. Prevents model binding

from setting a model's property. Here's an example:



public class InstructorWithDictionary
{
    [BindNever]
    public int ID { get; set; }

Collections

Dictionaries

For targets that are collections of simple types, model binding looks for matches to

parameter_name or property_name. If no match is found, it looks for one of the supported

formats without the prefix. For example:

public IActionResult OnPost(int? id, int[] selectedCourses)

selectedCourses=1050&selectedCourses=2000 

selectedCourses[0]=1050&selectedCourses[1]=2000

[0]=1050&[1]=2000

selectedCourses[a]=1050&selectedCourses[b]=2000&selectedCourses.index=a&selectedCour
ses.index=b

[a]=1050&[b]=2000&index=a&index=b

selectedCourses[]=1050&selectedCourses[]=2000

Suppose the parameter to be bound is an array named selectedCourses :

Form or query string data can be in one of the following formats:

The following format is supported only in form data:

For all of the preceding example formats, model binding passes an array of two items to

the selectedCourses  parameter :

selectedCourses[0]=1050

selectedCourses[1]=2000

Data formats that use subscript numbers (... [0] ... [1] ...) must ensure that they are

numbered sequentially starting at zero. If there are any gaps in subscript numbering, all

items after the gap are ignored. For example, if the subscripts are 0 and 2 instead of 0

and 1, the second item is ignored.

For Dictionary  targets, model binding looks for matches to parameter_name or

property_name. If no match is found, it looks for one of the supported formats without the

prefix. For example:



Globalization behavior of model binding route data and
query strings

public IActionResult OnPost(int? id, Dictionary<int, string> selectedCourses)

selectedCourses[1050]=Chemistry&selectedCourses[2000]=Economics

[1050]=Chemistry&selectedCourses[2000]=Economics

selectedCourses[0].Key=1050&selectedCourses[0].Value=Chemistry&
selectedCourses[1].Key=2000&selectedCourses[1].Value=Economics

[0].Key=1050&[0].Value=Chemistry&[1].Key=2000&[1].Value=Economics

Suppose the target parameter is a Dictionary<int, string>  named selectedCourses :

The posted form or query string data can look like one of the following examples:

For all of the preceding example formats, model binding passes a dictionary of two

items to the selectedCourses  parameter :

selectedCourses["1050"]="Chemistry"

selectedCourses["2000"]="Economics"

      

The ASP.NET Core route value provider and query string value provider :

Treat values as invariant culture.

Expect that URLs are culture-invariant.

In contrast, values coming from form data undergo a culture-sensitive conversion. This is by

design so that URLs are shareable across locales.

To make the ASP.NET Core route value provider and query string value provider undergo a

culture-sensitive conversion:

Inherit from IValueProviderFactory

Copy the code from QueryStringValueProviderFactory or RouteValueValueProviderFactory

Replace the culture value passed to the value provider constructor with

CultureInfo.CurrentCulture

Replace the default value provider factory in MVC options with your new one:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.ivalueproviderfactory
https://github.com/dotnet/AspNetCore/blob/master/src/Mvc/Mvc.Core/src/ModelBinding/QueryStringValueProviderFactory.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Mvc/Mvc.Core/src/ModelBinding/RouteValueProviderFactory.cs
https://github.com/dotnet/AspNetCore/blob/e625fe29b049c60242e8048b4ea743cca65aa7b5/src/Mvc/Mvc.Core/src/ModelBinding/QueryStringValueProviderFactory.cs#L30
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.currentculture#system_globalization_cultureinfo_currentculture


          

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews(options =>
    {
        var index = options.ValueProviderFactories.IndexOf(
            options.ValueProviderFactories.OfType<QueryStringValueProviderFactory>
().Single());
        options.ValueProviderFactories[index] = new 
CulturedQueryStringValueProviderFactory();
    });
}

public class CulturedQueryStringValueProviderFactory : IValueProviderFactory
{
    public Task CreateValueProviderAsync(ValueProviderFactoryContext context)
    {
        if (context == null)
        {
            throw new ArgumentNullException(nameof(context));
        }

        var query = context.ActionContext.HttpContext.Request.Query;
        if (query != null && query.Count > 0)
        {
            var valueProvider = new QueryStringValueProvider(
                BindingSource.Query,
                query,
                CultureInfo.CurrentCulture);

            context.ValueProviders.Add(valueProvider);
        }

        return Task.CompletedTask;
    }
}

Special data types

IFormFile and IFormFileCollectionIFormFile and IFormFileCollection

CancellationTokenCancellationToken

FormCollectionFormCollection

Input formatters

There are some special data types that model binding can handle.

An uploaded file included in the HTTP request. Also supported is IEnumerable<IFormFile>  for

multiple files.

Used to cancel activity in asynchronous controllers.

Used to retrieve all the values from posted form data.

Data in the request body can be in JSON, XML, or some other format. To parse this data, model

binding uses an input formatter that is configured to handle a particular content type. By

default, ASP.NET Core includes JSON based input formatters for handling JSON data. You can

add other formatters for other content types.

ASP.NET Core selects input formatters based on the Consumes attribute. If no attribute is

present, it uses the Content-Type header.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.consumesattribute
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html


Customize model binding with input formattersCustomize model binding with input formatters

public class ModelWithObjectId
{
    public ObjectId Id { get; set; }
}

internal class ObjectIdConverter : JsonConverter<ObjectId>
{
    public override ObjectId Read(
        ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
    {
        return new ObjectId(JsonSerializer.Deserialize<int>(ref reader, options));
    }

    public override void Write(
        Utf8JsonWriter writer, ObjectId value, JsonSerializerOptions options)
    {
        writer.WriteNumberValue(value.Id);
    }
}

To use the built-in XML input formatters:

services.AddRazorPages()
    .AddMvcOptions(options =>
{
    options.ValueProviderFactories.Add(new CookieValueProviderFactory());
    options.ModelMetadataDetailsProviders.Add(
        new ExcludeBindingMetadataProvider(typeof(System.Version)));
    options.ModelMetadataDetailsProviders.Add(
        new SuppressChildValidationMetadataProvider(typeof(System.Guid)));
})
.AddXmlSerializerFormatters();

[HttpPost]
[Consumes("application/xml")]
public ActionResult<Pet> Create(Pet pet)

Install the Microsoft.AspNetCore.Mvc.Formatters.Xml  NuGet package.

In Startup.ConfigureServices , call AddXmlSerializerFormatters or

AddXmlDataContractSerializerFormatters.

Apply the Consumes  attribute to controller classes or action methods that should expect

XML in the request body.

For more information, see Introducing XML Serialization.

An input formatter takes full responsibility for reading data from the request body. To

customize this process, configure the APIs used by the input formatter. This section describes

how to customize the System.Text.Json -based input formatter to understand a custom type

named ObjectId .

Consider the following model, which contains a custom ObjectId  property named Id :

To customize the model binding process when using System.Text.Json , create a class derived

from JsonConverter<T>:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcxmlmvccorebuilderextensions.addxmlserializerformatters
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcxmlmvccorebuilderextensions.addxmldatacontractserializerformatters
https://docs.microsoft.com/en-us/dotnet/standard/serialization/introducing-xml-serialization
https://docs.microsoft.com/en-us/dotnet/api/system.text.json.serialization.jsonconverter-1


[JsonConverter(typeof(ObjectIdConverter))]
public struct ObjectId
{
    public ObjectId(int id) =>
        Id = id;

    public int Id { get; }
}

Exclude specified types from model binding

services.AddRazorPages()
    .AddMvcOptions(options =>
{
    options.ValueProviderFactories.Add(new CookieValueProviderFactory());
    options.ModelMetadataDetailsProviders.Add(
        new ExcludeBindingMetadataProvider(typeof(System.Version)));
    options.ModelMetadataDetailsProviders.Add(
        new SuppressChildValidationMetadataProvider(typeof(System.Guid)));
})
.AddXmlSerializerFormatters();

services.AddRazorPages()
    .AddMvcOptions(options =>
{
    options.ValueProviderFactories.Add(new CookieValueProviderFactory());
    options.ModelMetadataDetailsProviders.Add(
        new ExcludeBindingMetadataProvider(typeof(System.Version)));
    options.ModelMetadataDetailsProviders.Add(
        new SuppressChildValidationMetadataProvider(typeof(System.Guid)));
})
.AddXmlSerializerFormatters();

Custom model binders

To use a custom converter, apply the JsonConverterAttribute attribute to the type. In the

following example, the ObjectId  type is configured with ObjectIdConverter  as its custom

converter :

For more information, see How to write custom converters.

The model binding and validation systems' behavior is driven by ModelMetadata. You can

customize ModelMetadata  by adding a details provider to

MvcOptions.ModelMetadataDetailsProviders. Built-in details providers are available for

disabling model binding or validation for specified types.

To disable model binding on all models of a specified type, add an

ExcludeBindingMetadataProvider in Startup.ConfigureServices . For example, to disable model

binding on all models of type System.Version :

To disable validation on properties of a specified type, add a

SuppressChildValidationMetadataProvider in Startup.ConfigureServices . For example, to

disable validation on properties of type System.Guid :

You can extend model binding by writing a custom model binder and using the [ModelBinder]

attribute to select it for a given target. Learn more about custom model binding.

https://docs.microsoft.com/en-us/dotnet/api/system.text.json.serialization.jsonconverterattribute
https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-converters-how-to
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelmetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.modelmetadatadetailsproviders#microsoft_aspnetcore_mvc_mvcoptions_modelmetadatadetailsproviders
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.excludebindingmetadataprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.suppresschildvalidationmetadataprovider


Manual model binding

if (await TryUpdateModelAsync<InstructorWithCollection>(
    newInstructor,
    "Instructor",
    i => i.FirstMidName, i => i.LastName, i => i.HireDate))
{
    _instructorsInMemoryStore.Add(newInstructor);
    return RedirectToPage("./Index");
}
PopulateAssignedCourseData(newInstructor);
return Page();

[FromServices] attribute

Additional resources

What is Model binding

Model binding can be invoked manually by using the TryUpdateModelAsync method. The

method is defined on both ControllerBase  and PageModel  classes. Method overloads let you

specify the prefix and value provider to use. The method returns false  if model binding fails.

Here's an example:

TryUpdateModelAsync uses value providers to get data from the form body, query string, and

route data. TryUpdateModelAsync  is typically:

Used with Razor Pages and MVC apps using controllers and views to prevent over-posting.

Not used with a web API unless consumed from form data, query strings, and route data.

Web API endpoints that consume JSON use Input formatters to deserialize the request body

into an object.

For more information, see TryUpdateModelAsync.

This attribute's name follows the pattern of model binding attributes that specify a data source.

But it's not about binding data from a value provider. It gets an instance of a type from the

dependency injection container. Its purpose is to provide an alternative to constructor injection

for when you need a service only if a particular method is called.

Model validation in ASP.NET Core MVC

Custom Model Binding in ASP.NET Core

This article explains what model binding is, how it works, and how to customize its behavior.

View or download sample code (how to download).

Controllers and Razor pages work with data that comes from HTTP requests. For example,

route data may provide a record key, and posted form fields may provide values for the

properties of the model. Writing code to retrieve each of these values and convert them from

strings to .NET types would be tedious and error-prone. Model binding automates this process.

The model binding system:

Retrieves data from various sources such as route data, form fields, and query strings.

Provides the data to controllers and Razor pages in method parameters and public

properties.

Converts string data to .NET types.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.tryupdatemodelasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.tryupdatemodelasync
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/model-binding/samples


Example

[HttpGet("{id}")]
public ActionResult<Pet> GetById(int id, bool dogsOnly)

http://contoso.com/api/pets/2?DogsOnly=true

Targets

[BindProperty] attribute[BindProperty] attribute

public class EditModel : InstructorsPageModel
{
    [BindProperty]
    public Instructor Instructor { get; set; }

[BindProperties] attribute[BindProperties] attribute

Updates properties of complex types.

Suppose you have the following action method:

And the app receives a request with this URL:

Model binding goes through the following steps after the routing system selects the action

method:

Finds the first parameter of GetByID , an integer named id .

Looks through the available sources in the HTTP request and finds id  = "2" in route data.

Converts the string "2" into integer 2.

Finds the next parameter of GetByID , a boolean named dogsOnly .

Looks through the sources and finds "DogsOnly=true" in the query string. Name matching

is not case-sensitive.

Converts the string "true" into boolean true .

The framework then calls the GetById  method, passing in 2 for the id  parameter, and true

for the dogsOnly  parameter.

In the preceding example, the model binding targets are method parameters that are simple

types. Targets may also be the properties of a complex type. After each property is successfully

bound, model validation occurs for that property. The record of what data is bound to the

model, and any binding or validation errors, is stored in ControllerBase.ModelState or

PageModel.ModelState. To find out if this process was successful, the app checks the

ModelState.IsValid flag.

Model binding tries to find values for the following kinds of targets:

Parameters of the controller action method that a request is routed to.

Parameters of the Razor Pages handler method that a request is routed to.

Public properties of a controller or PageModel  class, if specified by attributes.

Can be applied to a public property of a controller or PageModel  class to cause model binding

to target that property:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.modelstate#microsoft_aspnetcore_mvc_controllerbase_modelstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.modelstate#microsoft_aspnetcore_mvc_controllerbase_modelstate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelstatedictionary.isvalid#microsoft_aspnetcore_mvc_modelbinding_modelstatedictionary_isvalid


[BindProperties(SupportsGet = true)]
public class CreateModel : InstructorsPageModel
{
    public Instructor Instructor { get; set; }

Model binding for HTTP GET requestsModel binding for HTTP GET requests

[BindProperty(Name = "ai_user", SupportsGet = true)]
public string ApplicationInsightsCookie { get; set; }

Sources

Available in ASP.NET Core 2.1 and later. Can be applied to a controller or PageModel  class to tell

model binding to target all public properties of the class:

By default, properties are not bound for HTTP GET requests. Typically, all you need for a GET

request is a record ID parameter. The record ID is used to look up the item in the database.

Therefore, there is no need to bind a property that holds an instance of the model. In scenarios

where you do want properties bound to data from GET requests, set the SupportsGet  property

to true :

By default, model binding gets data in the form of key-value pairs from the following sources in

an HTTP request:

1. Form fields

2. The request body (For controllers that have the [ApiController] attribute.)

3. Route data

4. Query string parameters

5. Uploaded files

For each target parameter or property, the sources are scanned in the order indicated in the

preceding list. There are a few exceptions:

Route data and query string values are used only for simple types.

Uploaded files are bound only to target types that implement IFormFile  or 

IEnumerable<IFormFile> .

If the default source is not correct, use one of the following attributes to specify the source:

[FromQuery]  - Gets values from the query string.

[FromRoute]  - Gets values from route data.

[FromForm]  - Gets values from posted form fields.

[FromBody]  - Gets values from the request body.

[FromHeader]  - Gets values from HTTP headers.

These attributes:

Are added to model properties individually (not to the model class), as in the following

example:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromqueryattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromrouteattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromformattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.frombodyattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fromheaderattribute


[FromBody] attribute[FromBody] attribute

public ActionResult<Pet> Create([FromBody] Pet pet)

public class Pet
{
    public string Name { get; set; }

    [FromQuery] // Attribute is ignored.
    public string Breed { get; set; }
}

Additional sourcesAdditional sources

public class Instructor
{
    public int ID { get; set; }

    [FromQuery(Name = "Note")]
    public string NoteFromQueryString { get; set; }

public void OnGet([FromHeader(Name = "Accept-Language")] string language)

Optionally accept a model name value in the constructor. This option is provided in case

the property name doesn't match the value in the request. For instance, the value in the

request might be a header with a hyphen in its name, as in the following example:

Apply the [FromBody]  attribute to a parameter to populate its properties from the body of an

HTTP request. The ASP.NET Core runtime delegates the responsibility of reading the body to an

input formatter. Input formatters are explained later in this article.

When [FromBody]  is applied to a complex type parameter, any binding source attributes

applied to its properties are ignored. For example, the following Create  action specifies that its

pet  parameter is populated from the body:

The Pet  class specifies that its Breed  property is populated from a query string parameter :

In the preceding example:

The [FromQuery]  attribute is ignored.

The Breed  property is not populated from a query string parameter.

Input formatters read only the body and don't understand binding source attributes. If a

suitable value is found in the body, that value is used to populate the Breed  property.

Don't apply [FromBody]  to more than one parameter per action method. Once the request

stream is read by an input formatter, it's no longer available to be read again for binding other 

[FromBody]  parameters.

Source data is provided to the model binding system by value providers. You can write and

register custom value providers that get data for model binding from other sources. For

example, you might want data from cookies or session state. To get data from a new source:

Create a class that implements IValueProvider .

Create a class that implements IValueProviderFactory .

Register the factory class in Startup.ConfigureServices .



services.AddMvc(options =>
{
    options.ValueProviderFactories.Add(new CookieValueProviderFactory());
    options.ModelMetadataDetailsProviders.Add(
        new ExcludeBindingMetadataProvider(typeof(System.Version)));
    options.ModelMetadataDetailsProviders.Add(
        new SuppressChildValidationMetadataProvider(typeof(System.Guid)));
})
.AddXmlSerializerFormatters()
.SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

No source for a model property

Type conversion errors

public IActionResult OnPost()
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    _instructorsInMemoryStore.Add(Instructor);
    return RedirectToPage("./Index");
}

The sample app includes a value provider and factory example that gets values from cookies.

Here's the registration code in Startup.ConfigureServices :

The code shown puts the custom value provider after all the built-in value providers. To make it

the first in the list, call Insert(0, new CookieValueProviderFactory())  instead of Add .

By default, a model state error isn't created if no value is found for a model property. The

property is set to null or a default value:

Nullable simple types are set to null .

Non-nullable value types are set to default(T) . For example, a parameter int id  is set to

0.

For complex Types, model binding creates an instance by using the default constructor,

without setting properties.

Arrays are set to Array.Empty<T>() , except that byte[]  arrays are set to null .

If model state should be invalidated when nothing is found in form fields for a model property,

use the [BindRequired]  attribute.

Note that this [BindRequired]  behavior applies to model binding from posted form data, not to

JSON or XML data in a request body. Request body data is handled by input formatters.

If a source is found but can't be converted into the target type, model state is flagged as invalid.

The target parameter or property is set to null or a default value, as noted in the previous

section.

In an API controller that has the [ApiController]  attribute, invalid model state results in an

automatic HTTP 400 response.

In a Razor page, redisplay the page with an error message:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/models/model-binding/samples/2.x/ModelBindingSample/CookieValueProvider.cs
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/models/model-binding/samples/2.x/ModelBindingSample/CookieValueProviderFactory.cs


Simple types

Complex types

Client-side validation catches most bad data that would otherwise be submitted to a Razor

Pages form. This validation makes it hard to trigger the preceding highlighted code. The sample

app includes a Submit with Invalid DateSubmit with Invalid Date button that puts bad data in the Hire DateHire Date field

and submits the form. This button shows how the code for redisplaying the page works when

data conversion errors occur.

When the page is redisplayed by the preceding code, the invalid input is not shown in the form

field. This is because the model property has been set to null or a default value. The invalid

input does appear in an error message. But if you want to redisplay the bad data in the form

field, consider making the model property a string and doing the data conversion manually.

The same strategy is recommended if you don't want type conversion errors to result in model

state errors. In that case, make the model property a string.

The simple types that the model binder can convert source strings into include the following:

Boolean

Byte, SByte

Char

DateTime

DateTimeOffset

Decimal

Double

Enum

Guid

Int16, Int32, Int64

Single

TimeSpan

UInt16, UInt32, UInt64

Uri

Version

A complex type must have a public default constructor and public writable properties to bind.

When model binding occurs, the class is instantiated using the public default constructor.

For each property of the complex type, model binding looks through the sources for the name

pattern prefix.property_name. If nothing is found, it looks for just property_name without the

prefix.

For binding to a parameter, the prefix is the parameter name. For binding to a PageModel  public

property, the prefix is the public property name. Some attributes have a Prefix  property that

lets you override the default usage of parameter or property name.

For example, suppose the complex type is the following Instructor  class:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.booleanconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.byteconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.sbyteconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.charconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.datetimeconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.datetimeoffsetconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.decimalconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.doubleconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.enumconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.guidconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.int16converter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.int32converter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.int64converter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.singleconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.timespanconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.uint16converter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.uint32converter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.uint64converter
https://docs.microsoft.com/en-us/dotnet/api/system.uritypeconverter
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.versionconverter


public class Instructor
{
    public int ID { get; set; }
    public string LastName { get; set; }
    public string FirstName { get; set; }
}

Prefix = parameter namePrefix = parameter name

public IActionResult OnPost(int? id, Instructor instructorToUpdate)

Prefix = property namePrefix = property name

[BindProperty]
public Instructor Instructor { get; set; }

Custom prefixCustom prefix

public IActionResult OnPost(
    int? id, [Bind(Prefix = "Instructor")] Instructor instructorToUpdate)

Attributes for complex type targetsAttributes for complex type targets

NOTENOTE

[BindRequired] attribute[BindRequired] attribute

If the model to be bound is a parameter named instructorToUpdate :

Model binding starts by looking through the sources for the key instructorToUpdate.ID . If that

isn't found, it looks for ID  without a prefix.

If the model to be bound is a property named Instructor  of the controller or PageModel  class:

Model binding starts by looking through the sources for the key Instructor.ID . If that isn't

found, it looks for ID  without a prefix.

If the model to be bound is a parameter named instructorToUpdate  and a Bind  attribute

specifies Instructor  as the prefix:

Model binding starts by looking through the sources for the key Instructor.ID . If that isn't

found, it looks for ID  without a prefix.

Several built-in attributes are available for controlling model binding of complex types:

[BindRequired]

[BindNever]

[Bind]

These attributes affect model binding when posted form data is the source of values. They do not

affect input formatters, which process posted JSON and XML request bodies. Input formatters are

explained later in this article.

See also the discussion of the [Required]  attribute in Model validation.

Can only be applied to model properties, not to method parameters. Causes model binding to

add a model state error if binding cannot occur for a model's property. Here's an example:



public class InstructorWithCollection
{
    public int ID { get; set; }

    [DataType(DataType.Date)]
    [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
    [Display(Name = "Hire Date")]
    [BindRequired]
    public DateTime HireDate { get; set; }

[BindNever] attribute[BindNever] attribute

public class InstructorWithDictionary
{
    [BindNever]
    public int ID { get; set; }

[Bind] attribute[Bind] attribute

[Bind("LastName,FirstMidName,HireDate")]
public class Instructor

[HttpPost]
public IActionResult OnPost([Bind("LastName,FirstMidName,HireDate")] Instructor instructor)

Collections

Can only be applied to model properties, not to method parameters. Prevents model binding

from setting a model's property. Here's an example:

Can be applied to a class or a method parameter. Specifies which properties of a model should

be included in model binding.

In the following example, only the specified properties of the Instructor  model are bound

when any handler or action method is called:

In the following example, only the specified properties of the Instructor  model are bound

when the OnPost  method is called:

The [Bind]  attribute can be used to protect against overposting in create scenarios. It doesn't

work well in edit scenarios because excluded properties are set to null or a default value

instead of being left unchanged. For defense against overposting, view models are

recommended rather than the [Bind]  attribute. For more information, see Security note about

overposting.

For targets that are collections of simple types, model binding looks for matches to

parameter_name or property_name. If no match is found, it looks for one of the supported

formats without the prefix. For example:

public IActionResult OnPost(int? id, int[] selectedCourses)

Suppose the parameter to be bound is an array named selectedCourses :

Form or query string data can be in one of the following formats:



Dictionaries

selectedCourses=1050&selectedCourses=2000 

selectedCourses[0]=1050&selectedCourses[1]=2000

[0]=1050&[1]=2000

selectedCourses[a]=1050&selectedCourses[b]=2000&selectedCourses.index=a&selectedCour
ses.index=b

[a]=1050&[b]=2000&index=a&index=b

selectedCourses[]=1050&selectedCourses[]=2000

The following format is supported only in form data:

For all of the preceding example formats, model binding passes an array of two items to

the selectedCourses  parameter :

selectedCourses[0]=1050

selectedCourses[1]=2000

Data formats that use subscript numbers (... [0] ... [1] ...) must ensure that they are

numbered sequentially starting at zero. If there are any gaps in subscript numbering, all

items after the gap are ignored. For example, if the subscripts are 0 and 2 instead of 0

and 1, the second item is ignored.

For Dictionary  targets, model binding looks for matches to parameter_name or

property_name. If no match is found, it looks for one of the supported formats without the

prefix. For example:

public IActionResult OnPost(int? id, Dictionary<int, string> selectedCourses)

selectedCourses[1050]=Chemistry&selectedCourses[2000]=Economics

[1050]=Chemistry&selectedCourses[2000]=Economics

selectedCourses[0].Key=1050&selectedCourses[0].Value=Chemistry&
selectedCourses[1].Key=2000&selectedCourses[1].Value=Economics

[0].Key=1050&[0].Value=Chemistry&[1].Key=2000&[1].Value=Economics

Suppose the target parameter is a Dictionary<int, string>  named selectedCourses :

The posted form or query string data can look like one of the following examples:



Globalization behavior of model binding route data and
query strings

services.AddMvc(options =>
{
    var index = options.ValueProviderFactories.IndexOf(
        options.ValueProviderFactories.OfType<QueryStringValueProviderFactory>().Single());
    options.ValueProviderFactories[index] = new CulturedQueryStringValueProviderFactory();
});

public class CulturedQueryStringValueProviderFactory : IValueProviderFactory
{
    public Task CreateValueProviderAsync(ValueProviderFactoryContext context)
    {
        if (context == null)
        {
            throw new ArgumentNullException(nameof(context));
        }

        var query = context.ActionContext.HttpContext.Request.Query;
        if (query != null && query.Count > 0)
        {
            var valueProvider = new QueryStringValueProvider(
                BindingSource.Query,
                query,
                CultureInfo.CurrentCulture);

            context.ValueProviders.Add(valueProvider);
        }

        return Task.CompletedTask;
    }
}

For all of the preceding example formats, model binding passes a dictionary of two

items to the selectedCourses  parameter :

selectedCourses["1050"]="Chemistry"

selectedCourses["2000"]="Economics"

 

The ASP.NET Core route value provider and query string value provider :

Treat values as invariant culture.

Expect that URLs are culture-invariant.

In contrast, values coming from form data undergo a culture-sensitive conversion. This is by

design so that URLs are shareable across locales.

To make the ASP.NET Core route value provider and query string value provider undergo a

culture-sensitive conversion:

Inherit from IValueProviderFactory

Copy the code from QueryStringValueProviderFactory or RouteValueValueProviderFactory

Replace the culture value passed to the value provider constructor with

CultureInfo.CurrentCulture

Replace the default value provider factory in MVC options with your new one:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.ivalueproviderfactory
https://github.com/dotnet/AspNetCore/blob/master/src/Mvc/Mvc.Core/src/ModelBinding/QueryStringValueProviderFactory.cs
https://github.com/dotnet/AspNetCore/blob/master/src/Mvc/Mvc.Core/src/ModelBinding/RouteValueProviderFactory.cs
https://github.com/dotnet/AspNetCore/blob/e625fe29b049c60242e8048b4ea743cca65aa7b5/src/Mvc/Mvc.Core/src/ModelBinding/QueryStringValueProviderFactory.cs#L30
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.currentculture#system_globalization_cultureinfo_currentculture


Special data types

IFormFile and IFormFileCollectionIFormFile and IFormFileCollection

CancellationTokenCancellationToken

FormCollectionFormCollection

Input formatters

Exclude specified types from model binding

There are some special data types that model binding can handle.

An uploaded file included in the HTTP request. Also supported is IEnumerable<IFormFile>  for

multiple files.

Used to cancel activity in asynchronous controllers.

Used to retrieve all the values from posted form data.

Data in the request body can be in JSON, XML, or some other format. To parse this data, model

binding uses an input formatter that is configured to handle a particular content type. By

default, ASP.NET Core includes JSON based input formatters for handling JSON data. You can

add other formatters for other content types.

ASP.NET Core selects input formatters based on the Consumes attribute. If no attribute is

present, it uses the Content-Type header.

To use the built-in XML input formatters:

services.AddMvc(options =>
{
    options.ValueProviderFactories.Add(new CookieValueProviderFactory());
    options.ModelMetadataDetailsProviders.Add(
        new ExcludeBindingMetadataProvider(typeof(System.Version)));
    options.ModelMetadataDetailsProviders.Add(
        new SuppressChildValidationMetadataProvider(typeof(System.Guid)));
})
.AddXmlSerializerFormatters()
.SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

[HttpPost]
[Consumes("application/xml")]
public ActionResult<Pet> Create(Pet pet)

Install the Microsoft.AspNetCore.Mvc.Formatters.Xml  NuGet package.

In Startup.ConfigureServices , call AddXmlSerializerFormatters or

AddXmlDataContractSerializerFormatters.

Apply the Consumes  attribute to controller classes or action methods that should expect

XML in the request body.

For more information, see Introducing XML Serialization.

The model binding and validation systems' behavior is driven by ModelMetadata. You can

customize ModelMetadata  by adding a details provider to

MvcOptions.ModelMetadataDetailsProviders. Built-in details providers are available for

disabling model binding or validation for specified types.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.consumesattribute
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcxmlmvccorebuilderextensions.addxmlserializerformatters
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcxmlmvccorebuilderextensions.addxmldatacontractserializerformatters
https://docs.microsoft.com/en-us/dotnet/standard/serialization/introducing-xml-serialization
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.modelmetadata
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.modelmetadatadetailsproviders#microsoft_aspnetcore_mvc_mvcoptions_modelmetadatadetailsproviders


services.AddMvc(options =>
{
    options.ValueProviderFactories.Add(new CookieValueProviderFactory());
    options.ModelMetadataDetailsProviders.Add(
        new ExcludeBindingMetadataProvider(typeof(System.Version)));
    options.ModelMetadataDetailsProviders.Add(
        new SuppressChildValidationMetadataProvider(typeof(System.Guid)));
})
.AddXmlSerializerFormatters()
.SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

services.AddMvc(options =>
{
    options.ValueProviderFactories.Add(new CookieValueProviderFactory());
    options.ModelMetadataDetailsProviders.Add(
        new ExcludeBindingMetadataProvider(typeof(System.Version)));
    options.ModelMetadataDetailsProviders.Add(
        new SuppressChildValidationMetadataProvider(typeof(System.Guid)));
})
.AddXmlSerializerFormatters()
.SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

Custom model binders

Manual model binding

if (await TryUpdateModelAsync<InstructorWithCollection>(
    newInstructor,
    "Instructor",
    i => i.FirstMidName, i => i.LastName, i => i.HireDate))
{
    _instructorsInMemoryStore.Add(newInstructor);
    return RedirectToPage("./Index");
}
PopulateAssignedCourseData(newInstructor);
return Page();

[FromServices] attribute

To disable model binding on all models of a specified type, add an

ExcludeBindingMetadataProvider in Startup.ConfigureServices . For example, to disable model

binding on all models of type System.Version :

To disable validation on properties of a specified type, add a

SuppressChildValidationMetadataProvider in Startup.ConfigureServices . For example, to

disable validation on properties of type System.Guid :

You can extend model binding by writing a custom model binder and using the [ModelBinder]

attribute to select it for a given target. Learn more about custom model binding.

Model binding can be invoked manually by using the TryUpdateModelAsync method. The

method is defined on both ControllerBase  and PageModel  classes. Method overloads let you

specify the prefix and value provider to use. The method returns false  if model binding fails.

Here's an example:

This attribute's name follows the pattern of model binding attributes that specify a data source.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.excludebindingmetadataprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.suppresschildvalidationmetadataprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.tryupdatemodelasync


Additional resources

But it's not about binding data from a value provider. It gets an instance of a type from the

dependency injection container. Its purpose is to provide an alternative to constructor injection

for when you need a service only if a particular method is called.

Model validation in ASP.NET Core MVC

Custom Model Binding in ASP.NET Core



Custom Model Binding in ASP.NET Core
9/22/2020 • 16 minutes to read • Edit Online

Default model binder limitations

Model binding review

Working with the ByteArrayModelBinderWorking with the ByteArrayModelBinder

public IModelBinder GetBinder(ModelBinderProviderContext context)
{
    if (context == null)
    {
        throw new ArgumentNullException(nameof(context));
    }

    if (context.Metadata.ModelType == typeof(byte[]))
    {
        var loggerFactory = context.Services.GetRequiredService<ILoggerFactory>();
        return new ByteArrayModelBinder(loggerFactory);
    }

    return null;
}

By Steve Smith and Kirk Larkin

Model binding allows controller actions to work directly with model types (passed in as method arguments),

rather than HTTP requests. Mapping between incoming request data and application models is handled by model

binders. Developers can extend the built-in model binding functionality by implementing custom model binders

(though typically, you don't need to write your own provider).

View or download sample code (how to download)

The default model binders support most of the common .NET Core data types and should meet most developers'

needs. They expect to bind text-based input from the request directly to model types. You might need to transform

the input prior to binding it. For example, when you have a key that can be used to look up model data. You can

use a custom model binder to fetch data based on the key.

Model binding uses specific definitions for the types it operates on. A simple type is converted from a single string

in the input. A complex type is converted from multiple input values. The framework determines the difference

based on the existence of a TypeConverter . We recommended you create a type converter if you have a simple 

string  -> SomeType  mapping that doesn't require external resources.

Before creating your own custom model binder, it's worth reviewing how existing model binders are implemented.

Consider the ByteArrayModelBinder which can be used to convert base64-encoded strings into byte arrays. The

byte arrays are often stored as files or database BLOB fields.

Base64-encoded strings can be used to represent binary data. For example, an image can be encoded as a string.

The sample includes an image as a base64-encoded string in Base64String.txt.

ASP.NET Core MVC can take a base64-encoded string and use a ByteArrayModelBinder  to convert it into a byte

array. The ByteArrayModelBinderProvider maps byte[]  arguments to ByteArrayModelBinder :

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/advanced/custom-model-binding.md
https://ardalis.com/
https://twitter.com/serpent5
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/advanced/custom-model-binding/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.binders.bytearraymodelbinder
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/advanced/custom-model-binding/samples/3.x/CustomModelBindingSample/Base64String.txt
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.binders.bytearraymodelbinderprovider


[HttpPost]
public void Post([FromForm] byte[] file, string filename)
{
    // Don't trust the file name sent by the client. Use
    // Path.GetRandomFileName to generate a safe random
    // file name. _targetFilePath receives a value
    // from configuration (the appsettings.json file in
    // the sample app).
    var trustedFileName = Path.GetRandomFileName();
    var filePath = Path.Combine(_targetFilePath, trustedFileName);

    if (System.IO.File.Exists(filePath))
    {
        return;
    }

    System.IO.File.WriteAllBytes(filePath, file);
}

When creating your own custom model binder, you can implement your own IModelBinderProvider  type, or use

the ModelBinderAttribute.

The following example shows how to use ByteArrayModelBinder  to convert a base64-encoded string to a byte[]

and save the result to a file:

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

You can POST a base64-encoded string to this api method using a tool like Postman:

As long as the binder can bind request data to appropriately named properties or arguments, model binding will

succeed. The following example shows how to use ByteArrayModelBinder  with a view model:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinderattribute
https://github.com/MicrosoftDocs/feedback/issues/2515
https://www.getpostman.com/


[HttpPost("Profile")]
public void SaveProfile([FromForm] ProfileViewModel model)
{
    // Don't trust the file name sent by the client. Use
    // Path.GetRandomFileName to generate a safe random
    // file name. _targetFilePath receives a value
    // from configuration (the appsettings.json file in
    // the sample app).
    var trustedFileName = Path.GetRandomFileName();
    var filePath = Path.Combine(_targetFilePath, trustedFileName);

    if (System.IO.File.Exists(filePath))
    {
        return;
    }

    System.IO.File.WriteAllBytes(filePath, model.File);
}

public class ProfileViewModel
{
    public byte[] File { get; set; }
    public string FileName { get; set; }
}

Custom model binder sample

using CustomModelBindingSample.Binders;
using Microsoft.AspNetCore.Mvc;

namespace CustomModelBindingSample.Data
{
    [ModelBinder(BinderType = typeof(AuthorEntityBinder))]
    public class Author
    {
        public int Id { get; set; }
        public string Name { get; set; }
        public string GitHub { get; set; }
        public string Twitter { get; set; }
        public string BlogUrl { get; set; }
    }
}

In this section we'll implement a custom model binder that:

Converts incoming request data into strongly typed key arguments.

Uses Entity Framework Core to fetch the associated entity.

Passes the associated entity as an argument to the action method.

The following sample uses the ModelBinder  attribute on the Author  model:

In the preceding code, the ModelBinder  attribute specifies the type of IModelBinder  that should be used to bind 

Author  action parameters.

The following AuthorEntityBinder  class binds an Author  parameter by fetching the entity from a data source

using Entity Framework Core and an authorId :



public class AuthorEntityBinder : IModelBinder
{
    private readonly AuthorContext _context;

    public AuthorEntityBinder(AuthorContext context)
    {
        _context = context;
    }

    public Task BindModelAsync(ModelBindingContext bindingContext)
    {
        if (bindingContext == null)
        {
            throw new ArgumentNullException(nameof(bindingContext));
        }

        var modelName = bindingContext.ModelName;

        // Try to fetch the value of the argument by name
        var valueProviderResult = bindingContext.ValueProvider.GetValue(modelName);

        if (valueProviderResult == ValueProviderResult.None)
        {
            return Task.CompletedTask;
        }

        bindingContext.ModelState.SetModelValue(modelName, valueProviderResult);

        var value = valueProviderResult.FirstValue;

        // Check if the argument value is null or empty
        if (string.IsNullOrEmpty(value))
        {
            return Task.CompletedTask;
        }

        if (!int.TryParse(value, out var id))
        {
            // Non-integer arguments result in model state errors
            bindingContext.ModelState.TryAddModelError(
                modelName, "Author Id must be an integer.");

            return Task.CompletedTask;
        }

        // Model will be null if not found, including for
        // out of range id values (0, -3, etc.)
        var model = _context.Authors.Find(id);
        bindingContext.Result = ModelBindingResult.Success(model);
        return Task.CompletedTask;
    }
}

NOTENOTE
The preceding AuthorEntityBinder  class is intended to illustrate a custom model binder. The class isn't intended to

illustrate best practices for a lookup scenario. For lookup, bind the authorId  and query the database in an action method.

This approach separates model binding failures from NotFound  cases.

The following code shows how to use the AuthorEntityBinder  in an action method:



[HttpGet("get/{authorId}")]
public IActionResult Get(Author author)
{
    if (author == null)
    {
        return NotFound();
    }

    return Ok(author);
}

[HttpGet("{id}")]
public IActionResult GetById([ModelBinder(Name = "id")] Author author)
{
    if (author == null)
    {
        return NotFound();
    }

    return Ok(author);
}

Implementing a ModelBinderProviderImplementing a ModelBinderProvider

The ModelBinder  attribute can be used to apply the AuthorEntityBinder  to parameters that don't use default

conventions:

In this example, since the name of the argument isn't the default authorId , it's specified on the parameter using

the ModelBinder  attribute. Both the controller and action method are simplified compared to looking up the entity

in the action method. The logic to fetch the author using Entity Framework Core is moved to the model binder. This

can be a considerable simplification when you have several methods that bind to the Author  model.

You can apply the ModelBinder  attribute to individual model properties (such as on a viewmodel) or to action

method parameters to specify a certain model binder or model name for just that type or action.

Instead of applying an attribute, you can implement IModelBinderProvider . This is how the built-in framework

binders are implemented. When you specify the type your binder operates on, you specify the type of argument it

produces, notnot the input your binder accepts. The following binder provider works with the AuthorEntityBinder .

When it's added to MVC's collection of providers, you don't need to use the ModelBinder  attribute on Author  or 

Author -typed parameters.



using CustomModelBindingSample.Data;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ModelBinding.Binders;
using System;

namespace CustomModelBindingSample.Binders
{
    public class AuthorEntityBinderProvider : IModelBinderProvider
    {
        public IModelBinder GetBinder(ModelBinderProviderContext context)
        {
            if (context == null)
            {
                throw new ArgumentNullException(nameof(context));
            }

            if (context.Metadata.ModelType == typeof(Author))
            {
                return new BinderTypeModelBinder(typeof(AuthorEntityBinder));
            }

            return null;
        }
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<AuthorContext>(options => options.UseInMemoryDatabase("Authors"));

    services.AddControllers(options =>
    {
        options.ModelBinderProviders.Insert(0, new AuthorEntityBinderProvider());
    });
}

Polymorphic model bindingPolymorphic model binding

public abstract class Device
{

Note: The preceding code returns a BinderTypeModelBinder . BinderTypeModelBinder  acts as a factory for model

binders and provides dependency injection (DI). The AuthorEntityBinder  requires DI to access EF Core. Use 

BinderTypeModelBinder  if your model binder requires services from DI.

To use a custom model binder provider, add it in ConfigureServices :

When evaluating model binders, the collection of providers is examined in order. The first provider that returns a

binder that matches the input model is used. Adding your provider to the end of the collection may thus result in a

built-in model binder being called before your custom binder has a chance. In this example, the custom provider is

added to the beginning of the collection to ensure it's always used for Author  action arguments.

Binding to different models of derived types is known as polymorphic model binding. Polymorphic custom model

binding is required when the request value must be bound to the specific derived model type. Polymorphic model

binding:

Isn't typical for a REST API that's designed to interoperate with all languages.

Makes it difficult to reason about the bound models.

However, if an app requires polymorphic model binding, an implementation might look like the following code:



    public string Kind { get; set; }
}

public class Laptop : Device
{
    public string CPUIndex { get; set; }
}

public class SmartPhone : Device
{
    public string ScreenSize { get; set; }
}

public class DeviceModelBinderProvider : IModelBinderProvider
{
    public IModelBinder GetBinder(ModelBinderProviderContext context)
    {
        if (context.Metadata.ModelType != typeof(Device))
        {
            return null;
        }

        var subclasses = new[] { typeof(Laptop), typeof(SmartPhone), };

        var binders = new Dictionary<Type, (ModelMetadata, IModelBinder)>();
        foreach (var type in subclasses)
        {
            var modelMetadata = context.MetadataProvider.GetMetadataForType(type);
            binders[type] = (modelMetadata, context.CreateBinder(modelMetadata));
        }

        return new DeviceModelBinder(binders);
    }
}

public class DeviceModelBinder : IModelBinder
{
    private Dictionary<Type, (ModelMetadata, IModelBinder)> binders;

    public DeviceModelBinder(Dictionary<Type, (ModelMetadata, IModelBinder)> binders)
    {
        this.binders = binders;
    }

    public async Task BindModelAsync(ModelBindingContext bindingContext)
    {
        var modelKindName = ModelNames.CreatePropertyModelName(bindingContext.ModelName, nameof(Device.Kind));
        var modelTypeValue = bindingContext.ValueProvider.GetValue(modelKindName).FirstValue;

        IModelBinder modelBinder;
        ModelMetadata modelMetadata;
        if (modelTypeValue == "Laptop")
        {
            (modelMetadata, modelBinder) = binders[typeof(Laptop)];
        }
        else if (modelTypeValue == "SmartPhone")
        {
            (modelMetadata, modelBinder) = binders[typeof(SmartPhone)];
        }
        else
        {
            bindingContext.Result = ModelBindingResult.Failed();
            return;
        }

        var newBindingContext = DefaultModelBindingContext.CreateBindingContext(
            bindingContext.ActionContext,
            bindingContext.ValueProvider,
            modelMetadata,



            bindingInfo: null,
            bindingContext.ModelName);

        await modelBinder.BindModelAsync(newBindingContext);
        bindingContext.Result = newBindingContext.Result;

        if (newBindingContext.Result.IsModelSet)
        {
            // Setting the ValidationState ensures properties on derived types are correctly 
            bindingContext.ValidationState[newBindingContext.Result] = new ValidationStateEntry
            {
                Metadata = modelMetadata,
            };
        }
    }
}

Recommendations and best practices

Default model binder limitations

Model binding review

Working with the ByteArrayModelBinderWorking with the ByteArrayModelBinder

Custom model binders:

Shouldn't attempt to set status codes or return results (for example, 404 Not Found). If model binding fails, an

action filter or logic within the action method itself should handle the failure.

Are most useful for eliminating repetitive code and cross-cutting concerns from action methods.

Typically shouldn't be used to convert a string into a custom type, a TypeConverter is usually a better option.

By Steve Smith

Model binding allows controller actions to work directly with model types (passed in as method arguments),

rather than HTTP requests. Mapping between incoming request data and application models is handled by model

binders. Developers can extend the built-in model binding functionality by implementing custom model binders

(though typically, you don't need to write your own provider).

View or download sample code (how to download)

The default model binders support most of the common .NET Core data types and should meet most developers'

needs. They expect to bind text-based input from the request directly to model types. You might need to transform

the input prior to binding it. For example, when you have a key that can be used to look up model data. You can

use a custom model binder to fetch data based on the key.

Model binding uses specific definitions for the types it operates on. A simple type is converted from a single string

in the input. A complex type is converted from multiple input values. The framework determines the difference

based on the existence of a TypeConverter . We recommended you create a type converter if you have a simple 

string  -> SomeType  mapping that doesn't require external resources.

Before creating your own custom model binder, it's worth reviewing how existing model binders are implemented.

Consider the ByteArrayModelBinder which can be used to convert base64-encoded strings into byte arrays. The

byte arrays are often stored as files or database BLOB fields.

Base64-encoded strings can be used to represent binary data. For example, an image can be encoded as a string.

The sample includes an image as a base64-encoded string in Base64String.txt.

ASP.NET Core MVC can take a base64-encoded string and use a ByteArrayModelBinder  to convert it into a byte

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.typeconverter
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/advanced/custom-model-binding/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.binders.bytearraymodelbinder
https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/advanced/custom-model-binding/samples/2.x/CustomModelBindingSample/Base64String.txt


public IModelBinder GetBinder(ModelBinderProviderContext context)
{
    if (context == null)
    {
        throw new ArgumentNullException(nameof(context));
    }

    if (context.Metadata.ModelType == typeof(byte[]))
    {
        return new ByteArrayModelBinder();
    }

    return null;
}

[HttpPost]
public void Post([FromForm] byte[] file, string filename)
{
    // Don't trust the file name sent by the client. Use
    // Path.GetRandomFileName to generate a safe random
    // file name. _targetFilePath receives a value
    // from configuration (the appsettings.json file in
    // the sample app).
    var trustedFileName = Path.GetRandomFileName();
    var filePath = Path.Combine(_targetFilePath, trustedFileName);

    if (System.IO.File.Exists(filePath))
    {
        return;
    }

    System.IO.File.WriteAllBytes(filePath, file);
}

array. The ByteArrayModelBinderProvider maps byte[]  arguments to ByteArrayModelBinder :

When creating your own custom model binder, you can implement your own IModelBinderProvider  type, or use

the ModelBinderAttribute.

The following example shows how to use ByteArrayModelBinder  to convert a base64-encoded string to a byte[]

and save the result to a file:

You can POST a base64-encoded string to this api method using a tool like Postman:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.binders.bytearraymodelbinderprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinderattribute
https://www.getpostman.com/


[HttpPost("Profile")]
public void SaveProfile([FromForm] ProfileViewModel model)
{
    // Don't trust the file name sent by the client. Use
    // Path.GetRandomFileName to generate a safe random
    // file name. _targetFilePath receives a value
    // from configuration (the appsettings.json file in
    // the sample app).
    var trustedFileName = Path.GetRandomFileName();
    var filePath = Path.Combine(_targetFilePath, trustedFileName);

    if (System.IO.File.Exists(filePath))
    {
        return;
    }

    System.IO.File.WriteAllBytes(filePath, model.File);
}

public class ProfileViewModel
{
    public byte[] File { get; set; }
    public string FileName { get; set; }
}

Custom model binder sample

As long as the binder can bind request data to appropriately named properties or arguments, model binding will

succeed. The following example shows how to use ByteArrayModelBinder  with a view model:

In this section we'll implement a custom model binder that:

Converts incoming request data into strongly typed key arguments.

Uses Entity Framework Core to fetch the associated entity.

Passes the associated entity as an argument to the action method.

The following sample uses the ModelBinder  attribute on the Author  model:



using CustomModelBindingSample.Binders;
using Microsoft.AspNetCore.Mvc;

namespace CustomModelBindingSample.Data
{
    [ModelBinder(BinderType = typeof(AuthorEntityBinder))]
    public class Author
    {
        public int Id { get; set; }
        public string Name { get; set; }
        public string GitHub { get; set; }
        public string Twitter { get; set; }
        public string BlogUrl { get; set; }
    }
}

In the preceding code, the ModelBinder  attribute specifies the type of IModelBinder  that should be used to bind 

Author  action parameters.

The following AuthorEntityBinder  class binds an Author  parameter by fetching the entity from a data source

using Entity Framework Core and an authorId :



public class AuthorEntityBinder : IModelBinder
{
    private readonly AppDbContext _db;

    public AuthorEntityBinder(AppDbContext db)
    {
        _db = db;
    }

    public Task BindModelAsync(ModelBindingContext bindingContext)
    {
        if (bindingContext == null)
        {
            throw new ArgumentNullException(nameof(bindingContext));
        }

        var modelName = bindingContext.ModelName;

        // Try to fetch the value of the argument by name
        var valueProviderResult = bindingContext.ValueProvider.GetValue(modelName);

        if (valueProviderResult == ValueProviderResult.None)
        {
            return Task.CompletedTask;
        }

        bindingContext.ModelState.SetModelValue(modelName, valueProviderResult);

        var value = valueProviderResult.FirstValue;

        // Check if the argument value is null or empty
        if (string.IsNullOrEmpty(value))
        {
            return Task.CompletedTask;
        }

        if (!int.TryParse(value, out var id))
        {
            // Non-integer arguments result in model state errors
            bindingContext.ModelState.TryAddModelError(
                modelName, "Author Id must be an integer.");

            return Task.CompletedTask;
        }

        // Model will be null if not found, including for 
        // out of range id values (0, -3, etc.)
        var model = _db.Authors.Find(id);
        bindingContext.Result = ModelBindingResult.Success(model);
        return Task.CompletedTask;
    }
}

NOTENOTE
The preceding AuthorEntityBinder  class is intended to illustrate a custom model binder. The class isn't intended to

illustrate best practices for a lookup scenario. For lookup, bind the authorId  and query the database in an action method.

This approach separates model binding failures from NotFound  cases.

The following code shows how to use the AuthorEntityBinder  in an action method:



[HttpGet("get/{authorId}")]
public IActionResult Get(Author author)
{
    if (author == null)
    {
        return NotFound();
    }
    
    return Ok(author);
}

[HttpGet("{id}")]
public IActionResult GetById([ModelBinder(Name = "id")] Author author)
{
    if (author == null)
    {
        return NotFound();
    }

    return Ok(author);
}

Implementing a ModelBinderProviderImplementing a ModelBinderProvider

The ModelBinder  attribute can be used to apply the AuthorEntityBinder  to parameters that don't use default

conventions:

In this example, since the name of the argument isn't the default authorId , it's specified on the parameter using

the ModelBinder  attribute. Both the controller and action method are simplified compared to looking up the entity

in the action method. The logic to fetch the author using Entity Framework Core is moved to the model binder. This

can be a considerable simplification when you have several methods that bind to the Author  model.

You can apply the ModelBinder  attribute to individual model properties (such as on a viewmodel) or to action

method parameters to specify a certain model binder or model name for just that type or action.

Instead of applying an attribute, you can implement IModelBinderProvider . This is how the built-in framework

binders are implemented. When you specify the type your binder operates on, you specify the type of argument it

produces, notnot the input your binder accepts. The following binder provider works with the AuthorEntityBinder .

When it's added to MVC's collection of providers, you don't need to use the ModelBinder  attribute on Author  or 

Author -typed parameters.



using CustomModelBindingSample.Data;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ModelBinding.Binders;
using System;

namespace CustomModelBindingSample.Binders
{
    public class AuthorEntityBinderProvider : IModelBinderProvider
    {
        public IModelBinder GetBinder(ModelBinderProviderContext context)
        {
            if (context == null)
            {
                throw new ArgumentNullException(nameof(context));
            }

            if (context.Metadata.ModelType == typeof(Author))
            {
                return new BinderTypeModelBinder(typeof(AuthorEntityBinder));
            }

            return null;
        }
    }
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<AppDbContext>(options => options.UseInMemoryDatabase("App"));

    services.AddMvc(options =>
        {
            // add custom binder to beginning of collection
            options.ModelBinderProviders.Insert(0, new AuthorEntityBinderProvider());
        })
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
}

Polymorphic model bindingPolymorphic model binding

Note: The preceding code returns a BinderTypeModelBinder . BinderTypeModelBinder  acts as a factory for model

binders and provides dependency injection (DI). The AuthorEntityBinder  requires DI to access EF Core. Use 

BinderTypeModelBinder  if your model binder requires services from DI.

To use a custom model binder provider, add it in ConfigureServices :

When evaluating model binders, the collection of providers is examined in order. The first provider that returns a

binder is used. Adding your provider to the end of the collection may result in a built-in model binder being called

before your custom binder has a chance. In this example, the custom provider is added to the beginning of the

collection to ensure it's used for Author  action arguments.

Binding to different models of derived types is known as polymorphic model binding. Polymorphic custom model

binding is required when the request value must be bound to the specific derived model type. Polymorphic model

binding:

Isn't typical for a REST API that's designed to interoperate with all languages.

Makes it difficult to reason about the bound models.

However, if an app requires polymorphic model binding, an implementation might look like the following code:



public abstract class Device
{
    public string Kind { get; set; }
}

public class Laptop : Device
{
    public string CPUIndex { get; set; }
}

public class SmartPhone : Device
{
    public string ScreenSize { get; set; }
}

public class DeviceModelBinderProvider : IModelBinderProvider
{
    public IModelBinder GetBinder(ModelBinderProviderContext context)
    {
        if (context.Metadata.ModelType != typeof(Device))
        {
            return null;
        }

        var subclasses = new[] { typeof(Laptop), typeof(SmartPhone), };

        var binders = new Dictionary<Type, (ModelMetadata, IModelBinder)>();
        foreach (var type in subclasses)
        {
            var modelMetadata = context.MetadataProvider.GetMetadataForType(type);
            binders[type] = (modelMetadata, context.CreateBinder(modelMetadata));
        }

        return new DeviceModelBinder(binders);
    }
}

public class DeviceModelBinder : IModelBinder
{
    private Dictionary<Type, (ModelMetadata, IModelBinder)> binders;

    public DeviceModelBinder(Dictionary<Type, (ModelMetadata, IModelBinder)> binders)
    {
        this.binders = binders;
    }

    public async Task BindModelAsync(ModelBindingContext bindingContext)
    {
        var modelKindName = ModelNames.CreatePropertyModelName(bindingContext.ModelName, nameof(Device.Kind));
        var modelTypeValue = bindingContext.ValueProvider.GetValue(modelKindName).FirstValue;

        IModelBinder modelBinder;
        ModelMetadata modelMetadata;
        if (modelTypeValue == "Laptop")
        {
            (modelMetadata, modelBinder) = binders[typeof(Laptop)];
        }
        else if (modelTypeValue == "SmartPhone")
        {
            (modelMetadata, modelBinder) = binders[typeof(SmartPhone)];
        }
        else
        {
            bindingContext.Result = ModelBindingResult.Failed();
            return;
        }

        var newBindingContext = DefaultModelBindingContext.CreateBindingContext(
            bindingContext.ActionContext,



            bindingContext.ValueProvider,
            modelMetadata,
            bindingInfo: null,
            bindingContext.ModelName);

        await modelBinder.BindModelAsync(newBindingContext);
        bindingContext.Result = newBindingContext.Result;

        if (newBindingContext.Result.IsModelSet)
        {
            // Setting the ValidationState ensures properties on derived types are correctly 
            bindingContext.ValidationState[newBindingContext.Result] = new ValidationStateEntry
            {
                Metadata = modelMetadata,
            };
        }
    }
}

Recommendations and best practices
Custom model binders:

Shouldn't attempt to set status codes or return results (for example, 404 Not Found). If model binding fails, an

action filter or logic within the action method itself should handle the failure.

Are most useful for eliminating repetitive code and cross-cutting concerns from action methods.

Typically shouldn't be used to convert a string into a custom type, a TypeConverter is usually a better option.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.typeconverter


Model validation in ASP.NET Core MVC and
Razor Pages
9/22/2020 • 35 minutes to read • Edit Online

Model state

public async Task<IActionResult> OnPostAsync()
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    _context.Movies.Add(Movie);
    await _context.SaveChangesAsync();

    return RedirectToPage("./Index");
}

Rerun validation

By Kirk Larkin

This article explains how to validate user input in an ASP.NET Core MVC or Razor Pages app.

View or download sample code (how to download).

Model state represents errors that come from two subsystems: model binding and model

validation. Errors that originate from model binding are generally data conversion errors. For

example, an "x" is entered in an integer field. Model validation occurs after model binding and

reports errors where data doesn't conform to business rules. For example, a 0 is entered in a field

that expects a rating between 1 and 5.

Both model binding and model validation occur before the execution of a controller action or a

Razor Pages handler method. For web apps, it's the app's responsibility to inspect 

ModelState.IsValid  and react appropriately. Web apps typically redisplay the page with an error

message:

Web API controllers don't have to check ModelState.IsValid  if they have the [ApiController]

attribute. In that case, an automatic HTTP 400 response containing error details is returned when

model state is invalid. For more information, see Automatic HTTP 400 responses.

Validation is automatic, but you might want to repeat it manually. For example, you might compute

a value for a property and want to rerun validation after setting the property to the computed

value. To rerun validation, call the TryValidateModel  method, as shown here:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/models/validation.md
https://github.com/serpent5
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/validation/samples


                  

Movie.ReleaseDate = modifiedReleaseDate;

if (!TryValidateModel(Movie, nameof(Movie)))
{
    return Page();
}

_context.Movies.Add(Movie);
await _context.SaveChangesAsync();

return RedirectToPage("./Index");

Validation attributes

public class Movie
{
    public int Id { get; set; }

    [Required]
    [StringLength(100)]
    public string Title { get; set; }

    [ClassicMovie(1960)]
    [DataType(DataType.Date)]
    [Display(Name = "Release Date")]
    public DateTime ReleaseDate { get; set; }

    [Required]
    [StringLength(1000)]
    public string Description { get; set; }

    [Range(0, 999.99)]
    public decimal Price { get; set; }

    public Genre Genre { get; set; }

    public bool Preorder { get; set; }
}

Built-in attributes

Validation attributes let you specify validation rules for model properties. The following example

from the sample app shows a model class that is annotated with validation attributes. The 

[ClassicMovie]  attribute is a custom validation attribute and the others are built-in. Not shown is 

[ClassicMovieWithClientValidator] . [ClassicMovieWithClientValidator]  shows an alternative way

to implement a custom attribute.

Here are some of the built-in validation attributes:

[CreditCard] : Validates that the property has a credit card format. Requires jQuery Validation

Additional Methods.

[Compare] : Validates that two properties in a model match.

[EmailAddress] : Validates that the property has an email format.

[Phone] : Validates that the property has a telephone number format.

[Range] : Validates that the property value falls within a specified range.

[RegularExpression] : Validates that the property value matches a specified regular expression.

[Required] : Validates that the field is not null. See [Required]  attribute for details about this

https://cdnjs.cloudflare.com/ajax/libs/jquery-validate/1.19.1/additional-methods.min.js


      

Error messagesError messages

[StringLength(8, ErrorMessage = "Name length can't be more than 8.")]

[StringLength(8, ErrorMessage = "{0} length must be between {2} and {1}.", MinimumLength = 6)]

[Required] attribute

services.AddControllers(options => 
options.SuppressImplicitRequiredAttributeForNonNullableReferenceTypes = true);

[Required] validation on the server[Required] validation on the server

attribute's behavior.

[StringLength] : Validates that a string property value doesn't exceed a specified length limit.

[Url] : Validates that the property has a URL format.

[Remote] : Validates input on the client by calling an action method on the server. See [Remote]

attribute for details about this attribute's behavior.

A complete list of validation attributes can be found in the

System.ComponentModel.DataAnnotations namespace.

Validation attributes let you specify the error message to be displayed for invalid input. For

example:

Internally, the attributes call String.Format  with a placeholder for the field name and sometimes

additional placeholders. For example:

When applied to a Name  property, the error message created by the preceding code would be

"Name length must be between 6 and 8.".

To find out which parameters are passed to String.Format  for a particular attribute's error

message, see the DataAnnotations source code.

The validation system in .NET Core 3.0 and later treats non-nullable parameters or bound

properties as if they had a [Required]  attribute. Value types such as decimal  and int  are non-

nullable. This behavior can be disabled by configuring

SuppressImplicitRequiredAttributeForNonNullableReferenceTypes in Startup.ConfigureServices :

On the server, a required value is considered missing if the property is null. A non-nullable field is

always valid, and the [Required]  attribute's error message is never displayed.

However, model binding for a non-nullable property may fail, resulting in an error message such as

The value '' is invalid . To specify a custom error message for server-side validation of non-

nullable types, you have the following options:

Make the field nullable (for example, decimal?  instead of decimal ). Nullable<T> value

types are treated like standard nullable types.

Specify the default error message to be used by model binding, as shown in the following

example:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations
https://github.com/dotnet/runtime/tree/master/src/libraries/System.ComponentModel.Annotations/src/System/ComponentModel/DataAnnotations
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.suppressimplicitrequiredattributefornonnullablereferencetypes#microsoft_aspnetcore_mvc_mvcoptions_suppressimplicitrequiredattributefornonnullablereferencetypes
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/


  

[Required] validation on the client[Required] validation on the client

[Remote] attribute

services.AddRazorPages()
    .AddMvcOptions(options =>
    {
        options.MaxModelValidationErrors = 50;
        options.ModelBindingMessageProvider.SetValueMustNotBeNullAccessor(
            _ => "The field is required.");
    });

services.AddSingleton<IValidationAttributeAdapterProvider,
    CustomValidationAttributeAdapterProvider>();

For more information about model binding errors that you can set default messages for, see

DefaultModelBindingMessageProvider.

Non-nullable types and strings are handled differently on the client compared to the server. On the

client:

A value is considered present only if input is entered for it. Therefore, client-side validation

handles non-nullable types the same as nullable types.

Whitespace in a string field is considered valid input by the jQuery Validation required method.

Server-side validation considers a required string field invalid if only whitespace is entered.

As noted earlier, non-nullable types are treated as though they had a [Required]  attribute. That

means you get client-side validation even if you don't apply the [Required]  attribute. But if you

don't use the attribute, you get a default error message. To specify a custom error message, use the

attribute.

The [Remote]  attribute implements client-side validation that requires calling a method on the

server to determine whether field input is valid. For example, the app may need to verify whether a

user name is already in use.

To implement remote validation:

[AcceptVerbs("GET", "POST")]
public IActionResult VerifyEmail(string email)
{
    if (!_userService.VerifyEmail(email))
    {
        return Json($"Email {email} is already in use.");
    }

    return Json(true);
}

1. Create an action method for JavaScript to call. The jQuery Validation remote method expects

a JSON response:

true  means the input data is valid.

false , undefined , or null  means the input is invalid. Display the default error

message.

Any other string means the input is invalid. Display the string as a custom error message.

Here's an example of an action method that returns a custom error message:

2. In the model class, annotate the property with a [Remote]  attribute that points to the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.defaultmodelbindingmessageprovider#methods
https://jqueryvalidation.org/required-method/
https://jqueryvalidation.org/remote-method/


                                                      

Additional fieldsAdditional fields

[Remote(action: "VerifyName", controller: "Users", AdditionalFields = nameof(LastName))]
[Display(Name = "First Name")]
public string FirstName { get; set; }

[Remote(action: "VerifyName", controller: "Users", AdditionalFields = nameof(FirstName))]
[Display(Name = "Last Name")]
public string LastName { get; set; }

[AcceptVerbs("GET", "POST")]
public IActionResult VerifyName(string firstName, string lastName)
{
    if (!_userService.VerifyName(firstName, lastName))
    {
        return Json($"A user named {firstName} {lastName} already exists.");
    }

    return Json(true);
}

[Remote(action: "VerifyName", controller: "Users", AdditionalFields = nameof(FirstName) + "," + 
nameof(LastName))]
public string MiddleName { get; set; }

Alternatives to built-in attributes

[Remote(action: "VerifyEmail", controller: "Users")]
public string Email { get; set; }

validation action method, as shown in the following example:

The [Remote]  attribute is in the Microsoft.AspNetCore.Mvc  namespace.

The AdditionalFields  property of the [Remote]  attribute lets you validate combinations of fields

against data on the server. For example, if the User  model had FirstName  and LastName

properties, you might want to verify that no existing users already have that pair of names. The

following example shows how to use AdditionalFields :

AdditionalFields  could be set explicitly to the strings "FirstName" and "LastName", but using the

nameof operator simplifies later refactoring. The action method for this validation must accept both

firstName  and lastName  arguments:

When the user enters a first or last name, JavaScript makes a remote call to see if that pair of

names has been taken.

To validate two or more additional fields, provide them as a comma-delimited list. For example, to

add a MiddleName  property to the model, set the [Remote]  attribute as shown in the following

example:

AdditionalFields , like all attribute arguments, must be a constant expression. Therefore, don't use

an interpolated string or call Join to initialize AdditionalFields .

If you need validation not provided by built-in attributes, you can:

Create custom attributes.

Implement IValidatableObject.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/nameof
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interpolated-strings
https://docs.microsoft.com/en-us/dotnet/api/system.string.join


                    

  

Custom attributes

public class ClassicMovieAttribute : ValidationAttribute
{
    public ClassicMovieAttribute(int year)
    {
        Year = year;
    }

    public int Year { get; }

    public string GetErrorMessage() =>
        $"Classic movies must have a release year no later than {Year}.";

    protected override ValidationResult IsValid(object value,
        ValidationContext validationContext)
    {
        var movie = (Movie)validationContext.ObjectInstance;
        var releaseYear = ((DateTime)value).Year;

        if (movie.Genre == Genre.Classic && releaseYear > Year)
        {
            return new ValidationResult(GetErrorMessage());
        }

        return ValidationResult.Success;
    }
}

IValidatableObject

For scenarios that the built-in validation attributes don't handle, you can create custom validation

attributes. Create a class that inherits from ValidationAttribute, and override the IsValid method.

The IsValid  method accepts an object named value, which is the input to be validated. An

overload also accepts a ValidationContext  object, which provides additional information, such as

the model instance created by model binding.

The following example validates that the release date for a movie in the Classic genre isn't later

than a specified year. The [ClassicMovie]  attribute:

Is only run on the server.

For Classic movies, validates the release date:

The movie  variable in the preceding example represents a Movie  object that contains the data

from the form submission. When validation fails, a ValidationResult  with an error message is

returned.

The preceding example works only with Movie  types. Another option for class-level validation is to

implement IValidatableObject  in the model class, as shown in the following example:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationattribute.isvalid


public class ValidatableMovie : IValidatableObject
{
    private const int _classicYear = 1960;

    public int Id { get; set; }

    [Required]
    [StringLength(100)]
    public string Title { get; set; }

    [DataType(DataType.Date)]
    [Display(Name = "Release Date")]
    public DateTime ReleaseDate { get; set; }

    [Required]
    [StringLength(1000)]
    public string Description { get; set; }

    [Range(0, 999.99)]
    public decimal Price { get; set; }

    public Genre Genre { get; set; }

    public bool Preorder { get; set; }

    public IEnumerable<ValidationResult> Validate(ValidationContext validationContext)
    {
        if (Genre == Genre.Classic && ReleaseDate.Year > _classicYear)
        {
            yield return new ValidationResult(
                $"Classic movies must have a release year no later than {_classicYear}.",
                new[] { nameof(ReleaseDate) });
        }
    }
}

Top-level node validation

[AcceptVerbs("GET", "POST")]
public IActionResult VerifyPhone(
    [RegularExpression(@"^\d{3}-\d{3}-\d{4}$")] string phone)
{
    if (!ModelState.IsValid)
    {
        return Json($"Phone {phone} has an invalid format. Format: ###-###-####");
    }

    return Json(true);
}

Top-level nodes include:

Action parameters

Controller properties

Page handler parameters

Page model properties

Model-bound top-level nodes are validated in addition to validating model properties. In the

following example from the sample app, the VerifyPhone  method uses the

RegularExpressionAttribute to validate the phone  action parameter :

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.regularexpressionattribute


[HttpPost]
public IActionResult CheckAge([BindRequired, FromQuery] int age)
{

Maximum errors

services.AddRazorPages()
    .AddMvcOptions(options =>
    {
        options.MaxModelValidationErrors = 50;
        options.ModelBindingMessageProvider.SetValueMustNotBeNullAccessor(
            _ => "The field is required.");
    });

services.AddSingleton<IValidationAttributeAdapterProvider,
    CustomValidationAttributeAdapterProvider>();

Maximum recursion

Automatic short-circuit

Disable validation

Top-level nodes can use BindRequiredAttribute with validation attributes. In the following example

from the sample app, the CheckAge  method specifies that the age  parameter must be bound from

the query string when the form is submitted:

In the Check Age page (CheckAge.cshtml), there are two forms. The first form submits an Age

value of 99  as a query string parameter : https://localhost:5001/Users/CheckAge?Age=99 .

When a properly formatted age  parameter from the query string is submitted, the form validates.

The second form on the Check Age page submits the Age  value in the body of the request, and

validation fails. Binding fails because the age  parameter must come from a query string.

Validation stops when the maximum number of errors is reached (200 by default). You can

configure this number with the following code in Startup.ConfigureServices :

ValidationVisitor traverses the object graph of the model being validated. For models that are deep

or are infinitely recursive, validation may result in stack overflow. MvcOptions.MaxValidationDepth

provides a way to stop validation early if the visitor recursion exceeds a configured depth. The

default value of MvcOptions.MaxValidationDepth  is 32.

Validation is automatically short-circuited (skipped) if the model graph doesn't require validation.

Objects that the runtime skips validation for include collections of primitives (such as byte[] , 

string[] , Dictionary<string, string> ) and complex object graphs that don't have any validators.

To disable validation:

1. Create an implementation of IObjectModelValidator  that doesn't mark any fields as invalid.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.bindrequiredattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.validation.validationvisitor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.maxvalidationdepth#microsoft_aspnetcore_mvc_mvcoptions_maxvalidationdepth


Client-side validation

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-
validate/1.19.1/jquery.validate.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-validation-
unobtrusive/3.2.11/jquery.validate.unobtrusive.min.js"></script>

<div class="form-group">
    <label asp-for="Movie.ReleaseDate" class="control-label"></label>
    <input asp-for="Movie.ReleaseDate" class="form-control" />
    <span asp-validation-for="Movie.ReleaseDate" class="text-danger"></span>
</div>

public class NullObjectModelValidator : IObjectModelValidator
{
    public void Validate(ActionContext actionContext,
        ValidationStateDictionary validationState, string prefix, object model)
    {

    }
}

services.AddSingleton<IObjectModelValidator, NullObjectModelValidator>();

2. Add the following code to Startup.ConfigureServices  to replace the default 

IObjectModelValidator  implementation in the dependency injection container.

You might still see model state errors that originate from model binding.

Client-side validation prevents submission until the form is valid. The Submit button runs

JavaScript that either submits the form or displays error messages.

Client-side validation avoids an unnecessary round trip to the server when there are input errors

on a form. The following script references in _Layout.cshtml and _ValidationScriptsPartial.cshtml

support client-side validation:

The jQuery Unobtrusive Validation script is a custom Microsoft front-end library that builds on the

popular jQuery Validation plugin. Without jQuery Unobtrusive Validation, you would have to code

the same validation logic in two places: once in the server-side validation attributes on model

properties, and then again in client-side scripts. Instead, Tag Helpers and HTML helpers use the

validation attributes and type metadata from model properties to render HTML 5 data-  attributes

for the form elements that need validation. jQuery Unobtrusive Validation parses the data-

attributes and passes the logic to jQuery Validation, effectively "copying" the server-side validation

logic to the client. You can display validation errors on the client using tag helpers as shown here:

The preceding tag helpers render the following HTML:

https://github.com/aspnet/jquery-validation-unobtrusive
https://jqueryvalidation.org/


<div class="form-group">
    <label class="control-label" for="Movie_ReleaseDate">Release Date</label>
    <input class="form-control" type="date" data-val="true"
        data-val-required="The Release Date field is required."
        id="Movie_ReleaseDate" name="Movie.ReleaseDate" value="">
    <span class="text-danger field-validation-valid"
        data-valmsg-for="Movie.ReleaseDate" data-valmsg-replace="true"></span>
</div>

Unobtrusive validation

Add Validation to Dynamic FormsAdd Validation to Dynamic Forms

$.get({
    url: "https://url/that/returns/a/form",
    dataType: "html",
    error: function(jqXHR, textStatus, errorThrown) {
        alert(textStatus + ": Couldn't add form. " + errorThrown);
    },
    success: function(newFormHTML) {
        var container = document.getElementById("form-container");
        container.insertAdjacentHTML("beforeend", newFormHTML);
        var forms = container.getElementsByTagName("form");
        var newForm = forms[forms.length - 1];
        $.validator.unobtrusive.parse(newForm);
    }
})

Add Validation to Dynamic ControlsAdd Validation to Dynamic Controls

Notice that the data-  attributes in the HTML output correspond to the validation attributes for the 

Movie.ReleaseDate  property. The data-val-required  attribute contains an error message to display

if the user doesn't fill in the release date field. jQuery Unobtrusive Validation passes this value to

the jQuery Validation required() method, which then displays that message in the accompanying

<span><span> element.

Data type validation is based on the .NET type of a property, unless that is overridden by a 

[DataType]  attribute. Browsers have their own default error messages, but the jQuery Validation

Unobtrusive Validation package can override those messages. [DataType]  attributes and

subclasses such as [EmailAddress]  let you specify the error message.

For information on unobtrusive validation, see this GitHub issue.

jQuery Unobtrusive Validation passes validation logic and parameters to jQuery Validation when

the page first loads. Therefore, validation doesn't work automatically on dynamically generated

forms. To enable validation, tell jQuery Unobtrusive Validation to parse the dynamic form

immediately after you create it. For example, the following code sets up client-side validation on a

form added via AJAX.

The $.validator.unobtrusive.parse()  method accepts a jQuery selector for its one argument. This

method tells jQuery Unobtrusive Validation to parse the data-  attributes of forms within that

selector. The values of those attributes are then passed to the jQuery Validation plugin.

The $.validator.unobtrusive.parse()  method works on an entire form, not on individual

dynamically generated controls, such as <input>  and <select/> . To reparse the form, remove the

validation data that was added when the form was parsed earlier, as shown in the following

example:

https://jqueryvalidation.org/required-method/
https://github.com/dotnet/AspNetCore.Docs/issues/1111


$.get({
    url: "https://url/that/returns/a/control",
    dataType: "html",
    error: function(jqXHR, textStatus, errorThrown) {
        alert(textStatus + ": Couldn't add control. " + errorThrown);
    },
    success: function(newInputHTML) {
        var form = document.getElementById("my-form");
        form.insertAdjacentHTML("beforeend", newInputHTML);
        $(form).removeData("validator")    // Added by jQuery Validation
               .removeData("unobtrusiveValidation");   // Added by jQuery Unobtrusive 
Validation
        $.validator.unobtrusive.parse(form);
    }
})

Custom client-side validation

$.validator.addMethod('classicmovie', function (value, element, params) {
    var genre = $(params[0]).val(), year = params[1], date = new Date(value);

    // The Classic genre has a value of '0'.
    if (genre && genre.length > 0 && genre[0] === '0') {
        // The release date for a Classic is valid if it's no greater than the given year.
        return date.getUTCFullYear() <= year;
    }

    return true;
});

$.validator.unobtrusive.adapters.add('classicmovie', ['year'], function (options) {
    var element = $(options.form).find('select#Movie_Genre')[0];

    options.rules['classicmovie'] = [element, parseInt(options.params['year'])];
    options.messages['classicmovie'] = options.message;
});

Custom client-side validation is done by generating data-  HTML attributes that work with a

custom jQuery Validation adapter. The following sample adapter code was written for the 

[ClassicMovie]  and [ClassicMovieWithClientValidator]  attributes that were introduced earlier in

this article:

For information about how to write adapters, see the jQuery Validation documentation.

The use of an adapter for a given field is triggered by data-  attributes that:

Flag the field as being subject to validation ( data-val="true" ).

Identify a validation rule name and error message text (for example, 

data-val-rulename="Error message." ).

Provide any additional parameters the validator needs (for example, 

data-val-rulename-param1="value" ).

The following example shows the data-  attributes for the sample app's ClassicMovie  attribute:

https://jqueryvalidation.org/documentation/


<input class="form-control" type="date"
    data-val="true"
    data-val-classicmovie="Classic movies must have a release year no later than 1960."
    data-val-classicmovie-year="1960"
    data-val-required="The Release Date field is required."
    id="Movie_ReleaseDate" name="Movie.ReleaseDate" value="">

AttributeAdapter for client-side validationAttributeAdapter for client-side validation

As noted earlier, Tag Helpers and HTML helpers use information from validation attributes to render

data-  attributes. There are two options for writing code that results in the creation of custom 

data-  HTML attributes:

Create a class that derives from AttributeAdapterBase<TAttribute>  and a class that implements 

IValidationAttributeAdapterProvider , and register your attribute and its adapter in DI. This

method follows the single responsibility principal in that server-related and client-related

validation code is in separate classes. The adapter also has the advantage that since it is

registered in DI, other services in DI are available to it if needed.

Implement IClientModelValidator  in your ValidationAttribute  class. This method might be

appropriate if the attribute doesn't do any server-side validation and doesn't need any services

from DI.

This method of rendering data-  attributes in HTML is used by the ClassicMovie  attribute in the

sample app. To add client validation by using this method:

public class ClassicMovieAttributeAdapter : AttributeAdapterBase<ClassicMovieAttribute>
{
    public ClassicMovieAttributeAdapter(ClassicMovieAttribute attribute,
        IStringLocalizer stringLocalizer)
        : base(attribute, stringLocalizer)
    {

    }

    public override void AddValidation(ClientModelValidationContext context)
    {
        MergeAttribute(context.Attributes, "data-val", "true");
        MergeAttribute(context.Attributes, "data-val-classicmovie", 
GetErrorMessage(context));

        var year = Attribute.Year.ToString(CultureInfo.InvariantCulture);
        MergeAttribute(context.Attributes, "data-val-classicmovie-year", year);
    }

    public override string GetErrorMessage(ModelValidationContextBase validationContext) 
=>
        Attribute.GetErrorMessage();
}

1. Create an attribute adapter class for the custom validation attribute. Derive the class from

AttributeAdapterBase<T>. Create an AddValidation  method that adds data-  attributes to

the rendered output, as shown in this example:

2. Create an adapter provider class that implements IValidationAttributeAdapterProvider. In the

GetAttributeAdapter  method pass in the custom attribute to the adapter's constructor, as

shown in this example:

https://wikipedia.org/wiki/Single_responsibility_principle
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.attributeadapterbase-1?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.ivalidationattributeadapterprovider


IClientModelValidator for client-side validationIClientModelValidator for client-side validation

public class CustomValidationAttributeAdapterProvider : 
IValidationAttributeAdapterProvider
{
    private readonly IValidationAttributeAdapterProvider baseProvider =
        new ValidationAttributeAdapterProvider();

    public IAttributeAdapter GetAttributeAdapter(ValidationAttribute attribute,
        IStringLocalizer stringLocalizer)
    {
        if (attribute is ClassicMovieAttribute classicMovieAttribute)
        {
            return new ClassicMovieAttributeAdapter(classicMovieAttribute, 
stringLocalizer);
        }

        return baseProvider.GetAttributeAdapter(attribute, stringLocalizer);
    }
}

services.AddRazorPages()
    .AddMvcOptions(options =>
    {
        options.MaxModelValidationErrors = 50;
        options.ModelBindingMessageProvider.SetValueMustNotBeNullAccessor(
            _ => "The field is required.");
    });

services.AddSingleton<IValidationAttributeAdapterProvider,
    CustomValidationAttributeAdapterProvider>();

3. Register the adapter provider for DI in Startup.ConfigureServices :

This method of rendering data-  attributes in HTML is used by the 

ClassicMovieWithClientValidator  attribute in the sample app. To add client validation by using this

method:

In the custom validation attribute, implement the IClientModelValidator  interface and

create an AddValidation  method. In the AddValidation  method, add data-  attributes for

validation, as shown in the following example:



    Disable client-side validation

services.AddRazorPages()
    .AddViewOptions(options =>
    {
        options.HtmlHelperOptions.ClientValidationEnabled = false;
    });

public class ClassicMovieWithClientValidatorAttribute :
    ValidationAttribute, IClientModelValidator
{
    public ClassicMovieWithClientValidatorAttribute(int year)
    {
        Year = year;
    }

    public int Year { get; }

    public void AddValidation(ClientModelValidationContext context)
    {
        MergeAttribute(context.Attributes, "data-val", "true");
        MergeAttribute(context.Attributes, "data-val-classicmovie", GetErrorMessage());

        var year = Year.ToString(CultureInfo.InvariantCulture);
        MergeAttribute(context.Attributes, "data-val-classicmovie-year", year);
    }

    public string GetErrorMessage() =>
        $"Classic movies must have a release year no later than {Year}.";

    protected override ValidationResult IsValid(object value,
        ValidationContext validationContext)
    {
        var movie = (Movie)validationContext.ObjectInstance;
        var releaseYear = ((DateTime)value).Year;

        if (movie.Genre == Genre.Classic && releaseYear > Year)
        {
            return new ValidationResult(GetErrorMessage());
        }

        return ValidationResult.Success;
    }

    private bool MergeAttribute(IDictionary<string, string> attributes, string key, 
string value)
    {
        if (attributes.ContainsKey(key))
        {
            return false;
        }

        attributes.Add(key, value);
        return true;
    }
}

The following code disables client validation in Razor Pages:

Other options to disable client-side validation:

Comment out the reference to _ValidationScriptsPartial  in all the .cshtml files.

Remove the contents of the Pages\Shared_ValidationScriptsPartial.cshtml file.



Additional resources

Model state

public async Task<IActionResult> OnPostAsync()
{
    if (!ModelState.IsValid)
    {
        return Page();
    }

    _context.Movie.Add(Movie);
    await _context.SaveChangesAsync();

    return RedirectToPage("./Index");
}

Rerun validation

The preceding approach won't prevent client side validation of ASP.NET Core Identity Razor Class

Library. For more information, see Scaffold Identity in ASP.NET Core projects.

System.ComponentModel.DataAnnotations namespace

Model Binding

This article explains how to validate user input in an ASP.NET Core MVC or Razor Pages app.

View or download sample code (how to download).

Model state represents errors that come from two subsystems: model binding and model

validation. Errors that originate from model binding are generally data conversion errors (for

example, an "x" is entered in a field that expects an integer). Model validation occurs after model

binding and reports errors where the data doesn't conform to business rules (for example, a 0 is

entered in a field that expects a rating between 1 and 5).

Both model binding and validation occur before the execution of a controller action or a Razor

Pages handler method. For web apps, it's the app's responsibility to inspect ModelState.IsValid

and react appropriately. Web apps typically redisplay the page with an error message:

Web API controllers don't have to check ModelState.IsValid  if they have the [ApiController]

attribute. In that case, an automatic HTTP 400 response containing error details is returned when

model state is invalid. For more information, see Automatic HTTP 400 responses.

Validation is automatic, but you might want to repeat it manually. For example, you might compute

a value for a property and want to rerun validation after setting the property to the computed

value. To rerun validation, call the TryValidateModel  method, as shown here:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/validation/sample


var movie = new Movie
{
    Title = title,
    Genre = genre,
    ReleaseDate = modifiedReleaseDate,
    Description = description,
    Price = price,
    Preorder = preorder,
};

TryValidateModel(movie);

if (ModelState.IsValid)
{
    _context.AddMovie(movie);
    _context.SaveChanges();

    return RedirectToAction(actionName: nameof(Index));
}

return View(movie);

Validation attributes

public class Movie
{
    public int Id { get; set; }

    [Required]
    [StringLength(100)]
    public string Title { get; set; }

    [ClassicMovie(1960)]
    [DataType(DataType.Date)]
    public DateTime ReleaseDate { get; set; }

    [Required]
    [StringLength(1000)]
    public string Description { get; set; }

    [Range(0, 999.99)]
    public decimal Price { get; set; }

    [Required]
    public Genre Genre { get; set; }

    public bool Preorder { get; set; }
}

Built-in attributes

Validation attributes let you specify validation rules for model properties. The following example

from the sample app shows a model class that is annotated with validation attributes. The 

[ClassicMovie]  attribute is a custom validation attribute and the others are built-in. Not shown is 

[ClassicMovie2] , which shows an alternative way to implement a custom attribute.

Built-in validation attributes include:

[CreditCard] : Validates that the property has a credit card format.

[Compare] : Validates that two properties in a model match. For example, the Register.cshtml.cs

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/mvc/models/validation/sample


Error messagesError messages

[StringLength(8, ErrorMessage = "Name length can't be more than 8.")]

[StringLength(8, ErrorMessage = "{0} length must be between {2} and {1}.", MinimumLength = 6)]

[Required] attribute

[Required] validation on the server[Required] validation on the server

file uses [Compare]  to validate the two entered passwords match. Scaffold Identity to see the

Register code.

[EmailAddress] : Validates that the property has an email format.

[Phone] : Validates that the property has a telephone number format.

[Range] : Validates that the property value falls within a specified range.

[RegularExpression] : Validates that the property value matches a specified regular expression.

[Required] : Validates that the field is not null. See [Required]  attribute for details about this

attribute's behavior.

[StringLength] : Validates that a string property value doesn't exceed a specified length limit.

[Url] : Validates that the property has a URL format.

[Remote] : Validates input on the client by calling an action method on the server. See [Remote]

attribute for details about this attribute's behavior.

When using the [RegularExpression]  attribute with client-side validation, the regex is executed in

JavaScript on the client. This means ECMAScript matching behavior will be used. For more

information, see this GitHub issue.

A complete list of validation attributes can be found in the

System.ComponentModel.DataAnnotations namespace.

Validation attributes let you specify the error message to be displayed for invalid input. For

example:

Internally, the attributes call String.Format  with a placeholder for the field name and sometimes

additional placeholders. For example:

When applied to a Name  property, the error message created by the preceding code would be

"Name length must be between 6 and 8.".

To find out which parameters are passed to String.Format  for a particular attribute's error

message, see the DataAnnotations source code.

By default, the validation system treats non-nullable parameters or properties as if they had a 

[Required]  attribute. Value types such as decimal  and int  are non-nullable.

On the server, a required value is considered missing if the property is null. A non-nullable field is

always valid, and the [Required] attribute's error message is never displayed.

However, model binding for a non-nullable property may fail, resulting in an error message such as

The value '' is invalid . To specify a custom error message for server-side validation of non-

nullable types, you have the following options:

Make the field nullable (for example, decimal?  instead of decimal ). Nullable<T> value

types are treated like standard nullable types.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#ecmascript-matching-behavior
https://github.com/dotnet/corefx/issues/42487
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations
https://github.com/dotnet/corefx/tree/master/src/System.ComponentModel.Annotations/src/System/ComponentModel/DataAnnotations
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/


[Required] validation on the client[Required] validation on the client

[Remote] attribute

services.AddMvc(options => 
    {
        options.MaxModelValidationErrors = 50;
        options.ModelBindingMessageProvider.SetValueMustNotBeNullAccessor(
            (_) => "The field is required.");
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
services.AddSingleton
    <IValidationAttributeAdapterProvider, 
     CustomValidationAttributeAdapterProvider>();

Specify the default error message to be used by model binding, as shown in the following

example:

For more information about model binding errors that you can set default messages for, see

DefaultModelBindingMessageProvider.

Non-nullable types and strings are handled differently on the client compared to the server. On the

client:

A value is considered present only if input is entered for it. Therefore, client-side validation

handles non-nullable types the same as nullable types.

Whitespace in a string field is considered valid input by the jQuery Validation required method.

Server-side validation considers a required string field invalid if only whitespace is entered.

As noted earlier, non-nullable types are treated as though they had a [Required]  attribute. That

means you get client-side validation even if you don't apply the [Required]  attribute. But if you

don't use the attribute, you get a default error message. To specify a custom error message, use the

attribute.

The [Remote]  attribute implements client-side validation that requires calling a method on the

server to determine whether field input is valid. For example, the app may need to verify whether a

user name is already in use.

To implement remote validation:

1. Create an action method for JavaScript to call. The jQuery Validate remote method expects a

JSON response:

"true"  means the input data is valid.

"false" , undefined , or null  means the input is invalid. Display the default error

message.

Any other string means the input is invalid. Display the string as a custom error message.

Here's an example of an action method that returns a custom error message:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.metadata.defaultmodelbindingmessageprovider#methods
https://jqueryvalidation.org/required-method/
https://jqueryvalidation.org/remote-method/


Additional fieldsAdditional fields

[Remote(action: "VerifyName", controller: "Users", AdditionalFields = nameof(LastName))]
public string FirstName { get; set; }
[Remote(action: "VerifyName", controller: "Users", AdditionalFields = nameof(FirstName))]
public string LastName { get; set; }

[AcceptVerbs("Get", "Post")]
public IActionResult VerifyName(string firstName, string lastName)
{
    if (!_userRepository.VerifyName(firstName, lastName))
    {
        return Json($"A user named {firstName} {lastName} already exists.");
    }

    return Json(true);
}

[AcceptVerbs("Get", "Post")]
public IActionResult VerifyEmail(string email)
{
    if (!_userRepository.VerifyEmail(email))
    {
        return Json($"Email {email} is already in use.");
    }

    return Json(true);
}

[Remote(action: "VerifyEmail", controller: "Users")]
public string Email { get; set; }

2. In the model class, annotate the property with a [Remote]  attribute that points to the

validation action method, as shown in the following example:

The [Remote]  attribute is in the Microsoft.AspNetCore.Mvc  namespace. Install the

Microsoft.AspNetCore.Mvc.ViewFeatures NuGet package if you're not using the 

Microsoft.AspNetCore.App  or Microsoft.AspNetCore.All  metapackage.

The AdditionalFields  property of the [Remote]  attribute lets you validate combinations of fields

against data on the server. For example, if the User  model had FirstName  and LastName

properties, you might want to verify that no existing users already have that pair of names. The

following example shows how to use AdditionalFields :

AdditionalFields  could be set explicitly to the strings "FirstName"  and "LastName" , but using the

nameof operator simplifies later refactoring. The action method for this validation must accept both

first name and last name arguments:

When the user enters a first or last name, JavaScript makes a remote call to see if that pair of

names has been taken.

To validate two or more additional fields, provide them as a comma-delimited list. For example, to

add a MiddleName  property to the model, set the [Remote]  attribute as shown in the following

example:

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.ViewFeatures
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/nameof


[Remote(action: "VerifyName", controller: "Users", AdditionalFields = nameof(FirstName) + "," + 
nameof(LastName))]
public string MiddleName { get; set; }

Alternatives to built-in attributes

Custom attributes

public class ClassicMovieAttribute : ValidationAttribute
{
    private int _year;

    public ClassicMovieAttribute(int year)
    {
        _year = year;
    }

    protected override ValidationResult IsValid(
        object value, ValidationContext validationContext)
    {
        var movie = (Movie)validationContext.ObjectInstance;
        var releaseYear = ((DateTime)value).Year;

        if (movie.Genre == Genre.Classic && releaseYear > _year)
        {
            return new ValidationResult(GetErrorMessage());
        }

        return ValidationResult.Success;
    }

    public int Year => _year;

    public string GetErrorMessage()
    {
        return $"Classic movies must have a release year no later than {_year}.";
    }
}

AdditionalFields , like all attribute arguments, must be a constant expression. Therefore, don't use

an interpolated string or call Join to initialize AdditionalFields .

If you need validation not provided by built-in attributes, you can:

Create custom attributes.

Implement IValidatableObject.

For scenarios that the built-in validation attributes don't handle, you can create custom validation

attributes. Create a class that inherits from ValidationAttribute, and override the IsValid method.

The IsValid  method accepts an object named value, which is the input to be validated. An

overload also accepts a ValidationContext  object, which provides additional information, such as

the model instance created by model binding.

The following example validates that the release date for a movie in the Classic genre isn't later

than a specified year. The [ClassicMovie2]  attribute checks the genre first and continues only if it's

Classic. For movies identified as classics, it checks the release date to make sure it's not later than

the limit passed to the attribute constructor.)

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interpolated-strings
https://docs.microsoft.com/en-us/dotnet/api/system.string.join
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationattribute
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.validationattribute.isvalid


IValidatableObject

public class MovieIValidatable : IValidatableObject
{
    private const int _classicYear = 1960;

    public int Id { get; set; }

    [Required]
    [StringLength(100)]
    public string Title { get; set; }

    [Required]
    public DateTime ReleaseDate { get; set; }

    [Required]
    [StringLength(1000)]
    public string Description { get; set; }

    [Range(0, 999.99)]
    public decimal Price { get; set; }

    [Required]
    public Genre Genre { get; set; }

    public bool Preorder { get; set; }

    public IEnumerable<ValidationResult> Validate(ValidationContext validationContext)
    {
        if (Genre == Genre.Classic && ReleaseDate.Year > _classicYear)
        {
            yield return new ValidationResult(
                $"Classic movies must have a release year earlier than {_classicYear}.",
                new[] { "ReleaseDate" });
        }
    }
}

Top-level node validation

The movie  variable in the preceding example represents a Movie  object that contains the data

from the form submission. The IsValid  method checks the date and genre. Upon successful

validation, IsValid  returns a ValidationResult.Success  code. When validation fails, a 

ValidationResult  with an error message is returned.

The preceding example works only with Movie  types. Another option for class-level validation is to

implement IValidatableObject  in the model class, as shown in the following example:

Top-level nodes include:

Action parameters

Controller properties

Page handler parameters

Page model properties

Model-bound top-level nodes are validated in addition to validating model properties. In the

following example from the sample app, the VerifyPhone  method uses the

RegularExpressionAttribute to validate the phone  action parameter :

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.regularexpressionattribute


[AcceptVerbs("Get", "Post")]
public IActionResult VerifyPhone(
    [RegularExpression(@"^\d{3}-\d{3}-\d{4}$")] string phone)
{
    if (!ModelState.IsValid)
    {
        return Json($"Phone {phone} has an invalid format. Format: ###-###-####");
    }

    return Json(true);
}

[HttpPost]
public IActionResult CheckAge(
    [BindRequired, FromQuery] int age)
{

services.AddMvc(options => 
    {
        options.MaxModelValidationErrors = 50;
        options.AllowValidatingTopLevelNodes = false;
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

Maximum errors

services.AddMvc(options => 
    {
        options.MaxModelValidationErrors = 50;
        options.ModelBindingMessageProvider.SetValueMustNotBeNullAccessor(
            (_) => "The field is required.");
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
services.AddSingleton
    <IValidationAttributeAdapterProvider, 
     CustomValidationAttributeAdapterProvider>();

Top-level nodes can use BindRequiredAttribute with validation attributes. In the following example

from the sample app, the CheckAge  method specifies that the age  parameter must be bound from

the query string when the form is submitted:

In the Check Age page (CheckAge.cshtml), there are two forms. The first form submits an Age

value of 99  as a query string: https://localhost:5001/Users/CheckAge?Age=99 .

When a properly formatted age  parameter from the query string is submitted, the form validates.

The second form on the Check Age page submits the Age  value in the body of the request, and

validation fails. Binding fails because the age  parameter must come from a query string.

When running with CompatibilityVersion.Version_2_1  or later, top-level node validation is enabled

by default. Otherwise, top-level node validation is disabled. The default option can be overridden

by setting the AllowValidatingTopLevelNodes property in ( Startup.ConfigureServices ), as shown

here:

Validation stops when the maximum number of errors is reached (200 by default). You can

configure this number with the following code in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.bindrequiredattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.allowvalidatingtoplevelnodes


Maximum recursion

Automatic short-circuit

Disable validation

Client-side validation

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>

ValidationVisitor traverses the object graph of the model being validated. For models that are very

deep or are infinitely recursive, validation may result in stack overflow.

MvcOptions.MaxValidationDepth provides a way to stop validation early if the visitor recursion

exceeds a configured depth. The default value of MvcOptions.MaxValidationDepth  is 32 when

running with CompatibilityVersion.Version_2_2  or later. For earlier versions, the value is null, which

means no depth constraint.

Validation is automatically short-circuited (skipped) if the model graph doesn't require validation.

Objects that the runtime skips validation for include collections of primitives (such as byte[] , 

string[] , Dictionary<string, string> ) and complex object graphs that don't have any validators.

To disable validation:

public class NullObjectModelValidator : IObjectModelValidator
{
    public void Validate(
        ActionContext actionContext,
        ValidationStateDictionary validationState,
        string prefix,
        object model)
    {
    }
}

// There is only one `IObjectModelValidator` object,
// so AddSingleton replaces the default one.
services.AddSingleton<IObjectModelValidator>(new NullObjectModelValidator());

1. Create an implementation of IObjectModelValidator  that doesn't mark any fields as invalid.

2. Add the following code to Startup.ConfigureServices  to replace the default 

IObjectModelValidator  implementation in the dependency injection container.

You might still see model state errors that originate from model binding.

Client-side validation prevents submission until the form is valid. The Submit button runs

JavaScript that either submits the form or displays error messages.

Client-side validation avoids an unnecessary round trip to the server when there are input errors

on a form. The following script references in _Layout.cshtml and _ValidationScriptsPartial.cshtml

support client-side validation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.modelbinding.validation.validationvisitor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.maxvalidationdepth#microsoft_aspnetcore_mvc_mvcoptions_maxvalidationdepth


<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-
validate/1.17.0/jquery.validate.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-validation-
unobtrusive/3.2.11/jquery.validate.unobtrusive.min.js"></script>

<div class="form-group">
    <label asp-for="ReleaseDate" class="col-md-2 control-label"></label>
    <div class="col-md-10">
        <input asp-for="ReleaseDate" class="form-control" />
        <span asp-validation-for="ReleaseDate" class="text-danger"></span>
    </div>
</div>

<form action="/Movies/Create" method="post">
    <div class="form-horizontal">
        <h4>Movie</h4>
        <div class="text-danger"></div>
        <div class="form-group">
            <label class="col-md-2 control-label" for="ReleaseDate">ReleaseDate</label>
            <div class="col-md-10">
                <input class="form-control" type="datetime"
                data-val="true" data-val-required="The ReleaseDate field is required."
                id="ReleaseDate" name="ReleaseDate" value="">
                <span class="text-danger field-validation-valid"
                data-valmsg-for="ReleaseDate" data-valmsg-replace="true"></span>
            </div>
        </div>
    </div>
</form>

Add Validation to Dynamic FormsAdd Validation to Dynamic Forms

The jQuery Unobtrusive Validation script is a custom Microsoft front-end library that builds on the

popular jQuery Validate plugin. Without jQuery Unobtrusive Validation, you would have to code

the same validation logic in two places: once in the server-side validation attributes on model

properties, and then again in client-side scripts. Instead, Tag Helpers and HTML helpers use the

validation attributes and type metadata from model properties to render HTML 5 data-  attributes

for the form elements that need validation. jQuery Unobtrusive Validation parses the data-

attributes and passes the logic to jQuery Validate, effectively "copying" the server-side validation

logic to the client. You can display validation errors on the client using tag helpers as shown here:

The preceding tag helpers render the following HTML.

Notice that the data-  attributes in the HTML output correspond to the validation attributes for the 

ReleaseDate  property. The data-val-required  attribute contains an error message to display if the

user doesn't fill in the release date field. jQuery Unobtrusive Validation passes this value to the

jQuery Validate required() method, which then displays that message in the accompanying

<span><span> element.

Data type validation is based on the .NET type of a property, unless that is overridden by a 

[DataType]  attribute. Browsers have their own default error messages, but the jQuery Validation

Unobtrusive Validation package can override those messages. [DataType]  attributes and

subclasses such as [EmailAddress]  let you specify the error message.

jQuery Unobtrusive Validation passes validation logic and parameters to jQuery Validate when the

page first loads. Therefore, validation doesn't work automatically on dynamically generated forms.

To enable validation, tell jQuery Unobtrusive Validation to parse the dynamic form immediately

https://github.com/aspnet/jquery-validation-unobtrusive
https://jqueryvalidation.org/
https://jqueryvalidation.org/required-method/


$.get({
    url: "https://url/that/returns/a/form",
    dataType: "html",
    error: function(jqXHR, textStatus, errorThrown) {
        alert(textStatus + ": Couldn't add form. " + errorThrown);
    },
    success: function(newFormHTML) {
        var container = document.getElementById("form-container");
        container.insertAdjacentHTML("beforeend", newFormHTML);
        var forms = container.getElementsByTagName("form");
        var newForm = forms[forms.length - 1];
        $.validator.unobtrusive.parse(newForm);
    }
})

Add Validation to Dynamic ControlsAdd Validation to Dynamic Controls

$.get({
    url: "https://url/that/returns/a/control",
    dataType: "html",
    error: function(jqXHR, textStatus, errorThrown) {
        alert(textStatus + ": Couldn't add control. " + errorThrown);
    },
    success: function(newInputHTML) {
        var form = document.getElementById("my-form");
        form.insertAdjacentHTML("beforeend", newInputHTML);
        $(form).removeData("validator")    // Added by jQuery Validate
               .removeData("unobtrusiveValidation");   // Added by jQuery Unobtrusive 
Validation
        $.validator.unobtrusive.parse(form);
    }
})

Custom client-side validation

after you create it. For example, the following code sets up client-side validation on a form added

via AJAX.

The $.validator.unobtrusive.parse()  method accepts a jQuery selector for its one argument. This

method tells jQuery Unobtrusive Validation to parse the data-  attributes of forms within that

selector. The values of those attributes are then passed to the jQuery Validate plugin.

The $.validator.unobtrusive.parse()  method works on an entire form, not on individual

dynamically generated controls, such as <input>  and <select/> . To reparse the form, remove the

validation data that was added when the form was parsed earlier, as shown in the following

example:

Custom client-side validation is done by generating data-  HTML attributes that work with a

custom jQuery Validate adapter. The following sample adapter code was written for the 

ClassicMovie  and ClassicMovie2  attributes that were introduced earlier in this article:



$.validator.addMethod('classicmovie',
    function (value, element, params) {
        // Get element value. Classic genre has value '0'.
        var genre = $(params[0]).val(),
            year = params[1],
            date = new Date(value);
        if (genre && genre.length > 0 && genre[0] === '0') {
            // Since this is a classic movie, invalid if release date is after given year.
            return date.getUTCFullYear() <= year;
        }

        return true;
    });

$.validator.unobtrusive.adapters.add('classicmovie',
    ['year'],
    function (options) {
        var element = $(options.form).find('select#Genre')[0];
        options.rules['classicmovie'] = [element, parseInt(options.params['year'])];
        options.messages['classicmovie'] = options.message;
    });

<input class="form-control" type="datetime"
    data-val="true"
    data-val-classicmovie1="Classic movies must have a release year earlier than 1960."
    data-val-classicmovie1-year="1960"
    data-val-required="The ReleaseDate field is required."
    id="ReleaseDate" name="ReleaseDate" value="">

AttributeAdapter for client-side validationAttributeAdapter for client-side validation

For information about how to write adapters, see the jQuery Validate documentation.

The use of an adapter for a given field is triggered by data-  attributes that:

Flag the field as being subject to validation ( data-val="true" ).

Identify a validation rule name and error message text (for example, 

data-val-rulename="Error message." ).

Provide any additional parameters the validator needs (for example, 

data-val-rulename-parm1="value" ).

The following example shows the data-  attributes for the sample app's ClassicMovie  attribute:

As noted earlier, Tag Helpers and HTML helpers use information from validation attributes to render

data-  attributes. There are two options for writing code that results in the creation of custom 

data-  HTML attributes:

Create a class that derives from AttributeAdapterBase<TAttribute>  and a class that implements 

IValidationAttributeAdapterProvider , and register your attribute and its adapter in DI. This

method follows the single responsibility principal in that server-related and client-related

validation code is in separate classes. The adapter also has the advantage that since it is

registered in DI, other services in DI are available to it if needed.

Implement IClientModelValidator  in your ValidationAttribute  class. This method might be

appropriate if the attribute doesn't do any server-side validation and doesn't need any services

from DI.

This method of rendering data-  attributes in HTML is used by the ClassicMovie  attribute in the

sample app. To add client validation by using this method:

https://jqueryvalidation.org/documentation/
https://wikipedia.org/wiki/Single_responsibility_principle


public class ClassicMovieAttributeAdapter : AttributeAdapterBase<ClassicMovieAttribute>
{
    private int _year;

    public ClassicMovieAttributeAdapter(ClassicMovieAttribute attribute, 
IStringLocalizer stringLocalizer) : base (attribute, stringLocalizer)
    {
        _year = attribute.Year;
    }
    public override void AddValidation(ClientModelValidationContext context)
    {
        if (context == null)
        {
            throw new ArgumentNullException(nameof(context));
        }

        MergeAttribute(context.Attributes, "data-val", "true");
        MergeAttribute(context.Attributes, "data-val-classicmovie", 
GetErrorMessage(context));

        var year = Attribute.Year.ToString(CultureInfo.InvariantCulture);
        MergeAttribute(context.Attributes, "data-val-classicmovie-year", year);
    }
    public override string GetErrorMessage(ModelValidationContextBase validationContext)
    {
        return Attribute.GetErrorMessage();
    }
}

public class CustomValidationAttributeAdapterProvider :
    IValidationAttributeAdapterProvider
{
    IValidationAttributeAdapterProvider baseProvider =
        new ValidationAttributeAdapterProvider();
    public IAttributeAdapter GetAttributeAdapter(ValidationAttribute attribute,
        IStringLocalizer stringLocalizer)
    {
        if (attribute is ClassicMovieAttribute classicMovieAttribute)
        {
            return new ClassicMovieAttributeAdapter(classicMovieAttribute, 
stringLocalizer);
        }
        else
        {
            return baseProvider.GetAttributeAdapter(attribute, stringLocalizer);
        }
    }
}

1. Create an attribute adapter class for the custom validation attribute. Derive the class from

AttributeAdapterBase<T>. Create an AddValidation  method that adds data-  attributes to

the rendered output, as shown in this example:

2. Create an adapter provider class that implements IValidationAttributeAdapterProvider. In the

GetAttributeAdapter  method pass in the custom attribute to the adapter's constructor, as

shown in this example:

3. Register the adapter provider for DI in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.attributeadapterbase-1?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.dataannotations.ivalidationattributeadapterprovider


IClientModelValidator for client-side validationIClientModelValidator for client-side validation

services.AddMvc(options => 
    {
        options.MaxModelValidationErrors = 50;
        options.ModelBindingMessageProvider.SetValueMustNotBeNullAccessor(
            (_) => "The field is required.");
    })
    .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
services.AddSingleton
    <IValidationAttributeAdapterProvider, 
     CustomValidationAttributeAdapterProvider>();

This method of rendering data-  attributes in HTML is used by the ClassicMovie2  attribute in the

sample app. To add client validation by using this method:

In the custom validation attribute, implement the IClientModelValidator  interface and

create an AddValidation  method. In the AddValidation  method, add data-  attributes for

validation, as shown in the following example:



Disable client-side validation

public class ClassicMovie2Attribute : ValidationAttribute, IClientModelValidator
{
    private int _year;

    public ClassicMovie2Attribute(int year)
    {
        _year = year;
    }

    protected override ValidationResult IsValid(
        object value, ValidationContext validationContext)
    {
        var movie = (Movie)validationContext.ObjectInstance;
        var releaseYear = ((DateTime)value).Year;

        if (movie.Genre == Genre.Classic && releaseYear > _year)
        {
            return new ValidationResult(GetErrorMessage());
        }

        return ValidationResult.Success;
    }

    public void AddValidation(ClientModelValidationContext context)
    {
        if (context == null)
        {
            throw new ArgumentNullException(nameof(context));
        }

        MergeAttribute(context.Attributes, "data-val", "true");
        MergeAttribute(context.Attributes, "data-val-classicmovie", GetErrorMessage());

        var year = _year.ToString(CultureInfo.InvariantCulture);
        MergeAttribute(context.Attributes, "data-val-classicmovie-year", year);
    }
    private bool MergeAttribute(IDictionary<string, string> attributes, string key, 
string value)
    {
        if (attributes.ContainsKey(key))
        {
            return false;
        }

        attributes.Add(key, value);
        return true;
    }
    protected string GetErrorMessage()
    {
        return $"Classic movies must have a release year no later than {_year} [from 
attribute 2].";
    }
}

The following code disables client validation in MVC views:



services.AddMvc().AddViewOptions(options =>
{
    if (_env.IsDevelopment())
    {
        options.HtmlHelperOptions.ClientValidationEnabled = false;
    }
});

services.Configure<HtmlHelperOptions>(o => o.ClientValidationEnabled = false);

Additional resources

And in Razor Pages:

Another option for disabling client validation is to comment out the reference to 

_ValidationScriptsPartial  in your .cshtml file.

System.ComponentModel.DataAnnotations namespace

Model Binding

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations


Compatibility version for ASP.NET Core MVC
9/22/2020 • 2 minutes to read • Edit Online

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc()
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

By Rick Anderson

The SetCompatibilityVersion method is a no-op for ASP.NET Core 3.0 apps. That is, calling 

SetCompatibilityVersion  with any value of CompatibilityVersion has no impact on the application.

The next minor version of ASP.NET Core may provide a new CompatibilityVersion  value.

CompatibilityVersion  values Version_2_0  through Version_2_2  are marked [Obsolete(...)] .

See Breaking API changes in Antiforgery, CORS, Diagnostics, Mvc, and Routing. This list includes breaking

changes for compatibility switches.

 ASP.N ET Core 2.2 version of  this art icleTo see how SetCompatibilityVersion  works with ASP.NET Core 2.x apps, select the .

The SetCompatibilityVersion method allows an ASP.NET Core 2.x app to opt-in or opt-out of potentially

breaking behavior changes introduced in ASP.NET Core MVC 2.1 or 2.2. These potentially breaking behavior

changes are generally in how the MVC subsystem behaves and how your codeyour code is called by the runtime. By

opting in, you get the latest behavior, and the long-term behavior of ASP.NET Core.

The following code sets the compatibility mode to ASP.NET Core 2.2:

We recommend you test your app using the latest version ( CompatibilityVersion.Latest ). We anticipate that

most apps won't have breaking behavior changes using the latest version.

Apps that call SetCompatibilityVersion(CompatibilityVersion.Version_2_0)  are protected from potentially

breaking behavior changes introduced in the ASP.NET Core 2.1/2.2 MVC versions. This protection:

Does not apply to all 2.1 and later changes, it's targeted to potentially breaking ASP.NET Core runtime

behavior changes in the MVC subsystem.

Does not extend to ASP.NET Core 3.0.

The default compatibility for ASP.NET Core 2.1 and 2.2 apps that do notnot call SetCompatibilityVersion  is 2.0

compatibility. That is, not calling SetCompatibilityVersion  is the same as calling 

SetCompatibilityVersion(CompatibilityVersion.Version_2_0) .

The following code sets the compatibility mode to ASP.NET Core 2.2, except for the following behaviors:

AllowCombiningAuthorizeFilters

InputFormatterExceptionPolicy

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/mvc/compatibility-version.md
https://twitter.com/RickAndMSFT
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccoremvcbuilderextensions.setcompatibilityversion
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.compatibilityversion
https://github.com/aspnet/Announcements/issues/387
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccoremvcbuilderextensions.setcompatibilityversion
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.allowcombiningauthorizefilters#microsoft_aspnetcore_mvc_mvcoptions_allowcombiningauthorizefilters
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.inputformatterexceptionpolicy#microsoft_aspnetcore_mvc_mvcoptions_inputformatterexceptionpolicy


public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc()
        // Include the 2.2 behaviors
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_2)
        // Except for the following.
        .AddMvcOptions(options =>
        {
            // Don't combine authorize filters (keep 2.0 behavior).
            options.AllowCombiningAuthorizeFilters = false;
            // All exceptions thrown by an IInputFormatter are treated
            // as model state errors (keep 2.0 behavior).
            options.InputFormatterExceptionPolicy =
                InputFormatterExceptionPolicy.AllExceptions;
        });
}

For apps that encounter breaking behavior changes, using the appropriate compatibility switches:

Allows you to use the latest release and opt out of specific breaking behavior changes.

Gives you time to update your app so it works with the latest changes.

The MvcOptions documentation has a good explanation of what changed and why the changes are an

improvement for most users.

With ASP.NET Core 3.0, old behaviors supported by compatibility switches have been removed. We feel these

are positive changes benefitting nearly all users. By introducing these changes in 2.1 and 2.2, most apps can

benefit, while others have time to update.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions


Write custom ASP.NET Core middleware
9/22/2020 • 3 minutes to read • Edit Online

NOTENOTE

Middleware class

public class Startup
{
    public void Configure(IApplicationBuilder app)
    {
        app.Use(async (context, next) =>
        {
            var cultureQuery = context.Request.Query["culture"];
            if (!string.IsNullOrWhiteSpace(cultureQuery))
            {
                var culture = new CultureInfo(cultureQuery);

                CultureInfo.CurrentCulture = culture;
                CultureInfo.CurrentUICulture = culture;
            }

            // Call the next delegate/middleware in the pipeline
            await next();
        });

        app.Run(async (context) =>
        {
            await context.Response.WriteAsync(
                $"Hello {CultureInfo.CurrentCulture.DisplayName}");
        });

    }
}

By Rick Anderson and Steve Smith

Middleware is software that's assembled into an app pipeline to handle requests and responses. ASP.NET Core

provides a rich set of built-in middleware components, but in some scenarios you might want to write a custom

middleware.

This topic describes how to write convention-based middleware. For an approach that uses strong typing and per-request

activation, see Factory-based middleware activation in ASP.NET Core.

Middleware is generally encapsulated in a class and exposed with an extension method. Consider the following

middleware, which sets the culture for the current request from a query string:

The preceding sample code is used to demonstrate creating a middleware component. For ASP.NET Core's built-in

localization support, see Globalization and localization in ASP.NET Core.

Test the middleware by passing in the culture. For example, request https://localhost:5001/?culture=no .

The following code moves the middleware delegate to a class:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/middleware/write.md
https://twitter.com/RickAndMSFT
https://ardalis.com/


     

using Microsoft.AspNetCore.Http;
using System.Globalization;
using System.Threading.Tasks;

namespace Culture
{
    public class RequestCultureMiddleware
    {
        private readonly RequestDelegate _next;

        public RequestCultureMiddleware(RequestDelegate next)
        {
            _next = next;
        }

        public async Task InvokeAsync(HttpContext context)
        {
            var cultureQuery = context.Request.Query["culture"];
            if (!string.IsNullOrWhiteSpace(cultureQuery))
            {
                var culture = new CultureInfo(cultureQuery);

                CultureInfo.CurrentCulture = culture;
                CultureInfo.CurrentUICulture = culture;

            }

            // Call the next delegate/middleware in the pipeline
            await _next(context);
        }
    }
}

Middleware dependencies

Per-request middleware dependencies

The middleware class must include:

A public constructor with a parameter of type RequestDelegate.

A public method named Invoke  or InvokeAsync . This method must:

Return a Task .

Accept a first parameter of type HttpContext.

Additional parameters for the constructor and Invoke / InvokeAsync  are populated by dependency injection (DI).

Middleware should follow the Explicit Dependencies Principle by exposing its dependencies in its constructor.

Middleware is constructed once per application lifetime. See the Per-request middleware dependencies section if

you need to share services with middleware within a request.

Middleware components can resolve their dependencies from dependency injection (DI) through constructor

parameters. UseMiddleware<T> can also accept additional parameters directly.

Because middleware is constructed at app startup, not per-request, scoped lifetime services used by middleware

constructors aren't shared with other dependency-injected types during each request. If you must share a scoped

service between your middleware and other types, add these services to the Invoke  method's signature. The 

Invoke  method can accept additional parameters that are populated by DI:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.requestdelegate
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles#explicit-dependencies
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usemiddlewareextensions.usemiddleware#microsoft_aspnetcore_builder_usemiddlewareextensions_usemiddleware_microsoft_aspnetcore_builder_iapplicationbuilder_system_type_system_object___


public class CustomMiddleware
{
    private readonly RequestDelegate _next;

    public CustomMiddleware(RequestDelegate next)
    {
        _next = next;
    }

    // IMyScopedService is injected into Invoke
    public async Task Invoke(HttpContext httpContext, IMyScopedService svc)
    {
        svc.MyProperty = 1000;
        await _next(httpContext);
    }
}

Middleware extension method

using Microsoft.AspNetCore.Builder;

namespace Culture
{
    public static class RequestCultureMiddlewareExtensions
    {
        public static IApplicationBuilder UseRequestCulture(
            this IApplicationBuilder builder)
        {
            return builder.UseMiddleware<RequestCultureMiddleware>();
        }
    }
}

public class Startup
{
    public void Configure(IApplicationBuilder app)
    {
        app.UseRequestCulture();

        app.Run(async (context) =>
        {
            await context.Response.WriteAsync(
                $"Hello {CultureInfo.CurrentCulture.DisplayName}");
        });
    }
}

Additional resources

Lifetime and registration options contains a complete sample of middleware with scoped lifetime services.

The following extension method exposes the middleware through IApplicationBuilder:

The following code calls the middleware from Startup.Configure :

Lifetime and registration options contains a complete sample of middleware with scoped, transient, and

singleton lifetime services.

ASP.NET Core Middleware

Test ASP.NET Core middleware

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iapplicationbuilder


Migrate HTTP handlers and modules to ASP.NET Core middleware

App startup in ASP.NET Core

Request Features in ASP.NET Core

Factory-based middleware activation in ASP.NET Core

Middleware activation with a third-party container in ASP.NET Core



Request and response operations in ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

Stream examples

WARNINGWARNING

By Justin Kotalik

This article explains how to read from the request body and write to the response body. Code for these operations

might be required when writing middleware. Outside of writing middleware, custom code isn't generally required

because the operations are handled by MVC and Razor Pages.

There are two abstractions for the request and response bodies: Stream and Pipe. For request reading,

HttpRequest.Body is a Stream, and HttpRequest.BodyReader  is a PipeReader. For response writing,

HttpResponse.Body is a Stream, and HttpResponse.BodyWriter  is a PipeWriter.

Pipelines are recommended over streams. Streams can be easier to use for some simple operations, but pipelines

have a performance advantage and are easier to use in most scenarios. ASP.NET Core is starting to use pipelines

instead of streams internally. Examples include:

FormReader

TextReader

TextWriter

HttpResponse.WriteAsync

Streams aren't being removed from the framework. Streams continue to be used throughout .NET, and many

stream types don't have pipe equivalents, such as FileStreams  and ResponseCompression .

Suppose the goal is to create a middleware that reads the entire request body as a list of strings, splitting on new

lines. A simple stream implementation might look like the following example:

The following code:

Is used to demonstrate the problems with not using a pipe to read the request body.

Is not intended to be used in production apps.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/middleware/request-response.md
https://github.com/jkotalik
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream
https://docs.microsoft.com/en-us/dotnet/api/system.io.pipelines.pipe
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httprequest.body#microsoft_aspnetcore_http_httprequest_body
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream
https://docs.microsoft.com/en-us/dotnet/api/system.io.pipelines.pipereader
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpresponse.body#microsoft_aspnetcore_http_httpresponse_body
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream
https://docs.microsoft.com/en-us/dotnet/api/system.io.pipelines.pipewriter
https://docs.microsoft.com/en-us/dotnet/standard/io/pipelines


private async Task<List<string>> GetListOfStringsFromStream(Stream requestBody)
{
    // Build up the request body in a string builder.
    StringBuilder builder = new StringBuilder();

    // Rent a shared buffer to write the request body into.
    byte[] buffer = ArrayPool<byte>.Shared.Rent(4096);

    while (true)
    {
        var bytesRemaining = await requestBody.ReadAsync(buffer, offset: 0, buffer.Length);
        if (bytesRemaining == 0)
        {
            break;
        }

        // Append the encoded string into the string builder.
        var encodedString = Encoding.UTF8.GetString(buffer, 0, bytesRemaining);
        builder.Append(encodedString);
    }

    ArrayPool<byte>.Shared.Return(buffer);

    var entireRequestBody = builder.ToString();

    // Split on \n in the string.
    return new List<string>(entireRequestBody.Split("\n"));
}

WARNINGWARNING

If you would like to see code comments translated to languages other than English, let us know in this GitHub

discussion issue.

This code works, but there are some issues:

Before appending to the StringBuilder , the example creates another string ( encodedString ) that is thrown

away immediately. This process occurs for all bytes in the stream, so the result is extra memory allocation the

size of the entire request body.

The example reads the entire string before splitting on new lines. It's more efficient to check for new lines in the

byte array.

Here's an example that fixes some of the preceding issues:

The following code:

Is used to demonstrate the solutions to some problems in the preceding code while not solving all the problems.

Is not intended to be used in production apps.

https://github.com/MicrosoftDocs/feedback/issues/2515


private async Task<List<string>> GetListOfStringsFromStreamMoreEfficient(Stream requestBody)
{
    StringBuilder builder = new StringBuilder();
    byte[] buffer = ArrayPool<byte>.Shared.Rent(4096);
    List<string> results = new List<string>();

    while (true)
    {
        var bytesRemaining = await requestBody.ReadAsync(buffer, offset: 0, buffer.Length);

        if (bytesRemaining == 0)
        {
            results.Add(builder.ToString());
            break;
        }

        // Instead of adding the entire buffer into the StringBuilder
        // only add the remainder after the last \n in the array.
        var prevIndex = 0;
        int index;
        while (true)
        {
            index = Array.IndexOf(buffer, (byte)'\n', prevIndex);
            if (index == -1)
            {
                break;
            }

            var encodedString = Encoding.UTF8.GetString(buffer, prevIndex, index - prevIndex);

            if (builder.Length > 0)
            {
                // If there was a remainder in the string buffer, include it in the next string.
                results.Add(builder.Append(encodedString).ToString());
                builder.Clear();
            }
            else
            {
                results.Add(encodedString);
            }

            // Skip past last \n
            prevIndex = index + 1;
        }

        var remainingString = Encoding.UTF8.GetString(buffer, prevIndex, bytesRemaining - prevIndex);
        builder.Append(remainingString);
    }

    ArrayPool<byte>.Shared.Return(buffer);

    return results;
}

This preceding example:

Doesn't buffer the entire request body in a StringBuilder  unless there aren't any newline characters.

Doesn't call Split  on the string.

However, there are still are a few issues:

If newline characters are sparse, much of the request body is buffered in the string.

The code continues to create strings ( remainingString ) and adds them to the string buffer, which results in an

extra allocation.



Pipelines

private async Task<List<string>> GetListOfStringFromPipe(PipeReader reader)
{
    List<string> results = new List<string>();

    while (true)
    {
        ReadResult readResult = await reader.ReadAsync();
        var buffer = readResult.Buffer;

        SequencePosition? position = null;

        do
        {
            // Look for a EOL in the buffer
            position = buffer.PositionOf((byte)'\n');

            if (position != null)
            {
                var readOnlySequence = buffer.Slice(0, position.Value);
                AddStringToList(ref results, in readOnlySequence);

                // Skip the line + the \n character (basically position)
                buffer = buffer.Slice(buffer.GetPosition(1, position.Value));
            }
        }
        while (position != null);

        if (readResult.IsCompleted && buffer.Length > 0)
        {
            AddStringToList(ref results, in buffer);
        }

        reader.AdvanceTo(buffer.Start, buffer.End);

        // At this point, buffer will be updated to point one byte after the last
        // \n character.
        if (readResult.IsCompleted)
        {
            break;
        }
    }

    return results;
}

private static void AddStringToList(ref List<string> results, in ReadOnlySequence<byte> readOnlySequence)
{
    // Separate method because Span/ReadOnlySpan cannot be used in async methods
    ReadOnlySpan<byte> span = readOnlySequence.IsSingleSegment ? readOnlySequence.First.Span : 
readOnlySequence.ToArray().AsSpan();
    results.Add(Encoding.UTF8.GetString(span));
}

These issues are fixable, but the code is becoming progressively more complicated with little improvement.

Pipelines provide a way to solve these problems with minimal code complexity.

The following example shows how the same scenario can be handled using a PipeReader:

This example fixes many issues that the streams implementations had:

There's no need for a string buffer because the PipeReader  handles bytes that haven't been used.

https://docs.microsoft.com/en-us/dotnet/standard/io/pipelines#pipe


Adapters

StartAsync

Additional resources

Encoded strings are directly added to the list of returned strings.

Other than the ToArray  call, and the memory used by the string, string creation is allocation free.

The Body , BodyReader , and BodyWriter  properties are available for HttpRequest  and HttpResponse . When you set 

Body  to a different stream, a new set of adapters automatically adapt each type to the other. If you set 

HttpRequest.Body  to a new stream, HttpRequest.BodyReader  is automatically set to a new PipeReader  that wraps 

HttpRequest.Body .

HttpResponse.StartAsync  is used to indicate that headers are unmodifiable and to run OnStarting  callbacks. When

using Kestrel as a server, calling StartAsync  before using the PipeReader  guarantees that memory returned by 

GetMemory  belongs to Kestrel's internal Pipe rather than an external buffer.

System.IO.Pipelines in .NET

Write custom ASP.NET Core middleware

https://docs.microsoft.com/en-us/dotnet/api/system.io.pipelines.pipe
https://docs.microsoft.com/en-us/dotnet/standard/io/pipelines


URL Rewriting Middleware in ASP.NET Core
9/22/2020 • 32 minutes to read • Edit Online

NOTENOTE

URL redirect and URL rewrite

By Mikael Mengistu

This document introduces URL rewriting with instructions on how to use URL Rewriting Middleware in ASP.NET

Core apps.

URL rewriting is the act of modifying request URLs based on one or more predefined rules. URL rewriting creates

an abstraction between resource locations and their addresses so that the locations and addresses aren't tightly

linked. URL rewriting is valuable in several scenarios to:

Move or replace server resources temporarily or permanently and maintain stable locators for those

resources.

Split request processing across different apps or across areas of one app.

Remove, add, or reorganize URL segments on incoming requests.

Optimize public URLs for Search Engine Optimization (SEO).

Permit the use of friendly public URLs to help visitors predict the content returned by requesting a resource.

Redirect insecure requests to secure endpoints.

Prevent hotlinking, where an external site uses a hosted static asset on another site by linking the asset into its

own content.

URL rewriting can reduce the performance of an app. Where feasible, limit the number and complexity of rules.

View or download sample code (how to download)

The difference in wording between URL redirect and URL rewrite is subtle but has important implications for

providing resources to clients. ASP.NET Core's URL Rewriting Middleware is capable of meeting the need for both.

A URL redirect involves a client-side operation, where the client is instructed to access a resource at a different

address than the client originally requested. This requires a round trip to the server. The redirect URL returned to

the client appears in the browser's address bar when the client makes a new request for the resource.

If /resource  is redirected to /different-resource , the server responds that the client should obtain the resource

at /different-resource  with a status code indicating that the redirect is either temporary or permanent.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/url-rewriting.md
https://github.com/mikaelm12
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/url-rewriting/samples/


URL rewriting sample app

When to use URL Rewriting Middleware

Package

When redirecting requests to a different URL, indicate whether the redirect is permanent or temporary by

specifying the status code with the response:

The 301 - Moved Permanently status code is used where the resource has a new, permanent URL and you

wish to instruct the client that all future requests for the resource should use the new URL. The client may

cache and reuse the response when a 301 status code is received.

The 302 - Found status code is used where the redirection is temporary or generally subject to change. The

302 status code indicates to the client not to store the URL and use it in the future.

For more information on status codes, see RFC 2616: Status Code Definitions.

A URL rewrite is a server-side operation that provides a resource from a different resource address than the client

requested. Rewriting a URL doesn't require a round trip to the server. The rewritten URL isn't returned to the client

and doesn't appear in the browser's address bar.

If /resource  is rewritten to /different-resource , the server internally fetches and returns the resource at 

/different-resource .

Although the client might be able to retrieve the resource at the rewritten URL, the client isn't informed that the

resource exists at the rewritten URL when it makes its request and receives the response.

You can explore the features of the URL Rewriting Middleware with the sample app. The app applies redirect and

rewrite rules and shows the redirected or rewritten URL for several scenarios.

Use URL Rewriting Middleware when you're unable to use the following approaches:

URL Rewrite module with IIS on Windows Server

Apache mod_rewrite module on Apache Server

URL rewriting on Nginx

Also, use the middleware when the app is hosted on HTTP.sys server (formerly called WebListener).

The main reasons to use the server-based URL rewriting technologies in IIS, Apache, and Nginx are:

The middleware doesn't support the full features of these modules.

Some of the features of the server modules don't work with ASP.NET Core projects, such as the IsFile

and IsDirectory  constraints of the IIS Rewrite module. In these scenarios, use the middleware instead.

The performance of the middleware probably doesn't match that of the modules.

Benchmarking is the only way to know for sure which approach degrades performance the most or if

degraded performance is negligible.

URL Rewriting Middleware is provided by the Microsoft.AspNetCore.Rewrite package, which is implicitly included

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/url-rewriting/samples/
https://www.iis.net/downloads/microsoft/url-rewrite
https://httpd.apache.org/docs/2.4/rewrite/
https://www.nginx.com/blog/creating-nginx-rewrite-rules/
https://www.nuget.org/packages/Microsoft.AspNetCore.Rewrite


Extension and options

public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

Redirect non-www to wwwRedirect non-www to www

URL redirectURL redirect

in ASP.NET Core apps.

Establish URL rewrite and redirect rules by creating an instance of the RewriteOptions class with extension

methods for each of your rewrite rules. Chain multiple rules in the order that you would like them processed. The 

RewriteOptions  are passed into the URL Rewriting Middleware as it's added to the request pipeline with

UseRewriter:

Three options permit the app to redirect non- www  requests to www :

AddRedirectToWwwPermanent: Permanently redirect the request to the www  subdomain if the request is

non- www . Redirects with a Status308PermanentRedirect status code.

AddRedirectToWww: Redirect the request to the www  subdomain if the incoming request is non- www .

Redirects with a Status307TemporaryRedirect status code. An overload permits you to provide the status

code for the response. Use a field of the StatusCodes class for a status code assignment.

Use AddRedirect to redirect requests. The first parameter contains your regex for matching on the path of the

incoming URL. The second parameter is the replacement string. The third parameter, if present, specifies the

status code. If you don't specify the status code, the status code defaults to 302 - Found, which indicates that the

resource is temporarily moved or replaced.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.rewritebuilderextensions.userewriter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addredirecttowwwpermanent
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes.status308permanentredirect
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addredirecttowww
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes.status307temporaryredirect
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addredirect


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

WARNINGWARNING

In a browser with developer tools enabled, make a request to the sample app with the path 

/redirect-rule/1234/5678 . The regex matches the request path on redirect-rule/(.*) , and the path is replaced

with /redirected/1234/5678 . The redirect URL is sent back to the client with a 302 - Found status code. The

browser makes a new request at the redirect URL, which appears in the browser's address bar. Since no rules in

the sample app match on the redirect URL:

The second request receives a 200 - OK response from the app.

The body of the response shows the redirect URL.

A round trip is made to the server when a URL is redirected.

Be cautious when establishing redirect rules. Redirect rules are evaluated on every request to the app, including after a

redirect. It's easy to accidentally create a loop of infinite redirects.

Original Request: /redirect-rule/1234/5678



URL redirect to a secure endpointURL redirect to a secure endpoint

public void Configure(IApplicationBuilder app)
{
    var options = new RewriteOptions()
        .AddRedirectToHttps(301, 5001);

    app.UseRewriter(options);
}

public void Configure(IApplicationBuilder app)
{
    var options = new RewriteOptions()
        .AddRedirectToHttpsPermanent();

    app.UseRewriter(options);
}

NOTENOTE

The part of the expression contained within parentheses is called a capture group. The dot ( . ) of the expression

means match any character. The asterisk ( * ) indicates match the preceding character zero or more times.

Therefore, the last two path segments of the URL, 1234/5678 , are captured by capture group (.*) . Any value

you provide in the request URL after redirect-rule/  is captured by this single capture group.

In the replacement string, captured groups are injected into the string with the dollar sign ( $ ) followed by the

sequence number of the capture. The first capture group value is obtained with $1 , the second with $2 , and

they continue in sequence for the capture groups in your regex. There's only one captured group in the redirect

rule regex in the sample app, so there's only one injected group in the replacement string, which is $1 . When the

rule is applied, the URL becomes /redirected/1234/5678 .

Use AddRedirectToHttps to redirect HTTP requests to the same host and path using the HTTPS protocol. If the

status code isn't supplied, the middleware defaults to 302 - Found. If the port isn't supplied:

The middleware defaults to null .

The scheme changes to https  (HTTPS protocol), and the client accesses the resource on port 443.

The following example shows how to set the status code to 301 - Moved Permanently and change the port to

5001.

Use AddRedirectToHttpsPermanent to redirect insecure requests to the same host and path with secure HTTPS

protocol on port 443. The middleware sets the status code to 301 - Moved Permanently.

When redirecting to a secure endpoint without the requirement for additional redirect rules, we recommend using HTTPS

Redirection Middleware. For more information, see the Enforce HTTPS topic.

The sample app is capable of demonstrating how to use AddRedirectToHttps  or AddRedirectToHttpsPermanent .

Add the extension method to the RewriteOptions . Make an insecure request to the app at any URL. Dismiss the

browser security warning that the self-signed certificate is untrusted or create an exception to trust the certificate.

Original Request using AddRedirectToHttps(301, 5001) : http://localhost:5000/secure

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addredirecttohttps
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addredirecttohttpspermanent


URL rewriteURL rewrite

Original Request using AddRedirectToHttpsPermanent : http://localhost:5000/secure

Use AddRewrite to create a rule for rewriting URLs. The first parameter contains the regex for matching on the

incoming URL path. The second parameter is the replacement string. The third parameter, 

skipRemainingRules: {true|false} , indicates to the middleware whether or not to skip additional rewrite rules if

the current rule is applied.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addrewrite


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

PAT HPAT H M ATC HM ATC H

/redirect-rule/1234/5678 Yes

/my-cool-redirect-rule/1234/5678 Yes

/anotherredirect-rule/1234/5678 Yes

Original Request: /rewrite-rule/1234/5678

The carat ( ^ ) at the beginning of the expression means that matching starts at the beginning of the URL path.

In the earlier example with the redirect rule, redirect-rule/(.*) , there's no carat ( ^ ) at the start of the regex.

Therefore, any characters may precede redirect-rule/  in the path for a successful match.

The rewrite rule, ^rewrite-rule/(\d+)/(\d+) , only matches paths if they start with rewrite-rule/ . In the following

table, note the difference in matching.



PAT HPAT H M ATC HM ATC H

/rewrite-rule/1234/5678 Yes

/my-cool-rewrite-rule/1234/5678 No

/anotherrewrite-rule/1234/5678 No

NOTENOTE

Apache mod_rewriteApache mod_rewrite

Following the ^rewrite-rule/  portion of the expression, there are two capture groups, (\d+)/(\d+) . The \d

signifies match a digit (number). The plus sign ( + ) means match one or more of the preceding character.

Therefore, the URL must contain a number followed by a forward-slash followed by another number. These

capture groups are injected into the rewritten URL as $1  and $2 . The rewrite rule replacement string places the

captured groups into the query string. The requested path of /rewrite-rule/1234/5678  is rewritten to obtain the

resource at /rewritten?var1=1234&var2=5678 . If a query string is present on the original request, it's preserved

when the URL is rewritten.

There's no round trip to the server to obtain the resource. If the resource exists, it's fetched and returned to the

client with a 200 - OK status code. Because the client isn't redirected, the URL in the browser's address bar doesn't

change. Clients can't detect that a URL rewrite operation occurred on the server.

Use skipRemainingRules: true  whenever possible because matching rules is computationally expensive and increases

app response time. For the fastest app response:

Order rewrite rules from the most frequently matched rule to the least frequently matched rule.

Skip the processing of the remaining rules when a match occurs and no additional rule processing is required.

Apply Apache mod_rewrite rules with AddApacheModRewrite. Make sure that the rules file is deployed with the

app. For more information and examples of mod_rewrite rules, see Apache mod_rewrite.

A StreamReader is used to read the rules from the ApacheModRewrite.txt rules file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.apachemodrewriteoptionsextensions.addapachemodrewrite
https://httpd.apache.org/docs/2.4/rewrite/
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

# Rewrite path with additional sub directory
RewriteRule ^/apache-mod-rules-redirect/(.*) /redirected?id=$1 [L,R=302]

The sample app redirects requests from /apache-mod-rules-redirect/(.\*)  to /redirected?id=$1 . The response

status code is 302 - Found.

Original Request: /apache-mod-rules-redirect/1234

The middleware supports the following Apache mod_rewrite server variables:

CONN_REMOTE_ADDR

HTTP_ACCEPT

HTTP_CONNECTION

HTTP_COOKIE

HTTP_FORWARDED

HTTP_HOST

HTTP_REFERER



I IS URL Rewrite Module rulesIIS URL Rewrite Module rules

HTTP_USER_AGENT

HTTPS

IPV6

QUERY_STRING

REMOTE_ADDR

REMOTE_PORT

REQUEST_FILENAME

REQUEST_METHOD

REQUEST_SCHEME

REQUEST_URI

SCRIPT_FILENAME

SERVER_ADDR

SERVER_PORT

SERVER_PROTOCOL

TIME

TIME_DAY

TIME_HOUR

TIME_MIN

TIME_MON

TIME_SEC

TIME_WDAY

TIME_YEAR

To use the same rule set that applies to the IIS URL Rewrite Module, use AddIISUrlRewrite. Make sure that the

rules file is deployed with the app. Don't direct the middleware to use the app's web.config file when running on

Windows Server IIS. With IIS, these rules should be stored outside of the app's web.config file in order to avoid

conflicts with the IIS Rewrite module. For more information and examples of IIS URL Rewrite Module rules, see

Using Url Rewrite Module 2.0 and URL Rewrite Module Configuration Reference.

A StreamReader is used to read the rules from the IISUrlRewrite.xml rules file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.iisurlrewriteoptionsextensions.addiisurlrewrite
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/using-url-rewrite-module-20
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/url-rewrite-module-configuration-reference
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

<rewrite>
  <rules>
    <rule name="Rewrite segment to id querystring" stopProcessing="true">
      <match url="^iis-rules-rewrite/(.*)$" />
      <action type="Rewrite" url="rewritten?id={R:1}" appendQueryString="false"/>
    </rule>
  </rules>
</rewrite>

Unsupported featuresUnsupported features

The sample app rewrites requests from /iis-rules-rewrite/(.*)  to /rewritten?id=$1 . The response is sent to the

client with a 200 - OK status code.

Original Request: /iis-rules-rewrite/1234

If you have an active IIS Rewrite Module with server-level rules configured that would impact your app in

undesirable ways, you can disable the IIS Rewrite Module for an app. For more information, see Disabling IIS

modules.

The middleware released with ASP.NET Core 2.x doesn't support the following IIS URL Rewrite Module features:



Supported server variablesSupported server variables

NOTENOTE

PhysicalFileProvider fileProvider = new PhysicalFileProvider(Directory.GetCurrentDirectory());

Method-based ruleMethod-based rule

REW RIT E  C O N T EXT  RESULTREW RIT E  C O N T EXT  RESULT A C T IO NA C T IO N

RuleResult.ContinueRules  (default) Continue applying rules.

RuleResult.EndResponse Stop applying rules and send the response.

RuleResult.SkipRemainingRules Stop applying rules and send the context to the next
middleware.

Outbound Rules

Custom Server Variables

Wildcards

LogRewrittenUrl

The middleware supports the following IIS URL Rewrite Module server variables:

CONTENT_LENGTH

CONTENT_TYPE

HTTP_ACCEPT

HTTP_CONNECTION

HTTP_COOKIE

HTTP_HOST

HTTP_REFERER

HTTP_URL

HTTP_USER_AGENT

HTTPS

LOCAL_ADDR

QUERY_STRING

REMOTE_ADDR

REMOTE_PORT

REQUEST_FILENAME

REQUEST_URI

You can also obtain an IFileProvider via a PhysicalFileProvider. This approach may provide greater flexibility for the location

of your rewrite rules files. Make sure that your rewrite rules files are deployed to the server at the path you provide.

Use Add to implement your own rule logic in a method. Add  exposes the RewriteContext, which makes available

the HttpContext for use in your method. The RewriteContext.Result determines how additional pipeline

processing is handled. Set the value to one of the RuleResult fields described in the following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.physicalfileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.add
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewritecontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewritecontext.result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.ruleresult


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

public static void RedirectXmlFileRequests(RewriteContext context)
{
    var request = context.HttpContext.Request;

    // Because the client is redirecting back to the same app, stop 
    // processing if the request has already been redirected.
    if (request.Path.StartsWithSegments(new PathString("/xmlfiles")))
    {
        return;
    }

    if (request.Path.Value.EndsWith(".xml", StringComparison.OrdinalIgnoreCase))
    {
        var response = context.HttpContext.Response;
        response.StatusCode = StatusCodes.Status301MovedPermanently;
        context.Result = RuleResult.EndResponse;
        response.Headers[HeaderNames.Location] = 
            "/xmlfiles" + request.Path + request.QueryString;
    }
}

The sample app demonstrates a method that redirects requests for paths that end with .xml. If a request is made

for /file.xml , the request is redirected to /xmlfiles/file.xml . The status code is set to 301 - Moved

Permanently. When the browser makes a new request for /xmlfiles/file.xml, Static File Middleware serves the file

to the client from the wwwroot/xmlfiles folder. For a redirect, explicitly set the status code of the response.

Otherwise, a 200 - OK status code is returned, and the redirect doesn't occur on the client.

RewriteRules.cs:

This approach can also rewrite requests. The sample app demonstrates rewriting the path for any text file request

to serve the file.txt text file from the wwwroot folder. Static File Middleware serves the file based on the updated

request path:



    

public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

public static void RewriteTextFileRequests(RewriteContext context)
{
    var request = context.HttpContext.Request;

    if (request.Path.Value.EndsWith(".txt", StringComparison.OrdinalIgnoreCase))
    {
        context.Result = RuleResult.SkipRemainingRules;
        request.Path = "/file.txt";
    }
}

IRule-based ruleIRule-based rule

RewriteRules.cs:

Use Add to use rule logic in a class that implements the IRule interface. IRule  provides greater flexibility over

using the method-based rule approach. Your implementation class may include a constructor that allows you can

pass in parameters for the ApplyRule method.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.add
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.irule
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.irule.applyrule


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

The values of the parameters in the sample app for the extension  and the newPath  are checked to meet several

conditions. The extension  must contain a value, and the value must be .png, .jpg, or .gif. If the newPath  isn't valid,

an ArgumentException is thrown. If a request is made for image.png, the request is redirected to 

/png-images/image.png . If a request is made for image.jpg, the request is redirected to /jpg-images/image.jpg . The

status code is set to 301 - Moved Permanently, and the context.Result  is set to stop processing rules and send

the response.

https://docs.microsoft.com/en-us/dotnet/api/system.argumentexception


public class RedirectImageRequests : IRule
{
    private readonly string _extension;
    private readonly PathString _newPath;

    public RedirectImageRequests(string extension, string newPath)
    {
        if (string.IsNullOrEmpty(extension))
        {
            throw new ArgumentException(nameof(extension));
        }

        if (!Regex.IsMatch(extension, @"^\.(png|jpg|gif)$"))
        {
            throw new ArgumentException("Invalid extension", nameof(extension));
        }

        if (!Regex.IsMatch(newPath, @"(/[A-Za-z0-9]+)+?"))
        {
            throw new ArgumentException("Invalid path", nameof(newPath));
        }

        _extension = extension;
        _newPath = new PathString(newPath);
    }

    public void ApplyRule(RewriteContext context)
    {
        var request = context.HttpContext.Request;

        // Because we're redirecting back to the same app, stop 
        // processing if the request has already been redirected
        if (request.Path.StartsWithSegments(new PathString(_newPath)))
        {
            return;
        }

        if (request.Path.Value.EndsWith(_extension, StringComparison.OrdinalIgnoreCase))
        {
            var response = context.HttpContext.Response;
            response.StatusCode = StatusCodes.Status301MovedPermanently;
            context.Result = RuleResult.EndResponse;
            response.Headers[HeaderNames.Location] = 
                _newPath + request.Path + request.QueryString;
        }
    }
}

Original Request: /image.png

Original Request: /image.jpg



Regex examples

GO A LGO A L
REGEX ST RIN G &REGEX ST RIN G &
M ATC H  EXA M P L EM ATC H  EXA M P L E

REP L A C EM EN T  ST RIN G &REP L A C EM EN T  ST RIN G &
O UT P UT  EXA M P L EO UT P UT  EXA M P L E

Rewrite path into querystring ^path/(.*)/(.*)

/path/abc/123

path?var1=$1&var2=$2

/path?var1=abc&var2=123

Strip trailing slash (.*)/$

/path/

$1

/path

Enforce trailing slash (.*[^/])$

/path

$1/

/path/

Avoid rewriting specific requests ^(.*)(?<!\.axd)$  or 

^(?!.*\.axd$)(.*)$

Yes: /resource.htm

No: /resource.axd

rewritten/$1

/rewritten/resource.htm

/resource.axd

Rearrange URL segments path/(.*)/(.*)/(.*)

path/1/2/3

path/$3/$2/$1

path/3/2/1

Replace a URL segment ^(.*)/segment2/(.*)

/segment1/segment2/segment3

$1/replaced/$2

/segment1/replaced/segment3

This document introduces URL rewriting with instructions on how to use URL Rewriting Middleware in ASP.NET

Core apps.

URL rewriting is the act of modifying request URLs based on one or more predefined rules. URL rewriting creates

an abstraction between resource locations and their addresses so that the locations and addresses aren't tightly

linked. URL rewriting is valuable in several scenarios to:

Move or replace server resources temporarily or permanently and maintain stable locators for those

resources.

Split request processing across different apps or across areas of one app.

Remove, add, or reorganize URL segments on incoming requests.

Optimize public URLs for Search Engine Optimization (SEO).

Permit the use of friendly public URLs to help visitors predict the content returned by requesting a resource.

Redirect insecure requests to secure endpoints.

Prevent hotlinking, where an external site uses a hosted static asset on another site by linking the asset into its

own content.



NOTENOTE

URL redirect and URL rewrite

URL rewriting can reduce the performance of an app. Where feasible, limit the number and complexity of rules.

View or download sample code (how to download)

The difference in wording between URL redirect and URL rewrite is subtle but has important implications for

providing resources to clients. ASP.NET Core's URL Rewriting Middleware is capable of meeting the need for both.

A URL redirect involves a client-side operation, where the client is instructed to access a resource at a different

address than the client originally requested. This requires a round trip to the server. The redirect URL returned to

the client appears in the browser's address bar when the client makes a new request for the resource.

If /resource  is redirected to /different-resource , the server responds that the client should obtain the resource

at /different-resource  with a status code indicating that the redirect is either temporary or permanent.

When redirecting requests to a different URL, indicate whether the redirect is permanent or temporary by

specifying the status code with the response:

The 301 - Moved Permanently status code is used where the resource has a new, permanent URL and you

wish to instruct the client that all future requests for the resource should use the new URL. The client may

cache and reuse the response when a 301 status code is received.

The 302 - Found status code is used where the redirection is temporary or generally subject to change. The

302 status code indicates to the client not to store the URL and use it in the future.

For more information on status codes, see RFC 2616: Status Code Definitions.

A URL rewrite is a server-side operation that provides a resource from a different resource address than the client

requested. Rewriting a URL doesn't require a round trip to the server. The rewritten URL isn't returned to the client

and doesn't appear in the browser's address bar.

If /resource  is rewritten to /different-resource , the server internally fetches and returns the resource at 

/different-resource .

Although the client might be able to retrieve the resource at the rewritten URL, the client isn't informed that the

resource exists at the rewritten URL when it makes its request and receives the response.

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/url-rewriting/samples/
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html


URL rewriting sample app

When to use URL Rewriting Middleware

Package

Extension and options

You can explore the features of the URL Rewriting Middleware with the sample app. The app applies redirect and

rewrite rules and shows the redirected or rewritten URL for several scenarios.

Use URL Rewriting Middleware when you're unable to use the following approaches:

URL Rewrite module with IIS on Windows Server

Apache mod_rewrite module on Apache Server

URL rewriting on Nginx

Also, use the middleware when the app is hosted on HTTP.sys server (formerly called WebListener).

The main reasons to use the server-based URL rewriting technologies in IIS, Apache, and Nginx are:

The middleware doesn't support the full features of these modules.

Some of the features of the server modules don't work with ASP.NET Core projects, such as the IsFile

and IsDirectory  constraints of the IIS Rewrite module. In these scenarios, use the middleware instead.

The performance of the middleware probably doesn't match that of the modules.

Benchmarking is the only way to know for sure which approach degrades performance the most or if

degraded performance is negligible.

To include the middleware in your project, add a package reference to the Microsoft.AspNetCore.App

metapackage in the project file, which contains the Microsoft.AspNetCore.Rewrite package.

When not using the Microsoft.AspNetCore.App  metapackage, add a project reference to the 

Microsoft.AspNetCore.Rewrite  package.

Establish URL rewrite and redirect rules by creating an instance of the RewriteOptions class with extension

methods for each of your rewrite rules. Chain multiple rules in the order that you would like them processed. The 

RewriteOptions  are passed into the URL Rewriting Middleware as it's added to the request pipeline with

UseRewriter:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/url-rewriting/samples/
https://www.iis.net/downloads/microsoft/url-rewrite
https://httpd.apache.org/docs/2.4/rewrite/
https://www.nginx.com/blog/creating-nginx-rewrite-rules/
https://www.nuget.org/packages/Microsoft.AspNetCore.Rewrite
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.rewritebuilderextensions.userewriter


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

Redirect non-www to wwwRedirect non-www to www

URL redirectURL redirect

Three options permit the app to redirect non- www  requests to www :

AddRedirectToWwwPermanent: Permanently redirect the request to the www  subdomain if the request is

non- www . Redirects with a Status308PermanentRedirect status code.

AddRedirectToWww: Redirect the request to the www  subdomain if the incoming request is non- www .

Redirects with a Status307TemporaryRedirect status code. An overload permits you to provide the status

code for the response. Use a field of the StatusCodes class for a status code assignment.

Use AddRedirect to redirect requests. The first parameter contains your regex for matching on the path of the

incoming URL. The second parameter is the replacement string. The third parameter, if present, specifies the

status code. If you don't specify the status code, the status code defaults to 302 - Found, which indicates that the

resource is temporarily moved or replaced.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addredirecttowwwpermanent
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes.status308permanentredirect
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addredirecttowww
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes.status307temporaryredirect
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.statuscodes
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addredirect


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

WARNINGWARNING

In a browser with developer tools enabled, make a request to the sample app with the path 

/redirect-rule/1234/5678 . The regex matches the request path on redirect-rule/(.*) , and the path is replaced

with /redirected/1234/5678 . The redirect URL is sent back to the client with a 302 - Found status code. The

browser makes a new request at the redirect URL, which appears in the browser's address bar. Since no rules in

the sample app match on the redirect URL:

The second request receives a 200 - OK response from the app.

The body of the response shows the redirect URL.

A round trip is made to the server when a URL is redirected.

Be cautious when establishing redirect rules. Redirect rules are evaluated on every request to the app, including after a

redirect. It's easy to accidentally create a loop of infinite redirects.

Original Request: /redirect-rule/1234/5678



URL redirect to a secure endpointURL redirect to a secure endpoint

public void Configure(IApplicationBuilder app)
{
    var options = new RewriteOptions()
        .AddRedirectToHttps(301, 5001);

    app.UseRewriter(options);
}

public void Configure(IApplicationBuilder app)
{
    var options = new RewriteOptions()
        .AddRedirectToHttpsPermanent();

    app.UseRewriter(options);
}

NOTENOTE

The part of the expression contained within parentheses is called a capture group. The dot ( . ) of the expression

means match any character. The asterisk ( * ) indicates match the preceding character zero or more times.

Therefore, the last two path segments of the URL, 1234/5678 , are captured by capture group (.*) . Any value

you provide in the request URL after redirect-rule/  is captured by this single capture group.

In the replacement string, captured groups are injected into the string with the dollar sign ( $ ) followed by the

sequence number of the capture. The first capture group value is obtained with $1 , the second with $2 , and

they continue in sequence for the capture groups in your regex. There's only one captured group in the redirect

rule regex in the sample app, so there's only one injected group in the replacement string, which is $1 . When the

rule is applied, the URL becomes /redirected/1234/5678 .

Use AddRedirectToHttps to redirect HTTP requests to the same host and path using the HTTPS protocol. If the

status code isn't supplied, the middleware defaults to 302 - Found. If the port isn't supplied:

The middleware defaults to null .

The scheme changes to https  (HTTPS protocol), and the client accesses the resource on port 443.

The following example shows how to set the status code to 301 - Moved Permanently and change the port to

5001.

Use AddRedirectToHttpsPermanent to redirect insecure requests to the same host and path with secure HTTPS

protocol on port 443. The middleware sets the status code to 301 - Moved Permanently.

When redirecting to a secure endpoint without the requirement for additional redirect rules, we recommend using HTTPS

Redirection Middleware. For more information, see the Enforce HTTPS topic.

The sample app is capable of demonstrating how to use AddRedirectToHttps  or AddRedirectToHttpsPermanent .

Add the extension method to the RewriteOptions . Make an insecure request to the app at any URL. Dismiss the

browser security warning that the self-signed certificate is untrusted or create an exception to trust the certificate.

Original Request using AddRedirectToHttps(301, 5001) : http://localhost:5000/secure

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addredirecttohttps
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addredirecttohttpspermanent


URL rewriteURL rewrite

Original Request using AddRedirectToHttpsPermanent : http://localhost:5000/secure

Use AddRewrite to create a rule for rewriting URLs. The first parameter contains the regex for matching on the

incoming URL path. The second parameter is the replacement string. The third parameter, 

skipRemainingRules: {true|false} , indicates to the middleware whether or not to skip additional rewrite rules if

the current rule is applied.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.addrewrite


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

PAT HPAT H M ATC HM ATC H

/redirect-rule/1234/5678 Yes

/my-cool-redirect-rule/1234/5678 Yes

/anotherredirect-rule/1234/5678 Yes

Original Request: /rewrite-rule/1234/5678

The carat ( ^ ) at the beginning of the expression means that matching starts at the beginning of the URL path.

In the earlier example with the redirect rule, redirect-rule/(.*) , there's no carat ( ^ ) at the start of the regex.

Therefore, any characters may precede redirect-rule/  in the path for a successful match.

The rewrite rule, ^rewrite-rule/(\d+)/(\d+) , only matches paths if they start with rewrite-rule/ . In the following

table, note the difference in matching.



PAT HPAT H M ATC HM ATC H

/rewrite-rule/1234/5678 Yes

/my-cool-rewrite-rule/1234/5678 No

/anotherrewrite-rule/1234/5678 No

NOTENOTE

Apache mod_rewriteApache mod_rewrite

Following the ^rewrite-rule/  portion of the expression, there are two capture groups, (\d+)/(\d+) . The \d

signifies match a digit (number). The plus sign ( + ) means match one or more of the preceding character.

Therefore, the URL must contain a number followed by a forward-slash followed by another number. These

capture groups are injected into the rewritten URL as $1  and $2 . The rewrite rule replacement string places the

captured groups into the query string. The requested path of /rewrite-rule/1234/5678  is rewritten to obtain the

resource at /rewritten?var1=1234&var2=5678 . If a query string is present on the original request, it's preserved

when the URL is rewritten.

There's no round trip to the server to obtain the resource. If the resource exists, it's fetched and returned to the

client with a 200 - OK status code. Because the client isn't redirected, the URL in the browser's address bar doesn't

change. Clients can't detect that a URL rewrite operation occurred on the server.

Use skipRemainingRules: true  whenever possible because matching rules is computationally expensive and increases

app response time. For the fastest app response:

Order rewrite rules from the most frequently matched rule to the least frequently matched rule.

Skip the processing of the remaining rules when a match occurs and no additional rule processing is required.

Apply Apache mod_rewrite rules with AddApacheModRewrite. Make sure that the rules file is deployed with the

app. For more information and examples of mod_rewrite rules, see Apache mod_rewrite.

A StreamReader is used to read the rules from the ApacheModRewrite.txt rules file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.apachemodrewriteoptionsextensions.addapachemodrewrite
https://httpd.apache.org/docs/2.4/rewrite/
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

# Rewrite path with additional sub directory
RewriteRule ^/apache-mod-rules-redirect/(.*) /redirected?id=$1 [L,R=302]

The sample app redirects requests from /apache-mod-rules-redirect/(.\*)  to /redirected?id=$1 . The response

status code is 302 - Found.

Original Request: /apache-mod-rules-redirect/1234

The middleware supports the following Apache mod_rewrite server variables:

CONN_REMOTE_ADDR

HTTP_ACCEPT

HTTP_CONNECTION

HTTP_COOKIE

HTTP_FORWARDED

HTTP_HOST

HTTP_REFERER



I IS URL Rewrite Module rulesIIS URL Rewrite Module rules

HTTP_USER_AGENT

HTTPS

IPV6

QUERY_STRING

REMOTE_ADDR

REMOTE_PORT

REQUEST_FILENAME

REQUEST_METHOD

REQUEST_SCHEME

REQUEST_URI

SCRIPT_FILENAME

SERVER_ADDR

SERVER_PORT

SERVER_PROTOCOL

TIME

TIME_DAY

TIME_HOUR

TIME_MIN

TIME_MON

TIME_SEC

TIME_WDAY

TIME_YEAR

To use the same rule set that applies to the IIS URL Rewrite Module, use AddIISUrlRewrite. Make sure that the

rules file is deployed with the app. Don't direct the middleware to use the app's web.config file when running on

Windows Server IIS. With IIS, these rules should be stored outside of the app's web.config file in order to avoid

conflicts with the IIS Rewrite module. For more information and examples of IIS URL Rewrite Module rules, see

Using Url Rewrite Module 2.0 and URL Rewrite Module Configuration Reference.

A StreamReader is used to read the rules from the IISUrlRewrite.xml rules file:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.iisurlrewriteoptionsextensions.addiisurlrewrite
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/using-url-rewrite-module-20
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/url-rewrite-module-configuration-reference
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

<rewrite>
  <rules>
    <rule name="Rewrite segment to id querystring" stopProcessing="true">
      <match url="^iis-rules-rewrite/(.*)$" />
      <action type="Rewrite" url="rewritten?id={R:1}" appendQueryString="false"/>
    </rule>
  </rules>
</rewrite>

Unsupported featuresUnsupported features

The sample app rewrites requests from /iis-rules-rewrite/(.*)  to /rewritten?id=$1 . The response is sent to the

client with a 200 - OK status code.

Original Request: /iis-rules-rewrite/1234

If you have an active IIS Rewrite Module with server-level rules configured that would impact your app in

undesirable ways, you can disable the IIS Rewrite Module for an app. For more information, see Disabling IIS

modules.

The middleware released with ASP.NET Core 2.x doesn't support the following IIS URL Rewrite Module features:



Supported server variablesSupported server variables

NOTENOTE

PhysicalFileProvider fileProvider = new PhysicalFileProvider(Directory.GetCurrentDirectory());

Method-based ruleMethod-based rule

REW RIT E  C O N T EXT  RESULTREW RIT E  C O N T EXT  RESULT A C T IO NA C T IO N

RuleResult.ContinueRules  (default) Continue applying rules.

RuleResult.EndResponse Stop applying rules and send the response.

RuleResult.SkipRemainingRules Stop applying rules and send the context to the next
middleware.

Outbound Rules

Custom Server Variables

Wildcards

LogRewrittenUrl

The middleware supports the following IIS URL Rewrite Module server variables:

CONTENT_LENGTH

CONTENT_TYPE

HTTP_ACCEPT

HTTP_CONNECTION

HTTP_COOKIE

HTTP_HOST

HTTP_REFERER

HTTP_URL

HTTP_USER_AGENT

HTTPS

LOCAL_ADDR

QUERY_STRING

REMOTE_ADDR

REMOTE_PORT

REQUEST_FILENAME

REQUEST_URI

You can also obtain an IFileProvider via a PhysicalFileProvider. This approach may provide greater flexibility for the location

of your rewrite rules files. Make sure that your rewrite rules files are deployed to the server at the path you provide.

Use Add to implement your own rule logic in a method. Add  exposes the RewriteContext, which makes available

the HttpContext for use in your method. The RewriteContext.Result determines how additional pipeline

processing is handled. Set the value to one of the RuleResult fields described in the following table.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.physicalfileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.add
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewritecontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewritecontext.result
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.ruleresult


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

public static void RedirectXmlFileRequests(RewriteContext context)
{
    var request = context.HttpContext.Request;

    // Because the client is redirecting back to the same app, stop 
    // processing if the request has already been redirected.
    if (request.Path.StartsWithSegments(new PathString("/xmlfiles")))
    {
        return;
    }

    if (request.Path.Value.EndsWith(".xml", StringComparison.OrdinalIgnoreCase))
    {
        var response = context.HttpContext.Response;
        response.StatusCode = StatusCodes.Status301MovedPermanently;
        context.Result = RuleResult.EndResponse;
        response.Headers[HeaderNames.Location] = 
            "/xmlfiles" + request.Path + request.QueryString;
    }
}

The sample app demonstrates a method that redirects requests for paths that end with .xml. If a request is made

for /file.xml , the request is redirected to /xmlfiles/file.xml . The status code is set to 301 - Moved

Permanently. When the browser makes a new request for /xmlfiles/file.xml, Static File Middleware serves the file

to the client from the wwwroot/xmlfiles folder. For a redirect, explicitly set the status code of the response.

Otherwise, a 200 - OK status code is returned, and the redirect doesn't occur on the client.

RewriteRules.cs:

This approach can also rewrite requests. The sample app demonstrates rewriting the path for any text file request

to serve the file.txt text file from the wwwroot folder. Static File Middleware serves the file based on the updated

request path:



public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

public static void RewriteTextFileRequests(RewriteContext context)
{
    var request = context.HttpContext.Request;

    if (request.Path.Value.EndsWith(".txt", StringComparison.OrdinalIgnoreCase))
    {
        context.Result = RuleResult.SkipRemainingRules;
        request.Path = "/file.txt";
    }
}

IRule-based ruleIRule-based rule

RewriteRules.cs:

Use Add to use rule logic in a class that implements the IRule interface. IRule  provides greater flexibility over

using the method-based rule approach. Your implementation class may include a constructor that allows you can

pass in parameters for the ApplyRule method.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.rewriteoptionsextensions.add
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.irule
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.rewrite.irule.applyrule


public void Configure(IApplicationBuilder app)
{
    using (StreamReader apacheModRewriteStreamReader = 
        File.OpenText("ApacheModRewrite.txt"))
    using (StreamReader iisUrlRewriteStreamReader = 
        File.OpenText("IISUrlRewrite.xml")) 
    {
        var options = new RewriteOptions()
            .AddRedirect("redirect-rule/(.*)", "redirected/$1")
            .AddRewrite(@"^rewrite-rule/(\d+)/(\d+)", "rewritten?var1=$1&var2=$2", 
                skipRemainingRules: true)
            .AddApacheModRewrite(apacheModRewriteStreamReader)
            .AddIISUrlRewrite(iisUrlRewriteStreamReader)
            .Add(MethodRules.RedirectXmlFileRequests)
            .Add(MethodRules.RewriteTextFileRequests)
            .Add(new RedirectImageRequests(".png", "/png-images"))
            .Add(new RedirectImageRequests(".jpg", "/jpg-images"));

        app.UseRewriter(options);
    }

    app.UseStaticFiles();

    app.Run(context => context.Response.WriteAsync(
        $"Rewritten or Redirected Url: " +
        $"{context.Request.Path + context.Request.QueryString}"));
}

The values of the parameters in the sample app for the extension  and the newPath  are checked to meet several

conditions. The extension  must contain a value, and the value must be .png, .jpg, or .gif. If the newPath  isn't valid,

an ArgumentException is thrown. If a request is made for image.png, the request is redirected to 

/png-images/image.png . If a request is made for image.jpg, the request is redirected to /jpg-images/image.jpg . The

status code is set to 301 - Moved Permanently, and the context.Result  is set to stop processing rules and send

the response.

https://docs.microsoft.com/en-us/dotnet/api/system.argumentexception


public class RedirectImageRequests : IRule
{
    private readonly string _extension;
    private readonly PathString _newPath;

    public RedirectImageRequests(string extension, string newPath)
    {
        if (string.IsNullOrEmpty(extension))
        {
            throw new ArgumentException(nameof(extension));
        }

        if (!Regex.IsMatch(extension, @"^\.(png|jpg|gif)$"))
        {
            throw new ArgumentException("Invalid extension", nameof(extension));
        }

        if (!Regex.IsMatch(newPath, @"(/[A-Za-z0-9]+)+?"))
        {
            throw new ArgumentException("Invalid path", nameof(newPath));
        }

        _extension = extension;
        _newPath = new PathString(newPath);
    }

    public void ApplyRule(RewriteContext context)
    {
        var request = context.HttpContext.Request;

        // Because we're redirecting back to the same app, stop 
        // processing if the request has already been redirected
        if (request.Path.StartsWithSegments(new PathString(_newPath)))
        {
            return;
        }

        if (request.Path.Value.EndsWith(_extension, StringComparison.OrdinalIgnoreCase))
        {
            var response = context.HttpContext.Response;
            response.StatusCode = StatusCodes.Status301MovedPermanently;
            context.Result = RuleResult.EndResponse;
            response.Headers[HeaderNames.Location] = 
                _newPath + request.Path + request.QueryString;
        }
    }
}

Original Request: /image.png

Original Request: /image.jpg



Regex examples

GO A LGO A L
REGEX ST RIN G &REGEX ST RIN G &
M ATC H  EXA M P L EM ATC H  EXA M P L E

REP L A C EM EN T  ST RIN G &REP L A C EM EN T  ST RIN G &
O UT P UT  EXA M P L EO UT P UT  EXA M P L E

Rewrite path into querystring ^path/(.*)/(.*)

/path/abc/123

path?var1=$1&var2=$2

/path?var1=abc&var2=123

Strip trailing slash (.*)/$

/path/

$1

/path

Enforce trailing slash (.*[^/])$

/path

$1/

/path/

Avoid rewriting specific requests ^(.*)(?<!\.axd)$  or 

^(?!.*\.axd$)(.*)$

Yes: /resource.htm

No: /resource.axd

rewritten/$1

/rewritten/resource.htm

/resource.axd

Rearrange URL segments path/(.*)/(.*)/(.*)

path/1/2/3

path/$3/$2/$1

path/3/2/1

Replace a URL segment ^(.*)/segment2/(.*)

/segment1/segment2/segment3

$1/replaced/$2

/segment1/replaced/segment3

Additional resources
App startup in ASP.NET Core

ASP.NET Core Middleware

Regular expressions in .NET

Regular expression language - quick reference

Apache mod_rewrite

Using Url Rewrite Module 2.0 (for IIS)

URL Rewrite Module Configuration Reference

IIS URL Rewrite Module Forum

Keep a simple URL structure

10 URL Rewriting Tips and Tricks

To slash or not to slash

https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/quick-ref
https://httpd.apache.org/docs/2.4/rewrite/
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/using-url-rewrite-module-20
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/url-rewrite-module-configuration-reference
https://forums.iis.net/1152.aspx
https://support.google.com/webmasters/answer/76329?hl=en
https://ruslany.net/2009/04/10-url-rewriting-tips-and-tricks/
https://webmasters.googleblog.com/2010/04/to-slash-or-not-to-slash.html


        

File Providers in ASP.NET Core
9/22/2020 • 10 minutes to read • Edit Online

File Provider interfaces

File Provider implementations

IM P L EM EN TAT IO NIM P L EM EN TAT IO N DESC RIP T IO NDESC RIP T IO N

CompositeFileProvider Used to provide combined access to files and directories from
one or more other providers.

ManifestEmbeddedFileProvider Used to access files embedded in assemblies.

PhysicalFileProvider Used to access the system's physical files.

PhysicalFileProviderPhysicalFileProvider

By Steve Smith

ASP.NET Core abstracts file system access through the use of File Providers. File Providers are used throughout the

ASP.NET Core framework. For example:

IWebHostEnvironment exposes the app's content root and web root as IFileProvider  types.

Static File Middleware uses File Providers to locate static files.

Razor uses File Providers to locate pages and views.

.NET Core tooling uses File Providers and glob patterns to specify which files should be published.

View or download sample code (how to download)

The primary interface is IFileProvider. IFileProvider  exposes methods to:

Obtain file information (IFileInfo).

Obtain directory information (IDirectoryContents).

Set up change notifications (using an IChangeToken).

IFileInfo  provides methods and properties for working with files:

Exists

IsDirectory

Name

Length (in bytes)

LastModified date

You can read from the file using the IFileInfo.CreateReadStream method.

The FileProviderSample sample app demonstrates how to configure a File Provider in Startup.ConfigureServices

for use throughout the app via dependency injection.

The following table lists implementations of IFileProvider .

The PhysicalFileProvider provides access to the physical file system. PhysicalFileProvider  uses the System.IO.File

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/file-providers.md
https://ardalis.com/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostenvironment
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/file-providers/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.idirectorycontents
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.exists#microsoft_extensions_fileproviders_ifileinfo_exists
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.isdirectory#microsoft_extensions_fileproviders_ifileinfo_isdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.name#microsoft_extensions_fileproviders_ifileinfo_name
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.length#microsoft_extensions_fileproviders_ifileinfo_length
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.lastmodified#microsoft_extensions_fileproviders_ifileinfo_lastmodified
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.createreadstream
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.physicalfileprovider
https://docs.microsoft.com/en-us/dotnet/api/system.io.file


    

var provider = new PhysicalFileProvider(applicationRoot);
var contents = provider.GetDirectoryContents(string.Empty);
var filePath = Path.Combine("wwwroot", "js", "site.js");
var fileInfo = provider.GetFileInfo(filePath);

var physicalProvider = _env.ContentRootFileProvider;

ManifestEmbeddedFileProviderManifestEmbeddedFileProvider

type (for the physical provider) and scopes all paths to a directory and its children. This scoping prevents access to

the file system outside of the specified directory and its children. The most common scenario for creating and using

a PhysicalFileProvider  is to request an IFileProvider  in a constructor through dependency injection.

When instantiating this provider directly, an absolute directory path is required and serves as the base path for all

requests made using the provider. Glob patterns aren't supported in the directory path.

The following code shows how to use PhysicalFileProvider  to obtain directory contents and file information:

Types in the preceding example:

provider  is an IFileProvider .

contents  is an IDirectoryContents .

fileInfo  is an IFileInfo .

The File Provider can be used to iterate through the directory specified by applicationRoot  or call GetFileInfo  to

obtain a file's information. Glob patterns can't be passed to the GetFileInfo  method. The File Provider has no

access outside of the applicationRoot  directory.

The FileProviderSample sample app creates the provider in the Startup.ConfigureServices  method using

IHostingEnvironment.ContentRootFileProvider:

The ManifestEmbeddedFileProvider is used to access files embedded within assemblies. The 

ManifestEmbeddedFileProvider  uses a manifest compiled into the assembly to reconstruct the original paths of the

embedded files.

To generate a manifest of the embedded files:

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.1</TargetFramework>
    <GenerateEmbeddedFilesManifest>true</GenerateEmbeddedFilesManifest>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.Extensions.FileProviders.Embedded" Version="3.1.0" />
  </ItemGroup>

  <ItemGroup>
    <EmbeddedResource Include="Resource.txt" />
  </ItemGroup>

</Project>

1. Add the Microsoft.Extensions.FileProviders.Embedded NuGet package to your project.

2. Set the <GenerateEmbeddedFilesManifest>  property to true . Specify the files to embed with

<EmbeddedResource>:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment.contentrootfileprovider#microsoft_extensions_hosting_ihostingenvironment_contentrootfileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.manifestembeddedfileprovider
https://www.nuget.org/packages/Microsoft.Extensions.FileProviders.Embedded
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj#default-compilation-includes-in-net-core-projects


    

var manifestEmbeddedProvider = 
    new ManifestEmbeddedFileProvider(typeof(Program).Assembly);

O VERLO A DO VERLO A D DESC RIP T IO NDESC RIP T IO N

ManifestEmbeddedFileProvider(Assembly, String) Accepts an optional root  relative path parameter. Specify the

root  to scope calls to GetDirectoryContents to those

resources under the provided path.

ManifestEmbeddedFileProvider(Assembly, String,
DateTimeOffset)

Accepts an optional root  relative path parameter and a 

lastModified  date (DateTimeOffset) parameter. The 

lastModified  date scopes the last modification date for the

IFileInfo instances returned by the IFileProvider.

ManifestEmbeddedFileProvider(Assembly, String,
String, DateTimeOffset)

Accepts an optional root  relative path, lastModified  date,

and manifestName  parameters. The manifestName

represents the name of the embedded resource containing the
manifest.

CompositeFileProviderCompositeFileProvider

var physicalProvider = _env.ContentRootFileProvider;
var manifestEmbeddedProvider = 
    new ManifestEmbeddedFileProvider(typeof(Program).Assembly);
var compositeProvider = 
    new CompositeFileProvider(physicalProvider, manifestEmbeddedProvider);

services.AddSingleton<IFileProvider>(compositeProvider);

Watch for changes

Use glob patterns to specify one or more files to embed into the assembly.

The FileProviderSample sample app creates an ManifestEmbeddedFileProvider  and passes the currently executing

assembly to its constructor.

Startup.cs:

Additional overloads allow you to:

Specify a relative file path.

Scope files to a last modified date.

Name the embedded resource containing the embedded file manifest.

The CompositeFileProvider combines IFileProvider  instances, exposing a single interface for working with files

from multiple providers. When creating the CompositeFileProvider , pass one or more IFileProvider  instances to

its constructor.

In the FileProviderSample sample app, a PhysicalFileProvider  and a ManifestEmbeddedFileProvider  provide files to

a CompositeFileProvider  registered in the app's service container. The following code is found in the project's 

Startup.ConfigureServices  method:

The IFileProvider.Watch method provides a scenario to watch one or more files or directories for changes. The 

Watch  method:

Accepts a file path string, which can use glob patterns to specify multiple files.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider.getdirectorycontents
https://docs.microsoft.com/en-us/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.compositefileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider.watch


        

private static readonly string _fileFilter = Path.Combine("TextFiles", "*.txt");

public static void Main(string[] args)
{
    Console.WriteLine($"Monitoring for changes with filter '{_fileFilter}' (Ctrl + C to quit)...");

    while (true)
    {
        MainAsync().GetAwaiter().GetResult();
    }
}

private static async Task MainAsync()
{
    var fileProvider = new PhysicalFileProvider(Directory.GetCurrentDirectory());
    IChangeToken token = fileProvider.Watch(_fileFilter);
    var tcs = new TaskCompletionSource<object>();

    token.RegisterChangeCallback(state =>
        ((TaskCompletionSource<object>)state).TrySetResult(null), tcs);

    await tcs.Task.ConfigureAwait(false);

    Console.WriteLine("file changed");
}

Glob patternsGlob patterns

PAT T ERNPAT T ERN DESC RIP T IO NDESC RIP T IO N

directory/file.txt Matches a specific file in a specific directory.

Returns an IChangeToken.

The resulting change token exposes:

HasChanged: A property that can be inspected to determine if a change has occurred.

RegisterChangeCallback: Called when changes are detected to the specified path string. Each change token only

calls its associated callback in response to a single change. To enable constant monitoring, use a

TaskCompletionSource<TResult> (shown below) or recreate IChangeToken  instances in response to changes.

The WatchConsole sample app writes a message whenever a .txt file in the TextFiles directory is modified:

Some file systems, such as Docker containers and network shares, may not reliably send change notifications. Set

the DOTNET_USE_POLLING_FILE_WATCHER  environment variable to 1  or true  to poll the file system for changes every

four seconds (not configurable).

File system paths use wildcard patterns called glob (or globbing) patterns. Specify groups of files with these

patterns. The two wildcard characters are *  and ** :

*

Matches anything at the current folder level, any filename, or any file extension. Matches are terminated by /  and 

.  characters in the file path.

**

Matches anything across multiple directory levels. Can be used to recursively match many files within a directory

hierarchy.

The following table provides common examples of glob patterns.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken.haschanged#microsoft_extensions_primitives_ichangetoken_haschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken.registerchangecallback
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1


directory/*.txt Matches all files with .txt extension in a specific directory.

directory/*/appsettings.json Matches all appsettings.json files in directories exactly one
level below the directory folder.

directory/**/*.txt Matches all files with a .txt extension found anywhere under
the directory folder.

PAT T ERNPAT T ERN DESC RIP T IO NDESC RIP T IO N

File Provider interfaces

File Provider implementations

IM P L EM EN TAT IO NIM P L EM EN TAT IO N DESC RIP T IO NDESC RIP T IO N

PhysicalFileProvider The physical provider is used to access the system's physical
files.

ManifestEmbeddedFileProvider The manifest embedded provider is used to access files
embedded in assemblies.

ASP.NET Core abstracts file system access through the use of File Providers. File Providers are used throughout the

ASP.NET Core framework:

IHostingEnvironment exposes the app's content root and web root as IFileProvider  types.

Static File Middleware uses File Providers to locate static files.

Razor uses File Providers to locate pages and views.

.NET Core tooling uses File Providers and glob patterns to specify which files should be published.

View or download sample code (how to download)

The primary interface is IFileProvider. IFileProvider  exposes methods to:

Obtain file information (IFileInfo).

Obtain directory information (IDirectoryContents).

Set up change notifications (using an IChangeToken).

IFileInfo  provides methods and properties for working with files:

Exists

IsDirectory

Name

Length (in bytes)

LastModified date

You can read from the file using the IFileInfo.CreateReadStream method.

The sample app demonstrates how to configure a File Provider in Startup.ConfigureServices  for use throughout

the app via dependency injection.

Three implementations of IFileProvider  are available.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/file-providers/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.idirectorycontents
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.exists#microsoft_extensions_fileproviders_ifileinfo_exists
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.isdirectory#microsoft_extensions_fileproviders_ifileinfo_isdirectory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.name#microsoft_extensions_fileproviders_ifileinfo_name
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.length#microsoft_extensions_fileproviders_ifileinfo_length
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.lastmodified#microsoft_extensions_fileproviders_ifileinfo_lastmodified
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.createreadstream


CompositeFileProvider The composite provider is used to provide combined access to
files and directories from one or more other providers.

IM P L EM EN TAT IO NIM P L EM EN TAT IO N DESC RIP T IO NDESC RIP T IO N

PhysicalFileProviderPhysicalFileProvider

var provider = new PhysicalFileProvider(applicationRoot);
var contents = provider.GetDirectoryContents(string.Empty);
var fileInfo = provider.GetFileInfo("wwwroot/js/site.js");

var physicalProvider = _env.ContentRootFileProvider;

ManifestEmbeddedFileProviderManifestEmbeddedFileProvider

The PhysicalFileProvider provides access to the physical file system. PhysicalFileProvider  uses the System.IO.File

type (for the physical provider) and scopes all paths to a directory and its children. This scoping prevents access to

the file system outside of the specified directory and its children. The most common scenario for creating and using

a PhysicalFileProvider  is to request an IFileProvider  in a constructor through dependency injection.

When instantiating this provider directly, a directory path is required and serves as the base path for all requests

made using the provider.

The following code shows how to create a PhysicalFileProvider  and use it to obtain directory contents and file

information:

Types in the preceding example:

provider  is an IFileProvider .

contents  is an IDirectoryContents .

fileInfo  is an IFileInfo .

The File Provider can be used to iterate through the directory specified by applicationRoot  or call GetFileInfo  to

obtain a file's information. The File Provider has no access outside of the applicationRoot  directory.

The sample app creates the provider in the app's Startup.ConfigureServices  class using

IHostingEnvironment.ContentRootFileProvider:

The ManifestEmbeddedFileProvider is used to access files embedded within assemblies. The 

ManifestEmbeddedFileProvider  uses a manifest compiled into the assembly to reconstruct the original paths of the

embedded files.

To generate a manifest of the embedded files, set the <GenerateEmbeddedFilesManifest>  property to true . Specify

the files to embed with <EmbeddedResource>:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.physicalfileprovider
https://docs.microsoft.com/en-us/dotnet/api/system.io.file
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostingenvironment.contentrootfileprovider#microsoft_extensions_hosting_ihostingenvironment_contentrootfileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.manifestembeddedfileprovider
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj#default-compilation-includes-in-net-core-projects


<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
    <TargetFramework>netcoreapp2.2</TargetFramework>
    <AspNetCoreHostingModel>InProcess</AspNetCoreHostingModel>
    <GenerateEmbeddedFilesManifest>true</GenerateEmbeddedFilesManifest>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>

  <ItemGroup>
    <EmbeddedResource Include="Resource.txt" />
  </ItemGroup>

</Project>

var manifestEmbeddedProvider = 
    new ManifestEmbeddedFileProvider(typeof(Program).Assembly);

O VERLO A DO VERLO A D DESC RIP T IO NDESC RIP T IO N

ManifestEmbeddedFileProvider(Assembly, String) Accepts an optional root  relative path parameter. Specify the

root  to scope calls to GetDirectoryContents to those

resources under the provided path.

ManifestEmbeddedFileProvider(Assembly, String,
DateTimeOffset)

Accepts an optional root  relative path parameter and a 

lastModified  date (DateTimeOffset) parameter. The 

lastModified  date scopes the last modification date for the

IFileInfo instances returned by the IFileProvider.

ManifestEmbeddedFileProvider(Assembly, String,
String, DateTimeOffset)

Accepts an optional root  relative path, lastModified  date,

and manifestName  parameters. The manifestName

represents the name of the embedded resource containing the
manifest.

CompositeFileProviderCompositeFileProvider

Use glob patterns to specify one or more files to embed into the assembly.

The sample app creates an ManifestEmbeddedFileProvider  and passes the currently executing assembly to its

constructor.

Startup.cs:

Additional overloads allow you to:

Specify a relative file path.

Scope files to a last modified date.

Name the embedded resource containing the embedded file manifest.

The CompositeFileProvider combines IFileProvider  instances, exposing a single interface for working with files

from multiple providers. When creating the CompositeFileProvider , pass one or more IFileProvider  instances to

its constructor.

In the sample app, a PhysicalFileProvider  and a ManifestEmbeddedFileProvider  provide files to a 

CompositeFileProvider  registered in the app's service container :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider.getdirectorycontents
https://docs.microsoft.com/en-us/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.compositefileprovider


var physicalProvider = _env.ContentRootFileProvider;
var manifestEmbeddedProvider = 
    new ManifestEmbeddedFileProvider(typeof(Program).Assembly);
var compositeProvider = 
    new CompositeFileProvider(physicalProvider, manifestEmbeddedProvider);

services.AddSingleton<IFileProvider>(compositeProvider);

Watch for changes

private static PhysicalFileProvider _fileProvider = 
    new PhysicalFileProvider(Directory.GetCurrentDirectory());

public static void Main(string[] args)
{
    Console.WriteLine("Monitoring quotes.txt for changes (Ctrl-c to quit)...");

    while (true)
    {
        MainAsync().GetAwaiter().GetResult();
    }
}

private static async Task MainAsync()
{
    IChangeToken token = _fileProvider.Watch("quotes.txt");
    var tcs = new TaskCompletionSource<object>();

    token.RegisterChangeCallback(state => 
        ((TaskCompletionSource<object>)state).TrySetResult(null), tcs);

    await tcs.Task.ConfigureAwait(false);

    Console.WriteLine("quotes.txt changed");
}

Glob patterns

The IFileProvider.Watch method provides a scenario to watch one or more files or directories for changes. Watch

accepts a path string, which can use glob patterns to specify multiple files. Watch  returns an IChangeToken. The

change token exposes:

HasChanged: A property that can be inspected to determine if a change has occurred.

RegisterChangeCallback: Called when changes are detected to the specified path string. Each change token only

calls its associated callback in response to a single change. To enable constant monitoring, use a

TaskCompletionSource<TResult> (shown below) or recreate IChangeToken  instances in response to changes.

In the sample app, the WatchConsole console app is configured to display a message whenever a text file is

modified:

Some file systems, such as Docker containers and network shares, may not reliably send change notifications. Set

the DOTNET_USE_POLLING_FILE_WATCHER  environment variable to 1  or true  to poll the file system for changes every

four seconds (not configurable).

File system paths use wildcard patterns called glob (or globbing) patterns. Specify groups of files with these

patterns. The two wildcard characters are *  and ** :

*

Matches anything at the current folder level, any filename, or any file extension. Matches are terminated by /  and 

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider.watch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken.haschanged#microsoft_extensions_primitives_ichangetoken_haschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken.registerchangecallback
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1


.  characters in the file path.

**

Matches anything across multiple directory levels. Can be used to recursively match many files within a directory

hierarchy.

Glob pattern examplesGlob pattern examples

directory/file.txt

Matches a specific file in a specific directory.

directory/*.txt

Matches all files with .txt extension in a specific directory.

directory/*/appsettings.json

Matches all appsettings.json  files in directories exactly one level below the directory folder.

directory/**/*.txt

Matches all files with .txt extension found anywhere under the directory folder.



Request Features in ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Feature interfaces

NOTENOTE

Feature collections

By Steve Smith

Web server implementation details related to HTTP requests and responses are defined in interfaces. These

interfaces are used by server implementations and middleware to create and modify the application's hosting

pipeline.

ASP.NET Core defines a number of HTTP feature interfaces in Microsoft.AspNetCore.Http.Features  which are used

by servers to identify the features they support. The following feature interfaces handle requests and return

responses:

IHttpRequestFeature  Defines the structure of an HTTP request, including the protocol, path, query string, headers,

and body.

IHttpResponseFeature  Defines the structure of an HTTP response, including the status code, headers, and body of

the response.

IHttpAuthenticationFeature  Defines support for identifying users based on a ClaimsPrincipal  and specifying an

authentication handler.

IHttpUpgradeFeature  Defines support for HTTP Upgrades, which allow the client to specify which additional

protocols it would like to use if the server wishes to switch protocols.

IHttpBufferingFeature  Defines methods for disabling buffering of requests and/or responses.

IHttpConnectionFeature  Defines properties for local and remote addresses and ports.

IHttpRequestLifetimeFeature  Defines support for aborting connections, or detecting if a request has been

terminated prematurely, such as by a client disconnect.

IHttpSendFileFeature  Defines a method for sending files asynchronously.

IHttpWebSocketFeature  Defines an API for supporting web sockets.

IHttpRequestIdentifierFeature  Adds a property that can be implemented to uniquely identify requests.

ISessionFeature  Defines ISessionFactory  and ISession  abstractions for supporting user sessions.

ITlsConnectionFeature  Defines an API for retrieving client certificates.

ITlsTokenBindingFeature  Defines methods for working with TLS token binding parameters.

ISessionFeature  isn't a server feature, but is implemented by the SessionMiddleware  (see Managing Application

State).

The Features  property of HttpContext  provides an interface for getting and setting the available HTTP features

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/request-features.md
https://ardalis.com/
https://tools.ietf.org/html/rfc2616.html#section-14.42


 Middleware and request features

Summary

Additional resources

for the current request. Since the feature collection is mutable even within the context of a request, middleware

can be used to modify the collection and add support for additional features.

While servers are responsible for creating the feature collection, middleware can both add to this collection and

consume features from the collection. For example, the StaticFileMiddleware  accesses the IHttpSendFileFeature

feature. If the feature exists, it's used to send the requested static file from its physical path. Otherwise, a slower

alternative method is used to send the file. When available, the IHttpSendFileFeature  allows the operating

system to open the file and perform a direct kernel mode copy to the network card.

Additionally, middleware can add to the feature collection established by the server. Existing features can even be

replaced by middleware, allowing the middleware to augment the functionality of the server. Features added to

the collection are available immediately to other middleware or the underlying application itself later in the

request pipeline.

By combining custom server implementations and specific middleware enhancements, the precise set of features

an application requires can be constructed. This allows missing features to be added without requiring a change

in server, and ensures only the minimal amount of features are exposed, thus limiting attack surface area and

improving performance.

Feature interfaces define specific HTTP features that a given request may support. Servers define collections of

features, and the initial set of features supported by that server, but middleware can be used to enhance these

features.

Servers

Middleware

Open Web Interface for .NET (OWIN)



Access HttpContext in ASP.NET Core
9/22/2020 • 3 minutes to read • Edit Online

Use HttpContext from Razor Pages

public class AboutModel : PageModel
{
    public string Message { get; set; }

    public void OnGet()
    {
        Message = HttpContext.Request.PathBase;
    }
}

Use HttpContext from a Razor view

@{
    var username = Context.User.Identity.Name;
    
    ...
}

Use HttpContext from a controller

public class HomeController : Controller
{
    public IActionResult About()
    {
        var pathBase = HttpContext.Request.PathBase;

        ...

        return View();
    }
}

Use HttpContext from middleware

ASP.NET Core apps access HttpContext  through the IHttpContextAccessor interface and its default implementation

HttpContextAccessor. It's only necessary to use IHttpContextAccessor  when you need access to the HttpContext

inside a service.

The Razor Pages PageModel exposes the HttpContext property:

Razor views expose the HttpContext  directly via a RazorPage.Context property on the view. The following example

retrieves the current username in an intranet app using Windows Authentication:

Controllers expose the ControllerBase.HttpContext property:

When working with custom middleware components, HttpContext  is passed into the Invoke  or InvokeAsync

method and can be accessed when the middleware is configured:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/http-context.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontextaccessor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel.httpcontext#microsoft_aspnetcore_mvc_razorpages_pagemodel_httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razor.razorpage.context#microsoft_aspnetcore_mvc_razor_razorpage_context
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.httpcontext#microsoft_aspnetcore_mvc_controllerbase_httpcontext


  

public class MyCustomMiddleware
{
    public Task InvokeAsync(HttpContext context)
    {
        ...
    }
}

Use HttpContext from custom components

public void ConfigureServices(IServiceCollection services)
{
     services.AddControllersWithViews();
     services.AddHttpContextAccessor();
     services.AddTransient<IUserRepository, UserRepository>();
}

public void ConfigureServices(IServiceCollection services)
{
     services.AddMvc()
         .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
     services.AddHttpContextAccessor();
     services.AddTransient<IUserRepository, UserRepository>();
}

public class UserRepository : IUserRepository
{
    private readonly IHttpContextAccessor _httpContextAccessor;

    public UserRepository(IHttpContextAccessor httpContextAccessor)
    {
        _httpContextAccessor = httpContextAccessor;
    }

    public void LogCurrentUser()
    {
        var username = _httpContextAccessor.HttpContext.User.Identity.Name;
        service.LogAccessRequest(username);
    }
}

HttpContext access from a background thread

For other framework and custom components that require access to HttpContext , the recommended approach is

to register a dependency using the built-in dependency injection container. The dependency injection container

supplies the IHttpContextAccessor  to any classes that declare it as a dependency in their constructors:

In the following example:

UserRepository  declares its dependency on IHttpContextAccessor .

The dependency is supplied when dependency injection resolves the dependency chain and creates an instance

of UserRepository .

HttpContext  isn't thread-safe. Reading or writing properties of the HttpContext  outside of processing a request

can result in a NullReferenceException.

https://docs.microsoft.com/en-us/dotnet/api/system.nullreferenceexception


NOTENOTE

public class EmailController : Controller
{
    public IActionResult SendEmail(string email)
    {
        var correlationId = HttpContext.Request.Headers["x-correlation-id"].ToString();

        _ = SendEmailCore(correlationId);

        return View();
    }

    private async Task SendEmailCore(string correlationId)
    {
        ...
    }
}

Blazor and shared state

WARNINGWARNING

If your app generates sporadic NullReferenceException  errors, review parts of the code that start background processing

or that continue processing after a request completes. Look for mistakes, such as defining a controller method as 

async void .

To safely perform background work with HttpContext  data:

Copy the required data during request processing.

Pass the copied data to a background task.

To avoid unsafe code, never pass the HttpContext  into a method that performs background work. Pass the

required data instead. In the following example, SendEmailCore  is called to start sending an email. The 

correlationId  is passed to SendEmailCore , not the HttpContext . Code execution doesn't wait for SendEmailCore  to

complete:

Blazor server apps live in server memory. That means that there are multiple apps hosted within the same process.

For each app session, Blazor starts a circuit with its own DI container scope. That means that scoped services are

unique per Blazor session.

We don't recommend apps on the same server share state using singleton services unless extreme care is taken, as this can

introduce security vulnerabilities, such as leaking user state across circuits.

You can use stateful singleton services in Blazor apps if they are specifically designed for it. For example, it's ok to

use a memory cache as a singleton because it requires a key to access a given entry, assuming users don't have

control of what cache keys are used.

Additionally, again for security reasons, you must not use Additionally, again for security reasons, you must not use IHttpContextAccessorIHttpContextAccessor  within Blazor apps. within Blazor apps.

Blazor apps run outside of the context of the ASP.NET Core pipeline. The HttpContext isn't guaranteed to be

available within the IHttpContextAccessor, nor is it guaranteed to be holding the context that started the Blazor app.

The recommended way to pass request state to the Blazor app is through parameters to the root component in the

initial rendering of the app:

Define a class with all the data you want to pass to the Blazor app.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor


Populate that data from the Razor page using the HttpContext available at that time.

Pass the data to the Blazor app as a parameter to the root component (App).

Define a parameter in the root component to hold the data being passed to the app.

Use the user-specific data within the app; or alternatively, copy that data into a scoped service within

OnInitializedAsync so that it can be used across the app.

For more information and example code, see ASP.NET Core Blazor Server additional security scenarios.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.componentbase.oninitializedasync


Detect changes with change tokens in ASP.NET Core
9/22/2020 • 17 minutes to read • Edit Online

IChangeToken interface

ChangeToken class

Example uses of change tokens in ASP.NET Core

A change token is a general-purpose, low-level building block used to track state changes.

View or download sample code (how to download)

IChangeToken propagates notifications that a change has occurred. IChangeToken  resides in the

Microsoft.Extensions.Primitives namespace. The Microsoft.Extensions.Primitives NuGet package is implicitly

provided to the ASP.NET Core apps.

IChangeToken  has two properties:

ActiveChangeCallbacks indicate if the token proactively raises callbacks. If ActiveChangedCallbacks  is set to 

false , a callback is never called, and the app must poll HasChanged  for changes. It's also possible for a token

to never be cancelled if no changes occur or the underlying change listener is disposed or disabled.

HasChanged receives a value that indicates if a change has occurred.

The IChangeToken  interface includes the RegisterChangeCallback(Action<Object>, Object) method, which

registers a callback that's invoked when the token has changed. HasChanged  must be set before the callback is

invoked.

ChangeToken is a static class used to propagate notifications that a change has occurred. ChangeToken  resides in

the Microsoft.Extensions.Primitives namespace. The Microsoft.Extensions.Primitives NuGet package is implicitly

provided to the ASP.NET Core apps.

The ChangeToken.OnChange(Func<IChangeToken>, Action) method registers an Action  to call whenever the

token changes:

Func<IChangeToken>  produces the token.

Action  is called when the token changes.

The ChangeToken.OnChange<TState>(Func<IChangeToken>, Action<TState>, TState) overload takes an

additional TState  parameter that's passed into the token consumer Action .

OnChange  returns an IDisposable. Calling Dispose stops the token from listening for further changes and releases

the token's resources.

Change tokens are used in prominent areas of ASP.NET Core to monitor for changes to objects:

For monitoring changes to files, IFileProvider's Watch method creates an IChangeToken  for the specified files

or folder to watch.

IChangeToken  tokens can be added to cache entries to trigger cache evictions on change.

For TOptions  changes, the default OptionsMonitor<TOptions> implementation of

IOptionsMonitor<TOptions> has an overload that accepts one or more

IOptionsChangeTokenSource<TOptions> instances. Each instance returns an IChangeToken  to register a

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/change-tokens.md
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/change-tokens/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives
https://www.nuget.org/packages/Microsoft.Extensions.Primitives/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken.activechangecallbacks#microsoft_extensions_primitives_ichangetoken_activechangecallbacks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken.haschanged#microsoft_extensions_primitives_ichangetoken_haschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken.registerchangecallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.changetoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives
https://www.nuget.org/packages/Microsoft.Extensions.Primitives/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.changetoken.onchange
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.changetoken.onchange
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider.watch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionschangetokensource-1


Monitor for configuration changes

config.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
      .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true, 
          reloadOnChange: true);

change notification callback for tracking options changes.

By default, ASP.NET Core templates use JSON configuration files (appsettings.json, appsettings.Development.json,

and appsettings.Production.json) to load app configuration settings.

These files are configured using the AddJsonFile(IConfigurationBuilder, String, Boolean, Boolean) extension

method on ConfigurationBuilder that accepts a reloadOnChange  parameter. reloadOnChange  indicates if

configuration should be reloaded on file changes. This setting appears in the Host convenience method

CreateDefaultBuilder:

File-based configuration is represented by FileConfigurationSource. FileConfigurationSource  uses IFileProvider

to monitor files.

By default, the IFileMonitor  is provided by a PhysicalFileProvider, which uses FileSystemWatcher to monitor for

configuration file changes.

The sample app demonstrates two implementations for monitoring configuration changes. If any of the

appsettings files change, both of the file monitoring implementations execute custom code—the sample app

writes a message to the console.

A configuration file's FileSystemWatcher  can trigger multiple token callbacks for a single configuration file

change. To ensure that the custom code is only run once when multiple token callbacks are triggered, the

sample's implementation checks file hashes. The sample uses SHA1 file hashing. A retry is implemented with an

exponential back-off. The retry is present because file locking may occur that temporarily prevents computing a

new hash on a file.

Utilities/Utilities.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.jsonconfigurationextensions.addjsonfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.fileconfigurationsource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.physicalfileprovider
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesystemwatcher


public static byte[] ComputeHash(string filePath)
{
    var runCount = 1;

    while(runCount < 4)
    {
        try
        {
            if (File.Exists(filePath))
            {
                using (var fs = File.OpenRead(filePath))
                {
                    return System.Security.Cryptography.SHA1
                        .Create().ComputeHash(fs);
                }
            }
            else 
            {
                throw new FileNotFoundException();
            }
        }
        catch (IOException ex)
        {
            if (runCount == 3 || ex.HResult != -2147024864)
            {
                throw;
            }
            else
            {
                Thread.Sleep(TimeSpan.FromSeconds(Math.Pow(2, runCount)));
                runCount++;
            }
        }
    }

    return new byte[20];
}

Simple startup change tokenSimple startup change token

ChangeToken.OnChange(
    () => config.GetReloadToken(),
    (state) => InvokeChanged(state),
    env);

Register a token consumer Action  callback for change notifications to the configuration reload token.

In Startup.Configure :

config.GetReloadToken()  provides the token. The callback is the InvokeChanged  method:



private void InvokeChanged(IWebHostEnvironment env)
{
    byte[] appsettingsHash = ComputeHash("appSettings.json");
    byte[] appsettingsEnvHash = 
        ComputeHash($"appSettings.{env.EnvironmentName}.json");

    if (!_appsettingsHash.SequenceEqual(appsettingsHash) || 
        !_appsettingsEnvHash.SequenceEqual(appsettingsEnvHash))
    {
        _appsettingsHash = appsettingsHash;
        _appsettingsEnvHash = appsettingsEnvHash;

        WriteConsole("Configuration changed (Simple Startup Change Token)");
    }
}

Monitor configuration changes as a serviceMonitor configuration changes as a service

public interface IConfigurationMonitor
{
    bool MonitoringEnabled { get; set; }
    string CurrentState { get; set; }
}

public ConfigurationMonitor(IConfiguration config, IWebHostEnvironment env)
{
    _env = env;

    ChangeToken.OnChange<IConfigurationMonitor>(
        () => config.GetReloadToken(),
        InvokeChanged,
        this);
}

public bool MonitoringEnabled { get; set; } = false;
public string CurrentState { get; set; } = "Not monitoring";

The state  of the callback is used to pass in the IWebHostEnvironment , which is useful for specifying the correct

appsettings configuration file to monitor (for example, appsettings.Development.json when in the Development

environment). File hashes are used to prevent the WriteConsole  statement from running multiple times due to

multiple token callbacks when the configuration file has only changed once.

This system runs as long as the app is running and can't be disabled by the user.

The sample implements:

Basic startup token monitoring.

Monitoring as a service.

A mechanism to enable and disable monitoring.

The sample establishes an IConfigurationMonitor  interface.

Extensions/ConfigurationMonitor.cs:

The constructor of the implemented class, ConfigurationMonitor , registers a callback for change notifications:

config.GetReloadToken()  supplies the token. InvokeChanged  is the callback method. The state  in this instance is

a reference to the IConfigurationMonitor  instance that's used to access the monitoring state. Two properties are

used:



private void InvokeChanged(IConfigurationMonitor state)
{
    if (MonitoringEnabled)
    {
        byte[] appsettingsHash = ComputeHash("appSettings.json");
        byte[] appsettingsEnvHash = 
            ComputeHash($"appSettings.{_env.EnvironmentName}.json");

        if (!_appsettingsHash.SequenceEqual(appsettingsHash) || 
            !_appsettingsEnvHash.SequenceEqual(appsettingsEnvHash))
        {
            string message = $"State updated at {DateTime.Now}";
          

            _appsettingsHash = appsettingsHash;
            _appsettingsEnvHash = appsettingsEnvHash;

            WriteConsole("Configuration changed (ConfigurationMonitor Class) " +
                $"{message}, state:{state.CurrentState}");
        }
    }
}

services.AddSingleton<IConfigurationMonitor, ConfigurationMonitor>();

public IndexModel(
    IConfiguration config, 
    IConfigurationMonitor monitor, 
    FileService fileService)
{
    _config = config;
    _monitor = monitor;
    _fileService = fileService;
}

MonitoringEnabled : Indicates if the callback should run its custom code.

CurrentState : Describes the current monitoring state for use in the UI.

The InvokeChanged  method is similar to the earlier approach, except that it:

Doesn't run its code unless MonitoringEnabled  is true .

Outputs the current state  in its WriteConsole  output.

An instance ConfigurationMonitor  is registered as a service in Startup.ConfigureServices :

The Index page offers the user control over configuration monitoring. The instance of IConfigurationMonitor  is

injected into the IndexModel .

Pages/Index.cshtml.cs:

The configuration monitor ( _monitor ) is used to enable or disable monitoring and set the current state for UI

feedback:



public IActionResult OnPostStartMonitoring()
{
    _monitor.MonitoringEnabled = true;
    _monitor.CurrentState = "Monitoring!";

    return RedirectToPage();
}

public IActionResult OnPostStopMonitoring()
{
    _monitor.MonitoringEnabled = false;
    _monitor.CurrentState = "Not monitoring";

    return RedirectToPage();
}

<button class="btn btn-success" asp-page-handler="StartMonitoring">
    Start Monitoring
</button>

<button class="btn btn-danger" asp-page-handler="StopMonitoring">
    Stop Monitoring
</button>

Monitor cached file changes

When OnPostStartMonitoring  is triggered, monitoring is enabled, and the current state is cleared. When 

OnPostStopMonitoring  is triggered, monitoring is disabled, and the state is set to reflect that monitoring isn't

occurring.

Buttons in the UI enable and disable monitoring.

Pages/Index.cshtml:

File content can be cached in-memory using IMemoryCache. In-memory caching is described in the Cache in-

memory topic. Without taking additional steps, such as the implementation described below, stale (outdated)

data is returned from a cache if the source data changes.

For example, not taking into account the status of a cached source file when renewing a sliding expiration period

leads to stale cached file data. Each request for the data renews the sliding expiration period, but the file is never

reloaded into the cache. Any app features that use the file's cached content are subject to possibly receiving stale

content.

Using change tokens in a file caching scenario prevents the presence of stale file content in the cache. The sample

app demonstrates an implementation of the approach.

The sample uses GetFileContent  to:

Return file content.

Implement a retry algorithm with exponential back-off to cover cases where a file lock temporarily prevents

reading a file.

Utilities/Utilities.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryoptions.slidingexpiration#microsoft_extensions_caching_memory_memorycacheentryoptions_slidingexpiration


public async static Task<string> GetFileContent(string filePath)
{
    var runCount = 1;

    while(runCount < 4)
    {
        try
        {
            if (File.Exists(filePath))
            {
                using (var fileStreamReader = File.OpenText(filePath))
                {
                    return await fileStreamReader.ReadToEndAsync();
                }
            }
            else 
            {
                throw new FileNotFoundException();
            }
        }
        catch (IOException ex)
        {
            if (runCount == 3 || ex.HResult != -2147024864)
            {
                throw;
            }
            else
            {
                await Task.Delay(TimeSpan.FromSeconds(Math.Pow(2, runCount)));
                runCount++;
            }
        }
    }

    return null;
}

A FileService  is created to handle cached file lookups. The GetFileContent  method call of the service attempts

to obtain file content from the in-memory cache and return it to the caller (Services/FileService.cs).

If cached content isn't found using the cache key, the following actions are taken:

1. The file content is obtained using GetFileContent .

2. A change token is obtained from the file provider with IFileProviders.Watch. The token's callback is triggered

when the file is modified.

3. The file content is cached with a sliding expiration period. The change token is attached with

MemoryCacheEntryExtensions.AddExpirationToken to evict the cache entry if the file changes while it's cached.

In the following example, files are stored in the app's content root. IWebHostEnvironment.ContentRootFileProvider

is used to obtain an IFileProvider pointing at the app's IWebHostEnvironment.ContentRootPath . The filePath  is

obtained with IFileInfo.PhysicalPath.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider.watch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryoptions.slidingexpiration#microsoft_extensions_caching_memory_memorycacheentryoptions_slidingexpiration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryextensions.addexpirationtoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.physicalpath#microsoft_extensions_fileproviders_ifileinfo_physicalpath


public class FileService
{
    private readonly IMemoryCache _cache;
    private readonly IFileProvider _fileProvider;
    private List<string> _tokens = new List<string>();

    public FileService(IMemoryCache cache, IWebHostEnvironment env)
    {
        _cache = cache;
        _fileProvider = env.ContentRootFileProvider;
    }

    public async Task<string> GetFileContents(string fileName)
    {
        var filePath = _fileProvider.GetFileInfo(fileName).PhysicalPath;
        string fileContent;

        // Try to obtain the file contents from the cache.
        if (_cache.TryGetValue(filePath, out fileContent))
        {
            return fileContent;
        }

        // The cache doesn't have the entry, so obtain the file 
        // contents from the file itself.
        fileContent = await GetFileContent(filePath);

        if (fileContent != null)
        {
            // Obtain a change token from the file provider whose
            // callback is triggered when the file is modified.
            var changeToken = _fileProvider.Watch(fileName);

            // Configure the cache entry options for a five minute
            // sliding expiration and use the change token to
            // expire the file in the cache if the file is
            // modified.
            var cacheEntryOptions = new MemoryCacheEntryOptions()
                .SetSlidingExpiration(TimeSpan.FromMinutes(5))
                .AddExpirationToken(changeToken);

            // Put the file contents into the cache.
            _cache.Set(filePath, fileContent, cacheEntryOptions);

            return fileContent;
        }

        return string.Empty;
    }
}

services.AddMemoryCache();
services.AddSingleton<FileService>();

The FileService  is registered in the service container along with the memory caching service.

In Startup.ConfigureServices :

The page model loads the file's content using the service.

In the Index page's OnGet  method (Pages/Index.cshtml.cs):



var fileContent = await _fileService.GetFileContents("poem.txt");

CompositeChangeToken class

var firstCancellationTokenSource = new CancellationTokenSource();
var secondCancellationTokenSource = new CancellationTokenSource();

var firstCancellationToken = firstCancellationTokenSource.Token;
var secondCancellationToken = secondCancellationTokenSource.Token;

var firstCancellationChangeToken = new CancellationChangeToken(firstCancellationToken);
var secondCancellationChangeToken = new CancellationChangeToken(secondCancellationToken);

var compositeChangeToken = 
    new CompositeChangeToken(
        new List<IChangeToken> 
        {
            firstCancellationChangeToken, 
            secondCancellationChangeToken
        });

IChangeToken interface

ChangeToken class

For representing one or more IChangeToken  instances in a single object, use the CompositeChangeToken class.

HasChanged  on the composite token reports true  if any represented token HasChanged  is true . 

ActiveChangeCallbacks  on the composite token reports true  if any represented token ActiveChangeCallbacks  is 

true . If multiple concurrent change events occur, the composite change callback is invoked one time.

A change token is a general-purpose, low-level building block used to track state changes.

View or download sample code (how to download)

IChangeToken propagates notifications that a change has occurred. IChangeToken  resides in the

Microsoft.Extensions.Primitives namespace. For apps that don't use the Microsoft.AspNetCore.App metapackage,

create a package reference for the Microsoft.Extensions.Primitives NuGet package.

IChangeToken  has two properties:

ActiveChangeCallbacks indicate if the token proactively raises callbacks. If ActiveChangedCallbacks  is set to 

false , a callback is never called, and the app must poll HasChanged  for changes. It's also possible for a token

to never be cancelled if no changes occur or the underlying change listener is disposed or disabled.

HasChanged receives a value that indicates if a change has occurred.

The IChangeToken  interface includes the RegisterChangeCallback(Action<Object>, Object) method, which

registers a callback that's invoked when the token has changed. HasChanged  must be set before the callback is

invoked.

ChangeToken is a static class used to propagate notifications that a change has occurred. ChangeToken  resides in

the Microsoft.Extensions.Primitives namespace. For apps that don't use the Microsoft.AspNetCore.App

metapackage, create a package reference for the Microsoft.Extensions.Primitives NuGet package.

The ChangeToken.OnChange(Func<IChangeToken>, Action) method registers an Action  to call whenever the

token changes:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.compositechangetoken
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/change-tokens/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives
https://www.nuget.org/packages/Microsoft.Extensions.Primitives/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken.activechangecallbacks#microsoft_extensions_primitives_ichangetoken_activechangecallbacks
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken.haschanged#microsoft_extensions_primitives_ichangetoken_haschanged
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.ichangetoken.registerchangecallback
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.changetoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives
https://www.nuget.org/packages/Microsoft.Extensions.Primitives/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.changetoken.onchange


Example uses of change tokens in ASP.NET Core

Monitor for configuration changes

config.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
      .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true, 
          reloadOnChange: true);

Func<IChangeToken>  produces the token.

Action  is called when the token changes.

The ChangeToken.OnChange<TState>(Func<IChangeToken>, Action<TState>, TState) overload takes an

additional TState  parameter that's passed into the token consumer Action .

OnChange  returns an IDisposable. Calling Dispose stops the token from listening for further changes and releases

the token's resources.

Change tokens are used in prominent areas of ASP.NET Core to monitor for changes to objects:

For monitoring changes to files, IFileProvider's Watch method creates an IChangeToken  for the specified files

or folder to watch.

IChangeToken  tokens can be added to cache entries to trigger cache evictions on change.

For TOptions  changes, the default OptionsMonitor<TOptions> implementation of

IOptionsMonitor<TOptions> has an overload that accepts one or more

IOptionsChangeTokenSource<TOptions> instances. Each instance returns an IChangeToken  to register a

change notification callback for tracking options changes.

By default, ASP.NET Core templates use JSON configuration files (appsettings.json, appsettings.Development.json,

and appsettings.Production.json) to load app configuration settings.

These files are configured using the AddJsonFile(IConfigurationBuilder, String, Boolean, Boolean) extension

method on ConfigurationBuilder that accepts a reloadOnChange  parameter. reloadOnChange  indicates if

configuration should be reloaded on file changes. This setting appears in the WebHost convenience method

CreateDefaultBuilder:

File-based configuration is represented by FileConfigurationSource. FileConfigurationSource  uses IFileProvider

to monitor files.

By default, the IFileMonitor  is provided by a PhysicalFileProvider, which uses FileSystemWatcher to monitor for

configuration file changes.

The sample app demonstrates two implementations for monitoring configuration changes. If any of the

appsettings files change, both of the file monitoring implementations execute custom code—the sample app

writes a message to the console.

A configuration file's FileSystemWatcher  can trigger multiple token callbacks for a single configuration file

change. To ensure that the custom code is only run once when multiple token callbacks are triggered, the

sample's implementation checks file hashes. The sample uses SHA1 file hashing. A retry is implemented with an

exponential back-off. The retry is present because file locking may occur that temporarily prevents computing a

new hash on a file.

Utilities/Utilities.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.changetoken.onchange
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider.watch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.optionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionsmonitor-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.options.ioptionschangetokensource-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.jsonconfigurationextensions.addjsonfile
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost.createdefaultbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.fileconfigurationsource
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.physicalfileprovider
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesystemwatcher


public static byte[] ComputeHash(string filePath)
{
    var runCount = 1;

    while(runCount < 4)
    {
        try
        {
            if (File.Exists(filePath))
            {
                using (var fs = File.OpenRead(filePath))
                {
                    return System.Security.Cryptography.SHA1
                        .Create().ComputeHash(fs);
                }
            }
            else 
            {
                throw new FileNotFoundException();
            }
        }
        catch (IOException ex)
        {
            if (runCount == 3 || ex.HResult != -2147024864)
            {
                throw;
            }
            else
            {
                Thread.Sleep(TimeSpan.FromSeconds(Math.Pow(2, runCount)));
                runCount++;
            }
        }
    }

    return new byte[20];
}

Simple startup change tokenSimple startup change token

ChangeToken.OnChange(
    () => config.GetReloadToken(),
    (state) => InvokeChanged(state),
    env);

Register a token consumer Action  callback for change notifications to the configuration reload token.

In Startup.Configure :

config.GetReloadToken()  provides the token. The callback is the InvokeChanged  method:



private void InvokeChanged(IHostingEnvironment env)
{
    byte[] appsettingsHash = ComputeHash("appSettings.json");
    byte[] appsettingsEnvHash = 
        ComputeHash($"appSettings.{env.EnvironmentName}.json");

    if (!_appsettingsHash.SequenceEqual(appsettingsHash) || 
        !_appsettingsEnvHash.SequenceEqual(appsettingsEnvHash))
    {
        _appsettingsHash = appsettingsHash;
        _appsettingsEnvHash = appsettingsEnvHash;

        WriteConsole("Configuration changed (Simple Startup Change Token)");
    }
}

Monitor configuration changes as a serviceMonitor configuration changes as a service

public interface IConfigurationMonitor
{
    bool MonitoringEnabled { get; set; }
    string CurrentState { get; set; }
}

public ConfigurationMonitor(IConfiguration config, IHostingEnvironment env)
{
    _env = env;

    ChangeToken.OnChange<IConfigurationMonitor>(
        () => config.GetReloadToken(),
        InvokeChanged,
        this);
}

public bool MonitoringEnabled { get; set; } = false;
public string CurrentState { get; set; } = "Not monitoring";

The state  of the callback is used to pass in the IHostingEnvironment , which is useful for specifying the correct

appsettings configuration file to monitor (for example, appsettings.Development.json when in the Development

environment). File hashes are used to prevent the WriteConsole  statement from running multiple times due to

multiple token callbacks when the configuration file has only changed once.

This system runs as long as the app is running and can't be disabled by the user.

The sample implements:

Basic startup token monitoring.

Monitoring as a service.

A mechanism to enable and disable monitoring.

The sample establishes an IConfigurationMonitor  interface.

Extensions/ConfigurationMonitor.cs:

The constructor of the implemented class, ConfigurationMonitor , registers a callback for change notifications:

config.GetReloadToken()  supplies the token. InvokeChanged  is the callback method. The state  in this instance is

a reference to the IConfigurationMonitor  instance that's used to access the monitoring state. Two properties are

used:



private void InvokeChanged(IConfigurationMonitor state)
{
    if (MonitoringEnabled)
    {
        byte[] appsettingsHash = ComputeHash("appSettings.json");
        byte[] appsettingsEnvHash = 
            ComputeHash($"appSettings.{_env.EnvironmentName}.json");

        if (!_appsettingsHash.SequenceEqual(appsettingsHash) || 
            !_appsettingsEnvHash.SequenceEqual(appsettingsEnvHash))
        {
            string message = $"State updated at {DateTime.Now}";
          

            _appsettingsHash = appsettingsHash;
            _appsettingsEnvHash = appsettingsEnvHash;

            WriteConsole("Configuration changed (ConfigurationMonitor Class) " +
                $"{message}, state:{state.CurrentState}");
        }
    }
}

services.AddSingleton<IConfigurationMonitor, ConfigurationMonitor>();

public IndexModel(
    IConfiguration config, 
    IConfigurationMonitor monitor, 
    FileService fileService)
{
    _config = config;
    _monitor = monitor;
    _fileService = fileService;
}

MonitoringEnabled : Indicates if the callback should run its custom code.

CurrentState : Describes the current monitoring state for use in the UI.

The InvokeChanged  method is similar to the earlier approach, except that it:

Doesn't run its code unless MonitoringEnabled  is true .

Outputs the current state  in its WriteConsole  output.

An instance ConfigurationMonitor  is registered as a service in Startup.ConfigureServices :

The Index page offers the user control over configuration monitoring. The instance of IConfigurationMonitor  is

injected into the IndexModel .

Pages/Index.cshtml.cs:

The configuration monitor ( _monitor ) is used to enable or disable monitoring and set the current state for UI

feedback:



public IActionResult OnPostStartMonitoring()
{
    _monitor.MonitoringEnabled = true;
    _monitor.CurrentState = "Monitoring!";

    return RedirectToPage();
}

public IActionResult OnPostStopMonitoring()
{
    _monitor.MonitoringEnabled = false;
    _monitor.CurrentState = "Not monitoring";

    return RedirectToPage();
}

<button class="btn btn-success" asp-page-handler="StartMonitoring">
    Start Monitoring
</button>

<button class="btn btn-danger" asp-page-handler="StopMonitoring">
    Stop Monitoring
</button>

Monitor cached file changes

When OnPostStartMonitoring  is triggered, monitoring is enabled, and the current state is cleared. When 

OnPostStopMonitoring  is triggered, monitoring is disabled, and the state is set to reflect that monitoring isn't

occurring.

Buttons in the UI enable and disable monitoring.

Pages/Index.cshtml:

File content can be cached in-memory using IMemoryCache. In-memory caching is described in the Cache in-

memory topic. Without taking additional steps, such as the implementation described below, stale (outdated)

data is returned from a cache if the source data changes.

For example, not taking into account the status of a cached source file when renewing a sliding expiration period

leads to stale cached file data. Each request for the data renews the sliding expiration period, but the file is never

reloaded into the cache. Any app features that use the file's cached content are subject to possibly receiving stale

content.

Using change tokens in a file caching scenario prevents the presence of stale file content in the cache. The sample

app demonstrates an implementation of the approach.

The sample uses GetFileContent  to:

Return file content.

Implement a retry algorithm with exponential back-off to cover cases where a file lock temporarily prevents

reading a file.

Utilities/Utilities.cs:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.imemorycache
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryoptions.slidingexpiration#microsoft_extensions_caching_memory_memorycacheentryoptions_slidingexpiration


public async static Task<string> GetFileContent(string filePath)
{
    var runCount = 1;

    while(runCount < 4)
    {
        try
        {
            if (File.Exists(filePath))
            {
                using (var fileStreamReader = File.OpenText(filePath))
                {
                    return await fileStreamReader.ReadToEndAsync();
                }
            }
            else 
            {
                throw new FileNotFoundException();
            }
        }
        catch (IOException ex)
        {
            if (runCount == 3 || ex.HResult != -2147024864)
            {
                throw;
            }
            else
            {
                await Task.Delay(TimeSpan.FromSeconds(Math.Pow(2, runCount)));
                runCount++;
            }
        }
    }

    return null;
}

A FileService  is created to handle cached file lookups. The GetFileContent  method call of the service attempts

to obtain file content from the in-memory cache and return it to the caller (Services/FileService.cs).

If cached content isn't found using the cache key, the following actions are taken:

1. The file content is obtained using GetFileContent .

2. A change token is obtained from the file provider with IFileProviders.Watch. The token's callback is triggered

when the file is modified.

3. The file content is cached with a sliding expiration period. The change token is attached with

MemoryCacheEntryExtensions.AddExpirationToken to evict the cache entry if the file changes while it's cached.

In the following example, files are stored in the app's content root. IHostingEnvironment.ContentRootFileProvider

is used to obtain an IFileProvider pointing at the app's ContentRootPath. The filePath  is obtained with

IFileInfo.PhysicalPath.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider.watch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryoptions.slidingexpiration#microsoft_extensions_caching_memory_memorycacheentryoptions_slidingexpiration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.memory.memorycacheentryextensions.addexpirationtoken
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.contentrootfileprovider#microsoft_aspnetcore_hosting_ihostingenvironment_contentrootfileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileprovider
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment.contentrootpath#microsoft_aspnetcore_hosting_ihostingenvironment_contentrootpath
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.fileproviders.ifileinfo.physicalpath#microsoft_extensions_fileproviders_ifileinfo_physicalpath


public class FileService
{
    private readonly IMemoryCache _cache;
    private readonly IFileProvider _fileProvider;
    private List<string> _tokens = new List<string>();

    public FileService(IMemoryCache cache, IHostingEnvironment env)
    {
        _cache = cache;
        _fileProvider = env.ContentRootFileProvider;
    }

    public async Task<string> GetFileContents(string fileName)
    {
        var filePath = _fileProvider.GetFileInfo(fileName).PhysicalPath;
        string fileContent;

        // Try to obtain the file contents from the cache.
        if (_cache.TryGetValue(filePath, out fileContent))
        {
            return fileContent;
        }

        // The cache doesn't have the entry, so obtain the file 
        // contents from the file itself.
        fileContent = await GetFileContent(filePath);

        if (fileContent != null)
        {
            // Obtain a change token from the file provider whose
            // callback is triggered when the file is modified.
            var changeToken = _fileProvider.Watch(fileName);

            // Configure the cache entry options for a five minute
            // sliding expiration and use the change token to
            // expire the file in the cache if the file is
            // modified.
            var cacheEntryOptions = new MemoryCacheEntryOptions()
                .SetSlidingExpiration(TimeSpan.FromMinutes(5))
                .AddExpirationToken(changeToken);

            // Put the file contents into the cache.
            _cache.Set(filePath, fileContent, cacheEntryOptions);

            return fileContent;
        }

        return string.Empty;
    }
}

services.AddMemoryCache();
services.AddSingleton<FileService>();

The FileService  is registered in the service container along with the memory caching service.

In Startup.ConfigureServices :

The page model loads the file's content using the service.

In the Index page's OnGet  method (Pages/Index.cshtml.cs):



var fileContent = await _fileService.GetFileContents("poem.txt");

CompositeChangeToken class

var firstCancellationTokenSource = new CancellationTokenSource();
var secondCancellationTokenSource = new CancellationTokenSource();

var firstCancellationToken = firstCancellationTokenSource.Token;
var secondCancellationToken = secondCancellationTokenSource.Token;

var firstCancellationChangeToken = new CancellationChangeToken(firstCancellationToken);
var secondCancellationChangeToken = new CancellationChangeToken(secondCancellationToken);

var compositeChangeToken = 
    new CompositeChangeToken(
        new List<IChangeToken> 
        {
            firstCancellationChangeToken, 
            secondCancellationChangeToken
        });

Additional resources

For representing one or more IChangeToken  instances in a single object, use the CompositeChangeToken class.

HasChanged  on the composite token reports true  if any represented token HasChanged  is true . 

ActiveChangeCallbacks  on the composite token reports true  if any represented token ActiveChangeCallbacks  is 

true . If multiple concurrent change events occur, the composite change callback is invoked one time.

Cache in-memory in ASP.NET Core

Distributed caching in ASP.NET Core

Response caching in ASP.NET Core

Response Caching Middleware in ASP.NET Core

Cache Tag Helper in ASP.NET Core MVC

Distributed Cache Tag Helper in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.primitives.compositechangetoken


Open Web Interface for .NET (OWIN) with ASP.NET
Core
9/22/2020 • 3 minutes to read • Edit Online

NOTENOTE

Running OWIN middleware in the ASP.NET Core pipeline

public Task OwinHello(IDictionary<string, object> environment)
{
    string responseText = "Hello World via OWIN";
    byte[] responseBytes = Encoding.UTF8.GetBytes(responseText);

    // OWIN Environment Keys: https://owin.org/spec/spec/owin-1.0.0.html
    var responseStream = (Stream)environment["owin.ResponseBody"];
    var responseHeaders = (IDictionary<string, string[]>)environment["owin.ResponseHeaders"];

    responseHeaders["Content-Length"] = new string[] { 
responseBytes.Length.ToString(CultureInfo.InvariantCulture) };
    responseHeaders["Content-Type"] = new string[] { "text/plain" };

    return responseStream.WriteAsync(responseBytes, 0, responseBytes.Length);
}

By Steve Smith and Rick Anderson

ASP.NET Core supports the Open Web Interface for .NET (OWIN). OWIN allows web apps to be decoupled from

web servers. It defines a standard way for middleware to be used in a pipeline to handle requests and associated

responses. ASP.NET Core applications and middleware can interoperate with OWIN-based applications, servers,

and middleware.

OWIN provides a decoupling layer that allows two frameworks with disparate object models to be used together.

The Microsoft.AspNetCore.Owin  package provides two adapter implementations:

ASP.NET Core to OWIN

OWIN to ASP.NET Core

This allows ASP.NET Core to be hosted on top of an OWIN compatible server/host or for other OWIN compatible

components to be run on top of ASP.NET Core.

Using these adapters comes with a performance cost. Apps using only ASP.NET Core components shouldn't use the 

Microsoft.AspNetCore.Owin  package or adapters.

View or download sample code (how to download)

ASP.NET Core's OWIN support is deployed as part of the Microsoft.AspNetCore.Owin  package. You can import

OWIN support into your project by installing this package.

OWIN middleware conforms to the OWIN specification, which requires a Func<IDictionary<string, object>, Task>

interface, and specific keys be set (such as owin.ResponseBody ). The following simple OWIN middleware displays

"Hello World":

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/owin.md
https://ardalis.com/
https://twitter.com/RickAndMSFT
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/owin/sample
https://owin.org/spec/spec/owin-1.0.0.html


public void Configure(IApplicationBuilder app)
{
    app.UseOwin(pipeline =>
    {
        pipeline(next => OwinHello);
    });
}

NOTENOTE

NOTENOTE

app.UseOwin(pipeline =>
{
    pipeline(next =>
    {
        return async environment =>
        {
            // Do something before.
            await next(environment);
            // Do something after.
        };
    });
});

Run ASP.NET Core on an OWIN-based server and use its WebSockets
support

The sample signature returns a Task  and accepts an IDictionary<string, object>  as required by OWIN.

The following code shows how to add the OwinHello  middleware (shown above) to the ASP.NET Core pipeline

with the UseOwin  extension method.

You can configure other actions to take place within the OWIN pipeline.

Response headers should only be modified prior to the first write to the response stream.

Multiple calls to UseOwin  is discouraged for performance reasons. OWIN components will operate best if grouped together.

 

Another example of how OWIN-based servers' features can be leveraged by ASP.NET Core is access to features

like WebSockets. The .NET OWIN web server used in the previous example has support for Web Sockets built in,

which can be leveraged by an ASP.NET Core application. The example below shows a simple web app that

supports Web Sockets and echoes back everything sent to the server through WebSockets.



public class Startup
{
    public void Configure(IApplicationBuilder app)
    {
        app.Use(async (context, next) =>
        {
            if (context.WebSockets.IsWebSocketRequest)
            {
                WebSocket webSocket = await context.WebSockets.AcceptWebSocketAsync();
                await EchoWebSocket(webSocket);
            }
            else
            {
                await next();
            }
        });

        app.Run(context =>
        {
            return context.Response.WriteAsync("Hello World");
        });
    }

    private async Task EchoWebSocket(WebSocket webSocket)
    {
        byte[] buffer = new byte[1024];
        WebSocketReceiveResult received = await webSocket.ReceiveAsync(
            new ArraySegment<byte>(buffer), CancellationToken.None);

        while (!webSocket.CloseStatus.HasValue)
        {
            // Echo anything we receive
            await webSocket.SendAsync(new ArraySegment<byte>(buffer, 0, received.Count), 
                received.MessageType, received.EndOfMessage, CancellationToken.None);

            received = await webSocket.ReceiveAsync(new ArraySegment<byte>(buffer), 
                CancellationToken.None);
        }

        await webSocket.CloseAsync(webSocket.CloseStatus.Value, 
            webSocket.CloseStatusDescription, CancellationToken.None);
    }
}

OWIN environment

   var environment = new OwinEnvironment(HttpContext);
   var features = new OwinFeatureCollection(environment);

OWIN keys

Request data (OWIN v1.0.0)Request data (OWIN v1.0.0)

You can construct an OWIN environment using the HttpContext .

OWIN depends on an IDictionary<string,object>  object to communicate information throughout an HTTP

Request/Response exchange. ASP.NET Core implements the keys listed below. See the primary specification,

extensions, and OWIN Key Guidelines and Common Keys.

https://owin.org/#spec
https://owin.org/spec/spec/CommonKeys.html


KEYKEY VA L UE ( T Y P E)VA L UE ( T Y P E) DESC RIP T IO NDESC RIP T IO N

owin.RequestScheme String

owin.RequestMethod String

owin.RequestPathBase String

owin.RequestPath String

owin.RequestQueryString String

owin.RequestProtocol String

owin.RequestHeaders IDictionary<string,string[]>

owin.RequestBody Stream

Request data (OWIN v1.1.0)Request data (OWIN v1.1.0)

KEYKEY VA L UE ( T Y P E)VA L UE ( T Y P E) DESC RIP T IO NDESC RIP T IO N

owin.RequestId String Optional

Response data (OWIN v1.0.0)Response data (OWIN v1.0.0)

KEYKEY VA L UE ( T Y P E)VA L UE ( T Y P E) DESC RIP T IO NDESC RIP T IO N

owin.ResponseStatusCode int Optional

owin.ResponseReasonPhrase String Optional

owin.ResponseHeaders IDictionary<string,string[]>

owin.ResponseBody Stream

Other data (OWIN v1.0.0)Other data (OWIN v1.0.0)

KEYKEY VA L UE ( T Y P E)VA L UE ( T Y P E) DESC RIP T IO NDESC RIP T IO N

owin.CallCancelled CancellationToken

owin.Version String

Common keysCommon keys

KEYKEY VA L UE ( T Y P E)VA L UE ( T Y P E) DESC RIP T IO NDESC RIP T IO N

ssl.ClientCertificate X509Certificate

ssl.LoadClientCertAsync Func<Task>



server.RemoteIpAddress String

server.RemotePort String

server.LocalIpAddress String

server.LocalPort String

server.IsLocal bool

server.OnSendingHeaders Action<Action<object>,object>

KEYKEY VA L UE ( T Y P E)VA L UE ( T Y P E) DESC RIP T IO NDESC RIP T IO N

SendFiles v0.3.0SendFiles v0.3.0

KEYKEY VA L UE ( T Y P E)VA L UE ( T Y P E) DESC RIP T IO NDESC RIP T IO N

sendfile.SendAsync See delegate signature Per Request

Opaque v0.3.0Opaque v0.3.0

KEYKEY VA L UE ( T Y P E)VA L UE ( T Y P E) DESC RIP T IO NDESC RIP T IO N

opaque.Version String

opaque.Upgrade OpaqueUpgrade See delegate signature

opaque.Stream Stream

opaque.CallCancelled CancellationToken

WebSocket v0.3.0WebSocket v0.3.0

KEYKEY VA L UE ( T Y P E)VA L UE ( T Y P E) DESC RIP T IO NDESC RIP T IO N

websocket.Version String

websocket.Accept WebSocketAccept See delegate signature

websocket.AcceptAlt Non-spec

websocket.SubProtocol String See RFC6455 Section 4.2.2 Step 5.5

websocket.SendAsync WebSocketSendAsync See delegate signature

websocket.ReceiveAsync WebSocketReceiveAsync See delegate signature

websocket.CloseAsync WebSocketCloseAsync See delegate signature

websocket.CallCancelled CancellationToken

https://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm
https://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm
https://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm
https://tools.ietf.org/html/rfc6455#section-4.2.2
https://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm
https://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm
https://owin.org/spec/extensions/owin-SendFile-Extension-v0.3.0.htm


websocket.ClientCloseStatus int Optional

websocket.ClientCloseDescription String Optional

KEYKEY VA L UE ( T Y P E)VA L UE ( T Y P E) DESC RIP T IO NDESC RIP T IO N

Additional resources
Middleware

Servers



 

Background tasks with hosted services in ASP.NET
Core
9/22/2020 • 14 minutes to read • Edit Online

Worker Service template

<Project Sdk="Microsoft.NET.Sdk.Worker">

Package

IHostedService interface

By Jeow Li Huan

In ASP.NET Core, background tasks can be implemented as hosted services. A hosted service is a class with

background task logic that implements the IHostedService interface. This topic provides three hosted service

examples:

Background task that runs on a timer.

Hosted service that activates a scoped service. The scoped service can use dependency injection (DI).

Queued background tasks that run sequentially.

View or download sample code (how to download)

The ASP.NET Core Worker Service template provides a starting point for writing long running service apps.

An app created from the Worker Service template specifies the Worker SDK in its project file:

To use the template as a basis for a hosted services app:

Visual Studio

Visual Studio for Mac

.NET Core CLI

1. Create a new project.

2. Select Worker Ser viceWorker Ser vice. Select NextNext.

3. Provide a project name in the Project nameProject name field or accept the default project name. Select CreateCreate.

4. In the Create a new Worker ser viceCreate a new Worker ser vice dialog, select CreateCreate.

An app based on the Worker Service template uses the Microsoft.NET.Sdk.Worker  SDK and has an explicit

package reference to the Microsoft.Extensions.Hosting package. For example, see the sample app's project file

(BackgroundTasksSample.csproj).

For web apps that use the Microsoft.NET.Sdk.Web  SDK, the Microsoft.Extensions.Hosting package is

referenced implicitly from the shared framework. An explicit package reference in the app's project file isn't

required.

The IHostedService interface defines two methods for objects that are managed by the host:

StartAsync(CancellationToken): StartAsync  contains the logic to start the background task. 

StartAsync  is called before:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/host/hosted-services.md
https://github.com/huan086
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/hosted-services/samples/
https://www.nuget.org/packages/Microsoft.Extensions.Hosting
https://www.nuget.org/packages/Microsoft.Extensions.Hosting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice.startasync


  BackgroundService base class

using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            })
            .ConfigureServices(services =>
            {
                services.AddHostedService<VideosWatcher>();
            });
}

The app's request processing pipeline is configured ( Startup.Configure ).

The server is started and IApplicationLifetime.ApplicationStarted is triggered.

The default behavior can be changed so that the hosted service's StartAsync  runs after the app's

pipeline has been configured and ApplicationStarted  is called. To change the default behavior, add

the hosted service ( VideosWatcher  in the following example) after calling ConfigureWebHostDefaults :

StopAsync(CancellationToken): Triggered when the host is performing a graceful shutdown. StopAsync

contains the logic to end the background task. Implement IDisposable and finalizers (destructors) to

dispose of any unmanaged resources.

The cancellation token has a default five second timeout to indicate that the shutdown process should

no longer be graceful. When cancellation is requested on the token:

Any remaining background operations that the app is performing should be aborted.

Any methods called in StopAsync  should return promptly.

However, tasks aren't abandoned after cancellation is requested—the caller awaits all tasks to

complete.

If the app shuts down unexpectedly (for example, the app's process fails), StopAsync  might not be

called. Therefore, any methods called or operations conducted in StopAsync  might not occur.

To extend the default five second shutdown timeout, set:

ShutdownTimeout when using Generic Host. For more information, see .NET Generic Host.

Shutdown timeout host configuration setting when using Web Host. For more information, see

ASP.NET Core Web Host.

The hosted service is activated once at app startup and gracefully shut down at app shutdown. If an error is

thrown during background task execution, Dispose  should be called even if StopAsync  isn't called.

BackgroundService is a base class for implementing a long running IHostedService.

ExecuteAsync(CancellationToken) is called to run the background service. The implementation returns a Task

that represents the entire lifetime of the background service. No further services are started until

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime.applicationstarted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice.stopasync
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostoptions.shutdowntimeout
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice.executeasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task


  Timed background tasks

public class TimedHostedService : IHostedService, IDisposable
{
    private int executionCount = 0;
    private readonly ILogger<TimedHostedService> _logger;
    private Timer _timer;

    public TimedHostedService(ILogger<TimedHostedService> logger)
    {
        _logger = logger;
    }

    public Task StartAsync(CancellationToken stoppingToken)
    {
        _logger.LogInformation("Timed Hosted Service running.");

        _timer = new Timer(DoWork, null, TimeSpan.Zero, 
            TimeSpan.FromSeconds(5));

        return Task.CompletedTask;
    }

    private void DoWork(object state)
    {
        var count = Interlocked.Increment(ref executionCount);

        _logger.LogInformation(
            "Timed Hosted Service is working. Count: {Count}", count);
    }

    public Task StopAsync(CancellationToken stoppingToken)
    {
        _logger.LogInformation("Timed Hosted Service is stopping.");

        _timer?.Change(Timeout.Infinite, 0);

        return Task.CompletedTask;
    }

    public void Dispose()
    {
        _timer?.Dispose();
    }
}

ExecuteAsync becomes asynchronous, such as by calling await . Avoid performing long, blocking

initialization work in ExecuteAsync . The host blocks in StopAsync(CancellationToken) waiting for 

ExecuteAsync  to complete.

The cancellation token is triggered when IHostedService.StopAsync is called. Your implementation of 

ExecuteAsync  should finish promptly when the cancellation token is fired in order to gracefully shut down

the service. Otherwise, the service ungracefully shuts down at the shutdown timeout. For more information,

see the IHostedService interface section.

A timed background task makes use of the System.Threading.Timer class. The timer triggers the task's 

DoWork  method. The timer is disabled on StopAsync  and disposed when the service container is disposed on

Dispose :

The Timer doesn't wait for previous executions of DoWork  to finish, so the approach shown might not be

suitable for every scenario. Interlocked.Increment is used to increment the execution counter as an atomic

operation, which ensures that multiple threads don't update executionCount  concurrently.

https://github.com/dotnet/extensions/issues/2149
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice.stopasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice.stopasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.timer
https://docs.microsoft.com/en-us/dotnet/api/system.threading.timer
https://docs.microsoft.com/en-us/dotnet/api/system.threading.interlocked.increment


services.AddHostedService<TimedHostedService>();

Consuming a scoped service in a background task

internal interface IScopedProcessingService
{
    Task DoWork(CancellationToken stoppingToken);
}

internal class ScopedProcessingService : IScopedProcessingService
{
    private int executionCount = 0;
    private readonly ILogger _logger;
    
    public ScopedProcessingService(ILogger<ScopedProcessingService> logger)
    {
        _logger = logger;
    }

    public async Task DoWork(CancellationToken stoppingToken)
    {
        while (!stoppingToken.IsCancellationRequested)
        {
            executionCount++;

            _logger.LogInformation(
                "Scoped Processing Service is working. Count: {Count}", executionCount);

            await Task.Delay(10000, stoppingToken);
        }
    }
}

The service is registered in IHostBuilder.ConfigureServices  (Program.cs) with the AddHostedService

extension method:

To use scoped services within a BackgroundService, create a scope. No scope is created for a hosted service

by default.

The scoped background task service contains the background task's logic. In the following example:

The service is asynchronous. The DoWork  method returns a Task . For demonstration purposes, a delay of

ten seconds is awaited in the DoWork  method.

An ILogger is injected into the service.

The hosted service creates a scope to resolve the scoped background task service to call its DoWork  method. 

DoWork  returns a Task , which is awaited in ExecuteAsync :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger


public class ConsumeScopedServiceHostedService : BackgroundService
{
    private readonly ILogger<ConsumeScopedServiceHostedService> _logger;

    public ConsumeScopedServiceHostedService(IServiceProvider services, 
        ILogger<ConsumeScopedServiceHostedService> logger)
    {
        Services = services;
        _logger = logger;
    }

    public IServiceProvider Services { get; }

    protected override async Task ExecuteAsync(CancellationToken stoppingToken)
    {
        _logger.LogInformation(
            "Consume Scoped Service Hosted Service running.");

        await DoWork(stoppingToken);
    }

    private async Task DoWork(CancellationToken stoppingToken)
    {
        _logger.LogInformation(
            "Consume Scoped Service Hosted Service is working.");

        using (var scope = Services.CreateScope())
        {
            var scopedProcessingService = 
                scope.ServiceProvider
                    .GetRequiredService<IScopedProcessingService>();

            await scopedProcessingService.DoWork(stoppingToken);
        }
    }

    public override async Task StopAsync(CancellationToken stoppingToken)
    {
        _logger.LogInformation(
            "Consume Scoped Service Hosted Service is stopping.");

        await base.StopAsync(stoppingToken);
    }
}

services.AddHostedService<ConsumeScopedServiceHostedService>();
services.AddScoped<IScopedProcessingService, ScopedProcessingService>();

Queued background tasks

The services are registered in IHostBuilder.ConfigureServices  (Program.cs). The hosted service is registered

with the AddHostedService  extension method:

A background task queue is based on the .NET 4.x QueueBackgroundWorkItem:

https://docs.microsoft.com/en-us/dotnet/api/system.web.hosting.hostingenvironment.queuebackgroundworkitem


public interface IBackgroundTaskQueue
{
    void QueueBackgroundWorkItem(Func<CancellationToken, Task> workItem);

    Task<Func<CancellationToken, Task>> DequeueAsync(
        CancellationToken cancellationToken);
}

public class BackgroundTaskQueue : IBackgroundTaskQueue
{
    private ConcurrentQueue<Func<CancellationToken, Task>> _workItems = 
        new ConcurrentQueue<Func<CancellationToken, Task>>();
    private SemaphoreSlim _signal = new SemaphoreSlim(0);

    public void QueueBackgroundWorkItem(
        Func<CancellationToken, Task> workItem)
    {
        if (workItem == null)
        {
            throw new ArgumentNullException(nameof(workItem));
        }

        _workItems.Enqueue(workItem);
        _signal.Release();
    }

    public async Task<Func<CancellationToken, Task>> DequeueAsync(
        CancellationToken cancellationToken)
    {
        await _signal.WaitAsync(cancellationToken);
        _workItems.TryDequeue(out var workItem);

        return workItem;
    }
}

In the following QueueHostedService  example:

The BackgroundProcessing  method returns a Task , which is awaited in ExecuteAsync .

Background tasks in the queue are dequeued and executed in BackgroundProcessing .

Work items are awaited before the service stops in StopAsync .



public class QueuedHostedService : BackgroundService
{
    private readonly ILogger<QueuedHostedService> _logger;

    public QueuedHostedService(IBackgroundTaskQueue taskQueue, 
        ILogger<QueuedHostedService> logger)
    {
        TaskQueue = taskQueue;
        _logger = logger;
    }

    public IBackgroundTaskQueue TaskQueue { get; }

    protected override async Task ExecuteAsync(CancellationToken stoppingToken)
    {
        _logger.LogInformation(
            $"Queued Hosted Service is running.{Environment.NewLine}" +
            $"{Environment.NewLine}Tap W to add a work item to the " +
            $"background queue.{Environment.NewLine}");

        await BackgroundProcessing(stoppingToken);
    }

    private async Task BackgroundProcessing(CancellationToken stoppingToken)
    {
        while (!stoppingToken.IsCancellationRequested)
        {
            var workItem = 
                await TaskQueue.DequeueAsync(stoppingToken);

            try
            {
                await workItem(stoppingToken);
            }
            catch (Exception ex)
            {
                _logger.LogError(ex, 
                    "Error occurred executing {WorkItem}.", nameof(workItem));
            }
        }
    }

    public override async Task StopAsync(CancellationToken stoppingToken)
    {
        _logger.LogInformation("Queued Hosted Service is stopping.");

        await base.StopAsync(stoppingToken);
    }
}

public class MonitorLoop
{
    private readonly IBackgroundTaskQueue _taskQueue;
    private readonly ILogger _logger;
    private readonly CancellationToken _cancellationToken;

A MonitorLoop  service handles enqueuing tasks for the hosted service whenever the w  key is selected on an

input device:

The IBackgroundTaskQueue  is injected into the MonitorLoop  service.

IBackgroundTaskQueue.QueueBackgroundWorkItem  is called to enqueue a work item.

The work item simulates a long-running background task:

Three 5-second delays are executed ( Task.Delay ).

A try-catch  statement traps OperationCanceledException if the task is cancelled.

https://docs.microsoft.com/en-us/dotnet/api/system.operationcanceledexception


    private readonly CancellationToken _cancellationToken;

    public MonitorLoop(IBackgroundTaskQueue taskQueue, 
        ILogger<MonitorLoop> logger, 
        IHostApplicationLifetime applicationLifetime)
    {
        _taskQueue = taskQueue;
        _logger = logger;
        _cancellationToken = applicationLifetime.ApplicationStopping;
    }

    public void StartMonitorLoop()
    {
        _logger.LogInformation("Monitor Loop is starting.");

        // Run a console user input loop in a background thread
        Task.Run(() => Monitor());
    }

    public void Monitor()
    {
        while (!_cancellationToken.IsCancellationRequested)
        {
            var keyStroke = Console.ReadKey();

            if (keyStroke.Key == ConsoleKey.W)
            {
                // Enqueue a background work item
                _taskQueue.QueueBackgroundWorkItem(async token =>
                {
                    // Simulate three 5-second tasks to complete
                    // for each enqueued work item

                    int delayLoop = 0;
                    var guid = Guid.NewGuid().ToString();

                    _logger.LogInformation(
                        "Queued Background Task {Guid} is starting.", guid);

                    while (!token.IsCancellationRequested && delayLoop < 3)
                    {
                        try
                        {
                            await Task.Delay(TimeSpan.FromSeconds(5), token);
                        }
                        catch (OperationCanceledException)
                        {
                            // Prevent throwing if the Delay is cancelled
                        }

                        delayLoop++;

                        _logger.LogInformation(
                            "Queued Background Task {Guid} is running. " +
                            "{DelayLoop}/3", guid, delayLoop);
                    }

                    if (delayLoop == 3)
                    {
                        _logger.LogInformation(
                            "Queued Background Task {Guid} is complete.", guid);
                    }
                    else
                    {
                        _logger.LogInformation(
                            "Queued Background Task {Guid} was cancelled.", guid);
                    }
                });
            }
        }



        }
    }
}

services.AddSingleton<MonitorLoop>();
services.AddHostedService<QueuedHostedService>();
services.AddSingleton<IBackgroundTaskQueue, BackgroundTaskQueue>();

var monitorLoop = host.Services.GetRequiredService<MonitorLoop>();
monitorLoop.StartMonitorLoop();

Package

IHostedService interface

The services are registered in IHostBuilder.ConfigureServices  (Program.cs). The hosted service is registered

with the AddHostedService  extension method:

MonitorLoop  is started in Program.Main :

In ASP.NET Core, background tasks can be implemented as hosted services. A hosted service is a class with

background task logic that implements the IHostedService interface. This topic provides three hosted service

examples:

Background task that runs on a timer.

Hosted service that activates a scoped service. The scoped service can use dependency injection (DI)

Queued background tasks that run sequentially.

View or download sample code (how to download)

Reference the Microsoft.AspNetCore.App metapackage or add a package reference to the

Microsoft.Extensions.Hosting package.

Hosted services implement the IHostedService interface. The interface defines two methods for objects that

are managed by the host:

StartAsync(CancellationToken): StartAsync  contains the logic to start the background task. When

using the Web Host, StartAsync  is called after the server has started and

IApplicationLifetime.ApplicationStarted is triggered. When using the Generic Host, StartAsync  is

called before ApplicationStarted  is triggered.

StopAsync(CancellationToken): Triggered when the host is performing a graceful shutdown. StopAsync

contains the logic to end the background task. Implement IDisposable and finalizers (destructors) to

dispose of any unmanaged resources.

The cancellation token has a default five second timeout to indicate that the shutdown process should

no longer be graceful. When cancellation is requested on the token:

Any remaining background operations that the app is performing should be aborted.

Any methods called in StopAsync  should return promptly.

However, tasks aren't abandoned after cancellation is requested—the caller awaits all tasks to

complete.

If the app shuts down unexpectedly (for example, the app's process fails), StopAsync  might not be

called. Therefore, any methods called or operations conducted in StopAsync  might not occur.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/hosted-services/samples/
https://www.nuget.org/packages/Microsoft.Extensions.Hosting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice.startasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iapplicationlifetime.applicationstarted
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice.stopasync
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors


Timed background tasks

internal class TimedHostedService : IHostedService, IDisposable
{
    private readonly ILogger _logger;
    private Timer _timer;

    public TimedHostedService(ILogger<TimedHostedService> logger)
    {
        _logger = logger;
    }

    public Task StartAsync(CancellationToken cancellationToken)
    {
        _logger.LogInformation("Timed Background Service is starting.");

        _timer = new Timer(DoWork, null, TimeSpan.Zero, 
            TimeSpan.FromSeconds(5));

        return Task.CompletedTask;
    }

    private void DoWork(object state)
    {
        _logger.LogInformation("Timed Background Service is working.");
    }

    public Task StopAsync(CancellationToken cancellationToken)
    {
        _logger.LogInformation("Timed Background Service is stopping.");

        _timer?.Change(Timeout.Infinite, 0);

        return Task.CompletedTask;
    }

    public void Dispose()
    {
        _timer?.Dispose();
    }
}

services.AddHostedService<TimedHostedService>();

To extend the default five second shutdown timeout, set:

ShutdownTimeout when using Generic Host. For more information, see .NET Generic Host.

Shutdown timeout host configuration setting when using Web Host. For more information, see

ASP.NET Core Web Host.

The hosted service is activated once at app startup and gracefully shut down at app shutdown. If an error is

thrown during background task execution, Dispose  should be called even if StopAsync  isn't called.

A timed background task makes use of the System.Threading.Timer class. The timer triggers the task's 

DoWork  method. The timer is disabled on StopAsync  and disposed when the service container is disposed on

Dispose :

The Timer doesn't wait for previous executions of DoWork  to finish, so the approach shown might not be

suitable for every scenario.

The service is registered in Startup.ConfigureServices  with the AddHostedService  extension method:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.hostoptions.shutdowntimeout
https://docs.microsoft.com/en-us/dotnet/api/system.threading.timer
https://docs.microsoft.com/en-us/dotnet/api/system.threading.timer


Consuming a scoped service in a background task

internal interface IScopedProcessingService
{
    void DoWork();
}

internal class ScopedProcessingService : IScopedProcessingService
{
    private readonly ILogger _logger;
    
    public ScopedProcessingService(ILogger<ScopedProcessingService> logger)
    {
        _logger = logger;
    }

    public void DoWork()
    {
        _logger.LogInformation("Scoped Processing Service is working.");
    }
}

To use scoped services within an IHostedService , create a scope. No scope is created for a hosted service by

default.

The scoped background task service contains the background task's logic. In the following example, an

ILogger is injected into the service:

The hosted service creates a scope to resolve the scoped background task service to call its DoWork  method:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger


internal class ConsumeScopedServiceHostedService : IHostedService
{
    private readonly ILogger _logger;

    public ConsumeScopedServiceHostedService(IServiceProvider services, 
        ILogger<ConsumeScopedServiceHostedService> logger)
    {
        Services = services;
        _logger = logger;
    }

    public IServiceProvider Services { get; }

    public Task StartAsync(CancellationToken cancellationToken)
    {
        _logger.LogInformation(
            "Consume Scoped Service Hosted Service is starting.");

        DoWork();

        return Task.CompletedTask;
    }

    private void DoWork()
    {
        _logger.LogInformation(
            "Consume Scoped Service Hosted Service is working.");

        using (var scope = Services.CreateScope())
        {
            var scopedProcessingService = 
                scope.ServiceProvider
                    .GetRequiredService<IScopedProcessingService>();

            scopedProcessingService.DoWork();
        }
    }

    public Task StopAsync(CancellationToken cancellationToken)
    {
        _logger.LogInformation(
            "Consume Scoped Service Hosted Service is stopping.");

        return Task.CompletedTask;
    }
}

services.AddHostedService<ConsumeScopedServiceHostedService>();
services.AddScoped<IScopedProcessingService, ScopedProcessingService>();

Queued background tasks

The services are registered in Startup.ConfigureServices . The IHostedService  implementation is registered

with the AddHostedService  extension method:

A background task queue is based on the .NET Framework 4.x QueueBackgroundWorkItem (tentatively

scheduled to be built-in for ASP.NET Core):

https://docs.microsoft.com/en-us/dotnet/api/system.web.hosting.hostingenvironment.queuebackgroundworkitem
https://github.com/aspnet/Hosting/issues/1280


public interface IBackgroundTaskQueue
{
    void QueueBackgroundWorkItem(Func<CancellationToken, Task> workItem);

    Task<Func<CancellationToken, Task>> DequeueAsync(
        CancellationToken cancellationToken);
}

public class BackgroundTaskQueue : IBackgroundTaskQueue
{
    private ConcurrentQueue<Func<CancellationToken, Task>> _workItems = 
        new ConcurrentQueue<Func<CancellationToken, Task>>();
    private SemaphoreSlim _signal = new SemaphoreSlim(0);

    public void QueueBackgroundWorkItem(
        Func<CancellationToken, Task> workItem)
    {
        if (workItem == null)
        {
            throw new ArgumentNullException(nameof(workItem));
        }

        _workItems.Enqueue(workItem);
        _signal.Release();
    }

    public async Task<Func<CancellationToken, Task>> DequeueAsync(
        CancellationToken cancellationToken)
    {
        await _signal.WaitAsync(cancellationToken);
        _workItems.TryDequeue(out var workItem);

        return workItem;
    }
}

In QueueHostedService , background tasks in the queue are dequeued and executed as a BackgroundService,

which is a base class for implementing a long running IHostedService :



public class QueuedHostedService : BackgroundService
{
    private readonly ILogger _logger;

    public QueuedHostedService(IBackgroundTaskQueue taskQueue, 
        ILoggerFactory loggerFactory)
    {
        TaskQueue = taskQueue;
        _logger = loggerFactory.CreateLogger<QueuedHostedService>();
    }

    public IBackgroundTaskQueue TaskQueue { get; }

    protected async override Task ExecuteAsync(
        CancellationToken cancellationToken)
    {
        _logger.LogInformation("Queued Hosted Service is starting.");

        while (!cancellationToken.IsCancellationRequested)
        {
            var workItem = await TaskQueue.DequeueAsync(cancellationToken);

            try
            {
                await workItem(cancellationToken);
            }
            catch (Exception ex)
            {
                _logger.LogError(ex, 
                   "Error occurred executing {WorkItem}.", nameof(workItem));
            }
        }

        _logger.LogInformation("Queued Hosted Service is stopping.");
    }
}

services.AddHostedService<QueuedHostedService>();
services.AddSingleton<IBackgroundTaskQueue, BackgroundTaskQueue>();

The services are registered in Startup.ConfigureServices . The IHostedService  implementation is registered

with the AddHostedService  extension method:

In the Index page model class:

The IBackgroundTaskQueue  is injected into the constructor and assigned to Queue .

An IServiceScopeFactory is injected and assigned to _serviceScopeFactory . The factory is used to create

instances of IServiceScope, which is used to create services within a scope. A scope is created in order to

use the app's AppDbContext  (a scoped service) to write database records in the IBackgroundTaskQueue  (a

singleton service).

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescopefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.iservicescope


public class IndexModel : PageModel
{
    private readonly AppDbContext _db;
    private readonly ILogger _logger;
    private readonly IServiceScopeFactory _serviceScopeFactory;

    public IndexModel(AppDbContext db, IBackgroundTaskQueue queue, 
        ILogger<IndexModel> logger, IServiceScopeFactory serviceScopeFactory)
    {
        _db = db;
        _logger = logger;
        Queue = queue;
        _serviceScopeFactory = serviceScopeFactory;
    }

    public IBackgroundTaskQueue Queue { get; }

public IActionResult OnPostAddTaskAsync()
{
    Queue.QueueBackgroundWorkItem(async token =>
    {
        var guid = Guid.NewGuid().ToString();

        using (var scope = _serviceScopeFactory.CreateScope())
        {
            var scopedServices = scope.ServiceProvider;
            var db = scopedServices.GetRequiredService<AppDbContext>();

            for (int delayLoop = 1; delayLoop < 4; delayLoop++)
            {
                try
                {
                    db.Messages.Add(
                        new Message() 
                        { 
                            Text = $"Queued Background Task {guid} has " +
                                $"written a step. {delayLoop}/3"
                        });
                    await db.SaveChangesAsync();
                }
                catch (Exception ex)
                {
                    _logger.LogError(ex, 
                        "An error occurred writing to the " +
                        "database. Error: {Message}", ex.Message);
                }

                await Task.Delay(TimeSpan.FromSeconds(5), token);
            }
        }

        _logger.LogInformation(
            "Queued Background Task {Guid} is complete. 3/3", guid);
    });

    return RedirectToPage();
}

Additional resources

When the Add TaskAdd Task button is selected on the Index page, the OnPostAddTask  method is executed. 

QueueBackgroundWorkItem  is called to enqueue a work item:



Implement background tasks in microservices with IHostedService and the BackgroundService class

Run background tasks with WebJobs in Azure App Service

Timer

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/multi-container-microservice-net-applications/background-tasks-with-ihostedservice
https://docs.microsoft.com/en-us/azure/app-service/webjobs-create
https://docs.microsoft.com/en-us/dotnet/api/system.threading.timer


  

Use hosting startup assemblies in ASP.NET Core
9/22/2020 • 29 minutes to read • Edit Online

HostingStartup attribute

[assembly: HostingStartup(typeof(StartupEnhancement.StartupEnhancementHostingStartup))]

Discover loaded hosting startup assemblies

Disable automatic loading of hosting startup assemblies

By Pavel Krymets

An IHostingStartup (hosting startup) implementation adds enhancements to an app at startup from an external

assembly. For example, an external library can use a hosting startup implementation to provide additional

configuration providers or services to an app.

View or download sample code (how to download)

A HostingStartup attribute indicates the presence of a hosting startup assembly to activate at runtime.

The entry assembly or the assembly containing the Startup  class is automatically scanned for the 

HostingStartup  attribute. The list of assemblies to search for HostingStartup  attributes is loaded at runtime

from configuration in the WebHostDefaults.HostingStartupAssembliesKey. The list of assemblies to exclude

from discovery is loaded from the WebHostDefaults.HostingStartupExcludeAssembliesKey.

In the following example, the namespace of the hosting startup assembly is StartupEnhancement . The class

containing the hosting startup code is StartupEnhancementHostingStartup :

The HostingStartup  attribute is typically located in the hosting startup assembly's IHostingStartup

implementation class file.

To discover loaded hosting startup assemblies, enable logging and check the app's logs. Errors that occur when

loading assemblies are logged. Loaded hosting startup assemblies are logged at the Debug level, and all errors

are logged.

To disable automatic loading of hosting startup assemblies, use one of the following approaches:

To prevent all hosting startup assemblies from loading, set one of the following to true  or 1 :

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseSetting(
                    WebHostDefaults.PreventHostingStartupKey, "true")
                .UseStartup<Startup>();
        });

Prevent Hosting Startup host configuration setting:

ASPNETCORE_PREVENTHOSTINGSTARTUP  environment variable.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/host/platform-specific-configuration.md
https://github.com/pakrym
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/platform-specific-configuration/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingstartupattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostdefaults.hostingstartupassemblieskey
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostdefaults.hostingstartupexcludeassemblieskey


    

Project

Class libraryClass library

To prevent specific hosting startup assemblies from loading, set one of the following to a semicolon-

delimited string of hosting startup assemblies to exclude at startup:

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseSetting(
                    WebHostDefaults.HostingStartupExcludeAssembliesKey, 
                    "{ASSEMBLY1;ASSEMBLY2; ...}")
                .UseStartup<Startup>();
        });

Hosting Startup Exclude Assemblies host configuration setting:

ASPNETCORE_HOSTINGSTARTUPEXCLUDEASSEMBLIES  environment variable.

If both the host configuration setting and the environment variable are set, the host setting controls the

behavior.

Disabling hosting startup assemblies using the host setting or environment variable disables the assembly

globally and may disable several characteristics of an app.

Create a hosting startup with either of the following project types:

Class library

Console app without an entry point

A hosting startup enhancement can be provided in a class library. The library contains a HostingStartup

attribute.

The sample code includes a Razor Pages app, HostingStartupApp, and a class library, HostingStartupLibrary. The

class library:

Contains a hosting startup class, ServiceKeyInjection , which implements IHostingStartup . 

ServiceKeyInjection  adds a pair of service strings to the app's configuration using the in-memory

configuration provider (AddInMemoryCollection).

Includes a HostingStartup  attribute that identifies the hosting startup's namespace and class.

The ServiceKeyInjection  class's Configure method uses an IWebHostBuilder to add enhancements to an app.

HostingStartupLibrary/ServiceKeyInjection.cs:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/platform-specific-configuration/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.memoryconfigurationbuilderextensions.addinmemorycollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder


[assembly: HostingStartup(typeof(HostingStartupLibrary.ServiceKeyInjection))]

namespace HostingStartupLibrary
{
    public class ServiceKeyInjection : IHostingStartup
    {
        public void Configure(IWebHostBuilder builder)
        {
            builder.ConfigureAppConfiguration(config =>
            {
                var dict = new Dictionary<string, string>
                {
                    {"DevAccount_FromLibrary", "DEV_1111111-1111"},
                    {"ProdAccount_FromLibrary", "PROD_2222222-2222"}
                };

                config.AddInMemoryCollection(dict);
            });
        }
    }
}

public class IndexModel : PageModel
{
    public IndexModel(IConfiguration config)
    {
        ServiceKey_Development_Library = config["DevAccount_FromLibrary"];
        ServiceKey_Production_Library = config["ProdAccount_FromLibrary"];
        ServiceKey_Development_Package = config["DevAccount_FromPackage"];
        ServiceKey_Production_Package = config["ProdAccount_FromPackage"];
    }

    public string ServiceKey_Development_Library { get; private set; }
    public string ServiceKey_Production_Library { get; private set; }
    public string ServiceKey_Development_Package { get; private set; }
    public string ServiceKey_Production_Package { get; private set; }

    public void OnGet()
    {
    }
}

The app's Index page reads and renders the configuration values for the two keys set by the class library's

hosting startup assembly:

HostingStartupApp/Pages/Index.cshtml.cs:

The sample code also includes a NuGet package project that provides a separate hosting startup,

HostingStartupPackage. The package has the same characteristics of the class library described earlier. The

package:

Contains a hosting startup class, ServiceKeyInjection , which implements IHostingStartup . 

ServiceKeyInjection  adds a pair of service strings to the app's configuration.

Includes a HostingStartup  attribute.

HostingStartupPackage/ServiceKeyInjection.cs:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/platform-specific-configuration/samples/


    

[assembly: HostingStartup(typeof(HostingStartupPackage.ServiceKeyInjection))]

namespace HostingStartupPackage
{
    public class ServiceKeyInjection : IHostingStartup
    {
        public void Configure(IWebHostBuilder builder)
        {
            builder.ConfigureAppConfiguration(config =>
            {
                var dict = new Dictionary<string, string>
                {
                    {"DevAccount_FromPackage", "DEV_3333333-3333"},
                    {"ProdAccount_FromPackage", "PROD_4444444-4444"}
                };

                config.AddInMemoryCollection(dict);
            });
        }
    }
}

public class IndexModel : PageModel
{
    public IndexModel(IConfiguration config)
    {
        ServiceKey_Development_Library = config["DevAccount_FromLibrary"];
        ServiceKey_Production_Library = config["ProdAccount_FromLibrary"];
        ServiceKey_Development_Package = config["DevAccount_FromPackage"];
        ServiceKey_Production_Package = config["ProdAccount_FromPackage"];
    }

    public string ServiceKey_Development_Library { get; private set; }
    public string ServiceKey_Production_Library { get; private set; }
    public string ServiceKey_Development_Package { get; private set; }
    public string ServiceKey_Production_Package { get; private set; }

    public void OnGet()
    {
    }
}

Console app without an entry pointConsole app without an entry point

The app's Index page reads and renders the configuration values for the two keys set by the package's hosting

startup assembly:

HostingStartupApp/Pages/Index.cshtml.cs:

This approach is only available for .NET Core apps, not .NET Framework.

A dynamic hosting startup enhancement that doesn't require a compile-time reference for activation can be

provided in a console app without an entry point that contains a HostingStartup  attribute. Publishing the

console app produces a hosting startup assembly that can be consumed from the runtime store.

A console app without an entry point is used in this process because:

A dependencies file is required to consume the hosting startup in the hosting startup assembly. A

dependencies file is a runnable app asset that's produced by publishing an app, not a library.

A library can't be added directly to the runtime package store, which requires a runnable project that targets

the shared runtime.

In the creation of a dynamic hosting startup:

https://docs.microsoft.com/en-us/dotnet/core/deploying/runtime-store


<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.Hosting.Abstractions" 
                      Version="3.0.0" />
  </ItemGroup>

</Project>

[assembly: HostingStartup(typeof(StartupEnhancement.StartupEnhancementHostingStartup))]

namespace StartupEnhancement
{
    public class StartupEnhancementHostingStartup : IHostingStartup
    {
        public void Configure(IWebHostBuilder builder)
        {
            // Use the IWebHostBuilder to add app enhancements.
        }
    }
}

A hosting startup assembly is created from the console app without an entry point that:

The console app is published to obtain the hosting startup's dependencies. A consequence of publishing the

console app is that unused dependencies are trimmed from the dependencies file.

The dependencies file is modified to set the runtime location of the hosting startup assembly.

The hosting startup assembly and its dependencies file is placed into the runtime package store. To discover

the hosting startup assembly and its dependencies file, they're listed in a pair of environment variables.

Includes a class that contains the IHostingStartup  implementation.

Includes a HostingStartup attribute to identify the IHostingStartup  implementation class.

The console app references the Microsoft.AspNetCore.Hosting.Abstractions package:

A HostingStartup attribute identifies a class as an implementation of IHostingStartup  for loading and execution

when building the IWebHost. In the following example, the namespace is StartupEnhancement , and the class is 

StartupEnhancementHostingStartup :

A class implements IHostingStartup . The class's Configure method uses an IWebHostBuilder to add

enhancements to an app. IHostingStartup.Configure  in the hosting startup assembly is called by the runtime

before Startup.Configure  in user code, which allows user code to overwrite any configuration provided by the

hosting startup assembly.

When building an IHostingStartup  project, the dependencies file (.deps.json) sets the runtime  location of the

assembly to the bin folder :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingstartupattribute
https://www.nuget.org/packages/Microsoft.AspNetCore.Hosting.Abstractions/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingstartupattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder


"targets": {
  ".NETCoreApp,Version=v3.0": {
    "StartupEnhancement/1.0.0": {
      "dependencies": {
        "Microsoft.AspNetCore.Hosting.Abstractions": "3.0.0"
      },
      "runtime": {
        "StartupEnhancement.dll": {}
      }
    }
  }
}

Configuration provided by the hosting startup

public class ConfigurationInjection : IHostingStartup
{
    public void Configure(IWebHostBuilder builder)
    {
        Dictionary<string, string> dict;

        builder.ConfigureAppConfiguration(config =>
        {
            dict = new Dictionary<string, string>
            {
                {"ConfigurationKey1", 
                    "From IHostingStartup: Higher priority " +
                    "than the app's configuration."},
            };

            config.AddInMemoryCollection(dict);
        });

        dict = new Dictionary<string, string>
        {
            {"ConfigurationKey2", 
                "From IHostingStartup: Lower priority " +
                "than the app's configuration."},
        };

        var builtConfig = new ConfigurationBuilder()
            .AddInMemoryCollection(dict)
            .Build();

        builder.UseConfiguration(builtConfig);
    }
}

Only part of the file is shown. The assembly name in the example is StartupEnhancement .

There are two approaches to handling configuration depending on whether you want the hosting startup's

configuration to take precedence or the app's configuration to take precedence:

1. Provide configuration to the app using ConfigureAppConfiguration to load the configuration after the app's

ConfigureAppConfiguration delegates execute. Hosting startup configuration takes priority over the app's

configuration using this approach.

2. Provide configuration to the app using UseConfiguration to load the configuration before the app's

ConfigureAppConfiguration delegates execute. The app's configuration values take priority over those

provided by the hosting startup using this approach.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.configureappconfiguration


            

Specify the hosting startup assembly

HostingStartupLibrary;HostingStartupPackage;StartupDiagnostics

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseSetting(
                    WebHostDefaults.HostingStartupAssembliesKey, 
                    "{ASSEMBLY1;ASSEMBLY2; ...}")
                .UseStartup<Startup>();
        });

Activation

Runtime storeRuntime store

dotnet store --manifest {MANIFEST FILE} --runtime {RUNTIME IDENTIFIER} --output {OUTPUT LOCATION} --skip-
optimization

dotnet store --manifest store.manifest.csproj --runtime win7-x64 --output ./deployment/store --skip-
optimization

For either a class library- or console app-supplied hosting startup, specify the hosting startup assembly's name

in the ASPNETCORE_HOSTINGSTARTUPASSEMBLIES  environment variable. The environment variable is a semicolon-

delimited list of assemblies.

Only hosting startup assemblies are scanned for the HostingStartup  attribute. For the sample app,

HostingStartupApp, to discover the hosting startups described earlier, the environment variable is set to the

following value:

A hosting startup assembly can also be set using the Hosting Startup Assemblies host configuration setting:

When multiple hosting startup assembles are present, their Configure methods are executed in the order that

the assemblies are listed.

Options for hosting startup activation are:

Runtime store: Activation doesn't require a compile-time reference for activation. The sample app places the

hosting startup assembly and dependencies files into a folder, deployment, to facilitate deployment of the

hosting startup in a multimachine environment. The deployment folder also includes a PowerShell script that

creates or modifies environment variables on the deployment system to enable the hosting startup.

Compile-time reference required for activation

NuGet package

Project bin folder

The hosting startup implementation is placed in the runtime store. A compile-time reference to the assembly

isn't required by the enhanced app.

After the hosting startup is built, a runtime store is generated using the manifest project file and the dotnet store

command.

In the sample app (RuntimeStore project) the following command is used:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup.configure
https://docs.microsoft.com/en-us/dotnet/core/deploying/runtime-store
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-store


{
  "runtimeTarget": {
    "name": ".NETCoreApp,Version=v3.0",
    "signature": ""
  },
  "compilationOptions": {},
  "targets": {
    ".NETCoreApp,Version=v3.0": {
      "store.manifest/1.0.0": {
        "dependencies": {
          "StartupDiagnostics": "1.0.0"
        },
        "runtime": {
          "store.manifest.dll": {}
        }
      },
      "StartupDiagnostics/1.0.0": {
        "runtime": {
          "lib/netcoreapp3.0/StartupDiagnostics.dll": {
            "assemblyVersion": "1.0.0.0",
            "fileVersion": "1.0.0.0"
          }
        }
      }
    }
  },
  "libraries": {
    "store.manifest/1.0.0": {
      "type": "project",
      "serviceable": false,
      "sha512": ""
    },
    "StartupDiagnostics/1.0.0": {
      "type": "package",
      "serviceable": true,
      "sha512": "sha512-
xrhzuNSyM5/f4ZswhooJ9dmIYLP64wMnqUJSyTKVDKDVj5T+qtzypl8JmM/aFJLLpYrf0FYpVWvGujd7/FfMEw==",
      "path": "startupdiagnostics/1.0.0",
      "hashPath": "startupdiagnostics.1.0.0.nupkg.sha512"
    }
  }
}

For the runtime to discover the runtime store, the runtime store's location is added to the DOTNET_SHARED_STORE

environment variable.

Modify and place the hosting star tup's dependencies fileModify and place the hosting star tup's dependencies file

To activate the enhancement without a package reference to the enhancement, specify additional dependencies

to the runtime with additionalDeps . additionalDeps  allows you to:

Extend the app's library graph by providing a set of additional .deps.json files to merge with the app's own

.deps.json file on startup.

Make the hosting startup assembly discoverable and loadable.

The recommended approach for generating the additional dependencies file is to:

1. Execute dotnet publish  on the runtime store manifest file referenced in the previous section.

2. Remove the manifest reference from libraries and the runtime  section of the resulting .deps.json file.

In the example project, the store.manifest/1.0.0  property is removed from the targets  and libraries

section:

Place the .deps.json file into the following location:



    

    

{ADDITIONAL DEPENDENCIES PATH}/shared/{SHARED FRAMEWORK NAME}/{SHARED FRAMEWORK VERSION}/{ENHANCEMENT 
ASSEMBLY NAME}.deps.json

deployment/additionalDeps/shared/Microsoft.AspNetCore.App/3.0.0/StartupDiagnostics.deps.json

NuGet packageNuGet package

Project bin folderProject bin folder

{ADDITIONAL DEPENDENCIES PATH} : Location added to the DOTNET_ADDITIONAL_DEPS  environment variable.

{SHARED FRAMEWORK NAME} : Shared framework required for this additional dependencies file.

{SHARED FRAMEWORK VERSION} : Minimum shared framework version.

{ENHANCEMENT ASSEMBLY NAME} : The enhancement's assembly name.

In the sample app (RuntimeStore project), the additional dependencies file is placed into the following location:

For runtime to discover the runtime store location, the additional dependencies file location is added to the 

DOTNET_ADDITIONAL_DEPS  environment variable.

In the sample app (RuntimeStore project), building the runtime store and generating the additional

dependencies file is accomplished using a PowerShell script.

For examples of how to set environment variables for various operating systems, see Use multiple

environments.

DeploymentDeployment

To facilitate the deployment of a hosting startup in a multimachine environment, the sample app creates a

deployment folder in published output that contains:

The hosting startup runtime store.

The hosting startup dependencies file.

A PowerShell script that creates or modifies the ASPNETCORE_HOSTINGSTARTUPASSEMBLIES , DOTNET_SHARED_STORE ,

and DOTNET_ADDITIONAL_DEPS  to support the activation of the hosting startup. Run the script from an

administrative PowerShell command prompt on the deployment system.

A hosting startup enhancement can be provided in a NuGet package. The package has a HostingStartup

attribute. The hosting startup types provided by the package are made available to the app using either of the

following approaches:

The enhanced app's project file makes a package reference for the hosting startup in the app's project file (a

compile-time reference). With the compile-time reference in place, the hosting startup assembly and all of its

dependencies are incorporated into the app's dependency file (.deps.json). This approach applies to a hosting

startup assembly package published to nuget.org.

The hosting startup's dependencies file is made available to the enhanced app as described in the Runtime

store section (without a compile-time reference).

For more information on NuGet packages and the runtime store, see the following topics:

How to Create a NuGet Package with Cross Platform Tools

Publishing packages

Runtime package store

A hosting startup enhancement can be provided by a bin-deployed assembly in the enhanced app. The hosting

startup types provided by the assembly are made available to the app using one of the following approaches:

The enhanced app's project file makes an assembly reference to the hosting startup (a compile-time

https://docs.microsoft.com/en-us/powershell/scripting/powershell-scripting
https://www.nuget.org/
https://docs.microsoft.com/en-us/dotnet/core/deploying/creating-nuget-packages
https://docs.microsoft.com/en-us/nuget/create-packages/publish-a-package
https://docs.microsoft.com/en-us/dotnet/core/deploying/runtime-store


Sample code

reference). With the compile-time reference in place, the hosting startup assembly and all of its dependencies

are incorporated into the app's dependency file (.deps.json). This approach applies when the deployment

scenario calls for making a compile-time reference to the hosting startup's assembly (.dll file) and moving

the assembly to either :

The hosting startup's dependencies file is made available to the enhanced app as described in the Runtime

store section (without a compile-time reference).

When targeting the .NET Framework, the assembly is loadable in the default load context, which on .NET

Framework means that the assembly is located at either of the following locations:

The consuming project.

A location accessible by the consuming project.

Application base path: The bin folder where the app's executable (.exe) is located.

Global Assembly Cache (GAC): The GAC stores assemblies that several .NET Framework apps share.

For more information, see How to: Install an assembly into the global assembly cache in the .NET

Framework documentation.

The sample code (how to download) demonstrates hosting startup implementation scenarios:

Two hosting startup assemblies (class libraries) set a pair of in-memory configuration key-value pairs each:

A hosting startup is activated from a runtime store-deployed assembly (StartupDiagnostics). The assembly

adds two middlewares to the app at startup that provide diagnostic information on:

NuGet package (HostingStartupPackage)

Class library (HostingStartupLibrary)

Registered services

Address (scheme, host, path base, path, query string)

Connection (remote IP, remote port, local IP, local port, client certificate)

Request headers

Environment variables

To run the sample:

Activation from a NuGet packageActivation from a NuGet package

<PropertyGroup>
  
<RestoreSources>$(RestoreSources);https://api.nuget.org/v3/index.json;../HostingStartupPackage/bin/De
bug</RestoreSources>
</PropertyGroup>

1. Compile the HostingStartupPackage package with the dotnet pack command.

2. Add the package's assembly name of the HostingStartupPackage to the 

ASPNETCORE_HOSTINGSTARTUPASSEMBLIES  environment variable.

3. Compile and run the app. A package reference is present in the enhanced app (a compile-time reference).

A <PropertyGroup>  in the app's project file specifies the package project's output

(../HostingStartupPackage/bin/Debug) as a package source. This allows the app to use the package

without uploading the package to nuget.org. For more information, see the notes in the

HostingStartupApp's project file.

4. Observe that the service configuration key values rendered by the Index page match the values set by the

package's ServiceKeyInjection.Configure  method.

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/how-to-install-an-assembly-into-the-gac
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/platform-specific-configuration/samples/
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-pack
https://www.nuget.org/


dotnet nuget locals all --clear

If you make changes to the HostingStartupPackage project and recompile it, clear the local NuGet package

caches to ensure that the HostingStartupApp receives the updated package and not a stale package from the

local cache. To clear the local NuGet caches, execute the following dotnet nuget locals command:

Activation from a class librar yActivation from a class librar y

<ItemGroup>
  <Reference Include=".\\bin\\Debug\\netcoreapp3.0\\HostingStartupLibrary.dll">
    <HintPath>.\bin\Debug\netcoreapp3.0\HostingStartupLibrary.dll</HintPath>
    <SpecificVersion>False</SpecificVersion> 
  </Reference>
</ItemGroup>

1. Compile the HostingStartupLibrary class library with the dotnet build command.

2. Add the class library's assembly name of HostingStartupLibrary to the 

ASPNETCORE_HOSTINGSTARTUPASSEMBLIES  environment variable.

3. bin-deploy the class library's assembly to the app by copying the HostingStartupLibrary.dll file from the

class library's compiled output to the app's bin/Debug folder.

4. Compile and run the app. An <ItemGroup>  in the app's project file references the class library's assembly

(.\bin\Debug\netcoreapp3.0\HostingStartupLibrary.dll) (a compile-time reference). For more information,

see the notes in the HostingStartupApp's project file.

5. Observe that the service configuration key values rendered by the Index page match the values set by the

class library's ServiceKeyInjection.Configure  method.

Activation from a runtime store-deployed assemblyActivation from a runtime store-deployed assembly

1. The StartupDiagnostics project uses PowerShell to modify its StartupDiagnostics.deps.json file. PowerShell is

installed by default on Windows starting with Windows 7 SP1 and Windows Server 2008 R2 SP1. To obtain

PowerShell on other platforms, see Installing various versions of PowerShell.

2. Execute the build.ps1 script in the RuntimeStore folder. The script:

3. Run the deploy.ps1 script in the deployment folder. The script appends:

Generates the StartupDiagnostics  package in the obj\packages folder.

Generates the runtime store for StartupDiagnostics  in the store folder. The dotnet store  command

in the script uses the win7-x64  runtime identifier (RID) for a hosting startup deployed to Windows.

When providing the hosting startup for a different runtime, substitute the correct RID on line 37 of the

script. The runtime store for StartupDiagnostics  would later be moved to the user's or system's

runtime store on the machine where the assembly will be consumed. The user runtime store install

location for the StartupDiagnostics  assembly is

.dotnet/store/x64/netcoreapp3.0/startupdiagnostics/1.0.0/lib/netcoreapp3.0/StartupDiagnostics.dll.

Generates the additionalDeps  for StartupDiagnostics  in the additionalDeps folder. The additional

dependencies would later be moved to the user's or system's additional dependencies. The user 

StartupDiagnostics  additional dependencies install location is

.dotnet/x64/additionalDeps/StartupDiagnostics/shared/Microsoft.NETCore.App/3.0.0/StartupDiagnostics.deps.json.

Places the deploy.ps1 file in the deployment folder.

StartupDiagnostics  to the ASPNETCORE_HOSTINGSTARTUPASSEMBLIES  environment variable.

The hosting startup dependencies path (in the RuntimeStore project's deployment folder) to the 

DOTNET_ADDITIONAL_DEPS  environment variable.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-build
https://docs.microsoft.com/en-us/powershell/scripting/powershell-scripting
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog


HostingStartup attribute

[assembly: HostingStartup(typeof(StartupEnhancement.StartupEnhancementHostingStartup))]

Discover loaded hosting startup assemblies

Disable automatic loading of hosting startup assemblies

4. Run the sample app.

5. Request the /services  endpoint to see the app's registered services. Request the /diag  endpoint to see the

diagnostic information.

The runtime store path (in the RuntimeStore project's deployment folder) to the DOTNET_SHARED_STORE

environment variable.

An IHostingStartup (hosting startup) implementation adds enhancements to an app at startup from an external

assembly. For example, an external library can use a hosting startup implementation to provide additional

configuration providers or services to an app.

View or download sample code (how to download)

A HostingStartup attribute indicates the presence of a hosting startup assembly to activate at runtime.

The entry assembly or the assembly containing the Startup  class is automatically scanned for the 

HostingStartup  attribute. The list of assemblies to search for HostingStartup  attributes is loaded at runtime

from configuration in the WebHostDefaults.HostingStartupAssembliesKey. The list of assemblies to exclude

from discovery is loaded from the WebHostDefaults.HostingStartupExcludeAssembliesKey. For more

information, see Web Host: Hosting Startup Assemblies and Web Host: Hosting Startup Exclude Assemblies.

In the following example, the namespace of the hosting startup assembly is StartupEnhancement . The class

containing the hosting startup code is StartupEnhancementHostingStartup :

The HostingStartup  attribute is typically located in the hosting startup assembly's IHostingStartup

implementation class file.

To discover loaded hosting startup assemblies, enable logging and check the app's logs. Errors that occur when

loading assemblies are logged. Loaded hosting startup assemblies are logged at the Debug level, and all errors

are logged.

To disable automatic loading of hosting startup assemblies, use one of the following approaches:

To prevent all hosting startup assemblies from loading, set one of the following to true  or 1 :

To prevent specific hosting startup assemblies from loading, set one of the following to a semicolon-

delimited string of hosting startup assemblies to exclude at startup:

Prevent Hosting Startup host configuration setting.

ASPNETCORE_PREVENTHOSTINGSTARTUP  environment variable.

Hosting Startup Exclude Assemblies host configuration setting.

ASPNETCORE_HOSTINGSTARTUPEXCLUDEASSEMBLIES  environment variable.

If both the host configuration setting and the environment variable are set, the host setting controls the

behavior.

Disabling hosting startup assemblies using the host setting or environment variable disables the assembly

globally and may disable several characteristics of an app.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/platform-specific-configuration/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingstartupattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostdefaults.hostingstartupassemblieskey
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostdefaults.hostingstartupexcludeassemblieskey


Project

Class libraryClass library

[assembly: HostingStartup(typeof(HostingStartupLibrary.ServiceKeyInjection))]

namespace HostingStartupLibrary
{
    public class ServiceKeyInjection : IHostingStartup
    {
        public void Configure(IWebHostBuilder builder)
        {
            builder.ConfigureAppConfiguration(config =>
            {
                var dict = new Dictionary<string, string>
                {
                    {"DevAccount_FromLibrary", "DEV_1111111-1111"},
                    {"ProdAccount_FromLibrary", "PROD_2222222-2222"}
                };

                config.AddInMemoryCollection(dict);
            });
        }
    }
}

Create a hosting startup with either of the following project types:

Class library

Console app without an entry point

A hosting startup enhancement can be provided in a class library. The library contains a HostingStartup

attribute.

The sample code includes a Razor Pages app, HostingStartupApp, and a class library, HostingStartupLibrary. The

class library:

Contains a hosting startup class, ServiceKeyInjection , which implements IHostingStartup . 

ServiceKeyInjection  adds a pair of service strings to the app's configuration using the in-memory

configuration provider (AddInMemoryCollection).

Includes a HostingStartup  attribute that identifies the hosting startup's namespace and class.

The ServiceKeyInjection  class's Configure method uses an IWebHostBuilder to add enhancements to an app.

HostingStartupLibrary/ServiceKeyInjection.cs:

The app's Index page reads and renders the configuration values for the two keys set by the class library's

hosting startup assembly:

HostingStartupApp/Pages/Index.cshtml.cs:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/platform-specific-configuration/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.memoryconfigurationbuilderextensions.addinmemorycollection
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder


public class IndexModel : PageModel
{
    public IndexModel(IConfiguration config)
    {
        ServiceKey_Development_Library = config["DevAccount_FromLibrary"];
        ServiceKey_Production_Library = config["ProdAccount_FromLibrary"];
        ServiceKey_Development_Package = config["DevAccount_FromPackage"];
        ServiceKey_Production_Package = config["ProdAccount_FromPackage"];
    }

    public string ServiceKey_Development_Library { get; private set; }
    public string ServiceKey_Production_Library { get; private set; }
    public string ServiceKey_Development_Package { get; private set; }
    public string ServiceKey_Production_Package { get; private set; }

    public void OnGet()
    {
    }
}

[assembly: HostingStartup(typeof(HostingStartupPackage.ServiceKeyInjection))]

namespace HostingStartupPackage
{
    public class ServiceKeyInjection : IHostingStartup
    {
        public void Configure(IWebHostBuilder builder)
        {
            builder.ConfigureAppConfiguration(config =>
            {
                var dict = new Dictionary<string, string>
                {
                    {"DevAccount_FromPackage", "DEV_3333333-3333"},
                    {"ProdAccount_FromPackage", "PROD_4444444-4444"}
                };

                config.AddInMemoryCollection(dict);
            });
        }
    }
}

The sample code also includes a NuGet package project that provides a separate hosting startup,

HostingStartupPackage. The package has the same characteristics of the class library described earlier. The

package:

Contains a hosting startup class, ServiceKeyInjection , which implements IHostingStartup . 

ServiceKeyInjection  adds a pair of service strings to the app's configuration.

Includes a HostingStartup  attribute.

HostingStartupPackage/ServiceKeyInjection.cs:

The app's Index page reads and renders the configuration values for the two keys set by the package's hosting

startup assembly:

HostingStartupApp/Pages/Index.cshtml.cs:

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/platform-specific-configuration/samples/


public class IndexModel : PageModel
{
    public IndexModel(IConfiguration config)
    {
        ServiceKey_Development_Library = config["DevAccount_FromLibrary"];
        ServiceKey_Production_Library = config["ProdAccount_FromLibrary"];
        ServiceKey_Development_Package = config["DevAccount_FromPackage"];
        ServiceKey_Production_Package = config["ProdAccount_FromPackage"];
    }

    public string ServiceKey_Development_Library { get; private set; }
    public string ServiceKey_Production_Library { get; private set; }
    public string ServiceKey_Development_Package { get; private set; }
    public string ServiceKey_Production_Package { get; private set; }

    public void OnGet()
    {
    }
}

Console app without an entry pointConsole app without an entry point

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <TargetFramework>netcoreapp2.1</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.Hosting.Abstractions" 
                      Version="2.1.1" />
  </ItemGroup>

</Project>

This approach is only available for .NET Core apps, not .NET Framework.

A dynamic hosting startup enhancement that doesn't require a compile-time reference for activation can be

provided in a console app without an entry point that contains a HostingStartup  attribute. Publishing the

console app produces a hosting startup assembly that can be consumed from the runtime store.

A console app without an entry point is used in this process because:

A dependencies file is required to consume the hosting startup in the hosting startup assembly. A

dependencies file is a runnable app asset that's produced by publishing an app, not a library.

A library can't be added directly to the runtime package store, which requires a runnable project that targets

the shared runtime.

In the creation of a dynamic hosting startup:

A hosting startup assembly is created from the console app without an entry point that:

The console app is published to obtain the hosting startup's dependencies. A consequence of publishing the

console app is that unused dependencies are trimmed from the dependencies file.

The dependencies file is modified to set the runtime location of the hosting startup assembly.

The hosting startup assembly and its dependencies file is placed into the runtime package store. To discover

the hosting startup assembly and its dependencies file, they're listed in a pair of environment variables.

Includes a class that contains the IHostingStartup  implementation.

Includes a HostingStartup attribute to identify the IHostingStartup  implementation class.

The console app references the Microsoft.AspNetCore.Hosting.Abstractions package:

https://docs.microsoft.com/en-us/dotnet/core/deploying/runtime-store
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingstartupattribute
https://www.nuget.org/packages/Microsoft.AspNetCore.Hosting.Abstractions/


[assembly: HostingStartup(typeof(StartupEnhancement.StartupEnhancementHostingStartup))]

namespace StartupEnhancement
{
    public class StartupEnhancementHostingStartup : IHostingStartup
    {
        public void Configure(IWebHostBuilder builder)
        {
            // Use the IWebHostBuilder to add app enhancements.
        }
    }
}

"targets": {
  ".NETCoreApp,Version=v2.1": {
    "StartupEnhancement/1.0.0": {
      "dependencies": {
        "Microsoft.AspNetCore.Hosting.Abstractions": "2.1.1"
      },
      "runtime": {
        "StartupEnhancement.dll": {}
      }
    }
  }
}

Configuration provided by the hosting startup

A HostingStartup attribute identifies a class as an implementation of IHostingStartup  for loading and execution

when building the IWebHost. In the following example, the namespace is StartupEnhancement , and the class is 

StartupEnhancementHostingStartup :

A class implements IHostingStartup . The class's Configure method uses an IWebHostBuilder to add

enhancements to an app. IHostingStartup.Configure  in the hosting startup assembly is called by the runtime

before Startup.Configure  in user code, which allows user code to overwrite any configuration provided by the

hosting startup assembly.

When building an IHostingStartup  project, the dependencies file (.deps.json) sets the runtime  location of the

assembly to the bin folder :

Only part of the file is shown. The assembly name in the example is StartupEnhancement .

There are two approaches to handling configuration depending on whether you want the hosting startup's

configuration to take precedence or the app's configuration to take precedence:

1. Provide configuration to the app using ConfigureAppConfiguration to load the configuration after the app's

ConfigureAppConfiguration delegates execute. Hosting startup configuration takes priority over the app's

configuration using this approach.

2. Provide configuration to the app using UseConfiguration to load the configuration before the app's

ConfigureAppConfiguration delegates execute. The app's configuration values take priority over those

provided by the hosting startup using this approach.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingstartupattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhost
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup.configure
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.configureappconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.hostingabstractionswebhostbuilderextensions.useconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder.configureappconfiguration


public class ConfigurationInjection : IHostingStartup
{
    public void Configure(IWebHostBuilder builder)
    {
        Dictionary<string, string> dict;

        builder.ConfigureAppConfiguration(config =>
        {
            dict = new Dictionary<string, string>
            {
                {"ConfigurationKey1", 
                    "From IHostingStartup: Higher priority " +
                    "than the app's configuration."},
            };

            config.AddInMemoryCollection(dict);
        });

        dict = new Dictionary<string, string>
        {
            {"ConfigurationKey2", 
                "From IHostingStartup: Lower priority " +
                "than the app's configuration."},
        };

        var builtConfig = new ConfigurationBuilder()
            .AddInMemoryCollection(dict)
            .Build();

        builder.UseConfiguration(builtConfig);
    }
}

Specify the hosting startup assembly

HostingStartupLibrary;HostingStartupPackage;StartupDiagnostics

Activation

For either a class library- or console app-supplied hosting startup, specify the hosting startup assembly's name

in the ASPNETCORE_HOSTINGSTARTUPASSEMBLIES  environment variable. The environment variable is a semicolon-

delimited list of assemblies.

Only hosting startup assemblies are scanned for the HostingStartup  attribute. For the sample app,

HostingStartupApp, to discover the hosting startups described earlier, the environment variable is set to the

following value:

A hosting startup assembly can also be set using the Hosting Startup Assemblies host configuration setting.

When multiple hosting startup assembles are present, their Configure methods are executed in the order that

the assemblies are listed.

Options for hosting startup activation are:

Runtime store: Activation doesn't require a compile-time reference for activation. The sample app places the

hosting startup assembly and dependencies files into a folder, deployment, to facilitate deployment of the

hosting startup in a multimachine environment. The deployment folder also includes a PowerShell script that

creates or modifies environment variables on the deployment system to enable the hosting startup.

Compile-time reference required for activation

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingstartup.configure


Runtime storeRuntime store

dotnet store --manifest {MANIFEST FILE} --runtime {RUNTIME IDENTIFIER} --output {OUTPUT LOCATION} --skip-
optimization

dotnet store --manifest store.manifest.csproj --runtime win7-x64 --output ./deployment/store --skip-
optimization

NuGet package

Project bin folder

The hosting startup implementation is placed in the runtime store. A compile-time reference to the assembly

isn't required by the enhanced app.

After the hosting startup is built, a runtime store is generated using the manifest project file and the dotnet store

command.

In the sample app (RuntimeStore project) the following command is used:

For the runtime to discover the runtime store, the runtime store's location is added to the DOTNET_SHARED_STORE

environment variable.

Modify and place the hosting star tup's dependencies fileModify and place the hosting star tup's dependencies file

To activate the enhancement without a package reference to the enhancement, specify additional dependencies

to the runtime with additionalDeps . additionalDeps  allows you to:

Extend the app's library graph by providing a set of additional .deps.json files to merge with the app's own

.deps.json file on startup.

Make the hosting startup assembly discoverable and loadable.

The recommended approach for generating the additional dependencies file is to:

1. Execute dotnet publish  on the runtime store manifest file referenced in the previous section.

2. Remove the manifest reference from libraries and the runtime  section of the resulting .deps.json file.

In the example project, the store.manifest/1.0.0  property is removed from the targets  and libraries

section:

https://docs.microsoft.com/en-us/dotnet/core/deploying/runtime-store
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-store


{
  "runtimeTarget": {
    "name": ".NETCoreApp,Version=v2.1",
    "signature": "4ea77c7b75ad1895ae1ea65e6ba2399010514f99"
  },
  "compilationOptions": {},
  "targets": {
    ".NETCoreApp,Version=v2.1": {
      "store.manifest/1.0.0": {
        "dependencies": {
          "StartupDiagnostics": "1.0.0"
        },
        "runtime": {
          "store.manifest.dll": {}
        }
      },
      "StartupDiagnostics/1.0.0": {
        "runtime": {
          "lib/netcoreapp2.1/StartupDiagnostics.dll": {
            "assemblyVersion": "1.0.0.0",
            "fileVersion": "1.0.0.0"
          }
        }
      }
    }
  },
  "libraries": {
    "store.manifest/1.0.0": {
      "type": "project",
      "serviceable": false,
      "sha512": ""
    },
    "StartupDiagnostics/1.0.0": {
      "type": "package",
      "serviceable": true,
      "sha512": "sha512-
oiQr60vBQW7+nBTmgKLSldj06WNLRTdhOZpAdEbCuapoZ+M2DJH2uQbRLvFT8EGAAv4TAKzNtcztpx5YOgBXQQ==",
      "path": "startupdiagnostics/1.0.0",
      "hashPath": "startupdiagnostics.1.0.0.nupkg.sha512"
    }
  }
}

{ADDITIONAL DEPENDENCIES PATH}/shared/{SHARED FRAMEWORK NAME}/{SHARED FRAMEWORK VERSION}/{ENHANCEMENT 
ASSEMBLY NAME}.deps.json

deployment/additionalDeps/shared/Microsoft.AspNetCore.App/2.1.0/StartupDiagnostics.deps.json

Place the .deps.json file into the following location:

{ADDITIONAL DEPENDENCIES PATH} : Location added to the DOTNET_ADDITIONAL_DEPS  environment variable.

{SHARED FRAMEWORK NAME} : Shared framework required for this additional dependencies file.

{SHARED FRAMEWORK VERSION} : Minimum shared framework version.

{ENHANCEMENT ASSEMBLY NAME} : The enhancement's assembly name.

In the sample app (RuntimeStore project), the additional dependencies file is placed into the following location:

For runtime to discover the runtime store location, the additional dependencies file location is added to the 

DOTNET_ADDITIONAL_DEPS  environment variable.

In the sample app (RuntimeStore project), building the runtime store and generating the additional



NuGet packageNuGet package

Project bin folderProject bin folder

dependencies file is accomplished using a PowerShell script.

For examples of how to set environment variables for various operating systems, see Use multiple

environments.

DeploymentDeployment

To facilitate the deployment of a hosting startup in a multimachine environment, the sample app creates a

deployment folder in published output that contains:

The hosting startup runtime store.

The hosting startup dependencies file.

A PowerShell script that creates or modifies the ASPNETCORE_HOSTINGSTARTUPASSEMBLIES , DOTNET_SHARED_STORE ,

and DOTNET_ADDITIONAL_DEPS  to support the activation of the hosting startup. Run the script from an

administrative PowerShell command prompt on the deployment system.

A hosting startup enhancement can be provided in a NuGet package. The package has a HostingStartup

attribute. The hosting startup types provided by the package are made available to the app using either of the

following approaches:

The enhanced app's project file makes a package reference for the hosting startup in the app's project file (a

compile-time reference). With the compile-time reference in place, the hosting startup assembly and all of its

dependencies are incorporated into the app's dependency file (.deps.json). This approach applies to a hosting

startup assembly package published to nuget.org.

The hosting startup's dependencies file is made available to the enhanced app as described in the Runtime

store section (without a compile-time reference).

For more information on NuGet packages and the runtime store, see the following topics:

How to Create a NuGet Package with Cross Platform Tools

Publishing packages

Runtime package store

A hosting startup enhancement can be provided by a bin-deployed assembly in the enhanced app. The hosting

startup types provided by the assembly are made available to the app using one of the following approaches:

The enhanced app's project file makes an assembly reference to the hosting startup (a compile-time

reference). With the compile-time reference in place, the hosting startup assembly and all of its dependencies

are incorporated into the app's dependency file (.deps.json). This approach applies when the deployment

scenario calls for making a compile-time reference to the hosting startup's assembly (.dll file) and moving

the assembly to either :

The hosting startup's dependencies file is made available to the enhanced app as described in the Runtime

store section (without a compile-time reference).

When targeting the .NET Framework, the assembly is loadable in the default load context, which on .NET

Framework means that the assembly is located at either of the following locations:

The consuming project.

A location accessible by the consuming project.

Application base path: The bin folder where the app's executable (.exe) is located.

Global Assembly Cache (GAC): The GAC stores assemblies that several .NET Framework apps share.

For more information, see How to: Install an assembly into the global assembly cache in the .NET

Framework documentation.

https://docs.microsoft.com/en-us/powershell/scripting/powershell-scripting
https://www.nuget.org/
https://docs.microsoft.com/en-us/dotnet/core/deploying/creating-nuget-packages
https://docs.microsoft.com/en-us/nuget/create-packages/publish-a-package
https://docs.microsoft.com/en-us/dotnet/core/deploying/runtime-store
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/how-to-install-an-assembly-into-the-gac


Sample code

dotnet nuget locals all --clear

The sample code (how to download) demonstrates hosting startup implementation scenarios:

Two hosting startup assemblies (class libraries) set a pair of in-memory configuration key-value pairs each:

A hosting startup is activated from a runtime store-deployed assembly (StartupDiagnostics). The assembly

adds two middlewares to the app at startup that provide diagnostic information on:

NuGet package (HostingStartupPackage)

Class library (HostingStartupLibrary)

Registered services

Address (scheme, host, path base, path, query string)

Connection (remote IP, remote port, local IP, local port, client certificate)

Request headers

Environment variables

To run the sample:

Activation from a NuGet packageActivation from a NuGet package

<PropertyGroup>
  
<RestoreSources>$(RestoreSources);https://api.nuget.org/v3/index.json;../HostingStartupPackage/bin/De
bug</RestoreSources>
</PropertyGroup>

1. Compile the HostingStartupPackage package with the dotnet pack command.

2. Add the package's assembly name of the HostingStartupPackage to the 

ASPNETCORE_HOSTINGSTARTUPASSEMBLIES  environment variable.

3. Compile and run the app. A package reference is present in the enhanced app (a compile-time reference).

A <PropertyGroup>  in the app's project file specifies the package project's output

(../HostingStartupPackage/bin/Debug) as a package source. This allows the app to use the package

without uploading the package to nuget.org. For more information, see the notes in the

HostingStartupApp's project file.

4. Observe that the service configuration key values rendered by the Index page match the values set by the

package's ServiceKeyInjection.Configure  method.

If you make changes to the HostingStartupPackage project and recompile it, clear the local NuGet package

caches to ensure that the HostingStartupApp receives the updated package and not a stale package from the

local cache. To clear the local NuGet caches, execute the following dotnet nuget locals command:

Activation from a class librar yActivation from a class librar y

1. Compile the HostingStartupLibrary class library with the dotnet build command.

2. Add the class library's assembly name of HostingStartupLibrary to the 

ASPNETCORE_HOSTINGSTARTUPASSEMBLIES  environment variable.

3. bin-deploy the class library's assembly to the app by copying the HostingStartupLibrary.dll file from the

class library's compiled output to the app's bin/Debug folder.

4. Compile and run the app. An <ItemGroup>  in the app's project file references the class library's assembly

https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/host/platform-specific-configuration/samples/
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-pack
https://www.nuget.org/
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-nuget-locals
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-build


<ItemGroup>
  <Reference Include=".\\bin\\Debug\\netcoreapp2.1\\HostingStartupLibrary.dll">
    <HintPath>.\bin\Debug\netcoreapp2.1\HostingStartupLibrary.dll</HintPath>
    <SpecificVersion>False</SpecificVersion>
  </Reference>
</ItemGroup>

(.\bin\Debug\netcoreapp2.1\HostingStartupLibrary.dll) (a compile-time reference). For more information,

see the notes in the HostingStartupApp's project file.

5. Observe that the service configuration key values rendered by the Index page match the values set by the

class library's ServiceKeyInjection.Configure  method.

Activation from a runtime store-deployed assemblyActivation from a runtime store-deployed assembly

1. The StartupDiagnostics project uses PowerShell to modify its StartupDiagnostics.deps.json file. PowerShell is

installed by default on Windows starting with Windows 7 SP1 and Windows Server 2008 R2 SP1. To obtain

PowerShell on other platforms, see Installing various versions of PowerShell.

2. Execute the build.ps1 script in the RuntimeStore folder. The script:

3. Run the deploy.ps1 script in the deployment folder. The script appends:

4. Run the sample app.

5. Request the /services  endpoint to see the app's registered services. Request the /diag  endpoint to see the

diagnostic information.

Generates the StartupDiagnostics  package in the obj\packages folder.

Generates the runtime store for StartupDiagnostics  in the store folder. The dotnet store  command

in the script uses the win7-x64  runtime identifier (RID) for a hosting startup deployed to Windows.

When providing the hosting startup for a different runtime, substitute the correct RID on line 37 of the

script. The runtime store for StartupDiagnostics  would later be moved to the user's or system's

runtime store on the machine where the assembly will be consumed. The user runtime store install

location for the StartupDiagnostics  assembly is

.dotnet/store/x64/netcoreapp2.2/startupdiagnostics/1.0.0/lib/netcoreapp2.2/StartupDiagnostics.dll.

Generates the additionalDeps  for StartupDiagnostics  in the additionalDeps folder. The additional

dependencies would later be moved to the user's or system's additional dependencies. The user 

StartupDiagnostics  additional dependencies install location is

.dotnet/x64/additionalDeps/StartupDiagnostics/shared/Microsoft.NETCore.App/2.2.0/StartupDiagnostics.deps.json.

Places the deploy.ps1 file in the deployment folder.

StartupDiagnostics  to the ASPNETCORE_HOSTINGSTARTUPASSEMBLIES  environment variable.

The hosting startup dependencies path (in the RuntimeStore project's deployment folder) to the 

DOTNET_ADDITIONAL_DEPS  environment variable.

The runtime store path (in the RuntimeStore project's deployment folder) to the DOTNET_SHARED_STORE

environment variable.

https://docs.microsoft.com/en-us/powershell/scripting/powershell-scripting
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog


Use ASP.NET Core APIs in a class library
9/22/2020 • 9 minutes to read • Edit Online

Determine which ASP.NET Core versions to support

Use the ASP.NET Core shared framework

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>

</Project>

Include Blazor extensibility

By Scott Addie

This document provides guidance for using ASP.NET Core APIs in a class library. For all other library guidance, see

Open-source library guidance.

ASP.NET Core adheres to the .NET Core support policy. Consult the support policy when determining which

ASP.NET Core versions to support in a library. A library should:

Make an effort to support all ASP.NET Core versions classified as Long-Term Support (LTS).

Not feel obligated to support ASP.NET Core versions classified as End of Life (EOL).

As preview releases of ASP.NET Core are made available, breaking changes are posted in the

aspnet/Announcements GitHub repository. Compatibility testing of libraries can be conducted as framework

features are being developed.

With the release of .NET Core 3.0, many ASP.NET Core assemblies are no longer published to NuGet as packages.

Instead, the assemblies are included in the Microsoft.AspNetCore.App  shared framework, which is installed with the

.NET Core SDK and runtime installers. For a list of packages no longer being published, see Remove obsolete

package references.

As of .NET Core 3.0, projects using the Microsoft.NET.Sdk.Web  MSBuild SDK implicitly reference the shared

framework. Projects using the Microsoft.NET.Sdk  or Microsoft.NET.Sdk.Razor  SDK must reference ASP.NET Core to

use ASP.NET Core APIs in the shared framework.

To reference ASP.NET Core, add the following <FrameworkReference>  element to your project file:

Referencing ASP.NET Core in this manner is only supported for projects targeting .NET Core 3.x.

Blazor supports WebAssembly (WASM) and Server hosting models. Unless there's a specific reason not to, a Razor

components library should support both hosting models. A Razor components library must use the

Microsoft.NET.Sdk.Razor SDK.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/target-aspnetcore.md
https://github.com/scottaddie
https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://github.com/aspnet/Announcements/issues


Support both hosting modelsSupport both hosting models

<Project Sdk="Microsoft.NET.Sdk.Razor">

  <PropertyGroup>
    <TargetFrameworks>netstandard2.0</TargetFrameworks>
    <RazorLangVersion>3.0</RazorLangVersion>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.Components" Version="3.0.0" />
    <PackageReference Include="Microsoft.AspNetCore.Components.Web" Version="3.0.0" />
  </ItemGroup>

</Project>

Support a specific hosting modelSupport a specific hosting model

<Project Sdk="Microsoft.NET.Sdk.Razor">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>

</Project>

To support Razor component consumption from both Blazor Server and Blazor WASM projects, use the following

instructions for your editor.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Use the Razor Class L ibrar yRazor Class L ibrar y  project template. The template's Suppor t pages and viewsSuppor t pages and views  checkbox should be

deselected.

The project generated from the template does the following things:

Targets .NET Standard 2.0.

Sets the RazorLangVersion  property to 3.0 . 3.0  is the default value for .NET Core 3.x.

Adds the following package references:

Microsoft.AspNetCore.Components

Microsoft.AspNetCore.Components.Web

For example:

It's far less common to support a single Blazor hosting model. As an example, to support Razor component

consumption from Blazor Server projects only:

Target .NET Core 3.x.

Add a <FrameworkReference>  element for the shared framework.

For example:

For more information on libraries containing Razor components, see ASP.NET Core Razor components class

libraries.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components
https://www.nuget.org/packages/Microsoft.AspNetCore.Components.Web


  

Include MVC extensibility

Razor views or Razor PagesRazor views or Razor Pages

<Project Sdk="Microsoft.NET.Sdk.Razor">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
    <AddRazorSupportForMvc>true</AddRazorSupportForMvc>
  </PropertyGroup>

  <ItemGroup>
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>

</Project>

<Project Sdk="Microsoft.NET.Sdk.Razor">

  <PropertyGroup>
    <TargetFramework>netstandard2.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.2.0" />
  </ItemGroup>

</Project>

This section outlines recommendations for libraries that include:

Razor views or Razor Pages

Tag Helpers

View components

This section doesn't discuss multi-targeting to support multiple versions of MVC. For guidance on supporting

multiple ASP.NET Core versions, see Support multiple ASP.NET Core versions.

A project that includes Razor views or Razor Pages must use the Microsoft.NET.Sdk.Razor SDK.

If the project targets .NET Core 3.x, it requires:

An AddRazorSupportForMvc  MSBuild property set to true .

A <FrameworkReference>  element for the shared framework.

The Razor Class L ibrar yRazor Class L ibrar y  project template satisfies the preceding requirements for projects targeting .NET Core

3.x. Use the following instructions for your editor.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Use the Razor Class L ibrar yRazor Class L ibrar y  project template. The template's Suppor t pages and viewsSuppor t pages and views  checkbox should be

selected.

For example:

If the project targets .NET Standard instead, a Microsoft.AspNetCore.Mvc package reference is required. The 

Microsoft.AspNetCore.Mvc  package moved into the shared framework in ASP.NET Core 3.0 and is therefore no

longer published. For example:

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc


  

  

Tag HelpersTag Helpers

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>

</Project>

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <TargetFramework>netstandard2.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.2.0" />
  </ItemGroup>

</Project>

View componentsView components

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>

</Project>

A project that includes Tag Helpers should use the Microsoft.NET.Sdk  SDK. If targeting .NET Core 3.x, add a 

<FrameworkReference>  element for the shared framework. For example:

If targeting .NET Standard (to support versions earlier than ASP.NET Core 3.x), add a package reference to

Microsoft.AspNetCore.Mvc.Razor. The Microsoft.AspNetCore.Mvc.Razor  package moved into the shared framework

and is therefore no longer published. For example:

A project that includes View components should use the Microsoft.NET.Sdk  SDK. If targeting .NET Core 3.x, add a 

<FrameworkReference>  element for the shared framework. For example:

If targeting .NET Standard (to support versions earlier than ASP.NET Core 3.x), add a package reference to

Microsoft.AspNetCore.Mvc.ViewFeatures. The Microsoft.AspNetCore.Mvc.ViewFeatures  package moved into the

shared framework and is therefore no longer published. For example:

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.ViewFeatures


 

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <TargetFramework>netstandard2.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.Mvc.ViewFeatures" Version="2.2.0" />
  </ItemGroup>

</Project>

Support multiple ASP.NET Core versions

<Project Sdk="Microsoft.NET.Sdk">
  
  <PropertyGroup>
    <TargetFrameworks>netcoreapp2.1;netcoreapp3.0;net461</TargetFrameworks>
  </PropertyGroup>
  
  <ItemGroup>
    <PackageReference Include="Markdig" Version="0.16.0" />
  </ItemGroup>
  
  <ItemGroup Condition="'$(TargetFramework)' != 'netcoreapp3.0'">
    <PackageReference Include="Microsoft.AspNetCore.Mvc.Razor" Version="2.1.0" />
  </ItemGroup>

  <ItemGroup Condition="'$(TargetFramework)' == 'netcoreapp3.0'">
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>
</Project>

Multi-targeting is required to author a library that supports multiple variants of ASP.NET Core. Consider a scenario

in which a Tag Helpers library must support the following ASP.NET Core variants:

ASP.NET Core 2.1 targeting .NET Framework 4.6.1

ASP.NET Core 2.x targeting .NET Core 2.x

ASP.NET Core 3.x targeting .NET Core 3.x

The following project file supports these variants via the TargetFrameworks  property:

With the preceding project file:

The Markdig  package is added for all consumers.

A reference to Microsoft.AspNetCore.Mvc.Razor is added for consumers targeting .NET Framework 4.6.1 or later

or .NET Core 2.x. Version 2.1.0 of the package works with ASP.NET Core 2.2 because of backwards compatibility.

The shared framework is referenced for consumers targeting .NET Core 3.x. The Microsoft.AspNetCore.Mvc.Razor

package is included in the shared framework.

Alternatively, .NET Standard 2.0 could be targeted instead of targeting both .NET Core 2.1 and .NET Framework

4.6.1:

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor


<Project Sdk="Microsoft.NET.Sdk">
  
  <PropertyGroup>
    <TargetFrameworks>netstandard2.0;netcoreapp3.0</TargetFrameworks>
  </PropertyGroup>
  
  <ItemGroup>
    <PackageReference Include="Markdig" Version="0.16.0" />
  </ItemGroup>
  
  <ItemGroup Condition="'$(TargetFramework)' != 'netcoreapp3.0'">
    <PackageReference Include="Microsoft.AspNetCore.Mvc.Razor" Version="2.1.0" />
  </ItemGroup>

  <ItemGroup Condition="'$(TargetFramework)' == 'netcoreapp3.0'">
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>
</Project>

Use an API that hasn't changed

Use an API that changed

With the preceding project file, the following caveats exist:

Since the library only contains Tag Helpers, it's more straightforward to target the specific platforms on which

ASP.NET Core runs: .NET Core and .NET Framework. Tag Helpers can't be used by other .NET Standard 2.0-

compliant target frameworks such as Unity, UWP, and Xamarin.

Using .NET Standard 2.0 from .NET Framework has some issues that were addressed in .NET Framework 4.7.2.

You can improve the experience for consumers using .NET Framework 4.6.1 through 4.7.1 by targeting .NET

Framework 4.6.1.

If your library needs to call platform-specific APIs, target specific .NET implementations instead of .NET Standard.

For more information, see Multi-targeting.

Imagine a scenario in which you're upgrading a middleware library from .NET Core 2.2 to 3.0. The ASP.NET Core

middleware APIs being used in the library haven't changed between ASP.NET Core 2.2 and 3.0. To continue

supporting the middleware library in .NET Core 3.0, take the following steps:

Follow the standard library guidance.

Add a package reference for each API's NuGet package if the corresponding assembly doesn't exist in the shared

framework.

Imagine a scenario in which you're upgrading a library from .NET Core 2.2 to .NET Core 3.0. An ASP.NET Core API

being used in the library has a breaking change in ASP.NET Core 3.0. Consider whether the library can be rewritten

to not use the broken API in all versions.

If you can rewrite the library, do so and continue to target an earlier target framework (for example, .NET Standard

2.0 or .NET Framework 4.6.1) with package references.

If you can't rewrite the library, take the following steps:

Add a target for .NET Core 3.0.

Add a <FrameworkReference>  element for the shared framework.

Use the #if preprocessor directive with the appropriate target framework symbol to conditionally compile code.

For example, synchronous reads and writes on HTTP request and response streams are disabled by default as of

ASP.NET Core 3.0. ASP.NET Core 2.2 supports the synchronous behavior by default. Consider a middleware library

https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/cross-platform-targeting#multi-targeting
https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/
https://docs.microsoft.com/en-us/dotnet/core/compatibility/breaking-changes
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if


public async Task Invoke(HttpContext httpContext)
{
    if (httpContext.Request.Path.StartsWithSegments(_path, StringComparison.Ordinal))
    {
        httpContext.Response.StatusCode = 200;
        httpContext.Response.ContentType = "application/json";
        httpContext.Response.ContentLength = _bufferSize;

#if !NETCOREAPP3_0 && !NETCOREAPP5_0
        var syncIOFeature = httpContext.Features.Get<IHttpBodyControlFeature>();
        if (syncIOFeature != null)
        {
            syncIOFeature.AllowSynchronousIO = true;
        }

        using (var sw = new StreamWriter(
            httpContext.Response.Body, _encoding, bufferSize: _bufferSize))
        {
            _json.Serialize(sw, new JsonMessage { message = "Hello, World!" });
        }
#else
        await JsonSerializer.SerializeAsync<JsonMessage>(
            httpContext.Response.Body, new JsonMessage { message = "Hello, World!" });
#endif
        return;
    }

    await _next(httpContext);
}

Use an API introduced in 3.0

in which synchronous reads and writes should be enabled where I/O is occurring. The library should enclose the

code to enable synchronous features in the appropriate preprocessor directive. For example:

Imagine that you want to use an ASP.NET Core API that was introduced in ASP.NET Core 3.0. Consider the following

questions:

1. Does the library functionally require the new API?

2. Can the library implement this feature in a different way?

If the library functionally requires the API and there's no way to implement it down-level:

Target .NET Core 3.x only.

Add a <FrameworkReference>  element for the shared framework.

If the library can implement the feature in a different way:

Add .NET Core 3.x as a target framework.

Add a <FrameworkReference>  element for the shared framework.

Use the #if preprocessor directive with the appropriate target framework symbol to conditionally compile code.

For example, the following Tag Helper uses the IWebHostEnvironment interface introduced in ASP.NET Core 3.0.

Consumers targeting .NET Core 3.0 execute the code path defined by the NETCOREAPP3_0  target framework symbol.

The Tag Helper's constructor parameter type changes to IHostingEnvironment for .NET Core 2.1 and .NET

Framework 4.6.1 consumers. This change was necessary because ASP.NET Core 3.0 marked IHostingEnvironment  as

obsolete and recommended IWebHostEnvironment  as the replacement.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.ihostingenvironment


[HtmlTargetElement("script", Attributes = "asp-inline")]
public class ScriptInliningTagHelper : TagHelper
{
    private readonly IFileProvider _wwwroot;

#if NETCOREAPP3_0
    public ScriptInliningTagHelper(IWebHostEnvironment env)
#else
    public ScriptInliningTagHelper(IHostingEnvironment env)
#endif
    {
        _wwwroot = env.WebRootFileProvider;
    }

    // code omitted for brevity
}

<Project Sdk="Microsoft.NET.Sdk">
  
  <PropertyGroup>
    <TargetFrameworks>netcoreapp2.1;netcoreapp3.0;net461</TargetFrameworks>
  </PropertyGroup>
  
  <ItemGroup>
    <PackageReference Include="Markdig" Version="0.16.0" />
  </ItemGroup>
  
  <ItemGroup Condition="'$(TargetFramework)' != 'netcoreapp3.0'">
    <PackageReference Include="Microsoft.AspNetCore.Mvc.Razor" Version="2.1.0" />
  </ItemGroup>

  <ItemGroup Condition="'$(TargetFramework)' == 'netcoreapp3.0'">
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>
</Project>

Use an API removed from the shared framework

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNet.WebApi.Client" Version="5.2.7" />
  </ItemGroup>

</Project>

The following multi-targeted project file supports this Tag Helper scenario:

To use an ASP.NET Core assembly that was removed from the shared framework, add the appropriate package

reference. For a list of packages removed from the shared framework in ASP.NET Core 3.0, see Remove obsolete

package references.

For example, to add the web API client:



Additional resources
Reusable Razor UI in class libraries with ASP.NET Core

ASP.NET Core Razor components class libraries

.NET implementation support

.NET support policies

https://docs.microsoft.com/en-us/dotnet/standard/net-standard#net-implementation-support
https://dotnet.microsoft.com/platform/support/policy


Microsoft.AspNetCore.App for ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

<Project Sdk="Microsoft.NET.Sdk.Web">
  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>
    ...
</Project>

The ASP.NET Core shared framework ( Microsoft.AspNetCore.App ) contains assemblies that are

developed and supported by Microsoft. Microsoft.AspNetCore.App  is installed when the .NET Core

3.0 or later SDK is installed. The shared framework is the set of assemblies (.dll files) that are

installed on the machine and includes a runtime component and a targeting pack. For more

information, see The shared framework.

Projects that target the Microsoft.NET.Sdk.Web  SDK implicitly reference the 

Microsoft.AspNetCore.App  framework.

No additional references are required for these projects:

The ASP.NET Core shared framework:

Doesn't include third-party dependencies.

Includes all supported packages by the ASP.NET Core team.

This feature requires ASP.NET Core 2.x targeting .NET Core 2.x.

The Microsoft.AspNetCore.App metapackage for ASP.NET Core:

Does not include third-party dependencies except for Json.NET, Remotion.Linq, and IX-Async.

These 3rd-party dependencies are deemed necessary to ensure the major frameworks features

function.

Includes all supported packages by the ASP.NET Core team except those that contain third-

party dependencies (other than those previously mentioned).

Includes all supported packages by the Entity Framework Core team except those that contain

third-party dependencies (other than those previously mentioned).

All the features of ASP.NET Core 2.x and Entity Framework Core 2.x are included in the 

Microsoft.AspNetCore.App  package. The default project templates targeting ASP.NET Core 2.x use

this package. We recommend applications targeting ASP.NET Core 2.x and Entity Framework Core

2.x use the Microsoft.AspNetCore.App  package.

The version number of the Microsoft.AspNetCore.App  metapackage represents the minimum

ASP.NET Core version and Entity Framework Core version.

Using the Microsoft.AspNetCore.App  metapackage provides version restrictions that protect your

app:

If a package is included that has a transitive (not direct) dependency on a package in 

Microsoft.AspNetCore.App , and those version numbers differ, NuGet will generate an error.

Other packages added to your app cannot change the version of packages included in 

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/metapackage-app.md
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/
https://www.nuget.org/packages/Microsoft.AspNetCore.App
https://docs.microsoft.com/en-us/dotnet/core/packages#metapackages
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Remotion.Linq/
https://www.nuget.org/packages/System.Interactive.Async/


<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
    <TargetFramework>netcoreapp2.2</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>

</Project>

Microsoft.AspNetCore.App .

Version consistency ensures a reliable experience. Microsoft.AspNetCore.App  was designed to

prevent untested version combinations of related bits being used together in the same app.

Applications that use the Microsoft.AspNetCore.App  metapackage automatically take advantage of

the ASP.NET Core shared framework. When you use the Microsoft.AspNetCore.App  metapackage,

nono assets from the referenced ASP.NET Core NuGet packages are deployed with the application—

the ASP.NET Core shared framework contains these assets. The assets in the shared framework are

precompiled to improve application startup time. For more information, see The shared

framework.

The following project file references the Microsoft.AspNetCore.App  metapackage for ASP.NET Core

and represents a typical ASP.NET Core 2.2 template:

The preceding markup represents a typical ASP.NET Core 2.x template. It doesn't specify a version

number for the Microsoft.AspNetCore.App  package reference. When the version is not specified, an

implicit version is specified by the SDK, that is, Microsoft.NET.Sdk.Web . We recommend relying on

the implicit version specified by the SDK and not explicitly setting the version number on the

package reference. If you have questions on this approach, leave a GitHub comment at the

Discussion for the Microsoft.AspNetCore.App implicit version.

The implicit version is set to major.minor.0  for portable apps. The shared framework roll-forward

mechanism will run the app on the latest compatible version among the installed shared

frameworks. To guarantee the same version is used in development, test, and production, ensure

the same version of the shared framework is installed in all environments. For self contained apps,

the implicit version number is set to the major.minor.patch  of the shared framework bundled in

the installed SDK.

Specifying a version number on the Microsoft.AspNetCore.App  reference does notnot guarantee that

version of the shared framework will be chosen. For example, suppose version "2.2.1" is specified,

but "2.2.3" is installed. In that case, the app will use "2.2.3". Although not recommended, you can

disable roll forward (patch and/or minor). For more information regarding dotnet host roll-

forward and how to configure its behavior, see dotnet host roll forward.

<Project Sdk  must be set to Microsoft.NET.Sdk.Web  to use the implicit version 

Microsoft.AspNetCore.App . When <Project Sdk="Microsoft.NET.Sdk">  (without the trailing .Web )

is used:

The following warning is generated:

Warning NU1604: Project dependency Microsoft.AspNetCore.App does not contain an

inclusive lower bound. Include a lower bound in the dependency version to ensure

consistent restore results.

This is a known issue with the .NET Core 2.1 SDK.

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/
https://github.com/dotnet/core/blob/master/release-notes/1.0/sdk/1.0-rc3-implicit-package-refs.md
https://github.com/dotnet/AspNetCore.Docs/issues/6430
https://github.com/dotnet/core-setup/blob/master/Documentation/design-docs/roll-forward-on-no-candidate-fx.md


Update ASP.NET Core 

The Microsoft.AspNetCore.App  metapackage isn't a traditional package that's updated from NuGet.

Similar to Microsoft.NETCore.App , Microsoft.AspNetCore.App  represents a shared runtime, which

has special versioning semantics handled outside of NuGet. For more information, see Packages,

metapackages and frameworks.

To update ASP.NET Core:

On development machines and build servers: Download and install the .NET Core SDK.

On deployment servers: Download and install the .NET Core runtime.

Applications will roll forward to the latest installed version on application restart. It's not

necessary to update the Microsoft.AspNetCore.App  version number in the project file. For more

information, see Framework-dependent apps roll forward.

If your application previously used Microsoft.AspNetCore.All , see Migrating from

Microsoft.AspNetCore.All to Microsoft.AspNetCore.App.

https://docs.microsoft.com/en-us/dotnet/core/packages#metapackages
https://docs.microsoft.com/en-us/dotnet/core/packages
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/core/versions/selection#framework-dependent-apps-roll-forward


Microsoft.AspNetCore.All metapackage for ASP.NET
Core 2.0
9/22/2020 • 3 minutes to read • Edit Online

NOTENOTE

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
    <TargetFramework>netcoreapp2.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.9" />
  </ItemGroup>

</Project>

Implicit versioning

The Microsoft.AspNetCore.All  metapackage isn't included in ASP.NET Core 3.0 and later. For more information, see

this GitHub issue.

We recommend applications targeting ASP.NET Core 2.1 and later use the Microsoft.AspNetCore.App metapackage rather

than this package. See Migrating from Microsoft.AspNetCore.All to Microsoft.AspNetCore.App in this article.

This feature requires ASP.NET Core 2.x targeting .NET Core 2.x.

Microsoft.AspNetCore.All is a metapackage that refers to a shared framework. A shared framework is a set of

assemblies (.dll files) that are not in the app's folders. The shared framework must be installed on the machine to

run the app. For more information, see The shared framework.

The shared framework that Microsoft.AspNetCore.All  refers to includes:

All supported packages by the ASP.NET Core team.

All supported packages by the Entity Framework Core.

Internal and 3rd-party dependencies used by ASP.NET Core and Entity Framework Core.

All the features of ASP.NET Core 2.x and Entity Framework Core 2.x are included in the Microsoft.AspNetCore.All

package. The default project templates targeting ASP.NET Core 2.0 use this package.

The version number of the Microsoft.AspNetCore.All  metapackage represents the minimum ASP.NET Core

version and Entity Framework Core version.

The following .csproj file references the Microsoft.AspNetCore.All  metapackage for ASP.NET Core:

In ASP.NET Core 2.1 or later, you can specify the Microsoft.AspNetCore.All  package reference without a version.

When the version isn't specified, an implicit version is specified by the SDK ( Microsoft.NET.Sdk.Web ). We

recommend relying on the implicit version specified by the SDK and not explicitly setting the version number on

the package reference. If you have questions about this approach, leave a GitHub comment at the Discussion for

the Microsoft.AspNetCore.App implicit version.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/metapackage.md
https://github.com/aspnet/Announcements/issues/314
https://www.nuget.org/packages/Microsoft.AspNetCore.All
https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/
https://github.com/dotnet/AspNetCore.Docs/issues/6430


Migrating from Microsoft.AspNetCore.All to Microsoft.AspNetCore.App

Update ASP.NET Core 2.1

The implicit version is set to major.minor.0  for portable apps. The shared framework roll-forward mechanism

runs the app on the latest compatible version among the installed shared frameworks. To guarantee the same

version is used in development, test, and production, ensure the same version of the shared framework is installed

in all environments. For self-contained apps, the implicit version number is set to the major.minor.patch  of the

shared framework bundled in the installed SDK.

Specifying a version number on the Microsoft.AspNetCore.All  package reference does notnot guarantee that version

of the shared framework is chosen. For example, suppose version "2.1.1" is specified, but "2.1.3" is installed. In that

case, the app will use "2.1.3". Although not recommended, you can disable roll forward (patch and/or minor). For

more information regarding dotnet host roll-forward and how to configure its behavior, see dotnet host roll

forward.

The project's SDK must be set to Microsoft.NET.Sdk.Web  in the project file to use the implicit version of 

Microsoft.AspNetCore.All . When the Microsoft.NET.Sdk  SDK is specified ( <Project Sdk="Microsoft.NET.Sdk">  at

the top of the project file), the following warning is generated:

Warning NU1604: Project dependency Microsoft.AspNetCore.All does not contain an inclusive lower bound.

Include a lower bound in the dependency version to ensure consistent restore results.

This is a known issue with the .NET Core 2.1 SDK and will be fixed in the .NET Core 2.2 SDK.

    

The following packages are included in Microsoft.AspNetCore.All  but not the Microsoft.AspNetCore.App  package.

Microsoft.AspNetCore.ApplicationInsights.HostingStartup

Microsoft.AspNetCore.AzureAppServices.HostingStartup

Microsoft.AspNetCore.AzureAppServicesIntegration

Microsoft.AspNetCore.DataProtection.AzureKeyVault

Microsoft.AspNetCore.DataProtection.AzureStorage

Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv

Microsoft.AspNetCore.SignalR.Redis

Microsoft.Data.Sqlite

Microsoft.Data.Sqlite.Core

Microsoft.EntityFrameworkCore.Sqlite

Microsoft.EntityFrameworkCore.Sqlite.Core

Microsoft.Extensions.Caching.Redis

Microsoft.Extensions.Configuration.AzureKeyVault

Microsoft.Extensions.Logging.AzureAppServices

Microsoft.VisualStudio.Web.BrowserLink

To move from Microsoft.AspNetCore.All  to Microsoft.AspNetCore.App , if your app uses any APIs from the above

packages, or packages brought in by those packages, add references to those packages in your project.

Any dependencies of the preceding packages that otherwise aren't dependencies of Microsoft.AspNetCore.App  are

not included implicitly. For example:

StackExchange.Redis  as a dependency of Microsoft.Extensions.Caching.Redis

Microsoft.ApplicationInsights  as a dependency of Microsoft.AspNetCore.ApplicationInsights.HostingStartup

We recommend migrating to the Microsoft.AspNetCore.App  metapackage for 2.1 and later. To keep using the 

https://github.com/dotnet/core-setup/blob/master/Documentation/design-docs/roll-forward-on-no-candidate-fx.md


Microsoft.AspNetCore.All  metapackage and ensure the latest patch version is deployed:

On development machines and build servers: Install the latest .NET Core SDK.

On deployment servers: Install the latest .NET Core runtime. Your app will roll forward to the latest installed

version on an application restart.

https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download


High-performance logging with LoggerMessage in
ASP.NET Core
9/22/2020 • 14 minutes to read • Edit Online

LoggerMessage.Define

private static readonly Action<ILogger, Exception> _indexPageRequested;

LoggerMessage features create cacheable delegates that require fewer object allocations and reduced

computational overhead compared to logger extension methods, such as LogInformation and LogDebug. For

high-performance logging scenarios, use the LoggerMessage pattern.

LoggerMessage provides the following performance advantages over Logger extension methods:

Logger extension methods require "boxing" (converting) value types, such as int , into object . The

LoggerMessage pattern avoids boxing by using static Action fields and extension methods with strongly-typed

parameters.

Logger extension methods must parse the message template (named format string) every time a log message

is written. LoggerMessage only requires parsing a template once when the message is defined.

View or download sample code (how to download)

The sample app demonstrates LoggerMessage features with a basic quote tracking system. The app adds and

deletes quotes using an in-memory database. As these operations occur, log messages are generated using the

LoggerMessage pattern.

Define(LogLevel, EventId, String) creates an Action delegate for logging a message. Define overloads permit

passing up to six type parameters to a named format string (template).

The string provided to the Define method is a template and not an interpolated string. Placeholders are filled in the

order that the types are specified. Placeholder names in the template should be descriptive and consistent across

templates. They serve as property names within structured log data. We recommend Pascal casing for placeholder

names. For example, {Count} , {FirstName} .

Each log message is an Action held in a static field created by LoggerMessage.Define. For example, the sample app

creates a field to describe a log message for a GET request for the Index page (Internal/LoggerExtensions.cs):

For the Action, specify:

The log level.

A unique event identifier (EventId) with the name of the static extension method.

The message template (named format string).

A request for the Index page of the sample app sets the:

Log level to Information .

Event id to 1  with the name of the IndexPageRequested  method.

Message template (named format string) to a string.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/logging/loggermessage.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.loginformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logdebug
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/logging/loggermessage/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventid


_indexPageRequested = LoggerMessage.Define(
    LogLevel.Information, 
    new EventId(1, nameof(IndexPageRequested)), 
    "GET request for Index page");

public static void IndexPageRequested(this ILogger logger)
{
    _indexPageRequested(logger, null);
}

public async Task OnGetAsync()
{
    _logger.IndexPageRequested();

    Quotes = await _db.Quotes.AsNoTracking().ToListAsync();
}

info: LoggerMessageSample.Pages.IndexModel[1]
      => RequestId:0HL90M6E7PHK4:00000001 RequestPath:/ => /Index
      GET request for Index page

private static readonly Action<ILogger, string, Exception> _quoteAdded;

_quoteAdded = LoggerMessage.Define<string>(
    LogLevel.Information, 
    new EventId(2, nameof(QuoteAdded)), 
    "Quote added (Quote = '{Quote}')");

public static void QuoteAdded(this ILogger logger, string quote)
{
    _quoteAdded(logger, quote, null);
}

Structured logging stores may use the event name when it's supplied with the event id to enrich logging. For

example, Serilog uses the event name.

The Action is invoked through a strongly-typed extension method. The IndexPageRequested  method logs a

message for an Index page GET request in the sample app:

IndexPageRequested  is called on the logger in the OnGetAsync  method in Pages/Index.cshtml.cs:

Inspect the app's console output:

To pass parameters to a log message, define up to six types when creating the static field. The sample app logs a

string when adding a quote by defining a string  type for the Action field:

The delegate's log message template receives its placeholder values from the types provided. The sample app

defines a delegate for adding a quote where the quote parameter is a string :

The static extension method for adding a quote, QuoteAdded , receives the quote argument value and passes it to

the Action delegate:

In the Index page's page model (Pages/Index.cshtml.cs), QuoteAdded  is called to log the message:

https://github.com/serilog/serilog-extensions-logging
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/system.action


public async Task<IActionResult> OnPostAddQuoteAsync()
{
    _db.Quotes.Add(Quote);
    await _db.SaveChangesAsync();

    _logger.QuoteAdded(Quote.Text);

    return RedirectToPage();
}

info: LoggerMessageSample.Pages.IndexModel[2]
      => RequestId:0HL90M6E7PHK5:0000000A RequestPath:/ => /Index
      Quote added (Quote = 'You can avoid reality, but you cannot avoid the 
          consequences of avoiding reality. - Ayn Rand')

private static readonly Action<ILogger, string, int, Exception> _quoteDeleted;
private static readonly Action<ILogger, int, Exception> _quoteDeleteFailed;

_quoteDeleted = LoggerMessage.Define<string, int>(
    LogLevel.Information, 
    new EventId(4, nameof(QuoteDeleted)), 
    "Quote deleted (Quote = '{Quote}' Id = {Id})");

_quoteDeleteFailed = LoggerMessage.Define<int>(
    LogLevel.Error, 
    new EventId(5, nameof(QuoteDeleteFailed)), 
    "Quote delete failed (Id = {Id})");

public static void QuoteDeleted(this ILogger logger, string quote, int id)
{
    _quoteDeleted(logger, quote, id, null);
}

public static void QuoteDeleteFailed(this ILogger logger, int id, Exception ex)
{
    _quoteDeleteFailed(logger, id, ex);
}

Inspect the app's console output:

The sample app implements a try-catch pattern for quote deletion. An informational message is logged for a

successful delete operation. An error message is logged for a delete operation when an exception is thrown. The

log message for the unsuccessful delete operation includes the exception stack trace

(Internal/LoggerExtensions.cs):

Note how the exception is passed to the delegate in QuoteDeleteFailed :

In the page model for the Index page, a successful quote deletion calls the QuoteDeleted  method on the logger.

When a quote isn't found for deletion, an ArgumentNullException is thrown. The exception is trapped by the try-

catch statement and logged by calling the QuoteDeleteFailed  method on the logger in the catch block

(Pages/Index.cshtml.cs):

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/system.argumentnullexception
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch


public async Task<IActionResult> OnPostDeleteQuoteAsync(int id)
{
    try
    {
        var quote = await _db.Quotes.FindAsync(id);
        _db.Quotes.Remove(quote);
        await _db.SaveChangesAsync();

        _logger.QuoteDeleted(quote.Text, id);
    }
    catch (NullReferenceException ex)
    {
        _logger.QuoteDeleteFailed(id, ex);
    }

    return RedirectToPage();
}

info: LoggerMessageSample.Pages.IndexModel[4]
      => RequestId:0HL90M6E7PHK5:00000016 RequestPath:/ => /Index
      Quote deleted (Quote = 'You can avoid reality, but you cannot avoid the 
          consequences of avoiding reality. - Ayn Rand' Id = 1)

LoggerMessageSample.Pages.IndexModel: Error: Quote delete failed (Id = 999)

System.NullReferenceException: Object reference not set to an instance of an object.
   at lambda_method(Closure , ValueBuffer )
   at System.Linq.Enumerable.SelectEnumerableIterator`2.MoveNext()
   at 
Microsoft.EntityFrameworkCore.InMemory.Query.Internal.InMemoryShapedQueryCompilingExpressionVisitor.AsyncQuery
ingEnumerable`1.AsyncEnumerator.MoveNextAsync()
   at Microsoft.EntityFrameworkCore.Query.ShapedQueryCompilingExpressionVisitor.SingleOrDefaultAsync[TSource]
(IAsyncEnumerable`1 asyncEnumerable, CancellationToken cancellationToken)
   at Microsoft.EntityFrameworkCore.Query.ShapedQueryCompilingExpressionVisitor.SingleOrDefaultAsync[TSource]
(IAsyncEnumerable`1 asyncEnumerable, CancellationToken cancellationToken)
   at LoggerMessageSample.Pages.IndexModel.OnPostDeleteQuoteAsync(Int32 id) in 
c:\Users\guard\Documents\GitHub\Docs\aspnetcore\fundamentals\logging\loggermessage\samples\3.x\LoggerMessageSa
mple\Pages\Index.cshtml.cs:line 77

LoggerMessage.DefineScope

When a quote is successfully deleted, inspect the app's console output:

When quote deletion fails, inspect the app's console output. Note that the exception is included in the log message:

DefineScope(String) creates a Func<TResult> delegate for defining a log scope. DefineScope overloads permit

passing up to three type parameters to a named format string (template).

As is the case with the Define method, the string provided to the DefineScope method is a template and not an

interpolated string. Placeholders are filled in the order that the types are specified. Placeholder names in the

template should be descriptive and consistent across templates. They serve as property names within structured

log data. We recommend Pascal casing for placeholder names. For example, {Count} , {FirstName} .

Define a log scope to apply to a series of log messages using the DefineScope method.

The sample app has a Clear AllClear All  button for deleting all of the quotes in the database. The quotes are deleted by

removing them one at a time. Each time a quote is deleted, the QuoteDeleted  method is called on the logger. A log

scope is added to these log messages.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.definescope
https://docs.microsoft.com/en-us/dotnet/api/system.func-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.definescope
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.definescope
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.definescope


{
  "Logging": {
    "Console": {
      "IncludeScopes": true
    },
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  },
  "AllowedHosts": "*"
}

private static Func<ILogger, int, IDisposable> _allQuotesDeletedScope;

_allQuotesDeletedScope = 
    LoggerMessage.DefineScope<int>("All quotes deleted (Count = {Count})");

public static IDisposable AllQuotesDeletedScope(
    this ILogger logger, int count)
{
    return _allQuotesDeletedScope(logger, count);
}

public async Task<IActionResult> OnPostDeleteAllQuotesAsync()
{
    var quoteCount = await _db.Quotes.CountAsync();

    using (_logger.AllQuotesDeletedScope(quoteCount))
    {
        foreach (Quote quote in _db.Quotes)
        {
            _db.Quotes.Remove(quote);

            _logger.QuoteDeleted(quote.Text, quote.Id);
        }
        await _db.SaveChangesAsync();
    }

    return RedirectToPage();
}

Enable IncludeScopes  in the console logger section of appsettings.json:

To create a log scope, add a field to hold a Func<TResult> delegate for the scope. The sample app creates a field

called _allQuotesDeletedScope  (Internal/LoggerExtensions.cs):

Use DefineScope to create the delegate. Up to three types can be specified for use as template arguments when

the delegate is invoked. The sample app uses a message template that includes the number of deleted quotes (an 

int  type):

Provide a static extension method for the log message. Include any type parameters for named properties that

appear in the message template. The sample app takes in a count  of quotes to delete and returns 

_allQuotesDeletedScope :

The scope wraps the logging extension calls in a using block:

https://docs.microsoft.com/en-us/dotnet/api/system.func-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.definescope
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement


info: LoggerMessageSample.Pages.IndexModel[4]
      => RequestId:0HL90M6E7PHK5:0000002E RequestPath:/ => /Index => 
          All quotes deleted (Count = 3)
      Quote deleted (Quote = 'Quote 1' Id = 2)
info: LoggerMessageSample.Pages.IndexModel[4]
      => RequestId:0HL90M6E7PHK5:0000002E RequestPath:/ => /Index => 
          All quotes deleted (Count = 3)
      Quote deleted (Quote = 'Quote 2' Id = 3)
info: LoggerMessageSample.Pages.IndexModel[4]
      => RequestId:0HL90M6E7PHK5:0000002E RequestPath:/ => /Index => 
          All quotes deleted (Count = 3)
      Quote deleted (Quote = 'Quote 3' Id = 4)

LoggerMessage.Define

private static readonly Action<ILogger, Exception> _indexPageRequested;

Inspect the log messages in the app's console output. The following result shows three quotes deleted with the log

scope message included:

LoggerMessage features create cacheable delegates that require fewer object allocations and reduced

computational overhead compared to logger extension methods, such as LogInformation and LogDebug. For

high-performance logging scenarios, use the LoggerMessage pattern.

LoggerMessage provides the following performance advantages over Logger extension methods:

Logger extension methods require "boxing" (converting) value types, such as int , into object . The

LoggerMessage pattern avoids boxing by using static Action fields and extension methods with strongly-typed

parameters.

Logger extension methods must parse the message template (named format string) every time a log message

is written. LoggerMessage only requires parsing a template once when the message is defined.

View or download sample code (how to download)

The sample app demonstrates LoggerMessage features with a basic quote tracking system. The app adds and

deletes quotes using an in-memory database. As these operations occur, log messages are generated using the

LoggerMessage pattern.

Define(LogLevel, EventId, String) creates an Action delegate for logging a message. Define overloads permit

passing up to six type parameters to a named format string (template).

The string provided to the Define method is a template and not an interpolated string. Placeholders are filled in the

order that the types are specified. Placeholder names in the template should be descriptive and consistent across

templates. They serve as property names within structured log data. We recommend Pascal casing for placeholder

names. For example, {Count} , {FirstName} .

Each log message is an Action held in a static field created by LoggerMessage.Define. For example, the sample app

creates a field to describe a log message for a GET request for the Index page (Internal/LoggerExtensions.cs):

For the Action, specify:

The log level.

A unique event identifier (EventId) with the name of the static extension method.

The message template (named format string).

A request for the Index page of the sample app sets the:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.loginformation
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggerextensions.logdebug
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/logging/loggermessage/samples/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.eventid


_indexPageRequested = LoggerMessage.Define(
    LogLevel.Information, 
    new EventId(1, nameof(IndexPageRequested)), 
    "GET request for Index page");

public static void IndexPageRequested(this ILogger logger)
{
    _indexPageRequested(logger, null);
}

public async Task OnGetAsync()
{
    _logger.IndexPageRequested();

    Quotes = await _db.Quotes.AsNoTracking().ToListAsync();
}

info: LoggerMessageSample.Pages.IndexModel[1]
      => RequestId:0HL90M6E7PHK4:00000001 RequestPath:/ => /Index
      GET request for Index page

private static readonly Action<ILogger, string, Exception> _quoteAdded;

_quoteAdded = LoggerMessage.Define<string>(
    LogLevel.Information, 
    new EventId(2, nameof(QuoteAdded)), 
    "Quote added (Quote = '{Quote}')");

Log level to Information .

Event id to 1  with the name of the IndexPageRequested  method.

Message template (named format string) to a string.

Structured logging stores may use the event name when it's supplied with the event id to enrich logging. For

example, Serilog uses the event name.

The Action is invoked through a strongly-typed extension method. The IndexPageRequested  method logs a

message for an Index page GET request in the sample app:

IndexPageRequested  is called on the logger in the OnGetAsync  method in Pages/Index.cshtml.cs:

Inspect the app's console output:

To pass parameters to a log message, define up to six types when creating the static field. The sample app logs a

string when adding a quote by defining a string  type for the Action field:

The delegate's log message template receives its placeholder values from the types provided. The sample app

defines a delegate for adding a quote where the quote parameter is a string :

The static extension method for adding a quote, QuoteAdded , receives the quote argument value and passes it to

the Action delegate:

https://github.com/serilog/serilog-extensions-logging
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/system.action


public static void QuoteAdded(this ILogger logger, string quote)
{
    _quoteAdded(logger, quote, null);
}

public async Task<IActionResult> OnPostAddQuoteAsync()
{
    _db.Quotes.Add(Quote);
    await _db.SaveChangesAsync();

    _logger.QuoteAdded(Quote.Text);

    return RedirectToPage();
}

info: LoggerMessageSample.Pages.IndexModel[2]
      => RequestId:0HL90M6E7PHK5:0000000A RequestPath:/ => /Index
      Quote added (Quote = 'You can avoid reality, but you cannot avoid the 
          consequences of avoiding reality. - Ayn Rand')

private static readonly Action<ILogger, string, int, Exception> _quoteDeleted;
private static readonly Action<ILogger, int, Exception> _quoteDeleteFailed;

_quoteDeleted = LoggerMessage.Define<string, int>(
    LogLevel.Information, 
    new EventId(4, nameof(QuoteDeleted)), 
    "Quote deleted (Quote = '{Quote}' Id = {Id})");

_quoteDeleteFailed = LoggerMessage.Define<int>(
    LogLevel.Error, 
    new EventId(5, nameof(QuoteDeleteFailed)), 
    "Quote delete failed (Id = {Id})");

public static void QuoteDeleted(this ILogger logger, string quote, int id)
{
    _quoteDeleted(logger, quote, id, null);
}

public static void QuoteDeleteFailed(this ILogger logger, int id, Exception ex)
{
    _quoteDeleteFailed(logger, id, ex);
}

In the Index page's page model (Pages/Index.cshtml.cs), QuoteAdded  is called to log the message:

Inspect the app's console output:

The sample app implements a try-catch pattern for quote deletion. An informational message is logged for a

successful delete operation. An error message is logged for a delete operation when an exception is thrown. The

log message for the unsuccessful delete operation includes the exception stack trace

(Internal/LoggerExtensions.cs):

Note how the exception is passed to the delegate in QuoteDeleteFailed :

In the page model for the Index page, a successful quote deletion calls the QuoteDeleted  method on the logger.

When a quote isn't found for deletion, an ArgumentNullException is thrown. The exception is trapped by the try-

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/system.argumentnullexception
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch


public async Task<IActionResult> OnPostDeleteQuoteAsync(int id)
{
    var quote = await _db.Quotes.FindAsync(id);

    // DO NOT use this approach in production code!
    // You should check quote to see if it's null before removing 
    // it and saving changes to the database. A try-catch is used 
    // here for demonstration purposes of LoggerMessage features.
    try
    {
        _db.Quotes.Remove(quote);
        await _db.SaveChangesAsync();

        _logger.QuoteDeleted(quote.Text, id);
    }
    catch (ArgumentNullException ex)
    {
        _logger.QuoteDeleteFailed(id, ex);
    }

    return RedirectToPage();
}

info: LoggerMessageSample.Pages.IndexModel[4]
      => RequestId:0HL90M6E7PHK5:00000016 RequestPath:/ => /Index
      Quote deleted (Quote = 'You can avoid reality, but you cannot avoid the 
          consequences of avoiding reality. - Ayn Rand' Id = 1)

fail: LoggerMessageSample.Pages.IndexModel[5]
      => RequestId:0HL90M6E7PHK5:00000010 RequestPath:/ => /Index
      Quote delete failed (Id = 999)
System.ArgumentNullException: Value cannot be null.
Parameter name: entity
   at Microsoft.EntityFrameworkCore.Utilities.Check.NotNull[T]
       (T value, String parameterName)
   at Microsoft.EntityFrameworkCore.DbContext.Remove[TEntity](TEntity entity)
   at Microsoft.EntityFrameworkCore.Internal.InternalDbSet`1.Remove(TEntity entity)
   at LoggerMessageSample.Pages.IndexModel.<OnPostDeleteQuoteAsync>d__14.MoveNext() 
      in <PATH>\sample\Pages\Index.cshtml.cs:line 87

LoggerMessage.DefineScope

catch statement and logged by calling the QuoteDeleteFailed  method on the logger in the catch block

(Pages/Index.cshtml.cs):

When a quote is successfully deleted, inspect the app's console output:

When quote deletion fails, inspect the app's console output. Note that the exception is included in the log message:

DefineScope(String) creates a Func<TResult> delegate for defining a log scope. DefineScope overloads permit

passing up to three type parameters to a named format string (template).

As is the case with the Define method, the string provided to the DefineScope method is a template and not an

interpolated string. Placeholders are filled in the order that the types are specified. Placeholder names in the

template should be descriptive and consistent across templates. They serve as property names within structured

log data. We recommend Pascal casing for placeholder names. For example, {Count} , {FirstName} .

Define a log scope to apply to a series of log messages using the DefineScope method.

The sample app has a Clear AllClear All  button for deleting all of the quotes in the database. The quotes are deleted by

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.definescope
https://docs.microsoft.com/en-us/dotnet/api/system.func-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.definescope
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.define
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.definescope
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.definescope


{
  "Logging": {
    "Console": {
      "IncludeScopes": true
    },
    "LogLevel": {
      "Default": "Warning"
    }
  },
  "AllowedHosts": "*"
}

private static Func<ILogger, int, IDisposable> _allQuotesDeletedScope;

_allQuotesDeletedScope = 
    LoggerMessage.DefineScope<int>("All quotes deleted (Count = {Count})");

public static IDisposable AllQuotesDeletedScope(
    this ILogger logger, int count)
{
    return _allQuotesDeletedScope(logger, count);
}

removing them one at a time. Each time a quote is deleted, the QuoteDeleted  method is called on the logger. A log

scope is added to these log messages.

Enable IncludeScopes  in the console logger section of appsettings.json:

To create a log scope, add a field to hold a Func<TResult> delegate for the scope. The sample app creates a field

called _allQuotesDeletedScope  (Internal/LoggerExtensions.cs):

Use DefineScope to create the delegate. Up to three types can be specified for use as template arguments when

the delegate is invoked. The sample app uses a message template that includes the number of deleted quotes (an 

int  type):

Provide a static extension method for the log message. Include any type parameters for named properties that

appear in the message template. The sample app takes in a count  of quotes to delete and returns 

_allQuotesDeletedScope :

The scope wraps the logging extension calls in a using block:

https://docs.microsoft.com/en-us/dotnet/api/system.func-1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loggermessage.definescope
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement


public async Task<IActionResult> OnPostDeleteAllQuotesAsync()
{
    var quoteCount = await _db.Quotes.CountAsync();

    using (_logger.AllQuotesDeletedScope(quoteCount))
    {
        foreach (Quote quote in _db.Quotes)
        {
            _db.Quotes.Remove(quote);

            _logger.QuoteDeleted(quote.Text, quote.Id);
        }
        await _db.SaveChangesAsync();
    }

    return RedirectToPage();
}

info: LoggerMessageSample.Pages.IndexModel[4]
      => RequestId:0HL90M6E7PHK5:0000002E RequestPath:/ => /Index => 
          All quotes deleted (Count = 3)
      Quote deleted (Quote = 'Quote 1' Id = 2)
info: LoggerMessageSample.Pages.IndexModel[4]
      => RequestId:0HL90M6E7PHK5:0000002E RequestPath:/ => /Index => 
          All quotes deleted (Count = 3)
      Quote deleted (Quote = 'Quote 2' Id = 3)
info: LoggerMessageSample.Pages.IndexModel[4]
      => RequestId:0HL90M6E7PHK5:0000002E RequestPath:/ => /Index => 
          All quotes deleted (Count = 3)
      Quote deleted (Quote = 'Quote 3' Id = 4)

Additional resources

Inspect the log messages in the app's console output. The following result shows three quotes deleted with the log

scope message included:

Logging



Develop ASP.NET Core apps using a file watcher
9/22/2020 • 5 minutes to read • Edit Online

dotnet run

NOTENOTE

$ dotnet run
Hosting environment: Development
Content root path: C:/Docs/aspnetcore/tutorials/dotnet-watch/sample/WebApp
Now listening on: http://localhost:5000
Application started. Press Ctrl+C to shut down.

Add dotnet watch  to a project

By Rick Anderson and Victor Hurdugaci

dotnet watch  is a tool that runs a .NET Core CLI command when source files change. For example, a file change can

trigger compilation, test execution, or deployment.

This tutorial uses an existing web API with two endpoints: one that returns a sum and one that returns a product.

The product method has a bug, which is fixed in this tutorial.

Download the sample app. It consists of two projects: WebApp (an ASP.NET Core web API) and WebAppTests (unit

tests for the web API).

In a command shell, navigate to the WebApp folder. Run the following command:

You can use dotnet run --project <PROJECT>  to specify a project to run. For example, running 

dotnet run --project WebApp  from the root of the sample app will also run the WebApp project.

The console output shows messages similar to the following (indicating that the app is running and awaiting

requests):

In a web browser, navigate to http://localhost:<port number>/api/math/sum?a=4&b=5 . You should see the result of 9

.

Navigate to the product API ( http://localhost:<port number>/api/math/product?a=4&b=5 ). It returns 9 , not 20  as

you'd expect. That problem is fixed later in the tutorial.

The dotnet watch  file watcher tool is included with version 2.1.300 of the .NET Core SDK. The following steps are

required when using an earlier version of the .NET Core SDK.

<ItemGroup>
    <DotNetCliToolReference Include="Microsoft.DotNet.Watcher.Tools" Version="2.0.0" />
</ItemGroup>

1. Add a Microsoft.DotNet.Watcher.Tools  package reference to the .csproj file:

2. Install the Microsoft.DotNet.Watcher.Tools  package by running the following command:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/tutorials/dotnet-watch.md
https://twitter.com/RickAndMSFT
https://twitter.com/victorhurdugaci
https://docs.microsoft.com/en-us/dotnet/core/tools
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/tutorials/dotnet-watch/sample


Run .NET Core CLI commands using dotnet watch

C O M M A N DC O M M A N D C O M M A N D W IT H  WATC HC O M M A N D W IT H  WATC H

dotnet run dotnet watch run

dotnet run -f netcoreapp3.1 dotnet watch run -f netcoreapp3.1

dotnet run -f netcoreapp3.1 -- --arg1 dotnet watch run -f netcoreapp3.1 -- --arg1

dotnet test dotnet watch test

NOTENOTE

Make changes with dotnet watch

public static int Product(int a, int b)
{
    return a * b;
}

dotnet restore

Any .NET Core CLI command can be run with dotnet watch . For example:

Run dotnet watch run  in the WebApp folder. The console output indicates watch  has started.

Running dotnet watch run  on a web app launches a browser that navigates to the app's URL once ready. 

dotnet watch  does this by reading the app's console output and waiting for the the ready message displayed by

WebHost.

dotnet watch  refreshes the browser when it detects changes to watched files. To do this, the watch command

injects a middleware to the app that modifies HTML responses created by the app. The middleware adds a

JavaScript script block to the page that allows dotnet watch  to instruct the browser to refresh. Currently, changes

to all watched files, including static content such as .html and .css files cause the app to be rebuilt.

dotnet watch :

Only watches files that impact builds by default.

Any additionally watched files (via configuration) still results in a build taking place.

For more information on configuration, see dotnet-watch configuration in this document

You can use dotnet watch --project <PROJECT>  to specify a project to watch. For example, running 

dotnet watch --project WebApp run  from the root of the sample app will also run and watch the WebApp project.

Make sure dotnet watch  is running.

Fix the bug in the Product  method of MathController.cs so it returns the product and not the sum:

Save the file. The console output indicates that dotnet watch  detected a file change and restarted the app.

Verify http://localhost:<port number>/api/math/product?a=4&b=5  returns the correct result.

https://docs.microsoft.com/en-us/dotnet/core/tools#cli-commands
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.webhost


Run tests using dotnet watch

Customize files list to watch

<ItemGroup>
    <!-- extends watching group to include *.js files -->
    <Watch Include="**\*.js" Exclude="node_modules\**\*;**\*.js.map;obj\**\*;bin\**\*" />
</ItemGroup>

Opt-out of files to be watched

<ItemGroup>
    <!-- exclude Generated.cs from dotnet-watch -->
    <Compile Include="Generated.cs" Watch="false" />

    <!-- exclude Strings.resx from dotnet-watch -->
    <EmbeddedResource Include="Strings.resx" Watch="false" />

    <!-- exclude changes in this referenced project -->
    <ProjectReference Include="..\ClassLibrary1\ClassLibrary1.csproj" Watch="false" />
</ItemGroup>

Custom watch projects

Total tests: 2. Passed: 1. Failed: 1. Skipped: 0.
Test Run Failed.

1. Change the Product  method of MathController.cs back to returning the sum. Save the file.

2. In a command shell, navigate to the WebAppTests folder.

3. Run dotnet restore.

4. Run dotnet watch test . Its output indicates that a test failed and that the watcher is awaiting file changes:

5. Fix the Product  method code so it returns the product. Save the file.

dotnet watch  detects the file change and reruns the tests. The console output indicates the tests passed.

By default, dotnet-watch  tracks all files matching the following glob patterns:

**/*.cs

*.csproj

**/*.resx

More items can be added to the watch list by editing the .csproj file. Items can be specified individually or by using

glob patterns.

dotnet-watch  can be configured to ignore its default settings. To ignore specific files, add the Watch="false"

attribute to an item's definition in the .csproj file:

dotnet-watch  isn't restricted to C# projects. Custom watch projects can be created to handle different scenarios.

Consider the following project layout:

test/test/

UnitTests/UnitTests.csproj

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore


 

<Project>
    <ItemGroup>
        <TestProjects Include="**\*.csproj" />
        <Watch Include="**\*.cs" />
    </ItemGroup>

    <Target Name="Test">
        <MSBuild Targets="VSTest" Projects="@(TestProjects)" />
    </Target>

    <Import Project="$(MSBuildExtensionsPath)\Microsoft.Common.targets" />
</Project>

dotnet watch msbuild /t:Test

dotnet-watch configuration

SET T IN GSET T IN G DESC RIP T IO NDESC RIP T IO N

DOTNET_USE_POLLING_FILE_WATCHER If set to "1" or "true", dotnet watch  uses a polling file

watcher instead of CoreFx's FileSystemWatcher . Used when

watching files on network shares or Docker mounted volumes.

DOTNET_WATCH_SUPPRESS_MSBUILD_INCREMENTALISM By default, dotnet watch  optimizes the build by avoiding

certain operations such as running restore or re-evaluating
the set of watched files on every file change. If set to "1" or
"true", these optimizations are disabled.

DOTNET_WATCH_SUPPRESS_LAUNCH_BROWSER dotnet watch run  attempts to launch browsers for web

apps with launchBrowser  configured in launchSettings.json.

If set to "1" or "true", this behavior is suppressed.

DOTNET_WATCH_SUPPRESS_BROWSER_REFRESH dotnet watch run  attempts to refresh browsers when it

detects file changes. If set to "1" or "true", this behavior is
suppressed. This behavior is also suppressed if 
DOTNET_WATCH_SUPPRESS_LAUNCH_BROWSER  is set.

dotnet-watch  in GitHub

UnitTests/UnitTests.csproj

IntegrationTests/IntegrationTests.csproj

If the goal is to watch both projects, create a custom project file configured to watch both projects:

To start file watching on both projects, change to the test folder. Execute the following command:

VSTest executes when any file changes in either test project.

Some configuration options can be passed to dotnet watch  through environment variables. The available variables

are:

dotnet-watch  is part of the GitHub dotnet/AspNetCore repository.

https://github.com/dotnet/AspNetCore/tree/master/src/Tools/dotnet-watch


Factory-based middleware activation in ASP.NET
Core
9/22/2020 • 4 minutes to read • Edit Online

IMiddleware

public class ConventionalMiddleware
{
    private readonly RequestDelegate _next;

    public ConventionalMiddleware(RequestDelegate next)
    {
        _next = next;
    }

    public async Task InvokeAsync(HttpContext context, AppDbContext db)
    {
        var keyValue = context.Request.Query["key"];

        if (!string.IsNullOrWhiteSpace(keyValue))
        {
            db.Add(new Request()
                {
                    DT = DateTime.UtcNow, 
                    MiddlewareActivation = "ConventionalMiddleware", 
                    Value = keyValue
                });

            await db.SaveChangesAsync();
        }

        await _next(context);
    }
}

IMiddlewareFactory/IMiddleware is an extensibility point for middleware activation.

UseMiddleware extension methods check if a middleware's registered type implements IMiddleware. If it does,

the IMiddlewareFactory instance registered in the container is used to resolve the IMiddleware implementation

instead of using the convention-based middleware activation logic. The middleware is registered as a scoped or

transient service in the app's service container.

Benefits:

Activation per client request (injection of scoped services)

Strong typing of middleware

IMiddleware is activated per client request (connection), so scoped services can be injected into the middleware's

constructor.

View or download sample code (how to download)

IMiddleware defines middleware for the app's request pipeline. The InvokeAsync(HttpContext, RequestDelegate)

method handles requests and returns a Task that represents the execution of the middleware.

Middleware activated by convention:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/middleware/extensibility.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usemiddlewareextensions.usemiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/middleware/extensibility/samples
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task


public class FactoryActivatedMiddleware : IMiddleware
{
    private readonly AppDbContext _db;

    public FactoryActivatedMiddleware(AppDbContext db)
    {
        _db = db;
    }

    public async Task InvokeAsync(HttpContext context, RequestDelegate next)
    {
        var keyValue = context.Request.Query["key"];

        if (!string.IsNullOrWhiteSpace(keyValue))
        {
            _db.Add(new Request()
                {
                    DT = DateTime.UtcNow, 
                    MiddlewareActivation = "FactoryActivatedMiddleware", 
                    Value = keyValue
                });

            await _db.SaveChangesAsync();
        }

        await next(context);
    }
}

public static class MiddlewareExtensions
{
    public static IApplicationBuilder UseConventionalMiddleware(
        this IApplicationBuilder builder)
    {
        return builder.UseMiddleware<ConventionalMiddleware>();
    }

    public static IApplicationBuilder UseFactoryActivatedMiddleware(
        this IApplicationBuilder builder)
    {
        return builder.UseMiddleware<FactoryActivatedMiddleware>();
    }
}

public static IApplicationBuilder UseFactoryActivatedMiddleware(
    this IApplicationBuilder builder, bool option)
{
    // Passing 'option' as an argument throws a NotSupportedException at runtime.
    return builder.UseMiddleware<FactoryActivatedMiddleware>(option);
}

Middleware activated by MiddlewareFactory:

Extensions are created for the middlewares:

It isn't possible to pass objects to the factory-activated middleware with UseMiddleware:

The factory-activated middleware is added to the built-in container in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.middlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usemiddlewareextensions.usemiddleware


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<AppDbContext>(options =>
        options.UseInMemoryDatabase("InMemoryDb"));

    services.AddTransient<FactoryActivatedMiddleware>();

    services.AddRazorPages();
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
    }

    app.UseConventionalMiddleware();
    app.UseFactoryActivatedMiddleware();

    app.UseStaticFiles();
    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
    });
}

IMiddlewareFactory

Both middlewares are registered in the request processing pipeline in Startup.Configure :

IMiddlewareFactory provides methods to create middleware. The middleware factory implementation is

registered in the container as a scoped service.

The default IMiddlewareFactory implementation, MiddlewareFactory, is found in the Microsoft.AspNetCore.Http

package.

IMiddlewareFactory/IMiddleware is an extensibility point for middleware activation.

UseMiddleware extension methods check if a middleware's registered type implements IMiddleware. If it does,

the IMiddlewareFactory instance registered in the container is used to resolve the IMiddleware implementation

instead of using the convention-based middleware activation logic. The middleware is registered as a scoped or

transient service in the app's service container.

Benefits:

Activation per client request (injection of scoped services)

Strong typing of middleware

IMiddleware is activated per client request (connection), so scoped services can be injected into the middleware's

constructor.

View or download sample code (how to download)

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.middlewarefactory
https://www.nuget.org/packages/Microsoft.AspNetCore.Http/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usemiddlewareextensions.usemiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/middleware/extensibility/samples


IMiddleware

public class ConventionalMiddleware
{
    private readonly RequestDelegate _next;

    public ConventionalMiddleware(RequestDelegate next)
    {
        _next = next;
    }

    public async Task InvokeAsync(HttpContext context, AppDbContext db)
    {
        var keyValue = context.Request.Query["key"];

        if (!string.IsNullOrWhiteSpace(keyValue))
        {
            db.Add(new Request()
                {
                    DT = DateTime.UtcNow, 
                    MiddlewareActivation = "ConventionalMiddleware", 
                    Value = keyValue
                });

            await db.SaveChangesAsync();
        }

        await _next(context);
    }
}

IMiddleware defines middleware for the app's request pipeline. The InvokeAsync(HttpContext, RequestDelegate)

method handles requests and returns a Task that represents the execution of the middleware.

Middleware activated by convention:

Middleware activated by MiddlewareFactory:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware.invokeasync
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.middlewarefactory


public class FactoryActivatedMiddleware : IMiddleware
{
    private readonly AppDbContext _db;

    public FactoryActivatedMiddleware(AppDbContext db)
    {
        _db = db;
    }

    public async Task InvokeAsync(HttpContext context, RequestDelegate next)
    {
        var keyValue = context.Request.Query["key"];

        if (!string.IsNullOrWhiteSpace(keyValue))
        {
            _db.Add(new Request()
                {
                    DT = DateTime.UtcNow, 
                    MiddlewareActivation = "FactoryActivatedMiddleware", 
                    Value = keyValue
                });

            await _db.SaveChangesAsync();
        }

        await next(context);
    }
}

public static class MiddlewareExtensions
{
    public static IApplicationBuilder UseConventionalMiddleware(
        this IApplicationBuilder builder)
    {
        return builder.UseMiddleware<ConventionalMiddleware>();
    }

    public static IApplicationBuilder UseFactoryActivatedMiddleware(
        this IApplicationBuilder builder)
    {
        return builder.UseMiddleware<FactoryActivatedMiddleware>();
    }
}

public static IApplicationBuilder UseFactoryActivatedMiddleware(
    this IApplicationBuilder builder, bool option)
{
    // Passing 'option' as an argument throws a NotSupportedException at runtime.
    return builder.UseMiddleware<FactoryActivatedMiddleware>(option);
}

Extensions are created for the middlewares:

It isn't possible to pass objects to the factory-activated middleware with UseMiddleware:

The factory-activated middleware is added to the built-in container in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usemiddlewareextensions.usemiddleware


public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<AppDbContext>(options =>
        options.UseInMemoryDatabase("InMemoryDb"));

    services.AddTransient<FactoryActivatedMiddleware>();

    services.AddMvc()
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseDatabaseErrorPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
    }

    app.UseConventionalMiddleware();
    app.UseFactoryActivatedMiddleware();

    app.UseStaticFiles();
    app.UseMvc();
}

IMiddlewareFactory

Additional resources

Both middlewares are registered in the request processing pipeline in Startup.Configure :

IMiddlewareFactory provides methods to create middleware. The middleware factory implementation is

registered in the container as a scoped service.

The default IMiddlewareFactory implementation, MiddlewareFactory, is found in the Microsoft.AspNetCore.Http

package.

ASP.NET Core Middleware

Middleware activation with a third-party container in ASP.NET Core

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.middlewarefactory
https://www.nuget.org/packages/Microsoft.AspNetCore.Http/


Middleware activation with a third-party container in
ASP.NET Core
9/22/2020 • 4 minutes to read • Edit Online

NOTENOTE

IMiddlewareFactory

public class SimpleInjectorMiddlewareFactory : IMiddlewareFactory
{
    private readonly Container _container;

    public SimpleInjectorMiddlewareFactory(Container container)
    {
        _container = container;
    }

    public IMiddleware Create(Type middlewareType)
    {
        return _container.GetInstance(middlewareType) as IMiddleware;
    }

    public void Release(IMiddleware middleware)
    {
        // The container is responsible for releasing resources.
    }
}

IMiddleware

This article demonstrates how to use IMiddlewareFactory and IMiddleware as an extensibility point for

middleware activation with a third-party container. For introductory information on IMiddlewareFactory  and 

IMiddleware , see Factory-based middleware activation in ASP.NET Core.

View or download sample code (how to download)

The sample app demonstrates middleware activation by an IMiddlewareFactory  implementation, 

SimpleInjectorMiddlewareFactory . The sample uses the Simple Injector dependency injection (DI) container.

The sample's middleware implementation records the value provided by a query string parameter ( key ). The

middleware uses an injected database context (a scoped service) to record the query string value in an in-memory

database.

The sample app uses Simple Injector purely for demonstration purposes. Use of Simple Injector isn't an endorsement.

Middleware activation approaches described in the Simple Injector documentation and GitHub issues are recommended by

the maintainers of Simple Injector. For more information, see the Simple Injector documentation and Simple Injector GitHub

repository.

IMiddlewareFactory provides methods to create middleware.

In the sample app, a middleware factory is implemented to create an SimpleInjectorActivatedMiddleware  instance.

The middleware factory uses the Simple Injector container to resolve the middleware:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/fundamentals/middleware/extensibility-third-party-container.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/middleware/extensibility-third-party-container/samples/
https://simpleinjector.org
https://github.com/simpleinjector/SimpleInjector
https://simpleinjector.readthedocs.io/en/latest/index.html
https://github.com/simpleinjector/SimpleInjector
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory


public class SimpleInjectorActivatedMiddleware : IMiddleware
{
    private readonly AppDbContext _db;

    public SimpleInjectorActivatedMiddleware(AppDbContext db)
    {
        _db = db;
    }

    public async Task InvokeAsync(HttpContext context, RequestDelegate next)
    {
        var keyValue = context.Request.Query["key"];

        if (!string.IsNullOrWhiteSpace(keyValue))
        {
            _db.Add(new Request()
                {
                    DT = DateTime.UtcNow, 
                    MiddlewareActivation = "SimpleInjectorActivatedMiddleware", 
                    Value = keyValue
                });

            await _db.SaveChangesAsync();
        }

        await next(context);
    }
}

public static class MiddlewareExtensions
{
    public static IApplicationBuilder UseSimpleInjectorActivatedMiddleware(
        this IApplicationBuilder builder)
    {
        return builder.UseMiddleware<SimpleInjectorActivatedMiddleware>();
    }
}

IMiddleware defines middleware for the app's request pipeline.

Middleware activated by an IMiddlewareFactory  implementation

(Middleware/SimpleInjectorActivatedMiddleware.cs):

An extension is created for the middleware (Middleware/MiddlewareExtensions.cs):

Startup.ConfigureServices  must perform several tasks:

Set up the Simple Injector container.

Register the factory and middleware.

Make the app's database context available from the Simple Injector container.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware


public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages();

    // Replace the default middleware factory with the 
    // SimpleInjectorMiddlewareFactory.
    services.AddTransient<IMiddlewareFactory>(_ =>
    {
        return new SimpleInjectorMiddlewareFactory(_container);
    });

    // Wrap ASP.NET Core requests in a Simple Injector execution 
    // context.
    services.UseSimpleInjectorAspNetRequestScoping(_container);

    // Provide the database context from the Simple 
    // Injector container whenever it's requested from 
    // the default service container.
    services.AddScoped<AppDbContext>(provider => 
        _container.GetInstance<AppDbContext>());

    _container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

    _container.Register<AppDbContext>(() => 
    {
        var optionsBuilder = new DbContextOptionsBuilder<DbContext>();
        optionsBuilder.UseInMemoryDatabase("InMemoryDb");
        return new AppDbContext(optionsBuilder.Options);
    }, Lifestyle.Scoped);

    _container.Register<SimpleInjectorActivatedMiddleware>();

    _container.Verify();
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
    }

    app.UseSimpleInjectorActivatedMiddleware();

    app.UseStaticFiles();
    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
    });
}

The middleware is registered in the request processing pipeline in Startup.Configure :

This article demonstrates how to use IMiddlewareFactory and IMiddleware as an extensibility point for

middleware activation with a third-party container. For introductory information on IMiddlewareFactory  and 

IMiddleware , see Factory-based middleware activation in ASP.NET Core.

View or download sample code (how to download)

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/fundamentals/middleware/extensibility-third-party-container/samples/


NOTENOTE

IMiddlewareFactory

public class SimpleInjectorMiddlewareFactory : IMiddlewareFactory
{
    private readonly Container _container;

    public SimpleInjectorMiddlewareFactory(Container container)
    {
        _container = container;
    }

    public IMiddleware Create(Type middlewareType)
    {
        return _container.GetInstance(middlewareType) as IMiddleware;
    }

    public void Release(IMiddleware middleware)
    {
        // The container is responsible for releasing resources.
    }
}

IMiddleware

The sample app demonstrates middleware activation by an IMiddlewareFactory  implementation, 

SimpleInjectorMiddlewareFactory . The sample uses the Simple Injector dependency injection (DI) container.

The sample's middleware implementation records the value provided by a query string parameter ( key ). The

middleware uses an injected database context (a scoped service) to record the query string value in an in-memory

database.

The sample app uses Simple Injector purely for demonstration purposes. Use of Simple Injector isn't an endorsement.

Middleware activation approaches described in the Simple Injector documentation and GitHub issues are recommended by

the maintainers of Simple Injector. For more information, see the Simple Injector documentation and Simple Injector GitHub

repository.

IMiddlewareFactory provides methods to create middleware.

In the sample app, a middleware factory is implemented to create an SimpleInjectorActivatedMiddleware  instance.

The middleware factory uses the Simple Injector container to resolve the middleware:

IMiddleware defines middleware for the app's request pipeline.

Middleware activated by an IMiddlewareFactory  implementation

(Middleware/SimpleInjectorActivatedMiddleware.cs):

https://simpleinjector.org
https://github.com/simpleinjector/SimpleInjector
https://simpleinjector.readthedocs.io/en/latest/index.html
https://github.com/simpleinjector/SimpleInjector
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddlewarefactory
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.imiddleware


public class SimpleInjectorActivatedMiddleware : IMiddleware
{
    private readonly AppDbContext _db;

    public SimpleInjectorActivatedMiddleware(AppDbContext db)
    {
        _db = db;
    }

    public async Task InvokeAsync(HttpContext context, RequestDelegate next)
    {
        var keyValue = context.Request.Query["key"];

        if (!string.IsNullOrWhiteSpace(keyValue))
        {
            _db.Add(new Request()
                {
                    DT = DateTime.UtcNow, 
                    MiddlewareActivation = "SimpleInjectorActivatedMiddleware", 
                    Value = keyValue
                });

            await _db.SaveChangesAsync();
        }

        await next(context);
    }
}

public static class MiddlewareExtensions
{
    public static IApplicationBuilder UseSimpleInjectorActivatedMiddleware(
        this IApplicationBuilder builder)
    {
        return builder.UseMiddleware<SimpleInjectorActivatedMiddleware>();
    }
}

An extension is created for the middleware (Middleware/MiddlewareExtensions.cs):

Startup.ConfigureServices  must perform several tasks:

Set up the Simple Injector container.

Register the factory and middleware.

Make the app's database context available from the Simple Injector container.



public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

    // Replace the default middleware factory with the 
    // SimpleInjectorMiddlewareFactory.
    services.AddTransient<IMiddlewareFactory>(_ =>
    {
        return new SimpleInjectorMiddlewareFactory(_container);
    });

    // Wrap ASP.NET Core requests in a Simple Injector execution 
    // context.
    services.UseSimpleInjectorAspNetRequestScoping(_container);

    // Provide the database context from the Simple 
    // Injector container whenever it's requested from 
    // the default service container.
    services.AddScoped<AppDbContext>(provider => 
        _container.GetInstance<AppDbContext>());

    _container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

    _container.Register<AppDbContext>(() => 
    {
        var optionsBuilder = new DbContextOptionsBuilder<DbContext>();
        optionsBuilder.UseInMemoryDatabase("InMemoryDb");
        return new AppDbContext(optionsBuilder.Options);
    }, Lifestyle.Scoped);

    _container.Register<SimpleInjectorActivatedMiddleware>();

    _container.Verify();
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseExceptionHandler("/Error");
    }

    app.UseSimpleInjectorActivatedMiddleware();

    app.UseStaticFiles();
    app.UseMvc();
}

Additional resources

The middleware is registered in the request processing pipeline in Startup.Configure :

Middleware

Factory-based middleware activation

Simple Injector GitHub repository

Simple Injector documentation

https://github.com/simpleinjector/SimpleInjector
https://simpleinjector.readthedocs.io/en/latest/index.html


 

Migrate from ASP.NET Core 3.1 to 5.0
9/22/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Prerequisites

Update .NET Core SDK version in global.json

{
  "sdk": {
-    "version": "3.1.200"
+    "version": "5.0.100-rc.1.20452.10"
  }
}

Update the target framework

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
-    <TargetFramework>netcoreapp3.1</TargetFramework>
+    <TargetFramework>net5.0</TargetFramework>
  </PropertyGroup>

</Project>

Update Blazor WebAssembly projects

By Scott Addie

This article explains how to update an existing ASP.NET Core 3.1 project to ASP.NET Core 5.0.

ASP.NET Core 5.0 is currently in preview.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.8 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET 5.0 SDK or later

If you rely upon a global.json file to target a specific .NET Core SDK version, update the version  property to the

.NET 5.0 SDK version that's installed. For example:

If updating a Blazor WebAssembly project, skip to the Update Blazor WebAssembly projects section. For any other

ASP.NET Core project type, update the project file's Target Framework Moniker (TFM) to net5.0 :

For Blazor WebAssembly projects, apply the following changes in the project file:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/31-to-50.md
https://github.com/scottaddie
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet/5.0
https://docs.microsoft.com/en-us/dotnet/core/tools/global-json
https://docs.microsoft.com/en-us/dotnet/standard/frameworks


Update package references

<ItemGroup>
-    <PackageReference Include="Microsoft.AspNetCore.JsonPatch" Version="3.1.6" />
-    <PackageReference Include="Microsoft.Extensions.Caching.Abstractions" Version="3.1.6" />
-    <PackageReference Include="System.Net.Http.Json" Version="3.2.1" />
+    <PackageReference Include="Microsoft.AspNetCore.JsonPatch" Version="5.0.0-rc.1.*" />
+    <PackageReference Include="Microsoft.Extensions.Caching.Abstractions" Version="5.0.0-rc.1.*" />
+    <PackageReference Include="System.Net.Http.Json" Version="5.0.0-rc.1.*" />
</ItemGroup>

Update Docker images

- docker pull mcr.microsoft.com/dotnet/core/aspnet:3.1
+ docker pull mcr.microsoft.com/dotnet/aspnet:5.0

Review breaking changes

- <Project Sdk="Microsoft.NET.Sdk.Web">
+ <Project Sdk="Microsoft.NET.Sdk.BlazorWebAssembly">

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
-     <TargetFramework>netstandard2.1</TargetFramework>
-     <RazorLangVersion>3.0</RazorLangVersion>
+     <TargetFramework>net5.0</TargetFramework>
  </PropertyGroup>

<ItemGroup>
-    <PackageReference Include="Microsoft.AspNetCore.Components.WebAssembly.Build" Version="3.2.1" 
PrivateAssets="all" />

1. Update the SDK from Microsoft.NET.Sdk.Web  to Microsoft.NET.Sdk.BlazorWebAssembly :

2. Update the following properties:

3. Remove the package reference to Microsoft.AspNetCore.Components.WebAssembly.Build:

In the project file, update each Microsoft.AspNetCore.*, Microsoft.Extensions.*, and System.Net.Http.Json package

reference's Version  attribute to 5.0.0 or later. For example:

For apps using Docker, update your Dockerfile FROM  statements and scripts. Use a base image that includes the

ASP.NET Core 5.0 runtime. Consider the following docker pull  command difference between ASP.NET Core 3.1 and

5.0:

As part of the move to ".NET" as the product name, the Docker images moved from the 

mcr.microsoft.com/dotnet/core  repositories to mcr.microsoft.com/dotnet . For more information, see dotnet/dotnet-

docker#1939.

For breaking changes from .NET Core 3.1 to .NET 5.0, see Breaking changes for migration from version 3.1 to 5.0.

ASP.NET Core and Entity Framework Core are also included in the list.

https://www.nuget.org/packages/Microsoft.AspNetCore.Components.WebAssembly.Build
https://www.nuget.org/packages?q=Microsoft.AspNetCore.*
https://www.nuget.org/packages?q=Microsoft.Extensions.*
https://www.nuget.org/packages/System.Net.Http.Json
https://github.com/dotnet/dotnet-docker/issues/1939
https://docs.microsoft.com/en-us/dotnet/core/compatibility/3.1-5.0


Migrate from ASP.NET Core 3.0 to 3.1
9/22/2020 • 2 minutes to read • Edit Online

Prerequisites

Update .NET Core SDK version in global.json

{
  "sdk": {
-    "version": "3.0.101"
+    "version": "3.1.101"
  }
}

Update the target framework

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
-    <TargetFramework>netcoreapp3.0</TargetFramework>
+    <TargetFramework>netcoreapp3.1</TargetFramework>
  </PropertyGroup>

</Project>

Update package references

By Scott Addie

This article explains how to update an existing ASP.NET Core 3.0 project to ASP.NET Core 3.1.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

If you rely upon a global.json file to target a specific .NET Core SDK version, update the version  property to the 3.1

SDK version that's installed. For example:

In the project file, update the Target Framework Moniker (TFM) to netcoreapp3.1 :

In the project file, update each Microsoft.AspNetCore.*  package reference's Version  attribute to 3.1.0 or later. For

example:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/30-to-31.md
https://github.com/scottaddie
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1
https://docs.microsoft.com/en-us/dotnet/core/tools/global-json
https://docs.microsoft.com/en-us/dotnet/standard/frameworks


<ItemGroup>
-    <PackageReference Include="Microsoft.AspNetCore.Mvc.NewtonsoftJson" Version="3.0.0" />
-    <PackageReference Include="Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation" Version="3.0.0" 
Condition="'$(Configuration)' == 'Debug'" />
+    <PackageReference Include="Microsoft.AspNetCore.Mvc.NewtonsoftJson" Version="3.1.1" />
+    <PackageReference Include="Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation" Version="3.1.1" 
Condition="'$(Configuration)' == 'Debug'" />
</ItemGroup>

Update Docker images

docker pull mcr.microsoft.com/dotnet/core/aspnet:3.1

React to SameSite cookie changes

Review breaking changes

Optional changes

Use the Component Tag HelperUse the Component Tag Helper

- @(await Html.RenderComponentAsync<Counter>(RenderMode.ServerPrerendered, new { IncrementAmount = 10 }))
+ <component type="typeof(Counter)" render-mode="ServerPrerendered" param-IncrementAmount="10" />

For apps using Docker, use a base image that includes ASP.NET Core 3.1. For example:

The SameSite  attribute implementations for HTTP cookies changed between ASP.NET Core 3.0 and 3.1. For actions

to be taken, see the following resources:

Work with SameSite cookies in ASP.NET Core

aspnet/Announcements#390

Upcoming SameSite cookie changes in ASP.NET and ASP.NET Core

Review 3.0-to-3.1 breaking changes across .NET Core, ASP.NET Core, and Entity Framework Core at Breaking

changes for migration from version 3.0 to 3.1.

The following changes are optional.

ASP.NET Core 3.1 introduces a Component  Tag Helper. The Tag Helper can replace the 

RenderComponentAsync<TComponent>  HTML helper method in a Blazor project. For example:

For more information, see Integrate ASP.NET Core Razor components into Razor Pages and MVC apps.

https://github.com/aspnet/Announcements/issues/390
https://devblogs.microsoft.com/aspnet/upcoming-samesite-cookie-changes-in-asp-net-and-asp-net-core/
https://docs.microsoft.com/en-us/dotnet/core/compatibility/3.0-3.1


        

Migrate from ASP.NET Core 2.2 to 3.0
9/22/2020 • 27 minutes to read • Edit Online

Prerequisites

Update .NET Core SDK version in global.json

{
  "sdk": {
    "version": "3.0.100"
  }
}

Update the project file
Update the Target FrameworkUpdate the Target Framework

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>

</Project>

Remove obsolete package referencesRemove obsolete package references

By Scott Addie and Rick Anderson

This article explains how to update an existing ASP.NET Core 2.2 project to ASP.NET Core 3.0. It might be helpful to

create a new ASP.NET Core 3.0 project to:

Compare with the ASP.NET Core 2.2 code.

Copy the relevant changes to your ASP.NET Core 3.0 project.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.0 SDK or later

If your solution relies upon a global.json file to target a specific .NET Core SDK version, update its version

property to the 3.0 version installed on your machine:

ASP.NET Core 3.0 and later only run on .NET Core. Set the Target Framework Moniker (TFM) to netcoreapp3.0 :

A large number of NuGet packages aren't produced for ASP.NET Core 3.0. Such package references should be

removed from your project file. Consider the following project file for an ASP.NET Core 2.2 web app:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/22-to-30.md
https://github.com/scottaddie
https://twitter.com/RickAndMSFT
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://docs.microsoft.com/en-us/dotnet/core/tools/global-json
https://docs.microsoft.com/en-us/dotnet/standard/frameworks


    

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
    <TargetFramework>netcoreapp2.2</TargetFramework>
    <AspNetCoreHostingModel>InProcess</AspNetCoreHostingModel>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.App"/>
    <PackageReference Include="Microsoft.AspNetCore.Razor.Design" Version="2.2.0" PrivateAssets="All" />
  </ItemGroup>

</Project>

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>

</Project>

Click to expand the list of packages no longer being produced

Review breaking changesReview breaking changes

Framework referenceFramework reference

The updated project file for ASP.NET Core 3.0:

The updated ASP.NET Core 3.0 project file:

In the <PropertyGroup> :

Updates the TFM to netcoreapp3.0

Removes the <AspNetCoreHostingModel>  element. For more information, see In-process hosting model in

this document.

In the <ItemGroup> :

Microsoft.AspNetCore.App  is removed. For more information, see Framework reference in this

document.

Microsoft.AspNetCore.Razor.Design  is removed and in the following list of packages no longer being

produced.

To see the full list of packages that are no longer produced, select the following expand list:

Review breaking changes

Features of ASP.NET Core that were available through one of the packages listed above are available as part of the 

Microsoft.AspNetCore.App  shared framework. The shared framework is the set of assemblies (.dll files) that are

installed on the machine and includes a runtime component and a targeting pack. For more information, see The

shared framework.

Projects that target the Microsoft.NET.Sdk.Web  SDK implicitly reference the Microsoft.AspNetCore.App

framework.

No additional references are required for these projects:

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/


Framework-dependent builds using DockerFramework-dependent builds using Docker

It was not possible to find any compatible framework version
The specified framework 'Microsoft.AspNetCore.App', version '3.0.0' was not found.
  - No frameworks were found.

{
  "runtimeOptions": {
    "tfm": "netcoreapp3.0",
    "framework": {
      "name": "Microsoft.AspNetCore.App",
      "version": "3.0.0"
    },
    "configProperties": {
      "System.GC.Server": true
    }
  }
}

Add package references for removed assembliesAdd package references for removed assemblies

<Project Sdk="Microsoft.NET.Sdk.Web">
  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>
    ...
</Project>

<Project Sdk="Microsoft.NET.Sdk.Razor">
  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>
    ...
</Project>

Projects that target Microsoft.NET.Sdk  or Microsoft.NET.Sdk.Razor  SDK, should add an explicit 

FrameworkReference  to Microsoft.AspNetCore.App :

Framework-dependent builds of console apps that use a package that depends on the ASP.NET Core shared

framework may give the following runtime error :

Microsoft.AspNetCore.App  is the shared framework containing the ASP.NET Core runtime and is only present on

the dotnet/core/aspnet Docker image. The 3.0 SDK reduces the size of framework-dependent builds using ASP.NET

Core by not including duplicate copies of libraries that are available in the shared framework. This is a potential

savings of up to 18 MB, but it requires that the ASP.NET Core runtime be present / installed to run the app.

To determine if the app has a dependency (either direct or indirect) on the ASP.NET Core shared framework,

examine the runtimeconfig.json file generated during a build/publish of your app. The following JSON file shows a

dependency on the ASP.NET Core shared framework:

If your app is using Docker, use a base image that includes ASP.NET Core 3.0. For example, 

docker pull mcr.microsoft.com/dotnet/core/aspnet:3.0 .

ASP.NET Core 3.0 removes some assemblies that were previously part of the Microsoft.AspNetCore.App  package

reference. To visualize which assemblies were removed, compare the two shared framework folders. For example,

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/
https://hub.docker.com/_/microsoft-dotnet-core-aspnet/


a comparison of versions 2.2.7 and 3.0.0:

To continue using features provided by the removed assemblies, reference the 3.0 versions of the corresponding

packages:

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
    <UserSecretsId>My-secret</UserSecretsId>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore" Version="3.0.0" />
    <PackageReference Include="Microsoft.AspNetCore.Identity.EntityFrameworkCore" Version="3.0.0" />
    <PackageReference Include="Microsoft.AspNetCore.Identity.UI" Version="3.0.0" />
    <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer" Version="3.0.0" />
    <PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="3.0.0" />
  </ItemGroup>

</Project>

A template-generated web app with Individual User AccountsIndividual User Accounts  requires adding the following packages:

Microsoft.EntityFrameworkCore

For more information on referencing the database provider-specific package, see Database Providers.

Identity UI

Support for Identity UI can be added by referencing the Microsoft.AspNetCore.Identity.UI package.

SPA Services

Microsoft.AspNetCore.SpaServices

Microsoft.AspNetCore.SpaServices.Extensions

Authentication: Support for third-party authentication flows are available as NuGet packages:

Facebook OAuth (Microsoft.AspNetCore.Authentication.Facebook)

Google OAuth (Microsoft.AspNetCore.Authentication.Google)

Microsoft Account authentication (Microsoft.AspNetCore.Authentication.MicrosoftAccount)

OpenID Connect authentication (Microsoft.AspNetCore.Authentication.OpenIdConnect)

OpenID Connect bearer token (Microsoft.AspNetCore.Authentication.JwtBearer)

Twitter OAuth (Microsoft.AspNetCore.Authentication.Twitter)

WsFederation authentication (Microsoft.AspNetCore.Authentication.WsFederation)

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore
https://docs.microsoft.com/en-us/ef/core/providers/index
https://www.nuget.org/packages/Microsoft.AspNetCore.Identity.UI
https://www.nuget.org/packages/Microsoft.AspNetCore.SpaServices
https://www.nuget.org/packages/Microsoft.AspNetCore.SpaServices.Extensions
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Facebook
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Google
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.MicrosoftAccount
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.OpenIdConnect
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.JwtBearer
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.Twitter
https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.WsFederation


Startup changes

Formatting and content negotiation support for System.Net.HttpClient : The

Microsoft.AspNet.WebApi.Client NuGet package provides useful extensibility to System.Net.HttpClient  with

APIs such as ReadAsAsync  and PostJsonAsync .

Razor runtime compilation: Support for runtime compilation of Razor views and pages is now part of

Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation.

MVC Newtonsoft.Json  (Json.NET) support: Support for using MVC with Newtonsoft.Json  is now part of 

Microsoft.AspNetCore.Mvc.NewtonsoftJson .

The following image shows the deleted and changed lines in an ASP.NET Core 2.2 Razor Pages Web app:

In the preceding image, deleted code is shown in red. The deleted code doesn't show cookie options code, which

was deleted prior to comparing the files.

The following image shows the added and changed lines in an ASP.NET Core 3.0 Razor Pages Web app:

https://www.nuget.org/packages/Microsoft.AspNet.WebApi.Client/
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.NewtonsoftJson


Analyzer supportAnalyzer support

<Project Sdk="Microsoft.NET.Sdk.Web">
    <PropertyGroup>
        <TargetFramework>netcoreapp3.0</TargetFramework>
        <IncludeOpenAPIAnalyzers>true</IncludeOpenAPIAnalyzers>
    </PropertyGroup>

    ...
</Project>

In the preceding image, added code is shown in green. For information on the following changes:

services.AddMvc  to services.AddRazorPages , see MVC service registration in this document.

CompatibilityVersion , see Compatibility version for ASP.NET Core MVC.

IHostingEnvironment  to IWebHostEnvironment , see this GitHub announcement.

app.UseAuthorization  was added to the templates to show the order authorization middleware must be added.

If the app doesn't use authorization, you can safely remove the call to app.UseAuthorization .

app.UseEndpoints , see Razor Pages or Migrate Startup.Configure in this document.

Projects that target Microsoft.NET.Sdk.Web  implicitly reference analyzers previously shipped as part of the

Microsoft.AspNetCore.Mvc.Analyzers package. No additional references are required to enable these.

If your app uses API analyzers previously shipped using the Microsoft.AspNetCore.Mvc.Api.Analyzers package, edit

your project file to reference the analyzers shipped as part of the .NET Core Web SDK:

https://github.com/dotnet/AspNetCore/issues/7749
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Analyzers/
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Api.Analyzers/


  

  

Razor Class LibraryRazor Class Library

<PropertyGroup>
  <AddRazorSupportForMvc>true</AddRazorSupportForMvc>
</PropertyGroup>

In-process hosting modelIn-process hosting model

Kestrel
ConfigurationConfiguration

public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.ConfigureKestrel(serverOptions =>
            {
                // Set properties and call methods on options
            })
            .UseStartup<Startup>();
        });

public static void Main(string[] args)
{
    var host = new HostBuilder()
        .UseContentRoot(Directory.GetCurrentDirectory())
        .ConfigureWebHostDefaults(webBuilder =>
        {
            webBuilder.UseKestrel(serverOptions =>
            {
                // Set properties and call methods on options
            })
            .UseIISIntegration()
            .UseStartup<Startup>();
        })
        .Build();

    host.Run();
}

Connection Middleware replaces Connection AdaptersConnection Middleware replaces Connection Adapters

Razor Class Library projects that provide UI components for MVC must set the AddRazorSupportForMvc  property in

the project file:

Projects default to the in-process hosting model in ASP.NET Core 3.0 or later. You may optionally remove the 

<AspNetCoreHostingModel>  property in the project file if its value is InProcess .

Migrate Kestrel configuration to the web host builder provided by ConfigureWebHostDefaults  (Program.cs):

If the app creates the host manually with HostBuilder , call UseKestrel  on the web host builder in 

ConfigureWebHostDefaults :

Connection Adapters ( Microsoft.AspNetCore.Server.Kestrel.Core.Adapter.Internal.IConnectionAdapter ) have been

removed from Kestrel. Replace Connection Adapters with Connection Middleware. Connection Middleware is

similar to HTTP Middleware in the ASP.NET Core pipeline but for lower-level connections. HTTPS and connection

logging:

Have been moved from Connection Adapters to Connection Middleware.

These extension methods work as in previous versions of ASP.NET Core.



Transport abstractions moved and made publicTransport abstractions moved and made public

Kestrel Request trailer headersKestrel Request trailer headers

AllowSynchronousIO disabledAllowSynchronousIO disabled

For more information, see the TlsFilterConnectionHandler example in the ListenOptions.Protocols section of the

Kestrel article.

The Kestrel transport layer has been exposed as a public interface in Connections.Abstractions . As part of these

updates:

Microsoft.AspNetCore.Server.Kestrel.Transport.Abstractions  and associated types have been removed.

NoDelay was moved from ListenOptions to the transport options.

Microsoft.AspNetCore.Server.Kestrel.Transport.Abstractions.Internal.SchedulingMode  was removed from

KestrelServerOptions.

For more information, see the following GitHub resources:

Client/server networking abstractions (dotnet/AspNetCore #10308)

Implement new bedrock listener abstraction and re-plat Kestrel on top (dotnet/AspNetCore #10321)

For apps that target earlier versions of ASP.NET Core:

Kestrel adds HTTP/1.1 chunked trailer headers into the request headers collection.

Trailers are available after the request body is read to the end.

This causes some concerns about ambiguity between headers and trailers, so the trailers have been moved to a

new collection ( RequestTrailerExtensions ) in 3.0.

HTTP/2 request trailers are:

Not available in ASP.NET Core 2.2.

Available in 3.0 as RequestTrailerExtensions .

New request extension methods are present to access these trailers. As with HTTP/1.1, trailers are available after

the request body is read to the end.

For the 3.0 release, the following RequestTrailerExtensions  methods are available:

GetDeclaredTrailers : Gets the request Trailer  header that lists which trailers to expect after the body.

SupportsTrailers : Indicates if the request supports receiving trailer headers.

CheckTrailersAvailable : Checks if the request supports trailers and if they're available to be read. This check

doesn't assume that there are trailers to read. There might be no trailers to read even if true  is returned by

this method.

GetTrailer : Gets the requested trailing header from the response. Check SupportsTrailers  before calling 

GetTrailer , or a NotSupportedException may occur if the request doesn't support trailing headers.

For more information, see Put request trailers in a separate collection (dotnet/AspNetCore #10410).

AllowSynchronousIO  enables or disables synchronous I/O APIs, such as HttpRequest.Body.Read , 

HttpResponse.Body.Write , and Stream.Flush . These APIs are a source of thread starvation leading to app crashes.

In 3.0, AllowSynchronousIO  is disabled by default. For more information, see the Synchronous I/O section in the

Kestrel article.

If synchronous I/O is needed, it can be enabled by configuring the AllowSynchronousIO  option on the server being

used (when calling ConfigureKestrel , for example, if using Kestrel). Note that servers (Kestrel, HttpSys, TestServer,

etc.) all have their own AllowSynchronousIO  option that won't affect other servers. Synchronous I/O can be enabled

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.kestrelserveroptions.nodelay#microsoft_aspnetcore_server_kestrel_kestrelserveroptions_nodelay
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.core.listenoptions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.server.kestrel.kestrelserveroptions
https://github.com/dotnet/AspNetCore/issues/10308
https://github.com/dotnet/AspNetCore/pull/10321
https://docs.microsoft.com/en-us/dotnet/api/system.notsupportedexception
https://github.com/dotnet/AspNetCore/pull/10410


  

var syncIOFeature = HttpContext.Features.Get<IHttpBodyControlFeature>();

if (syncIOFeature != null)
{
    syncIOFeature.AllowSynchronousIO = true;
}

Output formatter bufferingOutput formatter buffering

services.AddControllers(options => options.SuppressOutputFormatterBuffering = true)

Microsoft.AspNetCore.Server.Kestrel.Https assembly removedMicrosoft.AspNetCore.Server.Kestrel.Https assembly removed

Newtonsoft.Json (Json.NET) support

Use Newtonsoft.Json in an ASP.NET Core 3.0 SignalR projectUse Newtonsoft.Json in an ASP.NET Core 3.0 SignalR project

for all servers on a per-request basis using the IHttpBodyControlFeature.AllowSynchronousIO  option:

If you have trouble with TextWriter implementations or other streams that call synchronous APIs in Dispose, call

the new DisposeAsync API instead.

For more information, see [Announcement] AllowSynchronousIO disabled in all servers (dotnet/AspNetCore

#7644).

Newtonsoft.Json, XmlSerializer, and DataContractSerializer based output formatters only support synchronous

serialization. To allow these formatters to work with the AllowSynchronousIO restrictions of the server, MVC

buffers the output of these formatters before writing to disk. As a result of buffering, MVC will include the

Content-Length header when responding using these formatters.

System.Text.Json supports asynchronous serialization and consequently the System.Text.Json  based formatter

does not buffer. Consider using this formatter for improved performance.

To disable buffering, applications can configure SuppressOutputFormatterBuffering in their startup:

Note that this may result in the application throwing a runtime exception if AllowSynchronousIO  isn't also

configured.

In ASP.NET Core 2.1, the contents of Microsoft.AspNetCore.Server.Kestrel.Https.dll were moved to

Microsoft.AspNetCore.Server.Kestrel.Core.dll. This was a non-breaking update using TypeForwardedTo  attributes.

For 3.0, the empty Microsoft.AspNetCore.Server.Kestrel.Https.dll assembly and the NuGet package have been

removed.

Libraries referencing Microsoft.AspNetCore.Server.Kestrel.Https should update ASP.NET Core dependencies to 2.1

or later.

Apps and libraries targeting ASP.NET Core 2.1 or later should remove any direct references to the

Microsoft.AspNetCore.Server.Kestrel.Https package.

 

As part of the work to improve the ASP.NET Core shared framework, Newtonsoft.Json (Json.NET) has been

removed from the ASP.NET Core shared framework.

The default JSON serializer for ASP.NET Core is now System.Text.Json, which is new in .NET Core 3.0. Consider

using System.Text.Json  when possible. It's high-performance and doesn't require an additional library

dependency. However, since System.Text.Json  is new, it might currently be missing features that your app needs.

For more information, see How to migrate from Newtonsoft.Json to System.Text.Json.

Install the Microsoft.AspNetCore.SignalR.Protocols.NewtonsoftJson NuGet package.

https://docs.microsoft.com/en-us/dotnet/api/system.io.textwriter
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/implementing-dispose
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream.disposeasync
https://github.com/dotnet/AspNetCore/issues/7644
https://www.newtonsoft.com/json
https://docs.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.datacontractserializer
https://github.com/dotnet/aspnetcore/issues/7644
https://docs.microsoft.com/en-us/dotnet/api/system.text.json
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.mvcoptions.suppressoutputformatterbuffering#microsoft_aspnetcore_mvc_mvcoptions_suppressoutputformatterbuffering
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel.Https
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.Kestrel.Https
https://blogs.msdn.microsoft.com/webdev/2018/10/29/a-first-look-at-changes-coming-in-asp-net-core-3-0/
https://www.newtonsoft.com/json/help/html/Introduction.htm
https://docs.microsoft.com/en-us/dotnet/api/system.text.json
https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-migrate-from-newtonsoft-how-to
https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR.Protocols.NewtonsoftJson


  

Use Newtonsoft.Json in an ASP.NET Core 3.0 MVC projectUse Newtonsoft.Json in an ASP.NET Core 3.0 MVC project

MVC service registration

new HubConnectionBuilder()
    .WithUrl("/chathub")
    .AddNewtonsoftJsonProtocol(...)
    .Build();

services.AddSignalR()
    .AddNewtonsoftJsonProtocol(...);

On the client, chain an AddNewtonsoftJsonProtocol  method call to the HubConnectionBuilder  instance:

On the server, chain an AddNewtonsoftJsonProtocol  method call to the AddSignalR  method call in 

Startup.ConfigureServices :

services.AddMvc()
    .AddNewtonsoftJson();

services.AddControllers()
    .AddNewtonsoftJson();

services.AddMvc()
    .AddNewtonsoftJson(options =>
           options.SerializerSettings.ContractResolver =
              new CamelCasePropertyNamesContractResolver());

Install the Microsoft.AspNetCore.Mvc.NewtonsoftJson  package.

Update Startup.ConfigureServices  to call AddNewtonsoftJson .

AddNewtonsoftJson  is compatible with the new MVC service registration methods:

AddRazorPages

AddControllersWithViews

AddControllers

Newtonsoft.Json  settings can be set in the call to AddNewtonsoftJson :

Note:Note: If the AddNewtonsoftJson  method isn't available, make sure that you installed the 

Microsoft.AspNetCore.Mvc.NewtonsoftJson  package. A common error is to install the Newtonsoft.Json package

instead of the Microsoft.AspNetCore.Mvc.NewtonsoftJson  package.

ASP.NET Core 3.0 adds new options for registering MVC scenarios inside Startup.ConfigureServices .

Three new top-level extension methods related to MVC scenarios on IServiceCollection  are available. Templates

use these new methods instead of AddMvc . However, AddMvc  continues to behave as it has in previous releases.

The following example adds support for controllers and API-related features, but not views or pages. The API

template uses this code:

https://nuget.org/packages/Microsoft.AspNetCore.Mvc.NewtonsoftJson
https://nuget.org/packages/Microsoft.AspNetCore.Mvc.NewtonsoftJson
https://www.nuget.org/packages/Newtonsoft.Json/
https://nuget.org/packages/Microsoft.AspNetCore.Mvc.NewtonsoftJson


  

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllers();
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews();
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddRazorPages();
}

public void ConfigureServices(IServiceCollection services)
{
    services.AddControllersWithViews();
    services.AddRazorPages();
}

Routing startup code

Migrate Startup.ConfigureMigrate Startup.Configure

The following example adds support for controllers, API-related features, and views, but not pages. The Web

Application (MVC) template uses this code:

The following example adds support for Razor Pages and minimal controller support. The Web Application

template uses this code:

The new methods can also be combined. The following example is equivalent to calling AddMvc  in ASP.NET Core

2.2:

If an app calls UseMvc  or UseSignalR , migrate the app to Endpoint Routing if possible. To improve Endpoint

Routing compatibility with previous versions of MVC, we've reverted some of the changes in URL generation

introduced in ASP.NET Core 2.2. If you experienced problems using Endpoint Routing in 2.2, expect improvements

in ASP.NET Core 3.0 with the following exceptions:

If the app implements IRouter  or inherits from Route , use DynamicRouteValuesTransformer as the

replacement.

If the app directly accesses RouteData.Routers  inside MVC to parse URLs, you can replace this with use of

LinkParser.ParsePathByEndpointName.

Define the route with a route name.

Use LinkParser.ParsePathByEndpointName  and pass in the desired route name.

Endpoint Routing supports the same route pattern syntax and route pattern authoring features as IRouter .

Endpoint Routing supports IRouteConstraint . Endpoint routing supports [Route] , [HttpGet] , and the other MVC

routing attributes.

For most applications, only Startup  requires changes.

General advice:

Add UseRouting .

https://github.com/dotnet/AspNetCore.Docs/issues/12997
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.linkparserendpointnameaddressextensions.parsepathbyendpointname


public void Configure(IApplicationBuilder app)
{
    ...

    app.UseStaticFiles();

    app.UseAuthentication();

    app.UseSignalR(hubs =>
    {
        hubs.MapHub<ChatHub>("/chat");
    });

    app.UseMvc(routes =>
    {
        routes.MapRoute("default", "{controller=Home}/{action=Index}/{id?}");
    });
}

public void Configure(IApplicationBuilder app)
{
  ...

  app.UseStaticFiles();

  app.UseRouting();
  app.UseCors();

  app.UseAuthentication();
  app.UseAuthorization();

  app.UseEndpoints(endpoints => {
     endpoints.MapControllers();
  });

If the app calls UseStaticFiles , place UseStaticFiles  beforebefore UseRouting .

If the app uses authentication/authorization features such as AuthorizePage  or [Authorize] , place the call

to UseAuthentication  and UseAuthorization : afterafter , UseRouting  and UseCors , but before UseEndpoints :

Replace UseMvc  or UseSignalR  with UseEndpoints .

If the app uses CORS scenarios, such as [EnableCors] , place the call to UseCors  before any other

middleware that use CORS (for example, place UseCors  before UseAuthentication , UseAuthorization , and 

UseEndpoints ).

Replace IHostingEnvironment  with IWebHostEnvironment  and add a using  statement for the

Microsoft.Extensions.Hosting namespace.

Replace IApplicationLifetime  with IHostApplicationLifetime (Microsoft.Extensions.Hosting namespace).

Replace EnvironmentName  with Environments (Microsoft.Extensions.Hosting namespace).

The following code is an example of Startup.Configure  in a typical ASP.NET Core 2.2 app:

After updating the previous Startup.Configure  code:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationlifetime
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.environments
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting


    

public void Configure(IApplicationBuilder app)
{
    ...

    app.UseStaticFiles();

    app.UseRouting();

    app.UseCors();

    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapHub<ChatHub>("/chat");
        endpoints.MapControllerRoute("default", "{controller=Home}/{action=Index}/{id?}");
    });
}

WARNINGWARNING

Health ChecksHealth Checks

app.UseEndpoints(endpoints =>
{
    endpoints.MapHealthChecks("/health");
});

Security middleware guidanceSecurity middleware guidance

CORSCORS

For most apps, calls to UseAuthentication , UseAuthorization , and UseCors  must appear between the calls to 

UseRouting  and UseEndpoints  to be effective.

Health Checks use endpoint routing with the Generic Host. In Startup.Configure , call MapHealthChecks  on the

endpoint builder with the endpoint URL or relative path:

Health Checks endpoints can:

Specify one or more permitted hosts/ports.

Require authorization.

Require CORS.

For more information, see Health checks in ASP.NET Core.

Support for authorization and CORS is unified around the middleware approach. This allows use of the same

middleware and functionality across these scenarios. An updated authorization middleware is provided in this

release, and CORS Middleware is enhanced so that it can understand the attributes used by MVC controllers.

Previously, CORS could be difficult to configure. Middleware was provided for use in some use cases, but MVC

filters were intended to be used withoutwithout the middleware in other use cases. With ASP.NET Core 3.0, we

recommend that all apps that require CORS use the CORS Middleware in tandem with Endpoint Routing. UseCors

can be provided with a default policy, and [EnableCors]  and [DisableCors]  attributes can be used to override the

default policy where required.

In the following example:

CORS is enabled for all endpoints with the default  named policy.



public void Configure(IApplicationBuilder app)
{
    ...

    app.UseRouting();

    app.UseCors("default");

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapDefaultControllerRoute();
    });
}

[DisableCors]
public class MyController : ControllerBase
{
    ...
}

AuthorizationAuthorization

public void Configure(IApplicationBuilder app)
{
    ...

    app.UseRouting();

    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapDefaultControllerRoute();
    });
}

public class HomeController : Controller
{
    [Authorize]
    public IActionResult BuyWidgets()
    {
        ...
    }
}

The MyController  class disables CORS with the [DisableCors]  attribute.

In earlier versions of ASP.NET Core, authorization support was provided via the [Authorize]  attribute.

Authorization middleware wasn't available. In ASP.NET Core 3.0, authorization middleware is required. We

recommend placing the ASP.NET Core Authorization Middleware ( UseAuthorization ) immediately after 

UseAuthentication . The Authorization Middleware can also be configured with a default policy, which can be

overridden.

In ASP.NET Core 3.0 or later, UseAuthorization  is called in Startup.Configure , and the following HomeController

requires a signed in user :

When using endpoint routing, we recommend against configuring 

<xref:Microsoft.AspNetCore.Mvc.Authorization.AuthorizeFilter>  and instead relying on the Authorization

middleware. If the app uses an AuthorizeFilter  as a global filter in MVC, we recommend refactoring the code to

provide a policy in the call to AddAuthorization .



public void Configure(IApplicationBuilder app)
{
    ...

    app.UseRouting();

    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapDefaultControllerRoute().RequireAuthorization();
    });
}

[AllowAnonymous]
public class HomeController : Controller
{
    ...
}

Authorization for specific endpointsAuthorization for specific endpoints

The DefaultPolicy  is initially configured to require authentication, so no additional configuration is required. In

the following example, MVC endpoints are marked as RequireAuthorization  so that all requests must be

authorized based on the DefaultPolicy . However, the HomeController  allows access without the user signing into

the app due to [AllowAnonymous] :

Authorization can also be configured for specific classes of endpoints. The following code is an example of

converting an MVC app that configured a global AuthorizeFilter  to an app with a specific policy requiring

authorization:



public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    static readonly string _RequireAuthenticatedUserPolicy = 
                            "RequireAuthenticatedUserPolicy";
    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddDbContext<ApplicationDbContext>(options =>
            options.UseSqlServer(
                Configuration.GetConnectionString("DefaultConnection")));
        services.AddDefaultIdentity<IdentityUser>(
                 options => options.SignIn.RequireConfirmedAccount = true)
            .AddEntityFrameworkStores<ApplicationDbContext>();

        // Pre 3.0:
        // services.AddMvc(options => options.Filters.Add(new AuthorizeFilter(...));

        services.AddControllersWithViews();
        services.AddRazorPages();
        services.AddAuthorization(o => o.AddPolicy(_RequireAuthenticatedUserPolicy,
                        builder => builder.RequireAuthenticatedUser()));

    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
            app.UseDatabaseErrorPage();
        }
        else
        {
            app.UseExceptionHandler("/Home/Error");
            app.UseHsts();
        }
        app.UseHttpsRedirection();
        app.UseStaticFiles();

        app.UseRouting();

        app.UseAuthentication();
        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapDefaultControllerRoute()
                .RequireAuthorization(_RequireAuthenticatedUserPolicy);
            endpoints.MapRazorPages();
        });
    }
}

Policies can also be customized. The DefaultPolicy  is configured to require authentication:



public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    public void ConfigureServices(IServiceCollection services)
    {
        services.AddDbContext<ApplicationDbContext>(options =>
            options.UseSqlServer(
                Configuration.GetConnectionString("DefaultConnection")));
        services.AddDefaultIdentity<IdentityUser>(
                 options => options.SignIn.RequireConfirmedAccount = true)
            .AddEntityFrameworkStores<ApplicationDbContext>();

        services.AddControllersWithViews();
        services.AddRazorPages();
        services.AddAuthorization(options =>
        {
            options.DefaultPolicy = new AuthorizationPolicyBuilder()
              .RequireAuthenticatedUser()
              .Build();
        });

    }

    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
            app.UseDatabaseErrorPage();
        }
        else
        {
            app.UseExceptionHandler("/Home/Error");
            app.UseHsts();
        }
        app.UseHttpsRedirection();
        app.UseStaticFiles();

        app.UseRouting();

        app.UseAuthentication();
        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapDefaultControllerRoute().RequireAuthorization();
            endpoints.MapRazorPages();
        });
    }
}

[AllowAnonymous]
public class HomeController : Controller
{

Alternatively, all endpoints can be configured to require authorization without [Authorize]  or 

RequireAuthorization  by configuring a FallbackPolicy . The FallbackPolicy  is different from the DefaultPolicy .

The DefaultPolicy  is triggered by [Authorize]  or RequireAuthorization , while the FallbackPolicy  is triggered



public void ConfigureServices(IServiceCollection services)
{
    ...

    services.AddAuthorization(options =>
    {
        options.FallbackPolicy = new AuthorizationPolicyBuilder()
          .RequireAuthenticatedUser()
          .Build();
    });
}

public void Configure(IApplicationBuilder app)
{
    ...

    app.UseRouting();

    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapDefaultControllerRoute();
    });
}

[AllowAnonymous]
public class HomeController : Controller
{
    ...
}

public void Configure(IApplicationBuilder app)
{
    ...

    app.UseRouting();

    app.UseAuthentication();
    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints
            .MapHealthChecks("/healthz")
            .RequireAuthorization(new AuthorizeAttribute(){ Roles = "admin", });
    });
}

when no other policy is set. FallbackPolicy  is initially configured to allow requests without authorization.

The following example is the same as the preceding DefaultPolicy  example but uses the FallbackPolicy  to

always require authentication on all endpoints except when [AllowAnonymous]  is specified:

Authorization by middleware works without the framework having any specific knowledge of authorization. For

instance, health checks has no specific knowledge of authorization, but health checks can have a configurable

authorization policy applied by the middleware.

Additionally, each endpoint can customize its authorization requirements. In the following example, 

UseAuthorization  processes authorization with the DefaultPolicy , but the /healthz  health check endpoint

requires an admin  user :



    

Custom authorization handlersCustom authorization handlers

SignalRSignalR

public void Configure(IApplicationBuilder app)
{
    ...

    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapHub<ChatHub>();
    });
}

services.AddSignalR(hubOptions =>
{
    hubOptions.MaximumReceiveMessageSize = 32768;
});

MVC controllersMVC controllers

Protection is implemented for some scenarios. Endpoints Middleware throws an exception if an authorization or

CORS policy is skipped due to missing middleware. Analyzer support to provide additional feedback about

misconfiguration is in progress.

If the app uses custom authorization handlers, endpoint routing passes a different resource type to handlers than

MVC. Handlers that expect the authorization handler context resource to be of type AuthorizationFilterContext (the

resource type provided by MVC filters) will need to be updated to handle resources of type RouteEndpoint (the

resource type given to authorization handlers by endpoint routing).

MVC still uses AuthorizationFilterContext  resources, so if the app uses MVC authorization filters along with

endpoint routing authorization, it may be necessary to handle both types of resources.

Mapping of SignalR hubs now takes place inside UseEndpoints .

Map each hub with MapHub . As in previous versions, each hub is explicitly listed.

In the following example, support for the ChatHub  SignalR hub is added:

There is a new option for controlling message size limits from clients. For example, in Startup.ConfigureServices :

In ASP.NET Core 2.2, you could set the TransportMaxBufferSize  and that would effectively control the maximum

message size. In ASP.NET Core 3.0, that option now only controls the maximum size before backpressure is

observed.

Mapping of controllers now takes place inside UseEndpoints .

Add MapControllers  if the app uses attribute routing. Since routing includes support for many frameworks in

ASP.NET Core 3.0 or later, adding attribute-routed controllers is opt-in.

Replace the following:

MapRoute  with MapControllerRoute

MapAreaRoute  with MapAreaControllerRoute

Since routing now includes support for more than just MVC, the terminology has changed to make these methods

clearly state what they do. Conventional routes such as MapControllerRoute / MapAreaControllerRoute /

MapDefaultControllerRoute  are applied in the order that they're added. Place more specific routes (such as routes

for an area) first.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.filters.authorizationfiltercontext
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.routing.routeendpoint


public void Configure(IApplicationBuilder app)
{
    ...

    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
        endpoints.MapAreaControllerRoute(
            "admin",
            "admin",
            "Admin/{controller=Home}/{action=Index}/{id?}");
        endpoints.MapControllerRoute(
            "default", "{controller=Home}/{action=Index}/{id?}");
    });
}

Async suffix removal from controller action namesAsync suffix removal from controller action names

public class ProductsController : Controller
{
    public async Task<IActionResult> ListAsync()
    {
        var model = await _dbContext.Products.ToListAsync();
        return View(model);
    }
}

In the following example:

MapControllers  adds support for attribute-routed controllers.

MapAreaControllerRoute  adds a conventional route for controllers in an area.

MapControllerRoute  adds a conventional route for controllers.

In ASP.NET Core 3.0, ASP.NET Core MVC removes the Async  suffix from controller action names. Both routing and

link generation are impacted by this new default. For example:

Prior to ASP.NET Core 3.0:

<a asp-controller="Products" asp-action="ListAsync">List</a>

The preceding action could be accessed at the Products/ListAsync route.

Link generation required specifying the Async  suffix. For example:

In ASP.NET Core 3.0:

<a asp-controller="Products" asp-action="List">List</a>

The preceding action can be accessed at the Products/List route.

Link generation doesn't require specifying the Async  suffix. For example:

This change doesn't affect names specified using the [ActionName]  attribute. The default behavior can be disabled

with the following code in Startup.ConfigureServices :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionnameattribute


    

services.AddMvc(options =>
    options.SuppressAsyncSuffixInActionNames = false);

Changes to link generationChanges to link generation

Razor PagesRazor Pages

public void Configure(IApplicationBuilder app)
{
    ...

    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapRazorPages();
    });
}

Use MVC without Endpoint RoutingUse MVC without Endpoint Routing

services.AddMvc(options => options.EnableEndpointRouting = false);

services.AddControllers(options => options.EnableEndpointRouting = false);

services.AddControllersWithViews(options => options.EnableEndpointRouting = false);

As explained in documentation on differences from earlier versions of routing, there are some differences in link

generation (using Url.Link  and similar APIs, for example). These include:

By default, when using endpoint routing, casing of route parameters in generated URIs is not necessarily

preserved. This behavior can be controlled with the IOutboundParameterTransformer  interface.

Generating a URI for an invalid route (a controller/action or page that doesn't exist) will produce an empty

string under endpoint routing instead of producing an invalid URI.

Ambient values (route parameters from the current context) are not automatically used in link generation with

endpoint routing. Previously, when generating a link to another action (or page), unspecified route values

would be inferred from the current routes ambient values. When using endpoint routing, all route parameters

must be specified explicitly during link generation.

Mapping Razor Pages now takes place inside UseEndpoints .

Add MapRazorPages  if the app uses Razor Pages. Since Endpoint Routing includes support for many frameworks,

adding Razor Pages is now opt-in.

In the following Startup.Configure  method, MapRazorPages  adds support for Razor Pages:

Using MVC via UseMvc  or UseMvcWithDefaultRoute  in ASP.NET Core 3.0 requires an explicit opt-in inside 

Startup.ConfigureServices . This is required because MVC must know whether it can rely on the authorization and

CORS Middleware during initialization. An analyzer is provided that warns if the app attempts to use an

unsupported configuration.

If the app requires legacy IRouter  support, disable EnableEndpointRouting  using any of the following approaches

in Startup.ConfigureServices :



services.AddRazorPages().AddMvcOptions(options => options.EnableEndpointRouting = false);

Health checksHealth checks

public void Configure(IApplicationBuilder app)
{
    ...

    app.UseRouting();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapHealthChecks("/healthz", new HealthCheckOptions() { });
    });
}

HostBuilder replaces WebHostBuilder

// requires using Microsoft.AspNetCore.Hosting;
// requires using Microsoft.Extensions.Hosting;

public class Program
{
    public static void Main(string[] args)
    {
        CreateHostBuilder(args).Build().Run();
    }

    public static IHostBuilder CreateHostBuilder(string[] args) =>
        Host.CreateDefaultBuilder(args)
            .ConfigureWebHostDefaults(webBuilder =>
            {
                webBuilder.UseStartup<Startup>();
            });
}

Health checks can be used as a router-ware with Endpoint Routing.

Add MapHealthChecks  to use health checks with Endpoint Routing. The MapHealthChecks  method accepts

arguments similar to UseHealthChecks . The advantage of using MapHealthChecks  over UseHealthChecks  is the

ability to apply authorization and to have greater fine-grained control over the matching policy.

In the following example, MapHealthChecks  is called for a health check endpoint at /healthz :

 

The ASP.NET Core 3.0 templates use Generic Host. Previous versions used Web Host. The following code shows the

ASP.NET Core 3.0 template generated Program  class:

The following code shows the ASP.NET Core 2.2 template-generated Program  class:



public class Program
{
    public static void Main(string[] args)
    {
        CreateWebHostBuilder(args).Build().Run();
    }

    public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
        WebHost.CreateDefaultBuilder(args)
            .UseStartup<Startup>();
}

AddAuthorization moved to a different assembly

Identity UI

SignalR

IWebHostBuilder remains in 3.0 and is the type of the webBuilder  seen in the preceding code sample.

WebHostBuilder will be deprecated in a future release and replaced by HostBuilder .

The most significant change from WebHostBuilder  to HostBuilder  is in dependency injection (DI). When using 

HostBuilder , you can only inject the following into Startup 's constructor :

IConfiguration

IHostEnvironment

IWebHostEnvironment

The HostBuilder  DI constraints:

Enable the DI container to be built only one time.

Avoids the resulting object lifetime issues like resolving multiple instances of singletons.

For more information, see Avoiding Startup service injection in ASP.NET Core 3.

The ASP.NET Core 2.2 and lower AddAuthorization  methods in Microsoft.AspNetCore.Authorization.dll:

Have been renamed AddAuthorizationCore .

Have been moved to Microsoft.AspNetCore.Authorization.Policy.dll.

Apps that are using both Microsoft.AspNetCore.Authorization.dll and Microsoft.AspNetCore.Authorization.Policy.dll

aren't impacted.

Apps that are not using Microsoft.AspNetCore.Authorization.Policy.dll should do one of the following:

Add a reference to Microsoft.AspNetCore.Authorization.Policy.dll. This approach works for most apps and is all

that is required.

Switch to using AddAuthorizationCore

For more information, see Breaking change in AddAuthorization(o => ) overload lives in a different assembly #386.

Identity UI updates for ASP.NET Core 3.0:

Add a package reference to Microsoft.AspNetCore.Identity.UI.

Apps that don't use Razor Pages must call MapRazorPages . See Razor Pages in this document.

Bootstrap 4 is the default UI framework. Set an IdentityUIFrameworkVersion  project property to change the

default. For more information, see this GitHub announcement.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostenvironment
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostenvironment
https://andrewlock.net/avoiding-startup-service-injection-in-asp-net-core-3/
https://github.com/aspnet/Announcements/issues/386
https://nuget.org/packages/Microsoft.AspNetCore.Identity.UI
https://github.com/aspnet/Announcements/issues/380


                

System.Text.Json is the default protocolSystem.Text.Json is the default protocol

services.AddSignalR(...)
        .AddJsonProtocol(options =>
        {
            options.PayloadSerializerOptions.WriteIndented = false;
        })

new HubConnectionBuilder()
    .WithUrl("/chathub")
    .AddJsonProtocol(options =>
    {
        options.PayloadSerializerOptions.WriteIndented = false;
    })
    .Build();

Switch to Newtonsoft.JsonSwitch to Newtonsoft.Json

Redis distributed caches

Opt in to runtime compilation

The SignalR JavaScript client has changed from @aspnet/signalr  to @microsoft/signalr . To react to this change,

change the references in package.json files, require  statements, and ECMAScript import  statements.

System.Text.Json  is now the default Hub protocol used by both the client and server.

In Startup.ConfigureServices , call AddJsonProtocol  to set serializer options.

Ser ver :Ser ver :

Client:Client:

If you're using features of Newtonsoft.Json that aren't supported in System.Text.Json, you can switch back to 

Newtonsoft.Json . See Use Newtonsoft.Json in an ASP.NET Core 3.0 SignalR project earlier in this article.

The Microsoft.Extensions.Caching.Redis package isn't available for ASP.NET Core 3.0 or later apps. Replace the

package reference with Microsoft.Extensions.Caching.StackExchangeRedis. For more information, see Distributed

caching in ASP.NET Core.

Prior to ASP.NET Core 3.0, runtime compilation of views was an implicit feature of the framework. Runtime

compilation supplements build-time compilation of views. It allows the framework to compile Razor views and

pages (.cshtml files) when the files are modified, without having to rebuild the entire app. This feature supports the

scenario of making a quick edit in the IDE and refreshing the browser to view the changes.

In ASP.NET Core 3.0, runtime compilation is an opt-in scenario. Build-time compilation is the only mechanism for

view compilation that's enabled by default. The runtime relies on Visual Studio or dotnet-watch in Visual Studio

Code to rebuild the project when it detects changes to .cshtml files. In Visual Studio, changes to .cs, .cshtml, or

.razor files in the project being run (Ctrl+F5), but not debugged (F5), trigger recompilation of the project.

To enable runtime compilation in your ASP.NET Core 3.0 project:

1. Install the Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation NuGet package.

2. Update Startup.ConfigureServices  to call AddRazorRuntimeCompilation :

For ASP.NET Core MVC, use the following code:

https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-migrate-from-newtonsoft-how-to
https://www.nuget.org/packages/Microsoft.Extensions.Caching.Redis
https://www.nuget.org/packages/Microsoft.Extensions.Caching.StackExchangeRedis
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation


Migrate libraries via multi-targeting

<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFrameworks>netcoreapp3.0;netstandard2.0</TargetFrameworks>
  </PropertyGroup>

  <ItemGroup Condition="'$(TargetFramework)' == 'netcoreapp3.0'">
    <FrameworkReference Include="Microsoft.AspNetCore.App" />
  </ItemGroup>

  <ItemGroup Condition="'$(TargetFramework)' == 'netstandard2.0'">
    <PackageReference Include="Microsoft.AspNetCore" Version="2.1.0" />
  </ItemGroup>
</Project>

var webRootFileProvider =
#if NETCOREAPP3_0
    GetRequiredService<IWebHostEnvironment>().WebRootFileProvider;
#elif NETSTANDARD2_0
    GetRequiredService<IHostingEnvironment>().WebRootFileProvider;
#else
#error unknown target framework
#endif

Miscellaneous changes

PublishPublish

services.AddControllersWithViews()
    .AddRazorRuntimeCompilation(...);

services.AddRazorPages()
    .AddRazorRuntimeCompilation(...);

For ASP.NET Core Razor Pages, use the following code:

The sample at https://github.com/aspnet/samples/tree/master/samples/aspnetcore/mvc/runtimecompilation

shows an example of enabling runtime compilation conditionally in Development environments.

For more information on Razor file compilation, see Razor file compilation in ASP.NET Core.

Libraries often need to support multiple versions of ASP.NET Core. Most libraries that were compiled against

previous versions of ASP.NET Core should continue working without issues. The following conditions require the

app to be cross-compiled:

The library relies on a feature that has a binary breaking change.

The library wants to take advantage of new features in ASP.NET Core 3.0.

For example:

Use #ifdefs  to enable ASP.NET Core 3.0-specific APIs:

For more information on using ASP.NET Core APIs in a class library, see Use ASP.NET Core APIs in a class library.

The validation system in .NET Core 3.0 and later treats non-nullable parameters or bound properties as if they had

a [Required]  attribute. For more information, see [Required] attribute.

https://github.com/aspnet/samples/tree/master/samples/aspnetcore/mvc/runtimecompilation


 

TestServer

[Fact]
public async Task GenericCreateAndStartHost_GetTestServer()
{
    using var host = await new HostBuilder()
        .ConfigureWebHost(webBuilder =>
        {
            webBuilder
                .UseTestServer()
                .Configure(app => { });
        })
    .StartAsync();

    var response = await host.GetTestServer().CreateClient().GetAsync("/");

    Assert.Equal(HttpStatusCode.NotFound, response.StatusCode);
}

Breaking API changes

Endpoint routing with catch-all parameter

WARNINGWARNING

public static void Main(string[] args)
{
   AppContext.SetSwitch("Microsoft.AspNetCore.Routing.UseCorrectCatchAllBehavior", 
                         true);
   CreateHostBuilder(args).Build().Run();
}
// Remaining code removed for brevity.

Delete the bin and obj folders in the project directory.

For apps that use TestServer directly with the Generic Host, create the TestServer  on an IWebHostBuilder in

ConfigureWebHost:

 

Review breaking changes:

Complete list of breaking changes in the ASP.NET Core 3.0 release

Breaking API changes in Antiforgery, CORS, Diagnostics, MVC, and Routing. This list includes breaking changes

for compatibility switches.

For a summary of 2.2-to-3.0 breaking changes across .NET Core, ASP.NET Core, and Entity Framework Core, see

Breaking changes for migration from version 2.2 to 3.0.

A catch-allcatch-all parameter may match routes incorrectly due to a bug in routing. Apps impacted by this bug have the following

characteristics:

A catch-all route, for example, {**slug}"

The catch-all route fails to match requests it should match.

Removing other routes makes catch-all route start working.

See GitHub bugs 18677 and 16579 for example cases that hit this bug.

An opt-in fix for this bug is contained in .NET Core 3.1.301 SDK and later. The following code sets an internal switch that

fixes this bug:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.testhost.testserver
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.generichostwebhostbuilderextensions.configurewebhost
https://github.com/aspnet/Announcements/issues?page=1&q=is%3Aissue+is%3Aopen+label%3A%22Breaking+change%22+label%3A3.0.0
https://github.com/aspnet/Announcements/issues/387
https://docs.microsoft.com/en-us/dotnet/core/compatibility/2.2-3.0
https://github.com/dotnet/aspnetcore/issues/18677
https://github.com/dotnet/aspnetcore/issues/18677
https://github.com/dotnet/aspnetcore/issues/16579
https://dotnet.microsoft.com/download/dotnet-core/3.1


.NET Core 3.0 on Azure App Service
The rollout of .NET Core to Azure App Service is finished. .NET Core 3.0 is available in all Azure App Service

datacenters.



Migrate from ASP.NET Core 2.1 to 2.2
9/22/2020 • 5 minutes to read • Edit Online

Prerequisites

WARNINGWARNING

Update Target Framework Moniker (TFM)

<TargetFramework>netcoreapp2.2</TargetFramework>

<TargetFramework>net461</TargetFramework>

Adopt the IIS in-process hosting model

<AspNetCoreHostingModel>InProcess</AspNetCoreHostingModel>

Update a custom web.config file

By Scott Addie

This article explains how to update an existing ASP.NET Core 2.1 project to ASP.NET Core 2.2.

Visual Studio

Visual Studio Code

Visual Studio for Mac

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't work with

Visual Studio.

Projects targeting .NET Core should use the TFM of a version greater than or equal to .NET Core 2.2. In the project

file, update the <TargetFramework>  node's inner text with netcoreapp2.2 :

Projects targeting .NET Framework may continue to use the TFM of a version greater than or equal to .NET

Framework 4.6.1:

To adopt the in-process hosting model for IIS, add the <AspNetCoreHostingModel>  property with a value of 

InProcess  to a <PropertyGroup>  in the project file:

The in-process hosting model isn't supported for ASP.NET Core apps targeting .NET Framework.

For more information, see ASP.NET Core Module.

For projects that use a custom web.config file in the project root to generate their published web.config file:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/21-to-22.md
https://github.com/scottaddie
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124
https://docs.microsoft.com/en-us/dotnet/standard/frameworks


Update package references

A PackageReference to 'Microsoft.AspNetCore.App' specified a Version of `2.2.0`. Specifying the version of this 
package is not recommended. For more information, see https://aka.ms/sdkimplicitrefs

<ItemGroup>
  <PackageReference Include="Microsoft.AspNetCore.App" />
</ItemGroup>

<ItemGroup>
  <PackageReference Include="Microsoft.AspNetCore" Version="2.2.0" />
  <PackageReference Include="Microsoft.AspNetCore.CookiePolicy" Version="2.2.0" />
  <PackageReference Include="Microsoft.AspNetCore.HttpsPolicy" Version="2.2.0" />
  <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.2.0" />
  <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="2.2.0" />
</ItemGroup>

Detected package downgrade: Microsoft.AspNetCore.Razor.Design from 2.2.0 to 2.1.2. Reference the package 
directly from the project to select a different version.

Update .NET Core SDK version in global.json

{
  "sdk": {
    "version": "2.2.100"
  }
}

Update launch settings

In the <handlers>  entry that adds the ASP.NET Core Module ( name="aspNetCore" ), change the modules  attribute

value from AspNetCoreModule  to AspNetCoreModuleV2 .

In the <aspNetCore>  element, add the hosting model attribute ( hostingModel="InProcess" ).

For more information and example web.config files, see ASP.NET Core Module.

If targeting .NET Core, remove the metapackage reference's Version  attribute in the project file. Inclusion of a 

Version  attribute results in the following warning:

For more information, see Microsoft.AspNetCore.App metapackage for ASP.NET Core.

The metapackage reference should resemble the following <PackageReference />  node:

If targeting .NET Framework, update each package reference's Version  attribute to 2.2.0 or later. Here are the

package references in a typical ASP.NET Core 2.2 project targeting .NET Framework:

If referencing the Microsoft.AspNetCore.Razor.Design package, update its Version  attribute to 2.2.0 or later. Failure

to do so results in the following error :

If your solution relies upon a global.json file to target a specific .NET Core SDK version, update its version  property

to the 2.2 version installed on your machine:

If using Visual Studio Code, update the project's launch settings file (.vscode/launch.json). The program  path should

https://www.nuget.org/packages/Microsoft.AspNetCore.Razor.Design/
https://docs.microsoft.com/en-us/dotnet/core/tools/global-json


{
    "version": "0.2.0",
    "configurations": [
        {
            "name": ".NET Core Launch (web)",
            "type": "coreclr",
            "request": "launch",
            "preLaunchTask": "build",
            "program": "${workspaceFolder}/bin/Debug/netcoreapp2.2/test-app.dll",
            "args": [],
            "cwd": "${workspaceFolder}",
            "stopAtEntry": false,
            "internalConsoleOptions": "openOnSessionStart",
            "launchBrowser": {
                "enabled": true,
                "args": "${auto-detect-url}",
                "windows": {
                    "command": "cmd.exe",
                    "args": "/C start ${auto-detect-url}"
                },
                "osx": {
                    "command": "open"
                },
                "linux": {
                    "command": "xdg-open"
                }
            },
            "env": {
                "ASPNETCORE_ENVIRONMENT": "Development"
            },
            "sourceFileMap": {
                "/Views": "${workspaceFolder}/Views"
            }
        },
        {
            "name": ".NET Core Attach",
            "type": "coreclr",
            "request": "attach",
            "processId": "${command:pickProcess}"
        }
    ]
}

Update Kestrel configuration

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureKestrel((context, options) =>
        {
            // Set properties and call methods on options
        });

reference the new TFM:

If the app calls UseKestrel by calling CreateDefaultBuilder  in the CreateWebHostBuilder method of the Program

class, call ConfigureKestrel  to configure Kestrel server instead of UseKestrel  in order to avoid conflicts with the IIS

in-process hosting model:

If the app doesn't call CreateDefaultBuilder  and builds the host manually in the Program  class, call UseKestrel

beforebefore calling ConfigureKestrel :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderkestrelextensions.usekestrel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.webhostbuilderkestrelextensions.usekestrel


public static void Main(string[] args)
{
    var host = new WebHostBuilder()
        .UseContentRoot(Directory.GetCurrentDirectory())
        .UseKestrel()
        .UseIISIntegration()
        .UseStartup<Startup>()
        .ConfigureKestrel((context, options) =>
        {
            // Set properties and call methods on options
        })
        .Build();

    host.Run();
}

Update compatibility version

services.AddMvc()
        .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);

Update CORS policy

Update Docker images

2. 12. 1 2. 22. 2

microsoft/dotnet:2.1-aspnetcore-runtime mcr.microsoft.com/dotnet/core/aspnet:2.2

microsoft/dotnet:2.1-sdk mcr.microsoft.com/dotnet/core/sdk:2.2

Build manually in Visual Studio when using IIS in-process hosting

For more information, see Kestrel web server implementation in ASP.NET Core.

Update the compatibility version in Startup.ConfigureServices  to Version_2_2 :

In ASP.NET Core 2.2, the CORS middleware responds with a wildcard origin ( * ) if a policy allows any origin and

allows credentials. Credentials aren't supported when a wildcard origin ( * ) is specified, and browsers will disallow

the CORS request. For more information, including options for correcting the problem on the client, see the MDN

web docs.

To correct this problem on the server, take one of the following actions:

Modify the CORS policy to no longer allow credentials. That is, remove the call to AllowCredentials when

configuring the policy.

If credentials are required for the CORS request to succeed, modify the policy to specify allowed hosts. For

example, use builder.WithOrigins("https://api.example1.com", "https://example2.com")  instead of using

AllowAnyOrigin.

The following table shows the Docker image tag changes:

Change the FROM  lines in your Dockerfile to use the new image tags in the preceding table's 2.2 column.

Visual Studio's Auto build on browser requestAuto build on browser request experience doesn't function with the IIS in-process hosting

https://developer.mozilla.org/docs/Web/HTTP/CORS/Errors/CORSNotSupportingCredentials
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowcredentials
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.cors.infrastructure.corspolicybuilder.allowanyorigin


Update logging code

model. You must manually rebuild the project when using in-process hosting. Improvements to this experience are

planned for a future release of Visual Studio.

Recommended logging configuration code didn't change from 2.1 to 2.2, but some 1.x coding patterns that still

worked in 2.1 no longer work in 2.2.

If your app does logging provider initialization, filtering, and configuration loading in the Startup  class, move that

code to Program.Main :

public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
    loggerFactory.AddConsole();
}

public static void Main(string[] args)
{
    var webHost = new WebHostBuilder()
        // ...
        .ConfigureLogging((hostingContext, logging) =>
        {
            logging.AddConsole();
        })
        // ...
}

public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
    loggerFactory.AddConsole(LogLevel.Information);
    // or
    loggerFactory.AddConsole((category, level) => 
        category == "A" || level == LogLevel.Critical);
}

Provider initialization:

1.x example:

2.2 example:

Filtering:

1.x example:

2.2 example:



Additional resources

public static void Main(string[] args)
{
    var webHost = new WebHostBuilder()
        // ...
        .ConfigureLogging((hostingContext, logging) =>
        {
            logging.AddConsole()
                   .AddFilter<ConsoleLoggerProvider>
                       (category: null, level: LogLevel.Information)
                   // or
                   .AddFilter<ConsoleLoggerProvider>
                       ((category, level) => category == "A" ||
                           level == LogLevel.Critical)
            );
        })
        // ...
}

public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
    loggerFactory.AddConsole(Configuration);
}

public static void Main(string[] args)
{
    var webHost = new WebHostBuilder()
        // ...
        .ConfigureLogging((hostingContext, logging) =>
        {
            logging.AddConfiguration(hostingContext.Configuration.GetSection("Logging"));
            logging.AddConsole();
        })
        // ...
}

Configuration loading:

1.x example:

2.2 example:

For more information, see Logging in .NET Core and ASP.NET Core

Compatibility version for ASP.NET Core MVC

Microsoft.AspNetCore.App metapackage for ASP.NET Core

Implicit package references

https://docs.microsoft.com/en-us/dotnet/core/tools/csproj#implicit-package-references


 

Migrate from ASP.NET Core 2.0 to 2.1
9/22/2020 • 10 minutes to read • Edit Online

Update the project file to use 2.1 versions

By Rick Anderson

See What's new in ASP.NET Core 2.1 for an overview of the new features in ASP.NET Core 2.1.

This article:

Covers the basics of migrating an ASP.NET Core 2.0 app to 2.1.

Provides an overview of the changes to the ASP.NET Core web application templates.

A quick way to get an overview of the changes in 2.1 is to:

Create an ASP.NET Core 2.0 web app named WebApp1.

Commit the WebApp1 in a source control system.

Delete WebApp1 and create an ASP.NET Core 2.1 web app named WebApp1 in the same place.

Review the changes in the 2.1 version.

This article provides an overview on migration to ASP.NET Core 2.1. It doesn't contain a complete list of all changes

needed to migrate to version 2.1. Some projects might require more steps depending on the options selected when

the project was created and modifications made to the project.

Update the project file:

Change the target framework to .NET Core 2.1 by updating the project file to 

<TargetFramework>netcoreapp2.1</TargetFramework> .

Replace the package reference for Microsoft.AspNetCore.All  with a package reference for 

Microsoft.AspNetCore.App . You may need to add dependencies that were removed from 

Microsoft.AspNetCore.All . For more information, see Microsoft.AspNetCore.All metapackage for ASP.NET Core

2.0 and Microsoft.AspNetCore.App metapackage for ASP.NET Core.

Remove the "Version" attribute on the package reference to Microsoft.AspNetCore.App . Projects that use 

<Project Sdk="Microsoft.NET.Sdk.Web">  don't need to set the version. The version is implied by the target

framework and selected to best match the way ASP.NET Core 2.1 works. For more information, see the Rules for

projects targeting the shared framework section.

For apps that target the .NET Framework, update each package reference to 2.1.

Remove references to <DotNetCliToolReference><DotNetCliToolReference> elements for the following packages. These tools are

bundled by default in the .NET Core CLI and don't need to be installed separately.

Optional: you can remove the <DotNetCliToolReference><DotNetCliToolReference> element for 

Microsoft.VisualStudio.Web.CodeGeneration.Tools . You can replace this tool with a globally installed version by

running dotnet tool install -g dotnet-aspnet-codegenerator .

For 2.1, a Razor Class Library is the recommended solution to distribute Razor files. If your app uses embedded

views, or otherwise relies on runtime compilation of Razor files, add 

Microsoft.DotNet.Watcher.Tools ( dotnet watch )

Microsoft.EntityFrameworkCore.Tools.DotNet ( dotnet ef )

Microsoft.Extensions.Caching.SqlConfig.Tools ( dotnet sql-cache )

Microsoft.Extensions.SecretManager.Tools ( dotnet user-secrets )

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/20_21.md
https://twitter.com/RickAndMSFT


 

<Project Sdk="Microsoft.NET.Sdk.Web">
  <PropertyGroup>
    <TargetFramework>netcoreapp2.0</TargetFramework>
    <UserSecretsId>aspnet-{Project Name}-{GUID}</UserSecretsId>
  </PropertyGroup>
  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.9" />
    <PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="2.0.3" PrivateAssets="All" />
    <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.0.4" 
PrivateAssets="All" />
  </ItemGroup>
  <ItemGroup>
    <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.3" />
    <DotNetCliToolReference Include="Microsoft.Extensions.SecretManager.Tools" Version="2.0.2" />
    <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.4" />
  </ItemGroup>
</Project>

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
    <TargetFramework>netcoreapp2.1</TargetFramework>
    <UserSecretsId>aspnet-{Project Name}-{GUID}</UserSecretsId>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.App" />
    <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.1.1" 
PrivateAssets="All" />
  </ItemGroup>

</Project>

Rules for projects targeting the shared framework

<CopyRefAssembliesToPublishDirectory>true</CopyRefAssembliesToPublishDirectory>  to a <PropertyGroup>  in your

project file.

The following markup shows the template-generated 2.0 project file:

The following markup shows the template-generated 2.1 project file:

A shared framework is a set of assemblies (.dll files) that are not in the app's folders. The shared framework must

be installed on the machine to run the app. For more information, see The shared framework.

ASP.NET Core 2.1 includes the following shared frameworks:

Microsoft.AspNetCore.App

Microsoft.AspNetCore.All

The version specified by the package reference is the minimum required version. For example, a project referencing

the 2.1.1 versions of these packages won't run on a machine with only the 2.1.0 runtime installed.

Known issues for projects targeting a shared framework:

The .NET Core 2.1.300 SDK (first included in Visual Studio 15.6) set the implicit version of

Microsoft.AspNetCore.App  to 2.1.0 which caused conflicts with Entity Framework Core 2.1.1. The

recommended solution is to upgrade the .NET Core SDK to 2.1.301 or later. For more information, see

Packages that share dependencies with Microsoft.AspNetCore.App cannot reference patch versions.

https://natemcmaster.com/blog/2018/08/29/netcore-primitives-2/
https://github.com/aspnet/Universe/issues/1180


Update to the 2.1 Docker images

2. 02. 0 2. 12. 1

microsoft/aspnetcore:2.0 microsoft/dotnet:2.1-aspnetcore-runtime

microsoft/aspnetcore-build:2.0 microsoft/dotnet:2.1-sdk

Changes to take advantage of the new code-based idioms that are
recommended in ASP.NET Core 2.1
Changes to MainChanges to Main

All projects that must use Microsoft.AspNetCore.All  or Microsoft.AspNetCore.App  should add a package

reference for the package in the project file, even if they contain a project reference to another project using 

Microsoft.AspNetCore.All  or Microsoft.AspNetCore.App .

Example:

MyApp  has a package reference to Microsoft.AspNetCore.App .

MyApp.Tests  has a project reference to MyApp.csproj .

Add a package reference for Microsoft.AspNetCore.App  to MyApp.Tests . For more information, see

Integration testing is hard to set up and may break on shared framework servicing.

In ASP.NET Core 2.1, the Docker images migrated to the dotnet/dotnet-docker GitHub repository. The following

table shows the Docker image and tag changes:

Change the FROM  lines in your Dockerfile to use the new image names and tags in the preceding table's 2.1

column. For more information, see Migrating from aspnetcore docker repos to dotnet.

The following images show the changes made to the templated generated Program.cs file.

The preceding image shows the 2.0 version with the deletions in red.

The following image shows the 2.1 code. The code in green replaced the 2.0 version:

https://github.com/dotnet/aspnetcore/issues/3156
https://github.com/dotnet/dotnet-docker
https://github.com/aspnet/Announcements/issues/298


namespace WebApp1
{
    public class Program
    {
        public static void Main(string[] args)
        {
            CreateWebHostBuilder(args).Build().Run();
        }

        public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
            WebHost.CreateDefaultBuilder(args)
                .UseStartup<Startup>();
    }
}

Changes to StartupChanges to Startup

The following code shows the 2.1 version of Program.cs:

The new Main  replaces the call to BuildWebHost  with CreateWebHostBuilder. IWebHostBuilder was added to

support a new integration test infrastructure.

The following code shows the changes to 2.1 template generated code. All changes are newly added code, except

that UseBrowserLink  has been removed:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1.createwebhostbuilder
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.hosting.iwebhostbuilder


using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;

namespace WebApp1
{
    public class Startup
    {
        public Startup(IConfiguration configuration)
        {
            Configuration = configuration;
        }

        public IConfiguration Configuration { get; }

        public void ConfigureServices(IServiceCollection services)
        {
            services.Configure<CookiePolicyOptions>(options =>
            {
                // This lambda determines whether user consent for non-essential cookies is needed for a given 
request.
                options.CheckConsentNeeded = context => true;
                options.MinimumSameSitePolicy = SameSiteMode.None;
            });

            services.AddMvc()
                .SetCompatibilityVersion(CompatibilityVersion.Version_2_1);
        }

        public void Configure(IApplicationBuilder app, IHostingEnvironment env)
        {
            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
            }
            else
            {
                app.UseExceptionHandler("/Error");
                app.UseHsts();
            }

            app.UseHttpsRedirection();
            app.UseStaticFiles();
            app.UseCookiePolicy();
            // If the app uses Session or TempData based on Session:
            // app.UseSession();

            app.UseMvc();
        }
    }
}

The preceding code changes are detailed in:

GDPR support in ASP.NET Core for CookiePolicyOptions  and UseCookiePolicy .

HTTP Strict Transport Security Protocol (HSTS) for UseHsts .

Require HTTPS for UseHttpsRedirection .

SetCompatibilityVersion for SetCompatibilityVersion(CompatibilityVersion.Version_2_1) .



    Changes to authentication code

2. 0 URL2. 0 URL 2. 1 URL2. 1 URL

/Account/Login /Identity/Account/Login

/Account/Logout /Identity/Account/Logout

/Account/Manage /Identity/Account/Manage

Update Identity to version 2.1Update Identity to version 2.1

Replace Identity 2.0 UI with the Identity 2.1 Razor Class LibraryReplace Identity 2.0 UI with the Identity 2.1 Razor Class Library

ASP.NET Core 2.1 provides ASP.NET Core Identity as a Razor Class Library (RCL).

The default 2.1 Identity UI doesn't currently provide significant new features over the 2.0 version. Replacing Identity

with the RCL package is optional. The advantages to replacing the template generated Identity code with the RCL

version include:

Many files are moved out of your source tree.

Any bug fixes or new features to Identity are included in the Microsoft.AspNetCore.App metapackage. You

automatically get the updated Identity when Microsoft.AspNetCore.App  is updated.

If you've made non-trivial changes to the template generated Identity code:

The preceding advantages probably do notnot justify converting to the RCL version.

You can keep your ASP.NET Core 2.0 Identity code, it's fully supported.

Identity 2.1 exposes endpoints with the Identity  area. For example, the follow table shows examples of Identity

endpoints that change from 2.0 to 2.1:

Applications that have code using Identity and replace 2.0 Identity UI with the 2.1 Identity Library need to take into

account Identity URLs have /Identity  segment prepended to the URIs. One way to handle the new Identity

endpoints is to set up redirects, for example from /Account/Login  to /Identity/Account/Login .

The following options are available to update Identity to 2.1.

Use the Identity UI 2.0 code with no changes. Using Identity UI 2.0 code is fully supported. This is a good

approach when significant changes have been made to the generated Identity code.

Delete your existing Identity 2.0 code and Scaffold Identity into your project. Your project will use the ASP.NET

Core Identity Razor Class Library. You can generate code and UI for any of the Identity UI code that you

modified. Apply your code changes to the newly scaffolded UI code.

Delete your existing Identity 2.0 code and Scaffold Identity into your project with the option to Overr ide allOverr ide all

filesfiles .

This section outlines the steps to replace the ASP.NET Core 2.0 template generated Identity code with the ASP.NET

Core Identity Razor Class Library. The following steps are for a Razor Pages project, but the approach for an MVC

project is similar.

Verify the project file is updated to use 2.1 versions

Delete the following folders and all the files in them:

Build the project.

Controllers

Pages/Account/

Extensions



Update after scaffolding IdentityUpdate after scaffolding Identity

Scaffold Identity into your project:

Select the projects exiting _Layout.cshtml file.

Select the ++ icon on the right side of the Data context classData context class . Accept the default name.

Select AddAdd to create a new Data context class. Creating a new data context is required for to scaffold. You

remove the new data context in the next section.

@using Microsoft.AspNetCore.Identity

@inject SignInManager<ApplicationUser> SignInManager
@inject UserManager<ApplicationUser> UserManager

@if (SignInManager.IsSignedIn(User))
{
    <form asp-area="Identity" asp-page="/Account/Logout" asp-route-returnUrl="@Url.Page("/Index", new { 
area = "" })" method="post" id="logoutForm" class="navbar-right">
        <ul class="nav navbar-nav navbar-right">
            <li>
                <a asp-area="Identity" asp-page="/Account/Manage/Index" title="Manage">Hello 
@UserManager.GetUserName(User)!</a>
            </li>
            <li>
                <button type="submit" class="btn btn-link navbar-btn navbar-link">Log out</button>
            </li>
        </ul>
    </form>
}
else
{
    <ul class="nav navbar-nav navbar-right">
        <li><a asp-area="Identity" asp-page="/Account/Register">Register</a></li>
        <li><a asp-area="Identity" asp-page="/Account/Login">Log in</a></li>
    </ul>
}

Delete the Identity scaffolder generated IdentityDbContext  derived class in the Areas/Identity/Data/ folder.

Delete Areas/Identity/IdentityHostingStartup.cs.

Update the _LoginPartial.cshtml file:

Move Pages/_LoginPartial.cshtml to Pages/Shared/_LoginPartial.cshtml.

Add asp-area="Identity"  to the form and anchor links.

Update the <form />  element to 
<form asp-area="Identity" asp-page="/Account/Logout" asp-route-returnUrl="@Url.Page("/Index", new {
area = "" })" method="post" id="logoutForm" class="navbar-right">

.

The following code shows the updated _LoginPartial.cshtml file:

Update ConfigureServices  with the following code:



public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

    services.AddDefaultIdentity<ApplicationUser>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultTokenProviders();

    services.AddMvc();

    // Register no-op EmailSender used by account confirmation and password reset 
    // during development
    services.AddSingleton<IEmailSender, EmailSender>();
}

Changes to Razor Pages projects Razor files
The layout fileThe layout file

_ValidationScriptsPartial.cshtml_ValidationScriptsPartial.cshtml

New filesNew files

Changes to MVC projects Razor files
The layout fileThe layout file

_ValidationScriptsPartial.cshtml_ValidationScriptsPartial.cshtml

New files and action methodsNew files and action methods

Move Pages/_Layout.cshtml to Pages/Shared/_Layout.cshtml

In Areas/Identity/Pages/_ViewStart.cshtml, change Layout = "/Pages/_Layout.cshtml"  to 

Layout = "/Pages/Shared/_Layout.cshtml" .

The _Layout.cshtml file has the following changes:

<partial name="_CookieConsentPartial" />  is added. For more information, see GDPR support in ASP.NET

Core.

jQuery changes from 2.2.0 to 3.3.1.

Pages/_ValidationScriptsPartial.cshtml moves to Pages/Shared/_ValidationScriptsPartial.cshtml.

jquery.validate/1.14.0 changes to jquery.validate/1.17.0.

The following files are added:

Privacy.cshtml

Privacy.cshtml.cs

See GDPR support in ASP.NET Core for information on the preceding files.

The Layout.cshtml file has the following changes:

<partial name="_CookieConsentPartial" />  is added.

jQuery changes from 2.2.0 to 3.3.1

jquery.validate/1.14.0 changes to jquery.validate/1.17.0

The following are added:

Views/Home/Privacy.cshtml



Changes to the launchSettings.json file

{
  "iisSettings": {
    "windowsAuthentication": false,
    "anonymousAuthentication": true,
    "iisExpress": {
      "applicationUrl": "http://localhost:1799/",
      "sslPort": 0
    }
  },
  "profiles": {
    "IIS Express": {
      "commandName": "IISExpress",
      "launchBrowser": true,
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      }
    },
    "WebApp1": {
      "commandName": "Project",
      "launchBrowser": true,
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      },
      "applicationUrl": "http://localhost:1798/"
    }
  }
}

The Privacy  action method is added to the Home controller.

See GDPR support in ASP.NET Core for information on the preceding files.

As ASP.NET Core apps now use HTTPS by default, the Properties/launchSettings.json file has changed.

The following JSON shows the earlier 2.0 template-generated launchSettings.json file:

The following JSON shows the new 2.1 template-generated launchSettings.json file:



{
  "iisSettings": {
    "windowsAuthentication": false, 
    "anonymousAuthentication": true, 
    "iisExpress": {
      "applicationUrl": "http://localhost:39191",
      "sslPort": 44390
    }
  },
  "profiles": {
    "IIS Express": {
      "commandName": "IISExpress",
      "launchBrowser": true,
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      }
    },
    "WebApp1": {
      "commandName": "Project",
      "launchBrowser": true,
      "applicationUrl": "https://localhost:5001;http://localhost:5000",
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      }
    }
  }
}

Breaking changes
FileResult Range headerFileResult Range header

ControllerBase.File and PhysicalFile Range headerControllerBase.File and PhysicalFile Range header

Additional changes

For more information, see Enforce HTTPS in ASP.NET Core.

FileResult no longer processes the Accept-Ranges header by default. To enable the Accept-Ranges  header, set

EnableRangeProcessing to true .

The following ControllerBase methods no longer processes the Accept-Ranges header by default:

Overloads of ControllerBase.File

ControllerBase.PhysicalFile

To enable the Accept-Ranges  header, set the EnableRangeProcessing  parameter to true .

If hosting the app on Windows with IIS, install the latest .NET Core Hosting Bundle.

SetCompatibilityVersion

Transport configuration

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fileresult
https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Ranges
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fileresult.enablerangeprocessing#microsoft_aspnetcore_mvc_fileresult_enablerangeprocessing
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase
https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Ranges
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.file#microsoft_aspnetcore_mvc_controllerbase_file_system_string_system_string_system_string_system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.physicalfile


Migrate from ASP.NET Core 1.x to 2.0
9/22/2020 • 7 minutes to read • Edit Online

Prerequisites

Update Target Framework Moniker (TFM)

<TargetFramework>netcoreapp2.0</TargetFramework>

<TargetFramework>net461</TargetFramework>

NOTENOTE

Update .NET Core SDK version in global.json

{
  "sdk": {
    "version": "2.0.0"
  }
}

By Scott Addie

In this article, we walk you through updating an existing ASP.NET Core 1.x project to ASP.NET Core 2.0. Migrating

your application to ASP.NET Core 2.0 enables you to take advantage of many new features and performance

improvements.

Existing ASP.NET Core 1.x applications are based off of version-specific project templates. As the ASP.NET Core

framework evolves, so do the project templates and the starter code contained within them. In addition to updating

the ASP.NET Core framework, you need to update the code for your application.

 

See Get Started with ASP.NET Core.

 

Projects targeting .NET Core should use the TFM of a version greater than or equal to .NET Core 2.0. Search for the 

<TargetFramework>  node in the .csproj file, and replace its inner text with netcoreapp2.0 :

Projects targeting .NET Framework should use the TFM of a version greater than or equal to .NET Framework 4.6.1.

Search for the <TargetFramework>  node in the .csproj file, and replace its inner text with net461 :

.NET Core 2.0 offers a much larger surface area than .NET Core 1.x. If you're targeting .NET Framework solely because of

missing APIs in .NET Core 1.x, targeting .NET Core 2.0 is likely to work.

If the project file contains <RuntimeFrameworkVersion>1.{sub-version}</RuntimeFrameworkVersion> , see this GitHub

issue.

 

If your solution relies upon a global.json file to target a specific .NET Core SDK version, update its version

property to use the 2.0 version installed on your machine:

 

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/1x-to-2x/index.md
https://github.com/scottaddie
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://github.com/dotnet/AspNetCore/issues/3221#issuecomment-413094268
https://docs.microsoft.com/en-us/dotnet/core/tools/global-json


Update package references

<ItemGroup>
  <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.9" />
</ItemGroup>

<ItemGroup>
  <PackageReference Include="Microsoft.AspNetCore" Version="2.0.0" />
  <PackageReference Include="Microsoft.AspNetCore.Authentication.Cookies" Version="2.0.0" />
  <PackageReference Include="Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore" Version="2.0.0" />
  <PackageReference Include="Microsoft.AspNetCore.Identity.EntityFrameworkCore" Version="2.0.0" />
  <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.0.0" />
  <PackageReference Include="Microsoft.AspNetCore.Mvc.Razor.ViewCompilation" Version="2.0.0" 
PrivateAssets="All" />
  <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="2.0.0" />
  <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="2.0.0" PrivateAssets="All" />
  <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer" Version="2.0.0" />
  <PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="2.0.0" PrivateAssets="All" />
  <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink" Version="2.0.0" />
  <PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.0.0" 
PrivateAssets="All" />
</ItemGroup>

Update .NET Core CLI tools

<ItemGroup>
  <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.0" />
  <DotNetCliToolReference Include="Microsoft.Extensions.SecretManager.Tools" Version="2.0.0" />
  <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0" />
</ItemGroup>

Rename Package Target Fallback property

<PackageTargetFallback>$(PackageTargetFallback);portable-net45+win8+wp8+wpa81;</PackageTargetFallback>

The .csproj file in a 1.x project lists each NuGet package used by the project.

In an ASP.NET Core 2.0 project targeting .NET Core 2.0, a single metapackage reference in the .csproj file replaces

the collection of packages:

All the features of ASP.NET Core 2.0 and Entity Framework Core 2.0 are included in the metapackage.

ASP.NET Core 2.0 projects targeting .NET Framework should continue to reference individual NuGet packages.

Update the Version  attribute of each <PackageReference />  node to 2.0.0.

For example, here's the list of <PackageReference />  nodes used in a typical ASP.NET Core 2.0 project targeting .NET

Framework:

 

In the .csproj file, update the Version  attribute of each <DotNetCliToolReference />  node to 2.0.0.

For example, here's the list of CLI tools used in a typical ASP.NET Core 2.0 project targeting .NET Core 2.0:

 

The .csproj file of a 1.x project used a PackageTargetFallback  node and variable:

Rename both the node and variable to AssetTargetFallback :



<AssetTargetFallback>$(AssetTargetFallback);portable-net45+win8+wp8+wpa81;</AssetTargetFallback>

Update Main method in Program.cs

using System.IO;
using Microsoft.AspNetCore.Hosting;

namespace AspNetCoreDotNetCore1App
{
    public class Program
    {
        public static void Main(string[] args)
        {
            var host = new WebHostBuilder()
                .UseKestrel()
                .UseContentRoot(Directory.GetCurrentDirectory())
                .UseIISIntegration()
                .UseStartup<Startup>()
                .UseApplicationInsights()
                .Build();

            host.Run();
        }
    }
}

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

namespace AspNetCoreDotNetCore2App
{
    public class Program
    {
        public static void Main(string[] args)
        {
            BuildWebHost(args).Run();
        }

        public static IWebHost BuildWebHost(string[] args) =>
            WebHost.CreateDefaultBuilder(args)
                .UseStartup<Startup>()
                .Build();
    }
}

Unable to create an object of type '<Context>'. Add an implementation of 
'IDesignTimeDbContextFactory<Context>' to the project, or see https://go.microsoft.com/fwlink/?linkid=851728 
for additional patterns supported at design time.

 

In 1.x projects, the Main  method of Program.cs looked like this:

In 2.0 projects, the Main  method of Program.cs has been simplified:

The adoption of this new 2.0 pattern is highly recommended and is required for product features like Entity

Framework (EF) Core Migrations to work. For example, running Update-Database  from the Package Manager

Console window or dotnet ef database update  from the command line (on projects converted to ASP.NET Core

2.0) generates the following error :

 



Add configuration providers

public Startup(IHostingEnvironment env)
{
    var builder = new ConfigurationBuilder()
        .SetBasePath(env.ContentRootPath)
        .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
        .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true);

    if (env.IsDevelopment())
    {
        builder.AddUserSecrets<Startup>();
    }

    builder.AddEnvironmentVariables();
    Configuration = builder.Build();
}

public IConfigurationRoot Configuration { get; }

public Startup(IConfiguration configuration)
{
    Configuration = configuration;
}

public IConfiguration Configuration { get; }

public static void Main(string[] args)
{
    BuildWebHost(args).Run();
}

public static IWebHost BuildWebHost(string[] args) =>
    WebHost.CreateDefaultBuilder(args)
        .UseStartup<Startup>()
        .ConfigureAppConfiguration((hostContext, config) =>
        {
            // delete all default configuration providers
            config.Sources.Clear();
            config.AddJsonFile("myconfig.json", optional: true);
        })
        .Build();

In 1.x projects, adding configuration providers to an app was accomplished via the Startup  constructor. The steps

involved creating an instance of ConfigurationBuilder , loading applicable providers (environment variables, app

settings, etc.), and initializing a member of IConfigurationRoot .

The preceding example loads the Configuration  member with configuration settings from appsettings.json as well

as any appsettings.<EnvironmentName>.json file matching the IHostingEnvironment.EnvironmentName  property. The

location of these files is at the same path as Startup.cs.

In 2.0 projects, the boilerplate configuration code inherent to 1.x projects runs behind-the-scenes. For example,

environment variables and app settings are loaded at startup. The equivalent Startup.cs code is reduced to 

IConfiguration  initialization with the injected instance:

To remove the default providers added by WebHostBuilder.CreateDefaultBuilder , invoke the Clear  method on the 

IConfigurationBuilder.Sources  property inside of ConfigureAppConfiguration . To add providers back, utilize the 

ConfigureAppConfiguration  method in Program.cs:



Move database initialization code

app.UseMvc(routes =>
{
    routes.MapRoute(
        name: "default",
        template: "{controller=Home}/{action=Index}/{id?}");
});

SeedData.Initialize(app.ApplicationServices);

var host = BuildWebHost(args);

using (var scope = host.Services.CreateScope())
{
    var services = scope.ServiceProvider;

    try
    {
        // Requires using RazorPagesMovie.Models;
        SeedData.Initialize(services);
    }
    catch (Exception ex)
    {
        var logger = services.GetRequiredService<ILogger<Program>>();
        logger.LogError(ex, "An error occurred seeding the DB.");
    }
}

host.Run();

Review Razor view compilation setting

The configuration used by the CreateDefaultBuilder  method in the preceding code snippet can be seen here.

For more information, see Configuration in ASP.NET Core.

 

In 1.x projects using EF Core 1.x, a command such as dotnet ef migrations add  does the following:

1. Instantiates a Startup  instance

2. Invokes the ConfigureServices  method to register all services with dependency injection (including DbContext

types)

3. Performs its requisite tasks

In 2.0 projects using EF Core 2.0, Program.BuildWebHost  is invoked to obtain the application services. Unlike 1.x, this

has the additional side effect of invoking Startup.Configure . If your 1.x app invoked database initialization code in

its Configure  method, unexpected problems can occur. For example, if the database doesn't yet exist, the seeding

code runs before the EF Core Migrations command execution. This problem causes a dotnet ef migrations list

command to fail if the database doesn't yet exist.

Consider the following 1.x seed initialization code in the Configure  method of Startup.cs:

In 2.0 projects, move the SeedData.Initialize  call to the Main  method of Program.cs:

As of 2.0, it's bad practice to do anything in BuildWebHost  except build and configure the web host. Anything that's

about running the application should be handled outside of BuildWebHost  — typically in the Main  method of

Program.cs.

 

https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs#L152


<PackageReference Include="Microsoft.AspNetCore.Mvc.Razor.ViewCompilation" Version="2.0.0" PrivateAssets="All" 
/>

Rely on Application Insights "light-up" features

Adopt authentication/Identity improvements

Faster application startup time and smaller published bundles are of utmost importance to you. For these reasons,

Razor view compilation is enabled by default in ASP.NET Core 2.0.

Setting the MvcRazorCompileOnPublish  property to true is no longer required. Unless you're disabling view

compilation, the property may be removed from the .csproj file.

When targeting .NET Framework, you still need to explicitly reference the

Microsoft.AspNetCore.Mvc.Razor.ViewCompilation NuGet package in your .csproj file:

 

Effortless setup of application performance instrumentation is important. You can now rely on the new Application

Insights "light-up" features available in the Visual Studio 2017 tooling.

ASP.NET Core 1.1 projects created in Visual Studio 2017 added Application Insights by default. If you're not using

the Application Insights SDK directly, outside of Program.cs and Startup.cs, follow these steps:

<PackageReference Include="Microsoft.ApplicationInsights.AspNetCore" Version="2.0.0" />

public static void Main(string[] args)
{
    var host = new WebHostBuilder()
        .UseKestrel()
        .UseContentRoot(Directory.GetCurrentDirectory())
        .UseIISIntegration()
        .UseStartup<Startup>()
        .UseApplicationInsights()
        .Build();

    host.Run();
}

@inject Microsoft.ApplicationInsights.AspNetCore.JavaScriptSnippet JavaScriptSnippet
@Html.Raw(JavaScriptSnippet.FullScript)

1. If targeting .NET Core, remove the following <PackageReference />  node from the .csproj file:

2. If targeting .NET Core, remove the UseApplicationInsights  extension method invocation from Program.cs:

3. Remove the Application Insights client-side API call from _Layout.cshtml. It comprises the following two lines

of code:

If you are using the Application Insights SDK directly, continue to do so. The 2.0 metapackage includes the latest

version of Application Insights, so a package downgrade error appears if you're referencing an older version.

 

ASP.NET Core 2.0 has a new authentication model and a number of significant changes to ASP.NET Core Identity. If

you created your project with Individual User Accounts enabled, or if you have manually added authentication or

Identity, see Migrate Authentication and Identity to ASP.NET Core 2.0.

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Razor.ViewCompilation
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview


Additional resources
Breaking Changes in ASP.NET Core 2.0

https://github.com/aspnet/announcements/issues?page=1&q=is%3Aissue+is%3Aopen+label%3A2.0.0+label%3A%22Breaking+change%22&utf8=%E2%9C%93


Migrate authentication and Identity to ASP.NET Core
2.0
9/22/2020 • 9 minutes to read • Edit Online

Update namespaces

Authentication Middleware and services

public void ConfigureServices(IServiceCollection services)
{
    services.AddIdentity<ApplicationUser, IdentityRole>()
            .AddEntityFrameworkStores<ApplicationDbContext>();
}

public void Configure(IApplicationBuilder app, ILoggerFactory loggerfactory)
{
    app.UseIdentity();
    app.UseFacebookAuthentication(new FacebookOptions {
        AppId = Configuration["auth:facebook:appid"],
        AppSecret = Configuration["auth:facebook:appsecret"]
    });
}

By Scott Addie and Hao Kung

ASP.NET Core 2.0 has a new model for authentication and Identity that simplifies configuration by using services.

ASP.NET Core 1.x applications that use authentication or Identity can be updated to use the new model as outlined

below.

In 1.x, classes such IdentityRole  and IdentityUser  were found in the 

Microsoft.AspNetCore.Identity.EntityFrameworkCore  namespace.

In 2.0, the Microsoft.AspNetCore.Identity namespace became the new home for several of such classes. With the

default Identity code, affected classes include ApplicationUser  and Startup . Adjust your using  statements to

resolve the affected references.

 

In 1.x projects, authentication is configured via middleware. A middleware method is invoked for each

authentication scheme you want to support.

The following 1.x example configures Facebook authentication with Identity in Startup.cs:

In 2.0 projects, authentication is configured via services. Each authentication scheme is registered in the 

ConfigureServices  method of Startup.cs. The UseIdentity  method is replaced with UseAuthentication .

The following 2.0 example configures Facebook authentication with Identity in Startup.cs:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/1x-to-2x/identity-2x.md
https://github.com/scottaddie
https://github.com/HaoK
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity


public void ConfigureServices(IServiceCollection services)
{
    services.AddIdentity<ApplicationUser, IdentityRole>()
            .AddEntityFrameworkStores<ApplicationDbContext>();

    // If you want to tweak Identity cookies, they're no longer part of IdentityOptions.
    services.ConfigureApplicationCookie(options => options.LoginPath = "/Account/LogIn");
    services.AddAuthentication()
            .AddFacebook(options =>
            {
                options.AppId = Configuration["auth:facebook:appid"];
                options.AppSecret = Configuration["auth:facebook:appsecret"];
            });
}

public void Configure(IApplicationBuilder app, ILoggerFactory loggerfactory) {
    app.UseAuthentication();
}

Cookie-based authenticationCookie-based authentication

The UseAuthentication  method adds a single authentication middleware component, which is responsible for

automatic authentication and the handling of remote authentication requests. It replaces all of the individual

middleware components with a single, common middleware component.

Below are 2.0 migration instructions for each major authentication scheme.

Select one of the two options below, and make the necessary changes in Startup.cs:

1. Use cookies with Identity

app.UseAuthentication();

services.AddIdentity<ApplicationUser, IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultTokenProviders();

services.ConfigureApplicationCookie(options => options.LoginPath = "/Account/LogIn");

Replace UseIdentity  with UseAuthentication  in the Configure  method:

Invoke the AddIdentity  method in the ConfigureServices  method to add the cookie authentication

services.

Optionally, invoke the ConfigureApplicationCookie  or ConfigureExternalCookie  method in the 

ConfigureServices  method to tweak the Identity cookie settings.

2. Use cookies without Identity

app.UseAuthentication();

Replace the UseCookieAuthentication  method call in the Configure  method with UseAuthentication :

Invoke the AddAuthentication  and AddCookie  methods in the ConfigureServices  method:



JWT Bearer AuthenticationJWT Bearer Authentication

OpenID Connect (OIDC) authenticationOpenID Connect (OIDC) authentication

// If you don't want the cookie to be automatically authenticated and assigned to 
HttpContext.User,
// remove the CookieAuthenticationDefaults.AuthenticationScheme parameter passed to 
AddAuthentication.
services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
        .AddCookie(options =>
        {
            options.LoginPath = "/Account/LogIn";
            options.LogoutPath = "/Account/LogOff";
        });

Make the following changes in Startup.cs:

app.UseAuthentication();

services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
        .AddJwtBearer(options =>
        {
            options.Audience = "http://localhost:5001/";
            options.Authority = "http://localhost:5000/";
        });

Replace the UseJwtBearerAuthentication  method call in the Configure  method with UseAuthentication :

Invoke the AddJwtBearer  method in the ConfigureServices  method:

This code snippet doesn't use Identity, so the default scheme should be set by passing 

JwtBearerDefaults.AuthenticationScheme  to the AddAuthentication  method.

Make the following changes in Startup.cs:

app.UseAuthentication();

services.AddAuthentication(options =>
{
    options.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
    options.DefaultChallengeScheme = OpenIdConnectDefaults.AuthenticationScheme;
})
.AddCookie()
.AddOpenIdConnect(options =>
{
    options.Authority = Configuration["auth:oidc:authority"];
    options.ClientId = Configuration["auth:oidc:clientid"];
});

Replace the UseOpenIdConnectAuthentication  method call in the Configure  method with UseAuthentication :

Invoke the AddOpenIdConnect  method in the ConfigureServices  method:

Replace the PostLogoutRedirectUri  property in the OpenIdConnectOptions  action with SignedOutRedirectUri

:



Facebook authenticationFacebook authentication

Google authenticationGoogle authentication

Microsoft Account authenticationMicrosoft Account authentication

.AddOpenIdConnect(options =>
{
    options.SignedOutRedirectUri = "https://contoso.com";
});

Make the following changes in Startup.cs:

app.UseAuthentication();

services.AddAuthentication()
        .AddFacebook(options =>
        {
            options.AppId = Configuration["auth:facebook:appid"];
            options.AppSecret = Configuration["auth:facebook:appsecret"];
        });

Replace the UseFacebookAuthentication  method call in the Configure  method with UseAuthentication :

Invoke the AddFacebook  method in the ConfigureServices  method:

Make the following changes in Startup.cs:

app.UseAuthentication();

services.AddAuthentication()
        .AddGoogle(options =>
        {
            options.ClientId = Configuration["auth:google:clientid"];
            options.ClientSecret = Configuration["auth:google:clientsecret"];
        });

Replace the UseGoogleAuthentication  method call in the Configure  method with UseAuthentication :

Invoke the AddGoogle  method in the ConfigureServices  method:

For more information on Microsoft account authentication, see this GitHub issue.

Make the following changes in Startup.cs:

app.UseAuthentication();

Replace the UseMicrosoftAccountAuthentication  method call in the Configure  method with 

UseAuthentication :

Invoke the AddMicrosoftAccount  method in the ConfigureServices  method:

https://github.com/dotnet/AspNetCore.Docs/issues/14455


Twitter authenticationTwitter authentication

Setting default authentication schemesSetting default authentication schemes

services.AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme);

services.AddAuthentication(options =>
{
    options.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
    options.DefaultChallengeScheme = OpenIdConnectDefaults.AuthenticationScheme;
});

services.AddAuthentication()
        .AddMicrosoftAccount(options =>
        {
            options.ClientId = Configuration["auth:microsoft:clientid"];
            options.ClientSecret = Configuration["auth:microsoft:clientsecret"];
        });

Make the following changes in Startup.cs:

app.UseAuthentication();

services.AddAuthentication()
        .AddTwitter(options =>
        {
            options.ConsumerKey = Configuration["auth:twitter:consumerkey"];
            options.ConsumerSecret = Configuration["auth:twitter:consumersecret"];
        });

Replace the UseTwitterAuthentication  method call in the Configure  method with UseAuthentication :

Invoke the AddTwitter  method in the ConfigureServices  method:

In 1.x, the AutomaticAuthenticate  and AutomaticChallenge  properties of the AuthenticationOptions base class were

intended to be set on a single authentication scheme. There was no good way to enforce this.

In 2.0, these two properties have been removed as properties on the individual AuthenticationOptions  instance.

They can be configured in the AddAuthentication  method call within the ConfigureServices  method of Startup.cs:

In the preceding code snippet, the default scheme is set to CookieAuthenticationDefaults.AuthenticationScheme

("Cookies").

Alternatively, use an overloaded version of the AddAuthentication  method to set more than one property. In the

following overloaded method example, the default scheme is set to 

CookieAuthenticationDefaults.AuthenticationScheme . The authentication scheme may alternatively be specified

within your individual [Authorize]  attributes or authorization policies.

Define a default scheme in 2.0 if one of the following conditions is true:

You want the user to be automatically signed in

You use the [Authorize]  attribute or authorization policies without specifying schemes

An exception to this rule is the AddIdentity  method. This method adds cookies for you and sets the default

authenticate and challenge schemes to the application cookie IdentityConstants.ApplicationScheme . Additionally, it

sets the default sign-in scheme to the external cookie IdentityConstants.ExternalScheme .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authenticationoptions?view=aspnetcore-1.1


Use HttpContext authentication extensions

// Clear the existing external cookie to ensure a clean login process
await HttpContext.Authentication.SignOutAsync(_externalCookieScheme);

// Clear the existing external cookie to ensure a clean login process
await HttpContext.SignOutAsync(IdentityConstants.ExternalScheme);

Windows Authentication (HTTP.sys / IISIntegration)

IdentityCookieOptions instances

 

The IAuthenticationManager  interface is the main entry point into the 1.x authentication system. It has been

replaced with a new set of HttpContext  extension methods in the Microsoft.AspNetCore.Authentication

namespace.

For example, 1.x projects reference an Authentication  property:

In 2.0 projects, import the Microsoft.AspNetCore.Authentication  namespace, and delete the Authentication

property references:

 

There are two variations of Windows authentication:

using Microsoft.AspNetCore.Server.IISIntegration;

services.AddAuthentication(IISDefaults.AuthenticationScheme);

using Microsoft.AspNetCore.Server.HttpSys;

services.AddAuthentication(HttpSysDefaults.AuthenticationScheme);

The host only allows authenticated users. This variation isn't affected by the 2.0 changes.

The host allows both anonymous and authenticated users. This variation is affected by the 2.0 changes. For

example, the app should allow anonymous users at the IIS or HTTP.sys layer but authorize users at the

controller level. In this scenario, set the default scheme in the Startup.ConfigureServices  method.

For Microsoft.AspNetCore.Server.IISIntegration, set the default scheme to IISDefaults.AuthenticationScheme

:

For Microsoft.AspNetCore.Server.HttpSys, set the default scheme to HttpSysDefaults.AuthenticationScheme :

Failure to set the default scheme prevents the authorize (challenge) request from working with the

following exception:

System.InvalidOperationException : No authenticationScheme was specified, and there was no

DefaultChallengeScheme found.

For more information, see Configure Windows Authentication in ASP.NET Core.

 

A side effect of the 2.0 changes is the switch to using named options instead of cookie options instances. The

ability to customize the Identity cookie scheme names is removed.

For example, 1.x projects use constructor injection to pass an IdentityCookieOptions  parameter into

https://www.nuget.org/packages/Microsoft.AspNetCore.Server.IISIntegration/
https://www.nuget.org/packages/Microsoft.AspNetCore.Server.HttpSys/


public AccountController(
    UserManager<ApplicationUser> userManager,
    SignInManager<ApplicationUser> signInManager,
    IOptions<IdentityCookieOptions> identityCookieOptions,
    IEmailSender emailSender,
    ISmsSender smsSender,
    ILoggerFactory loggerFactory)
{
    _userManager = userManager;
    _signInManager = signInManager;
    _externalCookieScheme = identityCookieOptions.Value.ExternalCookieAuthenticationScheme;
    _emailSender = emailSender;
    _smsSender = smsSender;
    _logger = loggerFactory.CreateLogger<AccountController>();
}

public AccountController(
    UserManager<ApplicationUser> userManager,
    SignInManager<ApplicationUser> signInManager,
    IEmailSender emailSender,
    ISmsSender smsSender,
    ILoggerFactory loggerFactory)
{
    _userManager = userManager;
    _signInManager = signInManager;
    _emailSender = emailSender;
    _smsSender = smsSender;
    _logger = loggerFactory.CreateLogger<AccountController>();
}

// Clear the existing external cookie to ensure a clean login process
await HttpContext.Authentication.SignOutAsync(_externalCookieScheme);

// Clear the existing external cookie to ensure a clean login process
await HttpContext.SignOutAsync(IdentityConstants.ExternalScheme);

using Microsoft.AspNetCore.Authentication;

Add IdentityUser POCO navigation properties

AccountController.cs and ManageController.cs. The external cookie authentication scheme is accessed from the

provided instance:

The aforementioned constructor injection becomes unnecessary in 2.0 projects, and the _externalCookieScheme

field can be deleted:

1.x projects used the _externalCookieScheme  field as follows:

In 2.0 projects, replace the preceding code with the following. The IdentityConstants.ExternalScheme  constant can

be used directly.

Resolve the newly added SignOutAsync  call by importing the following namespace:

 

The Entity Framework (EF) Core navigation properties of the base IdentityUser  POCO (Plain Old CLR Object)

have been removed. If your 1.x project used these properties, manually add them back to the 2.0 project:



/// <summary>
/// Navigation property for the roles this user belongs to.
/// </summary>
public virtual ICollection<IdentityUserRole<int>> Roles { get; } = new List<IdentityUserRole<int>>();

/// <summary>
/// Navigation property for the claims this user possesses.
/// </summary>
public virtual ICollection<IdentityUserClaim<int>> Claims { get; } = new List<IdentityUserClaim<int>>();

/// <summary>
/// Navigation property for this users login accounts.
/// </summary>
public virtual ICollection<IdentityUserLogin<int>> Logins { get; } = new List<IdentityUserLogin<int>>();

protected override void OnModelCreating(ModelBuilder builder)
{
    base.OnModelCreating(builder);
    // Customize the ASP.NET Core Identity model and override the defaults if needed.
    // For example, you can rename the ASP.NET Core Identity table names and more.
    // Add your customizations after calling base.OnModelCreating(builder);

    builder.Entity<ApplicationUser>()
        .HasMany(e => e.Claims)
        .WithOne()
        .HasForeignKey(e => e.UserId)
        .IsRequired()
        .OnDelete(DeleteBehavior.Cascade);

    builder.Entity<ApplicationUser>()
        .HasMany(e => e.Logins)
        .WithOne()
        .HasForeignKey(e => e.UserId)
        .IsRequired()
        .OnDelete(DeleteBehavior.Cascade);

    builder.Entity<ApplicationUser>()
        .HasMany(e => e.Roles)
        .WithOne()
        .HasForeignKey(e => e.UserId)
        .IsRequired()
        .OnDelete(DeleteBehavior.Cascade);
}

Replace GetExternalAuthenticationSchemes

var otherLogins = _signInManager.GetExternalAuthenticationSchemes().Where(auth => userLogins.All(ul => 
auth.AuthenticationScheme != ul.LoginProvider)).ToList();

To prevent duplicate foreign keys when running EF Core Migrations, add the following to your IdentityDbContext

class' OnModelCreating  method (after the base.OnModelCreating();  call):

 

The synchronous method GetExternalAuthenticationSchemes  was removed in favor of an asynchronous version. 1.x

projects have the following code in Controllers/ManageController.cs:

This method appears in Views/Account/Login.cshtml too:



@{
    var loginProviders = SignInManager.GetExternalAuthenticationSchemes().ToList();
    if (loginProviders.Count == 0)
    {
        <div>
            <p>
                There are no external authentication services configured. See <a 
href="https://go.microsoft.com/fwlink/?LinkID=532715">this article</a>
                for details on setting up this ASP.NET application to support logging in via external 
services.
            </p>
        </div>
    }
    else
    {
        <form asp-controller="Account" asp-action="ExternalLogin" asp-route-returnurl="@ViewData["ReturnUrl"]" 
method="post" class="form-horizontal">
            <div>
                <p>
                    @foreach (var provider in loginProviders)
                    {
                        <button type="submit" class="btn btn-default" name="provider" 
value="@provider.AuthenticationScheme" title="Log in using your @provider.DisplayName 
account">@provider.AuthenticationScheme</button>
                    }
                </p>
            </div>
        </form>
    }
}

var schemes = await _signInManager.GetExternalAuthenticationSchemesAsync();
var otherLogins = schemes.Where(auth => userLogins.All(ul => auth.Name != ul.LoginProvider)).ToList();

In 2.0 projects, use the GetExternalAuthenticationSchemesAsync method. The change in ManageController.cs

resembles the following code:

In Login.cshtml, the AuthenticationScheme  property accessed in the foreach  loop changes to Name :

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.signinmanager-1.getexternalauthenticationschemesasync


@{
    var loginProviders = (await SignInManager.GetExternalAuthenticationSchemesAsync()).ToList();
    if (loginProviders.Count == 0)
    {
        <div>
            <p>
                There are no external authentication services configured. See <a 
href="https://go.microsoft.com/fwlink/?LinkID=532715">this article</a>
                for details on setting up this ASP.NET application to support logging in via external 
services.
            </p>
        </div>
    }
    else
    {
        <form asp-controller="Account" asp-action="ExternalLogin" asp-route-returnurl="@ViewData["ReturnUrl"]" 
method="post" class="form-horizontal">
            <div>
                <p>
                    @foreach (var provider in loginProviders)
                    {
                        <button type="submit" class="btn btn-default" name="provider" value="@provider.Name" 
title="Log in using your @provider.DisplayName account">@provider.DisplayName</button>
                    }
                </p>
            </div>
        </form>
    }
}

ManageLoginsViewModel property change

using System.Collections.Generic;
using Microsoft.AspNetCore.Http.Authentication;
using Microsoft.AspNetCore.Identity;

namespace AspNetCoreDotNetCore1App.Models.ManageViewModels
{
    public class ManageLoginsViewModel
    {
        public IList<UserLoginInfo> CurrentLogins { get; set; }

        public IList<AuthenticationDescription> OtherLogins { get; set; }
    }
}

 

A ManageLoginsViewModel  object is used in the ManageLogins  action of ManageController.cs. In 1.x projects, the

object's OtherLogins  property return type is IList<AuthenticationDescription> . This return type requires an

import of Microsoft.AspNetCore.Http.Authentication :

In 2.0 projects, the return type changes to IList<AuthenticationScheme> . This new return type requires replacing

the Microsoft.AspNetCore.Http.Authentication  import with a Microsoft.AspNetCore.Authentication  import.



using System.Collections.Generic;
using Microsoft.AspNetCore.Authentication;
using Microsoft.AspNetCore.Identity;

namespace AspNetCoreDotNetCore2App.Models.ManageViewModels
{
    public class ManageLoginsViewModel
    {
        public IList<UserLoginInfo> CurrentLogins { get; set; }

        public IList<AuthenticationScheme> OtherLogins { get; set; }
    }
}

Additional resources
 

For more information, see the Discussion for Auth 2.0 issue on GitHub.

https://github.com/aspnet/Security/issues/1338


Migrate from ASP.NET to ASP.NET Core
9/22/2020 • 8 minutes to read • Edit Online

Prerequisites

Target frameworks

<ItemGroup>
   <PackageReference Include="Microsoft.AspNetCore.App" />
</ItemGroup>

Project structure differences

By Isaac Levin

This article serves as a reference guide for migrating ASP.NET apps to ASP.NET Core.

.NET Core SDK 2.2 or later

ASP.NET Core projects offer developers the flexibility of targeting .NET Core, .NET Framework, or both. See

Choosing between .NET Core and .NET Framework for server apps to determine which target framework is most

appropriate.

When targeting .NET Framework, projects need to reference individual NuGet packages.

Targeting .NET Core allows you to eliminate numerous explicit package references, thanks to the ASP.NET Core

metapackage. Install the Microsoft.AspNetCore.App  metapackage in your project:

When the metapackage is used, no packages referenced in the metapackage are deployed with the app. The .NET

Core Runtime Store includes these assets, and they're precompiled to improve performance. See

Microsoft.AspNetCore.App metapackage for ASP.NET Core for more detail.

The .csproj file format has been simplified in ASP.NET Core. Some notable changes include:

Explicit inclusion of files isn't necessary for them to be considered part of the project. This reduces the risk

of XML merge conflicts when working on large teams.

There are no GUID-based references to other projects, which improves file readability.

The file can be edited without unloading it in Visual Studio:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/proper-to-2x/index.md
https://isaaclevin.com
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server


Global.asax file replacement

public class MvcApplication : System.Web.HttpApplication
{
    protected void Application_Start()
    {
        AreaRegistration.RegisterAllAreas();
        FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
        RouteConfig.RegisterRoutes(RouteTable.Routes);
        BundleConfig.RegisterBundles(BundleTable.Bundles);
    }
}

ASP.NET Core introduced a new mechanism for bootstrapping an app. The entry point for ASP.NET applications is

the Global.asax file. Tasks such as route configuration and filter and area registrations are handled in the

Global.asax file.

This approach couples the application and the server to which it's deployed in a way that interferes with the

implementation. In an effort to decouple, OWIN was introduced to provide a cleaner way to use multiple

frameworks together. OWIN provides a pipeline to add only the modules needed. The hosting environment takes a

Startup function to configure services and the app's request pipeline. Startup  registers a set of middleware with

the application. For each request, the application calls each of the middleware components with the head pointer of

a linked list to an existing set of handlers. Each middleware component can add one or more handlers to the

request handling pipeline. This is accomplished by returning a reference to the handler that's the new head of the

list. Each handler is responsible for remembering and invoking the next handler in the list. With ASP.NET Core, the

entry point to an application is Startup , and you no longer have a dependency on Global.asax. When using OWIN

with .NET Framework, use something like the following as a pipeline:

https://owin.org/


using Owin;
using System.Web.Http;

namespace WebApi
{
    // Note: By default all requests go through this OWIN pipeline. Alternatively you can turn this off by 
adding an appSetting owin:AutomaticAppStartup with value “false”. 
    // With this turned off you can still have OWIN apps listening on specific routes by adding routes in 
global.asax file using MapOwinPath or MapOwinRoute extensions on RouteTable.Routes
    public class Startup
    {
        // Invoked once at startup to configure your application.
        public void Configuration(IAppBuilder builder)
        {
            HttpConfiguration config = new HttpConfiguration();
            config.Routes.MapHttpRoute("Default", "{controller}/{customerID}", new { controller = "Customer", 
customerID = RouteParameter.Optional });

            config.Formatters.XmlFormatter.UseXmlSerializer = true;
            config.Formatters.Remove(config.Formatters.JsonFormatter);
            // config.Formatters.JsonFormatter.UseDataContractJsonSerializer = true;

            builder.UseWebApi(config);
        }
    }
}

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

namespace WebApplication2
{
    public class Program
    {
        public static void Main(string[] args)
        {
            CreateWebHostBuilder(args).Build().Run();
        }

        public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
            WebHost.CreateDefaultBuilder(args)
                .UseStartup<Startup>();
    }
}

This configures your default routes, and defaults to XmlSerialization over Json. Add other Middleware to this

pipeline as needed (loading services, configuration settings, static files, etc.).

ASP.NET Core uses a similar approach, but doesn't rely on OWIN to handle the entry. Instead, that's done through

the Program.cs Main  method (similar to console applications) and Startup  is loaded through there.

Startup  must include a Configure  method. In Configure , add the necessary middleware to the pipeline. In the

following example (from the default web site template), extension methods configure the pipeline with support for :

Error pages

HTTP Strict Transport Security

HTTP redirection to HTTPS

ASP.NET Core MVC



    

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseMvc();
}

NOTENOTE

Store configurations

<appSettings>
  <add key="UserName" value="User" />
  <add key="Password" value="Password" />
</appSettings>

string userName = System.Web.Configuration.ConfigurationManager.AppSettings["UserName"];
string password = System.Web.Configuration.ConfigurationManager.AppSettings["Password"];

{
  "Logging": {
    "IncludeScopes": false,
    "LogLevel": {
      "Default": "Debug",
      "System": "Information",
      "Microsoft": "Information"
    }
  },
  "AppConfiguration": {
    "UserName": "UserName",
    "Password": "Password"
  }
}

The host and application have been decoupled, which provides the flexibility of moving to a different platform in

the future.

For a more in-depth reference to ASP.NET Core Startup and Middleware, see Startup in ASP.NET Core

ASP.NET supports storing settings. These setting are used, for example, to support the environment to which the

applications were deployed. A common practice was to store all custom key-value pairs in the <appSettings>

section of the Web.config file:

Applications read these settings using the ConfigurationManager.AppSettings  collection in the 

System.Configuration  namespace:

ASP.NET Core can store configuration data for the application in any file and load them as part of middleware

bootstrapping. The default file used in the project templates is appsettings.json:



public Startup(IConfiguration configuration)
{
    Configuration = configuration;
}

public IConfiguration Configuration { get; }

string userName = Configuration.GetSection("AppConfiguration")["UserName"];
string password = Configuration.GetSection("AppConfiguration")["Password"];

// Assume AppConfiguration is a class representing a strongly-typed version of AppConfiguration section
services.Configure<AppConfiguration>(Configuration.GetSection("AppConfiguration"));

NOTENOTE

Native dependency injection

Loading this file into an instance of IConfiguration  inside your application is done in Startup.cs:

The app reads from Configuration  to get the settings:

There are extensions to this approach to make the process more robust, such as using Dependency Injection (DI) to

load a service with these values. The DI approach provides a strongly-typed set of configuration objects.

For a more in-depth reference to ASP.NET Core configuration, see Configuration in ASP.NET Core.

An important goal when building large, scalable applications is the loose coupling of components and services.

Dependency Injection is a popular technique for achieving this, and it's a native component of ASP.NET Core.

In ASP.NET apps, developers rely on a third-party library to implement Dependency Injection. One such library is

Unity, provided by Microsoft Patterns & Practices.

An example of setting up Dependency Injection with Unity is implementing IDependencyResolver  that wraps a 

UnityContainer :

https://github.com/unitycontainer/unity


using Microsoft.Practices.Unity;
using System;
using System.Collections.Generic;
using System.Web.Http.Dependencies;

public class UnityResolver : IDependencyResolver
{
    protected IUnityContainer container;

    public UnityResolver(IUnityContainer container)
    {
        if (container == null)
        {
            throw new ArgumentNullException("container");
        }
        this.container = container;
    }

    public object GetService(Type serviceType)
    {
        try
        {
            return container.Resolve(serviceType);
        }
        catch (ResolutionFailedException)
        {
            return null;
        }
    }

    public IEnumerable<object> GetServices(Type serviceType)
    {
        try
        {
            return container.ResolveAll(serviceType);
        }
        catch (ResolutionFailedException)
        {
            return new List<object>();
        }
    }

    public IDependencyScope BeginScope()
    {
        var child = container.CreateChildContainer();
        return new UnityResolver(child);
    }

    public void Dispose()
    {
        Dispose(true);
    }

    protected virtual void Dispose(bool disposing)
    {
        container.Dispose();
    }
}

Create an instance of your UnityContainer , register your service, and set the dependency resolver of 

HttpConfiguration  to the new instance of UnityResolver  for your container :



public static void Register(HttpConfiguration config)
{
    var container = new UnityContainer();
    container.RegisterType<IProductRepository, ProductRepository>(new HierarchicalLifetimeManager());
    config.DependencyResolver = new UnityResolver(container);

    // Other Web API configuration not shown.
}

public class ProductsController : ApiController
{
    private IProductRepository _repository;

    public ProductsController(IProductRepository repository)  
    {
        _repository = repository;
    }

    // Other controller methods not shown.
}

public void ConfigureServices(IServiceCollection services)
{
    // Add application services.
    services.AddTransient<IProductRepository, ProductRepository>();
}

NOTENOTE

Serve static files

public void Configure(IApplicationBuilder app)
{
    app.UseStaticFiles();
}

Inject IProductRepository  where needed:

Because Dependency Injection is part of ASP.NET Core, you can add your service in the ConfigureServices  method

of Startup.cs:

The repository can be injected anywhere, as was true with Unity.

For more information on dependency injection, see Dependency injection.

An important part of web development is the ability to serve static, client-side assets. The most common examples

of static files are HTML, CSS, Javascript, and images. These files need to be saved in the published location of the

app (or CDN) and referenced so they can be loaded by a request. This process has changed in ASP.NET Core.

In ASP.NET, static files are stored in various directories and referenced in the views.

In ASP.NET Core, static files are stored in the "web root" (<content root>/wwwroot), unless configured otherwise.

The files are loaded into the request pipeline by invoking the UseStaticFiles  extension method from 

Startup.Configure :



NOTENOTE

NOTENOTE

Multi-value cookies

Partial app migration

<sites>
    <site name="Default Web Site" id="1" serverAutoStart="true">
        <application path="/">
            <virtualDirectory path="/" physicalPath="D:\sites\MainSite\" />
        </application>
        <application path="/api" applicationPool="DefaultAppPool">
            <virtualDirectory path="/" physicalPath="D:\sites\netcoreapi" />
        </application>
        <bindings>
            <binding protocol="http" bindingInformation="*:80:" />
            <binding protocol="https" bindingInformation="*:443:" sslFlags="0" />
        </bindings>
    </site>
 ...
</sites>

.
├── MainSite
│   ├── ...
│   └── Web.config
└── NetCoreApi
    ├── ...
    └── web.config

[BIND] and Input Formatters

If targeting .NET Framework, install the NuGet package Microsoft.AspNetCore.StaticFiles .

For example, an image asset in the wwwroot/images folder is accessible to the browser at a location such as 

http://<app>/images/<imageFileName> .

For a more in-depth reference to serving static files in ASP.NET Core, see Static files.

Multi-value cookies aren't supported in ASP.NET Core. Create one cookie per value.

One approach to partial app migration is to create an IIS sub-application and only move certain routes from

ASP.NET 4.x to ASP.NET Core while preserving the URL structure the app. For example, consider the URL structure

of the app from the applicationHost.config file:

Directory structure:

Previous versions of ASP.NET used the [Bind]  attribute to protect against overposting attacks. Input formatters

work differently in ASP.NET Core. The [Bind]  attribute is no longer designed to prevent overposting when used

with input formatters to parse JSON or XML. These attributes affect model binding when the source of data is form

data posted with the x-www-form-urlencoded  content type.

For apps that post JSON information to controllers and use JSON Input Formatters to parse the data, we

https://docs.microsoft.com/en-us/dotnet/api/system.web.httpcookie.values#system_web_httpcookie_values
https://docs.microsoft.com/en-us/aspnet/mvc/overview/getting-started/introduction/examining-the-edit-methods-and-edit-view


Additional resources

recommend replacing the [Bind]  attribute with a view model that matches the properties defined by the [Bind]

attribute.

Porting Libraries to .NET Core

https://docs.microsoft.com/en-us/dotnet/core/porting/libraries


Migrate from ASP.NET MVC to ASP.NET Core MVC
9/22/2020 • 22 minutes to read • Edit Online

Prerequisites

Create the starter ASP.NET MVC project

Create the ASP.NET Core project

Configure the ASP.NET Core site to use MVC

This article shows how to start migrating an ASP.NET MVC project to ASP.NET Core MVC. In the process, it

highlights related changes from ASP.NET MVC.

Migrating from ASP.NET MVC is a multi-step process. This article covers:

Initial setup.

Basic controllers and views.

Static content.

Client-side dependencies.

For migrating configuration and Identity code, see Migrate configuration to ASP.NET Core and Migrate

Authentication and Identity to ASP.NET Core.

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

Create an example ASP.NET MVC project in Visual Studio to migrate:

1. From the FileFile menu, select NewNew  > ProjectProject.

2. Select ASP.NET Web Application (.NET Framework)ASP.NET Web Application (.NET Framework)  and then select NextNext.

3. Name the project WebApp1 so the namespace matches the ASP.NET Core project created in the next step. Select

CreateCreate.

4. Select MVCMVC, and then select CreateCreate.

Create a new solution with a new ASP.NET Core project to migrate to:

1. Launch a second instance of Visual Studio.

2. From the FileFile menu, select NewNew  > ProjectProject.

3. Select ASP.NET Web Core Web ApplicationASP.NET Web Core Web Application and then select NextNext.

4. In the Configure your new projectConfigure your new project dialog, Name the project WebApp1.

5. Set the location to a different directory than the previous project to use the same project name. Using the same

namespace makes it easier to copy code between the two projects. Select CreateCreate.

6. In the Create a new ASP.NET Core Web ApplicationCreate a new ASP.NET Core Web Application dialog, confirm that .NET Core.NET Core and ASP.NET CoreASP.NET Core

3.13.1  are selected. Select the Web Application (Model-View-Controller)Web Application (Model-View-Controller)  project template, and select CreateCreate.

In ASP.NET Core 3.0 and later projects, .NET Framework is no longer a supported target framework. Your project

must target .NET Core. The ASP.NET Core shared framework, which includes MVC, is part of the .NET Core runtime

installation. The shared framework is automatically referenced when using the Microsoft.NET.Sdk.Web  SDK in the

project file:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/mvc.md
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1


<Project Sdk="Microsoft.NET.Sdk.Web">

public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    // This method gets called by the runtime. Use this method to add services to the container.
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddControllersWithViews();
    }

    // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseExceptionHandler("/Home/Error");
            // The default HSTS value is 30 days. You may want to change this for production scenarios, see 
https://aka.ms/aspnetcore-hsts.
            app.UseHsts();
        }
        app.UseHttpsRedirection();
        app.UseStaticFiles();

        app.UseRouting();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllerRoute(
                name: "default",
                pattern: "{controller=Home}/{action=Index}/{id?}");
        });
    }
}

For more information, see Framework reference.

In ASP.NET Core, the Startup  class:

Replaces Global.asax.

Handles all app startup tasks.

For more information, see App startup in ASP.NET Core.

In the ASP.NET Core project, open the Startup.cs file:

ASP.NET Core apps must opt in to framework features with middleware. The previous template-generated code

adds the following services and middleware:

The AddControllersWithViews extension method registers MVC service support for controllers, API-related

features, and views. For more information on MVC service registration options, see MVC service registration

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvcservicecollectionextensions.addcontrollerswithviews


Migrate controllers and views

Test each method

Migrate static content

Migrate the layout files

The UseStaticFiles extension method adds the static file handler Microsoft.AspNetCore.StaticFiles . The 

UseStaticFiles  extension method must be called before UseRouting . For more information, see Static files in

ASP.NET Core.

The UseRouting extension method adds routing. For more information, see Routing in ASP.NET Core.

This existing configuration includes what is needed to migrate the example ASP.NET MVC project. For more

information on ASP.NET Core middleware options, see App startup in ASP.NET Core.

In the ASP.NET Core project, a new empty controller class and view class would be added to serve as placeholders

using the same names as the controller and view classes in any ASP.NET MVC project to migrate from.

The ASP.NET Core WebApp1 project already includes a minimal example controller and view by the same name as

the ASP.NET MVC project. So those will serve as placeholders for the ASP.NET MVC controller and views to be

migrated from the ASP.NET MVC WebApp1 project.

1. Copy the methods from the ASP.NET MVC HomeController  to replace the new ASP.NET Core HomeController

methods. There's no need to change the return type of the action methods. The ASP.NET MVC built-in template's

controller action method return type is /dotnet/api/system.web.mvc.actionresult?view=aspnet-mvc-5.2; in

ASP.NET Core MVC, the action methods return IActionResult  instead. ActionResult  implements 

IActionResult .

2. In the ASP.NET Core project, right-click the Views/Home directory, select AddAdd > Existing ItemExisting Item.

3. In the Add Existing ItemAdd Existing Item dialog, navigate to the ASP.NET MVC WebApp1 project's Views/Home directory.

4. Select the About.cshtml, Contact.cshtml, and Index.cshtml Razor view files, then select AddAdd, replacing the

existing files.

For more information, see Handle requests with controllers in ASP.NET Core MVC and Views in ASP.NET Core MVC.

Each controller endpoint can be tested, however, layout and styles are covered later in the document.

1. Run the ASP.NET Core app.

2. Invoke the rendered views from the browser on the running ASP.NET Core app by replacing the current port

number with the port number used in the ASP.NET Core project. For example, 

https://localhost:44375/home/about .

In ASP.NET MVC 5 and earlier, static content was hosted from the web project's root directory and was intermixed

with server-side files. In ASP.NET Core, static files are stored within the project's web root directory. The default

directory is {content root}/wwwroot, but it can be changed. For more information, see Static files in ASP.NET Core.

Copy the static content from the ASP.NET MVC WebApp1 project to the wwwroot directory in the ASP.NET Core

WebApp1 project:

1. In the ASP.NET Core project, right-click the wwwroot directory, select AddAdd > Existing ItemExisting Item.

2. In the Add Existing ItemAdd Existing Item dialog, navigate to the ASP.NET MVC WebApp1 project.

3. Select the favicon.ico file, then select AddAdd, replacing the existing file.

Copy the ASP.NET MVC project layout files to the ASP.NET Core project:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.userouting
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.actionresult?view=aspnet-mvc-5.2


<link rel="stylesheet"
    href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
    integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
    crossorigin="anonymous">

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
    integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" 
crossorigin="anonymous"></script>

1. In the ASP.NET Core project, right-click the Views directory, select AddAdd > Existing ItemExisting Item.

2. In the Add Existing ItemAdd Existing Item dialog, navigate to the ASP.NET MVC WebApp1 project's Views directory.

3. Select the _ViewStart.cshtml file then select AddAdd.

Copy the ASP.NET MVC project shared layout files to the ASP.NET Core project:

1. In the ASP.NET Core project, right-click the Views/Shared directory, select AddAdd > Existing ItemExisting Item.

2. In the Add Existing ItemAdd Existing Item dialog, navigate to the ASP.NET MVC WebApp1 project's Views/Shared directory.

3. Select the _Layout.cshtml file, then select AddAdd, replacing the existing file.

In the ASP.NET Core project, open the _Layout.cshtml file. Make the following changes to match the completed code

shown below:

Update the Bootstrap CSS inclusion to match the completed code below:

1. Replace @Styles.Render("~/Content/css")  with a <link>  element to load bootstrap.css (see below).

2. Remove @Scripts.Render("~/bundles/modernizr") .

The completed replacement markup for Bootstrap CSS inclusion:

Update the jQuery and Bootstrap JavaScript inclusion to match the completed code below:

1. Replace @Scripts.Render("~/bundles/jquery")  with a <script>  element (see below).

2. Replace @Scripts.Render("~/bundles/bootstrap")  with a <script>  element (see below).

The completed replacement markup for jQuery and Bootstrap JavaScript inclusion:

The updated _Layout.cshtml file is shown below:



<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>@ViewBag.Title - My ASP.NET Application</title>
    <link rel="stylesheet"
          href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
          integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
          crossorigin="anonymous">
</head>
<body>
    <div class="navbar navbar-inverse navbar-fixed-top">
        <div class="container">
            <div class="navbar-header">
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                </button>
                @Html.ActionLink("Application name", "Index", "Home", new { area = "" }, new { @class = 
"navbar-brand" })
            </div>
            <div class="navbar-collapse collapse">
                <ul class="nav navbar-nav">
                    <li>@Html.ActionLink("Home", "Index", "Home")</li>
                    <li>@Html.ActionLink("About", "About", "Home")</li>
                    <li>@Html.ActionLink("Contact", "Contact", "Home")</li>
                </ul>
            </div>
        </div>
    </div>
    <div class="container body-content">
        @RenderBody()
        <hr />
        <footer>
            <p>&copy; @DateTime.Now.Year - My ASP.NET Application</p>
        </footer>
    </div>

    <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
    <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
            integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" 
crossorigin="anonymous"></script>
    @RenderSection("scripts", required: false)
</body>
</html>

Configure bundling and minification

Solve HTTP 500 errors

View the site in the browser. It should render with the expected styles in place.

ASP.NET Core is compatible with several open-source bundling and minification solutions such as WebOptimizer

and other similar libraries. ASP.NET Core doesn't provide a native bundling and minification solution. For

information on configuring bundling and minification, see Bundling and Minification.

There are many problems that can cause an HTTP 500 error message that contains no information on the source of

the problem. For example, if the Views/_ViewImports.cshtml file contains a namespace that doesn't exist in the

project, an HTTP 500 error is generated. By default in ASP.NET Core apps, the UseDeveloperExceptionPage  extension

is added to the IApplicationBuilder  and executed when the environment is Development. This is detailed in the

https://github.com/ligershark/WebOptimizer


public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
    }

    public IConfiguration Configuration { get; }

    // This method gets called by the runtime. Use this method to add services to the container.
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddControllersWithViews();
    }

    // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
    public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }
        else
        {
            app.UseExceptionHandler("/Home/Error");
            // The default HSTS value is 30 days. You may want to change this for production scenarios, see 
https://aka.ms/aspnetcore-hsts.
            app.UseHsts();
        }
        app.UseHttpsRedirection();
        app.UseStaticFiles();

        app.UseRouting();

        app.UseAuthorization();

        app.UseEndpoints(endpoints =>
        {
            endpoints.MapControllerRoute(
                name: "default",
                pattern: "{controller=Home}/{action=Index}/{id?}");
        });
    }
}

Next steps

Additional resources

following code:

ASP.NET Core converts unhandled exceptions into HTTP 500 error responses. Normally, error details aren't included

in these responses to prevent disclosure of potentially sensitive information about the server. For more

information, see Developer Exception Page.

Migrate Authentication and Identity to ASP.NET Core

Introduction to ASP.NET Core Blazor

Tag Helpers in ASP.NET Core

This article shows how to start migrating an ASP.NET MVC project to ASP.NET Core MVC 2.2. In the process, it

highlights many of the things that have changed from ASP.NET MVC. Migrating from ASP.NET MVC is a multi-step

process. This article covers:



NOTENOTE

Create the starter ASP.NET MVC project

Initial setup

Basic controllers and views

Static content

Client-side dependencies.

For migrating configuration and Identity code, see Migrate configuration to ASP.NET Core and Migrate

Authentication and Identity to ASP.NET Core.

The version numbers in the samples might not be current, update the projects accordingly.

To demonstrate the upgrade, we'll start by creating an ASP.NET MVC app. Create it with the name WebApp1 so the

namespace matches the ASP.NET Core project created in the next step.



Create the ASP.NET Core project

Optional: Change the name of the Solution from WebApp1 to Mvc5. Visual Studio displays the new solution name

(Mvc5), which makes it easier to tell this project from the next project.

Create a new empty ASP.NET Core web app with the same name as the previous project (WebApp1) so the

namespaces in the two projects match. Having the same namespace makes it easier to copy code between the two

projects. Create this project in a different directory than the previous project to use the same name.



Configure the site to use MVC

Optional: Create a new ASP.NET Core app using the Web Application project template. Name the project

WebApp1, and select an authentication option of Individual User AccountsIndividual User Accounts . Rename this app to

FullAspNetCore. Creating this project saves time in the conversion. The end result can be viewed in the

template-generated code, code can be copied to the conversion project, or compared with the template-

generated project.

When targeting .NET Core, the Microsoft.AspNetCore.App metapackage is referenced by default. This package

contains packages commonly used by MVC apps. If targeting .NET Framework, package references must be

listed individually in the project file.

Microsoft.AspNetCore.Mvc  is the ASP.NET Core MVC framework. Microsoft.AspNetCore.StaticFiles  is the static file

handler. ASP.NET Core apps explicitly opt in for middleware, such as for serving static files. For more information,

see Static files.

Open the Startup.cs file and change the code to match the following:



public class Startup
{
    // This method gets called by the runtime. Use this method to add services to the container.
    // For more information on how to configure your application, visit https://go.microsoft.com/fwlink/?
LinkID=398940
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddMvc();
    }

    // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseStaticFiles();

        app.UseMvc(routes =>
        {
            routes.MapRoute(
                name: "default",
                template: "{controller=Home}/{action=Index}/{id?}");
        });
    }
}

Add a controller and view

The UseStaticFiles extension method adds the static file handler. For more information, see Application Startup and

Routing.

In this section, a minimal controller and view are added to serve as placeholders for the ASP.NET MVC controller

and views migrated in the next section.

Add a Controllers directory.

Add a Controller  ClassController  Class  named HomeController.cs to the Controllers directory.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles


Add a Views directory.

Add a Views/Home directory.

Add a Razor ViewRazor View  named Index.cshtml to the Views/Home directory.

The project structure is shown below:



<h1>Hello world!</h1>

Controllers and views

Replace the contents of the Views/Home/Index.cshtml file with the following markup:

Run the app.

For more information, see Controllers and Views.

The following functionality requires migration from the example ASP.NET MVC project to the ASP.NET Core project:

client-side content (CSS, fonts, and scripts)

controllers

views

models

bundling

filters

Log in/out, Identity (This is done in the next tutorial.)

Copy each of the methods from the ASP.NET MVC HomeController  to the new HomeController . In ASP.NET

MVC, the built-in template's controller action method return type is



 

Test each method

Static content

Migrate the layout file

/dotnet/api/system.web.mvc.actionresult?view=aspnet-mvc-5.2; in ASP.NET Core MVC, the action methods

return IActionResult  instead. ActionResult  implements IActionResult , so there's no need to change the

return type of the action methods.

Copy the About.cshtml, Contact.cshtml, and Index.cshtml Razor view files from the ASP.NET MVC project to

the ASP.NET Core project.

The layout file and styles have not been migrated yet, so the rendered views only contain the content in the view

files. The layout file generated links for the About  and Contact  views will not be available yet.

Invoke the rendered views from the browser on the running ASP.NET core app by replacing the current port

number with the port number used in the ASP.NET core project. For example: https://localhost:44375/home/about .

Note the lack of styling and menu items. The styling will be fixed in the next section.

In ASP.NET MVC 5 and earlier, static content was hosted from the root of the web project and was intermixed with

server-side files. In ASP.NET Core, static content is hosted in the wwwroot directory. Copy the static content from

the ASP.NET MVC app to the wwwroot directory in the ASP.NET Core project. In this sample conversion:

Copy the favicon.ico file from the ASP.NET MVC project to the wwwroot directory in the ASP.NET Core project.

The ASP.NET MVC project uses Bootstrap for its styling and stores the Bootstrap files in the Content and Scripts

directories. The template, which generated the ASP.NET MVC project, references Bootstrap in the layout file

(Views/Shared/_Layout.cshtml). The bootstrap.js and bootstrap.css files could be copied from the ASP.NET MVC

project to the wwwroot directory in the new project. Instead, this document adds support for Bootstrap (and other

client-side libraries) using CDNs, in the next section.

Copy the _ViewStart.cshtml file from the ASP.NET MVC project's Views directory into the ASP.NET Core

project's Views directory. The _ViewStart.cshtml file has not changed in ASP.NET Core MVC.

Create a Views/Shared directory.

Optional: Copy _ViewImports.cshtml from the FullAspNetCore MVC project's Views directory into the

ASP.NET Core project's Views directory. Remove any namespace declaration in the _ViewImports.cshtml file.

https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.actionresult?view=aspnet-mvc-5.2
https://getbootstrap.com/


<link rel="stylesheet"
    href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
    integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
    crossorigin="anonymous">

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
    integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" 
crossorigin="anonymous"></script>

The _ViewImports.cshtml file provides namespaces for all the view files and brings in Tag Helpers. Tag

Helpers are used in the new layout file. The _ViewImports.cshtml file is new for ASP.NET Core.

Copy the _Layout.cshtml file from the ASP.NET MVC project's Views/Shared directory into the ASP.NET Core

project's Views/Shared directory.

Open _Layout.cshtml file and make the following changes (the completed code is shown below):

Replace @Styles.Render("~/Content/css")  with a <link>  element to load bootstrap.css (see below).

Remove @Scripts.Render("~/bundles/modernizr") .

Comment out the @Html.Partial("_LoginPartial")  line (surround the line with @*...*@ ). For more

information, see Migrate Authentication and Identity to ASP.NET Core

Replace @Scripts.Render("~/bundles/jquery")  with a <script>  element (see below).

Replace @Scripts.Render("~/bundles/bootstrap")  with a <script>  element (see below).

The replacement markup for Bootstrap CSS inclusion:

The replacement markup for jQuery and Bootstrap JavaScript inclusion:

The updated _Layout.cshtml file is shown below:



<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>@ViewBag.Title - My ASP.NET Application</title>
    <link rel="stylesheet"
          href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
          integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
          crossorigin="anonymous">
</head>
<body>
    <div class="navbar navbar-inverse navbar-fixed-top">
        <div class="container">
            <div class="navbar-header">
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                </button>
                @Html.ActionLink("Application name", "Index", "Home", new { area = "" }, new { @class = 
"navbar-brand" })
            </div>
            <div class="navbar-collapse collapse">
                <ul class="nav navbar-nav">
                    <li>@Html.ActionLink("Home", "Index", "Home")</li>
                    <li>@Html.ActionLink("About", "About", "Home")</li>
                    <li>@Html.ActionLink("Contact", "Contact", "Home")</li>
                </ul>
                @*@Html.Partial("_LoginPartial")*@
            </div>
        </div>
    </div>
    <div class="container body-content">
        @RenderBody()
        <hr />
        <footer>
            <p>&copy; @DateTime.Now.Year - My ASP.NET Application</p>
        </footer>
    </div>

    <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
    <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
            integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa"
            crossorigin="anonymous"></script>
    @RenderSection("scripts", required: false)
</body>
</html>

Configure bundling and minification

Solve HTTP 500 errors

View the site in the browser. It should now load correctly, with the expected styles in place.

Optional: Try using the new layout file. Copy the layout file from the FullAspNetCore project. The new layout file

uses Tag Helpers and has other improvements.

For information about how to configure bundling and minification, see Bundling and Minification.

There are many problems that can cause an HTTP 500 error messages that contain no information on the source of

the problem. For example, if the Views/_ViewImports.cshtml file contains a namespace that doesn't exist in the



public class Startup
{
    // This method gets called by the runtime. Use this method to add services to the container.
    // For more information on how to configure your application, visit https://go.microsoft.com/fwlink/?
LinkID=398940
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddMvc();
    }

    // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseStaticFiles();

        app.UseMvc(routes =>
        {
            routes.MapRoute(
                name: "default",
                template: "{controller=Home}/{action=Index}/{id?}");
        });
    }
}

Additional resources

NOTENOTE

project, a HTTP 500 error is generated. By default in ASP.NET Core apps, the UseDeveloperExceptionPage  extension is

added to the IApplicationBuilder  and executed when the configuration is Development. See an example in the

following code:

ASP.NET Core converts unhandled exceptions into HTTP 500 error responses. Normally, error details aren't included

in these responses to prevent disclosure of potentially sensitive information about the server. For more

information, see Developer Exception Page.

Introduction to ASP.NET Core Blazor

Tag Helpers in ASP.NET Core

This article shows how to start migrating an ASP.NET MVC project to ASP.NET Core MVC 2.1. In the process, it

highlights many of the things that have changed from ASP.NET MVC. Migrating from ASP.NET MVC is a multi-step

process. This article covers:

Initial setup

Basic controllers and views

Static content

Client-side dependencies.

For migrating configuration and Identity code, see Migrate configuration to ASP.NET Core and Migrate

Authentication and Identity to ASP.NET Core.

The version numbers in the samples might not be current, update the projects accordingly.



Create the starter ASP.NET MVC project

Create the ASP.NET Core project

To demonstrate the upgrade, we'll start by creating a ASP.NET MVC app. Create it with the name WebApp1 so the

namespace matches the ASP.NET Core project created in the next step.

Optional: Change the name of the Solution from WebApp1 to Mvc5. Visual Studio displays the new solution name

(Mvc5), which makes it easier to tell this project from the next project.

Create a new empty ASP.NET Core web app with the same name as the previous project (WebApp1) so the

namespaces in the two projects match. Having the same namespace makes it easier to copy code between the two

projects. Create this project in a different directory than the previous project to use the same name.



Configure the site to use MVC

Optional: Create a new ASP.NET Core app using the Web Application project template. Name the project

WebApp1, and select an authentication option of Individual User AccountsIndividual User Accounts . Rename this app to

FullAspNetCore. Creating this project saves time in the conversion. The end result can be viewed in the

template-generated code, code can be copied to the conversion project, or compared with the template-

generated project.

When targeting .NET Core, the Microsoft.AspNetCore.App metapackage is referenced by default. This package

contains packages commonly used by MVC apps. If targeting .NET Framework, package references must be

listed individually in the project file.

Microsoft.AspNetCore.Mvc  is the ASP.NET Core MVC framework. Microsoft.AspNetCore.StaticFiles  is the static file



public class Startup
{
    // This method gets called by the runtime. Use this method to add services to the container.
    // For more information on how to configure your application, visit https://go.microsoft.com/fwlink/?
LinkID=398940
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddMvc();
    }

    // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseStaticFiles();

        app.UseMvc(routes =>
        {
            routes.MapRoute(
                name: "default",
                template: "{controller=Home}/{action=Index}/{id?}");
        });
    }
}

Add a controller and view

handler. ASP.NET Core apps explicitly opt in for middleware, such as for serving static files. For more information,

see Static files.

Open the Startup.cs file and change the code to match the following:

The UseStaticFiles extension method adds the static file handler. The UseMvc  extension method adds routing. For

more information, see Application Startup and Routing.

In this section, a minimal controller and view are added to serve as placeholders for the ASP.NET MVC controller

and views migrated in the next section.

Add a Controllers directory.

Add a Controller  ClassController  Class  named HomeController.cs to the Controllers directory.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.staticfileextensions.usestaticfiles


Add a Views directory.

Add a Views/Home directory.

Add a Razor ViewRazor View  named Index.cshtml to the Views/Home directory.

The project structure is shown below:



<h1>Hello world!</h1>

Controllers and views

Replace the contents of the Views/Home/Index.cshtml file with the following markup:

Run the app.

For more information, see Controllers and Views.

The following functionality requires migration from the example ASP.NET MVC project to the ASP.NET Core project:

client-side content (CSS, fonts, and scripts)

controllers

views

models

bundling

filters

Log in/out, Identity (This is done in the next tutorial.)

Copy each of the methods from the ASP.NET MVC HomeController  to the new HomeController . In ASP.NET

MVC, the built-in template's controller action method return type is



Test each method

Static content

Migrate the layout file

/dotnet/api/system.web.mvc.actionresult?view=aspnet-mvc-5.2; in ASP.NET Core MVC, the action methods

return IActionResult  instead. ActionResult  implements IActionResult , so there's no need to change the

return type of the action methods.

Copy the About.cshtml, Contact.cshtml, and Index.cshtml Razor view files from the ASP.NET MVC project to

the ASP.NET Core project.

The layout file and styles have not been migrated yet, so the rendered views only contain the content in the view

files. The layout file generated links for the About  and Contact  views will not be available yet.

Invoke the rendered views from the browser on the running ASP.NET core app by replacing the current port

number with the port number used in the ASP.NET core project. For example: 

https://localhost:44375/home/about .

Note the lack of styling and menu items. The styling will be fixed in the next section.

In ASP.NET MVC 5 and earlier, static content was hosted from the root of the web project and was intermixed with

server-side files. In ASP.NET Core, static content is hosted in the wwwroot directory. Copy the static content from

the ASP.NET MVC app to the wwwroot directory in the ASP.NET Core project. In this sample conversion:

Copy the favicon.ico file from the ASP.NET MVC project to the wwwroot directory in the ASP.NET Core project.

The ASP.NET MVC project uses Bootstrap for its styling and stores the Bootstrap files in the Content and Scripts

directories. The template, which generated the ASP.NET MVC project, references Bootstrap in the layout file

(Views/Shared/_Layout.cshtml). The bootstrap.js and bootstrap.css files could be copied from the ASP.NET MVC

project to the wwwroot directory in the new project. Instead, this document adds support for Bootstrap (and other

client-side libraries) using CDNs, in the next section.

Copy the _ViewStart.cshtml file from the ASP.NET MVC project's Views directory into the ASP.NET Core

project's Views directory. The _ViewStart.cshtml file has not changed in ASP.NET Core MVC.

Create a Views/Shared directory.

Optional: Copy _ViewImports.cshtml from the FullAspNetCore MVC project's Views directory into the

https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.actionresult?view=aspnet-mvc-5.2
https://getbootstrap.com/


<link rel="stylesheet"
    href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
    integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
    crossorigin="anonymous">

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
    integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" 
crossorigin="anonymous"></script>

ASP.NET Core project's Views directory. Remove any namespace declaration in the _ViewImports.cshtml file.

The _ViewImports.cshtml file provides namespaces for all the view files and brings in Tag Helpers. Tag

Helpers are used in the new layout file. The _ViewImports.cshtml file is new for ASP.NET Core.

Copy the _Layout.cshtml file from the ASP.NET MVC project's Views/Shared directory into the ASP.NET Core

project's Views/Shared directory.

Open _Layout.cshtml file and make the following changes (the completed code is shown below):

Replace @Styles.Render("~/Content/css")  with a <link>  element to load bootstrap.css (see below).

Remove @Scripts.Render("~/bundles/modernizr") .

Comment out the @Html.Partial("_LoginPartial")  line (surround the line with @*...*@ ). For more

information, see Migrate Authentication and Identity to ASP.NET Core

Replace @Scripts.Render("~/bundles/jquery")  with a <script>  element (see below).

Replace @Scripts.Render("~/bundles/bootstrap")  with a <script>  element (see below).

The replacement markup for Bootstrap CSS inclusion:

The replacement markup for jQuery and Bootstrap JavaScript inclusion:

The updated _Layout.cshtml file is shown below:



<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>@ViewBag.Title - My ASP.NET Application</title>
    <link rel="stylesheet"
          href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
          integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
          crossorigin="anonymous">
</head>
<body>
    <div class="navbar navbar-inverse navbar-fixed-top">
        <div class="container">
            <div class="navbar-header">
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-
collapse">
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                    <span class="icon-bar"></span>
                </button>
                @Html.ActionLink("Application name", "Index", "Home", new { area = "" }, new { @class = 
"navbar-brand" })
            </div>
            <div class="navbar-collapse collapse">
                <ul class="nav navbar-nav">
                    <li>@Html.ActionLink("Home", "Index", "Home")</li>
                    <li>@Html.ActionLink("About", "About", "Home")</li>
                    <li>@Html.ActionLink("Contact", "Contact", "Home")</li>
                </ul>
                @*@Html.Partial("_LoginPartial")*@
            </div>
        </div>
    </div>
    <div class="container body-content">
        @RenderBody()
        <hr />
        <footer>
            <p>&copy; @DateTime.Now.Year - My ASP.NET Application</p>
        </footer>
    </div>

    <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
    <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
            integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa"
            crossorigin="anonymous"></script>
    @RenderSection("scripts", required: false)
</body>
</html>

Configure bundling and minification

Solve HTTP 500 errors

View the site in the browser. It should now load correctly, with the expected styles in place.

Optional: Try using the new layout file. Copy the layout file from the FullAspNetCore project. The new layout file

uses Tag Helpers and has other improvements.

For information about how to configure bundling and minification, see Bundling and Minification.

There are many problems that can cause an HTTP 500 error messages that contain no information on the source of

the problem. For example, if the Views/_ViewImports.cshtml file contains a namespace that doesn't exist in the



public class Startup
{
    // This method gets called by the runtime. Use this method to add services to the container.
    // For more information on how to configure your application, visit https://go.microsoft.com/fwlink/?
LinkID=398940
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddMvc();
    }

    // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
    public void Configure(IApplicationBuilder app, IHostingEnvironment env)
    {
        if (env.IsDevelopment())
        {
            app.UseDeveloperExceptionPage();
        }

        app.UseStaticFiles();

        app.UseMvc(routes =>
        {
            routes.MapRoute(
                name: "default",
                template: "{controller=Home}/{action=Index}/{id?}");
        });
    }
}

Additional resources

project, a HTTP 500 error is generated. By default in ASP.NET Core apps, the UseDeveloperExceptionPage  extension is

added to the IApplicationBuilder  and executed when the configuration is Development. See an example in the

following code:

ASP.NET Core converts unhandled exceptions into HTTP 500 error responses. Normally, error details aren't included

in these responses to prevent disclosure of potentially sensitive information about the server. For more

information, see Developer Exception Page.

Introduction to ASP.NET Core Blazor

Tag Helpers in ASP.NET Core



Migrate from ASP.NET Web API to ASP.NET Core
9/22/2020 • 10 minutes to read • Edit Online

Prerequisites

Review ASP.NET 4.x Web API project

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Http;
using System.Web.Routing;

namespace ProductsApp
{
    public class WebApiApplication : System.Web.HttpApplication
    {
        protected void Application_Start()
        {
            GlobalConfiguration.Configure(WebApiConfig.Register);
        }
    }
}

By Scott Addie and Steve Smith

An ASP.NET 4.x Web API is an HTTP service that reaches a broad range of clients, including browsers and mobile

devices. ASP.NET Core combines ASP.NET 4.x's MVC and Web API app models into a single programming model

known as ASP.NET Core MVC. This article demonstrates the steps required to migrate from ASP.NET 4.x Web API to

ASP.NET Core MVC.

View or download sample code (how to download)

Visual Studio 2019 16.4 or later with the ASP.NET and web developmentASP.NET and web development workload

.NET Core 3.1 SDK or later

This article uses the ProductsApp project created in Getting Started with ASP.NET Web API 2. In that project, a basic

ASP.NET 4.x Web API project is configured as follows.

In Global.asax.cs, a call is made to WebApiConfig.Register :

The WebApiConfig  class is found in the App_Start folder and has a static Register  method:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/webapi.md
https://twitter.com/scott_addie
https://ardalis.com/
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/migration/webapi/sample
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core/3.1
https://docs.microsoft.com/en-us/aspnet/web-api/overview/getting-started-with-aspnet-web-api/tutorial-your-first-web-api


using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace ProductsApp
{
    public static class WebApiConfig
    {
        public static void Register(HttpConfiguration config)
        {
            // Web API configuration and services

            // Web API routes
            config.MapHttpAttributeRoutes();

            config.Routes.MapHttpRoute(
                name: "DefaultApi",
                routeTemplate: "api/{controller}/{id}",
                defaults: new { id = RouteParameter.Optional }
            );
        }
    }
}

Create the destination project

Migrate configuration

The preceding class:

Configures attribute routing, although it's not actually being used.

Configures the routing table. The sample code expects URLs to match the format /api/{controller}/{id} , with 

{id}  being optional.

The following sections demonstrate migration of the Web API project to ASP.NET Core MVC.

Create a new blank solution in Visual Studio and add the ASP.NET 4.x Web API project to migrate:

1. From the FileFile menu, select NewNew  > ProjectProject.

2. Select the Blank SolutionBlank Solution template and select NextNext.

3. Name the solution WebAPIMigration. Select CreateCreate.

4. Add the existing ProductsApp project to the solution.

Add a new API project to migrate to:

1. Add a new ASP.NET Core Web ApplicationASP.NET Core Web Application project to the solution.

2. In the Configure your new projectConfigure your new project dialog, Name the project ProductsCore, and select CreateCreate.

3. In the Create a new ASP.NET Core Web ApplicationCreate a new ASP.NET Core Web Application dialog, confirm that .NET Core.NET Core and ASP.NET CoreASP.NET Core

3.13.1  are selected. Select the APIAPI project template, and select CreateCreate.

4. Remove the WeatherForecast.cs and Controllers/WeatherForecastController.cs example files from the new

ProductsCore project.

The solution now contains two projects. The following sections explain migrating the ProductsApp project's

contents to the ProductsCore project.

ASP.NET Core doesn't use the App_Start folder or the Global.asax file. Additionally, the web.config file is added at

publish time.

https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2


Migrate models and controllers

using ProductsApp.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Web.Http;

namespace ProductsApp.Controllers
{
    public class ProductsController : ApiController
    {
        Product[] products = new Product[] 
        { 
            new Product
            {
                Id = 1, Name = "Tomato Soup", Category = "Groceries", Price = 1
            }, 
            new Product
            {
                Id = 2, Name = "Yo-yo", Category = "Toys", Price = 3.75M
            }, 
            new Product
            {
                Id = 3, Name = "Hammer", Category = "Hardware", Price = 16.99M
            } 
        };

        public IEnumerable<Product> GetAllProducts()
        {
            return products;
        }

        public IHttpActionResult GetProduct(int id)
        {
            var product = products.FirstOrDefault((p) => p.Id == id);
            if (product == null)
            {
                return NotFound();
            }
            return Ok(product);
        }
    }
}

The Startup  class:

Replaces Global.asax.

Handles all app startup tasks.

For more information, see App startup in ASP.NET Core.

The following code shows the ProductsController  to be updated for ASP.NET Core:

Update the ProductsController  for ASP.NET Core:

1. Copy Controllers/ProductsController.cs and the Models folder from the original project to the new one.

2. Change the copied files' root namespace to ProductsCore .

3. Update the using ProductsApp.Models;  statement to using ProductsCore.Models; .

The following components don't exist in ASP.NET Core:



Configure routing

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }

    app.UseHttpsRedirection();

    app.UseRouting();

    app.UseAuthorization();

    app.UseEndpoints(endpoints =>
    {
        endpoints.MapControllers();
    });
}

ApiController  class

System.Web.Http  namespace

IHttpActionResult  interface

Make the following changes:

return product;

1. Change ApiController  to ControllerBase. Add using Microsoft.AspNetCore.Mvc;  to resolve the 

ControllerBase  reference.

2. Delete using System.Web.Http; .

3. Change the GetProduct  action's return type from IHttpActionResult  to ActionResult<Product> .

4. Simplify the GetProduct  action's return  statement to the following:

The ASP.NET Core API project template includes endpoint routing configuration in the generated code.

The following UseRouting and UseEndpoints calls:

Register route matching and endpoint execution in the middleware pipeline.

Replace the ProductsApp project's App_Start/WebApiConfig.cs file.

Configure routing as follows:

[Route("api/[controller]")]
[ApiController]

1. Mark the ProductsController  class with the following attributes:

The preceding [Route]  attribute configures the controller's attribute routing pattern. The [ApiController]

attribute makes attribute routing a requirement for all actions in this controller.

Attribute routing supports tokens, such as [controller]  and [action] . At runtime, each token is replaced

with the name of the controller or action, respectively, to which the attribute has been applied. The tokens:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.userouting
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.endpointroutingapplicationbuilderextensions.useendpoints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute


Additional resources

Prerequisites

WARNINGWARNING

Review ASP.NET 4.x Web API project

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Http;
using System.Web.Routing;

namespace ProductsApp
{
    public class WebApiApplication : System.Web.HttpApplication
    {
        protected void Application_Start()
        {
            GlobalConfiguration.Configure(WebApiConfig.Register);
        }
    }
}

Reduce the number of magic strings in the project.

Ensure routes remain synchronized with the corresponding controllers and actions when automatic

rename refactorings are applied.

2. Enable HTTP Get requests to the ProductController  actions:

Apply the [HttpGet]  attribute to the GetAllProducts  action.

Apply the [HttpGet("{id}")]  attribute to the GetProduct  action.

Run the migrated project, and browse to /api/products . A full list of three products appears. Browse to 

/api/products/1 . The first product appears.

Create web APIs with ASP.NET Core

Controller action return types in ASP.NET Core web API

Compatibility version for ASP.NET Core MVC

Visual Studio 2019 with the ASP.NET and web developmentASP.NET and web development workload

.NET Core SDK 2.2 or later

If you use Visual Studio 2017, see dotnet/sdk issue #3124 for information about .NET Core SDK versions that don't work with

Visual Studio.

This article uses the ProductsApp project created in Getting Started with ASP.NET Web API 2. In that project, a basic

ASP.NET 4.x Web API project is configured as follows.

In Global.asax.cs, a call is made to WebApiConfig.Register :

The WebApiConfig  class is found in the App_Start folder and has a static Register  method:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpgetattribute
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/sdk/issues/3124
https://docs.microsoft.com/en-us/aspnet/web-api/overview/getting-started-with-aspnet-web-api/tutorial-your-first-web-api


using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace ProductsApp
{
    public static class WebApiConfig
    {
        public static void Register(HttpConfiguration config)
        {
            // Web API configuration and services

            // Web API routes
            config.MapHttpAttributeRoutes();

            config.Routes.MapHttpRoute(
                name: "DefaultApi",
                routeTemplate: "api/{controller}/{id}",
                defaults: new { id = RouteParameter.Optional }
            );
        }
    }
}

Create the destination project

Migrate configuration

This class configures attribute routing, although it's not actually being used in the project. It also configures the

routing table, which is used by ASP.NET Web API. In this case, ASP.NET 4.x Web API expects URLs to match the

format /api/{controller}/{id} , with {id}  being optional.

The following sections demonstrate migration of the Web API project to ASP.NET Core MVC.

Complete the following steps in Visual Studio:

Go to FileFile > NewNew  > ProjectProject > Other Project TypesOther Project Types  > Visual Studio SolutionsVisual Studio Solutions . Select Blank SolutionBlank Solution, and

name the solution WebAPIMigration. Click the OKOK button.

Add the existing ProductsApp project to the solution.

Add a new ASP.NET Core Web ApplicationASP.NET Core Web Application project to the solution. Select the .NET Core.NET Core target framework

from the drop-down, and select the APIAPI project template. Name the project ProductsCore, and click the OKOK

button.

The solution now contains two projects. The following sections explain migrating the ProductsApp project's

contents to the ProductsCore project.

ASP.NET Core doesn't use:

App_Start folder or the Global.asax file

web.config file is added at publish time.

The Startup  class:

Replaces Global.asax.

Handles all app startup tasks.

For more information, see App startup in ASP.NET Core.

In ASP.NET Core MVC, attribute routing is included by default when UseMvc is called in Startup.Configure . The

https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.mvcapplicationbuilderextensions.usemvc


public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }
    else
    {
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseMvc();
}

Migrate models and controllers

following UseMvc  call replaces the ProductsApp project's App_Start/WebApiConfig.cs file:

The following code shows the ProductsController  update for ASP.NET Core:



using ProductsApp.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Web.Http;

namespace ProductsApp.Controllers
{
    public class ProductsController : ApiController
    {
        Product[] products = new Product[] 
        { 
            new Product
            {
                Id = 1, Name = "Tomato Soup", Category = "Groceries", Price = 1
            }, 
            new Product
            {
                Id = 2, Name = "Yo-yo", Category = "Toys", Price = 3.75M
            }, 
            new Product
            {
                Id = 3, Name = "Hammer", Category = "Hardware", Price = 16.99M
            } 
        };

        public IEnumerable<Product> GetAllProducts()
        {
            return products;
        }

        public IHttpActionResult GetProduct(int id)
        {
            var product = products.FirstOrDefault((p) => p.Id == id);
            if (product == null)
            {
                return NotFound();
            }
            return Ok(product);
        }
    }
}

Update the ProductsController  for ASP.NET Core:

1. Copy Controllers/ProductsController.cs from the original project to the new one.

2. Copy the Models folder from the original project to the new one.

3. Change the copied files' root namespace to ProductsCore .

4. Update the using ProductsApp.Models;  statement to using ProductsCore.Models; .

The following components don't exist in ASP.NET Core:

ApiController  class

System.Web.Http  namespace

IHttpActionResult  interface

Make the following changes:

1. Change ApiController  to ControllerBase. Add using Microsoft.AspNetCore.Mvc;  to resolve the 

ControllerBase  reference.

2. Delete using System.Web.Http; .

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase


Configure routing

Compatibility shim

return product;

3. Change the GetProduct  action's return type from IHttpActionResult  to ActionResult<Product> .

4. Simplify the GetProduct  action's return  statement to the following:

Configure routing as follows:

[Route("api/[controller]")]
[ApiController]

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc()
            .SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}

1. Mark the ProductsController  class with the following attributes:

The preceding [Route]  attribute configures the controller's attribute routing pattern. The [ApiController]

attribute makes attribute routing a requirement for all actions in this controller.

Attribute routing supports tokens, such as [controller]  and [action] . At runtime, each token is replaced

with the name of the controller or action, respectively, to which the attribute has been applied. The tokens

reduce the number of magic strings in the project. The tokens also ensure routes remain synchronized with

the corresponding controllers and actions when automatic rename refactorings are applied.

2. Set the project's compatibility mode to ASP.NET Core 2.2:

The preceding change:

Is required to use the [ApiController]  attribute at the controller level.

Opts in to potentially breaking behaviors introduced in ASP.NET Core 2.2.

3. Enable HTTP Get requests to the ProductController  actions:

Apply the [HttpGet]  attribute to the GetAllProducts  action.

Apply the [HttpGet("{id}")]  attribute to the GetProduct  action.

Run the migrated project, and browse to /api/products . A full list of three products appears. Browse to 

/api/products/1 . The first product appears.

The Microsoft.AspNetCore.Mvc.WebApiCompatShim library provides a compatibility shim to move ASP.NET 4.x

Web API projects to ASP.NET Core. The compatibility shim extends ASP.NET Core to support a number of

conventions from ASP.NET 4.x Web API 2. The sample ported previously in this document is basic enough that the

compatibility shim was unnecessary. For larger projects, using the compatibility shim can be useful for temporarily

bridging the API gap between ASP.NET Core and ASP.NET 4.x Web API 2.

The Web API compatibility shim is meant to be used as a temporary measure to support migrating large ASP.NET

4.x Web API projects to ASP.NET Core. Over time, projects should be updated to use ASP.NET Core patterns instead

of relying on the compatibility shim.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.routeattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.httpgetattribute
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.WebApiCompatShim


Additional resources

Compatibility features included in Microsoft.AspNetCore.Mvc.WebApiCompatShim  include:

Adds an ApiController  type so that controllers' base types don't need to be updated.

Enables Web API-style model binding. ASP.NET Core MVC model binding functions similarly to that of ASP.NET

4.x MVC 5, by default. The compatibility shim changes model binding to be more similar to ASP.NET 4.x Web API

2 model binding conventions. For example, complex types are automatically bound from the request body.

Extends model binding so that controller actions can take parameters of type HttpRequestMessage .

Adds message formatters allowing actions to return results of type HttpResponseMessage .

Adds additional response methods that Web API 2 actions may have used to serve responses:

Adds an instance of IContentNegotiator  to the app's dependency injection (DI) container and makes available

the content negotiation-related types from Microsoft.AspNet.WebApi.Client. Examples of such types include 

DefaultContentNegotiator  and MediaTypeFormatter .

HttpResponseMessage  generators:

Action result methods:

CreateResponse<T>

CreateErrorResponse

BadRequestErrorMessageResult

ExceptionResult

InternalServerErrorResult

InvalidModelStateResult

NegotiatedContentResult

ResponseMessageResult

To use the compatibility shim:

1. Install the Microsoft.AspNetCore.Mvc.WebApiCompatShim NuGet package.

2. Register the compatibility shim's services with the app's DI container by calling 

services.AddMvc().AddWebApiConventions()  in Startup.ConfigureServices .

3. Define web API-specific routes using MapWebApiRoute  on the IRouteBuilder  in the app's 

IApplicationBuilder.UseMvc  call.

Create web APIs with ASP.NET Core

Controller action return types in ASP.NET Core web API

Compatibility version for ASP.NET Core MVC

https://www.nuget.org/packages/Microsoft.AspNet.WebApi.Client/
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.WebApiCompatShim


Migrate configuration to ASP.NET Core
9/22/2020 • 2 minutes to read • Edit Online

Setup configuration

public Startup(IConfiguration configuration)
{
    Configuration = configuration;
}

public IConfiguration Configuration { get; }

using Microsoft.Extensions.Configuration;

By Steve Smith and Scott Addie

In the previous article, we began to migrate an ASP.NET MVC project to ASP.NET Core MVC. In this article, we

migrate configuration.

View or download sample code (how to download)

ASP.NET Core no longer uses the Global.asax and web.config files that previous versions of ASP.NET utilized. In the

earlier versions of ASP.NET, application startup logic was placed in an Application_StartUp  method within

Global.asax. Later, in ASP.NET MVC, a Startup.cs file was included in the root of the project; and, it was called when

the application started. ASP.NET Core has adopted this approach completely by placing all startup logic in the

Startup.cs file.

The web.config file has also been replaced in ASP.NET Core. Configuration itself can now be configured, as part of

the application startup procedure described in Startup.cs. Configuration can still utilize XML files, but typically

ASP.NET Core projects will place configuration values in a JSON-formatted file, such as appsettings.json. ASP.NET

Core's configuration system can also easily access environment variables, which can provide a more secure and

robust location for environment-specific values. This is especially true for secrets like connection strings and API

keys that shouldn't be checked into source control. See Configuration to learn more about configuration in

ASP.NET Core.

For this article, we are starting with the partially migrated ASP.NET Core project from the previous article. To setup

configuration, add the following constructor and property to the Startup.cs file located in the root of the project:

Note that at this point, the Startup.cs file won't compile, as we still need to add the following using  statement:

Add an appsettings.json file to the root of the project using the appropriate item template:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/configuration.md
https://ardalis.com/
https://scottaddie.com
https://github.com/dotnet/AspNetCore.Docs/tree/master/aspnetcore/migration/configuration/samples


Migrate configuration settings from web.config

{
    "Data": {
        "DefaultConnection": {
            "ConnectionString": "Server=(localdb)\\MSSQLLocalDB;Database=_CHANGE_ME;Trusted_Connection=True;"
        }
    }
}

Summary

Our ASP.NET MVC project included the required database connection string in web.config, in the 

<connectionStrings>  element. In our ASP.NET Core project, we are going to store this information in the

appsettings.json file. Open appsettings.json, and note that it already includes the following:

In the highlighted line depicted above, change the name of the database from _CHANGE_ME_CHANGE_ME to the name of your

database.

ASP.NET Core places all startup logic for the application in a single file, in which the necessary services and

dependencies can be defined and configured. It replaces the web.config file with a flexible configuration feature

that can leverage a variety of file formats, such as JSON, as well as environment variables.



Migrate Authentication and Identity to ASP.NET
Core
9/22/2020 • 2 minutes to read • Edit Online

Configure Identity and Membership

public void ConfigureServices(IServiceCollection services)
{
    // Add EF services to the services container.
    services.AddDbContext<ApplicationDbContext>(options =>
        options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

    services.AddIdentity<ApplicationUser, IdentityRole>()
        .AddEntityFrameworkStores<ApplicationDbContext>()
        .AddDefaultTokenProviders();

     services.AddMvc();
}

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

namespace NewMvcProject.Models
{
  public class ApplicationUser : IdentityUser
  {
  }
}

By Steve Smith

In the previous article, we migrated configuration from an ASP.NET MVC project to ASP.NET Core MVC. In this

article, we migrate the registration, login, and user management features.

In ASP.NET MVC, authentication and identity features are configured using ASP.NET Identity in Startup.Auth.cs

and IdentityConfig.cs, located in the App_Start folder. In ASP.NET Core MVC, these features are configured in

Startup.cs.

Install the following NuGet packages:

Microsoft.AspNetCore.Identity.EntityFrameworkCore

Microsoft.AspNetCore.Authentication.Cookies

Microsoft.EntityFrameworkCore.SqlServer

In Startup.cs, update the Startup.ConfigureServices  method to use Entity Framework and Identity services:

At this point, there are two types referenced in the above code that we haven't yet migrated from the ASP.NET

MVC project: ApplicationDbContext  and ApplicationUser . Create a new Models folder in the ASP.NET Core

project, and add two classes to it corresponding to these types. You will find the ASP.NET MVC versions of these

classes in /Models/IdentityModels.cs, but we will use one file per class in the migrated project since that's more

clear.

ApplicationUser.cs:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/identity.md
https://ardalis.com/


using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.Data.Entity;

namespace NewMvcProject.Models
{
    public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
    {
        public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
            : base(options)
        {
        }

        protected override void OnModelCreating(ModelBuilder builder)
        {
            base.OnModelCreating(builder);
            // Customize the ASP.NET Core Identity model and override the defaults if needed.
            // For example, you can rename the ASP.NET Core Identity table names and more.
            // Add your customizations after calling base.OnModelCreating(builder);
        }
    }
}

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Hosting;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;

Migrate registration and login logic

      <li>@Html.ActionLink("Contact", "Contact", "Home")</li>
    </ul>
    @*@Html.Partial("_LoginPartial")*@
  </div>
</div>

ApplicationDbContext.cs:

The ASP.NET Core MVC Starter Web project doesn't include much customization of users, or the 

ApplicationDbContext . When migrating a real app, you also need to migrate all of the custom properties and

methods of your app's user and DbContext  classes, as well as any other Model classes your app utilizes. For

example, if your DbContext  has a DbSet<Album> , you need to migrate the Album  class.

With these files in place, the Startup.cs file can be made to compile by updating its using  statements:

Our app is now ready to support authentication and Identity services. It just needs to have these features

exposed to users.

With Identity services configured for the app and data access configured using Entity Framework and SQL

Server, we're ready to add support for registration and login to the app. Recall that earlier in the migration

process we commented out a reference to _LoginPartial in _Layout.cshtml. Now it's time to return to that code,

uncomment it, and add in the necessary controllers and views to support login functionality.

Uncomment the @Html.Partial  line in _Layout.cshtml:

Now, add a new Razor view called _LoginPartial to the Views/Shared folder :

Update _LoginPartial.cshtml with the following code (replace all of its contents):



@inject SignInManager<ApplicationUser> SignInManager
@inject UserManager<ApplicationUser> UserManager

@if (SignInManager.IsSignedIn(User))
{
    <form asp-area="" asp-controller="Account" asp-action="Logout" method="post" id="logoutForm" 
class="navbar-right">
        <ul class="nav navbar-nav navbar-right">
            <li>
                <a asp-area="" asp-controller="Manage" asp-action="Index" title="Manage">Hello 
@UserManager.GetUserName(User)!</a>
            </li>
            <li>
                <button type="submit" class="btn btn-link navbar-btn navbar-link">Log out</button>
            </li>
        </ul>
    </form>
}
else
{
    <ul class="nav navbar-nav navbar-right">
        <li><a asp-area="" asp-controller="Account" asp-action="Register">Register</a></li>
        <li><a asp-area="" asp-controller="Account" asp-action="Login">Log in</a></li>
    </ul>
}

Summary

At this point, you should be able to refresh the site in your browser.

ASP.NET Core introduces changes to the ASP.NET Identity features. In this article, you have seen how to migrate

the authentication and user management features of ASP.NET Identity to ASP.NET Core.



Migrate from ClaimsPrincipal.Current
9/22/2020 • 2 minutes to read • Edit Online

Context-specific state instead of static state

Retrieve the current user in an ASP.NET Core app

In ASP.NET 4.x projects, it was common to use ClaimsPrincipal.Current to retrieve the current authenticated user's

identity and claims. In ASP.NET Core, this property is no longer set. Code that was depending on it needs to be

updated to get the current authenticated user's identity through a different means.

When using ASP.NET Core, the values of both ClaimsPrincipal.Current  and Thread.CurrentPrincipal  aren't set.

These properties both represent static state, which ASP.NET Core generally avoids. Instead, ASP.NET Core uses

dependency injection (DI) to provide dependencies such as the current user's identity. Getting the current user's

identity from DI is more testable, too, since test identities can be easily injected.

There are several options for retrieving the current authenticated user's ClaimsPrincipal  in ASP.NET Core in place

of ClaimsPrincipal.Current :

ControllerBase.UserControllerBase.User . MVC controllers can access the current authenticated user with their User property.

HttpContext.UserHttpContext.User . Components with access to the current HttpContext  (middleware, for example) can get

the current user's ClaimsPrincipal  from HttpContext.User.

Passed in from callerPassed in from caller . Libraries without access to the current HttpContext  are often called from

controllers or middleware components and can have the current user's identity passed as an argument.

IHttpContextAccessorIHttpContextAccessor . The project being migrated to ASP.NET Core may be too large to easily pass the

current user's identity to all necessary locations. In such cases, IHttpContextAccessor can be used as a

workaround. IHttpContextAccessor  is able to access the current HttpContext  (if one exists). If DI is being

used, see Access HttpContext in ASP.NET Core. A short-term solution to getting the current user's identity in

code that hasn't yet been updated to work with ASP.NET Core's DI-driven architecture would be:

Make IHttpContextAccessor  available in the DI container by calling AddHttpContextAccessor in 

Startup.ConfigureServices .

Get an instance of IHttpContextAccessor  during startup and store it in a static variable. The instance is

made available to code that was previously retrieving the current user from a static property.

Retrieve the current user's ClaimsPrincipal  using HttpContextAccessor.HttpContext?.User . If this code is

used outside of the context of an HTTP request, the HttpContext  is null.

The final option, using an IHttpContextAccessor  instance stored in a static variable, is contrary to the ASP.NET Core

principle of preferring injected dependencies to static dependencies. Plan to eventually retrieve 

IHttpContextAccessor  instances from DI instead. A static helper can be a useful bridge, though, when migrating

large existing ASP.NET apps that use ClaimsPrincipal.Current .

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/claimsprincipal-current.md
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal.current
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.controllerbase.user
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext.user
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.ihttpcontextaccessor
https://github.com/aspnet/Hosting/issues/793


Migrate from ASP.NET Membership authentication to
ASP.NET Core 2.0 Identity
9/22/2020 • 6 minutes to read • Edit Online

NOTENOTE

Review of Membership schema

ASP.NET Core Identity 2.0 schema

By Isaac Levin

This article demonstrates migrating the database schema for ASP.NET apps using Membership authentication to

ASP.NET Core 2.0 Identity.

This document provides the steps needed to migrate the database schema for ASP.NET Membership-based apps to the

database schema used for ASP.NET Core Identity. For more information about migrating from ASP.NET Membership-based

authentication to ASP.NET Identity, see Migrate an existing app from SQL Membership to ASP.NET Identity. For more

information about ASP.NET Core Identity, see Introduction to Identity on ASP.NET Core.

Prior to ASP.NET 2.0, developers were tasked with creating the entire authentication and authorization process for

their apps. With ASP.NET 2.0, Membership was introduced, providing a boilerplate solution to handling security

within ASP.NET apps. Developers were now able to bootstrap a schema into a SQL Server database with the

/previous-versions/ms229862(v=vs.140) command. After running this command, the following tables were

created in the database.

To migrate existing apps to ASP.NET Core 2.0 Identity, the data in these tables needs to be migrated to the tables

used by the new Identity schema.

ASP.NET Core 2.0 follows the Identity principle introduced in ASP.NET 4.5. Though the principle is shared, the

implementation between the frameworks is different, even between versions of ASP.NET Core (see Migrate

authentication and Identity to ASP.NET Core 2.0).

The fastest way to view the schema for ASP.NET Core 2.0 Identity is to create a new ASP.NET Core 2.0 app. Follow

these steps in Visual Studio 2017:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/proper-to-2x/membership-to-core-identity.md
https://isaaclevin.com
https://docs.microsoft.com/en-us/aspnet/identity/overview/migrations/migrating-an-existing-website-from-sql-membership-to-aspnet-identity
https://docs.microsoft.com/en-us/previous-versions/ms229862(v=vs.140)
https://docs.microsoft.com/en-us/aspnet/identity/index


Migrate the schema

{
  "ConnectionStrings": {
    "DefaultConnection": "Server=localhost;Database=aspnet-core-
identity;Trusted_Connection=True;MultipleActiveResultSets=true"
  }
}

1. Select FileFile > NewNew  > ProjectProject.

2. Create a new ASP.NET Core Web ApplicationASP.NET Core Web Application project named CoreIdentitySample.

3. Select ASP.NET Core 2.0ASP.NET Core 2.0  in the dropdown and then select Web ApplicationWeb Application. This template produces a

Razor Pages app. Before clicking OKOK, click Change AuthenticationChange Authentication.

4. Choose Individual User AccountsIndividual User Accounts  for the Identity templates. Finally, click OKOK, then OKOK. Visual Studio

creates a project using the ASP.NET Core Identity template.

5. Select ToolsTools  > NuGet Package ManagerNuGet Package Manager  > Package Manager ConsolePackage Manager Console to open the Package ManagerPackage Manager

ConsoleConsole (PMC) window.

6. Navigate to the project root in PMC, and run the Entity Framework (EF) Core Update-Database  command.

ASP.NET Core 2.0 Identity uses EF Core to interact with the database storing the authentication data. In order

for the newly created app to work, there needs to be a database to store this data. After creating a new app,

the fastest way to inspect the schema in a database environment is to create the database using EF Core

Migrations. This process creates a database, either locally or elsewhere, which mimics that schema. Review

the preceding documentation for more information.

EF Core commands use the connection string for the database specified in appsettings.json. The following

connection string targets a database on localhost named asp-net-core-identity. In this setting, EF Core is

configured to use the DefaultConnection  connection string.

7. Select ViewView  > SQL Ser ver Object ExplorerSQL Ser ver Object Explorer . Expand the node corresponding to the database name

specified in the ConnectionStrings:DefaultConnection  property of appsettings.json.

The Update-Database  command created the database specified with the schema and any data needed for

app initialization. The following image depicts the table structure that's created with the preceding steps.

There are subtle differences in the table structures and fields for both Membership and ASP.NET Core Identity. The

pattern has changed substantially for authentication/authorization with ASP.NET and ASP.NET Core apps. The key

objects that are still used with Identity are Users and Roles. Here are mapping tables for Users, Roles, and

UserRoles.

https://docs.microsoft.com/en-us/ef/core
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/


UsersUsers

IDEN T IT YIDEN T IT Y
(( DBO.ASPNETUSERS )  C O L UM N)  C O L UM N T Y P ET Y P E

M EM B ERSH IPM EM B ERSH IP
(( DBO.ASPNET_USERS  /   /  
DBO.ASPNET_MEMBERSHIP ))

C O L UM NC O L UM N T Y P ET Y P E

Id string aspnet_Users.UserId string

UserName string aspnet_Users.UserName string

Email string aspnet_Membership.Email string

NormalizedUserName string aspnet_Users.LoweredUserName string

NormalizedEmail string aspnet_Membership.LoweredEmailstring

PhoneNumber string aspnet_Users.MobileAlias string

LockoutEnabled bit aspnet_Membership.IsLockedOut bit

NOTENOTE

RolesRoles

IDEN T IT YIDEN T IT Y
(( DBO.ASPNETROLES )  C O L UM N)  C O L UM N T Y P ET Y P E

M EM B ERSH IPM EM B ERSH IP
(( DBO.ASPNET_ROLES )  C O L UM N)  C O L UM N T Y P ET Y P E

Id string RoleId string

Name string RoleName string

NormalizedName string LoweredRoleName string

User RolesUser Roles

IDEN T IT YIDEN T IT Y
(( DBO.ASPNETUSERROLES )  C O L UM N)  C O L UM N T Y P ET Y P E

M EM B ERSH IPM EM B ERSH IP
(( DBO.ASPNET_USERSINROLES ))
C O L UM NC O L UM N T Y P ET Y P E

RoleId string RoleId string

UserId string UserId string

Not all the field mappings resemble one-to-one relationships from Membership to ASP.NET Core Identity. The preceding table

takes the default Membership User schema and maps it to the ASP.NET Core Identity schema. Any other custom fields that

were used for Membership need to be mapped manually. In this mapping, there's no map for passwords, as both password

criteria and password salts don't migrate between the two. It 's recommended to leave the password as null and toIt's recommended to leave the password as null and to

ask users to reset their passwords.ask users to reset their passwords.  In ASP.NET Core Identity, LockoutEnd  should be set to some date in the future if

the user is locked out. This is shown in the migration script.

Reference the preceding mapping tables when creating a migration script for Users and Roles. The following

example assumes you have two databases on a database server. One database contains the existing ASP.NET

Membership schema and data. The other CoreIdentitySample database was created using steps described earlier.



-- THIS SCRIPT NEEDS TO RUN FROM THE CONTEXT OF THE MEMBERSHIP DB
BEGIN TRANSACTION MigrateUsersAndRoles
USE aspnetdb

-- INSERT USERS
INSERT INTO CoreIdentitySample.dbo.AspNetUsers
            (Id,
             UserName,
             NormalizedUserName,
             PasswordHash,
             SecurityStamp,
             EmailConfirmed,
             PhoneNumber,
             PhoneNumberConfirmed,
             TwoFactorEnabled,
             LockoutEnd,
             LockoutEnabled,
             AccessFailedCount,
             Email,
             NormalizedEmail)
SELECT aspnet_Users.UserId,
       aspnet_Users.UserName,
       -- The NormalizedUserName value is upper case in ASP.NET Core Identity
       UPPER(aspnet_Users.UserName),
       -- Creates an empty password since passwords don't map between the 2 schemas
       '',
       /*
        The SecurityStamp token is used to verify the state of an account and
        is subject to change at any time. It should be initialized as a new ID.
       */
       NewID(),
       /*
        EmailConfirmed is set when a new user is created and confirmed via email.
        Users must have this set during migration to reset passwords.
       */
       1,
       aspnet_Users.MobileAlias,
       CASE
         WHEN aspnet_Users.MobileAlias IS NULL THEN 0
         ELSE 1
       END,
       -- 2FA likely wasn't setup in Membership for users, so setting as false.
       0,
       CASE
         -- Setting lockout date to time in the future (1,000 years)
         WHEN aspnet_Membership.IsLockedOut = 1 THEN Dateadd(year, 1000,
                                                     Sysutcdatetime())
         ELSE NULL
       END,
       aspnet_Membership.IsLockedOut,
       /*
        AccessFailedAccount is used to track failed logins. This is stored in
        Membership in multiple columns. Setting to 0 arbitrarily.
       */
       0,
       aspnet_Membership.Email,
       -- The NormalizedEmail value is upper case in ASP.NET Core Identity
       UPPER(aspnet_Membership.Email)
FROM   aspnet_Users
       LEFT OUTER JOIN aspnet_Membership
                    ON aspnet_Membership.ApplicationId =
                       aspnet_Users.ApplicationId
                       AND aspnet_Users.UserId = aspnet_Membership.UserId
       LEFT OUTER JOIN CoreIdentitySample.dbo.AspNetUsers
                    ON aspnet_Membership.UserId = AspNetUsers.Id
WHERE  AspNetUsers.Id IS NULL

Comments are included inline for more details.



WHERE  AspNetUsers.Id IS NULL

-- INSERT ROLES
INSERT INTO CoreIdentitySample.dbo.AspNetRoles(Id, Name)
SELECT RoleId, RoleName
FROM aspnet_Roles;

-- INSERT USER ROLES
INSERT INTO CoreIdentitySample.dbo.AspNetUserRoles(UserId, RoleId)
SELECT UserId, RoleId
FROM aspnet_UsersInRoles;

IF @@ERROR <> 0
  BEGIN
    ROLLBACK TRANSACTION MigrateUsersAndRoles
    RETURN
  END

COMMIT TRANSACTION MigrateUsersAndRoles

NOTENOTE

Next steps

After completion of the preceding script, the ASP.NET Core Identity app created earlier is populated with

Membership users. Users need to change their passwords before logging in.

If the Membership system had users with user names that didn't match their email address, changes are required to the app

created earlier to accommodate this. The default template expects UserName  and Email  to be the same. For situations in

which they're different, the login process needs to be modified to use UserName  instead of Email .

In the PageModel  of the Login Page, located at Pages\Account\Login.cshtml.cs, remove the [EmailAddress]  attribute

from the Email property. Rename it to UserName. This requires a change wherever EmailAddress  is mentioned, in

the View and PageModel. The result looks like the following:

In this tutorial, you learned how to port users from SQL membership to ASP.NET Core 2.0 Identity. For more



information regarding ASP.NET Core Identity, see Introduction to Identity.



Migrate HTTP handlers and modules to ASP.NET
Core middleware
9/22/2020 • 16 minutes to read • Edit Online

Modules and handlers revisited

This article shows how to migrate existing ASP.NET HTTP modules and handlers from system.webserver to

ASP.NET Core middleware.

Before proceeding to ASP.NET Core middleware, let's first recap how HTTP modules and handlers work:

Handlers are:Handlers are:

Classes that implement IHttpHandler

Used to handle requests with a given file name or extension, such as .report

Configured in Web.config

Modules are:Modules are:

Classes that implement IHttpModule

Invoked for every request

Able to short-circuit (stop further processing of a request)

Able to add to the HTTP response, or create their own

Configured in Web.config

The order in which modules process incoming requests is determined by:The order in which modules process incoming requests is determined by:

1. The /previous-versions/ms227673(v=vs.140), which is a series events fired by ASP.NET: BeginRequest,

AuthenticateRequest, etc. Each module can create a handler for one or more events.

2. For the same event, the order in which they're configured in Web.config.

In addition to modules, you can add handlers for the life cycle events to your Global.asax.cs file. These handlers

run after the handlers in the configured modules.

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/http-modules.md
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/
https://docs.microsoft.com/en-us/dotnet/api/system.web.ihttphandler
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/handlers/
https://docs.microsoft.com/en-us/dotnet/api/system.web.ihttpmodule
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/modules/
https://docs.microsoft.com/en-us/previous-versions/ms227673(v=vs.140)
https://docs.microsoft.com/en-us/dotnet/api/system.web.httpapplication.beginrequest
https://docs.microsoft.com/en-us/dotnet/api/system.web.httpapplication.authenticaterequest


From handlers and modules to middleware

Migrating module code to middleware

Middleware are simpler than HTTP modules and handlers:Middleware are simpler than HTTP modules and handlers:

Modules, handlers, Global.asax.cs, Web.config (except for IIS configuration) and the application life cycle are

gone

The roles of both modules and handlers have been taken over by middleware

Middleware are configured using code rather than in Web.config

Pipeline branching lets you send requests to specific middleware, based on not only the URL but also on

request headers, query strings, etc.

Pipeline branching lets you send requests to specific middleware, based on not only the URL but also on

request headers, query strings, etc.

Middleware are ver y similar  to modules:Middleware are ver y similar  to modules:

Invoked in principle for every request

Able to short-circuit a request, by not passing the request to the next middleware

Able to create their own HTTP response

Middleware and modules are processed in a different order :Middleware and modules are processed in a different order :

Order of middleware is based on the order in which they're inserted into the request pipeline, while order

of modules is mainly based on /previous-versions/ms227673(v=vs.140) events

Order of middleware for responses is the reverse from that for requests, while order of modules is the

same for requests and responses

See Create a middleware pipeline with IApplicationBuilder

Note how in the image above, the authentication middleware short-circuited the request.

An existing HTTP module will look similar to this:

https://docs.microsoft.com/en-us/previous-versions/ms227673(v=vs.140)


// ASP.NET 4 module

using System;
using System.Web;

namespace MyApp.Modules
{
    public class MyModule : IHttpModule
    {
        public void Dispose()
        {
        }

        public void Init(HttpApplication application)
        {
            application.BeginRequest += (new EventHandler(this.Application_BeginRequest));
            application.EndRequest += (new EventHandler(this.Application_EndRequest));
        }

        private void Application_BeginRequest(Object source, EventArgs e)
        {
            HttpContext context = ((HttpApplication)source).Context;

            // Do something with context near the beginning of request processing.
        }

        private void Application_EndRequest(Object source, EventArgs e)
        {
            HttpContext context = ((HttpApplication)source).Context;

            // Do something with context near the end of request processing.
        }
    }
}

As shown in the Middleware page, an ASP.NET Core middleware is a class that exposes an Invoke  method taking

an HttpContext  and returning a Task . Your new middleware will look like this:

  



// ASP.NET Core middleware

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Http;
using System.Threading.Tasks;

namespace MyApp.Middleware
{
    public class MyMiddleware
    {
        private readonly RequestDelegate _next;

        public MyMiddleware(RequestDelegate next)
        {
            _next = next;
        }

        public async Task Invoke(HttpContext context)
        {
            // Do something with context near the beginning of request processing.

            await _next.Invoke(context);

            // Clean up.
        }
    }

    public static class MyMiddlewareExtensions
    {
        public static IApplicationBuilder UseMyMiddleware(this IApplicationBuilder builder)
        {
            return builder.UseMiddleware<MyMiddleware>();
        }
    }
}

// ASP.NET 4 module that may terminate the request

private void Application_BeginRequest(Object source, EventArgs e)
{
    HttpContext context = ((HttpApplication)source).Context;

    // Do something with context near the beginning of request processing.

    if (TerminateRequest())
    {
        context.Response.End();
        return;
    }
}

The preceding middleware template was taken from the section on writing middleware.

The MyMiddlewareExtensions helper class makes it easier to configure your middleware in your Startup  class.

The UseMyMiddleware  method adds your middleware class to the request pipeline. Services required by the

middleware get injected in the middleware's constructor.

 Your module might terminate a request, for example if the user isn't authorized:

A middleware handles this by not calling Invoke  on the next middleware in the pipeline. Keep in mind that this

doesn't fully terminate the request, because previous middlewares will still be invoked when the response makes

its way back through the pipeline.



// ASP.NET Core middleware that may terminate the request

public async Task Invoke(HttpContext context)
{
    // Do something with context near the beginning of request processing.

    if (!TerminateRequest())
        await _next.Invoke(context);

    // Clean up.
}

Migrating module insertion into the request pipeline

<?xml version="1.0" encoding="utf-8"?>
<!--ASP.NET 4 web.config-->
<configuration>
  <system.webServer>
    <modules>
      <add name="MyModule" type="MyApp.Modules.MyModule"/>
    </modules>
  </system.webServer>
</configuration>

When you migrate your module's functionality to your new middleware, you may find that your code doesn't

compile because the HttpContext  class has significantly changed in ASP.NET Core. Later on, you'll see how to

migrate to the new ASP.NET Core HttpContext.

HTTP modules are typically added to the request pipeline using Web.config:

Convert this by adding your new middleware to the request pipeline in your Startup  class:



public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
    loggerFactory.AddConsole(Configuration.GetSection("Logging"));
    loggerFactory.AddDebug();

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseBrowserLink();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
    }

    app.UseMyMiddleware();

    app.UseMyMiddlewareWithParams();

    var myMiddlewareOptions = Configuration.GetSection("MyMiddlewareOptionsSection").Get<MyMiddlewareOptions>
();
    var myMiddlewareOptions2 = 
Configuration.GetSection("MyMiddlewareOptionsSection2").Get<MyMiddlewareOptions>();
    app.UseMyMiddlewareWithParams(myMiddlewareOptions);
    app.UseMyMiddlewareWithParams(myMiddlewareOptions2);

    app.UseMyTerminatingMiddleware();

    // Create branch to the MyHandlerMiddleware. 
    // All requests ending in .report will follow this branch.
    app.MapWhen(
        context => context.Request.Path.ToString().EndsWith(".report"),
        appBranch => {
            // ... optionally add more middleware to this branch
            appBranch.UseMyHandler();
        });

    app.MapWhen(
        context => context.Request.Path.ToString().EndsWith(".context"),
        appBranch => {
            appBranch.UseHttpContextDemoMiddleware();
        });

    app.UseStaticFiles();

    app.UseMvc(routes =>
    {
        routes.MapRoute(
            name: "default",
            template: "{controller=Home}/{action=Index}/{id?}");
    });
}

Migrating handler code to middleware

The exact spot in the pipeline where you insert your new middleware depends on the event that it handled as a

module ( BeginRequest , EndRequest , etc.) and its order in your list of modules in Web.config.

As previously stated, there's no application life cycle in ASP.NET Core and the order in which responses are

processed by middleware differs from the order used by modules. This could make your ordering decision more

challenging.

If ordering becomes a problem, you could split your module into multiple middleware components that can be

ordered independently.



// ASP.NET 4 handler

using System.Web;

namespace MyApp.HttpHandlers
{
    public class MyHandler : IHttpHandler
    {
        public bool IsReusable { get { return true; } }

        public void ProcessRequest(HttpContext context)
        {
            string response = GenerateResponse(context);

            context.Response.ContentType = GetContentType();
            context.Response.Output.Write(response);
        }

        // ...

        private string GenerateResponse(HttpContext context)
        {
            string title = context.Request.QueryString["title"];
            return string.Format("Title of the report: {0}", title);
        }

        private string GetContentType()
        {
            return "text/plain";
        }
    }
}

An HTTP handler looks something like this:

In your ASP.NET Core project, you would translate this to a middleware similar to this:



// ASP.NET Core middleware migrated from a handler

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Http;
using System.Threading.Tasks;

namespace MyApp.Middleware
{
    public class MyHandlerMiddleware
    {

        // Must have constructor with this signature, otherwise exception at run time
        public MyHandlerMiddleware(RequestDelegate next)
        {
            // This is an HTTP Handler, so no need to store next
        }

        public async Task Invoke(HttpContext context)
        {
            string response = GenerateResponse(context);

            context.Response.ContentType = GetContentType();
            await context.Response.WriteAsync(response);
        }

        // ...

        private string GenerateResponse(HttpContext context)
        {
            string title = context.Request.Query["title"];
            return string.Format("Title of the report: {0}", title);
        }

        private string GetContentType()
        {
            return "text/plain";
        }
    }

    public static class MyHandlerExtensions
    {
        public static IApplicationBuilder UseMyHandler(this IApplicationBuilder builder)
        {
            return builder.UseMiddleware<MyHandlerMiddleware>();
        }
    }
}

Migrating handler insertion into the request pipeline

This middleware is very similar to the middleware corresponding to modules. The only real difference is that here

there's no call to _next.Invoke(context) . That makes sense, because the handler is at the end of the request

pipeline, so there will be no next middleware to invoke.

Configuring an HTTP handler is done in Web.config and looks something like this:



<?xml version="1.0" encoding="utf-8"?>
<!--ASP.NET 4 web.config-->
<configuration>
  <system.webServer>
    <handlers>
      <add name="MyHandler" verb="*" path="*.report" type="MyApp.HttpHandlers.MyHandler" 
resourceType="Unspecified" preCondition="integratedMode"/>
    </handlers>
  </system.webServer>
</configuration>

You could convert this by adding your new handler middleware to the request pipeline in your Startup  class,

similar to middleware converted from modules. The problem with that approach is that it would send all requests

to your new handler middleware. However, you only want requests with a given extension to reach your

middleware. That would give you the same functionality you had with your HTTP handler.

One solution is to branch the pipeline for requests with a given extension, using the MapWhen  extension method.

You do this in the same Configure  method where you add the other middleware:



public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
    loggerFactory.AddConsole(Configuration.GetSection("Logging"));
    loggerFactory.AddDebug();

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseBrowserLink();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
    }

    app.UseMyMiddleware();

    app.UseMyMiddlewareWithParams();

    var myMiddlewareOptions = Configuration.GetSection("MyMiddlewareOptionsSection").Get<MyMiddlewareOptions>
();
    var myMiddlewareOptions2 = 
Configuration.GetSection("MyMiddlewareOptionsSection2").Get<MyMiddlewareOptions>();
    app.UseMyMiddlewareWithParams(myMiddlewareOptions);
    app.UseMyMiddlewareWithParams(myMiddlewareOptions2);

    app.UseMyTerminatingMiddleware();

    // Create branch to the MyHandlerMiddleware. 
    // All requests ending in .report will follow this branch.
    app.MapWhen(
        context => context.Request.Path.ToString().EndsWith(".report"),
        appBranch => {
            // ... optionally add more middleware to this branch
            appBranch.UseMyHandler();
        });

    app.MapWhen(
        context => context.Request.Path.ToString().EndsWith(".context"),
        appBranch => {
            appBranch.UseHttpContextDemoMiddleware();
        });

    app.UseStaticFiles();

    app.UseMvc(routes =>
    {
        routes.MapRoute(
            name: "default",
            template: "{controller=Home}/{action=Index}/{id?}");
    });
}

MapWhen  takes these parameters:

1. A lambda that takes the HttpContext  and returns true  if the request should go down the branch. This

means you can branch requests not just based on their extension, but also on request headers, query string

parameters, etc.

2. A lambda that takes an IApplicationBuilder  and adds all the middleware for the branch. This means you

can add additional middleware to the branch in front of your handler middleware.

Middleware added to the pipeline before the branch will be invoked on all requests; the branch will have no

impact on them.



Loading middleware options using the options pattern
Some modules and handlers have configuration options that are stored in Web.config. However, in ASP.NET Core a

new configuration model is used in place of Web.config.

The new configuration system gives you these options to solve this:

Directly inject the options into the middleware, as shown in the next section.

Use the options pattern:

public class MyMiddlewareOptions
{
    public string Param1 { get; set; }
    public string Param2 { get; set; }
}

{
  "MyMiddlewareOptionsSection": {
    "Param1": "Param1Value",
    "Param2": "Param2Value"
  }
}

1. Create a class to hold your middleware options, for example:

2. Store the option values

The configuration system allows you to store option values anywhere you want. However, most sites use

appsettings.json, so we'll take that approach:

MyMiddlewareOptionsSection here is a section name. It doesn't have to be the same as the name of your

options class.

3. Associate the option values with the options class

The options pattern uses ASP.NET Core's dependency injection framework to associate the options type

(such as MyMiddlewareOptions ) with a MyMiddlewareOptions  object that has the actual options.

Update your Startup  class:

public Startup(IHostingEnvironment env)
{
    var builder = new ConfigurationBuilder()
        .SetBasePath(env.ContentRootPath)
        .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
        .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
        .AddEnvironmentVariables();
    Configuration = builder.Build();
}

a. If you're using appsettings.json, add it to the configuration builder in the Startup  constructor :

b. Configure the options service:



 Loading middleware options through direct injection

public class MyMiddlewareWithParams
{
    private readonly RequestDelegate _next;
    private readonly MyMiddlewareOptions _myMiddlewareOptions;

    public MyMiddlewareWithParams(RequestDelegate next,
        IOptions<MyMiddlewareOptions> optionsAccessor)
    {
        _next = next;
        _myMiddlewareOptions = optionsAccessor.Value;
    }

    public async Task Invoke(HttpContext context)
    {
        // Do something with context near the beginning of request processing
        // using configuration in _myMiddlewareOptions

        await _next.Invoke(context);

        // Do something with context near the end of request processing
        // using configuration in _myMiddlewareOptions
    }
}

public void ConfigureServices(IServiceCollection services)
{
    // Setup options service
    services.AddOptions();

    // Load options from section "MyMiddlewareOptionsSection"
    services.Configure<MyMiddlewareOptions>(
        Configuration.GetSection("MyMiddlewareOptionsSection"));

    // Add framework services.
    services.AddMvc();
}

public void ConfigureServices(IServiceCollection services)
{
    // Setup options service
    services.AddOptions();

    // Load options from section "MyMiddlewareOptionsSection"
    services.Configure<MyMiddlewareOptions>(
        Configuration.GetSection("MyMiddlewareOptionsSection"));

    // Add framework services.
    services.AddMvc();
}

c. Associate your options with your options class:

4. Inject the options into your middleware constructor. This is similar to injecting options into a controller.

The UseMiddleware extension method that adds your middleware to the IApplicationBuilder  takes care of

dependency injection.

This isn't limited to IOptions  objects. Any other object that your middleware requires can be injected this

way.



The options pattern has the advantage that it creates loose coupling between options values and their consumers.

Once you've associated an options class with the actual options values, any other class can get access to the

options through the dependency injection framework. There's no need to pass around options values.

This breaks down though if you want to use the same middleware twice, with different options. For example an

authorization middleware used in different branches allowing different roles. You can't associate two different

options objects with the one options class.

The solution is to get the options objects with the actual options values in your Startup  class and pass those

directly to each instance of your middleware.

{
  "MyMiddlewareOptionsSection2": {
    "Param1": "Param1Value2",
    "Param2": "Param2Value2"
  },
  "MyMiddlewareOptionsSection": {
    "Param1": "Param1Value",
    "Param2": "Param2Value"
  }
}

1. Add a second key to appsettings.json

To add a second set of options to the appsettings.json file, use a new key to uniquely identify it:

2. Retrieve options values and pass them to middleware. The Use...  extension method (which adds your

middleware to the pipeline) is a logical place to pass in the option values:



public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
    loggerFactory.AddConsole(Configuration.GetSection("Logging"));
    loggerFactory.AddDebug();

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseBrowserLink();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
    }

    app.UseMyMiddleware();

    app.UseMyMiddlewareWithParams();

    var myMiddlewareOptions = 
Configuration.GetSection("MyMiddlewareOptionsSection").Get<MyMiddlewareOptions>();
    var myMiddlewareOptions2 = 
Configuration.GetSection("MyMiddlewareOptionsSection2").Get<MyMiddlewareOptions>();
    app.UseMyMiddlewareWithParams(myMiddlewareOptions);
    app.UseMyMiddlewareWithParams(myMiddlewareOptions2);

    app.UseMyTerminatingMiddleware();

    // Create branch to the MyHandlerMiddleware. 
    // All requests ending in .report will follow this branch.
    app.MapWhen(
        context => context.Request.Path.ToString().EndsWith(".report"),
        appBranch => {
            // ... optionally add more middleware to this branch
            appBranch.UseMyHandler();
        });

    app.MapWhen(
        context => context.Request.Path.ToString().EndsWith(".context"),
        appBranch => {
            appBranch.UseHttpContextDemoMiddleware();
        });

    app.UseStaticFiles();

    app.UseMvc(routes =>
    {
        routes.MapRoute(
            name: "default",
            template: "{controller=Home}/{action=Index}/{id?}");
    });
}

3. Enable middleware to take an options parameter. Provide an overload of the Use...  extension method

(that takes the options parameter and passes it to UseMiddleware ). When UseMiddleware  is called with

parameters, it passes the parameters to your middleware constructor when it instantiates the middleware

object.



 Migrating to the new HttpContext

public async Task Invoke(HttpContext context)

HttpContextHttpContext

IDictionary<object, object> items = httpContext.Items;

string requestId = httpContext.TraceIdentifier;

HttpContext.RequestHttpContext.Request

string httpMethod = httpContext.Request.Method;

public static class MyMiddlewareWithParamsExtensions
{
    public static IApplicationBuilder UseMyMiddlewareWithParams(
        this IApplicationBuilder builder)
    {
        return builder.UseMiddleware<MyMiddlewareWithParams>();
    }

    public static IApplicationBuilder UseMyMiddlewareWithParams(
        this IApplicationBuilder builder, MyMiddlewareOptions myMiddlewareOptions)
    {
        return builder.UseMiddleware<MyMiddlewareWithParams>(
            new OptionsWrapper<MyMiddlewareOptions>(myMiddlewareOptions));
    }
}

Note how this wraps the options object in an OptionsWrapper  object. This implements IOptions , as

expected by the middleware constructor.

You saw earlier that the Invoke  method in your middleware takes a parameter of type HttpContext :

HttpContext  has significantly changed in ASP.NET Core. This section shows how to translate the most commonly

used properties of System.Web.HttpContext to the new Microsoft.AspNetCore.Http.HttpContext .

HttpContext.ItemsHttpContext.Items translates to:

Unique request ID (no System.Web.HttpContext counterpar t)Unique request ID (no System.Web.HttpContext counterpar t)

Gives you a unique id for each request. Very useful to include in your logs.

HttpContext.Request.HttpMethodHttpContext.Request.HttpMethod translates to:

HttpContext.Request.Quer yStr ingHttpContext.Request.Quer yStr ing translates to:

https://docs.microsoft.com/en-us/dotnet/api/system.web.httpcontext


IQueryCollection queryParameters = httpContext.Request.Query;

// If no query parameter "key" used, values will have 0 items
// If single value used for a key (...?key=v1), values will have 1 item ("v1")
// If key has multiple values (...?key=v1&key=v2), values will have 2 items ("v1" and "v2")
IList<string> values = queryParameters["key"];

// If no query parameter "key" used, value will be ""
// If single value used for a key (...?key=v1), value will be "v1"
// If key has multiple values (...?key=v1&key=v2), value will be "v1,v2"
string value = queryParameters["key"].ToString();

// using Microsoft.AspNetCore.Http.Extensions;
var url = httpContext.Request.GetDisplayUrl();

var isSecureConnection = httpContext.Request.IsHttps;

var userHostAddress = httpContext.Connection.RemoteIpAddress?.ToString();

IRequestCookieCollection cookies = httpContext.Request.Cookies;
string unknownCookieValue = cookies["unknownCookie"]; // will be null (no exception)
string knownCookieValue = cookies["cookie1name"];     // will be actual value

var routeValue = httpContext.GetRouteValue("key");

// using Microsoft.AspNetCore.Http.Headers;
// using Microsoft.Net.Http.Headers;

IHeaderDictionary headersDictionary = httpContext.Request.Headers;

// GetTypedHeaders extension method provides strongly typed access to many headers
var requestHeaders = httpContext.Request.GetTypedHeaders();
CacheControlHeaderValue cacheControlHeaderValue = requestHeaders.CacheControl;

// For unknown header, unknownheaderValues has zero items and unknownheaderValue is ""
IList<string> unknownheaderValues = headersDictionary["unknownheader"];
string unknownheaderValue = headersDictionary["unknownheader"].ToString();

// For known header, knownheaderValues has 1 item and knownheaderValue is the value
IList<string> knownheaderValues = headersDictionary[HeaderNames.AcceptLanguage];
string knownheaderValue = headersDictionary[HeaderNames.AcceptLanguage].ToString();

HttpContext.Request.UrlHttpContext.Request.Url  and HttpContext.Request.RawUrlHttpContext.Request.RawUrl  translate to:

HttpContext.Request.IsSecureConnectionHttpContext.Request.IsSecureConnection translates to:

HttpContext.Request.UserHostAddressHttpContext.Request.UserHostAddress  translates to:

HttpContext.Request.CookiesHttpContext.Request.Cookies  translates to:

HttpContext.Request.RequestContext.RouteDataHttpContext.Request.RequestContext.RouteData translates to:

HttpContext.Request.HeadersHttpContext.Request.Headers  translates to:

HttpContext.Request.UserAgentHttpContext.Request.UserAgent translates to:



string userAgent = headersDictionary[HeaderNames.UserAgent].ToString();

string urlReferrer = headersDictionary[HeaderNames.Referer].ToString();

// using Microsoft.Net.Http.Headers;

MediaTypeHeaderValue mediaHeaderValue = requestHeaders.ContentType;
string contentType = mediaHeaderValue?.MediaType.ToString();   // ex. application/x-www-form-urlencoded
string contentMainType = mediaHeaderValue?.Type.ToString();    // ex. application
string contentSubType = mediaHeaderValue?.SubType.ToString();  // ex. x-www-form-urlencoded

System.Text.Encoding requestEncoding = mediaHeaderValue?.Encoding;

if (httpContext.Request.HasFormContentType)
{
    IFormCollection form;

    form = httpContext.Request.Form; // sync
    // Or
    form = await httpContext.Request.ReadFormAsync(); // async

    string firstName = form["firstname"];
    string lastName = form["lastname"];
}

WARNINGWARNING

string inputBody;
using (var reader = new System.IO.StreamReader(
    httpContext.Request.Body, System.Text.Encoding.UTF8))
{
    inputBody = reader.ReadToEnd();
}

WARNINGWARNING

HttpContext.ResponseHttpContext.Response

HttpContext.Request.UrlReferrerHttpContext.Request.UrlReferrer  translates to:

HttpContext.Request.ContentTypeHttpContext.Request.ContentType translates to:

HttpContext.Request.FormHttpContext.Request.Form translates to:

Read form values only if the content sub type is x-www-form-urlencoded or form-data.

HttpContext.Request.InputStreamHttpContext.Request.InputStream translates to:

Use this code only in a handler type middleware, at the end of a pipeline.

You can read the raw body as shown above only once per request. Middleware trying to read the body after the first read

will read an empty body.

This doesn't apply to reading a form as shown earlier, because that's done from a buffer.

HttpContext.Response.StatusHttpContext.Response.Status  and HttpContext.Response.StatusDescr iptionHttpContext.Response.StatusDescr iption translate to:



// using Microsoft.AspNetCore.Http;
httpContext.Response.StatusCode = StatusCodes.Status200OK;

// using Microsoft.Net.Http.Headers;
var mediaType = new MediaTypeHeaderValue("application/json");
mediaType.Encoding = System.Text.Encoding.UTF8;
httpContext.Response.ContentType = mediaType.ToString();

httpContext.Response.ContentType = "text/html";

string responseContent = GetResponseContent();
await httpContext.Response.WriteAsync(responseContent);

public async Task Invoke(HttpContext httpContext)
{
    // ...
    httpContext.Response.OnStarting(SetHeaders, state: httpContext);

HttpContext.Response.ContentEncodingHttpContext.Response.ContentEncoding and HttpContext.Response.ContentTypeHttpContext.Response.ContentType translate to:

HttpContext.Response.ContentTypeHttpContext.Response.ContentType on its own also translates to:

HttpContext.Response.OutputHttpContext.Response.Output translates to:

HttpContext.Response.TransmitFileHttpContext.Response.TransmitFile

Serving up a file is discussed here.

HttpContext.Response.HeadersHttpContext.Response.Headers

Sending response headers is complicated by the fact that if you set them after anything has been written to the

response body, they will not be sent.

The solution is to set a callback method that will be called right before writing to the response starts. This is best

done at the start of the Invoke  method in your middleware. It's this callback method that sets your response

headers.

The following code sets a callback method called SetHeaders :

The SetHeaders  callback method would look like this:



// using Microsoft.AspNet.Http.Headers;
// using Microsoft.Net.Http.Headers;

private Task SetHeaders(object context)
{
    var httpContext = (HttpContext)context;

    // Set header with single value
    httpContext.Response.Headers["ResponseHeaderName"] = "headerValue";

    // Set header with multiple values
    string[] responseHeaderValues = new string[] { "headerValue1", "headerValue1" };
    httpContext.Response.Headers["ResponseHeaderName"] = responseHeaderValues;

    // Translating ASP.NET 4's HttpContext.Response.RedirectLocation  
    httpContext.Response.Headers[HeaderNames.Location] = "http://www.example.com";
    // Or
    httpContext.Response.Redirect("http://www.example.com");

    // GetTypedHeaders extension method provides strongly typed access to many headers
    var responseHeaders = httpContext.Response.GetTypedHeaders();

    // Translating ASP.NET 4's HttpContext.Response.CacheControl 
    responseHeaders.CacheControl = new CacheControlHeaderValue
    {
        MaxAge = new System.TimeSpan(365, 0, 0, 0)
        // Many more properties available 
    };

    // If you use .NET Framework 4.6+, Task.CompletedTask will be a bit faster
    return Task.FromResult(0);
}

public async Task Invoke(HttpContext httpContext)
{
    // ...
    httpContext.Response.OnStarting(SetCookies, state: httpContext);
    httpContext.Response.OnStarting(SetHeaders, state: httpContext);

private Task SetCookies(object context)
{
    var httpContext = (HttpContext)context;

    IResponseCookies responseCookies = httpContext.Response.Cookies;

    responseCookies.Append("cookie1name", "cookie1value");
    responseCookies.Append("cookie2name", "cookie2value",
        new CookieOptions { Expires = System.DateTime.Now.AddDays(5), HttpOnly = true });

    // If you use .NET Framework 4.6+, Task.CompletedTask will be a bit faster
    return Task.FromResult(0); 
}

Additional resources

HttpContext.Response.CookiesHttpContext.Response.Cookies

Cookies travel to the browser in a Set-Cookie response header. As a result, sending cookies requires the same

callback as used for sending response headers:

The SetCookies  callback method would look like the following:



HTTP Handlers and HTTP Modules Overview

Configuration

Application Startup

Middleware

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/


Migrate from Microsoft.Extensions.Logging 2.1 to 2.2
or 3.0
9/22/2020 • 2 minutes to read • Edit Online

2.1 to 2.2

using (var loggerFactory = new LoggerFactory())
{
    loggerFactory.AddConsole();

    // use loggerFactory
}

var serviceCollection = new ServiceCollection();
serviceCollection.AddLogging(builder => builder.AddConsole());

using (var serviceProvider = serviceCollection.BuildServiceProvider())
using (var loggerFactory = serviceProvider.GetService<ILoggerFactory>())
{
    // use loggerFactory
}

2.1 to 3.0

using (var loggerFactory = new LoggerFactory())
{
    loggerFactory.AddConsole();

    // use loggerFactory
}

using (var loggerFactory = LoggerFactory.Create(builder => builder.AddConsole()))
{
    // use loggerFactory
}

This article outlines the common steps for migrating a non-ASP.NET Core application that uses 

Microsoft.Extensions.Logging  from 2.1 to 2.2 or 3.0.

Manually create ServiceCollection  and call AddLogging .

2.1 example:

2.2 example:

In 3.0, use LoggingFactory.Create .

2.1 example:

3.0 example:

https://github.com/dotnet/AspNetCore.Docs/blob/master/aspnetcore/migration/Logging-nonaspnetcore.md


Additional resources
Microsoft.Extensions.Logging.Console NuGet package.

Logging in .NET Core and ASP.NET Core

https://www.nuget.org/packages/Microsoft.Extensions.Logging.Console/

	Cover Page
	ASP.NET Core documentation
	What's new in ASP.NET Core docs
	Overview
	About ASP.NET Core
	Compare ASP.NET Core and ASP.NET
	Compare .NET Core and .NET Framework

	Get started
	Release notes
	What's new in 3.1
	What's new in 3.0
	What's new in 2.2
	What's new in 2.1
	What's new in 2.0
	What's new in 1.1

	Tutorials
	Web apps
	Razor Pages
	Overview
	Get started
	Add a model
	Scaffolding
	Work with a database
	Update the pages
	Add search
	Add a new field
	Add validation

	MVC
	Overview
	Get started
	Add a controller
	Add a view
	Add a model
	Work with a database
	Controller actions and views
	Add search
	Add a new field
	Add validation
	Examine Details and Delete

	Blazor

	Web API apps
	Create a web API
	Web API with MongoDB
	Web API with JavaScript
	Backend for mobile
	Publish to Azure API Management

	Real-time web apps
	SignalR with JavaScript
	SignalR with TypeScript
	SignalR with Blazor WebAssembly

	Remote Procedure Call apps
	Get started with a gRPC service

	Data access
	EF Core with Razor Pages
	Get started
	Create, Read, Update, and Delete
	Sort, filter, page, and group
	Migrations
	Create a complex data model
	Read related data
	Update related data
	Handle concurrency conflicts

	EF Core with MVC
	Overview
	Get started
	Create, Read, Update, and Delete
	Sort, filter, page, and group
	Migrations
	Create a complex data model
	Read related data
	Update related data
	Handle concurrency conflicts
	Inheritance
	Advanced topics


	Microsoft Learn modules
	Web apps >>
	Web API apps >>
	Cloud-native microservices
	Create and deploy >>
	Implement resiliency >>
	Deploy with GitHub Actions >>

	Data access >>
	Web app security >>


	Fundamentals
	Overview
	The Startup class
	Dependency injection (services)
	Middleware
	Host
	Generic Host
	Web Host

	Servers
	Configuration
	Options
	Environments (dev, stage, prod)
	Logging
	Routing
	Handle errors
	Make HTTP requests
	Static files

	Web apps
	Razor Pages
	Introduction
	Tutorial
	Overview
	Get started
	Add a model
	Scaffolding
	Work with a database
	Update the pages
	Add search
	Add a new field
	Add validation

	Filters
	Route and app conventions

	MVC
	Overview
	Tutorial
	Overview
	Get started
	Add a controller
	Add a view
	Add a model
	Work with a database
	Controller actions and views
	Add search
	Add a new field
	Add validation
	Examine the Details and Delete methods

	Views
	Partial views
	Controllers
	Routing
	Dependency injection - controllers
	Dependency injection - views
	Unit test

	Blazor
	Overview
	Supported platforms
	Tooling
	Hosting models
	Tutorials
	Build a Blazor todo list app
	SignalR with Blazor WebAssembly

	Templates
	Fundamentals
	Routing
	Configuration
	Dependency injection
	Environments
	Logging
	Handle errors
	Additional scenarios

	Components
	Overview
	Built-in components
	App
	Authentication
	AuthorizeView
	InputCheckbox
	InputDate
	InputFile
	InputNumber
	InputRadio
	InputRadioGroup
	InputSelect
	InputText
	InputTextArea
	Link
	MainLayout
	Meta
	NavLink
	NavMenu
	Router
	Title
	Virtualize

	Cascading values and parameters
	Data binding
	Event handling
	Lifecycle
	Component virtualization
	Templated components
	Integrate components
	Component libraries

	Globalization and localization
	Layouts
	Forms and validation
	File uploads
	Call JavaScript from .NET
	Call .NET from JavaScript
	Call a web API from WebAssembly
	Security and Identity
	Overview
	Blazor WebAssembly
	Overview
	Standalone with Authentication library
	Standalone with Microsoft Accounts
	Standalone with AAD
	Standalone with AAD B2C
	Hosted with AAD
	Hosted with AAD B2C
	Hosted with Identity Server
	Additional scenarios
	AAD groups and roles

	Blazor Server
	Overview
	Threat mitigation
	Additional scenarios

	Content Security Policy

	State management
	Debug WebAssembly
	Lazy load assemblies with WebAssembly
	WebAssembly performance
	Test
	Progressive Web Applications
	Host and deploy
	Overview
	Blazor WebAssembly
	Blazor Server
	Configure the Linker
	Configure the Trimmer

	Blazor Server and EF Core
	Advanced scenarios

	Client-side development
	Single Page Apps
	Angular
	React
	React with Redux
	JavaScript Services

	LibMan
	Overview
	CLI
	Visual Studio

	Grunt
	Bundle and minify
	Browser Link

	Session and state management
	Layout
	Razor syntax
	Razor class libraries
	Tag Helpers
	Overview
	Create Tag Helpers
	Use Tag Helpers in forms
	Tag Helper Components
	Built-in Tag Helpers
	Anchor
	Cache
	Component
	Distributed Cache
	Environment
	Form
	Form Action
	Image
	Input
	Label
	Link
	Partial
	Script
	Select
	Textarea
	Validation Message
	Validation Summary


	Advanced
	Application parts
	Application model
	Areas
	Filters
	Razor SDK
	View components
	View compilation
	Upload files
	Web SDK
	aspnet-codegenerator (Scaffolding)


	Web API apps
	Overview
	Tutorials
	Create a web API
	Web API with MongoDB

	Swagger / OpenAPI
	Overview
	Get started with Swashbuckle
	Get started with NSwag
	OpenAPI tools

	Action return types
	Handle JSON Patch requests
	Format response data
	Custom formatters
	Analyzers
	Conventions
	Handle errors
	Test APIs with HTTP REPL

	Real-time apps
	SignalR overview
	Supported platforms
	Tutorials
	SignalR with JavaScript
	SignalR with TypeScript
	SignalR with Blazor WebAssembly

	Samples
	Server concepts
	Hubs
	Send from outside a hub
	Users and groups
	API design considerations
	Hub filters

	Clients
	Overview
	.NET client
	.NET API reference
	Java client
	Java API reference
	JavaScript client
	JavaScript API reference

	Host and scale
	Overview
	Azure App Service
	Redis backplane
	SignalR with background services

	Configuration
	Authentication and authorization
	Security considerations
	MessagePack Hub Protocol
	Streaming
	Compare SignalR and SignalR Core
	WebSockets without SignalR
	Logging and diagnostics
	Specifications
	Hub protocol
	Transport protocols


	Remote Procedure Call apps
	Introduction to gRPC services
	Tutorials
	Get started with a gRPC service

	gRPC services with C#
	Overview
	Create gRPC services
	Create Protobuf messages
	Versioning gRPC services

	Call gRPC services with C#
	Overview
	gRPC client factory integration
	Deadlines and cancellation

	gRPC services with ASP.NET Core
	Use gRPC in browser apps
	Configuration
	Authentication and authorization
	Logging and diagnostics
	Security considerations
	Performance best practices
	Inter-process communication
	Create JSON Web APIs from gRPC
	Manage Protobuf references with dotnet-grpc
	Test gRPC services with gRPCurl
	Migrate gRPC services from C-core
	Why migrate WCF to ASP.NET Core gRPC
	Compare gRPC services with HTTP APIs
	Samples
	Troubleshoot

	Test, debug, and troubleshoot
	Razor Pages unit tests
	Test controllers
	Test middleware
	Remote debugging
	Snapshot debugging
	Snapshot debugging in Visual Studio
	Integration tests
	Load and stress testing
	Troubleshoot and debug
	Logging
	Troubleshoot Azure and IIS
	Azure and IIS errors reference

	Data access
	Tutorials
	EF Core with Razor Pages
	Get started
	Create, Read, Update, and Delete
	Sort, filter, page, and group
	Migrations
	Create a complex data model
	Read related data
	Update related data
	Handle concurrency conflicts

	EF Core with MVC
	Overview
	Get started
	Create, Read, Update, and Delete
	Sort, filter, page, and group
	Migrations
	Create a complex data model
	Read related data
	Update related data
	Handle concurrency conflicts
	Inheritance
	Advanced topics


	EF 6 with ASP.NET Core
	Azure Storage with Visual Studio
	Connected Services
	Blob storage
	Queue storage
	Table storage


	Host and deploy
	Overview
	Azure App Service
	Overview
	Publish with Visual Studio
	Publish with Visual Studio for Mac
	Publish with the CLI
	Publish with Visual Studio and Git
	Continuous deployment with Azure Pipelines
	ASP.NET Core Module
	Troubleshoot
	Errors reference

	DevOps
	Overview
	Tools and downloads
	Deploy to App Service
	Continuous integration and deployment
	Monitor and troubleshoot
	Next steps

	IIS
	Overview
	Publish to IIS tutorial
	ASP.NET Core Module
	IIS support in Visual Studio
	IIS Modules
	Troubleshoot
	Errors reference
	Transform web.config

	Kestrel
	HTTP.sys
	Windows service
	Linux with Nginx
	Linux with Apache
	Docker
	Overview
	Build Docker images
	Visual Studio Tools
	Publish to a Docker image
	Sample Docker images

	Proxy and load balancer configuration
	Web farm
	Visual Studio publish profiles
	Visual Studio for Mac publish to folder
	Directory structure
	Health checks

	Security and Identity
	Overview
	Authentication
	Overview
	Introduction to Identity
	Identity with SPA
	Scaffold Identity
	Add custom user data to Identity
	Authentication samples
	Customize Identity
	Community OSS authentication options
	Configure Identity
	Configure Windows Authentication
	Custom storage providers for Identity
	Google, Facebook ...
	Overview
	Google authentication
	Facebook authentication
	Microsoft authentication
	Twitter authentication
	Other providers
	Additional claims

	Policy schemes
	WS-Federation authentication
	Account confirmation and password recovery
	Enable QR code generation in Identity
	Two-factor authentication with SMS
	Use cookie authentication without Identity
	Use social authentication without Identity
	Azure Active Directory
	Overview
	Integrate Azure AD into a web app
	Scenarios
	Web app that signs in users
	Web app that calls web APIs
	Protected web API
	Web API that calls other web APIs
	Integrate Azure AD B2C into a web app

	Samples
	Sign-in users and call web APIs using Azure AD V2
	Calling an ASP.NET Core 2.0 Web API from a WPF application using Azure AD V2
	Web API with Azure AD B2C


	Secure ASP.NET Core apps with IdentityServer4
	Secure ASP.NET Core apps with Azure App Service authentication (Easy Auth)
	Individual user accounts
	Configure certificate authentication
	Multi-factor authentication

	Authorization
	Overview
	Create a web app with authorization
	Razor Pages authorization conventions
	Simple authorization
	Role-based authorization
	Claims-based authorization
	Policy-based authorization
	Authorization policy providers
	Dependency injection in requirement handlers
	Resource-based authorization
	View-based authorization
	Limit identity by scheme

	Data protection
	Overview
	Data protection APIs
	Consumer APIs
	Overview
	Purpose strings
	Purpose hierarchy and multi-tenancy
	Hash passwords
	Limit the lifetime of protected payloads
	Unprotect payloads whose keys have been revoked

	Configuration
	Overview
	Configure data protection
	Default settings
	Machine-wide policy
	Non-DI aware scenarios

	Extensibility APIs
	Overview
	Core cryptography extensibility
	Key management extensibility
	Miscellaneous APIs

	Implementation
	Overview
	Authenticated encryption details
	Subkey derivation and authenticated encryption
	Context headers
	Key management
	Key storage providers
	Key encryption at rest
	Key immutability and settings
	Key storage format
	Ephemeral data protection providers

	Compatibility
	Overview
	Replace machineKey in ASP.NET


	Secrets management
	Protect secrets in development
	Azure Key Vault Configuration Provider

	Enforce HTTPS
	Host Docker with HTTPS
	Docker Compose with HTTPS
	EU General Data Protection Regulation (GDPR) support
	Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks
	Prevent open redirect attacks
	Prevent Cross-Site Scripting (XSS)
	Enable Cross-Origin Requests (CORS)
	Share cookies among apps
	SameSite cookies
	SameSite samples
	Razor Pages 2.1 SameSite cookie sample
	Razor Pages 3.1 SameSite cookie sample
	MVC SameSite cookie sample

	IP safelist
	Application security - OWASP

	Performance
	Overview
	Memory and GC
	Caching
	Overview
	In-memory cache
	Distributed caching
	Response caching middleware
	Object reuse with ObjectPool

	Response compression
	Diagnostic tools
	Load and stress testing
	Event counters

	Globalization and localization
	Overview
	Portable Object localization
	Extensibility
	Troubleshoot

	Advanced
	Model binding
	Custom model binding
	Model validation
	Compatibility version
	Write middleware
	Request and response operations
	URL rewriting
	File providers
	Request-feature interfaces
	Access HttpContext
	Change tokens
	Open Web Interface for .NET (OWIN)
	Background tasks with hosted services
	Hosting startup assemblies
	ASP.NET Core in class libraries
	Microsoft.AspNetCore.App metapackage
	Microsoft.AspNetCore.All metapackage
	Logging with LoggerMessage
	Use a file watcher
	Factory-based middleware
	Factory-based middleware with third-party container

	Migration
	3.1 to 5.0
	3.0 to 3.1
	2.2 to 3.0
	2.1 to 2.2
	2.0 to 2.1
	1.x to 2.0
	Overview
	Authentication and Identity

	ASP.NET to ASP.NET Core
	Overview
	MVC
	Web API
	Configuration
	Authentication and Identity
	ClaimsPrincipal.Current
	Membership to Identity
	HTTP modules to middleware

	Logging (not ASP.NET Core)

	API reference
	Contribute

